# UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE PATENT TRIAL AND APPEAL BOARD DIRECTV, LLC Petitioner v. QURIO HOLDINGS, INC. Patent Owner CASE: To Be Assigned Patent No. 7,787,904 B2

# DECLARATION OF TAL LAVIAN, PH.D. IN SUPPORT OF PETITION FOR *INTER PARTES* REVIEW OF U.S. PATENT NO. 7,787,904 B2

# **Table of Contents**

|       |                                                        |                                                                                                                                                                                                                      | Page |
|-------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| I.    | INT                                                    | RODUCTION                                                                                                                                                                                                            | 1    |
| II.   | SUN                                                    | MARY OF MY OPINIONS                                                                                                                                                                                                  | 3    |
| III.  | QUA                                                    | ALIFICATIONS AND EXPERIENCE                                                                                                                                                                                          | 5    |
| IV.   | BASIS FOR MY OPINION AND STATEMENT OF LEGAL PRINCIPLES |                                                                                                                                                                                                                      | 9    |
|       | A.                                                     | Claim Construction                                                                                                                                                                                                   | 10   |
|       | B.                                                     | Anticipation                                                                                                                                                                                                         | 10   |
|       | C.                                                     | Obviousness                                                                                                                                                                                                          | 11   |
| V.    | LEV                                                    | EL OF ORDINARY SKILL IN THE ART                                                                                                                                                                                      | 12   |
| VI.   |                                                        | TE OF THE ART OF THE RELEVANT TECHNOLOGY AT TIME OF THE ALLEGED INVENTION                                                                                                                                            | 15   |
|       | A.                                                     | Remote Controls for Media Players                                                                                                                                                                                    | 16   |
|       | B.                                                     | Mobile Devices.                                                                                                                                                                                                      | 17   |
|       | C.                                                     | Wireless Networking                                                                                                                                                                                                  | 18   |
|       | D.                                                     | Viewing, Selecting, and Controlling Digital Content Remotely                                                                                                                                                         | 19   |
|       | E.                                                     | Wireless Remote Controls or Mobile Devices With Displays For Viewing, Selecting, and Controlling Digital Content at Media Devices or Players                                                                         | 21   |
| VII.  | OVERVIEW OF THE '904 PATENT                            |                                                                                                                                                                                                                      | 25   |
|       | A.                                                     | The Specification of the '904 Patent                                                                                                                                                                                 | 25   |
|       | B.                                                     | The Claims of The '904 Patent                                                                                                                                                                                        | 31   |
|       | C.                                                     | Claim Construction                                                                                                                                                                                                   | 33   |
|       |                                                        | 1. "Mobile Device" (claims 1-3, 10, 12, and 15-18)                                                                                                                                                                   | 33   |
| VIII. | SUM                                                    | MARY OF THE PRIOR ART REFERENCES                                                                                                                                                                                     | 34   |
|       | A.                                                     | De Vet <i>et al.</i> , "A personal digital assistant as an advanced remote control for audio/video equipment" from the Second Workshop on Human Computer Interaction with Mobile Devices, 1999 ("De Vet") (Ex. 1003) | 34   |

# **Table of Contents**

(continued)

Page

|      | B.                                                                                                                         | U.S. Patent Application Publication No. 2003/0193426 by Vidal ("Vidal") (Ex. 1004)                                                      | 37  |
|------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | C.                                                                                                                         | U.S. Patent Application Publication No. 2005/0057538 by<br>Morse et al. ("Morse") (Ex. 1005)                                            | 42  |
|      | D.                                                                                                                         | U.S. Patent Application Publication No. 2006/0041655 by Holloway <i>et al.</i> ("Holloway") (Ex. 1006)                                  | 50  |
|      | E.                                                                                                                         | Promixis NetRemote Documents (Exs. 1008-1011)                                                                                           | 53  |
|      | F.                                                                                                                         | User's Guide for HP iPAQ rx3000 series Mobile Media<br>Companion, Document Part Number 364351-002, August 2004<br>("RX3000") (Ex. 1012) | 58  |
| IX.  |                                                                                                                            | ATENTABILITY OF THE CHALLENGED CLAIMS IN VIEW HE PRIOR ART                                                                              | 63  |
| X.   | UNP                                                                                                                        | UND 1: CLAIMS 1-3, 10, 12, and 15-18 ARE<br>ATENTABLE UNDER 35 U.S.C. § 103 AS BEING OBVIOUS<br>R DE VET IN VIEW OF VIDAL               | 65  |
|      | A.                                                                                                                         | De Vet and Vidal                                                                                                                        | 65  |
|      | B.                                                                                                                         | Obviousness and Motivation to Combine                                                                                                   | 66  |
|      | C.                                                                                                                         | Element-by-Element Analysis of the challenged claims                                                                                    | 78  |
|      | D.                                                                                                                         | Conclusions: Ground 1 – De Vet and Vidal                                                                                                | 98  |
| XI.  | GROUND 2: CLAIMS 1-3, 10, 12, AND 15-18 ARE UNPATENTABLE UNDER 35 U.S.C. § 103(a) AS BEING OBVIOUS OVER MORSE AND HOLLOWAY |                                                                                                                                         | 100 |
|      | A.                                                                                                                         | Morse and Holloway                                                                                                                      |     |
|      | B.                                                                                                                         | Obviousness and Motivation to Combine                                                                                                   |     |
|      | C.                                                                                                                         | Element-by-Element Analysis of the Claims                                                                                               | 108 |
|      | D.                                                                                                                         | Conclusions: Ground 2 – Morse and Holloway                                                                                              | 126 |
| XII. | GROUND 3: CLAIMS 1-3, 10, 12, AND 15-18 ARE UNPATENTABLE UNDER 35 U.S.C. § 103(a) AS BEING                                 |                                                                                                                                         |     |
|      |                                                                                                                            | IOUS OVER NETREMOTE AND RX3000                                                                                                          |     |
|      | A.                                                                                                                         | NetRemote and RX3000                                                                                                                    | 128 |

## **Table of Contents**

(continued)

|       |     |                                              | Page |
|-------|-----|----------------------------------------------|------|
|       | B.  | Obviousness and Motivation to Combine        | 130  |
|       | C.  | Element-by-Element Analysis                  | 135  |
|       | D.  | Conclusions: Ground 3 – NetRemote and RX3000 | 151  |
| XIII. | CON | CLUSIONS                                     | 153  |

### I. INTRODUCTION

- 1. My name is Tal Lavian, and I am a lecturer and Industry Fellow in the Center of Entrepreneurship and Technology ("CET") at the UC Berkeley College of Engineering.
- 2. I have been engaged by counsel for Petitioner DIRECTV, LLC ("Petitioner") to investigate and opine on certain issues related to U.S. Patent No. 7,787,904 B2 entitled "PERSONAL AREA NETWORK HAVING MEDIA PLAYER AND MOBILE DEVICE CONTROLLING THE SAME" (the "'904 Patent").
- 3. Specifically, Petitioner has asked me to provide my opinions related to claims 1-3, 10, 12, and 15-18 of the '904 Patent (the "Challenged Claims").
- 4. I understand that the '904 Patent is assigned to Qurio Holdings, Inc. ("Patent Owner").
- 5. In this declaration, I will discuss the technology related to the '904 Patent, including an overview of that technology as it was known at the time of the earliest priority date of the '904 Patent, which is November 9, 2005, according to Petitioner's counsel. This overview of the relevant technology provides some of the bases for my opinions with respect to the '904 Patent.
  - 6. This declaration is based on the information currently available to me.

To the extent that additional information becomes available, I reserve the right to continue my investigation and study, which may include a review of documents and information that may be produced, as well as testimony from depositions that may not yet be taken.

7. In forming my opinions, I have relied on information and evidence identified in this declaration, including but not limited to the '904 Patent, the prosecution history of the '904 Patent, and prior art references including (as numbered by Petitioner):

| Exhibit | Description of Document                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1003    | De Vet <i>et al.</i> , "A personal digital assistant as an advanced remote control for audio/video equipment" from the Second Workshop on Human Computer Interaction with Mobile Devices, 1999 ("De Vet") |
| 1004    | U.S. Patent Application Publication No. 2003/0193426 by Vidal ("Vidal")                                                                                                                                   |
| 1005    | U.S. Patent Application Publication No. 2005/0057538 by Morse <i>et al.</i> ("Morse")                                                                                                                     |
| 1006    | U.S. Patent Application Publication No. 2006/0041655 by Holloway <i>et al.</i> ("Holloway")                                                                                                               |
| 1008    | Promixis NetRemote LE Installation Guide ("Installation Guide")                                                                                                                                           |
| 1009    | Promixis NetRemote LE Network Configuration Guide ("Configuration Guide")                                                                                                                                 |
| 1010    | Promixis NetRemote LE Setup Guide ("Setup Guide")                                                                                                                                                         |
| 1011    | October 13, 2004 Internet Archive Capture of http://www.promixis.com/products.php?section=netremote ("NetRemote Webpage")                                                                                 |

| Exhibit | Description of Document                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------|
| 1012    | User's Guide for HP iPAQ rx3000 series Mobile Media Companion, Document Part Number 364351-002, August 2004 ("RX3000") |
| 1020    | U.S. Patent Application Publication No. 2001/0033244 by Harris <i>et al.</i> ("Harris")                                |
| 1021    | U.S. Patent No. 4,746,919 to Reitmeier ("Reitmeier")                                                                   |
| 1022    | U.S. Patent Application Publication No. 2003/0115351 by Giobbi ("Giobbi")                                              |
| 1023    | U.S. Patent No. 7,571,014 to Lambourne et al. ("Lambourne")                                                            |

8. I have also relied on my own education and experience in the field of Networks and Telecommunications technologies and systems that were already in use prior to, and within the timeframe of the earliest priority date of the claimed subject matter in the '904 Patent (November 9, 2005).

### II. SUMMARY OF MY OPINIONS

9. The '904 Patent generally relates to a system and method for controlling digital content (*e.g.*, music, video, or pictures) using a wireless mobile device, such as a remote control or a PDA, using well-known wireless technologies in a short range (such as a home or office.) Such a device receives information about the media available at a media device (*e.g.*, a media player such as a TV, video player, a PC, or an audio player), and facilitates selection of the media based on the information. *See* Ex. 1001 at Claim 1, Claim 16, 1:10-23, 6:14-16, 3:26-46,

U.S. Patent No. 7,787,904 B2

4:4-7. As discussed below in more detail, methods and systems with this

capability were well-known in the art before the '904 Patent's priority date. All

the features described in claims 1-3, 10, 12, and 15-18 of the '904 Patent were

conventional, well-known, and commonly used much before the priority date. All

the elements of the claims and the technologies were widely-used in the electronics

and software industries. The combination of these familiar elements would have

been obvious to a person of ordinary skill in the art by November 2005. The '904

Patent does not provide a new or non-obvious way of combining these known

features.

10. It is my opinion that claims 1-3, 10, 12, and 15-18 of the '904 Patent

are invalid under the patentability standard of 35 U.S.C. § 103(a), which was

explained to me by Petitioner's counsel (as stated below.) All the elements of

Claim 1 are disclosed by each of the prior art references; Claim 1 is anticipated by

each of them.

11. For the purpose of my analysis in this declaration only and based on

the disclosure and file history of the '904 Patent, I will provide my proposed

construction of certain terms in claims 1-3, 10, 12, and 15-18 in detail in a later

part of this declaration.

12. The subsequent sections of this declaration will first provide my

4

Page 8 of 1414

qualifications and experience and will then detail my analysis and observations.

My analysis in this declaration is intended to supplement Petitioner's petition for

inter partes review of the '904 Patent. In addition to the analysis and citations

contained in this declaration, I have reviewed Petitioner's petition for inter partes

review of the '904 Patent. I agree with the analysis contained in the petition. The

citations to prior art references contained therein, whether or not also cited in this

declaration, form the basis for my opinion that the Challenged Claims of the '904

Patent are invalid.

III. QUALIFICATIONS AND EXPERIENCE

13. I possess the knowledge, skills, experience, training and the education

to form an expert opinion and testimony in this case. A detailed record of my

professional qualifications, including a list of patents and academic and

professional publications, is set forth in my curriculum vitae attached to this

declaration as **Attachment A**.

14. I have more than 25 years of experience in the networking,

telecommunications, Internet, and software fields. I received a Ph.D. in Computer

Science from the University of California at Berkeley in 2006 and obtained a

Master's of Science ("M.Sc.") degree in Electrical Engineering from Tel Aviv

University, Israel, in 1996. In 1987, I obtained a Bachelor of Science ("B.Sc.")

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

degree in Mathematics and Computer Science, also from Tel Aviv University.

15. I am currently employed by the University of California at Berkeley

and was appointed as a lecturer and Industry Fellow in the Center of

Entrepreneurship and Technology ("CET") as part of UC Berkeley College of

Engineering. I have been with the University of California at Berkeley since 2000

where I served as Berkeley Industry Fellow, Lecturer, Visiting Scientist, Ph.D.

Candidate, and Nortel's Scientist Liaison, where some positions and projects were

done concurrently, others sequentially.

16. I have more than 25 years of experience as a scientist, educator and

technologist, and much of my experience relates to computer networking

technologies. For eleven years from 1996 to 2007, I worked for Bay Networks and

Nortel Networks. Bay Networks was in the business of making and selling

computer network hardware and software. Nortel Networks acquired Bay

Networks in 1998, and I continued to work at Nortel after the acquisition.

Throughout my tenure at Bay and Nortel, I held positions including Principal

Scientist, Principal Architect, Principal Engineer, Senior Software Engineer, and

led the development and research involving a number of networking technologies.

I led the efforts of Java technologies at Bay network and Nortel Networks. In

addition, during 1999-2001, I served as the President of the Silicon Valley Java

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

User Group with over 800 active members from many companies in the Silicon

Valley.

17. Prior to that, from 1994 to 1995, I worked as a software engineer and

team leader for Aptel Communications, designing and developing mobile wireless

devices and network software products. From 1990 to 1993, I worked as a software

engineer and team leader at Scitex Ltd., where I developed system and network

communications tools (mostly in C and C++).

18. I have extensive experience in the area of network communications

and Internet technologies including design and implementation of computer-based

systems for managing communications networks, including the ability to monitor

and provision networks. While with Nortel Networks and Bay Networks

(mentioned above) my work involved the research and development of these

technologies. For example, I wrote software for Bay Networks and Nortel

Networks Web based network management for Bay Networks switches. I

developed Simple Network Management Protocol (SNMP) software for Bay

Network switches and software interfaces for Bay Networks' Optivity Network

Management System. I wrote software for Java based device management

including software interface to the device management and network management

for the Accelar routing switch family network management system.

U.S. Patent No. 7,787,904 B2

19. I have extensive experience in network communications, including

control and management of routing and switching architectures and protocols in

layers 1-7 of the OSI model. Much of my work for Nortel Networks (mentioned

above) involved the research and development of network communications

technologies. For example, I wrote software for Bay Networks and Nortel

Networks switches and routers, developed network technologies for the Accelar

8600 family of switches and routers, the OPTera 3500 SONET switches, the

OPTera 5000 DWDM family, and the Alteon L4-7 switching product family. In

my lab, I installed, configured, managed and tested many network communications

equipment of competitors such as Cisco Systems, Juniper Networks, Extreme

Networks, Lucent and Alcatel.

20. I am named as a co-inventor on more than 80 issued patents and I co-

authored more than 25 scientific publications, journal articles, and peer-reviewed

papers. Furthermore, I am a Senior Member of the Institute of Electrical and

Electronics Engineers ("IEEE").

21. I currently serve as a Principal Scientist at my company Telecomm

Net Consulting Inc., where I develop network communication technologies and

provide research and consulting in advanced technologies, mainly in computer

networking and Internet technologies. In addition, I serve as a Co- Founder and

Chief Technology Officer (CTO) of VisuMenu, Inc., where I design and develop

architecture of visual IVR technologies for smartphones and wireless mobile

devices in the area of network communications. The system is based on cloud

networking and cloud computing utilizing Amazon Web Services.

22. Additional details of my background are set forth in my curriculum

vitae, attached as Attachment A to this Declaration, which provides a more

complete description of my educational background and work experience. I am

being compensated for the time I have spent on this matter. My compensation

does not depend in any way upon my performance or on the outcome of this

proceeding or any other proceeding. I hold no interest in the Petitioner (DIRECTV,

LLC) or the patent owner (Qurio Holdings, Inc.).

23. The documents and materials on which I have relied for the opinions

expressed in this declaration include the '904 Patent, the prosecution history for the

'904 Patent, the prior art references, and any other references specifically identified

in this declaration, in their entirety, even if only portions of these documents are

discussed here in an exemplary fashion.

IV. BASIS FOR MY OPINION AND STATEMENT OF LEGAL

**PRINCIPLES** 

24. My opinions and views set forth in this declaration are based on my

education, training, and experience in the relevant field, as well as the materials I

have reviewed for this matter, and the scientific knowledge regarding the subject

matter that existed prior to November 9, 2005.

A. Claim Construction

25. Petitioner's counsel has advised that, when construing claim terms, a

claim subject to *inter partes* review receives the "broadest reasonable construction

in light of the specification of the patent in which it appears." Petitioner's counsel

has further informed me that the broadest reasonable construction is the broadest

reasonable interpretation ("BRI") of the claim language, and that any term that

lacks a definition in the specification is also given a broad interpretation.

B. Anticipation

26. Petitioner's counsel has advised that in order for a patent claim to be

valid, the claimed invention must be novel. They have further advised that if each

and every element of a claim is disclosed in a single prior art reference, then the

claimed invention is anticipated, and the invention is not patentable according to

pre-AIA 35 U.S.C. § 102 effective before March 16, 2013. In order for the

invention to be anticipated, each element of the claimed invention must be

described or embodied, either expressly or inherently, in the single prior art

reference. In order for a reference to inherently disclose a claim limitation, that

claim limitation must necessarily be present in the reference. Petitioner's counsel

has also advised that a prior art reference must be enabling in order to anticipate a

patent claim.

C. Obviousness

27. Petitioner's counsel has also advised that obviousness under pre-AIA

35 U.S.C. § 103 effective before March 16, 2013 is a basis for invalidity.

Specifically, I understand that where a prior art reference discloses less than all of

the limitations of a given patent claim, that patent claim is invalid if the differences

between the claimed subject matter and the prior art reference are such that the

claimed subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the relevant art (sometimes

abbreviated herein as "POSITA"). Obviousness can be based on a single prior art

reference or a combination of references that either expressly or inherently disclose

all limitations of the claimed invention.

28. Petitioner's counsel also explained that a conclusion of obviousness

can be supported by a number of reasons. Obviousness can be based on inferences,

creative steps, and even routine steps and ordinary ingenuity that an inventor

would employ. A conclusion of obviousness can be supported by combining or

substituting known elements according to known methods to yield predictable

results, or by using known techniques to improve similar devices in the same way,

or by trying predictable solutions with a reasonable expectation of success, among

other reasons.

V. LEVEL OF ORDINARY SKILL IN THE ART

29. I understand from Petitioner's counsel that the claims and

specification of a patent must be read and construed through the eyes of a person of

ordinary skill in the art at the time of the priority date of the claims in the '904

Patent, which I understand is November 9, 2005. I have also been advised that to

determine the appropriate level of a person having ordinary skill in the art, the

following factors may be considered: (a) the types of problems encountered by

those working in the field and prior art solutions thereto; (b) the sophistication of

the technology in question, and the rapidity with which innovations occur in the

field; (c) the educational level of active workers in the field; and (d) the

educational level of the inventor.

30. The "problem" perceived by the '904 Patent, as described in its

"Background of the Invention" section, is that "there is no way of easily

ascertaining the content available on [] different media devices and controlling or

selecting the content played by these media devices using a mobile device." Ex.

1001 at 1:16-18.

12

Page 16 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

31. The '904 Patent purports to solve the above problem by providing a

system including a wireless mobile device that communicates with a number of

media devices to obtain information describing content residing at a media device

and store the information in a media database in the mobile device. Ex. 1001 at

1:26-41. The media database in the mobile device is used to select content to play

at the media device. *Id*.

32. The perceived problem and the purported solution identified in the

'904 Patent are generally related to the fields of mobile devices and wireless

network communications, and specifically to the field of wireless mobile device

communications. Therefore, a person of ordinary skill in the art may need

education and work experience in these fields.

33. Based on the above considerations and factors, it is my opinion that a

person of ordinary skill in the art (POSITA) as of the earliest date for which the

904 Patent can claim priority (November 2005) would have possessed at least a

bachelor's degree in computer science and/or electrical engineering and two years

of experience in internet, networking, or related software technologies, as well as

familiarity with mobile wireless devices and communications. Such a person

would also have familiarity with communications between wireless clients and

hosts, as well as various wireless standards such as Wi-Fi or Bluetooth.

13

Page 17 of 1414

U.S. Patent No. 7,787,904 B2

34. For example, while discussing Figures 2 and 3 of the '904 Patent, the

applicant specifically referred to Bluetooth technology, which was a

communication standard known long before November 2005. See Ex. 1001 at

3:42-43; 4:15-17; 4:67-5:4 ("[T]he wireless communication interfaces 22, 32 of the

media device 16 and mobile device 20, respectively, operate according to the

Bluetooth wireless communication standard and the validation process is the

pairing process described in the Bluetooth specification."); Figs. 2, 3; see

generally Attachment H.

35. As I will explain below, all of these areas were well-developed and

mature well before November 2005.

36. My opinions regarding the level of ordinary skill in the art are based

on, among other things, my over 25 years of experience in the field of network

communications, computer science and engineering, my understanding of the basic

qualifications that would be relevant to an engineer or scientist tasked with

investigating methods and systems in the relevant area, and my familiarity with the

backgrounds of colleagues and co-workers, both past and present.

37. Although my qualifications and experience exceed those of the

hypothetical person having ordinary skill in the art defined above, my analysis and

opinions regarding the '904 Patent have been based on the perspective of a person

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

of ordinary skill in the art as of November 2005.

VI. STATE OF THE ART OF THE RELEVANT TECHNOLOGY AT THE TIME OF THE ALLEGED INVENTION

38. The '904 Patent generally discloses a method and system for remotely

controlling digital content played by media devices. Such technologies have been

in existence for many years. In this section, I provide a brief background of the

state of technology prior to November 2005 pertinent to the '904 Patent.

Specifically, I will discuss remote controls, mobile devices, and controlling digital

content remotely, including with the use of mobile devices that store information

about media for display to a user.

39. The '904 Patent relates to remote controls in general, remote controls

for media players, communications interfaces for remote controls (such as

Bluetooth, Wi-Fi, Infrared or other wireless technologies capable of providing

Wireless Personal Area Networks or WPAN), Personal Digital Assistants (PDA) or

handheld computers, mobile devices, and Wireless Personal Area Networks

(WPAN). All the fundamental technology components were commercially

available in the market for decades. All of these technologies were mainstream

technologies in this field and all were widely known to the public and to those of

ordinary skill in the art before November 9, 2005.

U.S. Patent No. 7,787,904 B2

### A. Remote Controls for Media Players

40. The **remote control** for a media player **was introduced over 70 years ago**. For example, U.S. Patent No. 2,175,320, which was published in 1939, disclosed a wireless remote control for controlling the volume and the tuner of the radio receiver (*e.g.*, a media player). *See* Attachment B. As another example, U.S. Patent No. 2,250,371, titled "Wireless remote control system for radio phonograph combinations," has a similar disclosure and was published in **1941**. *See* Attachment C. Similarly, U.S. Patent No. 2,357,237, published in **1944** and titled "Remote control system for radio receivers and the like," disclosed comparable wireless remote control technology. *See* Attachment D.

41. **Infrared remote control** for controlling television was introduced **about 40 years ago**. For example, U.S. Patent No. 3,974,451, titled "TV remote controller", was published in **1976**. *See* Attachment E. Since then, the technology of a media player remote controller has been well-known in the industry, with many different remote control models in existence, and with many such controllers sold to control media players such as televisions, set-top boxes for cable or satellite, video cassette players, video cameras, DVD players, digital video recorder (DVR) devices, MP3 players, computers, and other types of media players.

42. **Bluetooth remote controls** (*i.e.*, remote controls which wirelessly operated devices over the Bluetooth wireless communication interface) were also well known prior to November 2005. For example, in 2001, U.S. Patent Application Publication No. 2001/0033244 (Ex. 1020) described a Bluetooth remote control for operating media players. In addition, the file history of the '904 Patent contains a prior art reference that appears to be an advertisement from October 2005 explaining that "Bluetooth Remote Control is a remote controller for your PC." *See* Ex. 1002 at 46-61.

### **B.** Mobile Devices

- 43. The **Personal Digital Assistant (PDA)** was introduced many years before the priority date of the '904 Patent. For example, the Palm III PDA, by Palm Computing (name later changed to Palm Pilot) was for sale in **1999** and included infrared communications. *See* Attachment F (Internet Archive printout describing the Palm III PDA). I personally purchased a Palm V PDA in 1999, which I used and continue to own. It had infrared IrDA communications for "beaming" contacts and other applications. I also witnessed colleagues download free software that converts the Palm V PDA into a smart programmable TV remote control.
  - 44. **Mobile devices**, such as PDAs (which may also be called PocketPCs

or handheld computers) and cellular telephones were well-known in the industry

for years before the '904 Patent. In general, mobile devices included processors,

memory, applications, and screens in addition to wireless communication

interfaces for communicating with other electronic devices.

C. Wireless Networking

45. Wireless Networking technologies were well-known long before

November 2005 to enable interaction among electronic devices. For example, the

802.11 wireless network standard (Wi-Fi) was introduced in the early nineties (see

Attachment I at 255), the Infrared IrDA standard was introduced in 1993 (see

Attachment G at 1), and Bluetooth technology was standardized in 1998 (see

Attachment I at 255). Each of these technologies could provide Wireless Personal

Area Network (WPAN) connectivity, which is essentially close-range wireless

communication, such as within a room or a home. Each of these technologies were

introduced long before November 2005 and had been standardized by industry

players to facilitate common adoption in electronic devices using wireless

communication. For example, the '904 Patent itself describes the Bluetooth

wireless communication standard and pairing according to the Bluetooth

specification. *See* Ex. 1001 at 4:67-5:4.

46. A device in communication with another device ("host") via Wi-Fi,

IrDA, or Bluetooth, for example is considered to be within the WPAN network of

the host device. Devices must be within range of each other in order to function.

For example, Wi-Fi and Bluetooth operate by radio frequency, so devices must be

within radio frequency range of each other. IrDA operates by infrared light

signals, so devices must be generally within line-of-sight of each other in order to

communicate. See Attachment G (describing IrDA); Attachments H, K (generally

describing Bluetooth).

47. Around the time of the prior art, IrDA provided a data transfer rate of

around 115.2 kilobits per second. See Attachment G at 1; Exh. 1012 at 300.

48. It is well known that Bluetooth provided a faster rate, 1.0 megabits per

second for Bluetooth 1.0 and 1.1, and around 2.1 megabits per second for

Bluetooth 2.0. See Attachment L at p. 2-3 (describing rates), ES-1 (describing

adoption dates for each Bluetooth version). The Bluetooth bandwidth is about 10-

20 time greater than Infrared.

D. Viewing, Selecting, and Controlling Digital Content Remotely

49. The concept of retrieving information from a device and controlling a

device remotely based on that information (including outputting content based on

that information) was old and well known long before November 9, 2005.

50. For example, as a Computer Science student over 30 years ago, I

used UNIX "dumb" terminals that were capable of connecting to a computer over a

network and retrieving information about files stored by the computer (such as

printing a file listing) in response to a user command. The terminal user (e.g., me

as a student) could then perform an operation on those files stored on the computer,

such as sending the file to a printer connected to the computer.

51. As a specific example, an old email client, called Pine, was able to

display a list of messages in an inbox, and a user was able to select a message to

print on a printer, long before August 2000. Around 1995, I personally used Pine

as a mail client on an IBM RS-6000 using the AIX (IBM's UNIX) Operating

System, and on SUN SPARC using the SOLARIS (SUN's UNIX) Operating

System. I have attached as **Attachment J** to this Declaration a copy of the

University of Washington's Pine tutorial, entitled "Getting Started With Email

Using Pine." I recognize **Attachment J** as a typical example of instructions for

using Pine from the late 1990's and early 2000's, describing a user's ability to

display messages stored on a server and to further print the messages at a printer

somewhere on the network.

All the fundamental technology components were commercially available

in the market for decades; were mainstream technologies in this field,

widely known to the public, and in the market.

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

E. Wireless Remote Controls or Mobile Devices With Displays For Viewing, Selecting, and Controlling Digital Content at Media Devices or Players

52. Wireless remote controls with displays for viewing, selecting, and controlling content at media devices or players were old and well known long before November 2005. Even as **early as 1986**, remote control devices were sophisticated – in U.S. Patent No. 4,746,919 (Ex. 1021, filed on March 28, 1986, issued May 24, 1988), persons in the remote control art had disclosed a system in which a device to be controlled (*e.g.*, TV, VCR) wirelessly transmitted information to a touch-screen remote control to identify the functions of on-screen buttons. And in 2001, in U.S. Patent Application Publication No. 2001/0033244 (Ex. 1020), other persons disclosed a remote control that received media information (*e.g.*, track listing on a CD) from a control station for display on a screen on the remote control for a user to select media to play or record. *See* Ex. 1020 at ¶70-74; Figs. 14, 15.

53. Before November 9, 2005, such sophisticated remote controls were used in networked arrangements to control playback of digital content on remotely controlled devices. For example, U.S. Patent Application Publication No. 2003/0115351 (published Jun. 19, 2003) (Ex. 1022) disclosed remote media clients connected to a centralized digital content server and controlled by a wireless (*e.g.*,

Bluetooth) remote control with a screen for displaying and selecting content

available on the server for streaming to a remote media client for playback. See,

e.g., Ex. 1022 at ¶¶ 9-12. The same application publication (Ex. 1022) disclosed

authenticating encrypted content at the media clients using a key code transmitted

from the remote control. *Id.* at ¶15.

54. In another example, on June 5, 2004, other persons filed a patent

application for a system in which a wireless (e.g., WiFi) remote control displayed a

plurality of zones, each having one or more media players, along with a selection

of tracks available to play on the media players. See Ex. 1023 (U.S. Patent No.

7,571,014). The remote control allowed a user to select tracks to play at the media

players individually (e.g., each device plays a different track at a different volume)

or synchronously (e.g., each device plays the same track), using track information

displayed on the remote control. Id. at Figs. 3B, 3C.

55. Survey papers and white papers prior to November 2005 also

recognized advances in PDAs (such as Palm and PocketPC devices) and remote

control technology. For example, an article by Brad Myers, titled "Using

handhelds for wireless remote control of PCs and appliances" was published online

in July 2004 (see Attachment I).

56. The Myers article described and disclosed the use of a mobile device

as a unified controller for various home devices, including media devices. *See* Attachment I at 251. More specifically, the article described and disclosed using handheld devices as remote controllers for PCs, including applications to allow a PDA to control a PC desktop. *Id.* at 258, Fig. 2.

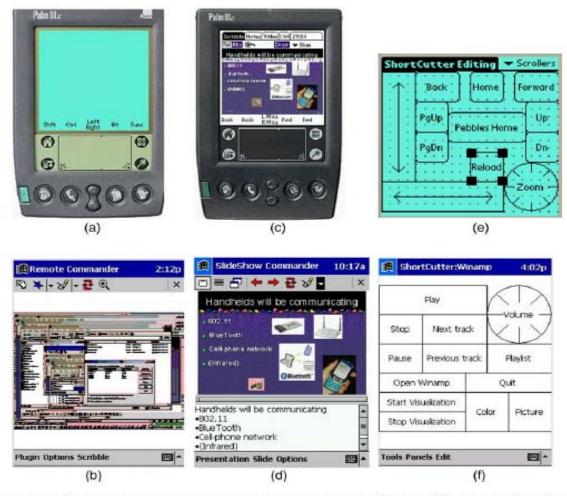



Fig. 2. RemoteCommander on a Palm (a) and a PocketPC (b). The PocketPC has sufficient bandwidth to display a screenshot of the PC. SlideShow Commander on a Palm (c) and PocketPC (d). Shortcutter in edit mode on a Palm, where the user is creating a scrolling panel (e). Shortcutter in run mode on a PocketPC with a panel for controlling the WinAmp media player (f).

57. Myers also contained a description of a PDA used to control Windows Media player running on a PC desktop. *Id.* at 260, Fig. 3(b).

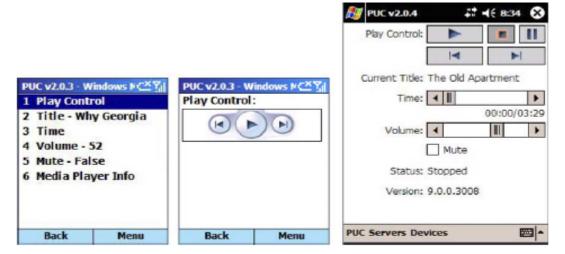



Fig. 3. User interfaces which were automatically generated by PUC for controlling Windows Media Player. On the left, two screens from a Smartphone interface. On the right, a screen from a PocketPC interface (Nichols et al., 2004).

- 58. The Meyers article is a good representation and provides a survey of the technical capabilities of PDAs and wireless networks. It also explains of the market trend toward integrated PDA controller devices, and a good representation of a PDA device that received data from a controlled device (in this case, a PC) to allow a user to make selections in order to operate the PC. *Id.* For example, the article also disclosed controlling WinAmp or Windows Media Player from the PDA. *Id.* at 258, 260. The article also disclosed the ability for PDAs to communicate with multiple appliances at the same time. *Id.* at 260.
- 59. Accordingly, the concept of wirelessly and remotely (*e.g.*, with WiFi, Bluetooth, or other short range WPAN networking technologies) controlling media files on media devices by selecting from options stored in a mobile device (and

displayed on a screen) was old and well-known, as demonstrated by the prior art

references above and the references discussed in further detail below.

60. It is my opinion that the subject matter in the Challenged Claims was

old, well-known, obvious, and anticipated by the prior art in the relevant field of

art. The prior art shows that market trends and pressures in this area would

naturally suggest (to one of skill in the art) the very techniques described by the

'904 Patent. As a result of these trends and forces, it would have been obvious to

combine the various prior art references, as described below.

### VII. OVERVIEW OF THE '904 PATENT

A. The Specification of the '904 Patent

61. The '904 Patent relates to a mobile device that wirelessly

communicates with media devices to select content to be played by the media

devices. See, e.g., Ex. 1001, Abstract; 3:4-8, 41-47; 4:15-20, 38-40; Figs. 2-4.

Figure 3 below depicts the mobile device that communicates with the media player

depicted in Figure 2 below:

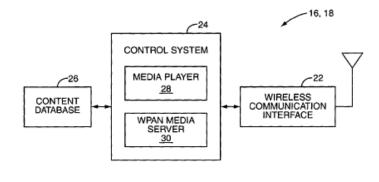



FIG. 2

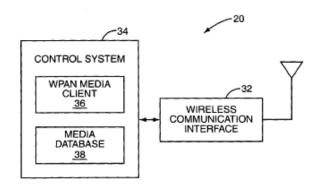
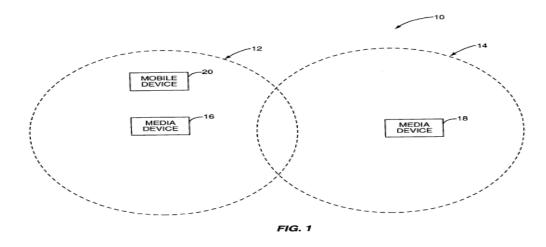
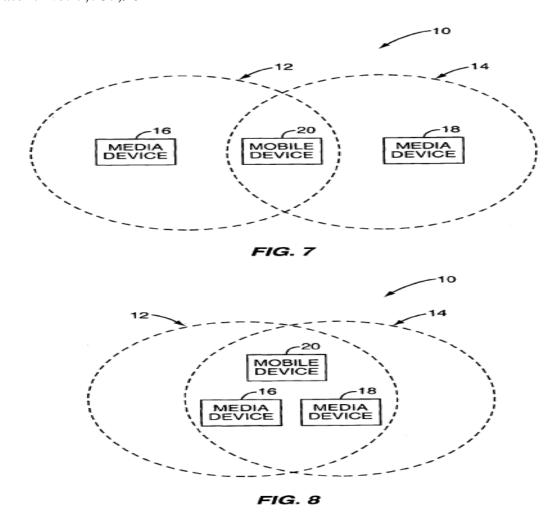





FIG. 3

- 62. The mobile device, such as a mobile phone, a PDA, or "a stand-alone device similar to a remote control," has a control system and a wireless communication interface for communicating (*e.g.*, via a WPAN such as Bluetooth or WiFi) with the media devices. Ex. 1001, 1:29-30; 4:4-7, 15-20. The control system of the mobile device includes a media client and a media database of information describing the content residing at the media device. *Id.* at 4:21-23; 5:22-26; 8:49-50 (Claim 1); 10:17-19 (Claim 16); Figs. 3, 5.
  - 63. Each media device includes a content database (e.g., a hard drive or

RAM), a wireless communication interface for communicating with the mobile device (*e.g.* via Bluetooth or WiFi), and a control system. *Id.* at 3:32-35, 54-57. The control system of the media device includes a media player and a media server. Ex. 1001 at 3:48-50. The wireless communication interfaces have a range approximately suitable for devices within a room or a home. *See* Ex. 1001 at 1:14-16; 32-41; Figs. 1, 7, 8. Figures 1, 7, and 8 illustrate various block diagrams of ranges of the WPAN and the location of the remote control:





- 64. When the mobile device is within the WPAN associated with the media device, a user interacts with the media client to browse the media database and select desired content in the content database to be played at the media device. Ex. 1001 at 5:46-50; 6:1-5.
- 65. Figure 6 of the '904 Patent illustrates a process for controlling the content played by a media device:

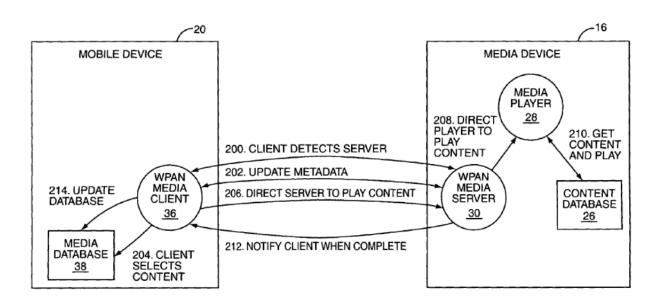



FIG. 6

Ex. 1001 at Fig. 6.

- 66. Specifically, Figure 6 includes a mobile device **20** that communicates with a media device **16** through a wireless personal area network (WPAN). Ex. 1001 at 5:45-50. The mobile device **20** includes a media client **36** and a media database **38**. *Id.* at 4:21-23. The media device includes a media player **28** and a media server **30**. *Id.* at 3:48-50.
- 67. The process begins when the mobile device 20 enters the WPAN 12 and the media client 36 detects the media server 30 (step 200). *Id.* at 5:51-52. For example, the media server 30 periodically scans the WPAN 12 for a mobile device 20. *Id.* at 5:53-56. Alternatively, the mobile device 20 periodically performs a scan for the media devices 16, 18. *Id.* Once the media client 36 has detected the media

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

server 30 or vice versa, communication between the media client 36 and the media

server **30** is established. *Id.* at 5:51-60. The mobile device can be validated when it

enters the WPAN, for example, according to the pairing process of the Bluetooth

standard. Id. at 4:48-5:4.

68. The media client **36** then operates to select desired content to play at

the media device 16 from the media database 38 (step 204). *Id.* at 6:1-3. A user

interacts with the media client 36 to browse the media database 38 and select

desired content in the content database 26 to be played. Id. at 6:3-5. A user

associated with the mobile device 20 may interact with the media client 36 to

define preferences. Id. at 6:6-7. The user may define preferences for each of the

WPANs 12 and 14 or a single set of preferences to be applied to all of the WPANs

12 and 14. Id. at 8-10. The preferences are used by the media client 36 to

automatically select the desired content to be played using the media database 38.

*Id.* at 6:10-12.

69. The media client **36** then directs the media server **30** to play select

content from the content database 26 (step 206). Id. at 6:33-35. Once the media

server 30 receives the request to play the desired content from the media client 36,

the media server 30 directs the media player 28 to play the desired content (step

208). Id. at 6:34-37. In response, the media player 28 obtains the desired content

30

Page 34 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

from the content database 26 and plays the desired content (step 210). Id. at 6:37-

40.

70. The media server **30** then sends a notification to the media client **36** 

when the process is complete (step 212). Id. at 6:40-41. The notification is sent at

any time after the media server 30 directs the media player 28 to play the desired

content. Id. at 6:42-43. For example, the notification is sent once the playing of the

desired content by the media player 28 is complete. *Id.* at 6:43-45. Upon receiving

the notification from the media server 30, the media client 36 updates the last-

played time-stamp for the desired content within the media database 38 (step 214).

*Id.* at 6:45-48.

71. It is my opinion that the '904 patent describes technologies, devices,

and combinations of technologies and devices that were already in existence long

before November 9, 2005.

B. The Claims of The '904 Patent

72. There are two independent claims and seven dependent claims

addressed in this declaration. The two independent claims, which are Claims 1 and

16, purport to recite a method and a mobile device for controlling digital content

played by a plurality of media devices. See Claims 1 and 16.

73. The first independent claim addressed in this Declaration is Claim 1,

31

Page 35 of 1414

### which recites:

- 1. A mobile device for controlling digital content played by a plurality of media devices comprising:
- [a] a wireless communication interface for communicating with the plurality of media devices;
- [b] a media database; and;
- [c] a control system adapted to, for each of the plurality of media devices:
- [c][i] communicate with the media device when the mobile device is within a wireless personal area network (WPAN) associated with the media device to obtain information describing content residing at the media device; and
- [c][ii] store the information describing the content residing at the media device in the media database;
- [d] wherein desired content is selected from the content at the media device based on the information in the media database and played at the media device when the mobile device is within the WPAN associated with the media device.

Ex. 1001 at 8:36-55 (Claim 1).

74. For convenience in identifying these limitations in my Declaration, I added bracketed notations to the limitations (*e.g.*, "[a]," "[b]," etc.). Claims 2-4, 7, 10, 12 and 14-15 depend on independent claim 1 listed above. I will address each claim in more detail in **Parts X-XIII** below.

U.S. Patent No. 7,787,904 B2

75. The second independent claim addressed in this Declaration is Claim 16, which generally recites a method for controlling digital content played by a plurality of media devices, with steps that generally correspond to using the elements of Claim 1. Ex. 1001 at 10-12.

## **C.** Claim Construction

76. I have been informed by counsel that invalidity analysis is a two-step process. In the first step, the scope and meaning of a claim is determined by construing the terms of that claim. In the second step, the claim as interpreted is compared to the prior art. Therefore, before I address the application of the prior art to the claims of the '904 Patent in **Parts X-XIII** below, I will provide a construction for one term in those claims, according to the broadest reasonable construction standard I referenced above. The remaining terms should be construed to have their ordinary and plain meaning in light of the specification of the 904 Patent pursuant to the broadest reasonable interpretation (BRI) standard for IPR.

## 1. "Mobile Device" (claims 1-3, 10, 12, and 15-18)

77. The '904 Patent specification defines "mobile device" as "a mobile phone, Personal Digital Assistant (PDA), or the like. Alternatively, the mobile device 20 may be a stand-alone device similar to a remote control." Ex. 1001

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

at 4:4-7. (emphasis added)

78. Accordingly, the broadest reasonable construction of "mobile device" is "a mobile phone, Personal Digital Assistant (PDA), or the like [or] a stand-alone

device similar to a remote control." See Ex. 1001 at 4:4-7.

VIII. SUMMARY OF THE PRIOR ART REFERENCES

79. I have been asked to provide my opinions as to whether certain prior

art discloses and/or renders obvious the limitations recited in claims 1-3, 10, 12,

and 15-18. Each of Exhibits 1003-1006 and 1008-1012 generally discloses a

wireless remote control device that receives information about digital content

stored on a media device, stores the information, and allows a user to browse or act

upon that information to control the media device, as further explained for each

reference below. In addition, Exhibit 1007 generally discloses a music playback

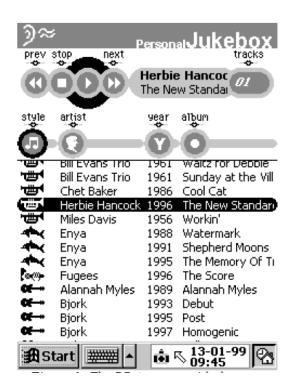
device having onboard storage for digital media and implementing playlists for

organized playback.

A. De Vet *et al.*, "A personal digital assistant as an advanced remote control for audio/video equipment" from the Second Workshop

control for audio/video equipment" from the Second Workshop on Human Computer Interaction with Mobile Devices, 1999 ("De

Vet") (Ex. 1003)


80. De Vet was a paper written by John De Vet and Vincent Buil of

Phillips Research in 1999.

81. De Vet discloses a personal digital assistant (PDA) that is used as a

wireless remote control device that stores a catalogue of music information to provide a user the ability to browse, select and play music in a virtual compact disc jukebox (*i.e.*, a CD collection in MP3 format stored on a PC). Ex. 1003 at 87-88.

82. For example, as shown in De Vet, the PDA screen has a personal jukebox user interface:



Ex. 1003 at 88.

83. As seen above, the tracks are organized and available for playback by CD or album, each of which is shown in a list on a display of the PDA. *Id.* The PDA displays attributes such as genre, artist, release year, and album. *Id.* The list of CDs can also be sorted by music style, artist name, release year and album

names, by either using the stylus or voice commands. *Id.* at 87. For creating the CD catalogue on the PDA, a number of attributes (such as artist, album, year and style) is available for each CD. *Id.* at 88. The jukebox system sends the ID information (*i.e.*, attributes) of each CD to the PDA. *Id.* 

84. Connecting the PDA to the PC results in an update of the catalogue, which is stored and available for viewing even when the PDA is out of range of the PC. *Id.* at 88-89. The PDA communicates with the PC via a wireless infrared link. *Id.* As seen in the figure below, the PC has an IrDA transceiver to communicate with the IrDA transceiver in the PDA. The PC IrDA transceiver is circled below for purposes of this Declaration:



Ex. 1003 at 88.

U.S. Patent No. 7,787,904 B2

85. De Vet also discloses "controlling multiple devices and a variety of

content" such as using the PDA to store a catalog of video discs or videotapes, or

to function as an electronic program guide for television. *Id.* at 89. The PDA "can

offer access to a variety of content: music, TV programmes, film, theatre shows,

sports events, and so on" stored on multiple media players. *Id.* 

86. De Vet disclosed and implemented an advanced PDA as a remote

control for browsing and selecting media content and controlling the media player

to play the selected media content. The features of the PDA disclosed in De Vet

offer users alternative ways of interacting with media content, depending on the

context of use demands and personal preferences.

B. U.S. Patent Application Publication No. 2003/0193426 by Vidal

("Vidal") (Ex. 1004)

87. Vidal was published on October 16, 2003. It is titled "Apparatus and

Method to Facilitate Universal Remote Control." Vidal describes a universal

remote control, which includes a display screen and a user input mechanism and

the ability to control multiple appliances.

88. Vidal discloses a universal remote control that wirelessly

communicates with multiple appliances (e.g., TV, stereo, computer, DVD player,

MP3 player) to receive menu descriptions from the appliances in order to display

menus for a user to select and control the appliances from a touch-screen display

on the remote control. Ex. 1004 at Abstract, ¶¶ 10, 19, 33, Figs. 1, 2.

89. Figure 1 illustrates a remote control controlling multiple devices, as shown below. *Id.* at ¶23.

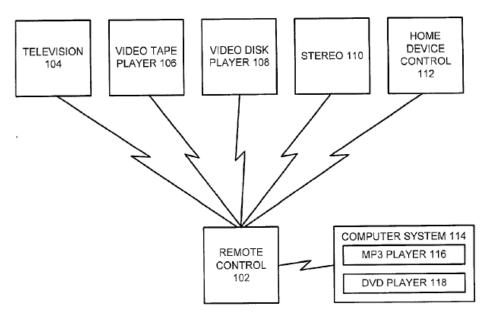
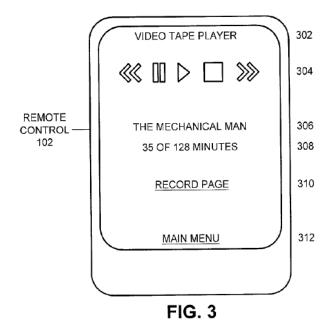
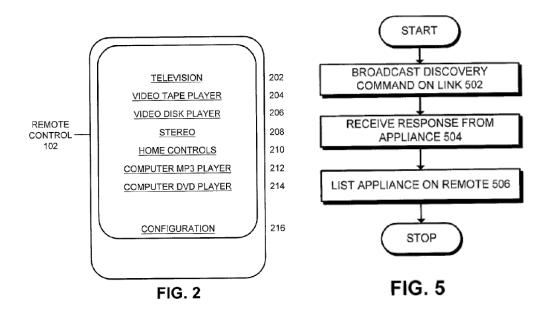




FIG. 1

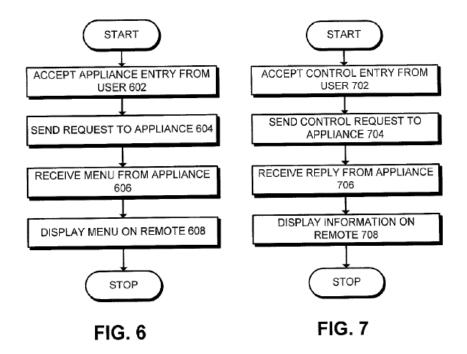
Ex. 1004 at Fig. 1.

90. The remote control includes a processor to display data on the display screen and to accept data from the user selection. *Id.* at ¶9. For example, as shown in Figure 3 below, an appliance control page is illustrated, and further explained below in more detail:




Ex. 1004 at Fig. 3.

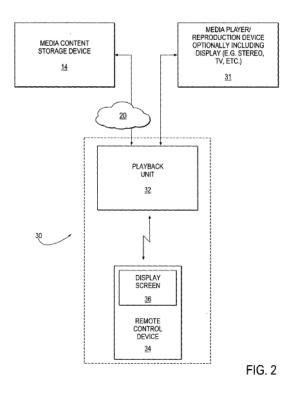
- 91. Vidal discloses a wireless communication mechanism between the processor and the appliances. *Id.* at 9. The wireless communication mechanism could be Bluetooth, another RF link, or an infrared link. *Id.* at ¶¶35, 47.
- 92. The remote control includes a discovery mechanism that is configured to automatically discover the appliances through the wireless communication mechanism or interface. *Id.* at ¶¶35-38, 52, 55, Figs. 2, 5. To do so, the remote control periodically broadcasts a discovery command from a communication module. *Id.* at ¶52.
- 93. The remote control then receives a response from one or more appliances at the communication module (such as a Bluetooth communication


channel). *Id.* at ¶35, 47, 55. Finally, the remote control displays the device name, as specified by the appliance. *Id.* at ¶55. This process can be repeated until no more appliances respond to the discovery command. *Id.* 

94. The appliances discovered by the remote control are displayed on the remote control so that a user can choose an appliance to control, as shown below in Figure 2 below. *Id.* at ¶35-38, 52, 55, Figs. 2, 5. Figure 5 below illustrates the process of discovering available appliances.



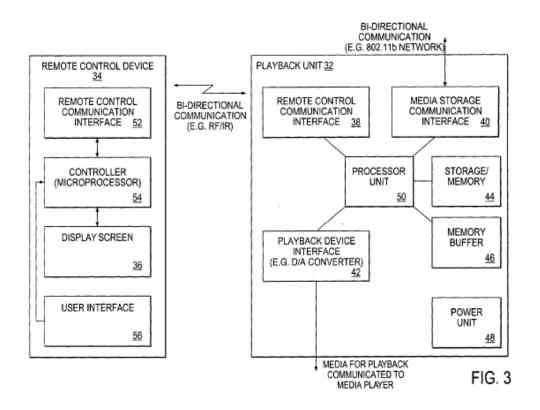
Ex. 1004 at Figs. 2, 5.


95. When a user selects an appliance to control at the remote control, the remote control sends a message to the appliance requesting a menu description. *Id.* at  $\P$  0036, 0053, 0057, Fig. 6 (below).



- 96. The appliance responds with the menu description, which is a specification that the remote control interprets to configure the user interface screen to display a menu of options or symbols (*e.g.*, play, stop, fast-forward) for a user to operate the appliance with the remote control. *Id.* at ¶¶ 0020, 0036, 0041-42, 0053, 0057, Fig. 3 (see above); Fig. 7. Figure 7, above, illustrates the process of controlling an appliance.
- 97. Data sent from the appliance to the remote control for display may also include the title of a movie being played and progress within the movie. *Id.* at ¶¶ 0041-42, 0059, Fig. 3 (see above).
- 98. Appliances that were previously discovered do not need to be rediscovered again and again. *Id.* at ¶55. The remote control remembers previously

discovered appliances and can engage in communication as soon as the appliance comes within range or becomes available. *Id*.


- C. U.S. Patent Application Publication No. 2005/0057538 by Morse et al. ("Morse") (Ex. 1005)
- 99. Morse was published on March 17, 2005. It is titled "Method and System to Display Media Content Data."
- 100. Morse teaches a remote control device that wirelessly communicates with playback units to receive and store media content data (*e.g.*, audio track titles, album names, and video clip titles) about digital media files from the playback units. Ex. 1005 at Abstract, ¶¶ 4, 29, 35-37, 49-50, 54-55; Fig. 16.
- 101. The remote control device displays the media content data on a display screen for a user to browse and then select to control playback of media at a playback device such as a TV or stereo. *Id.* at Abstract, ¶¶ 4, 29, 32-33, 35-36, 54-55; Figs. 2, 8, 9. The user selects content for playback on the playback device based on the information provided on the display screen. *Id.* at ¶29.
- 102. Figure 2 of Morse (below) illustrates a schematic block diagram of the system:



103. The system in Morse includes a playback unit, a remote control device, a media content storage device, and a media player (*e.g.*, a TV or stereo). *Id.* at ¶29. For example, the media content storage device may store digital media in the form of music files, video files, photographs, or the like and the playback unit may retrieve content data that identifies, or is associated with, the media files and communicate the content data to the remote control device for display on the display screen. *Id.* The user may then select content for reproduction or playback on the playback device based on the information provided on the display screen. *Id.* For example, the content data may include audio track titles, album names, video clip titles, photograph tiles, and so on that reside on the media content

storage device. *Id.* The media content storage device may act as a server that provides the digital media to any one or more playback units. *Id.* at ¶36. The digital media on the media content storage device could include music files, video files, photographs, or the like. *Id.* at ¶29.

104. Figure 3 below illustrates a schematic block diagram of a remote control device in bi-directional communication with a playback unit. Ex. 1005 at ¶¶ 11, 30-33.



Ex. 1005 at Fig. 3.

105. The playback unit (32 or 160, 162, 164 or 252) includes a bi-

directional communication interface to communicate with the media storage device

to receive the media content data. *Id.* at Abstract, ¶¶28-31. The playback unit may

include other components, like storage/memory, a memory buffer, a power unit,

and a processor unit to control operation of the playback unit. Id. The playback

unit has a playback device interface to connect to the playback device for play. *Id*.

at ¶¶ 28-31.

106. The playback unit may further include a display data processor to

process the media content data and generate display metrics based on the media

content data, and a bi-directional communication interface to communicate the

display metrics to the remote control device for display. *Id.* at ¶¶52, 53.

107. The remote control device has a remote control communication

interface to communicate in a bi-directional fashion with the remote control

communication interface of the playback unit. *Id.* at ¶32. The remote control

device also has a controller (e.g., a microprocessor-based controller), a display

screen, and a user interface with navigation and functional buttons to allow a user

to select and play digital media stored on the media content storage device. The

user interface allows a user to browse and select media content stored on the media

content storage device. *Id.* The display screen may operate in conjunction with

the user interface in a menu driven fashion so that media content can be displayed

45

Page 49 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

to a user on the screen and a user can select one or more media files for playback

on the playback device. *Id.* at ¶33.

108. The remote control communication interfaces in the remote control

and in the playback unit may be radio frequency interfaces, optical interfaces (like

infrared), or any other communication interface. *Id.* at ¶33. The communication

interfaces may be low power devices with a range suitable for use within a

domestic dwelling. Id.

109. When the remote control device requests information from the media

content storage device (e.g., information on the content available for playback on

the playback device), the playback unit may then communicate a media data

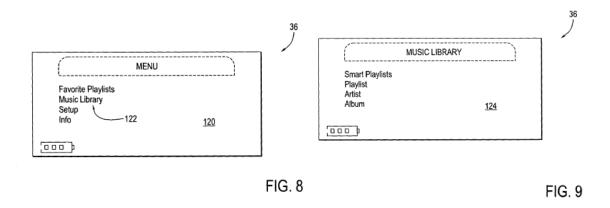
request to the media content storage device. In response to the request, the media

content storage device may communicate content data to the playback unit which

communicates the data to the remote control device for display on the display

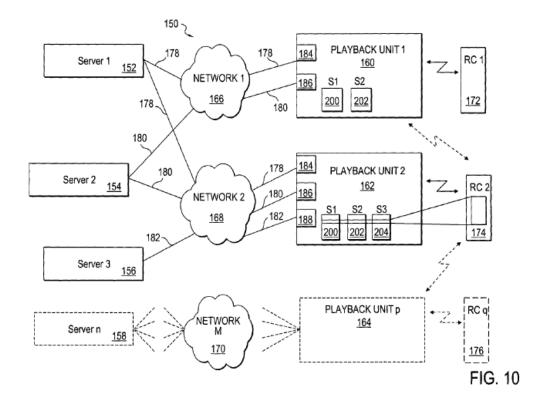
screen. Id. at ¶34.

110. If a user has selected a particular media file like an MP3 music file for


playback, the playback unit may then stream the music file to the playback device.

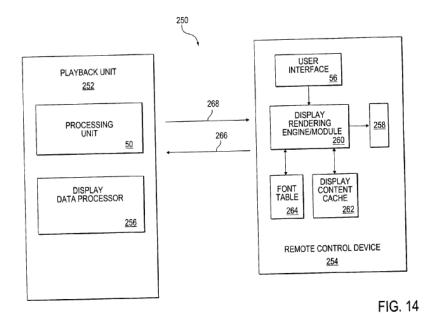
*Id.* at ¶37.

111. Figures 8 and 9 below illustrate exemplary user interfaces presented to


the user on the display screen of the remote control device, in which a user may

select group descriptions like favorite playlists or music library, and a user may drill down through menus using the navigation buttons. *See id.* at ¶¶16, 17, 42.




Ex. 1005 at Figs. 8, 9.

112. A single remote control device can communicate with more than one playback unit. *Id.* at ¶40, 43, 48; *see* Fig. 10 (below). There may be plurality of servers connectable to one or more playback units, and each playback unit may communicate with one or more remote control devices. *Id.* at ¶43. The servers, playback units, and remote control devices are similar to those described above. *Id.* 



Ex. 1005 at Fig. 10

- 113. The playback units may source media content data from the servers and merge or combine the media content data received for communication to any one or more remote control devices. *Id.* at ¶50.
- 114. Figure 14 (below) also illustrates a remote control and a playback unit.



- 115. The playback unit may control or assist the remote control device in displaying data or information. *Id.* at ¶52. For example, the playback unit may configure and determine how data is to appear on the display screen of the remote control device. *Id.* at ¶53. The playback unit may have a display data processor that processes the media content data or any other data to be displayed on the display screen of the remote control and communicate the display control data to the remote control device, which uses the display rendering engine to display the information on screen. *Id.*
- 116. User interaction via the user interface is monitored at the remote control device which communicates a user action to the playback unit. *Id.* at ¶¶ 54.

- 117. A decision is made about whether or not further content is required from the media content storage device and, if required, a media content data request is communicated from the playback unit to the media storage device. *Id*. The playback unit may then identify or determine what information needs to be displayed on a display screen of the remote device, and suggest how the information should be displayed. *Id*. at 54-55.
- 118. Morse discloses or renders obvious the challenged claims, as described below.
  - D. U.S. Patent Application Publication No. 2006/0041655 by Holloway et al. ("Holloway") (Ex. 1006)
- 119. Holloway is a published application entitled "Bi-Directional Remote Control for Remotely Controllable Apparatus."
- 120. Holloway discloses a wireless touch-screen remote control that receives a menu of options and information from a host A/V system for display to a user, such as media titles and "a file system [for an internal hard drive] so that the user can select a file to play back" at the host A/V system. Ex. 1006 at ¶52, 92, 98-107, 132, 210, 265, 266; Figs. 11A, 11B, 17A-C.
- 121. Holloway described a system for controlling a host using a remote control whose functions are defined by that host. The functions on the remote are arranged by the host and grouped logically for easy navigation. The

communication between the remote and host is bi-directional, and can occur in real time. The controlled devices can be devices for controlling applications within a home or commercial building. Ex. 1006 at Abstract.

122. For example, as seen in Fig. 11A, a main or home screen on the remote control device provides the user the ability to select various entertainment options available on the host Audio/Video (A/V) system:

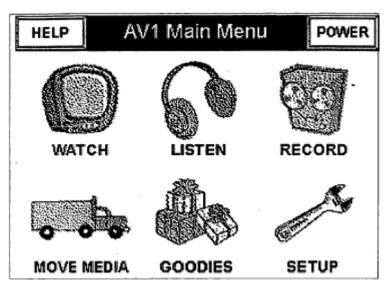



Figure 11A

Ex. 1006 at Fig. 11A;  $see \P 23, 218-240.$ 

123. Each host A/V system is an assembly of various A/V elements in a single chassis, such as a CD player, an MP3 player, and a hard drive. *Id.* at ¶¶52, 59, 63, Figs. 1-7. The host defines the functions of the remote control by sending the menu of options from which the users can choose on the remote control, based

on whether particular modules are included in the host A/V system. *Id.* at Abstract,  $\P92$ , 95-100.

124. If there are multiple A/V hosts, as may be the case for a sports bar having multiple televisions, for example, one remote can control all the hosts. *Id.* at ¶ 0385. To do this, the remote can display hosts with which it can communicate, and a user can select a host to control. *Id.* Figure 23A illustrates an appearance of the screen when multiple hosts are detected, offering the user to a choice select a host to control (in the figure below, hosts are defined by their location):

| HELP                     | MULTIP | LAST<br>DEVICE            |                           |  |
|--------------------------|--------|---------------------------|---------------------------|--|
| BIG SCREEN SOUTH<br>WALL |        | SW CORNER OF MAIN<br>ROOM | NW CORNER OF MAIN<br>ROOM |  |
| NE CORNER OF BAR         |        | SE CORNER OF BAR          | BIG SCREEN NORTH<br>WALL  |  |

FIGURE 23A-MULTIPE HOSTS DETECTED

Ex. 1006 at Fig. 23A; see ¶385.

125. Upon selection of a host from the multiple hosts, the selected host provides a menu of A/V choices for a user to select to control, as illustrated below in Figure 23A. *See*, *e.g.*, *id*. at ¶385.

| HELP             | WATCH NE CORNER OF BAR |                 | CHANGE<br>HOST  | HOME |
|------------------|------------------------|-----------------|-----------------|------|
| BROADCAST        |                        | CABLE/SATELLITE | DVD             |      |
| RECORDED CONTENT |                        | PICTURES        | EXTERNAL SOURCE |      |

FIGURE 23A-TYPICAL SCREEN LAYOUT LAYOUT FOR CASE OF MULTIPLE HOSTS

Ex. 1006 at Fig. 23A.

- 126. The remote control communicates with the host A/V system using Bluetooth bi-directional communication. *Id.* at Abstract,  $\P$  19, 81, 116, 363-65; Fig. 17.
- 127. As described below, Holloway discloses or renders obvious the subject matter in the challenged claims.

## E. Promixis NetRemote Documents (Exs. 1008-1011)

- 128. The NetRemote LE Installation Guide ("Installation Guide") (Ex.1008), NetRemote LE Network Configuration Guide ("Configuration Guide") (Ex.1009), NetRemote LE Setup Guide ("Setup Guide") (Ex. 1010), and the NetRemote Webpage (Ex.1011) (collectively, "NetRemote") describe various aspects of the installation, setup, and use of NetRemote software by Promixis.
  - 129. The NetRemote references disclose a handheld PDA device

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

configured to provide 2-way wireless (i.e., Wi-Fi) remote control of media stored

on a computer and hosted for playback by media center software on the computer.

Ex. 1010 at 1, 7; Ex. 1011.

130. The PDA receives information about the media such as title, artist, or

album cover from the computer. Id. The PDA displays the information, which a

user can browse and select, thereby causing the PDA to send a command to the

computer to play the selected music. *Id*.

131. NetRemote discloses a 2-way remote control compatible with any

Windows computer or Pocket PC. Ex. 1011. NetRemote allows users to manage

and control a digital media library and home automation system wirelessly using a

WiFi enabled Pocket PC or Windows computer. *Id*.

132. For example, in one mode, a user can view the currently playing track

and various track information, including album cover, artist, genre, and year, on

the screen of the PDA:



Ex. 1010 at 1.

133. In another mode, a user can view a collection of album covers for selection or play:



Ex. 1010 at 7.

134. A view of one compatible media center on a PC is shown in the Setup Guide, Exhibit 1009, at page 9:



automatically connecting to the media device over wireless network: "NetRemote works by talking' to J. River Media Center (JRMC) over your network. It works with both wired and wireless networks. NetRemote is designed to automatically configure and connect to any computers on your network running JRMC." Ex. 1009 at 1. Furthermore, when in range of the wireless network, "NetRemote will take a few seconds to examine your network and try and find any computer that is

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

running JRMC." Id.

136. NetRemote disclosed the key concepts and goals of a mobile device

wirelessly controlling a media device and playing content. "NetRemote from

Promixis is the ultimate in 2 way remote control using your Pocket PC or any

Windows computer. Unleash your digital media library and control your

computer and home automation systems wirelessly! Using NetRemote and your

WiFi enabled Pocket PC or any networked Windows computer, you will have full

control of your digital media from anywhere in your house." Ex. 1011 at 1.

(emphasis added.)

137. A key functionality and a main goal of NetRemote is to allow

selection of content on a mobile device and playing it on the media device. More

specifically, NetRemote disclosed using the mobile device to browse and select

specific media content and playing it on the media device: "Browse your music by

artist, genre, playlist, title or even by album cover, adjust the volume, and let the

music play. Use NetRemote for your next party and let your guests play DJ by

passing the PocketPC around. NetRemote is incredibly easy and fun, and once you

use it, you'll never put it down." Ex. 1011 at Page 1. (Emphasis added.)

138. NetRemote also disclosed Audio/Video media devices using a mobile

device: "Using NetRemote and your favorite media player, control your A/V

presentations, slideshows, and digital video using your PocketPC. It's easy!" Ex. 1011 at 1. (Emphasis added.)

- 139. In addition: "Toss your remotes away- all you need is your PocketPC and NetRemote and you can control your home theater, TV, stereo…" Ex 1011, Page 1. (Emphasis added.)
- 140. The NetRemote documents disclosed or rendered obvious the challenged claims.
  - F. User's Guide for HP iPAQ rx3000 series Mobile Media Companion, Document Part Number 364351-002, August 2004 ("RX3000") (Ex. 1012)
- 141. RX3000 discloses a portable handheld computer (*i.e.*, a PDA) that allows a user to view a list of media files stored on a server. Ex. 1012 at 121-22, 182-186. Specifically, the user can "browse and play music, photos, and video collections over a wireless network" and "[p]lay and control digital media on PCs connected to your Wi-Fi network." *Id.* at 121-122. (Emphasis added.)
- 142. For example, RX3000 illustrates various screens allowing a user to view, browse, and control media remotely, including allowing users to choose how they want to browse tracks, and details of tracks on the server:





List View

Controls View

Ex. 1012 at 186.



Ex. 1012 at 158.

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

143. The PDA scans the wireless network and identifies all the media

servers and the media players that are available in the network. *Id.* at 156, 182-184.

144. "When you launch iPAQ Mobile Media, it scans your wireless

network and identifies all the media servers and media players that are

available. When a new media server or player becomes available, an icon is

displayed in the Navigation bar. When you tap this icon, the names of each media

server or player that is now available displays. When a media server or player

is shut down, you will also be notified through this same icon in the Navigation

bar. Tapping this icon shows the media server or player that is no longer available.

*Id.* at 156.

145. The PDA can control media to play from any media server onto any

digital media player: RX3000 discloses using the PDA to select a media server

from which a user wants to access media, select a media player on which the user

wants the media to play, and selecting the media itself for play. *Id.* at 182-184.

146. For example, RX3000 illustrates selecting a server from a list of

available media servers:



Ex. 1012 at 159.

147. RX3000 also illustrates selecting media from the media stored on the server:



Ex. 1012 at 162.

- 148. RX3000 discloses that "[i]n Media Control mode, **you can search the currently selected server for music, pictures, and videos** if the media server supports the search function. You can search by:" Title, Artist, Albums or Song. Ex. 1012, 187-188.
- 149. In addition, RX3000 discloses copying and storing media information to the device for later playback and viewing. *Id.* at 121, 189-90.
- 150. RX3000 also discloses a method for pairing devices. *Id.* at 146. Such pairing of these devices can include computer generated security key prior to each connection. *Id.*

151. As described in detail below, RX3000 discloses or renders obvious

the subject matter of the challenged claims.

IX. UNPATENTABILITY OF THE CHALLENGED CLAIMS IN VIEW

OF THE PRIOR ART

152. The concept of retrieving information from a device and controlling a

device remotely based on that information was old and well-known long before

November 9, 2005. As I will explain below, each element in the challenged claims

of the '904 Patent existed and was well-known in the prior art long before

November 2005.

153. The technology of wireless remote control for a media player (e.g.

radio receiver) was disclosed over 76 years ago, while the remote control for TV

and other media players was disclosed about 40 years ago (and 30 years before

the '904 filing date), and the short range wireless technologies such as Bluetooth,

Wi-Fi and Infrared IrDA standards started about **20-25 years ago**.

154. The prior art already provided a buffet of 1) wireless mobile devices

that 2) received and stored information about media located at a media device,

from the media device and 3) provided a user with the ability to view, browse, and

select media based on the media information 4) in order to control the media at the

media device. See Part VI above and Attachment I (providing a survey of such

devices). Combining technical features disclosed in one exemplary prior art

Declaration of Tal Lavian, Ph.D., in Support of Petition

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

system, disclosing one implementation of a remote control system, with technical

features from another prior art remote control system, is merely a matter of routine

experimentation to one of skill in the art.

155. All of these technologies were well-known and widely adopted by the

industry. There has been a verity of products from a very large number of vendors

and a very strong consumer base of users.

156. All the technological building blocks of the remote control devices

discussed herein were well-known and widely distributed in the industry. The

technologies of remote controls, PDAs, mobile devices, Bluetooth, and other

wireless communication technologies were all "off-the-shelf" technologies, that

were available in the market long before the '904 Patent with known features and

advantages that a POSITA would have considered when designing a device.

157. These technologies have grown based on home entertainment market

pressure to provide ways of controlling media devices. The technologies in the

'904 patent simply apply an obvious combination of technologies to provide finite

number of identified, predictable solutions to a predictable problem. And the

technologies in the '904 patent are simply technologies that were already in

existence long before November 2005.

158. It was simply common sense to combine these known elements, in a

64

Page 68 of 1414

predictable and ordinary way. The results of these combinations are predictable

and would have been expected in the market because of the natural confluence of

mobile devices, media control, and wireless technology, and it already existed,

alone or in combination, in many prior art references.

X. GROUND 1: CLAIMS 1-3, 10, 12, AND 15-18 ARE UNPATENTABLE UNDER 35 U.S.C. § 103 AS BEING OBVIOUS OVER DE VET IN

VIEW OF VIDAL

A. De Vet and Vidal

159. As described above in further detail in **Part VIII**, De Vet and Vidal

each describe remote control systems for media players. De Vet and Vidal

separately disclose or render obvious every limitation of independent claims 1 and

16. In addition, a combination of both De Vet and Vidal renders obvious every

limitation of the Challenged Claims.

160. De Vet discloses using an implementation of a handheld PDA as an

advanced remote control to browse and select tracks for play in a media collection

on a PC via infrared. Ex. 1003 at 88. The implementation included a "catalogue"

browsing option, which has been implemented on the PDA relatively easy." *Id.* As

described above, De Vet also discloses that the remote control could be

advantageously used to control multiple devices and access a variety of content on

those devices (e.g., collections of videodiscs or an electronic program guide for TV

programming). Id. at 89. A person of ordinary skill in the art would understand

that De Vet therefore discloses that the remote control could be used to control

multiple devices in the same room, for example, by separately establishing

communication between the PDA and each device the user desired to control. De

Vet also discloses infrared communication between the PDA and PC jukebox. A

POSITA would understand that such infrared communication would require that

the PDA be within the IR region of the PC jukebox, i.e. "within a wireless personal

area network (WPAN) associated with the media device".

161. Vidal discloses a touch screen remote control system that wirelessly

communicates with more devices, using protocols such as Bluetooth. See, e.g.,

Ex. 1004 at ¶¶33, 40, 47, 48, 52, 55. Vidal also discloses using the remote control

to wirelessly communicate with, select, and operate a specific device out of several

devices. *Id.* at  $\P\P$  36, 41, 53.

**B.** Obviousness and Motivation to Combine

162. As described below, a POSITA would have been motivated to

combine De Vet and Vidal for several reasons.

163. First, De Vet and Vidal disclose the same kinds of remote control

technologies, concepts, and features, using well-known technology components.

Specifically, De Vet and Vidal are in the same field of wirelessly controlling

66

Page 70 of 1414

devices and both references address similar problems related to presenting user

options on a display of a remote control. Both targeted similar goals and results of

selecting options on a mobile device to play and control content on a media device.

And Both targeted similar types of video and audio media device players (e.g.,

DVD, CD, MP3, videotapes, videodiscs, and TV programs). It would have been

obvious to a POSITA to combine the concepts and disclosures of De Vet and Vidal

at least because they were in the same field, and addressed similar problems.

164. And it would have been obvious to a person of skill in the art to

combine De Vet and Vidal, because they are in the same field of endeavor

(wireless control of digital devices), because they are directed to the same problem

(wireless control) within that field, and because they used a combination of well-

known elements (remote control for media player), in well-known methods (short

range wireless), with a very similar predictable solution (controlling content by the

remote control).

165. Specifically, De Vet and Vidal each disclosed a wireless mobile

device used as a remote control that received and stored information from another

device (e.g., a computer) about media (e.g., a title of a media file). Ex. 1003 at 87-

88; Ex. 1004 at Abstract, ¶¶ 10, 19, 33,41-42, 59, Figs. 1, 2, 3.

166. Also, De Vet and Vidal each disclosed receiving information from the

other device (e.g., the computer) that the remote control presented to a user for a

user to evaluate and select (e.g., a catalog of music in De Vet or a menu of control

options in Vidal. Ex. 1003 at 87-88; Ex. 1004 at Abstract, ¶¶ 10, 19, 33,41-42, 59,

Figs. 1, 2, 3.

167. Moreover, De Vet and Vidal disclose wireless communication with

the same type of media device players, and a POSITA would have been motivated

to use Vidal's remote control in the system disclosed by De Vet, because Vidal

specifically suggests controlling an MP3 player.

168. Specifically, Vidal discloses the remote control for wireless

communications with "one or more of a television, a video tape player, a video

disk player, a stereo, a home control system, and a computer system with **remotely** 

controllable software (for example: a DVD player, a CD player, an MP3

player, or slideshow presentation software)." Ex. 1004 at ¶¶19, 38. Vidal also

notes that such an application "is not restricted to only electronic appliances, but

could also be used to control programs and functions that run on a computer

system. For example, the remote control can be used to control DVD, CD or MP3

player software running on a computer." Ex. 1004 at ¶19.

169. Similarly, De Vet disclosed a PDA as a "remote control for

audio/video equipment", "videodisc (or videotape)", CD player, and MP3 player

software on a computer (i.e., Winamp MP3 player software). Ex. 1003 at 87-89.

Accordingly, a POSITA would have been motivated to implement Vidal's remote

control system in the system disclosed by De Vet, because Vidal specifically

suggests controlling an MP3 player.

170. Accordingly, a POSITA would have understood De Vet and Vidal to

be an obvious combination, at least for their similarities, but also for the additional

technical teachings of each.

171. For example, as described above, Vidal discloses using Bluetooth

communication to enable discovery, selection, and specific access to and control of

multiple devices in a single location. Ex. 1004 at ¶¶ 9, 35, 47.

172. As further described above in **Part VIII**, Vidal discloses technologies

such as Bluetooth to discover and then control multiple devices. See, e.g., Ex. 1004

at ¶¶33, 40, 47, 48, 52, 55. From its inception long before November 9, 2005,

Bluetooth was a wireless radio frequency communication protocol that did not

require line of sight to operate, so devices could communicate through walls, for

example.

173. Bluetooth also had (and continues to have) an effective range that

made it useful (and popular) within a domestic dwelling.

174. Bluetooth was a well-known and common design option for wireless

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

communications. Bluetooth also permitted a device to recognize multiple devices

and pair with a selected device, and then communicate with that device exclusively

if desired. An example of that ability is disclosed in Vidal. See generally, Ex.

1004.

175. De Vet, which discloses communication between the remote control

and the PC via infrared, discloses that it would be desirable for a remote control to

be used to control multiple audio and video devices (such as PC jukeboxes). Ex.

1003 at 88-89. For example, De Vet discloses an electronic program guide for a

TV or a catalog of a videodisc or videotape collection, or even multiple PC

jukeboxes. Id. at 89-90.

176. Regardless of the number of devices disclosed in De Vet, a POSITA

would have known to simply duplicate multiple instances of De Vet's PC system

(i.e., multiple PC jukeboxes) in order to provide more content or to accommodate

the different kinds of content De Vet suggests.

177. De Vet's disclosure suggests that these devices would be in the same

room or at least within line of sight of the remote control device or PDA (because

De Vet's communication interface is infrared, and infrared devices use line of sight

to operate, so De Vet's system would have required line of sight to operate). Ex.

1003 at 88-89.

70

Page 74 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

178. A POSITA would have been motivated to improve the general media

jukebox and remote control system disclosed in De Vet with the communication

methods of the remote control menu system disclosed by Vidal (including

Bluetooth communication) in order to enable discovery, specific access to (i.e., a

menu), securely pairing, and control of multiple media devices in a single room or

area, as taught and suggested by Vidal.

179. Implementing Bluetooth, as taught by Vidal, into the system of De

Vet would have been an obvious choice, as a simple substitution of one

communication interface for another, a use of a known technique of handling

multiple devices (e.g., a menu interface), and a solution to a particular problem

posed by De Vet, namely, how to interact with multiple devices in the same room.

See, Ex. 1003 at 89-90.

180. In addition, a POSITA would have implemented the Bluetooth

wireless communication control described in Vidal to improve the remote control

of De Vet, so that the remote control would have more reliable and secure

operation (for example, commands directed to a specific selected device through

the menu provided by Vidal instead of inadvertently controlling all devices in the

line of sight of the IR transmitter/receiver).

181. In addition, a POSITA would have implemented the Bluetooth

71

Page 75 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

interface of Vidal to improve the remote control of De and to improve the range of

the operation of the remote control, specifically, to control devices outside of line

of sight between devices (because Vidal's Bluetooth / RF interface does not

require line of site for communication).

182. Further, a POSITA would have implemented Bluetooth in De Vet so

that multiple media devices could be positioned in other rooms for whole-home

entertainment.

183. Further, a POSITA would have implemented Bluetooth in De Vet

because Bluetooth provided improved bandwidth and transfer speeds compared to

IrDA. (10-20 times faster.) As described above, infrared IrDA systems at the time

were capable of facilitating data transfers at generally lower rates than Bluetooth,

therefore a POSITA would have used Bluetooth for improved speed, to provide

faster responsiveness and data communication between the remote control and the

controlled device in the combination of De Vet and Vidal.

184. Because Bluetooth was a common and popular wireless

communication option, a POSITA would have been motivated to use Bluetooth to

operate the invention in De Vet as a simple matter of design choice.

185. Implementing Bluetooth in De Vet would have within been the

ordinary skill set of a POSITA, without undue experimentation.

72

Page 76 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

186. A POSITA would have also found it obvious to combine the teachings

of De Vet and Vidal in order to further eliminate the redundancy, complexity, and

clutter provided by having multiple mobile devices.

187. For example, Vidal discloses eliminating multiple remote controls by

implementing a universal remote control that needs no special knowledge about the

device it is to control. See Ex. 1004 at Abstract;  $\P$  2-8.

188. And De Vet suggests that a PDA is too expensive to be positioned

simply as a remote control device, so the remote control function should be an add-

on feature. Ex. 1003 at 88. A PDA has other applications beyond being a remote

control, such as functioning as a personal organizer, calendar, and, email device.

189. Accordingly, following the suggestion of Vidal to decrease the

number of devices used to control equipment, a POSITA would have been

motivated to combine the teachings of De Vet and Vidal in order to further reduce

the amount of devices associated with controlling equipment. The resulting device

would be a PDA and media remote control in one package, having the advantages

of De Vet and Vidal, while maintaining the functionality of each, and reducing

clutter.

190. In other words, a POSITA would have that the De Vet PDA was

capable of implementing remote functionality, in addition to other useful functions

consistent with the ease of use, adaptability, programmability, and customizability

of the De Vet PDA (i.e., having calendar functions, email functions, etc.). As

Vidal suggested consolidating remote controls into a single remote control device,

a POSITA would have found it obvious and desirable to add the features of Vidal

to the PDA of De Vet in order to avoid having to purchase the dedicated remote

control of Vidal, and to avoid the cost of buying multiple devices (e.g., a PDA and

a remote control), thus having a single PDA with remote control capability

replacing two devices (a PDA and remote control).

191. A POSITA would have also found it obvious to combine De Vet and

Vidal in order to provide the adaptability and flexibility of the Vidal remote control

interface to the De Vet PDA in order to provide the De Vet PDA with the ability to

control the other applications and devices without the need for additional

programming, as disclosed in Vidal.

192. Specifically, Vidal describes several problems associated with remote

controls for modern appliances. See generally, Ex. 1004 at ¶¶4-8. Modern

appliances typically include remote controls that can have myriad buttons and

switches to control the many functions of the appliances, and users often have

multiple remote controls to operate multiple appliances, each with widely different

user interfaces. Id. at ¶¶4-5. Even universal remote controls were difficult to

74

Page 78 of 1414

operate because they required a user to train or program the remote for every

device, and often the universal remote was not able to replicate every command for

a given appliance. *Id.* at  $\P$ 6-7.

193. To solve these problems, Vidal provided a remote control that

received menu and control information from the appliances to display on the

touch-screen. Id. at ¶¶9-10, 36, 41-42, 57, 59. Selecting the options on the touch-

screen provided control of the appliance. Id. at ¶41-42, 53, 57-59. The

convenience provided by Vidal's remote control is that the remote control needs no

special knowledge about the appliance because the appliance provides the

information to be displayed on the display screen and interprets the entries to the

remote. *Id.* at Abstract, ¶ 9.

194. Similarly, De Vet depicts in Figure 1, the screen of the PDA including

the content information regarding the individual song and disclosed that the initial

content of the media database including "artist, album, year, and style," can be

obtained directly from CDDB. Further, De Vet describes receiving ID information

of the CDs available at the PC for display on the PDA, without a user having to

manually program the ID information into the PDA. See Ex. 1003 at 88.

Accordingly, De Vet's PDA needs no special knowledge about the aspects of the

computer to be controlled because the computer tells the PDA the information

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

about the content.

195. Accordingly, a POSITA would have been motivated by De Vet and

Vidal in order to provide the additional technical aspect regarding the adaptability

of the Vidal remote to the De Vet PDA to provide the De Vet PDA with the ability

to control the other applications and devices disclosed in De Vet (e.g., electronic

program guide, videodisc collection) without a user having to specially program

the De Vet PDA to interact with those applications or devices. See Ex. 1003 at 89.

196. In other words, Vidal provides enhanced flexibility in terms of

receiving detailed information from any appliance (such as current track playing,

progress within the track, menu configurations) without a need for special

information about the appliance. Vidal provides an adaptable interface system so

that a device added to a network or arrangement can simply provide information

about itself to the remote control, which provides convenience for a user.

197. A POSITA would have combined De Vet and Vidal in order to add

this function to De Vet, so that De Vet could have received information from new

or different appliances or media centers without a need for any special information

about the new device, avoiding effort by a user to program the remote control, for

example, as well as increasing the amount of devices with which the remote is

compatible.

76

Page 80 of 1414

U.S. Patent No. 7,787,904 B2

198. In addition, as described above, De Vet discloses communicating with

Infrared may require a user to aim a multiple devices, but with infrared.

transceiver toward a desired corresponding transceiver to operate a device.

Accordingly, selecting a single device from a plurality of devices may require that

a user initiate IR pairing each time a new device is desired by physically moving

the mobile device. As described above, Vidal discloses choosing from a menu of

appliances within range of the remote control. Vidal is able to provide the menu of

appliances in part because Vidal uses Bluetooth radio frequency technology.

Accordingly, it would have been obvious to provide De Vet with the ability to

control multiple devices via Bluetooth, as taught by Vidal, to improve the user

experience and to enable control of multiple devices without moving the remote

control device to within infrared range of the device being controlled.

199. A POSITA would have had good reason to pursue the known options

within his or her technical grasp, such as the methods disclosed in De Vet and

Vidal. Because the problem of controlling media devices wirelessly has a finite

number of predictable solutions, which lead to anticipated success, the '904 Patent

is the product of ordinary skill and common sense, not any sort of innovation.

There are only a finite number of ways to control and operate a device wirelessly.

Each of the prior art references (De Vet and Vidal) discloses all the elements and

77

Page 81 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

the solutions of those finite ways. The '904 Patent discloses nothing innovative or

unknown in November 2005.

200. In 2005, it would have been obvious to one skilled in the art to

combine the technology disclosed by De Vet and Vidal to increase efficiency and

solve the problem of remotely controlling digital content wirelessly in a short

range, because the De Vet and Vidal references are in the same field of endeavor:

wireless control of a media device.

201. Furthermore, for each of them a POSITA would have a good reason to

pursue the known options within his or her technical grasp to allow the user to

enjoy controlling content on media device form a mobile device. In addition, it

would be an advantage to use the commonly available mobile devices with display

to present the media content and a short range wireless network to control the

media devices.

C. Element-by-Element Analysis of the challenged claims

202. Claim 1, Preamble: The Claim 1 preamble recites: "A mobile device

for controlling digital content played by a plurality of media devices

comprising:"

203. De Vet discloses a PDA ("mobile device") to control digital content

on a personal computer jukebox ("media device"). Ex. 1003 at 87, 88, Fig. 2. De

U.S. Patent No. 7,787,904 B2

Vet also discloses using the PDA to "[c]ontrol multiple devices and a variety of content," for example, by placing the PDA in IrDA communication with a particular device to be controlled. *Id.* at 88, 89, 90. Vidal discloses using a remote control with a display screen to control multiple devices, including televisions, video disk players, stereos, and a computer with an MP3 player. Ex.1004 at Abstract; ¶¶ 9, 18-19, 23, 26, 33-35, Figs. 1, 2 and 4.

- 204. Element 1[a]: Claim 1, Element 1[a] recites: "a wireless communication interface for communicating with the plurality of media devices;"
- 205. De Vet discloses that the PDA controller communicates wirelessly with the PC jukebox via an "IrDA (Infrared Data Association) link." Ex. 1003 at 87, 88. Vidal's remote control contains a "wireless communication mechanism that is configured to provide communications" between the controller and a device. Ex. 1004 at Abstract, ¶¶ 9, 23, 26, 33, 47, 51, Figs. 1 and 4. Vidal further discloses that the mechanism may implement the Bluetooth communications protocol. *Id.* at ¶¶ 12-13, 35, 47.
  - 206. Element 1[b]: Claim 1, Element 1[b] recites: "a media database;"
- 207. De Vet discloses a PDA with a stored list of albums/CDs and/or MP3 tracks, providing a "catalogue and remote control to select music compact discs in

a personal CD jukebox" stored on the PC to be controlled. Ex. 1003 at 87, 88; Fig.

1. The catalogue is stored and available for viewing even when the PDA is out of

range of the PC, because it can be viewed anywhere. *Id.* at 88. Vidal discloses

displaying menus and media information (i.e., the movie being played) on the

remote control. Ex. 1004 at ¶¶42, 59. Because the menus and media information

described in Vidal are displayed, they must be stored, at least temporarily in some

way, in a database on the PDA, in some organized fashion to facilitate display.

Accordingly, a POSITA would understand that if Vidal is displaying media

information on the remote, then a database on the remote is used to organize this

information for retrieval and display.

208. Element 1[c]: Claim 1, Element 1[c] recites: "a control system

adapted to, for each of the plurality of media devices:"

209. De Vet discloses a PDA with a remote control system that allows

users to select and control music on a PC jukebox. Ex. 1003 at 87-88, 90, Fig. 1.

As described above, De Vet also discloses that the same technology could be

utilized to control other devices, such as additional PC jukeboxes. *Id.* at 89, 90.

For example, a POSITA would have understood that the PDA in De Vet could be

put within infrared range of a first PC to interact with its contents, and could later

be put within infrared range of a second PC to interact with its contents at a later

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

time. Ex. 1003 at 87. A POSITA would have understood that the PDAs disclosed

in De Vet, such as the Philips Nino, each contain a processor to perform the control

functions and other functions. See Ex. 1003 at 87.

210. Similarly, Vidal discloses using the remote control to select a device

to control from a list of devices Ex. 1004 at Abstract, ¶¶ 9, 41, 59, Fig. 3. Once a

device is selected, symbols for controlling that particular type of device (such as

rewind, play, stop, etc.) are displayed on the remote to allow playback or selection

of media to play back. *Id.*. Vidal further discloses a processor for the computer

processing of the remote control. *Id.* at ¶ 44-45. A POSITA would have

understood Vidal to include a control system to carry out these functions, and a

POSITA would have understood that the processor in the remote control would

have been capable of the claimed functions.

211. Element 1[c][i]: Element 1[c][i] recites: "communicate with the

media device when the mobile device is within a wireless personal area

network (WPAN) associated with the media device to obtain information

describing content residing at the media device; and"

212. De Vet discloses infrared communication between the PDA and the

PC jukebox. Ex. 1003 at 87, 88. A POSITA would understand that such infrared

communication would require that the PDA be within the IR region of the PC

81

Page 85 of 1414

jukebox, i.e. "within a wireless personal area network (WPAN) associated with the

media device." Vidal discloses using a wireless remote control to connect to

appliances in range using Bluetooth or other RF protocols. Ex. 1004 at Abstract,

¶¶ 9, 12-15, 23, 26, 33, 35, 41, 42, 47, 51, 53, Figs. 1, 3, and 4. A POSITA would

also understand that Vidal's remote can operate only when it is within the network

range of the devices to be controlled, because RF protocols, including Bluetooth,

require that the communicating devices be positioned within range of each other's

radio signals to function.

213. De Vet further discloses obtaining information such as song titles and

artists from the PC jukebox concerning the media available on the PC jukebox via

the wireless connection. Ex. 1003 at 87-88. Specifically, connecting the PDA to

the PC results in an update of the catalogue. *Id.* at 88.

214. As seen in Attachment G, depending on implementation, IrDA

systems at the time were generally capable of facilitating data transfers at rates

115.2 kilobits per second. Attachment G at 1; see Exh. 1012 at 300.

215. Although that is not as fast as Bluetooth specifications prior to 2005,

it was sufficient for most basic data transfers, including text and images such as the

ID information and lists provided to the De Vet PDA. Accordingly, a POSITA

would have understood that the catalogue update would occur over the IrDA

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

connection, for example, to avoid having the user to connect the device to the PC

via cable in order to discover the media content that can be controlled.

216. Similarly, Vidal discloses receiving, from the appliances, 1)

information about the current media playing on an appliance controlled by the

remote and 2) other information transmitted from the appliance for display on the

remote, such as a "manufacturer's logo, user instructions, or an advertising

message on remote control," and other selectable control options for that appliance.

Ex. 1004 at ¶¶ 20, 36-42, 52, 57; Figs. 2-3. The purpose of this communication is

to allow Vidal's remote to discover information about the appliances (via

communication over a Bluetooth or other wireless interface) and display it to the

user on the remote control, such that no special or advance knowledge of the

appliance is required. *Id.* at Abstract.

217. Accordingly, as described above, a POSITA would have been

motivated to improve De Vet with the ability to receive detailed information from

an appliance (such as current track playing, progress within the track, menu

configurations for various appliances) as suggested by Vidal, so that the remote

needs no special information about the appliance, and can receive information

about the currently played track or menu configurations for a particular MP3

software from any new or different device, which would have improved usability

83

Page 87 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

and functionality of the device, as described above.

218. Vidal's disclosure of communication between the remote and

appliance to receive information about the currently playing track or movie is a

further disclosure of a wireless update of information describing media content in

the appliance, and could similarly be applied to De Vet for wireless updating of the

PC Jukebox contents that can be accessed via the PDA. Each of Vidal and De Vet

suggest that all sorts of information can be passed from appliances to remote

control devices, and the decision to pass track listings, titles, settings, menus of

track selections or album selections, etc., would have simply been a basic matter of

design choice, depending on what the user desired to know about the appliance or

media device.

219. Element 1[c][ii]: "store the information describing the content

residing at the media device in the media database;"

220. De Vet discloses that the listing of media available on the PC jukebox

is stored on the PDA and can be browsed by the user "anywhere and anytime." Ex

1003 at 87, 88, Fig. 1. Thus, the PDA stores information including "artist, album,

year, and style" when the PDA is not in infrared communication with the PC. Id.

A POSITA would have understood that storage of such data involved a database in

order to properly provide for retrieval and display, so a POSITA would have

84

Page 88 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

understood that De Vet teaches that the media listing information is stored in a

database in the PDA, in order to allow such browsing when away from the PC.

221. Similarly, as discussed above in Element 1[c][i], Vidal discloses a

remote control that displays media information obtained from a controlled

appliance. Vidal discloses storage within the remote control that a POSITA would

have understood to function to store media information for display. Ex. 1004 at

Fig. 4 (showing "MEMORY 406"); ¶¶ 46,57. In any event, as similarly described

above with respect to De Vet, a POSITA would have understood that in order to

properly provide for retrieval and display of the media information, such

information and data would be stored in a database in the remote control.

222. Element 1[d]: "wherein desired content is selected from the

content at the media device based on the information in the media database

and played at the media device when the mobile device is within the WPAN

associated with the media device."

223. De Vet discloses that a user can play back songs at the PC Jukebox by

using the PDA to select a song or album from the listing of albums and songs

stored and viewed on the PDA. Ex. 1003 at 87-88, 90, Fig. 1. The playback

command is sent via infrared communication from the PDA to the PC, so such

playback can be done only when the PDA is within infrared range of the PC. Id. at

85

Page 89 of 1414

87, 88. As explained in Element 1[c][i], a POSITA would understand that when

De Vet's PDA remote control device is within infrared range of the PC jukebox

being controlled, that the remote is within the WPAN of the PC jukebox.

Similarly, as explained in Element 1[c][i], Vidal discloses control of a devices via

Bluetooth, where the remote control presents symbols (play, fast forward, etc.)

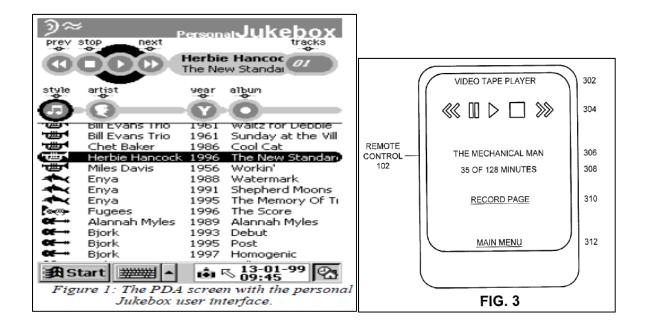
causing the selection and playback of content on the appliance. Ex.1004 at

Abstract, ¶¶ 9, 41, 59, Fig. 3. As described above, it is disclosed, and obvious, that

such remote control can only occur when the remote control is within Bluetooth

range and connected to (within the WPAN of) to the device being controlled in

order for the wireless communication interfaces to function. See the following


Figures from De Vet (Ex. 1003 at Fig. 1, 88) and Vidal (Ex. 1004 at Fig. 3),

respectively, illustrating the user interfaces facilitating such selection and control

of content, which can occur within the WPAN in order to function as described

above:

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2



- 224. Claim 2: "The mobile device of claim 1 wherein the control system is further adapted to select the desired content to play at the media device from the media database and instruct the media device to play the desired content when the mobile device is within the WPAN associated with the media device."
- 225. See above for the description of Element 1[d], explaining how De Vet and Vidal both disclose this limitation. A POSITA would understand that in the combination of De Vet and Vidal, the remote control can select the CD to play and has controls such as play, previous (rewind), next (fast forward) to select content, and in response to user operation of those controls, instructs the appliance or PC jukebox to play the selected content or proceed to different selected content when the mobile device is within the WPAN. *See* Ex. 1003 at 88; Ex. 1004 at Fig. 3.

U.S. Patent No. 7,787,904 B2

226. <u>Claim 3</u>: "The mobile device of claim 2 wherein the control system is further adapted to interact with a user such that the user selects the

desired content to play at the media device from the media database."

227. See above for the description of Elements 1[c] and 1[d], explaining

how De Vet's PDA and Vidal's remote control present a user interface to allow

selection and playback of content. See also Ex. 1003 at Fig. 1, Ex. 1004 at Fig. 3.

228. Claim 10, Preamble: "The mobile device of claim 2 wherein if the

mobile device is simultaneously within the WPAN associated with a first one

of the plurality of media devices and the WPAN associated with a second one

of the plurality of media devices, the control system is further adapted to:"

229. See the description for Claims 1 and 2 above. In addition, De Vet

contemplates using a PDA to "[c]ontrol multiple devices and a variety of content."

Ex. 1003 at 89, 90. And a POSITA would have known to simply duplicate

multiple instances of De Vet's PC system in order to provide more content or to

accommodate the different kinds of content De Vet suggests. Simply duplicating

the PC jukebox in De Vet would have been obvious to a POSITA seeking multiple

instances of various media, and it would have further been obvious to a POSITA to

use a single remote control device or PDA to control each PC, to limit costs, for

example. See Ex. 1003 (describing the cost expense of a PDA).

101 Inter I artes Keview 01

U.S. Patent No. 7,787,904 B2

230. De Vet also discloses that the PDA controller can communicate with

media devices such as the PC jukebox using infrared communication. Id. at 87, 88.

As explained above for Elements 1[c] and Claim 7, it is disclosed, and obvious, to

use De Vet's PDA to interface with a plurality of PC jukeboxes using infrared

communication, by a user's selection of a particular device to control by

establishing an infrared connection with the particular PC jukebox to be controlled.

Also as explained above for Elements 1[c] and Claim 7, the PDA in De Vet is

within the personal area networks of the infrared devices within range.

231. As described above in **Part VIII** Vidal further discloses a remote

control operating over a Bluetooth or other wireless protocol with a user interface

that allows the selection of one of a set of available appliances for specific control.

Ex. 1004 at Abstract, ¶¶ 9, 12-13, 23, 26, 33, 34, 35, 36, 41, 47, 51, 53, Fig. 1, 2,

and 4. Specifically, the appliances discovered by the remote control are displayed

on the remote control so that a user can choose an appliance to control, as in Figure

2. Id. at ¶35-38, 52, 55, Figs. 2, 5. Also as explained above for Elements 1[c] and

Claim 7, the remote control in Vidal is within the personal area network of devices

that are within Bluetooth range.

232. It would therefore have been obvious to a POSITA to improve the

control of multiple devices as suggested in De Vet with the teachings of Vidal, in

order to more easily discover the devices available for control, and a POSITA

would have been motivated to make this improvement. Specifically, in De Vet,

controlling multiple devices would involve having a user determine what devices

are within line of sight in order to use IR communication. But as suggested by

Vidal, using RF communications like Bluetooth, the remote control would

determine what devices are available without line of sight communications. It

would have been obvious to a POSITA to incorporate Vidal's Bluetooth aspects

into De Vet's system for controlling multiple devices to reduce complications for a

user. As explained above in Element 1[c], the PDA in De Vet or remote control in

Vidal, or their combination, (i.e., the mobile device) would be in networks

associated with a plurality of media devices.

233. Element 10[a]: "select one of the first and second ones of the

plurality of media devices as a select media device; and"

234. See the discussion in Claim 10, Preamble and Part VIII above

concerning how the PDA in De Vet and the remote control in Vidal (or the

combination of their teachings) selects one of the available PC jukeboxes or

appliances.

235. Element 10[b]: "select desired content to play for only the select

media device from the media database and instruct only the select media

## device to play the desired content."

236. De Vet describes communicating with a specific PC jukebox via infrared communication to allow a user to select media to be played at that PC jukebox, by establishing infrared communications with one device. See discussion in Element 1[c]; see also Ex. 1003 at 87-88, 90, Fig. 1. After a specific device is selected is selected in Vidal, the remote control obtains a menu for controlling the specific device, such as "rewind, pause, play, stop/eject, and fast-forward." Ex. 1004 at Abstract, ¶¶ 9, 41, 59, Fig. 3. A POSITA would have understood that a specialized menu indicates that the controller/remote is instructing only the selected device. See Ex. 1004 at Fig. 2 (showing the remote control giving the user selections of individual devices); Fig. 3 (showing that a user is only controlling one device, in this case, a tape player); ¶57 (describing a user's selection of one appliance and control of that one appliance). Accordingly, a POSITA would have understood that De Vet and Vidal, individually or in combination, disclose selecting desired content for playback for only the selected media device and instructing only the selected media device to play the content.

237. <u>Claim 12, Preamble</u>: "The mobile device of claim 2 wherein the mobile device is included within a system further comprising the plurality of media devices, wherein each of the plurality of media devices comprises:"

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

238. See the discussion in Claim 10, Preamble, describing the disclosure of

a system having a plurality of media devices.

239. Element 12[a]: "a wireless communication interface for

communicating with the mobile device when the mobile device is within the

WPAN associated with the media device;"

240. De Vet discloses that the PC jukebox communicates with the PDA

controller via infrared communication, and that the PC jukebox has an infrared

transceiver. Ex. 1003 at 87, 88, Figure 2. Similarly, Vidal discloses that the

appliances (TVs, stereos, etc.) each have a "communication module" for

communicating with the universal remote control via wireless protocols such as

Bluetooth. Ex. 1004 at Abstract, ¶¶ 9, 12-13, 23, 26, 33, 35, 44, 47, 51, and Figs. 1

and 4. A POSITA would have understood that such communication would can

occur when the mobile device is within the WPAN of the media device.

241. Element 12[b]: "a content database storing the content; and"

242. De Vet discloses that the PC jukebox stores the CD collection in MP3

format, using a simulated CD changer on the PC for organizing music content to be

accessed by the device. Ex. 1003 at 88, 88-89. A POSITA would have understood

the storage of the MP3 files to be a content database. Similarly, Vidal discloses

that the appliances (such as computers with MP3 players, televisions, video disk

players, and stereos) include "persistent storage" for specifications about the menu

the appliance is to convey to the remote control. Ex. 1004 at ¶¶44, 49, 50, Fig. 4.

In addition, a POSITA would have at least found it obvious that the computer MP3

player in Vidal would contain accessible storage of MP3s which can be played

back at the direction of the remote control in order to function to play the requested

MP3s as Vidal suggests. *Id*.

243. Element 12[c]: "a media server adapted to:"

244. De Vet discloses using the PC, which has modified Winamp digital

media player software to simulate a CD changer, to store music, play music, and

communicate with the PDA. Ex. 1003 at 87-88, 90. The normal function of a

server now, and before November 9, 2005, was to facilitate communications

between devices and control one or more devices. Accordingly, because the PC in

De Vet has software (e.g., the "modified" Winamp software) and/or hardware (e.g.,

processors, memory) that performs the functions of storing, playing, and

communicating with the PDA as described in De Vet, a POSITA would understand

De Vet to disclose a media server as claimed, and such a server would have

performed the claimed limitations as described below. Similarly, Vidal discloses

that the appliances each include a processor which causes the appliance to take the

selected actions and communicate through the communication module with the

remote control, where a computer with MP3 player is an example of an appliance.

Ex. 1004 at ¶ 49, Fig. 2. In addition, modifying De Vet and Vidal to include

various hardware or software features to perform the storage, communication, and

control functions disclosed in each reference is simply a matter of design choice.

245. Element 12[c][i]: "provide the information describing the content

in the content database to the mobile device when the mobile device is within

the WPAN associated with the media device; and"

246. See the description for Element 1[c][i] and 12[c], describing the

disclosure of De Vet's PC jukebox or the appliance in Vidal providing information

describing content to the remote control / PDA, which occurs within the WPAN.

247. Element 12[c][ii]: "instruct a media player to play the desired

content in response to receiving an instruction to play the desired content

from the mobile device."

248. De Vet discloses that the modified Winamp software on the PC

jukebox plays the music on the PC jukebox after receiving a selection from the

PDA. Ex. 1003 at 87, 88, 89, 90. In addition, Vidal discloses the appliance such

as computer MP3 players, acting according to the instruction from the mobile

device, such as a play command. Ex. 1004 ¶¶ 19, 41, Fig. 2.

249. Claim 15: "The mobile device of claim 1 wherein the control

system is further adapted to update the information describing the content

from the media device after leaving the WPAN associated with the media

device and returning to the WPAN associated with the media device."

250. See the description for Element 1[c][i] for a description of the process

by which the PDA in De Vet and the remote control in Vidal obtain content

information from the controlled PC jukebox and appliance, respectively. De Vet

discloses that a user can access the list of music on the PDA anywhere (i.e. when

the mobile device has left the WPAN). Ex. 1003 at 88. A POSITA would

understand this to mean that information describing the content is stored on the

PDA. De Vet further discloses that the media catalogue stored on the PDA is

updated when the PDA connects to the PC jukebox. Ex. 1003 at 88 ("Connecting"

the PDA to the PC would then result in an update of the catalogue."). The

catalogue on the PDA is updated whenever new music is added at the PC jukebox.

Id. at 88-89 ("Adding a CD to your collection"; "[T]he catalogue could be updated

when a new disc is inserted...."). Accordingly, a POSITA would have understood

that such an update would add additional information to the list already existing on

the PDA whenever new music was added and the PDA was in communication with

the PC jukebox, i.e. returned to the WPAN. Similarly, as described above, in the

combination of De Vet and Vidal, it would have been obvious to a POSITA to

95

Page 99 of 1414

provide such communication across the Bluetooth WPAN, for the purpose of communicating updates beyond line-of-sight communication.

- 251. <u>Claim 16, Preamble</u>: "A method for controlling digital content played by a plurality of media devices comprising, for each of the plurality of media devices:"
  - 252. See the description for Claim 1, Preamble.
- 253. Element 16[a]: "obtaining information describing content residing at the media device when a mobile device is within a wireless personal area network (WPAN) associated with the media device;"
  - 254. See the description for Element 1[c][i].
- 255. <u>Element 16[b]</u>: "storing the information describing the content residing at the media device in a media database of the mobile device;"
  - 256. See the description for Element 1[c][ii].
- 257. Element 16[c]: "selecting desired content to play from the content residing at the media device based on the media database when the mobile device is within the WPAN associated with the media device; and"
  - 258. See the description for Element 1[d].
  - 259. Element 16[d]: "playing the desired content at the media device."
  - 260. See the description for Element 1[d].

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

- 261. <u>Claim 17, Preamble</u>: "The method of claim 16 wherein selecting the desired content to play comprises:"
  - 262. See the description for Claim 16.
- 263. <u>Element 17[a]</u>: "selecting the desired content from the media database at the mobile device; and"
  - 264. See the description for Claim 2.
- 265. Element 17[b]: "providing an instruction from the mobile device to the media device instructing the media device to play the desired content when the mobile device is within the WPAN associated with the media device."
- 266. See the description for Claim 2. It is disclosed, and obvious, that a command from the disclosed mobile devices constitutes an instruction from the mobile device to play content in order to function.
- 267. <u>Claim 18, Preamble</u>: "The method of claim 17 wherein if the mobile device is simultaneously within the WPAN associated with a first one of the plurality of media devices and the WPAN associated with a second one of the plurality of media devices, the method further comprises:"
  - 268. See the description for Claim 10, Preamble.
  - 269. Element 18[a]: "selecting one of the first and second ones of the

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

plurality of media devices as a select media device;"

270. See the description for Element 10[a].

271. Elements 18[b] and 18[c]: "selecting the desired content to play

for only the select media device from the media database; and instructing only

the select media device to play the desired content."

272. See the description for Element 10[b].

D. Conclusions: Ground 1 – De Vet and Vidal

273. The '904 Patent claims a "mobile device for controlling digital

content played by a plurality of media devices". The mobile device is comprised

of: a wireless communication interface for communicating with the plurality of

media devices; a media database and a control system adapted to, for each of the

plurality of media devices. The control system communicates with the media

device when the mobile device is within a WPAN associated with the media device

to obtain information describing content on the media device. The control system

also stores the information describing the content residing at the media device in

the media database. The desired content selected from the content at the media

device is based on the information in the media database and played the media

device when the mobile device is within the WPAN.

274. De Vet (1999) and Vidal (2003), combined, disclose all the claimed

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

elements of the '904 Patent.

275. Vidal discloses a touch-screen remote control that communicates

wirelessly with a plurality of media devices. The remote control communicates

with media devices wirelessly. Vidal's disclosed remote control requests a menu

description from the media device and the device responds with a menu

description, which allows the remote control to select and control the media

device.

276. De Vet discloses infrared communication between the PDA and PC

jukebox. A POSITA would have understood that the PDA and PC jukebox must be

within a WPAN in order to communicate with a media device. De Vet also

discloses to use the PDA to "control multiple devices and a variety of content."

The '904 Patent relates to "a wireless communication interface with the plurality

of media devices".

277. Both De Vet and Vidal disclose the access to a "media database"

similarly to Claim 1 Element [b] of the '904 Patent. Further, both De Vet and Vidal

disclose a similar technology to the '904 patent for "a control system adapted to,

for each of the plurality of media devices".

278. De Vet and Vidal also disclose all the elements of Claim 1, Element

1[c]. De Vet and Vidal allow the user to browse the content of the media device

and store information about that content. De Vet and Vidal also satisfy Claim 1, Element [d] of the '904 Patent. De Vet and Vidal both disclose features that allow

play back of the content stored on a media device. Vidal also discloses control of a

device via Bluetooth in similar fashion to the '904 Patent.

279. Based on the above, all Claim 1 Elements are disclosed by the

combination of De Vet and Vidal. And as described above, the remaining claims

analyzed in this ground also disclosed by the combination.

XI. GROUND 2: CLAIMS 1-3, 10, 12, AND 15-18 ARE UNPATENTABLE UNDER 35 U.S.C. § 103(A) AS BEING OBVIOUS OVER MORSE AND HOLLOWAY

A. Morse and Holloway

280. Morse and Holloway describe systems for browsing and controlling

playback of media on a plurality of host devices or playback units using remote

controls having bi-directional communication interfaces.

281. Morse describes a playback unit that communicates content data on a

media player (e.g., audio track titles, album names, and video clip titles) about

digital media files stored on a media content storage device. Ex. 1005 at ¶29, 35-

36, 54-55; Fig. 2. The content data is communicated to a remote control device

that displays it to a user. *Id*.

282. The received content data is displayed on a display screen 36 of the

remote control device 34. *Id.* The remote control device of Morse includes a handheld housing to make the device portable. Ex. 1005 at ¶ 32; Fig. 6.

283. The displayed information is used to browse the content data on the remote control and select media for playback at a playback media player (e.g., a TV or stereo system). *Id.* For example, the remote control device 34 may be used to select the digital media for playback on the playback device 31. Ex. 1005 at ¶ 4.

284. A user browses and selects desired media content for playback based on the content data shown on the display screen 36. *Id.* at ¶¶ 29, 32. When a user selects the desired media content, the remote control device 34 sends a message/request to the playback unit 32, which streams the digital media to a playback device 31 (e.g., a TV or stereo system, or any other playback device) to play the media file. *Id.* at ¶¶ 28, 54, 36-37; Figs. 2, 15.

285. Morse discloses that a single remote control device 34 can communicate with more than one playback unit 32, one at a time. *Id.* at ¶¶ 40, 43, 48; *see* Fig. 10. Morse describes that the remote control communication interfaces (52 in remote control device 34 and 38 in playback unit 32) can be bi-directional radio frequency interfaces "or any other communication interface" including, for example, "an RF remote control with an operating range suitable for use in a domestic dwelling (*e.g.* a range of 10 about [*sic*] meters)." *Id.* at ¶¶ 32-33, 40.

- 286. Similarly, Holloway discloses a remote control for controlling a host such as an Audio/Video (A/V) system using Bluetooth bi-directional communication. Ex. 1006 at Abstract, ¶¶ 81, 92, 116, 121, 363-65.
- 287. The host A/V system is a modular assembly of various A/V elements in a single chassis, such as a CD player, a TV tuner, an MP3 player, cable box modules, and a hard drive or other storage. *Id.* at ¶¶ 52, 59, 63, Figs. 1-7. Holloway describes communication, storage, and playback equipment contained in a single chassis for the purpose of reducing wires and tangling. *Id.* The host A/V system also has standard A/V ports and networking modules and peripheral input/output modules such as the Bluetooth interface for the remote control. *Id.* at ¶¶ 44-45, 52, 59, 63; Figs. 1-7.
- 288. The remote control in Holloway receives a menu of options and information from the host A/V system for display to a user, such as media titles and "a file system [for the internal hard drive] so that the user can select a file to play back." *Id.* at ¶¶ 132, 210; Figs. 11A, 11B.
- 289. Holloway identifies a situation involving multiple hosts with which a remote control can communicate, for example, in a sports bar having multiple televisions. *Id.* at ¶¶ 0385. One remote can control all hosts in such an environment having multiple hosts. *Id.* at  $\P$  385. To do so, the remote can display

hosts with which it can communicate, and a user can select a host to control. Id at

¶385, Figs. 11A, 11B, 23A. In other words, Holloway discloses the bi-directional

remote control described above capable of controlling digital content on a plurality

of hosts by allowing a user to select a media device to be controlled. *Id*.

**B.** Obviousness and Motivation to Combine

290. A POSITA would have found it obvious to combine the teachings of

Morse and Holloway. Morse and Holloway teach or render obvious all elements

of the Challenged Claims, as does their combination, which provides further

technical teachings for each limitation discussed below. Holloway provides

additional details concerning the technical teachings of certain limitations, for

example, a design choice of using Bluetooth communication to select and control

and facilitate secure communications.

291. First, generally, it would have been obvious to one skilled in the art

prior to November 9, 2005 to combine the control functions in Morse and

Holloway to increase efficiency and solve the problem of remotely controlling

digital content wirelessly because the Morse and Holloway references are in the

same field of endeavor – wireless control and bi-directional control of a media

device. It would be obvious to a person of skill in the art to combine the

disclosures of Morse and Holloway because they are in the same field of endeavor

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

(wireless control of digital devices), and because they are directed to the same

problems (bi-directional communication with multiple devices) within that field.

They both also relate to providing a remote control for a user to view and select

options for media playback.

292. Common sense in this case would tell us that there only a finite

number of identified predictable solution to solve the problem of controlling media

devices wirelessly with a remote control. A POSITA would have good reason to

pursue the known options within his or her technical grasp such as the methods

disclosed in Morse and Holloway.

293. Specifically, both Morse and Holloway disclose remote control

devices that have bi-directional wireless communication with playback units or

A/V hosts. Ex. 1005 at Abstract, ¶¶ 4, 29, 35-37, 49-50, 54-55; Fig. 16; Ex. 1006

at ¶¶52, 92, 98-107, 132, 210, 265, 266; Figs. 11A, 11B, 17A-C. Both Morse and

Holloway disclose the remote controls receiving and storing media information

from the playback units or A/V hosts. *Id.* And both Morse and Holloway disclose

viewing the media information on the remote control device to select a file to play

back. Id.

294. Accordingly, a POSITA would have recognized that Morse and

Holloway disclose similar systems that achieve the same goals of controlling

104

Page 108 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

media. A POSITA would therefore have looked to Morse and Holloway to

combine their teachings for the predictable result of a system that can control

media remotely. It would also have been obvious to try combining various aspects

of Morse and Holloway.

295. Second, as described above, Morse and Holloway each disclose a

remote control that communicates with more than one playback unit.

296. Holloway provides additional specific technical details of one solution

for communicating with more than one host A/V unit using a single remote control

device. Specifically, as described above, Holloway discloses the remote control

having the ability to provide a user with a menu of available host devices in order

to select a specific device to control. See Ex. 1006 at ¶¶385 (describing a plurality

of hosts with which a remote can communicate); Figs. 11A, 11B, 23A (showing

ability to choose a host).

297. It would have been obvious to a POSITA to apply the teachings of

Holloway to Morse in order to improve Morse with a way to communicate with

multiple devices, using the selection method and system taught by Holloway.

298. A POSITA would have additionally recognized that using the host

selection menu system of Holloway would enhance the user-friendliness of the

Morse system.

299. Third, the remote controls of Morse and Holloway each rely on bi-

directional communication to function, as described above. Again, Morse

discloses: "The remote control device 34 includes a complemental remote control

communication interface 52 to communicate in a bi-directional fashion with the

remote control communication interface 38 of the playback unit 32." Ex. 1005 at ¶

32; Fig. 3. "The remote control communication interfaces 38 and 52 may be radio

frequency interfaces, optical interfaces (e.g. infrared), or any other communication

interface." *Id.* at ¶ 33; Fig. 3. The system disclosed by Morse relates to a range of

approximately 10 meters. See Ex. 1005 at ¶ 40.

300. As described above, Holloway describes the remote control for

wirelessly controlling the host A/V systems using Bluetooth protocol. Ex. 1006 at

Abstract, ¶¶ 81, 92, 116, 121, 363-65. Holloway uses Bluetooth as a specific bi-

directional communication interface or protocol, for example, to improve

communication range to longer distances, such as 100 feet. Ex. 1006 at ¶ 365. It

would have been obvious to a POSITA to implement the communication protocol

disclosed by Holloway (specifically, Bluetooth) in order to increase the effective

range of the remote control devices in Morse.

301. A POSITA would have also been motivated to implement Bluetooth

in remote control system disclosed by Morse in order to provide a common

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

standardized interface, which would have provided more reliability, uniformity,

and compatibility with many devices on the market prior to November 9, 2005.

For example, the POSITA would have used the standardized Bluetooth protocol in

Morse to avoid having to implement his or her own communication protocol.

302. Implementing Bluetooth as a bidirectional radio frequency

communication protocol would have been a simple matter of design choice or

common sense prior to November 9, 2005, not an innovation. There were only a

finite number of ways to control a device wirelessly in a short range (e.g.

Bluetooth, 802.11, Infrared, Zigbee). Morse and Holloway disclose some of those

finite ways. The '904 Patent discloses nothing innovative or which was not known

in November 2005.

303. Fourth, as described above, Holloway describes communication,

storage, and playback equipment contained in a single chassis for the purpose of

reducing wires and tangling, and it would therefore have been obvious to improve

the invention disclosed in Morse to include the playback unit and the media

content storage device (and optionally, the media player/reproduction device) of

Morse in a single chassis media device, to reduce wires and tangling. See Ex. 1006

at Figs 1-7.

304. Thus, for the reasons set forth above and with regard to the specific

107

Page 111 of 1414

limitations below, it would have been obvious to combine the disclosures of Morse and Holloway for an improved remote control system for multiple devices.

305. The '904 Patent's claims are disclosed and rendered obvious by the combination of Morse and Holloway, as further elaborated below.

## C. Element-by-Element Analysis of the Claims

306. <u>Claim 1, Preamble</u>: "A mobile device for controlling digital content played by a plurality of media devices comprising:"

307. The "remote control device 34" of Morse "includes a hand-held housing" to make the device "portable." Ex. 1005 at ¶ 32; Fig. 6. "The remote control device [34] may be used to select the digital media for playback on the playback device [31]." *Id.* at ¶ 4. When a user selects media content, the remote control device 34 sends a request to the playback unit 32, which communicates data to a playback device 31 (*e.g.*, a TV or stereo) to play the media file. *Id.* at ¶¶ 36-37, 28, 54; Figs. 2, 15. A POSITA would have understood that the playback unit 32, media content storage device 14, and the playback device 31 could be integrated into a single device, as a matter of design choice, or simply for convenience. In addition, Morse suggests that the playback unit 32 stores and streams content. *Id.* at ¶ 37; *see* Fig. 3 (having memory). Morse also discloses that "a single remote control device 34 can communicate with more than one playback

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

unit 32." *Id.* at  $\P$  40; see also  $\P$  43.

308. Similarly, as described above, Holloway discloses the bi-directional remote control described above as capable of controlling digital content on a plurality of media hosts by allowing a user to select a media host to be controlled. Ex. 1006 at ¶¶ 0132 (describing the remote control displaying a file system for a user to select a file to play back); 385. And as described above, Holloway describes communication, storage, and playback equipment contained in a single chassis for the purpose of reducing wires and tangling. *Id.* at ¶ 0059, Figs. 1-7. It would therefore have been obvious to improve the invention disclosed in Morse to include the playback unit and the media content storage device (and optionally, the media player/reproduction device) of Morse in a single chassis to reduce wires and tangling, as suggested by Holloway.

309. <u>Element 1[a]</u>: "a wireless communication interface for communicating with the plurality of media devices;"

310. Morse discloses that "The remote control device 34 includes a complemental remote control communication interface 52 to communicate in a bidirectional fashion with the remote control communication interface 38 of the playback unit 32." Ex. 1005 at ¶ 32; Fig. 3. "The remote control communication interfaces 38 and 52 may be radio frequency interfaces, optical interfaces (*e.g.* 

infrared), or any other communication interface." Id. at ¶ 0033; Fig. 3. And as

disclosed in Morse, the wireless communication interface can communicate with

the plurality of media devices, as described above, and as also illustrated in Fig.

10, for example.

311. As described above, Holloway's remote control wirelessly controls

the multiple host A/V systems using Bluetooth protocol bi-directional

communication. See e.g., Ex. 1006 at Abstract, ¶¶ 81, 92, 116, 121, 365. And, as

described above, it would have been obvious to use the Bluetooth communication

interface of Holloway as a specific option for the generic wireless communication

interface called for in Morse, and for additional advantages of providing a suitable

long-range communication protocol and for providing a standardized interface that

would be predictable and commonly supported by devices.

312. Element 1[b]: "a media database; and"

313. Morse discloses that in a menu-driven fashion, media content (e.g.,

music files, video files, pictures, or any other digital media) arranged in a hierarchy

126 (see FIG. 7) may be browsed or navigated in a graphic user interface presented

to the user on the display screen 36 to select digital media stored on, and served

from, the digital media storage device 14. Ex. 1005 at ¶ 42; see Figs. 7, 9. And in

one embodiment, "each remote control device 172 to 176 stores media content data

received from a playback unit 160 to 164 in the media content data stack." *Id.* at ¶

49. A POSITA would have understood that displaying the media content files

involves a database in the mobile device storing the content information.

314. As described above, Holloway discloses an A/V host system with a

hard drive. The remote control displays information about the hard drive's file

system so that the user can select a file to play back. Ex. 1006 at ¶ 0132.

Holloway's remote control stores such screens in its memory. *Id.* at ¶ 0132-0134,

0262. Moreover, POSITA would understand that the remote control of Morse

and/or Holloway would store the received media content information in a

structured fashion in order to display it on the remote control.

315. Element 1[c]: "a control system adapted to, for each of the

plurality of media devices:"

316. Both Morse and Holloway disclose a remote control system that

communicates with the media device wirelessly and obtains and stores information

describing content at the media device, as described above for the description of

Claim 1, Preamble through Element 1[b] and described in further detail below.

317. Morse discloses a controller (i.e., microprocessor) 54 in the remote

control 34. Ex. 1005 at ¶ 32, Fig. 3. Holloway discloses a cell phone or PDA

adapted to perform remote control functions. Ex. 1006 at ¶ 0386-394. A POSITA

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

would have understood that a cell phone or PDA as disclosed in Holloway would

contain a CPU or other controller configured to perform remote control functions.

A POSITA would therefore have understood that Morse and Holloway each have

control systems in order to perform the following claimed elements.

318. Element 1[c][i]: "communicate with the media device when the

mobile device is within a wireless personal area network (WPAN) associated

with the media device to obtain information describing content residing at the

media device; and"

319. See the description above for Element 1[a], describing the radio

frequency interface facilitating communication between Morse's remote control

and the playback unit, along with Holloway's disclosure of the remote control for

wirelessly controlling the host A/V system using Bluetooth bi-directional

communication. A POSITA would understand that such radio frequency

communication would require that the remote control be within the radio frequency

range of the playback units and A/V system hosts, within a wireless personal area

network for the device to be controlled and for the system to function.

320. Morse further discloses communication to obtain information

describing stored content for display on the remote's display screen: "the media

content storage device 14 may store digital media ... and the playback unit 32 may

112

Page 116 of 1414

retrieve content data that identifies, or is associated with, the media files and

communicate the content data to the remote control device 34 for display on the

display screen 36....[T]he content data may include audio track titles, album

names, video clip titles, photograph tiles, and so on that reside on the media

content storage device 14." Ex. 1005 at ¶ 29; see ¶ 48; Fig. 11.

321. Similarly, Holloway discloses a remote control that displays the

contents of a file system of a hard drive at the host A/V system, so that a user can

select a file to play back on the A/V system. Ex. 1006 at ¶ 0132. The host sends

the file system screen to the remote control, which is buffered or otherwise stored

in remote control memory for display at the remote control. *Id.* at  $\P$  132, 262.

322. Element 1[c][ii]: "store the information describing the content

residing at the media device in the media database;"

323. See the descriptions for Elements 1[b] and 1[c][i] above. Morse

further discloses that "remote control devices 172 to 176 are substantially similar

to the remote control device 30" and "each remote control device 172 to 176 stores

media content data received from a playback unit 160 to 164." Ex. 1005 at ¶ 49.

Figure 11 also shows "sub-sets of media content data stored on...a remote control

device". Figure 14 shows a display content cache 262.

324. Holloway's remote control stores operating screens such as the file

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

system described above for Element 1[b] in memory. Ex. 1006 at ¶ 0132, 0262. It

would also be obvious to a POSITA that data to be displayed on the remote control

device is stored in its memory before display, for example, in order to function in

general and to reduce bandwidth required to continually transmit the same

information for display on the remote control.

325. Element 1[d]: "wherein desired content is selected from the

content at the media device based on the information in the media database

and played at the media device when the mobile device is within the WPAN

associated with the media device."

326. As disclosed by Morse, "the user may [] select content (selected

media) for reproduction or playback on the playback device 31 based on the

information provided on the display screen 36." Ex. 1005 at ¶ 0029, see ¶ 0004.

"Once a user has selected content (e.g., an audio track, video clip, or the like, it

may be streamed from the media content storage device to the playback device 131

in a conventional fashion. The playback unit 32, 160 to 164, and 252 may then

communicate or route the selected media to an appropriate playback device." Id. at

¶ 0073; see also ¶ 0036.

327. Similarly, Holloway discloses selecting a file to play back from a file

system displayed on the remote control. Ex. 1006 at ¶ 0132.

114

Page 118 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

328. A POSITA would have that the remote control devices of Holloway

and Morse would be within the personal networks of the media devices so that

wireless communication to discover media content and control or initiate playback

could occur.

329. Claim 2: "The mobile device of claim 1 wherein the control

system is further adapted to select the desired content to play at the media

device from the media database and instruct the media device to play the

desired content when the mobile device is within the WPAN associated with

the media device."

330. See the description for Claim 1 above. In addition, Morse discloses

"[t]he user interface 56 includes navigation buttons 58 as well as other functional

buttons 60 to allow a user to select and play digital media stored on the media

content storage device 14." Ex. 1005 at ¶ 0032. Accordingly, as explained above

for Claim 1, a POSITA would have understood that the remote control system of

Morse (having controller/microprocessor 54), would perform the claimed selection

and instruction by interpreting the user's actions on the interface 56. As Explained

above in Element 1[d], a POSITA would have understood such selection and

playback using the remote in Morse or Holloway to occur within the network

(wireless range) of the media device being controlled, in order to function. See Ex.

115

Page 119 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

1005 at Figs. 2, 10, ¶ 0040; Ex. 1006 at ¶ 0132.

- 331. Claim 3: "The mobile device of claim 2 wherein the control system is further adapted to interact with a user such that the user selects the desired content to play at the media device from the media database."
- 332. See the descriptions of Element 1[d] and Claim 2 above. Further, Morse discloses that "the remote control device 34 waits for user input via the user interface 56. When user activity or input is detected [], the method 70 then identifies if the input from the user requires processing or if a message (*e.g.*, requesting media content data) must be sent to the playback unit 32 []." *Id.* at 0034 (further describing scrolling through text on the remote control device 34). Figures 8 and 9 of Morse show the control system displaying selections for a user to choose regarding content.
- 333. Similarly, Holloway discloses selecting a file to play back from a file system displayed on the remote control after selecting the screens and menus on the device relating to the hard drive of the A/V system. Ex. 1006 at ¶ 132.
- 334. <u>Claim 10, Preamble and Element 10[a]</u>: "The mobile device of claim 2 wherein if the mobile device is simultaneously within the WPAN associated with a first one of the plurality of media devices and the WPAN associated with a second one of the plurality of media devices, the control

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

system is further adapted to: select one of the first and second ones of the

plurality of media devices as a select media device; and"

335. See the description for claim 2 above. Morse discloses that a remote

control device can be in range of multiple playback units, and that "a single remote

control device 34 can communicate with more than one playback unit 32, one at a

time." See Ex.1005 at Figs. 10, 13; ¶ 40. A POSITA would have understood

Morse to disclose the control system to select of one of the media devices, either at

the request of a user or automatically, for example, in order to communicate with

just one of the playback units.

336. In addition, as described above for claim 1, Holloway discloses

detecting and choosing a host A/V system (media device) among multiple host

A/V systems. Ex. 1006 at Figs. 23A, 23B; ¶ 0385 ("the remote will detect multiple

hosts and give the user a list of hosts with which it can communicate.... The user

selects the device to be controlled.").

337. Moreover, as explained in Element 1[c], the remote control devices in

Morse and Holloway are operated within wireless range of a network of two or

more devices available to be controlled, and it would have been obvious to

POSITA to choose one in order to control it.

338. Element 10[b]: "select desired content to play for only the select

117

Page 121 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

media device from the media database and instruct only the select media

device to play the desired content."

339. See above for the descriptions for Claim 2 and for Element 10[a].

Morse discloses "a single remote control device 34 can communicate with more

than one playback unit 32, one at a time." Ex. 1005 at ¶ 0040. Thus, Morse

discloses selection of the device to control, and as described above. Morse disclose

selecting content for play, which a POSITA would understand to happen only on

the selected media device.

340. Holloway also describes providing appropriate screens for a user to

individually select a host from a group of hosts and to operate that host, as

described above, in **Part VIII**, and Claim 2 and Element 10[a] for example. See

Ex. 1006 at ¶ 0370, 0385. In addition, Figure 23A of Holloway shows the screens

allowing a user to choose a host, and then choose a device within the host. Id. at

Fig. 23A (e.g., "recorded content" on one of the hosts). Holloway discloses

receiving "a file system [for an internal hard drive] so that the user can select a file

to play back" at the host A/V system, which a POSITA would have understood to

involve an instruction to only play the media at the selected media device. Ex.

1006 at ¶¶52, 92, 98-107, 132, 210, 265, 266; Figs. 11A, 11B, 17A-C.

341. Claim 12, Preamble: "The mobile device of claim 2 wherein the

118

Page 122 of 1414

mobile device is included within a system further comprising the plurality of

media devices, wherein each of the plurality of media devices comprises:"

342. As described above for Claim 1, preamble, and for Claim 2, Morse

discloses the remote control operating in a system with media devices, and

Holloway similarly discloses the operation of a remote control in a system with

host A/V systems. Ex. 1005 at Fig. 10; Ex. 1006 at ¶ 0385; Fig. 23A.

343. Element 12[a]: "a wireless communication interface for

communicating with the mobile device when the mobile device is within the

WPAN associated with the media device;"

344. See the description for Element 1[a] and claim 2. Morse further

discloses a wireless communication interface (38) in the playback unit for

communicating with the mobile devices. Ex. 1005 at Fig. 3, ¶¶ 30, 32, 43.

Similarly, Holloway discloses two-way communication between the host A/V

systems and the remote control using the wireless interface in the A/V system

chassis, for example, the "Bluetooth or other wireless interface" within the host

chassis. Ex. 1006 at ¶¶ 52, 92, 385. In both Morse and Holloway, a POSITA

would have understood that the communication would have occurred within the

WPAN in order to function to communicate.

345. Element 12[b]: "a content database storing the content; and"

346. See the description above for Element 1[b]. Morse discloses the

playback unit and a media content storage device storing the content (e.g., digital

media as music files, video files). Ex. 1005 at ¶¶ 28-0029, 36-37; Fig. 2. Holloway

discloses the host A/V systems with hard drives containing files for playback and a

file system that can be browsed using the remote control. Ex. 1006 at ¶¶ 52, 63,

132, 462; Fig. 23A. A POSITA would have understood that content storage on the

media content storage device in Morse and/or the hard drive in the A/V system of

Holloway discloses a content database to store the content.

347. Element 12[c]: "a media server adapted to:"

348. See above for Element 1[c], explaining Morse's disclosure of the

playback unit and media content storage device in communication with the remote

control. Morse also discloses servers (e.g., 152, 154, 156, 158) that perform the

functions of media content storage devices. Ex. 1005 at ¶ 43; Fig 10.

349. As further described above for Element 1[c], Holloway discloses the

host A/V systems having networking / peripheral communication. Morse and

Holloway each disclose media devices / host AV systems that store media and

have the functionality in Elements 12[c][i] and 12[c][ii] alone or in combination, as

described in further detail below, so a POSITA would understand that Holloway

and/or Morse discloses or renders obvious the claimed media server. In any event,

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

it would have been obvious to include a "server" in Morse and/or Holloway in

order to perform the functions of hosting content or giving instructions to devices,

which are old and well-known functions of servers. A POSITA would have

included a server to accomplish the tasks performed by the media devices in

Holloway and/or Morse.

350. Element 12[c][i]: "provide the information describing the content

in the content database to the mobile device when the mobile device is within

the WPAN associated with the media device; and"

351. See above for Elements 1[c][i] and 1[c][ii], in which the playback

units in Morse communicate content data to the remote control devices for display

on the display screens of the remote control device within the WPAN. In addition,

Morse discloses that "the media content data provided on the playback units 160 to

164 and the remote control units 172 to 176 can dynamically change as a user

requests different media content from the servers 152 to 158." Ex.1005 at ¶ 0048.

352. Similarly, as described above for Claim 1, the A/V host system

described in Holloway sends information from the hard drive, such as the file

system, to the remote control. Ex. 1006 at ¶ 132. A POSITA would have

understood that the communication between the remote controls in Morse and

Holloway and their respective playback units would occur within the WPAN of the

121

Page 125 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

playback units in order to function.

353. Element 12[c][ii]: "instruct a media player to play the desired

content in response to receiving an instruction to play the desired content

from the mobile device."

354. See the descriptions for Elements 1[c][ii] and claim 2 above. In

Morse, "[t]he remote control device [34] may be used to select the digital media

for playback on the playback device [31]." Ex. 1005 at ¶ 0004. "The playback

device 31 may be a television set, a stereo or any other playback device for playing

back media content (digital and/or analog)." Id. at ¶ 0028. The user selects the

media content, causing the remote control device 34 to send a request to the

playback unit 32, which communicates data to a playback device 31 to play the

media file. *Id.* at  $\P\P$  0036-0037.

355. Holloway discloses the A/V system receiving commands from the

remote control to play content via its output (e.g., to a television). Ex. 1006 at  $\P$ 

52-54, 132; Figs 17A-17C.

356. A POSITA would have understood that the command from the remote

controls of Morse and Holloway to play content is an instruction.

357. Claim 15: "The mobile device of claim 1 wherein the control

system is further adapted to update the information describing the content

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

from the media device after leaving the WPAN associated with the media

device and returning to the WPAN associated with the media device."

358. See the description of claim 1 above, describing how remote controls

in Morse and Holloway retrieve information describing media content. A POSITA

would understand that Morse and/or Holloway disclosed or rendered obvious that

replacing previously retrieved and stored information with new information would

occur when the remote establishes or reestablishes communication with the

controlled devices (such as when returning to the WPAN by reestablishing remote/

controlled device communications).

359. Additionally, Morse describes the operation of the playback unit,

which determines whether a controlling remote needs update of media information,

and if so, transmits a message with appropriate information to the remote control.

Ex. 1005 at ¶¶ 0036-0037; Fig. 5. A POSITA would understand that a remote

entering or reentering the WPAN would be a situation where the playback unit

would trigger an update of the media contents in the remote control. Morse also

discloses other scenarios where an update to a remote control would be triggered,

such as scrolling through media contents. Ex. 1005 at ¶ 0070.

360. Claim 16, Preamble: "A method for controlling digital content

played by a plurality of media devices comprising, for each of the plurality of

123

Page 127 of 1414

## media devices:"

- 361. See the description for Claim 1, Preamble.
- 362. Element 16[a]: "obtaining information describing content residing at the media device when a mobile device is within a wireless personal area network (WPAN) associated with the media device;"
  - 363. See the description for Element 1[c][i].
- 364. <u>Element 16[b]</u>: "storing the information describing the content residing at the media device in a media database of the mobile device;"
  - 365. See the description for Element 1[c][ii].
- 366. Element 16[c]: "selecting desired content to play from the content residing at the media device based on the media database when the mobile device is within the WPAN associated with the media device; and"
  - 367. See the description for Element 1[d].
  - 368. Element 16[d]: "playing the desired content at the media device."
  - 369. See the description for Element 1[d].
- 370. <u>Claim 17, Preamble</u>: "The method of claim 16 wherein selecting the desired content to play comprises:"
  - 371. See the description for Claim 16.
  - 372. Element 17[a]: "selecting the desired content from the media

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

database at the mobile device; and"

373. See the description for Claim 2.

374. <u>Element 17[b]</u>: "providing an instruction from the mobile device to the media device instructing the media device to play the desired content when the mobile device is within the WPAN associated with the media

device."

375. See the description for Claim 2. A POSITA would understand that it is disclosed, and obvious, that a command from the disclosed mobile devices constitutes an instruction from the mobile device, and that it would occur within the WPAN in order to function.

376. <u>Claim 18, Preamble</u>: "The method of claim 17 wherein if the mobile device is simultaneously within the WPAN associated with a first one of the plurality of media devices and the WPAN associated with a second one of the plurality of media devices, the method further comprises:"

- 377. See the description for Claim 10, Preamble.
- 378. <u>Element 18[a]</u>: "selecting one of the first and second ones of the plurality of media devices as a select media device;"
  - 379. See the description for Element 10[a].
  - 380. Elements 18[b] and 18[c]: "selecting the desired content to play

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

for only the select media device from the media database; and instructing only

the select media device to play the desired content."

381. See the description for Element 10[b].

D. Conclusions: Ground 2 – Morse and Holloway

382. The '904 Patent claims a "mobile device for controlling digital

content played by a plurality of media devices". The mobile device is comprised

of: a wireless communication interface for communicating with the plurality of

media devices; a media database and a control system adapted to, for each of the

plurality of media devices. The control system communicates with the media

device when the mobile device is within a WPAN associated with the media device

to obtain information describing content on the media device. The control system

also stores the information describing the content residing at the media device in

the media database. The desired content selected from the content at the media

device is based on the information in the media database and played at the media

device when the mobile device is within the WPAN.

383. Morse and Holloway describe a system for browsing and controlling

playback of media on a plurality of host devices or playback units using a remote

control having bi-directional communication. Morse and Holloway teach or render

obvious all elements of the Challenged Claims, as does their combination.

126

Page 130 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

384. Morse and Holloway both disclose a single remote for controlling a

media device and the content data on that media device. They both allow media

content playback. Holloway described a remote control for wirelessly controlling

media using a bi-directional Bluetooth protocol.

385. The '904 Patent also discloses "a wireless communication interface

with the plurality of media devices" (Claim 1, Element [a]). Both Holloway and

Morse disclose this feature, with Holloway specifically disclosing bi-directional

control via Bluetooth protocol.

386. Both Morse and Holloway disclose similar technology to the '904

patent for "A control system adapted to, for each of the plurality of media devices"

(Claim 1, Element 1[b]).

387. Morse and Holloway disclose a remote control system that

communicates with the media device wirelessly and obtains and stores information

describing content at the media device. This discloses Element 1[c] of the '904

Patent.

388. Morse and Holloway also satisfy Claim 1, Element [d] of the '904

Patent. Morse and Holloway both disclose features that allow play back of the

content stored on a media device. Holloway also discloses control of a device via

Bluetooth in similar fashion to the '904 Patent.

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

389. Based on the above, all elements of the Challenged Claims of the '904

Patent are disclosed by the combination of Morse and Holloway.

XII. GROUND 3: CLAIMS 1-3, 10, 12, AND 15-18 ARE UNPATENTABLE

UNDER 35 U.S.C. § 103(A) AS BEING OBVIOUS OVER

**NETREMOTE AND RX3000** 

A. NetRemote and RX3000

390. NetRemote LE Installation Guide ("Installation Guide"), NetRemote

LE Network Configuration Guide ("Configuration Guide"), NetRemote LE Setup

Guide ("Setup Guide"), and the NetRemote Webpage (collectively, "NetRemote"),

collectively disclose a PDA wireless handheld remote control device configured to

receive information about media available at a host media center, to allow

browsing of content by artist, genre, playlist, title, or album cover, and display that

information to allow a user to select media and control playback of the media at the

host media center. See generally, Exs. 1008-1011.

391. As an initial matter, the NetRemote references each describe aspects

of the same system – the NetRemote media remote control application by Promixis

running on a PDA. See generally, Ex. 1011, Ex. 1015. Accordingly, it would have

been obvious to a POSITA to combine the teachings of the NetRemote references

because they describe to the same product, so Ground 3 generally refers to the

NetRemote references as a group, unless cited otherwise.

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

392. NetRemote disclosed the key concepts and goals of a mobile device

wirelessly controlling media device and playing the content: "NetRemote from

Promixis is the ultimate in 2 way remote control using your Pocket PC or any

Windows computer. Unleash your digital media library and control your computer

and home automation systems wirelessly! Using NetRemote and your WiFi

enabled Pocket PC or any networked Windows computer, you will have full

control of your digital media from anywhere in your house. With NetRemote IR,

you can replace all of your remote controls with a Pocket PC." Ex. 1011 at 1.

393. A key functionality and a main goal of NetRemote is to allow

selection of content on a mobile device and to play it on the media device. More

specifically, NetRemote disclosed using the mobile device to browse and select

specific media content and play it on the media device: "Browse your music by

artist, genre, playlist, title or even by album cover, adjust the volume, and let the

music play. Use NetRemote for your next party and let your guests play DJ by

passing the PocketPC around. NetRemote is incredibly easy and fun, and once you

use it, you'll never put it down." Id.

394. NetRemote also disclosed controlling Audio/Video media devices

using mobile devices: "Using NetRemote and your favorite media player, control

your A/V presentations, slideshows, and digital video using your PocketPC. It's

129

Page 133 of 1414

easy!" Id. In addition, "Toss your remotes away- all you need is your PocketPC

and NetRemote and you can control your home theater, TV, stereo..." Id.

395. Similarly, as described above and below in more detail, the HP iPaq

rx3000 User's Guide ("RX3000") discloses using a PDA device to wirelessly

receive information about media available at various servers or computers in order

to display the information to a user, so that the user can select and control playback

of the media at playback devices or computers. See, e.g., Ex. 1012 at 121, 182-

188.

**B.** Obviousness and Motivation to Combine

396. Each of the NetRemote references and the RX3000 reference disclose

all aspects of the Challenged Claims. It would have been obvious to combine the

specific technical aspects of each of these disclosures for the following reasons.

397. First, NetRemote and RX3000 are in the same field of art (remotely

controlling media) and they both relate to the same activities of wireless browsing,

selection, and control of media at a media device using a hanheld mobile device.

They both relate to solving the same general technical problem of controlling

media from a remote wireless device.

398. They are in the same field of endeavor (wireless control of digital

devices), because they are directed to the same problem (wireless control) within

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

that field, and because they used a combination of well-known elements (remote

control playlists for media player), in well-known methods (short range wireless),

with a very similar predictable solution (selecting content by the remote control).

399. Specifically, both NetRemote and RX3000 disclose handheld PDA

devices configured to provide 2-way wireless (i.e., Wi-Fi) remote control of media

stored on a computer and hosted for playback by media center software on the

computer. Ex. 1010 at 1, 7; Ex. 1011; Ex. 1012 at 121-22, 182-186.

400. And both NetRemote and RX3000 disclose the PDAs receiving

information about the media, such as title, artist, and album, and allowing a user to

browse the information on a screen to select and play the media at a computer or

other audio device while in a network. Ex. 1010 at 1, 7; Ex. 1011; Ex. 1012 at

121-22, 182-186; see disclosures above.

401. Accordingly, NetRemote and RX3000 disclose overlapping technical

teachings that would motivate a POSITA to combine into a single system.

Combining elements of NetRemote and RX3000 is no more than a matter of

routine implementation of their features, without any undue experimentation.

402. In addition, each of NetRemote and RX3000 provides additional

technical details that a POSITA would be motivated to implement in a combined

system.

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

403. For example, a POSITA would have looked to the improved menu

options provided by RX3000 to add the ability to select a host containing desired

media. See above in **Part VIII**; Ex. 1012 at 159.

404. As another example, NetRemote discloses WiFi and IR

communication, while RX3000 discloses, additionally, Bluetooth connectivity with

devices. See Ex. 1012 at 300.

405. A POSITA would have been motivated to implement Bluetooth into

the combination of NetRemote and RX3000 in order to provide media control

functionality where a Wi-Fi router is unavailable, or to interface with devices that

do not have Wi-Fi connections.

406. Moreover, Bluetooth was simple to configure, relatively inexpensive,

and provided increased battery life and reduced risk of interference because of its

relatively shorter range (compared to the longer range of Wi-Fi) and because it did

not need line of sight to communicate (compared to infrared. A POSITA would

therefore have looked to the Bluetooth in RX3000 to implement in a system

involving NetRemote in order to improve battery life, configuration simplicity,

and to reduce the risk of interference.

407. As another example, NetRemote discloses the capability of interfacing

with more than one media center software. See Ex. 1011 (e.g., iTunes, J. River). It

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

would have been obvious to improve the RX3000 remote control software with the

ability to control additional media center software packages in order to provide a

user with flexibility and independent choice of PC software.

408. As another example, it would have been obvious to a POSITA to

improve the built-in remote control aspects of RX3000 with the teachings of

NetRemote, for example, to provide images of album covers and detailed track

listings, as suggested by NetRemote.

409. As another example, RX3000 and NetRemote both disclose home

automation and home control applications. See Ex. 1011 at 1; Ex. 1012 at 214.

RX3000 discloses additional technical teachings regarding the implementation of

such home control automation, such as customized controls and saved tasks: "You

can train' your NevoHome Control to perform a variety of actions at a time," such

as turning on a stereo and lights at the same time with one tap." Ex. 1012 at 214-

15. It would therefore have been obvious to combine the NetRemote and RX3000

teachings in order to provide the additional technical teachings of RX3000 to

provide enhanced automation capabilities.

410. Second, the NetRemote Installation Guide explicitly discloses

installing the NetRemote application on a pocket PC. Ex.1008 at 1. RX3000

discloses one such pocket PC. See, e.g., Ex.1012 at 14. Accordingly, it would

133

Page 137 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

have been obvious to a POSITA to install the software disclosed by NetRemote on

the RX3000.

411. It would have been within the purview of a POSITA to modify the

NetRemote software to the extent there were any operating system

incompatibilities between NetRemote and the devices disclosed in RX3000,

without any undue experimentation, because modifying programs to work in

various operating environments and operating systems was within the technical

grasp of a POSITA.

412. The devices disclosed in RX3000 are good choices for installing

NetRemote. NetRemote allows high quality visualization of media titles and

navigation of album covers. The devices in RX3000 have color screens and high

resolution of 1280 x 960. Accordingly, a user would look to the devices disclosed

in RX3000 as PDAs on which to install NetRemote in order to take advantage of

the visualization provided by NetRemote.

413. Similarly, the iPAQ disclosed in RX3000 had better processors and

more memory compared to its competitors. For example, the iPAQ memory was

expandable. Ex. 1012 at 272. RX3000 discloses memory expansion cards, such as

SD or MMC. Ex. 1012 at 274. These expansion cards allow more memory for the

media database and the catalogue over other PPC devices. These allow it to keep a

134

Page 138 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

larger size of media database (and even some limited media itself) beyond

NetRemote on an average Pocket PC. A POSITA would have looked to the

RX3000 devices in order to provide enhanced performance for the remote control

device and expandability to accommodate larger database, for example.

414. In sum, a POSITA would have good reason to pursue the known

options within his or her technical grasp, such as the methods disclosed NetRemote

and RX3000. Because the problem of controlling media devices wirelessly and

creating playlists and selecting media has a finite number of predictable solutions,

each of which would likely lead to anticipated success, the '904 Patent is product

of ordinary skill and common sense, not any sort of innovation. There are only a

finite number of ways to control a device wirelessly and create playlists and

playback functionality. Each prior art reference has all the elements and the

solutions of those finite ways. The '904 Patent discloses nothing innovative or

unknown in November 2005.

415. It would have been common sense to a POSITA that NetRemote and

RX3000, (either alone or combined) disclose all the claimed elements of the '904

Patent, as further described below.

C. Element-by-Element Analysis

416. Claim 1, Preamble: "A mobile device for controlling digital

135

Page 139 of 1414

content played by a plurality of media devices comprising"

417. NetRemote discloses: "Remote-control your media player anywhere

in your house via wi-fi. Browse your media library and cover art. Select songs

and playlists." Ex. 1011. NetRemote further discloses "2 way remote control

using your Pocket PC" and controlling a computer wirelessly. Id. NetRemote also

discloses "talking" to a media center over a wireless network, and it is "designed to

automatically configure and connect to any computers on your network" running

the appropriate media center software. Ex. 1009 at 1; see Ex. 1010 at 3-5

(illustrating option of multiple host computers).

418. RX3000 discloses mobile media features allowing a user to "browse

and play music, photos, and video collections over a wireless network" and to

"[p]lay and control digital media on PCs connected to your Wi-Fi network."

Ex.1012 at 121. RX3000 discloses using a mobile device to select a media server

from which a user wants to access media, select a media player on which the user

wants the media to play, and selecting the media itself for play. *Id.* at 182-184.

419. Element 1[a]: "a wireless communication interface for

communicating with the plurality of media devices"

420. See the description for Claim 1, Preamble, describing control of

digital media over Wi-Fi in both NetRemote and RX3000. A POSITA would have

understood that, because such Wi-Fi communication is disclosed, the PDA in the

combination of NetRemote and RX3000 would have had a wireless

communication interface. See Ex. 1012 at 221 (describing Wi-Fi in the PDA

device); 300 (describing Bluetooth interface).

421. Element 1[b]: "a media database; and"

422. NetRemote discloses: "Browse your music by artist, genre, playlist,

title or even by album cover." Ex. 1011. The NetRemote setup guide discloses an

example image of browsing by viewing multiple album covers available for

selection on the PDA screen. Ex. 1010 at 7. RX3000 discloses using a PDA to

view a list of media files that are stored on the server, organized in folders. Ex.

1012 at 184-186 (mobile device screen shows list of tracks available to stream

from server); see 140-41. It is disclosed, and obvious, that the PDA devices in

NetRemote and RX3000 store the lists of tracks or album cover images in storage

in the PDA in order to display the lists or images as part of the overall function,

and a POSITA would have understood that the storage would include some form of

database.

423. Element 1[c]: "a control system adapted to, for each of the

plurality of media devices:"

424. See the descriptions for Claim 1, Preamble and Element 1[b] above,

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

describing RX3000 and NetRemote disclosing PDAs that operate using Wi-Fi

connections to play media on a PC or other playback device. A POSITA would

have understood that such functionality is performed by a control system, such as,

for example, the processor of the PDA and associated software. Ex. 1012 at 299.

425. Element 1[c][i]: "communicate with the media device when the

mobile device is within a wireless personal area network (WPAN) associated

with the media device to obtain information describing content residing at the

media device; and"

426. See the descriptions for Claim 1, Preamble, and Elements 1[a] and

1[b]. In addition, NetRemote discloses "talking" to a media center over a wireless

network, and it is "designed to automatically configure and connect to any

computers on your network" running the media center software. Ex. 1009 at 1.

"Using NetRemote and your WiFi enabled Pocket PC or any networked Windows

computer, you will have full control of your digital media from anywhere in your

house." Ex. 1011.

427. Upon startup, NetRemote searches for computers running the

appropriate media center software, and it displays a screen showing what the

controlled PC is playing. Ex. 1009 at 1. The PDA in NetRemote retrieves from

the PC album covers for media stored at the PC, and displays the images on the

138

Page 142 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

PDA. Ex. 1010 at 7; see Ex. 1011.

428. Further, as described above, RX3000 discloses wirelessly browsing and playing music, photos, and video collections. Ex. 1012 at 121. RX3000 discloses using a PDA device to select a media server to access its stored media, and selecting the stored media to be played by the selected media server. *Id.* at 182-185. Using the PDA device, a user can search for media on a given media server and view results on screen. *Id.* at 187.

429. The PDA devices in NetRemote and RX3000 could only control and interact with devices within network range (*i.e.* when the PDA is within the same WiFi network used by the controlled device). As discussed abovee, a POSITA would have understood Wi-Fi is a type of wireless technology capable of providing Wireless Personal Area Networks or WPAN.

430. For example, a POSITA would have also understood that Wi-Fi supported ad-hoc networks in which devices such as PDAs and Computers were directly linked via Wi-Fi, and can use password protection for communication access. Ex.1012 at 126 ("Settings" image shows ad-hoc device-to-device connection). RX3000 contemplates such a network for remotely controlling media.

431. Element 1[c][ii]: "store the information describing the content

residing at the media device in the media database;"

432. See the descriptions for Claim 1, Preamble, and Elements 1[a], 1[b],

and 1[c][i]. It is disclosed, and obvious to a POSITA, that media information

describing the media content (e.g., album covers or track listing) received at the

PDA is stored on the PDA in order to display the media information.

433. Moreover, RX3000 discloses refreshing the handheld's list of media

servers and media players available to the handheld device, along with refreshing

the contents of a given media folder on a media server. Ex. 1012 at 183-84. A

POSITA would have understood this to mean that RX3000 discloses storing the

information about the content in the media device database.

434. Element 1[d]: "wherein desired content is selected from the

content at the media device based on the information in the media database

and played at the media device when the mobile device is within the WPAN

associated with the media device."

435. See the descriptions for Claim 1, Preamble and Elements 1[b] and

1[c][i]. NetRemote discloses browsing music to select and play at the media center

PC. Ex. 1011. NetRemote discloses: "Remote-control your media player

anywhere in your house via wi-fi! Browse your media library and cover art.

Select songs and playlists." Id. In addition, RX3000 discloses that a user can use a

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

mobile device to choose media from a media server to play the media onto any

digital media player, and that a user can choose a media server, a media player, and

the media itself, from an on-screen menu organized by album, artist, or genre. Ex.

1012 at 182-185. A POSITA would have understood that the PDA devices in

NetRemote and RX3000 could only control and interact with devices within

network range (when the PDA is within the same WiFi network used by the

controlled device) in order to function.

436. Claim 2: "the mobile device of claim 1 wherein the control system

is further adapted to select the desired content to play at the media device

from the media database and instruct the media device to play the desired

content when the mobile device is within the WPAN associated with the media

device."

437. See the descriptions for Claim 1. As disclosed by NetRemote,

"Remote-control your media player anywhere in your house via wi-fi! Browse

your media library and cover art. Select songs and playlists." Ex. 1011.

438. RX3000 discloses using a PDA device to select a media server to

access its stored media, and selecting the stored media to be played by the selected

media server. Id. at 182-185.

439. As explained in Element 1[d] such control for playback can occur

141

Page 145 of 1414

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

when the PDA is within network range (when the PDA is within the same WiFi network used by the controlled device) in order to function.

- 440. <u>Claim 3</u>: "The mobile device of claim 2 wherein the control system is further adapted to interact with a user such that the user selects the desired content to play at the media device from the media database."
  - 441. See the descriptions for Claims 1 and 2 above.
- 442. NetRemote and RX3000 have PDA user interfaces / screens to control discovery of devices to be controlled, listing of media stored on those devices, and control interfaces for playback of by media by the controlled devices; Ex. 1011; Ex. 1009 at 1; Ex. 1012 at 182-84.
- 443. As described above, a user of the NetRemote and RX3000 systems, alone or in combination, would have interacted with the mobile device to select the content for play.
- 444. Claim 10, Preamble and Element 10[a]: "The mobile device of claim 2 wherein if the mobile device is simultaneously within the WPAN associated with a first one of the plurality of media devices and the WPAN associated with a second one of the plurality of media devices, the control system is further adapted to: select one of the first and second ones of the plurality of media devices as a select media device; and"

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

445. See the description for Claim 2 above. In addition, NetRemote works

by "talking" to media center software on a host media device over the network:

"NetRemote is designed to automatically configure and connect to any computers

on your network running [the media center software]." Ex. 1009 at 1.

446. "Each [NetRemote] plugin can have multiple instances.' This allows

NetRemote to communicate with more then [sic] one server. For instance, you

could have [the media center software] running on multiple computers. Click on

the plus sign to view a list of connections." Ex. 1010 at 3. "Host specifies the

computer that this instance of the plugin connects to." Id. at 4. "Default Host

specifies with [sic] host computer NetRemote should connect with first." Ex. 1010

at 5.

447. In addition, as further described above and in **Part VIII**, RX3000

discloses using a mobile device to select a media server from which a user wants to

access media, select a media player on which the user wants the media to play, and

selecting the media itself for playback. Ex. 1012 at 182-84.

448. Element 10[b]: "select desired content to play for only the select

media device from the media database and instruct only the select media

device to play the desired content."

449. See the description for claims 1 and 2, claim 10, preamble, and

143

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

Element 10[a]. As described in Element 10[a], for example, NetRemote and

RX3000 can select a controlled device and cause playback of media by the selected

device.

450. RX3000 discloses using a mobile device to select a media server from

which a user wants to access media, select a media player on which the user wants

the media to play, and selecting the media itself for playback. Ex. 1012 at 182-84.

451. The combination of NetRemote and RX3000 therefore discloses

selecting a device, selecting content to play on the device, and instructing only that

device to play the desired content.

452. Claim 12, Preamble: "The mobile device of claim 2 wherein the

mobile device is included within a system further comprising the plurality of

media devices, wherein each of the plurality of media devices comprises:"

453. See the description for the preamble of claim 1 and claims 2 and 10.

In addition, NetRemote discloses "talking" to a media center over a wireless

network, and it is "designed to automatically configure and connect to any

computers on your network" running the media center software. Ex. 1009 at 1.

454. RX3000 discloses wireless use of a mobile device to select a media

server from which a user wants to access media, select a media player on which the

user wants the media to play, and browsing and selecting the media itself for play

144

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

at the media player. Ex. 1012 at 121, 182-85.

- 455. In addition, the combination of NetRemote and RX3000 therefore renders obvious selecting from a plurality of media devices.
- 456. Element 12[a]: "a wireless communication interface for communicating with the mobile device when the mobile device is within the WPAN associated with the media device;"
- 457. See the description for Claim 12, Preamble, and Element 1[a], and Claim 2, describing the media devices and the mobile devices connecting via a wireless communication interface (wi-fi, which constitutes a WPAN as described above).
  - 458. Element 12[b]: "a content database storing the content; and"
  - 459. See the descriptions for Element 1[b] and 2 above.
- 460. In addition, the NetRemote software on a mobile device connects to the appropriate media software on a host computer (media device) as described above. *See* Ex. 1009 at 9, 11 (showing failure to connect to a host, and thereby failing to show content data); 12. A POSITA would understand, therefore, that NetRemote discloses the content database.
- 461. NetRemote also discloses creating a scheme to view and arrange the content stored at the host computer / media device, thereby demonstrating that the

host computer / mobile device has a content database to store content. Ex. 1010 at 7-10.

462. RX3000 further discloses using a mobile device to select a media server from which a user wants to access media, select a media player on which the user wants the media to play, and selecting the media itself for play. Ex. 1012 at 182-84 ("If you've selected a NevoMedia Server, the My Music list view is organized by folders."); 187 ("you can search the currently selected server for music, pictures, and video").

- 463. Element 12[c]: "a media server adapted to:"
- 464. See above for Element 1[c] and Claim 2.
- 465. In addition, RX3000 discloses a server that "collects and organizes your digital music, photos, and videos and makes them available to be controlled and played with [a mobile device]." Ex. 1012 at 139.
- 466. NetRemote describes PDA network control of a media server. Ex. 1009 at 1-2 (describing connection to a media server on the network).
- 467. Element 12[c][i]: "provide the information describing the content in the content database to the mobile device when the mobile device is within the WPAN associated with the media device; and"
  - 468. See the descriptions of Element 1[c][i] and Claim 2.

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of

U.S. Patent No. 7,787,904 B2

469. In addition, NetRemote discloses viewing, on the mobile device, information about the media content (such as album covers or song information) stored on the PC. Ex. 1011.

470. NetRemote also discloses a "Library Root" setting that "specifies where in the Media Library that NetRemote should begin displaying from." Ex. 1010 at 4.

471. RX3000 discloses viewing a list of media files that are stored on the server, organized in folders. Ex. 1012 at 184-86 (mobile device screen shows list of tracks available to stream from server).

472. A POSITA would have understood that the systems disclosed in NetRemote and RX3000 functioned when within the WPAN/network.

473. Element 12[c][ii]: "instruct a media player to play the desired content in response to receiving an instruction to play the desired content from the mobile device."

474. See the descriptions of claims 1 and 2.

475. For example, RX3000 discloses using a mobile device to select a media server from which a user wants to access media, select a media player on which the user wants the media to play, and selecting the media itself for playback. Ex. 1012 at 182-84.

- 476. NetRemote discloses that after startup, in which NetRemote examines the network to find computers running the media center software (and thus, that can be controlled), a user sees a screen including controls related to playing desired content. Ex. 1009 at 1.
- 477. RX3000 discloses a similar screen. *See* Ex. 1012 at 186 ("Controls View" screen; "When you start the media, the screen automatically switches to controls view.... To play music from the List view, simply tap a song in the list.").
- 478. A POSITA would have understood that a command from the remote control/PDA of RX3000 and/or NetRemote would have been an instruction.
- 479. Claim 15: "The mobile device of claim 1 wherein the control system is further adapted to update the information describing the content from the media device after leaving the WPAN associated with the media device and returning to the WPAN associated with the media device."
  - 480. See the description for claim 1.
- 481. In addition, RX3000 discloses that the mobile device can refresh servers and players to "[v]iew an updated list of media servers and media players" and it can refresh a folder to "[r]efresh the contents of the currently highlighted folder." Ex. 1012 at 183-184.
  - 482. A POSITA would have further understood that RX3000 discloses this

as happening at any time the mobile device is connected to the media server and media player, including after the mobile device has left and returned to the network.

- 483. <u>Claim 16, Preamble</u>: "A method for controlling digital content played by a plurality of media devices comprising, for each of the plurality of media devices:"
  - 484. See the description for Claim 1, Preamble.
- 485. Element 16[a]: "obtaining information describing content residing at the media device when a mobile device is within a wireless personal area network (WPAN) associated with the media device;"
  - 486. See the description for Claim 1, Element 1[c][i].
- 487. <u>Element 16[b]</u>: "storing the information describing the content residing at the media device in a media database of the mobile device;"
  - 488. See the description for Claim 1, Element [c][ii].
- 489. <u>Element 16[c]</u>: "selecting desired content to play from the content residing at the media device based on the media database when the mobile device is within the WPAN associated with the media device; and"
  - 490. See the description for Claim 1, Element 1[d].
  - 491. Element 16[d]: "playing the desired content at the media device."

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

- 492. See the description for Claim 1, Element 1[d].
- 493. <u>Claim 17, Preamble</u>: "The method of claim 16 wherein selecting the desired content to play comprises:"
  - 494. See the description for Claim 16.
- 495. <u>Element 17[a]</u>: "selecting the desired content from the media database at the mobile device; and"
  - 496. See the description for Claim 2.
- 497. <u>Element 17[b]</u>: "providing an instruction from the mobile device to the media device instructing the media device to play the desired content when the mobile device is within the WPAN associated with the media device."
- 498. See the description for Claim 2. As described above, a POSITA would have understood that RX3000 and/or NetRemote disclosed or rendered obvious that a command from the disclosed mobile devices constitutes an instruction from the mobile device. A command is an instruction.
- 499. <u>Claim 18, Preamble</u>: "The method of claim 17 wherein if the mobile device is simultaneously within the WPAN associated with a first one of the plurality of media devices and the WPAN associated with a second one of the plurality of media devices, the method further comprises:"

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

- 500. See the description for Claim 10, Preamble.
- 501. <u>Element 18[a]</u>: "selecting one of the first and second ones of the plurality of media devices as a select media device;"
  - 502. See the description for Element 10[a].
- 503. Elements 18[b] and 18[c]: "selecting the desired content to play for only the select media device from the media database; and instructing only the select media device to play the desired content."
  - 504. See the description for Element 10[b].

## D. Conclusions: Ground 3 – NetRemote and RX3000

- 505. NetRemote discloses a PDA wireless handheld remote control device configured to receive information at the remote control device and allows browsing of content by artist, genre, playlist, title or album cover. It displays that information to allow a user to select media and control playback of the media at the host media center.
- 506. RX3000 discloses a PDA device, which wirelessly receives information about media available at various servers or computers in order to display the information to a user, so that the user can select and control playback of the media at playback devices or computers.
  - 507. It would have been obvious to one of skill to combine the NetRemote

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

references and RX3000. They both address the same technical problems and

contain similar subject matter. Both disclose control of digital media over Wi-Fi,

and a combination of elements of each reference would yield predictable results.

508. Therefore, a wireless communication interface is disclosed and

obvious to a POSITA. Both also disclose the browsing of media available on the

media device and the storage of lists of tracks or album cover images in the mobile

device. Both NetRemote and RX3000 disclose wirelessly browsing and playing of

music over a Wi-Fi network and allow the playback of playlists. Therefore they

both disclose all the elements of Claim 1.

509. NetRemote also discloses Claim 2 of the '904 Patent by allowing the

PDA device to select a media server and access its stored media. NetRemote and

RX3000 both have PDA user interfaces to control discovery of devices to be

controlled. Therefore both NetRemote and RX3000 disclose Claim 3.

510. Claim 10 is similar to Claim 2 and NetRemote and RX3000 disclose it

because they allow for communication with more than one server and the selection

of a controlled device and playback of media selected by the device. Both

NetRemote and RX3000 disclose Claim 12 because they disclose "talking" to a

media center over a wireless network and are "designed to automatically configure

and connect to any computers on your network" running the media center software.

152

Page 156 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

NetRemote and RX3000 disclose connecting to a Wi-Fi network, which a POSITA

would have understood to involve obtaining a passkey from a user to connect to

the network and the server. Therefore Claim 14 is disclosed by both references.

Claims 15-18 are also disclosed, as they are similar to other Claims already

disclosed by both NetRemote and RX3000.

511. Based on all of the above the Challenged Claims are disclosed or

obvious.

XIII. CONCLUSIONS

512. The '904 Patent relates to a mobile device that wirelessly

communicates with media devices to select content to be played by the media

devices. The mobile device, such as a mobile phone, a PDA, or "a stand-alone

device similar to a remote control," communicates with the media device via a

WPAN such as Bluetooth, Wi-Fi, Zigbee or other wireless technologies. The

mobile device obtains information which describes content residing at a media

device and purportedly allows the user to select content to play at the media

device.

513. All of the '904 concepts, features, and technologies were mainstream

technologies in this field, and widely adopted in the market, at the time of the '904

Patent application. They were well-known, including in patents, publications and

153

Page 157 of 1414

products sold in the market. In this declaration I presented and analyzed just a few

out of the many prior art references. In fact, all the independent claims of '904

were actually anticipated by most of the references; each one alone.

514. In Ground 1, De Vet and Vidal make Claims 1-3, 10, 12 and 15-18

unpatentable as being obvious. Vidal discloses a touch-screen remote control that

communicates wirelessly over Bluetooth, with a plurality of media devices. The

remote control communicates with media devices within a short range wirelessly.

De Vet discloses communication between the PDA and PC jukebox. Each one of

De Vet and Vidal disclose features that allow play back of the content stored on a

media device; allow the user to browse the content of the media device and store

information about that content; and features that allow play back of the content

stored on a media device. All the elements of claim 1 are disclosed by each of De

Vet and Vidal; Claim 1 is anticipated by each of them.

515. In Ground 2, Claims 1-3, 10, 12 and 15-18 are obvious over Morse

and Holloway. Both Holloway and Morse disclose "a wireless communication

interface with the plurality of media devices", with Holloway specifically

disclosing bi-directional control via Bluetooth protocol. Both Morse and Holloway

disclose similar technology to the '904 patent for "A control system adapted to, for

each of the plurality of media devices". Morse and Holloway disclose a remote

154

Page 158 of 1414

for Inter Partes Review of

U.S. Patent No. 7,787,904 B2

control system that communicates with the media device wirelessly and obtains

and stores information describing content at the media device.

516. Morse and Holloway both disclose features that allow play back of the

content stored on a media device. Holloway also discloses control of a device via

Bluetooth in similar fashion to the '904 Patent. All the elements of Claim 1 are

disclosed by each of Morse and Holloway; Claim 1 is anticipated by each of them.

517. Ground 3 of the Declaration proves that Claims 1-3, 10, 12, and 15-18

are disclosed by NetRemote and RX3000. It would have been obvious to one of

skill to combine the NetRemote references and RX3000. They both address the

same technical problems and contain similar subject matter. Both disclose control

of digital media over Wi-Fi. Therefore, a wireless communication interface is

disclosed and obvious to a POSITA. Both also disclose the browsing of media

available on the media device and the storage of lists of tracks or album cover

images in the mobile device. Both NetRemote and RX3000 disclose wirelessly

browsing and playing of music over a Wi-Fi network and allow the playback of

playlists. Therefore they both disclose all the elements of Claims 1-3, 10, 12 and

15-18 of the '904 Patent.

155

Declaration of Tal Lavian, Ph.D., in Support of Petition for *Inter Partes* Review of U.S. Patent No. 7,787,904 B2

518. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

519. I declare (or certify, verify, or state) under penalty of perjury that the foregoing is true and correct.

Executed on 9/30/2015, 2015 in 5047 vale, CA

Tal Lavian, Ph.D.

Jal Lavian

# Tal Lavian, Ph.D.



http://telecommnet.com http://cs.berkeley.edu/~tlavian tlavian@telecommnet.com 1640 Mariani Dr. Sunnyvale, CA 94087 (408)-209-9112

# Research and Consulting: Telecommunications, Network Communications, and Mobile Wireless technologies

- Scientist, educator, and technologist with over 25 years of experience
- Co-author on over 25 scientific publications, journal articles, and peer-reviewed papers
- Named inventor on over 80 issued and filed patents

in

 Industry fellow and lecturer at UC Berkeley Engineering – Center for Entrepreneurship and Technology (CET)

#### **EDUCATION**

- Ph.D., Computer Science specializing in networking and communications, UC Berkeley
- M.Sc., Electrical Engineering, Tel Aviv University
- B.Sc., Mathematics and Computer Science, Tel Aviv University

#### **EXPERTISE**

Network communications, telecommunications, Internet protocols and mobile wireless:

- Communication networks: Internet Protocols; TCP/IP suite; TCP; UDP; IP; VoIP; Ethernet; network protocols; network software applications; Data Link, Network, and Transport Layers (L2, L3, L4)
- Internet Software: Internet software applications; distributed computing; cloud computing; Web applications; FTP; HTTP; Java; C; C++; client server; file transfer; multicast; streaming media
- Routing/switching: LAN; WAN; VPN; routing protocols; RIP; BGP; MPLS;OSPF; IS-IS;DNS; QoS; switching; packet switching; network infrastructure; network communication architectures
- Mobile Wireless: Wireless LAN; 802.11; cellular systems; mobile devices; smartphone technologies

#### LITIGATION SUPPORT SERVICES

- Expert witness in numerous USPTO PTAB Inter Partes Review (IPR) and CBM cases
- Expert witness in Federal courts and the ITC (over 30 cases)
- Expert reports, depositions, and courtroom testimonies
- Skilled articulation of technical material for both technical and non-technical audiences
- Product and technology analysis, patent portfolios, claim charts, patentability research
- Litigation support and technology education in patent disputes
- Past cases involved Cisco, Juniper, HP, Ericsson, Microsoft, Google, Samsung and Apple

#### **ACCOMPLISHMENTS**

- Selected as Principal Investigator for three US Department of Defense (DARPA) projects
- Led research project on networking computation for the US Air Force Research Lab (AFRL)
- Led and developed the first network resource scheduling service for grid computing
- Led wireless research project for an undisclosed US federal agency
- Managed and engineered the first demonstrated transatlantic dynamic allocation of 10Gbs Lambdas as a grid service
- Spearheaded the development of the first demonstrated wire-speed active network on commercial hardware
- Invented over 80 patents; over 50 prosecuted pro se in front of the USPTO
- Created and chaired Nortel Networks' EDN Patent Committee
- Current IEEE Senior Member

### PROFESSIONAL EXPERIENCE

## University of California, Berkeley, CA

2000-Present

Berkeley Industry Fellow, Lecturer, Visiting Scientist, Ph.D. Candidate, Nortel's Scientist Liaison Some positions and projects were concurrent, others sequential

- Serves as an Industry Fellow and Lecturer at the Center for Entrepreneurship and Technology (CET).
- Studied network services, telecommunication systems and software, communications infrastructure, and data centers
- Developed long-term technology for the enterprise market, integrating communication and computing technologies
- Conducted research projects in data centers (RAD Labs), telecommunication infrastructure (SAHARA), and wireless systems (ICEBERG)
- Acted as scientific liaison between Nortel Research Lab and UC Berkeley, providing tangible value in advanced technologies
- Earned a Ph.D. in Computer Science with a specialization in communications and networking

## <u>Telecomm Net Consulting, Inc.</u> (Innovations-IP) Sunnyvale, CA 2006-Present Principal Scientist

 Consulting in the areas of network communications, telecommunications, Internet protocols, and smartphone mobile wireless devices

- Providing architecture and system consultation for software projects relating to computer networks, mobile wireless devices, Internet web technologies
- · Acting as an expert witness in network communications patent infringement lawsuits

## <u>VisuMenu, Inc.</u> – Sunnyvale, CA

2010-Present

## **Co- Founder and Chief Technology Officer (CTO)**

- Design and develop architecture of visual IVR technologies for smartphones and wireless mobile devices in the area of network communications
- Design crawler/spider system for IVR / PBX using Asterisk, SIP and VoIP
- Deploy the system as cloud networking and cloud computing utilizing Amazon Web Services (EC2, S3, VPC, DNS, and RDS)

## <u>Ixia,</u> Santa Clara, CA

2008-2008

#### **Communications Consultant**

- Researched and developed advanced network communications testing technologies:
  - IxNetwork/IxN2X tests IP routing and switching devices and broadband access equipment. Provides traffic generation and emulation for the full range of protocols: routing, MPLS, layer 2/3 VPNs, Carrier Ethernet, broadband access, and data center bridging.
  - IxLoad quickly and accurately models high-volume video, data, and voice subscribers and servers to test real-world performance of multiservice delivery and security platforms.
  - IxCatapult emulates a broad range of wireless access and core protocols to test wireless components and systems. When combined with IxLoad, provides an end-to-end solution for testing wireless service quality.
  - IxVeriWave employs a client-centric model to test Wi-Fi and wireless LAN networks by generating repeatable large-scale, real-world test scenarios that are virtually impossible to create by any other means.
  - Test Automation provides simple, comprehensive lab automation to help test engineering teams create, organize, catalog, and schedule execution of tests.

### Nortel Networks, Santa Clara, CA

1996 - 2007

Originally employed by Bay Networks, which was acquired by Nortel Networks

## Principal Scientist, Principal Architect, Principal Engineer, Senior Software Engineer

 Held scientific and research roles at Nortel Labs, Bay Architecture Labs, and in the office of the CTO

## Principal Investigator for US Department of Defense (DARPA) Projects

- Conceived, proposed, and completed three research projects: Active Networks, DWDM-RAM, and a networking computation project for Air Force Research Lab (AFRL)
- Led a wireless research project for an undisclosed US federal agency

#### **Academic and Industrial Researcher**

- Analyzed new technologies to reduce risks associated with R&D investment
- Spearheaded research collaboration with leading universities and professors at UC
   Berkeley, Northwestern University, University of Amsterdam, and University of Technology,
   Sydney
- Evaluated competitive products relative to Nortel's products and technology
- Proactively identified prospective business ideas, which led to new networking products
- Predicted technological trends through researching the technological horizon and academic sphere
- Developed software for switches, routers and network communications devices
- Developed systems and architectures for switches, routers, and network management
- Researched and developed the following projects:

| : | Data-Center Communications: network and server orchestration DRAC: SOA-facilitated L1/L2/L3 network dynamic controller | 2006-2007<br>2003-2007 |
|---|------------------------------------------------------------------------------------------------------------------------|------------------------|
| • | Omega: classified wireless project for undisclosed US Federal Agency                                                   | 2006                   |
| • | Open Platform: project for the US Air Force Research Laboratory (AFRL)                                                 | 2005                   |
| • | Network Resource Orchestration for Web Services Workflows                                                              | 2004-2005              |
| • | Proxy Study between Web/Grids Services and Network Services                                                            | 2004                   |
| • | Streaming Content Replication: real-time A/V media multicast at edge                                                   | 2003-2004              |
| • | DWDM-RAM: US DARPA-funded program on agile optical transport                                                           | 2003-2004              |
| • | Packet Capturing and Forwarding Service on IP and Ethernet traffic                                                     | 2002-2003              |
| • | CO2: content-aware agile networking                                                                                    | 2001-2003              |
| • | Active Networks: US DARPA-funded research program                                                                      | 1999-2002              |
| • | ORE: programmable network service platform                                                                             | 1998-2002              |
| • | JVM Platform: Java on network devices                                                                                  | 1998-2001              |
| • | Web-Based Device Management: network device management                                                                 | 1996-1997              |

## **Technology Innovator and Patent Leader**

- Created and chaired Nortel Networks' EDN Patent Committee
- Facilitated continuous stream of innovative ideas and their conversion into intellectual property rights
- Developed intellectual property assets through invention and analysis of existing technology portfolios

## **Aptel Communications**, Netanya, Israel

1994-1995

## Software Engineer, Team Leader

Start-up company focused on mobile wireless CDMA spread spectrum PCN/PCS

- Developed a mobile wireless device using an unlicensed band [Direct Sequence Spread Spectrum (DSSS)]
- Designed and managed a personal communication network (PCN) and personal communication system (PCS), the precursors of short text messages (SMS)
- Designed and developed network communications software products (mainly in C/C++)
- Brought a two-way paging product from concept to development

## Scitex Ltd., Herzeliya, Israel

1990-1993

## Software Engineer, Team Leader

Software and hardware company acquired by Hewlett Packard (HP)

- Developed system and network communications (mainly in C/C++)
- Invented Parallel SIMD Architecture
- Participated in the Technology Innovation group

## Shalev, Ramat-HaSharon, Israel

1987-1990

Start-up company

## **Software Engineer**

Developed real-time software and algorithms (mainly in C/C++ and Pascal)

#### PROFESSIONAL ASSOCIATIONS

- IEEE Senior Member
- IEEE CNSV co-chair Intellectual Property SIG (2013)
- President Next Step Toastmasters (an advanced TM club in the Silicon Valley) (2013)
- Technical Co-Chair, IEEE Hot Interconnects 2005 at Stanford University
- Member, IEEE Communications Society (COMMSOC)
- Member, IEEE Computer Society
- Member, IEEE Systems, Man, and Cybernetics Society
- Member, IEEE-USA Intellectual Property Committee
- Member, ACM, ACM Special Interest Group on Data Communication (SIGCOM)
- Member, ACM Special Interest Group on Hypertext, Hypermedia and Web (SIGWEB)
- Member, IEEE Consultants' Network (CNSV)
- Global Member, Internet Society (ISOC)
- President Java Users Group Silicon Valley Mountain View, CA,1999-2000
- Toastmasters International

#### **ADVISORY BOARDS**

- Quixey (present) search engine for wireless mobile apps
- Mytopia mobile social games
- iLeverage Israeli Innovations

#### **PROFESSIONAL AWARDS**

- Top Talent Award Nortel
- Top Inventors Award Nortel EDN
- Certified IEEE-WCET Wireless Communications Engineering Technologies
- Toastmasters International Competent Communicator (twice)
- Toastmasters International Advanced Communicator Bronze

#### **Patents and Publications**

(Not an exhaustive list)

#### Patents Issued:

- **US 8,688,796** Rating system for determining whether to accept or reject objection raised by user in social network
- US 8.572.303 Portable universal communication device
- US 8,553,859 Device and method for providing enhanced telephony
- **US 8,548,131** Systems and methods for communicating with an interactive voice response system
- US 8,537,989 Device and method for providing enhanced telephony
- US 8,341,257 Grid proxy architecture for network resources
- US8,161,139 Method and apparatus for intelligent management of a network element
- **US 8,146,090** Time-value curves to provide dynamic QoS for time sensitive file transfer
- US 8,078,708 Grid proxy architecture for network resources
- US 7,944,827 Content-aware dynamic network resource allocation
- US7.860.999 Distributed computation in network devices
- US 7,734,748 Method and apparatus for intelligent management of a network element
- US 7,710,871 Dynamic assignment of traffic classes to a priority queue in a packet forwarding device
- US 7,580,349 Content-aware dynamic network resource allocation
- US 7,433,941 Method and apparatus for accessing network information on a network device
- US 7,359,993 Method and apparatus for interfacing external resources with a network element
- US 7,313,608 Method and apparatus for using documents written in a markup language to access and configure network elements
- US 7,260,621 Object-oriented network management interface

- US 7,237,012 Method and apparatus for classifying Java remote method invocation transport traffic
- US 7,127,526 Method and apparatus for dynamically loading and managing software services on a network device
- US7,047,536 Method and apparatus for classifying remote procedure call transport traffic
- US7,039,724 Programmable command-line interface API for managing operation of a network device
- US6,976,054 Method and system for accessing low-level resources in a network device
- US6,970,943 Routing architecture including a compute plane configured for highspeed processing of packets to provide application layer support
- US6,950,932 Security association mediator for Java-enabled devices
- US6,850,989 Method and apparatus for automatically configuring a network switch
- US6,845,397 Interface method and system for accessing inner layers of a network protocol
- **US6,842,781** Download and processing of a network management application on a network device
- **US6,772,205** Executing applications on a target network device using a proxy network device
- US6,564,325 Method of and apparatus for providing multi-level security access to system
- US6,175,868 Method and apparatus for automatically configuring a network switch
- US6.170.015 Network apparatus with Java co-processor
- US 8,619,793 Dynamic assignment of traffic classes to a priority queue in a packet forwarding device
- US 8687,777 Systems and methods for visual presentation and selection of IVR menu
- US 8,681,951 Systems and methods for visual presentation and selection of IVR menu

- US 8,625,756 Systems and methods for visual presentation and selection of IVR menu
- US 8,594,280 Systems and methods for visual presentation and selection of IVR menu
- US 8,548,135 Systems and methods for visual presentation and selection of IVR menu
- US 8,406,388 Systems and methods for visual presentation and selection of IVR menu
- US 8,345,835 Systems and methods for visual presentation and selection of IVR menu
- US 8,223,931 Systems and methods for visual presentation and selection of IVR menu
- **US 8,160,215** Systems and methods for visual presentation and selection of IVR menu
- **US 8,155,280** Systems and methods for visual presentation and selection of IVR menu
- US 8,054,952 Systems and methods for visual presentation and selection of IVR menu
- US 8,000,454 Systems and methods for visual presentation and selection of IVR menu
- EP 1,905,211 Technique for authenticating network users
- EP 1,142,213 Dynamic assignment of traffic classes to a priority queue in a packet forwarding device
- EP 1,671,460 Method and apparatus for scheduling resources on a switched underlay network
- CA 2,358,525 Dynamic assignment of traffic classes to a priority queue in a packet forwarding device

# Patent Applications Published and Pending: (Not an exhaustive list)

| • | US 20140105025 | Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device                 |  |
|---|----------------|---------------------------------------------------------------------------------------------------------|--|
| • | US 20140105012 | Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device                 |  |
| • | US 20140012991 | Grid Proxy Architecture for Network Resources                                                           |  |
| • | US 20130080898 | Systems and Methods for Electronic Communications                                                       |  |
| • | US 20130022191 | Systems and Methods for Visual Presentation and Selection of IVR Menu                                   |  |
| • | US 20130022183 | Systems and Methods for Visual Presentation and Selection of IVR Menu                                   |  |
| • | US 20130022181 | Systems and Methods for Visual Presentation and Selection of IVR Menu                                   |  |
| • | US 20120180059 | Time-Value Curves to Provide Dynamic QOS for Time Sensitive File Transfers                              |  |
| • | US 20120063574 | Systems and Methods for Visual Presentation and Selection of IVR Menu                                   |  |
| • | US 20110225330 | Portable Universal Communication Device                                                                 |  |
| • | US 20100220616 | Optimizing Network Connections                                                                          |  |
| • | US 20100217854 | Method and Apparatus for Intelligent Management of a Network Element                                    |  |
| • | US 20100146492 | Translation of Programming Code                                                                         |  |
| • | US 20100146112 | Efficient Communication Techniques                                                                      |  |
| • | US 20100146111 | Efficient Communication in a Network                                                                    |  |
| • | US 20090313613 | Methods and Apparatus for Automatic Translation of a Computer Program Language Code Poster              |  |
| • | US 20090313004 | Platform-Independent Application Development Framework                                                  |  |
| • | US 20090279562 | Content-aware dynamic network resource allocation                                                       |  |
| • | US 20080040630 | Time-Value Curves to Provide Dynamic QoS for Time Sensitive File Transfers                              |  |
| • | US 20070169171 | Technique for authenticating network users                                                              |  |
| • | US 20060123481 | Method and apparatus for network immunization                                                           |  |
| • | US 20060075042 | Extensible Resource Messaging Between User Applications and Network Elements in a Communication Network |  |

- US 20050083960 Method and Apparatus for Transporting Parcels of Data Using Network Elements with Network Element Storage
- US 20050076339 Method and Apparatus for Automated Negotiation for Resources on a Switched Underlay Network
- US 20050076336 Method and Apparatus for Scheduling Resources on a Switched Underlay Network
- US 20050076173 Method And Apparatus for Preconditioning Data to Be Transferred on a Switched Underlay Network
- US 20050076099 Method and Apparatus for Live Streaming Media Replication in a Communication Network
- US 20050074529 Method and apparatus for transporting visualization information on a switched underlay network
- US 20040076161 Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device
- US 20020021701 Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device
- WO 2007/008976 Technique for Authenticating Network Users
- WO 2006/063052 Method and apparatus for network immunization
- WO2000/0054460 Method and apparatus for accessing network information on a network device

#### **Publications**

(Not an exhaustive list)

- "R&D Models for Advanced Development & Corporate Research" Understanding Six Models of Advanced
   R&D Ikhlaq Sidhu, Tal Lavian, Victoria Howell University of California, Berkeley. Accepted paper for 2015
   ASEE Annual Conference and Exposition- June 2015
- "Communications Architecture in Support of Grid Computing", Tal Lavian, Scholar's Press 2013ISBN 978-3-639-51098-0.
- "Applications Drive Secure Lightpath Creation across Heterogeneous Domains, Feature Topic Optical Control Planes for Grid Networks: Opportunities, Challenges and the Vision." Gommans L.; Van Oudenaarde B.;
   Dijkstra F.; De Laat C.; Lavian T.; Monga I.; Taal A.; Travostino F.; Wan A.; IEEE Communications Magazine, vol. 44, no. 3, March 2006, pp. 100-106.
- Lambda Data Grid: Communications Architecture in Support of Grid Computing. Tal I. Lavian, Randy H. Katz; Doctoral Thesis, University of California at Berkeley. January 2006.
- "Information Switching Networks." Hoang D.B.; T. Lavian; The 4th Workshop on the Internet,
   Telecommunications and Signal Processing, WITSP2005, December 19-21, 2005, Sunshine Coast, Australia.
- "Impact of Grid Computing on Network Operators and HW Vendors." Allcock B.; Arnaud B.; Lavian T.; Papadopoulos P.B.; Hasan M.Z.; Kaplow W.; *IEEE Hot Interconnects at Stanford University 2005*, pp.89-90.
- DWDM-RAM: AData Intensive Grid Service Architecture Enabled by Dynamic Optical Networks. Lavian T.;
   Mambretti J.; Cutrell D.; Cohen H.J; Merrill S.; Durairaj R.; Daspit P.; Monga I.; Naiksatam S.; Figueira S.;
   Gutierrez D.; Hoang D.B., Travostino F.; CCGRID 2004, pp. 762-764.
- DWDM-RAM: AnArchitecture for Data Intensive Service Enabled by Next Generation Dynamic Optical Networks. Hoang D.B.; Cohen H.; Cutrell D.; Figueira S.; Lavian T.; Mambretti J.; Monga I.; Naiksatam S.; Travostino F.; Proceedings IEEE Globecom 2004, Workshop on High-Performance Global Grid Networks, Houston, 29 Nov. to 3 Dec. 2004, pp.400-409.
- Implementation of a Quality of Service Feedback Control Loop on Programmable Routers. Nguyen C.; Hoang D.B.; Zhao, I.L.; Lavian, T.; Proceedings, 12th IEEE International Conference on Networks 2004. (ICON 2004) Singapore, Volume 2, 16-19 Nov. 2004, pp.578-582.
- A Platform for Large-Scale Grid Data Service on Dynamic High-Performance Networks. Lavian T.; Hoang
   D.B.; Mambretti J.; Figueira S.; Naiksatam S.; Kaushil N.; Monga I.; Durairaj R.; Cutrell D.; Merrill S.; Cohen
   H.; Daspit P.; Travostino F; GridNets 2004, San Jose, CA., October 2004.
- DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks. Figueira S.; Naiksatam S.; Cohen H.;
   Cutrell D.; Daspit, P.; Gutierrez D.; Hoang D. B.; Lavian T.; Mambretti J.; Merrill S.; Travostino F;
   Proceedings, 4th IEEE/ACM International Symposium on Cluster Computing and the Grid, Chicago, USA,
   April 2004, pp. 707-714.
- DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks. Figueira S.; Naiksatam S.; Cohen H.;
   Cutrell D.; Gutierrez D.; Hoang D.B.; Lavian T.; Mambretti J.; Merrill S.; Travostino F.; 4th IEEE/ACM
   International Symposium on Cluster Computing and the Grid, Chicago, USA, April 2004.

- An Extensible, Programmable, Commercial-Grade Platform for Internet Service Architecture. Lavian T.;
   Hoang D.B.; Travostino F.; Wang P.Y.; Subramanian S.; Monga I.; IEEE Transactions on Systems, Man, and Cybernetics on Technologies Promoting Computational Intelligence, Openness and Programmability in Networks and Internet Services Volume 34, Issue 1, Feb. 2004, pp.58-68.
- DWDM-RAM: An Architecture for Data Intensive Service Enabled by Next Generation Dynamic Optical
  Networks. Lavian T.; Cutrell D.; Mambretti J.; Weinberger J.; Gutierrez D.; Naiksatam S.; Figueira S.; Hoang
  D. B.; Supercomputing Conference, SC2003 Igniting Innovation, Phoenix, November 2003.
- Edge Device Multi-Unicasting for Video Streaming. Lavian T.; Wang P.; Durairaj R.; Hoang D.; Travostino F.;
   Telecommunications, 2003. ICT 2003. 10th International Conference on Telecommunications, Tahiti, Volume
   2, 23 Feb.-1 March, 2003 pp. 1441-1447.
- The SAHARA Model for Service Composition Across Multiple Providers. Raman B.; Agarwal S.; Chen Y.; Caesar M.; Cui W.; Lai K.; Lavian T.; Machiraju S.; Mao Z. M.; Porter G.; Roscoe T.; Subramanian L.; Suzuki T.; Zhuang S.; Joseph A. D.; Katz Y.H.; Stoica I.; Proceedings of the First International Conference on Pervasive Computing. ACM Pervasive 2002, pp. 1-14.
- Enabling Active Flow Manipulation in Silicon-Based Network Forwarding Engines. Lavian T.; Wang P.;
   Travostino F.; Subramanian S.; Duraraj R.; Hoang D.B.; Sethaput V.; Culler D.; Proceeding of the Active Networks Conference and Exposition, 2002.(DANCE) 29-30 May 2002, pp. 65-76.
- Practical Active Network Services within Content-Aware Gateways. Subramanian S.; Wang P.; Durairaj R.;
   Rasimas J.; Travostino F.; Lavian T.; Hoang D.B.; Proceeding of the DARPA Active Networks Conference and Exposition, 2002.(DANCE) 29-30 May 2002, pp. 344-354.
- Active Networking on a Programmable Network Platform. Wang P.Y.; Lavian T.; Duncan R.; Jaeger R.;
   Fourth IEEE Conference on Open Architectures and Network Programming (OPENARCH), Anchorage, April 2002.
- Intelligent Network Services through Active Flow Manipulation. Lavian T.; Wang P.; Travostino F.; Subramanian S.; Hoang D.B.; Sethaput V.; IEEE Intelligent Networks 2001 Workshop (IN2001), Boston, May 2001.
- Intelligent Network Services through Active Flow Manipulation. Lavian T.; Wang P.; Travostino F.;
   Subramanian S.; Hoang D.B.; Sethaput V.; Intelligent Network Workshop, 2001 IEEE 6-9 May 2001, pp.73 82.
- Enabling Active Flow Manipulation in Silicon-based Network Forwarding Engine. Lavian, T.; Wang, P.;
   Travostino, F.; Subramanian S.; Hoang D.B.; Sethaput V.; Culler D.; Journal of Communications and Networks, March 2001, pp.78-87.
- Active Networking on a Programmable Networking Platform. Lavian T.; Wang P.Y.; IEEE Open Architectures
  and Network Programming, 2001, pp. 95-103.
- Enabling Active Networks Services on a Gigabit Routing Switch. Wang P.; Jaeger R.; Duncan R.; Lavian T.;
   Travostino F.; 2nd Workshop on Active Middleware Services, 2000.

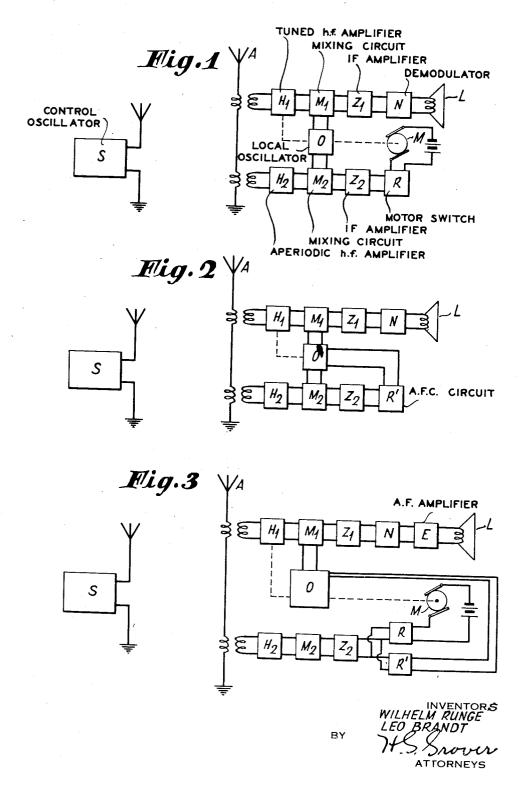
- Dynamic Classification in Silicon-Based Forwarding Engine Environments. Jaeger R.; Duncan R.; Travostino F.; Lavian T.; Hollingsworth J.; Selected Papers. 10th IEEE Workshop on Metropolitan Area and Local Networks, 1999. 21-24 Nov. 1999, pp.103-109.
- Open Programmable Architecture for Java-Enabled Network Devices. Lavian, T.; Jaeger, R. F.;
   Hollingsworth, J. K.; IEEE Hot Interconnects Stanford University, August 1999, pp. 265-277.
- Open Java SNMP MIB API. Rob Duncan, Tal Lavian, Roy Lee, Jason Zhou, Bay Architecture Lab Technical Report TR98-038, December 1998.
- Java-Based Open Service Interface Architecture. Lavian T.; Lau S.; BAL TR98-010 Bay Architecture Lab Technical Report, March 1998.
- Parallel SIMD Architecture for Color Image Processing. Lavian T. Tel Aviv University, Tel Aviv, Israel, November 1995.
- Grid Network Services, Draft-ggf-ghpn-netservices-1.0.George Clapp, Tiziana Ferrari, Doan B. Hoang, Gigi Karmous-Edwards, Tal Lavian, Mark J. Leese, Paul Mealor, Inder Monga, Volker Sander, Franco Travostino, Global Grid Forum(GGF).
- Project DRAC: Creating an applications-aware network. Travostino F.; Keates R.; Lavian T.; Monga I.;
   Schofield B.; Nortel Technical Journal, February 2005, pp. 23-26.
- Optical Network Infrastructure for Grid, Draft-ggf-ghpn-opticalnets-1. Dimitra Simeonidou, Reza Nejabati, Bill
  St. Arnaud, Micah Beck, Peter Clarke, Doan B. Hoang, David Hutchison, Gigi Karmous-Edwards, Tal Lavian,
  Jason Leigh, Joe Mambretti, Volker Sander, John Strand, Franco Travostino, Global Grid Forum(GGF) GHPN
  Standard GFD-I.036 August 2004.
- Popeye Using Fine-grained Network Access Control to Support Mobile Users and Protect Intranet Hosts. Mike Chen, Barbara Hohlt, Tal Lavian, December 2000.

#### **Presentations and Talks**

(Not an exhaustive list)

- Lambda Data Grid: An Agile Optical Platform for Grid Computing and Data-intensive Applications.
- Web Services and OGSA
- WINER Workflow Integrated Network Resource Orchestration.
- Technology & Society.
- Abundant Bandwidth and how it affects us?
- Active Content Networking(ACN).
- DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks.
- Application-engaged Dynamic Orchestration of Optical Network Resources.
- A Platform for Data Intensive Services Enabled by Next Generation Dynamic Optical Networks.
- Optical Networks.
- Grid Optical Network Service Architecture for Data Intensive Applications.
- Optical Networking & DWDM.
- OptiCal Inc.
- OptiCal & LUMOS Networks.
- Optical Networking Services.
- Business Models for Dynamically Provisioned Optical Networks.
- Business Model Concepts for Dynamically Provisioned Optical Networks.
- Optical Networks Infrastructure.
- Research Challenges in agile optical networks.
- Services and Applications' infrastructure for agile optical networks.
- Impact on Society.
- TeraGrid Communication and Computation.
- Unified Device Management via Java-enabled Network Devices.
- Active Network Node in Silicon-Based L3 Gigabit Routing Switch.
- Active Nets Technology Transfer through High-Performance Network Devices.
- Programmable Network Node: Applications.
- Open Innovation via Java-enabled Network Devices.
- Practical Considerations for Deploying a Java Active Networking Platform.
- Open Java-Based Intelligent Agent Architecture for Adaptive Networking Devices.
- Java SNMP Oplet.
- Open Distributed Networking Intelligence: A New Java Paradigm.
- Open Programmability.
- Active Networking On A Programmable Networking Platform.
- Open Networking through Programmability.
- Open Programmable Architecture for Java-enabled Network Devices.

- Integrating Active Networking and Commercial-Grade Routing Platforms.
- Programmable Network Devices.
- To be smart or not to be?


Oct. 10, 1939.

W. RUNGE ET AL

2,175,320

REMOTE CONTROL DEVICE FOR RADIO RECEIVERS

Filed July 9, 1938



# UNITED STATES PATENT OFFICE

2.175.320

# REMOTE CONTROL DEVICE FOR RADIO RECEIVERS

Wilhelm Runge and Leo Brandt, Berlin, Germany, assignors to Telefunken Gesellschaft für Drahtlose Telegraphie m. b. H., Berlin, Germany, a corporation of Germany

Application July 9, 1938, Serial No. 218,272 In Germany June 11, 1937

8 Claims. (Cl. 250-20)

It is known in the art to control adjustable elements from a distant point by means of a control frequency energy emitted from the control station. In one such device used to tune a receiver, the rotating plate condenser of a receiver for the control a motor is used which continually varies the tuning of the receiver inside its tuning range. When the receiver is in tune to the emitted control frequency, the working current of the shifting motor is interrupted whereupon the rotating plate condenser stops at that position.

A disadvantage of such a device is that the receiver cannot be used for receiving signal oscillations at least as long as the control frequency 15 is emitted. For, either the frequency of the control oscillation departs so far from that of the signal oscillations that the signal oscillations cannot be received during selection to the control frequency or, when the frequencies are nearly equal to each other, the oscillations are superposed one upon the other in an undesirable manner. Such an arrangement therefore, is not applicable to adjusting a receiver proper to the wavelength of a certain signal transmitter.

with the problem of remotely controlling a receiver used for the reception of wireless signals. This is accomplished according to the invention by means of a control receiver which like the controlled receiver is designed as a heterodyne receiver. The receivers have a common oscillator and the control frequency for operating the control receiver, which is transmitted by wireless or over lines, is so chosen that with automatically performed selection of the control receiver to the control frequency the receiver is in tune to the transmitting station to be received.

The invention will be more readily understood from the following detailed description thereof when read in connection with the drawing which illustrates several embodiments thereof. In the drawing, Fig. 1 illustrates in schematic form a modification of the invention wherein a tuning motor is controlled by an auxiliary receiver through a motor switch; Fig. 2 illustrates a modification of the invention making use of an automatic frequency control device; and, Fig. 3 is a modification of the invention using both a motor control circuit and an automatic frequency control device.

In the embodiment of the invention as shown in Fig. 1, the antenna A picks up the signal oscillations of various transmitters as well as the unmodulated control frequency of the control oscillator S and transmits them on the one side

to the tuned high frequency amplifier  $H_1$  and on the other side to the aperiodic high frequency amplifier H2. The amplified oscillations then are combined in both mixing stages  $M_1$  and  $M_2$ with the same frequency of the local oscillator 5 O. The both intermediate frequency oscillations produced thereby are separately amplified by by means of the selective intermediate frequency amplifiers  $Z_1$  and  $Z_2$ . The signal intermediate frequency is demodulated in the audion stage A 10 the output of which is amplified if desired in a suitable low frequency amplifier not shown and delivered, e. g., to the loudspeaker L or another reproduction device. The control intermediate frequency is conveyed—in case of emergency aft- 16 er a preceding rectification—to a switching relay R so that it breaks, when its amplitude is sufficient, the circuit of the motor M which is coupled, as indicated by the dotted line, by means of a reduction gear to the rotating plate condenser of 20 the oscillator O and to the rotating plate condensers of the high frequency amplifier H1 being mounted on the same shaft.

The arrangement can be made such that the rotating plate condensers may be turned always 25 in the same direction or a suitable reversing clutch arrangement between the motor and the rotating plate condensers may be provided which arrangement reverses its direction of coupling at the ends of the rotary motion of the rotating plate 30 condensers or again the motor may automatically be changed over at the boundaries of the rotary motion of the rotating plate condensers. As soon as the relay R pulls up the motor is arrested and in case of emergency simultaneously 35 a brake is brought into action on the shaft of the variable condenser. The relay may be arranged so that, as soon as the control frequency assumes another value, the motor circuit is closed again and the variable condensers are adjusted till the 40 selection to the new control frequency is reached.

The advantage of the invention comes forth carrier frequency of the modulated signal oscil-from the following: There is designated by  $f_1$  the lation to be received, by  $f_0$  the frequency of the 45 control oscillation, by o the adjustable oscillator frequency, by  $z_1$  the presumed amount of the intermediate frequency being determined by the tuning of the intermediate frequency circuits of the main receiver, by  $z_0$  the presumed amount of the intermediate frequency of the second receiver serving only for controlling. In the usual heterodyne receivers accurate tuning is secured to a minor degree by tuning the input high-frequency circuits exactly to the incoming frequency but in 55

2

2,175,320

the first rank by choosing an oscillator frequency of such a value that the intermediate frequency produced thereby assumes exactly the amount that ought to be available. In the present case, therefore, the principal condition for an accurate tuning of the main receiver to the signal frequency  $f_1$  and for a simultaneous tuning of the control receiver to the control frequency  $f_0$  is given by the following equations:

 $f_1 - o = \pm z_1$   $f_0 - o = \pm z_0$ 

In both equations o means the same frequency of the common oscillator,  $z_1$  and  $z_0$  differ from 15 each other and are fixed in a receiver according to the invention. The act of adjusting proceeds -disregarding tuning of the preselector circuits which has to be approximate only—so that the oscillator frequency is varied till the condition 20  $f_0-o=\pm z_0$  is met. By this means, however, naturally also the condition  $f_1-o=\pm z_1$  is met with the same accuracy. By the fact that the adjustment is carried out according to the control frequency an accurate tuning of the main 25 receiver to a certain incoming frequency is to be accomplished even when the signal oscillation to be received is not yet existing or discontinues, fluctuates, is very weak or disturbed by neighbouring transmitters. On the other side recep-30 tion of the signal oscillations is permanently possible even with the control frequency being emit-

The additional control receiver may be rather simply constructed and comprise either no high35 frequency amplifier at all or, as in the embodiment given above, only an aperiodic one. In addition the intermediate-frequency amplifier of the control receiver may be very simple as the intermediate frequency which is produced by the control oscillation has to serve only for effecting the variation of the tuning or for bringing it to an end when correspondence with the presumed amount is accomplished.

A further possibility consists in performing 45 rough tuning by hand and having only sharp tuning automatically done. In an arrangement of this kind as shown in Fig. 2, R' denotes a frequency-control device as it is known per se for the purpose of automatic sharp tuning by means 50 of electrical fine tuning of the heterodyne local oscillator. This device here acts upon the oscillator, the adjustment of which is supposed to be already approximately correct, till the control intermediate-frequency and therewith also the 55 signal intermediate-frequency have assumed accurately the respective values that ought to be available. The oscillator frequency is kept by the device at the value required in spite of thermal variations and the like. With this arrange-60 ment no special precautions need be taken to make the heterodyne oscillator capable of itself to generate strictly constant in frequency.

Fig. 3 shows an arrangement combining the arrangementes according to Fig. 1 and Fig. 2

65 wherein both, the rough tuning acting but once and the continually acting sharp tuning are automatically done. The relay R as well as the frequency control device R' are coupled to the output of the intermediate-frequency amplifier Z<sub>2</sub>

70 and connected to the oscillator O as shown in Figs. 1 and 2. If the control frequency oscillator is comparatively near or anyway delivering very large amplitudes, in case of emergency the high-frequency amplifier H<sub>2</sub> may be entirely omitted

75 and in certain cases the intermediate-frequency

amplifier  $Z_2$ , too, may be replaced by intermediate-frequency filters without amplifying tubes. The difficulty arising from automatic rough tuning, viz., the relay R pulling-up on account of the image frequency on two different oscillator frequencies of the variable condensers, may be avoided by making the control frequency  $z_2$  lower than the required degree of exactitude of adjustment, e. g., equal to 100 cycles. The intermediate-frequency amplifier  $Z_2$  in this case is a low-frequency amplifier.

Further, it is possible to use the control oscillator and the controlling receiver only for the single rough tuning of the main receiver to a certain signal frequency, e. g., by means of an arrangement according to Fig. 1, and to provide the main receiver with a device for automatic sharp tuning by means of which the main receiver is automatically maintained sharply tuned to the signal frequency.

A single control oscillator of course may be used for several receivers.

In Fig. 3 an audio frequency amplifier E has been inserted between the demodulator N and the load L.

In some cases the invention even may be applied when the control oscillator, which then may be linked-up over a line, is situated close by the receiver or some parts of the receiver. Such an arrangement is particularly suitable when 30 only the intermediate-frequency portion and the low-frequency portion of the main receiver are situated at the listener's position while the highfrequency portion and the mixer stage are placed immediately close to the antenna being arranged 35 as favourably as possible with view to the reception. In these cases it is recommendable to make use of the invention so that the adjustable control oscillator is situated at the listener's position and so, e. g. by a line, connected to the control receiver situated close to the antenna that the latter tunes itself to the control frequency and at the same time the high-frequency part of the main receiver being coupled to it and utilizing the same oscillator to the incoming frequency. Tuning of the receiver accordingly is effected by varying tuning of the control oscillator and by this means it is feasible to place all the control knobs of the receiver at the listener's position. 50

We claim:

1. In signalling apparatus, a main receiver including operable means for tuning the receiver to any frequency within a band of frequencies, a motor for driving said operable tuning means, an 55 auxiliary receiver provided with relay means for controlling the operation of said tuning motor, control means for generating and transmitting to the auxiliary receiver a control carrier wave a characteristic of which is representative of the 60 frequency to which it is desired to tune the main receiver, said auxiliary receiver being responsive to the control carrier waves transmitted by the control means and arranged so that the relay means causes operation of said motor to tune the 65 main receiver to the frequency corresponding to the transmitted control carrier wave and to maintain said tuning of the main receiver as long as the control wave is received by the auxiliary receiver.

2. In signalling apparatus, a main receiver including operable means for tuning the receiver over a band of frequencies, a motor for driving the tuning means, auxiliary receiving means including a relay for controlling the operation of 75.

Page 179 of 1414

3

2,175,320

the motor, selectively operable control means for generating and transmitting to the auxiliary receiver a control carrier wave the frequency of which is representative of the frequency within said band of frequencies to which it is desired to tune the main receiver, said auxiliary receiver being responsive to the control carrier wave transmitted by the selectively operable control means and arranged so that upon reception of a control 10 carrier wave said relay causes operation of the motor to tune the main receiver to the frequency corresponding to the received controlled carrier wave.

3. In signalling apparatus, a tunable main re-15 ceiver of the superheterodyne type including a local oscillator, a control receiver, means for generating and transmitting a pilot carrier wave a characteristic of which is representative of a controlling action desired to be imparted to the 20 main receiver, said control receiver including means for combining the transmitted pilot wave and the energy from said local oscillator to produce therefrom a beat frequency and means responsive to said beat frequency for imparting 25 said controlling action to said main receiver.

4. In signalling apparatus, a main receiver of the superheterodyne type including a local oscillator, operable means for varying the frequency of the energy generated by the local oscillator for 30 tuning said receiver over a band of frequencies, a control receiver, means for generating and transmitting to the control receiver a pilot carrier wave a characteristic of which is representative of the frequency to which it is desired that 35 the main receiver be tuned, said control receiver including means for combining the transmitted pilot carrier wave and energy generated by said local oscillator to produce therefrom a beat frequency, and means responsive to said beat fre- $_{
m 40}$  quency for acting upon the local oscillator to determine the frequency of the energy generated

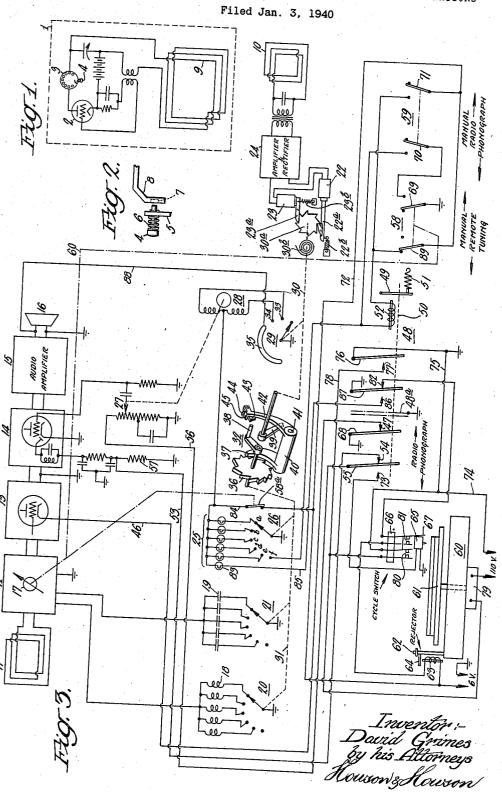
5. In a remotely operated signalling system, a main receiver of the type provided with a local 45 oscillator utilized to generate oscillations which are combined in the receiver with desired signal modulated carrier oscillations to produce energy of a predetermined intermediate frequency, means for generating and transmitting control 50 signals from a remote point, an auxiliary receiver adapted to receive said control signals and combine them with the oscillations generated by said local oscillator to produce a beat frequency, a relay device responsive to said beat frequency and 55 operatively connected to said local oscillator for controlling the frequency of the oscillations generated by said local oscillator, said relay being arranged so as to determine the frequency of said last named oscillations in accordance with said control signals so that when said oscillations are combined with the desired incoming signal modulated carrier oscillations in said main receiver said predetermined intermediate frequency is produced.

6. In signalling apparatus, a main receiver of the superheterodyne type including a tunable local oscillator, a control receiver, means for generating and transmitting to the control receiver a pilot carrier wave a characteristic of which is 10 representative of the frequency to which it is desired that the main receiver be tuned, said control receiver including means for combining the pilot wave transmitted thereto and energy from said local oscillator to produce therefrom a beat 15 frequency and means responsive to said beat frequency for varying the frequency of said local oscillator to thereby maintain the main receiver

tuned to the desired frequency. 7. In signalling apparatus, a main receiver of 20 the superheterodyne type including a local oscillator and a tuned input circuit, said receiver being tunable over a band of frequencies by varying the frequency of the energy generated by the local oscillator and also the frequency to which 25 said tunable circuit is tuned, a control receiver associated with the main receiver, means for generating and transmitting to the control receiver a pilot carrier wave a characteristic of which is representative of the frequency to which it is 30 desired that the main receiver be tuned, said control receiver including means for combining the transmitted pilot wave and energy from said local oscillator to produce therefrom a beat frequency and means responsive to the produced 35 beat frequency for varying the tuning of said tuned circuit and said local oscillator simultaneously to a point where the frequency of said beat frequency assumes a predetermined value.

8. In a remotely operated radio receiving system adapted to be controlled by means of control signals transmitted from a remote point, the combination of a main receiver of the type provided with a local oscillator used to generate os- 45 cillations which are combined with received signal modulated carrier oscillations to produce energy of a predetermined intermediate frequency, an auxiliary receiver adapted to receive the control signals transmitted from the remote point 50 and a relay device operatively connected between the output of said auxiliary receiver and the local oscillator for controlling the frequency of the oscillations generated by the local oscillator in accordance with the control signals received 55 by the auxiliary receiver.

> WILHELM RUNGE. LEO BRANDT.


Page 180 of 1414

July 22, 1941.

D. GRIMES

2,250,371

WIRELESS REMOTE CONTROL SYSTEM FOR RADIO-PHONOGRAPH COMBINATIONS



## UNITED STATES PATENT OFFICE

2.250.371

### WIRELESS REMOTE CONTROL SYSTEM FOR RADIO-PHONOGRAPH COMBINATIONS

David Grimes, Meadowbrook, Pa., assignor to Philco Radio and Television Corporation, Philadelphia, Pa., a corporation of Delaware

Application January 3, 1940, Serial No. 312,269

19 Claims. (Cl. 179—100.11)

This invention relates to wireless remote control systems, and more particularly to a novel system for controlling remotely a radio receiver and phonograph combination.

The principal object of the invention is to provide a novel system whereby a radio receiver, a phonograph, or both, may be controlled from a distance by operating a simple portable control unit which enables the operator to operate the radio receiver and the phonograph selectively at will, to select any desired one of a group of predetermined radio broadcasting stations, to start or stop the phonograph, to play successively a plurality of recordings, and to reject any recording at any time during the playing thereof. 15

A further object is to provide a radio-phonograph combination adapted for selective local or remote control by means of standard devices with which unskilled operators are generally familiar.

More particularly, the object of this invention is to provide a system whereby a radio receiver embodying a remote control system and an automatic phonograph of the type adapted to play successively a number of recordings may be electrically interconnected and interlocked in such manner as to insure that proper selective operation of either the radio or the phonograph may be accomplished with a single simple control device which does not require skill, or the selection and understanding of complex controls, on the part of the operator.

The invention may be clearly understood by reference to the accompanying drawing, in which 35 Fig. 1 is a diagrammatic illustration of the control unit;

Fig. 2 is a detailed illustration of a feature of the impulse sending mechanism; and

Fig. 3 is a diagrammatic illustration of the <sup>40</sup> radio receiver and phonograph combination to be remotely controlled.

The present invention is related generally to the remote control system disclosed and claimed in the copending application of David Grimes and Elmer O. Thompson, Serial No. 220,366, filed July 20, 1938. Such system enables an operator at a remote point to tune a radio receiver to any desired one of a plurality of broadcasting stations and to control the volume level of the receiver output. The present invention utilizes certain principles of the said copending application and extends such principles to the control of a radio-phonograph combination.

General construction

Referring to Fig. 1, there is illustrated the portable control device which is of the same general character as that employed in the said Grimes and Thompson application, but in this instance the device has provision for remote control of the phonograph, as described hereinafter. The device I comprises a control signal generator which may take the form of a radio frequency oscillator of any well-known type including tube 2 and associated circuits. This signal generator is controlled by a manual control device 3 which may take the form of a dial type circuit closing mechanism such as employed in telephony. By operating the dial mechanism, the generator circuit is intermittently closed to generate a plurality of high frequency wave trains, hereinafter termed signals, spaced apart by a predetermined time interval. The number of such signals depends on the finger opening of the dial employed in any instance, and the duration of the last of signal is controllable as will be described more fully hereinafter.

The volume level of the radio or phonograph reproduction is controlled by signals including one of controllable duration. To this end, there is provided on the dial mechanism 3, a depressible plunger 4 which is adapted to stop the rotation of the dial during the last signal and thus generate a signal of controllable duration. Such a dial may be of the type shown in the copending application of E. O. Thompson, Serial #220,-368, filed July 20, 1938. As shown in Fig. 2, the plunger 4 is carried by the stationary frame 5 of the dial mechanism and is urged to its normal inoperative position by spring 6. The inner end of the plunger is adapted to seat in a recess 7 provided in the rotary dial 8. The recess 7 is so arranged that the dial is interrupted during the last signal when the plunger is depressed.

The signal currents in primary inductor 9 at the control unit are transferred inductively to a tuned secondary inductor 10 at the receiver-phonograph combination (Fig. 3). The signal currents in the secondary inductor are utilized to control the radio receiver and phonograph in the manner described hereinafter.

The radio receiver may be of any conventional design having incorporated therein the structure hereinafter described. For illustration, there is shown schematically a superheterodyne receiver which may include a loop antenna 11 for receiving the intelligence signal, a radio frequency amplifier, oscillator and converter stage 12, an

intermediate frequency amplifier 13, a detector and audio frequency amplifier 14, an audio frequency power amplifier 15, and a loud-speaker 16. The receiver may be a multi-wave-band receiver having a conventional wave-band selector switch as indicated at 17. The receiver is also adapted for tuning to predetermined stations in one band, for example the broadcast band, by pretuned circuits comprising the coils 18 and condensers 19 which are adapted to be connected in the circuits of the radio frequency amplifier and oscillator 12 by operation of the wave-band switch. In the present instance, the selection of the proper coil and condenser is ef-21 which form part of a stepping mechanism controlled by stepping and homing relays 22 and 23. The latter are energized by an amplifier and rectifier device 24 which forms current pulses in accordance with signal currents induced in the 20 secondary inductor 10. The station indicator lamps 25 are likewise operated by a step-bystep switch 26. The volume control 27, which controls the audio portion of the receiver, is controlled by motor 28 through the operation of 25 step-by-step switch 29.

Considering the stepping mechanism as a whole, the step-by-step switch 29 constitutes a primary section of the mechanism, while the step-by-step switches 20, 21 and 26 constitute a 30 secondary section of the mechanism. The broken-line representation 30 is representative of a rotatable shaft carrying the movable arm of the switch 29, while the similar representation of the switches 20, 21 and 25. The movable arms of the switches are shown in their rest or home positions. The two shafts 39 and 31 are coupled by a device 32 whose construction and purpose will be described presently. The primary 40 shaft 30 carries a ratchet wheel 30a which is actuated by a stepping pawl 22a. The latter is operated by the stepping relay 22 against the action of spring 22b. The holding pawl 23a is moved to operative position by the hom- 45ing relay 23 against the action of spring 23b. The stepping and homing relays are serially connected so as to be energized simultaneously. The homing relay is slow to release and consequently will not release the holding pawl until 50 after the last control signal has terminated. The homing or return spring is shown at 30b. The switch 29, which is operated by this mechanism, comprises stationary contacts 33 and 34 for controlling the motor 28, and an elongated 55 arcuate contact 35 for muting the radio receiver, as described hereinafter.

The shaft 31 is also provided with a homing spring (not shown) tending to urge the shaft to its home position. This shaft carries a 60 ratchet-wheel 36 with which there is associated a holding pawl 37. At its end, the shaft 31 carries a crank-arm 30 which is engageable by an arm 39 on the shaft 30. The pawl 37 is carried by a member 40 which is rotatable about 65 a pivot 41. The pawl is spring urged to its engaging position so that the shaft 31 is held in the successive positions to which it is moved. On the member 40, there is provided an arm 42, at the end of which there is pivoted a cam plate 70 43. This cam plate is urged by a spring 44 against stop 45.

The parts are so arranged that when the stepby-step switch 29 moves to its third effective

rotates member 40 sufficiently to release the pawl 37 from the ratchet-wheel 36 thereby permitting the shaft 31 to be homed. the subsequent movement of switch 29, the arm 39 engages the crank-arm 38, thereby actuating the shaft 31 in tandem with the shaft 30. The switches 20, 21 and 26 are thus stepped to their successive positions until the selected position determined by the number of control impulses is reached. Thereafter, the primary section of the stepping mechanism is homed but the secondary section remains in the selected position until a subsequent control operation takes place During the homing of the shaft 30, the arm 39 fected by means of step-by-step switches 20 and 15 rotates free of the arm 38 and, by virtue of the pivoted mounting of the cam plate 43, the arm 39 brushes the cam plate aside during the homing movement without disturbing the holding pawl 37 of the secondary section.

Thus, the primary section of the stepping mechanism may respond to one or two control impulses without affecting the secondary section; but, when three or more control impulses are received, the primary section effects homing of the secondary section and then operates the said section as above described. This stepping mechanism is of the same type as that employed in the above-mentioned Grimes and Thompson application, wherein the mechanism is illustrated and described in greater detail.

In the specific device illustrated, the stepby-step switches 20, 21 and 26 have six positions designated respectively a, b, c, d, e and f on switch 26. The first five of these positions, that 31 indicates a shaft carrying the movable arms 35 is positions a to e, are devoted to tuning of the radio receiver to different stations in the broadcast band, while the sixth position f is devoted to the phonograph and serves to connect the phonograph for operation, as will be described in detail later. The arcuate contact 35 of the switch 29 is coextensive with the positions of the switches 20, 21 and 26, and serves to mute the radio receiver during actuation of these switches.

At least one cathode lead 46 of a vacuum tube in the intermediate frequency amplifier !3 is connected to contact 47 of a solenoid-operated radio-phonograph switch 48. This switch comprises a plurality of movable contact arms connected together and to the armature 49, as indicated by the broken-line representation 50. The movable contacts of switch 48 are movable between two positions and are associated with various stationary contacts as illustrated. The armature 49 is biased by spring 51 toward the right, thereby normally maintaining the movable contact arms in the right-hand or radio position. The solenoid 52, when energized, attracts the armature 49 against the action of spring 51 and moves the movable switch contacts to the left-hand or phonograph position. Preferably a shield member 48a is provided on the switch 48, as shown, to separate the contacts carrying power currents from those carrying signal currents.

The second detector 14 is shown as comprising a diodetriode tube and the diode rectifier circuit is connected by conductor 53 to the contact 54 of switch 48. The associated movable contact 55 is connected by conductor 56 to the volume control potentiometer 27. Thus, when the switch 48 is in the radio position, the voltage across the rectifier load resistor 57 is applied to the potentiometer 27 by means of which a controlposition, the arm 39 engages cam plate 43 and 75 lable portion of the said voltage is applied to

the input circuit of the triode section of the second detector.

In addition to the solenoid-operated switch 48, there are provided control switches 58 and 59. The switch 58 is a two-position switch which may be mechanically coupled to, or may form a part of, the wave-band switch 17, as indicated by the broken-line representation 60. When the wave-band switch 17 is in position to condition the receiver for remote operation, connecting 10 the coils 18 and condensers 19 to the radio circuit, the switch 58 is in its left-hand position as shown. When the wave-band switch is in the position for manual tuning, the switch 53 is thrown to its right-hand position.

The switch 59 is a two-position manuallyoperable switch by means of which radio or phonograph operation may be selected manually at the set.

There is also provided a switch 58a connected 20 in the circuit of lamps 25 and operable by the wave-band switch 17 so that the switch 58a is closed, as shown, only when the wave-band switch is in position to condition the receiver for remote operation.

The phonograph may be of any suitable type having incorporated in its construction the features hereinafter discussed. One type of phonograph 60 which would be suitable may comprise a turntable 61 driven by a motor 79. Associated 30 with the turntable and motor there may be a record feeding mechanism adapted to supply successive records to the turntable for playing. Also coupled to the above mechanism, there may be a tone arm control unit adapted to raise, 35 lower, and rotate the tone arm 65 so as to permit the reproduction of the recording on the turntable and, thereafter, remove the tone arm from the recording to permit another recording to be positioned on the turntable. Thus when 40 the phonograph is energized, successive recordings may be automatically reproduced. Such an automatic phonograph is well known, and requires no detailed illustration or description. Associated with the automatic phonograph is a cycle 45 switch 66 which may comprise cooperative spring fingers whose resiliency urges them to closed position. One finger 67 may extend into the path of the tone arm to be engageable thereby when the tone arm is in standby position, clear 50 of the turntable and automatic mechanism, to open the contacts as illustrated. It will be understood that switch 66 is open only when the tone arm is in the standby position, and that the tone arm is adapted to be automatically moved 55 from that position onto the top of a record for the playing thereof, after which the tone arm will be returned to that position. The purpose of switch 66 will be explained more fully presently, but briefly, the purpose of this switch is 60 to maintain the phonograph motor energized until the completion of a cycle of operation of the automatic mechanism which cycle terminates with the movement of the tone arm into the standby position.

The automatic record feeding and control mechanism is also adapted to be actuated at will by a manually depressible rejector plunger 62 to effect the feeding of a new record onto the turntable at any time during the operation 70 of the phonograph. The operation of the rejector 62 will trip the mechanism thereby causing the tone arm to be moved to the standby position. This manual trip feature is also known. In the present instance the rejector 62 75 shown) will be associated with the tone arm so

is adapted for remote operation by the provision of a solenoid 63 arranged to actuate an armature 64 integral with the rejector 62. The purpose of this will also be fully explained here-5 inafter.

The general components of the system having been described, the various operations which may be effected will now be described in detail.

#### Manual radio control

When it is desired to tune the radio receiver manually by means of the usual manual tuning elements (not shown), the wave-band switch 17 is adjusted to the position for manual tuning, in which case the coils 18 and condensers 19 are disconnected from the receiver circuit, and the switch 58 is thrown to its right-hand position. The manual switch 59 is thrown to its radio position as shown. The solenoid 52 is deenergized in such case and, therefore, the switch 48 is spring-biased to its normal radio position. Consequently, the cathode lead 46 is grounded through the closed contacts 47 and 68, thereby rendering the amplifier 13 operative. Moreover, the conductor 53 is connected to the conductor 56 through the closed contacts 54 and 55, thereby connecting the diode load circuit to the audio amplifier of the receiver. It will be apparent also that the phonograph is disconnected. In this condition of the parts, the radio receiver may be tuned manually in the usual manner.

#### Manual phonograph operation

When it is desired to operate the phonograph manually, the wave-band switch 17 is set at its manual tuning position so that the switch 58 is thrown to the right. The manual switch 59 is adjusted to its phonograph position. This closes an energizing circuit for the solenoid 52 which may be traced as follows: from ground through contact arm 69 to switch 58, contact arm 70 of switch 59, the solenoid winding, contact arm 71 of switch 59, conductor 72, and the six volt source indicated to the left of the phonograph, to ground. Accordingly, the switch 48 is actuated to its phonograph position. As a result, the cathode lead 46 is opened to prevent the functioning of the amplifier 13, and the conductor 56 is disconnected from the conductor 53 and is connected to the phonograph pick-up 65 through the closed contacts 55 and 73. Therefore, the output of the phonograph pick-up is applied across the potentiometer 27 and the audio portion of the radio receiver is utilized to amplify and reproduce signals from the pick-up.

The switch 48 also energizes the phonograph motor through a circuit which may be traced as follows: from one side of the 110 volt source indicated, through conductors 74 and 75, closed contacts 76 and 77, conductor 78, and the phonograph motor 79 to the other side of the said source. Upon the starting of the phonograph, the mechanism thereof automatically lowers the tone-arm onto the top record on the turntable in a manner characteristic of this type of phonographic device. Consequently, the tone-arm frees the switch 66, permitting the contacts thereof to close and the phonograph will move through its usual cycle of operation, playing the records successively and discharging them successively. During this operation, the switch 65 will be opened when the tone-arm is in standby position but will be closed during the remainder of the cycle. Preferably a tripping-switch (not 4

2,250,371

as to trip the record feeding mechanism in the event that no record is on the turntable when the tone arm is lowered thereon.

If it is desired to reject any record during the playing thereof, the plunger 62 may be manually depressed to trip the record-rejecting mechanism in the customary manner.

When it is desired to stop the phonograph, the manual switch 59 may be moved to the radio position, thereby deenergizing the switch 48 and 10 opening the above-mentioned circuits controlled thereby. It will be noted that the contacts 80 of cycle switch 66 are in shunt relation with the contacts 76 and 77 of switch 43. Therefore, if switch 48 is deenergized during the operating 15 cycle of the phonograph, the closed contacts 80 will maintain the energization of the phonograph motor until the tone-arm has moved to its standby position to complete the cycle of the automatic mechanism. During the above-de-  $_{
m 20}$ scribed manual operation of the phonograph, the contacts 81 of switch 66 serve no purpose since the circuit connection of these contacts is open at contact 82 of switch 43.

#### Remote radio operation

When it is desired to operate the radio receiver by means of the remote control, the waveband switch 17 is adjusted to its "remote" position, thereby connecting the coils 18 and condensers 19 to the radio circuit, and setting the switch 58 in the position shown. Switch 58a is also closed, rendering the lamp circuit operative. Since the solenoid 52 is deenergized, switch 48 is spring biased to its radio position, thereby conditioning the circuits for radio operation as above described. The phonograph is, of course, disconnected.

Assume first that the radio receiver is to be tuned remotely to a selected one of the several 40 predetermined stations. This is accomplished by manipulating the dial mechanism 3, utilizing the finger opening corresponding to the particular station whose call letters should be indicated on the dial. As a result, a train of impulses is supplied to the stepping mechanism, as described above, the number of impulses corresponding to the particular station selected. Suppose, for example, that the station selected is the second one of those provided. This will necessitate four 50 impulses in order to step the switch 29 to its fourth position and at the same time actuate the switches 20, 21 and 26 to their second position through the coupling device 32. During the actuation of the latter switches, the switch 29 mutes the receiver by maintaining closed the short-circuit connection 88 which places a shortcircuit across the audio channel of the receiver. Thus, the receiver is muted during the stationselecting operation. After the control impulses have terminated, the switch 29 is homed, thereby removing the short-circuit, while the switches 20, 21 and 26 remain in the selected position. Thus, the receiver is tuned to the desired station which is indicated by the particular indicator lamp which has been energized by switch 26.

Assume now that it is desired to vary the volume of the radio receiver. This may be effected by dialing one or two impulses depending upon 70 the direction in which the volume is to be changed. Thus, the first two finger openings of the dial 3 may be devoted to volume changes in either direction and suitable indicia should be provided in cooperation with these finger open-75

ings. The application of one or two impulses to the stepping mechanism will cause switch 29 to engage either contact 33 or contact 34, thus energizing the motor 28 for operation in the desired direction. At the same time that the dial is manipulated, however, the plunger 4 is depressed so that the impulse, if there be one (or the second impulse if there be two) is prolonged to maintain the motor circuit energized until the plunger 4 is released. Thus, the volume level of the receiver may be decreased or increased by any desired amount. When the plunger 4 is released, the switch 29 is homed. It will be noted that this volume control operation does not affect the secondary section of the stepping mechanism which remains in the position to which it was last adjusted.

When it is desired to tune the receiver to a different station, this is accomplished simply by dialing the proper number of impulses through the medium of the finger opening corresponding to that station. As will be understood from the foregoing description, this will actuate the primary section of the stepping mechanism, which in turn will home the secondary section and then adjust it to the proper position.

Coupled to the receiver volume control, there may be a power supply switch (not shown) adapted to control the power supply for the radio phonograph combination and so arranged as to open the power supply circuit when the volume control is in its lowest position. Such a combination switch anad volume control is well known. Thus, to deenergize the receiver by remote control, it is only necessary to dial so as to decrease the receiver output until the volume control reaches its lowest position and turns the receiver off.

#### Remote phonograph operation

When it is desired to operate the phonograph remotely, the wave-band switch 17 is set in its remote position so that the switch 58 is in the position shown. The dial mechanism 3 is then operated to effect selection of the phonograph. As pointed out above, in the specific device illustrated, the last position of the switches 20, 21 and 26 is the phonograph position and, accordingly, the last finger opening of the dial 3 corresponds to the phonograph operation and should be so indicated. Accordingly, the necessary number of control impulses are applied to the stepping mechanism to step the switches 20, 21 and 26 to their last position. The engagement of the contact arm of switch 25 with its last contact f completes an energizing circuit for solenoid 52 which may be traced as follows: from ground through the six volt source, conductor 72, contact 89 of switch 58, solenoid 52, and contact f of switch 26 to ground. The switch 48 is thereby actuated to its phonograph position, thus disconnecting the radio circuits and connecting the phonograph circuits as above described. The phonograph will function thereafter to reproduce the successive records as in the case of manual phonograph operation.

Assume now that it is desired to vary the volume of the phonograph reproduction. This is accomplished in the same manner as described above in connection with the radio receiver, the motor 28 being actuated to operate the potentiometer 27 which controls the magnitude of the signal which is applied to the audio portion of the receiver.

Assume now that it is desired to reject a record

during the playing thereof. This may be accomplished simply by again dialing the phonograph position on the dial mechanism 3. As will be clearly seen from the foregoing description, the effect of the impulses thus transmitted will be to home the switches 20, 21 and 26 and then move them back to the phonograph position. During this operation, the solenoid 52 is de-energized, thereby closing contacts 82 and 87 which energizes the solenoid 63, it being remembered 10 that the contacts 81 of switch 66 are closed during the playing of a record. Consequently, the plunger 62 is actuated by solenoid 63, thus tripping the record-rejecting mechanism. Since the contacts 80 of the cycle switch are also closed, 15 the phonograph motor continues to run even though contacts 76, 77 are open. When the switch 26 is repositioned at the phonograph position, the switch 48 is reenergized and automatic operation is resumed. It will be noted that the 20 audio amplifier is muted by the switch 29 during the movement of switches 20, 21 and 25, thereby preventing the amplifier from operating when the switch 48 is deenergized. No signal will be reproduced by the audio amplifier after the 25 switches have been repositioned until after the completion of the record change, since the tone arm will not be on the turntable.

When it is desired to stop the phonograph operation by remote control, the control signal gen- 30 erator may be operated so as to turn the receiver off as described under remote receiver operation, or the control signal generator may be operated so as to tune a desired radio station. In the latter case, the switches 20, 21 and 28 will be 35 homed and then stepped to the position corresponding to the desired station. Consequently, the relay 48 will be deenergized, thus conditioning the circuits for radio operation. At the same time, the reject solenoid  $\bf 63$  will be energized 40through switch 82-87 if the playing of a record is in progress, thereby causing the record to be removed, after which the switch 66 kill be opened to stop the phonograph motor.

actuating the volume control to open the power supply switch, the entire apparatus will be deenergized and, when the power supply switch is again closed, the functioning of the circuits will depend upon the position of the switches 20, 21  $_{50}$ and 26, as will be readily understood.

#### Electro-mechanical interlocks

In the above-described remote control operations of either the radio receiver or the phonograph, the position of the manual switch 59 is unimportant. This switch is provided solely for the purpose of energizing solenoid 52 through a circuit including switch contacts 69, 70 and 71 in series. Therefore, switch 59 is inoperative unless switch 58 is in the position for manual control of the receiver. Moreover, during manual tuning of the radio receiver, the switch 58 will always be in its right-hand position, and, therefore, the relay 48 will be maintained in deenergized condition unless switch 59 is closed to manually control the phonograph. It is impossible, therefore, for the phonograph to operate even if the switch 26 happened to be in its phonograph position unless all other control switches are 70 properly positioned. For example, if switch 25 happened to be in its phonograph position when the power supply is first turned on, the phonograph might be operated were it not for the series connection of switches 58 and 59.

The cycle switch 66 connected in shunt with contacts of switch 48 forms another important interlock as it will be understood that means must be provided to insure that the mechanical units of the record changing mechanism will complete a cycle of operation before being deenergized. It is obvious that many other interconnections in the above-described apparatus are important to the proper functioning of the system.

From the foregoing description, it will be seen that the invention provides a highly flexible system by means of which any desired control operation may be performed remotely either with respect to the radio receiver or the phonograph. It will be understood, of course, that the invention is not limited to the specific apparatus illustrated but is capable of various modifications within the scope of the appended claims.

I claim:

1. In a remote control system for a phonograph, a self-starting phonograph, an audio amplifier and sound reproducer operatively associated with said phonograph, volume control means associated with said amplifier, means for generating a control signal comprising short impulses, means for generating another control signal including a prolonged impulse of controllable duration, means responsive to said first control signal for operating said phonograph, and means responsive to said last control signal for operating said volume control means.

2. In a control system for a radio-phonograph combination, a radio receiver including an audio amplifier, volume control means associated with said amplifier, a self-starting phonograph, means for generating control signals comprising different numbers of short impulses, means for generating other control signals including a prolonged impulse of controllable duration, means responsive to said first-mentioned signals for selectively operating either the radio receiver or the phonograph in conjunction with said audio amplifier, and means responsive to said last-If the phonograph operation is interrupted by 45 mentioned signals for operating said volume control means during operation of either the radio receiver or the phonograph.

3. In a remote control system for a phonograph, an automatic phonograph adapted to operate through successive record reproducing and changing cycles, said phonograph including a record-changing mechanism, means for starting and stopping said phonograph from a remote point, and means operable from said point for actuating said record-changing mechanism at will to reject a record during the playing thereof.

4. In a control system for a phonograph, a selfstarting phonograph including record-changing apparatus, an amplifier adapted to be connected to said phonograph, an electro-mechanical relay, means for energizing said phonograph when said relay is in one position, and means for energizing said record-changing apparatus when said relay is in another position.

5. In a control system for a phonograph, a selfstarting phonograph including a record-changing apparatus, an audio frequency amplifier, an electromechanical relay, means for energizing said phonograph, means for connecting said phonograph to said amplifier when said relay is in one position, and means for energizing said recordchanging apparatus when said relay is in another position.

6. In a control system for a radio-phonograph combination, a radio receiver, a self-starting 6

2,250,371

phonograph including record-changing apparatus, a radio-phonograph relay, a control signal generator, means responsive to actuation of said generator to actuate said relay, means for energizing said phonograph and connecting the same to 5 an amplifying circuit of said radio receiver when said relay is in one position, and means for energizing said record-changing apparatus when said relay is in another position.

7. In a control system for a radio-phonograph 10 combination, a radio receiver having a radio frequency amplifier and an audio frequency amplifier, a self starting phonograph including record changer, a multi-pole multi-element control switch, means for actuating said switch, and 15 means for connecting said phonograph to said audio frequency amplifier and for disconnecting said radio frequency amplifier therefrom when said switch is in one position, and for disconnecting said phonograph and connecting said radio 20 frequency amplifier to said audio frequency amplifier, and for energizing said record changer when said switch is in another position.

8. In a control system for a radio-phonograph combination, a radio receiver, an automatic 25 phonograph, means for energizing said phonograph, an electrical circuit including two switches in shunt for connecting said energizing means and said phonograph, controllable means including one of said switches for initiating operation 30 of the phonograph, said controllable means including switching means for selectively controlling said radio receiver and said one of said switches, and means on said phonograph for controlling the other of said switches during an 35 operating cycle of the phonograph, whereby the phonograph is maintained energized through a complete cycle irrespective of the condition of said controllable means.

9. In a control system for a radio-phonograph 40 opened. combination, a radio receiver, an automatic phonograph, means for energizing said phonograph, an electrical circuit including two normally-open switches in shunt for connecting said energizing means and said phonograph, controllable switching means for selectively controlling said radio receiver and for closing one of said switches to initiate operation of the phonograph, and means for closing the other of said switches during an operating cycle of the phonograph, 50 whereby the phonograph is maintained operative through a complete cycle irrespective of the condition of the first switch.

10. In a control system for a phonograph, through successive record-reproducing and changing cycles, said phonograph including a record-changing mechanism, a first switching means operable at will, a second switching means, second switching means, means including a switch on said first switching means for energizing said phonograph, a switch on said second switching means connected in shunt with said first switch, electrical means for actuating said record-changing mechanism, an additional switch on said first switching means, an additional switch on said second switching means, and means including said last two switches in 70 series for energizing said electrical means.

11. In a control system for a phonograph, an automatic phonograph including a record changer having a predetermined operating cycle, means for energizing said phonograph, an electri- 75

cal circuit including two switches in shunt for connecting said energizing means and said phonograph, means associated with said phonograph for closing the first of said switches upon the energization of the phonograph through the second switch, alternate contacts for said second switch, means including a two position relay for operating said second switch, manually controllable means for operating said relay, a third switch ganged to said first switch, and means constructed to trip said record changer connected serially in circuit with said third switch and alternate contacts of said second switch, whereby said record changer may be actuated and said phonograph deenergized when said relay is operated.

12. In a control system for phonographs, an automatic phonograph including a record changer having a predetermined operating cycle, means for energizing said phonograph, an electrical circuit including two switches in shunt for connecting said energizing means and said phonograph, means associated with said phonograph for closing the first of said switches upon the energization of the phonograph through the second switch, alternate contacts for said second switch, means including a two position relay for operating said second switch, a third switch ganged to said first switch, and means constructed to trip said record changer connected serially in circuit with said third switch and said alternate contacts of said second switch, whereby said last named means becomes operative to actuate the record changer and deenergize the phonograph when said second switch is in the alternate position while said record changer remains energized through said first switch until the cycle of said record changer has been completed and said first and third switches are

13. In a control system for a radio phonograph combination, a radio receiver including an audio frequency amplifier, a self starting phonograph including an automatic record changer and a tone 45 arm having a normal standby position, means for generating control signals, a step-by-step switch, a multi-contact relay, means responsive to said signals for actuating said step-by-step switch, said switch being constructed and arranged to tune said receiver to one of a number of predetermined stations when actuated in response to a predetermined number of control signals or to energize said multicontact relay when actuated in response to a different number an automatic phonograph adapted to operate 55 of control signals, a power supply for said phonograph, said relay when energized connecting said power supply to said phonograph to operate the same and to render said radio receiver inoperative and connecting said tone arm to said audio means on said phonograph for actuating said 60 frequency amplifier, said relay when deenergized actuating said record changer and disconnecting said power supply and said phonograph, a cycle switch connected in shunt with said relay and arranged to connect said power supply to said phonograph, said cycle switch being normally closed when said tone arm is displaced from its standby position, and a pair of contacts actuated by said cycle switch, said pair of contacts being serially connected in circuit with said relay contacts and said record changer to complete said circuit only when said cycle switch is closed whereby complete control of said radio phonograph combination may be accomplished by actuation of said means for generating control signals.

2,250,371

14. In a remote control system for a phonograph, a self-starting phonograph, an audio amplifier and sound reproducer operatively associated with said phonograph, volume control means associated with said amplifier, means for generating a control signal, means for generating another control signal including a prolonged impulse of controllable duration, means responsive to said first control signal for operating said phonograph, and means responsive to said last 10 control signal for operating said volume control means.

15. In a remote control system for a radiophonograph combination, a radio receiver includamplifier, volume control means associated with said audio amplifier, a self-starting phonograph, a step-by-step switch having successive operating positions, means for generating control signals to actuate said switch, means controlled by certain 20 of the secondary section of said switch. positions of said switch for tuning said radio receiver, means controlled by another position of said switch for operating said phonograph in conjunction with said audio amplifier and for rendering said radio frequency amplifier inop- 25 erative, and means controlled by still other positions of said switch for actuating said volume control means during operation of either the radio receiver or the phonograph.

16. In a remote control system for a radio- 30 phonograph combination, a radio receiver including a radio frequency amplifier and an audio amplifier, volume control means associated with said amplifier, a self-starting phonograph, a step-by-step switch comprising primary and sec- 35 ondary sections each having a plurality of operating positions, means for generating control signals to actuate said switch, means controlled by certain positions of the secondary section of said switch for tuning said radio receiver, means 40 controlled by another position of the secondary section of said switch for operating said phonograph in conjunction with said audio amplifier and for rendering said radio frequency amplifier inoperative, and means controlled by the primary 45 phonograph, section of said switch for actuating said volume control means during operation of either the radio receiver or the phonograph.

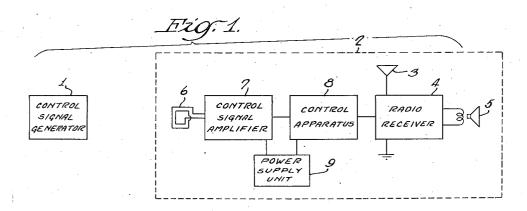
17. In a remote control system for a radiophonograph combination, a radio receiver including an audio amplifier, volume control means associated with said amplifier, a self-starting phonograph, a step-by-step switch comprising primary and secondary sections each having a plurality of operating positions, means for generating control signals to actuate said switch, means controlled by certain positions of the secondary section of said switch for tuning said radio receiver, means controlled by another position of the secondary section of said switch for operating said phonograph in conjunction with said audio amplifier, means controlled by ing a radio frequency amplifier and an audio 15 the primary section of said switch for actuating said volume control means during operation of either the radio receiver or the phonograph, and means controlled by said switch for muting the radio-phonograph combination during operation

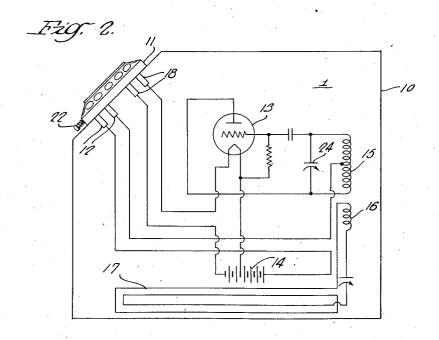
18. In a remote control system for a phonograph, a self-starting phonograph, an audio amplifier and sound reproducer associated with said phonograph, volume control means associated with said amplifier, a step-by-step switch having a plurality of operating positions, means for generating control signals to actuate said switch, means controlled by a certain position of said switch for operating said phonograph, and means controlled by other positions of said switch for operating said volume control means during the operation of said phonograph.

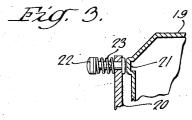
19. In a remote control system for a phonograph, a self-starting phonograph, an audio amplifier and sound reproducer associated with said phonograph, volume control means associated with said amplifier, a step-by-step switch comprising primary and secondary sections, means for generating control signals to actuate said switch, means controlled by the secondary section of said switch for operating said phonograph, and means controlled by the primary section of said switch for operating said volume control means during the operation of said

DAVID GRIMES.

Aug. 29, 1944.


M. L. THOMPSON


2,357,237


REMOTE CONTROL SYSTEM FOR RADIO RECEIVERS AND THE LIKE

Filed July 20, 1938

3 Sheets-Sheet 1



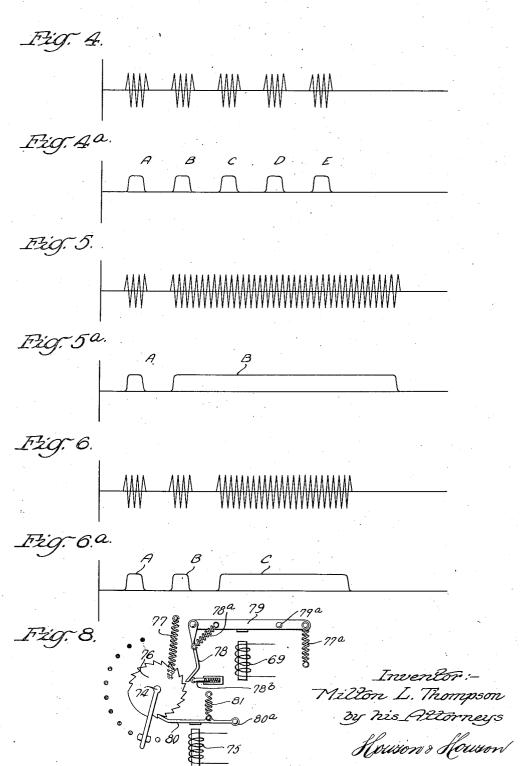




Inventor:Millon L. Thompson
By his Attorneys

Afouron's Howon

Aug. 29, 1944.


M. L. THOMPSON

2,357;237

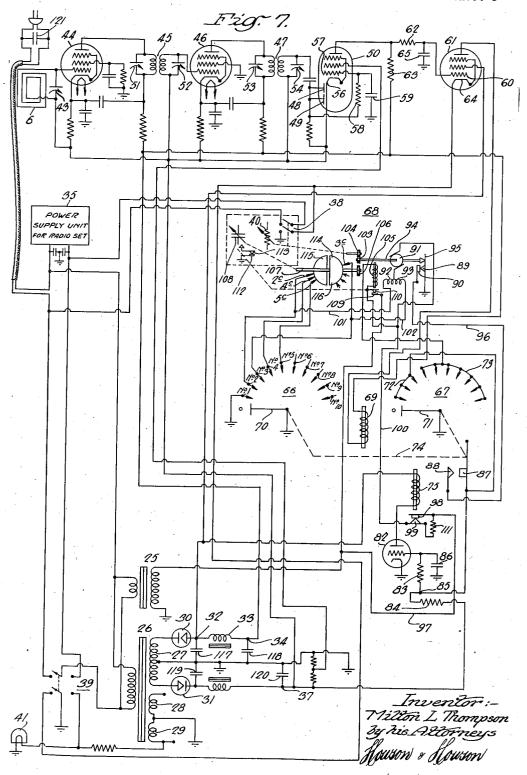
REMOTE CONTROL SYSTEM FOR RADIO RECEIVERS AND THE LIKE

Filed July 20, 1938

3 Sheets-Sheet 2



Aug. 29, 1944.


M. L. THOMPSON

2,357,237

REMOTE CONTROL SYSTEM FOR RADIO RECEIVERS AND THE LIKE

Filed July 20, 1938

3 Sheets-Sheet 3



Patented Aug. 29, 1944

2,357,237

# UNITED STATES PATENT OFFICE

2,357,237

#### REMOTE CONTROL SYSTEM FOR RADIO RECEIVERS AND THE LIKE

Milton L. Thompson, Philadelphia, Pa., assignor, by mesne assignments, to Philo Radio and Television Corporation, Philadelphia, Pa., a corporation of Delaware

Application July 20, 1938, Serial No. 220,356

36 Claims. (Cl. 250-20)

This invention relates to a remote control system for controlling radio receivers and the like from a distance, and more particularly to a remote control system wherein the control action is effected without the use of a physical connection or connections between the radio receiver and the point of control.

It is highly desirable to be able to control both the tuning and the volume level of a radio receiver from a distance, as from across a room or 10 from an adjacent room. Remote control of the volume is important because it permits of an accurate adjustment in accordance with the strength of the desired signal being received and

By the present invention, all interconnecting cables are eliminated by employing inductive coupling between the radio receiver and the remotely located control means. Briefly, this may be accomplished according to the invention by 20 providing the receiver with electrical, mechanical, or electro-mechanical tuning and volume control means responsive to suitable control signals, whereby the receiver circuits may be automatically adjusted to receive any desired intel- 25 ligence signal at any desired volume level. The control signals may be provided at the point of remote control by means of a low power miniature generator capable of supplying proper signals at the receiver. The generator may be so 30 arranged as to produce a series of pulses of a character determined by an operator at the remote location. One of the possible methods of producing the control signals at the remote point is by the use of an impulse sender which "keys" the generator and thus determines the form, spacing, length, and number of the control signals in response to simple operations on the part of the operator. These generated pulses may be conveyed by means of inductive coupling to 40 dispensed with. suitable means located at the radio receiver, there converted into a corresponding series of direct current pulses, and utilized to operate apparatus comprising electrical, mechanical, or electro-mechanical means, thereby actuating the tuning and/or volume control means of the receiver in accordance with the received control signals. The inductive coupling existing between the generator means and the means located at the radio receiver may be obtained by providing coils at these points whose construction and relative orientation are such that, notwithstanding separations, for example, of 75 feet or more, an adequate value of mutual inductance is obtained therebetween to ensure that the generated medium frequency signal current existing in the remotely located coil will inductively produce similar signal currents in the coupled coil of sufficient magnitude to permit their detection by suitable means.

provided, in accordance with the invention that a preliminary signal or signals first produce effects which so arrange the receiver's control means that the subsequent control signal will 5 produce the desired volume level changes, the degree of variation or change being dependent on the length of the control signal.

One of the problems which required solution had to do with the difficulty occasioned by the arrival of noise pulses which often resulted in undesired and highly erratic actuation of the receiver's remotely controlled tuning and/or volume control means. As will be explained in more detail hereinafter various means have been the distance of the listener from the receiver. 15 devised to protect the control circuits from these noise pulses. One of these means provides that the first control pulse or pulses received advance the control apparatus only to inoperative or dead positions. Then preferably one or more of the subsequent pulses may be employed to effect the control of those receiver functions which are not particularly sensitive to small control variations such as might be occasioned by the arrival of short, widely-spaced noise pulses. Volume or tone control are illustrative of this class of function. On the other hand, the more sensitive receiver functions, such as tuning, are preferably capable of control only upon the reception of a larger number of pulses arriving in a substantially regular and controllable manner. Since regularity and controllability are not attributes of the usual noise signals, the present invention therefore provides a novel system which is generally free from noise effects and is 35 highly satisfactory in its operation.

One object of the invention, therefore, is to provide a convenient and highly efficient remote control system for radio receivers wherein the usual interconnecting cable or cables are entirely

Another object of the invention is to provide a novel remote control system for a radio receiver wherein volume increase or decrease may be effected simply by producing a train of control impulses consisting of a small number of such impulses, and the receiver may be tuned to a desired signal carrier frequency simply by producing a train of control impulses consisting of a larger number of impulses, there being a common means at the receiver operative in response to the said control impulse trains to effect the said control functions.

Another object of the invention is to provide in such a system novel volume control means by which the degree of control is regulated by the duration of a control pulse, following one or more short pulses which prepare the control means for operation in response to the longer pulse.

A further object of the invention is to provide an electro-mechanically controlled radio receiver In the case of volume control or the like it is 60 responsive to control signals from a remote point

wherein certain of the control apparatus, following the termination of a particular control function, is returned to a definite zero or home position whereby the said apparatus is in condition for further actuation upon the reception of a 5 subsequent control signal.

A still further object of the invention is to provide a system of this character which is substantially insensitive to or unaffected by noise pulses regardless of their origin.

These and other objects and novel features of the invention may be clearly understood by reference to the following description and the accompanying drawings.

In the drawings:

Fig. 1 is a diagrammatic illustration of the sys-

Fig. 2 is a diagrammatic illustration of the control signal generator;

Fig. 3 is a fragmentary detail view of a control 20 device provided on the impulse sender;

Figs. 4, 4a, 5, 5a, 6 and 6a are illustrations of control signals employed;

Fig. 7 is a detailed illustration of the control apparatus at the receiver; and

Fig. 8 illustrates a specific mechanical embodiment of the stepping mechanism employed in the control apparatus of Fig. 7.

Referring to Fig. 1, there is shown a diagramremotely located control signal generator is shown at 1, while the entire apparatus at the radio receiver is shown at 2. The receiver comprises the usual antenna 3, receiver proper 4, and loud generator I, receives the control signals from the generator and supplies them to an amplifier 1, which in turn supplies the control signals to the radio receiver. A power supply unit 9 furnishes the necessary energy for the unit.

#### The control signal generator

Referring now to Fig. 2, the remotely located 45 control signal generator comprises an electric wave generator I in combination with an impulse sender II. The generator may be of any type suitable for conveniently and economically generating small amounts of medium fre- 50 quency power. For purposes of illustration, there is shown a vacuum tube generator of a type well known in the art. Located in an accessible and convenient position on the outside of the small housing or casing 10 is the 55 impulse sender 11, which may in general resemble the usual type of telephone dial, and which may be of a design similar to that described in United States Patent No. 1,158,951, but including important modifications hereinafter described. The main dial terminals 12 are so connected in the plate circuit of the oscillator tube 13 that plate voltage from source 14 is applied only for a number of equally spaced brief instants, the number depending on the number 65 dialed. The result is a series of pulses, each pulse consisting of a short wave train, preferably of constant amplitude. The coil 15 is coupled to the coil 16 to which there is connected a third is inductively coupled with the coil 6 (Fig. 1) at the radio receiver. Coils 17 (Fig. 2) and 6 (Fig. 1) together comprise a simple air core medium-frequency transformer, differing from those

stages of superheterodyne receivers largely in the relative sizes and separation of the coils. Thus the coil 17 may be looked upon as the primary inductor of such a transformer while the coil 6 is the secondary inductor. This particular part of the system is more fully described and claimed in the copending application of David Grimes, Serial No. 220,364, filed July 20, 1938.

If now, for example, position number "5" is 10 dialed on device 11, a series of five equally spaced wave trains of equal duration will be propagated, as represented in Fig. 4. For the purpose of conserving the energy of the battery 14 housed within the casing 10, the impulse sender is equipped with auxiliary contacts 18 which are included in the filament circuit of tube 13, and there is provided a circuit-closing mechanism which operates to close these contacts as soon as a dialing operation is begun. As soon as the dial operation is completed, the contacts 18 are again opened. The auxiliary contacts 13 with their associated actuating mechanism are fully described and claimed in the copending application of Elmer O. Thompson, Serial No. 220,368, filed July 20, 1938. Since this feature forms no part of the present invention, it is unnecessary to illustrate or describe it further herein.

For a purpose to be described later, provision is made on the impulse sender !! for manually matic representation of the system, in which the 30 controlling the duration of the last pulse of a series. This may be accomplished in a simple manner by modifying the device of the abovementioned patent as illustrated in Fig. 3, wherein the rotatable dial is shown at 19 and the staspeaker 5. A coil 6, by virtue of the mutual in- 35 tionary frame or casing of the device is shown ductance existing between it and a coil in the at 20. The peripheral portion of the dial adjacent the well 20 is provided with cent the wall 20 is provided with a projection 21 adapted to engage a manually-depressible pin 22 carried by wall 20. When the pin 22 is pressed control apparatus 8. The latter controls the 40 inward against the action of its spring 23, it is disposed in the path of projection 21 and interrupts the return movement of the dial at the time when contacts 12 are closed to send the last impulse. The pin 22 may be located for convenience adjacent the finger stop of the dial, and the projection should be so located that it engages the pin at the time above mentioned.

This impulse-prolonging mechanism is to be used when positions "2" and "3" are dialed, as described hereinafter, to effect propagation of the wave trains shown in Figs. 5 and 6. The first impulse of Fig. 5 is of predetermined short duration, while the second impulse is of a duration determined by the length of time pin 22 continues to be depressed by the operator. In the wave trains of Fig. 6, the first two trains are of normal short duration, while the third impulse is of controllable prolonged duration. In experimental models, an average length for these short wave trains or pulses and the spaces between them has been about .05 second which corresponds to a pulse frequency of ten per second.

In the above-mentioned Thompson application, there is disclosed and claimed a mechanism for controlling the duration of pulses, and that mechanism may be employed instead of the simple device of Fig. 3.

In experimental remote control system uticoil 17 which, as has already been mentioned, 70 lizing the present invention, it has been found that the frequencies just below the low frequency end of the broadcast band are most suitable. A highly satisfactory model was constructed wherein the signal frequency was variused, for example, in the intermediate frequency 75 able between the limits of 380 and 420 kc., this

3

variation being secured by means of the adjustable padder 24 (see Fig. 2). Where two or more remote control systems are to be operated within, say, fifty feet of each other it is important that there be some provision for varying the 5 operating frequencies of the several systems to prevent undesired interaction and interference between the various units. Thus, one might be adjusted to operate at 380 kc., another at 383 kc., and so on.

#### The power supply system

Reference may now be had to Fig. 7, in which the control mechanism at the receiver is illustrated. In this figure, only certain parts of the 15 radio receiver are shown, the receiver being of conventional form. For the purpose of amplifying the signals from the remote control unit and for utilizing these signals in the control of a radio receiver, there is located at the receiver a 20 group of amplifiers, relays, switches, and associated circuit elements and mechanisms, as shown in Fig. 7, which will be referred to collectively as the remote control signal amplivided at the receiver a power supply unit for supplying to the amplifier and control apparatus the plurality of voltages which are required in operation. While any suitable power supply system may be employed, the power supply system shown in Fig. 7 will suffice for the purposes of the present disclosure. The circuit will be clearly understood by those skilled in the art and therefore only a brief description is deemed necessary. Two transformers 25 and 26 are provided. Transformer 25 supplies power to the motorized condenser gang and volume control drive, as will be more fully described hereinafter. The transformer 26 has separate secondary windings 27, 28 and 29, and is employed as a plate and heater voltage supply source. The rectifier comprises two half-wave diodes 30 and 31 so connected that one-half of the rectified output voltage is positive with respect to ground, while the remaining one-half is negative with respect to ground. Thus, point 32 is at a positive potential with respect to ground and, because of the voltage drop in the choke 33, the point 34 is at a slightly lower positive potential point 37 is at a negative potential with respect to ground.

A novel switching arrangement comprising switches 38 and 39 renders the system highly flexible in use. With a particular setting of the switches, it is possible to maintain the power supply unit of the remote control system in an operative condition whether the radio receiver's power supply 35 is on or off. The switch 38 is ganged with the receiver's volume level control means 40 and comprises the usual manually-controlled off-on switch of the radio receiver, and, as will be shown hereinafter, this switch may also be actuated automatically from a distant point by practicing this invention. When 65 the double-throw switch 39 is in the right-hand position, the power supply unit of the control system will be turned on and off according as the switch 38 is turned on and off. But when the switch 39 is in the left-hand position, the 70 power supply of the control system will remain on irrespective of whether the switch 38 is on or off, and therefore under these circumstances, it will be possible to turn the radio receiver

hereinafter. The switch 39 also controls a signal lamp 41 which is "off" when the switch is in the right-hand position and "on" when the switch is not in this position. When the signal lamp is illuminated, it serves as an indication that the remote control system will remain operative regardless of whether the radio receiver is functioning or not. In this condition, it will be possible to turn the receiver "off," and then 10 at any later time to again turn it "on" by remote control. When the signal lamp is dark, it indicates that the remote control system's power supply unit will be turned "off" when the receiver is turned "off." Thus while the receiver and the remote control system could be turned "off" by remote control, it would be impossible to subsequently turn them en again by remote control. In this latter case, it would be necessary to manually operate the on-off switch at the receiver before the remote control system could again be used.

When the switch 39 is in the left-hand position, the cathode of one of the remote control signal amplifier tubes is grounded; and closure fier and control apparatus. There is also pro- 25 of the switch 38 likewise grounds the same cathode. The utility of this arrangement will be explained hereinafter.

#### The remote control signal amplifier

The control signals generated by the control signal generator are induced in the secondary inductor, coil 6, associated with the remote control signal amplifier. This apparatus is located at the receiver, preferably in the receiver cabinet, and is therefore at a distance from the remote control unit. The secondary inductor 6 is preferably made in the form of a large coil, and it may conveniently be located in the base of the receiver console in a horizontal position near 40 the floor where it will not interfere with the usual receiver components. In any event, this coil and the coil 17 at the remote control unit should be in parallel planes in order to provide the best magnetic coupling. The coil  ${\bf \hat{s}}$  is tuned to the signal frequency of the remote control unit by means of the padding condenser 43. The voltage developed across this condenser is applied to the input grid of the amplifying pentode 44. The amplified output of this pentode is apwith respect to ground. On the other hand, the 50 plied through transformer 45 to the input of the next amplifying pentode 46. Similarly the output of the pentode 46 is applied through the transformer 47 to the diode anodes 48 and 49 of tube 50. It will be noted that the inter-stage transformers 45 and 47 are tuned by means of adjustable padders 51, 52, 53 and 54. By means of these padders and the padder for coil 6, the signal amplifier may be tuned to the signal frequency of the remote control unit, thereby excluding interfering off-frequency signals.

The diode anodes 48 and 49 are strapped together and have no initial or delay bias with respect to cathode 56. This diode section is used to rectify or detect the signal appearing across the secondary winding of the transformer 47. For a signal of the form shown in Fig. 4, the rectified output of the diode will have a D. C. component of a shape similar to that illustrated in Fig. 4a. Similarly, for the signal of Fig. 5, there is obtained the rectified output form shown in Fig. 5a, and for the signal of Fig. 6 there is obtained the rectified output shown in Fig. 6a, and so on. The rectified output voltage of the dicde is direct coupled to the control grid 57 of the both on and off from a remote point, as described 75 pentode section of tube 59 by means of the resistor 58, which in combination with the condenser 59, forms a filter that effectively isolates the grid 57 from the signal frequency components present at the diode input.

The amplified output of the pentode section of 5 tube 50 may be direct coupled to the control grid 60 of the amplifying pentode 61 by means of resistor 62. The plate load resistor 63 of the preceding tube 50 may be correctly chosen so as to give the control grid 60 of the tube 61 a cor- 10 rect negative bias with respect to its cathode 64. This cathode is returned to ground through either one or the other or both of the switches 38 and 39. These switches have already been unit. The optimum grid bias for the power amplifier pentode 61 is one which, for the condition of no signal, biases the tube to cut-off or thereabouts. The coupling resistor 62, in combination with the condenser 65 forms a time delay 20 circuit of appreciable time constant, for example, of the order of .03 second. If the output voltage of the pentode section of tube 50 is of the form shown in Fig. 4a, and if the length of the pulses and the spaces between the pulses are each of 25 the order of .05 second, then the voltage appearing on the control grid 60, and in an amplified form, in the output circuit of the pentode 61, will not depart radically from that shown in Fig. 4a. The slight departure from the original form which 30 does result will be of the nature of a reduction in slope of the sides of the pulses, and of a few percent reduction in pulse amplitude. The coupling resistor 62 and the condenser 65 constitute a half-pi-section of a low-pass resistance-capac- 35 itance filter. The importance of this filter will be fully explained later, after the reasons for its need have been made apparent.

#### The control apparatus

The complete remote control system has now been generally explained up to that point where amplified pulses of direct current, similar to those shown in Figures 4a, 5a, and 6a, may be made to appear in the output circuit of the final control signal amplifier pentode 61. These amplified pulses are used to control and actuate control apparatus whose function is to perform the desired control operations in response to the pulses generated by the remote control unit. The control apparatus may be considered as comprising the step-by-step switches 66 and 67, the motordriven mechanism 68, and associated elements. The stepping mechanism, which is generally similar to that described in United States Patent No. 55 1,336,098, is further illustrated in Fig. 8. The common shaft 74, which carries the contact arms 70 and 71, also carres a ratchet 76 which is urged by spring 11 counterclockwise, as viewed in Fig. 8, toward the home position. A pawl 78 carried by armature 79 engages and steps the ratchet when the stepping relay coil 69 is energized. The armature 79 is pivoted at 79a and is held in normal position by spring 11a. The pawl 18 is pivotally attached to the armature and is held out 65 of engagement with the ratchet by spring 18a. The lower end of the pawl is bent as illustrated and engages a spring-pressed pin or plunger 78b. The pawl is thus cammed into engagement with is pivoted at 80a and is held by its spring 81 in cooperative relation with the ratchet wheel, and while this pawl does not prevent clockwise rotation of the ratchet by pawl 78, it prevents re-

ing coil 75 is energized, however, the pawl 80, constituting the armature for coil 75, is moved out of engagement with the ratchet.

For each current pulse of sufficient magnitude through the stepping coil 69, the contact arms 70 and 71 of the step-by-step switches 66 and 67 will be advanced by one step or position. Thus the first pulse will lift the arms from the zero or home position to position #1, a succeeding pulse will advance the contact arms 70 and 71 from position #1 to position #2, and so on, up to position #10.

Even though the pulses have an appreciable duration, as do those illustrated in Fig. 4a, the described in connection with the power supply 15 stepping process occurs as soon as the pulse attains the amplitude necessary to operate the stepping relays. In a particular case, this might occur at 80% of the maximum amplitude. For pulses having a total duration of 0.05 second, this 80% amplitude may obtain within from .01 to .02 second or less after the initiation of the pulse. Thus, for such a case the length of the pulse is of no interest from the standpoint of the stepping process. The reason for selecting pulse durations and spacing of a length greater than is actually necessary for the operation of the stepping relays is in order to confine the control signals to a definite and reasonably narrow frequency band which may be readily passed by the remote control signal amplifier to the exclusion of undesired signals outside this band. This will be more fully explained hereinafter in connection with the novel means for reducing the effects of noise

The contact portions of the contact arms 70 and 71 should be slightly broader than the distance between the spaced stationary contacts. Then as the contact arm moves forward it will engage a succeeding contact before leaving the preceding one. The object of this is to eliminate sparking at the contacts which would otherwise accompany the progression of the contact arms. It will also be noted in the diagram that in the case of the step-by-step switch 67, the con-45 tacts of positions #1, #2, and #3 are bonded together by means of a bonding ring 72. Similarly the contacts of positions #4 to #10, inclusive, are bonded together by means of a second bonding ring 73. The contact point #1 of step-by-step switch 66 is grounded for reasons which will be hereinafter clarified in connection with a description of the novel means utilized to minimize the effects of noise pulses.

It will now be seen that, if the stepping coil 69 be energized by a long direct current pulse, such as that illustrated in Fig. 5a, and if it be assumed that the homing coil 75 is energized during and after this long pulse, the homing coil will be unable to effect return of the contact arms 70 and 71 to their home positions until the stepping coil 69 is deenergized. The reason why this particular action is desired will be explained presently in connection with the volume control action which is provided by the invention.

The homing coil 75 may be energized by virtue of its position in the plate circuit of the triode 82. Normally this triode is biased beyond cutoff, a condition obtained by grounding its cathode and returning its grid through the serially conthe ratchet. A restraining or holding pawl 80 70 nected resistors 83 and 84 to the point 37 of the power supply unit. This point, as has already been shown, is at a considerable negative potential with respect to ground. Now if the point 85 be grounded, the grid of tube 82 will swing up to turn of the ratchet by spring 77. When the hom- 75 ground potential and thereby permit a flow of

plate current sufficient to energize the homing coil 75. For reasons hereinafter pointed out, it is provided that after the point 85 is grounded, there is an appreciable time lag before the grid itself reaches ground potential, and this time lag or delay is provided by a time delay circuit comprising resistor 83 and condenser 86. In physical embodiments, this time delay has been of the order of 0.30 second. The point 85 may be grounded, in the system illustrated, in either one 10 description is considered unnecessary. or both of two ways. Thus, point 85 is grounded whenever the contact arm 71 of the step-bystep switch 61 is at any one of the positions #1, #2, or #3. Likewise, point 85 is grounded in any condition wherein the serially connected con- 15 tacts 87 and 88, and 89 and 90 are closed. The former pair of contacts are closed whenever the contact arms 70 and 71 are not in their home position. This may be readily brought about by causing the shaft 74 to operate the switch con- 20 may be used. The shaft 107 is mechanically tacts 87 and 88, as diagrammatically illustrated. For example, the switch contacts may be carried by resilient fingers whose resilience tends to open the contacts, and a cam may be arranged on shaft 74 to close the contacts whenever the arms 25 70 and 71 are moved from their home position.

Before describing the operation of the control apparatus as a whole, it will be well to briefly examine the motor-driven mechanism 68. motor 91 is of the series-reversible type having 30 oppositely wound field windings 92 and 93. The direction of rotation is, of course, dependent upon which of the two fields is energized. The armature shaft 94 has sufficient end-play to permit of its being forced to the left by spring 95 when- 35 ever the motor is not in operation. In this condition, the contact 89 carried by spring 95 is brought into contact with the stationary contact 99. Since the contact 89 is grounded through the spring 95, it will be seen that when the motor 91 is not in operation, lead 96 will be grounded. But when the motor is energized, the magnetic forces between the field and armature center the motor shaft longitudinally in spite of the opposition of spring 95. The resultant movement of the shaft 45 94 to the right opens the contacts 89 and 90. Electric power for the motor is provided by the transformer 25 which is included in the power supply unit. A voltage is supplied from the secondary of this transformer through the lead 97, thence through the contacts 98 and 99, through the lead 100 and thence to the motor armature. The contacts 98 and 99 are normally closed, and are open only when the homing coil 75 is energized. Now since the lower terminal of the sec- 57 ondary of transformer 25 is grounded, it is only necessary to ground a side of one or the other of the fields 92 and 93 through lead 101 or 102 in order to energize the motor. And since the leads points #2 and #3 of the step-by-step switch 66 it will be seen that the said leads may be brought to ground potential by causing the contact arm 70 of switch 66 to make contact with relay point #2 or point #3.

The receiver volume control 40, which is shown in the diagram as mechanically linked to the motor armature shaft 94 by means of gear 103 and pinion 104, is actuated in a direction to increase the volume level when the motor is energized 70 over lead 101, and in the opposite direction to decrease the volume level when the motor is energized over lead 102. If the volume-reducing action is continued, the volume will reach its mini-

ply switch 33, which is mechanically linked to the volume control means 40, will be opened to thereby deenergize the receiver. The mechanical link between the receiver's volume control means 40 and the on-off switch 38 may be of that type wherein the switch is turned "on" and "off" by rotation of the volume control means 40. This form of combined on-off switch and volume control unit is well known in the art, and further

Normally the gear 103 meshes with the pinion 104 as shown in the diagram. However, when magnet 105 is energized, the gear 103 is disengaged from the pinion 104 and is engaged with pinion 106 mounted on shaft 107. To this end the extending portion of shaft 94 may be made flexible so that it may bend, and the magnet 105 serves to shift the flexible shaft laterally. Of course, any suitable form of shifting mechanism linked to the receiver's tuning condenser gang 108. The magnet 105 may be energized from the motor supply transformer 25 whenever the contact arm 71 grounds the bonding ring 73. This occurs for positions #4 to #10 inclusive of the switch 67. In order that the magnet 105 may be energized for these positions, it is, of course, necessary that the contacts 98 and 99 be closed, for these contacts, connected in parallel with contacts 109 and 110, are included in the supply circuit from the transformer 25. The resistor !!! is connected across the terminals of these contacts merely to reduce sparking, and does not of itself have a sufficiently low impedance to permit operation of the motor 91 or energization of the magnet 105. Closure of contacts 109 and 110 alone cannot produce sustained energization of magnet 105, for once this magnet is energized the said contacts are opened. This 40 would result in a continuous opening and closing of the contacts 109 and 110 were it not for the fact that contacts 98 and 99 are always closed when the magnet 105 is energized. Mechanically ganged to contacts 109 and 110 are the auxiliary contacts 112 and 113. Contact 112 is grounded, while contact 113 is connected with one or more of the cathodes of the tubes in the radio receiver (not illustrated). Thus, when the contacts 112 and 113 are closed, the receiver operates normally, but when these contacts are open some of the receiver's cathode circuits will be open and the receiver ceases to function. The ganging arrangement is such that the contacts 112 and 113 open and close in unison with the contacts 109 and 110. The contacts 112 and 113 therefore perform the function of muting the receiver during remotely controlled station changes.

Mechanically mounted on the shaft 107 is the 101 and 102 are connected with the contact 60 split commutator 114 comprising conductive segments 115 and 116 electrically insulated from each other. Such devices are well known in the art. Making sliding contact with the segments 115 and 116 are the commutator brushes 2c, 3c, 4c, etc., 65 connected, respectively, to contacts #2, #3, #4, etc. of stepping relay 66. It will be noted that brushes 2c and 3c are diametrically opposite one another, while the other brushes are spaced along the periphery of the commutator in a semicircle. For simplicity of illustration some of the brushes and their connections are omitted. The brushes 2c and 3c are also connected to the motor field leads 101 and 102, respectively.

It will now be seen that when the arm 70 enmum level, and finally the receiver's power sup- 75 gages any one of the contacts #4 to #10, unless

the corresponding brush happens to be in engagement with the insulating portion of the commutator, the motor 91 will be operated through one or the other of its field windings to rotate the commutator until the insulating portion thereof interrupts the connection. When the motor is energized through brush 2c and field winding 92, it rotates the commutator clockwise, as viewed in Fig. 7. When the motor is energized through brush 3c and field winding 93, it rotates the commutator counterclockwise. Thus, it will be seen that the commutator is rotatable through an arc which may be slightly less than 180° depending of course upon the disposition of the brushes, and the tuning condenser 108 may be rotated accordingly. Each of the brushes other than 2c and 3c corresponds to a station to which the receiver may be tuned, and the brushes are preferably adjustable to permit preselection of a certain group of stations.

From the foregoing description, it will be apparent that when the arms 70 and 71 are moved to either position #2 or #3, the motor 91 drives the volume control means 40 to increase or decrease the volume level, and when the arms are moved to any one of the positions #4 to #10, the motor drives the tuning condenser 108 and the commutator 114 to adjust the condenser setting so as to tune the receiver to the station corre-

sponding to the selected position.

The normal operation of the control apparatus as a whole may be most clearly and concisely explained by outlining the various circuit element actions and changes which occur in response to representative series of pulses. In the first tabulation below, there is assumed the arrival, in the stepping coil 69, of a series of pulses such as is illustrated in Fig. 4a. In Fig. 4a, these five pulses are designated A to E inclusive, and they are so referred to in the following table:

| Pulse<br>No. | Position<br>of step-<br>by-step<br>switches | Con-<br>tacts<br>open | Con-<br>tacts<br>closed              | Explanatory remarks                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|---------------------------------------------|-----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 0                                           | 87-88                 | 89-90<br>98-99<br>109-110<br>112-113 | This is the normal position of the contacts before the first pulse A has arrived; this position of contacts is shown in the diagram of Fig. 7.                                                                                                                                                                                                                                                                                     |
|              | #1                                          |                       | All                                  | Contacts 87-88 close as soon as the ganged contact arms 70 and 71 of the switches 66 and 67 leave their home position. With contacts 87-88 closed and bonding ring 72 grounded, the negative bias on the grid of triode 82 begins to leak off to ground, but because of time delay circuit 83-86 this occurs so slowly that the contact arm 71 leaves the contact points bonded by ring 72 before the homing coil 75 is energized. |
| В            | #2                                          | 89-90                 | 87–88<br>98–99<br>109–110<br>112–113 | When contact #2 is reached, the motor 91 is energized and it begins to rotate the shaft 94. However, the contact arm 70 will arrive at its ultimate contact point (#5 in this case) so quickly that this preliminary rotation of the motor is of no consequence except in so far as it causes the contacts 89-90 to open.                                                                                                          |
| C            | #3                                          | Same                  | Same                                 | No changes from above state.                                                                                                                                                                                                                                                                                                                                                                                                       |

| . 5        | Pulse<br>No. | Position<br>of step-<br>by-step<br>switches | Con-<br>tacts<br>open       | Con-<br>tacts<br>closed              | Explanatory remarks                                                                                                                                                                                                                                                                          |
|------------|--------------|---------------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . •        | D            | #4                                          | 89-90<br>109-110<br>112-113 | 87-88<br>98-99                       | As the contact arm 71 leaves the contacts bonded by ring 72, the grid of the triode 82 is                                                                                                                                                                                                    |
| 10         |              |                                             |                             |                                      | again allowed to fai<br>well below ground poten<br>tial. When the arm 7<br>reaches the contact<br>bonded by ring 73, the<br>magnet 105 is energized                                                                                                                                          |
| 15         |              | **************************************      |                             |                                      | from the secondary or<br>transformer 25. This<br>causes the ganged con-<br>tacts 109-110 and 112-115<br>to open, the latter mut<br>ing the radio receiver                                                                                                                                    |
| <b>2</b> 0 |              |                                             |                             |                                      | simultaneously the ener<br>gized magnet 105 operates<br>magnetically to uncouple<br>the motor from the re-<br>ceiver's volume contro-<br>means 40 and to couple                                                                                                                              |
| •          |              | -                                           |                             |                                      | the motor to the re-<br>ceiver's condenser gang<br>108 by means of shaft 107.                                                                                                                                                                                                                |
| 25         | Е            | #5                                          | Same                        | Same                                 | As the last pulse arrives,<br>the contact arms stop at<br>position #5, and the<br>motor turns the split<br>commutator until the<br>circuit is opened upon<br>the arrival of 5c at the                                                                                                        |
| 30         | -            |                                             |                             |                                      | insulating portion of the commutator periphery.                                                                                                                                                                                                                                              |
| n =        |              | 5<br>4<br>3<br>2<br>1                       | 98-99<br>109-110<br>112-113 | 87–88<br>89–90                       | When the motor stops,<br>contacts 89-90 close<br>grounding the grid of<br>triode 82 through re-<br>sistor 83. Within, say<br>0.15 second, the charge on                                                                                                                                      |
| 35         |              |                                             |                             |                                      | the grid has leaked off<br>sufficiently to permit<br>energization of the hom-<br>ing coil 75 with attend-<br>ant opening of contacts<br>98-99, and homing of the<br>contact arms 70 and 71.<br>At the same time, since                                                                       |
| 40         |              |                                             |                             |                                      | 109-110 are now both open, the magnet 105 is deenergized which removes the motor drive                                                                                                                                                                                                       |
| 45         |              |                                             |                             |                                      | from the shaft 107 and<br>recouples the motor to<br>the receiver's volume<br>control means 40.                                                                                                                                                                                               |
| 50         |              |                                             | 98-99                       | 87–88<br>89–90<br>109–110<br>112–113 | Simultaneously with the deenergization of magnet 105, the ganged contacts 109-110 and 112-113 are reclosed, the closing of muting contacts 112-113 permitting the radio receiver to expert to press permitting the radio receiver to expert to press permits permitting the radio receivers. |
|            |              |                                             |                             |                                      | ceiver to operate nor-<br>mally.                                                                                                                                                                                                                                                             |
| 55         |              | 0                                           | 87-88                       | 89-90<br>98-99<br>109-110<br>112-113 | As the contact arms 70 and 71 return to their home position, the contacts 87-88 are opened. The opening of 87-88 removes                                                                                                                                                                     |
| 60         |              |                                             |                             |                                      | the ground from the<br>grid of the triode 82, and<br>shortly thereafter the<br>homing coil 75 becomes<br>deenergized, closing con-<br>tacts 98-99.                                                                                                                                           |

While the above table assumes the arrival of 65 the five pulses of Fig. 4a, it will be understood that the actions therein outlined are similar to those which would occur for 4, 6, 7, 8, 9, or 10 pulses. Between these limits a different series of pulses results only in causing the split commu-70 tator 114 to stop at a different point, depending on which of the brushes 4c to 10c, inclusive, is grounded by the final position of contact arm 70. Thus the above tabulation is in general illustrative of the actions which obtain in remotely con-75 trolled station selection.

When only two or three pulses occur in the stepping coil 69, such as those illustrated in Figs. 5a and 6a, a somewhat different situation results. The following table is based upon the arrival of two pulses such as shown in Fig. 5a, that 5 is, a short pulse A followed by a longer pulse B. The table is, in general, illustrative of the novel method and means provided herein for the control of volume, which constitutes a highly important part of this invention.

| Pulse<br>No.<br>(Fig. 5a) | Position<br>of step-<br>by-step<br>switches | Con-<br>tacts<br>open | Con-<br>tacts<br>closed              | Explanatory remarks                                                                                                                                                                                                                                                                               | 15                  |
|---------------------------|---------------------------------------------|-----------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                           | 0                                           | 87–88                 | 89–90<br>98–99<br>109–110<br>112–113 | This is the normal position of the contacts, before the first pulse A, has arrived, as shown in the diagram.                                                                                                                                                                                      | 20                  |
| A                         | #1                                          |                       | All                                  | The first pulse through the stepping coil 69 moves the contact arms 70 and 71 to position #1. The contacts 87–88 close as soon as these arms leave their home position. The closing of 87–88 and the grounding of the bonding ring 72 grounds the point 85 and the negative charge on the grid of | 25                  |
|                           |                                             | -                     |                                      | triode 82 begins the leak<br>off, but so slowly, due to<br>the time delay circuit<br>83-86 that the heming<br>coil 75 is not yet ener-<br>gized.                                                                                                                                                  | 30                  |
| В                         | #2                                          | 89-90                 | 87-88<br>98-99<br>109-110<br>112-113 | When the contact #2 is<br>reached, the motor 91 is<br>energized and rotation of<br>shaft 94, gear 103, and<br>pinion 104 results. This<br>produces a progressive                                                                                                                                  | 35                  |
|                           |                                             |                       |                                      | change in the receiver's volume control means 40 resulting in increased volume level. Contacts 89-90 open as soon as the motor 94 is energized.                                                                                                                                                   | 40                  |
| В                         | #2                                          | 89-90<br>98-99        | 87-88<br>109-110<br>112-113          | After the pulse B has persisted for, say, 0.2 second, the grid of the triode 82 has reached a potential so close to ground potential                                                                                                                                                              | 45                  |
|                           |                                             |                       |                                      | that the homing coil 75 is<br>energized, and contacts<br>98-99 are opened. The<br>opening of these contacts<br>is of no interest in the<br>volume control opera-                                                                                                                                  |                     |
|                           |                                             |                       |                                      | tions, however, for the contacts 98-99 and 109-110 are in parallel, the opening of contacts 98-99 can                                                                                                                                                                                             |                     |
|                           |                                             |                       |                                      | produce no effect while<br>contacts 109-110 are<br>closed. Although the<br>homing coil 75 is now<br>energized, it cannot as<br>has already been ex-                                                                                                                                               | 55                  |
|                           |                                             |                       |                                      | plained, return the contact arms 70 and 71 to their home positions while the pulse B persists, and thus the increase in volume level continues for the dura-                                                                                                                                      | <b>6</b> 0          |
|                           |                                             |                       |                                      | tion of the pulse B, of<br>until the volume control<br>means 40 reaches its<br>maximum extent. The<br>mechanical drive for<br>the volume control                                                                                                                                                  | 65                  |
|                           |                                             |                       |                                      | means may include some<br>friction drive means, as<br>for example, a belt and<br>pulleys, so that if the<br>motor 91 continues to<br>run after this position is                                                                                                                                   | 8<br>1<br>9<br>5 70 |
|                           |                                             |                       |                                      | reached no damage will<br>result. When the pulse<br>B ceases, the stepping<br>coil 69 is deenergized, and<br>the contact arms are                                                                                                                                                                 | e<br>e              |
|                           |                                             | _                     |                                      | returned to their home or zero position.                                                                                                                                                                                                                                                          | e<br>_ 7!           |

| * .                       |                                             |                       |                                      |                                                                                                                                                        |
|---------------------------|---------------------------------------------|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse<br>No.<br>(Fig. 5a) | Position<br>of step-<br>by-step<br>switches | Con-<br>tacts<br>open | Con-<br>tacts<br>closed              | Explanatory remarks                                                                                                                                    |
|                           | 0                                           | 87-88                 | 89-90<br>98-99<br>109-110<br>112-113 | Contacts 87-88 open when<br>the contact arms reach<br>their home position.<br>Contacts 89-90 close as<br>soon as the motor is<br>deenergized, and con- |
| <b>)</b>                  |                                             |                       |                                      | tacts 98-99 close as soon<br>as the homing coil is de-<br>energized which occurs<br>shortly after contacts 87-<br>88 open.                             |

For a series of three pulses as illustrated in Fig. 6a, the actions would be similar to those tabulated above for two pulses, except that in the case of three pulses of Fig. 6a the positions #1 and #2 are reached as a result of pulses A and B, while position #3 is reached as a result of the institution of the long pulse C. The motor 91 is caused to turn in a direction which produces a volume level decrease, and finally turns off the

receiver completely.

It will now be appreciated that the choice of time constant of the time delay circuit 83-86 which delays homing action is of considerable importance. If this delay were not present, then homing would occur immediately following the first pulse due to grounding of the bonding ring 72 and the point 85, and the contact arms 78 and 71 would be immediately returned to their home positions before they could be advanced another step. It is therefore necessary that the time constant of the circuit 83-86 be at least of such a magnitude that the contact arm 71 be enabled to pass position #3 before the homing coil 75 becomes energized. Once the position #3 is passed, the bonding ring 73, and hence o point 85, is no longer at ground potential, and danger of premature homing no longer exists.

In connection with the system of stepping and homing incorporated in this invention there is encountered an unusual problem; this occurs only when both the receiver and power supply unit are turned off by remote control. Assume that the contact arms are at positions #3 and that the motor 91 is operating to turn the receiver and power supply unit off. The homing coil 75 will be energized, but cannot home the contact arms as long as the stepping coil 69 is energized. At the instant the switch 38 is opened, all circuits in the receiver and in the remote control system become deenergized in unison. The result is that the homing coil 75 is unable to home the contact arms 70 and 71 which would therefore remain at the position #3, the position for volume decrease or for turning off the receiver. Now if later the switch 38 were closed manually, thus energizing both the receiver and the remote control system power supply unit, the motor 91 would promptly operate to again open the switch 38, and thus it would be impossible to place the receiver in an operating condition. To avoid this, the invention provides means whereby the homing of the contact arms 70 and 71 may take place even after the switch 38 is opened. It will be well understood by those skilled in the art that the filter condensers 117, 0 118, 119 and 120, associated with the remote control system's power supply unit, may retain a residual charge for a short time after the power input to the unit has been cut off. It is therefore provided in accordance with the inven-75 tion, that the circuit of the stepping coil 69 be

opened coincident with the opening of the switch 38. Thus when the switch 38 is opened, the stepping coil 69 will become deenergized at once, but the homing coil 75 will continue to function for a short time thereafter by virtue of the residual charge existing in the filter condensers 117 and 118. For step-by-step switch of the type described, this short time is sufficient for the homing of contact arms 70 and 71 to occur. shown in Fig. 7, the circuit of the stepping coil 69 is opened by means of the switch 38. One arm of the switch is connected between the cathode of the tube 61 and ground. Opening of the switch therefore breaks the load circuit of the 15 tube 61 and the stepping coil 69 is thereby deenergized.

For remote control operation with the switch 39 thrown to the left-hand position, i. e., where the remote control system's power supply unit 20 remains energized whether the receiver is on or off, it is neither permissible nor necessary that the load circuit of the tube 61 be opened as in the case just described. Therefore it is provided that the lower arm of switch 38 be shunted by 25 the lower arm of switch 39, and thus for this mode of operation the cathode of the tube 61 will remain grounded regardless of the position of switch 38.

#### Operation of the complete system

The functions, construction, and operation of the several units, which under normal operating conditions comprise all the necessary components of the complete remote control system, 35 have now been completely described; but before describing the novel means provided by this invention to render the system immune to noise disturbances, it will be well to trace briefly a few typical operations of the complete system. As- 40 sume to begin with that the radio receiver is turned "off," but that the power supply associated with the remote control signal amplifier is The radio receiver may then be turned "on" as follows: Referring first to the remote 45 control unit 1, the pin or plunger 22 is depressed, and position #2 is dialed on the dial 11. There are then produced in the tuned circuit 15—24 and the associated primary inductor 17 oscillating currents of the form shown in Fig. 5. Simi- 50 lar signals are induced in the secondary inductor 6 of the remote control signal amplifier, amplified by the radio frequency amplifier comprising tubes 44 and 46, and rectified by the diode section of the multi-purpose tube 50. The recti- 55 fied signals will be similar to those shown in Fig. 5a. These signals are amplified by two directcoupled amplifier stages which include the amplifier section of the tube 50, and the power amplifier tube 61. The appearance of the two 60 pulses in the stepping coil 69 raises the ganged contact arms 70 and 71 to position #2 whereupon the motor 91 is energized and caused to rotate in that direction which tends to turn the volume control means 40 away from its original mini- 65 mum position. Now, since the radio receiver's off-on switch 38 is mechanically linked to the volume control means, it follows that the first few degrees of turn imparted to the volume control will place the switch 38 in its "on" position. 70 Continued operation of the volume control means will ensue until the plunger 22 is released.

The dial positions #4 to #10 inclusive represent seven different radio stations, and any one of these may be automatically tuned in by dial- 75

ing the corresponding number. Assume that a desired station corresponds to position #5 and that this position is dialed. In the tuned circuit 15-24 there will then appear currents of the form shown in Fig. 4, and, as before, these signals will be induced in the coil 6, amplified, rectified, and further amplified, the resulting signals being of the form shown in Fig. 4a. In a manner already explained the contact arms In the particular embodiment of the invention 10 70 and 71 of the step-by-step switches 66 and 67 will be advanced to positions #5. During this stepping process the magnetic gear shift arrangement including magnet 105 will have coupled the motor 91 to the shaft 107. Thus rotation of the split commutator 114 will result, continuing until the grounded brush  $\mathbf{5}c$  reaches the insulation section of the commutator's periphery at which time the desired station will be received.

The receiver may be turned off by depressing the plunger 22 and dialing the third position on the dial II which, in the remote control signal amplifier, gives rise to a rectified signal of the form shown in Fig. 6a. Operation is similar to that outlined for turning the receiver on, except that the receiver's volume control is turned toward its minimum volume level position, and in the final few degrees of its rotation the associated on-off switch 38 is turned to its "off" position.

The means just described for the remote control of volume becomes of particular interest when the broad underlying principles are examined. The operation is briefly this: The signals utilized for volume level changes comprise, as has already been shown, one or more short pulses followed by a longer control pulse. The short pulses and the first portion of the long pulse serve to set up or re-arranged the circuits of the control apparatus in such a manner that the subsequent operation of the motor will produce a change in the desired direction. Shortly after the institution of the long pulse, and directly upon the completion of the said circuit re-arrangements, the motor operates to produce the desired change, i. e., volume level increase or decrease, and the amount of the control or volume level change is dependent then only upon the length of the long pulse. Of economic importance is the fact that these volume control functions are made possible with virtually no greater expense or outlay of equipmnt than if the remote control system were designed for the station changing function only.

It is to be noted that in control of the radio receiver from the remote point for volume increase, volume decrease, or station changes, the completion of the particular operation is followed, within a fraction of a second, by the return of all relays and electro-mechanically operated contacts and clutches to the normal positions shown in Fig. 7.

The procedure to be employed in originally setting up the equipment for an assortment of desirable stations which may thereafter be automatically tuned in from a remote point is as follows: First, the radio receiver is manually tuned to one of the desired stations by means of the receiver's usual manual control which is coupled to the tuning condenser gang 108, shaft 107, and split commutator 114. Then one of the commutator brushes 4c to 10c inclusive is so positioned that contact is made only to the insulating portion of the commutator periphery. This same process is followed for each of the brushes available for pre-station selection, in this case,

2,357,237

seven. Positions #4 to #10 inclusive on the dial II may be given the station call letter designations rather than numbers. Position #2 might be designated as "on-loud," and position #3 may be designated "off-soft."

Means for protecting the stepping relay from noise pulses

In remote control systems of the type described, the matter of protecting the stepping relays from 10 noise pulses is a highly important consideration. It will be appreciated that the stepping coil 69 cannot itself distinguish between a pulse originating in the control signal generator and a noise pulse of greater or comparable magnitude origi- 15 nating, for example, as a result of atmospheric or electrical power circuit disturbances. It has, in fact, been found that, in systems incorporating no noise protection means, it is possible to tune in any one of the preselected stations by the simple process of rapidly turning on and off an electric light switch or power circuit, ringing a door bell, etc. Thus, for example, eight noise pulses produced by turning an electric light receiver to be automatically tuned to the station corresponding to position #8 of the dial. Such a situation would, of course, be exceedingly annoying, for almost any random series of noise pulses might readily retune a receiver at a time 30 when such control would be most unwelcome. The intermittent arrival of noise pulses, say by two's or three's, might result in volume changes which, while individually small, would in time produce large undesired volume changes, and might even turn the receiver off if continued for any appreciable time. Therefore the provision of means for greatly minimizing the magnitude of noise pulses and their effects, as hereinafter to be described, constitutes one of the important features of this invention.

The first means for securing a reduction in noise level is incorporated in the remote control signal amplifier and resides in the sharply tuned radio frequency amplifier which includes the 45 tuned secondary inductor 6 and the tuned interstage transformers 45 and 47. The amplifier is sharply peaked, the transformer coupling being in each case below critical coupling. In addition to discriminating against random noise 50 pulses, the tuned amplifier also affords sufficient selectivity, to permit several of these remote control systems to be operated within the same area but at different frequencies. This has already heen mentioned.

The second means of securing noise reduction resides in a low-pass filter, already briefly referred to in connection with the description of the remote control signal amplifier. It is located between the double diode pentode tube 50 and the power amplifier pentode 61. The series element is the coupling resistor 62, while the shunt element is provided by the condenser 65. It is a function of this resistance-capacitance filter to pass, without too serious attenuation, 65 control pulses of the forms illustrated in Figs. 4a, 5a, and 6a. Where the minimum duration of the short pulses and the spaces between them is of the order of 0.05 second, the time constant of the filter may be of a slightly smaller order. In 70 a physical embodiment the time constant was made equal to 0.016 second. The result is a lowpass filter which readily passes the desired control pulses, but which considerably attenuates signals having higher pulse frequencies. Thus the trains 75

of noise pulses set up by commutator type motors, high speed circuit-interrupting vibrators and the like, will be very materially discriminated against because of their high pulse frequencies. It follows, therefore, that a low-pass filter is a highly effective single means for guarding against random actuation of the stepping relay by undesired signals having pulse frequencies appreciably greater than those of the desired control signals.

There still remain to be considered methods for discriminating against noise signals having pulse frequencies below the pulse frequency of the desired control signals. Noise signals of this type might be generated, for example, by slowly turning on and off various household light or power circuits, or by turning on or off several such circuits in succession. Complete protection against these signals is afforded by the triode 82 in combination with the homing coil 75 and 20 step-by-step switch 67, the normal functions of which have already been described in connection with the control apparatus. It will be recalled that, for the positions #1, #2, and #3 of the contact arm 71, the point 85 in the grid cirswitch on and off four times would cause the 25 cuit of the triode 82 is grounded, permitting the negative charge on the grid to slowly leak off to ground through the resistor 83 at a rate dependent upon the magnitude of the time constant of the circuit 83—86. It will be further recalled that when the grid has fallen practically to ground potential, the homing coil 75 is thereby energized. Now, in order to prevent premature homing of the contact arms 70 and 71 it is provided that the time constant be of such a magnitude that the homing coil will not be energized until the point 85 has been grounded for a length of time slightly in excess of that normally taken for the contact arm 71 to completely pass over the positions #1, #2, and #3. For pulses of the frequency and form shown in Fig. 4a, this time is approximately 0.3 second, and therefore for such signals the time constant of the circuit 83-86 might well be adjusted to permit energization of the homing coil 75 only after the point 85 has been grounded for, say, 0.35 second. It follows then that, if a series of noise pulses are received whose pulse frequency is so low that the positions #1, #2 and #3 are not traversed within 0.35 second, the homing coil 75 will operate to return the contact arms 70 and 71 to their home position before any one of the station-selecting positions, #4 to #10 inclusive, has been reached. It also follows that, where the time between peaks of the undesired 55 noise pulses is 0.35 second or more, the contact arms 70 and 71 will be returned to their home position before succeeding pulses arrive, and thus the contact arms will be merely advanced repeatedly to position #1, but no further. This means of protection against noise signals of low pulse frequency, comprising the triode 82, homing coil 75, and step-by-step switch 67, may be looked upon as a form of electro-mechanical high-pass filter which excludes those signals having pulse frequencies below a certain minimum. It is important to note, however, that this electro-mechanical filter differs from the usual high-pass filter in that it will pass direct current, and this is important, for otherwise the long pulses necessary in effecting volume level changes would be completely suppressed. It will be recalled, from the description of the control apparatus, that the stepping coil 69 remains energized for the duration of any pulse, and that while so energized the homing coil 75 is prevented

from homing the contact arms even though the homing coil be energized at the time. The combination of an electrical low-pass filter followed by an electro-mechanical high-pass filter results in a band-pass filter which discriminates markedly against pulse frequencies which differ appreciably from the pulse frequency of the desired control signals. This band-pass filter results in a discriminatory combination which of comparable simplicity.

There remains one further important class of interfering signal, namely, rectified signal noise pulses having a duration comparable to, or greater than those shown in Fig. 4a. Single pulses of this nature are not discriminated against by any of the circuit elements so far described. The effect of such single pulses is to raise the contact arms from their home position to position #1, and to hold the arms in that position 20 for the duration of the pulse, after which the arm is returned to its home position by means of the homing coil. Now if, for example, point #1 on the step-by-step switch 66 were the position for volume level increase, and if a long noise pulse were received, then the contact arms 10 and 71 would be raised to that position and the volume level of the receiver would be raised to an extent depending on the length of the noise pulse. Successive widely spaced long pulses 30 would successively raise the contact arms to position #1 and cause continued volume level increase up to the limit of the radio receiver's volume control means. In order to circumvent these difficulties, position #1 of the step-by-step switch 66 is made blank, or is grounded, as shown in the diagram of Fig. 7. With this arrangement successive widely spaced noise pulses of the type described will merely raise the contact arm to this blank or dead position and the 40 radio receiver's control circuits will not be affected in any way. If there be insufficient time between the long pulses to permit homing, the contact arms will merely remain at the blank position until the disturbances abate. Under this system the only way that the contact arms could be made to arrive at position #2, and thus produce a volume increase, would be for the noise pulses to arrive in correct sequence and to be of the proper duration, i. e., first a short pulse to raise the contact arms to position #1, followed at the correct time interval, by a longer pulse. It should be noted that if the first pulse is not short, the grid of tube 82 will have had time to fall to ground potential, thus causing 55 energization of the homing coil, which will result in homing of the contact arms at the end of the pulse. If the interval between the pulses is too short, the rather large time constant associated with the input of the tube 6i will not 60enable the amplifier to differentiate between the pulses, and its output will be simply one long pulse. On the other hand, if the interval is too long, the homing coil 75 will act to return the contact arms to their home position during this 65 time. This discrimination as to the length of the intervals between pulses, is, of course, due to the band-pass effect which has already been described. As is to be expected, it will be exceedingly rare in nature, or in random manmade interferences, for a short pulse to be followed at exactly the correct interval by a long pulse. Similarly, in order that the noise pulses be enabled to reduce the volume, or to turn the receiver off, it would be necessary that two short 75

pulses be followed by a long pulse, all correctly spaced. This is an even more improbable occurrence than that one previously mentioned. In much the same way, it would be highly unlikely for a certain larger number of equal and correctly spaced noise pulses to arrive and thereby cause the receiver to automatically tune to a different station. Thus, the provision of a blank first position on switch 66 removes virtually all would be difficult to equal by any other means 10 difficulty from long noise pulses regardless of their spacing, and from short pulses incorrectly spaced, or from combinations thereof.

A further protection against noise pulses will now be described. It has already been shown that a convenient location for the control amplifier's secondary inductor, coil 6, is the base of the receiver console or cabinet. In this position the coil will normally be in close proximity to the power suppyl cord, as shown in Fig. 7. It was found that a great deal of the noise pick-up of the coil 6 is directly from the power supply cord. This is particularly true of disturbances arising within the building which houses the receiver. Especially severe in this respect are disturbances occasioned by the opening or closing of the various power, light, or heating circuits, or the operation of motors, or other apparatus having contacts at which sparking occurs. While it has been shown that these noises may be rendered generally harmless by the use of a dead first position on the step-by-step switch 66 it is nevertheless, of interest to reduce by as much as possible the amount and severity of noise reaching the remote control amplifier. For example, strong interfering noise signals of a more or less continuous nature could either partially or completely mask a desired series of control impulses, and as a result, although the interference itself could not operate the receiver's tuning circuits, the operator would be forced to wait until the disturbance abated before dialing could be successfully accomplished. Modern radio receivers are, of course, generally provided with line filters associated with their power supply, or they may be provided with power transformers whose windings are mutually shielded electrostatically, and it is well known that these are effective means for preventing power circuit noises from entering the receiver circuits by way of the power line; but these means do not prevent pick-up of noise from the power supply lead by such coils as might be used in this form of remote control. It is therefore an important feature of this invention that an auxiliary filter be located at the power outlet fixture into which the receiver's supply cord is plugged. The filter, which in its simplest form may be a condenser 121 shunted across the line, may conveniently be built into the housing of the supply cord plug. Thus, the cord which supplies the receiver with power is now effectively isolated from power line disturbances, whether they arise from outside sources, or from causes within the receiver itself. With this treatment it has been found that the total noise pick-up of the coil 6 is very considerably reduced.

To recapitulate, there have now been described five separate means for discriminating against undesired signals and noise pulses, to wit—a sharply tuned radio frequency amplifier, an electrical low-pass filter, an electro-mechanical highpass filter, the use of a dead first position on the step-by-step switch, and finally the use of a power cord which is isolated from radio frequency by suitable filtering at both ends. When all of these means are incorporated into a remote control system of the type disclosed, there results a system which will operate smoothly, accurately, and without interference even in the most unfavorable circumstances.

While the invention has been described with particular reference to the embodiment of the drawings, it will be understood that the invention is capable of various forms of physical expression, particularly in respect to the structural details. Moreover while in the preferred form of the in- 10 vention a purely inductive coupling is provided between the primary inductor of the control signal generator and the secondary inductor at the radio receiver, it is entirely feasible to employ a radio link between the radio receiver and the re- 15 mote point in which case the coils would have to be designed to operate as antennae capable of efficiently radiating and receiving electro-magnetic waves. The invention is therefore not to be limited by the specific disclosure but only by 20 the scope of the appended claims.

#### I claim:

1. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means 25 for generating a train of impulses of unequal duration, and common means at the receiver responsive to said first-mentioned impulse train for tuning the receiver to a desired intelligence signal, and responsive to said last-mentioned impulse train for varying the volume level of the intelligence signal being reproduced by the receiver.

2. In a control system for a radio receiver or the like, means for generating a train of signal  $_{35}$ impulses of substantitally equal fixed duration, means for generating a train of impulses comprising at least one impulse of fixed duration and a subsequent impulse of controllable duration, and common step-by-step switching means 40 at the receiver responsive to said first-mentioned impulse train for effecting a control function, and responsive to said last-mentioned impulse train for effecting a different control function.

3. In a control system for a radio receiver hav- 45 ing a volume control device, a single means for generating a train of control impulses comprising at least one impulse of fixed duration and an impulse of controllable duration, and means for operating said control device in a direction de- 50 pendent upon the total number of said impulses and to an extent dependent upon the duration of

said controllable impulse. 4. In a control system for a radio receiver having a gain control device, the provision of con- 55 trollable driving means coupled to said gain control device for effecting change in the output volume level of said receiver, means for generating a train of control impulses comprising at least one impulse of fixed duration and a follow- 60 ing impulse of controllable duration, a step-bystep switch at said receiver for determining in response to the total number of said fixed and said controllable pulses the direction of said volume level change, said switch being responsive to the duration of said following controllable pulse for controlling the extent of said volume level change.

5. In a control system for a radio receiver having a gain control device, the provision of con- 70 trollable driving means coupled to said gain control device for effecting change in the output volume level of said receiver, means for generating a train of control impulses comprising at least one impulse of fixed duration and a follow- 75 train for effecting a control function, additional

ing impulse of controllable duration, means including a stepping mechanism at said receiver for actuating said controlloble means in response to said control impulses, said stepping mechanism being responsive to the duration of said controllable impulse for controlling the magnitude of the change in the volume level, and means for homing said stepping mechanism after a predetermined time following the initiation of said impulses.

6. In a control system for a radio receiver having a volume control device, means at the receiver for operating said device so as to increase or decrease the volume level, said means including a step-by-step device having a home position and a plurality of selectable operating positions, means urging said step-by-step device to its home position, means for generating a train of control impulses comprising at least one impulse of fixed duration and a subsequent impulse of controllable duration, stepping means responsive to the number of said impulses for operating said step-by-step device to effect a volume increase or decrease and for controlling the extent of the volume variation according to the duration of said controllable impulse, and means for returning said step-by-step device to home position after a predetermined time interval following the initiation of said impulses, said stepping means preventing return of the step-by-step device to home position if said interval terminates within the duration of said controllable impulse.

7. In a control system for a radio receiver having a volume control device, a reversible motor for operating said device to increase or decrease the volume level, control means for said motor including a step-by-step switch having a home position and a plurality of selectable operating positions, means urging said switch to home position, means for generating a train of control impulses comprising at least one impulse of fixed duration and a subsequent impulse of controllable duration, stepping means responsive to the number of said impulses for operating said motor in a desired direction and for a time dependent upon the duration of said controllable impulse, and means for returning said switch to home position after a predetermined time interval following the initiation of said impulses, said stepping means preventing the return of said switch to home position if said interval terminates within the duration of said controllable impulse.

8. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means at the radio receiver responsive to said impulse train for effecting a control function, and additional means at said receiver responsive to an intermediate one of said signal impulses for effecting muting of said receiver.

9. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means at the radio receiver responsive to said impulse train for effecting a control function, and means at said receiver responsive to a predetermined one of said impulses for effecting muting of said receiver following the said impulse and during subsequent impulses of said train.

10. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means at the radio receiver responsive to said impulse means at said receiver responsive to an intermediate one of said signal impulses for effecting muting of said receiver, and means for prolonging the muting of the receiver for a predetermined time interval after the last impulse of said train.

11. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means at the radio receiver responsive to said impulse 10 train for effecting a control function, means at said receiver responsive to a predetermined one of said impulses for effecting muting of said receiver following the said impulse and during subsequent impulses of said train, and means for prolonging the muting of the receiver for a predetermined time interval after the last impulse of said train.

12. In a remote control system for radio receivers and the like, means for generating a train  $_{
m 20}$ of control impulse signals, inductive means located at the radio receiver for deriving said control signals from said generator, a power supply cable in proximity to said inductive means for supplying said radio receiver with electrical  $_{25}$ power from an available power source, whereby disturbance signals tend to be induced in said inductive means and interfere with the remote control of said radio receiver, filter means at the receiver connected to said cable, and additional filter means disposed near the juncture of said cable and said power source for preventing said disturbance signals from entering said cable and causing interference in said inductive means.

13. In a remote control system, apparatus to 35be controlled located at a first point, apparatus at a second and remote point for controlling said first-mentioned apparatus, means at said second point for generating an electrical wave, means for keying said wave generator to produce a num- 40 ber of short pulses of predetermined duration, auxiliary means associated with said keying means for keying said generator to produce short pulses followed by a longer pulse of controllable duration, a step-by-step switching means at said 45 first point having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to the number of said short and long pulses for advancing said switch arm to a corresponding one of said operating 50 positions, means associated with some of said operating positions for effecting a control function, and means associated with other of said operating positions for effecting a different control function, the magnitude of said last-named con- 55 trol being a function of the duration of said longer pulse.

14. In a control system for a radio receiver or the like, means at a control point remote from said receiver for generating an electrical wave, means for keying said wave generator to produce a number of short pulses of predetermined duration, auxiliary means associated with said keying means for keying said generator to produce short pulses followed by a longer pulse of controllable duration, a step-by-step switching means at said receiver having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to the number of said short and long pulses for advancing said switch arm 70 to a corresponding one of said operating positions, means associated with some of said operating positions for effecting the tuning of said receiver, and means associated with other of said

extent of said last-named control being a function of the duration of said longer pulse.

15. In a control system for a radio receiver or the like, means at a control point remote from said receiver for generating an electrical wave, means for keying said wave generator to form a control signal comprising a number of short pulses of predeterminad duration, auxiliary means associated with said keying means for keying said generator to form a control signal comprising at least one short pulse followed by a longer pulse of manually-controllable duration, a stepby-step switching means at said receiver having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to the total number of said pulses for advancing said switch arm to a corresponding one of said operating positions, means associated with some of said operating positions for effecting the tuning of said receiver in response to control signals comprising only short pulses, and means associated with other of said positions for effecting changes in volume level in response to control signals comprising both short pulses and a longer pulse, the extent of said volume level change being a function of the duration of said longer pulse.

16. In a control system for a radio receiver, step-by-step switch means at said receiver comprising a pair of movable arms and stationary contacts associated respectively with said arms, means controlled by one of said arms and its associated contacts for changing the tuning of said receiver, means controlled by the other arm and its associated contacts for muting said receiver, and means for actuating said arms in unison, to thereby tune said receiver to a desired station and to render the receiver inoperative during tuning thereof.

17. In a control system for a radio receiver, step-by-step switch means at said receiver comprising a pair of rotatable arms and stationary contacts associated respectively with said arms, means controlled by one of said arms and its associated contacts for changing the tuning of said receiver, means controlled by the other arm and its associated contacts for muting said receiver, means for generating a plurality of control signal impulses, and means responsive to said signal impulses for actuating said arms in unison, to thereby tune said receiver to a desired station and to render the receiver inoperative during tuning thereof.

18. In a control system for a radio receiver, step-by-step switch means at said receiver comprising a pair of rotatable arms and stationary contacts associated respectively with said arms, means controlled by one of said arms and some of its associated contacts for varying the volume level of said receiver, means controlled by said one arm and other of its associated contacts for changing the tuning of said receiver, means controlled by the other arm and its associated contacts for muting said receiver, means for generating a plurality of control signal impulses, and means responsive to said signal impulses for actuating said arms in unison, to thereby vary the volume level of the receiver or tune the same to a desired station, the said contacts associated with said other arm for muting the receiver being arranged for engagement by the said arm coincident with the tuning of the receiver.

receiver, and means associated with other of said positions for effecting control of volume level, the 75 a motor coupled to said tuning shaft, a plurality

of energizing circuits for said motor, a plurality of control circuits for said volume varying means, a controller in each energizing circuit to deenergize said motor in response to movement of said shaft to predetermined positions, a step-by-step switch having a neutral position and a plurality of successive circuit closing positions, means responsive to a plurality of successive impulses to move said switch from neutral position to certain successive positions in which it closes suc- 10 cessive control circuits and to other successive positions in which it closes successive energizing circuits, a delayed circuit control means having a predetermined time constant, reset means under the control of said delayed means to move 15 said switch to neutral position, and means responsive to the energization of said motor to control the effectiveness of said delayed means, whereby a reset operation is prevented until said motor has been deenergized.

20. In a control system for a radio receiver or the like, means for generating a train of signal impulses of substantially equal duration, means for generating another signal including an impulse of controllable duration, and common means at the receiver responsive to said first-mentioned impulses for tuning the receiver to a desired intelligence signal, and responsive to said other signal for varying the volume level of the intelligence being reproduced by the 30

receiver.

21. In a control system for a radio receiver or the like, means for generating a train of control impulses of substantially equal fixed duration and having predetermined frequency 35 characteristics, means for generating another control signal including an impulse of controllable duration, said last-mentioned signal having frequency characteristics identical to those ing only in the duration of said controllable impulse, means at the receiver responsive to said first-mentioned impulses for tuning the receiver to a desired intelligence signal, and means at the for varying the volume level of the intelligence signal being reproduced by the receiver.

22. In a remote control system, apparatus to be controlled located at a first point, apparatus at a second and remote point for controlling said 50 first-mentioned apparatus, means at said second point for generating an electrical wave, means for keying said wave generator to produce a number of short pulses of predetermined duration, auxiliary means associated with said key- 55 ing means for producing a longer pulse of controllable duration, a step-by-step switching means at said first point having a movable switch arm and a plurality of selectable operating posinumber of generated pulses for advancing said switch arm to a corresponding one of said operating positions, means associated with some of said operating positions for effecting a control said operating positions for effecting a different control function, the magnitude of said lastnamed control being a function of the duration of said longer pulse.

or the like, means at a control point remote from said receiver for generating an electrical wave, means for keying said wave generator to produce a number of short pulses of predetermined duration, auxiliary means associated with said 75 controllable impulse.

keying means for producing a longer pulse of controllable duration, a step-by-step switching means at said receiver having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to the total number of generated pulses for advancing said switch arm to a corresponding one of said operating positions, means associated with some of said operating positions for effecting the tuning of said receiver, and means associated with other of said positions for effecting control of volume, the extent of said last-named control being a function of the duration of said longer pulse.

24. In a control system for a radio receiver or the like, means at a control point remote from said receiver for generating an electrical wave, means for keying said wave generator to form a control signal comprising a number of short pulses of predetermined duration, auxiliary means associated with said keying means for keying said generator to form a control signal including a longer pulse of manually controllable duration, a step-by-step switching means at said receiver having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to the total number of said pulses for advancing said switch arm to a corresponding one of said operating positions, means associated with some of said operating positions for effecting the tuning of said receiver in response to control signals comprising only short pulses, and means associated with other of said positions for effecting changes in volume level in response to control signals including said longer pulse, the extent of said volume level change being a function of the duration of said longer pulse.

25. In a control system for a radio receiver of said train of impulses, said impulses differ- 40 having a gain control device, the provision of controllable driving means coupled to said gain control device for effecting change in the output volume level of said receiver, means for generating a control signal including an impulse of receiver responsive to said controllable impulse 45 controllable duration, means including a stepping mechanism at said receiver for actuating said controllable means in response to said control signal, said stepping mechanism being responsive to the duration of said controllable impulse for controlling the magnitude of the change in volume level, and means for homing said stepping mechanism upon the termination

of said controllable impulse.

26. In a control system for a radio receiver having a volume control device, means at the receiver for operating said device so as to increase or decrease the volume level, said means including a step-by-step device having a home position and a plurality of selectable operating tions, positioning means responsive to the total 60 positions, means urging said step-by-step device to its home position, means for generating a control signal including an impulse of controllable duration, stepping means responsive to the total number of impulses in said control signal function, and means associated with other of 65 for operating said step-by-step device to effect a volume increase or decrease and for controlling the extent of the volume variation according to the duration of said controllable impulse, and means for returning said step-by-step device to 23. In a control system for a radio receiver 70 home position after a predetermined time interval following the initiation of said impulses, said stepping means preventing return of the step-by-step device to home position if said interval terminates within the duration of said

27. The combination with a radio receiver provided with an operable volume control device and electric driving means for operating the volume control device, of a step switch mechanism connected with said electric driving means for selectively controlling the operation thereof, operation of said step switch mechanism to a predetermined one of its positions acting to operate the volume control device substantially continuously and relatively slowly toward one extreme control position thereof and in another predetermined position to operate the volume control device in the same manner but toward the other extreme control position thereof, means for selectively generating and transmitting pulses of controlling signal currents, the number of pulses transmitted during any one cycle of operation of said last named means being determined by the number of steps it is desired to advance the step switch mechanism from its home position, means including a relay device having a predetermined time delay for returning the step switch to its home position after a time interval which is appreciably longer than the time interval between successive pulses of a train of control pulses during any cycle of operation whereby said step switch assumes its home position after the last pulse of a cycle of operation, and operable means for extending the time of transmission of the last impulse of the cycle of operation to thereby maintain the step switch in the desired position a length of time determined by the degree of volume change desired.

28. In a control system for a radio receiver, means for producing a train of electrical control 35 impulse signals of predetermined periodicity, a stepping mechanism comprising a movable contact and a bank of stationary contacts, said bank including at least one dead first contact able by the engagement of said movable contact with said active contacts for effecting a control function at the receiver, a stepping coil associated with said stepping mechanism for position to said dead and active contacts, means for supplying said control signals to said stepping coil, and means for preventing disturbance impulses of periodicity different than that of contact beyond said dead contact.

29. In a remote control system, apparatus to be controlled located at a first point, apparatus at a second and remote point for controlling said point for generating an electrical wave, means for keying said wave generator to produce a number of short pulses of predetermined duration, auxiliary means associated with said keying means for keying said generator to produce 60 at least one short pulse followed by a longer pulse of controllable duration, a step-by-step switching means at said first point having a movable switch arm and a plurality of selectable operating positions, positioning means responsive to 65 the number of said short and long pulses for advancing said switch arm to a corresponding one of said operating positions, means associated with some of said operating positions for effecting a control function, and means associated 70 with other of said operating positions for effecting a different control function, the magnitude of said last-named control being a function of the duration of said longer pulse.

ceivers, means for producing a train of electrical control impulse signals, a stepping mechanism comprising a movable contact and a bank of stationary contacts, said bank including at least one dead first contact and a plurality of active contacts, a stepping coil associated with said stepping mechanism for advancing said movable contact from a zero position to said dead and active contacts, means for supplying said control signals to said stepping coil, apparatus connected with said active contacts for controlling the operation of said receiver in response to said control signals, and means responsive to random disturbance impulses for returning said movable contact to zero position after a predetermined time interval following the initial disturbance impulse, said last-named means tending to prevent widely spaced disturbance impulses from advancing said movable contact be-20 youd said dead contact.

31. In a control system for a radio receiver, a stepping mechanism comprising a movable contact and a bank of stationary contacts, means controlled by said mechanism for effecing re-25 ceiver control functions, stepping means for advancing said movable contact in response to control signals, homing means for effecting the release of said movable contact, a common primary energy supply means for said stepping means and said homing means, switching means operable to simultaneously deenergize said stepping means. and said supply means, and capacitive means interposed between said supply means and said homing means for maintaining said homing means energized for a short interval to thereby: insure homing of said mechanism after each usage of the control system.

32. In a remote control system for a radio receiver wherein for any one selecting cycle a preand a plurality of active contacts, means oper- 40 determined number of controlling pulses of signal currents are transmitted from the remote point to the control point, the number thereof being determined by the controlling action desired, a plurality of selectable circuits at the readvancing said movable contact from a zero 45 ceiver each acting upon selection thereof to effect a predetermined controlling action, a step switch device at the receiver having a plurality of contact positions corresponding to said selectable circuits, each of said contact positions being consaid control signals from advancing said movable 50 nected with its associated circuit, said step switch being arranged to select any one of said circuits, a stepping coil mechanism for the step switch device arranged to advance the step switch step by step from an initial starting position to any first-mentioned apparatus, means at said second 55 one of said plurality of contact positions to thereby select one of the circuits, means at the receiver for receiving the controlling pulses transmitted from the remote point and exciting the stepping coil mechanism in accordance therewith, whereby upon receipt of the controlling pulses representing a selecting cycle said step switch device is advanced from its starting position to a position corresponding to the number of pulses of signal currents received, and means including a relay device having a predetermined time delay for automatically returning said step switch device to its initial starting position.

33. In a remote control system for a radio receiver wherein for any one selecting cycle a predetermined number of controlling pulses of signal currents are transmitted from the remote point to the control point, the number thereof being determined by the controlling action de-30. In a remote control system for radio re- 75 sired, means at the remote point for generating

said pulses, a plurality of selectable circuits at the receiver each acting upon selection thereof to effect a predetermined controlling action, a step switch device at the receiver having a plurality of contact positions corresponding to said selectable circuits, each of said contact positions being connected with its associated circuit, said step switch being arranged to select any one of said circuits, a stepping coil mechanism for the step switch device arranged to advance the step 10 switch step by step from an initial starting position to any one of said plurality of contact positions to thereby select one of the circuits, means at the receiver for receiving the controlling pulses transmitted from the remote point and 15 exciting the stepping coil mechanism in accordance therewith, whereby upon receipt of the controlling pulses representing a selecting cycle said step switch device is advanced from its starting position to a position corresponding to the num- 20 ber of pulses of signal currents received, means including a relay device having a predetermined time delay for automatically returning said step switch device to its initial starting position, and operable means at the remote point for extending 25 the time of transmission of a controlling pulse to thereby maintain the step switch device in a desired position a length of time determined by the degree of controlling action desired.

34. In a remote control system, a controlled 30 radio receiving station and a controlling station remote from said receiving station, said controlling station including means operative selectively to transmit various trains of consecutive electrical impulses consisting of different numbers 35 of impulses respectively, a first one of said trains, consisting of a small number of impulses, being effective to cause a volume increase at said receiving station, a second of said trains, consisting of a small but different number of impulses, 40 being effective to cause a volume decrease at said receiving station, others of said trains, consisting in each case of larger numbers of impulses, being effective each to tune the receiver at said receiving station to a particular signal carrier frequency individually, said receiving station comprising, in addition to the aforementioned receiver, common means operative in response to said first and second trains of impulses to increase and decrease, respectively, the output volume of the receiver, and further operative in response to said other trains to tune said receiver in conformity with the number of impulses constituting the particular received tuning train.

35. In a remote control system, a controlled 65 radio receiving station and a remotely situated control station, there being only a space medium interconnecting said stations, means at said control station for generating and transmitting via said space medium a variety of trains of electromagnetic impulses, which trains are mutually differentiated by the number of impulses of which they are respectively constituted, manually controlled means at said control station for selectively determining which of said trains is to be transmitted, said controlled station comprising a radio receiver and control means selectively responsive to said trains of impulses to tune said receiver and to regulate the output volume thereof, said control means including a step-by-step 70 operation. selector switch having a multiplicity of fixed contacts and a movable contact operative to engage

said fixed contacts consecutively and individually, said controlled station also comprising a plurality of local circuits, each including, individually, one of said fixed contacts and arranged to be closed only when said movable contact engages its individually associated fixed contact, each of said local circuits being effective, when completed, to tune said receiver to a particular radio channel, individually, said controlled station also comprising two additional local circuits, each including, individually, one of said fixed contacts and arranged to be closed only when said movable contact engages its individually associated fixed contact, one of said additional local circuits being effective, when completed, to cause an increase in the output volume of said receiver, the other of said additional local circuits being effective, when completed, to cause a decrease in the output volume of said receiver, said control means also including an actuating electromagnet responsive to incoming electromagnetic impulses to move said movable contact proportionately, in each instance, to the number of received impulses constituting the incoming train, and means at said controlled station, independent of said remote control station, for automatically returning said movable contact to a predetermined starting point following each completed operation thereof, thereby conditioning said selector switch for a succeeding operation.

36. In combination, a remote control station including means operative to propagate into space, individually and selectively a plurality of signal trains, each consisting of a predetermined number of closely spaced consecutive impulses, each of which impulses is composed, in turn, of a continuous series of high frequency electromagnetic oscillations, each of said trains being differentiated from all the others by the number of said impulses of which it is composed; and a controlled station remote from said control station and connected therewith only through the space medium, said controlled station comprising a radio receiver and control equipment therefor which is selectively responsive to said trains of impulses to tune said receiver selectively to various predetermined radio channels and to regulate the output volume of said receiver, said controlled station including a plurality of individual local circuits and selector means for selectively actuating said circuits in response to trains of impulses received from said remote control station, the selection being determined by the number of impulses constituting the received train, certain of said local circuits being effective, when selected and actuated, to cause a variation of receiver output volume, others of said local circuits each being effective, when selected and actuated, to tune said radio receiver to a particular radio channel, means at said controlled station operative automatically to deactuate said selector means following each volume change operation thereof, whereby to retain the regulation of volume under control of the operator at said remote control station, and means at said controlled station for automatically restoring said selector means to a predetermined normal condition after a tuning operation has been performed and preparatory to a succeeding tuning

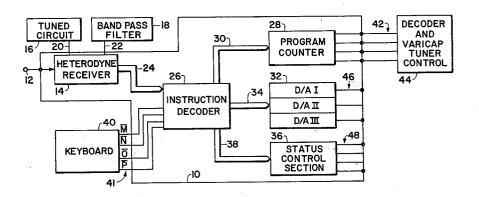
MILTON L. THOMPSON.

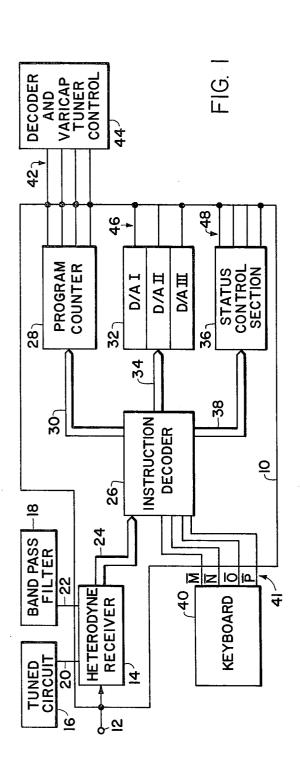
### United States Patent

### Maeder

3,974,451 [11]

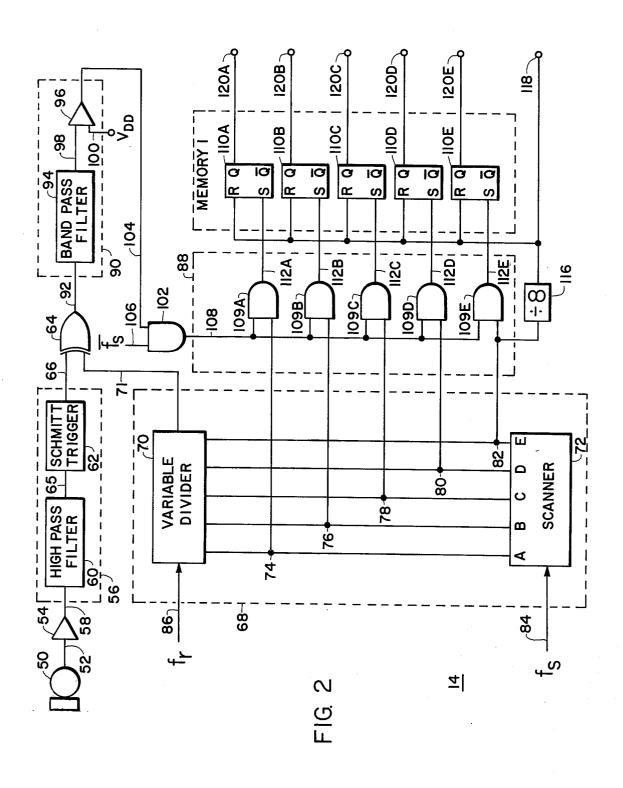
[45] Aug. 10, 1976


| [54]  | TV REMO               | TE CONTROLLER                                          |
|-------|-----------------------|--------------------------------------------------------|
| [75]  | Inventor:             | Heinz B. Maeder, Tempe, Ariz.                          |
| [73]  | Assignee:             | Motorola, Inc., Chicago, Ill.                          |
| [22]  | Filed:                | July 31, 1975                                          |
| [21]  | Appl. No.:            | 601,119                                                |
| [52]  | U.S. Cl<br>343/2      | 325/392; 325/55; 328; 340/171 PF; 340/171 A; 179/15 BA |
| [51]  | Int. Cl. <sup>2</sup> | Н04Ј 3/06                                              |
| [58]  | Field of Se           | earch 325/392, 55; 179/15 BA                           |
| [56]  | UNI                   | References Cited FED STATES PATENTS                    |
| 3,931 | ,472 1/19             | 76 Gill 179/15 BA                                      |


Primary Examiner-Harold Pitts Attorney, Agent, or Firm-Thomas G. Watkins, III; Harry M. Weiss

#### **ABSTRACT** [57]

An asynchronous receiver system for remotely controlling an apparatus and capable of being substantially completely constructed on a single integrated circuit chip. This system includes an input stage means for receiving during successive receiving cycles an incoming signal comprising repetitive groups of serially received frequency bursts. Each burst is composed of one of a plurality of frequencies and the frequency of the incoming signal lies between harmonic frequencies of interfering signals. A frequency divider means sequentially generates a plurality of localizer frequencies at a first output terminal and a plurality of timing signals at a second plurality of output terminals. Each timing signal is associated with one of the plurality of localizer frequencies. A mixer receives inputs from the input stage and from the first output terminal and generates sum and difference signals in response to the incoming signal and to the plurality of localizer frequencies. A detector is coupled to the mixer and transmits signals of a selected frequency and amplitude range. A gating means is coupled to the detector and to the second plurality of output terminals. Each gating means is responsive to one of the plurality of timing signals and generates during successive receiving cycles successive groups of digital signals. Each of these digital signals represents one of the plurality of received frequency bursts. A memory means is coupled to the gating means and stores the digital signals. An error checking circuit is coupled to the output of the memory means and compares successive groups of digital signals in order to provide error-free operation.


#### 14 Claims, 8 Drawing Figures





F1G. 4

| f Loc-f              | 7260 Hz            | 7238 Hz                                                                                | 7322 Hz                                                                                                                                                                                                                        | 7326 Hz                                                                                                                                                                                                                                                                                                 | 7308 Hz                                                                                                                                                                                                                                                                                                                                                                          | 7260 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|--------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIVIDING RATIO       | 31                 | 30                                                                                     | 52                                                                                                                                                                                                                             | . 58                                                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECEIVER: fREFNOM=1,300,400 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NOM. LOC. OSC. FREQ. | f LOCA = 41,248 Hz | f LOCB = 43,347 Hz                                                                     | f LOCC = 44,841 Hz                                                                                                                                                                                                             | $f_{LOCD} = 46,422Hz$                                                                                                                                                                                                                                                                                   | f LOCE1 = 48,163 Hz                                                                                                                                                                                                                                                                                                                                                              | f LOCE2 = 50,015 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DIVIDING RATIO       | 26.5               | 25.5                                                                                   | 24.5                                                                                                                                                                                                                           | 23.5                                                                                                                                                                                                                                                                                                    | 22.5                                                                                                                                                                                                                                                                                                                                                                             | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fREFNOM= 919,232 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M. U.S. FREQ.        | = 34,688 Hz        | 3 = 36,048 Hz                                                                          | Hz 37,519 Hz                                                                                                                                                                                                                   | Hz 39,116 Hz                                                                                                                                                                                                                                                                                            | 1 = 40,854 Hz                                                                                                                                                                                                                                                                                                                                                                    | 2= 42,755 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRANSMITTER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | -                  | DIVIDING RATIO NOM. LOC. OSC. FREQ. DIVIDING RATIO f<br>z 26.5 f LOCA = 41,248 Hz 31 7 | DIVIDING RATIO         NOM. LOC. OSC. FREQ.         DIVIDING RATIO         f           z         26.5         f LOCA = 41,248 Hz         31         7           z         25.5         f LocB = 43,347 Hz         30         7 | DIVIDING RATIO         NOM. LOC. OSC. FREQ.         DIVIDING RATIO         f           z         26.5         f LOCA = 41,248 Hz         31         7           z         25.5         f LOCB = 43,347 Hz         30         7           z         24.5         f LOCC = 44,841 Hz         25         7 | DIVIDING RATIO         NOM. LOC. OSC. FREQ.         DIVIDING RATIO         f           z         26.5         f LOCA = 41,248 Hz         31         7           z         25.5         f LOCB = 43,347 Hz         30         7           z         24.5         f LOCC = 44,841 Hz         25         7           z         23.5         f LOCD = 46,422 Hz         28         7 | DIVIDING RATIO         NOM. LOC. OSC. FREQ.         DIVIDING RATIO         f           z         26.5         f LOCA = 41,248 Hz         31         7           z         25.5         f LOCB = 43,347 Hz         30         7           z         24.5         f LOCC = 44,841 Hz         25         7           z         23.5         f LOCD = 46,422 Hz         28         7           z         22.5         f LOCE = 48,163 Hz         27         7 | DIVIDING RATIO         NOM. LOC. OSC. FREQ.         DIVIDING RATIO         f           z         26.5         f LOCA = 41,248 Hz         31         7           z         25.5         f LOCB = 43,347 Hz         30         7           z         24.5         f LOCC = 44,841 Hz         25         7           z         23.5         f LOCD = 46,422 Hz         28         7           z         22.5         f LOCE = 48,163 Hz         27         7           z         22.5         f LOCE = 50,015 Hz         26         7 |



U.S. Patent Aug. 10, 1976 Sheet 3 of 5

3,974,451

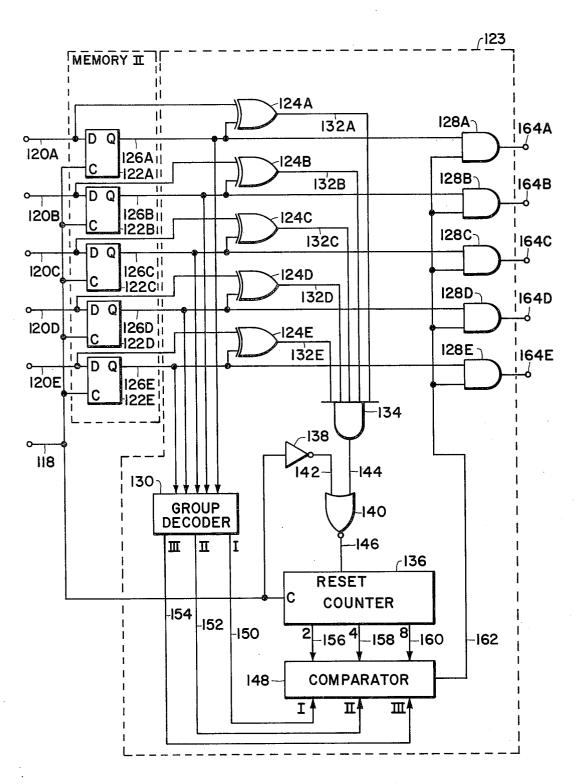



FIG. 3

U.S. Patent Aug. 10, 1976 Sheet 4 of 5 3,974,451

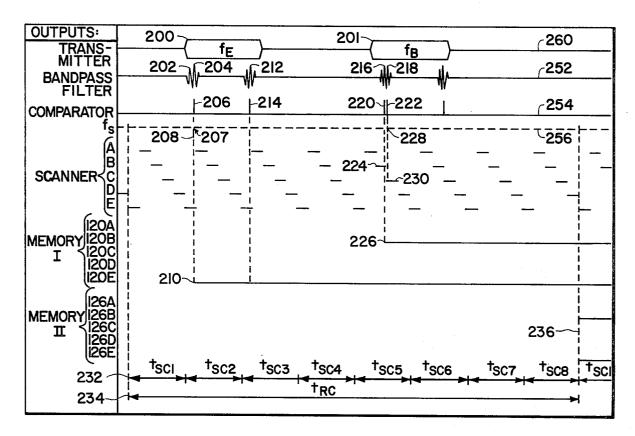
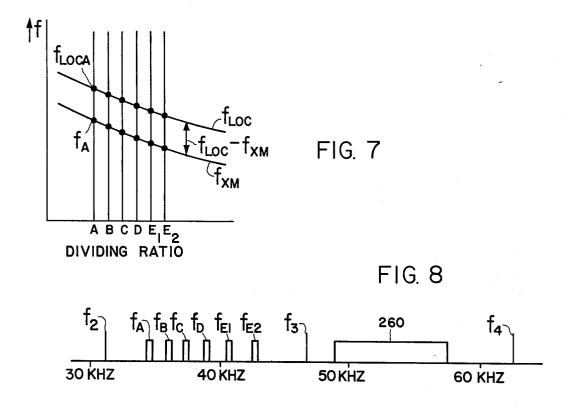




FIG. 5



U.S. Patent Aug. 10, 1976

Sheet 5 of 5

3,974,451

|          | CHANNEL | fA      | fB | fC | fD  | fΕ                                           | M  | Ñ        | ō        | P        | FUNCTION   |                           |  |
|----------|---------|---------|----|----|-----|----------------------------------------------|----|----------|----------|----------|------------|---------------------------|--|
|          | 1       | 0       | 0  | 0  | 0   | 1                                            |    |          |          |          | PRI )      |                           |  |
|          | 2       | 1       | 0  | 0  | 0   | 1                                            |    |          |          |          | PR2        |                           |  |
|          | 3       | 0       | 1  | 0  | 0   | 1                                            |    |          |          |          | PR3        |                           |  |
|          | 4       | 1       | 1  | 0  | 0   | ı                                            |    |          |          |          | PR4        |                           |  |
|          | 5       | 0       | 0  | 1  | 0   | 1                                            |    |          |          |          | PR5        |                           |  |
|          | 6       | 1       | 0  | 1  | 0   | 1                                            |    |          |          |          | PR6        | > ON                      |  |
|          | 7       | 0       | 1  | 1  | 0   | 1                                            |    |          |          |          | PR7        | 014                       |  |
|          | 8       | 1       | 1  | 1  | 0   | 1                                            |    |          |          |          | PR8        |                           |  |
|          | 9       | 0       | 0  | 0  | 1   | ı                                            |    |          |          |          | PR9        |                           |  |
|          | 10      | 1       | 0  | 0  | 1   | ı                                            |    |          |          |          | PRIO       |                           |  |
|          |         | 0       | 1  | 0  | 1   | ! !                                          |    |          |          |          | PRII       |                           |  |
| _        | 12      |         | 1  | 0  | _   | !                                            |    |          |          | L        | PRI2       |                           |  |
|          | 13      | 0       | 1  | 0  | 0   | 0                                            |    | 0        | 1        |          | CS-        | COLOR                     |  |
|          | 14      | !       |    | 0  | 0   | 0                                            | 0  | 0        | 1        |          | 1 <        | SATURATION                |  |
|          | 15      | 0       | 0  | 1  | 0   | 0                                            |    | 1        | 0        |          | VO-)       | > VOLUME                  |  |
|          | 16      |         | 0  | 1  | 0   | 0                                            | 0  | -        | 0        | 1        | \v0+\      |                           |  |
|          | 17      | 0       |    | 1  | 0   | 0                                            | 1  | 0        | 0        | 1        | BR-        | >BRIGHTNESS               |  |
|          | 18      | Ĭ       | 1  | 1  | 0   | 0                                            | 0  | 0        | 0        | 1        | BR+        | OT 1 1 D D 1              |  |
| DIRECT   | 19      | 0       | 0  | 0  | 1 . | 0                                            |    | 1        | !        | 0        | STB        | STANDBY                   |  |
| COMMANDS | 20      |         | 0  | 0  |     | 0                                            | 0  | 1        | 1        | 0        | QT         | QUICKTONE                 |  |
|          | 21      | 0       | 1  | 0  | 1   | 0                                            | 1  | 0        | 1        | 0        |            | EXTRA CONTROL<br>CHANNELS |  |
|          | 22      |         | -  | 0  |     | 0                                            | 0  | 0        | <u> </u> | 0        | D22        |                           |  |
|          | ·       |         |    |    |     |                                              |    | <u> </u> | 0        | 0        | PR+)       | PROGRAM                   |  |
|          |         |         |    |    |     |                                              | 0  |          | 0        | 0        | PR-        | COONTEN                   |  |
| <u>}</u> |         |         |    |    |     |                                              | 1, | 0        | 0        | 0        | MDA        |                           |  |
| 1        |         |         |    |    |     |                                              | 0  | 6        | 6        | 0        | ON<br>TEST | r                         |  |
| _        |         | <u></u> |    |    |     | <u>.                                    </u> | Į  | V        | ע        | <u> </u> | ILO        |                           |  |

FIG. 6

1

#### TV REMOTE CONTROLLER

#### **BACKGROUND OF THE INVENTION**

This invention relates to remote control operation of <sup>5</sup> a complex apparatus, and more particularly, to a 22 channel remote control receiver operating in the ultrasonic sound spectrum for controlling a television receiver.

Most present day remote control systems for televi- 10 sion receivers operate in the ultrasonic frequency range. The ultrasonic signal is typically generated by causing a mechanical hammer to strike a metallic rod which is tuned to be resonant at a certain frequency. The receiver typically utilizes a transducer to convert 15 this ultrasonic sound wave into an electrical signal which is then amplified. The ultrasonic receiver generally contains a number of resonant reed devices each of which is tuned to be resonant at a frequency corresponding to one of the transmitted signals. When one of 20the transmitter tuned rods is struck it sends out an ultrasonic sound wave of a predetermined frequency which is picked up by the remote control receiver where the corresponding resonant reed is energized. This causes the remote control receiver to execute the 25 desired command. A system like this is quite simple in concept, but is expensive. A great deal of mechanical assembly is required to construct the transmitter tuning rods and hammer mechanisms as well as constructing and individually tuning each of the resonant tuned 30 circuits in the receiver. A system like this is very limited in the number of functions which it can control since only about five tuned rods can be contained in a transmitter case of reasonable size. When changing from channel to channel the user is only able to remotely 35 control either an up command or a down command to the channel changer. For example, to change from channel 5 to channel 10, the user must transmit the up command to sequentially run through channels 6, 7, 8, 9 until arriving at channel 10. This system also has 40 inherent difficulties with preventing randomly generated noise signals from activating the remote control receiver. This is normally circumvented by greatly reducing the sensitivity of the remote control receiver so that only a very strong input signal will cause the re- 45 mote control receiver to operate. Due to this low sensitivity the user must often transmit the desired command several times or must come closer to the television set to ensure that a sufficient signal strength is received by the remote control receiver.

Some very recently developed remote control systems utilize a continuous wave (C.W.) transmitter capable of generating 15–30 discrete ultrasonic frequencies each of which is able to control a separate function. The difficulty with this system is that each transmitter frequency must be very closely controlled requiring the use of crystals and high accuracy components. Due to the close frequency spacing Doppler shift caused by motion, incorrect commands will be executed if the user moves the transmitter while it is transmitting. Also, since this system has no error checking circuit, it is sensitive to random noise in the ultrasonic range. Noise of this type is often generated by jingling keys on a keychain.

### **OBJECTS OF THE INVENTION**

It is an object of this invention to provide a 22 channel ultrasonic remote control receiver system substan2

tially completely constructed on a single integrated circuit chip.

It is another object of the invention to provide a 22 channel ultrasonic remote control receiver system having a heterodyne frequency conversion stage.

A further object of this invention is to provide a 22 channel ultrasonic remote control receiver system having an error checking circuit and a narrow bandwidth of operation.

It is still another object of this invention to provide a 22 channel ultrasonic remote control receiver system having only two tuned circuits, one of which is a bandpass filter.

#### SUMMARY OF THE INVENTION

Briefly described, a 22 channel ultrasonic remote control receiver system is provided for receiving an incoming signal composed of repetitive groups of serially transmitted frequency bursts, where each burst has one of a plurality of frequencies and where each group of bursts corresponds to a predetermined transmitted command. This received series of frequency bursts is mixed with a sequentially incremented local oscillator signal to produce sum and difference signals at the output of a mixer. The mixer output is coupled to a detector stage which transmits only signals having a selected frequency and amplitude range. The detected signal is then fed to a gating circuit which converts the detected signal into a plurality of digital signals where each of the digital signals corresponds to one of the plurality of frequencies of the incoming frequency bursts. The output of the gating circuit is coupled to a memory. An error checking circuit is coupled to the memory to compare successive outputs of the gating circuit. If the error checking circuit senses a consistent digital signal during a predetermined number of receiving cycles, it transmits that digital signal on to an instruction decoder. The instruction decoder then distributes the received command to one of three control circuits which directly control selected functions.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram showing a hardware embodiment of the invention system.

FIG. 2 is a block diagram representation of the first part of the heterodyne receiver.

FIG. 3 is a block diagram representation of the remaining elements of the heterodyne receiver.

FIG. 4 is a table setting out the various transmitter and receiver operating frequencies and related dividing ratios

FIG. 5 is a timing diagram representative of the remote control receiver operation.

FIG. 6 is a table showing the various remotely controllable channels and the function performed by each channel.

FIG. 7 is a graph showing the relationship of the transmitter frequencies to the receiver local oscillator frequencies.

Fig. 8 shows the relationship of the receiver system operating frequencies to other potentially interfering signals.

#### DETAILED DESCRIPTION OF THE INVENTION

In order to better illustrate the advantages of the invention and its contribution to the art, a preferred hardware embodiment will now be described in some detail. The overall operation of the invention will be

3

first described with reference to FIG. 1. In FIG. 1, the integrated circuit remote control receiver system 10 receives the amplified ultrasonic signal from input line 12. Heterodyne receiver 14 internally performs the signal processing and error checking functions. The 5 external tuned circuit 16 is coupled to heterodyne receiver 14 by line 20. Tuned circuit 16 is composed of discrete components and is used to set the reference frequency  $f_r$  for heterodyne receiver 14. Band pass filter 18 is also composed of discrete components ex- 10 ternal to the integrated circuit 10 and is coupled to the heterodyne receiver 14 by line 22. A plurality of outputs 24 couples the binary output of heterodyne receiver 14 to instruction decoder 26. Instruction decoder 26 branches different types of instructions from 15 heterodyne receiver 14 into three groups according to the function designated by each group of binary outputs. Instruction decoder 26 routes binary outputs corresponding to channel selection instructions to program counter 28 via a plurality of output lines 30. In- 20 struction decoder 26 routes outputs corresponding to analog controls such as brightness, color intensity and volume to digital to analog converter 32 via a plurality of outputs 34. Instruction decoder 26 routes status control commands to status control section 36 via a 25 plurality of output lines 38. Instruction decoder 26 can either be addressed by heterodyne receiver 14 or by the keyboard 40 located directly on the television set and coupled to instruction decoder 26 by a plurality of outputs 41. The output of program counter 28 is sent 30 via a plurality of outputs 42 to decoder and varicap tuner control 44 which is external to the integrated circuit and which is used to develop an analog voltage for use with a varicap tuner to select a desired channel. The output of digital to analog converter 32 is coupled 35 via a plurality of outputs 46 to the volume control, brightness control and color saturation control on the television receiver. The outputs of status control section 36 are coupled to a plurality of output conductors 48 to control the functions of turning the television 40 receiver from standby to on and from on to standby. The muting signal which mutes the audio portion of the television output at the speaker is also derived from this plurality of outputs 48. Status control section 36 contains two additional outputs 48 which can perform any 45 additional functions which the user desires.

FIG. 2 and FIG. 3 together show a much more detailed representation of heterodyne receiver 14. In FIG. 2, transducer 50 converts the transmitted ultrasonic sound wave into an electrical signal. Conductor 52 50 couples the output of transducer 50 to preamplifier 54. The output of preamplifier 54 is coupled to the input stage 56 of the heterodyne receiver by conductor 58. Conductor 58 in FIG. 2 corresponds to input 12 in FIG. 1. The first element of input stage 56 is high pass filter 55 60 which performs the function of passing only signals having a frequency above a predetermined frequency. In this embodiment high pass filter 60 filters out all frequencies below 30 kilohertz. The output of high pass filter 60 is coupled to Schmitt trigger 62 by conductor 60 65. Schmitt trigger 62 amplitude limits the signal transmitted to it by high pass filter 60. The output of Schmitt trigger 62 is coupled to mixer 64 by conductor 66. An exclusive OR gate performs the function of the mixer 64. Frequency divider 68 is composed of variable di- 65 vider 70 and scanner 72. Variable divider 70 is coupled to mixer 64 by conductor 71. Scanner 72 is coupled to variable divider 70 by a plurality of lines 74, 76, 78, 80

and 82. A frequency  $f_s$  is coupled to scanner 72 by input line 84. Similarly, a reference frequency  $f_r$  is coupled to variable divider 70 by input line 86. The plurality of outputs from scanner 72 such as 74 are also coupled to gating circuit 88. The output of mixer 64 is coupled to detector 90 by conductor 92. Band pass filter 94 is the first stage of detector 90 and generates an output which is coupled to comparator 96 by conductor 98. A comparison voltage VDD is coupled to comparator 96 by conductor 100. The output of comparator 96 is coupled to an AND gate 102 by conductor 104. A square wave  $\overline{f_s}$  180° out of phase with scanner input frequency  $f_s$  is coupled to AND gate 102 by conductor 106. The output of AND gate 102 is coupled to gating circuit 88 by conductor 108. Gating circuit 88 is composed of five AND gates 109 A-E. The individual outputs of the AND gates 109 A-E are coupled to a series of RS flip-flops 110 A-E by a plurality of con-

ductors 112 A–E. This group of five RS flip-flops 110 A–E is referred as memory I. A divide by eight counter 116 has its input coupled to line 82 of scanner 72 and its output coupled to each of the RS flip-flops 110 A–E contained in memory I by conductor 118. The outputs of the individual RS flip-flops contained 110 A–E in memory I are labeled 120 A–E. These outputs 120 A–E

couple memory I to memory II.

Referring now to FIG. 3, it can be seen that the outputs of memory I at 120 A-E are coupled to a plurality of DC flip-flops 122 A-E contained in memory II. The output 118 of divide by 8 counter 116 is coupled to an input of each of the DC flip-flops 122 A-E in memory II. Additionally, each of the conductors 120 A-E is coupled to a plurality of exclusive OR gates 124 A-E. Each output of flip-flop 122 A-E is coupled to one of the plurality of exclusive OR gates 124 A-E as well as to an input of a plurality of AND gates 128 A-E. Each of the outputs of memory II is additionally coupled to a group decoder 130. Each of the plurality of exclusive OR gates 124 A-E has an output 132 A-E coupled to the input of an AND gate 134. The output 118 of divide by 8 counter 116 is additionally coupled to the clock input of a binary counter 136 and to the input of an inverter 138. The output of inverter 138 is coupled to an input of NOR gate 140 by conductor 142. The output of AND gate 134 is coupled to an input of NOR gate 140 by conductor 144. The output of NOR gate 140 is coupled to the reset input of counter 136 by conductor 146. The outputs of group decoder 130 are coupled to comparator 148 by conductors 150, 152 and 154. The outputs of counter 136 are coupled to comparator 148 by conductors 156, 158 and 160. The output of comparator 148 is coupled to each of the plurality of AND gates 128 A-E by conductor 162. The processed outputs of heterodyne receiver 14 are derived from a plurality of conductors 164 A-E from the plurality of AND gates 128 A-E.

FIG. 4 shows a table listing operating frequencies and dividing ratios of both the remote control transmitter and the remote control receiver.

The left-hand side of FIG. 4 refers to transmitter operation. The transmitter generates six frequencies,  $f_A$ ,  $f_B$ ,  $f_C$ ,  $f_D$ ,  $f_{E1}$  and  $f_{E2}$ . In the current embodiment, the transmitter does not utilize  $f_{E2}$  although this sixth output frequency is a possible alternative for increased flexibility of the remote control system. The transmitted frequencies  $f_A$  through  $f_{E2}$  are derived by dividing a transmitter reference frequency of 919,232 Hertz by a dividing ratio varying between 26.5 and 21.5 and hav-

ing a spacing between each dividing ratio exactly equal to an integral number. The transmitter generates output frequencies between 34,688 Hertz and 42,755 Hertz. One complete transmitting cycle occurs during a 40 millisecond time interval. During this 40 millisecond interval there are four 10 millisecond subintervals. For each of the 22 commands which the transmitter is able to transmit to the receiver, there is a coded sequence of frequencies  $f_A$ - $f_E$  which is transmitted during each tain one of the five frequencies or it could contain a blank where no pulse is transmitted. During one complete 40 millisecond transmitting interval, each of the transmitter frequencies  $f_A$ – $f_E$  will be used no mroe than one time. As long as a command button on the trans- 15 mitter is held down the transmitter will continue to repeat the same 40 millisecond long coded signal. When the operator's finger is removed from the button the transmission will terminate. It has been found that an average push of a button on the transmitter will result in a transmission approximately 250 milliseconds (4 second) in length.

The right-hand side of FIG. 4 shows a series of six receiver local oscillator frequencies varying in range from 41,248 Hertz to 50,015 Hertz. Again, the last <sup>25</sup> receiver local oscillator frequency is an optional frequency for increased capacity and is not used in the current embodiment. Receiver localizer frequencies  $f_{LOCA}$  through  $f_{LOCE1}$  are generated by dividing a receiver reference frequency  $f_r$  equal to 1,300,400 Hertz by a  $^{30}$ dividing ratio which varies between 31 and 25. Frequency divider 68 shown in FIG. 2 generates these five local oscillator frequencies. Scanner 72 is driven by square wave  $f_s$  at input 84. Output A of scanner 72 causes variable divider 70 to divide reference fre- 35 quency  $f_r$  by 31 to generate  $f_{LOCA}$  equal to 41,248 Hertz.  $f_{LOCA}$  is the localizer frequency corresponding to a transmitted frequency of  $f_A$ . An output of scanner 72 at output B causes variable divider 70 to divide reference 43,347 Hertz at the output 71 of variable divider 70. The same is true for outputs C, D and E of scanner 72.

Input frequency  $f_s$  at 84 causes scanner 72 to generate an output at a different location A-E every 1.6 able divider 70 also changes every 1.6 milliseconds, generating a new sequencially changing localizer frequency  $f_{LOCA}$ – $f_{LOCE}$ .

Scanner 72 completes a scan of outputs A through E every 7.25 milliseconds and variable divider **70** sequen- 50 tially generates localizer frequencies  $f_{LOCA}$  through  $f_{LOCE}$ during the same 7.25 millisecond scanning interval. Heterodyne receiver 14 is set up to require eight 7.25 millisecond scanning intervals for one complete receiving cycle. Approximately 60 milliseconds is required to 55 complete receiving cycle. Extremely precise timing is not essential to the operation of this apparatus. Variations of up to  $\pm 0.5$  percent are highly acceptable. The only criterion for the timing is that one complete receiving cycle must be completed in a time interval less 60 than 10 milliseconds long which is the duration of each transmitter subinterval.

In heterodyne receiver 14 mixer 64 mixes the incoming signal at conductor 66 with the sequentially scanned series of localizer frequencies at input 71. The 65 output of mixer 64 is composed of a frequency equal to the sum of the two frequencies at its input terminals together with the difference of the two frequencies at

its input terminals; that is, the mixer 64 generates a sum and a difference signal. During any one transmitted 10 millisecond subinterval when there is a frequency burst occurring, the receiver will complete at least one full scan of all of the localizer frequencies from  $f_{LOCA}$ through  $f_{LOCE}$  and will produce a sum signal and a difference signal for each of the five localizer frequencies

scanned. The output of mixer 64 will be composed of five sum transmitter interval. Each subinterval will either con- 10 signals and five difference signals due to the combination of the unknown transmitted frequency and  $f_{LOCA}$   $f_{LOCE}$ . Band pass filter 94 is constructed to have a very narrow pass band such that it will allow only frequencies within a narrow range to be transmitted through it. All other frequencies outside of this frequency range will be rejected. In the present embodiment, band pass filter 94 is constructed to pass only signals having a frequency lying between 7000-7500 Hertz. Of the five sum signals and the five difference signals present at its input during any one transmitter subinterval, only those signals falling within a frequency range of 7000–7500 Hertz. will be passed by the band pass filter 94. If we assume that the particular transmitted subinterval which we are observing contains frequency  $f_A$  equal to 34,688 as shown in FIG. 4, it can be seen that the sums of  $f_A$  and  $f_{LOCA}$ – $f_{LOCE}$  will all be on the order of 80 kilohertz and will be well outside the pass band of the band pass filter 94. With respect to difference signals,  $f_{LOCA}$ minus  $f_A$  as is shown on the very far right-hand column of FIG. 4 is equal to 7260 Hertz which falls directly in the middle of the pass band of band pass filter 94. As it happens this is the only difference signal emanating from mixer 64 which will fall anywhere near the pass band of band pass filter 94. The difference between signals  $f_A$  and  $f_{LOCB}$ - $f_{LOCE}$  will be significantly greater than the 7.5 kilohertz maximum pass band frequency of band pass filter 94 and none of these will pass through

band pass filter 94. Referring now to FIG. 5, the upper line 250 labeled frequency  $f_r$  by 30 causing an output  $f_{LOCB}$  equal to 40 "transmitter", shows a series of transmitter subintervals. During the particular transmission shown transmitter frequencies  $f_E$  at 200 and  $f_B$  at 201 have been transmitted with a blank subinterval between them where no frequency is transmitted. Transmitted signals milliseconds. Therefore the output frequency of vari-  $^{45}$   $f_E$  and  $f_B$  are each 10 milliseconds in duration. The second line 252 in FIG. 5 shows the output of band pass filter 94. The presence of an input signal at the input of band pass filter 94 causes the output of band pass filter 94 to built up exponentially to a peak. Since the output of variable divider 70 produces a given localizer frequency for only 1.6 milliseconds, the duration of the difference signal at the input of band pass filter 94 will be only 1.6 milliseconds. Therefore the output of band pass filter 94 shown at 202 in FIG. 5 will build up to a maximum and then immediately begin to decay since the input signal will have been removed shortly after the band pass filter reaches its peak.

When the output of band pass filter 94 exceeds the voltage V<sub>DD</sub> present at input 100 of comparator 96 the comparator will generate a pulse whenever its input 98 is equal to or greater than  $V_{DD}$ . Reference 204 is used to illustrate the point at which the band pass filter output 98 exceeds  $V_{DD}$ . The output of comparator 96 at 104 is represented by line 254. This pulsed output of comparator 96 is fed by conductor 104 to AND gate 102. A signal  $\overline{f_s}$  is present at terminal 106 of AND gate 102 to disable AND gate 102 during the first half of each 1.6 millisecond scanning subinterval. This gating

Page 215 of 1414

is necessated by the fact that band pass filter 94 continues to have an output due to ringing for a short period of time following the cessation of an input since its inductive and capacitive components contain a voltage which does not decay to zero immediately. This 0.8 5 millisecond delay totally eliminates false indications due to ringing

Line 256 in FIG. 5 shows the representation of  $f_s$  and  $\overline{f_s}$  represented by the space between the dashes on line 256. AND gate 102 will only generate an output at 108 10 when there is a higher output 104 from comparator 96

and a low or zero output due to  $f_s$ .

Dotted line 208 on FIG. 5 shows just this event occurring. At 206 there is an output present from the comparator 96 while at point 207 there is a space pre- 15 sent in the  $f_s$  square wave. These two conditions generate an output from AND gate 102 which is fed into comparison circuit 88. All of these events occur simultaneously in real time. The output at 108 is occurring simultaneously with the reception of the corresponding  $^{20}$ transmitted frequency burst. Since we are dealing with a transmitted subinterval 200 containing frequency  $f_E$ scanner 72 will be generating a timing signal at output E. This scanner output at A also causes variable divider 70 to generate localizer frequency  $f_{LOCE}$  at 71. During 25 the second half of this 1.6 millisecond scanning subinterval AND gate 109E in gating circuit 88 will have a high level input due to the output of scanner 72 at conductor 82. AND gate 109E will also have a high level input present at conductor 108 due to the high 30 output from AND gate 102. These two high inputs at conductors 82 and 108 cause a high output from AND gate 109E which is coupled to RS flip-flop 110E by conductor 112E. This sets RS flip-flop 110E and causes a high level output at output 120e.

In FIG. 5, reference 210 shows a memory I output 120E present from the time at which incoming frequency  $f_E$  was detected. During the same transmitter subinterval 200 when frequency  $f_E$  is being received it can be seen that there is another band pass filter output 40 ated by divide by 8 counter 116 performs the function occurring at 212. When the amplitude of the signal 212 exceeds voltage  $V_{\text{DD}}$  the comparator 96 generates an additional output at 214 corresponding to the  $f_E$  input. The proper relationship such that the output of the comparator at 104 and the  $\overline{f_s}$  signal present at input 106 45 of AND gate 102 are such that an additional output will be generated of AND gate 109E in gating circuit 88. This transmits a pulse to the set input of RS flip-flop 110E in memory I. Referring to line 210 in FIG. 5 again, it can be seen that RS flip-flop 110E is already 50 carrying a high output level at output 120E so that no additional information is conveyed by this second receiver scan during the same transmitter subinterval containing frequency  $f_E$ .

In FIG. 5 during the transmitter subinterval contain- 55 ing frequency  $f_B$  the output of the band pass filter exceeds  $V_{\it DD}$  at both points 216 and 218 causing the comparator to generate two outputs 220 and 222. The output at 220 occurs at a time when  $f_s$  is in a low state which causes AND gate 102 to produce a high level 60 output. This high level output from AND gate 102 occurs at a time when scanner 72 is generating an output at B as shown by reference number 224 in FIG. 5. This causes the input AND gate 109B in gating circuit 88 to have two high level inputs which generates a high 65 level output at 112B, which sets RS flip-flop 110B, and causes an output at output 120B. This memory I output is shown by line 226 in FIG. 5. The comparator output

at reference number 222 occurs at a time when  $f_s$  is at a high level and is shown by reference point 228. Since  $\overline{f_s}$  will be in a low state AND gate 102 will be disabled so that the comparator output at 222 has no effect on any circuit following AND gate 102. The comparator output at is caused by an undesirable ringing effect in the band pass filter and would produce an inaccurate result if the disabling AND gate 102 were not present in the circuit. The band pass filter output at reference position 218 has overlapped into the scanner subinterval corresponding to a frequency  $f_c$  as shown by point 230. This would have caused an output to have been generated during scanning subinterval C when a frequency  $f_B$  was present at the input of the receiver.

In FIG. 5, line 232 shows the eight separate scanning intervals during one complete receiving cycle. The duration of one complete receiving cycle is shown by line 234. Each receiver scanning interval is designated by  $t_{sc}$  and each of these scanning intervals is approximately to 7.25 milliseconds in duration. One complete receiving cycle designated by  $t_{rc}$  is equal to 8 of these scanning intervals and is approximately 58 milliseconds in duration. The duration of one complete receiving cycle must be greater than the 40 millisecond duration of one complete transmitter cycle so that at least one complete transmit cycle is analyzed during every receiving cycle. The length of a receiving cycle was chosen to be substantially longer than that of a transmitter cycle to allow for wide variations in operating parameters.

At the end of one receiving cycle shown by line 236 in FIG. 5, divide by 8 counter 116 (shown in FIG. 2), generates an output pulse at output conductor 118 which simultaneously performs two functions. First, it clocks the outputs present at output conductors 120A-E into the DC flip-flop 112A-E of memory II. Simultaneously, output 118 resets each of the RS flipflops 110A-E in memory I. This clocking pulse generof transferring the stored data in memory I into memory II for use with comparison circuit 123 in the follow-

FIG. 6 shows the 22 commands which can be executed remotely by this system. To improve the noise immunity of the ultrasonic remote control system, these 22 commands were divided into three groups. Group I consists of channels 13 through 22 excluding channel 19. Most of these controls fall into the analog category, such as brightness and volume, where a single noise induced error would be unobservable. Channels 1 through 12 control the selection of the program to be viewed. An error here would be highly undesirable since the television set would switch to the wrong station if an error induced by noise was present. Channels 1 through 12 in the remote control receiver system are placed into Group II. When the television set is in an "off" state and the user presses a button corresponding to a Channel 1 through 12, the remote control receiver system not only dials up the selected channel but also turns the television set on. Since having a noise induced signal cause the television set to switch on is very undesirable, this function is placed in Group II which has the highest degree of noise immunity. Channel 19 is also placed in Group III for a similar reason. Channel 19 performs the operation of turning the television from on to a standby state where only the remote control receiver is operating.

3,974,451

q

In FIG. 3 group decoder 130 in comparison circuit 123 has its inputs connected to the outputs of memory Il at conductors 126A-E. Group decoder 130 decodes the outputs from memory II and determines whether that particular command falls into Group I, Group II or 5 Group III. Group decoder 130 has three outputs connected to comparator 148. Output 150 corresponds to a Group I command, output line 152 to a Group II command and output line 154 to a Group III command. Comparator 148 will require the reception of two com- 10 plete error-free receiving cycles prior to executing a Group I command. Comparator 148 will require four complete error-free receiving cycles before executing a Group II command and will require eight complete error-free receiving cycles before causing a Group III 15 command to be executed.

The error checking is performed by a plurality of exclusive OR gates 124A-E. Each of these exclusive OR gates has one input connected to the input of memory II at conductors 120A-E while the other input of 20 these exclusive OR gates is connected to the output of memory II at conductors 126A-E. Two receiving cycles must be completed to perform one comparison. At the end of two receiving cycles there will be an input from memory I present at lines 120A-E due to the 25 second receiving cycle and there will be a stored input in memory II at outputs 126A-E corresponding to the stored outputs from the first receiving cycle. Each of the exclusive OR gates 124A-E compares the output generated by the first receiving cycle with the output 30 generated by the second receiving cycle. If these are both the same, each of the exclusive OR gates will generate a high level output at 132A-E. If all of the outputs 132A-E are high, indicating that all the inputs are consistent, AND gate 134 will generate a high level 35 output at output conductor 144. Inverter 138 inverts the output of divide by 8 counter 116 so that the logic will be proper. When divide by 8 counter 116 is generating a high level output at 118, 138 will be generating a low level output at conductor 142. If there have been 40 no errors detected by Exclusive OR gates 124A-E, AND gate 134 will generate a high level output at conductor 144 and inverter 138 will generate a low level output at 142 causing NOR gate 140 to remain in a low state.

The output of divide by 8 counter 116 is coupled to counter 136 by conductor 118. The counter 136 counts the number of receiving cycles and generates an output at conductor 156 when two consistent receiving cycles are completed or an output at output conductor 158 50 when four consistent receiving cycles are completed or an output at conductor 160 when eight consistent receiving cycles are completed. When comparator 148 receives an output from counter 136 corresponding to the desired number of receiving cycles designated by 55 group decoder 130, comparator 148 generates an output pulse at output conductor 162 which is coupled to a plurality of AND gates 128A-E. This high level output from comparator 148 enables the plurality of AND gates 128A-E such that the output of memory II can be  $^{60}$ transmitted to the output of the comparator 123 at output conductors 164A-E. The output at 164A-E corresponds to the output of heterodyne receiver 14 at location 24 in FIG. 1. This output is completely error checked.

If during one of the receiving cycles one of the exclusive OR gates 124A-E detects an inconsistent pair of signals present at its input, it will generate a low level

output at whichever output 132A-E that particular exclusive OR gate is coupled to. For instance, if exclusive OR gate 124A receives an inconsistent input (corresponding to an error) at its two input terminals, output conductor 132A will conduct a low level signal to AND gate 134. This will cause AND gate 134 to generate a low level output at conductor 144 and this low level output taken together with a low level output of inverter 138 at conductor 142 will cause NOR gate 140 to generate a high level output signal at conductor 146. This high level signal at conductor 146 is coupled to the reset input of counter 136 causing counter 136 to reset to zero so that its count begins again from zero. Counter 136 must then count an entire new set of receiving cycles as commanded by group decoder 130

10

corresponding to the desired number of counts commanded by group decoder 130. Once this number is reached comparator 148 enables AND gates 128A-E by its output at 162.

A Group I signal thus will require two complete er-

until comparator 148 senses a count from counter 136

ror-free receiving cycles prior to having the comparator 123 generate an output. This produces one comparison between two subsequent signals. A Group II signal requires four complete receiving cycles resulting in three comparisons between four subsequent transmitted signals. A Group III signal requires eight complete receiving cycles and generates a total of seven comparisons resulting in a highly accurate signal and an ex-

tremely high immunity from noise.

As has been mentioned before the average transmitted pulse is approximately 240 milliseconds in duration. To either turn the television set off or to turn the television set on requires the reception of eight complete error-free receiving cycles. This takes on the order of 500 milliseconds or about one-half second. There is a noticeable time lag between the time the user presses the desired remote control button and the time when the TV executes the desired command. The user will continue to hold the button down until the television set responds to his command at which time he will remove his finger from the button on the transmitter. This slight time delay for Group III commands presents no difficulty to the user.

A number of extremely difficult problems had to be overcome before an ultrasonic heterodyne receiver system compatible with a television set could be constructed. It was not at all apparent that these difficulties could be overcome. It was impractical to design a heterodyne receiver having local oscillator frequencies equal to those of the transmitted signals since the receiver would have had to detect a zero difference frequency and this would have prevented the use of an amplitude detector. If the variable frequency local oscillator signal is frequency modulate, a zero beat frequency technique can be used. This produces a beat frequency on the order of 30Hz. This approach requires significantly more complex circuitry than the present invention and requires a substantially longer processing time to detect the transmitted signal when sequentially transmitted coded frequencies are used.

With the inherent problems due to noise an amplitude detector was mandated. A system using a zero difference frequency detector was totally impractical.

It was determined that the receiver frequency must be different from the transmitter frequency by some constant amount. The simplest and least expensive way of generating a series of frequencies corresponding to

11

transmitter frequencies  $f_A-f_{E2}$  and receiver localizer frequencies  $f_{LOCA}-f_{LOCE}$  is to take a reference frequency and divide it by a series of varying dividing ratios. FIG. 4 shows that dividing ratios between 26.5 and 21.5 were used for the transmitter and dividing ratios 31 5 through 26 were used for the receiver. The difference between the receiver local oscillator frequencies  $f_{LOCA}-f_{LOCE}$  must differ from the corresponding transmitted frequencies  $f_A-f_E$  by an amount which falls within pass band (7000–7500 Hz) of the band pass 10 filter.

Design requirements mandated that the dividing ratios be spaced an integral number apart. For example, the dividing ratios corresponding to  $f_A$  and  $f_B$  differ by 1 (e.g. 26.5 minus 25.5 equals a difference of 1). If very 15 precisely defined dividing ratios were used, the complexity of the variable divider circuitry would have been greatly increased. This requirement created a very difficult problem in that it then became very difficult to maintain a constant difference between corresponding transmitter frequencies and the receiver local oscillator frequencies since each is derived by dividing a different reference frequency by a different dividing ratio.

FIG. 7 shows a curve labelled  $f_{LOC}$  which corresponds <sup>25</sup> to the localizer frequencies generated by dividing the receiver reference frequency of 1,300,400 Hz. by dividing ratios A-E. This produces a hyperbolic curve designated  $f_{Loc}$ . To generate the transmitter frequencies corresponding to frequencies  $f_A$ - $f_E$ , a different <sup>30</sup> reference frequency of 919,232 Hz. and a different set of dividing ratios is used. This generates another different hyperbolic curve  $f_{XM}$  as is shown in FIG. 7. Since the spacing and shape of curves  $f_{LOC}$  and  $f_{XM}$  differ (the two curves are not parallel even though they appear to  $\,^{35}$ be so in FIG. 7) the difference between  $f_{LOC}$  and  $f_{XM}$  shown by line " $f_{LOC}$  minus  $f_{xm}$ " continually varies. As was pointed out before, the difference  $(f_{LOC} \text{ minus } f_{XM})$ must fall within the pass band (7000-7500 Hz) of the band pass filter. Attempting to generate a set of fre- 40 quencies having small range of allowable differences was further complicated by the fact that it is undesirable to use a reference frequency which is extremely high as this also complicates the circuitry. Another restriction was that the dividing ratios must be fairly 45 low to simple construction and to avoid using an excessively high reference frequency.

The design was further complicated by the fact that all television sets have a horizontal oscillator frequency on the order of 15 kiloHertz which is very large in amplitude. The horizontal oscillator generates a number of harmonics shown in FIG. 8 by  $f_2$ ,  $f_3$ , and  $f_4$  which are multiples of the 15 kiloHertz horizontal oscillator frequency. It was determined that the ultrasonic receiver system should operate between the second and 55 third harmonic of the horizontal oscillator frequency so that there would be no interference caused by reception of this very dominant horizontal oscillator frequency and its harmonics. This restricts the bandwidth available for the remote control system and again further complicates the choice of transmitter frequencies and local oscillator frequencies.

A further difficulty which complicates the choice a pass band frequency for the band pass filter is that there is a mirror frequency band shown in FIG. 8 by  $^{65}$  reference 260 to which the receiver is equally sensitive. This mirror frequency band lies in a range of frequencies beginning at  $f_4$  plus 2 times the band pass fre-

12

quency as a low point, to  $f_{E2}$  plus 2 times the band pass frequency. As an example, since  $f_{LOCA}$  lies above the transmitter frequency  $f_A$  by 7260 Hertz, the difference between  $f_A$  and  $f_{LOCA}$  of 7260 Hertz is passed by the band pass filter. However, the receiver will be equally sensitive to an interferring signal lying above  $f_A$  by a frequency on the order of 7300 Hz. FIG. 8 shows the receiver mirror frequency band 280 lying between approximately 48 kiloHertz to approximately 59 kilo-Hertz. The pass band of the band pass filter was chosen to be equal to approximately one-half the receiver horizontal oscillator frequency such that the mirror frequency band would not enclose one of the harmonics of the horizontal oscillator shown at  $f_3$  and  $f_4$ . If the mirror frequency band enclosed one of these horizontal oscillator harmonics, the operation of the receiver would be totally unreliable due to reception of the very strong signal caused by the horizontal oscillator. This requirement further complicated the design of a practical ultrasonic heterodyn receiver which was operationally compatible with a television receiver.

It will be apparent to those skilled in the art that the disclosed apparatus for receiving coded commands transmitted by ultrasonic sound waves for remotely controlling various functions of a television receiver may be modified in numerous ways and may assume many embodiments other than the one preferred form specifically set out and described above. For example, additional control channels may be provided which will increase the flexibility of the apparatus. Further, the receiver system is readily adaptable for use with television receivers having different horizontal oscillator frequenices, such as those used in Europe which have a lower frequency horizontal oscillator, without any modification whatsoever due to the fairly large tolerances accepted by the system. In addition, it is possible that by using the same principle and with slight modifications that this invention system could be adapted for use with a transmitter operating in the infrared frequency range. Accordingly, it is intended by the appended claims to cover all such modifications of the invention which fall within the true spirit and scope of the invention.

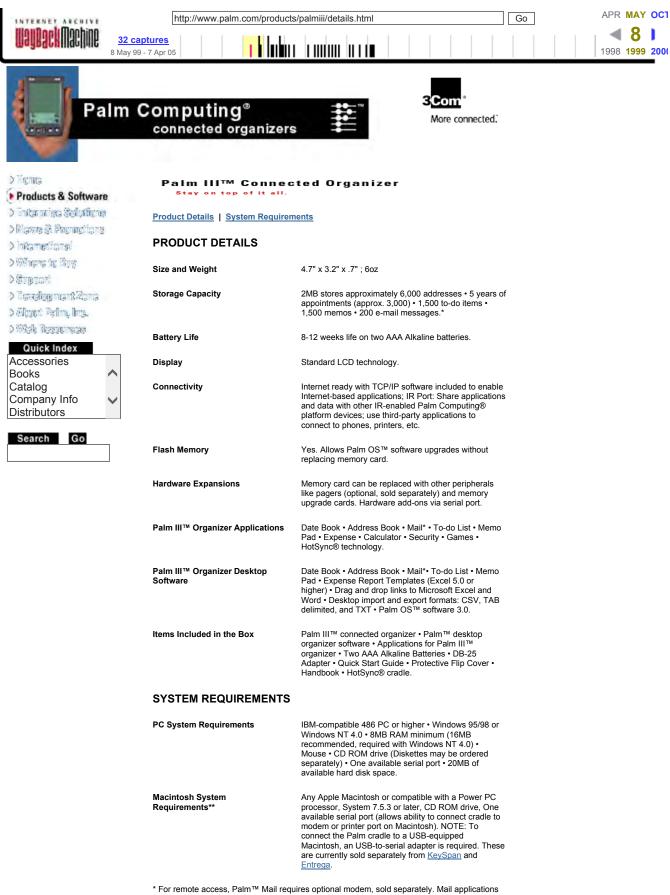
What is claimed is:

1. An asynchronous receiver for remotely controlling an apparatus comprising:

- a. input stage means for receiving during successive receiving cycles an incoming signal comprising repetitive groups of serially received frequency bursts, each burst having one of a plurality of frequencies, said incoming signal having a frequency range residing between harmonic frequencies of interfering signals;
- b. frequency divider means for sequentially generating a plurality of localizer frequencies at a first output terminal means and a plurality of timing signals at a second output terminal means, each timing signal being associated with one of said plurality of localizer frequencies.
- c. mixing means coupled to said input stage means and to said first output terminal means for generating sum and difference signals in response to said incoming signal and said plurality of localizer frequencies;
- d. detector means coupled to said mixing means for transmitting signals of a selected frequency and amplitude range; and

3,974,451

13


- e. gating means coupled to said detector means and to said second output terminal means, each being responsive to one of said plurality of timing signals, for generating during said successive receiving cycles successive groups of digital signals, each of said digital signals being representative of one of said plurality of received frequency bursts.
- 2. An asynchronous receiver for remotely controlling an apparatus according to claim 1 further including:
  - a. memory means coupled to said gating means for storing said digital signals.
- 3. An asynchronous receiver for remotely controlling an apparatus according to claim 1 further including:
  - a. error checking means coupled to said memory means for comparing said successive groups of digital signals in order to provide error-free operation.
- **4.** An asynchronous receiver for remotely controlling an apparatus according to claim 1 wherein:
  - n apparatus according to claim 1 wherein:

    a. said detector means includes a band pass filter.
- 5. An asynchronous receiver for remotely controlling an apparatus according to claim 1 wherein:
  - a. said mixing means comprises a digital logic means.
- 6. An asynchronous receiver for remotely controlling an apparatus according to claim 3 wherein said error checking means further includes:
  - a. a plurality of logic gates;
  - b. group decoder means coupled to said logic gates and to a comparator means;
  - c. resettable counter means coupled to said logic gates and to said comparator means; and
  - d. comparator means coupled between said group decoder means and said resettable counter means.
- 7. An asynchronous ultrasonic receiver for remotely 35 controlling a television receiver comprising:
  - a. input stage means for receiving during successive receiving cycles an incoming ultrasonic signal comprising repetitive groups of serially received frequency bursts, each burst having one of a plurality 40 of frequencies, said incoming signal having a frequency range residing between a second and third harmonic of a television horizontal oscillator frequency.
  - b. frequency divider means for sequentially generating a plurality of localizer frequencies at a first output terminal means and a plurality of timing signals at a second output terminal means, each timing signal being associated with one of said plurality of localizer frequencies.
  - c. mixing means coupled to said input stage means and to said first output terminal means for generating sum and difference signals in response to said incoming signal and said plurality of localizer frequencies;
  - d. detector means coupled to said mixing means for transmitting signals of a selected frequency and amplitude range; and

14

- e. gating means coupled to said detector means and to said second output terminal means, each being responsive to one of said plurality of timing signals, for generating during said successive receiving cycles successive groups of digital signals, each of said digital signals being representative of one of said plurality of received frequency bursts.
- 8. An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 7 further including:
  - a. memory means coupled to said gating means for storing said digital signals.
- An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 7
   further including:
  - a. error checking means coupled to said memory means for comparing said successive groups of digital signals during a predetermined number of error-free receiving cycles.
  - 10. An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 7 wherein:
    - a. said detector means includes a band pass filter.
  - 11. An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 7 wherein:
    - a. said mixing means comprises a digital logic means.
  - 12. An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 9 wherein said error checking means further includes:
    - a. a plurality of logic gates;
    - b. group decoder means coupled to said logic gates and to a comparator means;
    - c. resettable counter means coupled to said logic gate and to said comparator means; and
    - d. comparator means coupled between said group decoder means and said resettable counter means.
  - 13. An asynchronous ultrasonic receiver for remotely controlling a television receiver according to claim 7 wherein:
    - a. said ultrasonic remote control receiver can be substantially completely constructed on a single integrated circuit chip.
    - 14. In an asynchronous receiver comprising:
    - a. input means for receiving during successive receiving cycles an incoming signal comprising repetitive groups of serially received frequency bursts, each burst having one of a plurality of frequencies;
    - frequency divider means for sequentially generating a plurality of offset frequency signals, offset from said incoming signals, and a plurality of timing signals, each timing signal being associated with one of said plurality of offset frequency signals; and
    - c. detector means coupled to said input means and said frequency divider means for identifying a predefined correspondence between said incoming signal and said offset frequency signals.

60



not supported on Macintosh, except through optional third-party solutions, sold separately.

#### Page 220 of 1414



Home | Products & Software | Enterprise | News & Promotions | International | Where to Buy | Support | Development Zone | About Palm Computing | Web Resources | 3Com Employment

3Com Corporate Web Site | 3Com Site Search | Palm Computing Site Search

© 1999 3Com Corporation. All rights reserved. Terms of Use.

# The IrDA Standards for High-Speed Infrared Communications

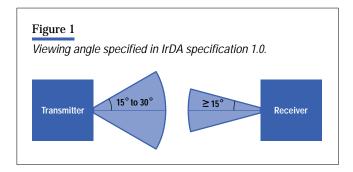
Iain Millar

Martin Beale

Bryan J. Donoghue

Kirk W. Lindstrom

**Stuart Williams** 


As more data communications products, such as printers and laptop PCs, are released with infrared capability, support for a core set of IrDA standards has strong support from many manufacturers because, among other things, they want to ensure that their products will interoperate in a transparent and user-friendly manner.

he use of infrared techniques for data communications has been around for several years, and by 1993 several commercial products were available with this capability. However, each company has tended to have its own infrared standard, and although devices from the same manufacturer could communicate with each other, competing systems tended not to be interoperable. Examples of such proprietary infrared systems include Hewlett-Packard's HP SIR (serial infrared), Sharp's ASK systems, and General Magic's MagicBeam. The resulting confusion in the marketplace meant that users viewed infrared as having only limited utility.

On June 28, 1993, the Infrared Data Association (IrDA) had its first meeting with the purpose of establishing a ubiquitous, low-cost, point-to-point serial infrared standard. Some 50 representatives from 20 interested companies were expected, but over 120 people representing more than 50 companies actually attended. It was clear that the industry was interested in developing a standard that would allow the true value and utility of infrared to be realized. At the culmination of this process—and due in no small part to the enthusiasm and spirit of cooperation of the participating companies—the first IrDA standards were published, just one year and two days after the initial meeting.

To date, IrDA has specified the physical and protocol layers necessary for any two devices that conform to the IrDA standards to detect each other and exchange data. The initial IrDA 1.0 specification detailed a serial, half-duplex, asynchronous system with transfer rates of 2400 bits/s to 115,200 bits/s at a

range of up to one meter with a viewing half-angle of between 15 and 30 degrees (see **Figure 1**). More recently, IrDA has extended the physical layer specification to allow data communications at transfer rates up to 4 Mbits/s.



This paper presents details of the individual IrDA specifications, focusing specifically on the high-speed extensions that allow data communications at up to 4 Mbits/s. The first section gives details of the objectives that resulted in the series of IrDA specifications. The specifics of the user model and the technical requirements of the specification are also presented. Next the IrDA architecture is introduced, highlighting how the IrDA specifications together provide overall functionality. The infrared physical-layer specification with particular emphasis on modulation format, packet framing, transceiver design, and clock recovery is discussed in the next section. The transceiver design for the HP HDSL-1100 IrDA transceiver is also described in this section. The last section covers the protocol layers of the IrDA specifications. Finally, IrDA's current status is summarized.

#### **IrDA Objectives**

When IrDA was established, it set for itself the following objective:

"To create an interoperable, low-cost infrared data interconnection standard that supports a walk-up, point-to-point user model\* that is adaptable to a broad range of mobile appliances that need to connect to peripheral devices and hosts." 1

IrDA chose the short-range, walk-up, point-and-shoot directed infrared communications model for two main reasons. First, it was perceived that the initial target market for IrDA-enabled devices would be the mobile

professional who is also a computer user. The environment for the use of such devices would be in a typical working environment in which the majority of stationary devices, such as printers or computers, would be located within the user's own reach space, on the desktop or in the immediate vicinity. Typical use of such devices would consist of short, conscious interactions such as file transfer or printing. Such use scenarios do not require the devices to be continually connected to each other, and a directed model of communications was adopted in which the user consciously points the infrared device at the target.

Previously, mobile professionals might connect their laptops to various peripherals using parallel or serial cables. Connecting such devices using LAN connections might also be possible if cost were not an issue. However, a problem arises when the user becomes mobile—for example, when visiting customers in their office. Setting up a laptop at the customer office to achieve even simple tasks, such as printing or file transfer, would more than likely require significant reconfiguration. IrDA aimed to change this by providing standards for ubiquitous access to such devices.

Second, IrDA chose this communications model to minimize cost. The use of a single LED and photodiode in the transceiver enables an extremely low-cost implementation. The model simplifies the protocol software by restricting the number of visible devices, hence limiting the contention and interference between IrDA devices. The limited range also allows reuse of the infrared medium, allowing multiple pairs of devices to communicate at the same time.

<sup>\*</sup> The phrase "walk-up, point-to-point user model" refers to the fact that to ensure data transfer between devices with infrared capabilities, they must be placed close together (<2 m) with their infrared transceivers pointed at one another.

# **Glossary**

Cell. A symbol in PPM.

Chip. A pulse within a symbol (cell) in PPM.

**ENDEC.** The encoder-decoder used in the IrDA physical layer.

**HTTP** Hypertext Transfer Protocol.

**HDLC.** A bit-oriented, synchronous High-level Data Link Control protocol that applies to the message-passing (data link) layer of the Open Systems Interconnect (OSI) model for computer-to-computer communications.

*IAS.* The information access service maintains information about the services available on the host device and provides services that allow access to information on remote devices.

IrCOMM. IrDA specification for the emulation of serial and parallel port communications.

IrLAN. IrDA specification for accessing a LAN over an infrared medium.

*IrLAP.* IrDA specification for Link Access Protocol. This document specifies an HDLC-based protocol for controlling access to the infrared medium.

IrLMP. IrDA specification for Link Management Protocol. This protocol provides the LM-MUX and LM-IAS services.

IrOBEX. IrDA specification that defines the protocol for generic object exchange in an IrDA-enabled device.

IrPHY. The specification that describes the physical layer properties of the IrDA standard.

**LM-IAS.** The Link Management Information Access Service allows a pair of IrDA devices to interrogate each other to determine the services available on each device.

**LM-MUX.** The Link Management Multiplexer allows any pair of IrDA devices to simultaneously and independently use a single IrDA connection between themselves.

LSAP. Link Service Access Ports are address fields that uniquely identify applications on the source and destination devices.

LSAP-SEL. Link Service Access Port Selector.

PPM. Pulse position modulation.

SIR. Serial infrared.

*Tiny TP.* Lightweight transport protocol specification.

IrDA aimed to allow its standards to support a wide class of computing devices and peripherals that might be used by mobile professionals. These devices would range from very sophisticated, high-power notebook or laptop personal computers, through palmtop computers and personal digital assistants, to simple single-function devices like electronic business cards or phone dialers. Target peripheral devices would include conventional computer-oriented devices like printers and modems, as well as automatic teller machines and public and mobile telephones. It was also envisaged that IrDA would enable new classes of devices such as information access points.

To target such a broad range of devices, a set of general requirements was placed on any prospective standard. These requirements included:

- Low cost
- Industry standard
- Compact, lightweight, low-power

- Intuitive and easy to use
- Noninterfering.

Using these requirements, the IrDA committee developed a series of standards aimed at providing ubiquitous, low-cost, directed infrared communications for all classes of mobile computing devices. In IrDA's vision of the world, the user of such devices would be able to roam across international boundaries using IrDA communications to access information, computing, and communications services in a uniform and transparent manner. The days of the mobile computer user travelling the globe with a multitude of modem, serial, and parallel cables, including adapters, will be gone.

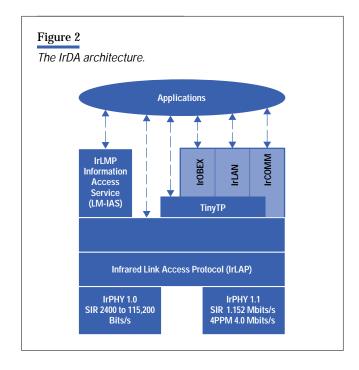
The remainder of this paper presents details of the standard IrDA has put in place to achieve this vision.

#### The IrDA Architecture

After the initial marketing requirements had been specified, the technical committee within IrDA moved quickly towards the development of the initial standards. In April 1994, the first IrDA standard was published covering the physical layer properties. This document, the Infrared Physical Layer (IrPHY) specification, describes an infrared transmission system based on a UART modulation strategy. The document specifies the necessary parameters to provide an asynchronous half-duplex serial communications link over distances of at least one meter at data rates between 2400 bits/s and 115.2 kbits/s. The cone half-angle of the infrared transmission is specified as being at least 15 degrees, but no more than 30 degrees. The IrPHY specification was quickly followed with the publication of the Infrared Link Access Protocol (IrLAP) in June 1994. IrLAP specifies an HDLC-based protocol for controlling access to the infrared medium and providing the basic link-level connection between a pair of devices.

During the development of IrPHY and IrLAP, it was realized that some additional functionality was required in addition to the ability to provide a single connection between a pair of devices. The Infrared Link Management (IrLMP) layer was conceived. This layer has two primary functions.

First, it provides the mechanism by which multiple entities within any pair of IrDA devices can simultaneously and independently use the single IrLAP connection between those devices. This function is called the link management multiplexer (LM-MUX).


Second, it provides a way for entities using the IrDA services to discover what services are offered by a peer device and to register available services within the local device. This link management information access service (LM-IAS) considerably benefits the ease of use of portable devices, allowing pairs of devices to interrogate each other to discover information about the applications within each device.

These three standards—IrPHY, IrLAP, and IrLMP—form the core of the IrDA architecture, and all are required for a device to be IrDA-compliant. Since the core documents were published, several extensions have been added. The current complete IrDA architecture is shown in **Figure 2**.

In October 1995, optional extensions to the physical layer, adding data transmission speeds of up to 4 Mbits/s, were accepted by the IrDA committee. These changes resulted in the IrDA IrPHY 1.1 specification.<sup>5</sup> The IrLAP and IrLMP documents have also recently been updated to version 1.1 to incorporate various improvements that resulted from practical experience in implementing and using the IrDA protocols.<sup>6,7</sup>

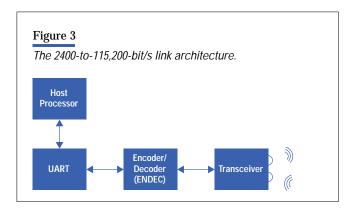
In addition to the base standards, IrDA has specified a protocol called Tiny TP.<sup>8</sup> This protocol is an extremely lightweight transport protocol designed to provide application-level flow control as well as segmentation and reassembly of application data units. This protocol has proved to be useful and is now implemented by most applications that support the IrDA architecture.

To complement the functionality of the main components of the IrDA architecture, several application-level protocols have been and are in the process of being developed. These protocols are aimed at providing convenient and uniform interfaces to the functionality of the IrDA protocols for both old and new applications.

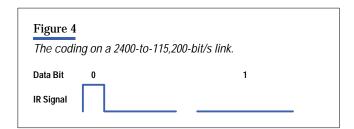


The original target for IrDA was cable replacement. The need for a protocol to support the redirection of serial and parallel cable traffic resulted in the IrCOMM serial and parallel port emulation protocol specification. This protocol enabled the redirection of conventional serial and parallel ports over the infrared medium, allowing many existing applications to operate unchanged over an IrDA link. Another area seen as a suitable application of IrDA, particularly as a result of the high-speed extensions, is wireless access to local area networks. The protocol IrLAN was developed to allow an IrDA-enabled device to access a LAN over the infrared medium. The protocol, in combination with an IrLAN-compatible LAN access device, provides the IrDA device with the equivalent functionality of a LAN card and the advantages of wireless connectivity.

Both IrCOMM and IrLAN address legacy-style applications. However, it is envisioned that many new applications will be enabled by the IrDA standards. Using IrDA on low-end devices gives rise to the need for a flexible, lightweight information exchange protocol suitable for devices with varying resource capabilities. A protocol for generic object exchange, IrOBEX, is currently under development within IrDA.<sup>11</sup> This protocol is based on HTTP (Hypertext Transfer Protocol) but is more compact. When completed, IrOBEX will provide a device independent method for exchanging arbitrary units of data between IrDA-enabled devices.


#### The IrDA Physical Layer

The IrDA physical layer is split into three distinct data rate ranges: 2400 to 115,200 bits/s, 1.152 Mbits/s, and 4 Mbits/s. Initial protocol negotiation takes place at 9600 bits/s, making this data rate compulsory. All other rates are optional and can be added if a device requires a higher data rate. The links are designed to be used in a line-of-sight, point-and-shoot manner and hence have a modest minimum coverage of one meter, with a  $\pm 15^{\circ}$  viewing angle. This modest coverage is advantageous, since it allows a low-cost, high-data-rate link to be produced in a small package.

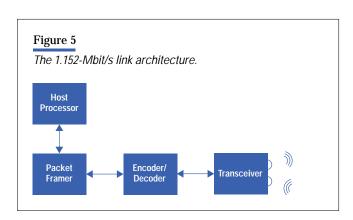

#### 2400-to-115,200-bit/s Link

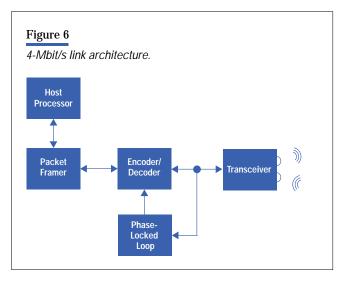
This is based on the HP-SIR link developed for HP calculators. All IrDA-compliant devices implement this type of link since initial protocol negotiation takes place at 9600 bits/s. The architecture of the link (**Figure 3**) is designed for easy implementation and low cost. Hardware costs can be kept to a minimum by implementing the protocol, packet framing,

and CRC calculation in software on the host processor. Bytes of data from the processor are converted to a serial data stream by a UART (universal asynchronous receiver-transmitter). Since many systems already include a UART for RS-232 communications, this places no extra cost burden on the system. Only the ENDEC (encoder-decoder) and transceiver represent an additional hardware cost for the system.



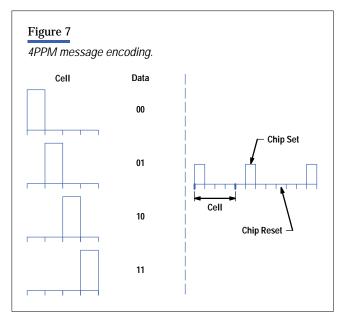
Infrared receivers contain a high-pass filter to remove background daylight. This high-pass filter forces the use of encoding on the link to ensure that long strings of zeros or ones are not lost in transmission. The encoding used on this link is return-to-zero (RZ). Zeros are represented by a pulse of 3/16-bit duration, and ones by the absence of a pulse (**Figure 4**). For example, 3/16 of a pulse width at 115,200 bits/s is  $1.6 \,\mu s$ . The code is power-efficient since infrared light is only transmitted for zeros. The tall narrow pulse has better signal-to-noise ratio performance than a short wide pulse of the same energy.





#### The 1.152-Mbit/s Link

At speeds above 115,200 bits/s, packet framing and CRC generation and checking become a significant burden to the host processor. At 1.152 Mbits/s, these tasks are performed in hardware by a packet framer (see **Figure 5**). The packet format is slightly different from that used in the 2,400-to-115,200-bit/s link, but the line code remains similar. Higher-level protocols are less processor intensive than packet framing or CRC generation and are still implemented in software on the host processor.

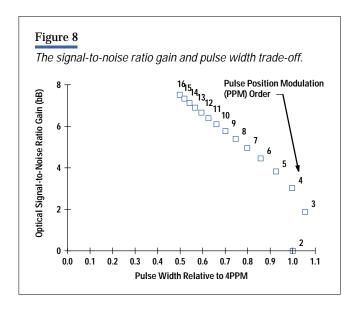
#### The 4-Mbit/s Link


The 4-Mbit/s link architecture is shown in **Figure 6**. As in the 1.152-Mbit/s link, packet framing and CRC generation and checking are performed in hardware to relieve the burden on the host processor, while higher-level protocols are implemented in software on the host processor. The link uses a new encoding scheme (described below) and a new, more robust packet structure. A phase-locked loop replaces edge detection as the means of recovering the sampling clock from the received signal. The packet framer, ENDEC, and phase-locked loop are more complex than the UART and ENDEC in the 2400-to-115,200 bit/s link. However, this added complexity need not be expensive. The components are specified in a

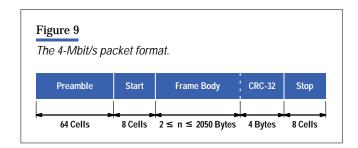




hardware description language and can be added quickly and inexpensively to one of the host system's ASICs. PC chipsets including the 4-Mbit/s hardware are already available from leading semiconductor manufacturers.

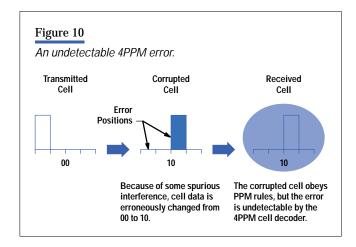

Coding and Packet Format. Pulse position modulation (PPM) was chosen as the line code for the 4-Mbit/s link. Data is transmitted within a PPM signal by varying the position of a pulse (referred to here as a chip) within a symbol (referred to here as a cell). The PPM modulation for the 4-Mbit/s link allows one chip to be set in one of four possible positions; thus it is known as 4PPM. Since a chip can be set in one of four possible positions, four different messages can be sent within one cell, allowing two bits of data to be encoded per cell. **Figure 7** shows the four possible messages that can be transmitted by 4PPM.




Pulse position modulation has many properties that make it attractive for use on the free-space optical channel. One of the main properties is the sparseness of the code. Sparse code allows high peak powers to be employed for set chips while maintaining a reasonable average power. The eye-safety rules stipulate a maximum average optical power, and LEDs tend to be average-power-limited at moderate duty cycles.

Pulse position modulation also contains significant and regular timing content, which facilitates synchronous clock recovery using a phase-locked loop. It is a modulation format that has very little dc content and can be high-pass filtered at 100 kHz, avoiding interference generated by fluorescent lighting without adversely affecting the receiver's eye diagram. A particularly interesting feature of PPM—one that had important ramifications in the choice of end delimiters—is its ability to detect line code errors.

Higher orders of PPM give lower duty cycles and theoretically greater signal-to-noise ratio gains on the infrared medium. **Figure 8** illustrates the interesting relationship between signal-to-noise ratio gain achievable with various orders of PPM and the required pulse width. It is interesting to note that the optimum order of PPM from a bandwidth efficiency perspective would be 3PPM. This result might be of theoretical interest, but is fairly useless in a practical system. Since the fastest bright LEDs have a rise time of around 40 ns, and the rise time of an LED is proportional to the pulse width, the use of high-order PPMs at 4 Mbits/s becomes impractical. The decision to adopt the order four for the PPM was motivated by knowledge of the range of duty cycles over which LEDs are peak-power-limited, the rise and fall time of available LEDs, and the frequent timing content provided at order four.

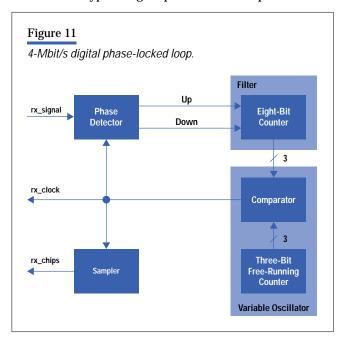



**Packet Format**. The 4-Mbit/s physical layer packet has distinct features that perform a useful and well-defined role (see **Figure 9**). A preamble allows dc balance to be attained, and more important, permits the phase-locked loop to achieve chip-level synchronization. The length of the preamble was considered carefully such that the preceding two goals could be achieved without a significant impact on efficiency. The start and stop delimiters provide cell and frame synchronization and were chosen so as not to compromise overall packet robustness or adversely affect the receiver eye diagram. To distinguish the preamble and the end delimiters from the frame body, these fields contain code violations. The body of



the packet is 4PPM-coded and has a 32-bit cyclic redundancy check (CRC) field appended to it. The choice of a 32-bit CRC provides a guaranteed level of robustness to undetected data errors over the range of error rates expected on a free-space infrared channel. The CRC is performed on the data bits rather than on the PPM-encoded chips.

**Error Detection and Delimiters.** A decoder may choose to exploit the error detection capabilities of 4PPM. The only portions of the packet allowed to contain violations are the preamble and the frame delimiters. If a decoder finds code violations within the frame body or CRC portion of the packet, it can flag that packet as being corrupted. In the same way that a sufficient number of carefully positioned errors can produce a correct-looking CRC for a corrupted packet, there are some error patterns that a 4PPM decoder cannot detect. An example is shown in **Figure 10**.




The role of the CRC is to detect those error patterns that the PPM cell decoder cannot detect. Owing to the combined distance structure of the CRC and the pulse position modulation, the packet can be made very robust to withstand either random or burst errors at any signal-to-noise ratio.

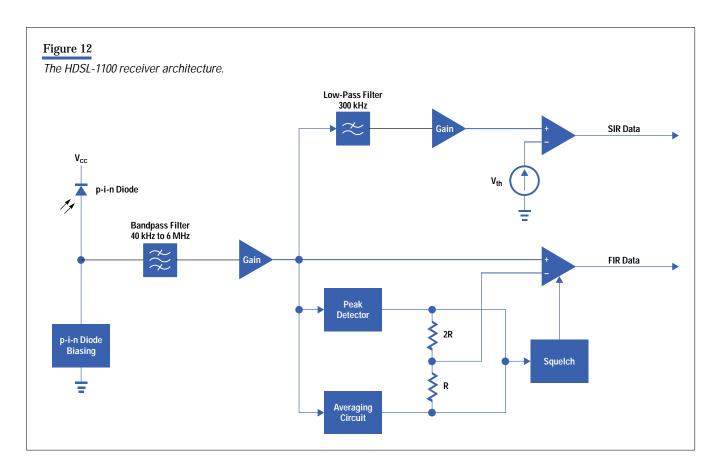
A more worrisome error mechanism that had to be considered was the possibility of the corruption of the frame delimiters. The frame delimiters are not in themselves protected by the CRC. If the situation arose whereby a false Stop delimiter appeared in a valid position within the data and CRC portion of the packet, the packet would be protected solely by the scrambling effect of the CRC. In this case, a corrupted packet would be flagged as correct with a probability of  $(0.5)^{32}$ . Thus, it is important to ensure the unlikelihood of either random or burst errors causing a false delimiter to appear within the data portion of the packet. This is achieved by choosing delimiters with a large Hamming distance from the data (or shifted versions of the data, to ensure serial uniqueness) and with a sufficient number of chips such that "bursty" channel error models can be tolerated. A further constraint on the delimiter choice is that delimiters must not adversely affect the eye diagram of the complete packet. The lack of long strings of contiguous set or reset chips within the 4-Mbit/s delimiters allows this goal to be attained. The delimiters chosen ensure packet robustness at any signal-to-noise ratio, for any length of packet, over random and burst-error models—all without affecting the receiver eye diagram.

Clock Recovery. The UART-style clock recovery of the 2400-to-115,200-bit/s link uses a single signal edge to set the phase of the recovered sampling clock. This inevitably gives rise to phase jitter on the recovered clock and a consequent signal-to-noise ratio penalty. The phase-locked loop used by the 4-Mbit/s link generates a sampling clock with much less jitter because it uses timing information from many signal edges to set the phase of the clock. An analog phase-locked loop could have been used for clock recovery and might have achieved a low phase jitter, but it would have been unable to achieve the rapid phase lock of a digital phase-locked loop. Rapid phase lock is important in a packetized data system, because it determines the length of the training sequence, or preamble, required at the start of every packet to allow the phase-locked loop to lock.

The lock time is dictated by the accuracy with which the nominal frequency of the phase-locked loop's variable oscillator can be set. The nominal frequency of the variable oscillator in an analog phase-locked loop is highly variable, since it is determined by the (usually poor) tolerance of the resistors and capacitors. By contrast, the nominal frequency of the variable oscillator in a digital phase-locked loop can be locked to a crystal reference with a tolerance of less than 100 ppm. Implementations of digital phase-locked loops have the additional advantage that they can be quickly and easily ported between ASIC designs. The architecture of a typical digital phase-locked loop for the 4-Mbit/s link is shown in **Figure 11**.



The phase detector is a state machine that compares the edges in the received signal (rx\_signal) with those of the recovered clock (rx\_clock). Rising edges only occur in rx\_signal at PPM chip boundaries. Rising edges of rx\_clock should occur halfway between chip cell boundaries. If rx\_signal is earlier than expected, then the phase detector produces a Down signal, thereby advancing the phase of rx\_clock. If rx\_signal is later than expected, then the phase detector produces an Up signal.


The three most significant bits of the 8-bit counter set the phase of rx\_clock. The five least significant bits ensure that the counter acts as a low-pass filter, since many Up and Down signals are required to change the phase of rx\_clock. The three-bit free-running counter and the comparator together act as a variable phase oscillator. All blocks within the phase-locked loop are clocked by the same system clock. The system clock can be either 40, 48, 56 or 64 MHz, the choice being set by the rollover point of the three most-significant bits of the 8- and 3-bit counters (100, 101, 110, or 111). A 40-MHz system clock means that rx\_clock should be very granular, with only five possible phase steps within a chip period. The effective number of phase steps is, however, doubled by making use of both the positive and negative edges of the system clock in the phase detector and sampler. The choice of whether to use positive or negative edges can be made by examining the fourth most-significant bit of the 8-bit counter.

The fast lock of the digital phase-locked loop is further aided by using a dual control loop within the digital phase-locked loop. A lock state machine within the phase detector decides whether the digital phase-locked loop is in or out of lock by examining the average deviation of the rx\_clock edges from the rx\_signal edges. If the digital phase-locked loop is out of lock, then multiple Up or Down pulses are generated for each edge in rx\_signal to ensure rapid lock. Once locked, only single Up or Down pulses are generated since multiple pulses would increase phase jitter on rx\_clock.

#### The Hewlett-Packard HSDL-1100 IrDA Transceiver

The HP HDSL-1100 from HP's Communication Semiconductor Solutions Division is the world's first fully IrDA-compliant transceiver capable of operating at all IrDA data rates from 2400 bits/s to 4 Mbits/s. The HSDL-1100 fits within the same small package as its predecessor, the HSDL-1000, which operated at data rates from 2400 bits/s to 115,200 bits/s. The small package size available for pins, IC, passive components, and heat dissipation imposed design constraints on the complexity of the transceiver. The IC uses a low-density bipolar in-house process, which is low in cost and allows quick turn times on wafers for IC development.

Transmitter design was straightforward. However, the multiple data rates, line codes, and large dynamic range made receiver design much more challenging. The receiver's dual-channel architecture is shown in **Figure 12**. A shared p-i-n diode detects all infrared signals with a modulation frequency between 40 kHz and 6 MHz. An amplifier boosts this signal before it is split into separate receiver channels. IrDA signals at 2400 to 115,200 bits/s pass through the serial infrared (SIR) channel\*, while 1.152-to-4-Mbit/s signals pass through the fast infrared (FIR) channel. The lower bandwidth of the SIR channel (40 to 300 kHz) means lower noise and allows the SIR channel to meet the IrDA 4  $\mu$ W/cm² sensitivity requirement. The higher-bandwidth (40 kHz to 6 MHz) FIR channel has higher noise, but still meets the 10  $\mu$ W/cm² sensitivity requirement for 1.152-to-4-Mbit/s IrDA links. Since the different data rate IrDA links overlap in their modulation spectra, the received signal will appear on both channels. The ENDEC relies on information provided by the protocol to ensure that it listens on the correct channel.



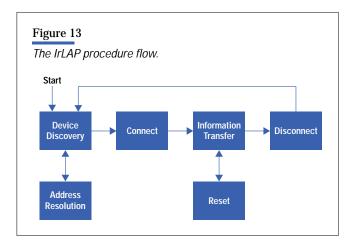
<sup>\*</sup> At low rates, such as 2400 or 9600 baud, only the leading edge of the signal passes through the 40-kHz to 6-MHz bandpass filter. The signal is still correctly decoded since the ENDEC is able to tolerate received SIR pulses as short as 1 to 4 µs.

The receiver converts signals from an analog to a digital form by comparing them with a threshold voltage. The two channels have different threshold detection circuits to meet the different requirements for the signals. The SIR channel has a fixed threshold set at the level of the weakest received signals. Although the fixed threshold tends to extend the duration of high-level pulses, the line code for the 2400-to-115,200-bit/s ENDEC is tolerant of pulses that extend to five times their nominal width. The 4-Mbit/s ENDEC is far less tolerant of pulse extension, so a dynamic threshold is required on the FIR channel. The dynamic threshold tracks the 50% level between the peak extensions of the 4PPM signal. A peak detector tracks the 100% level of the signal and an average circuit tracks the 25% level. The 50% threshold level is derived from a 2R-R voltage divider connected to these levels. Between packets, the dynamic threshold drops to zero. This would allow the FIR\_Data output to "chatter" on noise or on feedback between the output pin and the p-i-n diode. The 1.152-Mbits/s ENDEC is intolerant of the extra pulses produced by such chatter, so a squelch circuit was added to switch off the FIR\_Data output at low signal levels. The dynamic threshold also takes time to settle at the start of a packet, which causes some of the packet's initial infrared pulses to be lost or distorted. While this would be disastrous for the 2400-to-115,200-bit/s link, the 1.152- and 4-Mbit/s packets include a preamble to allow the receiver to settle before decoding data.

Another challenge for receiver design was the dynamic range of infrared signals. IrDA specifications allow received signal strength to vary between  $4~\mu W/cm^2$  and  $500~mW/cm^2$ . This is a dynamic range of 51~dB. Since the p-i-n diode is a square law detector, this dynamic range doubles to 102~dB within the receiver. The receiver achieves this dynamic range by allowing the signal to be clipped while maintaining the timing of the signal. The impedance of the p-i-n diode biasing circuit decreases with signal level, reducing the signal voltage and the receiver amplifier's limit without saturating. The p-i-n diode has also been carefully designed to ensure that the induced signal decays rapidly once an infrared pulse disappears.

#### **The IrDA Protocol Layers**

#### The Infrared Link Access Protocol

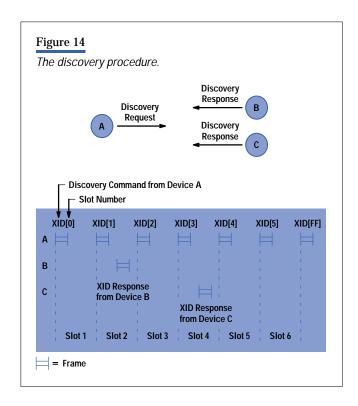

IrLAP is the IrDA protocol that provides the basic link layer connection between a pair of IrDA devices. It is based on the HDLC protocol providing functions like connection establishment, data transfer, and flow control. <sup>13,14</sup> However, IrLAP has significant additional features as a result of the specific properties of the infrared medium.

The infrared medium over which IrLAP is required to operate is a point-to-point, half-duplex medium. While the narrow cone angle of IrPHY limits the number of other devices that can be seen, it does increase the probability of hidden devices. In such a situation, one device may see many other devices. However, it does not follow that those devices will see each other. This can result in collisions where transmissions from devices hidden from each other may overlap, resulting in the inability of the receiving device to decode those frames correctly. The characteristics of the infrared medium also result in there being no reliable way to detect transmission collisions. Conventional carrier sensing with collision-detection protocols would therefore be unsuitable, and IrLAP provides a mechanism for ensuring contention-free access to the medium, at least during data transfer.

The IrLAP has three distinct phases of operation: link initialization, nonoperational mode, and operational mode. Nonoperational and operational modes are distinguished by the absence or presence of a connection with another device. During link initialization, the IrLAP layer chooses a random 32-bit device address. This address is randomly chosen to negate the need to select and maintain fixed device addresses for all IrDA devices. Although it is unlikely that two or more devices within range of each other will choose the same address, procedures are defined to detect and resolve address collisions. After the link is initialized, the IrLAP layer enters nonoperational mode.

The nonoperational mode is derived from HDLC's normal disconnect mode (NDM). In this mode, all devices contend for the medium. To do this, each device must check that the medium is not busy before transmission. This is achieved by listening for activity—that is, listening for physical layer transitions for at least 500 ms. Transmissions in the normal disconnect mode use link parameters that can be supported by all IrDA devices at a rate of 9600 bits/s. In this mode, the device will initiate device discovery, address resolution (if required), and connection establishment.

Once the connection has been established, the IrLAP layer moves into the operational or, in HDLC terms, normal response mode. This mode is an unbalanced mode of operation in which one device assumes the role of primary station and the other assumes a secondary role. This is the phase in which information is exchanged under control of the primary station. The link parameters are negotiated during the connection setup procedure and remain constant during the connection. During this phase, all other devices within range of either the primary or secondary stations remain idle in the normal disconnect mode. The two communicating devices therefore have unrestricted access to the medium for the duration of the connection. Once the information has been transferred, the link is disconnected and the device returns to the normal disconnect mode. The flow of procedures for the IrLAP layer is shown in **Figure 13**.

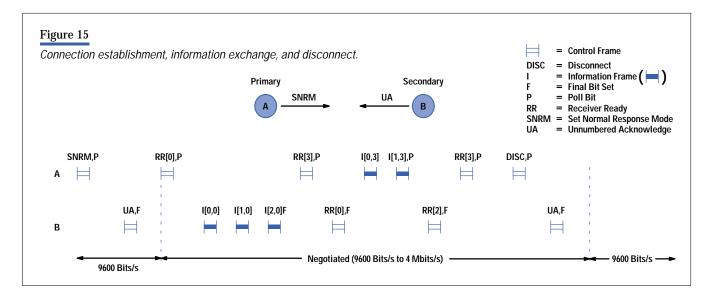



Device Discovery and Address Resolution. The discovery procedure is the process an IrDA device uses to determine whether or not there are any devices within communications range. In doing so, the device discovers the address of any device within range, the version number of the IrLAP protocol operating in each device, and some discovery information specified by the IrLMP layer in each device. The discovery procedure is controlled by the initiating device, which divides the discovery process into equal periods or time slots. The slotted nature of the discover procedure minimizes the likelihood of collisions when there are multiple devices within range.

After waiting for a period of 500 ms (normal disconnect mode rules), the initiating device starts the discovery procedure and broadcasts frames marking the beginning of each slot. On hearing the initial discovery slot (which also details the number of slots in the discovery process: 1, 6, 8 or 16), a device randomly selects one of the slots in which it will respond. When the device receives the frame marking its chosen slot, it transmits a discovery response frame. All frames in the discovery procedure use the HDLC unnumbered format of type XID (exchange identification).\* An example of the discovery process is shown in **Figure 14**.

**Figure 14** shows a three-device scenario in which device A is within range of devices B and C. Device A initiates the discovery process by transmitting a discovery XID command frame which, in this case, indicates that this is a six-slot discovery process and that this is the initial slot. Device A continues to transmit discovery command XID frames indicating the appropriate slot number. The final frame, after slot 6, is indicated by a slot number 0xFF. The final slot also contains information about the initiating device.

 $<sup>^{\</sup>star}\,$  In this context XID is a type of HDLC frame as specified in the ISO standard.




When the initial discovery XID command frame is received, devices B and C randomly choose slots in which to respond—in this example, slots 2 and 4. Device B then waits until it hears the discovery XID command indicating slot 2, and responds with a discovery XID response frame containing information about itself. Similarly, device C transmits a response during slot 4. Once the discovery process is over, all devices have the address and other information of all the devices within range: that is, device A has information about devices B and C, while devices B and C each have knowledge of device A. However, devices B and C are mutually hidden and as a result have no information about each other. This discovery information is passed to the upper layers whose responsibility it is to determine if there are any address collisions that need to be dealt with.

Should any of the devices that participated in the discovery process have duplicate addresses, then an address resolution process can be initiated. Address resolution follows a procedure similar to the discovery process, except that the device detecting the address conflict initiates the procedure, and resolution involves only the devices that have conflicting addresses. In this case, the initiating device transmits an address resolution XID command directed at the conflicting address. Devices with this address select another random address and a slot in which to respond. The initiator transmits the slot markers as before, and the previously conflicting devices respond in the appropriate slot. Once the process is over, each device should have a unique address. In the unlikely event that an address conflict still exists, the procedure can be repeated.

Connection Establishment. Once the discovery and address resolution processes are complete, the application layer may decide that it wishes to connect to one of the discovered devices. To connect, the application layer will issue a connection request which will ultimately result in the appropriate IrLAP service primitive being invoked. The IrLAP layer connects to the remote device by transmitting a set normal response mode (SNRM) command frame with the poll bit set. This command informs the remote device that the source wishes to initiate the connection and the poll bit indicates that a response is required. Assuming the remote device can accept the connection, it responds with an unnumbered acknowledge (UA) response frame with the final bit set. This indicates that the connection has been accepted. Under normal circumstances, the device that initiates the connection (transmits the set normal response mode) will become the

master, or primary, device, and the other device will become the slave, or secondary device. An example of connection establishment is shown in **Figure 15**. The notation used in the frames in **Figure 15** has the general form I(x,y) and RR(y), where x is the sequence number of the information frame and y is the sequence number of the next frame the source device expects to receive from the destination device.



The connection establishment takes place in normal disconnect mode (9600 bits/s), and once this is completed, the two devices will be in normal response mode. While in normal response mode, the devices can exchange data at any IrDA defined rate. However, not all IrDA devices will support all IrDA data rates or link parameters. It is therefore necessary for the devices to negotiate the parameters for normal response mode during connection setup. IrDA has defined several link parameters that can be negotiated:

- Data rate
- Maximum turnaround time
- Data size
- Window size
- Number of additional start of frame symbols (BOFs)
- Minimum turnaround time
- Link disconnect threshold time.

Data rate defines the data transfer rate during normal response mode (9600 bits/s to 4 Mbits/s), while maximum turnaround time defines the length of time either device may transmit before giving the other device a chance to transmit (50, 100, 250, or 500 ms). Data size determines the maximum length of the data field in an information frame (64 to 2048 bytes), and, in combination with the retransmission window size, which defines the number of outstanding frames that may be unacknowledged, allows devices with only limited resources to restrict the rate at which they will receive data. Number of additional BOFs and minimum turnaround time relate to physical layer restrictions, while link disconnect threshold time determines how long a device will wait without receiving a response from another device before assuming the link has failed and informing the upper layer that the link has disconnected.

Well-defined rules exist that ensure that after the set normal response mode-UA exchange has been completed, both devices will know the negotiated normal response mode parameters. Once both devices are in normal response mode, the primary device polls the secondary device by transmitting a receiver ready (RR) frame with the poll bit set, thereby initiating the information exchange phase.

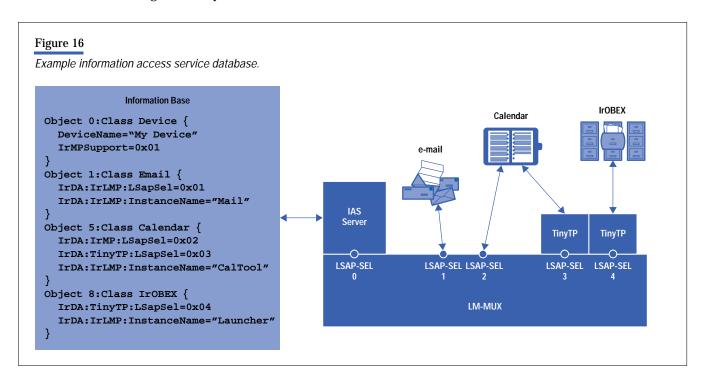
Information Exchange and Link Reset. The information exchange procedure operates in a master-slave mode in which the primary device controls the secondary device's access to the medium. The primary device issues command frames to the secondary device which responds with response frames. To ensure that only one device can transmit frames at any one time, a permission-to-transmit token is exchanged between the primary and secondary devices. The primary device passes the permission-to-transmit token to the secondary by sending a command frame with the poll bit set. The secondary device returns the token by transmitting a response frame with the final bit set. The secondary device can only retain the token while it is transmitting data, and it must return it to the primary device if it has no data to transmit or if it reaches the maximum turnaround time. The primary device, however, within the limits imposed by the maximum turnaround time, can hold the token even if it has no data to transmit.

Although the physical layer has been designed to provide a low bit error rate channel, the dynamic nature of the infrared connection results in a possibility that frames may be lost in transit because of corruption by noise. To cope with this, the IrLAP protocol uses a sequenced information exchange scheme with acknowledgments. Should a frame be corrupted by noise, the CRC will highlight this error and the frame will be discarded. At the IrLAP layer, this error will be detected by virtue of the noncontiguous sequence numbers on the information frames. The IrLAP protocol implements an automatic repeat request strategy in the same manner as HDLC with options of using stop and wait, go back to N, and selective reject retransmission schemes. This strategy allows the IrLAP layer to provide an error-free, reliable link to the IrLMP layer. An example of an error-free information exchange between two devices is shown in **Figure 15**.

Under exceptional circumstances, however, it may not be possible for the IrLAP entities in each device to recover from an error condition while maintaining the sequenced delivery of error-free information (I) frames. In this case, the IrLAP entity is allowed to reset the link. This reset involves discarding any undelivered information and reinitializing the sequence numbers and timers for the link. Although this may result in the loss of data, which the higher-level layer must deal with, it does allow the link to recover without the need for a total disconnection.

Connection Termination. Once the data exchange has taken place, the IrLAP link may be disconnected by either the primary or secondary devices. Should the primary wish to disconnect, it sends a disconnect command to the secondary device with the poll bit set. The secondary responds by returning an unnumbered acknowledge frame with the final bit set. Both devices will now be in normal disconnect mode, and the default normal disconnect mode parameters (9600 bits/s data rate) will apply. If the secondary wishes to disconnect, it transmits a request disconnect response with the final bit set when it is polled by the primary. The primary will then respond by transmitting a disconnect command, and both devices will be in normal disconnect mode. An example of a primary-initiated disconnection is shown in **Figure 15**. Once the two devices are in normal disconnect mode, the medium is free for any other device to initiate the discovery, address resolution, or connection procedures.

#### The Infrared Link Management Protocol


The Link Management Protocol (IrLMP) is layered on top of IrLAP, and has two main functions: application and service discovery and multiplexing of application level connections over the single IrLAP connections. The IrLMP layer allows individual service users (applications) to connect and exchange information with similar entities in the peer device, independent of any other service users that may be using the IrLAP connection. The IrLMP layer provides multiple independent channels to the IrLMP layer in the remote device. The IrLMP layer also provides a service with which applications can locally register themselves and some significant parameters in an information base. Services are also provided that enable those applications to access equivalent information in the information base of remote devices. Using this service, an application does not need prior knowledge of the applications in a remote device. This is an extremely useful feature for the kind of ad-hoc interactions typical of IrDA devices.

The two main functions provided by IrLMP are split between two sublayers. The Link Management Multiplexer (LM-MUX) provides the facilities for multiplexing application level connections over a an IrLAP connection between a pair of devices. The Link Management Information Access Service (LM-IAS) provides the services necessary to allow applications to discover devices and access the information in the information base of a remote device.

The Link Management Multiplexer. The LM-MUX adds two bytes of overhead to the IrLAP information frame, which are primarily used for addressing the individual multiplexed connections. The address fields uniquely identify the link service access points (LSAPs) in both the source and destination devices. Each LSAP is addressed by a seven-bit selector (LSAP-SEL), and LSAP-SELs within the range 0x01 to 0x6F can be used by applications. LSAP-SELs 0x00 and 0x70 are reserved for the information access service server and the connectionless data service respectively. The remaining LSAP-SEL values, 0x71 to 0x7F, are reserved for future use. Connections between IrLMP service users are called LSAP connections, and although an LSAP may terminate other LSAP connections, there is only one LSAP connection between any pair of LSAPs. All LSAP connections use the single IrLAP connection between the pair of devices.

**Information Access Service**. The information access service maintains information about the services provided by the host device and provides services that allow access to the information base on remote devices. The information access service allows devices to discover which services are available on the host device and provides the configuration information necessary to access those services. As an example, the most common piece of information required is the LSAP-SEL value, which tells where a particular service is located.

The information stored in the information base consists of a number of objects. Each object belongs to a specific class, and there may be several objects of the same class in the information base. The class defines the attributes that are present in each object, and these attributes can be assigned a particular value. The attributes of a class can be of type user string, octet sequence, signed integer, or missing. **Figure 16** shows an example of the information access service database for a device offering three unique services.



The example shows a device with three individual applications: e-mail, calendar, and IrOBEX (file transfer application). The information base contains three objects associated with these applications. The required Object 0 is always present within the information access service database, and it provides information about the device name and the version of IrLMP the device supports. All other devices can address Object 0 to get this information. Objects in the information base typically detail information about the services provided—for example, the LSAP-SEL where these services can be accessed. In the case of the calendar application, this service can be accessed using the Tiny TP flow-control mechanism on LSAP-SEL 3, or directly on LSAP-SEL 2. The difference is encoded in the attribute name.

The IrLMP layer provides several service primitives to access information access service data. However, the only mandatory service is GetValueByClass. This service requires the service user to provide the class and attribute names of the service it is interested in. The service returns a list of object identifiers and attribute values for all objects in the information base with the requested class and attribute name. Referring to the example in **Figure 16**, if a peer device issued a GetValueByClass with parameter Calendar for the class name and IrDA:IrLMP:LSapSel for the attribute name, the service would return a single element list with the entry containing object identifier 5 and attribute value 2.

#### **Tiny TP Flow Control Mechanism**

Although the IrLAP layer does have provisions for flow control, its use can result in deadlock situations, particularly where more than one IrLMP connection is operating. Such a deadlock situation can occur if an application in one device is waiting for its peer application to send it some data before releasing its buffer space. However, another connection may use up the remaining buffer space, causing the IrLAP layer to flow-control the link until buffer space becomes available. If both connections are waiting for data from the remote device before freeing the buffers, then clearly a deadlock has occurred that cannot be resolved without some form of higher-level intervention such as a system reset.

To overcome this problem, IrDA provides the lightweight transport protocol called Tiny TP.8 Tiny TP adds a single byte of overhead to each frame and provides a per-LSAP-connection credit-based flow control mechanism with the possible segmentation and reassembly of service data units of up to 4 Gbytes in size. When a Tiny TP connection is initiated, the maximum service data unit size is negotiated and some initial credit is extended to each connection endpoint. Sending data causes the credit to be decreased by one, and periodically the receiver issues more credit. Without credit, the transmitter cannot send any data. It must wait until such times as the receiver extends it some more credit. Using Tiny TP, a device can ensure that credit is distributed among its applications, ensuring that the applications can communicate without reducing the buffer space to such a degree that IrLAP flow control must be used.

#### Conclusion

IrDA has completed the core standards necessary to enable any mobile computing platform with ad-hoc, point-and-shoot infrared communications from 2400 bits/s to 4 Mbits/s. Support for the IrDA platform from a wide variety of manufacturers is now becoming apparent, as many products—ranging from printers to laptop PCs and PDAs to mobile phones—are being released with IrDA capability. All these devices will have the ability to interoperate with one another should that be required. With over 130 companies actively maintaining membership in IrDA, currently released IrDA-enabled products represent only the tip of the iceberg. In the coming months and years, it is expected that more and more computing and other devices will be released with built-in IrDA capability.

However, providing the hardware platform to support IrDA is only half the story. Current activity within IrDA is directed at finishing off the IrDA series of standards to enable application-level developers to access the IrDA features in a uniform and efficient manner. The needs of legacy serial/parallel applications have been addressed with the IrCOMM standard. Legacy networking applications will be able to use the IrDA features implemented in the forthcoming IrLAN protocol. However, it is expected that a new class of applications will be developed with the express purpose of using the unique features of IrDA-enabled devices. The IrOBEX protocol, when completed, will provide application programmers with a generic method by which data can be exchanged with other applications without having to know the details of the destination application. As an example, transferring a graphic to another PDA (which will display it) or to a printer

(which will print it) will be no different from the source application's point of view. Alternately, a more flexible approach to accessing the IrDA communications facilities will be to directly access them through the operating system's application programming interface. An example of this is the WinSock-style API to IrDA, called IrSock, <sup>15</sup> currently being developed for the Microsoft<sup>®</sup> Windows 95 operating system.

In conclusion, the future for infrared is bright. With cross-industry support, IrDA is fast becoming the ubiquitous infrared communications system for portable and peripheral devices. Although legacy support for other infrared systems will persist for some time to come, the IrDA standard is now used on so many platforms that it is unlikely any new systems will be anything other than IrDA-enabled.

#### References

- 1. IrDA Marketing Requirements—Basis for the IrDA Technical Standards, Version 3.2, The Infrared Data Association, November 23, 1993.
- 2. Serial Infrared (SIR) Physical Layer Link Specification, Version 1.0, The Infrared Data Association, April 27, 1994.
- 3. Serial Infrared Link Access Protocol (IrLAP), Version 1.0, The Infrared Data Association, June 23, 1994.
- 4. Link Management Protocol (IrLMP), Version 1.0, The Infrared Data Association, August 12, 1994.
- 5. Serial Infrared Physical Layer Link Specification, Version 1.1, The Infrared Data Association, October 17, 1995.
- 6. Link Management Protocol (IrLMP), Version 1.1, The Infrared Data Association, January 23, 1996.
- 7. Serial Infrared Link Access Protocol (IrLAP), Version 1.1, The Infrared Data Association, June 16, 1996.
- 8. Tiny TP: A Flow-Control Mechanism for use with IrLMP, Version 1.0, The Infrared Data Association, October 25, 1995.
- 9. IrCOMM: Serial and Parallel Port Emulation over IR (Wire Replacement), Version 1.0, The Infrared Data Association, November 7, 1995.
- 10. LAN Access Extensions for Link Management Protocol (IrLAN), Proposal, Version 1.0, The Infrared Data Association, January 1, 1996.
- 11. Object Exchange Protocol (IrOBEX), Draft, Version 0.5f, The Infrared Data Association, July 24, 1996.
- 12. S. L. Harper and R. S. Worsley, "The HP 48SX Calculator Input/Output System, Hewlett-Packard Journal, Vol. 42, no. 3, June 1991.
- 13. Information technology—Telecommunications and information exchange between systems—High-level data link control (HDLC) procedures—Elements of procedures, ISO/IEC 4335, International Organization for Standardization, December 15, 1993.
- 14. Information technology—Telecommunications and information exchange between systems—High-level data link control (HDLC) procedures—Classes of procedures, ISO/IEC 7809, International Organization for Standardization, December 15, 1993.
- 15. Infrared Sockets (IrSockets) Specification: Functional Specification, Revision 1.0, The Microsoft Corporation, July 10, 1996.

Microsoft is a U.S. registered trademark of Microsoft Corporation.



lain Millar
As a member of the technical staff at HP Laboratories in Bristol, England,

Iain Millar is involved in the development of protocols for the next generation of IrDA systems. He attended the University of Aberdeen in Scotland where he received a BSc (Eng.) degree (1988) in electrical and electronic engineering and a PhD (1995) in the area of fault tolerant protocols for LANs.



Martin Beale Martin Beale is a member of the technical staff at Hewlett-Packard Labora-

tories in Bristol, England. He is working on the physical layer for the next generation IrDA systems. He earned a PhD degree (1994) in reduced complexity decoding of convolutional codes from the University of Cambridge. Outside of work he enjoys rock climbing, walking, cycling, skiing.



Bryan J. Donoghue
Bryan Donoghue is a
member of the technical
staff at HP Laboratories

in Palo Alto where he is working on the digital system design for high-speed wireless radio LANs. He received a MEng degree (1991) in electrical and electronic engineering from Loughborough University in England. Bryan was born in Llanelli, Wales and outside work he enjoys traveling, learning foreign languages, backpacking, and cycling.



Kirk W. Lindstrom

A member of the technical staff at HP's Communication Semiconductor

Solutions Division, Kirk Lindstrom is responsible for the design of ICs for infrared products. He joined HP in 1978 and since that time he has worked on the design of optocouplers, fiber-optic modules, and infrared transceivers. He holds a BS degree in EECS (1979) from the University of California at Berkeley. Besides being an ardent windsurfer, he also has an interest in doing and writing about investing.



Stuart Williams
A project manager at HP
Laboratories in Bristol,
England, Stuart Williams

is responsible for the infrared communications group. He has worked on various infrared protocol-related projects since he joined HP in 1992. He has a PhD degree (1986) from the University of Bath. Stuart was born in Rugby, Warwickshire, England, is married and has two sons. Biking and sailing occupy his free time.

- ► Go to Next Article
- ► Go to Journal Home Page

# Specification of the Bluetooth System



Wireless connections made easy

Core



v1.0 B December 1st 1999

page 3 of 1082

| BLUETOOTH DOC | Date / Day-Month-Year 01 Dec 99 | Document No.<br>1.C.47/1.0 B |
|---------------|---------------------------------|------------------------------|
| Responsible   | e-mail address                  | Status                       |

Bluetooth.

# Specification of the Bluetooth System

Version 1.0 B

page 4 of 1082

Bluetooth

#### **Revision History**

The Revision History is shown in Appendix I on page 868

#### **Contributors**

The persons who contributed to this specification are listed in Appendix II on page 879.

#### Web Site

This specification can also be found on the Bluetooth website: http://www.bluetooth.com

### Disclaimer and copyright notice

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Copyright © 1999

Telefonaktiebolaget LM Ericsson, International Business Machines Corporation, Intel Corporation, Nokia Corporation, Toshiba Corporation.

<sup>\*</sup>Third-party brands and names are the property of their respective owners.

# **MASTER TABLE OF CONTENTS**

For the Bluetooth Profiles, See Volume 2.

| Part A    |      |                                         | Volume 1 (1:2) |
|-----------|------|-----------------------------------------|----------------|
| RADIO SPE | CIF  | ICATION                                 |                |
| Conte     | ents | S                                       | [A] 17         |
|           | 1    | Scope                                   | [A] 18         |
|           | 2    | Frequency Bands and Channel Arrangement | [A] 19         |
|           | 3    | Transmitter Characteristics             | [A] 20         |
|           | 4    | Receiver Characteristics                | [A] 24         |
|           | 5    | Appendix A                              | [A] 28         |
|           | 6    | Appendix B                              | [A] 31         |
| Part B    |      |                                         | Volume 1 (1:2) |
| BASEBAND  | SP   | ECIFICATION                             |                |
| Conte     | ents | 3                                       | [B] 35         |
|           | 1    | General Description                     | [B] 41         |
|           | 2    | Physical Channel                        | [B] 43         |
|           | 3    | Physical Links                          | [B] 45         |
|           | 4    | Packets                                 | [B] 47         |
|           | 5    | Error Correction                        | [B] 67         |
|           | 6    | Logical Channels                        | [B] 77         |
|           | 7    | Data Whitening                          | [B] 79         |
|           | 8    | Transmit/Receive Routines               | [B] 81         |
|           | 9    | Transmit/Receive Timing                 | [B] 87         |
|           | 10   | Channel Control                         | [B] 95         |
|           | 11   | Hop Selection                           | [B] 127        |
|           | 12   | Bluetooth Audio                         | [B] 139        |
|           | 13   | Bluetooth Addressing                    | [B] 143        |
|           | 14   | Bluetooth Security                      | [B] 149        |
|           |      | List of Figures                         |                |
|           | 16   | List of Tables                          | [B] 183        |

| Part C      |                                       | Volume 1 (1:2) |
|-------------|---------------------------------------|----------------|
| LINK MANAG  | ER PROTOCOL                           |                |
| Conten      | its                                   | [C] 187        |
| 1           | General                               | [C] 191        |
| 2           | Pormat of LMP                         | [C] 192        |
| 3           | The Procedure Rules and PDUs          | [c] 193        |
| 4           | Connection Establishment              | [C] 225        |
| 5           | Summary of PDUs                       | [C] 226        |
| 6           | Test Modes                            | [C] 237        |
| 7           | Error Handling                        | [C] 239        |
| 8           | List of Figures                       | [C] 241        |
| 9           | List of Tables                        | [C] 243        |
| Part D      |                                       | Volume 1 (1:2) |
| LOGICAL LIN | K CONTROL AND ADAPTATION PRODON       | ГОСОЬ          |
| Conten      | ıts                                   | [D] 247        |
| 1           | Introduction                          | [D] 249        |
| 2           | General Operation                     | [D] 253        |
| 3           | State Machine                         | [D] 258        |
| 4           | Data Packet Format                    | [D] 272        |
| 5           | Signalling                            | [D] 275        |
| 6           | Configuration Parameter Options       | [D] 289        |
| 7           | Service Primitives                    | [D] 295        |
| 8           | Summary                               | [D] 313        |
| 9           | References                            | [D] 314        |
| 1           | 0 List of Figures                     | [D] 315        |
| 1           | 1 List of Tables                      | [D] 316        |
| Т           | erms and Abbreviations                |                |
|             | Appendix A: Configuration MSCs        |                |
|             | Appendix B: Implementation Guidelines |                |
|             |                                       |                |

| Part E    |      |                                           | Volume 1 (1:2) |
|-----------|------|-------------------------------------------|----------------|
| SERVICE I | DISC | COVERY PROTOCOL (SDP)                     |                |
| Con       | tent | s                                         | [E] 325        |
|           | 1    | Introduction                              | [E] 327        |
|           | 2    | Overview                                  | [E] 330        |
|           | 3    | Data Representation                       | [E] 341        |
|           | 4    | Protocol Description                      | [E] 344        |
|           | 5    | Service Attribute Definitions             | [E] 358        |
|           | Ap   | ppendix A- Background Information         | [E] 370        |
|           | Ap   | ppendix B – Example SDP Transactions      | [E] 371        |
| Part F:1  |      |                                           | Volume 1 (1:2) |
| RFCOMM    | WITI | H TS 07.10                                |                |
| Con       | tent | s                                         | [F:1] 387      |
|           | 1    | Introduction                              |                |
|           | 2    | RFCOMM Service Overview                   | [F:1] 391      |
|           | 3    | Service Interface Description             | [F:1] 395      |
|           | 4    | TS 07.10 Subset Supported by RFCOMM       | [F:1] 396      |
|           | 5    | TS 07.10 Adaptations for RFCOMM           |                |
|           | 6    | Flow Control                              | [F:1] 403      |
|           | 7    | Interaction with Other Entities           | [F:1] 405      |
|           | 8    | References                                | [F:1] 408      |
|           | 9    | Terms and Abbreviations                   | [F:1] 409      |
| Part F:2  |      |                                           | Volume 1 (1:2) |
| IrDA INTE | ROP  | ERABILITY                                 |                |
| Con       | tent | s                                         |                |
|           | 1    | Introduction                              | [F:2] 414      |
|           | 2    | OBEX Object and Protocol                  | [F:2] 417      |
|           | 3    | OBEX over RFCOMM                          | [F:2] 421      |
|           | 4    | OBEX over TCP/IP                          | [F:2] 423      |
|           | 5    | Bluetooth Application Profiles using OBEX | [F:2] 425      |
|           | 6    | References                                | [F:2] 427      |
|           | 7    | List of Acronyms and Abbreviations        | [F:2] 428      |

| Part F:3    |                                        | Volume 1 (1:2) |
|-------------|----------------------------------------|----------------|
| TELEPHONY ( | CONTROL PROTOCOL SPECIFICATION         | I              |
| Conten      | ts                                     | [F:3] 431      |
| 1           | General Description                    | [F:3] 435      |
| 2           | Call Control (CC)                      | [F:3] 439      |
| 3           | Group Management (GM)                  | [F:3] 449      |
| 4           | Connectionless TCS (CL)                | [F:3] 455      |
| 5           | Supplementary Services (SS)            | [F:3] 456      |
| 6           | Message formats                        | [F:3] 459      |
| 7           | Message coding                         | [F:3] 471      |
| 8           | Message Error handling                 | [F:3] 487      |
| 9           | Protocol Parameters                    | [F:3] 489      |
| 10          | References                             | [F:3] 490      |
| 1           | 1 List of Figures                      | [F:3] 491      |
| 1:          | 2 List of Tables                       | [F:3] 492      |
| Α           | ppendix 1 - TCS Call States            | [F:3] 493      |
| Part F:4    |                                        | Volume 1 (1:2) |
|             | BILITY REQUIREMENTS FOR BLUETOOTI      |                |
|             | ts                                     |                |
| 1           | Introduction                           |                |
| 2           | The Use of WAP In the Bluetooth Enviro |                |
| 3           | WAP Services Overview                  | [F:4] 502      |
| 4           | WAP in the Bluetooth Piconet           | [F:4] 506      |
| 5           | Interoperability Requirements          | [F:4] 511      |
| 6           | Service Discovery                      | [F:4] 512      |
| 7           | References                             | [F:4] 515      |

| Part H:1    |     |                                                | Volume 1 (2:2)    |
|-------------|-----|------------------------------------------------|-------------------|
|             |     | DLLER INTERFACE FUNCTIONAL SPECIFIC            |                   |
| Conte       | nt  | s                                              | [H:1] 519         |
| ,           | 1   | Introduction                                   | [H:1] 524         |
|             | 2   | Overview of Host Controller Transport Layer.   | [H:1] 528         |
| ;           | 3   | HCI Flow Control                               | [H:1] <b>52</b> 9 |
|             | 4   | HCI Commands                                   | [H:1] 531         |
| !           | 5   | Events                                         | [H:1] 703         |
|             | 6   | List of Error Codes                            | [H:1] 745         |
| •           | 7   | List of Acronyms and Abbreviations             | [H:1] 755         |
|             | 8   | List of Figures                                | [H:1] 756         |
| !           | 9   | List of Tables                                 | [H:1] 757         |
| Part H:2    |     |                                                | Volume 1 (2:2)    |
| HCI USB TRA | ΔN  | SPORT LAYER                                    |                   |
| Conte       | nts | S                                              | [H:2] 761         |
|             | 1   | Overview                                       | [H:2] <b>7</b> 62 |
|             | 2   | USB Endpoint Expectations                      | [H:2] 764         |
| ;           | 3   | Class Code                                     | [H:2] 771         |
| •           | 4   | Device Firmware Upgrade                        | [H:2] 772         |
| !           | 5   | Limitations                                    | [H:2] 773         |
| Part H:3    |     |                                                | Volume 1 (2:2)    |
| HCI RS232 T | R/  | ANSPORT LAYER                                  |                   |
| Conte       | nt  | S                                              | [H:3] 777         |
|             | 1   | General                                        | [H:3] 778         |
|             | 2   | Overview                                       | [H:3] <b>77</b> 9 |
| ;           | 3   | Negotiation Protocol                           | [H:3] 780         |
|             | 4   | Packet Transfer Protocol                       | [H:3] 784         |
| :           | 5   | Using delimiters with COBS for synchronization | on [H:3] 785      |
|             | 6   | Using RTS/CTS for Synchronization              | [H:3] 788         |
|             | 7   | References                                     | [H:3] 794         |

| Part H:4    |     | Volu                                                                            | ıme 1 (2:2)       |
|-------------|-----|---------------------------------------------------------------------------------|-------------------|
| HCI UART TR | RAN | ISPORT LAYER                                                                    |                   |
| Conter      | nts |                                                                                 | [H:4] 797         |
| 1           | 1   | General                                                                         | [H:4] <b>7</b> 98 |
| 2           | 2   | Protocol                                                                        | [H:4] <b>7</b> 99 |
| 3           | 3   | RS232 Settings                                                                  | [H:4] 800         |
| 4           | 4   | Error Recovery                                                                  | [H:4] 801         |
| Part I:1    |     | Volu                                                                            | ıme 1 (2:2)       |
| BLUETOOTH   | TE  | EST MODE                                                                        |                   |
| Conter      | nts |                                                                                 | [I:1] 805         |
| 1           | 1   | General Description                                                             | [l:1] 806         |
| 2           |     | Test Scenarios                                                                  |                   |
| 3           |     | Outline of Proposed LMP Messages                                                |                   |
| 4           | 4   | References                                                                      | [l:1] 819         |
| Part I:2    |     | Volu                                                                            | ıme 1 (2:2)       |
| BLUETOOTH   | C   | OMPLIANCE REQUIREMENTS                                                          |                   |
| Conte       | nts | s                                                                               | [I:2] 823         |
| 1           | 1   | Scope                                                                           | [l:2] 825         |
| 2           | 2   | Terms Used                                                                      | [l:2] 826         |
| 3           | 3   | Legal Aspects                                                                   | [l:2] 828         |
| 4           | 4   | The Value of the Bluetooth Brand                                                | [l:2] 829         |
| 5           | 5   | The Bluetooth Qualification Program                                             | [l:2] 830         |
| 6           | 6   | Bluetooth License Requirements for Products                                     | [l:2] 832         |
| 7           | 7   | Bluetooth License Provisions for Early Products                                 | [I:2] 836         |
| 8           |     | Bluetooth Brand License Provisions for Special Products & Marketing             | [l:2] 837         |
| 9           |     | Recommendations Concerning Information about a Product's Bluetooth Capabilities | [l:2] 838         |
| 1           |     | Quality Management, Configuration Management and Version Control                | [l:2] 839         |
| 1           |     | Appendix A – Example of a "Bluetooth Capability Statement"                      | [l:2] 840         |
| 1           | 12  | Appendix B - Marketing Names of Bluetooth Profile                               | es.[l:2] 841      |

|              |                                            | Bluetooth                             |
|--------------|--------------------------------------------|---------------------------------------|
| Part I:3     |                                            | Volume 1 (2:2)                        |
| TEST CONTRO  | OL INTERFACE                               |                                       |
| Content      | 's                                         | [I:3] 845                             |
| 1            | Introduction                               | [1:3] 847                             |
| 2            | General Description                        |                                       |
| 3            | Test Configurations                        |                                       |
| 4            | TCI-L2CAP Specification                    | [l:3] 856                             |
| 5            | Abbreviations                              | [I:3] 866                             |
| Part K       | Profile                                    | es - see Volume 2                     |
| Appendix I   |                                            | Volume 1 (2:2)                        |
| REVISION HIS | TORY                                       | [@:l] 868                             |
| Appendix II  |                                            | Volume 1 (2:2)                        |
| CONTRIBUTO   | RS                                         | [@:II] 881                            |
| Appendix III |                                            | Volume 1 (2:2)                        |
| ACRONYMS A   | ND ABBREVIATIONS                           | [@:III] 891                           |
| Appendix IV  |                                            | Volume 1 (2:2)                        |
| SAMPLE DATA  | A                                          |                                       |
| Content      | s                                          | [@:IV] 901                            |
| 1            | Encryption Sample Data                     | [@:IV] 902                            |
| 2            | Frequency Hopping Sample Data—Manda Scheme | · · · · · · · · · · · · · · · · · · · |
| 3            | Access Code Sample Data                    | [@:IV] 950                            |
| 4            | HEC and Packet Header Sample Data          | [@:IV] 953                            |
| 5            | CRC Sample Data                            | [@:IV] 954                            |
| 6            | Complete Sample Packets                    | [@:IV] 955                            |
| 7            | Whitening Sequence Sample Data             | [@:IV] 957                            |
| 8            | FEC Sample Data                            | [@:IV] 960                            |
| 9            | Encryption Key Sample Data                 | [@:IV] 961                            |

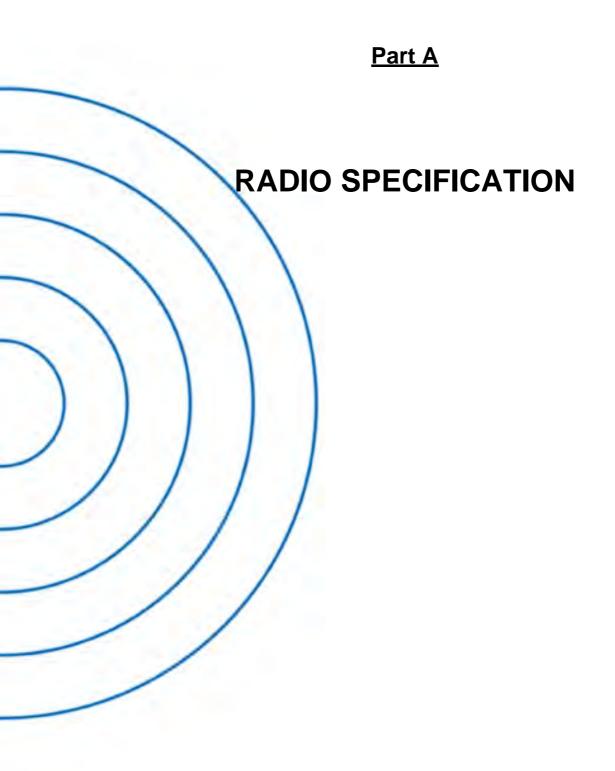
page 12 of 1082

|               |                                              | Bluetooth      |
|---------------|----------------------------------------------|----------------|
| Appendix V    |                                              | Volume 1 (2:2) |
| BLUETOOTH A   | AUDIO                                        |                |
| Content       | s                                            | [@:V] 987      |
| 1             | General Audio Recommendations                | [@:V] 989      |
| Appendix VI   |                                              | Volume 1 (2:2) |
| BASEBAND TI   | MERS                                         |                |
| Content       | s                                            | [@:VI] 995     |
| 1             | Baseband Timers                              | [@:VI] 996     |
| Appendix VII  |                                              | Volume 1 (2:2) |
| OPTIONAL PA   | GING SCHEMES                                 |                |
| Content       | s                                            | [@:VII] 1001   |
| 1             | General                                      | [@:VII] 1003   |
| 2             | Optional Paging Scheme I                     | [@:VII] 1004   |
| Appendix VIII |                                              | Volume 1 (2:2) |
| BLUETOOTH A   | ASSIGNED NUMBERS                             |                |
| Content       | s                                            | [@:VIII] 1011  |
| 1             | Bluetooth Baseband                           | [@:VIII] 1012  |
| 2             | Link Manager Protocol (LMP)                  | [@:VIII] 1018  |
| 3             | Logical Link Control and Adaptation Protocol | [@:VIII] 1019  |
| 4             | Service Discovery Protocol (SDP)             | [@:VIII] 1020  |
| 5             | References                                   | [@:VIII] 1028  |
| 6             | Terms and Abbreviations                      | [@:VIII] 1029  |
| 7             | List of Figures                              | [@:VIII] 1030  |
| 8             | List of Tables                               | [@:VIII] 1031  |

# **ATTACHMENT H**

| R | П | <b>IFT</b> | OO     | ΤН | SPI | =CII | FIC.A        | TION  | Version | 1.0 | P   |
|---|---|------------|--------|----|-----|------|--------------|-------|---------|-----|-----|
| ப | ᄔ | ᄼ          | $\sim$ |    | OFI | _01  | $10^{\circ}$ | LIVIN | version | 1.0 | , , |

page 13 of 1082


| D  | lue | to | _ | th |
|----|-----|----|---|----|
| DI | ш   | HU | w | ш  |

| Appendix IX    |                                                        | Volume 1 (2:2)     |
|----------------|--------------------------------------------------------|--------------------|
| MESSAGE SE     | QUENCE CHARTS                                          |                    |
| Conten         | ts                                                     | [@:IX] 1035        |
| 1              | Introduction                                           | [@:IX] 1037        |
| 2              | Services Without Connection Request                    | [@:IX] 1038        |
| 3              | ACL Connection Establishment and Detac                 | chment.[@:IX] 1042 |
| 4              | Optional Activities After ACL Connection Establishment | [@:IX] 1050        |
| 5              | SCO Connection Establishment and Deta                  | chment [@:IX] 1059 |
| 6              | Special Modes: Sniff, Hold, Park                       | [@:IX] 1062        |
| 7              | Buffer Management, Flow Control                        | [@:IX] 1068        |
| 8              | Loopback Mode                                          | [@:IX] 1070        |
| 9              | List of Acronyms and Abbreviations                     | [@:IX] 1073        |
| 1              | 0 List of Figures                                      | [@:IX] 1074        |
| 1              | 1 List of Tables                                       | [@:IX] 1075        |
| 1:             | 2 References                                           | [@:IX] 1076        |
| Alphabetical I | ndex                                                   | 1077               |

28 November 1999 13

page 14 of 1082

Bluetooth.



# ATTACHMENT H

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 17 of 1082

Radio Specification

# Bluetooth.

# **CONTENTS**

| 1 | Sco  | pe                                            | 18 |
|---|------|-----------------------------------------------|----|
| 2 | Fred | ղuency Bands and Channel Arrangement          | 19 |
| 3 | Tran | smitter Characteristics                       | 20 |
|   | 3.1  | Modulation Characteristics                    | 21 |
|   | 3.2  | Spurious Emissions                            | 21 |
|   |      | 3.2.1 In-band Spurious Emission               | 22 |
|   |      | 3.2.2 Out-of-Band Spurious Emission           | 22 |
|   | 3.3  | Radio Frequency Tolerance                     | 23 |
| 4 | Rec  | eiver Characteristics                         | 24 |
|   | 4.1  | Actual Sensitivity Level                      | 24 |
|   | 4.2  | Interference Performance                      | 24 |
|   | 4.3  | Out-of-band Blocking                          | 25 |
|   | 4.4  | Intermodulation Characteristics               |    |
|   | 4.5  | Maximum Usable Level                          | 26 |
|   | 4.6  | Spurious Emissions                            | 26 |
|   | 4.7  | Receiver Signal Strength Indicator (optional) |    |
|   | 4.8  | Reference Interference-signal Definition      |    |
| 5 | App  | endix A                                       | 28 |
| 6 |      | endix B                                       |    |

17

page 18 of 1082

Radio Specification

Bluetooth

# 1 SCOPE

The Bluetooth transceiver is operating in the 2.4 GHz ISM band. This specification defines the requirements for a Bluetooth transceiver operating in this unlicensed band.

Requirements are defined for two reasons:

- · Provide compatibility between the radios used in the system
- Define the quality of the system

The Bluetooth transceiver shall fulfil the stated requirements under the operating conditions specified in Appendix A and Appendix B. The Radio parameters must be measured according to the methods described in the RF Test Specification.

This specification is based on the established regulations for Europe, Japan and North America. The standard documents listed below are only for information, and are subject to change or revision at any time.

**Europe** (except France and Spain):

Approval Standards: European Telecommunications Standards Institute, ETSI

Documents: ETS 300-328, ETS 300-826

Approval Authority: National Type Approval Authorities

#### France:

Approval Standards: La Reglementation en France por les Equipements fonctionnant dans la bande de frequences 2.4 GHz "RLAN-Radio Local Area Network"

Documents: SP/DGPT/ATAS/23, ETS 300-328, ETS 300-826

Approval Authority: Direction Generale des Postes et Telecommunications

**Note:** A new R&TTE EU Directive will be in effect by March 2000, with consequent effects on the manufacturer's declaration of conformity and free circulation of products within the EU.

#### Spain:

Approval Standards: Supplemento Del Numero 164 Del Boletin Oficial Del Estado (Published 10 July 91, Revised 25 June 93)

Documents: ETS 300-328, ETS 300-826

Approval Authority: Cuadro Nacional De Atribucion De Frecuesias

#### Japan:

Approval Standards: Association of Radio Industries and Businesses, ARIB

Documents: RCR STD-33A

Approval Authority: Ministry of Post and Telecommunications, MPT

Note: The Japanese rules are in revision. Decisions on the revision will take place in Q2 1999.

# North Americas:

Approval Standards: Federal Communications Commission, FCC, USA

Documents: CFR47, Part 15, Sections 15.205, 15.209, 15.247

Approval Standards: Industry Canada, IC, Canada

Documents: GL36

Approval Authority: FCC (USA), Industry Canada (Canada)

Bluetooth.

# 2 FREQUENCY BANDS AND CHANNEL ARRANGEMENT

The Bluetooth system is operating in the 2.4 GHz ISM (Industrial Scientific Medicine) band. In a vast majority of countries around the world the range of this frequency band is 2400 - 2483.5 MHz. Some countries have however national limitations in the frequency range. In order to comply with these national limitations, special frequency hopping algorithms have been specified for these countries. It should be noted that products implementing the reduced frequency band will not work with products implementing the full band. The products implementing the reduced frequency band must therefore be considered as local versions for a single market. The Bluetooth SIG has launched a campaign to overcome these difficulties and reach total harmonization of the frequency band.

| Geography                                          | Regulatory Range  | RF Channels           |
|----------------------------------------------------|-------------------|-----------------------|
| USA, Europe and most other countries <sup>1)</sup> | 2.400-2.4835 GHz  | f=2402+k MHz, k=0,,78 |
| Spain <sup>2)</sup>                                | 2.445-2.475 GHz   | f=2449+k MHz, k=0,,22 |
| France <sup>3)</sup>                               | 2.4465-2.4835 GHz | f=2454+k MHz, k=0,,22 |

Table 2.1: Operating frequency bands

- Note 1. Japan, the MPT announced at the beginning of October 1999 that the Japanese frequency band would be extended to 2400-2483.5 MHz, effective immediately. Testing of devices by TELEC may however need some time to change. The previously specified special frequency-hopping algorithm covering 2471-2497 MHz remains as an option.
- Note 2. There is a proposal in Spain to extend the national frequency band to 2403-2483.5 MHz. The Bluetooth SIG has approached the authorities in Spain to get a full harmonization. The outcome is expected by the beginning of year 2000.
- Note 3. The Bluetooth SIG has established good contacts with the French authorities and are closely following the development of harmonization.

Channel spacing is 1 MHz. In order to comply with out-of-band regulations in each country, a guard band is used at the lower and upper band edge.

| Geography                        | Lower Guard Band | Upper Guard Band |
|----------------------------------|------------------|------------------|
| USA                              | 2 MHz            | 3.5 MHz          |
| Europe (except Spain and France) | 2 MHz            | 3.5 MHz          |
| Spain                            | 4 MHz            | 26 MHz           |
| France                           | 7.5 MHz          | 7.5 MHz          |
| Japan                            | 2 MHz            | 2 MHz            |

Table 2.2: Guard Bands

Bluetooth.

# **3 TRANSMITTER CHARACTERISTICS**

The requirements stated in this section are given as power levels at the antenna connector of the equipment. If the equipment does not have a connector, a reference antenna with 0 dBi gain is assumed.

Due to difficulty in measurement accuracy in radiated measurements, it is preferred that systems with an integral antenna provide a temporary antenna connector during type approval.

If transmitting antennas of directional gain greater than 0 dBi are used, the applicable paragraphs in ETSI 300 328 and FCC part 15 must be compensated for.

The equipment is classified into three power classes.

| Power<br>Class | Maximum Output<br>Power (Pmax) | Nominal<br>Output Power | Minimum<br>Output Power <sup>1)</sup> | Power Control                                            |
|----------------|--------------------------------|-------------------------|---------------------------------------|----------------------------------------------------------|
| 1              | 100 mW (20 dBm)                | N/A                     | 1 mW (0 dBm)                          | Pmin<+4 dBm to Pmax Optional: Pmin <sup>2)</sup> to Pmax |
| 2              | 2.5 mW (4 dBm)                 | 1 mW (0 dBm)            | 0.25 mW (-6 dBm)                      | Optional:<br>Pmin <sup>2)</sup> to Pmax                  |
| 3              | 1 mW (0 dBm)                   | N/A                     | N/A                                   | Optional:<br>Pmin <sup>2)</sup> to Pmax                  |

Table 3.1: Power classes

Note 1. Minimum output power at maximum power setting.

Note 2. The lower power limit Pmin<-30dBm is suggested but is not mandatory, and may be chosen according to application needs.

A power control is required for power class 1 equipment. The power control is used for limiting the transmitted power over 0 dBm. Power control capability under 0 dBm is optional and could be used for optimizing the power consumption and overall interference level. The power steps shall form a monotonic sequence, with a maximum step size of 8 dB and a minimum step size of 2 dB. A class 1 equipment with a maximum transmit power of +20 must be able to control its transmit power down to 4 dBm or less.

Equipment with power control capability optimizes the output power in a link with LMP commands (see Link Manager Protocol). It is done by measuring RSSI and report back if the power should be increased or decreased.

Bluetooth.

### 3.1 MODULATION CHARACTERISTICS

The Modulation is GFSK (Gaussian Frequency Shift Keying) with a BT=0.5. The Modulation index must be between 0.28 and 0.35. A binary one is represented by a positive frequency deviation, and a binary zero is represented by a negative frequency deviation. The symbol timing shall be better than ±20 ppm.

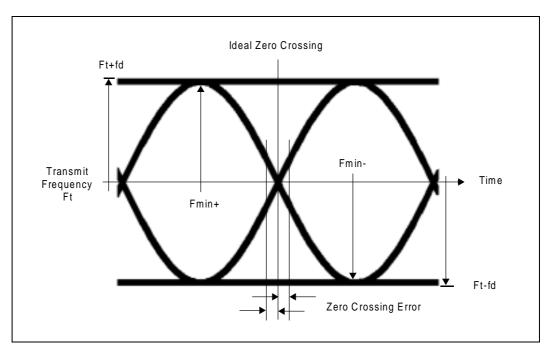



Figure 3.1: Figure 3-1 Actual transmit modulation.

For each transmit channel, the minimum frequency deviation (Fmin = the lesser of {Fmin+, Fmin-}) which corresponds to 1010 sequence shall be no smaller than ±80% of the frequency deviation (fd) which corresponds to a 00001111 sequence.

In addition, the minimum deviation shall never be smaller than 115 kHz.

The zero crossing error is the time difference between the ideal symbol period and the measured crossing time. This shall be less than  $\pm$  1/8 of a symbol period.

#### 3.2 SPURIOUS EMISSIONS

The spurious emission, in-band and out-of-band, is measured with a frequency hopping transmitter hopping on a single frequency; this means that the synthesizer must change frequency between receive slot and transmit slot, but always returns to the same transmit frequency.

For the USA, FCC parts 15.247, 15.249, 15.205 and 15.209 are applicable regulations. For Japan, RCR STD-33 applies and, for Europe, ETSI 300 328.

Bluetooth

### 3.2.1 In-band Spurious Emission

Within the ISM band the transmitter shall pass a spectrum mask, given in Table 3.2. The spectrum must comply with the FCC's 20-dB bandwidth definition stated below, and should be measured accordingly. In addition to the FCC requirement an adjacent channel power on adjacent channels with a difference in channel number of two or greater an adjacent channel power is defined. This adjacent channel power is defined as the sum of the measured power in a 1 MHz channel. The transmitted power shall be measured in a 100 kHz bandwidth using maximum hold. The transmitter is transmitting on channel M and the adjacent channel power is measured on channel number N. The transmitter is sending a pseudo random data pattern throughout the test.

| Frequency offset | Transmit Power |
|------------------|----------------|
| ± 550 kHz        | -20 dBc        |
| M-N  = 2         | -20 dBm        |
| M-N  ≥ 3         | -40 dBm        |

Table 3.2: Transmit Spectrum mask.

**Note:** If the output power is less than 0dBm then, wherever appropriate, the FCC's 20 dB relative requirement overrules the absolute adjacent channel power requirement stated in the above table.

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

FCC Part 15.247c

Exceptions are allowed in up to three bands of 1 MHz width centered on a frequency which is an integer multiple of 1 MHz. They must, however, comply with an absolute value of –20 dBm.

### 3.2.2 Out-of-Band Spurious Emission

The measured power should be measured in a 100 kHz bandwidth.

| Frequency Band     | Operation mode | Idle mode |
|--------------------|----------------|-----------|
| 30 MHz - 1 GHz     | -36 dBm        | -57 dBm   |
| 1 GHz – 12.75 GHz  | -30 dBm        | -47 dBm   |
| 1.8 GHz – 1.9 GHz  | -47 dBm        | -47 dBm   |
| 5.15 GHz – 5.3 GHz | -47 dBm        | -47 dBm   |

Table 3.3: Out-of-band spurious emission requirement

Bluetooth.

# 3.3 RADIO FREQUENCY TOLERANCE

The transmitted initial center frequency accuracy must be  $\pm 75$  kHz from  $F_c$ . The initial frequency accuracy is defined as being the frequency accuracy before any information is transmitted. Note that the frequency drift requirement is not included in the  $\pm 75$  kHz.

The transmitter center frequency drift in a packet is specified in Table 3.4. The different packets are defined in the Baseband Specification.

| Type of Packet                   | Frequency Drift |
|----------------------------------|-----------------|
| One-slot packet                  | ±25 kHz         |
| Three-slot packet                | ±40 kHz         |
| Five-slot packet                 | ±40 kHz         |
| Maximum drift rate <sup>1)</sup> | 400 Hz/μs       |

Table 3.4: Frequency drift in a package

Note 1. The maximum drift rate is allowed anywhere in a packet.

Bluetooth.

# 4 RECEIVER CHARACTERISTICS

In order to measure the bit error rate performance; the equipment must have a "loop back" facility. The equipment sends back the decoded information. This facility is specified in the Test Mode Specification.

The reference sensitivity level referred to in this chapter equals -70 dBm.

### 4.1 ACTUAL SENSITIVITY LEVEL

The actual sensitivity level is defined as the input level for which a raw bit error rate (BER) of 0.1% is met. The requirement for a Bluetooth receiver is an actual sensitivity level of –70 dBm or better. The receiver must achieve the –70 dBm sensitivity level with any Bluetooth transmitter compliant to the transmitter specification specified in Section 3 on page 20.

### 4.2 INTERFERENCE PERFORMANCE

The interference performance on Co-channel and adjacent 1 MHz and 2 MHz are measured with the wanted signal 10 dB over the reference sensitivity level. On all other frequencies the wanted signal shall be 3 dB over the reference sensitivity level. Should the frequency of an interfering signal lie outside of the band 2400-2497 MHz, the out-of-band blocking specification (see Section 4.3 on page 25) shall apply. The interfering signal shall be Bluetooth-modulated (see section 4.8 on page 27). The BER shall be  $\leq$  0.1%. The signal to interference ratio shall be:

| Requirement                                                                         | Ratio               |
|-------------------------------------------------------------------------------------|---------------------|
| Co-Channel interference, C/I <sub>co-channel</sub>                                  | 11 dB <sup>1)</sup> |
| Adjacent (1 MHz) interference, C/I <sub>1MHz</sub>                                  | 0 dB <sup>1</sup>   |
| Adjacent (2 MHz) interference, C/I <sub>2MHz</sub>                                  | -30 dB              |
| Adjacent (≥3 MHz) interference, C/I <sub>≥3MHz</sub>                                | -40 dB              |
| Image frequency Interference <sup>2) 3)</sup> , C/I <sub>Image</sub>                | -9 dB <sup>1</sup>  |
| Adjacent (1 MHz) interference to in-band image frequency, C/I <sub>Image±1MHz</sub> | -20 dB <sup>1</sup> |

Table 4.1: Interference performance

- Note 1. These specifications are tentative and will be fixed within 18 months after the release of the Bluetooth specification version 1.0. Implementations have to fulfil the final specification after a 3-years' convergence period starting at the release of the Bluetooth specification version 1.0. During the convergence period, devices need to achieve a co-channel interference resistance of +14 dB, an ACI (@1MHz) resistance of +4 dB, Image frequency interference resistance of -6 dB and an ACI to in-band image frequency resistance of -16 dB.
- Note 2. In-band image frequency
- Note 3. If the image frequency ≠ n\*1 MHz, than the image reference frequency is defined as the closest n\*1 MHz frequency.
- Note 4. If two adjacent channel specifications from Table 4.1 are applicable to the same channel, the more relaxed specification applies.

Bluetooth.

These specifications are only to be tested at nominal temperature conditions with a receiver hopping on one frequency, meaning that the synthesizer must change frequency between receive slot and transmit slot, but always return to the same receive frequency.

Frequencies where the requirements are not met are called spurious response frequencies. Five spurious response frequencies are allowed at frequencies with a distance of  $\geq 2$  MHz from the wanted signal. On these spurious response frequencies a relaxed interference requirement C/I = -17 dB shall be met.

#### 4.3 OUT-OF-BAND BLOCKING

The Out of band blocking is measured with the wanted signal 3 dB over the reference sensitivity level. The interfering signal shall be a continuous wave signal. The BER shall be  $\leq 0.1\%$ . The Out of band blocking shall fulfil the following requirements:

| Interfering Signal<br>Frequency | Interfering Signal Power<br>Level |
|---------------------------------|-----------------------------------|
| 30 MHz - 2000 MHz               | -10 dBm                           |
| 2000 - 2399 MHz                 | -27 dBm                           |
| 2498 – 3000 MHz                 | -27 dBm                           |
| 3000 MHz – 12.75 GHz            | -10 dBm                           |

Table 4.2: Out of Band blocking requirements

24 exceptions are permitted which are dependent upon the given receive channel frequency and are centered at a frequency which is an integer multiple of 1 MHz. At 19 of these spurious response frequencies a relaxed power level -50 dBm of the interferer may used to achieve a BER of 0.1%. At the remaining 5 spurious response frequencies the power level is arbitrary.

### 4.4 INTERMODULATION CHARACTERISTICS

The reference sensitivity performance, BER = 0.1%, shall be met under the following conditions.

- The wanted signal at frequency f<sub>0</sub> with a power level 6 dB over the reference sensitivity level.
- A static sine wave signal at f<sub>1</sub> with a power level of –39 dBm
- A Bluetooth modulated signal (see Section 4.8 on page 27) at f<sub>2</sub> with a power level of -39 dBm

Such that  $f_0=2f_1-f_2$  and  $|f_2-f_1|=n^*1$  MHz, where n can be 3, 4, or 5. The system must fulfil one of the three alternatives.

Receiver Characteristics 29 November 1999 25

Bluetooth

#### 4.5 MAXIMUM USABLE LEVEL

The maximum usable input level the receiver shall operate at shall be better than – 20 dBm. The BER shall be less or equal to 0,1% at –20\* dBm input power.

### 4.6 SPURIOUS EMISSIONS

The spurious emission for a Bluetooth receiver shall not be more than:

| Frequency Band    | Requirement |
|-------------------|-------------|
| 30 MHz - 1 GHz    | -57 dBm     |
| 1 GHz – 12.75 GHz | -47 dBm     |

Table 4.3: Out-of-band spurious emission

The measured power should be measured in a 100 kHz bandwidth.

# 4.7 RECEIVER SIGNAL STRENGTH INDICATOR (OPTIONAL)

A transceiver that wishes to take part in a power-controlled link must be able to measure its own receiver signal strength and determine if the transmitter on the other side of the link should increase or decrease its output power level. A Receiver Signal Strength Indicator (RSSI) makes this possible.

The way the power control is specified is to have a golden receive power. This golden receive power is defined as a range with a low limit and a high limit. The RSSI must have a minimum dynamic range equal to this range. The RSSI must have an absolute accuracy of ±4dB or better when the receive signal power is -60 dBm. In addition, a minimum range of 20±6 dB must be covered, starting from -60 dB and up (see Figure 4.1 on page 26).

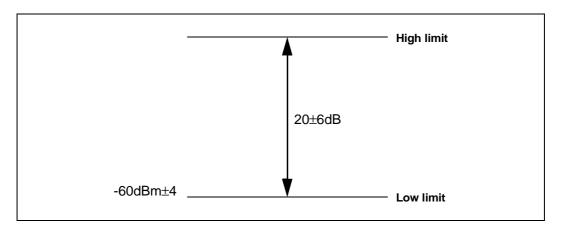



Figure 4.1: RSSI dynamic range and accuracy

page 27 of 1082

Radio Specification

Bluetooth.

# 4.8 REFERENCE INTERFERENCE-SIGNAL DEFINITION

A Bluetooth modulated interfering signal is defined as:

Modulation = GFSK

Modulation index =  $0.32\pm1\%$ 

 $BT = 0.5 \pm 1\%$ 

Bit Rate = 1 Mbps  $\pm 1$  ppm

Modulating Data = PRBS9

Frequency accuracy better than ±1 ppm.

page 28 of 1082

Radio Specification

Bluetooth

# **5 APPENDIX A**

# 5.1 NOMINAL TEST CONDITIONS (NTC)

### 5.1.1 Nominal temperature

The nominal temperature conditions for tests shall be +15 to +35 °C. When it is impractical to carry out the test under this condition a note to this effect, stating the ambient temperature, shall be recorded. The actual value during the test shall be recorded in the test report.

#### 5.1.2 Nominal Power source

### 5.1.2.1 Mains Voltage

The nominal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. The nominal voltage shall be declared voltage or any of the declared voltages for which the equipment was designed. The frequency of the test power source corresponding to the AC mains shall be within 2% of the nominal frequency.

#### 5.1.2.2 Lead-acid battery power sources used in vehicles

When radio equipment is intended for operation from the alternator-fed leadacid battery power sources which are standard in vehicles, then the nominal test voltage shall be 1.1 times the nominal voltage of the battery (6V, 12V, etc.).

#### 5.1.2.3 Other power sources

For operation from other power sources or types of battery (primary or secondary), the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

Bluetooth

# 5.2 EXTREME TEST CONDITIONS

## 5.2.1 Extreme temperatures

The extreme temperature range is defined as the largest temperature range given by the combination of:

- The minimum temperature range 0 °C to +35 °C
- The product operating temperature range declared by the manufacturer.

This extreme temperature range and the declared operating temperature range shall be recorded in the test report.

### 5.2.2 Extreme power source voltages

Tests at extreme power source voltages specified below are not required when the equipment under test is designed for operation as part of and powered by another system or piece of equipment. Where this is the case, the limit values of the host system or host equipment shall apply. The appropriate limit values shall be declared by the manufacturer and recorded in the test report.

### 5.2.2.1 Mains voltage

The extreme test voltage for equipment to be connected to an AC mains source shall be the nominal mains voltage ±10%.

#### 5.2.2.2 Lead-acid battery power source used on vehicles

When radio equipment is intended for operation from the alternator-fed leadacid battery power sources which are standard in vehicles, then extreme test voltage shall be 1.3 and 0.9 times the nominal voltage of the battery (6V, 12V etc.)

#### 5.2.2.3 Power sources using other types of batteries

The lower extreme test voltage for equipment with power sources using the following types of battery, shall be

- a) for Leclanché, alkaline, or lithium type battery: 0.85 times the nominal voltage of the battery
- b) for the mercury or nickel-cadmium types of battery: 0.9 times the nominal voltage of the battery.

In both cases, the upper extreme test voltage shall be 1.15 times the nominal voltage of the battery.

Appendix A 29 November 1999 29

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 30 of 1082

Radio Specification

Bluetooth.

# 5.2.2.4 Other power sources

For equipment using other power sources, or capable of being operated from a variety of power sources (primary or secondary), the extreme test voltages shall be those declared by the manufacturer. These shall be recorded in the test report.

Bluetooth.

# **6 APPENDIX B**

The Radio parameters shall be tested in the following conditions

| Parameter                          | Temperature | Power source |
|------------------------------------|-------------|--------------|
| Output Power                       | ETC         | ETC          |
| Power control                      | NTC         | NTC          |
| Modulation index                   | ETC         | ETC          |
| Initial Carrier Frequency accuracy | ETC         | ETC          |
| Carrier Frequency drift            | ETC         | ETC          |
| In-band spurious emissions         | ETC         | ETC          |
| Out-of-band Spurious Emissions     | ETC         | ETC          |
| Sensitivity                        | ETC         | ETC          |
| Interference Performance           | NTC         | NTC          |
| Intermodulation Characteristics    | NTC         | NTC          |
| Out-of-band blocking               | NTC         | NTC          |
| Maximum Usable Level               | NTC         | NTC          |
| Receiver Signal Strength Indicator | NTC         | NTC          |

ETC = Extreme Test Conditions

NTC = Nominal Test Conditions

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 32 of 1082

Radio Specification

Bluetooth.

# Part B

# **BASEBAND SPECIFICATION**

This document describes the specifications of the Bluetooth link controller which carries out the baseband protocols and other low-level link routines.

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 34 of 1082

Baseband Specification

Bluetooth.

# Bluetooth.

# **CONTENTS**

| 1 | Gen  | neral Description              | 41 |
|---|------|--------------------------------|----|
| 2 | Phys | rsical Channel                 | 43 |
|   | 2.1  | Frequency Band and RF Channels |    |
|   | 2.2  | Channel Definition             |    |
|   | 2.3  | Time Slots                     | 43 |
|   | 2.4  | Modulation and Bit Rate        | 44 |
| 3 | Phys | rsical Links                   | 45 |
|   | 3.1  | General                        | 45 |
|   | 3.2  | SCO Link                       | 45 |
|   | 3.3  | ACL Link                       | 46 |
| 4 | Pacl | kets                           | 47 |
|   | 4.1  | General Format                 | 47 |
|   | 4.2  | Access Code                    | 48 |
|   |      | 4.2.1 Access code types        | 48 |
|   |      | 4.2.2 Preamble                 | 49 |
|   |      | 4.2.3 Sync Word                | 49 |
|   |      | 4.2.4 Trailer                  | 50 |
|   | 4.3  | Packet Header                  | 51 |
|   |      | 4.3.1 AM_ADDR                  | 51 |
|   |      | 4.3.2 TYPE                     | 51 |
|   |      | 4.3.3 FLOW                     | 52 |
|   |      | 4.3.4 ARQN                     | 52 |
|   |      | 4.3.5 SEQN                     |    |
|   |      | 4.3.6 HEC                      |    |
|   | 4.4  | Packet Types                   |    |
|   |      | 4.4.1 Common packet types      |    |
|   |      | 4.4.1.1 ID packet              |    |
|   |      | 4.4.1.2 NULL packet            |    |
|   |      | 4.4.1.3 POLL packet            |    |
|   |      | 4.4.1.4 FHS packet             |    |
|   |      | 4.4.1.5 DM1 packet             |    |
|   |      | 4.4.2 SCO packets              |    |
|   |      | 4.4.2.1 HV1 packet             |    |
|   |      | 4.4.2.2 HV2 packet             |    |
|   |      | 4.4.2.4 DV packet              |    |

| Base | band Sp | ecification                                        | Bluetooth |  |  |
|------|---------|----------------------------------------------------|-----------|--|--|
|      |         | 4.4.3 ACL packets                                  | 60        |  |  |
|      |         | 4.4.3.1 DM1 packet                                 |           |  |  |
|      |         | 4.4.3.2 DH1 packet                                 |           |  |  |
|      |         | 4.4.3.3 DM3 packet                                 |           |  |  |
|      |         | 4.4.3.4 DH3 packet                                 |           |  |  |
|      |         | 4.4.3.5 DM5 packet                                 |           |  |  |
|      |         | 4.4.3.6 DH5 packet                                 |           |  |  |
|      | 4.5     | Payload Format                                     |           |  |  |
|      |         | 4.5.1 Voice field                                  |           |  |  |
|      |         | 4.5.2 Data field                                   | 62        |  |  |
|      | 4.6     | Packet Summary                                     | 65        |  |  |
| 5    | Erro    | r Correction                                       | 67        |  |  |
|      | 5.1     | FEC Code: Rate 1/3                                 | 67        |  |  |
|      | 5.2     | FEC Code: Rate 2/3                                 | 67        |  |  |
|      | 5.3     | ARQ Scheme                                         | 68        |  |  |
|      |         | 5.3.1 Unnumbered ARQ                               | 68        |  |  |
|      |         | 5.3.2 Retransmit filtering                         | 70        |  |  |
|      |         | 5.3.3 Flushing payloads                            | 71        |  |  |
|      |         | 5.3.4 Multi-slave considerations                   | 72        |  |  |
|      |         | 5.3.5 Broadcast packets                            | 72        |  |  |
|      | 5.4     | Error Checking                                     | 73        |  |  |
| 6    | Logi    | Logical Channels                                   |           |  |  |
|      | 6.1     | LC Channel (Link Control)                          | 77        |  |  |
|      | 6.2     | LM Channel (Link Manager)                          | 77        |  |  |
|      | 6.3     | UA/UI Channel (User Asynchronous/Isochronous data) | 77        |  |  |
|      | 6.4     | US Channel (User Synchronous data)                 |           |  |  |
|      | 6.5     | Channel Mapping                                    | 78        |  |  |
| 7    | Data    | ı Whitening                                        | 79        |  |  |
| 8    | Tran    | smit/Receive Routines                              | _         |  |  |
|      | 8.1     | TX Routine                                         |           |  |  |
|      |         | 8.1.1 ACL traffic                                  | 82        |  |  |
|      |         | 8.1.2 SCO traffic                                  | 83        |  |  |
|      |         | 8.1.3 Mixed data/voice traffic                     |           |  |  |
|      |         | 8.1.4 Default packet types                         | 84        |  |  |
|      | 8.2     | RX Routine                                         |           |  |  |
|      | 8.3     | Flow Control                                       | 85        |  |  |
|      |         | 8.3.1 Destination control                          | 85        |  |  |
|      |         | 8.3.2 Source control                               | 85        |  |  |
|      | 8.4     | Bitstream Processes                                | 86        |  |  |

| Baseband Specification |       | Bluetooth                                                                |     |
|------------------------|-------|--------------------------------------------------------------------------|-----|
| 9                      | Trans | smit/Receive Timing                                                      | 87  |
|                        | 9.1   | Master/Slave Timing Synchronization                                      |     |
|                        | 9.2   | Connection State                                                         |     |
|                        | 9.3   | Return From Hold Mode                                                    | 90  |
|                        | 9.4   | Park Mode Wake-up                                                        | 90  |
|                        | 9.5   | Page State                                                               | 91  |
|                        | 9.6   | FHS Packet                                                               | 91  |
|                        | 9.7   | Multi-slave Operation                                                    | 93  |
| 10                     | Char  | nnel Control                                                             | 95  |
|                        | 10.1  | Scope                                                                    | 95  |
|                        | 10.2  | Master-Slave Definition                                                  | 95  |
|                        | 10.3  | Bluetooth Clock                                                          | 95  |
|                        | 10.4  | Overview of States                                                       | 97  |
|                        | 10.5  | Standby State                                                            |     |
|                        | 10.6  | Access Procedures                                                        | 99  |
|                        |       | 10.6.1 General                                                           | 99  |
|                        |       | 10.6.2 Page scan                                                         | 99  |
|                        |       | 10.6.3 Page                                                              | 101 |
|                        |       | 10.6.4 Page response procedures                                          | 104 |
|                        |       | 10.6.4.1 Slave response                                                  | 105 |
|                        |       | 10.6.4.2 Master response                                                 |     |
|                        | 10.7  | Inquiry Procedures                                                       | 108 |
|                        |       | 10.7.1 General                                                           | 108 |
|                        |       | 10.7.2 Inquiry scan                                                      | 109 |
|                        |       | 10.7.3 Inquiry                                                           | 110 |
|                        |       | 10.7.4 Inquiry response                                                  | 111 |
|                        | 10.8  | Connection State                                                         | 112 |
|                        |       | 10.8.1 Active mode                                                       | 113 |
|                        |       | 10.8.2 Sniff mode                                                        | 114 |
|                        |       | 10.8.3 Hold mode                                                         | 114 |
|                        |       | 10.8.4 Park mode                                                         | 115 |
|                        |       | 10.8.4.1 Beacon channel                                                  |     |
|                        |       | 10.8.4.2 Beacon access window                                            |     |
|                        |       | 10.8.4.3 Parked slave synchronization                                    |     |
|                        |       | 10.8.4.4 Parking                                                         |     |
|                        |       | 10.8.4.5 Master-activated unparking 10.8.4.6 Slave-activated unparking . |     |
|                        |       | 10.8.4.7 Broadcast scan window                                           |     |
|                        |       | 10.8.5 Polling schemes                                                   |     |
|                        |       | 10.8.5.1 Polling in active mode                                          |     |
|                        |       | 10.8.5.2 Polling in park mode                                            |     |

| Basel     | band Spe | cification |                                      | <b>Bluetooth</b> |
|-----------|----------|------------|--------------------------------------|------------------|
|           |          | 10.8.6     | Slot reservation scheme              | 122              |
|           |          | 10.8.7     | Broadcast scheme                     | 122              |
|           | 10.9     | Scatter    | net                                  | 122              |
|           |          | 10.9.1     | General                              | 122              |
|           |          | 10.9.2     | Inter-piconet communications         | 123              |
|           |          | 10.9.3     | Master-slave switch                  | 123              |
|           | 10.10    | Power      | Management                           | 125              |
|           |          | 10.10.1    | Packet handling                      | 125              |
|           |          | 10.10.2    | Slot occupancy                       | 125              |
|           |          | 10.10.3    | B Low-power modes                    | 125              |
|           | 10.11    | Link Su    | pervision                            | 126              |
| 11        | Hop      | Selectio   | n                                    | 127              |
|           | 11.1     | Genera     | al Selection Scheme                  | 127              |
|           | 11.2     | Selection  | on Kernel                            | 129              |
|           |          | 11.2.1     | First addition operation             | 130              |
|           |          | 11.2.2     | XOR operation                        | 130              |
|           |          | 11.2.3     | Permutation operation                | 131              |
|           |          | 11.2.4     | Second addition operation            | 133              |
|           |          | 11.2.5     | Register bank                        | 133              |
|           | 11.3     | Control    | Word                                 | 133              |
|           |          | 11.3.1     | Page scan and Inquiry scan substates | 135              |
|           |          | 11.3.2     | Page substate                        | 135              |
|           |          | 11.3.3     | Page response                        | 136              |
|           |          |            | 11.3.3.1 Slave response              | 136              |
|           |          |            | 11.3.3.2 Master response             | 136              |
|           |          | 11.3.4     | Inquiry substate                     | 137              |
|           |          | 11.3.5     | Inquiry response                     | 137              |
|           |          | 11.3.6     | Connection state                     | 138              |
| <b>12</b> | Bluet    | ooth Au    | ıdio                                 | 139              |
|           | 12.1     |            | CM CODEC                             |                  |
|           |          |            | CODEC                                |                  |
|           |          |            | andling                              |                  |
|           | 12.4     |            | al Audio Requirements                |                  |
|           |          |            | Signal levels                        |                  |
|           |          | 12.4.2     | CVSD audio quality                   | 142              |

| Baseband Spe | ecification |                                               | Bluetooth |
|--------------|-------------|-----------------------------------------------|-----------|
| 3 Blue       | tooth A     | ddressing                                     | 143       |
| 13.1         |             | oth Device Address (BD_ADDR)                  |           |
| 13.2         |             | Codes                                         |           |
|              | 13.2.1      | Synchronization word definition               | 144       |
|              |             | Pseudo-random noise sequence generation.      |           |
|              | 13.2.3      | Reserved addresses for GIAC and DIAC          | 147       |
| 13.3         | Active      | Member Address (AM_ADDR)                      | 147       |
| 13.4         |             | Member Address (PM_ADDR)                      |           |
| 13.5         | Access      | Request Address (AR_ADDR)                     | 148       |
| 4 Blue       | tooth Se    | ecurity                                       | 149       |
| 14.1         | Rando       | m Number Generation                           | 150       |
| 14.2         | Key Ma      | anagement                                     | 150       |
|              | 14.2.1      | Key types                                     | 151       |
|              | 14.2.2      | Key generation and initialization             | 153       |
|              |             | 14.2.2.1 Generation of initialization key,    |           |
|              |             | 14.2.2.2 Authentication                       |           |
|              |             | 14.2.2.3 Generation of a unit key             |           |
|              |             | 14.2.2.5 Generating the encryption key        |           |
|              |             | 14.2.2.6 Point-to-multipoint configuration    |           |
|              |             | 14.2.2.7 Modifying the link keys              | 157       |
|              |             | 14.2.2.8 Generating a master key              |           |
| 14.3         | •           | tion                                          |           |
|              |             | Encryption key size negotiation               |           |
|              | 14.3.2      | Encryption modes                              | 161       |
|              | 14.3.3      | Encryption concept                            | 161       |
|              | 14.3.4      | Encryption algorithm                          |           |
|              |             | 14.3.4.1 The operation of the cipher          | 165       |
|              | 14.3.5      | LFSR initialization                           | 165       |
|              | 14.3.6      | Key stream sequence                           | 168       |
| 14.4         | Authen      | tication                                      | 169       |
|              | 14.4.1      | Repeated attempts                             | 170       |
| 14.5         | The Au      | thentication And Key-Generating Functions     | 171       |
|              | 14.5.1      | The authentication function E1                | 171       |
|              | 14.5.2      | The functions Ar and A'r                      | 173       |
|              |             | 14.5.2.1 The round computations               |           |
|              |             | 14.5.2.2 The substitution boxes "e" and "l"   |           |
|              |             | 14.5.2.3 Key scheduling                       |           |
|              |             | E2-Key generation function for authentication |           |
|              | 14.5.4      | E3-Key generation function for encryption     | 177       |
| List         | of Figure   | es                                            | 179       |
| List         | of Tables   | S                                             | 183       |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 40 of 1082

Baseband Specification

Bluetooth.

Bluetooth.

# 1 GENERAL DESCRIPTION

Bluetooth is a short-range radio link intended to replace the cable(s) connecting portable and/or fixed electronic devices. Key features are robustness, low complexity, low power, and low cost.

Bluetooth operates in the unlicensed ISM band at 2.4 GHz. A frequency hop transceiver is applied to combat interference and fading. A shaped, binary FM modulation is applied to minimize transceiver complexity. The symbol rate is 1 Ms/s. A slotted channel is applied with a nominal slot length of 625  $\mu$ s. For full duplex transmission, a Time-Division Duplex (TDD) scheme is used. On the channel, information is exchanged through packets. Each packet is transmitted on a different hop frequency. A packet nominally covers a single slot, but can be extended to cover up to five slots.

The Bluetooth protocol uses a combination of circuit and packet switching. Slots can be reserved for synchronous packets. Bluetooth can support an asynchronous data channel, up to three simultaneous synchronous voice channels, or a channel which simultaneously supports asynchronous data and synchronous voice. Each voice channel supports a 64 kb/s synchronous (voice) channel in each direction. The asynchronous channel can support maximal 723.2 kb/s asymmetric (and still up to 57.6 kb/s in the return direction), or 433.9 kb/s symmetric.

The Bluetooth system consists of a radio unit (see Radio Specification), a link control unit, and a support unit for link management and host terminal interface functions, see Figure 1.1 on page 41. The current document describes the specifications of the Bluetooth link controller, which carries out the baseband protocols and other low-level link routines. Link layer messages for link set-up and control are defined in the Link Manager Protocol on page 185.



Figure 1.1: Different functional blocks in the Bluetooth system

The Bluetooth system provides a point-to-point connection (only two Bluetooth units involved), or a point-to-multipoint connection, see Figure 1.2 on page 42. In the point-to-multipoint connection, the channel is shared among several Bluetooth units. Two or more units sharing the same channel form a *piconet*. One Bluetooth unit acts as the master of the piconet, whereas the other unit(s)

# Bluetooth.

acts as slave(s). Up to seven slaves can be active in the piconet. In addition, many more slaves can remain locked to the master in a so-called parked state. These parked slaves cannot be active on the channel, but remain synchronized to the master. Both for active and parked slaves, the channel access is controlled by the master.

Multiple piconets with overlapping coverage areas form a *scatternet*. Each piconet can only have a single master. However, slaves can participate in different piconets on a time-division multiplex basis. In addition, a master in one piconet can be a slave in another piconet. The piconets shall not be time- or frequency-synchronized. Each piconet has its own hopping channel.

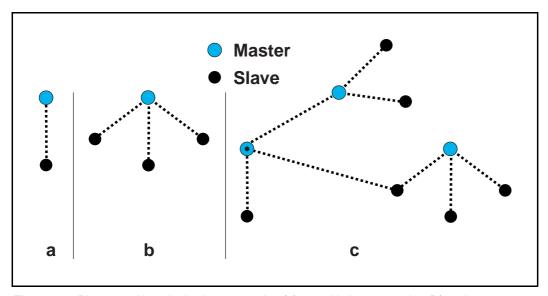



Figure 1.2: Piconets with a single slave operation (a), a multi-slave operation (b) and a scatternet operation (c).

Bluetooth.

# 2 PHYSICAL CHANNEL

### 2.1 FREQUENCY BAND AND RF CHANNELS

Bluetooth operates in the 2.4 GHz ISM band. Although globally available, the exact location and the width of the band may differ by country. In the US and Europe, a band of 83.5 MHz width is available; in this band, 79 RF channels spaced 1 MHz apart are defined. In Japan, Spain, and France, a smaller band is available; in this band, 23 RF channels spaced 1 MHz apart are defined.

| Country       | Frequency Range     | RF Channels      |          |
|---------------|---------------------|------------------|----------|
| Europe* & USA | 2400 - 2483.5 MHz   | f = 2402 + k MHz | k= 0,,78 |
| Japan         | 2471 - 2497 MHz     | f = 2473 + k MHz | k= 0,,22 |
| Spain         | 2445 - 2475 MHz     | f = 2449 + k MHz | k= 0,,22 |
| France        | 2446.5 - 2483.5 MHz | f = 2454 + k MHz | k= 0,,22 |

Table 2.1: Available RF channels

#### 2.2 CHANNEL DEFINITION

The channel is represented by a pseudo-random hopping sequence hopping through the 79 or 23 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s. All Bluetooth units participating in the piconet are time- and hop-synchronized to the channel.

#### 2.3 TIME SLOTS

The channel is divided into time slots, each 625  $\mu$ s in length. The time slots are numbered according to the Bluetooth clock of the piconet master. The slot numbering ranges from 0 to  $2^{27}$ -1 and is cyclic with a cycle length of  $2^{27}$ .

In the time slots, master and slave can transmit packets.

A TDD scheme is used where master and slave alternatively transmit, see Figure 2.1 on page 44. The master shall start its transmission in even-numbered time slots only, and the slave shall start its transmission in odd-numbered time slots only. The packet start shall be aligned with the slot start. Packets transmitted by the master or the slave may extend over up to five time slots.

<sup>\*.</sup> except Spain and France

# Bluetooth

The RF hop frequency shall remain fixed for the duration of the packet. For a single packet, the RF hop frequency to be used is derived from the current Bluetooth clock value. For a multi-slot packet, the RF hop frequency to be used for the entire packet is derived from the Bluetooth clock value in the first slot of the packet. The RF hop frequency in the first slot after a multi-slot packet shall use the frequency as determined by the current Bluetooth clock value. Figure 2.2 on page 44 illustrates the hop definition on single- and multi-slot packets. If a packet occupies more than one time slot, the hop frequency applied shall be the hop frequency as applied in the time slot where the packet transmission was started.

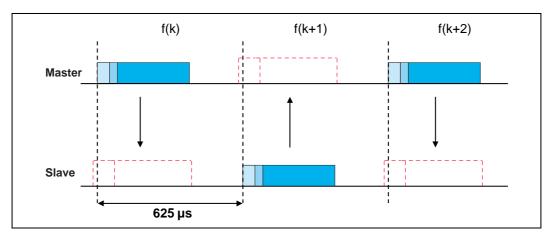



Figure 2.1: TDD and timing

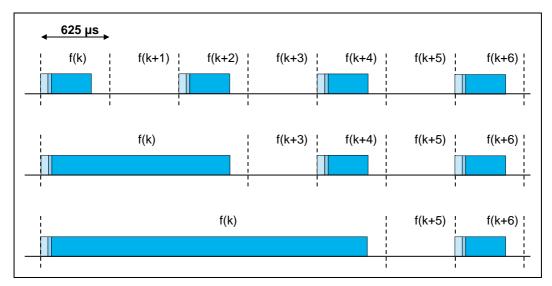



Figure 2.2: Multi-slot packets

#### 2.4 MODULATION AND BIT RATE

The data transmitted has a symbol rate of 1 Ms/s. A Gaussian-shaped, binary FSK modulation is applied with a *BT* product of 0.5. A binary one is represented by a positive frequency deviation, a binary zero by a negative frequency deviation. The maximum frequency deviation shall be between 140 kHz and 175 kHz.

Bluetooth.

# 3 PHYSICAL LINKS

# 3.1 GENERAL

Between master and slave(s), different types of links can be established. Two link types have been defined:

- Synchronous Connection-Oriented (SCO) link
- Asynchronous Connection-Less (ACL) link

The SCO link is a point-to-point link between a master and a single slave in the piconet. The master maintains the SCO link by using reserved slots at regular intervals. The ACL link is a point-to-multipoint link between the master and all the slaves participating on the piconet. In the slots not reserved for the SCO link(s), the master can establish an ACL link on a per-slot basis to any slave, including the slave(s) already engaged in an SCO link.

#### 3.2 SCO LINK

The SCO link is a symmetric, point-to-point link between the master and a specific slave. The SCO link reserves slots and can therefore be considered as a circuit-switched connection between the master and the slave. The SCO link typically supports time-bounded information like voice. The master can support up to three SCO links to the same slave or to different slaves. A slave can support up to three SCO links from the same master, or two SCO links if the links originate from different masters. SCO packets are never retransmitted.

The master will send SCO packets at regular intervals, the so-called SCO interval  $T_{\rm SCO}$  (counted in slots) to the slave in the reserved master-to-slave slots. The SCO slave is always allowed to respond with an SCO packet in the following slave-to-master slot unless a different slave was addressed in the previous master-to-slave slot. If the SCO slave fails to decode the slave address in the packet header, it is still allowed to return an SCO packet in the reserved SCO slot.

The SCO link is established by the master sending an SCO setup message via the LM protocol. This message will contain timing parameters such as the SCO interval  $T_{\rm SCO}$  and the offset  $D_{\rm SCO}$  to specify the reserved slots.

In order to prevent clock wrap-around problems, an initialization flag in the LMP setup message indicates whether initialization procedure 1 or 2 is being used. The slave shall apply the initialization method as indicated by the initialization flag. The master uses initialization 1 when the MSB of the current master clock (CLK $_{27}$ ) is 0; it uses initialization 2 when the MSB of the current master clock (CLK $_{27}$ ) is 1. The master-to-slave SCO slots reserved by the master and the slave shall be initialized on the slots for which the clock satisfies the following equation:

page 46 of 1082

Baseband Specification

Bluetooth

 $CLK_{27-1} \mod T_{SCO} = D_{SCO}$ 

for initialization 1

$$(\overline{\text{CLK}}_{27},\text{CLK}_{26-1}) \mod T_{\text{SCO}} = D_{\text{SCO}}$$

for initialization 2

The slave-to-master SCO slots shall directly follow the reserved master-to-slave SCO slots. After initialization, the clock value CLK(k+1) for the next master-to-slave SCO slot is found by adding the fixed interval  $T_{SCO}$  to the clock value of the current master-to-slave SCO slot:

$$CLK(k+1) = CLK(k) + T_{SCO}$$

# 3.3 ACL LINK

In the slots not reserved for SCO links, the master can exchange packets with any slave on a per-slot basis. The ACL link provides a packet-switched connection between the master and all active slaves participating in the piconet. Both asynchronous and isochronous services are supported. Between a master and a slave only a single ACL link can exist. For most ACL packets, packet retransmission is applied to assure data integrity.

A slave is permitted to return an ACL packet in the slave-to-master slot if and only if it has been addressed in the preceding master-to-slave slot. If the slave fails to decode the slave address in the packet header, it is not allowed to transmit.

ACL packets not addressed to a specific slave are considered as broadcast packets and are read by every slave. If there is no data to be sent on the ACL link and no polling is required, no transmission shall take place.

Bluetooth.

# **4 PACKETS**

### 4.1 GENERAL FORMAT

The bit ordering when defining packets and messages in the *Baseband Specification*, follows the *Little Endian format*, i.e., the following rules apply:

- The *least significant bit* (LSB) corresponds to *b*<sub>0</sub>;
- The LSB is the first bit sent over the air;
- In illustrations, the LSB is shown on the left side;

The baseband controller interprets the first bit arriving from a higher software layer as  $b_0$ ; i.e. this is the first bit to be sent over the air. Furthermore, data fields generated internally at baseband level, such as the packet header fields and payload header length, are transmitted with the LSB first. For instance, a 3-bit parameter X=3 is sent as  $b_0b_1b_2=110$  over the air where 1 is sent first and 0 is sent last.

The data on the piconet channel is conveyed in packets. The general packet format is shown in Figure 4.1 on page 47. Each packet consists of 3 entities: the access code, the header, and the payload. In the figure, the number of bits per entity is indicated.

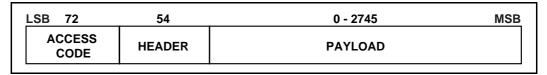



Figure 4.1: Standard packet format.

The access code and header are of fixed size: 72 bits and 54 bits respectively. The payload can range from zero to a maximum of 2745 bits. Different packet types have been defined. Packets may consist of the (shortened) access code only (see ID packet on page 55), of the access code – header, or of the access code – header – payload.

Bluetooth.

#### 4.2 ACCESS CODE

Each packet starts with an access code. If a packet header follows, the access code is 72 bits long, otherwise the access code is 68 bits long. This access code is used for synchronization, DC offset compensation and identification. The access code identifies all packets exchanged on the channel of the piconet: all packets sent in the same piconet are preceded by the same channel access code. In the receiver of the Bluetooth unit, a sliding correlator correlates against the access code and triggers when a threshold is exceeded. This trigger signal is used to determine the receive timing.

The access code is also used in paging and inquiry procedures. In this case, the access code itself is used as a signalling message and neither a header nor a payload is present.

The access code consists of a preamble, a sync word, and possibly a trailer, see Figure 4.2 on page 48. For details see Section 4.2.1 on page 48.

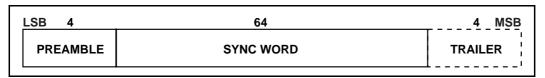



Figure 4.2: Access code format

### 4.2.1 Access code types

There are three different types of access codes defined:

- Channel Access Code (CAC)
- Device Access Code (DAC)
- Inquiry Access Code (IAC)

The respective access code types are used for a Bluetooth unit in different operating modes. The channel access code identifies a piconet. This code is included in all packets exchanged on the piconet channel. The device access code is used for special signalling procedures, e.g., paging and response to paging. For the inquiry access code there are two variations. A general inquiry access code (GIAC) is common to all devices. The GIAC can be used to discover which other Bluetooth units are in range. The dedicated inquiry access code (DIAC) is common for a dedicated group of Bluetooth units that share a common characteristic. The DIAC can be used to discover only these dedicated Bluetooth units in range.

The CAC consists of a **preamble**, **sync word**, and **trailer** and its total length is 72 bits. When used as self-contained messages without a header, the DAC and IAC do not include the trailer bits and are of length 68 bits.

# Bluetooth.

The different access code types use different Lower Address Parts (LAPs) to construct the sync word. The LAP field of the BD address is explained in Section 13.1 on page 143. A summary of the different access code types can be found in Table 4.1 on page 49.

| Code type | LAP        | Code length        | Comments              |
|-----------|------------|--------------------|-----------------------|
| CAC       | Master     | 72                 |                       |
| DAC       | Paged unit | 68/72 <sup>*</sup> | See also Section 13.2 |
| GIAC      | Reserved   | 68/72*             | on page 143           |
| DIAC      | Dedicated  | 68/72*             |                       |

Table 4.1: Summary of access code types.

#### 4.2.2 Preamble

The preamble is a fixed zero-one pattern of 4 symbols used to facilitate DC compensation. The sequence is either 1010 or 0101, depending whether the LSB of the following sync word is 1 or 0, respectively. The preamble is shown in Figure 4.3 on page 49.



Figure 4.3: Preamble

### 4.2.3 Sync Word

The sync word is a 64-bit code word derived from a 24 bit address (LAP); for the CAC the master's LAP is used; for the GIAC and the DIAC, reserved, dedicated LAPs are used; for the DAC, the slave unit LAP is used. The construction guarantees large Hamming distance between sync words based on different LAPs. In addition, the good autocorrelation properties of the sync word improve on the timing synchronization process. The derivation of the sync word is described in Section 13.2 on page 143

Packets 29 November 1999 49

<sup>\*.</sup> length 72 is only used in combination with FHS packets

page 50 of 1082

Baseband Specification

**Bluetooth** 

#### 4.2.4 Trailer

The trailer is appended to the sync word as soon as the packet header follows the access code. This is typically the case with the CAC, but the trailer is also used in the DAC and IAC when these codes are used in FHS packets exchanged during page response and inquiry response procedures.

The trailer is a fixed zero-one pattern of four symbols. The trailer together with the three MSBs of the syncword form a 7-bit pattern of alternating ones and zeroes which may be used for extended DC compensation. The trailer sequence is either 1010 or 0101 depending on whether the MSB of the sync word is 0 or 1, respectively. The choice of trailer is illustrated in Figure 4.4 on page 50.



Figure 4.4: Trailer in CAC when MSB of sync word is 0 (a), and when MSB of sync word is 1 (b).

Bluetooth.

#### 4.3 PACKET HEADER

The header contains link control (LC) information and consists of 6 fields:

AM ADDR: 3- bit active member address

TYPE: 4-bit type codeFLOW: 1-bit flow control

ARQN: 1-bit acknowledge indication

SEQN: 1-bit sequence numberHEC: 8-bit header error check

The total header, including the HEC, consists of 18 bits, see Figure 4.5 on page 51, and is encoded with a rate 1/3 FEC (not shown but described in Section 5.1 on page 67) resulting in a 54-bit header. Note that the AM\_ADDR and TYPE fields are sent with their LSB first. The function of the different fields will be explained next.



Figure 4.5: Header format.

#### 4.3.1 AM ADDR

The AM\_ADDR represents a member address and is used to distinguish between the active members participating on the piconet. In a piconet, one or more slaves are connected to a single master. To identify each slave separately, each slave is assigned a temporary 3-bit address to be used when it is active. Packets exchanged between the master and the slave all carry the AM\_ADDR of this slave; that is, the AM\_ADDR of the slave is used in both master-to-slave packets and in the slave-to-master packets. The all-zero address is reserved for broadcasting packets from the master to the slaves. An exception is the FHS packet which may use the all-zero member address but is *not* a broadcast message (Section 4.4.1.4 on page 56). Slaves that are disconnected or parked give up their AM\_ADDR. A new AM\_ADDR has to be assigned when they re-enter the piconet.

#### 4.3.2 TYPE

Sixteen different types of packets can be distinguished. The 4-bit TYPE code specifies which packet type is used. Important to note is that the interpretation of the TYPE code depends on the physical link type associated with the packet. First, it shall be determined whether the packet is sent on an SCO link or an ACL link. Then it can be determined which type of SCO packet or ACL packet has been received. The TYPE code also reveals how many slots the current packet will occupy. This allows the non-addressed receivers to refrain

Packets 29 November 1999 51

page 52 of 1082

Baseband Specification

Bluetooth.

from listening to the channel for the duration of the remaining slots. In Section 4.4 on page 54, each packet type will be described in more detail.

#### 4.3.3 FLOW

This bit is used for flow control of packets over the ACL link. When the RX buffer for the ACL link in the recipient is full and is not emptied, a STOP indication (FLOW=0) is returned to stop the transmission of data temporarily. Note, that the STOP signal only concerns ACL packets. Packets including only link control information (ID, POLL and NULL packets) or SCO packets can still be received. When the RX buffer is empty, a GO indication (FLOW=1) is returned. When no packet is received, or the received header is in error, a GO is assumed implicitly.

### 4.3.4 ARQN

The 1-bit acknowledgment indication ARQN is used to inform the source of a successful transfer of payload data with CRC, and can be positive acknowledge ACK or negative acknowledge NAK. If the reception was successful, an ACK (ARQN=1) is returned, otherwise a NAK (ARQN=0) is returned. When no return message regarding acknowledge is received, a NAK is assumed implicitly. NAK is also the default return information.

The ARQN is piggy-backed in the header of the return packet. The success of the reception is checked by means of a cyclic redundancy check (CRC) code. An unnumbered ARQ scheme which means that the ARQN relates to the latest received packet from the same source, is used. See Section 5.3 on page 68 for initialization and usage of this bit.

#### 4.3.5 **SEQN**

The SEQN bit provides a sequential numbering scheme to order the data packet stream. For each new transmitted packet that contains data with CRC, the SEQN bit is inverted. This is required to filter out retransmissions at the destination; if a retransmission occurs due to a failing ACK, the destination receives the same packet twice. By comparing the SEQN of consecutive packets, correctly received retransmissions can be discarded. The SEQN has to be added due to a lack of packet numbering in the unnumbered ARQ scheme. See section 5.3.2 on page 70 for initialization and usage of the SEQN bit. For broadcast packets, a modified sequencing method is used, see Section 5.3.5 on page 72.

### 4.3.6 HEC

Each header has a header-error-check to check the header integrity. The HEC consists of an 8-bit word generated by the polynomial 647 (octal representation). Before generating the HEC, the HEC generator is initialized with an 8-bit value. For FHS packets sent in **master page response** state, the slave upper

page 53 of 1082

Baseband Specification

Bluetooth.

address part (UAP) is used. For FHS packets sent in **inquiry response**, the default check initialization (DCI, see Section 5.4) is used. In all other cases, the UAP of the master device is used. For the definition of Bluetooth device addresses, see Section 13.1 on page 143.

After the initialization, a HEC is calculated for the 10 header bits. Before checking the HEC, the receiver must initialize the HEC check circuitry with the proper 8-bit UAP (or DCI). If the HEC does not check, the entire packet is disregarded. More information can be found in Section 5.4 on page 73.

Bluetooth.

#### 4.4 PACKET TYPES

The packets used on the piconet are related to the physical links they are used in. Up to now, two physical links are defined: the SCO link and the ACL link. For each of these links, 12 different packet types can be defined. Four control packets will be common to all link types: their TYPE code is unique irrespective of the link type.

To indicate the different packets on a link, the 4-bit TYPE code is used. The packet types have been divided into four segments. The first segment is reserved for the four control packets common to all physical link types; all four packet types have been defined. The second segment is reserved for packets occupying a single time slot; six packet types have been defined. The third segment is reserved for packets occupying three time slots; two packet types have been defined. The fourth segment is reserved for packets occupying five time slots; two packet types have been defined. The slot occupancy is reflected in the segmentation and can directly be derived from the type code. Table 4.2 on page 54 summarizes the packets defined so far for the SCO and ACL link types.

| Segment | TYPE code b <sub>3</sub> b <sub>2</sub> b <sub>1</sub> b <sub>0</sub> | Slot occupancy | SCO link  | ACL link  |  |
|---------|-----------------------------------------------------------------------|----------------|-----------|-----------|--|
|         | 0000                                                                  | 1              | NULL      | NULL      |  |
|         | 0001                                                                  | 1              | POLL      | POLL      |  |
| 1       | 0010                                                                  | 1              | FHS       | FHS       |  |
|         | 0011                                                                  | 1              | DM1       | DM1       |  |
|         | 0100                                                                  | 1              | undefined | DH1       |  |
|         | 0101                                                                  | 1              | HV1       | undefined |  |
| 2       | 0110                                                                  | 1              | HV2       | undefined |  |
| 2       | 0111                                                                  | 1              | HV3       | undefined |  |
|         | 1000                                                                  | 1              | DV        | undefined |  |
|         | 1001                                                                  | 1              | undefined | AUX1      |  |
|         | 1010                                                                  | 3              | undefined | DM3       |  |
|         | 1011                                                                  | 3              | undefined | DH3       |  |
| 3       | 1100                                                                  | 3              | undefined | undefined |  |
|         | 1101                                                                  | 3              | undefined | undefined |  |
|         | 1110                                                                  | 5              | undefined | DM5       |  |
| 4       | 1111                                                                  | 5              | undefined | DH5       |  |

Table 4.2: Packets defined for SCO and ACL link types

Bluetooth.

### 4.4.1 Common packet types

There are five common packets. In addition to the types listed in segment 1 of the previous table, there is the ID packet not listed. Each packet will now be examined in more detail.

### 4.4.1.1 ID packet

The identity or ID packet consists of the device access code (DAC) or inquiry access code (IAC). It has a fixed length of 68 bits. It is a very robust packet since the receiver uses a bit correlator to match the received packet to the known bit sequence of the ID packet. The packet is used, for example, in paging, inquiry, and response routines.

### 4.4.1.2 NULL packet

The NULL packet has no payload and therefore consists of the channel access code and packet header only. Its total (fixed) length is 126 bits. The NULL packet is used to return link information to the source regarding the success of the previous transmission (ARQN), or the status of the RX buffer (FLOW). The NULL packet itself does not have to be acknowledged.

### 4.4.1.3 POLL packet

The POLL packet is very similar to the NULL packet. It does not have a payload either. In contrast to the NULL packet, it requires a confirmation from the recipient. It is not a part of the ARQ scheme. The POLL packet does not affect the ARQN and SEQN fields. Upon reception of a POLL packet the slave must respond with a packet. This return packet is an implicit acknowledgement of the POLL packet. This packet can be used by the master in a piconet to poll the slaves, which must then respond even if they do not have information to send.

page 56 of 1082

Baseband Specification

**Bluetooth** 

**Packets** 

#### 4.4.1.4 FHS packet

The FHS packet is a special control packet revealing, among other things, the Bluetooth device address and the clock of the sender. The payload contains 144 information bits plus a 16-bit CRC code. The payload is coded with a rate 2/3 FEC which brings the gross payload length to 240 bits. The FHS packet covers a single time slot.

Figure 4.6 on page 56 illustrates the format and contents of the FHS payload. The payload consists of eleven fields. The FHS packet is used in page master response, inquiry response and in master slave switch. In page master response or master slave switch, it is retransmitted until its reception is acknowledged or a timeout has exceeded. In inquiry response, the FHS packet is not acknowledged. The FHS packet contains real-time clock information. This clock information is updated before each retransmission. The retransmission of the FHS payload is thus somewhat different from the retransmission of ordinary data payloads where the same payload is used for each retransmission. The FHS packet is used for frequency hop synchronization before the piconet channel has been established, or when an existing piconet changes to a new piconet. In the former case, the recipient has not been assigned an active member address yet, in which case the AM ADDR field in the FHS packet header is set to all-zeroes; however, the FHS packet should not be considered as a broadcast packet. In the latter case the slave already has an AM\_ADDR in the existing piconet, which is then used in the FHS packet header.




Figure 4.6: Format of the FHS payload

Each field is described in more detail below:

| Parity bits | This 34-bit field contains the parity bits that form the first part of the sync word of the access code of the unit that sends the FHS packet. These bits are derived from the LAP as described in section 13.2 on page 143. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LAP         | This 24-bit field contains the lower address part of the unit that sends the FHS packet.                                                                                                                                     |
| Undefined   | This 2-bit field is reserved for future use and shall be set to zero.                                                                                                                                                        |
| SR          | This 2-bit field is the scan repetition field and indicates the interval between two consecutive page scan windows, see also Table 4.4 and Table 10.1 on page 101                                                            |

Table 4.3: Description of the FHS payload

# Bluetooth.

57

| SP                  | This 2-bit field is the scan period field and indicates the period in which the mandatory page scan mode is applied after transmission of an inquiry response message, see also Table 4.5 and Table 10.6 on page 112.                                                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UAP                 | This 8-bit field contains the upper address part of the unit that sends the FHS packet.                                                                                                                                                                                                                                                                                |
| NAP                 | This 16-bit field contains the non-significant address part of the unit that sends the FHS packet (see also section 13.1 on page 143 for LAP, UAP, and NAP).                                                                                                                                                                                                           |
| Class of device     | This 24-bit field contains the class of device of the unit that sends the FHS packet. The class of device has not been defined yet.                                                                                                                                                                                                                                    |
| AM_ADDR             | This 3-bit field contains the member address the recipient shall use if the FHS packet is used at call setup or master-slave switch. A slave responding to a master or a unit responding to an inquiry request message shall include an all-zero AM_ADDR field if it sends the FHS packet.                                                                             |
| CLK <sub>27-2</sub> | This 26-bit field contains the value of the native system clock of the unit that sends the FHS packet, sampled at the beginning of the transmission of the access code of this FHS packet. This clock value has a resolution of 1.25ms (two-slot interval). For each new transmission, this field is updated so that it accurately reflects the real-time clock value. |
| Page scan<br>mode   | This 3-bit field indicates which scan mode is used by default by the sender of the FHS packet. The interpretation of the page scan mode is illustrated in Table 4.6. Currently, the standard supports one mandatory scan mode and up to three optional scan modes (see also "Appendix VII" on page 999).                                                               |

Table 4.3: Description of the FHS payload

| SR bit format b <sub>1</sub> b <sub>0</sub> | SR mode  |
|---------------------------------------------|----------|
| 00                                          | R0       |
| 01                                          | R1       |
| 10                                          | R2       |
| 11                                          | reserved |

Table 4.4: Contents of SR field

| SP bit format b <sub>1</sub> b <sub>0</sub> | SP mode  |
|---------------------------------------------|----------|
| 00                                          | P0       |
| 01                                          | P1       |
| 10                                          | P2       |
| 11                                          | reserved |

Table 4.5: Contents of SP field

Bluetooth

**Packets** 

| Bit format b <sub>2</sub> b <sub>1</sub> b <sub>0</sub> | Page scan mode          |
|---------------------------------------------------------|-------------------------|
| 000                                                     | Mandatory scan mode     |
| 001                                                     | Optional scan mode I    |
| 010                                                     | Optional scan mode II   |
| 011                                                     | Optional scan mode III  |
| 100                                                     | Reserved for future use |
| 101                                                     | Reserved for future use |
| 110                                                     | Reserved for future use |
| 111                                                     | Reserved for future use |

Table 4.6: Contents of page scan mode field

The LAP, UAP, and NAP together form the 48-bit IEEE address of the unit that sends the FHS packet. Using the parity bits and the LAP, the recipient can directly construct the channel access code of the sender of the FHS packet.

#### 4.4.1.5 DM1 packet

DM1 serves as part of segment 1 in order to support control messages in any link type. However, it can also carry regular user data. Since the DM1 packet is recognized on the SCO link, it can interrupt the synchronous information to send control information. Since the DM1 packet can be regarded as an ACL packet, it will be discussed in Section 4.4.3 on page 60.

#### 4.4.2 SCO packets

SCO packets are used on the synchronous SCO link. The packets do not include a CRC and are never retransmitted. SCO packets are routed to the synchronous I/O (voice) port. Up to now, three pure SCO packets have been defined. In addition, an SCO packet is defined which carries an asynchronous data field in addition to a synchronous (voice) field. The SCO packets defined so far are typically used for 64 kb/s speech transmission.

#### 4.4.2.1 HV1 packet

The **HV1** packet carries 10 information bytes. The bytes are protected with a rate 1/3 FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

HV packets are typically used for voice transmission. HV stands for High-quality Voice. The voice packets are never retransmitted and need no CRC.

Bluetooth

An HV1 packet can carry 1.25ms of speech at a 64 kb/s rate. In that case, an HV1 packet has to be sent every two time slots ( $T_{SCO}$ =2).

#### 4.4.2.2 HV2 packet

The **HV2** packet carries 20 information bytes. The bytes are protected with a rate 2/3 FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

If the HV2 packet is used for voice at a 64 kb/s rate, it can carry 2.5ms of speech. In that case, an HV2 packet has to be sent every four time slots  $(T_{SCO}=4)$ .

### 4.4.2.3 HV3 packet

The **HV3** packet carries 30 information bytes. The bytes are not protected by FEC. No CRC is present. The payload length is fixed at 240 bits. There is no payload header present.

If the HV3 packet is used for voice at a 64 kb/s rate, it can carry 3.75ms of speech. In that case, an HV3 packet has to be sent every six time slots  $(T_{SCO}=6)$ .

#### 4.4.2.4 DV packet

The **DV** packet is a combined data - voice packet. The payload is divided into a voice field of 80 bits and a data field containing up to 150 bits, see Figure 4.7. The voice field is not protected by FEC. The data field contains up to 10 information bytes (including the 1-byte payload header) and includes a 16-bit CRC. The data field is encoded with a rate 2/3 FEC. If necessary, extra zeroes are appended to assure that the total number of payload bits is a multiple of 10 prior to FEC encoding. Since the **DV** packet has to be sent at regular intervals due to its synchronous (voice) contents, it is listed under the SCO packet types. The voice and data fields are treated completely separate. The voice field is handled like normal SCO data and is never retransmitted; that is, the voice field is always new. The data field is checked for errors and is retransmitted if necessary.

| LSB 72 | 54     | 80    | 32 - 150 | MSB |
|--------|--------|-------|----------|-----|
| ACCESS | HEADER | VOICE | DATA     |     |
| CODE   | HEADER | FIELD | FIELD    |     |

Figure 4.7: DV packet format

page 60 of 1082

Baseband Specification

Bluetooth.

### 4.4.3 ACL packets

ACL packets are used on the asynchronous links. The information carried can be user data or control data. Including the DM1 packet, seven ACL packets have been defined. Six of the ACL packets contain a CRC code and retransmission is applied if no acknowledgement of proper reception is received (except in case a flush operation is carried out, see Section 5.3.3 on page 71). The 7th ACL packet, the AUX1 packet, has no CRC and is not retransmitted.

#### 4.4.3.1 DM1 packet

The DM1 packet is a packet that carries data information only. DM stands for Data – Medium rate. The payload contains up to 18 information bytes (including the 1-byte payload header) plus a 16-bit CRC code. The DM1 packet may cover up to a single time slot. The information plus CRC bits are coded with a rate 2/3 FEC which adds 5 parity bits to every 10-bit segment. If necessary, extra zeros are appended after the CRC bits to get the total number of bits (information bits, CRC bits, and tail bits) equal a multiple of 10. The payload header in the DM1 packet is only 1 byte long, see Figure 4.8 on page 62. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code).

#### 4.4.3.2 DH1 packet

This packet is similar to the DM1 packet, except that the information in the payload is not FEC encoded. As a result, the DH1 packet can carry up to 28 information bytes plus a 16-bit CRC code. DH stands for Data – High rate. The DH1 packet may cover up to a single time slot.

#### 4.4.3.3 DM3 packet

The DM3 packet is a DM1 packet with an extended payload. The DM3 packet may cover up to three time slots. The payload contains up to 123 information bytes (including the 2-bytes payload header) plus a 16-bit CRC code. The payload header in the DM3 packet is 2 bytes long, see Figure 4.9 on page 62. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code). When a DM3 packet is sent or received, the RF hop frequency shall not change for a duration of three time slots (the first time slot being the slot where the channel access code was transmitted).

### 4.4.3.4 DH3 packet

This packet is similar to the DM3 packet, except that the information in the payload is not FEC encoded. As a result, the DH3 packet can carry up to 185 information bytes (including the two bytes payload header) plus a 16-bit CRC code.

page 61 of 1082

Baseband Specification

Bluetooth.

The DH3 packet may cover three time slots. When a DH3 packet is sent or received, the hop frequency shall not change for a duration of three time slots (the first time slot being the slot where the channel access code was transmitted).

### 4.4.3.5 DM5 packet

The DM5 packet is a DM1 packet with an extended payload. The DM5 packet may cover up to five time slots. The payload contains up to 226 information bytes (including the 2-bytes payload header) plus a 16-bit CRC code. The payload header in the DM5 packet is 2 bytes long. The length indicator in the payload header specifies the number of user bytes (excluding payload header and the CRC code). When a DM5 packet is sent or received, the hop frequency shall not change for a duration of five time slots (the first time slot being the slot where the channel access code was transmitted).

#### 4.4.3.6 DH5 packet

This packet is similar to the DM5 packet, except that the information in the payload is not FEC encoded. As a result, the DH5 packet can carry up to 341 information bytes (including the two bytes payload header) plus a 16-bit CRC code. The DH5 packet may cover five time slots. When a DH5 packet is sent or received, the hop frequency shall not change for a duration of five time slots (the first time slot being the slot where the channel access code was transmitted).

#### 4.4.3.7 AUX1 packet

This packet resembles a DH1 packet but has no CRC code. The AUX1 packet can carry up to 30 information bytes (including the 1-byte payload header). The AUX1 packet may cover up to a single time slot.

Packets 29 November 1999 61

Bluetooth.

#### 4.5 PAYLOAD FORMAT

In the previous packet overview, several payload formats were considered. In the payload, two fields are distinguished: the (synchronous) voice field and the (asynchronous) data field. The ACL packets only have the data field and the SCO packets only have the voice field – with the exception of the DV packets which have both.

#### 4.5.1 Voice field

The voice field has a fixed length. For the HV packets, the voice field length is 240 bits; for the DV packet the voice field length is 80 bits. No payload header is present.

#### 4.5.2 Data field

The data field consists of three segments: a payload header, a payload body, and possibly a CRC code (only the AUX1 packet does not carry a CRC code).

#### 1. Payload header

Only data fields have a payload header. The payload header is one or two bytes long. Packets in segments one and two have a 1-byte payload header; packets in segments three and four have a 2-bytes payload header. The payload header specifies the logical channel (2-bit L\_CH indication), controls the flow on the logical channels (1-bit FLOW indication), and has a payload length indicator (5 bits and 9 bits for 1-byte and 2-bytes payload header, respectively). In the case of a 2-byte payload header, the length indicator is extended by four bits into the next byte. The remaining four bits of the second byte are reserved for future use and shall be set to zero. The formats of the 1-byte and 2-bytes payload headers are shown in Figure 4.8 on page 62 and Figure 4.9 on page 62.

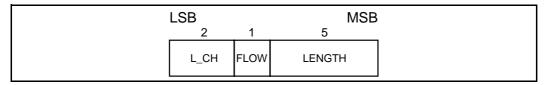



Figure 4.8: Payload header format for single-slot packets.

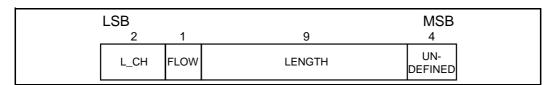



Figure 4.9: Payload header format for multi-slot packets.

The L\_CH field is transmitted first, the length field last. In Table 4.7 on page 63, more details about the contents of the L\_CH field are listed.

# Bluetooth.

| L_CH code b <sub>1</sub> b <sub>0</sub> | Logical<br>Channel | Information                                   |
|-----------------------------------------|--------------------|-----------------------------------------------|
| 00                                      | NA                 | undefined                                     |
| 01                                      | UA/UI              | Continuation fragment of an L2CAP message     |
| 10                                      | UA/UI              | Start of an L2CAP message or no fragmentation |
| 11                                      | LM                 | LMP message                                   |

Table 4.7: Logical channel L CH field contents

An L2CAP message can be fragmented into several packets. Code 10 is used for an L2CAP packet carrying the first fragment of such a message; code 01 is used for continuing fragments. If there is no fragmentation, code 10 is used for every packet. Code 11 is used for LMP messages. Code 00 is reserved for future use.

The flow indicator in the payload is used to control the flow at the L2CAP level. It is used to control the flow per logical channel (when applicable). FLOW=1 means flow-on ("OK to send") and FLOW=0 means flow-off ("stop"). There are no strict real-time requirements on the flow bit in the payload header. Flow bit in the last correctly received payload header determines flow status. The link manager is responsible for setting and processing the flow bit in the payload header. Real-time flow control is carried out at the packet level by the link controller via the flow bit in the packet header (see Section 4.3.3 on page 52). With the payload flow bit, traffic from the remote end can be controlled. It is allowed to generate and send an ACL packet with payload load length zero. L2CAP start- and continue-fragment indications (L\_CH=10 and L\_CH=01) also retain their meaning when the payload length is equal to zero (i.e. an empty start-fragment should not be sent in the middle of an on-going L2CAP packet transmission). It is always safe to send an ACL packet with payload length=0 and L\_CH=10. The payload flow bit has its own meaning for each logical channel (UA/I or LM), see Table 4.8 on page 63. On the LM channel, no flow control is applied and the payload flow bit is always set at one.

| L_CH code b <sub>1</sub> b <sub>0</sub> | Usage and semantics of the ACL payload header FLOW bit                    |
|-----------------------------------------|---------------------------------------------------------------------------|
| 00                                      | Not defined, reserved for future use.                                     |
| 01 or 10                                | Flow control of the UA/I channels (which are used to send L2CAP messages) |
| 11                                      | Always set FLOW=1 on transmission and ignore the bit on reception         |

Table 4.8: Use of payload header flow bit on the logical channels.

The length indicator indicates the number of bytes (i.e. 8-bit words) in the payload excluding the payload header and the CRC code; i.e. the payload body only. With reference to Figure 4.8 and Figure 4.9, the MSB of the length field in a 1-byte header is the last (right-most) bit in the payload

page 64 of 1082

Baseband Specification

Bluetooth.

header; the MSB of the length field in a 2-byte header is the fourth bit (from left) of the second byte in the payload header.

### 2. Payload body

The payload body includes the user host information and determines the effective user throughput. The length of the payload body is indicated in the length field of the payload header.

## 3. CRC code generation

The 16-bit cyclic redundancy check code in the payload is generated by the CRC-CCITT polynomial 210041 (octal representation). It is generated in a way similar to the HEC. Before determining the CRC code, an 8-bit value is used to initialize the CRC generator. For the CRC code in the FHS packets sent in **master page response** state, the UAP of the slave is used. For the FHS packet sent in **inquiry response** state, the DCI (see Section 5.4) is used. For all other packets, the UAP of the master is used.

The 8 bits are loaded into the 8 least significant (left-most) positions of the LFSR circuit, see Figure 5.10 on page 76. The other 8 bits are at the same time reset to zero. Subsequently, the CRC code is calculated over the information. Then the CRC code is appended to the information; the UAP (or DCI) is disregarded. At the receive side, the CRC circuitry is in the same way initialized with the 8-bit UAP (DCI) before the received information is checked. More information can be found in Section 5.4 on page 73.

Bluetooth.

## 4.6 PACKET SUMMARY

A summary of the packets and their characteristics is shown in Table 4.9, Table 4.10 and Table 4.11. The user payload represents the packet payload excluding FEC, CRC, and payload header.

| Туре | User Payload<br>(bytes) | FEC | CRC | Symmetric<br>Max. Rate | Asymmetric<br>Max. Rate |
|------|-------------------------|-----|-----|------------------------|-------------------------|
| ID   | na                      | na  | na  | na                     | na                      |
| NULL | na                      | na  | na  | na                     | na                      |
| POLL | na                      | na  | na  | na                     | na                      |
| FHS  | 18                      | 2/3 | yes | na                     | na                      |

Table 4.9: Link control packets

|      | Payload           | User               |     |     | Symmetric           | Asymmetric Max<br>Rate (kb/s) |         |
|------|-------------------|--------------------|-----|-----|---------------------|-------------------------------|---------|
| Туре | Header<br>(bytes) | Payload<br>(bytes) | FEC | CRC | Max. Rate<br>(kb/s) | Forward                       | Reverse |
| DM1  | 1                 | 0-17               | 2/3 | yes | 108.8               | 108.8                         | 108.8   |
| DH1  | 1                 | 0-27               | no  | yes | 172.8               | 172.8                         | 172.8   |
| DM3  | 2                 | 0-121              | 2/3 | yes | 258.1               | 387.2                         | 54.4    |
| DH3  | 2                 | 0-183              | no  | yes | 390.4               | 585.6                         | 86.4    |
| DM5  | 2                 | 0-224              | 2/3 | yes | 286.7               | 477.8                         | 36.3    |
| DH5  | 2                 | 0-339              | no  | yes | 433.9               | 723.2                         | 57.6    |
| AUX1 | 1                 | 0-29               | no  | no  | 185.6               | 185.6                         | 185.6   |

Table 4.10: ACL packets

| Туре            | Payload Header<br>(bytes) | User Payload<br>(bytes) | FEC   | CRC   | Symmetric<br>Max. Rate<br>(kb/s) |
|-----------------|---------------------------|-------------------------|-------|-------|----------------------------------|
| HV1             | na                        | 10                      | 1/3   | no    | 64.0                             |
| HV2             | na                        | 20                      | 2/3   | no    | 64.0                             |
| HV3             | na                        | 30                      | no    | no    | 64.0                             |
| $DV^{^{\star}}$ | 1 D                       | 10+(0-9) D              | 2/3 D | yes D | 64.0+57.6 D                      |

Table 4.11: SCO packets

<sup>\*.</sup> Items followed by 'D' relate to data field only.

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 66 of 1082

Baseband Specification

Bluetooth.

Bluetooth.

## 5 ERROR CORRECTION

There are three error correction schemes defined for Bluetooth:

- 1/3 rate FEC
- 2/3 rate FEC
- ARQ scheme for the data

The purpose of the FEC scheme on the data payload is to reduce the number of retransmissions. However, in a reasonable error-free environment, FEC gives unnecessary overhead that reduces the throughput. Therefore, the packet definitions given in Section 4 have been kept flexible to use FEC in the payload or not, resulting in the **DM** and **DH** packets for the ACL link and the **HV** packets for the SCO link. The packet header is always protected by a 1/3 rate FEC; it contains valuable link information and should be able to sustain more bit errors.

Correction measures to mask errors in the voice decoder are not included in this section. This matter is discussed in section Section 12.3 on page 142.

### 5.1 FEC CODE: RATE 1/3

A simple 3-times repetition FEC code is used for the header. The repetition code is implemented by repeating the bit three times, see the illustration in Figure 5.1 on page 67. The 3-bit repetition code is used for the entire header, and also for the voice field in the **HV1** packet.

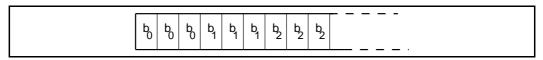



Figure 5.1: Bit-repetition encoding scheme.

#### 5.2 FEC CODE: RATE 2/3

The other FEC scheme is a (15,10) shortened Hamming code. The generator polynomial is  $g(D) = (D+1)(D^4+D+1)$ . This corresponds to 65 in octal notation. The LFSR generating this code is depicted in Figure 5.2 on page 68. Initially all register elements are set to zero. The 10 information bits are sequentially fed into the LFSR with the switches S1 and S2 set in position 1. Then, after the final input bit, the switches S1 and S2 are set in position 2, and the five parity bits are shifted out. The parity bits are appended to the information bits. Consequently, each block of 10 information bits is encoded into a 15 bit codeword. This code can correct all single errors and detect all double errors in each codeword. This 2/3 rate FEC is used in the **DM** packets, in the data field of the **DV** packet, in the **FHS** packet, and in the **HV2** packet. Since the encoder operates with information segments of length 10, tail bits with

Error Correction 29 November 1999 67

page 68 of 1082

Baseband Specification

Bluetooth.

value zero may have to be appended after the CRC bits. The total number of bits to encode, i.e., payload header, user data, CRC, and tail bits, must be a multiple of 10. Thus, the number of tail bits to append is the least possible that achieves this (i.e., in the interval 0...9). These tail bits are not included in the payload length indicator.

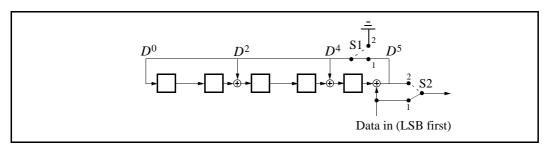



Figure 5.2: LFSR generating the (15,10) shortened Hamming code.

#### 5.3 ARQ SCHEME

With an automatic repeat request scheme, **DM**, **DH** and the data field of **DV** packets are transmitted and retransmitted until acknowledgement of a successful reception is returned by the destination (or timeout is exceeded). The acknowledgement information is included in the header of the return packet, so-called piggy-backing. To determine whether the payload is correct or not, a cyclic redundancy check (CRC) code is added to the packet. The ARQ scheme only works on the payload in the packet (only that payload which has a CRC). The packet header and the voice payload are not protected by the ARQ scheme.

#### 5.3.1 Unnumbered ARQ

Bluetooth uses a fast, unnumbered acknowledgment scheme: an ACK (ARQN=1) or a NAK (ARQN=0) is returned in response to the receipt of previously received packet. The slave will respond in the slave-to-master slot directly following the master-to-slave slot; the master will respond at the next event it will address the same slave (the master may have addressed other slaves between the last received packet from the considered slave and the master response to this packet). For a packet reception to be successful, at least the HEC must check. In addition, the CRC must check if present.

At the start of a new connection which may be the result of a page, page scan, master-slave switch or unpark, the master sends a POLL packet to verify the connection. In this packet the master initializes the ARQN bit to NAK. The response packet sent by the slave also has the ARQN bit set to NAK. The subsequent packets use the following rules.

The ARQ bit is affected by data packets containing CRC and empty slots only. As shown in Fig. 5.3 on page 70, upon successful reception of a CRC packet, the ARQN bit is set to ACK. If, in any receive slot in the slave or in a receive

page 69 of 1082

Baseband Specification

Bluetooth.

slot following transmission of a packet in the master, no access code is detected, and the HEC check or the CRC check of a CRC packet fails, then the ARQN bit is set to NAK. Packets that have correct HEC but that are addressed to other slaves, or packets other than DH, DM, or DV packets, do not affect the ARQN bit. In these cases the ARQN bit is left as it was prior to reception of the packet. If a CRC packet with a correct header has the same SEQN as the previously received CRC packet, the ARQN bit is set to ACK and the payload is disregarded without checking the CRC.

The ARQ bit in the FHS packet is not meaningful. Contents of the ARQN bit in the FHS packet should not be checked.

Broadcast packets are checked on errors using the CRC, but no ARQ scheme is applied. Broadcast packets are never acknowledged.

Inactive connection modes HOLD and SNIFF do not affect the ARQN scheme. After return from these modes, packets will continue using values from before the start of hold/sniff modes.

**Bluetooth** 

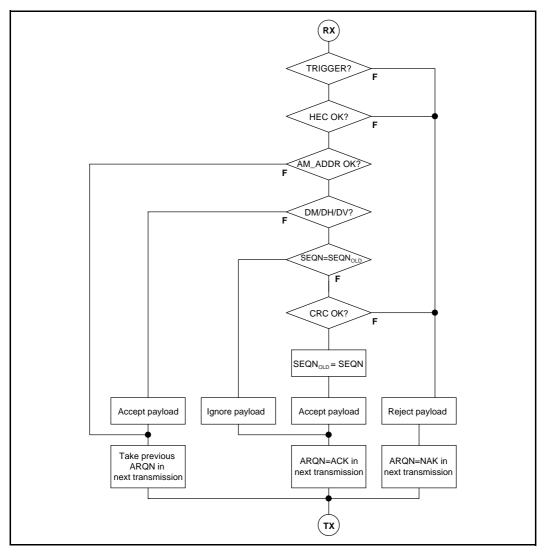



Figure 5.3: Receive protocol for determining the ARQN bit.

### 5.3.2 Retransmit filtering

The data payload is retransmitted until a positive acknowledgment is received (or a timeout is exceeded). A retransmission is carried out either because the packet transmission itself failed, or because the piggy-backed acknowledgment transmitted in the return packet failed (note that the latter has a lower failure probability since the header is more heavily coded). In the latter case, the destination keeps receiving the same payload over and over again. In order to filter out the retransmissions in the destination, the SEQN bit is added in the header. Normally, this bit is alternated for every new CRC data payload transmission. In case of a retransmission, this bit is not changed. So the destination can compare the SEQN bit with the previous SEQN value. If different, a new data payload has arrived; otherwise it is the same data payload and can be discarded. Only new data payloads are transferred to the link manager. Note that CRC data payloads can be carried only by **DM**, **DH** or **DV** packets.

# Bluetooth.

At the start of a new connection which may be the result of a page, page scan, master slave switch or unpark, the master sends a POLL packet to verify the connection. The slave responds with a packet. The SEQN bit of the first CRC data packet, on both the master and the slave sides, is set to 1. The subsequent packets use the rules given below.

The SEQN bit is affected only by the CRC data packets as shown in Figure 5.4. It is inverted every time a new CRC data packet is sent. The CRC data packet is retransmitted with the same SEQN number until an ACK is received or the packet is flushed. When an ACK is received, the SEQN bit is inverted and a new payload is sent. When the packet is flushed (see Section 5.3.3 on page 71), a new payload is sent. The SEQN bit is not necessarily inverted. However, if an ACK is received before the new packet is sent, the SEQN bit is inverted. This procedure prevents loss of the first packet of a message (after the **flush** command has been given) due to the retransmit filtering.

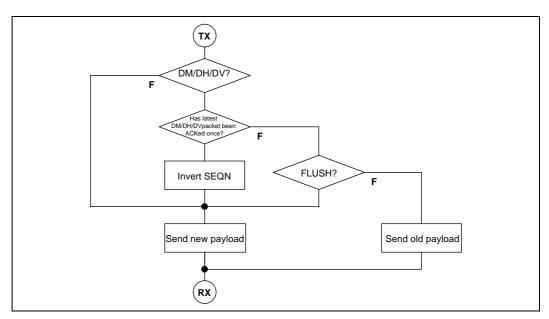



Figure 5.4: Retransmit filtering for packets with CRC.

The SEQN bit in the FHS packet is not meaningful. This bit can be set to any value. Contents of the SEQN bit in the FHS packet should not be checked. During transmission of all other packets the SEQN bit remains the same as it was in the previous packet.

Inactive connection modes HOLD and SNIFF do not affect the SEQN scheme. After return from these modes, packets will continue using values from before the start of hold/sniff modes.

#### 5.3.3 Flushing payloads

The ARQ scheme can cause variable delay in the traffic flow since retransmissions are inserted to assure error-free data transfer. For certain communication

Error Correction 29 November 1999 71

page 72 of 1082

Baseband Specification

Bluetooth.

links, only a limited amount of delay is allowed: retransmissions are allowed up to a certain limit at which the current payload must be disregarded and the next payload must be considered. This data transfer is indicated as **isochronous traffic**. This means that the retransmit process must be overruled in order to continue with the next data payload. Aborting the retransmit scheme is accomplished by *flushing* the old data and forcing the Bluetooth controller to take the next data instead.

Flushing results in loss of remaining portions of an L2CAP message. Therefore, the packet following the flush will have a start packet indication of L\_CH = 10 in the payload header for the next L2CAP message. This informs the destination of the flush. (see Section 4.5). Flushing will not necessarily result in a change in the SEQN bit value, see the previous section.

#### 5.3.4 Multi-slave considerations

In case of a piconet with multiple slaves, the master carries out the ARQ protocol independently to each slave.

#### 5.3.5 Broadcast packets

Broadcast packets are packets transmitted by the master to all the slaves simultaneously. A broadcast packet is indicated by the all-zero AM\_ADDR (note; the FHS packet is the only packet which may have an all-zero address but is not a broadcast packet). Broadcast packets are not acknowledged (at least not at the LC level).

Since broadcast messages are not acknowledged, each broadcast packet is repeated for a fixed number of times. A broadcast packet is repeated  $N_{BC}$  times before the next broadcast packet of the same broadcast message is repeated, see Figure 5.5 on page 73.

Broadcast packets with a CRC have their own sequence number. The SEQN of the first broadcast packet with a CRC is set to SEQN = 1 by the master and it is inverted for each new broadcast packet with CRC thereafter. Broadcast packets without a CRC have no influence on the sequence number. The slave accepts the SEQN of the first broadcast packet it receives in a connection and checks for change in SEQN for consequent broadcast packets. Since there is no acknowledgement of broadcast messages and there is no end packet indication, it is important to receive the start packets correctly. To ensure this, repetitions of the broadcast packets that are L2CAP start packets and LMP packets will not be filtered out. These packets are indicated by L\_CH=1X in the payload header as explained in section 4.5 on page 62. Only repetitions of the L2CAP continuation packets will be filtered out.

Bluetooth.

73

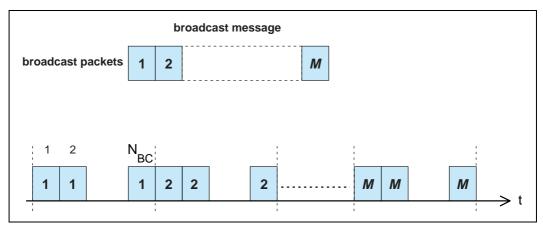



Figure 5.5: Broadcast repetition scheme

### 5.4 ERROR CHECKING

We can check the packet for errors or wrong delivery using the channel access code, the HEC in the header, and the CRC in the payload. At packet reception, first the access code is checked. Since the 64-bit sync word in the channel access code is derived from the 24-bit master LAP, this checks if the LAP is correct, and prevents the receiver from accepting a packet of another piconet.

The HEC and CRC are used to check both on errors and on a wrong address: to increase the address space with 8 bits, the UAP is normally included in the HEC and CRC checks. Then, even when a packet with the same access code – i.e., an access code of a device owning the same LAP but different UAP – passes the access code test, it will be discarded after the HEC and CRC tests when the UAP bits do not match. However, there is an exception where no common UAP is available in the transmitter and receiver. This is the case when the HEC and CRC are generated for the FHS packet in **inquiry response** state. In this case the default check initialization (DCI) value is used. The DCI is defined to be  $0 \times 0.00$  (hexadecimal).

The generation and check of the HEC and CRC are summarized in Figure 5.8 on page 75 and Figure 5.11 on page 76. Before calculating the HEC or CRC, the shift registers in the HEC/CRC generators are initialized with the 8-bit UAP (or DCI) value. Then the header and payload information is shifted into the HEC and CRC generators, respectively (with the LSB first).

The HEC generating LFSR is depicted in Figure 5.6 on page 74. The generator polynomial is  $g(D) = (D+1)(D^7+D^4+D^3+D^2+1) = D^8+D^7+D^5+D^2+D+1$ . Initially this circuit is pre-loaded with the 8-bit UAP such that the LSB of the UAP (denoted UAP<sub>0</sub>) goes to the left-most shift register element, and, UAP<sub>7</sub> goes to the right-most element. The initial state of the HEC LFSR is depicted in Figure 5.7 on page 75. Then the data is shifted in with the switch S set in position 1. When the last data bit has been clocked into the LFSR, the switch S is set in position 2, and, the HEC can be read out from the register. The LFSR bits

page 74 of 1082

Baseband Specification

# Bluetooth.

are read out from right to left (i.e., the bit in position 7 is the first to be transmitted, followed by the bit in position 6, etc.).

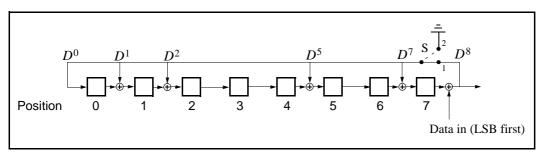



Figure 5.6: The LFSR circuit generating the HEC.

Bluetooth.

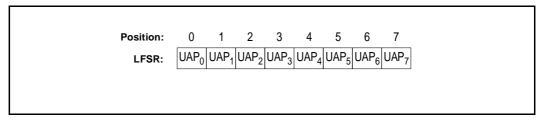



Figure 5.7: Initial state of the HEC generating circuit.

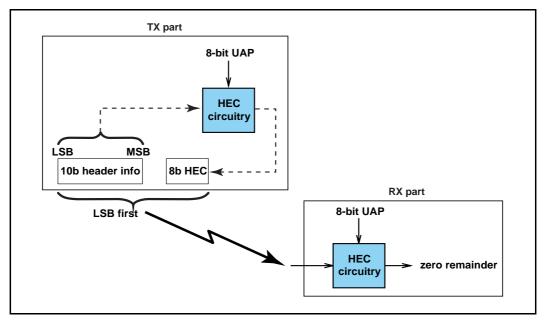



Figure 5.8: HEC generation and checking.

The 16 bit LFSR for the CRC is constructed similarly using the CRC-CCITT generator polynomial  $g(D) = D^{16} + D^{12} + D^5 + 1$  (see Figure 5.9 on page 75). For this case, the 8 left-most bits are initially loaded with the 8-bit UAP (UAP<sub>0</sub> to the left and UAP<sub>7</sub> to the right) while the 8 right-most bits are reset to zero. The initial state of the 16 bit LFSR is depicted in Figure 5.10 on page 76. The switch S is set in position 1 while the data is shifted in. After the last bit has entered the LFSR, the switch is set in position 2, and, the register's contents are transmitted, from right to left (i.e., starting with position 15, then position 14, etc.).




Figure 5.9: The LFSR circuit generating the CRC.

page 76 of 1082

Baseband Specification

Bluetooth.

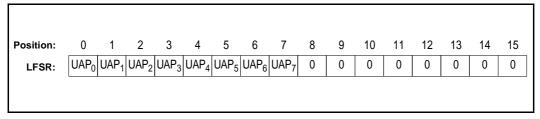



Figure 5.10: Initial state of the CRC generating circuit.

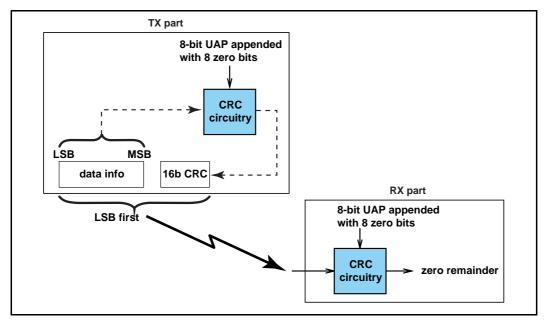



Figure 5.11: CRC generation and checking

Bluetooth.

## **6 LOGICAL CHANNELS**

In the Bluetooth system, five logical channels are defined:

- LC control channel
- LM control channel
- UA user channel
- UI user channel
- US user channel

The control channels LC and LM are used at the link control level and link manager level, respectively. The user channels UA, UI, and US are used to carry asynchronous, isochronous, and synchronous user information, respectively. The LC channel is carried in the packet header; all other channels are carried in the packet payload. The LM, UA, and UI channels are indicated in the L\_CH field in the payload header. The US channel is carried by the SCO link only; the UA and UI channels are normally carried by the ACL link; however, they can also be carried by the data in the DV packet on the SCO link. The LM channel can be carried either by the SCO or the ACL link.

## 6.1 LC CHANNEL (Link Control)

The LC control channel is mapped onto the packet header. This channel carries low level link control information like ARQ, flow control, and payload characterization. The LC channel is carried in every packet except in the **ID** packet which has no packet header.

# 6.2 LM CHANNEL (Link Manager)

The LM control channel carries control information exchanged between the link managers of the master and the slave(s). Typically, the LM channel uses protected **DM** packets. The LM channel is indicated by the L\_CH code 11 in the payload header.

# 6.3 UA/UI CHANNEL (User Asynchronous/Isochronous Data)

The UA channel carries L2CAP transparent asynchronous user data. This data may be transmitted in one or more baseband packets. For fragmented messages, the start packet uses an L\_CH code of 10 in the payload header. Remaining continuation packets use L\_CH code 01. If there is no fragmentation, all packets use the L2CAP start code 10.

Isochronous data channel is supported by timing start packets properly at higher levels. At the baseband level, the L\_CH code usage is the same as the UA channel.

page 78 of 1082

Baseband Specification

Bluetooth.

## 6.4 US CHANNEL (User Synchronous Data)

The US channel carries transparent synchronous user data. This channel is carried over the SCO link.

### 6.5 CHANNEL MAPPING

The LC channel is mapped onto the packet header. All other channels are mapped onto the payload. The US channel can only be mapped onto the SCO packets. All other channels are mapped on the ACL packets, or possibly the SCO **DV** packet. The LM, UA, and UI channels may interrupt the US channel if it concerns information of higher priority.

**Bluetooth** 

## 7 DATA WHITENING

Before transmission, both the header and the payload are scrambled with a data whitening word in order to randomize the data from highly redundant patterns and to minimize DC bias in the packet. The scrambling is performed prior to the FEC encoding.

At the receiver, the received data is descrambled using the same whitening word generated in the recipient. The descrambling is performed after FEC decoding.

The whitening word is generated with the polynomial  $g(D) = D^7 + D^4 + 1$  (i.e., 221 in octal representation) and is subsequently EXORed with the header and the payload. The whitening word is generated with the linear feedback shift register shown in Figure 7.1 on page 79. Before each transmission, the shift register is initialized with a portion of the master Bluetooth clock, CLK<sub>6-1</sub>, extended with an MSB of value one. This initialization is carried out with CLK<sub>1</sub> written to position 0, CLK<sub>2</sub> written to position 1, etc. An exception forms the FHS packet sent during frequency hop acquisition, where initialization of the whitening register is carried out differently. Instead of the master clock, the Xinput used in the inquiry or page response (depending on current state) routine is used, see Table 11.3 and Table 11.4 for the 79-hop and 23-hop systems, respectively. In case of a 79-hop system, the 5-bit values is extended with two MSBs of value one. In case of a 23-hop system, the 4-bit value is extended with three bits; the two MSBs are set to one and the third most significant bit is set to zero. During register initialization, the LSB of X (i.e.,  $X_0$ ) is written to position 0,  $X_1$  is written to position 1, etc.

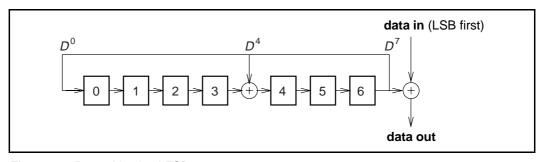



Figure 7.1: Data whitening LFSR.

After initialization, the packet header and the payload (including the CRC) are scrambled. The payload whitening continues from the state the whitening LFSR had at the end of HEC. There is no re-initialization of the shift register between packet header and payload. The first bit of the "Data In" sequence is the LSB of the packet header.

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 80 of 1082

Baseband Specification

Bluetooth.

**Bluetooth** 

## 8 TRANSMIT/RECEIVE ROUTINES

This section describes the way to use the packets as defined in Section 4 in order to support the traffic on the ACL and SCO links. Both single-slave and multi-slave configurations are considered. In addition, the use of buffers for the TX and RX routines are described.

The TX and RX routines described in sections 8.1 and 8.2 are of an informative character only. The final implementation may be carried out differently.

#### 8.1 TX ROUTINE

The TX routine is carried out separately for each ACL link and each SCO link. Figure 8.1 on page 81 shows the ACL and SCO buffers as used in the TX routine. In this figure, only a single TX ACL buffer and a single TX SCO buffer are shown. In the master, there is a separate TX ACL buffer for each slave. In addition there may be one or more TX SCO buffers for each SCO slave (different SCO links may either reuse the same TX SCO buffer, or each have their own TX SCO buffer). Each TX buffer consists of two FIFO registers: one current register which can be accessed and read by the Bluetooth controller in order to compose the packets, and one next register that can be accessed by the Bluetooth Link Manager to load new information. The positions of the switches S1 and S2 determine which register is current and which register is next; the switches are controlled by the Bluetooth Link Controller. The switches at the input and the output of the FIFO registers can never be connected to the same register simultaneously.

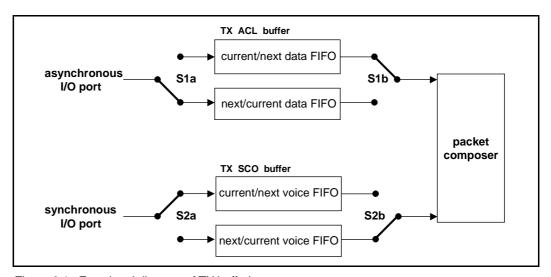



Figure 8.1: Functional diagram of TX buffering.

Of the packets common on the ACL and SCO links (ID, NULL, POLL, FHS, DM1) only the DM1 packet carries a payload that is exchanged between the Link Controller and the Link Manager; this common packet makes use of the

page 82 of 1082

Baseband Specification

Bluetooth.

ACL buffer. All ACL packets make use of the ACL buffer. All SCO packets make use of the SCO buffer except for the **DV** packet where the voice part is handled by the SCO buffer and the data part is handled by the ACL buffer. In the next sections, the operation for ACL traffic, SCO traffic, and combined data-voice traffic on the SCO link will be considered.

#### 8.1.1 ACL traffic

In the case of pure (asynchronous) data, only the TX ACL buffer in Figure 8.1 on page 81 has to be considered. In this case, only packet types **DM** or **DH** are used, and these can have different lengths. The length is indicated in the payload header. The selection of high-rate data or medium-rate data shall depend on the quality of the link. When the quality is good, the FEC in the data payload can be omitted, resulting in a **DH** packet. Otherwise, **DM** packets must be used.

The default TYPE in pure data traffic is **NULL**. This means that, if there is no data to be sent (the data traffic is asynchronous, and therefore pauses occur in which no data is available) or no slaves need to be polled, **NULL** packets are sent instead – in order to send link control information to the other Bluetooth unit (e.g. ACK/STOP information for received data). When no link control information is available either (no need to acknowledge and/or no need to stop the RX flow) no packet is sent at all.

The TX routine works as follows. The Bluetooth Link Manager loads new data information in the register to which the switch S1a points. Next, it gives a **flush** command to the Bluetooth Link Controller, which forces the switch S1 to change (both S1a and S1b switch in synchrony). When the payload needs to be sent, the packet composer reads the current register and, depending on the packet TYPE, builds a payload which is appended to the channel access code and the header and is subsequently transmitted. In the response packet (which arrives in the following RX slot if it concerned a master transmission, or may be postponed until some later RX slot if it concerned a slave transmission), the result of the transmission is reported back. In case of an ACK, the switch S1 changes position; if a NAK (explicit or implicit) is received instead, the switch S1 will not change position. In that case, the same payload is retransmitted at the next TX occasion.

As long as the Link Manager keeps loading the registers with new information, the Bluetooth Link Controller will automatically transmit the payload; in addition, retransmissions are performed automatically in case of errors. The Link Controller will send **NULL** or nothing when no new data is loaded. If no new data has been loaded in the **next** register, during the last transmission, the packet composer will be pointing to an empty register after the last transmission has been acknowledged and the **next** register becomes the **current** register. If new data is loaded in the **next** register, a **flush** command is required to switch the S1 switch to the proper register. As long as the Link Manager keeps loading the data and type registers before each TX slot, the data is automatically processed by the Link Controller since the S1 switch is controlled by the

page 83 of 1082

Baseband Specification

Bluetooth.

ACK information received in response. However, if the traffic from the Link Manager is interrupted once and a default packet is sent instead, a **flush** command is required to continue the flow in the Link Controller.

The **flush** command can also be used in case of time-bounded (isochronous) data. In case of a bad link, many retransmission are necessary. In certain applications, the data is time-bounded: if a payload is retransmitted all the time because of link errors, it may become outdated, and the system might decide to continue with more recent data instead and skip the payload that does not come through. This is accomplished by the **flush** command as well. With the **flush**, the switch S1 is forced to change and the Link Controller is forced to consider the next data payload and overrules the ACK control.

#### 8.1.2 SCO traffic

In case of an SCO link, we only use HV packet types. The synchronous port continuously loads the **next** register in the SCO buffer. The S2 switches are changed according to the  $T_{sco}$  interval. This  $T_{sco}$  interval is negotiated between the master and the slave at the time the SCO link is established.

For each new SCO slot, the packet composer reads the **current** register after which the S2 switch is changed. If the SCO slot has to be used to send control information with high priority concerning a control packet between the master and the considered SCO slave, or a control packet between the master and any other slave, the packet composer will discard the SCO information and use the control information instead. This control information must be sent in a DM1 packet. Data or link control information can also be exchanged between the master and the SCO slave by using the **DV** or **DM1** packets. Any ACL type of packet can be used to sent data or link control information to any other ACL slave. This is discussed next.

#### 8.1.3 Mixed data/voice traffic

In Section 4.4.2 on page 58, a **DV** packet has been defined that can support both data and voice simultaneously on a single SCO link. When the TYPE is **DV**, the Link Controller reads the data register to fill the data field and the voice register to fill the voice field. Thereafter, the switch S2 is changed. However, the position of S1 depends on the result of the transmission like on the ACL link: only if an ACK has been received will the S1 switch change its position. In each **DV** packet, the voice information is new, but the data information might be retransmitted if the previous transmission failed. If there is no data to be sent, the SCO link will automatically change from **DV** packet type to the current **HV** packet type used before the mixed data/voice transmission. Note that a **flush** command is required when the data stream has been interrupted and new data has arrived.

Combined data-voice transmission can also be accomplished by using separate ACL links in addition to the SCO link(s) if channel capacity permits this.

Bluetooth.

#### 8.1.4 Default packet types

On the ACL links, the default type is always **NULL** both for the master and the slave. This means that if no user information needs to be send, either a **NULL** packet is sent if there is ACK or STOP information, or no packet is sent at all. The **NULL** packet can be used by the master to allocate the next slave-to-master slot to a certain slave (namely the one addressed). However, the slave is not forced to respond to the **NULL** packet from the master. If the master requires a response, it has to send a **POLL** packet.

The SCO packet type is negotiated at the LM level when the SCO link is established. The agreed packet type is also the default packet type for the SCO slots.

## 8.2 RX ROUTINE

The RX routine is carried out separately for the ACL link and the SCO link. However, in contrast to the master TX ACL buffer, a single RX buffer is shared among all slaves. For the SCO buffer, it depends how the different SCO links are distinguished whether extra SCO buffers are required or not. Figure 8.2 on page 84 shows the ACL and SCO buffers as used in the RX routine. The RX ACL buffer consists of two FIFO registers: one register that can be accessed and loaded by the Bluetooth Link Controller with the payload of the latest RX packet, and one register that can be accessed by the Bluetooth Link Manager to read the previous payload. The RX SCO buffer also consists of two FIFO registers: one register which is filled with newly arrived voice information, and one register which can be read by the voice processing unit.

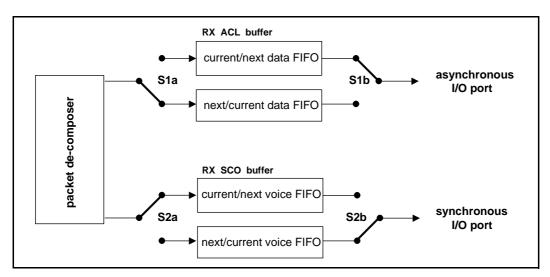



Figure 8.2: Functional diagram of RX buffering

Since the TYPE indication in the header of the received packet indicates whether the payload contains data and/or voice, the packet de-composer can automatically direct the traffic to the proper buffers. The switch S1 changes

Bluetooth.

every time the Link Manager has read the old register. If the next payload arrives before the RX register is emptied, a STOP indication must be included in the packet header of the next TX packet that is returned. The STOP indication is removed again as soon as the RX register is emptied. The SEQN field is checked before a new ACL payload is stored into the ACL register (flush indication in L\_CH and broadcast messages influence the interpretation of the SEQN field see Section 5.3 on page 68).

The S2 switch is changed every  $T_{SCO}$ . If – due to errors in the header – no new voice payload arrives, the switch still changes. The voice processing unit then has to process the voice signal to account for the missing speech parts.

## 8.3 FLOW CONTROL

Since the RX ACL buffer can be full while a new payload arrives, flow control is required. As was mentioned earlier, the header field FLOW in the return TX packet can use STOP or GO in order to control the transmission of new data.

#### 8.3.1 Destination control

As long as data cannot be received, a STOP indication is transmitted which is automatically inserted by the Link Controller into the header of the return packet. STOP is returned as long as the RX ACL buffer is not emptied by the Link Manager. When new data can be accepted again, the GO indication is returned. GO is the default value. Note that all packet types not including data can still be received. Voice communication for example is not affected by the flow control. Also note that although a Bluetooth unit cannot receive new information, it can still continue to transmit information: the flow control is separate for each direction.

#### 8.3.2 Source control

On the reception of a STOP signal, the Link Controller will automatically switch to the default packet type. The current TX ACL buffer status is frozen. Default packets are sent as long as the STOP indication is received. When no packet is received, GO is assumed implicitly. Note that the default packets contain link control information (in the header) for the receive direction (which may still be open) and may contain voice (**HV** packets). When a GO indication is received, the Link Controller resumes to transmit the data as is present in the TX ACL buffers.

In a multi-slave configuration, only the transmission to the slave that issued the STOP signal is stalled. This means that the previously described routine implemented in the master only concerns the TX ACL buffer that corresponds to the slave that cannot accept data momentarily.

**Bluetooth** 

#### 8.4 BITSTREAM PROCESSES

Before the user information is sent over the air interface, several bit manipulations are performed in the transmitter to increase reliability and security. To the packet header, an HEC is added, the header bits are scrambled with a whitening word, and FEC coding is applied. In the receiver, the inverse processes are carried out. Figure 8.3 on page 86 shows the processes carried out for the packet header both at the transmit and the receive side. All header bit processes are mandatory.

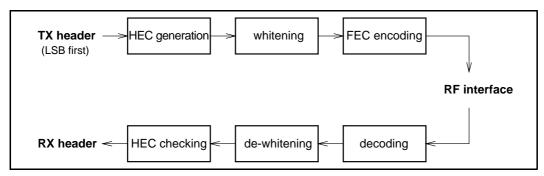



Figure 8.3: Header bit processes.

For the payload, similar processes are performed. It depends on the packet type, which processes are carried out. Figure 8.4 on page 86 shows the processes that may be carried out on the payload. In addition to the processes defined for the packet header, encryption can be applied on the payload. Only whitening and de-whitening, as explained in Section 7 on page 79, are mandatory for every payload; all other processes are optional and depend on the packet type and the mode enabled. In Figure 8.4 on page 86, optional processes are indicated by dashed blocks.

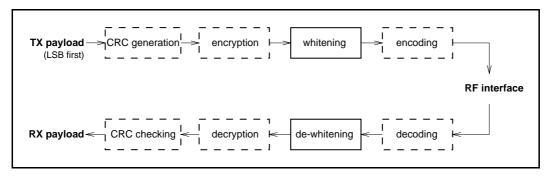



Figure 8.4: Payload bit processes.

**Bluetooth** 

## 9 TRANSMIT/RECEIVE TIMING

The Bluetooth transceiver applies a time-division duplex (TDD) scheme. This means that it alternately transmits and receives in a synchronous manner. It depends on the mode of the Bluetooth unit what the exact timing of the TDD scheme is. In the normal connection mode, the master transmission shall always start at even numbered time slots (master CLK1=0) and the slave transmission shall always start at odd numbered time slots (master CLK1=1). Due to packet types that cover more than a single slot, master transmission may continue in odd numbered slots and slave transmission may continue in even numbered slots.

All timing diagrams shown in this chapter are based on the signals as present at the antenna. The term "exact" when used to describe timing refers to an ideal transmission or reception and neglects timing jitter and clock frequency imperfections.

The average timing of master packet transmission must not drift faster than 20 ppm relative to the ideal slot timing of 625  $\mu$ s. The instantaneous timing must not deviate more than 1  $\mu$ s from the average timing. Thus, the absolute packet transmission timing  $t_k$  of slot boundary k must fulfill the equation:

$$t_k = \left(\sum_{i=1}^k (1+d_i)T_N\right) + j_k + \text{offset}, \tag{EQ 1}$$

where  $T_N$  is the nominal slot length (625  $\mu$ s),  $j_k$  denotes jitter ( $|j_k| \le 1 \mu$ s) at slot boundary k, and,  $d_k$ , denotes the drift ( $|d_k| \le 20 \, \text{ppm}$ ) within slot k. The jitter and drift may vary arbitrarily within the given limits for every slot, while "offset" is an arbitrary but fixed constant. For hold, park and sniff mode the drift and jitter parameters as described in Link Manager Protocol Section 3.9 on page 203 apply.

#### 9.1 MASTER/SLAVE TIMING SYNCHRONIZATION

The piconet is synchronized by the system clock of the master. The master never adjusts its system clock during the existence of the piconet: it keeps an exact interval of Mx625  $\mu s$  (where M is an even, positive integer larger than 0) between consecutive transmissions. The slaves adapt their native clocks with a timing offset in order to match the master clock. This offset is updated each time a packet is received from the master: by comparing the exact RX timing of the received packet with the estimated RX timing, the slaves correct the offset for any timing misalignments. Note that the slave RX timing can be corrected with any packet sent in the master-to-slave slot, since only the channel access code is required to synchronize the slave.

The slave TX timing shall be based on the most recent slave RX timing. The RX timing is based on the latest successful trigger during a master-to-slave slot. For ACL links, this trigger must have occurred in the master-to-slave slot directly pre-

Bluetooth.

ceding the current slave transmission; for SCO links, the trigger may have occurred several master-to-slave slots before since a slave is allowed to send an SCO packet even if no packet was received in the preceding master-to-slave slot. The slave shall be able to receive the packets and adjust the RX timing as long as the timing mismatch remains within the  $\pm 10~\mu s$  uncertainty window.

The master TX timing is strictly related to the master clock. The master shall keep an exact interval of Mx1250  $\mu s$  (where M is a positive integer larger than 0) between the start of successive transmissions; the RX timing is based on this TX timing with a shift of exactly Nx625  $\mu s$  (where N is an odd, positive integer larger than 0). During the master RX cycle, the master will also use the  $\pm 10\mu$  uncertainty window to allow for slave misalignments. The master will adjust the RX processing of the considered packet accordingly, but will **not** adjust its RX/TX timing for the following TX and RX cycles.

Timing behaviour may differ slightly depending on the current state of the unit. The different states are described in the next sections.

#### 9.2 CONNECTION STATE

In the connection mode, the Bluetooth transceiver transmits and receives alternately, see Figure 9.1 on page 88 and Figure 9.2 on page 89. In the figures, only single-slot packets are shown as an example. Depending on the type and the payload length, the packet size can be up to 366  $\mu s$ . Each RX and TX transmission is at a different hop frequency. For multi-slot packets, several slots are covered by the same packet, and the hop frequency used in the first slot will be used throughout the transmission.

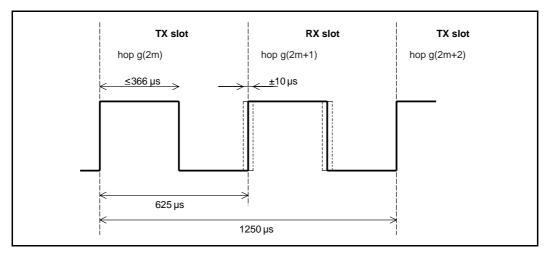



Figure 9.1: RX/TX cycle of Bluetooth master transceiver in normal mode for single-slot packets.

Bluetooth.

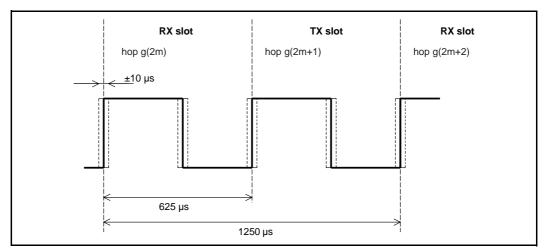



Figure 9.2: RX/TX cycle of Bluetooth slave transceiver in normal mode for single-slot packets.

The master TX/RX timing is shown in Figure 9.1 on page 88. In figures 9.1 through 9.6, f(k) is used for the frequencies of the page hopping sequence and f'(k) denotes the corresponding page response sequence frequencies. The channel hopping frequencies are indicated by g(m). After transmission, a return packet is expected Nx625  $\mu$ s after the start of the TX burst where N is an odd, positive integer. N depends on the type of the transmitted packet. To allow for some time slipping, an uncertainty window is defined around the exact receive timing. During normal operation, the window length is 20  $\mu$ s, which allows the RX burst to arrive up to 10  $\mu$ s too early or 10  $\mu$ s too late. During the beginning of the RX cycle, the access correlator searches for the correct channel access code over the uncertainty window. If no trigger event occurs, the receiver goes to sleep until the next RX event. If in the course of the search, it becomes apparent that the correlation output will never exceed the final threshold, the receiver may go to sleep earlier. If a trigger event does occur, the receiver remains open to receive the rest of the packet.

The current master transmission is based on the previous master transmission: it is scheduled  $Mx1250\mu s$  after the start of the previous master TX burst where M depends on the transmitted and received packet type. Note that the master TX timing is not affected by time drifts in the slave(s). If no transmission takes place during a number of consecutive slots, the master will take the TX timing of the latest TX burst as reference.

The slave's transmission is scheduled Nx625µs after the start of the slave's RX burst. If the slave's RX timing drifts, so will its TX timing. If no reception takes place during a number of consecutive slots, the slave will take the RX timing of the latest RX burst as reference.

Bluetooth

### 9.3 RETURN FROM HOLD MODE

In the connection state, the Bluetooth unit can be placed in a **hold** mode, see Section 10.8 on page 112. In the **hold** mode, a Bluetooth transceiver neither transmits nor receives information. When returning to the normal operation after a **hold** mode in a slave Bluetooth unit, the slave must listen for the master before it may send information. In that case, the search window in the slave unit may be increased from  $\pm 10~\mu s$  to a larger value X  $\mu s$  as illustrated in Figure 9.3 on page 90. Note that only RX hop frequencies are used: the hop frequency used in the master-to-slave (RX) slot is also used in the uncertainty window extended into the preceding time interval normally used for the slave-to-master (TX) slot.

If the search window exceeds 625  $\mu$ s, consecutive windows shall not be centered at the start of RX hops g(2m), g(2m+2), ... g(2m+2i) (where 'i' is an integer), but at g(2m), g(2m+4), ... g(2m+4i), or even at g(2m), g(2m+6), ... g(2m+6i) etc. to avoid overlapping search windows. The RX hop frequencies used shall correspond to the RX slot numbers.

It is recommended that single slot packets are used upon return from hold to minimize the synchronization time, especially after long hold periods that require search windows exceeding  $625 \, \mu s$ .

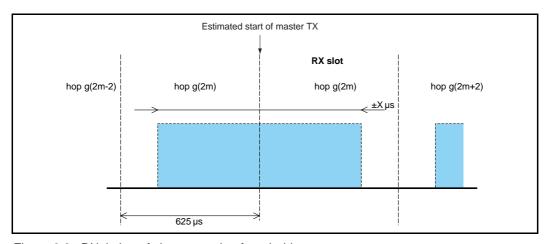



Figure 9.3: RX timing of slave returning from hold state.

## 9.4 PARK MODE WAKE-UP

The **park** mode is similar to the **hold** mode. A parked slave periodically wakes up to listen to beacons from the master and to re-synchronize its clock offset. As in the return from hold mode, a parked slave when waking up may increase the search window from  $\pm 10~\mu s$  to a larger value X  $\mu s$  as illustrated in Figure 9.3 on page 90.

Bluetooth.

#### 9.5 PAGE STATE

In the page state, the master transmits the device access code (ID packet) corresponding to the slave to be connected, rapidly on a large number of different hop frequencies. Since the ID packet is a very short packet, the hop rate can be increased from 1600 hops/s to 3200 hops/s. In a single TX slot interval, the paging master transmits on two different hop frequencies. In a single RX slot interval, the paging transceiver listens on two different hop frequencies; see Figure 9.4 on page 91. During the TX slot, the paging unit sends an ID packet at the TX hop frequencies f(k) and f(k+1). In the RX slot, it listens for a response on the corresponding RX hop frequencies f'(k) and f'(k+1). The listening periods are exactly timed 625  $\mu$ s after the corresponding paging packets, and include a  $\pm 10~\mu$ s uncertainty window.

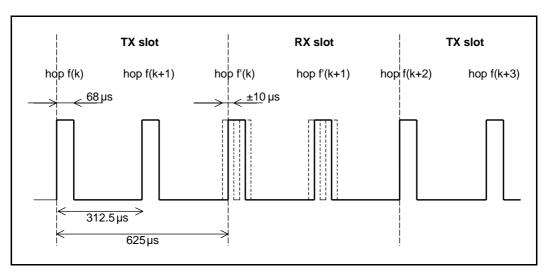



Figure 9.4: RX/TX cycle of Bluetooth transceiver in PAGE mode.

## 9.6 FHS PACKET

At connection setup and during a master-slave switch, an FHS packet is transferred from the master to the slave. This packet will establish the timing and frequency synchronization (see also Section 4.4.1.4 on page 56). After the slave unit has received the page message, it will return a response message which again consists of the ID packet and follows exactly 625 µs after the receipt of the page message. The master will send the FHS packet in the TX slot following the RX slot in which it received the slave response, according the RX/TX timing of the master. The time difference between the response and FHS message will depend on the timing of the page message the slave received. In Figure 9.5 on page 92, the slave receives the paging message sent first in the master-to-slave slot. It will then respond with an ID packet in the first half of the slave-to-master slot. The timing of the **FHS** packet is based on the timing of the page message sent first in the preceding master-to-slave slot: there is an exact 1250 µs delay between the first page message and the **FHS** packet. The packet is sent at the hop frequency f(k+1) which is the hop frequency following the hop frequency f(k) the page message was received in. In Figure 9.6 on page 92, the slave receives the paging message sent secondly in the master-to-slave slot. It will then respond with an ID packet in the

# Bluetooth.

second half of the slave-to-master slot exactly 625  $\mu$ s after the receipt of the page message. The timing of the **FHS** packet is still based on the timing of the page message sent **first** in the preceding master-to-slave slot: there is an exact 1250  $\mu$ s delay between the **first** page message and the **FHS** packet. The packet is sent at the hop frequency f(k+2) which is the hop frequency following the hop frequency f(k+1) the page message was received in.

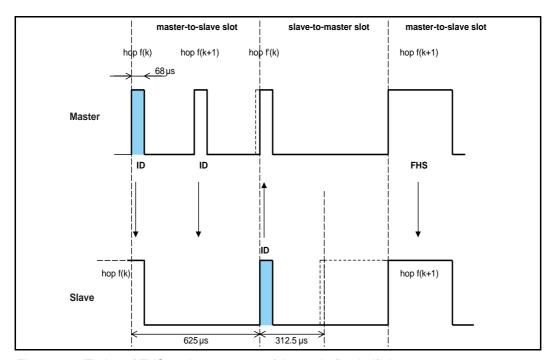



Figure 9.5: Timing of FHS packet on successful page in first half slot.

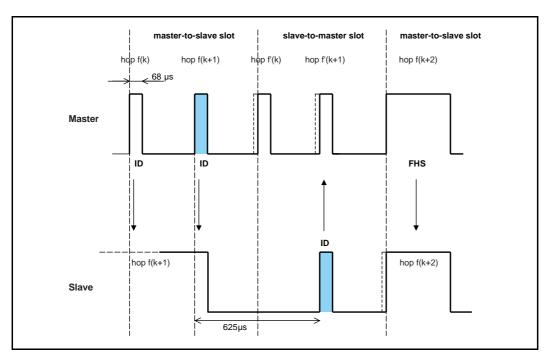



Figure 9.6: Timing of FHS packet on successful page in second half slot.

Bluetooth.

The slave will adjust its RX/TX timing according to the reception of the **FHS** packet (and not according to the reception of the page message). That is, the second response message that acknowledges the reception of the FHS packet is transmitted 625  $\mu$ s after the start of the **FHS** packet.

## 9.7 MULTI-SLAVE OPERATION

As was mentioned in the beginning of this chapter, the master always starts the transmission in the even-numbered slots whereas the slaves start their transmission in the odd-numbered slots. This means that the timing of the master and the slave(s) is shifted by one slot (625  $\mu$ s), see Figure 9.7 on page 93.

Only the slave that is addressed by its AM\_ADDR can return a packet in the next slave-to-master slot. If no valid AM\_ADDR is received, the slave may only respond if it concerns its reserved SCO slave-to-master slot. In case of a broadcast message, no slave is allowed to return a packet (an exception is found in the access window for access requests in the park mode, see Section 10.8.4 on page 115).

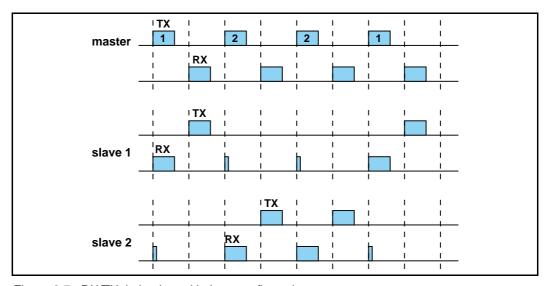



Figure 9.7: RX/TX timing in multi-slave configuration

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 94 of 1082

Baseband Specification

Bluetooth.

page 95 of 1082

Baseband Specification

**Bluetooth** 

## 10 CHANNEL CONTROL

#### **10.1 SCOPE**

This section describes how the channel of a piconet is established and how units can be added to and released from the piconet. Several states of operation of the Bluetooth units are defined to support these functions. In addition, the operation of several piconets sharing the same area, the so-called scatternet, is discussed. A special section is attributed to the Bluetooth clock which plays a major role in the FH synchronization.

#### 10.2 MASTER-SLAVE DEFINITION

The channel in the piconet is characterized entirely by the master of the piconet. The Bluetooth device address (BD\_ADDR) of the master determines the FH hopping sequence and the channel access code; the system clock of the master determines the phase in the hopping sequence and sets the timing. In addition, the master controls the traffic on the channel by a polling scheme.

By definition, the **master** is represented by the Bluetooth unit that initiates the connection (to one or more **slave** units). Note that the names 'master' and 'slave' only refer to the protocol on the channel: the Bluetooth units themselves are identical; that is, any unit can become a master of a piconet. Once a piconet has been established, master-slave roles can be exchanged. This is described in more detail in Section 10.9.3 on page 123.

## 10.3 BLUETOOTH CLOCK

Every Bluetooth unit has an internal system clock which determines the timing and hopping of the transceiver. The Bluetooth clock is derived from a free running native clock which is never adjusted and is never turned off. For synchronization with other units, only offsets are used that, added to the native clock, provide temporary Bluetooth clocks which are mutually synchronized. It should be noted that the Bluetooth clock has no relation to the time of day; it can therefore be initialized at any value. The Bluetooth clock provides the heart beat of the Bluetooth transceiver. Its resolution is at least half the TX or RX slot length, or 312.5  $\mu$ s. The clock has a cycle of about a day. If the clock is implemented with a counter, a 28-bit counter is required that wraps around at  $2^{28}$ -1. The LSB ticks in units of 312.5  $\mu$ s, giving a clock rate of 3.2 kHz.

The timing and the frequency hopping on the channel of a piconet is determined by the Bluetooth clock of the master. When the piconet is established, the master clock is communicated to the slaves. Each slave adds an offset to its native clock to be synchronized to the master clock. Since the clocks are free-running, the offsets have to be updated regularly.

page 96 of 1082

Baseband Specification

Bluetooth.

The clock determines critical periods and triggers the events in the Bluetooth receiver. Four periods are important in the Bluetooth system: 312.5  $\mu$ s, 625  $\mu$ s, 1.25 ms, and 1.28 s; these periods correspond to the timer bits CLK<sub>0</sub>, CLK<sub>1</sub>, CLK<sub>2</sub>, and CLK<sub>12</sub>, respectively, see Figure 10.1 on page 96. Master-to-slave transmission starts at the even-numbered slots when CLK<sub>0</sub> and CLK<sub>1</sub> are both zero.

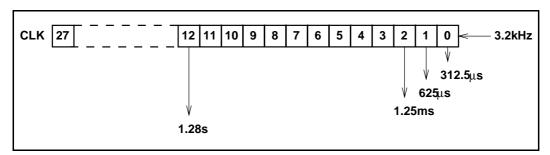



Figure 10.1: Bluetooth clock.

In the different modes and states a Bluetooth unit can reside in, the clock has different appearances:

- CLKN native clock
- CLKE estimated clock
- CLK master clock

CLKN is the free-running native clock and is the reference to all other clock appearances. In states with high activity, the native clock is driven by the reference crystal oscillator with worst case accuracy of +/-20ppm. In the low power states, like **STANDBY**, **HOLD**, **PARK**, the native clock may be driven by a low power oscillator (LPO) with relaxed accuracy (+/-250ppm).

CLKE and CLK are derived from the reference CLKN by adding an offset. CLKE is a clock estimate a paging unit makes of the native clock of the recipient; i.e. an offset is added to the CLKN of the pager to approximate the CLKN of the recipient, see Figure 10.2 on page 97. By using the CLKN of the recipient, the pager speeds up the connection establishment.

CLK is the master clock of the piconet. It is used for all timing and scheduling activities in the piconet. All Bluetooth devices use the CLK to schedule their transmission and reception. The CLK is derived from the native clock CLKN by adding an offset, see Figure 10.3 on page 97. The offset is zero for the master since CLK is identical to its own native clock CLKN. Each slave adds an appropriate offset to its CLKN such that the CLK corresponds to the CLKN of the master. Although all CLKNs in the Bluetooth devices run at the same nominal rate, mutual drift causes inaccuracies in CLK. Therefore, the offsets in the slaves must be regularly updated such that CLK is approximately CLKN of the master.

Bluetooth.

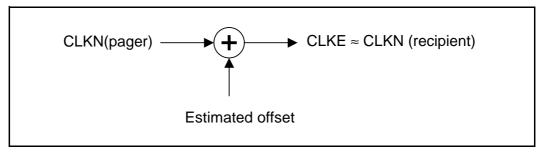



Figure 10.2: Derivation of CLKE

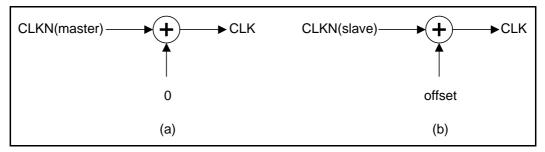



Figure 10.3: Derivation of CLK in master (a) and in slave (b).

#### 10.4 OVERVIEW OF STATES

Figure 10.4 on page 98 shows a state diagram illustrating the different states used in the Bluetooth link controller. There are two major states: **STANDBY** and **CONNECTION**; in addition, there are seven substates, **page**, **page** scan, **inquiry**, **inquiry** scan, master response, slave response, and **inquiry** response. The substates are interim states that are used to add new slaves to a piconet. To move from one state to the other, either commands from the Bluetooth link manager are used, or internal signals in the link controller are used (such as the trigger signal from the correlator and the timeout signals).

**Bluetooth** 

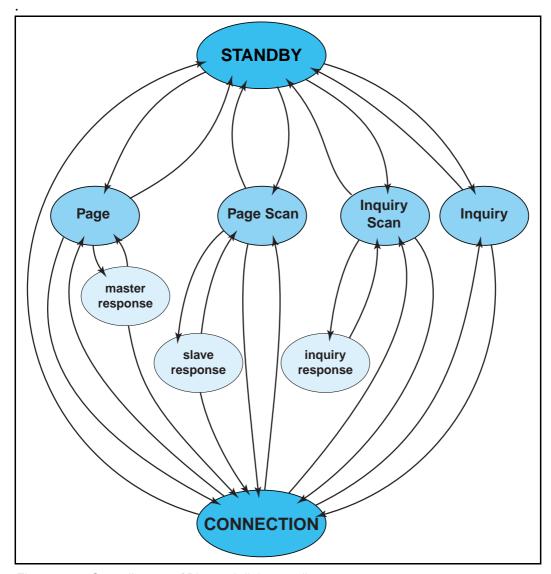



Figure 10.4: State diagram of Bluetooth link controller.

#### 10.5 STANDBY STATE

The **STANDBY** state is the default state in the Bluetooth unit. In this state, the Bluetooth unit is in a low-power mode. Only the native clock is running at the accuracy of the LPO (or better).

The controller may leave the **STANDBY** state to scan for page or inquiry messages, or to page or inquiry itself. When responding to a page message, the unit will not return to the **STANDBY** state but enter the **CONNECTION** state as a slave. When carrying out a successful page attempt, the unit will enter the **CONNECTION** state as a master. The intervals with which scan activities can be carried out are discussed in Section 10.6.2 on page 99 and Section 10.7.2 on page 109.

Bluetooth.

### 10.6 ACCESS PROCEDURES

#### 10.6.1 General

In order to establish new connections the procedures inquiry and paging are used. The inquiry procedure enables a unit to discover which units are in range, and what their device addresses and clocks are. With the paging procedure, an actual connection can be established. Only the Bluetooth device address is required to set up a connection. Knowledge about the clock will accelerate the setup procedure. A unit that establishes a connection will carry out a page procedure and will automatically be the master of the connection.

In the paging and inquiry procedures, the device access code (DAC) and the inquiry access code (IAC) are used, respectively. A unit in the **page scan** or **inquiry scan** substate correlates against these respective access codes with a matching correlator.

For the paging process, several paging schemes can be applied. There is one mandatory paging scheme which has to be supported by each Bluetooth device. This mandatory scheme is used when units meet for the first time, and in case the paging process directly follows the inquiry process. Two units, once connected using a mandatory paging/scanning scheme, may agree on an optional paging/scanning scheme. Optional paging schemes are discussed in "Appendix VII" on page 999. In the current chapter, only the mandatory paging scheme is considered.

#### 10.6.2 Page scan

In the **page scan** substate, a unit listens for its own device access code for the duration of the scan window  $T_{w\;page\;scan}$ . During the scan window, the unit listens at a single hop frequency, its correlator matched to its device access code. The scan window shall be long enough to completely scan 16 page frequencies.

When a unit enters the **page scan** substate, it selects the scan frequency according to the page hopping sequence corresponding to this unit, see Section 11.3.1 on page 135. This is a 32-hop sequence (or a 16-hop sequence in case of a reduced-hop system) in which each hop frequency is unique. The page hopping sequence is determined by the unit's Bluetooth device address (BD\_ADDR). The phase in the sequence is determined by CLKN<sub>16-12</sub> of the unit's native clock (CLKN<sub>15-12</sub> in case of a reduced-hop system); that is, every 1.28s a different frequency is selected.

If the correlator exceeds the trigger threshold during the **page scan**, the unit will enter the **slave response** substate, which is described in Section 10.6.4.1 on page 105.

page 100 of 1082

Baseband Specification

Bluetooth.

The page scan substate can be entered from the STANDBY state or the CONNECTION state. In the STANDBY state, no connection has been established and the unit can use all the capacity to carry out the page scan. Before entering the page scan substate from the CONNECTION state, the unit preferably reserves as much capacity for scanning. If desired, the unit may place ACL connections in the HOLD mode or even use the PARK mode, see Section 10.8.3 on page 114 and Section 10.8.4 on page 115. SCO connections are preferably not interrupted by the page scan. In this case, the page scan may be interrupted by the reserved SCO slots which have higher priority than the page scan. SCO packets should be used requiring the least amount of capacity (HV3 packets). The scan window shall be increased to minimize the setup delay. If one SCO link is present using HV3 packets and  $T_{SCO}$ =6 slots, a total scan window  $T_{w page scan}$  of at least 36 slots (22.5ms) is recommended; if two SCO links are present using HV3 packets and  $T_{SCO}$ =6 slots, a total scan window of at least 54 slots (33.75ms) is recommended.

The scan interval  $T_{page\ scan}$  is defined as the interval between the beginnings of two consecutive page scans. A distinction is made between the case where the scan interval is equal to the scan window  $T_{w\ page\ scan}$  (continuous scan), the scan interval is maximal 1.28s, or the scan interval is maximal 2.56s. These three cases determine the behavior of the paging unit; that is, whether the paging unit shall use R0, R1 or R2, see also Section 10.6.3 on page 101. Table 10.1 illustrates the relationship between  $T_{page\ scan}$  and modes R0, R1 and R2. Although scanning in the R0 mode is continuous, the scanning may be interrupted by for example reserved SCO slots. The scan interval information is included in the SR field in the FHS packet.

Bluetooth.

During page scan the Bluetooth unit may choose to use an optional scanning scheme. (An exception is the page scan after returning an inquiry response message. See Section 10.7.4 on page 111 for details.)

| SR mode  | T <sub>page scan</sub> | N <sub>page</sub> |
|----------|------------------------|-------------------|
| R0       | continuous             | ≥1                |
| R1       | ≤ 1.28s                | ≥ 128             |
| R2       | ≤ 2.56s                | ≥ 256             |
| Reserved | -                      | -                 |

Table 10.1: Relationship between scan interval, train repetition, and paging modes R0, R1 and R2.

## 10.6.3 Page

The **page** substate is used by the master (source) to activate and connect to a slave (destination) which periodically wakes up in the **page scan** substate. The master tries to capture the slave by repeatedly transmitting the slave's device access code (DAC) in different hop channels. Since the Bluetooth clocks of the master and the slave are not synchronized, the master does not know exactly when the slave wakes up and on which hop frequency. Therefore, it transmits a train of identical DACs at different hop frequencies, and listens in between the transmit intervals until it receives a response from the slave.

The page procedure in the master consists of a number of steps. First, the slave's device address is used to determine the page hopping sequence, see Section 11.3.2 on page 135. This is the sequence the master will use to reach the slave. For the phase in the sequence, the master uses an estimate of the slave's clock. This estimate can for example be derived from timing information that was exchanged during the last encounter with this particular device (which could have acted as a master at that time), or from an inquiry procedure. With this estimate CLKE of the slave's Bluetooth clock, the master can predict when the slave wakes up and on which hop channel.

The estimate of the Bluetooth clock in the slave can be completely wrong. Although the master and the slave use the same hopping sequence, they use different phases in the sequence and will never meet each other. To compensate for the clock drifts, the master will send its page message during a short time interval on a number of wake-up frequencies. It will in fact transmit also on hop frequencies just before and after the current, predicted hop frequency. During each TX slot, the master sequentially transmits on two different hop frequencies. Since the page message is the ID packet which is only 68 bits in length, there is ample of time (224.5  $\mu s$  minimal) to switch the synthesizer. In the following RX slot, the receiver will listen sequentially to two corresponding RX hops for ID packet. The RX hops are selected according to the page\_response hopping sequence. The page\_response hopping sequence is strictly related to the page hopping sequence; that is: for each page hop there is a corresponding page\_response hop. The RX/TX timing in the **page** sub-

page 102 of 1082

Baseband Specification

Bluetooth.

state has been described in Section 9, see also Figure 9.4 on page 91. In the next TX slot, it will transmit on two hop frequencies different from the former ones. The synthesizer hop rate is increased to 3200 hops/s.

A distinction must be made between the 79-hop systems and the 23-hop systems. First the 79-hop systems are considered. With the increased hopping rate as described above, the transmitter can cover 16 different hop frequencies in 16 slots or 10 ms. The page hopping sequence is divided over two paging trains **A** and **B** of 16 frequencies. Train **A** includes the 16 hop frequencies surrounding the current, predicted hop frequency f(k), where k is determined by the clock estimate CLKE<sub>16-12</sub>. So the first train consists of hops

$$f(k-8), f(k-7),...,f(k),...,f(k+7)$$

When the difference between the Bluetooth clocks of the master and the slave is between -8x1.28 s and +7x1.28 s, one of the frequencies used by the master will be the hop frequency the slave will listen to. However, since the master does not know when the slave will enter the **page scan** substate, he has to repeat this train  $\bf A$  N<sub>page</sub> times or until a response is obtained. If the slave scan interval corresponds to R1, the repetition number is at least 128; if the slave scan interval corresponds to R2, the repetition number is at least 256. Note that CLKE<sub>16-12</sub> changes every 1.28 s; therefore, every 1.28 s, the trains will include different frequencies of the page hopping set.

When the difference between the Bluetooth clocks of the master and the slave is less than -8x1.28 s or larger than +7x1.28 s, more distant hops must be probed. Since in total, there are only 32 dedicated wake-up hops, the more distant hops are the remaining hops not being probed yet. The remaining 16 hops are used to form the new 10 ms train **B.** The second train consists of hops

$$f(k-16), f(k-15),...,f(k-9),f(k+8),...,f(k+15)$$

Train **B** is repeated for  $N_{page}$  times. If still no response is obtained, the first train **A** is tried again  $N_{page}$  times. Alternate use of train A and train B is continued until a response is received or the timeout pageTO is exceeded. If during one of the listening occasions, a response is returned by the slave, the master unit enters the **master response** substate.

The description for paging and **page scan** procedures given here has been tailored towards the 79-hop systems used in the US and Europe. For the 23-hop systems as used in Japan and some European countries, the procedure is slightly different. In the 23-hop case, the length of the page hopping sequence is reduced to 16. As a consequence, there is only a single train (train  $\bf A$ ) including all the page hopping frequencies. The phase to the page hopping sequence is not CLKE<sub>16-12</sub> but CLKE<sub>15-12</sub>. An estimate of the slave's clock does not have to be made.

The page substate can be entered from the STANDBY state or the CONNECTION state. In the STANDBY state, no connection has been established and

# Bluetooth

the unit can use all the capacity to carry out the page. Before entering the page substate from the CONNECTION state, the unit shall free as much capacity as possible for scanning. To ensure this, it is recommended that the ACL connections are put on hold or park. However, the SCO connections shall not be disturbed by the page. This means that the page will be interrupted by the reserved SCO slots which have higher priority than the page. In order to obtain as much capacity for paging, it is recommended to use the SCO packets which use the least amount of capacity (HV3 packets). If SCO links are present, the repetition number  $N_{page}$  of a single train shall be increased, see Table 10.2. Here it has been assumed that the HV3 packet are used with an interval  $T_{SCO}$ =6 slots, which would correspond to a 64 kb/s voice link.

| SR mode | no SCO link            | one SCO link<br>(HV3)  | two SCO links (HV3)    |
|---------|------------------------|------------------------|------------------------|
| R0      | N <sub>page</sub> ≥1   | N <sub>page</sub> ≥2   | N <sub>page</sub> ≥3   |
| R1      | N <sub>page</sub> ≥128 | N <sub>page</sub> ≥256 | N <sub>page</sub> ≥384 |
| R2      | N <sub>page</sub> ≥256 | N <sub>page</sub> ≥512 | N <sub>page</sub> ≥768 |

Table 10.2: Relationship between train repetition, and paging modes R0, R1 and R2 when SCO links are present.

The construction of the page train is independent on the presence of SCO links; that is, SCO packets are sent on the reserved slots but do not affect the hop frequencies used in the unreserved slots, see Figure 10.5 on page 103.

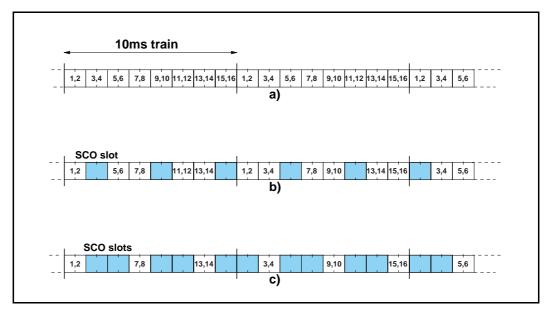



Figure 10.5: Conventional page (a), page while one SCO link present (b), page while two SCO links present (c).

For the descriptions of optional paging schemes see "Appendix VII" on page 999.

Bluetooth.

## 10.6.4 Page response procedures

When a page message is successfully received by the slave, there is a coarse FH synchronization between the master and the slave. Both the master and the slave enter a response routine to exchange vital information to continue the connection setup. Important for the piconet connection is that both Bluetooth units use the same channel access code, use the same channel hopping sequence, and that their clocks are synchronized. These parameters are derived from the master unit. The unit that initializes the connection (starts paging) is defined as the master unit (which is thus only valid during the time the piconet exists). The channel access code and channel hopping sequence are derived from the Bluetooth device address (BD\_ADDR) of the master. The timing is determined by the master clock. An offset is added to the slave's native clock to temporarily synchronize the slave clock to the master clock. At startup, the master parameters have to be transmitted from the master to the slave. The messaging between the master and the slave at start-up will be considered in this section.

The initial messaging between master and slave is shown in Table 10.3 on page 104 and in Figure 10.6 on page 105 and Figure 10.7 on page 105. In those two figures frequencies f (k), f(k+1), etc. are the frequencies of the page hopping sequence determined by the slave's BD\_ADDR. The frequencies f'(k), f'(k+1), etc. are the corresponding page\_response frequencies (slave-to-master). The frequencies g(m) belong to the channel hopping sequence.

| Step | Message           | Direction       | Hopping<br>Sequence | Access Code and Clock |
|------|-------------------|-----------------|---------------------|-----------------------|
| 1    | slave ID          | master to slave | page                | slave                 |
| 2    | slave ID          | slave to master | page<br>response    | slave                 |
| 3    | FHS               | master to slave | page                | slave                 |
| 4    | slave ID          | slave to master | page<br>response    | slave                 |
| 5    | 1st packet master | master to slave | channel             | master                |
| 6    | 1st packet slave  | slave to master | channel             | master                |

Table 10.3: Initial messaging during start-up.

In step 1 (see Table 10.3 on page 104), the master unit is in **page** substate and the slave unit in the **page scan** substate. Assume in this step that the page message (= slave's device access code) sent by the master reaches the slave. On recognizing its device access code, the slave enters the **slave response** in step 2. The master waits for a reply from the slave and when this arrives in step 2, it will enter the **master response** in step 3. Note that during the initial message exchange, all parameters are derived from the slave's BD\_ADDR, and that only the page hopping and page\_response hopping sequences are used

Bluetooth.

(which are also derived from the slave's BD\_ADDR). Note that when the master and slave enter the response states, their clock input to the page and page\_response hop selection is frozen as is described in Section 11.3.3 on page 136.

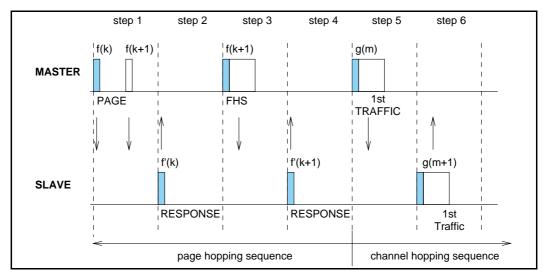



Figure 10.6: Messaging at initial connection when slave responds to first page message.

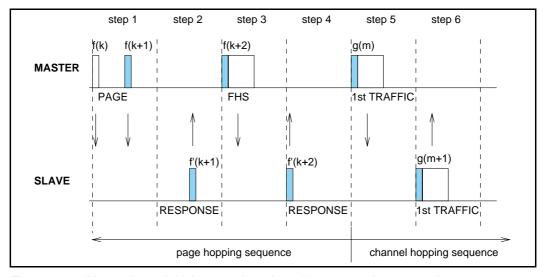



Figure 10.7: Messaging at initial connection when slave responds to second page message.

## 10.6.4.1 Slave response

After having received its own device access code in step 1, the slave unit transmits a response message in step 2. This response message again only consists of the slave's device access code. The slave will transmit this response 625  $\mu s$  after the beginning of the received page message (slave ID packet) and at the response hop frequency that corresponds to the hop frequency in which the page message was received. The slave transmission is therefore time

page 106 of 1082

Baseband Specification

Bluetooth.

aligned to the master transmission. During initial messaging, the slave still uses the page response hopping sequence to return information to the master. The clock input  $CLKN_{16-12}$  is frozen at the value it had at the time the page message was received.

After having sent the response message, the slave's receiver is activated (312.5  $\mu$ s after the start of the response message) and awaits the arrival of a **FHS** packet. Note that a **FHS** packet can already arrive 312.5  $\mu$ s after the arrival of the page message as shown in Figure 10.7 on page 105, and not after 625  $\mu$ s as is usually the case in the RX/TX timing. More details about the timing can be found in Section 9.6 on page 91.

If the setup fails before the **CONNECTION** state has been reached, the following procedure is carried out. The slave will keep listening as long as no **FHS** packet is received until *pagerespTO* is exceeded. Every 1.25 ms, however, it will select the next master-to-slave hop frequency according to the page hop sequence. If nothing is received after *pagerespTO*, the slave returns back to the **page scan** substate for one scan period. Length of the scan period depends on the SCO slots present. If no page message is received during this additional scan period, the slave will resume scanning at its regular scan interval and return to the state it was in prior to the first page scan state.

If a **FHS** packet is received by the slave in the **slave response** substate, the slave returns a response (slave's device access code only) in step 4 to acknowledge the reception of the **FHS** packet (still using the page response hopping sequence). The transmission of this response packet is based on the reception of the **FHS** packet. Then the slave changes to the channel (master's) access code and clock as received from the **FHS** packet. Only the 26 MSBs of the master clock are transferred: the timing is assumed such that  $CLK_1$  and  $CLK_0$  are both zero at the time the **FHS** packet was received as the master transmits in even slots only. From the master clock in the **FHS** packet, the offset between the master's clock and the slave's clock is determined and reported to the slave's link manager.

Finally, the slave enters the **CONNECTION** state in step 5. From then on, the slave will use the master's clock and the master BD\_ADDR to determine the channel hopping sequence and the channel access code. The connection mode starts with a POLL packet transmitted by the master. The slave responds with any type of packet. If the POLL packet is not received by the slave, or the response packet is not received by the master, within *newconnectionTO* number of slots after FHS packet acknowledgement, the master and the slave will return to page and page scan substates, respectively. See Section 10.8 on page 112

page 107 of 1082

Baseband Specification

Bluetooth.

## 10.6.4.2 Master response

When the master has received a response message from the slave in step 2, it will enter the **master response** routine. It freezes the current clock input to the page hop selection scheme. Then the master will transmit a **FHS** packet in step 3 containing the master's real-time Bluetooth clock, the master's 48-bit BD\_ADDR address, the BCH parity bits, and the class of device. The **FHS** packet contains all information to construct the channel access code without requiring a mathematical derivation from the master device address. The **FHS** packet is transmitted at the beginning of the master-to-slave slot following the slot in which the slave has responded. So the TX timing of the **FHS** is not based on the reception of the response packet from the slave. The **FHS** packet may therefore be sent 312.5  $\mu$ s after the reception of the response packet like shown in Figure 10.7 on page 105 and not 625  $\mu$ s after the received packet as is usual in the RX/TX timing, see also Section 9.6 on page 91.

After the master has sent its **FHS** packet, it waits for a second response from the slave in step 4 which acknowledges the reception of the **FHS** packet. Again this is only the slave's device access code. If no response is received, the master retransmits the **FHS** packet, but with an updated clock and still using the slave's parameters. It will retransmit (the clock is updated every retransmission) until a second slave response is received, or the timeout of *pagerespTO* is exceeded. In the latter case, the master turns back to the **page** substate and sends an error message to the link manager. During the retransmissions of the **FHS** packet, the master keeps using the page hopping sequence.

If the slave's response is indeed received, the master changes to the master parameters, so the channel access code and the master clock. The lower clock bits  $CLK_0$  and  $CLK_1$  are zero at the start of the **FHS** packet transmission and are not included in the **FHS** packet. Finally, the master enters the **CONNECTION** state in step 5. The master BD\_ADDR is used to change to a new hopping sequence, the *channel hopping sequence*. The channel hopping sequence uses all 79 hop channels in a (pseudo) random fashion, see also Section 11.3.6 on page 138. The master can now send its first traffic packet in a hop determined with the new (master) parameters. This first packet will be a POLL packet. See Section 10.8 on page 112.

The master can now send its first traffic packet in a hop determined with the new (master) parameters. The first packet in this state is a POLL packet sent by the master. This packet will be sent within *newconnectionTO* number of slots after reception of the FHS packet acknowledgement. The slave will respond with any type of packet. If the POLL packet is not received by the slave or the POLL packet response is not received by the master within *newconnectionTO* number of slots, the master and the slave will return to page and page scan substates, respectively.

page 108 of 1082

Baseband Specification

Bluetooth

### 10.7 INQUIRY PROCEDURES

#### 10.7.1 **General**

In the Bluetooth system, an inquiry procedure is defined which is used in applications where the destination's device address is unknown to the source. One can think of public facilities like printers or facsimile machines, or access points to a LAN. Alternatively, the inquiry procedure can be used to discover which other Bluetooth units are within range. During an **inquiry** substate, the discovering unit collects the Bluetooth device addresses and clocks of all units that respond to the inquiry message. It can then, if desired, make a connection to any one of them by means of the previously described page procedure.

The inquiry message broadcasted by the source does not contain any information about the source. However, it may indicate which class of devices should respond. There is one general inquiry access code (GIAC) to inquire for any Bluetooth device, and a number of dedicated inquiry access codes (DIAC) that only inquire for a certain type of devices. The inquiry access codes are derived from reserved Bluetooth device addresses and are further described in Section 4.2.1.

A unit that wants to discover other Bluetooth units enters an **inquiry** substate. In this substate, it continuously transmits the inquiry message (which is the ID packet, see Section 4.4.1.1 on page 55) at different hop frequencies. The **inquiry** hop sequence is always derived from the LAP of the GIAC. Thus, even when DIACs are used, the applied hopping sequence is generated from the GIAC LAP. A unit that allows itself to be discovered, regularly enters the **inquiry scan** substate to respond to inquiry messages. The following sections describe the message exchange and contention resolution during inquiry response. The inquiry response is optional: a unit is not forced to respond to an inquiry message.

page 109 of 1082

Baseband Specification

Bluetooth.

## 10.7.2 Inquiry scan

The **inquiry scan** substate is very similar to the **page scan** substate. However, instead of scanning for the unit's device access code, the receiver scans for the inquiry access code long enough to completely scan for 16 inquiry frequencies. The length of this scan period is denoted  $T_{w_inquiry_scan}$ . The scan is performed at a single hop frequency. As in the page procedure, the inquiry procedure uses 32 dedicated inquiry hop frequencies according to the *inquiry hopping sequence*. These frequencies are determined by the general inquiry address. The phase is determined by the native clock of the unit carrying out the **inquiry scan**; the phase changes every 1.28s.

Instead or in addition to the general inquiry access code, the unit may scan for one or more dedicated inquiry access codes. However, the scanning will follow the inquiry hopping sequence which is determined by the general inquiry address. If an inquiry message is recognized during an inquiry wake-up period, the Bluetooth unit enters the **inquiry response** substate.

The **inquiry scan** substate can be entered from the **STANDBY** state or the CONNECTION state. In the STANDBY state, no connection has been established and the unit can use all the capacity to carry out the **inquiry scan**. Before entering the **inquiry scan** substate from the **CONNECTION** state, the unit preferably reserves as much capacity as possible for scanning. If desired, the unit may place ACL connections in the HOLD mode or even use the PARK mode, see Section 10.8.3 on page 114. SCO connections are preferably not interrupted by the inquiry scan. In this case, the inquiry scan may be interrupted by the reserved SCO slots which have higher priority than the **inquiry scan**. SCO packets should be used requiring the least amount of capacity (HV3 packets). The scan window,  $T_{w inquiry scan}$ , shall be increased to increase the probability to respond to an inquiry message. If one SCO link is present using HV3 packets and T<sub>SCO</sub>=6 slots, a total scan window of at least 36 slots (22.5ms) is recommended; if two SCO links are present using HV3 packets and T<sub>SCO</sub>=6 slots, a total scan window of at least 54 slots (33.75ms) is recommended.

The scan interval T<sub>inquiry scan</sub> is defined as the interval between two consecutive inquiry scans. The **inquiry scan** interval shall be at most 2.56 s.

page 110 of 1082

Baseband Specification

Bluetooth.

## **10.7.3 Inquiry**

The **inquiry** substate is used by the unit that wants to discover new devices. This substate is very similar to the **page** substate, the same TX/RX timing is used as used for paging, see Section 9.6 on page 91 and Figure 9.4 on page 91. The TX and RX frequencies follow the inquiry hopping sequence and the inquiry response hopping sequence, and are determined by the general inquiry access code and the native clock of the discovering device. In between inquiry transmissions, the Bluetooth receiver scans for inquiry response messages. When found, the entire response packet (which is in fact a FHS packet) is read, after which the unit continues with the inquiry transmissions. So the Bluetooth unit in an **inquiry** substate does not acknowledge the inquiry response messages. It keeps probing at different hop channels and in between listens for response packets. Like in the page substate, two 10 ms trains A and B are defined, splitting the 32 frequencies of the inquiry hopping sequence into two 16-hop parts. A single train must be repeated for at least N<sub>inquirv</sub>=256 times before a new train is used. In order to collect all responses in an error-free environment, at least three train switches must have taken place. As a result, the **inquiry** substate may have to last for 10.24 s unless the inquirer collects enough responses and determines to abort the inquiry substate earlier. If desired, the inquirer can also prolong the inquiry substate to increase the probability of receiving all responses in an error-prone environment. If an inquiry procedure is automatically initiated periodically (say a 10 s period every minute), then the interval between two inquiry instances must be determined randomly. This is done to avoid two Bluetooth units to synchronize their inquiry procedures.

The **inquiry** substate is continued until stopped by the Bluetooth link manager (when it decides that it has sufficient number of responses), or when a timeout has been reached (inquiryTO).

The inquiry substate can be entered from the STANDBY state or the CON-**NECTION** state. In the **STANDBY** state, no connection has been established and the unit can use all the capacity to carry out the inquiry. Before entering the inquiry substate from the **CONNECTION** state, the unit shall free as much capacity as possible for scanning. To ensure this, it is recommended that the ACL connections are put on hold or park. However, the SCO connections shall not be disturbed by the inquiry. This means that the inquiry will be interrupted by the reserved SCO slots which have higher priority than the inquiry. In order to obtain as much capacity for inquiry, it is recommended to use the SCO packets which use the least amount of capacity (HV3 packets). If SCO links are present, the repetition number N<sub>inquiry</sub> shall be increased, see Table 10.4 on

Here it has been assumed that the HV3 packet are used with an interval T<sub>SCO</sub>=6 slots, which would correspond to a 64 kb/s voice link.

page 111 of 1082

Baseband Specification

Bluetooth.

|                      | no SCO link | one SCO link<br>(HV3) | two SCO links (HV3) |
|----------------------|-------------|-----------------------|---------------------|
| N <sub>inquiry</sub> | ≥ 256       | ≥ 512                 | ≥ 768               |

Table 10.4: Increase of train repetition when SCO links are present.

## 10.7.4 Inquiry response

For the inquiry operation, there is only a slave response, no master response. The master listens between inquiry messages for responses, but after reading a response, it continues to transmit inquiry messages. The slave response routine for inquiries differs completely from the slave response routine applied for pages. When the inquiry message is received in the inquiry scan substate, a response message containing the recipient's address must be returned. This response message is a conventional FHS packet carrying the unit's parameters. However, a contention problem may arise when several Bluetooth units are in close proximity to the inquiring unit and all respond to an inquiry message at the same time. First of all, every Bluetooth unit has a free running clock; therefore, it is highly unlikely that they all use the same phase of the inquiry hopping sequence. However, in order to avoid collisions between units that do wake up in the same inquiry hop channel simultaneously, the following protocol in the slave's **inquiry response** is used. If the slave receives an inquiry message, it generates a random number RAND between 0 and 1023. In addition, it freezes the current input value (phase) to the hop selection scheme, see also Section 11.3.5 on page 137. The slave then returns to the CONNEC-**TION** or **STANDBY** state for the duration of RAND time slots. Before returning to the **CONNECTION** or **STANDBY** state, the unit may go through the page scan substate; this page scan must use the mandatory page scan scheme. After at least RAND slots, the unit will return to the **inquiry response** substate. On the first inquiry message received the slave returns an **FHS** response packet to the master. If during the scan no trigger occurs within a timeout period of *ingrespTO*, the slave returns to the **STANDBY** or **CONNECTION** state. If the unit does receive an inquiry message and returns an FHS packet, it adds an offset of 1 to the phase in the inquiry hop sequence (the phase has a 1.28 s resolution) and enters the **inquiry scan** substate again. If the slave is triggered again, it repeats the procedure using a new RAND. The offset to the clock accumulates each time a FHS packet is returned. During a 1.28 s probing window, a slave on average responses 4 times, but on different frequencies and at different times. Possible SCO slots should have priority over response packets; that is, if a response packet overlaps with an SCO slot, it is not sent but the next inquiry message is awaited.

The messaging during the inquiry routines is summarized in Table 10.5 on page 112. In step 1, the master transmits an inquiry message using the inquiry access code and its own clock. The slave responds with the **FHS** packet which contains the slave's device address, native clock and other slave information. This **FHS** packet is returned at a semi-random time. The **FHS** packet is not acknowledged in the inquiry routine, but it is retransmitted at other times and frequencies as long as the master is probing with inquiry messages.

## Bluetooth

| step | message | direction       | hopping sequence | access code |
|------|---------|-----------------|------------------|-------------|
| 1    | ID      | master to slave | inquiry          | inquiry     |
| 2    | FHS     | slave to master | inquiry response | inquiry     |

Table 10.5: Messaging during inquiry routines.

If the scanning unit uses an optional scanning scheme, after responding to an inquiry with an FHS packet, it will perform page scan using the mandatory page scan scheme for  $T_{mandatory\ pscan}$  period. Every time an inquiry response is sent the unit will start a timer with a timeout of  $T_{mandatory\ pscan}$ . The timer will be reset at each new inquiry response. Until the timer times out, when the unit performs page scan, it will use the mandatory page scanning scheme in the SR mode it uses for all its page scan intervals. Using the mandatory page scan scheme after the inquiry procedure enables all units to connect even if they do not support an optional paging scheme (yet). In addition to using the mandatory page scan scheme, an optional page scan scheme can be used in parallel for the  $T_{mandatory\ pscan}$  period.

The  $T_{mandatory\ pscan}$  period is included in the SP field of the FHS packet returned in the inquiry response routine, see Section 4.4.1.4 on page 56. The value of the period is indicated in the Table 10.6

| SP mode  | T <sub>mandatory pscan</sub> |
|----------|------------------------------|
| P0       | ≥20s                         |
| P1       | ≥ 40s                        |
| P2       | ≥ 60s                        |
| Reserved | -                            |

Table 10.6: Mandatory scan periods for P0, P1, P2 scan period modes.

#### 10.8 CONNECTION STATE

In the **CONNECTION** state, the connection has been established and packets can be sent back and forth. In both units, the channel (master) access code and the master Bluetooth clock are used. The hopping scheme uses the *channel hopping sequence*. The master starts its transmission in even slots ( $CLK_{1-0}=00$ ), the slave starts its transmission in odd slots ( $CLK_{1-0}=10$ )

The **CONNECTION** state starts with a POLL packet sent by the master to verify the switch to the master's timing and channel frequency hopping. The slave can respond with any type of packet. If the slave does not receive the POLL packet or the master does not receive the response packet for *newconnectionTO* number of slots, both devices will return to **page/page scan** substates.

page 113 of 1082

Baseband Specification

Bluetooth.

The first information packets in the **CONNECTION** state contain control messages that characterize the link and give more details regarding the Bluetooth units. These messages are exchanged between the link managers of the units. For example, it defines the SCO links and the sniff parameters. Then the transfer of user information can start by alternately transmitting and receiving packets.

The **CONNECTION** state is left through a **detach** or **reset** command. The **detach** command is used if the link has been disconnected in the normal way. All configuration data in the Bluetooth link controller is still valid. The **reset** command is a hard reset of all controller processes. After a reset, the controller has to be reconfigured.

The Bluetooth units can be in several modes of operation during the **CONNECTION** state: active mode, sniff mode, hold mode, and park mode. These modes are now described in more detail.

#### 10.8.1 Active mode

In the active mode, the Bluetooth unit actively participates on the channel. The master schedules the transmission based on traffic demands to and from the different slaves. In addition, it supports regular transmissions to keep slaves synchronized to the channel. Active slaves listen in the master-to-slave slots for packets. If an active slave is not addressed, it may sleep until the next new master transmission. From the type indication in the packet, the number of slots the master has reserved for its transmission can be derived; during this time, the non-addressed slaves do not have to listen on the master-to-slave slots. A periodic master transmission is required to keep the slaves synchronized to the channel. Since the slaves only need the channel access code to synchronize with, any packet type can be used for this purpose.

page 114 of 1082

Baseband Specification

**Bluetooth** 

#### 10.8.2 Sniff mode

In the sniff mode, the duty cycle of the slave's listen activity can be reduced. If a slave participates on an ACL link, it has to listen in every ACL slot to the master traffic. With the sniff mode, the time slots where the master can start transmission to a specific slave is reduced; that is, the master can only start transmission in specified time slots. These so-called sniff slots are spaced regularly with an interval of  $T_{\rm sniff}$ .

The slave has to listen at  $D_{sniff}$  slot every sniff period,  $T_{sniff}$  for a  $N_{sniff}$  attempt number of times. If the slave receives a packet in one of the  $N_{sniff}$  attempt RX slots, it should continue listening as long as it receives packets to its own AM\_ADDR. Once it stops receiving packets, it should continue listening for  $N_{sniff}$  timeout RX slots or remaining of the  $N_{sniff}$  attempt number of RX slots, whichever is greater.

To enter the sniff mode, the master shall issue a sniff command via the LM protocol. This message will contain the sniff interval  $T_{\rm sniff}$  and an offset  $D_{\rm sniff}$ . The timing of the sniff mode is then determined similar as for the SCO links. In addition, an initialization flag indicates whether initialization procedure 1 or 2 is being used. The master uses initialization 1 when the MSB of the current master clock (CLK<sub>27</sub>) is 0; it uses initialization 2 when the MSB of the current master clock (CLK<sub>27</sub>) is 1. The slave shall apply the initialization method as indicated by the initialization flag irrespective of its clock bit value CLK<sub>27</sub>. The master-to-slave sniff slots determined by the master and the slave shall be initialized on the slots for which the clock satisfies the following equation

$$CLK_{27-1} \mod T_{sniff} = D_{sniff}$$
 for initialization 1  
 $(\overline{CLK}_{27}, CLK_{26-1}) \mod T_{sniff} = D_{sniff}$  for initialization 2

The slave-to-master sniff slot determined by the master and the slave shall be initialized on the slots after the master-to-slave sniff slot defined above. After initialization, the clock value CLK(k+1) for the next master-to-slave SNIFF slot is found by adding the fixed interval  $T_{sniff}$  to the clock value of the current master-to-slave sniff slot:

$$CLK(k+1) = CLK(k) + T_{sniff}$$

#### 10.8.3 Hold mode

During the **CONNECTION** state, the ACL link to a slave can be put in a **hold** mode. This means that the slave temporarily does not support ACL packets on the channel any more (note: possible SCO links will still be supported). With the **hold** mode, capacity can be made free to do other things like scanning, paging, inquiring, or attending another piconet. The unit in **hold** mode can also enter a low-power sleep mode. During the **hold** mode, the slave unit keeps its active member address (AM\_ADDR).

page 115 of 1082

Baseband Specification

Bluetooth.

115

Prior to entering the hold mode, master and slave agree on the time duration the slave remains in the hold mode. A timer is initialized with the *holdTO* value. When the timer is expired, the slave will wake up, synchronize to the traffic on the channel and will wait for further master instructions.

#### 10.8.4 Park mode

When a slave does not need to participate on the piconet channel, but still wants to remain synchronized to the channel, it can enter the park mode which is a low-power mode with very little activity in the slave. In the park mode, the slave gives up its active member address AM\_ADDR. Instead, it receives two new addresses to be used in the park mode

PM\_ADDR: 8-bit Parked Member Address

• AR\_ADDR: 8-bit Access Request Address

The PM\_ADDR distinguishes a parked slave from the other parked slaves. This address is used in the master-initiated unpark procedure. In addition to the PM\_ADDR, a parked slave can also be unparked by its 48-bit BD\_ADDR. The all-zero PM\_ADDR is a reserved address: if a parked unit has the all-zero PM\_ADDR it can only be unparked by the BD\_ADDR. In that case, the PM\_ADDR has no meaning. The AR\_ADDR is used by the slave in the slave-initiated unpark procedure. All messages sent to the parked slaves have to be carried by broadcast packets (the all-zero AM\_ADDR) because of the missing AM\_ADDR.

The parked slave wakes up at regular intervals to listen to the channel in order to re-synchronize and to check for broadcast messages. To support the synchronization and channel access of the parked slaves, the master supports a beacon channel described in the next section. The beacon structure is communicated to the slave when it is being parked. When the beacon structure changes, the parked slaves are updated through broadcast messages.

In addition for using it for low power consumption, the park mode is used to connect more than seven slaves to a single master. At any one time, only seven slaves can be active. However, by swapping active and parked slaves out respectively in the piconet, the number of slave virtually connected can be much larger (255 if the PM\_ADDR is used, and even a larger number if the BD\_ADDR is used). There is no limitation to the number of slaves that can be parked.

#### 10.8.4.1 Beacon channel

To support parked slaves, the master establishes a beacon channel when one or more slaves are parked. The beacon channel consists of one beacon slot or a train of equidistant beacon slots which is transmitted periodically with a constant time interval. The beacon channel is illustrated in Figure 10.8 on page 117. A train of  $N_B$  ( $N_B \ge 1$ ) beacon slots is defined with an interval of  $T_B$  slots.

page 116 of 1082

Baseband Specification

Bluetooth.

The beacon slots in the train are separated by  $\Delta_B$ . The start of the first beacon slot is referred to as the **beacon instant** and serves as the beacon timing reference. The beacon parameters  $N_B$  and  $T_B$  are chosen such that there are sufficient beacon slots for a parked slave to synchronize to during a certain time window in an error-prone environment.

When parked, the slave will receive the beacon parameters through an LMP command. In addition, the timing of the beacon instant is indicated through the offset  $D_B$ . Like for the SCO link (see Section 3.2 on page 45), two initialization procedures 1 or 2 are used. The master uses initialization 1 when the MSB of the current master clock ( $CLK_{27}$ ) is 0; it uses initialization 2 when the MSB of the current master clock ( $CLK_{27}$ ) is 1. The chosen initialization procedure is also carried by an initialization flag in the LMP command. The slave shall apply the initiations method as indicated by the initialization flag irrespective of its clock bit  $CLK_{27}$ . The master-to-slave slot positioned at the beacon instant shall be initialized on the slots for which the clock satisfies the following equation

$$CLK_{27-1} \mod T_B = D_B$$
 for initialization 1

$$(\overline{\text{CLK}}_{27},\text{CLK}_{26-1}) \mod T_{\text{B}} = D_{\text{B}}$$
 for initialization 2

After initialization, the clock value CLK(k+1) for the next beacon instant is found by adding the fixed interval  $T_B$  to the clock value of the current beacon instant:

$$CLK(k+1) = CLK(k) + T_B$$

The beacon channel serves four purposes:

- transmission of master-to-slave packets which the parked slaves can use for re-synchronization
- 2. carrying messages to the parked slaves to change the beacon parameters
- 3. carrying general broadcast messages to the parked slaves
- 4. unparking of one or more parked slaves

Since a slave can synchronize to any packet which is preceded by the proper channel access code, the packets carried on the beacon slots do not have to contain specific broadcast packets for parked slaves to be able to synchronize; any packet can be used. The only requirement placed on the beacon slots is that there is master-to-slave transmission present. If there is no information to be sent, **NULL** packets can be transmitted by the master. If there is indeed broadcast information to be sent to the parked slaves, the first packet of the broadcast message shall be repeated in every beacon slot of the beacon train. However, synchronous traffic like on the SCO link, may interrupt the beacon transmission.

Bluetooth.

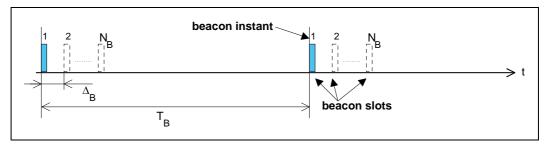



Figure 10.8: General beacon channel format

#### 10.8.4.2 Beacon access window

In addition to the beacon slots, an access window is defined where the parked slaves can send requests to be unparked. To increase reliability, the access window can be repeated  $M_{access}$  times ( $M_{access} \ge 1$ ), see Figure 10.9 on page 117. The access window starts a fixed delay  $D_{access}$  after the beacon instant. The width of the access window is  $T_{access}$ .

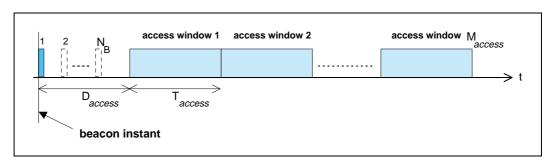



Figure 10.9: Definition of access window

The access window may support different slave access techniques, like polling, random access, or other forms of access. At this stage, only the polling technique has been defined. The format of the polling technique is shown in Figure 10.10 on page 118. The same TDD structure is used as on the piconet channel, i.e. master-to-slave transmission is alternated by slave-to-master transmission. The slave-to-master slot is divided into two half slots of 312.5 µs each. The half slot a parked slave is allowed to respond in corresponds to its access request address (AR\_ADDR), see also section 10.8.4.6 on page 120. For counting the half slots to determine the access request slot, the start of the access window is used, see Figure 10.10 on page 118. The slave is only allowed to send an access request in the proper slave-to-master half slot if in the preceding master-to-slave slot a broadcast packet has been received. In this way, the master polls the parked slaves.

page 118 of 1082

Baseband Specification

Bluetooth

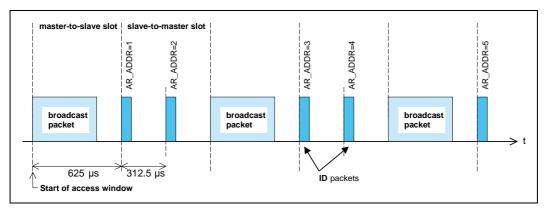



Figure 10.10: Access procedure applying the polling technique.

However, the slots of the access window can also be used for traffic on the piconet if required. For example, if an SCO connection has to be supported, the slots reserved for the SCO link may carry SCO information instead of being used for access requests, i.e. if the master-to-slave slot in the access window contains a packet different from a broadcast packet, the following slave-to-master slot cannot be used for slave access requests. Slots in the access window not affected by traffic can still be used according to the defined access structure; an example is shown in Figure 10.11 on page 118: the access procedure is continued as if no interruption had taken place.

When the slave is parked, it is indicated what type of access scheme will be used. For the polling scheme, the number of slave-to-master access slots  $N_{\text{acc}}$  slot is indicated.

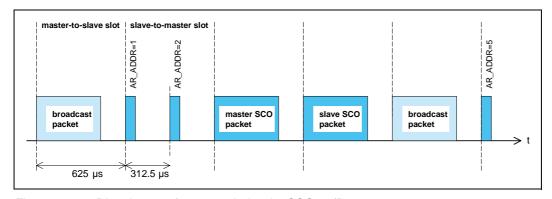



Figure 10.11: Disturbance of access window by SCO traffic

By default, the access window is always present. However, its activation depends on the master sending broadcast messages to the slave at the appropriate slots in the access window. A broadcast LMP command in the beacon slots may indicate that the access window following will not be activated. This prevents unnecessary scanning of parked slaves that want to request access.

Bluetooth.

## 10.8.4.3 Parked slave synchronization

Parked slaves sleep most of the time. However, periodically they wake up to re-synchronize to the channel. Any packet exchanged on the channel can be used for synchronization. Since master transmission is mandatory on the beacon slots, parked slaves will exploit the beacon channel to re-synchronize. A parked slave will wake-up at the beacon instant to read the packet sent on the first beacon slot. If this fails, it will retry on the next beacon slot in the beacon train; in total, there are  $N_B$  opportunities per beacon instant to re-synchronize. During the search, the slave may increase its search window, see also Section 9.4 on page 90. The separation between the beacon slots in the beacon train  $\Delta_B$  is chosen such that consecutive search windows will not overlap.

The parked slave does not have to wake up at every beacon instant. Instead, a sleep interval can be applied which is longer than the beacon interval  $T_B$ , see Figure 10.12 on page 119. The slave sleep window must be a multiple  $N_{B\_sleep}$  of  $T_B$ . The precise beacon instant the slave shall wake up on is indicated by the master with  $D_{B\_sleep}$  which indicates the offset (in multiples of  $T_B$ ) with respect to the beacon instant (0<  $D_{B\_sleep}$ < $N_{B\_sleep}$ -1). To initialize the wake-up period, the following equations are used:

$$\mathsf{CLK}_{27\text{-}1} \ \mathsf{mod} \ (N_{B\_sleep} \bullet \ T_\mathsf{B}) = D_\mathsf{B} + D_{B\_sleep} \bullet \ T_\mathsf{B} \qquad \mathsf{for initialization 1}$$
 
$$(\overline{\mathsf{CLK}}_{27}, \mathsf{CLK}_{26\text{-}1}) \ \mathsf{mod} \ (N_{B\_sleep} \bullet \ T_\mathsf{B}) = D_\mathsf{B} + D_\mathsf{B\_sleep} \bullet \ T_\mathsf{B} \ \mathsf{for initialization 2}$$

where initialization 1 is chosen by the master if the MSB in the current master clock is 0 and initialization 2 is chosen if the MSB in the current master clock is 1.

When the master wants to send broadcast messages to the parked slaves, it may use the beacon slots for these broadcast messages. However, if  $N_B < N_{BC}$ , the slots following the last beacon slot in the beacon train shall be used for the remaining  $N_{BC}$ - $N_B$  broadcast packets. If  $N_B > N_{BC}$ , the broadcast message is repeated on all  $N_B$  beacon slots.

A parked slave shall at least read the broadcast messages sent in the beacon slot(s) it wakes up in; the minimum wake-up activity is to read the channel access code for re-synchronization and the packet header to check for broadcast messages.

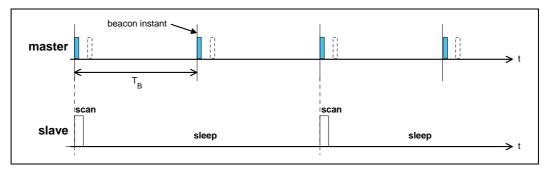



Figure 10.12: Extended sleep interval of parked slaves.

page 120 of 1082

Baseband Specification

Bluetooth.

# 10.8.4.4 Parking

A master can park an active slave through the exchange of one or a few LMP commands. Before put into the park mode, the slave is assigned a PM\_ADDR and an AR\_ADDR. Every parked slave has a unique PM\_ADDR; however, the AR\_ADDR is not necessarily unique. Also, the beacon parameters are given by the master when the slave is parked. The slave then gives up its AM\_ADDR and enters the park mode. A master can park only a single slave at a time. The park message is carried with a normal data packet and addresses the slave through its AM\_ADDR.

## 10.8.4.5 Master-activated unparking

The master can unpark a parked slave by sending a dedicated LMP unpark command including the parked slave's address. This message is sent in a broadcast packet on the beacon slots. Either the slave's PM\_ADDR is used, or its full BD\_ADDR is used. The message also includes the active member address AM\_ADDR the slave will use after it has re-entered the piconet. The unpark message can include a number of slave addresses so that multiple slaves can be unparked simultaneously. For each slave, a different AM\_ADDR is assigned.

After having received the unpark message, the parked slave matching the PM\_ADDR or BD\_ADDR will leave the park mode and enter the active mode. It will keep listening to the master until it is addressed by the master through its AM\_ADDR. The first packet sent by the master should be a POLL packet. The return packet in response to the POLL packet confirms that the slave has been unparked. If no response packets from the slave is received for *newconnectionTO* number of slots after the end of beacon repetition period, the master will unpark the slave again. If the slave does not receive the POLL packet for *newconnectionTO* number of slots after the end of beacon repetition period, it will return to park, with the same beacon parameters. After confirming that the slave is active, the master decides in which mode the slave will continue.

#### 10.8.4.6 Slave-activated unparking

A slave can request access to the channel through the access window defined in section 10.8.4.2 on page 117. As shown in Figure 10.10 on page 118, the access window includes several slave-to-master half slots where the slave can send an access request message. The specific half slot the slave is allowed to respond in, corresponds to its access request address (AR\_ADDR) which it has received when it was parked. The order of the half slots (in Figure 10.10 the AR\_ADDR numbers linearly increase from 1 to 5) is not fixed: an LMP command sent in the beacon slots may reconfigure the access window. When a slave desires access to the channel, it sends an access request message in the proper slave-to-master half slot. The access request message of the slave is the ID packet containing the device access code (DAC) of the master (which is in this case the channel access code without the trailer). The parked slave is

Bluetooth.

only allowed to transmit an access request message in the half slot when in the preceding master-to-slave slot, a broadcast packet has been received. This broadcast message can contain any kind of broadcast information not necessarily related to the parked slave(s). If no broadcast information is available, a broadcast **NULL** or broadcast **POLL** packet shall be sent.

After having sent an access request, the parked slave will listen for an unpark message from the master. As long as no unpark message is received, the slave will repeat the access requests in the subsequent access windows. After the last access window (there are  $M_{access}$  windows in total, see Section 10.8.4.2 on page 117), the parked slave shall listen for an additional  $N_{poll}$  time slots for an unpark message. If no unpark message is received within  $N_{poll}$  slots after the end of the last access window, the slave may return to sleep and retry an access attempt after the next beacon instant.

After having received the unpark message, the parked slave matching the PM\_ADDR or BD\_ADDR will leave the park mode and enter the active mode. It will keep listening to the master until it is addressed by the master through its AM\_ADDR. The first packet sent by the master should be a POLL packet. The return packet in response to the POLL packet confirms that the slave has been unparked. If no response packet from the slave is received for *newconnectionTO* number of slots after N<sub>poll</sub> slots after the end of the last access window, the master will send the unpark message to the slave again. If the slave does not receive the POLL packet for *newconnectionTO* number of slots after N<sub>poll</sub> slots after the end of the last access window, it will return to park, with the same beacon parameters. After confirming that the slave is active, the master decides in which mode the slave will continue.

#### 10.8.4.7 Broadcast scan window

In the beacon train, the master can support broadcast messages to the parked slaves. However, it may extend its broadcast capacity by indicating to the parked slaves that more broadcast information is following after the beacon train. This is achieved by a special LMP command ordering the parked slaves (as well as the active slaves) to listen to the channel for broadcast messages during a limited time window. This time window starts at the beacon instant and continues for the period as indicated in the LMP command sent in the beacon train.

#### 10.8.5 Polling schemes

#### 10.8.5.1 Polling in active mode

The master always has full control over the piconet. Due to the stringent TDD scheme, slaves can only communicate with the master and not to other slaves. In order to avoid collisions on the ACL link, a slave is only allowed to transmit in the slave-to-master slot when addressed by the AM\_ADDR in the packet

page 122 of 1082

Baseband Specification

Bluetooth.

header in the preceding master-to-slave slot. If the AM\_ADDR in the preceding slot does not match, or an AM\_ADDR cannot be derived from the preceding slot, the slave is not allowed to transmit.

On the SCO links, the polling rule is slightly modified. The slave is allowed to transmit in the slot reserved for his SCO link unless the (valid) AM\_ADDR in the preceding slot indicates a different slave. If no valid AM\_ADDR can be derived in the preceding slot, the slave is still allowed to transmit in the reserved SCO slot.

# 10.8.5.2 Polling in park mode

In the park mode, parked slaves are allowed to send access requests in the access window provided a broadcast packet is received in the preceding master-to-slave slot. Slaves in active mode will not send in the slave-to-master slots following the broadcast packet since they are only allowed to send if addressed specifically.

#### 10.8.6 Slot reservation scheme

The SCO link is established by negotiations between the link managers which involves the exchange of important SCO timing parameters like  $T_{SCO}$  and  $D_{SCO}$  through LMP messages.

#### 10.8.7 Broadcast scheme

The master of the piconet can broadcast messages which will reach all slaves. A broadcast packet is characterized by the all-zero AM\_ADDR. Each new broadcast message (which may be carried by a number of packets) shall start with the flush indication (L\_CH=10).

A broadcast packet is never acknowledged. In an error-prone environment, the master may carry out a number of retransmissions  $N_{BC}$  to increase the probability for error-free delivery, see also Section 5.3.5 on page 72.

In order to support the **park** mode (as described in Section 10.8.4 on page 115), a master transmission shall take place at fixed intervals. This master transmission will act as a beacon to which slaves can synchronize. If no traffic takes place at the beacon event, broadcast packets shall be sent. More information is given in Section 10.8.4 on page 115.

#### 10.9 SCATTERNET

#### 10.9.1 General

Multiple piconets may cover the same area. Since each piconet has a different master, the piconets hop independently, each with their own channel hopping

Bluetooth.

sequence and phase as determined by the respective master. In addition, the packets carried on the channels are preceded by different channel access codes as determined by the master device addresses. As more piconets are added, the probability of collisions increases; a graceful degradation of performance results as is common in frequency-hopping spread spectrum systems.

If multiple piconets cover the same area, a unit can participate in two or more overlaying piconets by applying time multiplexing. To participate on the proper channel, it should use the associated master device address and proper clock offset to obtain the correct phase. A Bluetooth unit can act as a slave in several piconets, but only as a master in a single piconet: since two piconets with the same master are synchronized and use the same hopping sequence, they are one and the same piconet. A group of piconets in which connections consists between different piconets is called a **scatternet**.

A master or slave can become a slave in another piconet by being paged by the master of this other piconet. On the other hand, a unit participating in one piconet can page the master or slave of another piconet. Since the paging unit always starts out as master, a master-slave role exchange is required if a slave role is desired. This is described in the section 10.9.3 on page 123.

## 10.9.2 Inter-piconet communications

Time multiplexing must be used to switch between piconets. In case of ACL links only, a unit can request to enter the **hold** or **park** mode in the current piconet during which time it may join another piconet by just changing the channel parameters. Units in the **sniff** mode may have sufficient time to visit another piconet in between the sniff slots. If SCO links are established, other piconets can only be visited in the non-reserved slots in between. This is only possible if there is a single SCO link using **HV3** packets. In the four slots in between, one other piconet can be visited. Since the multiple piconets are not synchronized, guard time must be left to account for misalignment. This means that only 2 slots can effectively be used to visit another piconet in between the **HV3** packets.

Since the clocks of two masters of different piconets are not synchronized, a slave unit participating in two piconets has to take care of two offsets that, added to its own native clock, create one or the other master clock. Since the two master clocks drift independently, regular updates of the offsets are required in order for the slave unit to keep synchronization to both masters.

#### 10.9.3 Master-slave switch

In principle, the unit that creates the piconet is the master. However, a master-slave (MS) switch can take place when a slave wants to become a master. For the two units involved in the switch, the MS switch results in a reversal of their TX and RX timing: a <u>TDD switch</u>. However, since the piconet parameters are derived from the device address and clock of the master, a master-slave switch inherently involves a redefinition of the piconet as well: a <u>piconet switch</u>. The

page 124 of 1082

Baseband Specification

Bluetooth.

new piconet's parameters are derived from the former slave's device address and clock. As a consequence of this piconet switch, other slaves in the piconet not involved in the switch have to be moved to the new piconet, changing their timing and their hopping scheme. The new piconet parameters have to be communicated to each slave. The scenario to achieve this is described below. Assume unit A wants to become master; unit B was the former master. The following steps are taken.

- Slave A and master B agree to exchange roles.
- When confirmed by both units, both slave A and master B do the TDD switch but keep the former hopping scheme (still using the device address and clock of unit B), so there is no piconet switch yet.
- Unit A is now the master of the piconet. Since the old and new masters' clocks are asynchronous, the 1.25 ms resolution of the clock information given in the FHS packet is not sufficient for aligning the slot boundaries of the two piconets. Prior to sending the FHS packet, the new master A sends an LMP packet giving the delay between the start of the master-to-slave slots of the old and new piconet channels. This timing information ranges from 0 to 1249 μs with a resolution of 1 μs. It is used together with the clock information in the FHS packet to accurately position the correlation window when switching to the new master's timing after acknowledgment of the FHS packet.
- After the time alignment LMP message, Master A sends an FHS packet including the new AM\_ADDR to slave B (the AM\_ADDR in the FHS packet header is the all-zero address) still using the "old" piconet parameters. After the FHS acknowledgement, which consists of the ID packet and is sent by the slave on the old hopping sequence, both master A and slave B turn to the new channel parameters of the new piconet as indicated by the FHS and time alignment LMP packets (at least for the A-B connection).
- A piconet switch is enforced on each slave separately. Master A sends a time alignment and an FHS packets and waits for an acknowledgement. Transmission of the FHS packet and the acknowledgement continues on the "old" piconet parameters of unit B (compare this to the page hopping scheme used during connection establishment, see Section 10.6.4 on page 104). After FHS acknowledgement using an ID packet sent by the slave, the communication to this slave continues with the new device address and clock of unit A. The FHS packet sent to each slave has the old AM\_ADDR in the FHS packet header and their new AM\_ADDR in the FHS packet payload (the new AM\_ADDR may be identical to the old AM\_ADDR).
- After reception of the FHS packet acknowledgement, the new master A switches to its own timing and sends a POLL packet to verify the switch. Both the master and the slave will start a timer with a time out of newconnectionTO on FHS packet acknowledgement. If no response is received, the master resends the POLL packet until newconnectionTO is reached. After this timeout both the slave and the master return to the old piconet timing (but the TDD switch remains). The master sends the FHS packet again and the procedure is repeated.

Bluetooth.

The new master repeats the above procedure for each slave in the old piconet.

Summarized, the MS-switch takes place in two steps: first a TDD switch of the considered master and slave, and then a piconet switch of all participants. When all slaves have acknowledged the reception of the FHS packet, each unit uses the new piconet parameters defined by the new master and the piconet switch is a fact. The information on the AM\_ADDR, PM\_ADDR, and other features of the old slaves is transferred from the old master to the new master. The transfer procedure is outside the scope of this procedure. Parked slaves shall be activated (using the old park parameters), be changed to the new piconet parameters, and then return to the **park** mode using the new park parameters.

### 10.10 POWER MANAGEMENT

Features are included into Bluetooth to ensure a low-power operation. These features are both at the microscopic level when handling the packets, and at the macroscopic level using certain operation modes.

### 10.10.1 Packet handling

In order to minimize power consumption, packet handling is minimized both at TX and RX sides. At the TX side, power is minimized by only sending useful data. This means that if only link control information needs to be exchanged, **NULL** packets will be used. No transmission is carried out at all if there is no link control information or involves a NAK only (NAK is implicit on no reply). If there is data to be sent, the payload length is adapted in order to send only the valid data bytes. At the RX side, packet processing takes place in different steps. If no valid access code is found in the search window, the transceiver returns to sleep. If an access code is found, the receiver unit is woken up and starts to process the packet header. If the HEC fails, the unit will return to sleep after the packet header. A valid header will indicate if a payload will follow and how many slots are involved.

### 10.10.2 Slot occupancy

As was described in Section 4.4 on page 54, the packet type indicates how many slots a packet may occupy. A slave not addressed in the first slot can go to sleep for the remaining slots the packet may occupy. This can be read from the TYPE code.

#### 10.10.3 Low-power modes

In Section 10.8 on page 112, three modes were described during the **CON- NECTION** state which reduce power consumption. If we list the modes in increasing order of power efficiency then the **sniff** mode has the higher duty

page 126 of 1082

Baseband Specification

Bluetooth

cycle, followed by the **hold** mode with a lower duty cycle, and finishing with the **park** mode with the lowest duty cycle.

#### 10.11 LINK SUPERVISION

A connection may break down due to various reasons such as a device moving out of range or a power failure condition. Since this may happen without any prior warning, it is important to monitor the link on both the master and the slave side to avoid possible collisions when the AM\_ADDR is reassigned to another slave.

To be able to supervise link loss, both the master and the slave use link supervision timers, T <sub>supervision</sub>. Upon reception of a packet that passes the HEC check and has the correct AM\_ADDR, the timer is reset. If at any time in connection state, the timer reaches the *supervisionTO* value, the connection is reset. The same timeout value is used for both SCO and ACL connections.

The timeout period, *supervisionTO*, is negotiated at the LM level. Its value is chosen so that the supervision timeout will be longer than hold and sniff periods. Link supervision of a parked slave will be done by unparking and re-parking the slave.

Bluetooth.

# 11 HOP SELECTION

- In total, 10 types of hopping sequences are defined five for the 79-hop and five for the 23-hop system, respectively. Using the notation of parentheses () for figures related to the 23-hop system, these sequences are:
  - A page hopping sequence with 32 (16) unique wake-up frequencies distributed equally over the 79 (23) MHz, with a period length of 32 (16);
  - A page response sequence covering 32 (16) unique response frequencies that all are in an one-to-one correspondence to the current page hopping sequence. The master and slave use different rules to obtain the same sequence;
  - An **inquiry sequence** with 32 (16) unique wake-up frequencies distributed equally over the 79 (23) MHz, with a period length of 32 (16);
  - A inquiry response sequence covering 32 (16) unique response frequencies that all are in an one-to-one correspondence to the current inquiry hopping sequence.
  - A channel hopping sequence which has a very long period length, which
    does not show repetitive patterns over a short time interval, but which distributes the hop frequencies equally over the 79 (23) MHz during a short
    time interval;

For the page hopping sequence, it is important that we can easily shift the phase forward or backward, so we need a 1-1 mapping from a counter to the hop frequencies. For each case, both a hop sequence from master to slave and from slave to master are required.

The inquiry and inquiry response sequences always utilizes the GIAC LAP as lower address part and the DCI (Section 5.4 on page 73) as upper address part in deriving the hopping sequence, even if it concerns a DIAC inquiry.

#### 11.1 GENERAL SELECTION SCHEME

The selection scheme consists of two parts:

- selecting a sequence;
- mapping this sequence on the hop frequencies;

The general block diagram of the hop selection scheme is shown in Figure 11.1 on page 128. The mapping from the input to a particular hop frequency is performed in the selection box. Basically, the input is the native clock and the current address. In **CONNECTION** state, the native clock (CLKN) is modified by an offset to equal the master clock (CLK). Only the 27 MSBs of the clock are used. In the **page** and **inquiry** substates, all 28 bits of the clock are used. However, in **page** substate the native clock will be modified to the master's estimate of the paged unit.

Hop Selection 29 November 1999 127

# Bluetooth

The address input consists of 28 bits, i.e., the entire LAP and the 4 LSBs of the UAP. In **CONNECTION** state, the address of the master is used. In **page** substate the address of the paged unit is used. When in **inquiry** substate, the UAP/LAP corresponding to the GIAC is used. The output constitutes a pseudorandom sequence, either covering 79 hop or 23 hops, depending on the state.

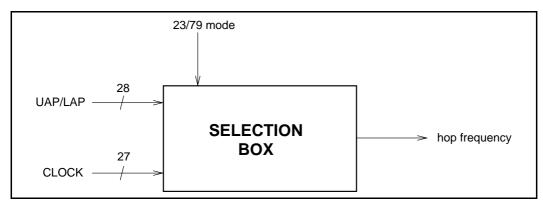



Figure 11.1: General block diagram of hop selection scheme.

For the 79-hop system, the selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops once in a random order. Next, a different 32-hop segment is chosen, etc. In case of the **page**, **page scan**, or **page response** substates, the same 32-hop segment is used all the time (the segment is selected by the address; different units will have different paging segments). In connection state, the output constitutes a pseudorandom sequence that slides through the 79 hops or 23 hops, depending on the selected hop system. For the 23-hop systems, the segment size is 16. The principle is depicted in Figure 11.2

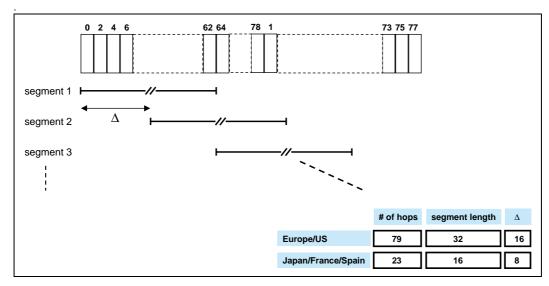



Figure 11.2: Hop selection scheme in CONNECTION state.

Bluetooth.

#### 11.2 SELECTION KERNEL

The hop selection kernels for the 79 hop system and the 23 hop system are shown in Figure 11.3 on page 129 and Figure 11.4 on page 129, respectively. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master transmission. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto the hop frequencies. The kernel addresses a register containing the hop frequencies. This list should be created such that first all even hop frequencies are listed and then all odd hop frequencies. In this way, a 32-hop segment spans about 64 MHz, whereas a 16-hop segment spans the entire 23-MHz.

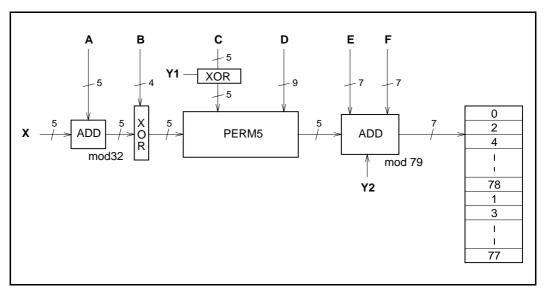



Figure 11.3: Block diagram of hop selection kernel for the 79-hop system.

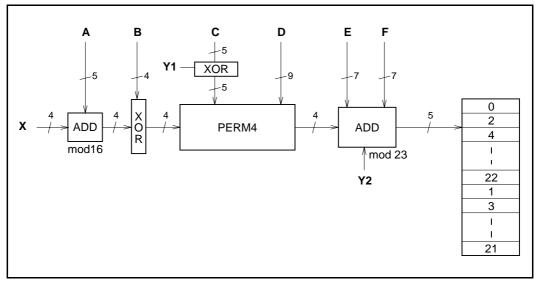



Figure 11.4: Block diagram of hop selection kernel for the 23-hop system.

Hop Selection 29 November 1999 129

Bluetooth.

The selection procedure consists of an addition, an XOR operation, a permutation operation, an addition, and finally a register selection. In the remainder of this chapter, the notation A<sub>i</sub> is used for bit i of the BD\_ADDR.

# 11.2.1 First addition operation

The first addition operation only adds a constant to the phase and applies a modulo 32 or a modulo 16 operation. For the page hopping sequence, the first addition is redundant since it only changes the phase within the segment. However, when different segments are concatenated (as in the channel hopping sequence), the first addition operation will have an impact on the resulting sequence.

# 11.2.2 XOR operation

Let Z' denote the output of the first addition. In the XOR operation, the four LSBs of Z' are modulo-2 added to the address bits  $A_{22-19}$ . The operation is illustrated in Figure 11.5 on page 130.

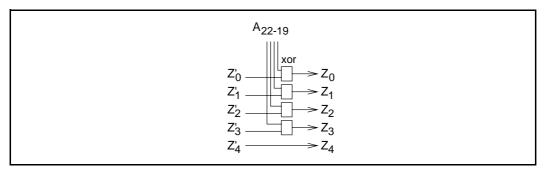



Figure 11.5: XOR operation for the 79-hop system. The 23-hop system is the same except for the  $Z'_{4}/Z_{4}$  wire that does not exist.

Bluetooth.

### 11.2.3 Permutation operation

The permutation operation involves the switching from 5 inputs to 5 outputs for the 79 hop system and from 4 inputs to 4 outputs for 23 hop system, in a manner controlled by the control word. In Figure 11.6 on page 132 and Figure 11.7 on page 132 the permutation or switching box is shown. It consists of 7 stages of butterfly operations. Table 11.1 and Table 11.2 shows the control of the butterflies by the control signals P. Note that  $P_{0-8}$  corresponds to  $D_{0-8}$ , and,  $P_{i+9}$  corresponds to  $C_i \oplus Y1$  for i=0...4 in Figure 11.3 and Figure 11.4.

| Control signal | Butterfly      | Control signal  | Butterfly      |
|----------------|----------------|-----------------|----------------|
| P <sub>0</sub> | $\{Z_0, Z_1\}$ | P <sub>8</sub>  | {Z1,Z4}        |
| P <sub>1</sub> | $\{Z_2, Z_3\}$ | P <sub>9</sub>  | $\{Z_0, Z_3\}$ |
| $P_2$          | $\{Z_1, Z_2\}$ | P <sub>10</sub> | $\{Z_2, Z_4\}$ |
| P <sub>3</sub> | $\{Z_3, Z_4\}$ | P <sub>11</sub> | $\{Z_1, Z_3\}$ |
| P <sub>4</sub> | $\{Z_0, Z_4\}$ | P <sub>12</sub> | $\{Z_0, Z_3\}$ |
| P <sub>5</sub> | $\{Z_1, Z_3\}$ | P <sub>13</sub> | $\{Z_1, Z_2\}$ |
| P <sub>6</sub> | $\{Z_0, Z_2\}$ |                 |                |
| P <sub>7</sub> | $\{Z_3, Z_4\}$ |                 |                |

Table 11.1: Control of the butterflies for the 79 hop system

| Control signal | Butterfly      | Control signal  | Butterfly      |
|----------------|----------------|-----------------|----------------|
| P <sub>0</sub> | $\{Z_0, Z_1\}$ | P <sub>8</sub>  | $\{Z_0, Z_2\}$ |
| P <sub>1</sub> | $\{Z_2, Z_3\}$ | P <sub>9</sub>  | $\{Z_1, Z_3\}$ |
| P <sub>2</sub> | $\{Z_0, Z_3\}$ | P <sub>10</sub> | $\{Z_0, Z_3\}$ |
| P <sub>3</sub> | $\{Z_1, Z_2\}$ | P <sub>11</sub> | $\{Z_1, Z_2\}$ |
| P <sub>4</sub> | $\{Z_0, Z_2\}$ | P <sub>12</sub> | $\{Z_0, Z_1\}$ |
| P <sub>5</sub> | $\{Z_1, Z_3\}$ | P <sub>13</sub> | $\{Z_2, Z_3\}$ |
| P <sub>6</sub> | $\{Z_0, Z_1\}$ |                 |                |
| P <sub>7</sub> | $\{Z_2, Z_3\}$ |                 |                |

Table 11.2: Control of the butterflies for the 23 hop system

The Z input is the output of the XOR operation as described in the previous section. The butterfly operation can be implemented with multiplexers as depicted in Figure 11.8 on page 132.

Bluetooth..

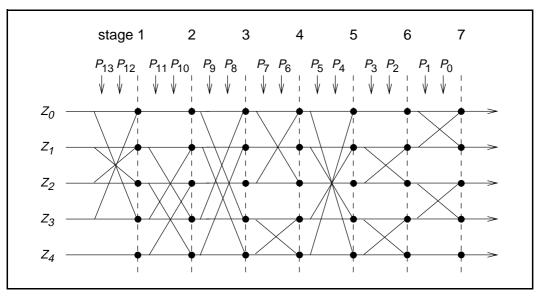



Figure 11.6: Permutation operation for the 79 hop system.

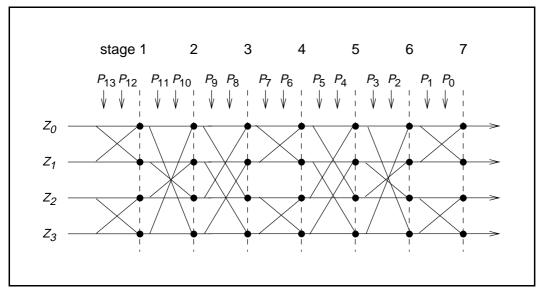



Figure 11.7: Permutation operation for the 23 hop system.

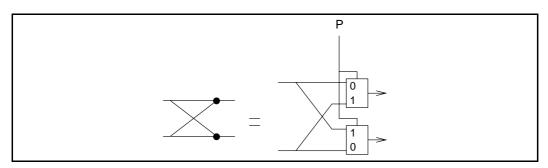



Figure 11.8: Butterfly implementation.

Bluetooth.

### 11.2.4 Second addition operation

The addition operation only adds a constant to the output of the permutation operation. As a result, the 16-hop or 32-hop segment is mapped differently on the hop frequencies. The addition is applied modulo 79 or modulo 23 depending on the system type (Europe/US vs. others).

### 11.2.5 Register bank

The output of the adder addresses a bank of 79 or 23 registers. The registers are loaded with the synthesizer code words corresponding to the hop frequencies 0 to 78 or 0 to 22. Note that the upper half of the bank contains the even hop frequencies, whereas the lower half of the bank contains the odd hop frequencies.

## 11.3 CONTROL WORD

In the following section  $X_{j-i}$ , i < j, will denote bits i, i+1,...,j of the bit vector X. By convention,  $X_0$  is the least significant bit of the vector X.

The control word P of the kernel is controlled by the overall control signals X, Y1, Y2, and A to F as illustrated in Figure 11.3 on page 129 and Figure 11.4 on page 129. During paging and inquiry, the inputs A to E use the address values as given in the corresponding columns of Table 11.3 on page 134 and Table 11.4 on page 134. In addition, the inputs X, Y1 and Y2 are used. The F input is unused. In the 79-hop system, the clock bits  $CLK_{6-2}$  (i.e., input X) specifies the phase within the length 32 sequence, while for the 23-hop system,  $CLK_{5-2}$  specifies the phase within the length 16 sequence. For both systems,  $CLK_{1}$  (i.e., inputs Y1 and Y2) is used to select between TX and RX. The address inputs determine the sequence order within segments. The final mapping onto the hop frequencies is determined by the register contents.

In the following we will distinguish between three types of clocks: the piconet's master clock, the Bluetooth unit's native clock, and the clock estimate of a paged Bluetooth unit. These types are marked in the following way:

1. CLK<sub>27-0</sub>: Master clock of the current piconet.

2. CLKN<sub>27-0</sub>: Native clock of the unit.

3. CLKE<sub>27-0</sub>: The paging unit's estimate of the paged unit's native clock.

During the **CONNECTION** state, the inputs A, C and D result from the address bits being bit-wise XORed with the clock bits as shown in the "Connection state" column of Table 11.3 on page 134 and Table 11.4 on page 134 (the two MSBs are XORed together, the two second MSBs are XORed together, etc.). Consequently, after every 32 (16) time slots, a new length 32 (16) segment is selected in the 79-hop (23-hop) system. The sequence order within a specific

Hop Selection 29 November 1999 133

# Bluetooth.

segment will not be repeated for a very long period. Thus, the overall hopping sequence consists of concatenated segments of 32-hops each. Since each 32-hop sequence spans more than 80% of the 79 MHz band, the desired frequency spreading over a short time interval is obtained.

|    | Page scan/<br>Inquiry scan         | Page/Inquiry                         | Page response<br>(master/slave) and<br>Inquiry response | Connection state                              |
|----|------------------------------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------------|
| Х  | CLKN <sub>16 – 12</sub>            | $Xp_{4-0}^{(79)}/Xi_{4-0}^{(79)}$    | $Xprm_{4-0}^{(79)}/Xprs_{4-0}^{(79)}$                   | CLK <sub>6-2</sub>                            |
| Y1 | 0                                  | CLKE <sub>1</sub> /CLKN <sub>1</sub> | CLKE <sub>1</sub> /CLKN <sub>1</sub>                    | CLK <sub>1</sub>                              |
| Y2 | 0                                  | 32×CLKE <sub>1</sub> /               | $32 \times \text{CLKE}_1$                               | $32 \times \text{CLK}_1$                      |
|    |                                    | $32 \times \text{CLKN}_1$            | $32 \times \text{CLKN}_1$                               |                                               |
| Α  | A <sub>27 – 23</sub>               | A <sub>27 - 23</sub>                 | A <sub>27 – 23</sub>                                    | $A_{27-23} \oplus \operatorname{CLK}_{25-21}$ |
| В  | A <sub>22 - 19</sub>               | A <sub>22 - 19</sub>                 | A <sub>22-19</sub>                                      | A <sub>22-19</sub>                            |
| С  | A <sub>8, 6, 4, 2, 0</sub>         | A <sub>8, 6, 4, 2, 0</sub>           | A <sub>8, 6, 4, 2, 0</sub>                              | $A_{8, 6, 4, 2, 0} \oplus \text{CLK}_{20-16}$ |
| D  | A <sub>18-10</sub>                 | $A_{18-10}$                          | $A_{18-10}$                                             | $A_{18-10} \oplus \operatorname{CLK}_{15-7}$  |
| Е  | A <sub>13, 11, 9, 7, 5, 3, 1</sub> | A <sub>13, 11, 9, 7, 5, 3, 1</sub>   | A <sub>13, 11, 9, 7, 5, 3, 1</sub>                      | A <sub>13, 11, 9, 7, 5, 3, 1</sub>            |
| F  | 0                                  | 0                                    | 0                                                       | 16 × CLK <sub>27 – 7</sub> mod 79             |

Table 11.3: Control for 79-hop system.

|    | Page scan/<br>Inquiry scan         | Page/Inquiry                         | Page response<br>(master/slave) and<br>Inquiry response | Connection state                              |
|----|------------------------------------|--------------------------------------|---------------------------------------------------------|-----------------------------------------------|
| X  | CLKN <sub>15 - 12</sub>            | $Xp_{3-0}^{(23)}/Xi_{3-0}^{(23)}$    | $Xprm_{3-0}^{(23)}/Xprs_{3-0}^{(23)}$                   | CLK <sub>5-2</sub>                            |
| Y1 | 0                                  | CLKE <sub>1</sub> /CLKN <sub>1</sub> | CLKE <sub>1</sub> /CLKN <sub>1</sub>                    | CLK <sub>1</sub>                              |
| Y2 | 0                                  | 16×CLKE <sub>1</sub> /               | 16×CLKE <sub>1</sub> /                                  | $16 \times \text{CLK}_1$                      |
|    |                                    | $16 \times \text{CLKN}_1$            | $16 \times \text{CLKN}_1$                               |                                               |
| Α  | A <sub>27 – 23</sub>               | A <sub>27 - 23</sub>                 | $A_{27-23}$                                             | $A_{27-23} \oplus \operatorname{CLK}_{25-21}$ |
| В  | A <sub>22 - 19</sub>               | A <sub>22 - 19</sub>                 | $A_{22-19}$                                             | A <sub>22-19</sub>                            |
| С  | A <sub>8, 6, 4, 2, 0</sub>         | A <sub>8, 6, 4, 2, 0</sub>           | A <sub>8, 6, 4, 2, 0</sub>                              | $A_{8, 6, 4, 2, 0} \oplus \text{CLK}_{20-16}$ |
| D  | A <sub>18-10</sub>                 | $A_{18-10}$                          | $A_{18-10}$                                             | $A_{18-10} \oplus \operatorname{CLK}_{15-7}$  |
| Е  | A <sub>13, 11, 9, 7, 5, 3, 1</sub> | A <sub>13, 11, 9, 7, 5, 3, 1</sub>   | A <sub>13, 11, 9, 7, 5, 3, 1</sub>                      | A <sub>13, 11, 9, 7, 5, 3, 1</sub>            |
| F  | 0                                  | 0                                    | 0                                                       | $8 \times \text{CLK}_{27-6} \mod 23$          |

Table 11.4: Control for 23-hop system.

Bluetooth.

# 11.3.1 Page scan and Inquiry scan substates

In **page scan**, the Bluetooth device address of the scanning unit is used as address input. In **inquiry scan**, the GIAC LAP and the four LSBs of the DCI (as  $A_{27-24}$ ), are used as address input for the hopping sequence. Naturally, for the transmitted access code and in the receiver correlator, the appropriate GIAC or DIAC is used. The application decides which inquiry access code to use depending on the purpose of the inquiry.

The five X input bits vary depending on the current state of the unit. In the **page scan** and **inquiry scan** substates, the native clock (CLKN) is used. In **CONNECTION** state the master clock (CLK) is used as input. The situation is somewhat more complicated for the other states.

### 11.3.2 Page substate

In the **page** substate of the 79-hop system, the paging unit shall start using the **A**-train, i.e.,  $\{f(k-8), ..., f(k), ..., f(k+7)\}$ , where f(k) is the source's estimate of the current receiver frequency in the paged unit. Clearly, the index k is a function of all the inputs in Figure 11.3. There are 32 possible paging frequencies within each 1.28 second interval. Half of these frequencies belongs to the **A**-train, the rest (i.e.,  $\{f(k+8), ..., f(k+15), f(k-16), ..., f(k-9)\}$ ) belongs to the **B**-train. In order to achieve the -8 offset of the **A**-train, a constant of 24 can be added to the clock bits (which is equivalent to -8 due to the modulo 32 operation). Clearly, the **B**-train may be accomplished by setting the offset to 8. A cyclic shift of the order within the trains is also necessary in order to avoid a possible repetitive mismatch between the paging and scanning units. Thus,

$$Xp^{(79)} = [CLKE_{16-12} + k_{offset} + (CLKE_{4-2, 0} - CLKE_{16-12}) \mod 16] \mod 32,$$
 (EQ 2)

where

$$k_{offset} = \begin{cases} 24 & \text{A-train,} \\ 8 & \text{B-train.} \end{cases}$$
 (EQ 3)

Alternatively, each switch between the **A**- and **B**-trains may be accomplished by adding 16 to the current value of  $k_{offset}$  (originally initialized with 24).

In the **page** substate of the 23-hop system, the paging unit makes use of the **A**-train only. A constant offset of 8 is used in order to start with f(k-8). Moreover, only four bits are needed since the additions are modulo 16. Consequently,

$$Xp^{(23)} = [CLKE_{15-12} + 8 + CLKE_{4-2,0}] \mod 16,$$
 (EQ 4)

Hop Selection 29 November 1999 135

page 136 of 1082

Baseband Specification

Bluetooth

# 11.3.3 Page response

#### 11.3.3.1 Slave response

A unit in the **page scan** substate recognizing its own access code enters the slave response substate. In order to eliminate the possibility of loosing the link due to discrepancies of the native clock CLKN and the master's clock estimate CLKE, the four bits CLKN<sub>16-12</sub> must be frozen at their current value. The value is frozen to the content it has in the slot where the recipient's access code is detected. Note that the actual native clock is not stopped; it is merely the values of the bits used for creating the X-input that are kept fixed for a while. In the sequel, a frozen value is marked by an asterisk (\*).

For each response slot the paged unit will use an X-input value one larger (modulo 32 or 16) than in the preceding response slot. However, the first response is made with the X-input kept at the same value as it was when the access code was recognized. Let N be a counter starting at zero. Then, the Xinput in the (N+1)-th response slot (the first response slot being the one immediately following the page slot now responding to) of the slave response substate becomes

$$Xprs^{(79)} = [CLKN*_{16-12} + N] \mod 32,$$
 (EQ 5)

and

$$Xprs^{(23)} = [CLKN*_{15-12} + N] \mod 16,$$
 (EQ 6)

for the 79-hop and 23-hop systems, respectively. The counter N is set to zero in the slot where the slave acknowledges the page (see Figure 10.6 on page 105 and Figure 10.7 on page 105). Then, the value of N is increased by one each time CLKN<sub>1</sub> is set to zero, which corresponds to the start of a master TX slot. The X-input is constructed this way until the first accepted FHS packet is received and the immediately following response packet has been transmitted. After this the slave enters the **CONNECTION** state using the parameters received in the FHS packet.

#### 11.3.3.2 Master response

The paging unit enters **master response** substate upon receiving a slave response. Clearly, also the master must freeze its estimated slave clock to the value that triggered a response from the paged unit. It is equivalent to using the values of the clock estimate when receiving the slave response (since only CLKE, will differ from the corresponding page transmission). Thus, the values are frozen when the slave ID packet is received. In addition to the used clock bits, also the current value of  $k_{offset}$  must be frozen. The master will adjust its Xinput in the same way the paged unit does, i.e., by incrementing this value by

Bluetooth.

one for each time  ${\rm CLKE}_1$  is set to zero. The first increment shall be done before sending the **FHS** packet to the paged unit. Let N be a counter starting at one. The rules for forming the X-inputs become

$$Xprm^{(79)} = [CLKE*_{16-12} + k_{offset}* + (CLKE*_{4-2.0} - CLKE*_{16-12}) \mod 16 + N] \mod 32,$$
 (EQ 7)

and

$$Xprm^{(23)} = [CLKE*_{15-12} + 8 + CLKE*_{4-2.0} + N] \mod 16,$$
 (EQ 8)

for the 79-hop and 23-hop systems, respectively. The value of N is increased each time  ${\rm CLKE}_1$  is set to zero, which corresponds to the start of a master TX slot.

# 11.3.4 Inquiry substate

The X-input of the **inquiry** substate is quite similar to what is used in the **page** substate. Since no particular unit is addressed, the native clock CLKN of the inquirer is used. Moreover, which of the two train offsets to start with is of no real concern in this state. Consequently,

$$Xi^{(79)} = [CLKN_{16-12} + k_{offset} + (CLKN_{4-2,0} - CLKN_{16-12}) \mod 16] \mod 32, (EQ 9)$$

where  $k_{offset}$  is defined by (EQ 3). The initial choice of the offset is arbitrary. For the 23-hop system,

$$Xi^{(23)} = [CLKN_{15-12} + 8 + CLKN_{4-2,0}] \mod 16,$$
 (EQ 10)

The GIAC LAP and the four LSBs of the DCI (as  $A_{27-24}$ ) are used as address input for the hopping sequence generator.

#### 11.3.5 Inquiry response

The **inquiry response** substate is similar to the **slave response** with respect to the X-input. Thus, (EQ 5) and (EQ 6) holds. However, the counter N is increased not on  $CLKN_1$  basis, but rather after each **FHS** packet has been transmitted in response to the inquiry.

The GIAC LAP and the four LSBs of the DCI (as  $A_{27-24}$ ) are used as address input for the hopping sequence generator. The other input bits to the generator are the same as in the case of page response.

Hop Selection 29 November 1999 137

page 138 of 1082

Baseband Specification

Bluetooth.

## 11.3.6 Connection state

In **CONNECTION** state, the clock bits to use in the channel hopping sequence generation are always according to the master clock, CLK. The address bits are taken from the Bluetooth device address of the master.

Bluetooth.

# 12 BLUETOOTH AUDIO

On the Bluetooth air-interface, either a 64 kb/s log PCM format (A-law or  $\mu$ -law) is used, or a 64 kb/s CVSD (Continuous Variable Slope Delta Modulation) is used. The latter format applies an adaptive delta modulation algorithm with syllabic companding.

The voice coding on the line interface should have a quality equal to or better than the quality of 64 kb/s log PCM.

Table 12.1 on page 139 summarizes the voice coding schemes supported on the air interface. The appropriate voice coding scheme is selected after negotiations between the Link Managers.

| Voice Codecs      |       |  |
|-------------------|-------|--|
| linear            | CVSD  |  |
| 8-bit logarithmic | A-law |  |
| o-bit logarithmic | μ-law |  |

Table 12.1: Voice coding schemes supported on the air interface.

#### 12.1 LOG PCM CODEC

Since the voice channels on the air-interface can support a 64 kb/s information stream, a 64 kb/s log PCM traffic can be used for transmission. Either A-law or  $\mu$ -law compression can be applied. In the event that the line interface uses A-law and the air interface uses  $\mu$ -law or vice versa, a conversion from A-law to  $\mu$ -law is performed. The compression method follows ITU-T recommendations G. 711.

# 12.2 CVSD CODEC

A more robust format for voice over the air interface is a delta modulation. This modulation scheme follows the waveform where the output bits indicate whether the prediction value is smaller or larger then the input waveform. To reduce slope overload effects, syllabic companding is applied: the step size is adapted according to the average signal slope. The input to the CVSD encoder is 64 ksamples/s linear PCM. Block diagrams of the CVSD encoder and CVSD decoder are shown in Figure 12.1 on page 140, Figure 12.2 on page 140 and Figure 12.3 on page 140. The system is clocked at 64 kHz.

page 140 of 1082

Baseband Specification

Bluetooth

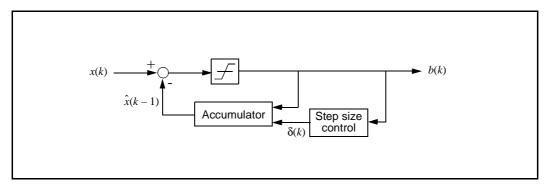



Figure 12.1: Block diagram of CVSD encoder with syllabic companding.

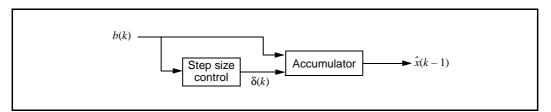



Figure 12.2: Block diagram of CVSD decoder with syllabic companding.

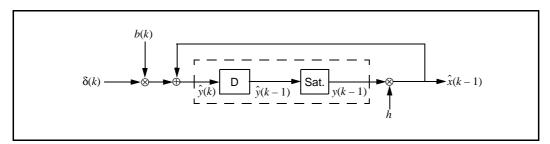



Figure 12.3: Accumulator procedure

Let  $\mathrm{sgn}(x)=1$  for  $x\geq 0$ , otherwise  $\mathrm{sgn}(x)=-1$ . On air these numbers are represented by the sign bit; i.e. negative numbers are mapped on "1" and positive numbers are mapped on "0". Denote the CVSD encoder output bit b(k), the accumulator contents y(k), and the step size  $\delta(k)$ . Furthermore, let h be the decay factor for the accumulator, let  $\beta$  denote the decay factor for the step size, and, let  $\alpha$  be the syllabic companding parameter. The latter parameter monitors the slope by considering the K most recent output bits

Let

$$\hat{x}(k) = hy(k). \tag{EQ 11}$$

Then, the CVSD encoder internal state is updated according to the following set of equations:

$$b(k) = \operatorname{sgn}\{x(k) - \hat{x}(k-1)\},$$
 (EQ 12)

Bluetooth.

$$\alpha = \begin{cases} 1, & \text{if } J \text{ bits in the last } K \text{ output bits are equal,} \\ 0, & \text{otherwise,} \end{cases}$$
 (EQ 13)

$$\delta(k) = \begin{cases} \min\{\delta(k-1) + \delta_{min}, \delta_{max}\}, & \alpha = 1, \\ \max\{\beta\delta(k-1), \delta_{min}\}, & \alpha = 0, \end{cases}$$
(EQ 14)

$$y(k) = \begin{cases} \min{\{\hat{y}(k), y_{max}\}}, & \hat{y}(k) \ge 0. \\ \max{\{\hat{y}(k), y_{min}\}}, & \hat{y}(k) < 0. \end{cases}$$
 (EQ 15)

where

$$\hat{y}(k) = \hat{x}(k-1) + b(k)\delta(k).$$
 (EQ 16)

In these equations,  $\delta_{min}$  and  $\delta_{max}$  are the minimum and maximum step sizes, and,  $y_{min}$  and  $y_{max}$  are the accumulator's negative and positive saturation values, respectively.

For a 64 kb/s CVSD, the parameters as shown in Table 12.2 must be used. The numbers are based on a 16 bit signed number output from the accumulator. These values result in a time constant of 0.5 ms for the accumulator decay, and a time constant of 16 ms for the step size decay

| Parameter         | Value                    |
|-------------------|--------------------------|
| h                 | $1 - \frac{1}{32}$       |
| β                 | $1 - \frac{1}{1024}$     |
| J                 | 4                        |
| К                 | 4                        |
| $\delta_{\min}$   | 10                       |
| $\delta_{ m max}$ | 1280                     |
| У <sub>тіп</sub>  | $-2^{15}$ or $-2^{15}+1$ |
| Утах              | $2^{15}-1$               |

Table 12.2: CVSD parameter values. The values are based on a 16 bit signed number output from the accumulator.

Bluetooth Audio 29 November 1999 141

page 142 of 1082

Baseband Specification

Bluetooth.

#### 12.3 ERROR HANDLING

In the **DV** and **HV3** packet, the voice is not protected by FEC. The quality of the voice in an error-prone environment then depends on the robustness of the voice coding scheme. CVSD, in particular, is rather insensitive to random bit errors, which are experienced as white background noise. However, when a packet is rejected because either the channel access code or the HEC test was unsuccessful, measures have to be taken to "fill" in the lost speech segment.

The voice payload in the **HV2** packet is protected by a 2/3 rate FEC. If errors occur which cannot be corrected, these should be ignored. That is, from the 15-bit FEC segment with uncorrected errors, the 10-bit information part as found before the FEC decoder should be used. The **HV1** packet is protected by a 3-repeat FEC. In the majority detection scheme uncorrected errors cannot occur.

# 12.4 GENERAL AUDIO REQUIREMENTS

These specifications are tentative and will be fixed within 18 months after the release of the Bluetooth Specification version 1.0 Draft Foundation.

## 12.4.1 Signal levels

For A-law and  $\mu$ -law log-PCM encoded signals the requirements on signal levels follows ITU-T G.711.

Full swing at the 16 bit linear PCM interface to the CVSD encoder is defined to be 3 dBm0. A digital CVSD encoded test signal is provided in a Test Signal file available on the website. This signal is generated by a software implementation of a reference CVSD encoder. The digital encoder input signal (1020 Hz, sine-wave) generating the test signal has a nominal power of -15 dBm0. When the CVSD encoded test signal is fed through the CVSD receiver chain, the nominal output power should be -15  $\pm$  1.0 dBm0.

## 12.4.2 CVSD audio quality

For Bluetooth audio quality the requirements are put on the transmitter side. The 64 ksamples/s linear PCM input signal must have negligible spectral power density above 4 kHz. A set of reference input signals are encoded by the transmitter and sent through a reference decoder (available on the website). The power spectral density in the 4-32 kHz band of the decoded signal at the 64 ksample/s linear PCM output, should be more than 20 dB below the maximum in the 0-4 kHz range.

Bluetooth.

# 13 BLUETOOTH ADDRESSING

# 13.1 BLUETOOTH DEVICE ADDRESS (BD\_ADDR)

Each Bluetooth transceiver is allocated a unique 48-bit Bluetooth device address (BD\_ADDR). This address is derived from the IEEE802 standard. This 48-bit address is divided into three fields:

- · LAP field: lower address part consisting of 24 bits
- UAP field: upper address part consisting of 8 bits
- NAP field: non-significant address part consisting of 16 bits

The LAP and UAP form the significant part of the BD\_ADDR. The total address space obtained is 2<sup>32</sup>.

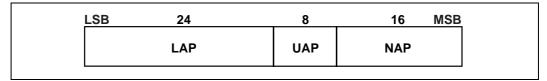



Figure 13.1: Format of BD\_ADDR

#### 13.2 ACCESS CODES

In the Bluetooth system, 72-bit and 68-bit access codes are used for signalling purposes. Three different access codes are defined, see also Section 4.2.1 on page 48:

- device access code (DAC)
- channel access code (CAC)
- inquiry access code (IAC)

There is one general IAC (GIAC) for general inquiry operations and there are 63 dedicated IACs (DIACs) for dedicated inquiry operations. All codes are derived from a LAP of the BD\_ADDR. The device access code is used during page, page scan and page response substates. It is a code derived from the unit's BD\_ADDR. The channel access code characterizes the channel of the piconet and forms the preamble of all packets exchanged on the channel. The channel access code is derived from the LAP of the master BD\_ADDR. Finally, the inquiry access code is used in inquiry operations. A general inquiry access code is common to all Bluetooth units; a set of dedicated inquiry access codes is used to inquire for classes of devices.

The access code is also used to indicate to the receiver the arrival of a packet. It is used for timing synchronization and offset compensation. The receiver correlates against the entire sync word in the access code, providing a very robust signalling. During channel setup, the code itself is used as an ID packet to sup-

page 144 of 1082

Baseband Specification

Bluetooth.

port the acquisition process. In addition, it is used during random access procedures in the PARK state.

The access code consists of preamble, sync word and a trailer, see Section 4.2 on page 48. The next two sections describe the generation of the sync word.

# 13.2.1 Synchronization word definition

The sync words are based on a (64,30) expurgated block code with an overlay (bit-wise XOR) of an 64 bit full length PN-sequence. The expurgated code guarantees large Hamming distance ( $d_{min}=14$ ) between sync words based on different addresses. The PN sequence improves the autocorrelation properties of the access code. The following steps describe how to generate the sync word:

- 1. Generate information sequence;
- 2. XOR this with the "information covering" part of the PN overlay sequence;
- 3. Generate the codeword;
- 4. XOR the codeword with all 64 bits of the PN overlay sequence;

The information sequence is generated by appending 6 bits to the 24 bit LAP (step 1). The appended bits are 001101 if the MSB of the LAP equals 0. If the MSB of the LAP is 1 the appended bits are 110010. The LAP MSB together with the appended bits constitute a length-seven Barker sequence. The purpose of including a Barker sequence is to further improve the autocorrelation properties. In step 2 the information is pre-scrambled by XORing it with the bits  $p_{34}...p_{63}$  of the *pseudo-random noise* (PN) sequence (defined in section 13.2.2 on page 146). After generating the codeword (step 3), the complete PN sequence is XORed to the codeword (step 4). This step de-scrambles the information part of the codeword. At the same time the parity bits of the codeword are scrambled. Consequently, the original LAP and Barker sequence are ensured a role as a part of the access code sync word, and the cyclic properties of the underlying code is removed. The principle is depicted in Figure 13.2 on page 145

In the sequel, binary sequences will be denoted by their corresponding D-transform (in which  $D^i$  represents a delay of i time units). Let  $p'(D) = p'_0 + p'_1 D + ... + p'_{62} D^{62}$  be the 63 bit pseudo-random sequence, where  $p'_0$  is the first bit (LSB) leaving the PRNG (see Figure 13.3 on page 147), and,  $p'_{62}$  is the last bit (MSB). To obtain 64 bits, an extra zero is appended at the *end* of this sequence (thus, p'(D) is unchanged). For notational convenience, the reciprocal of this extended polynomial,  $p(D) = D^{63}p'(1/D)$ , will be used in the sequel. This is the sequence p'(D) in reverse order. We denote the 24 bit lower

page 145 of 1082

Baseband Specification

# Bluetooth.

address part (LAP) of the Bluetooth address by  $a(D) = a_0 + a_1 D + ... + a_{23} D^{23}$  ( $a_0$  is the LSB of the Bluetooth address).



Figure 13.2: Construction of the sync word.

The (64,30) block code generator polynomial is denoted g(D) = (1+D)g'(D), where g'(D) is the generator polynomial 157464165547 (octal notation) of a primitive binary (63,30) BCH code. Thus, in octal notation we have

$$g(D) = 260534236651,$$
 (EQ 17)

the left-most bit corresponds to the high-order ( $g_{34}$ ) coefficient. The DC-free four bit sequences 0101 and 1010 can be written

$$\begin{cases} F_0(D) = D + D^3, \\ F_1(D) = 1 + D^2, \end{cases}$$
 (EQ 18)

respectively. Furthermore, we define

page 146 of 1082

Baseband Specification

Bluetooth.

$$\begin{cases}
B_0(D) = D^2 + D^3 + D^5, \\
B_1(D) = 1 + D + D^4,
\end{cases}$$
(EQ 19)

which are used to create the length seven Barker sequences. Then, the access code is generated by the following procedure:

1. Format the 30 information bits to encode:

$$x(D) = a(D) + D^{24}B_{a_{23}}(D).$$

2. Add the information covering part of the PN overlay sequence:

$$\tilde{x}(D) = x(D) + p_{34} + p_{35}D + \dots + p_{63}D^{29}.$$

3. Generate parity bits of the (64,30) expurgated block code:<sup>1</sup>

$$\tilde{c}(D) = D^{34}\tilde{x}(D) \mod g(D)$$
.

4. Create the codeword:

$$\tilde{s}(D) = D^{34}\tilde{x}(D) + \tilde{c}(D).$$

5. Add the PN sequence:

$$s(D) = \tilde{s}(D) + p(D).$$

6. Append the (DC-free) preamble and trailer:

$$y(D) = F_{c_0}(D) + D^4 s(D) + D^{68} F_{a_{23}}(D).$$

#### 13.2.2 Pseudo-random noise sequence generation

To generate the pseudo-random noise sequence we use the primitive polynomial  $h(D) = 1 + D + D^3 + D^4 + D^6$ . The LFSR and its starting state are shown in Figure 13.3 on page 147. The PN sequence generated (including the extra terminating zero) becomes (hexadecimal notation) 83848D96BBCC54FC. The LFSR output starts with the left-most bit of this PN sequence. This corresponds to p'(D) of the previous section. Thus, using the reciprocal p(D) as overlay gives the 64 bit sequence

$$p = 3F2A33DD69B121C1,$$
 (EQ 20)

<sup>1.</sup>  $x(D) \mod y(D)$  denotes the rest when x(D) is divided by y(D).

Bluetooth

where the left-most bit is  $p_0 = 0$  (there are two initial zeros in the binary representation of the hexadecimal digit 3), and  $p_{63} = 1$  is the right-most bit.

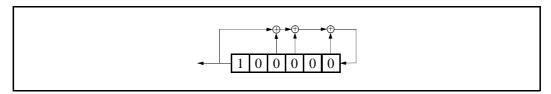



Figure 13.3: LFSR and the starting state to generate p'(D)

#### 13.2.3 Reserved addresses for GIAC and DIAC

There is a block of 64 contiguous LAPs reserved for Bluetooth inquiry operations; one LAP common to all Bluetooth devices is reserved for general inquiry, the remaining 63 LAPs are reserved for dedicated inquiry of specific classes of Bluetooth devices. The same 64-block is used regardless of the contents of UAP and NAP. Consequently, none of these LAPs can be part of a user BD\_ADDR.

When initializing HEC and CRC for the FHS packet of **inquiry response**, the UAP is replaced by DCI. Likewise, whenever one of the reserved BD\_ADDRs is used for generating a frequency hop sequence, the UAP will be replaced by the DCI.

The reserved LAP addresses are tentatively chosen as  $0 \times 9E8B00 - 0 \times 9E8B3F$ . The general inquiry LAP is tentatively chosen to  $0 \times 9E8B33$ . All addresses have the LSB at the rightmost position, hexadecimal notation.

# 13.3 ACTIVE MEMBER ADDRESS (AM\_ADDR)

Each slave active in a piconet is assigned a 3-bit active member address (AM\_ADDR). The all-zero AM\_ADDR is reserved for broadcast messages. The master does not have an AM\_ADDR. Its timing relative to the slaves distinguishes it from the slaves. A slave only accepts a packet with a matching AM\_ADDR and broadcast packets. The AM\_ADDR is carried in the packet header. The AM\_ADDR is only valid as long as a slave is active on the channel. As soon as it is disconnected or parked, it loses the AM\_ADDR.

The AM\_ADDR is assigned by the master to the slave when the slave is activated. This is either at connection establishment or when the slave is unparked. At connection establishment, the AM\_ADDR is carried in the **FHS** payload (the **FHS** header itself carries the all-zero AM\_ADDR). When unparking, the AM\_ADDR is carried in the unpark message.

page 148 of 1082

Baseband Specification

Bluetooth.

# 13.4 PARKED MEMBER ADDRESS (PM ADDR)

A slave in park mode can be identified by its BD ADDR or by a dedicated parked member address (PM\_ADDR). This latter address is a 8-bit member address that separates the parked slaves. The PM\_ADDR is only valid as long as the slave is parked. When the slave is activated it is assigned an AM ADDR but loses the PM ADDR. The PM ADDR is assigned to the slave the moment it is parked.

The all-zero PM\_ADDR is reserved for parked slaves that only use their BD\_ADDR to be unparked.

# 13.5 ACCESS REQUEST ADDRESS (AR\_ADDR)

The access request address is used by the parked slave to determine the slave-to-master half slot in the access window it is allowed to send access request messages in, see also Section 10.8.4.6 on page 120. The AR ADDR is assigned to the slave when it enters the park mode and is only valid as long as the slave is parked. The AR\_ADDR is not necessarily unique; i.e. different parked slaves may have the same AR ADDR.

Bluetooth.

# 14 BLUETOOTH SECURITY

The Bluetooth technology provides peer-to-peer communications over short distances. In order to provide usage protection and information confidentiality, the system has to provide security measures both at the application layer and the link layer. These measures shall be appropriate for a peer environment. This means that in each Bluetooth unit, the authentication and encryption routines are implemented in the same way. Four different entities are used for maintaining security at the link layer: a public address which is unique for each user<sup>1</sup>, two secret keys, and a random number which is different for each new transaction. The four entities and their sizes as used in Bluetooth are summarized in Table 14.1.

| Entity                                                       | Size       |
|--------------------------------------------------------------|------------|
| BD_ADDR                                                      | 48 bits    |
| Private user key, authentication                             | 128 bits   |
| Private user key, encryption configurable length (byte-wise) | 8-128 bits |
| RAND                                                         | 128 bits   |

Table 14.1: Entities used in authentication and encryption procedures.

The Bluetooth device address (BD\_ADDR) is the 48-bit IEEE address which is unique for each Bluetooth unit. The Bluetooth addresses are publicly known, and can be obtained via MMI interactions, or, automatically, via an inquiry routine by a Bluetooth unit.

The secret keys are derived during initialization and are further never disclosed. Normally, the encryption key is derived from the authentication key during the authentication process. For the authentication algorithm, the size of the key used is always 128 bits. For the encryption algorithm, the key size may vary between 1 and 16 octets (8 - 128 bits). The size of the encryption key shall be configurable for two reasons. The first has to do with the many different requirements imposed on cryptographic algorithms in different countries – both w.r.t. export regulations and official attitudes towards privacy in general. The second reason is to facilitate a future upgrade path for the security without the need of a costly redesign of the algorithms and encryption hardware; increasing the effective key size is the simplest way to combat increased computing power at the opponent side. Currently (1999) it seems that an encryption key size of 64 bits gives satisfying protection for most applications.

The encryption key is entirely different from the authentication key (even though the latter is used when creating the former, as is described in Section 14.5.4 on page 177). Each time encryption is activated, a new encryption key

<sup>1.</sup> The BD\_ADDR is not a secured identity.

page 150 of 1082

Baseband Specification

Bluetooth

shall be generated. Thus, the lifetime of the encryption key does not necessarily correspond to the lifetime of the authentication key.

It is anticipated that the authentication key will be more static in its nature than the encryption key – once established, the particular application running on the Bluetooth device decides when, or if, to change it. To underline the fundamental importance of the authentication key to a specific Bluetooth link, it will often be referred to as the link key.

The RAND is a random number which can be derived from a random or pseudo-random process in the Bluetooth unit. This is not a static parameter, it will change frequently.

In the remainder of this chapter, the terms user and application will be used interchangeably to designate the entity that is at the originating or receiving side.

## 14.1 RANDOM NUMBER GENERATION

Each Bluetooth unit has a random number generator. Random numbers are used for many purposes within the security functions – for instance, for the challenge-response scheme, for generating authentication and encryption keys, etc. Ideally, a true random generator based on some physical process with inherent randomness is used. Examples of such processes are thermal noise from a semiconductor or resistor and the frequency instability of a free running oscillator. For practical reasons, a software based solution with a pseudo-random generator is probably preferable. In general, it is quite difficult to classify the randomness of a pseudo-random sequence. Within Bluetooth, the requirements placed on the random numbers used are that they be non-repeating and randomly generated.

The expression 'non-repeating' means that it shall be highly unlikely that the value should repeat itself within the lifetime of the authentication key. For example, a non-repeating value could be the output of a counter that is unlikely to repeat during the lifetime of the authentication key, or a date/time stamp.

The expression 'randomly generated' means that it shall not be possible to predict its value with a chance that is significantly larger than 0 (e.g., greater than  $1/2^L$  for a key length of L bits).

Clearly, the LM can use such a generator for various purposes; i.e. whenever a random number is needed (such as the RANDs, the unit keys,  $K_{init}$ ,  $K_{master}$ , and random back-off or waiting intervals).

#### 14.2 KEY MANAGEMENT

It is important that the encryption key size within a specific unit cannot be set by the user – this must be a factory preset entity. In order to prevent the user

page 151 of 1082

Baseband Specification

Bluetooth.

from over-riding the permitted key size, the Bluetooth baseband processing does not accept an encryption key given from higher software layers. Whenever a new encryption key is required, it must be created as defined in Section 14.5.4 on page 177.

Changing a link key should also be done through the defined baseband procedures. Depending on what kind of link key it is, different approaches are required. The details are found in Section 14.2.2.7 on page 157.

# 14.2.1 Key types

The link key is a 128-bit random number which is shared between two or more parties and is the base for all security transactions between these parties. The link key itself is used in the authentication routine. Moreover, the link key is used as one of the parameters when the encryption key is derived.

In the following, a session is defined as the time interval for which the unit is a member of a particular piconet. Thus, the session terminates when the unit disconnects from the piconet.

The link keys are either semi-permanent or temporary. A semi-permanent link key is stored in non-volatile memory and may be used after the current session is terminated. Consequently, once a semi-permanent link key is defined, it may be used in the authentication of several subsequent connections between the Bluetooth units sharing it. The designation semi-permanent is justified by the possibility to change it. How to do this is described in Section 14.2.2.7 on page 157.

The lifetime of a temporary link key is limited by the lifetime of the current session – it cannot be reused in a later session. Typically, in a point-to-multipoint configuration where the same information is to be distributed securely to several recipients, a common encryption key is useful. To achieve this, a special link key (denoted master key) can temporarily replace the current link keys. The details of this procedure are found in Section 14.2.2.6 on page 157.

In the sequel we sometimes refer to what is denoted as the current link key. This is simply the link key in use at the current moment. It can be semi-permanent or temporary. Thus, the current link key is used for all authentications and all generation of encryption keys in the on-going connection (session).

In order to accommodate for different types of applications, four types of link keys have been defined:

- the combination key K<sub>AB</sub>
- the unit key K<sub>△</sub>
- the temporary key K<sub>master</sub>
- the initialization key K<sub>init</sub>

page 152 of 1082

Baseband Specification

Bluetooth.

In addition to these keys there is an encryption key, denoted  $K_c$ . This key is derived from the current link key. Whenever the encryption is activated by a LM command, the encryption key shall be changed automatically. The purpose of separating the authentication key and encryption key is to facilitate the use of a shorter encryption key without weakening the strength of the authentication procedure. There are no governmental restrictions on the strength of authentication algorithms. However, in some countries, such restrictions exist on the strength of encryption algorithms.

For a Bluetooth unit, the combination key  $K_{AB}$  and the unit key  $K_{A}$  are functionally indistinguishable; the difference is in the way they are generated. The unit key  $K_{A}$  is generated in, and therefore dependent on, a single unit A. The unit key is generated once at installation of the Bluetooth unit; thereafter, it is very rarely changed. The combination key is derived from information in both units A and B, and is therefore always dependent on two units. The combination key is derived for each new combination of two Bluetooth units.

It depends on the application or the device whether a unit key or a combination key is used. Bluetooth units which have little memory to store keys, or, when installed in equipment that must be accessible to a large group of users, will preferably use their own unit key. In that case, they only have to store a single key. Applications that require a higher security level preferably use the combination keys. These applications will require more memory since a combination key for each link to a different Bluetooth unit has to be stored.

The master key, K<sub>master</sub>, is a link key only used during the current session. It will replace the original link key only temporarily. For example, this may be utilized when a master wants to reach more than two Bluetooth units simultaneously using the same encryption key, see Section 14.2.2.6 on page 157.

The initialization key,  $K_{\text{init}}$ , is used as link key during the initialization process when no combination or unit keys have been defined and exchanged yet or when a link key has been lost. The initialization key protects the transfer of initialization parameters. The key is derived from a random number, an L-octet PIN code, and the BD\_ADDR of the claimant unit. This key is only to be used during initialization.

The PIN can be a fixed number provided with the Bluetooth unit (for example when there is no MMI as in a PSTN plug). Alternatively, the PIN can be selected arbitrarily by the user, and then entered in both units that have to be matched. The latter procedure is used when both units have an MMI, for example a phone and a laptop. Entering a PIN in both units is more secure than using a fixed PIN in one of the units, and should be used whenever possible. Even if a fixed PIN is used, it shall be possible to change the PIN; this in order to prevent re-initialization by users who once got hold of the PIN. If no PIN is available, a default value of zero is to be used.

For many applications the PIN code will be a relatively short string of numbers. Typically, it may consist of only four decimal digits. Even though this gives suffi-

Bluetooth.

cient security in many cases, there exist countless other, more sensitive, situations where this is not reliable enough. Therefore, the PIN code can be chosen to be any length from 1 to 16 octets. For the longer lengths, we envision the units exchanging PIN codes not through mechanical (i.e. human) interaction, but rather through means supported by software at the application layer. For example, this can be a Diffie-Hellman key agreement, where the exchanged key is passed on to the  $K_{init}$  generation process in both units, just as in the case of a shorter PIN code.

# 14.2.2 Key generation and initialization

The link keys have to be generated and distributed among the Bluetooth units in order to be used in the authentication procedure. Since the link keys must be secret, they cannot be obtained through an inquiry routine in the same way as the Bluetooth addresses. The exchange of the keys takes place during an initialization phase which has to be carried out separately for each two units that want to implement authentication and encryption. All initialization procedures consist of the following five parts:

- generation of an initialization key
- authentication
- · generation of link key
- · link key exchange
- generating of encryption key in each unit

After the initialization procedure, the units can proceed to communicate, or the link can be disconnected. If encryption is implemented, the  $E_0$  algorithm is used with the proper encryption key derived from the current link key. For any new connection established between units A and B, they will use the common link key for authentication, instead of once more deriving  $K_{init}$  from the PIN. A new encryption key derived from that particular link key will be created next time encryption is activated.

If no link key is available, the LM shall automatically start an initialization procedure.

# <u>14.2.2.1 Generation of initialization key, $K_{init}$ </u>

A link key used temporarily during initialization is derived – the initialization key  $K_{init}$ . This key is derived by the  $E_{22}$  algorithm from the BD\_ADDR of the claimant unit, a PIN code, the length of the PIN (in octets), and a random number IN\_RAND<sub>A</sub> issued (and created) by verifier. The principle is depicted in Figure 14.15 on page 177. The 128-bit output from  $E_{22}$  will be used for key exchange during the generation of a link key. It is also used for authentication when two

page 154 of 1082

Baseband Specification

Bluetooth.

units have no record of a previous link key. When the units have performed the link key exchange, the initialization key shall be discarded.

When the initialization key is generated, the PIN is augmented with the BD\_ADDR of the claimant unit. Since the maximum length of the PIN used in the algorithm cannot exceed 16 octets, it is possible that not all octets of BD\_ADDR will be used. This procedure ensures that  $K_{init}$  depends on the identity of the unit trying to connect to it (at least when short PIN codes are used). A fraudulent Bluetooth unit may try to test a large number of PINs by each time claiming another BD\_ADDR. It is the application's responsibility to take countermeasures against this threat. If the device address is kept fixed, the waiting interval until next try is permitted is increased exponentially (see Section 14.4.1 on page 170).

The details of the  $E_{22}$  algorithm can be found in Section 14.5.3 on page 175.

#### 14.2.2.2 Authentication

The authentication procedure is carried out as described in Section 14.4 on page 169. If the two units have not been in contact before, the initialization key  $K_{init}$  is used as link key. Note that during each authentication, a new  $AU\_RAND_A$  is issued.

Mutual authentication is achieved by first performing the authentication procedure in one direction and, if successful, immediately followed by performing the authentication procedure in the opposite direction.

As a side effect of a successful authentication procedure an auxiliary parameter, the Authenticated Ciphering Offset (ACO), will be computed. The ACO is used for ciphering key generation as described in Section 14.2.2.5 on page 156. In case of mutual authentication, the ACO value from the second authentication is retained. However, in some situations an authentication event may be initiated simultaneously in both devices. When this happens, there is no way of telling which is the first and which is the second event. Then, both units shall use the ACO resulting from the challenge generated in the master unit.

The claimant/verifier status is determined by the LM.

# 14.2.2.3 Generation of a unit key

A unit key  $K_A$  is generated when the Bluetooth unit is for the first time in operation; i.e. not during each initialization! The unit key is generated by the  $E_{21}$  algorithm as described in Section 14.5.3 on page 175. Once created, the unit key is stored in non-volatile memory and (almost) never changed. If after initialization the unit key is changed, the previously initialized units will possess a wrong link key. At initialization, the application has to determine which of the

# Bluetooth.

two parties will provide the unit key as link key. Typically, this will be the unit with restricted memory capabilities, since this unit only has to remember its own unit key. The unit key is transferred to the other party and then stored as link key for that particular party. So, for example in Figure 14.1 on page 155, the unit key of unit A,  $K_A$ , is being used as link key for the connection A-B; unit A sends the unit key  $K_A$  to unit B; unit B will store  $K_A$  as the link key  $K_{BA}$ . For another initialization, for example with unit C, unit A will reuse its unit key  $K_A$ , whereas unit C stores it as  $K_{CA}$ .

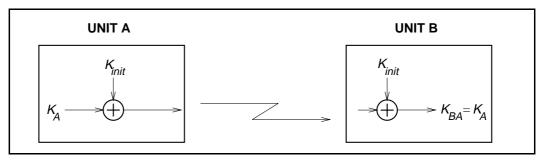



Figure 14.1: Generation of unit key. When the unit key has been exchanged, the initialization key shall be discarded in both units.

# 14.2.2.4 Generation of a combination key

If it is desired to use a combination key, this key is first generated during the initialization procedure. The combination key is the combination of two numbers generated in unit A and B, respectively. First, each unit generates a random number, say LK\_RAND<sub>A</sub> and LK\_RAND<sub>B</sub>. Then, utilizing  $E_{21}$  with the random number and the own BD\_ADDR, the two random numbers

$$LK_{-}K_{A} = E_{21}(LK_{-}RAND_{A}, BD_{-}ADDR_{A}),$$
 (EQ 21)

and

$$LK_{-}K_{R} = E_{21}(LK_{-}RAND_{R}, BD_{-}ADDR_{R}),$$
 (EQ 22)

are created in unit A and unit B, respectively. These numbers constitute the units' contribution to the combination key that is to be created. Then, the two random numbers  $LK_RAND_A$  and  $LK_RAND_B$  are exchanged securely by XOR:ing with the current link key, say K. Thus, unit A sends  $K \oplus LK_RAND_A$  to unit B, while unit B sends  $K \oplus LK_RAND_B$  to unit A. Clearly, if this is done during the initialization phase the link key  $K = K_{init}$ .

When the random numbers  $LK\_RAND_A$  and  $LK\_RAND_B$  have been mutually exchanged, each unit recalculates the other units contribution to the combination key. This is possible since each unit knows the Bluetooth device address of the other unit. Thus, unit A calculates (EQ 22) and unit B calculates (EQ 21).

page 156 of 1082

Baseband Specification

# Bluetooth.

After this, both units combine the two numbers to generate the 128-bit link key. The combining operation is a simple bitwise modulo-2 addition (i.e. XOR). The result is stored in unit A as the link key  $K_{AB}$  and in unit B as the link key  $K_{BA}$ . When both units have derived the new combination key, a mutual authentication procedure shall be initiated to confirm the success of the transaction. The old link key shall be discarded after a successful exchange of a new combination key. The message flow between master and slave and the principle for creating the combination key is depicted in Figure 14.2 on page 156.

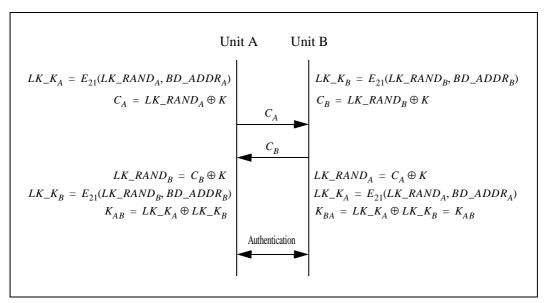



Figure 14.2: Generating a combination key. The old link key (K) shall be discarded after the exchange of a new combination key has succeeded

#### 14.2.2.5 Generating the encryption key

The encryption key,  $K_C$ , is derived by algorithm  $E_3$  from the current link key, a 96-bit Ciphering OFfset number (COF), and a 128-bit random number. The COF is determined in one of two ways. If the current link key is a master key, then COF is derived from the master BD ADDR. Otherwise the value of COF is set to the value of ACO as computed during the authentication procedure. More precisely, we have<sup>1</sup>

$$COF = \begin{cases} BD\_ADDR \cup BD\_ADDR, & \text{if link key is a master key} \\ ACO, & \text{otherwise.} \end{cases}$$
 (EQ 23)

There is an explicit call of  $E_3$  when the LM activates encryption. Consequently, the encryption key is automatically changed each time the unit enters the

<sup>1.</sup>  $x \cup y$  denotes the concatenation of the octet strings x and y.

page 157 of 1082

Baseband Specification

Bluetooth.

encryption mode. The details of the key generating function  $E_3$  can be found in Section 14.5.4 on page 177.

#### 14.2.2.6 Point-to-multipoint configuration

It is quite possible for the master to use separate encryption keys for each slave in a point-to-multipoint configuration with ciphering activated. Then, if the application requires more than one slave to listen to the same payload, each slave must be addressed individually. This may cause unwanted capacity loss for the piconet. Moreover, a Bluetooth unit (slave) is not capable of switching between two or more encryption keys in real time (e.g., after looking at the AM\_ADDR in the header). Thus, the master cannot use different encryption keys for broadcast messages and individually addressed traffic. Alternatively, the master may tell several slave units to use a common link key (and, hence, indirectly also to use a common encryption key) and broadcast the information encrypted. For many applications, this key is only of temporary interest. In the sequel, this key is denoted  $K_{master}$ .

The transfer of necessary parameters is protected by the routine described in Section 14.2.2.8 on page 158. After the confirmation of successful reception in each slave, the master shall issue a command to the slaves to replace their respective current link key by the new (temporary) master key. Before encryption can be activated, the master also has to generate and distribute a common EN\_RAND to all participating slaves. Using this random number and the newly derived master key, each slave generates a new encryption key.

Note that the master must negotiate what encryption key length to use individually with each slave who wants to use the master key. Since the master has already negotiated at least once with each slave, it has some knowledge of what sizes can be accepted by the different slaves. Clearly, there might be situations where the permitted key lengths of some units are incompatible. In that case, the master must have the limiting unit excluded from the group.

When all slaves have received the necessary data, the master can communicate information on the piconet securely using the encryption key derived from the new temporary link key. Clearly, each slave in possession of the master key can eavesdrop on all encrypted traffic, not only the traffic intended for itself. If so desired, the master can tell all participants to fall back to their old link keys simultaneously.

#### 14.2.2.7 Modifying the link keys

In certain circumstances, it is desirable to be able to modify the link keys. A link key based on a unit key can be changed, but not very easily. The unit key is created once during the first use. Changing the unit key is a less desirable alternative, as several units may share the same unit key as link key (think of a printer whose unit key is distributed among all users using the printer's unit key

page 158 of 1082

Baseband Specification

Bluetooth.

as link key). Changing the unit key will require re-initialization of all units trying to connect. In certain cases, this might be desirable; for example to deny access to previously allowed units.

If the key change concerns combination keys, then the procedure is rather straightforward. The change procedure can be identical to the procedure illustrated in Figure 14.2 on page 156, using the current value of the combination key as link key. This procedure can be carried out at any time after the authentication and encryption start. In fact, since the combination key corresponds to a single link, it can be modified each time this link is established. This will improve the security of the system since then old keys lose their validity after each session.

Of course, starting up an entirely new initialization procedure is also a possibility. In that case, user interaction is necessary since a PIN is required in the authentication and encryption procedures.

#### 14.2.2.8 Generating a master key

The key-change routines described so far are semi-permanent. To create the master link key, which can replace the current link key during an initiated session (see Section 14.2.2.6), other means are needed. First, the master creates a new link key from two 128-bit random numbers, RAND1 and RAND2. This is done by

$$K_{master} = E_{22}(\text{RAND1}, \text{RAND2}, 16). \tag{EQ 24}$$

Clearly, this key is a 128-bit random number. The reason to use the output of  $E_{22}$  and not directly chose a random number as the key, is to avoid possible problems with degraded randomness due to a poor implementation of the random number generator within the Bluetooth unit.

Then, a third random number, say RAND, is transmitted to the slave. Using  $E_{22}$  with the current link key and RAND as inputs, both the master and slave computes a 128-bit overlay. The master sends the bitwise XOR of the overlay and the new link key to the slave. The slave, who knows the overlay, recalculates  $K_{master}$ . To confirm the success of this transaction, the units can perform an authentication procedure using the new link key (with the master as verifier and the slave as claimant). This procedure is then repeated for each slave who shall receive the new link key. The ACO values from the involved authentications should not replace the current existing ACO as this ACO is needed to (re)compute a ciphering key when the master wants to fall back to the previous link (non-temporary) key.

When so required – and potentially long after the actual distribution of the master key – the master activates encryption by an LM command. Before doing that, the master must ensure that all slaves receive the same random number,

### Bluetooth.

say EN\_RAND, since the encryption key is derived through the means of  $E_3$  individually in all participating units. Then, each slave computes a new encryption key,

$$K_C = E_3(K_{master}, EN_RAND, COF),$$
 (EQ 25)

where the value of COF is derived from the master's BD\_ADDR as specified by equation (EQ 23). The details on the encryption key generating function can be found in Section 14.5.4 on page 177. The principle of the message flow between the master and slave when generating the master key is depicted in Figure 14.3. Note that in this case the ACO produced during the authentication is not used when computing the ciphering key.

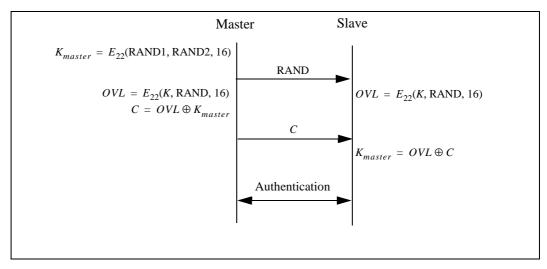



Figure 14.3: Master link key distribution and computation of the corresponding encryption key.

#### 14.3 ENCRYPTION

User information can be protected by encryption of the packet payload; the access code and the packet header are never encrypted. The encryption of the payloads is carried out with a stream cipher called  $E_0$  that is re-synchronized for every payload. The overall principle is shown in Figure 14.4 on page 160.

The stream cipher system  $E_0$  consists of three parts. One part performs the initialization (generation of the payload key), the second part generates the key stream bits, and the third part performs the encryption and decryption. The payload key generator is very simple – it merely combines the input bits in an appropriate order and shift them into the four LFSRs used in the key stream generator. The main part of the cipher system is the second, as it also will be used for the initialization. The key stream bits are generated by a method derived from the summation stream cipher generator attributable to Massey and Rueppel. The method has been thoroughly investigated, and there exist good estimates of its strength with respect to presently known methods for cryptanalysis. Although the summation generator has weaknesses that can be

page 160 of 1082

Baseband Specification

Bluetooth

used in so-called correlation attacks, the high re-synchronization frequency will disrupt such attacks.

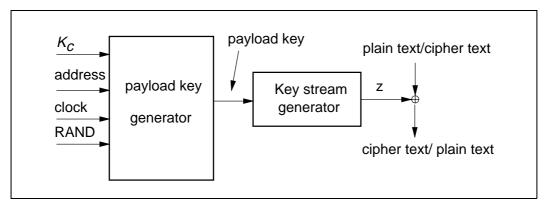



Figure 14.4: Stream ciphering for Bluetooth with  $E_0$ .

#### 14.3.1 Encryption key size negotiation

Each Bluetooth device implementing the baseband specification needs a parameter defining the maximal allowed key length,  $L_{max}$ ,  $1 \le L_{max} \le 16$  (number of octets in the key). For each application, a number  $L_{min}$  is defined indicating the smallest acceptable key size for that particular application. Before generating the encryption key, the involved units must negotiate to decide what key size to actually use.

The master sends a suggested value,  $L_{sug}^{(M)}$ , to the slave. Initially, the suggested value is set to  $L_{max}^{(M)}$ . If  $L_{sug}^{(S)} \leq L_{sug}^{(M)}$ , and, the slave supports the suggested length, the slave acknowledges and this value will be the length of the encryption key for this link. However, if both conditions are not fulfilled, the slave sends a new proposal,  $L_{sug}^{(S)} < L_{sug}^{(M)}$ , to the master. This value should be the largest among all supported lengths less than the previous master suggestion. Then, the master performs the corresponding test on the slave suggestion. This procedure is repeated until a key length agreement is reached, or, one unit aborts the negotiation. An abortion may be caused by lack of support for  $L_{sug}$  and all smaller key lengths, or if  $L_{sug} < L_{min}$  in one of the units. In case of abortion Bluetooth link encryption can not be employed.

The possibility of a failure in setting up a secure link is an unavoidable consequence of letting the application decide whether to accept or reject a suggested key size. However, this is a necessary precaution. Otherwise a fraudulent unit could enforce a weak protection on a link by claiming a small maximum key size.

Bluetooth

#### 14.3.2 Encryption modes

If a slave has a semi-permanent link key (i.e. a combination key or a unit key), it can only accept encryption on slots individually addressed to itself (and, of course, in the reverse direction to the master). In particular, it will assume that broadcast messages are not encrypted. The possible traffic modes are described in Table 14.2. When an entry in the table refers to a link key, it means that the encryption/decryption engine uses the encryption key derived from that link key.

| Broadcast traffic | Individually addressed traffic      |
|-------------------|-------------------------------------|
| No encryption     | No encryption                       |
| No encryption     | Encryption, Semi-permanent link key |

Table 14.2: Possible traffic modes for a slave using a semi-permanent link key.

If the slave has received a master key, there are three possible combinations as defined in Table 14.3 on page 161. In this case, all units in the piconet uses a common link key,  $K_{master}$ . Since the master uses encryption keys derived from this link key for all secure traffic on the piconet, it is possible to avoid ambiguity in the participating slaves on which encryption key to use. Also in this case the default mode is that broadcast messages are not encrypted. A specific LM-command is required to activate encryption – both for broadcast and for individually addressed traffic.

| Broadcast traffic        | Individually addressed traffic |
|--------------------------|--------------------------------|
| No encryption            | No encryption                  |
| No encryption            | Encryption, $K_{master}$       |
| Encryption, $K_{master}$ | Encryption, $K_{master}$       |

Table 14.3: Possible encryption modes for a slave in possession of a master key.

The master can issue an LM-command to the slaves telling them to fall back to their previous semi-permanent link key. Then, regardless of the previous mode they were in, they will end up in the first row of Table 14.2 on page 161; i.e. no encryption.

#### 14.3.3 Encryption concept

For the encryption routine, a stream cipher algorithm will be used in which ciphering bits are bit-wise modulo-2 added to the data stream to be sent over the air interface. The payload is ciphered after the CRC bits are appended, but, prior to the FEC encoding.

### Bluetooth.

Each packet payload is ciphered separately. The cipher algorithm  $E_0$  uses the master Bluetooth address, 26 bits of the master realtime clock (CLK  $_{26-1}$ ) and the encryption key  $K_C$  as input, see Figure 14.5 on page 162 (where it is assumed that unit A is the master).

The encryption key  $K_C$  is derived from the current link key, COF, and a random number, EN\_RAND<sub>A</sub> (see Section 14.5.4 on page 177). The random number is issued by the master before entering encryption mode. Note that EN\_RAND<sub>A</sub> is publicly known since it is transmitted as plain text over the air.

Within the  $E_0$  algorithm, the encryption key  $K_C$  is modified into another key denoted  $K'_C$ . The maximum effective size of this key is factory preset and may be set to any multiple of eight between one and sixteen (8-128 bits). The procedure for deriving the key is described in Section 14.3.5 on page 165.

The real-time clock is incremented for each slot. The  $E_0$  algorithm is re-initialized at the start of each new packet (i.e. for Master-to-Slave as well as for Slave-to-Master transmission). By using  $\mathsf{CLK}_{\mathsf{26-1}}$  at least one bit is changed between two transmissions. Thus, a new keystream is generated after each re-initialization. For packets covering more than a single slot, the Bluetooth clock as found in the first slot is being used for the entire packet.

The encryption algorithm  $E_0$  generates a binary keystream,  $K_{cipher}$ , which is modulo-2 added to the data to be encrypted. The cipher is symmetric; decryption is performed in exactly the same way using the same key as used for encryption.

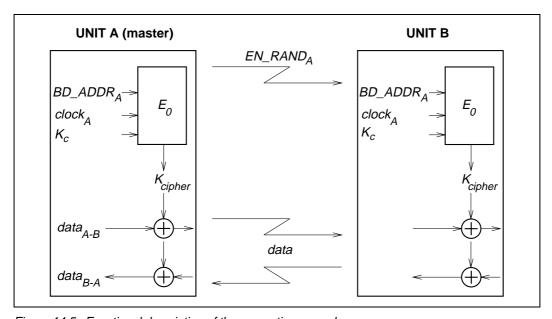



Figure 14.5: Functional description of the encryption procedure

Bluetooth.

#### 14.3.4 Encryption algorithm

The system uses linear feedback shift registers (LFSRs) whose output is combined by a simple finite state machine (called the summation combiner) with 16 states. The output of this state machine is the key stream sequence, or, during initialization phase, the randomized initial start value. The algorithm is presented with an encryption key  $K_C$ , an 48-bit Bluetooth address, the master clock bits  $\text{CLK}_{26-1}$ , and a 128-bit RAND value. Figure 14.6 on page 163 shows the setup.

There are four LFSRs (LFSR<sub>1</sub>,...,LFSR<sub>4</sub>) of lengths  $L_1=25$ ,  $L_2=31$ ,  $L_3=33$ , and,  $L_4=39$ , with feedback polynomials as specified in Table 14.4 on page 164. The total length of the registers is 128. These polynomials are all primitive. The Hamming weight of all the feedback polynomials is chosen to be five – a reasonable trade-off between reducing the number of required XOR gates in the hardware realization and obtaining good statistical properties of the generated sequences.

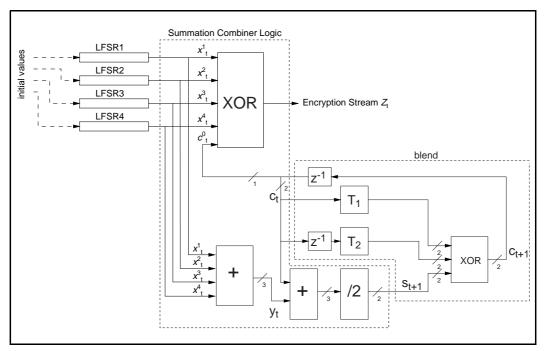



Figure 14.6: Concept of the encryption engine.

Bluetooth

| i | $L_i$ |                                         | weight |
|---|-------|-----------------------------------------|--------|
| 1 | 25    | $t^{25} + t^{20} + t^{12} + t^8 + 1$    | 5      |
| 2 | 31    | $t^{31} + t^{24} + t^{16} + t^{12} + 1$ | 5      |
| 3 | 33    | $t^{33} + t^{28} + t^{24} + t^4 + 1$    | 5      |
| 4 | 39    | $t^{39} + t^{36} + t^{28} + t^4 + 1$    | 5      |

Table 14.4: The four primitive feedback polynomials.

Let  $x_t^i$  denote the  $t^{th}$  symbol of LSFR<sub>i</sub>. From the four-tuple  $x_t^1, ..., x_t^4$  we derive the value  $y_t$  as

$$y_t = \sum_{i=1}^{4} x_t^i,$$
 (EQ 26)

where the sum is over the integers. Thus  $y_t$  can take the values 0,1,2,3, or 4. The output of the summation generator is now given by the following equations

$$z_t = x_t^1 \oplus x_t^2 \oplus x_t^3 \oplus x_t^4 \oplus c_t^0 \in \{0, 1\},$$
 (EQ 27)

$$s_{t+1} = (s_{t+1}^1, s_{t+1}^0) = \left| \frac{y_t + c_t}{2} \right| \in \{0, 1, 2, 3\},$$
 (EQ 28)

$$c_{t+1} = (c_{t+1}^1, c_{t+1}^0) = s_{t+1} \oplus T_1[c_t] \oplus T_2[c_{t-1}], \tag{EQ 29}$$

where  $T_1[.]$  and  $T_2[.]$  are two different linear bijections over GF(4). Suppose GF(4) is generated by the irreducible polynomial  $x^2 + x + 1$ , and let  $\alpha$  be a zero of this polynomial in GF(4). The mappings  $T_1$  and  $T_2$  are now defined as

$$T_1: GF(4) \to GF(4)$$
  
 $x \mapsto x$   
 $T_2: GF(4) \to GF(4)$   
 $x \mapsto (\alpha + 1)x$ .

We can write the elements of GF(4) as binary vectors. This is summarized in Table 14.5.

Since the mappings are linear, we can realize them using XOR gates; i.e.

### Bluetooth

| x  | $T_1[x]$ | $T_2[x]$ |
|----|----------|----------|
| 00 | 00       | 00       |
| 01 | 01       | 11       |
| 10 | 10       | 01       |
| 11 | 11       | 10       |

Table 14.5: The mappings  $T_1$  and  $T_2$ .

$$T_1$$
:  $(x_1, x_0) \mapsto (x_1, x_0),$   
 $T_2$ :  $(x_1, x_0) \mapsto (x_0, x_1 \oplus x_0).$ 

#### 14.3.4.1 The operation of the cipher

Figure 14.7 on page 165 gives an overview of the operation in time. The encryption algorithm shall run through the initialization phase before the start of transmitting or receiving a new packet. Thus, for multislot packets the cipher is initialized using the clock value of the first slot in the multislot sequence.

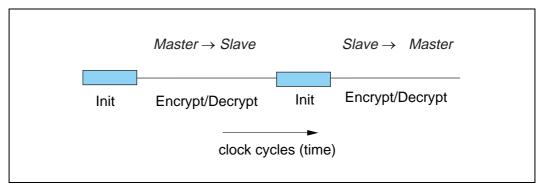



Figure 14.7: Overview of the operation of the encryption engine. Between each start of a packet (TX or RX), the LFSRs are re-initialized.

#### 14.3.5 LFSR initialization

The key stream generator needs to be loaded with an initial value for the four LFSRs (in total 128 bits) and the 4 bits that specify the values of  $c_0$  and  $c_{-1}$ . The 132 bit initial value is derived from four inputs by using the key stream generator itself. The input parameters are the key  $K_C$ , a 128-bit random number RAND, a 48-bit Bluetooth address, and the 26 master clock bits  $CLK_{26-1}$ .

The effective length of the encryption key can vary between 8 and 128 bits. Note that the actual key length as obtained from  $E_3$  is 128 bits. Then, within  $E_0$ , the key length is reduced by a modulo operation between  $K_C$  and a polynomial of desired degree. After reduction, the result is encoded with a block code in

Bluetooth.

order to distribute the starting states more uniformly. The operation is defined in (EQ 30).

When the encryption key has been created the LFSRs are loaded with their initial values. Then, 200 stream cipher bits are created by operating the generator. Of these bits, the last 128 are fed back into the key stream generator as an initial value of the four LFSRs. The values of  $c_t$  and  $c_{t-1}$  are kept. From this point on, when clocked the generator produces the encryption (decryption) sequence which is bitwise XORed to the transmitted (received) payload data.

In the following, we will denote octet i of a binary sequence X by the notation X[i]. We define bit 0 of X to be the LSB. Then, the LSB of X[i] corresponds to bit 8i of the sequence X, the MSB of X[i] is bit 8i + 7 of X. For instance, bit 24 of the Bluetooth address is the LSB of ADR[3].

The details of the initialization are as follows:

1. Create the encryption key to use from the 128-bit secret key  $K_C$  and the 128-bit publicly known EN\_RAND. Let  $L, 1 \le L \le 16$ , be the effective key length in number of octets. The resulting encryption key will be denoted  $K_C$ :

$$K'_{C}(x) = g_{2}^{(L)}(x)(K_{C}(x) \mod g_{1}^{(L)}(x)),$$
 (EQ 30)

where  $\deg(g_1^{(L)}(x)) = 8L$  and  $\deg(g_2^{(L)}(x)) \le 128 - 8L$ . The polynomials are defined in Table 14.6.

- 2. Shift in the 3 inputs  $K_C$ , the Bluetooth address, the clock, and the six-bit constant 111001 into the LFSRs. In total 208 bits are shifted in.
  - a) Open all switches shown in Figure 14.8 on page 168;
  - b) Arrange inputs bits as shown in Figure 14.8; Set the content of all shift register elements to zero. Set t = 0.
  - c) Start shifting bits into the LFSRs. The rightmost bit at each level of Figure 14.8 is the first bit to enter the corresponding LFSR.
  - d) When the first input bit at level i reaches the rightmost position of LFSR<sub>i</sub>, close the switch of this LFSR.
  - e) At t=39 (when the switch of LFSR<sub>4</sub> is closed), reset both blend registers  $c_{39}=c_{39-1}=0$ ; Up to this point, the content of  $c_t$  and  $c_{t-1}$  has been of no concern. However, from this moment forward their content will be used in computing the output sequence.
  - f) From now on output symbols are generated. The remaining input bits are continuously shifted into their corresponding shift register. When the last bit has been shifted in, the shift register is clocked with input = 0;

Note: When finished, LFSR<sub>1</sub> has effectively clocked 30 times with feedback closed, LFSR<sub>2</sub> has clocked 24 times, LFSR<sub>3</sub> has

### Bluetooth.

clocked 22 times, and LFSR<sub>4</sub> has effectively clocked 16 times with feedback closed.

- 3. To mix initial data, continue to clock until 200 symbols have been produced with all switches closed (t = 239);
- 4. Keep blend registers  $c_t$  and  $c_{t-1}$ , make a parallel load of the last 128 generated bits into the LFSRs according to Figure 14.9 at t = 240;

After the parallel load in item 4, the blend register contents will be updated for each subsequent clock.

| L  | deg   | g <sub>1</sub> <sup>(L)</sup>         | deg   | g(L)                                  |
|----|-------|---------------------------------------|-------|---------------------------------------|
| 1  | [8]   | 00000000 00000000 00000000 0000011d   | [119] | 00e275a0 abd218d4 cf928b9b bf6cb08f   |
| 2  | [16]  | 00000000 00000000 00000000 0001003f   | [112] | 000le3f6 3d7659b3 7f18c258 cff6efef   |
| 3  | [24]  | 00000000 00000000 00000000 010000db   | [104] | 000001be f66c6c3a b1030a5a 1919808b   |
| 4  | [32]  | 00000000 00000000 00000001 000000af   | [96]  | 00000001 6ab89969 de17467f d3736ad9   |
| 5  | [40]  | 00000000 00000000 00000100 00000039   | [88]  | 00000000 01630632 91da50ec 55715247   |
| 6  | [48]  | 00000000 00000000 00010000 00000291   | [77]  | 00000000 00002c93 52aa6cc0 54468311   |
| 7  | [56]  | 00000000 00000000 01000000 00000095   | [71]  | 00000000 000000b3 f7fffce2 79f3a073   |
| 8  | [64]  | 00000000 00000001 000000000 0000001b  | [63]  | 00000000 000000000 alab815b c7ec8025  |
| 9  | [72]  | 00000000 00000100 00000000 00000609   | [49]  | 00000000 00000000 0002c980 11d8b04d   |
| 10 | [08]  | 00000000 00010000 00000000 00000215   | [42]  | 00000000 00000000 0000058e 24f9a4bb   |
| 11 | [88]  | 00000000 01000000 00000000 0000013b   | [35]  | 00000000 000000000 0000000c a76024d7  |
| 12 | [96]  | 00000001 00000000 00000000 000000dd   | [28]  | 00000000 000000000 000000000 1c9c26b9 |
| 13 | [104] | 00000100 00000000 00000000 0000049d   | [21]  | 00000000 000000000 00000000 0026d9e3  |
| 14 | [112] | 00010000 00000000 00000000 0000014f   | [14]  | 00000000 00000000 00000000 00004377   |
| 15 | [120] | 01000000 00000000 00000000 000000e7   | [7]   | 00000000 00000000 00000000 00000089   |
| 16 | [128] | 1 00000000 00000000 00000000 00000000 | [0]   | 00000000 00000000 00000000 00000001   |

Table 14.6: Polynomials used when creating  $K'_C$ .

All polynomials are in hexadecimal notation. The LSB is in the rightmost position.

In Figure 14.8, all bits are shifted into the LFSRs, starting with the least significant bit (LSB). For instance, from the third octet of the address, ADR[2], first ADR<sub>16</sub> is entered, followed by ADR<sub>17</sub>, etc. Furthermore,  $CL_0$  corresponds to  $CLK_1,...$ ,  $CL_{25}$  corresponds to  $CLK_{26}$ .

Note that the output symbols  $x_i^i$ , i = 1, ..., 4 are taken from the positions 24, 24, 32, and 32 for LFSR<sub>1</sub>, LFSR<sub>2</sub>,LFSR<sub>3</sub>, and LFSR<sub>4</sub>, respectively (counting the leftmost position as number 1).

**Bluetooth** 

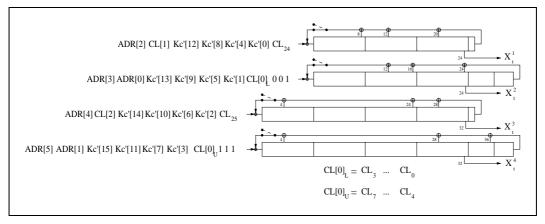



Figure 14.8: Arranging the input to the LFSRs.

In Figure 14.9, the 128 binary output symbols  $Z_0,...,Z_{127}$  are arranged in octets denoted Z[0],...,Z[15]. The LSB of Z[0] corresponds to the first of these symbols, the MSB of Z[15] is the latest output from the generator. These bits shall be loaded into the LFSRs according to the figure. It is a parallel load and no update of the blend registers is done. The first output symbol is generated at the same time. The octets are written into the registers with the LSB in the leftmost position (i.e. the opposite of before). For example,  $Z_{24}$  is loaded into position 1 of LFSR<sub>4</sub>.

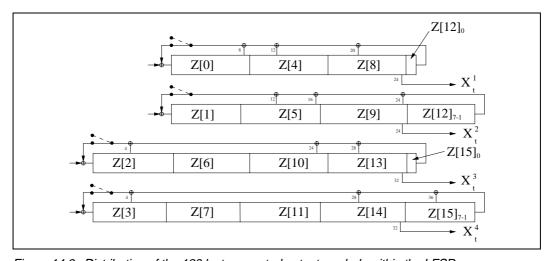



Figure 14.9: Distribution of the 128 last generated output symbols within the LFSRs.

#### 14.3.6 Key stream sequence

When the initialization is finished, the output from the summation combiner is used for encryption/decryption. The first bit to use is the one produced at the parallel load, i.e. at t=240. The circuit is run for the entire length of the current payload. Then, before the reverse direction is started, the entire initialization process is repeated with updated values on the input parameters.

Bluetooth.

Sample data of the encryption output sequence can be found in "Appendix IV" on page 899, Encryption Sample Data. A necessary, but not sufficient, condition for all Bluetooth-compliant implementations is to produce these encryption streams for identical initialization values.

#### 14.4 AUTHENTICATION

The entity authentication used in Bluetooth uses a challenge-response scheme in which a claimant's knowledge of a secret key is checked through a 2-move protocol using symmetric secret keys. The latter implies that a correct claimant/ verifier pair share the same secret key, for example K. In the challenge-response scheme the verifier challenges the claimant to authenticate a random input (the challenge), denoted by  $AU_RAND_A$ , with an authentication code, denoted by  $E_1$ , and return the result SRES to the verifier, see Figure 14.10 on page 169. This figure shows also that in Bluetooth the input to  $E_1$  consists of the tuple  $AU_RAND_A$  and the Bluetooth device address (BD\_ADDR) of the claimant. The use of this address prevents a simple reflection attack<sup>1</sup>. The secret K shared by units A and B is the current link key.

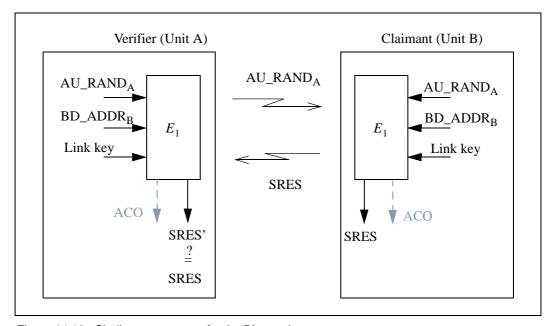



Figure 14.10: Challenge-response for the Bluetooth.

The challenge-response scheme for symmetric keys used in the Bluetooth is depicted in Figure 14.11 on page 170.

The reflection attack actually forms no threat in Bluetooth because all service requests are dealt with on a FIFO bases. When pre-emption is introduced, this attack is potentially dangerous.

page 170 of 1082

Baseband Specification

Bluetooth

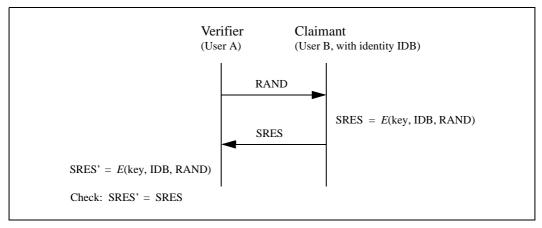



Figure 14.11: Challenge-response for symmetric key systems.

In the Bluetooth, the verifier is not necessarily the master. The application indicates who has to be authenticated by whom. Certain applications only require a one-way authentication. However, in some peer-to-peer communications, one might prefer a mutual authentication in which each unit is subsequently the challenger (verifier) in two authentication procedures. The LM coordinates the indicated authentication preferences by the application to determine in which direction(s) the authentication(s) has to take place. For mutual authentication with the units of Figure 14.10 on page 169, after unit A has successfully authenticated unit B, unit B could authenticate unit A by sending a AU\_RAND\_B (different from the AU\_RAND\_A that unit A issued) to unit A, and deriving the SRES and SRES' from the new AU\_RAND\_B, the address of unit A, and the link key  $K_{AB}$ .

If an authentication is successful the value of ACO as produced by  $E_1$  should be retained.

#### 14.4.1 Repeated attempts

When the authentication attempt fails, a certain waiting interval must pass before a new authentication attempt can be made. For each subsequent authentication failure with the same Bluetooth address, the waiting interval shall be increased exponentially. That is, after each failure, the waiting interval before a new attempt can be made, for example, twice as long as the waiting interval prior to the previous attempt<sup>1</sup>. The waiting interval shall be limited to a maximum. The maximum waiting interval depends on the implementation. The waiting time shall exponentially decrease to a minimum when no new failed attempts are being made during a certain time period. This procedure prevents an intruder to repeat the authentication procedure with a large number of different keys.

<sup>1.</sup> An other appropriate value larger than 1 may be used.

Bluetooth.

page 171 of 1082

To make the system somewhat less vulnerable to denial-of-service attacks, the Bluetooth units should keep a list of individual waiting intervals for each unit it has established contact with. Clearly, the size of this list must be restricted only to contain the N units with which the most recent contact has been made. The number N can vary for different units depending on available memory size and user environment.

# 14.5 THE AUTHENTICATION AND KEY-GENERATING FUNCTIONS

This section describes the algorithmic means for supporting the Bluetooth security requirements on authentication and key generation.

#### 14.5.1 The authentication function E<sub>1</sub>

The authentication function  $E_1$  proposed for the Bluetooth is a computationally secure authentication code, or often called a MAC.  $E_1$  uses the encryption function called SAFER+. The algorithm is an enhanced version<sup>1</sup> of an existing 64-bit block cipher SAFER-SK128, and it is freely available. In the sequel the block cipher will be denoted as the function  $A_r$  which maps under a 128-bit key, a 128-bit input to a 128-bit output, i.e.

$$A_r: \{0, 1\}^{128} \times \{0, 1\}^{128} \to \{0, 1\}^{128}$$

$$(k \times x) \mapsto t.$$
(EQ 31)

The details of  $A_r$  are given in the next section. The function  $E_1$  is constructed using  $A_r$  as follows

$$E_1$$
:  $\{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{48} \to \{0, 1\}^{32} \times \{0, 1\}^{96}$ 
(EQ 32)
$$(K, \text{RAND, address}) \mapsto (\text{SRES, ACO}),$$

where SRES = Hash(K, RAND, address, 6)[0, ..., 3], where Hash is a keyed hash function defined as<sup>2</sup>.

$$Hash: \{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{8 \times L} \times \{6, 12\} \to \{0, 1\}^{128}$$

$$(K, I_1, I_2, L) \mapsto A'_r([\tilde{K}], [E(I_2, L) +_{16} (A_r(K, I_1) \oplus_{16} I_1)]),$$
(EQ 33)

and where

<sup>1.</sup> It is presently one of the contenders for the Advanced Encryption Standard (AES) submitted by Cylink, Corp, Sunnyvale, USA

<sup>2.</sup> The operator  $+_{16}$  denotes bytewise addition mod 256 of the 16 octets, and the operator  $\oplus_{16}$  denotes bytewise XORing of the 16 octets.

page 172 of 1082

Baseband Specification

Bluetooth.

$$E: \{0, 1\}^{8 \times L} \times \{6, 12\} \to \{0, 1\}^{8 \times 16}$$

$$(X[0, ..., L-1], L) \mapsto (X[i \pmod{L})] \text{ for } i = 0...15),$$
(EQ 34)

is an expansion of the L octet word X into a 128-bit word. Thus we see that we have to evaluate the function  $A_r$  twice for each evaluation of  $E_1$ . The key  $\tilde{K}$  for the second use of  $A_r$  (actually  $A_r$ ) is offseted from K as follows<sup>1</sup>

$$K[0] = (K[0] + 233) \mod 256, K[1] = K[1] \oplus 229,$$
 $\tilde{K}[2] = (K[2] + 223) \mod 256, K[3] = K[3] \oplus 193,$ 
 $\tilde{K}[4] = (K[4] + 179) \mod 256, K[5] = K[5] \oplus 167,$ 
 $\tilde{K}[6] = (K[6] + 149) \mod 256, K[7] = K[7] \oplus 131,$ 
 $\tilde{K}[8] = K[8] \oplus 233,$ 
 $\tilde{K}[9] = (K[9] + 229) \mod 256,$ 
 $\tilde{K}[10] = K[10] \oplus 223,$ 
 $\tilde{K}[11] = (K[11] + 193) \mod 256,$ 
 $\tilde{K}[12] = K[12] \oplus 179,$ 
 $\tilde{K}[13] = (K[13] + 167) \mod 256,$ 
 $\tilde{K}[14] = K[14] \oplus 149,$ 
 $\tilde{K}[15] = (K[15] + 131) \mod 256.$ 

A data flowchart of the computation of  $E_1$  is depicted in Figure 14.12 on page 173.  $E_1$  is also used to deliver the parameter ACO (Authenticated Ciphering Offset) that is used in the generation of the ciphering key by  $E_3$ , see equations (EQ 23) and (EQ 43). The value of ACO is formed by the octets 4 through 15 of the output of the hash function defined in (EQ 33), i.e.

$$ACO = Hash(K, RAND, address, 6)[4, ..., 15].$$
 (EQ 36)

<sup>1.</sup> The constants are the first largest primes below 257 for which 10 is a primitive root.

Bluetooth.

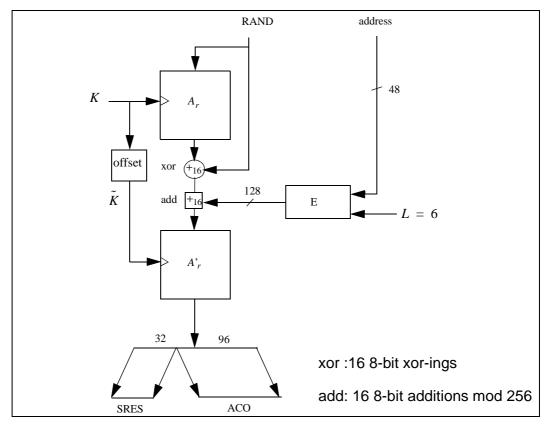



Figure 14.12: Flow of data for the computation of  $E_1$ .

#### 14.5.2 The functions A<sub>r</sub> and A'<sub>r</sub>

The function  $A_r$  is identical to SAFER+. It consists of a set of 8 layers, (each layer is called a round) and a parallel mechanism for generating the sub keys  $K_p[j]$ , p=1,2,...,17, the so-called round keys to be used in each round. The function will produce a 128-bit result from a 128-bit "random" input string and a 128-bit "key". Besides the function  $A_r$ , a slightly modified version referred to as  $A'_r$  is used in which the input of round 1 is added to the input of the 3rd round. This is done to make the modified version non-invertible and prevents the use of  $A'_r$  (especially in  $E_{2x}$ ) as an encryption function. See Figure 14.13 on page 174 for details.

#### 14.5.2.1 The round computations

The computations in each round are a composition of encryption with a round key, substitution, encryption with the next round key, and, finally, a Pseudo Hadamard Transform (PHT). The computations in a round are shown in Figure 14.13 on page 174. The sub keys for round r, r = 1, 2, ..., 8 are denoted

page 174 of 1082

Baseband Specification

### Bluetooth.

 $K_{2r-1}[j]$ ,  $K_{2r}[j]$ , j=0,1,...,15. After the last round  $k_{17}[j]$  is applied in a similar fashion as all previous odd numbered keys.

#### 14.5.2.2 The substitution boxes "e" and "I"

In Figure 14.13 on page 174 two boxes occur, marked "e" and "l". These boxes implement the same substitutions as used in SAFER+; i.e. they implement

> :  $\{0, ..., 255\} \rightarrow \{0, ..., 255\},$ e, l

 $i \mapsto (45^i \pmod{257}) \pmod{256}$ ,

:  $i \mapsto j \text{ s.t. } i = e(j).$ 

Their role, as in the SAFER+ algorithm, is to introduce non-linearity.

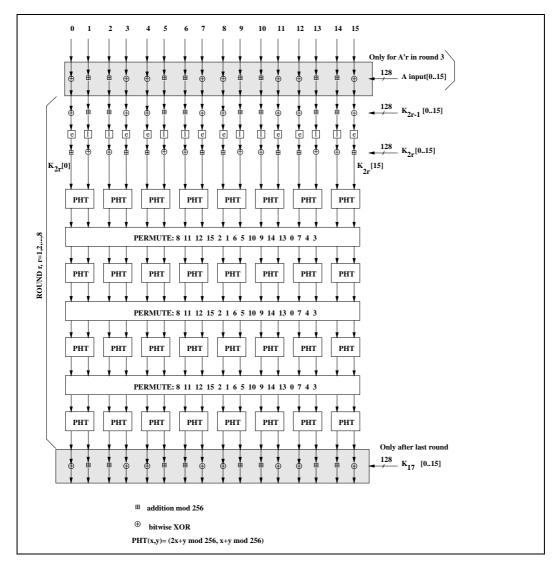



Figure 14.13: One round in A, and A, The permuatation boxes show how input byte indices are mapped onto output byte indices. Thus, position 0 (leftmost) is mapped on position 8, position 1 is mapped on position 11, et cetera.

Bluetooth.

#### 14.5.2.3 Key scheduling

In each round, 2 batches of 16 octet-wide keys are needed. These so-called round keys are derived as specified by the key scheduling in SAFER+. Figure 14.14 on page 175 gives an overview of how the round keys  $K_p[j]$  are determined. The bias vectors  $B_2$ ,  $B_3$ , ...,  $B_{17}$  are computed according to following equation:

$$B_p[i] = ((45^{(45^{17p+i+1} \mod 257)} \mod 257) \mod 256), \text{ for } i = 0, ..., 15.$$
 (EQ 37)

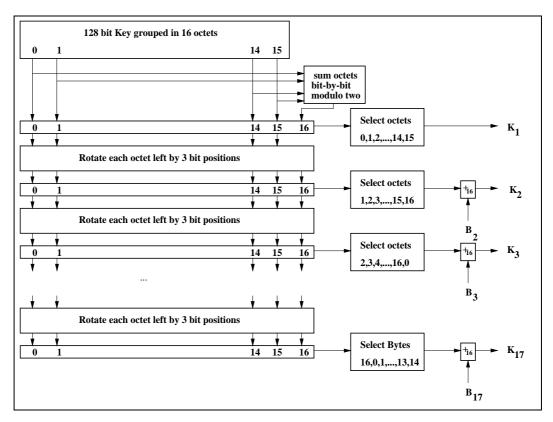



Figure 14.14: Key scheduling in  $A_r$ .

#### 14.5.3 $E_2$ -Key generation function for authentication

The key used for authentication is derived through a procedure that is shown in Figure 14.15 on page 177. The figure shows two different modes of operation for the algorithm. In the first mode, the function  $E_2$  should produce on input of a 128-bit RAND value and a 48-bit address, a 128-bit link key K. This mode is utilized when creating unit keys and combination keys. In the second mode the function  $E_2$  should produce, on input of a 128-bit RAND value and an L octet user PIN, a 128-bit link key K. The second mode is used to create the initialization key, and also whenever a master key is to be generated.

Bluetooth Security 29 November 1999 175

page 176 of 1082

Baseband Specification

Bluetooth.

When the initialization key is generated, the PIN is augmented with the BD\_ADDR of the claimant unit. The augmentation always starts with the least significant octet of the address immediately following the most significant octet of the PIN. Since the maximum length of the PIN used in the algorithm cannot exceed 16 octets, it is possible that not all octets of BD\_ADDR will be used.

This key generating algorithm again exploits the cryptographic function. Formally  $E_2$  can be expressed for mode 1 (denoted  $E_{21}$ ) as

$$E_{21}$$
:  $\{0, 1\}^{128} \times \{0, 1\}^{48} \to \{0, 1\}^{128}$   
(EQ 38)  
(RAND, address)  $\mapsto A'_r(X, Y)$ 

where (for mode 1)

$$\begin{cases} X = \text{RAND}[0...14] \cup (\text{RAND}[15] \oplus 6) \\ 15 \\ Y = \bigcup_{i=0} \text{address}[i \pmod{6}] \end{cases}$$
 (EQ 39)

Let L be the number of octets in the user PIN. The augmenting is defined by

$$PIN' = \begin{cases} PIN[0...L-1] \cup BD\_ADDR_B[0...min\{5, 15-L\}], & L < 16, \\ PIN[0...L-1], & L = 16, \end{cases}$$
(EQ 40)

where it is assumed that unit B is the claimant. Then, in mode 2,  $E_2$  (denoted  $E_{22}$ ) can be expressed as

$$E_{22}$$
:  $\{0, 1\}^{8L'} \times \{0, 1\}^{128} \times \{1, 2, ..., 16\} \rightarrow \{0, 1\}^{128}$ 
(EQ 41)

where

$$\begin{cases}
X = \bigcup_{i=0}^{15} PIN'[i \pmod{L'}], \\
i = 0 \\
Y = RAND[0...14] \cup (RAND[15] \oplus L'),
\end{cases}$$
(EQ 42)

and  $L' = \min\{16, L+6\}$  is the number of octets in PIN'.

Bluetooth.

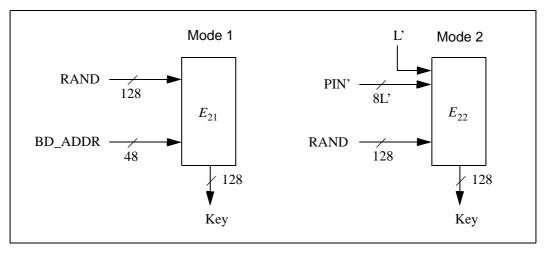



Figure 14.15: Key generating algorithm  $E_2$  and its two modes. Mode 1 is used for unit and combination keys, while mode 2 is used for  $K_{init}$  and  $K_{master}$ .

#### 14.5.4 E<sub>3</sub>-Key generation function for encryption

The ciphering key  $K_C$  used by  $E_0$  is generated by  $E_3$ . The function  $E_3$  is constructed using  $A'_r$  as follows

$$E_3$$
:  $\{0, 1\}^{128} \times \{0, 1\}^{128} \times \{0, 1\}^{96} \to \{0, 1\}^{128}$ 
(EQ 43)
$$(K, \text{RAND, COF}) \mapsto Hash(K, \text{RAND, COF, 12})$$

where Hash is the hash function as defined by (EQ 33). Note that the produced key length is 128 bits. However, before use within  $E_0$ , the encryption key  $K_C$  will be shortened to the correct encryption key length, as described in Section 14.3.5 on page 165. A block scheme of  $E_3$  is depicted in Figure 14.16.

The value of COF is determined as specified by equation (EQ 23).

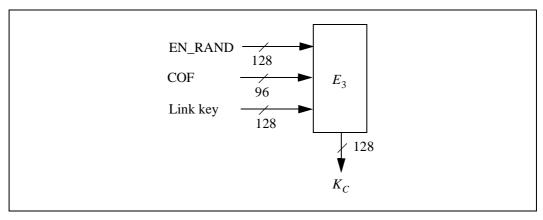



Figure 14.16: Generation of the encryption key.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 178 of 1082

Baseband Specification

Bluetooth.

# Bluetooth.

# 15 LIST OF FIGURES

| Figure 1.1:  | Different functional blocks in the Bluetooth system                              | 41     |
|--------------|----------------------------------------------------------------------------------|--------|
| Figure 1.2:  | Piconets with a single slave operation (a), a multi-slave                        |        |
|              | operation (b) and a scatternet operation (c)                                     | 42     |
| Figure 2.1:  | TDD and timing                                                                   | 44     |
| Figure 2.2:  | Multi-slot packets                                                               | 44     |
| Figure 4.1:  | Standard packet format.                                                          | 47     |
| Figure 4.2:  | Access code format                                                               | 48     |
| Figure 4.3:  | Preamble                                                                         | 49     |
| Figure 4.4:  | Trailer in CAC when MSB of sync word is 0 (a), and when I of sync word is 1 (b). |        |
| Figure 4.5:  | Header format.                                                                   |        |
| Figure 4.6:  | Format of the FHS payload                                                        |        |
| Figure 4.7:  | DV packet format                                                                 |        |
| Figure 4.8:  | Payload header format for single-slot packets                                    |        |
| Figure 4.9:  | Payload header format for multi-slot packets.                                    |        |
| rigure 4.5.  | a yioda nedder format for mutir slot packets.                                    | 02     |
| Figure 5.1:  | Bit-repetition encoding scheme.                                                  | 67     |
| Figure 5.2:  | LFSR generating the (15,10) shortened Hamming code                               | 68     |
| Figure 5.3:  | Receive protocol for determining the ARQN bit                                    | 70     |
| Figure 5.4:  | Retransmit filtering for packets with CRC                                        | 71     |
| Figure 5.5:  | Broadcast repetition scheme                                                      | 73     |
| Figure 5.6:  | The LFSR circuit generating the HEC.                                             | 74     |
| Figure 5.7:  | Initial state of the HEC generating circuit                                      | 75     |
| Figure 5.8:  | HEC generation and checking.                                                     | 75     |
| Figure 5.9:  | The LFSR circuit generating the CRC.                                             | 75     |
| Figure 5.10: | Initial state of the CRC generating circuit                                      | 76     |
| Figure 5.11: | CRC generation and checking                                                      |        |
| Figure 7.1:  | Data whitening LFSR.                                                             | 79     |
| Figure 8.1:  | Functional diagram of TX buffering                                               | 81     |
| Figure 8.2:  | Functional diagram of RX buffering                                               | 84     |
| Figure 8.3:  | Header bit processes.                                                            | 86     |
| Figure 8.4:  | Payload bit processes.                                                           | 86     |
| Figure 9.1:  | RX/TX cycle of Bluetooth master transceiver in normal mod                        | de for |
|              | single-slot packets.                                                             |        |
| Figure 9.2:  | RX/TX cycle of Bluetooth slave transceiver in normal mode single-slot packets.   |        |
| Figure 9.3:  | RX timing of slave returning from hold state                                     |        |
|              |                                                                                  |        |

| Baseband Spe | cification Blueton                                                                                                              | oth  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 9.4:  | RX/TX cycle of Bluetooth transceiver in PAGE mode                                                                               | 91   |
| Figure 9.5:  | Timing of FHS packet on successful page in first half slot                                                                      |      |
| Figure 9.6:  | Timing of FHS packet on successful page in second half slot.                                                                    |      |
| Figure 9.7:  | RX/TX timing in multi-slave configuration                                                                                       |      |
| Figure 10.1: | Bluetooth clock.                                                                                                                | . 96 |
| Figure 10.2: | Derivation of CLKE                                                                                                              | . 97 |
| Figure 10.3: | Derivation of CLK in master (a) and in slave (b)                                                                                | .97  |
| Figure 10.4: | State diagram of Bluetooth link controller                                                                                      | . 98 |
| Figure 10.5: | Conventional page (a), page while one SCO link present (b), page while two SCO links present (c)                                | 103  |
| Figure 10.6: | Messaging at initial connection when slave responds to first pa message                                                         | ge   |
| Figure 10.7: | Messaging at initial connection when slave responds to second page message.                                                     | d    |
| Figure 10.8: | General beacon channel format                                                                                                   |      |
| •            | Definition of access window                                                                                                     |      |
|              | :Access procedure applying the polling technique                                                                                |      |
|              | :Disturbance of access window by SCO traffic                                                                                    |      |
|              | Extended sleep interval of parked slaves                                                                                        |      |
| Figure 11.1: | General block diagram of hop selection scheme                                                                                   | 128  |
| Figure 11.2: | Hop selection scheme in CONNECTION state                                                                                        | 128  |
| Figure 11.3: | Block diagram of hop selection kernel for the 79-hop system. 1                                                                  | 129  |
| Figure 11.4: | Block diagram of hop selection kernel for the 23-hop system. 1                                                                  | 129  |
| Figure 11.5: | XOR operation for the 79-hop system. The 23-hop system is the same except for the Z'4/Z4 wire that does not exist               |      |
| Figure 11.6: | Permutation operation for the 79 hop system                                                                                     | 132  |
| Figure 11.7: | Permutation operation for the 23 hop system                                                                                     | 132  |
|              | Butterfly implementation.                                                                                                       |      |
| Figure 12.1: | Block diagram of CVSD encoder with syllabic companding1                                                                         | 140  |
| -            | Block diagram of CVSD decoder with syllabic companding1                                                                         |      |
| Figure 12.3: | Accumulator procedure1                                                                                                          | 140  |
|              | Format of BD_ADDR                                                                                                               |      |
| •            | Construction of the sync word.                                                                                                  |      |
| Figure 13.3: | LFSR and the starting state to generate1                                                                                        | 47   |
|              | Generation of unit key. When the unit key has been exchanged the initialization key shall be discarded in both units.           |      |
| Figure 14.2: | Generating a combination key. The old link key (K) shall be discarded after the exchange of a new combination key has succeeded | 156  |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 181 of 1082

| Baseband Spec | cification                                                                                              | Bluetooth |
|---------------|---------------------------------------------------------------------------------------------------------|-----------|
| Figure 14.3:  | Master link key distribution and computation of the corresponding encryption key.                       | 159       |
| Figure 14.4:  | Stream ciphering for Bluetooth with E0                                                                  |           |
| Figure 14.5:  | Functional description of the encryption procedure                                                      | 162       |
| Figure 14.6:  | Concept of the encryption engine                                                                        | 163       |
| Figure 14.7:  | Overview of the operation of the encryption engine. Be each start of a packet (TX or RX), the LFSRs are |           |
|               | re-initialized.                                                                                         |           |
| Figure 14.8:  | Arranging the input to the LFSRs.                                                                       | 168       |
| Figure 14.9:  | Distribution of the 128 last generated output symbols v LFSRs.                                          |           |
| Figure 14.10  | :Challenge-response for the Bluetooth                                                                   | 169       |
| Figure 14.11  | :Challenge-response for symmetric key systems                                                           | 170       |
| Figure 14.12  | :Flow of data for the computation of $E_1$                                                              | 173       |
| Figure 14.13  | :One round in A <sub>r</sub> and A' <sub>r</sub>                                                        | 174       |
| Figure 14.14  | :Key scheduling in A <sub>r</sub>                                                                       | 175       |
| Figure 14.15  | :Key generating algorithm $E_2$ and its two modes.                                                      |           |
|               | Mode 1 is used for unit and combination keys, while m used for $K_{init}$ and $K_{master}$              |           |
| Figure 14.16  | :Generation of the encryption key                                                                       | 177       |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 182 of 1082

Baseband Specification

Bluetooth.

# Bluetooth.

# **16 LIST OF TABLES**

| Table 2.1:  | Available RF channels                                                                             | 43            |
|-------------|---------------------------------------------------------------------------------------------------|---------------|
| Table 4.1:  | Summary of access code types.                                                                     | 49            |
| Table 4.2:  | Packets defined for SCO and ACL link types                                                        |               |
| Table 4.3:  | Description of the FHS payload                                                                    | 56            |
| Table 4.4:  | Contents of SR field                                                                              | 57            |
| Table 4.5:  | Contents of SP field                                                                              | 57            |
| Table 4.6:  | Contents of page scan mode field                                                                  | 58            |
| Table 4.7:  | Logical channel L_CH field contents                                                               | 63            |
| Table 4.8:  | Use of payload header flow bit on the logical channels                                            | 63            |
| Table 4.9:  | Link control packets                                                                              | 65            |
| Table 4.10: | ACL packets                                                                                       | 65            |
| Table 4.11: | SCO packets                                                                                       | 65            |
| Table 10.1: | Relationship between scan interval, train repetition, and page                                    |               |
| Table 10.2: | Relationship between train repetition, and paging modes Reand R2 when SCO links are present       | 0, R1         |
| Table 10.3: | Initial messaging during start-up.                                                                | 104           |
| Table 10.4: | Increase of train repetition when SCO links are present                                           | 111           |
| Table 10.5: | Messaging during inquiry routines.                                                                | 112           |
| Table 10.6: | Mandatory scan periods for P0, P1, P2 scan period modes                                           | 112           |
| Table 11.1: | Control of the butterflies for the 79 hop system                                                  | 131           |
| Table 11.2: | Control of the butterflies for the 23 hop system                                                  | 131           |
| Table 11.3: | Control for 79-hop system.                                                                        | 134           |
| Table 11.4: | Control for 23-hop system                                                                         | 134           |
| Table 12.1: | Voice coding schemes supported on the air interface                                               | 139           |
| Table 12.2: | CVSD parameter values. The values are based on a 16 bit signed number output from the accumulator |               |
| Table 14.1: | Entities used in authentication and encryption procedures                                         | 149           |
| Table 14.2: | Possible traffic modes for a slave using a semi-permanent key                                     |               |
| Table 14.3: | Possible encryption modes for a slave in possession of a m key.                                   | naster<br>161 |
| Table 14.4: | The four primitive feedback polynomials                                                           | 164           |
| Table 14.5: | The mappings $T_1$ and $T_2$                                                                      | 165           |

| <b>BLUETOOTH SPECIFICATION '</b> | Version | 1.0 B |
|----------------------------------|---------|-------|
|----------------------------------|---------|-------|

page 184 of 1082

| Baseband Spe | ecification                                                                                                         | Bluetooth. |
|--------------|---------------------------------------------------------------------------------------------------------------------|------------|
| Table 14.6:  | Polynomials used when creating . All polynomials are in hexadecimal notation. The LSB is in the rightmost position. |            |
| Table 14.6:  | Polynomials used when creating . All polynomials are in hexadecimal notation. The LSB is in the rightmost position. |            |

# Part C

# LINK MANAGER PROTOCOL

This specification describes the Link Manager Protocol (LMP) which is used for link set-up and control. The signals are interpreted and filtered out by the Link Manager on the receiving side and are not propagated to higher layers.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 186 of 1082

Link Manager Protocol

Bluetooth.

Link Manager Protocol

# Bluetooth.

# **CONTENTS**

|                 |                                                                                                                                                                                                         | 191                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| at of LN        | ЛР                                                                                                                                                                                                      | 192                                                    |
| <b>'roced</b> u | re Rules and PDUs                                                                                                                                                                                       | 193                                                    |
| Genera          | al Response Messages                                                                                                                                                                                    | 193                                                    |
|                 |                                                                                                                                                                                                         |                                                        |
| 3.2.1           | Claimant has link key                                                                                                                                                                                   | 194                                                    |
| 3.2.2           | Claimant has no link key                                                                                                                                                                                | 194                                                    |
| 3.2.3           | Repeated attempts                                                                                                                                                                                       | 195                                                    |
| _               |                                                                                                                                                                                                         |                                                        |
| 3.3.1           |                                                                                                                                                                                                         |                                                        |
| 3.3.2           | Claimant requests to become verifier                                                                                                                                                                    | 195                                                    |
| 3.3.3           | Claimant rejects pairing                                                                                                                                                                                | 196                                                    |
| 3.3.4           | Creation of the link key                                                                                                                                                                                | 196                                                    |
| 3.3.5           | Repeated attempts                                                                                                                                                                                       | 197                                                    |
| Change          | e Link Key                                                                                                                                                                                              | 19                                                     |
| Change          | e the Current Link Key                                                                                                                                                                                  | 198                                                    |
| 3.5.1           | Change to a temporary link key                                                                                                                                                                          | 198                                                    |
| 3.5.2           | Make the semi-permanent link key the current                                                                                                                                                            |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 | • •                                                                                                                                                                                                     |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 | •                                                                                                                                                                                                       |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
| 3.6.5           | Change encryption mode, key or random number                                                                                                                                                            | 202                                                    |
|                 | •                                                                                                                                                                                                       |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
| _               | •                                                                                                                                                                                                       |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 | •                                                                                                                                                                                                       |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 |                                                                                                                                                                                                         |                                                        |
|                 | Master or slave requests hold mode                                                                                                                                                                      |                                                        |
|                 | General Auther 3.2.1 3.2.2 3.2.3 Pairing 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Chang Chang 3.5.1 3.5.2 Encryp 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 Clock Gold Of Timing LMP V Support Switch Name Detach Hold M 3.15.1 | 3.2.2 Claimant has no link key 3.2.3 Repeated attempts |

| Link I | Manager | Protocol                                                | Bluetooth |  |
|--------|---------|---------------------------------------------------------|-----------|--|
|        | 3.16    | Sniff Mode                                              | 209       |  |
|        |         | 3.16.1 Master forces a slave into sniff mode            | 210       |  |
|        |         | 3.16.2 Master or slave requests sniff mode              | 210       |  |
|        |         | 3.16.3 Moving a slave from sniff mode to active mo      | ode 211   |  |
|        | 3.17    |                                                         |           |  |
|        |         | 3.17.1 Master forces a slave into park mode             | 213       |  |
|        |         | 3.17.2 Master requests slave to enter park mode         |           |  |
|        |         | 3.17.3 Slave requests to be placed in park mode         |           |  |
|        |         | 3.17.4 Master sets up broadcast scan window             |           |  |
|        |         | 3.17.5 Master modifies beacon parameters                | 214       |  |
|        |         | 3.17.6 Unparking slaves                                 | 214       |  |
|        | 3.18    | Power Control                                           |           |  |
|        | 3.19    | Channel Quality-driven Change Between DM and D          |           |  |
|        | 3.20    | Quality of Service (QoS)                                |           |  |
|        |         | 3.20.1 Master notifies slave of the quality of service  |           |  |
|        | 3.21    | 3.20.2 Device requests new quality of service SCO Links |           |  |
|        | 3.21    | 3.21.1 Master initiates an SCO link                     |           |  |
|        |         | 3.21.2 Slave initiates an SCO link                      |           |  |
|        |         | 3.21.3 Master requests change of SCO parameters         |           |  |
|        |         | 3.21.4 Slave requests change of SCO parameters.         |           |  |
|        |         | 3.21.5 Remove an SCO link                               |           |  |
|        | 3.22    | Control of Multi-slot Packets                           |           |  |
|        | 3.23    | Paging Scheme                                           |           |  |
|        |         | 3.23.1 Page mode                                        |           |  |
|        |         | 3.23.2 Page scan mode                                   | 223       |  |
|        | 3.24    | Link Supervision                                        | 224       |  |
| 4      | Conr    | nection Establishment                                   | 225       |  |
| 5      | Sum     | mary of PDUs                                            | 226       |  |
|        | 5.1     | Description of Parameters                               |           |  |
|        |         | 5.1.1 Coding of features                                | 234       |  |
|        |         | 5.1.2 List of error reasons                             | 235       |  |
|        | 5.2     | Default Values                                          | 236       |  |

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 189 of 1082

| Link | Manager         | Bluetooth                                |     |
|------|-----------------|------------------------------------------|-----|
| 6    | Test Modes      |                                          | 237 |
|      | 6.1             | Activation and Deactivation of Test Mode | 237 |
|      | 6.2             | Control of Test Mode                     | 237 |
|      | 6.3             | Summary of Test Mode PDUs                | 238 |
| 7    | Error Handling  |                                          | 239 |
| 8    | List of Figures |                                          | 241 |
| 9    | List            | of Tables                                | 243 |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 190 of 1082

Link Manager Protocol

Bluetooth.

Link Manager Protocol

Bluetooth.

#### 1 GENERAL

LMP messages are used for link set-up, security and control. They are transferred in the payload instead of L2CAP and are distinguished by a reserved value in the L\_CH field of the payload header. The messages are filtered out and interpreted by LM on the receiving side and are not propagated to higher layers.

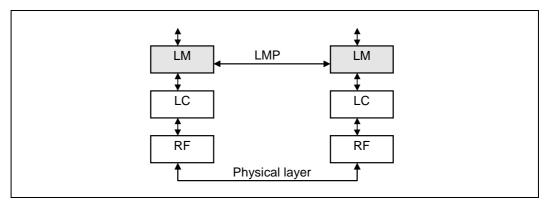



Figure 1.1: Link Manager's place on the global scene.

Link Manager messages have higher priority than user data. This means that if the Link Manager needs to send a message, it shall not be delayed by the L2CAP traffic, although it can be delayed by many retransmissions of individual baseband packets.

We do not need to explicitly acknowledge the messages in LMP since LC (see Baseband Specification Section 5, on page 67) provides us with a reliable link.

The time between receiving a baseband packet carrying an LMP PDU and sending a baseband packet carrying a valid response PDU, according to the procedure rules in Section 3 on page 193, must be less than the LMP Response Timeout. The value of this timeout is 30 seconds.

Bluetooth.

## 2 FORMAT OF LMP

LM PDUs are always sent as single-slot packets and the payload header is therefore one byte. The two least significant bits in the payload header determine the logical channel. For LM PDUs these bits are set.

| L_CH code | Logical Channel | Information              |
|-----------|-----------------|--------------------------|
| 00        | NA              | undefined                |
| 01        | UA/I            | Continuing L2CAP message |
| 10        | UA/I            | Start L2CAP message      |
| 11        | LM              | LMP message              |

Table 2.1: Logical channel L CH field contents.

The FLOW bit in the payload header is always one and is ignored on the receiving side. Each PDU is assigned a 7-bit opcode used to uniquely identify different types of PDUs, see Table 5.1 on page 226. The opcode and a one-bit transaction ID are positioned in the first byte of the payload body. The transaction ID is positioned in the LSB. It is 0 if the PDU belongs to a transaction initiated by the master and 1 if the PDU belongs to a transaction initiated by the slave. If the PDU contains one or more parameters these are placed in the payload starting at the second byte of the payload body. The number of bytes used depends on the length of the parameters. If an SCO link is present using HV1 packets and length of *content* is less than 9 bytes the PDUs can be transmitted in DV packets. Otherwise DM1 packets must be used. All parameters have little endian format, i.e. the least significant byte is transmitted first.

The source/destination of the PDUs is determined by the AM\_ADDR in the packet header.

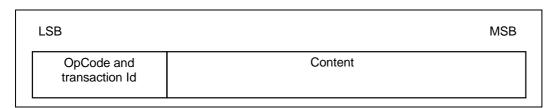



Figure 2.1: Payload body when LM PDUs are sent.

Each PDU is either mandatory or optional. The M/O field in the tables of Section 3 indicates this. The LM does not need to be able to transmit a PDU that is optional. The LM must recognize all optional PDUs that it receives and, if a response is required, send a valid response according to the procedure rules in Section 3. The reason that should be used in this case is *unsupported LMP feature*. If the optional PDU that is received does not require a response, no response is sent. Which of the optional PDUs a device supports can be requested, see Section 3.11 on page 205.

Bluetooth

## 3 THE PROCEDURE RULES AND PDUs

Each procedure is described and depicted with a sequence diagram. The following symbols are used in the sequence diagrams:

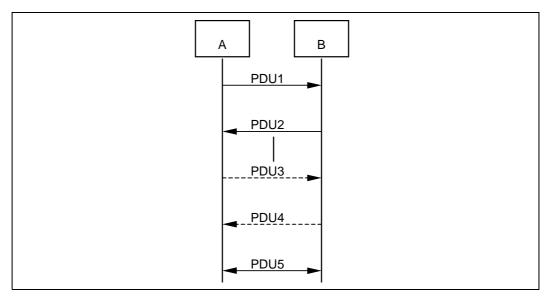



Figure 3.1: Symbols used in sequence diagrams.

PDU1 is a PDU sent from A to B. PDU2 is a PDU sent from B to A. PDU3 is a PDU that is optionally sent from A to B. PDU4 is a PDU that is optionally sent from B to A. PDU5 is a PDU sent from either A or B. A vertical line indicates that more PDUs can optionally be sent.

## 3.1 GENERAL RESPONSE MESSAGES

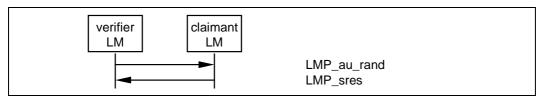
The PDUs LMP\_accepted and LMP\_not\_accepted are used as response messages to other PDUs in a number of different procedures. The PDU LMP\_accepted includes the opcode of the message that is accepted. The PDU LMP\_not\_accepted includes the opcode of the message that is not accepted and the reason why it is not accepted.

| M/O | PDU              | Contents          |
|-----|------------------|-------------------|
| M   | LMP_accepted     | op code           |
| М   | LMP_not_accepted | op code<br>reason |

Table 3.1: General response messages.

Bluetooth

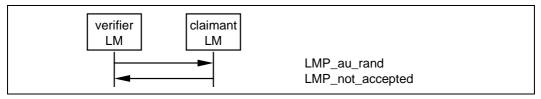
## 3.2 AUTHENTICATION


The authentication procedure is based on a challenge-response scheme as described in Baseband Specification Section 14.4, on page 169. The verifier sends an LMP\_au\_rand PDU which contains a random number (the challenge) to the claimant. The claimant calculates a response, which is a function of the challenge, the claimant's BD\_ADDR and a secret key. The response is sent back to the verifier, which checks if the response was correct or not. How the response should be calculated is described in Baseband Specification Section 14.5.1, on page 171. A successful calculation of the authentication response requires that two devices share a secret key. How this key is created is described in Section 3.3 on page 195. Both the master and the slave can be verifiers. The following PDUs are used in the authentication procedure:

| M/ | O | PDU         | Contents                |
|----|---|-------------|-------------------------|
| М  |   | LMP_au_rand | random number           |
| М  |   | LMP_sres    | authentication response |

Table 3.2: PDUs used for authentication.

## 3.2.1 Claimant has link key


If the claimant has a link key associated with the verifier, it calculates the response and sends it to the verifier with LMP\_sres. The verifier checks the response. If the response is not correct, the verifier can end the connection by sending LMP\_detach with the reason code *authentication failure*, see Section 3.14 on page 207.



Sequence 1: Authentication. Claimant has link key.

## 3.2.2 Claimant has no link key

If the claimant does not have a link key associated with the verifier it sends LMP\_not\_accepted with the reason code *key missing* after receiving LMP\_au\_rand.



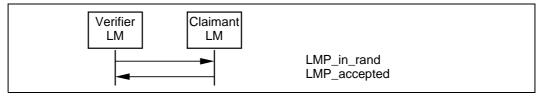
Sequence 2: Authentication fails. Claimant has no link key.

Bluetooth

## 3.2.3 Repeated attempts

The scheme described in Baseband Specification Section 14.4.1, on page 170 shall be applied when an authentication fails. This will prevent an intruder from trying a large number of keys in a relatively short time.

## 3.3 PAIRING


When two devices do not have a common link key an initialization key ( $K_{init}$ ) is created based on a PIN and a random number. The  $K_{init}$  is created when the verifier sends LMP\_in\_rand to the claimant. How the  $K_{init}$  is calculated is described in Baseband Specification Section 14.5.3, on page 175. Authentication then needs to be done, whereby the calculation of the authentication response is based on  $K_{init}$  instead of the link key. After a successful authentication, the link key is created. The PDUs used in the pairing procedure are:

| M/O | PDU          | Contents                |
|-----|--------------|-------------------------|
| M   | LMP_in_rand  | random number           |
| M   | LMP_au_rand  | random number           |
| M   | LMP_sres     | authentication response |
| M   | LMP_comb_key | random number           |
| М   | LMP_unit_key | key                     |

Table 3.3: PDUs used for pairing.

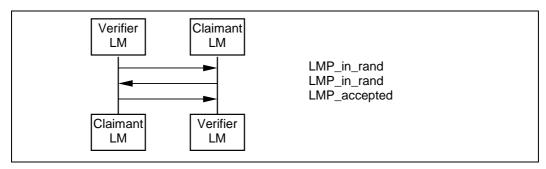
## 3.3.1 Claimant accepts pairing

The verifier sends LMP\_in\_rand and the claimant replies with LMP\_accepted. Both devices calculate K<sub>init</sub>, and an authentication (see Sequence 1) based on this key needs to be done. The verifier checks the authentication response and if correct, the link key is created; see Section 3.3.4 on page 196. If the authentication response is not correct the verifier can end the connection by sending LMP detach with the reason code *authentication failure*.



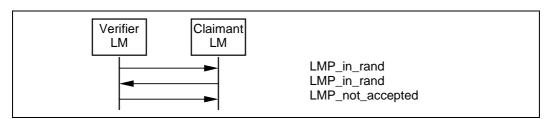
Sequence 3: Claimant accepts pairing.

#### 3.3.2 Claimant requests to become verifier


If the claimant has a fixed PIN it may request a switch of the claimant-verifier role in the pairing procedure by generating a new random number and send it

page 196 of 1082

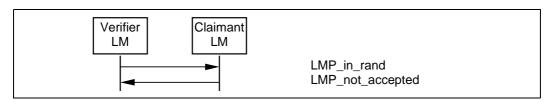
Link Manager Protocol


## Bluetooth.

back in LMP\_in\_rand. If the device that started the pairing procedure has a variable PIN it must accept this and respond with LMP\_accepted. The roles are then successfully switched and the pairing procedure continues as described in Section 3.3.1 on page 195.



Sequence 4: Claimant accepts pairing but requests to be verifier.


If the device that started the pairing procedure has a fixed PIN and the other device requests a role switch, the switch is rejected by sending LMP\_not\_accepted with the reason *pairing not allowed;* the pairing procedure is then ended.



Sequence 5: Unsuccessful switch of claimant-verifier role.

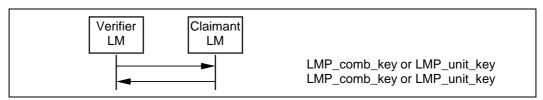
## 3.3.3 Claimant rejects pairing

If the claimant rejects pairing, it sends LMP\_not\_accepted with the reason *pairing not allowed* after receiving LMP\_in\_rand.



Sequence 6: Claimant rejects pairing.

## 3.3.4 Creation of the link key


When the authentication is finished the link key must be created. This link key will be used in the authentication between the two units for all subsequent connections until it is changed; see Section 3.4 and Section 3.5. The link key cre-

Bluetooth.

ated in the pairing procedure will either be a combination key or one of the unit's unit keys. The following rules apply to the selection of the link key:

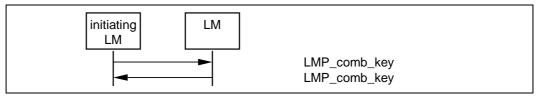
- if one unit sends LMP\_unit\_key and the other unit sends LMP\_comb\_key, the unit key will be the link key,
- if both units send LMP\_unit\_key, the master's unit key will be the link key,
- if both units send LMP\_comb\_key, the link key is calculated as described in Baseband Specification Section 14.2.2, on page 153.

The content of LMP\_unit\_key is the unit key bitwise XORed with K<sub>init</sub>. The content of LMP\_comb\_key is LK\_RAND bitwise XORed with K<sub>init</sub>. Any device configured to use a combination key will store the link key in non-volatile memory.



Sequence 7: Creation of the link key.

## 3.3.5 Repeated attempts

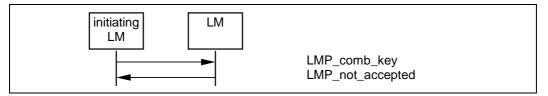

When the authentication during pairing fails because of a wrong authentication response, the same scheme is applied as in Section 3.2.3 on page 195. This prevents an intruder from trying a large number of different PINs in a relatively short time.

## 3.4 CHANGE LINK KEY

If two devices are paired and the link key is derived from combination keys, the link key can be changed. If the link key is a unit key, the units must go through the pairing procedure in order to change the link key. The contents of the PDU is protected by a bitwise XOR with the current link key.

| M/O | PDU          | Contents      |
|-----|--------------|---------------|
| М   | LMP_comb_key | random number |
| M   | LMP_unit_key | key           |

Table 3.4: PDUs used for change of link key.




Sequence 8: Successful change of the link key.

page 198 of 1082

Link Manager Protocol

Bluetooth.



Sequence 9: Change of the link key not possible since the other unit uses a unit key.

If the change of link key is successful the new link key is stored in non-volatile memory, and the old link key is discarded. The new link key will be used as link key for all the following connections between the two devices until the link key is changed again. The new link key also becomes the current link key. It will remain the current link key until the link key is changed again, or until a temporary link key is created, see Section 3.5 on page 198.

If encryption is used on the link and the current link key is a temporary link key, the procedure of changing link key must be immediately followed by a stop of the encryption by invoking the procedure in Section 3.6.4 on page 202. Encryption can then be started again. This is to assure that encryption with encryption parameters known by other devices in the piconet is not used when the semi-permanent link key is the current link key.

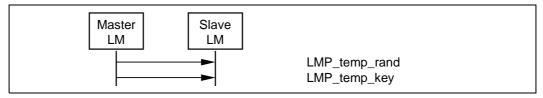
## 3.5 CHANGE THE CURRENT LINK KEY

The current link key can be a semi-permanent link key or a temporary link key key. It can be changed temporarily, but the change is only valid for the session, see Baseband Specification Section 14.2.1, on page 151. Changing to a temporary link key is necessary if the piconet is to support encrypted broadcast.

| M/O | PDU                         | Contents      |
|-----|-----------------------------|---------------|
| М   | LMP_temp_rand               | random number |
| М   | LMP_temp_key                | key           |
| М   | LMP_use_semi_perm anent_key | -             |

Table 3.5: PDUs used to change the current link key.

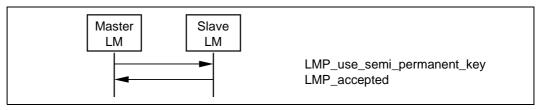
## 3.5.1 Change to a temporary link key


In the following, we use the same terms as in Baseband Specification Section 14.2.2.8, on page 158. The master starts by creating the master key  $K_{master}$  as described in Baseband Specification (EQ 24), on page 158. Then the master issues a random number RAND and sends it to the slave in LMP\_temp\_rand. Both sides can then calculate an overlay denoted OVL as OVL=  $E_{22}$ (current link key, RAND, 16). Then the master sends  $K_{master}$  protected by a modulo-2 addition with OVL to the slave in LMP\_temp\_key. The slave, who knows OVL,

page 199 of 1082

Link Manager Protocol

## Bluetooth


calculates K<sub>master</sub>. After this, K<sub>master</sub> becomes the current link key. It will be the current link key until a new temporary key is created or until the link key is changed, see Section 3.4 on page 197.



Sequence 10: Change to a temporary link key.

## 3.5.2 Make the semi-permanent link key the current link key

After the current link key has been changed to  $K_{master}$ , this change can be undone and the semi-permanent link key becomes the current link key again. If encryption is used on the link, the procedure of going back to the semi-permanent link key must be immediately followed by a stop of the encryption by invoking the procedure described in Section 3.6.4 on page 202. Encryption can then be started again. This is to assure that encryption with encryption parameters known by other devices in the piconet is not used when the semi-permanent link key is the current link key.



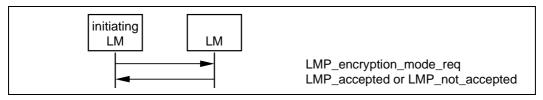
Sequence 11: Link key changed to the semi-permanent link key.

## 3.6 ENCRYPTION

If at least one authentication has been performed encryption may be used. If the master wants all slaves in the piconet to use the same encryption parameters it must issue a temporary key (K<sub>master</sub>) and make this key the current link key for all slaves in the piconet before encryption is started, see Section 3.5 on page 198. This is necessary if broadcast packets should be encrypted.

| M/O | PDU                         | Contents        |
|-----|-----------------------------|-----------------|
| 0   | LMP_encryption_mode_req     | encryption mode |
| 0   | LMP_encryption_key_size_req | key size        |
| 0   | LMP_start_encryption_req    | random number   |
| 0   | LMP_stop_encryption_req     | -               |

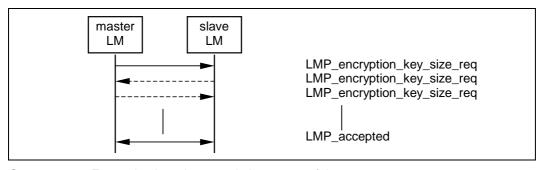
Table 3.6: PDUs used for handling encryption.


page 200 of 1082

Link Manager Protocol

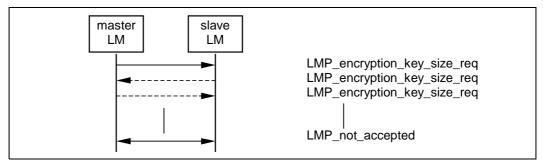
**Bluetooth** 

## 3.6.1 Encryption mode


First of all the master and the slave must agree upon whether to use encryption or not and if encryption shall only apply to point-to-point packets or if encryption shall apply to both point-to-point packets and broadcast packets. If master and slave agree on the encryption mode, the master continues to give more detailed information about the encryption.



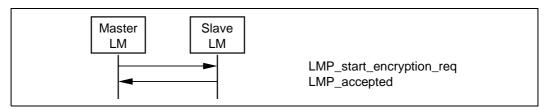
Sequence 12: Negotiation for encryption mode.


## 3.6.2 Encryption key size

The next step is to determine the size of the encryption key. In the following we use the same terms as in Baseband Specification Section 14.3.1, on page 160. The master sends LMP\_encryption\_key\_size\_req including the suggested key size Lsug, m, which is initially equal to  $L_{max, m}$ . If  $L_{min, s} \le L_{sug, m}$ and the slave supports L<sub>sug, m</sub> it responds with LMP\_accepted and L<sub>sug, m</sub> will be used as the key size. If both conditions are not fulfilled the slave sends back LMP\_encryption\_key\_size\_req including the slave's suggested key size L<sub>sug, s</sub>. This value is the slave's largest supported key size that is less than L<sub>suq. m</sub>. Then the master performs the corresponding test on the slave's suggestion. This procedure is repeated until a key size agreement is reached or it becomes clear that no such agreement can be reached. If an agreement is reached a unit sends LMP\_accepted and the key size in the last LMP\_encryption\_key\_size\_req will be used. After this, the encryption is started; see Section 3.6.3 on page 201. If an agreement is not reached a unit sends LMP not accepted with the reason code Unsupported parameter value and the units are not allowed to communicate using Bluetooth link encryption.".



Sequence 13: Encryption key size negotiation successful.


Bluetooth.



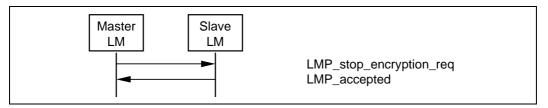
Sequence 14: Encryption key size negotiation failed.

## 3.6.3 Start encryption

Finally, encryption is started. The master issues the random number EN\_RAND and calculates the encryption key as  $K_c$ = $E_3$ (current link key, EN\_RAND, COF). See Baseband Specification Section 14.2.2.5, on page 156 and 14.2.2.2 for the definition of the COF. The random number must be the same for all slaves if the piconet should support encrypted broadcast. Then the master sends LMP\_start\_encryption\_req, which includes EN\_RAND. The slave calculates  $K_c$  when this message is received and acknowledges with LMP\_accepted. On both sides,  $K_c$  and EN\_RAND are used as input to the encryption algorithm  $E_o$ .



Sequence 15: Start of encryption.


Before starting encryption, higher-layer data traffic must be temporarily stopped to prevent reception of corrupt data. The start of encryption will be done in three steps:

- 1. Master is configured to transmit unencrypted packets, but to receive encrypted packets.
- 2. Slave is configured to transmit and receive encrypted packets.
- 3. Master is configured to transmit and receive encrypted packets.

Between step 1 and step 2, master-to-slave transmission is possible. This is when LMP\_start\_encryption\_req is transmitted. Step 2 is triggered when the slave receives this message. Between step 2 and step 3, slave-to-master transmission is possible. This is when LMP\_accepted is transmitted. Step 3 is triggered when the master receives this message.

Bluetooth

## 3.6.4 Stop encryption



Sequence 16: Stop of encryption.

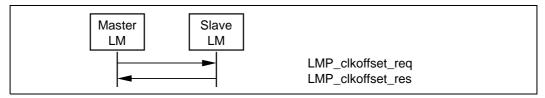
Before stopping encryption, higher-layer data traffic must be temporarily stopped to prevent reception of corrupt data. Stopping of encryption is then done in three steps, similar to the procedure for starting encryption.

- 1. Master is configured to transmit encrypted packets, but to receive unencrypted packets.
- 2. Slave is configured to transmit and receive unencrypted packets.
- 3. Master is configured to transmit and receive unencrypted packets.

Between step 1 and step 2 master to slave transmission is possible. This is when LMP\_stop\_encryption\_req is transmitted. Step 2 is triggered when the slave receives this message. Between step 2 and step 3 slave to master transmission is possible. This is when LMP\_accepted is transmitted. Step 3 is triggered when the master receives this message.

## 3.6.5 Change encryption mode, key or random number

If the encryption mode, encryption key or encryption random number need to be changed, encryption must first be stopped and then re-started with the new parameters.


#### 3.7 CLOCK OFFSET REQUEST

When a slave receives the FHS packet, the difference is computed between its own clock and the master's clock included in the payload of the FHS packet. The clock offset is also updated each time a packet is received from the master. The master can request this clock offset anytime during the connection. By saving this clock offset the master knows on what RF channel the slave wakes up to PAGE SCAN after it has left the piconet. This can be used to speed up the paging time the next time the same device is paged.

| M/O | PDU               | Contents     |
|-----|-------------------|--------------|
| М   | LMP_clkoffset_req | -            |
| М   | LMP_clkoffset_res | clock offset |

Table 3.7: PDUs used for clock offset request.

Bluetooth.



Sequence 17: Clock offset requested.

## 3.8 SLOT OFFSET INFORMATION

With LMP\_slot\_offset the information about the difference between the slot boundaries in different piconets is transmitted. This PDU carries the parameters slot offset and BD\_ADDR. The slot offset is the time in  $\mu$ s between the start of the master's TX slot in the piconet where the PDU is transmitted and the start of the master's TX slot in the piconet where the BD\_ADDR device is master.

Before doing a master-slave switch, see Section 3.12 on page 206, this PDU shall be transmitted from the device that becomes master in the switch procedure. If the master initiates the switch procedure, the slave sends LMP\_slot\_offset before sending LMP\_accepted. If the slave initiates the switch procedure, the slave sends LMP\_slot\_offset before sending LMP\_switch\_req. The PDU can also be useful in inter-piconet communications.

| M/O | PDU             | Contents    |
|-----|-----------------|-------------|
| 0   | LMP_slot_offset | slot offset |
|     |                 | BD_ADDR     |

Table 3.8: PDU used for slot offset information.

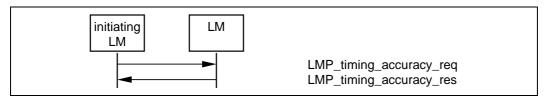


Sequence 18: Slot offset information is sent.

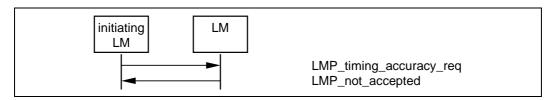
## 3.9 TIMING ACCURACY INFORMATION REQUEST

LMP supports requests for the timing accuracy. This information can be used to minimize the scan window for a given hold time when returning from hold and to extend the maximum hold time. It can also be used to minimize the scan window when scanning for the sniff mode slots or the park mode beacon packets. The timing accuracy parameters returned are the long term drift measured in ppm and the long term jitter measured in  $\mu s$  of the clock used during hold, sniff and park mode. These parameters are fixed for a certain device and must be identical when requested several times. If a device does not support the tim-

page 204 of 1082


Link Manager Protocol

## Bluetooth.


ing accuracy information it sends LMP\_not\_accepted with the reason code unsupported LMP feature when the request is received. The requesting device must in this case assume worst case values (drift=250ppm and jitter=10µs).

| M/O | PDU                     | Contents        |
|-----|-------------------------|-----------------|
| 0   | LMP_timing_accuracy_req | -               |
| 0   | LMP_timing_accuracy_res | drift<br>jitter |

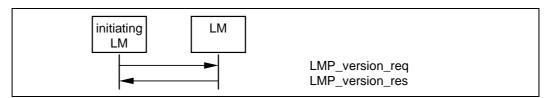
Table 3.9: PDUs used for requesting timing accuracy information.



Sequence 19: The requested device supports timing accuracy information.



Sequence 20: The requested device does not support timing accuracy information.


Bluetooth.

## 3.10 LMP VERSION

LMP supports requests for the version of the LM protocol. The requested device will send a response with three parameters: VersNr, Compld and Sub-VersNr. VersNr specifies the version of the Bluetooth LMP specification that the device supports. Compld is used to track possible problems with the lower Bluetooth layers. All companies that create a unique implementation of the Link Manager shall have their own Compld. The same company is also responsible for the administration and maintenance of the SubVersNr. It is recommended that each company has a unique SubVersNr for each RF/BB/LM implementation. For a given VersNr and Compld, the values of the SubVersNr must increase each time a new implementation is released. For both Compld and SubVersNr the value 0xFFFF means that no valid number applies. There is no ability to negotiate the version of the LMP. The sequence below is only used to exchange the parameters.

| M/O | PDU             | Contents                      |
|-----|-----------------|-------------------------------|
| М   | LMP_version_req | VersNr<br>Compld<br>SubVersNr |
| M   | LMP_version_res | VersNr<br>Compld<br>SubVersNr |

Table 3.10: PDUs used for LMP version request.

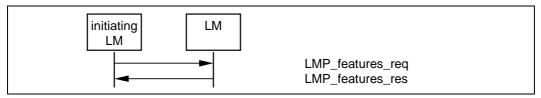


Sequence 21: Request for LMP version.

## 3.11 SUPPORTED FEATURES

The Bluetooth radio and link controller may support only a subset of the packet types and features described in Baseband Specification and Radio Specification. The PDU LMP\_features\_req and LMP\_features\_res are used to exchange this information. A device may not send any packets other than ID, FHS, NULL, POLL, DM1 or DH1 before it is aware of the supported features of the other device. After the features request has been carried out, the intersection of the supported packet types for both sides may also be transmitted. Whenever a request is issued, it must be compatible with the supported features of the other device. For instance, when establishing an SCO link the initiator may not propose to use HV3 packets if that packet type is not supported by the other device. Exceptions to this rule are LMP switch reg and LMP slot offset, which can be sent as the first LMP messages when two Bluetooth

page 206 of 1082


Link Manager Protocol

Bluetooth

devices have been connected and before the requesting side is aware of the other side's features (switch is an optional feature).

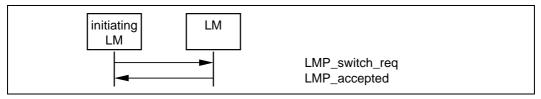
| M/O | PDU              | Contents |
|-----|------------------|----------|
| М   | LMP_features_req | features |
| М   | LMP_features_res | features |

Table 3.11: PDUs used for features request.



Sequence 22: Request for supported features.

## 3.12 SWITCH OF MASTER-SLAVE ROLE


Since the paging device always becomes the master of the piconet, a switch of the master-slave role is sometimes needed, see Baseband Specification Section 10.9.3, on page 123. Suppose device A is slave and device B is master. The device that initiates the switch finalizes the transmission of the current L2CAP message and then sends LMP\_switch\_req.

If the switch is accepted, the other device finalizes the transmission of the current L2CAP message and then responds with LMP\_accepted. After this, the procedure described from the 2nd bullet in Baseband Specification Section 10.9.3, on page 123 is carried out.

If the switch is rejected, the other device responds with LMP\_not\_accepted and no switch is performed.

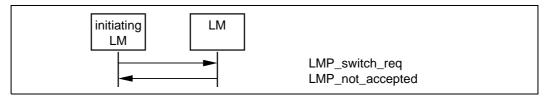

| M/O | PDU            | Contents |
|-----|----------------|----------|
| 0   | LMP_switch_req | -        |

Table 3.12: PDU used for master slave switch.



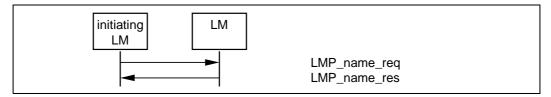
Sequence 23: Master-slave switch accepted.

Bluetooth



Sequence 24: Master-slave switch not accepted.

## 3.13 NAME REQUEST


LMP supports name request to another Bluetooth device. The name is a user-friendly name associated with the Bluetooth device and consists of a maximum of 248 bytes coded according to the UTF-8 standard. The name is fragmented over one or more DM1 packets. When the LMP\_name\_req is sent, a name off-set indicates which fragment is expected. The corresponding LMP\_name\_res carries the same name offset, the name length indicating the total number of bytes in the name of the Bluetooth device and the name fragment, where:

- name fragment(N) = name(N + name offset), if (N + name offset) < name length
- name fragment(N) = 0 ,otherwise.

Here  $0 \le N \le 13$ . In the first sent LMP\_name\_req, name offset=0. Sequence 25 is then repeated until the initiator has collected all fragments of the name.

| M/O | PDU          | Contents                                    |
|-----|--------------|---------------------------------------------|
| М   | LMP_name_req | name offset                                 |
| М   | LMP_name_res | name offset<br>name length<br>name fragment |

Table 3.13: PDUs used for name request.



Sequence 25: Device's name requested and it responses.

## 3.14 DETACH

The connection between two Bluetooth devices can be closed anytime by the master or the slave. A reason parameter is included in the message to inform the other party of why the connection is closed.

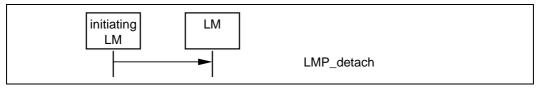

| M/O | PDU        | Contents |
|-----|------------|----------|
| М   | LMP_detach | reason   |

Table 3.14: PDU used for detach.

page 208 of 1082

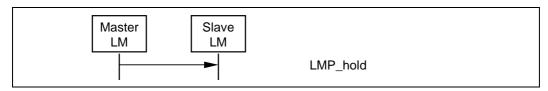
Link Manager Protocol

Bluetooth



Sequence 26: Connection closed by sending LMP\_detach.

## 3.15 HOLD MODE


The ACL link of a connection between two Bluetooth devices can be placed in hold mode for a specified hold time. During this time no ACL packets will be transmitted from the master. The hold mode is typically entered when there is no need to send data for a relatively long time. The transceiver can then be turned off in order to save power. But the hold mode can also be used if a device wants to discover or be discovered by other Bluetooth devices, or wants to join other piconets. What a device actually does during the hold time is not controlled by the hold message, but it is up to each device to decide.

| M/O | PDU          | Contents  |
|-----|--------------|-----------|
| 0   | LMP_hold     | hold time |
| 0   | LMP_hold_req | hold time |

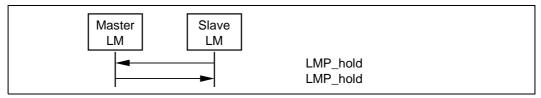
Table 3.15: PDUs used for hold mode.

### 3.15.1 Master forces hold mode

The master can force hold mode if there has previously been a request for hold mode that has been accepted. The hold time included in the PDU when the master forces hold mode cannot be longer than any hold time the slave has previously accepted when there was a request for hold mode.



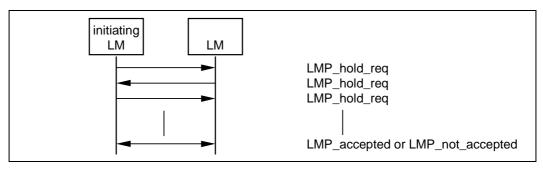
Sequence 27: Master forces slave into hold mode.


#### 3.15.2 Slave forces hold mode

The slave can force hold mode if there has previously been a request for hold mode that has been accepted. The hold time included in the PDU when the slave forces hold mode cannot be longer than any hold time the master has previously accepted when there was a request for hold mode.

page 209 of 1082

Link Manager Protocol


Bluetooth.



Sequence 28: Slave forces master into hold mode.

## 3.15.3 Master or slave requests hold mode

The master or the slave can request to enter hold mode. Upon receipt of the request, the same request with modified parameters can be returned or the negotiation can be terminated. If an agreement is seen LMP\_accepted terminates the negotiation and the ACL link is placed in hold mode. If no agreement is seen, LMP\_not\_accepted with the reason code *unsupported parameter value* terminates the negotiation and hold mode is not entered.



Sequence 29: Negotiation for hold mode.

## 3.16 SNIFF MODE

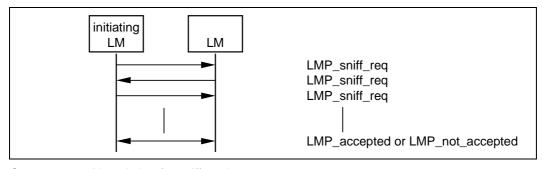
To enter sniff mode, master and slave negotiate a sniff interval  $T_{\text{sniff}}$  and a sniff offset,  $D_{\text{sniff}}$ , which specifies the timing of the sniff slots. The offset determines the time of the first sniff slot; after that the sniff slots follows periodically with the sniff interval  $T_{\text{sniff}}$ . To avoid problems with a clock wrap-around during the initialization, one of two options is chosen for the calculation of the first sniff slot. A timing control flag in the message from the master indicates this. Note: Only bit1 of this field is valid.

When the link is in sniff mode the master can only start a transmission in the sniff slot. Two parameters control the listening activity in the slave. The sniff attempt parameter determines for how many slots the slave must listen, beginning at the sniff slot, even if it does not receive a packet with its own AM address. The sniff timeout parameter determines for how many additional slots the slave must listen if it continues to receive only packets with its own AM address.

## Bluetooth.

| M/O | PDU             | Contents                                                                                 |
|-----|-----------------|------------------------------------------------------------------------------------------|
| 0   | LMP_sniff       | timing control flags  D <sub>sniff</sub> T <sub>sniff</sub> sniff attempt  sniff timeout |
| 0   | LMP_sniff_req   | timing control flags  D <sub>sniff</sub> T <sub>sniff</sub> sniff attempt  sniff timeout |
| 0   | LMP_unsniff_req | -                                                                                        |

Table 3.16: PDUs used for sniff mode.

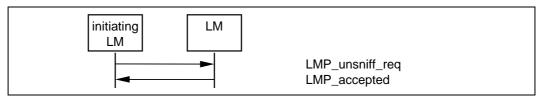

#### 3.16.1 Master forces a slave into sniff mode



Sequence 30: Master forces slave into sniff mode.

## 3.16.2 Master or slave requests sniff mode

The master or the slave can request to enter sniff mode. Upon receipt of the request, the same request with modified parameters can be returned or the negotiation can be terminated. If an agreement is seen LMP\_accepted terminates the negotiation and the ACL link is placed in sniff mode. If no agreement is seen, LMP\_not\_accepted with the reason code *unsupported parameter value* terminates the negotiation and sniff mode is not entered.




Sequence 31: Negotiation for sniff mode.

Bluetooth.

## 3.16.3 Moving a slave from sniff mode to active mode

Sniff mode is ended by sending the PDU LMP\_unsniff\_req. The requested device must reply with LMP\_accepted. If the slave requests it will enter active mode after receiving LMP\_accepted. If the master requests, the slave will enter active mode after receiving LMP\_unsniff\_req.



Sequence 32: Slave moved from sniff mode to active mode.

## 3.17 PARK MODE

If a slave does not need to participate in the channel, but still should be FH-synchronized, it can be placed in park mode. In this mode the device gives up its AM\_ADDR but still re-synchronizes to the channel by waking up at the beacon instants separated by the beacon interval. The beacon interval, a beacon offset and a flag indicating how the first beacon instant is calculated determine the first beacon instant. After this the beacon instants follow periodically at the predetermined beacon interval. At the beacon instant the parked slave can be activated again by the master, the master can change the park mode parameters, transmit broadcast information or let the parked slaves request access to the channel.

All PDUs sent from the master to the parked slaves are broadcast. These PDUs (LMP\_set\_broadcast\_scan\_window, LMP\_modify\_beacon, LMP\_unpark\_BD\_addr\_req and LMP\_unpark\_PM\_addr\_req) are the only PDUs that can be sent to a slave in park mode and the only PDUs that can be broadcast. To increase reliability for broadcast, the packets are made as short as possible. Therefore the format for these LMP PDUs are somewhat different. The parameters are not always byte-aligned and the length of the PDUs is variable.

The messages for controlling the park mode include many parameters, which are all defined in Baseband Specification Section 10.8.4, on page 115. When a slave is placed in park mode it is assigned a unique PM\_ADDR, which can be used by the master to unpark that slave. The all-zero PM\_ADDR has a special meaning; it is not a valid PM\_ADDR. If a device is assigned this PM\_ADDR, it must be identified with its BD\_ADDR when it is unparked by the master.

page 212 of 1082

Link Manager Protocol

# Bluetooth.

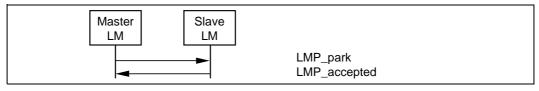
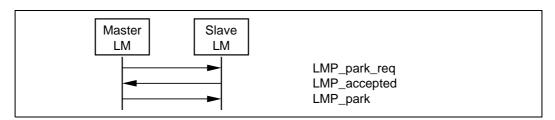

| M/O | PDU                           | Contents                                                                                                                                                                          |
|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | LMP_park_req                  | -                                                                                                                                                                                 |
| 0   | LMP_park                      | timing control flags $D_B$ $T_B$ $N_B$ $\Delta_B$ $PM\_ADDR$ $AR\_ADDR$ $N_{Bsleep}$ $D_{Bsleep}$ $D_{access}$ $T_{access}$ $N_{acc-slots}$ $N_{poll}$ $M_{access}$ access scheme |
| 0   | LMP_set_broadcast_scan_window | timing control flags D <sub>B</sub> (optional) broadcast scan window                                                                                                              |
| 0   | LMP_modify_beacon             | timing control flags $D_B$ (optional) $T_B$ $N_B$ $\Delta_B$ $D_{access}$ $T_{access}$ $N_{acc-slots}$ $N_{poll}$ $M_{access}$ access scheme                                      |
| 0   | LMP_unpark_PM_ADDR_req        | timing control flags  D <sub>B</sub> (optional)  AM_ADDR  PM_ADDR  AM_ADDR (optional)  PM_ADDR (optional)  (totally 1-7 pairs of AM_ADDR,  PM_ADDR)                               |
| 0   | LMP_unpark_BD_ADDR _req       | timing control flags D <sub>B</sub> (optional) AM_ADDR BD_ADDR AM_ADDR (optional) BD_ADDR (optional)                                                                              |

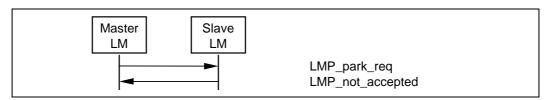
Table 3.17: PDUs used for park mode.

Bluetooth.

## 3.17.1 Master forces a slave into park mode


The master can force park mode. The master finalizes the transmission of the current L2CAP message and then sends LMP\_park. When this PDU is received by the slave, it finalizes the transmission of the current L2CAP message and then sends LMP\_accepted.




Sequence 33: Slave forced into park mode.

## 3.17.2 Master requests slave to enter park mode

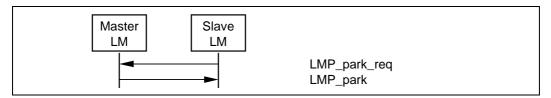
The master can request park mode. The master finalizes the transmission of the current L2CAP message and then sends LMP\_park\_req. If the slave accepts to enter park mode it finalizes the transmission of the current L2CAP message and then responds with LMP\_accepted. Finally the master sends LMP\_park. If the slave rejects park mode it sends LMP\_not\_accepted.



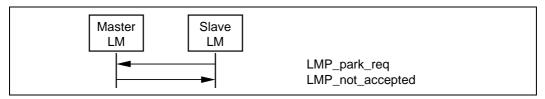
Sequence 34: Slave accepts to be placed in park mode.



Sequence 35: Slave rejects to be placed in park mode.


## 3.17.3 Slave requests to be placed in park mode

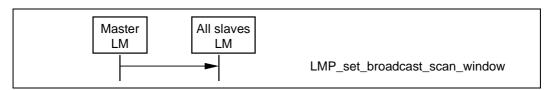
The slave can request park mode. The slave finalizes the transmission of the current L2CAP message and then sends LMP\_park\_req. If the master accepts park mode it finalizes the transmission of the current L2CAP message and then sends LMP\_park. If the master rejects park mode it sends LMP\_not\_accepted.


page 214 of 1082

Link Manager Protocol

Bluetooth

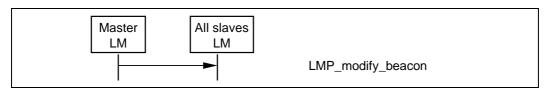



Sequence 36: Master accepts and places slave in park mode.



Sequence 37: Master rejects to place slave in park mode.

## 3.17.4 Master sets up broadcast scan window


If more broadcast capacity is needed than the beacon train, the master can indicate to the slaves that more broadcast information will follow the beacon train by sending LMP\_set\_broadcast\_scan\_window. This message is always sent in a broadcast packet at the beacon slot(s). The scan window starts in the beacon instant and is only valid for the current beacon.



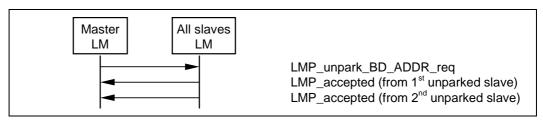
Sequence 38: Master notifies all slaves of increase in broadcast capacity.

## 3.17.5 Master modifies beacon parameters

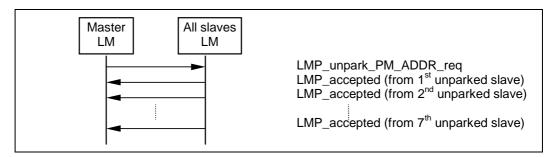
When the beacon parameters change the master notifies the parked slaves of this by sending LMP\_modify\_beacon. This message is always sent in a broadcast packet at the beacon slot(s).



Sequence 39: Master modifies beacon parameters.


## 3.17.6 Unparking slaves

The master can unpark one or many slaves by sending a broadcast LMP message including the PM\_ADDR or the BD\_ADDR of the device(s) it wishes to


## Bluetooth.

unpark at the beacon slot(s). This message also includes the AM\_ADDR that the master assigns to the slave(s). After sending this message, the master must check the success of the unpark by polling each unparked slave, i.e. sending POLL packets, so that the slave is granted access to the channel. The unparked slave must then send a response with LMP\_accepted. If this message is not received from the slave within a certain time after the master sent the unpark message, the unpark failed and the master must consider the slave as still being in park mode.

One message is used where the parked device is identified with the PM\_ADDR, and another message is used where it is identified with the BD\_ADDR. Both messages have variable length depending on the number of slaves the master unparks. For each slave the master wishes to unpark an AM\_ADDR followed by the PM/BD\_ADDR of the device that is assigned this AM\_ADDR is included in the payload. If the slaves are identified with the PM\_ADDR a maximum of 7 slaves can be unparked with the same message. If they are identified with the BD\_ADDR a maximum of 2 slaves can be unparked with the same message.



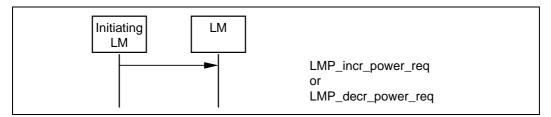
Sequence 40: Master unparks slaves addressed with their BD\_ADDR.



Sequence 41: Master unparks slaves addressed with their PM\_ADDR.

## 3.18 POWER CONTROL

If the RSSI value differs too much from the preferred value of a Bluetooth device, it can request an increase or a decrease of the other device's TX power. Upon receipt of this message, the output power is increased or decreased one step. See Radio Specification Section 3.1, on page 21 for the definition of the step size. At the master side the TX power is completely independent for different slaves; a request from one slave can only effect the master's TX power for that same slave.


page 216 of 1082

Link Manager Protocol

## Bluetooth

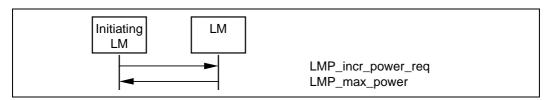
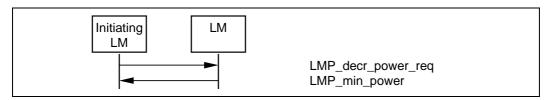

| M/O | PDU                | Contents                |
|-----|--------------------|-------------------------|
| 0   | LMP_incr_power_req | for future use (1 Byte) |
| 0   | LMP_decr_power_req | for future use (1 Byte) |
| 0   | LMP_max_power      | -                       |
| 0   | LMP_min_power      | -                       |

Table 3.18: PDUs used for power control.




Sequence 42: A device requests a change of the other device's TX power.

If the receiver of LMP\_incr\_power\_req already transmits at maximum power LMP\_max\_power is returned. The device may then only request an increase again after having requested a decrease at least once. Similarly, if the receiver of LMP\_decr\_power\_req already transmits at minimum power then LMP\_min\_power is returned and the device may only request a decrease again after having requested an increase at least once.

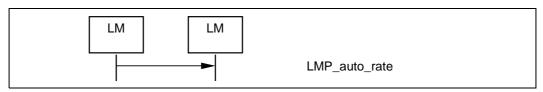


Sequence 43: The TX power cannot be increased.

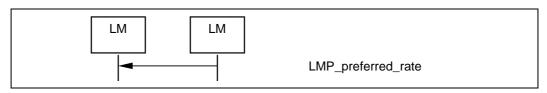


Sequence 44: The TX power cannot be decreased.

One byte is reserved in LMP\_incr/decr\_power\_req for future use. It could, for example, be the mismatch between preferred and measured RSSI. The receiver of LMP\_incr/decr\_power\_req could then use this value to adjust to the correct power at once, instead of only changing it one step for each request. The parameter value must be 0x00 for all versions of LMP where this parameter is not yet defined.


Bluetooth.

# 3.19 CHANNEL QUALITY-DRIVEN CHANGE BETWEEN DM AND DH


A device is configured to always use DM packets or to always use DH packets or to automatically adjust its packet type according to the quality of the channel. Nevertheless, all devices are capable of transmitting either DM or DH packets. The difference between DM and DH is that the payload in a DM packet is protected with a 2/3 FEC code, whereas the payload of a DH is not protected with any FEC. If a device wants to automatically adjust between DM and DH it sends LMP\_auto\_rate to the other device. Based upon quality measures in LC, the device determines if throughput will be increased by a change of packet type. If so, LMP\_preferred\_rate is sent to the other device. The PDUs used for this are:

| M/O | PDU                | Contents  |
|-----|--------------------|-----------|
| 0   | LMP_auto_rate      | -         |
| 0   | LMP_preferred_rate | data rate |

Table 3.19: PDUs used for quality driven change of the data rate.



Sequence 45: The left-hand unit is configured to automatically change between DM and DH.



Sequence 46: The right-hand device orders the left-hand device to change data rate.

Bluetooth.

## 3.20 QUALITY OF SERVICE (QoS)

The Link Manager provides Quality of Service capabilities. A poll interval, which is defined as the maximum time between subsequent transmissions from the master to a particular slave, is used to support bandwidth allocation and latency control. The poll interval is guaranteed except when there are collisions with page, page scan, inquiry and inquiry scan.

In addition, master and slave negotiate the number of repetitions for broadcast packets (NBC), see Baseband Specification Section 5.3, on page 68.

| M/O | PDU                        | Contents                         |
|-----|----------------------------|----------------------------------|
| М   | LMP_quality_of_service     | poll interval<br>N <sub>BC</sub> |
| М   | LMP_quality_of_service_req | poll interval<br>N <sub>BC</sub> |

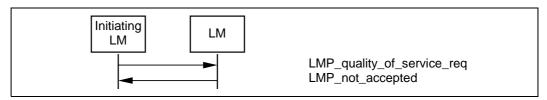
Table 3.20: PDUs used for quality of service.

## 3.20.1 Master notifies slave of the quality of service

In this case the master notifies the slave of the new poll interval and  $N_{BC}$ . The slave cannot reject the notification.




Sequence 47: Master notifies slave of new quality of service.


Bluetooth.

## 3.20.2 Device requests new quality of service

In this case the master or slave requests a new poll interval and  $N_{BC}.$  The parameter  $N_{BC}$  is meaningful only when it is sent by a master to a slave. For transmission of LMP\_quality\_of\_service\_req PDUs from a slave, this parameter is ignored by the master. The request can be accepted or rejected. This will allow the master and slave to dynamically negotiate the quality of service as needed.



Sequence 48: Device accepts new quality of service



Sequence 49: Device rejects new quality of service.

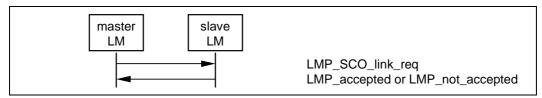
## 3.21 SCO LINKS

When a connection has been established between two Bluetooth devices the connection consists of an ACL link. One or more SCO links can then be established. The SCO link reserves slots separated by the SCO interval,  $T_{\rm sco}$ . The first slot reserved for the SCO link is defined by  $T_{\rm sco}$  and the SCO delay,  $D_{\rm sco}$ . After that the SCO slots follows periodically with the SCO interval. To avoid problems with a wrap-around of the clock during initialization of the SCO link, a flag indicating how the first SCO slot should be calculated is included in a message from the master. Note: Only bit0 and bit1 of this field is valid. Each SCO link is distinguished from all other SCO links by an SCO handle. The SCO handle zero is never used.

| M/O | PDU                     | Contents                                                                              |
|-----|-------------------------|---------------------------------------------------------------------------------------|
| 0   | LMP_SCO_link_req        | SCO handle timing control flags D <sub>sco</sub> T <sub>sco</sub> SCO packet air mode |
| 0   | LMP_remove_SCO_link_req | SCO handle reason                                                                     |

Table 3.21: PDUs used for managing the SCO links.

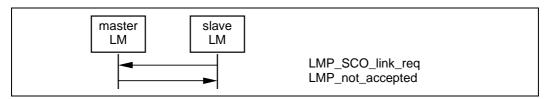
**Bluetooth** 


## 3.21.1 Master initiates an SCO link

When establishing an SCO link the master sends a request with parameters that specify the timing, packet type and coding that will be used on the SCO link. For each of the SCO packets Bluetooth supports three different voice coding formats on the air-interface:  $\mu$ -law log PCM, A-law log PCM and CVSD.

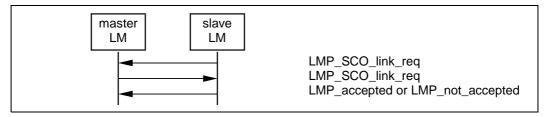
The slots used for the SCO links are determined by three parameters controlled by the master:  $T_{sco}$ ,  $D_{sco}$  and a flag indicating how the first SCO slot should be calculated. After the first slot, the SCO slots follows periodically with the  $T_{sco}$ .

If the slave does not accept the SCO link, but is willing to consider another possible set of SCO parameters, it can indicate what it does not accept in the error reason field of LMP\_not\_accepted. The master then has the possibility to issue a new request with modified parameters.


The SCO handle in the message must be different from any already existing SCO link(s).



Sequence 50: Master requests an SCO link.


#### 3.21.2 Slave initiates an SCO link

The slave can also initiate the establishment of an SCO link. The slave sends LMP\_SCO\_link\_req, but the parameters timing control flags and  $D_{\text{SCO}}$  are invalid as well as the SCO handle, which must be zero. If the master is not capable of establishing an SCO link, it replies with LMP\_not\_accepted. Otherwise it sends back LMP\_SCO\_link\_req. This message includes the assigned SCO handle,  $D_{\text{SCO}}$  and the timing control flags. For the other parameters, the master should try to use the same parameters as in the slave request; if the master cannot meet that request, it is allowed to use other values. The slave must then reply with LMP\_accepted or LMP\_not\_accepted.



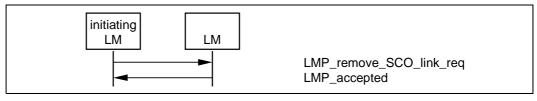
Sequence 51: Master rejects slave's request for an SCO link.

Bluetooth



Sequence 52: Master accepts slave's request for an SCO link.

## 3.21.3 Master requests change of SCO parameters


The master sends LMP\_SCO\_link\_req, where the SCO handle is the handle of the SCO link the master wishes to change parameters for. If the slave accepts the new parameters, it replies with LMP\_accepted and the SCO link will change to the new parameters. If the slave does not accept the new parameters, it replies with LMP\_not\_accepted and the SCO link is left unchanged. When the slave replies with LMP\_not\_accepted it shall indicate in the error reason parameter what it does not accept. The master can then try to change the SCO link again with modified parameters. The sequence is the same as in Section 3.21.1 on page 220.

## 3.21.4 Slave requests change of SCO parameters

The slave sends LMP\_SCO\_link\_req, where the SCO handle is the handle of the SCO link the slave wishes to change parameters for. The parameters timing control flags and  $D_{\text{SCO}}$  are not valid in this message. If the master does not accept the new parameters it replies with LMP\_not\_accepted and the SCO link is left unchanged. If the master accepts the new parameters it replies with LMP\_SCO\_link\_req, where it must use the same parameters as in the slave request. When receiving this message the slave replies with LMP\_not\_accepted if it does not accept the new parameters. The SCO link is then left unchanged. If the slave accepts the new parameters it replies with LMP\_accepted and the SCO link will change to the new parameters. The sequence is the same as in Section 3.21.2 on page 220.

#### 3.21.5 Remove an SCO link

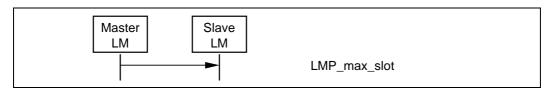
Master or slave can remove the SCO link by sending a request including the SCO handle of the SCO link to be removed and a reason indicating why the SCO link is removed. The receiving party must respond with LMP\_accepted.



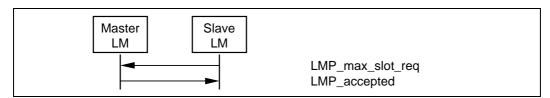
Sequence 53: SCO link removed.

page 222 of 1082

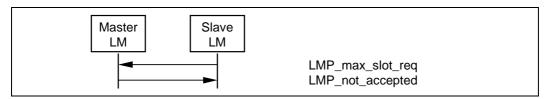
Link Manager Protocol


**Bluetooth** 

## 3.22 CONTROL OF MULTI-SLOT PACKETS


The number of slots used by a slave in its return packet can be limited. The master allows the slave to use a maximal number of slots by sending the PDU LMP\_max\_slots providing max slots as parameter. Each slave can request to use a maximal number of slots by sending the PDU LMP\_max\_slot\_req providing max slots as parameter. The default value is 1 slot, i.e. if the slave has not been informed about the number of slots, it may only use 1-slot packets. Two PDUs are used for the control of multi-slot packets.

| M/O | PDU              | Contents  |
|-----|------------------|-----------|
| М   | LMP_max_slot     | max slots |
| М   | LMP_max_slot_req | max slots |


Table 3.22: PDUs used to control the use of multi-slot packets.



Sequence 54: Master allows slave to use a maximal number of slots.



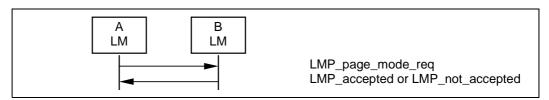
Sequence 55: Slave requests to use a maximal number of slots. Master accepts.



Sequence 56: Slave requests to use a maximal number of slots. Master rejects.

Bluetooth.

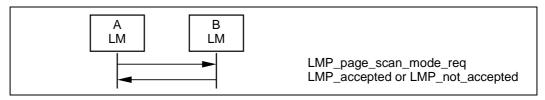
## 3.23 PAGING SCHEME


In addition to the mandatory paging scheme, Bluetooth defines optional paging schemes; see "Appendix VII" on page 999. LMP provides a means to negotiate the paging scheme, which is to be used the next time a unit is paged.

| M/O | PDU                    | Contents                             |
|-----|------------------------|--------------------------------------|
| 0   | LMP_page_mode_req      | paging scheme paging scheme settings |
| 0   | LMP_page_scan_mode_req | paging scheme paging scheme settings |

Table 3.23: PDUs used to request paging scheme.

## 3.23.1 Page mode


This procedure is initiated from device A and negotiates the paging scheme used when device A pages device B. Device A proposes a paging scheme including the parameters for this scheme and device B can accept or reject. On rejection the old setting is not changed. A request to switch back to the mandatory scheme may be rejected.



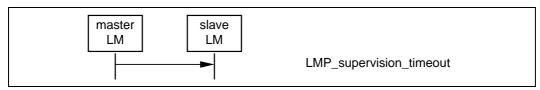
Sequence 57: Negotiation for page mode.

## 3.23.2 Page scan mode

This procedure is initiated from device A and negotiates the paging scheme used when device B pages device A. Device A proposes a paging scheme including the parameters for this scheme and device B can accept or reject. On rejection the old setting is not changed. A request to switch to the mandatory scheme must be accepted.



Sequence 58: Negotiation for page scan mode


Bluetooth.

## 3.24 LINK SUPERVISION

Each Bluetooth link has a timer that is used for link supervision. This timer is used to detect link loss caused by devices moving out of range, a device's power-down, or other similar failure cases. The scheme for link supervision is described in Baseband Specification Section 10.11, on page 126. An LMP procedure is used to set the value of the supervision timeout.

| ľ | M/O | PDU                     | Contents            |
|---|-----|-------------------------|---------------------|
| ľ | М   | LMP_supervision_timeout | supervision timeout |

Table 3.24: PDU used to set the supervision timeout.



Sequence 59: Setting the link supervision timeout.

Bluetooth.

## 4 CONNECTION ESTABLISHMENT

After the paging procedure, the master must poll the slave by sending POLL or NULL packets, with a max poll interval as defined in Table 5.5 on page 236. LMP procedures that do not require any interactions between the LM and the host at the paged unit's side can then be carried out.

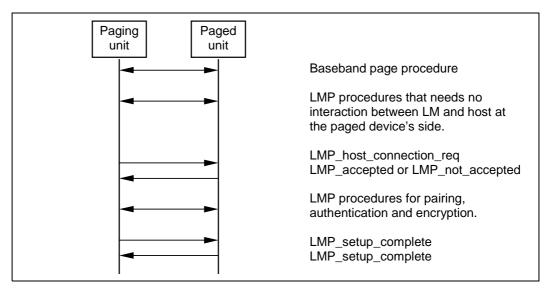



Figure 4.1: Connection establishment.

When the paging device wishes to create a connection involving layers above LM, it sends LMP\_host\_connection\_req. When the other side receives this message, the host is informed about the incoming connection. The remote device can accept or reject the connection request by sending LMP\_accepted or LMP\_not\_accepted.

When a device does not require any further link set-up procedures, it will send LMP\_setup\_complete. The device will still respond to requests from the other device. When the other device is also ready with link set-up, it will send LMP\_setup\_complete. After this, the first packet on a logical channel different from LMP can then be transmitted.

| M/O | PDU                     | Contents |
|-----|-------------------------|----------|
| М   | LMP_host_connection_req | -        |
| M   | LMP_setup_complete      | -        |

Table 4.1: PDUs used for connection establishment.

Bluetooth..

## **5 SUMMARY OF PDUs**

| LMP PDU                      | Length (bytes) | op<br>code | Packet<br>type | Possible direction    | Contents        | Position in payload |
|------------------------------|----------------|------------|----------------|-----------------------|-----------------|---------------------|
| LMP_accepted                 | 2              | 3          | DM1/<br>DV     | $m \leftrightarrow s$ | op code         | 2                   |
| LMP_au_rand                  | 17             | 11         | DM1            | $m \leftrightarrow s$ | random number   | 2-17                |
| LMP_auto_rate                | 1              | 35         | DM1/<br>DV     | $m \leftrightarrow s$ | -               |                     |
| LMP_clkoffset_req            | 1              | 5          | DM1/<br>DV     | $m \rightarrow s$     | -               |                     |
| LMP_clkoffset_res            | 3              | 6          | DM1/<br>DV     | m ← s                 | clock offset    | 2–3                 |
| LMP_comb_key                 | 17             | 9          | DM1            | $m \leftrightarrow s$ | random number   | 2-17                |
| LMP_decr_power_req           | 2              | 32         | DM1/<br>DV     | $m \leftrightarrow s$ | for future use  | 2                   |
| LMP_detach                   | 2              | 7          | DM1/<br>DV     | $m \leftrightarrow s$ | reason          | 2                   |
| LMP_encryption_key_size _req | 2              | 16         | DM1/<br>DV     | $m \leftrightarrow s$ | key size        | 2                   |
| LMP_encryption_mode_<br>req  | 2              | 15         | DM1/<br>DV     | $m \leftrightarrow s$ | encryption mode | 2                   |
| LMP_features_req             | 9              | 39         | DM1/<br>DV     | $m \leftrightarrow s$ | features        | 2-9                 |
| LMP_features_res             | 9              | 40         | DM1/<br>DV     | $m \leftrightarrow s$ | features        | 2-9                 |
| LMP_host_connection_req      | 1              | 51         | DM1/<br>DV     | $m \leftrightarrow s$ | -               |                     |
| LMP_hold                     | 3              | 20         | DM1/<br>DV     | $m \leftrightarrow s$ | hold time       | 2-3                 |
| LMP_hold_req                 | 3              | 21         | DM1/<br>DV     | $m \leftrightarrow s$ | hold time       | 2-3                 |
| LMP_incr_power_req           | 2              | 31         | DM1/<br>DV     | $m \leftrightarrow s$ | for future use  | 2                   |
| LMP_in_rand                  | 17             | 8          | DM1            | $m \leftrightarrow s$ | random number   | 2-17                |
| LMP_max_power                | 1              | 33         | DM1/<br>DV     | $m \leftrightarrow s$ | -               |                     |

Table 5.1: Coding of the different LM PDUs.

# Bluetooth.

| LMP PDU                    | Length (bytes) | op<br>code | Packet<br>type           | Possible direction                          | Contents               | Position in payload |
|----------------------------|----------------|------------|--------------------------|---------------------------------------------|------------------------|---------------------|
| LMP_max_slot               | 2              | 45         | DM1/<br>DV               | $m \rightarrow s$                           | max slots              | 2                   |
| LMP_max_slot_req           | 2              | 46         | DM1/<br>DV               | m ← s                                       | max slots              | 2                   |
| LMP_min_power              | 1              | 34         | DM1/<br>DV               | $m \leftrightarrow s$                       | -                      |                     |
|                            | 11<br>or<br>13 | 28         | DM1                      |                                             | timing control flags   | 2                   |
|                            |                |            |                          |                                             | $D_B$                  | 3-4                 |
|                            |                |            |                          |                                             | T <sub>B</sub>         | 5-6                 |
|                            |                |            |                          |                                             | N <sub>B</sub>         | 7                   |
|                            |                |            |                          |                                             | $\Delta_{B}$           | 8                   |
| LMP_modify_beacon          |                |            |                          | $m \rightarrow s$                           | D <sub>access</sub>    | 9                   |
|                            |                |            |                          |                                             | T <sub>access</sub>    | 10                  |
|                            |                |            |                          |                                             | N <sub>acc-slots</sub> | 11                  |
|                            |                |            |                          |                                             | N <sub>poll</sub>      | 12                  |
|                            |                |            |                          |                                             | M <sub>access</sub>    | 13:0-3              |
|                            |                |            |                          |                                             | access scheme          | 13:4-7              |
| LMP_name_req               | 2              | 1          | DM1/<br>DV               | $m \leftrightarrow s$                       | name offset            | 2                   |
|                            | 17             | 2          | DM1                      | $m \leftrightarrow s$                       | name offset            | 2                   |
| LMP_name_res               |                |            |                          |                                             | name length            | 3                   |
|                            |                |            |                          |                                             | name fragment          | 4-17                |
| LMP_not_accepted           | 3              | 4          | DM1/<br>DV               | $m \leftrightarrow s$                       | op code                | 2                   |
|                            |                |            |                          |                                             | reason                 | 3                   |
| LMP_page_mode_req          | 3              | 53<br>54   | DM1/<br>DV<br>DM1/<br>DV | $m \leftrightarrow s$ $m \leftrightarrow s$ | paging scheme          | 2                   |
|                            |                |            |                          |                                             | paging scheme settings |                     |
| LMP_page_scan_mode_<br>req |                |            |                          |                                             | paging scheme          | 2                   |
| : = =                      |                |            |                          |                                             | paging scheme settings | 3                   |

Table 5.1: Coding of the different LM PDUs.

# Bluetooth.

| LMP PDU                 | Length (bytes) | op<br>code | Packet<br>type | Possible direction    | Contents               | Position in payload |
|-------------------------|----------------|------------|----------------|-----------------------|------------------------|---------------------|
|                         |                |            |                |                       | timing control flags   | 2                   |
|                         |                |            |                |                       | D <sub>B</sub>         | 3-4                 |
|                         |                |            |                |                       | T <sub>B</sub>         | 5-6                 |
|                         |                |            |                |                       | N <sub>B</sub>         | 7                   |
|                         |                |            |                |                       | $\Delta_{B}$           | 8                   |
|                         |                |            |                |                       | PM_ADDR                | 9                   |
|                         |                |            |                |                       | AR_ADDR                | 10                  |
| LMP_park                | 17             | 26         | DM             | $m\tos$               | N <sub>Bsleep</sub>    | 11                  |
|                         |                |            |                |                       | D <sub>Bsleep</sub>    | 12                  |
|                         |                |            |                |                       | D <sub>access</sub>    | 13                  |
|                         |                |            |                |                       | N <sub>acc-slots</sub> | 14                  |
|                         |                |            |                |                       |                        | 15                  |
|                         |                |            |                |                       |                        | 16                  |
|                         |                |            |                |                       | M <sub>access</sub>    | 17:0-3              |
|                         |                |            |                |                       | access scheme          | 17:4-7              |
| LMP_park_req            | 1              | 25         | DM1/<br>DV     | $m \leftrightarrow s$ | -                      |                     |
| LMP_preferred_rate      | 2              | 36         | DM1/<br>DV     | $m \leftrightarrow s$ | data rate              | 2                   |
| LMD quality of consider | 4              | 44         | DM1/           | m                     | poll interval          | 2-3                 |
| LMP_quality_of_service  | 4              | 41         | DV             | $m \rightarrow s$     | N <sub>BC</sub>        | 4                   |
| LMP_quality_of_service_ | 4              | 42         | DM1/           | m / \ e               | poll interval          | 2-3                 |
| req                     | 7              | +4         | DV             | $m \leftrightarrow s$ | N <sub>BC</sub>        | 4                   |
| LMP_remove_SCO_link_    | 3              | 44         | DM1/           | $m \leftrightarrow s$ | SCO handle             | 2                   |
| req                     | J              |            | DV             | / 6                   | reason                 | 3                   |

Table 5.1: Coding of the different LM PDUs.

# Bluetooth.

| LMP PDU                           | Length (bytes) | op<br>code | Packet<br>type | Possible direction    | Contents                | Position in payload |
|-----------------------------------|----------------|------------|----------------|-----------------------|-------------------------|---------------------|
|                                   |                |            |                |                       | SCO handle              | 2                   |
|                                   |                |            |                |                       | timing control flags    | 3                   |
| LMP SCO link req                  | 7              | 43         | DM1/           | $m \leftrightarrow s$ | D <sub>sco</sub>        | 4                   |
| LIMF_SCO_IIIIK_req                | 1              | 43         | DV             | III ↔ 3               | T <sub>sco</sub>        | 5                   |
|                                   |                |            |                |                       | SCO packet              | 6                   |
|                                   |                |            |                |                       | air mode                | 7                   |
|                                   |                |            |                |                       | timing control flags    | 2                   |
| LMP_set_broadcast_<br>scan_window | 4 or 6         | 27         | DM1            | $m \rightarrow s$     | $D_B$                   | 3-4                 |
|                                   | 1010 21        |            |                |                       | broadcast scan window   | 5-6                 |
| LMP_setup_complete                | 1              | 49         | DM1            | $m \leftrightarrow s$ | -                       |                     |
| LMP slot offset                   | 9              | 52         | DM1/           | $m \leftrightarrow s$ | slot offset             | 2-3                 |
| Livii _slot_oliset                | 9              | 32         | DV             | III ( <del>-)</del> 3 | BD_ADDR                 | 4-9                 |
| LMP_sniff                         | 10             | 22         | DM1            | $m \rightarrow s$     | timing control flags    | 2                   |
|                                   |                |            |                |                       | $D_{sniff}$             | 3-4                 |
|                                   |                |            |                |                       | T <sub>sniff</sub>      | 5-6                 |
|                                   |                |            |                |                       | sniff attempt           | 7-8                 |
|                                   |                |            |                |                       | sniff timeout           | 9-10                |
|                                   |                |            |                |                       | timing control flags    | 2                   |
|                                   |                |            |                |                       | D <sub>sniff</sub>      | 3-4                 |
| LMP_sniff_req                     | 10             | 23         | DM1            | $m \leftrightarrow s$ | T <sub>sniff</sub>      | 5-6                 |
|                                   |                |            |                |                       | sniff attempt           | 7-8                 |
|                                   |                |            |                |                       | sniff timeout           | 9-10                |
| LMP_sres                          | 5              | 12         | DM1/<br>DV     | $m \leftrightarrow s$ | authentication response | 2-5                 |
| LMP_start_encryption_req          | 17             | 17         | DM1            | $m \rightarrow s$     | random number           | 2-17                |
| LMP_stop_encryption_req           | 1              | 18         | DM1/<br>DV     | $m \rightarrow s$     | -                       |                     |
| LMP_supervision_timeout           | 3              | 55         | DM1/<br>DV     | $m \leftrightarrow s$ | supervision timeout     | 2-3                 |
| LMP_switch_req                    | 1              | 19         | DM1/<br>DV     | $m \leftrightarrow s$ | -                       |                     |

Table 5.1: Coding of the different LM PDUs.

## Bluetooth.

| LMP PDU                        | Length (bytes) | op<br>code | Packet<br>type | Possible direction    | Contents                       | Position in payload |
|--------------------------------|----------------|------------|----------------|-----------------------|--------------------------------|---------------------|
| LMP_temp_rand                  | 17             | 13         | DM1            | $m \rightarrow s$     | random number                  | 2-17                |
| LMP_temp_key                   | 17             | 14         | DM1            | $m \rightarrow s$     | key                            | 2-17                |
| LMP_timing_accuracy_req        | 1              | 47         | DM1/<br>DV     | $m \leftrightarrow s$ | -                              |                     |
| LMP_timing_accuracy_res        | 3              | 48         | DM1/           | $m \leftrightarrow s$ | drift                          | 2                   |
|                                | •              | .0         | DV             | 、, ,                  | jitter                         | 3                   |
| LMP_unit_key                   | 17             | 10         | DM1            | $m \leftrightarrow s$ | key                            | 2-17                |
|                                |                |            |                |                       | timing control flags           | 2                   |
|                                |                |            |                |                       | $D_B$                          | 3-4                 |
| LMP_unpark_BD_ADDR             | variable       | 29         | DM1            | m                     | AM_ADDR 1 <sup>st</sup> unpark | 5:0-3               |
| _req                           | variable       | 29         | וואוטו         | $m \rightarrow s$     | AM_ADDR 2 <sup>nd</sup> unpark | 5:4-7               |
|                                |                |            |                |                       | BD_ADDR 1 <sup>st</sup> unpark | 6-11                |
|                                |                |            |                |                       | BD_ADDR 2 <sup>nd</sup> unpark | 12-17               |
|                                |                |            |                |                       | timing control flags           | 2                   |
|                                |                |            | DM1            |                       | D <sub>B</sub>                 | 3-4                 |
| LMP_unpark_PM_ADDR             |                | 30         |                |                       | AM_ADDR 1 <sup>st</sup> unpark | 5:0-3               |
| _req                           | variable       |            |                | $m \rightarrow s$     | AM_ADDR 2 <sup>nd</sup> unpark | 5:4-7               |
|                                |                |            |                |                       | PM_ADDR 1 <sup>st</sup> unpark | 6                   |
|                                |                |            |                | _                     |                                | 7                   |
| LMP_unsniff_req                | 1              | 24         | DM1/<br>DV     | $m \leftrightarrow s$ | -                              |                     |
| LMP_use_semi_<br>permanent_key | 1              | 50         | DM1/<br>DV     | $m \rightarrow s$     | -                              |                     |
|                                |                |            |                |                       | VersNr                         | 2                   |
| LMP_version_req                | 6              | 37         | DM1/<br>DV     | $m \leftrightarrow s$ | Compld                         | 3-4                 |
|                                |                |            |                |                       | SubVersNr                      | 5-6                 |
|                                |                |            |                |                       | VersNr                         | 2                   |
| LMP_version_res                | 6              | 38         | DM1/<br>DV     | $m \leftrightarrow s$ | Compld                         | 3-4                 |
|                                |                |            |                |                       | SubVersNr                      | 5-6                 |

Table 5.1: Coding of the different LM PDUs.

**Note1**: For LMP\_set\_broadcast\_scan\_window, LMP\_modify\_beacon, LMP\_unpark\_BD\_ADDR\_req and LMP\_unpark\_PM\_ADDR\_req the parameter

## Bluetooth.

 $D_B$  is optional. This parameter is only present if bit0 of *timing control flags* is 0. If the parameter is not included, the position in payload for all parameters following  $D_B$  are decreased by 2.

**Note2:** For LMP\_unpark\_BD\_ADDR the AM\_ADDR and the BD\_ADDR of the 2<sup>nd</sup> unparked slave are optional. If only one slave is unparked AM\_ADDR 2<sup>nd</sup> unpark should be zero and BD\_ADDR 2<sup>nd</sup> unpark is left out.

**Note3:** For LMP\_unpark\_PM\_ADDR the AM\_ADDR and the PM\_ADDR of the  $2^{\text{nd}} - 7^{\text{th}}$  unparked slaves are optional. If N slaves are unparked, the fields up to and including the N<sup>th</sup> unparked slave are present. If N is odd, the *AM\_ADDR*  $(N+1)^{\text{th}}$  unpark must be zero. The length of the message is x + 3N/2 if N is even and x + 3(N+1)/2 -1 if N is odd, where x = 2 or 4 depending on if the  $D_B$  is incluDed Or Not (See Note1).

#### 5.1 DESCRIPTION OF PARAMETERS

| Name                    | Length (bytes) | Туре           | Unit   | Detailed                                                                                                               |
|-------------------------|----------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------|
| access scheme           | 1              | u_int4         |        | 0: polling technique<br>1-15: Reserved                                                                                 |
| air mode                | 1              | u_int8         |        | 0: μ-law log<br>1: A-law log<br>2: CVSD<br>3-255: Reserved                                                             |
| AM_ADDR                 | 1              | u_int4         |        |                                                                                                                        |
| AR_ADDR                 | 1              | u_int8         |        |                                                                                                                        |
| authentication response | 4              | multiple bytes |        |                                                                                                                        |
| BD_ADDR                 | 6              | multiple bytes |        |                                                                                                                        |
| broadcast scan window   | 2              | u_int16        | slots  |                                                                                                                        |
| clock offset            | 2              | u_int16        | 1.25ms | (CLKN <sub>16-2</sub> slave -<br>CLKN <sub>16-2</sub> master) mod 2 <sup>15</sup><br>MSbit of second byte not<br>used. |
| Compld                  | 2              | u_int16        |        | see BT Assigned Numbers<br>Section 2.1 on page 1018                                                                    |
| D <sub>access</sub>     | 1              | u_int8         | slots  |                                                                                                                        |
| D <sub>B</sub>          | 2              | u_int16        | slots  |                                                                                                                        |

Table 5.2: Parameters in LM PDUs.

# Bluetooth.

| Name                   | Length (bytes) | Туре           | Unit  | Detailed                                                                                                              |
|------------------------|----------------|----------------|-------|-----------------------------------------------------------------------------------------------------------------------|
| D <sub>Bsleep</sub>    | 1              | u_int8         | slots |                                                                                                                       |
| data rate              | 1              | u_int8         |       | 0: medium rate<br>1: high rate<br>2-255: Reserved                                                                     |
| drift                  | 1              | u_int8         | ppm   |                                                                                                                       |
| D <sub>sco</sub>       | 1              | u_int8         | slots |                                                                                                                       |
| D <sub>sniff</sub>     | 2              | u_int16        | slots |                                                                                                                       |
| encryption mode        | 1              | u_int8         |       | 0: no encryption     1: point-to-point encryption     2: point-to-point and broadcast encryption     3 -255: Reserved |
| features               | 8              | multiple bytes |       | See Table 5.3 on page 234                                                                                             |
| hold time              | 2              | u_int16        | slots |                                                                                                                       |
| jitter                 | 1              | u_int8         | μs    |                                                                                                                       |
| key                    | 16             | multiple bytes |       |                                                                                                                       |
| key size               | 1              | u_int8         | byte  |                                                                                                                       |
| M <sub>access</sub>    | 1              | u_int4         | slots |                                                                                                                       |
| max slots              | 1              | u_int8         | slots |                                                                                                                       |
| N <sub>acc-slots</sub> | 1              | u_int8         | slots |                                                                                                                       |
| name fragment          | 14             | multiple bytes |       | UTF-8 characters.                                                                                                     |
| name length            | 1              | u_int8         | bytes |                                                                                                                       |
| name offset            | 1              | u_int8         | bytes |                                                                                                                       |
| N <sub>B</sub>         | 1              | u_int8         |       |                                                                                                                       |
| N <sub>BC</sub>        | 1              | u_int8         |       |                                                                                                                       |
| N <sub>Bsleep</sub>    | 1              | u_int8         | slots |                                                                                                                       |
| N <sub>poll</sub>      | 1              | u_int8         | slots |                                                                                                                       |
| op code                | 1              | u_int8         |       |                                                                                                                       |
| paging scheme          | 1              | u_int8         |       | 0: mandatory scheme 1: optional scheme 1 2-255: Reserved                                                              |

Table 5.2: Parameters in LM PDUs.

page 233 of 1082

Link Manager Protocol

# Bluetooth.

| Name                      | Length (bytes) | Туре           | Unit  | Detailed                                                                                                                                                                                               |
|---------------------------|----------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| paging scheme<br>settings | 1              | u_int8         |       | For mandatory scheme: 0: R0 1: R1 2: R2 3-255: Reserved For optional scheme 1: 0: Reserved 1: R1 2: R2 3-255: Reserved                                                                                 |
| PM_ADDR                   | 1              | u_int8         |       |                                                                                                                                                                                                        |
| poll interval             | 2              | u_int16        | slots |                                                                                                                                                                                                        |
| random number             | 16             | multiple bytes |       |                                                                                                                                                                                                        |
| reason                    | 1              | u_int8         |       | See Table 5.4 on page 235.                                                                                                                                                                             |
| SCO handle                | 1              | u_int8         |       |                                                                                                                                                                                                        |
| SCO packet                | 1              | u_int8         |       | 0: HV1<br>1: HV2<br>2: HV3<br>3-255: Reserved                                                                                                                                                          |
| slot offset               | 2              | u_int16        | μs    | 0 ≤ slot offset < 1250                                                                                                                                                                                 |
| sniff attempt             | 2              | u_int16        | slots |                                                                                                                                                                                                        |
| sniff timeout             | 2              | u_int16        | slots |                                                                                                                                                                                                        |
| SubVersNr                 | 2              | u_int16        |       | Defined by each company                                                                                                                                                                                |
| supervision time-<br>out  | 2              | u_int16        | slots |                                                                                                                                                                                                        |
| T <sub>access</sub>       | 1              | u_int8         | slots |                                                                                                                                                                                                        |
| T <sub>B</sub>            | 2              | u_int16        | slots |                                                                                                                                                                                                        |
| timing control<br>flags   | 1              | u_int8         |       | bit0 = 0: no timing change<br>bit0 = 1: timing change<br>bit1 = 0: use initialization 1<br>bit1 = 1: use initialization 2<br>bit2 = 0: access window<br>bit2 = 1: no access window<br>bit3-7: Reserved |

Table 5.2: Parameters in LM PDUs.

## Bluetooth.

| Name               | Length (bytes) | Туре    | Unit  | Detailed                                |
|--------------------|----------------|---------|-------|-----------------------------------------|
| T <sub>sco</sub>   | 1              | u_int8  | slots |                                         |
| T <sub>sniff</sub> | 2              | u_int16 | slots |                                         |
| VersNr             | 1              | u_int8  |       | 0: Bluetooth LMP 1.0<br>1-255: Reserved |
| $\Delta_{B}$       | 1              | u_int8  | slots |                                         |

Table 5.2: Parameters in LM PDUs.

#### 5.1.1 Coding of features

This parameter is a bitmap with information about the Bluetooth radio-, base-band- and LMP features which a device supports. The bit shall be one if the feature is supported. The feature parameter bits that are not defined in Table 5.3 shall be zero.

| Byte | Bit | Supported feature                |
|------|-----|----------------------------------|
|      | 0   | 3-slot packets                   |
|      | 1   | 5-slot packets                   |
|      | 2   | encryption                       |
| 0    | 3   | slot offset                      |
| 0    | 4   | timing accuracy                  |
|      | 5   | switch                           |
|      | 6   | hold mode                        |
|      | 7   | sniff mode                       |
|      | 0   | park mode                        |
|      | 1   | RSSI                             |
|      | 2   | channel quality driven data rate |
| 1    | 3   | SCO link                         |
| '    | 4   | HV2 packets                      |
|      | 5   | HV3 packets                      |
|      | 6   | u-law log                        |
|      | 7   | A-law log                        |
|      | 0   | CVSD                             |
| 2    | 1   | paging scheme                    |
|      | 2   | power control                    |

Table 5.3: Coding of the parameter features.

Bluetooth.

#### 5.1.2 List of error reasons

The following table contains the codes of the different error reasons used in LMP.

| Reason | Description                                                                                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x05   | Authentication Failure                                                                                                                                                                                                                 |
| 0x06   | Key Missing                                                                                                                                                                                                                            |
| 0x0A   | Max Number Of SCO Connections To A Device (The maximum number of SCO connections to a particle device has been reached. All allowed SCO connection handles to that device are used.)                                                   |
| 0x0D   | Host Rejected due to limited resources (The host at the remote side has rejected the connection because the remote host did not have enough additional resources to accept the connection.)                                            |
| 0x0E   | Host Rejected due to security reasons (The host at the remote side has rejected the connection because the remote host determined that the local host did not meet its security criteria.)                                             |
| 0x0F   | Host Rejected due to remote device is only a personal device (The host at the remote side has rejected the connection because the remote host is a personal device and will only accept the connection from one particle remote host.) |
| 0x10   | Host Timeout (Used at connection accept timeout, the host did not respond to an incoming connection attempt before the connection accept timer expired.)                                                                               |
| 0x13   | Other End Terminated Connection: User Ended Connection                                                                                                                                                                                 |
| 0x14   | Other End Terminated Connection: Low Resources                                                                                                                                                                                         |
| 0x15   | Other End Terminated Connection: About to Power Off                                                                                                                                                                                    |
| 0x16   | Connection Terminated by Local Host                                                                                                                                                                                                    |
| 0x17   | Repeated Attempts (An authentication or pairing attempt is made too soon after a previously failed authentication or pairing attempt.)                                                                                                 |
| 0x18   | Pairing Not Allowed                                                                                                                                                                                                                    |
| 0x19   | Unknown LMP PDU                                                                                                                                                                                                                        |
| 0x1A   | Unsupported LMP Feature                                                                                                                                                                                                                |
| 0x1B   | SCO Offset Rejected                                                                                                                                                                                                                    |
| 0x1C   | SCO Interval Rejected                                                                                                                                                                                                                  |
| 0x1D   | SCO Air Mode Rejected                                                                                                                                                                                                                  |
| 0x1E   | Invalid LMP Parameters                                                                                                                                                                                                                 |
| 0x1F   | Unspecified Error                                                                                                                                                                                                                      |
| 0x20   | Unsupported parameter value                                                                                                                                                                                                            |
| 0x21   | Switch not allowed                                                                                                                                                                                                                     |
| 0x23   | LMP Error Transaction Collision                                                                                                                                                                                                        |
| 0x24   | PDU not allowed                                                                                                                                                                                                                        |

Table 5.4: List of error reasons.

page 236 of 1082

Link Manager Protocol

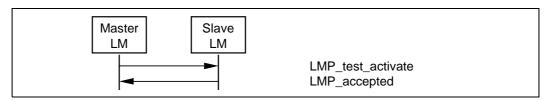
Bluetooth..

#### **5.2 DEFAULT VALUES**

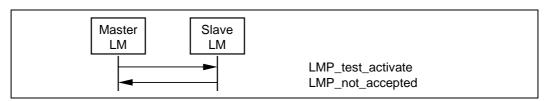
The Bluetooth device must use these values before anything else has been negotiated:

| Parameter     | Value |
|---------------|-------|
| drift         | 250   |
| jitter        | 10    |
| max slots     | 1     |
| poll interval | 40    |

Table 5.5: Default values.


Bluetooth.

## 6 TEST MODES


LMP has PDUs to support different Bluetooth test modes, which are used for certification and compliance testing of the Bluetooth radio and baseband. See "Bluetooth Test Mode" on page 803 for a detailed description of these test modes.

#### 6.1 ACTIVATION AND DEACTIVATION OF TEST MODE

The test mode is activated by sending LMP\_test\_activate to the device under test (DUT). The DUT is always the slave. The link manager must be able to receive this message anytime. If entering test mode is locally enabled in the DUT it responds with LMP\_accepted and test mode is entered. Otherwise the DUT responds with LMP\_not\_accepted and the DUT remains in normal operation. The reason code in LMP\_not\_accepted shall be *PDU not allowed*.



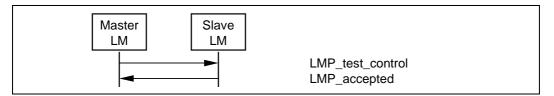
Sequence 60: Activation of test mode successful.



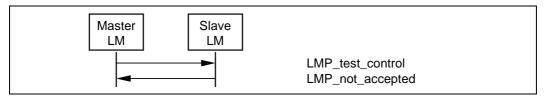
Sequence 61: Activation of test mode fails. Slave is not allowed to enter test mode.

The test mode can be deactivated in two ways. Sending LMP\_test\_control with the test scenario set to "exit test mode" exits the test mode and the slave returns to normal operation still connected to the master. Sending LMP\_detach to the DUT ends the test mode and the connection.

#### 6.2 CONTROL OF TEST MODE


When the DUT has entered test mode, the PDU LMP\_test\_control can be sent to the DUT to start a specific test. This PDU is acknowledged with LMP\_accepted. If a device that is not in test mode receives LMP\_test\_control it responds with LMP\_not\_accepted, where the reason code shall be *PDU not allowed*.

Test Modes 29 November 1999 237


page 238 of 1082

Link Manager Protocol

Bluetooth.



Sequence 62: Control of test mode successful.



Sequence 63: Control of test mode rejected since slave is not in test mode.

#### 6.3 SUMMARY OF TEST MODE PDUs

The PDUs used for test purposes are summarized in the following table. For a detailed description of the parameters, see Bluetooth Test Mode Table 3.2 on page 817.

| M/O | LMP PDU                      | Length | epoo do     | Packet<br>type | Possible direction | Contents                  | Position in payload |
|-----|------------------------------|--------|-------------|----------------|--------------------|---------------------------|---------------------|
| М   | LMP_test_activate            | 1      | 56          | DM1/DV         | $m\tos$            | -                         |                     |
|     |                              |        |             |                |                    | test scenario             | 2                   |
|     | 1 LMP_test_control 10 57 DM1 |        |             |                |                    | hopping mode TX frequency | 3                   |
|     |                              |        |             |                |                    |                           | 4                   |
| М   |                              | DM1    |             | RX frequency   | 5                  |                           |                     |
| IVI |                              | 10 5   | 57          | DIVIT          | $m \to s$          | power control mode        | 6                   |
|     |                              |        |             |                |                    | poll period               | 7                   |
|     |                              |        | packet type | 8              |                    |                           |                     |
|     |                              |        |             |                |                    | length of test data       | 9-10                |

Table 6.1: Test mode PDUs.

page 239 of 1082

Link Manager Protocol

Bluetooth.

#### 7 ERROR HANDLING

If the Link Manager receives a PDU with unrecognized opcode, it responds with LMP\_not\_accepted with the reason code *unknown LMP PDU*. The opcode parameter that is echoed back is the unrecognized opcode.

If the Link Manager receives a PDU with invalid parameters, it responds with LMP\_not\_accepted with the reason code *invalid LMP parameters*.

If the maximum response time, see Section 1 on page 191, is exceeded or if a link loss is detected (see Baseband Specification Section 10.11, on page 126), the party that waits for the response shall conclude that the procedure has terminated unsuccessfully.

Erroneous LMP messages can be caused by errors on the channel or systematic errors at the transmit side. To detect the latter case, the LM should monitor the number of erroneous messages and disconnect if it exceeds a threshold, which is implementation-dependent.

Since LMP PDUs are not interpreted in real time, collision situations can occur where both LMs initiate the same procedure and both cannot be completed. In this situation, the master shall reject the slave-initiated procedure by sending LMP\_not\_accepted with the reason code 'LMP Error Transaction Collision'. The master-initiated procedure shall then be completed.

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 240 of 1082

Link Manager Protocol

Bluetooth.

# Bluetooth.

## **8 LIST OF FIGURES**

|              | nk Manager's place on the global scene                             |     |
|--------------|--------------------------------------------------------------------|-----|
| •            | /mbols used in sequence diagrams                                   |     |
|              | ,                                                                  |     |
| Sequence 1:  | Authentication. Claimant has link key                              | 194 |
| Sequence 2:  | Authentication fails. Claimant has no link key                     | 194 |
| Sequence 3:  | Claimant accepts pairing                                           | 195 |
| Sequence 4:  | Claimant accepts pairing but requests to be verifier               | 196 |
| Sequence 5:  | Unsuccessful switch of claimant-verifier role                      | 196 |
| Sequence 6:  | Claimant rejects pairing.                                          | 196 |
| Sequence 7:  | Creation of the link key                                           | 197 |
| Sequence 8:  | Successful change of the link key.                                 | 197 |
| Sequence 9:  | Change of the link key not possible since the other                |     |
|              | unit uses a unit key.                                              |     |
| Sequence 10: | Change to a temporary link key                                     |     |
| Sequence 11: | Link key changed to the semi-permanent link key                    |     |
| Sequence 12: | Negotiation for encryption mode.                                   |     |
| Sequence 13: | Encryption key size negotiation successful                         |     |
| Sequence 14: | Encryption key size negotiation failed                             |     |
| Sequence 15: | Start of encryption.                                               |     |
| Sequence 16: | Stop of encryption.                                                |     |
| Sequence 17: | Clock offset requested.                                            |     |
| Sequence 18: | Slot offset information is sent                                    | 203 |
| Sequence 19: | The requested device supports timing accuracy information.         | 204 |
| Sequence 20: | The requested device does not support timing accuracy information. | 204 |
| Sequence 21: | Request for LMP version.                                           |     |
| Sequence 22: | Request for supported features.                                    |     |
| Sequence 23: | Master-slave switch accepted                                       |     |
| Sequence 24: | Master-slave switch not accepted                                   | 207 |
| Sequence 25: | Device's name requested and it responses                           | 207 |
| Sequence 26: | Connection closed by sending LMP_detach                            | 208 |
| Sequence 27: | Master forces slave into hold mode                                 | 208 |
| Sequence 28: | Slave forces master into hold mode                                 | 209 |
| Sequence 29: | Negotiation for hold mode.                                         | 209 |
| Sequence 30: | Master forces slave into sniff mode                                | 210 |
| Sequence 31: | Negotiation for sniff mode.                                        | 210 |
| Sequence 32: | Slave moved from sniff mode to active mode                         | 211 |
| Sequence 33: | Slave forced into park mode                                        | 213 |
| Sequence 34: | Slave accepts to be placed in park mode                            | 213 |

| Link Manager Protocol |                                                                   | Bluetooth |  |
|-----------------------|-------------------------------------------------------------------|-----------|--|
| Sequence 35:          | Slave rejects to be placed in park mode                           | 213       |  |
| Sequence 36:          | Master accepts and places slave in park mode                      | 214       |  |
| Sequence 37:          | Master rejects to place slave in park mode                        |           |  |
| Sequence 38:          | Master notifies all slaves of increase in broadcast               |           |  |
|                       | capacity.                                                         | 214       |  |
| Sequence 39:          | Master modifies beacon parameters                                 | 214       |  |
| Sequence 40:          | Master unparks slaves addressed with their BD_ADDR.               | 215       |  |
| Sequence 41:          | Master unparks slaves addressed with their PM_ADDR                | 215       |  |
| Sequence 42:          | A device requests a change of the other device's                  |           |  |
|                       | TX power.                                                         |           |  |
| Sequence 43:          | The TX power cannot be increased                                  |           |  |
| Sequence 44:          | The TX power cannot be decreased                                  | 216       |  |
| Sequence 45:          | The left-hand unit is configured to automatically                 |           |  |
| _                     | change between DM and DH.                                         | 217       |  |
| Sequence 46:          | The right-hand device orders the left-hand device                 | 047       |  |
| 0 47                  | to change data rate.                                              |           |  |
| Sequence 47:          | Master notifies slave of new quality of service                   |           |  |
| Sequence 48:          | Device accepts new quality of service                             |           |  |
| Sequence 49:          | Device rejects new quality of service.                            |           |  |
| Sequence 50:          | Master requests an SCO link.                                      |           |  |
| Sequence 51:          | Master rejects slave's request for an SCO link                    |           |  |
| Sequence 52:          | Master accepts slave's request for an SCO link                    |           |  |
| Sequence 53:          | SCO link removed.                                                 |           |  |
| Sequence 54:          | Master allows slave to use a maximal number of slots.             | 222       |  |
| Sequence 55:          | Slave requests to use a maximal number of slots.                  | 222       |  |
| 0                     | Master accepts.                                                   | 222       |  |
| Sequence 56:          | Slave requests to use a maximal number of slots.  Master rejects. | 222       |  |
| Seguence 57:          | Negotiation for page mode.                                        |           |  |
| Sequence 58:          | Negotiation for page scan mode                                    |           |  |
| Sequence 59:          | Setting the link supervision timeout.                             |           |  |
| Sequence 39.          | Setting the link supervision timeout.                             | 224       |  |
| Figure 4.1: C         | connection establishment.                                         | 225       |  |
| _                     |                                                                   |           |  |
| Sequence 60:          | Activation of test mode successful.                               | 237       |  |
| Sequence 61:          | Activation of test mode fails. Slave is not allowed to            |           |  |
|                       | enter test mode.                                                  |           |  |
| Sequence 62:          | Control of test mode successful.                                  | 238       |  |
| Sequence 63:          | Control of test mode rejected since slave is not in               |           |  |
|                       | test mode.                                                        | 238       |  |

# Bluetooth.

## 9 LIST OF TABLES

| Table 2.1:  | Logical channel L_CH field contents                  |     |
|-------------|------------------------------------------------------|-----|
| Table 3.1:  | General response messages.                           |     |
| Table 3.2:  | PDUs used for authentication.                        | 194 |
| Table 3.3:  | PDUs used for pairing.                               |     |
| Table 3.4:  | PDUs used for change of link key                     |     |
| Table 3.5:  | PDUs used to change the current link key             | 198 |
| Table 3.6:  | PDUs used for handling encryption                    | 199 |
| Table 3.7:  | PDUs used for clock offset request                   | 202 |
| Table 3.8:  | PDU used for slot offset information.                | 203 |
| Table 3.9:  | PDUs used for requesting timing accuracy information | 204 |
| Table 3.10: | PDUs used for LMP version request                    | 205 |
| Table 3.11: | PDUs used for features request                       | 206 |
| Table 3.12: | PDU used for master slave switch                     | 206 |
| Table 3.13: | PDUs used for name request                           | 207 |
| Table 3.14: | PDU used for detach                                  | 207 |
| Table 3.15: | PDUs used for hold mode                              | 208 |
| Table 3.16: | PDUs used for sniff mode.                            | 210 |
| Table 3.17: | PDUs used for park mode                              | 212 |
| Table 3.18: | PDUs used for power control.                         | 216 |
| Table 3.19: | PDUs used for quality driven change of the data rate | 217 |
| Table 3.20: | PDUs used for quality of service                     | 218 |
| Table 3.21: | PDUs used for managing the SCO links                 | 219 |
| Table 3.22: | PDUs used to control the use of multi-slot packets   | 222 |
| Table 3.23: | PDUs used to request paging scheme                   | 223 |
| Table 3.24: | PDU used to set the supervision timeout              | 224 |
| Table 4.1:  | PDUs used for connection establishment               | 225 |
| Table 5.1:  | Coding of the different LM PDUs                      | 226 |
| Table 5.2:  | Parameters in LM PDUs.                               | 231 |
| Table 5.3:  | Coding of the parameter features                     | 234 |
| Table 5.4:  | List of error reasons.                               | 235 |
| Table 5.5:  | Default values.                                      | 236 |
| Table 6.1:  | Test mode PDUs                                       | 238 |

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 244 of 1082

Link Manager Protocol

Bluetooth.

## Part D

# ADAPTATION PROTOCOL SPECIFICATION

This document describes the Bluetooth logical link control and adaptation protocol (L2CAP). This protocol supports higher level protocol multiplexing, packet segmentation and reassembly, and the conveying of quality of service information. This document is part of the Bluetooth Specification. This document describes the protocol state machine, packet format and composition, and a test interface required for the Bluetooth test and certification program.

# ATTACHMENT H

# Bluetooth.

## **CONTENTS**

| 1 | Intro | duction                                         | 249 |
|---|-------|-------------------------------------------------|-----|
|   | 1.1   | L2CAP Functional Requirements                   | 250 |
|   | 1.2   | Assumptions                                     |     |
|   | 1.3   | Scope                                           |     |
| 2 | Gene  | eral Operation                                  | 253 |
| _ | 2.1   | Channel Identifiers                             |     |
|   | 2.2   | Operation Between Devices                       |     |
|   | 2.3   | Operation Between Layers                        |     |
|   | 2.4   | Segmentation and Reassembly                     |     |
|   |       | 2.4.1 Segmentation Procedures                   |     |
|   |       | 2.4.2 Reassembly Procedures                     |     |
| 3 | State | • Machine                                       |     |
| 3 | 3.1   | Events                                          |     |
|   | 3.1   | 3.1.1 Lower-Layer Protocol (LP) to L2CAP events |     |
|   |       | 3.1.2 L2CAP to L2CAP Signalling events          |     |
|   |       | 3.1.3 L2CAP to L2CAP Data events                |     |
|   |       | 3.1.4 Upper-Layer to L2CAP events               |     |
|   |       | 3.1.5 Timer events                              |     |
|   | 3.2   | Actions                                         |     |
|   |       | 3.2.1 L2CAP to Lower Layer actions              |     |
|   |       | 3.2.2 L2CAP to L2CAP Signalling actions         |     |
|   |       | 3.2.3 L2CAP to L2CAP Data actions               |     |
|   |       | 3.2.4 L2CAP to Upper Layer actions              | 264 |
|   | 3.3   | Channel Operational States                      |     |
|   | 3.4   | Mapping Events to Actions                       | 266 |
| 4 | Data  | Packet Format                                   | 272 |
|   | 4.1   | Connection-oriented Channel                     | 272 |
|   | 4.2   | Connectionless Data Channel                     | 273 |
| 5 | Sign  | lling                                           | 275 |
| 3 | 5.1   | Command Reject (code 0x01)                      |     |
|   | 5.2   | Connection Request (code 0x01)                  |     |
|   | 5.3   | Connection Response (code 0x03)                 |     |
|   | 5.4   | Configuration Request (code 0x04)               |     |
|   | 5.5   | Configure Response (code 0x05)                  |     |
|   | 5.6   | Disconnection Request (code 0x06)               |     |
|   | 5.7   | Disconnection Response (code 0x07)              |     |
|   | 5.8   | Echo Request (code 0x08)                        |     |
|   | 5.9   | Echo Response (code 0x09)                       |     |
|   | 5.10  | Information Request (CODE 0x0A)                 |     |
|   | 5.11  | Information Response (CODE 0x0B)                |     |
|   |       |                                                 |     |

| Logica | Logical Link Control and Adaptation Protocol Specification  Bluetooth |                                     |     |  |
|--------|-----------------------------------------------------------------------|-------------------------------------|-----|--|
| 6      | Conf                                                                  | iguration Parameter Options         | 289 |  |
|        | 6.1                                                                   | Maximum Transmission Unit (MTU)     | 289 |  |
|        | 6.2                                                                   | Flush Timeout Option                | 290 |  |
|        | 6.3                                                                   | Quality of Service (QoS) Option     | 291 |  |
|        | 6.4                                                                   | Configuration Process               | 293 |  |
|        |                                                                       | 6.4.1 Request Path                  | 293 |  |
|        |                                                                       | 6.4.2 Response Path                 | 294 |  |
|        |                                                                       | 6.4.3 Configuration State Machine   | 294 |  |
| 7      | Servi                                                                 | ce Primitives                       | 295 |  |
|        | 7.1                                                                   | Event Indication                    | 295 |  |
|        |                                                                       | 7.1.1 L2CA_ConnectInd Callback      | 296 |  |
|        |                                                                       | 7.1.2 L2CA_ConfigInd Callback       | 296 |  |
|        |                                                                       | 7.1.3 L2CA_DisconnectInd Callback   | 296 |  |
|        |                                                                       | 7.1.4 L2CA_QoSViolationInd Callback | 296 |  |
|        | 7.2                                                                   | Connect                             | 296 |  |
|        | 7.3                                                                   | Connect Response                    | 298 |  |
|        | 7.4                                                                   | Configure                           | 299 |  |
|        | 7.5                                                                   | Configuration Response              | 301 |  |
|        | 7.6                                                                   | Disconnect                          | 302 |  |
|        | 7.7                                                                   | Write                               | 303 |  |
|        | 7.8                                                                   | Read                                | 304 |  |
|        | 7.9                                                                   | Group Create                        | 305 |  |
|        | 7.10                                                                  | Group Close                         |     |  |
|        | 7.11                                                                  | Group Add Member                    |     |  |
|        | 7.12                                                                  | Group Remove Member                 |     |  |
|        | 7.13                                                                  | Get Group Membership                |     |  |
|        | 7.14                                                                  | Ping                                |     |  |
|        | 7.15                                                                  | GetInfo                             |     |  |
|        | 7.16                                                                  | Disable Connectionless Traffic      |     |  |
|        | 7.17                                                                  | Enable Connectionless Traffic       | 312 |  |
| 8      | Sumi                                                                  | mary                                | 313 |  |
| 9      | Refe                                                                  | rences                              | 314 |  |
| 10     | List                                                                  | of Figures                          | 315 |  |
| 11     | List                                                                  | of Tables                           | 316 |  |
| Terms  | s and                                                                 | Abbreviations                       | 317 |  |
| Appe   | ndix A                                                                | : Configuration MSCs                | 318 |  |
| Appe   | ndix B                                                                | : Implementation Guidelines         | 321 |  |

Bluetooth.

#### 1 INTRODUCTION

This section of the Bluetooth Specification defines the Logical Link Control and Adaptation Layer Protocol, referred to as L2CAP. L2CAP is layered over the Baseband Protocol and resides in the data link layer as shown in Figure 1.1. L2CAP provides connection-oriented and connectionless data services to upper layer protocols with protocol multiplexing capability, segmentation and reassembly operation, and group abstractions. L2CAP permits higher level protocols and applications to transmit and receive L2CAP data packets up to 64 kilobytes in length.

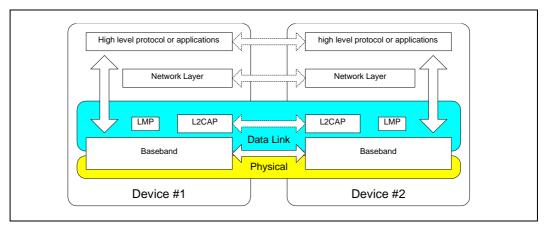



Figure 1.1: L2CAP within protocol layers

The "Baseband Specification" on page 33 defines two link types: Synchronous Connection-Oriented (SCO) links and Asynchronous Connection-Less (ACL) links. SCO links support real-time voice traffic using reserved bandwidth. ACL links support best effort traffic. The L2CAP Specification is defined for only ACL links and no support for SCO links is planned.

For ACL links, use of the AUX1 packet on the ACL link is prohibited. This packet type supports no data integrity checks (no CRC). Because L2CAP depends on integrity checks in the Baseband to protect the transmitted information, AUX1 packets must never be used to transport L2CAP packets.

The format of the ACL payload header is shown below. Figure 1.2 on page 250 displays the payload header used for single-slot packets and Figure 1.3 displays the header used in multi-slot packets. The only difference is the size of the length field. The packet type (a field in the Baseband header) distinguishes single-slot packets from multi-slot packets.

page 250 of 1082

Logical Link Control and Adaptation Protocol Specification

**Bluetooth** 

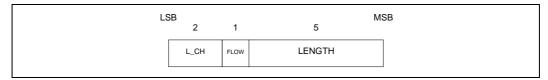



Figure 1.2: ACL Payload Header for single-slot packets

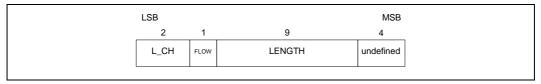



Figure 1.3: ACL Payload Header for multi-slot packets

The 2-bit logical channel (L\_CH) field, defined in Table 1.1, distinguishes L2CAP packets from Link Manager Protocol (page 185) packets. The remaining code is reserved for future use.

| L_CH code | Logical Channel | Information                  |
|-----------|-----------------|------------------------------|
| 00        | RESERVED        | Reserved for future use      |
| 01        | L2CAP           | Continuation of L2CAP packet |
| 10        | L2CAP           | Start of L2CAP packet        |
| 11        | LMP             | Link Manager Protocol        |

Table 1.1: Logical channel L\_CH field contents

The FLOW bit in the ACL header is managed by the Link Controller (LC), a Baseband implementation entity, and is normally set to 1 ('flow on'). It is set to 0 ('flow off') when no further L2CAP traffic shall be sent over the ACL link. Sending an L2CAP packet with the FLOW bit set to 1 resumes the flow of incoming L2CAP packets. This is described in more detail in "Baseband Specification" on page 33.

#### 1.1 L2CAP FUNCTIONAL REQUIREMENTS

The functional requirements for L2CAP include protocol multiplexing, segmentation and reassembly (SAR), and group management. Figure 1.4 illustrates how L2CAP fits into the Bluetooth Protocol Stack. L2CAP lies above the Baseband Protocol (page 33) and interfaces with other communication protocols such as the Bluetooth Service Discovery Protocol (SDP, page 323), RFCOMM (page 385), and Telephony Control (TCS, page 429). Voice-quality channels for audio and telephony applications are usually run over Baseband SCO links. Packetized audio data, such as IP Telephony, may be sent using communication protocols running over L2CAP.

Bluetooth.

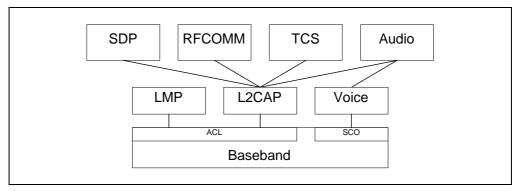



Figure 1.4: L2CAP in Bluetooth Protocol Architecture

Essential protocol requirements for L2CAP include simplicity and low overhead. Implementations of L2CAP must be applicable for devices with limited computational resources. L2CAP should not consume excessive power since that significantly sacrifices power efficiency achieved by the Bluetooth Radio. Memory requirements for protocol implementation should also be kept to a minimum.

The protocol complexity should be acceptable to personal computers, PDAs, digital cellular phones, wireless headsets, joysticks and other wireless devices supported by Bluetooth. Furthermore, the protocol should be designed to achieve reasonably high bandwidth efficiency.

#### Protocol Multiplexing

L2CAP must support protocol multiplexing because the Baseband Protocol does not support any 'type' field identifying the higher layer protocol being multiplexed above it. L2CAP must be able to distinguish between upper layer protocols such as the Service Discovery Protocol (page 323), RFCOMM (page 385), and Telephony Control (page 429).

#### Segmentation and Reassembly

Compared to other wired physical media, the data packets defined by the Baseband Protocol (page 33) are limited in size. Exporting a maximum transmission unit (MTU) associated with the largest Baseband payload (341 bytes for DH5 packets) limits the efficient use of bandwidth for higher layer protocols that are designed to use larger packets. Large L2CAP packets must be segmented into multiple smaller Baseband packets prior to their transmission over the air. Similarly, multiple received Baseband packets may be reassembled into a single larger L2CAP packet following a simple integrity check (described in Section 2.4.2 on page 256). The Segmentation and Reassembly (SAR) functionality is absolutely necessary to support protocols using packets larger than those supported by the Baseband.

#### Quality of Service

The L2CAP connection establishment process allows the exchange of information regarding the quality of service (QoS) expected between two Blue-

**Bluetooth** 

tooth units. Each L2CAP implementation must monitor the resources used by the protocol and ensure that QoS contracts are honoured.

#### Groups

Many protocols include the concept of a group of addresses. The Baseband Protocol supports the concept of a piconet, a group of devices synchronously hopping together using the same clock. The L2CAP group abstraction permits implementations to efficiently map protocol groups on to piconets. Without a group abstraction, higher level protocols would need to be exposed to the Baseband Protocol and Link Manager functionality in order to manage groups efficiently.

#### 1.2 ASSUMPTIONS

The protocol is designed based on the following assumptions:

- The ACL link between two units is set up using the Link Manager Protocol (page 185). The Baseband provides orderly delivery of data packets, although there might be individual packet corruption and duplicates. No more than 1 ACL link exists between any two devices.
- 2. The Baseband always provides the impression of full-duplex communication channels. This does not imply that all L2CAP communications are bi-directional. Multicasts and unidirectional traffic (e.g., video) do not require duplex channels.
- 3. L2CAP provides a reliable channel using the mechanisms available at the Baseband layer. The Baseband always performs data integrity checks when requested and resends data until it has been successfully acknowledged or a timeout occurs. Because acknowledgements may be lost, timeouts may occur even after the data has been successfully sent. The Baseband protocol uses a 1-bit sequence number that removes duplicates. Note that the use of Baseband broadcast packets is prohibited if reliability is required since all broadcasts start the first segment of an L2CAP packet with the same sequence bit.

#### 1.3 SCOPE

The following features are outside the scope of L2CAP's responsibilities:

- L2CAP does not transport audio designated for SCO links.
- L2CAP does not enforce a reliable channel or ensure data integrity, that is, L2CAP performs no retransmissions or checksum calculations.
- L2CAP does not support a reliable multicast channel. See Section 4.2.
- L2CAP does not support the concept of a global group name.

Bluetooth

#### 2 GENERAL OPERATION

The Logical Link Control and Adaptation Protocol (L2CAP) is based around the concept of 'channels'. Each one of the end-points of an L2CAP channel is referred to by a channel identifier.

#### 2.1 CHANNEL IDENTIFIERS

Channel identifiers (CIDs) are local names representing a logical channel endpoint on the device. Identifiers from 0x0001 to 0x003F are reserved for specific L2CAP functions. The null identifier (0x0000) is defined as an illegal identifier and must never be used as a destination end-point. Implementations are free to manage the remaining CIDs in a manner best suited for that particular implementation, with the provision that the same CID is not reused as a local L2CAP channel endpoint for multiple simultaneous L2CAP channels between a local device and some remote device. Table 2.1 summarizes the definition and partitioning of the CID name space.

CID assignment is relative to a particular device and a device can assign CIDs independently from other devices (unless it needs to use any of the reserved CIDs shown in the table below). Thus, even if the same CID value has been assigned to (remote) channel endpoints by several remote devices connected to a single local device, the local device can still uniquely associate each remote CID with a different device.

| CID           | Description                      |
|---------------|----------------------------------|
| 0x0000        | Null identifier                  |
| 0x0001        | Signalling channel               |
| 0x0002        | Connectionless reception channel |
| 0x0003-0x003F | Reserved                         |
| 0x0040-0xFFFF | Dynamically allocated            |

Table 2.1: CID Definitions

#### 2.2 OPERATION BETWEEN DEVICES

Figure 2.1 on page 254 illustrates the use of CIDs in a communication between corresponding peer L2CAP entities in separate devices. The connection-oriented data channels represent a connection between two devices, where a CID identifies each endpoint of the channel. The connectionless channels restrict data flow to a single direction. These channels are used to support a channel 'group' where the CID on the source represents one or more remote devices. There are also a number of CIDs reserved for special purposes. The signalling channel is one example of a reserved channel. This channel is used to create and establish connection-oriented data channels and to negotiate changes in the characteristics of these channels. Support for a signalling chan-

## Bluetooth.

nel within an L2CAP entity is mandatory. Another CID is reserved for all incoming connectionless data traffic. In the example below, a CID is used to represent a group consisting of device #3 and #4. Traffic sent from this channel ID is directed to the remote channel reserved for connectionless data traffic.

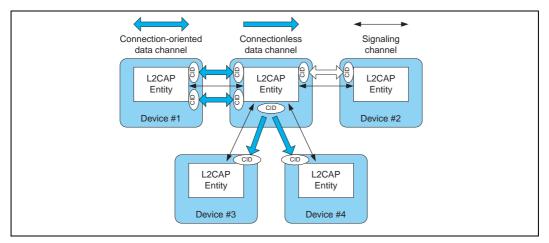



Figure 2.1: Channels between devices

Table 2.2 describes the various channels and their source and destination identifiers. An 'allocated' channel is created to represent the local endpoint and should be in the range 0x0040 to 0xFFFF. Section 3 on page 258 describes the state machine associated with each connectionless channel. Section 4.1 on page 272 describes the packet format associated with bi-directional channels and Section 4.2 on page 273 describes the packet format associated with unidirectional channels.

| Channel Type        | Local CID             | Remote CID            |
|---------------------|-----------------------|-----------------------|
| Connection-oriented | Dynamically allocated | Dynamically allocated |
| Connectionless data | Dynamically allocated | 0x0002 (fixed)        |
| Signalling          | 0x0001 (fixed)        | 0x0001 (fixed)        |

Table 2.2: Types of Channel Identifiers

#### 2.3 OPERATION BETWEEN LAYERS

L2CAP implementations should follow the general architecture described below. L2CAP implementations must transfer data between higher layer protocols and the lower layer protocol. This document lists a number of services that should be exported by any L2CAP implementation. Each implementation must also support a set of signalling commands for use between L2CAP implementations. L2CAP implementations should also be prepared to accept certain types of events from lower layers and generate events to upper layers. How these events are passed between layers is an implementation-dependent process.

Bluetooth.

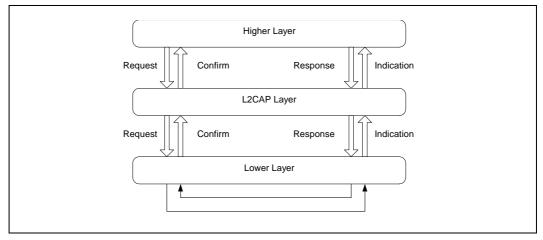



Figure 2.2: L2CAP Architecture

#### 2.4 SEGMENTATION AND REASSEMBLY

Segmentation and reassembly (SAR) operations are used to improve efficiency by supporting a maximum transmission unit (MTU) size larger than the largest Baseband packet. This reduces overhead by spreading the network and transport packets used by higher layer protocols over several Baseband packets. All L2CAP packets may be segmented for transfer over Baseband packets. The protocol does not perform any segmentation and reassembly operations but the packet format supports adaptation to smaller physical frame sizes. An L2CAP implementation exposes the outgoing (i.e., the remote host's receiving) MTU and segments higher layer packets into 'chunks' that can be passed to the Link Manager via the Host Controller Interface (HCI), whenever one exists. On the receiving side, an L2CAP implementation receives 'chunks' from the HCI and reassembles those chunks into L2CAP packets using information provided through the HCI and from the packet header.

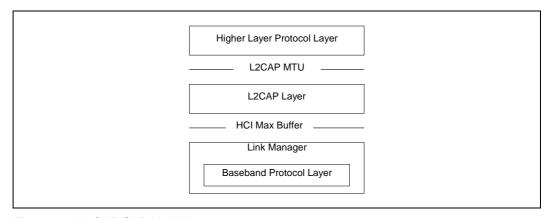



Figure 2.3: L2CAP SAR Variables

Segmentation and Reassembly is implemented using very little overhead in Baseband packets. The two L\_CH bits defined in the first byte of Baseband

**Bluetooth** 

payload (also called the frame header) are used to signal the start and continuation of L2CAP packets. L\_CH shall be '10' for the first segment in an L2CAP packet and '01' for a continuation segment. An example use of SAR is shown in Figure 2.4.

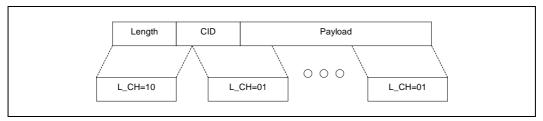



Figure 2.4: L2CAP segmentation

#### 2.4.1 Segmentation Procedures

The L2CAP maximum transmission unit (MTU) will be exported using an implementation specific service interface. It is the responsibility of the higher layer protocol to limit the size of packets sent to the L2CAP layer below the MTU limit. An L2CAP implementation will segment the packet into protocol data units (PDUs) to send to the lower layer. If L2CAP runs directly over the Baseband Protocol, an implementation may segment the packet into Baseband packets for transmission over the air. If L2CAP runs above the host controller interface (typical scenario), an implementation may send block-sized chunks to the host controller where they will be converted into Baseband packets. All L2CAP segments associated with an L2CAP packet must be passed through to the Baseband before any other L2CAP packet destined to the same unit may be sent.

#### 2.4.2 Reassembly Procedures

The Baseband Protocol delivers ACL packets in sequence and protects the integrity of the data using a 16-bit CRC. The Baseband also supports reliable connections using an automatic repeat request (ARQ) mechanism. As the Baseband controller receives ACL packets, it either signals the L2CAP layer on the arrival of each Baseband packets, or accumulates a number of packets before the receive buffer fills up or a timer expires before signalling the L2CAP layer.

L2CAP implementations must use the length field in the header of L2CAP packets, see Section 4 on page 272, as a consistency check and discard any L2CAP packets that fail to match the length field. If channel reliability is not needed, packets with improper lengths may be silently discarded. For reliable channels, L2CAP implementations must indicate to the upper layer that the channel has become unreliable. Reliable channels are defined by having an infinite flush timeout value as specified in Section 6.2 on page 290.

Figure 2.5 on page 257 illustrates the use of segmentation and reassembly operations to transmit a single higher layer PDU. Note that while there is a one-to-one mapping between a high layer PDU and an L2CAP packet, the segment

## Bluetooth.

size used by the segmentation and reassembly routines is left to the implementation and may differ from the sender to the receiver.

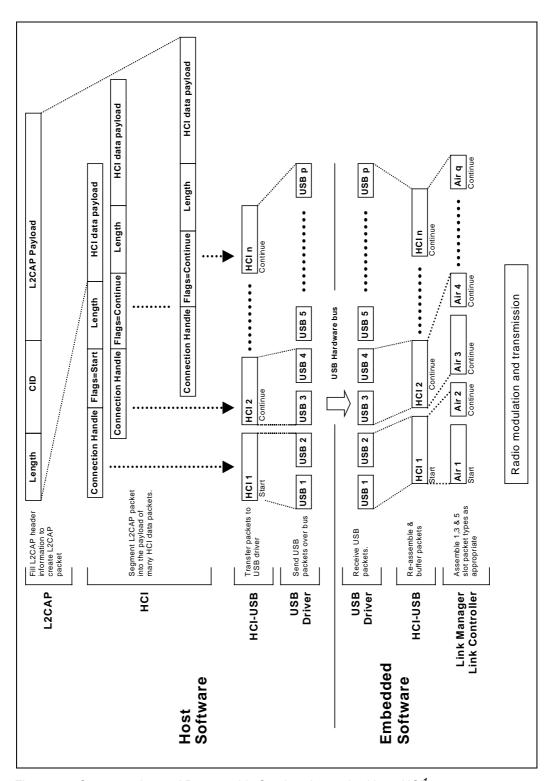



Figure 2.5: Segmentation and Reassembly Services in a unit with an HCl<sup>1</sup>

**Bluetooth** 

#### **3 STATE MACHINE**

This section describes the L2CAP connection-oriented channel state machine. The section defines the states, the events causing state transitions, and the actions to be performed in response to events. This state machine is only pertinent to bi-directional CIDs and is not representative of the signalling channel or the uni-directional channel.

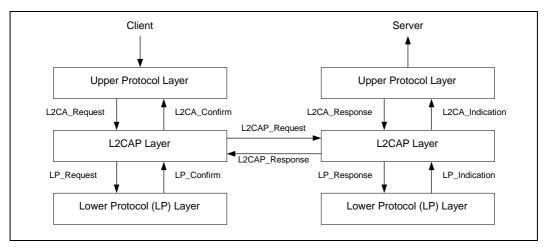



Figure 3.1: L2CAP Layer Interactions

Figure 3.1 illustrates the events and actions performed by an implementation of the L2CAP layer. Client and Server simply represent the initiator of the request and the acceptor of the request respectively. An application-level Client would both initiate and accept requests. The naming convention is as follows. The interface between two layers (vertical interface) uses the prefix of the lower layer offering the service to the higher layer, e.g., L2CA. The interface between two entities of the same layer (horizontal interface) uses the prefix of the protocol (adding a P to the layer identification), e.g., L2CAP. Events coming from above are called Requests (Req) and the corresponding replies are called Confirms (Cfm). Events coming from below are called Indications (Ind) and the corresponding replies are called Responses (Rsp). Responses requiring further processing are called Pending (Pnd). The notation for Confirms and Responses assumes positive replies. Negative replies are denoted by a 'Neg' suffix such as L2CAP\_ConnectCfmNeg.

While Requests for an action always result in a corresponding Confirmation (for the successful or unsuccessful satisfaction of the action), Indications do not always result into corresponding Responses. The latter is especially true, if the Indications are informative about locally triggered events, e.g., seeing the

250

<sup>1.</sup> For simplicity, the stripping of any additional HCI and USB specific information fields prior to the creation of the baseband packets (Air\_1, Air\_2, etc.) is not shown in the figure.

**Bluetooth** 

*LP\_QoSViolationInd* in Section 3.1.1 on page 259, or *L2CA\_TimeOutInd* in Section 3.2.4 on page 264.

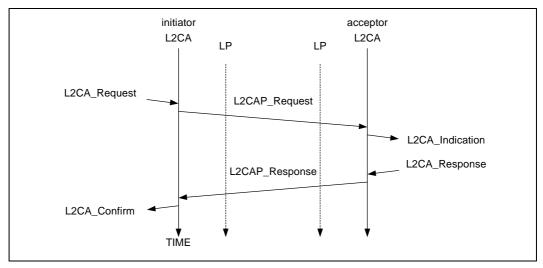



Figure 3.2: MSC of Layer Interactions

Figure 3.2 uses a message sequence chart (MSC) to illustrate the normal sequence of events. The two outer vertical lines represent the L2CA interface on the initiator (the device issuing a request) and the acceptor (the device responding to the initiator's request). Request commands at the L2CA interface result in Requests defined by the protocol. When the protocol communicates the request to the acceptor, the remote L2CA entity presents the upper protocol with an Indication. When the acceptor's upper protocol responds, the response is packaged by the protocol and communicated back the to initiator. The result is passed back to the initiator's upper protocol using a Confirm message.

#### 3.1 EVENTS

Events are all incoming messages to the L2CA layer along with timeouts. Events are partitioned into five categories: Indications and Confirms from lower layers, Requests and Responses from higher layers, data from peers, signal Requests and Responses from peers, and events caused by timer expirations.

#### 3.1.1 Lower-Layer Protocol (LP) to L2CAP events

LP ConnectCfm

Confirms the request (see *LP\_ConnectReq* in Section 3.2.1) to establish a lower layer (Baseband) connection. This includes passing the authentication challenge if authentication is required to establish the physical link.

LP\_ConnectCfmNeg
 Confirms the failure of the request (see LP\_ConnectReq in Section 3.2.1) to establish a lower layer (Baseband) connection failed. This could be because

Bluetooth.

the device could not be contacted, refused the request, or the LMP authentication challenge failed.

#### LP ConnectInd

Indicates the lower protocol has successfully established connection. In the case of the Baseband, this will be an ACL link. An L2CAP entity may use to information to keep track of what physical links exist.

#### LP DisconnectInd

Indicates the lower protocol (Baseband) has been shut down by LMP commands or a timeout event.

#### LP QoSCfm

Confirms the request (see *LP\_QoSReq* in Section 3.2.1) for a given quality of service.

#### LP\_QoSCfmNeg

Confirms the failure of the request (see *LP\_QoSReq* in Section 3.2.1) for a given quality of service.

#### LP QoSViolationInd

Indicates the lower protocol has detected a violation of the QoS agreement specified in the previous *LP\_QoSReq* (see Section 3.2.1).

#### 3.1.2 L2CAP to L2CAP Signalling events

L2CAP to L2CAP signalling events are generated by each L2CAP entity following the exchange of the corresponding L2CAP signalling PDUs, see Section 5. L2CAP signalling PDUs, like any other L2CAP PDUs, are received from a lower layer via a lower protocol indication event. For simplicity of the presentation, we avoid a detailed description of this process, and we assume that signalling events are exchanged directly between the L2CAP peer entities as shown in Figure 3.1 on page 258.

#### L2CAP\_ConnectReq

A Connection Request packet has been received.

#### L2CAP\_ConnectRsp

A Connection Response packet has been received with a positive result indicating that the connection has been established.

#### L2CAP ConnectRspPnd

A Connection Response packet has been received indicating the remote endpoint has received the request and is processing it.

#### L2CAP\_ConnectRspNeg

A Connection Response packet has been received, indicating that the connection could not be established.

#### L2CAP ConfigReg

## Bluetooth.

A Configuration Request packet has been received indicating the remote endpoint wishes to engage in negotiations concerning channel parameters.

#### L2CAP\_ConfigRsp

A Configuration Response packet has been received indicating the remote endpoint agrees with all the parameters being negotiated.

#### L2CAP ConfigRspNeg

A Configuration Response packet has been received indicating the remote endpoint does not agree to the parameters received in the response packet.

#### L2CAP\_DisconnectReq

A Disconnection Request packet has been received and the channel must initiate the disconnection process. Following the completion of an L2CAP channel disconnection process, an L2CAP entity should return the corresponding local CID to the pool of 'unassigned' CIDs.

#### L2CAP DisconnectRsp

A Disconnection Response packet has been received. Following the receipt of this signal, the receiving L2CAP entity may return the corresponding local CID to the pool of unassigned CIDs. There is no corresponding negative response because the Disconnect Request must succeed.

#### 3.1.3 L2CAP to L2CAP Data events

L2CAP Data

A Data packet has been received.

#### 3.1.4 Upper-Layer to L2CAP events

L2CA\_ConnectReq

Request from upper layer for the creation of a channel to a remote device.

L2CA ConnectRsp

Response from upper layer to the indication of a connection request from a remote device (see L2CA\_ConnectInd in Section 3.2.4).

#### L2CA ConnectRspNeg

Negative response (rejection) from upper layer to the indication of a connection request from a remote device (see *L2CA\_ConnectInd* in Section 3.2.4).

L2CA ConfigReg

Request from upper layer to (re)configure the channel.

L2CA\_ConfigRsp

Response from upper layer to the indication of a (re) configuration request (see *L2CA\_ConfigInd* in Section 3.2.4).

L2CA\_ConfigRspNeg

**Bluetooth** 

A negative response from upper layer to the indication of a (re) configuration request (see *L2CA\_ConfigInd* in Section 3.2.4).

#### L2CA\_DisconnectReq

Request from upper layer for the immediate disconnection of a channel.

#### L2CA\_DisconnectRsp

Response from upper layer to the indication of a disconnection request (see *L2CA\_DisconnectInd* in Section 3.2.4). There is no corresponding negative response, the disconnect indication must always be accepted.

#### L2CA DataRead

Request from upper layer for the transfer of received data from L2CAP entity to upper layer.

#### L2CA\_DataWrite

Request from upper layer for the transfer of data from the upper layer to L2CAP entity for transmission over an open channel.

#### 3.1.5 Timer events

#### RTX

The Response Timeout eXpired (RTX) timer is used to terminate the channel when the remote endpoint is unresponsive to signalling requests. This timer is started when a signalling request (see Section 5 on page 275) is sent to the remote device. This timer is disabled when the response is received. If the initial timer expires, a duplicate Request message may be sent or the channel identified in the request may be disconnected. If a duplicate Request message is sent, the RTX timeout value must be reset to a new value at least double the previous value.

Implementations have the responsibility to decide on the maximum number of Request retransmissions performed at the L2CAP level before disconnecting the channel. The decision should be based on the flush timeout of the signalling link. The longer the flush timeout, the more retransmissions may be performed at the physical layer and the reliability of the channel improves, requiring fewer retransmissions at the L2CAP level. For example, if the flush timeout is infinite, no retransmissions should be performed at the L2CAP level.

The value of this timer is implementation-dependent but the minimum initial value is 1 second and the maximum initial value is 60 seconds. One RTX timer MUST exist for each outstanding signalling request, including each Echo Request. The timer disappears on the final expiration, when the response is received, or the physical link is lost. The maximum elapsed time between the initial start of this timer and the initiation of channel disconnection (if no response is received) is 60 seconds.

#### ERTX

The Extended Response Timeout eXpired (ERTX) timer is used in place of the RTX timer when it is suspected the remote endpoint is performing addi-

Bluetooth.

tional processing of a request signal. This timer is started when the remote endpoint responds that a request is pending, e.g., when an *L2CAP\_ConnectRspPnd* event is received. This timer is disabled when the formal response is received or the physical link is lost. If the initial timer expires, a duplicate Request may be sent or the channel may be disconnected. If a duplicate Request is sent, the particular ERTX timer disappears, replaced by a new RTX timer and the whole timing procedure restarts as described previously for the RTX timer.

The value of this timer is implementation-dependent but the minimum initial value is 60 seconds and the maximum initial value is 300 seconds. Similar to RTX, there MUST be at least one ERTX timer for each outstanding request that received a Pending response. There should be at most one (RTX or ERTX) associated with each outstanding request. The maximum elapsed time between the initial start of this timer and the initiation of channel disconnection (if no response is received) is 300 seconds.

#### 3.2 ACTIONS

Actions are partitioned into five categories: Confirms and Indications to higher layers, Request and Responses to lower layers, Requests and Responses to peers, data transmission to peers, and setting timers.

#### 3.2.1 L2CAP to Lower Layer actions

#### LP ConnectReq

L2CAP requests the lower protocol to create a connection. If a physical link to the remote device does not exist, this message must be sent to the lower protocol to establish the physical connection. Since no more than a single ACL link between two devices is assumed, see Section 1.2 on page 252, additional L2CAP channels between these two devices must share the same baseband ACL link.

Following the processing of the request, the lower layer returns with an  $LP\_ConnectCfm$  or an  $LP\_ConnectCfmNeg$  to indicate whether the request has been satisfied or not, respectively.

#### LP\_QoSReq

L2CAP requests the lower protocol to accommodate a particular QoS parameter set. Following the processing of the request, the lower layer returns with an *LP\_QoSCfm* or an *LP\_QoSCfmNeg* to indicate whether the request has been satisfied or not, respectively

#### LP\_ConnectRsp

A positive response accepting the previous connection indication request (see *LP ConnectInd* in Section 3.1.1).

#### LP\_ConnectRspNeg

A negative response denying the previous connection indication request (see *LP\_ConnectInd* in Section 3.1.1).

Bluetooth.

# 3.2.2 L2CAP to L2CAP Signalling actions

This section contains the same names identified in Section 3.1.2 except the actions refer to the transmission, rather than reception, of these messages.

### 3.2.3 L2CAP to L2CAP Data actions

This section is the counterpart of Section 3.1.3. Data transmission is the action performed here.

## 3.2.4 L2CAP to Upper Layer actions

L2CA ConnectInd

Indicates a Connection Request has been received from a remote device (see *L2CA\_ConnectReq* in Section 3.1.4).

L2CA ConnectCfm

Confirms that a Connection Request has been accepted (see (*L2CAP\_ConnectReq* in Section 3.1.4) following the receipt of a Connection message from the remote device.

L2CA\_ConnectCfmNeg

Negative confirmation (failure) of a Connection Request (see L2CA\_ConnectReq in Section 3.1.4). An RTX timer expiration (see Section 3.1.5 and L2CA\_TimeOutInd below) for an outstanding Connect Request can substitute for a negative Connect Response and result in this action.

L2CA ConnectPnd

Confirms that a Connection Response (pending) has been received from the remote device.

L2CA\_ConfigInd

Indicates a Configuration Request has been received from a remote device.

L2CA ConfigCfm

Confirms that a Configuration Request has been accepted (see *L2CA\_ConfigReq* in Section 3.1.4) following the receipt of a Configuration Response from the remote device.

L2CA\_ConfigCfmNeg

Negative confirmation (failure) of a Configuration Request (see *L2CA\_ConfigReq* in Section 3.1.4). An RTX timer expiration (see Section 3.1.5 and *L2CA\_TimeOutInd* below) for an outstanding Connect Request can substitute for a negative Connect Response and result in this action.

Bluetooth.

#### L2CA DisconnectInd

Indicates a Disconnection Request has been received from a remote device or the remote device has been disconnected because it has failed to respond to a signalling request. See Section 3.1.5

### L2CA DisconnectCfm

Confirms that a Disconnect Request has been processed by the remote device (see *L2CA\_DisconnectReq* in Section 3.1.4) following the receipt of a Disconnection Response from the remote device. An RTX timer expiration (see Section 3.1.5 and *L2CA\_TimeOutInd* below) for an outstanding Disconnect Request can substitute for a Disconnect Response and result in this action. Upon receiving this event the upper layer knows the *L2CAP* channel has been terminated. There is no corresponding negative confirm.

### L2CA TimeOutInd

Indicates that a RTX or ERTX timer has expired. This indication will occur an implementation-dependant number of times before the L2CAP implementation will give up and send a L2CA DisconnectInd.

## L2CA QoSViolationInd

Indicates that the quality of service agreement has been violated.

# 3.3 CHANNEL OPERATIONAL STATES

#### CLOSED

In this state, there is no channel associated with this CID. This is the only state when a link level connection (Baseband) may not exist. Link disconnection forces all other states into the CLOSED state.

### W4 L2CAP CONNECT RSP

In this state, the CID represents a local end-point and an L2CAP\_ConnectReq message has been sent referencing this endpoint and it is now waiting for the corresponding L2CAP\_ConnectRsp message.

### W4 L2CA CONNECT RSP

In this state, the remote end-point exists and an *L2CAP\_ConnectReq* has been received by the local L2CAP entity. An L2CA\_ConnectInd has been sent to the upper layer and the part of the local L2CAP entity processing the received *L2CAP\_ConnectReq* waits for the corresponding response. The response may require a security check to be performed.

#### CONFIG

In this state, the connection has been established but both sides are still negotiating the channel parameters. The Configuration state may also be entered when the channel parameters are being renegotiated. Prior to entering the CONFIG state, all outgoing data traffic should be suspended since the traffic parameters of the data traffic are to be renegotiated. Incoming data traffic must be accepted until the remote channel endpoint has entered the CONFIG state.

Bluetooth.

In the CONFIG state, both sides must issue L2CAP\_ConfigReq messages – if only defaults are being used, a null message should be sent, see Section 5.4 on page 280. If a large amount of parameters need to be negotiated, multiple messages may be sent to avoid any MTU limitations and negotiate incrementally – see Section 6 on page 289 for more details.

Moving from the CONFIG state to the OPEN state requires both sides to be ready. An L2CAP entity is ready when it has received a positive response to its final request and it has positively responded to the final request from the remote device.

#### OPEN

In this state, the connection has been established and configured, and data flow may proceed.

W4 L2CAP DISCONNECT RSP

In this state, the connection is shutting down and an L2CAP\_DisconnectReq message has been sent. This state is now waiting for the corresponding response.

W4 L2CA DISCONNECT RSP

In this state, the connection on the remote endpoint is shutting down and an L2CAP\_DisconnectReq message has been received. An L2CA\_DisconnectInd has been sent to the upper layer to notify the owner of the CID that the remote endpoint is being closed. This state is now waiting for the corresponding response from the upper layer before responding to the remote endpoint.

### 3.4 MAPPING EVENTS TO ACTIONS

Table 3.1 defines the actions taken in response to events that occur in a particular state. Events that are not listed in the table, nor have actions marked N/C (for no change), are assumed to be errors and silently discarded.

Data input and output events are only defined for the Open and Configuration states. Data may not be received during the initial Configuration state, but may be received when the Configuration state is re-entered due to a reconfiguration process. Data received during any other state should be silently discarded.

# Bluetooth.

| Event                   | Current State                                       | Action                                                                                                                                       | New State                                 |
|-------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| LP_ConnectCfm           | CLOSED                                              | Flag physical link as up and initiate the L2CAP connection.                                                                                  | CLOSED                                    |
| LP_ConnectCfmNeg        | CLOSED                                              | Flag physical link as down and fail any outstanding service connection requests by sending an L2CA_ConnectCfmNeg message to the upper layer. | CLOSED                                    |
| LP_ConnectInd           | CLOSED                                              | Flag link as up.                                                                                                                             | CLOSED                                    |
| LP_DisconnectInd        | CLOSED                                              | Flag link as down.                                                                                                                           | CLOSED                                    |
| LP_DisconnectInd        | Any except<br>CLOSED                                | Send upper layer L2CA_DisconnectInd message.                                                                                                 | CLOSED                                    |
| LP_QoSViolationInd      | Any but OPEN                                        | Discard                                                                                                                                      | N/C                                       |
| LP_QoSViolationInd      | OPEN                                                | Send upper layer<br>L2CA_QoSViolationInd<br>message. If service level is<br>guaranteed, terminate the<br>channel.                            | OPEN or<br>W4_L2CA_<br>DISCONNECT<br>_RSP |
| L2CAP_ConnectReq        | CLOSED. (CID dynamically allocated from free pool.) | Send upper layer L2CA_ConnectInd. Option- ally: Send peer L2CAP_ConnectRspPnd                                                                | W4_L2CA_<br>CONNECT_<br>RSP               |
| L2CAP_ConnectRsp        | W4_L2CAP_CON<br>NECT_RSP                            | Send upper layer<br>L2CA_ConnectCfm mes-<br>sage. Disable RTX timer.                                                                         | CONFIG                                    |
| L2CAP_ConnectRsp<br>Pnd | W4_L2CAP_CON<br>NECT_RSP                            | Send upper layer L2CA_ConnectPnd mes- sage. Disable RTX timer and start ERTX timer.                                                          | N/C                                       |
| L2CAP_ConnectRsp<br>Neg | W4_L2CAP_CON<br>NECT_RSP                            | Send upper layer L2CA_ConnectCfmNeg message. Return CID to free pool. Disable RTX/ERTX timers.                                               | CLOSED                                    |
| L2CAP_ConfigReq         | CLOSED                                              | Send peer<br>L2CAP_ConfigRspNeg<br>message.                                                                                                  | N/C                                       |
| L2CAP_ConfigReq         | CONFIG                                              | Send upper layer L2CA_ConfigInd message.                                                                                                     | N/C                                       |

Table 3.1: L2CAP Channel State Machine

# Bluetooth.

| Event                   | Current State                                              | Action                                                                                                                                                                                            | New State                      |
|-------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| L2CAP_ConfigReq         | OPEN                                                       | Suspend data transmission at a convenient point. Send upper layer L2CA_ConfigInd message.                                                                                                         | CONFIG                         |
| L2CAP_ConfigRsp         | CONFIG                                                     | Send upper layer L2CA_ConfigCfm message. Disable RTX timer. If an L2CAP_ConfigReq message has been received and positively responded to, then enter OPEN state, otherwise remain in CONFIG state. | N/C or OPEN                    |
| L2CAP_ConfigRsp<br>Neg  | CONFIG                                                     | Send upper layer L2CA_ConfigCfmNeg mes- sage. Disable RTX timer.                                                                                                                                  | N/C                            |
| L2CAP_Disconnect<br>Req | CLOSED                                                     | Send peer<br>L2CAP_DisconnectRsp<br>message.                                                                                                                                                      | N/C                            |
| L2CAP_Disconnect Req    | Any except<br>CLOSED                                       | Send upper layer L2CA_<br>DisconnectInd message.                                                                                                                                                  | W4_L2CA_<br>DISCONNECT<br>_RSP |
| L2CAP_Disconnect<br>Rsp | W4_L2CAP_<br>DISCONNECT_<br>RSP                            | Send upper layer<br>L2CA_DisconnectCfm mes-<br>sage. Disable RTX timer.                                                                                                                           | CLOSED                         |
| L2CAP_Data              | OPEN or CONFIG                                             | If complete L2CAP packet received, send upper layer L2CA_Read confirm.                                                                                                                            | N/C                            |
| L2CA_ConnectReq         | CLOSED<br>(CID dynamically<br>allocated from<br>free pool) | Send peer<br>LP2CAP_ConnectReq<br>message. Start RTX timer.                                                                                                                                       | W4_L2CAP_<br>CONNECT_RS<br>P   |
| L2CA_ConnectRsp         | W4_L2CA_CONN<br>ECT_RSP                                    | Send peer L2CAP_<br>ConnectRsp message.                                                                                                                                                           | CONFIG                         |
| L2CA_ConnectRsp<br>Neg  | W4_L2CA_CONN<br>ECT_RSP                                    | Send peer L2CAP_ConnectRspNeg message. Return CID to free pool.                                                                                                                                   | CLOSED                         |
| L2CA_ConfigReq          | CLOSED                                                     | Send upper layer L2CA_<br>ConfigCfmNeg message.                                                                                                                                                   | N/C                            |
| L2CA_ConfigReq          | CONFIG                                                     | Send peer<br>L2CAP_ConfigReq<br>message. Start RTX timer.                                                                                                                                         | N/C                            |

Table 3.1: L2CAP Channel State Machine

# Bluetooth.

| Event                  | Current State                  | Action                                                                                                                                                                      | New State                       |
|------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| L2CA_ConfigReq         | OPEN                           | Suspend data transmission at a convenient point. Send peer L2CAP_ConfigReq message. Start RTX timer.                                                                        | CONFIG                          |
| L2CA_ConfigRsp         | CONFIG                         | Send peer L2CAP_ConfigRsp message. If all outstanding L2CAP_ConfigReq messages have received positive responses then move in OPEN state. Otherwise, remain in CONFIG state. | N/C or OPEN                     |
| L2CA_ConfigRspNeg      | CONFIG                         | Send peer L2CAP_<br>ConfigRspNeg message.                                                                                                                                   | N/C                             |
| L2CA_Disconnect<br>Req | OPEN or CONFIG                 | Send peer<br>L2CAP_DisconnectReq<br>message. Start RTX timer.                                                                                                               | W4_L2CAP_<br>DISCONNECT<br>_RSP |
| L2CA_DisconnectRsp     | W4_L2CA_<br>DISCONNECT_<br>RSP | Send peer L2CAP_DisconnectRsp message. Return CID to free pool.                                                                                                             | CLOSED                          |
| L2CA_DataRead          | OPEN                           | If payload complete, transfer payload to InBuffer.                                                                                                                          | OPEN                            |
| L2CA_DataWrite         | OPEN                           | Send peer L2CAP_Data message.                                                                                                                                               | OPEN                            |
| Timer_RTX              | Any                            | Send upper layer L2CA_TimeOutInd message. If final expiration, return CID to free pool else re-send Request.                                                                | CLOSED                          |
| Timer_ERTX             | Any                            | Send upper layer<br>L2CA_TimeOutInd<br>message. If final expiration,<br>return CID to free pool else<br>re-send Request.                                                    | CLOSED                          |

Table 3.1: L2CAP Channel State Machine

Figure 3.3 illustrates a simplified state machine and typical transition path taken by an initiator and acceptor. The state machine shows what events cause state transitions and what actions are also taken while the transitions occur. Not all the events listed in Table 3.1 are included in the simplified State Machine to avoid cluttering the figure.

# **Bluetooth**

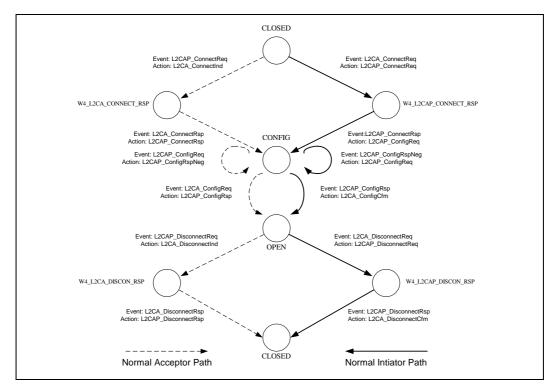



Figure 3.3: State Machine Example

Figure 3.4 presents another illustration of the events and actions based around the messages sequences being communicated between two devices. In this example, the initiator is creating the first L2CAP channel between two devices. Both sides start in the CLOSED state. After receiving the request from the upper layer, the entity requests the lower layer to establish a physical link. If no physical link exists, LMP commands are used to create the physical link between the devices. Once the physical link is established, L2CAP signals may be sent over it.

Figure 3.4 is an example and not all setup sequences will be identical to the one illustrated below.

# Bluetooth.

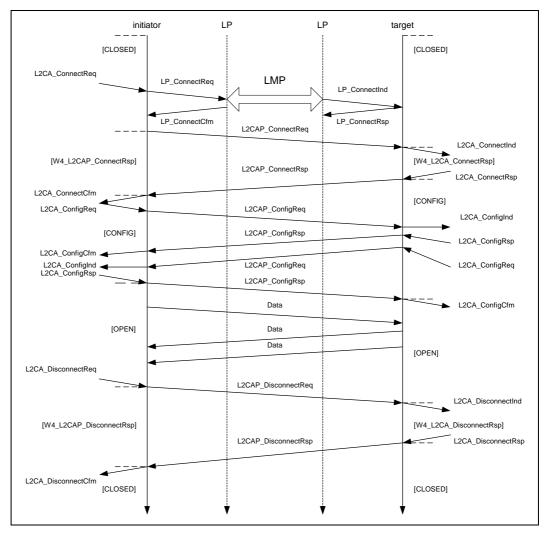



Figure 3.4: Message Sequence Chart of Basic Operation

page 272 of 1082

Logical Link Control and Adaptation Protocol Specification

**Bluetooth** 

# **4 DATA PACKET FORMAT**

L2CAP is packet-based but follows a communication model based on *chan*nels. A channel represents a data flow between L2CAP entities in remote devices. Channels may be connection-oriented or connectionless. All packet fields use Little Endian byte order.

### 4.1 CONNECTION-ORIENTED CHANNEL

Figure 4.1 illustrates the format of the L2CAP packet (also referred to as the L2CAP PDU) within a connection-oriented channel.

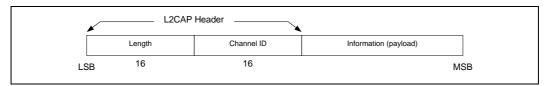



Figure 4.1: L2CAP Packet (field sizes in bits)

The fields shown are:

Length: 2 octets (16 bits)

Length indicates the size of information payload in bytes, excluding the length of the L2CAP header. The length of an information payload can be up to 65535 bytes. The Length field serves as a simple integrity check of the reassembled L2CAP packet on the receiving end.

- · Channel ID: 2 octets
  - The channel ID identifies the destination channel endpoint of the packet. The scope of the channel ID is relative to the device the packet is being sent to.
- Information: 0 to 65535 octets
  - This contains the payload received from the upper layer protocol (outgoing packet), or delivered to the upper layer protocol (incoming packet). The minimum supported MTU for connection-oriented packets (MTU<sub>cno</sub>) is negotiated during channel configuration (see Section 6.1 on page 289). The minimum supported MTU for the signalling packet (MTU<sub>sig</sub>) is 48 bytes (see Section 5 on page 275).

Bluetooth.

### 4.2 CONNECTIONLESS DATA CHANNEL

In addition to connection-oriented channels, L2CAP also exports the concept of a group-oriented channel. Data sent to the 'group' channel is sent to all members of the group in a best-effort manner. Groups have no quality of service associated with them. Group channels are unreliable; L2CAP makes no guarantee that data sent to the group successfully reaches all members of the group. If reliable group transmission is required, it must be implemented at a higher layer.

Transmissions to a group must be non-exclusively sent to all members of that group. The local device cannot be a member of the group, and higher layer protocols are expected to loopback any data traffic being sent to the local device. Non-exclusive implies non-group members may receive group transmissions and higher level (or link level) encryption can be used to support private communication.

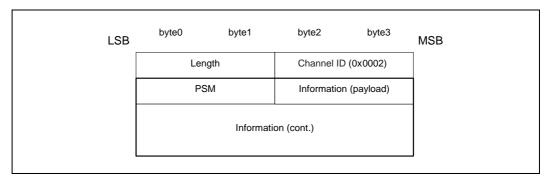



Figure 4.2: Connectionless Packet

#### The fields shown are:

- Length: 2 octets
  - Length indicates the size of information payload plus the PSM field in bytes, excluding the length of the L2CAP header.
- Channel ID: 2 octets
  - Channel ID (0x0002) reserved for connectionless traffic.
  - Protocol/Service Multiplexer (PSM): 2 octets (minimum)

The PSM field is based on the ISO 3309 extension mechanism for address fields. All content of the PSM field, referred to as the PSM value, must be ODD, that is, the least significant bit of the least significant octet must be '1'. Also, all PSM values must be assigned such that the least significant bit of the most significant octet equals '0'. This allows the PSM field to be extended beyond 16 bits. The PSM value definitions are specific to L2CAP and assigned by the Bluetooth SIG. For more information on the PSM field see Section 5.2 on page 278.

page 274 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

### • Information: 0 to 65533 octets

The payload information to be distributed to all members of the group. Implementations must support a minimum connectionless MTU (MTU<sub>cnl</sub>) of 670 octets, unless explicitly agreed upon otherwise, e.g., for single operation devices that are built to comply to a specific Bluetooth profile that dictates the use of a specific MTU for connectionless traffic that is less than  $\rm MTU_{cnl}$ .

The L2CAP group service interface provides basic group management mechanisms including creating a group, adding members to a group, and removing members from a group. There are no pre-defined groups such as 'all radios in range'.

**Bluetooth** 

# 5 SIGNALLING

This section describes the signalling commands passed between two L2CAP entities on remote devices. All signalling commands are sent to CID 0x0001. The L2CAP implementation must be able to determine the Bluetooth address (BD\_ADDR) of the device that sent the commands. Figure 5.1 illustrates the general format of all L2CAP packets containing signalling commands. Multiple commands may be sent in a single (L2CAP) packet and packets are sent to CID 0x0001. MTU Commands take the form of Requests and Responses. All L2CAP implementations must support the reception of signalling packets whose MTU (MTU<sub>sig</sub>) does not exceed 48 bytes. L2CAP implementations should not use signalling packets beyond this size without first testing whether the implementation can support larger signalling packets.

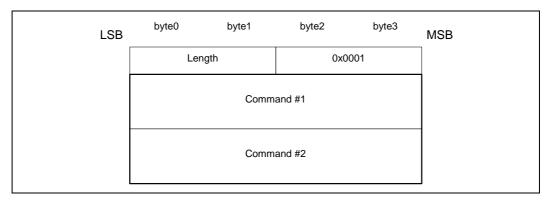



Figure 5.1: Signalling Command Packet Format

Figure 5.2 displays the general format of all signalling commands.

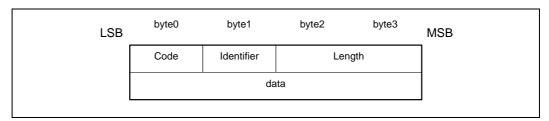



Figure 5.2: Command format

#### The fields shown are:

Code: 1 octet

The Code field is one octet long and identifies the type of command. When a packet is received with an unknown Code field, a Command Reject packet (defined in Section 5.1 on page 277) is sent in response.

Up-to-date values of assigned Codes are specified in the latest Bluetooth 'Assigned Numbers' document (page 1009). Table 5.1 on page 276 lists the codes defined by this document. All codes are specified with the most significant bit in the left-most position.

# Bluetooth.

| Code | Description            |
|------|------------------------|
| 0x00 | RESERVED               |
| 0x01 | Command reject         |
| 0x02 | Connection request     |
| 0x03 | Connection response    |
| 0x04 | Configure request      |
| 0x05 | Configure response     |
| 0x06 | Disconnection request  |
| 0x07 | Disconnection response |
| 0x08 | Echo request           |
| 0x09 | Echo response          |
| 0x0A | Information request    |
| 0x0B | Information response   |

Table 5.1: Signalling Command Codes

#### Identifier: 1 octet

The Identifier field is one octet long and helps matching a request with the reply. The requesting device sets this field and the responding device uses the same value in its response. A different Identifier must be used for each original command. Identifiers should not be recycled until a period of 360 seconds has elapsed from the initial transmission of the command using the identifier. On the expiration of a RTX or ERTX timer, the same identifier should be used if a duplicate Request is re-sent as stated in Section 3.1.5 on page 262. A device receiving a duplicate request should reply with a duplicate response. A command response with an invalid identifier is silently discarded. Signalling identifier 0x0000 is defined to be an illegal identifier and shall never be used in any command.

#### Length: 2 octets

The Length field is two octets long and indicates the size in octets of the data field of the command only, i.e., it does not cover the Code, Identifier, and Length fields.

#### Data: 0 or more octets

The Data field is variable in length and discovered using the Length field. The Code field determines the format of the Data field.

**Bluetooth** 

# 5.1 COMMAND REJECT (CODE 0x01)

A Command Reject packet is sent in response to a command packet with an unknown command code or when sending the corresponding Response is inappropriate. Figure 5.3 displays the format of the packet. The Identifier should match the Identifier of the packet containing the unidentified code field. Implementations must always send these packets in response to unidentified signalling packets.

When multiple commands are included in an L2CAP packet and the packet exceeds the MTU of the receiver, a single Command Reject packet is sent in response. The identifier should match the first Request command in the L2CAP packet. If only Responses are recognized, the packet shall be silently discarded.

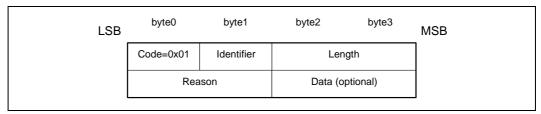



Figure 5.3: Command Reject Packet

- Length = 0x0002 or more octets
- · Reason: 2 octets

The Reason field describes why the Request packet was rejected.

| Reason value | Description             |
|--------------|-------------------------|
| 0x0000       | Command not understood  |
| 0x0001       | Signalling MTU exceeded |
| 0x0002       | Invalid CID in request  |
| Other        | Reserved                |

Table 5.2: Reason Code Descriptions

### Data: 0 or more octets

The length and content of the Data field depends on the Reason code. If the Reason code is 0x0000, "Command not understood", no Data field is used. If the Reason code is 0x0001, "Signalling MTU Exceeded", the 2-octet Data field represents the maximum signalling MTU the sender of this packet can accept.

If a command refers to an invalid channel then the Reason code 0x0002 will be returned. Typically a channel is invalid because it does not exist. A 4-octet data field on the command reject will contain the local (first) and remote (second) channel endpoints (relative to the sender of the Command Reject) of the disputed channel. The latter endpoints are obtained from the corresponding rejected command. If the rejected command contains only one of the channel endpoints, the other one is replaced by the null CID 0x0000.

Bluetooth

| Reason value | Data Length | Data value    |
|--------------|-------------|---------------|
| 0x0000       | 0 octets    | N/A           |
| 0x0001       | 2 octets    | Actual MTU    |
| 0x0002       | 4 octets    | Requested CID |

Table 5.3: Reason Data values

# 5.2 CONNECTION REQUEST (CODE 0x02)

Connection request packets are sent to create a channel between two devices. The channel connection must be established before configuration may begin. Figure 5.4 illustrates a Connection Request packet.

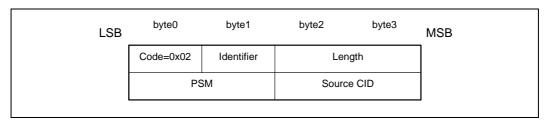



Figure 5.4: Connection Request Packet

- Length = 0x0004 or more octets
- Protocol/Service Multiplexor (PSM): 2 octets (minimum)

The PSM field is two octets (minimum) in length. The structure of the PSM field is based on the ISO 3309 extension mechanism for address fields. All PSM values must be ODD, that is, the least significant bit of the least significant octet must be '1'. Also, all PSM values must be assigned such that the least significant bit of the most significant octet equals '0'. This allows the PSM field to be extended beyond 16 bits. PSM values are separated into two ranges. Values in the first range are assigned by the Bluetooth SIG and indicate protocols. The second range of values are dynamically allocated and used in conjunction with the Service Discovery Protocol (SDP). The dynamically assigned values may be used to support multiple implementations of a particular protocol, e.g., RFCOMM, residing on top of L2CAP or for prototyping an experimental protocol.

| PSM value       | Description                |
|-----------------|----------------------------|
| 0x0001          | Service Discovery Protocol |
| 0x0003          | RFCOMM                     |
| 0x0005          | Telephony Control Protocol |
| <0x1000         | RESERVED                   |
| [0x1001-0xFFFF] | DYNAMICALLY ASSIGNED       |

Table 5.4: Defined PSM Values

Bluetooth.

• Source CID (SCID): 2 octets

The source local CID is two octets in length and represents a channel endpoint on the device sending the request. Once the channel has been configured, data packets flowing from the sender of the request must be send to this CID. In this section, the Source CID represents the channel endpoint on the device sending the request and receiving the response, while the Destination CID represents the channel endpoint on the device receiving the request and sending the response.

# 5.3 CONNECTION RESPONSE (CODE 0x03)

When a unit receives a Connection Request packet, it must send a Connection Response packet. The format of the connection response packet is shown in Figure 5.5.

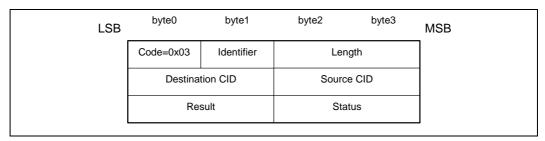



Figure 5.5: Connection Response Packet

- Length = 0x0008 octets
- Destination Channel Identifier (DCID): 2 octets
   The field contains the channel end-point on the device sending this Response packet.
- Source Channel Identifier (SCID): 2 octets
   The field contains the channel end-point on the device receiving this Response packet.

**Bluetooth** 

#### Result: 2 octets

The result field indicates the outcome of the connection request. The result value of 0x0000 indicates success while a non-zero value indicates the connection request failed. A logical channel is established on the receipt of a successful result. Table 5.5 defines values for this field. If the result field is not zero, the DCID and SCID fields should be ignored.

| Value  | Description                                  |
|--------|----------------------------------------------|
| 0x0000 | Connection successful.                       |
| 0x0001 | Connection pending                           |
| 0x0002 | Connection refused – PSM not supported.      |
| 0x0003 | Connection refused – security block.         |
| 0x0004 | Connection refused – no resources available. |
| Other  | Reserved.                                    |

Table 5.5: Result values

#### Status: 2 octets

Only defined for Result = Pending. Indicates the status of the connection.

| Value  | Description                      |
|--------|----------------------------------|
| 0x0000 | No further information available |
| 0x0001 | Authentication pending           |
| 0x0002 | Authorization pending            |
| Other  | Reserved                         |

Table 5.6: Status values

# 5.4 CONFIGURATION REQUEST (CODE 0x04)

Configuration Request packets are sent to establish an initial logical link transmission contract between two L2CAP entities and also to re-negotiate this contract whenever appropriate. During a re-negotiation session, all data traffic on the channel should be suspended pending the outcome of the negotiation. Each configuration parameter in a Configuration Request is related exclusively either with the outgoing or the incoming data traffic but not both of them. In Section 6 on page 289, the various configuration parameters and their relation to the outgoing or incoming data traffic are presented. If an L2CAP entity receives a Configuration Request while it is waiting for a response it must not block sending the Configuration Response, otherwise the configuration process may deadlock.

If no parameters need to be negotiated, no options need to be inserted and the C-bit should be cleared. L2CAP entities in remote devices MUST negotiate all parameters defined in this document whenever the default values are not

Bluetooth.

acceptable. Any missing configuration parameters are assumed to have their most recently (mutually) explicitly or implicitly accepted values. Event if all default values are acceptable, a Configuration Request packet with no options MUST be sent. Implicitly accepted values are any default values for the configuration parameters specified in this document that have not been explicitly negotiated for the specific channel under configuration.

Each configuration parameter is one-directional and relative to the direction implied by the sender of a Configuration Request. If a device needs to establish the value of a configuration parameter in the opposite direction than the one implied by a Configuration Request, a new Configuration Request with the desired value of the configuration parameter in it needs to be sent in the direction opposite the one used for the original Connection Request.

The decision on the amount of time (or messages) spent arbitrating the channel parameters before terminating the negotiation is left to the implementation but it shall not last more than 120 seconds.

Figure 5.6 defines the format of the Configuration Request packet.

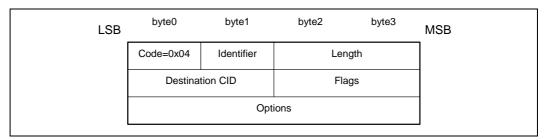



Figure 5.6: Configuration Request Packet

- Length = 0x0004 or more octets
- Destination CID (DCID): 2 octets
- The field contains the channel end-point on the device receiving this Request packet.
  - Flags: 2 octets

Figure 5.7 display the two-octet Flags field. Note the most significant bit is shown on the left.



Figure 5.7: Configuration Request Flags field format

C – more configuration requests will follow when set to 1. This flag indicates that the remote device should not enter OPEN state after agreeing to these parameters because more parameter negotiations are being sent. Segment-

page 282 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

ing the Configuration Request packet is necessary if the parameters exceed the  $\mbox{MTU}_{\mbox{sig}}.$ 

Other flags are reserved and should be cleared. L2CAP implementations should ignore these bits.

## • Configuration Options

The list of the parameters and their values to be negotiated. These are defined in Section 6 on page 289. Configuration Requests may contain no options (referred to as an empty or null configuration request) and can be used to request a response. For an empty configuration request the length field is set to 0x0004.

Bluetooth.

# 5.5 CONFIGURE RESPONSE (CODE 0X05)

Configure Response packets MUST be sent in reply to Configuration Request packets. Each configuration parameter value (if any is present) in a Configuration Response reflects an 'adjustment' to a configuration parameter value that has been sent (or, in case of default values, implied) in the corresponding Configuration Request. Thus, for example, if a configuration parameter in a Configuration Request relates to traffic flowing from device A to device B, the sender of the Configuration Response will only adjust (if needed) this value again for the same traffic flowing from device A to device B. The options sent in the Response depend on the value in the Result field. Figure 5.8 defines the format of the Configuration Response packet.

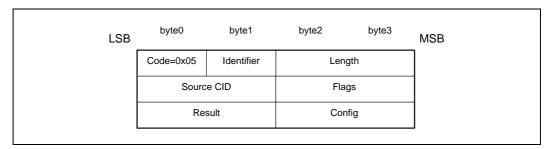



Figure 5.8: Configuration Response Packet

- Length = 0x0006 or more octets
- Source CID (SCID): 2 octets

The field contains the channel end-point on the device receiving this Response packet. The device receiving the Response must check that the Identifier field matches the same field in the corresponding configuration request command and the SCID matches its local CID paired with the original DCID.

Flags: 2 octets

Figure 5.9 displays the two-octet Flags field. Note the most significant bit is shown on the left.



Figure 5.9: Configuration Response Flags field format

C – more configuration responses will follow when set to 1. This flag indicates that the parameters included in the response are a partial subset of parameters being sent by the device sending the Response packet.

Other flags are reserved and should be cleared. L2CAP implementations should ignore these bits.

Bluetooth.

### · Result: 2 octets

The Result field indicates whether or not the Request was acceptable. See Table 5.7 for possible result codes.

| Result | Description                             |
|--------|-----------------------------------------|
| 0x0000 | Success                                 |
| 0x0001 | Failure – unacceptable parameters       |
| 0x0002 | Failure – rejected (no reason provided) |
| 0x0003 | Failure – unknown options               |
| Other  | RESERVED                                |

Table 5.7: Configuration Response Result codes

## Configuration Options

This field contains the list of parameters being negotiated. These are defined in Section 6 on page 289. On a successful result, these parameters contain the return values for any wild card parameters (see Section 6.3 on page 291) contained in the request.

On an unacceptable parameters failure (Result=0x0001) the rejected parameters should be sent in the response with the values that would have been accepted if sent in the original request. Any missing configuration parameters are assumed to have their most recently (mutually) accepted values and they too can be included in the Configuration Response if need to be changed. Recall that, each configuration parameter is one-directional and relative to the direction implied by the sender of a Configuration Request. Thus, if the sender of the Configuration Response needs to establish the value of a configuration parameter in the opposite direction than the one implied by an original Configuration Request, a new Configuration Request with the desired value of the configuration parameter in it needs to be sent in the direction opposite the one used for the original Connection Request.

On an unknown option failure (Result=0x0003), the option types not understood by the recipient of the Request must be included in the Response. Note that hints (defined in Section 6 on page 289), those options in the Request that are skipped if not understood, must not be included in the Response and must not be the sole cause for rejecting the Request.

The decision on the amount of time (or messages) spent arbitrating the channel parameters before terminating the negotiation is left to the implementation.

Bluetooth.

# 5.6 DISCONNECTION REQUEST (CODE 0x06)

Terminating an L2CAP channel requires that a disconnection request packet be sent and acknowledged by a disconnection response packet. Disconnection is requested using the signalling channel since all other L2CAP packets sent to the destination channel automatically get passed up to the next protocol layer. Figure 5.10 displays a disconnection packet request. The receiver must ensure both source and destination CIDs match before initiating a connection disconnection. Once a Disconnection Request is issued, all incoming data in transit on this L2CAP channel will be discarded and any new additional outgoing data is not allowed. Once a disconnection request for a channel has been received, all data queued to be sent out on that channel may be discarded.

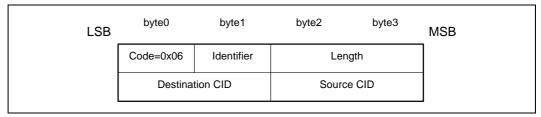



Figure 5.10: Disconnection Request Packet

- Length = 0x0004 octets
- Destination CID (DCID): 2 octets

This field specifies the end-point of the channel to be shutdown on the device receiving this request.

Source CID (SCID): 2 octets

This field specifies the end-point of the channel to be shutdown on the device sending this request.

The SCID and DCID are relative to the sender of this request and must match those of the channel to be disconnected. If the DCID is not recognized by the receiver of this message, a CommandReject message with 'invalid CID' result code must be sent in response. If the receivers finds a DCID match but the SCID fails to find the same match, the request should be silently discarded.

Bluetooth.

# 5.7 DISCONNECTION RESPONSE (CODE 0x07)

Disconnection responses should be sent in response to each disconnection request.

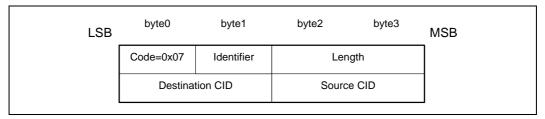



Figure 5.11: Disconnection Response Packet

- Length = 0x0004 octets
- Destination CID (DCID): 2 octets
   This field identifies the channel end-point on the device sending the response.
- Source CID (SCID): 2 octets

This field identifies the channel end-point on the device receiving the response.

The DCID and the SCID (which are relative to the sender of the request), and the Identifier fields must match those of the corresponding disconnection request command. If the CIDs do not match, the response should be silently discarded at the receiver.

# 5.8 ECHO REQUEST (CODE 0x08)

Echo requests are used to solicit a response from a remote L2CAP entity. These requests may be used for testing the link or passing vendor specific information using the optional data field. L2CAP entities MUST respond to well-formed Echo Request packets with an Echo Response packet. The Data field is optional and implementation-dependent. L2CAP entities should ignore the contents of this field.

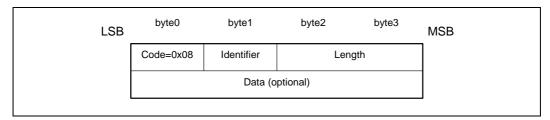



Figure 5.12: Echo Request Packet

Bluetooth.

287

# 5.9 ECHO RESPONSE (CODE 0x09)

Echo responses are sent upon receiving Echo Request packets. The identifier in the response MUST match the identifier sent in the Request. The optional and implementation-dependent data field may contain the contents of the data field in the Request, different data, or no data at all.

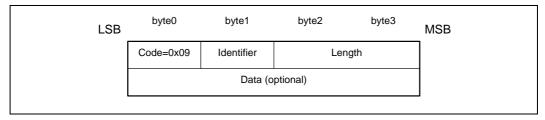



Figure 5.13: Echo Response Packet

# 5.10 INFORMATION REQUEST (CODE 0X0A)

Information requests are used to solicit implementation-specific information from a remote L2CAP entity. L2CAP entities MUST respond to well-formed Information Request packets with an Information Response packet.

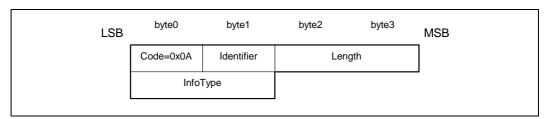



Figure 5.14: Information Request Packet

- Length = 0x0002 octets
- InfoType: 2 octets

The InfoType defines the type of implementation-specific information being solicited.

| Value  | Description        |
|--------|--------------------|
| 0x0001 | Connectionless MTU |
| Other  | Reserved           |

Table 5.8: InfoType definitions

Bluetooth.

# 5.11 INFORMATION RESPONSE (CODE 0X0B)

Information responses are sent upon receiving Information Request packets. The identifier in the response MUST match the identifier sent in the Request. The optional data field may contain the contents of the data field in the Request, different data, or no data at all.

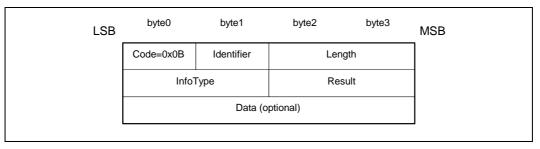



Figure 5.15: Information Response Packet

InfoType: 2 octets
 Same value sent in the request.

• Result: 2 octets

The Result contains information about the success of the request. If result is "Success", the data field contains the information as specified in Table 5.10. If result is "Not supported", no data should be returned.

| Value  | Description   |
|--------|---------------|
| 0x0000 | Success       |
| 0x0001 | Not supported |
| Other  | Reserved      |

Table 5.9: Information Response Result values

#### Data: 0 or more octets

The contents of the Data field depends on the InfoType. For the Connection MTU request, the data field contains the remote entity's 2-octet acceptable connectionless MTU.

| InfoType | Data               | Data Length (in octets) |
|----------|--------------------|-------------------------|
| 0x0001   | Connectionless MTU | 2                       |

Table 5.10: Information Response Data fields

**Bluetooth** 

# 6 CONFIGURATION PARAMETER OPTIONS

Options are a mechanism to extend the ability to negotiate different connection requirements. Options are transmitted in the form of information elements comprised an option type, an option length, and one or more option data fields. Figure 6.1 illustrates the format of an option.



Figure 6.1: Configuration option format

Type: 1 octet

The option type field defines the parameters being configured. The most significant bit of the type determines the action taken if the option is not recognized. The semantics assigned to the bit are defined below.

- 0 option must be recognized; refuse the configuration request
- 1 option is a hint; skip the option and continue processing
- · Length: 1 octet

The length field defines the number of octets in the option payload. So an option type with no payload has a length of 0.

Option data

The contents of this field are dependent on the option type.

# 6.1 MAXIMUM TRANSMISSION UNIT (MTU)

This option specifies the payload size the sender is capable of accepting. The type is 0x01, and the payload length is 2 bytes, carrying the two-octet MTU size value as the only information element (see Figure 6.2 on page 290).

Since all L2CAP implementations are capable to support a minimum L2CAP packet size, see Section 4 on page 272, MTU is not really a negotiated value but rather an informational parameter to the remote device that the local device can accommodate in this channel an MTU larger than the minimum required. In the unlikely case that the remote device is only willing to send L2CAP packets in this channel that are larger than the MTU announced by the local device, then this Configuration Request will receive a negative response in which the remote device will include the value of MTU that is indented to transmit. In this case, it is implementation specific on whether the local device will continue the configuration process or even maintain this channel.

The remote device in its positive Configuration Response will include the actual MTU to be used on this channel for traffic flowing into the local device which is

page 290 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

minimum { MTU in configReq, outgoing MTU capability of remote device }. The MTU to be used on this channel but for the traffic flowing in the opposite direction will be established when the remote device (with respect to this discussion) sends its own Configuration Request as explained in Section 5.4 on page 280.

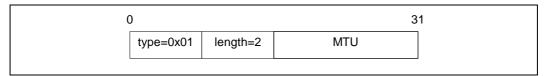



Figure 6.2: MTU Option Format

Maximum Transmission Unit (MTU) Size: 2 octets

The MTU field represents the largest L2CAP packet payload, in bytes, that the originator of the Request can accept for that channel. The MTU is asymmetric and the sender of the Request shall specify the MTU it can receive on this channel if it differs from the default value. L2CAP implementations must support a minimum MTU size of 48 bytes. The default value is 672 bytes<sup>1</sup>.

### 6.2 FLUSH TIMEOUT OPTION

This option is used to inform the recipient of the amount of time the originator's link controller / link manager will attempt to successfully transmit an L2CAP segment before giving up and flushing the packet. The type is 0x02 and the payload size is 2 octets.

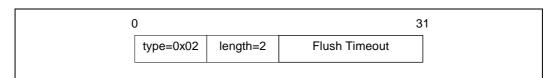



Figure 6.3: Flush Timeout

### Flush Timeout

This value represents units of time measured in milliseconds. The value of 1 implies no retransmissions at the Baseband level should be performed since the minimum polling interval is 1.25 ms. The value of all 1's indicates an infinite amount of retransmissions. This is also referred to as 'reliable channel'. In this case, the link manager shall continue retransmitting a segment until physical link loss occurs. This is an asymmetric value and the sender of the Request shall specify its flush timeout value if it differs from the default value of 0xFFFF.

<sup>1.</sup> The default MTU was selected based on the payload carried by two Baseband DH5 packets (2\*341=682) minus the Baseband ACL headers (2\*2=4) and L2CAP header (6).

Bluetooth.

# 6.3 QUALITY OF SERVICE (QOS) OPTION

This option specifies a flow specification (flowSpec) similar to RFC 1363 [1]. If no QoS configuration parameter is negotiated the link should assume the default parameters discussed below. The QoS option is type 0x03.

When included in a Configuration Request, this option describes the outgoing traffic flow from the device sending the request to the device receiving it. When included in a positive Configuration Response, this option describes the incoming traffic flow agreement as seen from the device sending the response. When included in a negative Configuration Response, this option describes the preferred incoming traffic flow from the perspective of the device sending the response.

L2CAP implementations are only required to support 'Best Effort' service, support for any other service type is optional. Best Effort does not require any guarantees. If no QoS option is placed in the request, Best Effort must be assumed. If any QoS guarantees are required then a QoS configuration request must be sent.

The remote device places information that depends on the value of the result field, see Section 5.5 on page 283, in its Configuration Response. If the request was for Guaranteed Service, the response shall include specific values for any wild card parameters (see Token Rate and Token Bucket Size descriptions) contained in the request. If the result is "Failure – unacceptable parameters", the response may include a list of outgoing flowspec parameters and parameter values that would make a new Connection Request from the local device acceptable by the remote device. Both explicitly referenced in a Configuration Request or implied configuration parameters can be included in a Configuration Response. Recall that any missing configuration parameters from a Configuration Request are assumed to have their most recently (mutually) accepted values. For both Best effort and Guaranteed service, when the QoS option appears in the Configuration Response, "do not cares" shall be present where they appeared in the Configuration Request.

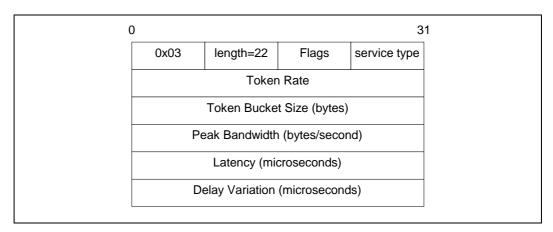



Figure 6.4: Quality of Service Flow Specification

Bluetooth

· Flags: 1 octet

Reserved for future use and must be set to 0.

• Service Type: 1 octet

This field indicates the level of service required. Table 6.1 defines the different services available. If 'No traffic' is selected, the remainder of the fields may be ignored because there is no data being sent across the channel in the outgoing direction.

If 'Best effort', the default value, is selected, the remaining fields should be treated as hints by the remote device. The remote device may choose to ignore the fields, try to satisfy the hint but provide no response (QoS option omitted in the Response message), or respond with the settings it will try to meet.

| Value | Description           |
|-------|-----------------------|
| 0x00  | No traffic            |
| 0x01  | Best effort (Default) |
| 0x02  | Guaranteed            |
| Other | Reserved              |

Table 6.1: Service type definitions

#### Token Rate: 4 octets

#### Token Bucket Size: 4 octets

The value of this field represents the size of the token bucket in bytes. If the bucket is full, then applications must either wait or discard data. The value of 0x00000000 represents no token bucket is needed; this is the default value. The value 0xFFFFFFF represents a wild card matching the maximum token bucket available. The meaning of this value depends on the semantics associated with the service type. For best effort, the value indicates the application wants a bucket as big as possible. For Guaranteed service the value represents the maximum buffer space available at the time of the request.

#### Peak Bandwidth: 4 octets

# Bluetooth.

The value of this field, expressed in bytes per second, limits how fast packets may be sent back-to-back from applications. Some intermediate systems can take advantage of this information, resulting in more efficient resource allocation. The value of 0x00000000 states that the maximum bandwidth is unknown, which is the default value.

### Latency: 4 octets

The value of this field represents the maximum acceptable delay between transmission of a bit by the sender and its initial transmission over the air, expressed in microseconds. The precise interpretation of this number depends on the level of guarantee specified in the Class of Service. The value 0xFFFFFFF represents a do not care and is the default value.

### Delay Variation: 4 octets

The value of this field is the difference, in microseconds, between the maximum and minimum possible delay that a packet will experience. This value is used by applications to determine the amount of buffer space needed at the receiving side in order to restore the original data transmission pattern. The value 0xFFFFFFF represents a do not care and is the default value.

# 6.4 CONFIGURATION PROCESS

Negotiating the channel parameters involves three steps:

- 1. Informing the remote side of the non-default parameters that the local side will accept
- 2. Having the remote side agreeing or disagreeing to these values (including the default ones); steps (1) and (2) may iterate as needed
- 3. Repeat steps (1) and (2) for the reverse direction from the (previous) remote side to the (previous) local side.

This process can be abstracted into a Request negotiation path and a Response negotiation path.

#### 6.4.1 Request Path

The Request Path negotiates the incoming MTU, flush timeout, and outgoing flowspec. Table 6.2 defines the configuration options that may be placed in the Configuration Request message and their semantics.

| Parameter | Description                |
|-----------|----------------------------|
| MTU       | Incoming MTU information   |
| FlushTO   | Outgoing flush timeout     |
| OutFlow   | Outgoing flow information. |

Table 6.2: Parameters allowed in Request

**Bluetooth** 

### 6.4.2 Response Path

The Response Path negotiates the outgoing MTU (remote side's incoming MTU), the remote side's flush timeout, and incoming flowspec (remote side's outgoing flowspec). If a request-oriented parameter is not present in the Request message (reverts to default value), the remote side may negotiate for a non-default value by including the proposed value in a negative Response message.

| Parameter | Description               |
|-----------|---------------------------|
| MTU       | Outgoing MTU information  |
| FlushTO   | Incoming flush timeout    |
| InFlow    | Incoming flow information |

Table 6.3: Parameters allowed in Response

### 6.4.3 Configuration State Machine

The configuration state machine shown below depicts two paths. Before leaving the CONFIG state and moving into the OPEN state, both paths must reach closure. The request path requires the local device to receive a positive response to reach closure while the response path requires the local device to send a positive response to reach closure.

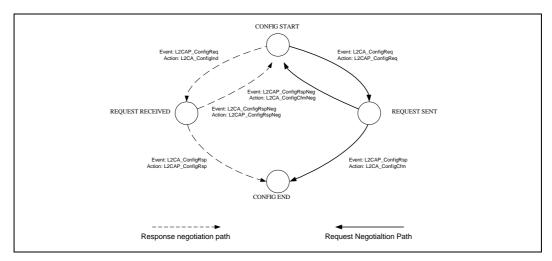



Figure 6.5: Configuration State Machine

"Appendix A: Configuration MSCs" on page 318 provides some configuration examples.

Bluetooth.

# 7 SERVICE PRIMITIVES

This section presents an abstract description of the services offered by L2CAP in terms of service primitives and parameters. The service interface is required for testing. The interface is described independently of any platform specific implementation. All data values use Little Endian byte ordering.

## 7.1 EVENT INDICATION

| Service         | Input Parameters | Output Parameters |
|-----------------|------------------|-------------------|
| EventIndication | Event, Callback  | Result            |

# **Description:**

The use of this primitive requests a callback when the selected indication Event occurs.

## **Input Parameters:**

Event Type: uint Size: 2 octets

| Value | Description             |
|-------|-------------------------|
| 0x00  | Reserved                |
| 0x01  | L2CA_ConnectInd         |
| 0x02  | L2CA_ConfigInd          |
| 0x03  | L2CA_DisconnectInd      |
| 0x04  | L2CA_QoSViolationInd    |
| other | Reserved for future use |

Callback Type: function Size: N/A

| Event                | Callback Function Input Parameters |
|----------------------|------------------------------------|
| L2CA_ConnectInd      | BD_ADDR, CID, PSM, Identifier      |
| L2CA_ConfigInd       | CID, OutMTU, InFlow, InFlushTO     |
| L2CA_DisconnectInd   | CID                                |
| L2CA_QoSViolationInd | BD_ADDR                            |

## **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                   |
|--------|-------------------------------|
| 0x0000 | Event successfully registered |
| 0x0001 | Event registration failed     |

Service Primitives 29 November 1999 295

Bluetooth

### 7.1.1 L2CA ConnectInd Callback

This callback function includes the parameters for the address of the remote device that issued the connection request, the local CID representing the channel being requested, the Identifier contained in the request, and the PSM value the request is targeting.

# 7.1.2 L2CA ConfigInd Callback

This callback function includes the parameters indicating the local CID of the channel the request has been sent to, the outgoing MTU size (maximum packet that can be sent across the channel) and the flowspec describing the characteristics of the incoming data. All other channel parameters are set to their default values if not provided by the remote device.

#### 7.1.3 L2CA DisconnectInd Callback

This callback function includes the parameter indicating the local CID the request has been sent to.

### 7.1.4 L2CA QoSViolationInd Callback

This callback function includes the parameter indicating the address of the remote Bluetooth device where the QoS contract has been violated.

## 7.2 CONNECT

| Service         | Input Parameters | Output Parameters    |
|-----------------|------------------|----------------------|
| L2CA_ConnectReq | PSM, BD_ADDR     | LCID, Result, Status |

### **Description:**

This primitive initiates the sending of an L2CA\_ConnectReq message and blocks until a corresponding L2CA ConnectCfm(Neg) or L2CA TimeOutInd message is received.

The use of this primitive requests the creation of a channel representing a logical connection to a physical address. Input parameters are the target protocol (PSM) and remote device's 48-bit address (BD ADDR). Output parameters are the local CID (LCID) allocated by the local L2CAP entity, and Result of the request. If the Result indicates success, the LCID value contains the identification of the local endpoint. Otherwise the LCID returned should be set to 0. If Result indicates a pending notification, the Status value may contain more information of what processing is delaying the establishment of the connection. Otherwise the *Status* value should be ignored.

page 297 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

# **Input Parameters:**

PSM Type: uint Size: 2 octets

| Value  | Description                            |
|--------|----------------------------------------|
| 0xXXXX | Target PSM provided for the connection |

BD\_ADDR Type: unit Size: 6 octets

| Value        | Description                               |
|--------------|-------------------------------------------|
| 0xXXXXXXXXXX | Unique Bluetooth address of target device |

# **Output Parameters:**

LCID Type: uint Size: 2 octets

| Value  | Description                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel if Result = 0x0000, otherwise set to 0. |

Result Type: uint Size: 2 octets

| Value  | Description                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
| 0x0000 | Connection successful and the CID identifies the local endpoint. Ignore Status parameter                                        |
| 0x0001 | Connection pending. Check Status parameter for more information                                                                 |
| 0x0002 | Connection refused because no service for the PSM has been registered                                                           |
| 0x0003 | Connection refused because the security architecture on the remote side has denied the request                                  |
| 0xEEEE | Connection timeout occurred. This is a result of a timer expiration indication being included in the connection confirm message |

Status Type: uint Size: 2 octets

| Value  | Description            |
|--------|------------------------|
| 0x0000 | No further information |
| 0x0001 | Authentication pending |
| 0x0002 | Authorization pending  |

page 298 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

## 7.3 CONNECT RESPONSE

| Service         | Input Parameters                               | Output Parameters |
|-----------------|------------------------------------------------|-------------------|
| L2CA_ConnectRsp | BD_ADDR, Identifier,<br>LCID, Response, Status | Result            |

# **Description:**

This primitive represents the L2CA\_ConnectRsp.

The use of this primitive issues a response to a connection request event indication. Input parameters are the remote device's 48-bit address, Identifier sent in the request, local CID, the Response code, and the Status attached to the Response code. The output parameter is the Result of the service request.

This primitive must be called no more than once after receiving the callback indication. This primitive returns once the local L2CAP entity has validated the request. A successful return does indicate the response has been sent over the air interface.

### **Input Parameters:**

BD\_ADDR Type: unit Size: 6 octets

| Value         | Description                               |
|---------------|-------------------------------------------|
| 0xXXXXXXXXXXX | Unique Bluetooth address of target device |

Identifier Type: uint Size: 1 octets

| Value | Description                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------|
| 0xXX. | This value must match the value received in the L2CA_ConnectInd event described in Section 7.1.1 on page 296 |

LCID Type: uint Size: 2 octets

| Value  | Description                                                          |  |
|--------|----------------------------------------------------------------------|--|
| 0xXXXX | Channel ID representing local end-point of the communication channel |  |

Response Type: uint Size: 2 octets

| Value  | Description                                 |
|--------|---------------------------------------------|
| 0x0000 | Connection successful                       |
| 0x0001 | Connection pending                          |
| 0x0002 | Connection refused – PSM not supported      |
| 0x0003 | Connection refused – security block         |
| 0x0004 | Connection refused – no resources available |
| 0xXXXX | Other connection response code              |

page 299 of 1082

Logical Link Control and Adaptation Protocol Specification

**Bluetooth** 

Status Type: uint Size: 2 octets

| Value  | Description                      |
|--------|----------------------------------|
| 0x0000 | No further information available |
| 0x0001 | Authentication pending           |
| 0x0002 | Authorization pending            |
| 0xXXXX | Other status code                |

# **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                                         |
|--------|-----------------------------------------------------|
| 0x0000 | Response successfully sent                          |
| 0x0001 | Failure to match any outstanding connection request |

### 7.4 CONFIGURE

| Service        | Input Parameters                           | Output Parameters                  |
|----------------|--------------------------------------------|------------------------------------|
| L2CA_ConfigReq | CID, InMTU, OutFlow,<br>OutFlushTO, LinkTO | Result, InMTU, OutFlow, OutFlushTO |

# **Description:**

This primitive initiates the sending of an L2CA\_ConfigReq message and blocks until a corresponding L2CA\_ConfigCfm(Neg) or L2CA\_TimeOutInd message is received.

The use of this primitive requests the initial configuration (or reconfiguration) of a channel to a new set of channel parameters. Input parameters are the local CID endpoint, new incoming receivable MTU (InMTU), new outgoing flow specification, and flush and link timeouts. Output parameters composing the L2CA\_ConfigCfm(Neg) message are the Result, accepted incoming MTU(InMTU), the remote side's flow requests, and flush and link timeouts. Note that the output results are returned only after the local L2CAP entity transitions out of the CONFIG state (even if this transition is back to the CONFIG state).

## **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description |
|--------|-------------|
| 0xXXXX | Local CID   |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 300 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

InMTU Type: uint Size: 2 octets

| Value  | Description                                       |
|--------|---------------------------------------------------|
| 0xXXXX | Maximum transmission unit this channel can accept |

OutFlow Type: Flow Size: x octets

| Value    | Description                                                                                      |  |
|----------|--------------------------------------------------------------------------------------------------|--|
| flowspec | Quality of service parameters dealing with the traffic characteristics of the outgoing data flow |  |

OutFlushTO Size 2 octets

| Value  | Description                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Number of milliseconds to wait before an L2CAP packet that cannot be acknowledged at the physical layer is dropped |
| 0x0000 | Request to use the existing flush timeout value if one exists, otherwise the default value (0xFFFF) will be used   |
| 0x0001 | Perform no retransmissions at the Baseband layer                                                                   |
| 0xFFFF | Perform retransmission at the Baseband layer until the link timeout terminates the channel                         |

LinkTO Size 2 octets

| Value  | Description                                                            |  |
|--------|------------------------------------------------------------------------|--|
| 0xXXXX | Number of milliseconds to wait before terminating an unresponsive link |  |

## **Output Parameters:**

Result Size 2 octets

| Value  | Description                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 0x0000 | Configuration is successful. Parameters contain agreed upon values                                                            |
| 0x0001 | Failure – invalid CID                                                                                                         |
| 0x0002 | Failure – unacceptable parameters                                                                                             |
| 0x0003 | Failure – signalling MTU exceeded                                                                                             |
| 0x0004 | Failure – unknown options                                                                                                     |
| 0xEEEE | Configuration timeout occurred. This is a result of a timer expiration indication being included in the configuration confirm |

InMTU Size 2 octets

| Value  | Description                                                                                                                      |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXX | Maximum transmission unit that the remote unit will send across this channel (maybe less or equal to the InMTU input parameter). |  |

page 301 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

OutFlow Size 2 octets

| Value    | Description                                                                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FlowSpec | Quality of service parameters dealing with the traffic characteristics of the agreed-upon outgoing data flow if Result is successful. Otherwise this represents the requested Quality of Service |

OutFlushTO Size 2 octets

| Value  | Description                                                                                                                                                                                                                                                           |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXX | Number of milliseconds before an L2CAP packet that cannot be acknowledged at the physical layer is dropped. This value is informative of the actual value that will be used for outgoing packets. It may be less or equal to the OutFlushTO parameter given as input. |  |

#### 7.5 CONFIGURATION RESPONSE

| Service        | Input Parameters    | Output Parameters |
|----------------|---------------------|-------------------|
| L2CA_ConfigRsp | CID, OutMTU, InFlow | Result            |

#### **Description:**

This primitive represents the L2CAP\_ConfigRsp.

The use of this primitive issues a response to a configuration request event indication. Input parameters include the local CID of the endpoint being configured, outgoing transmit MTU (which may be equal or less to the OutMTU parameter in the L2CA\_ConfigInd event) and the accepted flowspec for incoming traffic. The output parameter is the Result value.

#### **Input Parameters:**

LCID Type: uint Size: 2 octets

| Value  | Description              |
|--------|--------------------------|
| 0xXXXX | Local channel identifier |

OutMTU Type: uint Size: 2 octets

| Value  | Description                                      |
|--------|--------------------------------------------------|
| 0xXXXX | Maximum transmission unit this channel will send |

InFlow Type: Flow Size: x octets

| Value    | Description                                                                                      |
|----------|--------------------------------------------------------------------------------------------------|
| FlowSpec | Quality of service parameters dealing with the traffic characteristics of the incoming data flow |

page 302 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### **Output Parameters:**

Result Size 2 octets

| Value  | Description                                                        |
|--------|--------------------------------------------------------------------|
| 0x0000 | Configuration is successful. Parameters contain agreed upon values |
| 0x0001 | Configuration failed – unacceptable parameters                     |
| 0x0002 | Configuration failed – rejected                                    |
| 0x0003 | Configuration failed – invalid CID                                 |
| 0x0004 | Configuration failed – unknown options                             |
| 0xXXXX | Reserved                                                           |

#### 7.6 DISCONNECT

| Service            | Input Parameters | Output Parameters |
|--------------------|------------------|-------------------|
| L2CA_DisconnectReq | CID              | Result            |

#### **Description:**

This primitive represents the L2CAP\_DisconnectReq and the returned output parameters represent the corresponding L2CAP\_DisconnectRsp or the RTX timer expiration.

The use of this primitive requests the disconnection of the channel. Input parameter is the *CID* representing the local channel endpoint. Output parameter is *Result*. *Result* is zero if a L2CAP\_DisconnectRsp is received, otherwise a non-zero value is returned. Once disconnection has been requested, no process will be able to successfully read or write from the CID. Writes in progress should continue to be processed.

#### **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |  |
|--------|----------------------------------------------------------------------|--|
| 0xXXXX | Channel ID representing local end-point of the communication channel |  |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                                                                                   |  |
|--------|-----------------------------------------------------------------------------------------------|--|
| 0x0000 | Disconnection successful. This is a result of the receipt of a disconnection response message |  |
| 0xEEEE | Disconnection timeout occurred.                                                               |  |

page 303 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### **7.7 WRITE**

| Service        | Input Parameters       | Output Parameters |
|----------------|------------------------|-------------------|
| L2CA_DataWrite | CID, Length, OutBuffer | Size, Result      |

#### **Description:**

The use of this primitive requests the transfer of data across the channel. If the length of the data exceeds the OutMTU then only the first OutMTU bytes are sent This command may be used for both connection-oriented and connectionless traffic.

#### **Input Parameters:**

| CID | Type: uint | Size: 2 octets |
|-----|------------|----------------|
|     |            |                |

| Value  | Description                                                          |  |
|--------|----------------------------------------------------------------------|--|
| 0xXXXX | Channel ID representing local end-point of the communication channel |  |

## Length Type: uint Size: 2 octets

| Value  | Description                                                           |  |
|--------|-----------------------------------------------------------------------|--|
| 0xXXXX | Size, in bytes, of the buffer where data to be transmitted are stored |  |

#### OutBuffer Type: pointer Size: N/A

| Value | Description  Address of the input buffer used to store the message |  |
|-------|--------------------------------------------------------------------|--|
| N/A   |                                                                    |  |

#### **Output Parameters:**

Size Type: uint Size: 2 octets

| Value  | Description                     |
|--------|---------------------------------|
| 0xXXXX | The number of bytes transferred |

## Result Type: uint Size: 2 octets

| Value  | Description                                                              |  |
|--------|--------------------------------------------------------------------------|--|
| 0x0000 | Successful write                                                         |  |
| 0x0001 | Error – Flush timeout expired                                            |  |
| 0x0002 | Error – Link termination (perhaps this should be left to the indication) |  |

page 304 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### **7.8 READ**

| Service       | Input Parameters      | Output Parameters |
|---------------|-----------------------|-------------------|
| L2CA_DataRead | CID, Length, InBuffer | Result, N         |

#### **Description**:

The use of this primitive requests for the reception of data. This request returns when data is available or the link is terminated. The data returned represents a single L2CAP payload. If not enough data is available, the command will block until the data arrives or the link is terminated. If the payload is bigger than the buffer, only the portion of the payload that fits into the buffer will be returned, and the remainder of the payload will be discarded. This command may be used for both connection-oriented and connectionless traffic.

#### **Input Parameters:**

| CID | Type: uint | Size: 2 octets |
|-----|------------|----------------|
|     |            |                |

| Value  | Description |
|--------|-------------|
| 0xXXXX | CID         |

#### Length Type: uint Size: 2 octets

| Value  | Description                                                        |
|--------|--------------------------------------------------------------------|
| 0xXXXX | Size, in bytes, of the buffer where received data are to be stored |

#### InBuffer Type: pointer Size: N/A

| Value | Description                                     |
|-------|-------------------------------------------------|
| N/A   | Address of the buffer used to store the message |

#### **Output parameters:**

#### Result

| Value  | Description |
|--------|-------------|
| 0x0000 | Success     |

#### N Type: uint Size: 2 octets

| Value  | Description                             |
|--------|-----------------------------------------|
| 0xXXXx | Number of bytes transferred to InBuffer |

page 305 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### 7.9 GROUP CREATE

| Service          | Input Parameters | Output Parameters |
|------------------|------------------|-------------------|
| L2CA_GroupCreate | PSM              | CID               |

#### **Description:**

The use of this primitive requests the creation of a CID to represent a logical connection to multiple devices. Input parameter is the *PSM* value that the outgoing connectionless traffic is labelled with, and the filter used for incoming traffic. Output parameter is the *CID* representing the local endpoint. On creation, the group is empty but incoming traffic destined for the PSM value is readable.

#### **Input Parameters:**

PSM Type: uint Size: 2 octets

| Value  | Description                        |
|--------|------------------------------------|
| 0xXXXX | Protocol/service multiplexer value |

#### **Output Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |
|--------|----------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel |

#### 7.10 GROUP CLOSE

| Service         | Input Parameters | Output Parameters |
|-----------------|------------------|-------------------|
| L2CA_GroupClose | CID              | Result            |

#### **Description:**

The use of this primitive closes down a Group.

#### **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |
|--------|----------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel |

page 306 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                       |
|--------|-----------------------------------|
| 0x0000 | Successful closure of the channel |
| 0x0001 | Invalid CID                       |

#### 7.11 GROUP ADD MEMBER

| Service             | Input Parameters | Output Parameters |
|---------------------|------------------|-------------------|
| L2CA_GroupAddMember | CID, BD_ADDR     | Result            |

## **Description:**

The use of this primitive requests the addition of a member to a group. The input parameter includes the CID representing the group and the BD\_ADDR of the group member to be added. The output parameter Result confirms the success or failure of the request.

#### **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |
|--------|----------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel |

BD\_ADDR Type: uint Size: 6 octets

| Value         | Description           |
|---------------|-----------------------|
| 0xXXXXXXXXXXX | Remote device address |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                                      |
|--------|--------------------------------------------------|
| 0x0000 | Success                                          |
| 0x0001 | Failure to establish connection to remote device |
| Other  | Reserved                                         |

page 307 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### 7.12 GROUP REMOVE MEMBER

| Service                | Input Parameters | Output Parameters |
|------------------------|------------------|-------------------|
| L2CA_GroupRemoveMember | CID, BD_ADDR     | Result            |

#### **Description:**

The use of this primitive requests the removal of a member from a group. The input parameters include the CID representing the group and BD\_ADDR of the group member to be removed. The output parameter Result confirms the success or failure of the request.

# **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |
|--------|----------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel |

BD\_ADDR Type: uint Size: 6 octets

| Value         | Description                                   |
|---------------|-----------------------------------------------|
| 0xXXXXXXXXXXX | Unique Bluetooth address device to be removed |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                                |
|--------|--------------------------------------------|
| 0x0000 | Success                                    |
| 0x0001 | Failure – device not a member of the group |
| Other  | Reserved                                   |

page 308 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### 7.13 GET GROUP MEMBERSHIP

| Service              | Input Parameters | Output Parameters      |
|----------------------|------------------|------------------------|
| L2CA_GroupMembership | CID              | Result, N, BD_ADDR_Lst |

#### **Description:**

The use of this primitive requests a report of the members of a group. The input parameter CID represents the group being queried. The output parameter Result confirms the success or failure of the operation. If the Result is successful, BD\_ADDR\_Lst is a list of the Bluetooth addresses of the N members of the group.

#### **Input Parameters:**

CID Type: uint Size: 2 octets

| Value  | Description                                                          |
|--------|----------------------------------------------------------------------|
| 0xXXXX | Channel ID representing local end-point of the communication channel |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                    |
|--------|--------------------------------|
| 0x0000 | Success                        |
| 0x0001 | Failure – group does not exist |
| Other  | Reserved                       |

N Type: uint Size: 2 octets

| Value         | Description                                                                                                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0x0000-0xFFFF | The number of devices in the group identified by the channel end-<br>point CID. If Result indicates failure, N should be set to 0 |

BD\_ADDR\_List Type: pointer Size: N/A

| Value         | Description                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXXXXXXXXX | List of N unique Bluetooth addresses of the devices in the group identified by the channel end-point CID. If Result indicates failure, the all-zero address is the only address that should be returned |

page 309 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### **7.14 PING**

| Service   | Input Parameters           | Output Parameters       |
|-----------|----------------------------|-------------------------|
| L2CA_Ping | BD_ADDR, ECHO_DATA, Length | Result, ECHO_DATA, Size |

#### **Description:**

This primitive represents the initiation of an L2CA\_EchoReq command and the reception of the corresponding L2CA\_EchoRsp command.

#### **Input Parameters:**

BD\_ADDR Type: uint Size: 6 octets

| Value        | Description                                |
|--------------|--------------------------------------------|
| 0xXXXXXXXXXX | Unique Bluetooth address of target device. |

ECHO\_DATA Type: pointer Size: N/A

| Value | Description                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------|
| N/A   | The buffer containing the contents to be transmitted in the data payload of the Echo Request command. |

Length Type: uint Size: 2 octets

| Value  | Description                                |
|--------|--------------------------------------------|
| 0xXXXX | Size, in bytes, of the data in the buffer. |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description        |
|--------|--------------------|
| 0x0000 | Response received. |
| 0x0001 | Timeout occurred.  |

ECHO\_DATA Type: pointer Size: N/A

| Value | Description                                                                                   |
|-------|-----------------------------------------------------------------------------------------------|
| N/A   | The buffer containing the contents received in the data payload of the Echo Response command. |

Size Type: uint Size: 2 octets

| Value  | Description                                |
|--------|--------------------------------------------|
| 0xXXXX | Size, in bytes, of the data in the buffer. |

page 310 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### 7.15 GETINFO

| Service      | Input Parameters  | Output Parameters      |
|--------------|-------------------|------------------------|
| L2CA_GetInfo | BD_ADDR, InfoType | Result, InfoData, Size |

# **Description:**

This primitive represents the initiation of an L2CA\_InfoReq command and the reception of the corresponding L2CA\_InfoRsp command.

#### **Input Parameters:**

| BD ADDR | Type: unit | Size: 6 octets |
|---------|------------|----------------|
|         |            |                |

| Value        | Description                               |
|--------------|-------------------------------------------|
| 0xXXXXXXXXXX | Unique Bluetooth address of target device |

InfoType Type: unit Size: 2 octets

| Value  | Description                     |  |
|--------|---------------------------------|--|
| 0x0001 | Maximum connectionless MTU size |  |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description                                                |
|--------|------------------------------------------------------------|
| 0x0000 | Response received                                          |
| 0x0001 | Not supported                                              |
| 0x0002 | Informational PDU rejected, not supported by remote device |
| 0x0003 | Timeout occurred                                           |

InfoData Type: pointer Size: N/A

| Value | Description                                                                                          |
|-------|------------------------------------------------------------------------------------------------------|
| N/A   | The buffer containing the contents received in the data payload of the Information Response command. |

Size Type: uint Size: 2 octets

| Value  | Description                                         |
|--------|-----------------------------------------------------|
| 0xXXXX | Size, in bytes, of the data in the InfoData buffer. |

page 311 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth

#### 7.16 DISABLE CONNECTIONLESS TRAFFIC

| Service         | Input Parameters | Output Parameters |
|-----------------|------------------|-------------------|
| L2CA_DisableCLT | PSM              | Result            |

#### **Description:**

General request to disable the reception of connectionless packets. The input parameter is the *PSM* value indicating service that should be blocked. This command may be used to incrementally disable a set of PSM values. The use of the 'invalid' PSM 0x0000 blocks all connectionless traffic. The output parameter *Result* indicates the success or failure of the command. A limited device might support only general blocking rather than PSM-specific blocks and would fail to block a single non-zero PSM value.

#### **Input Parameters:**

PSM Type: uint Size: 2 octets

| Value  | Description                                      |
|--------|--------------------------------------------------|
| 0x0000 | Block all connectionless traffic                 |
| 0xXXXX | Protocol/Service Multiplexer field to be blocked |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description             |
|--------|-------------------------|
| 0x0000 | Successful              |
| 0x0001 | Failure – not supported |

page 312 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### 7.17 ENABLE CONNECTIONLESS TRAFFIC

| Service        | Input Parameters | Output Parameters |
|----------------|------------------|-------------------|
| L2CA_EnableCLT | PSM              | Result            |

#### **Description:**

General request to enable the reception of connectionless packets. The input parameter is the *PSM* value indicating the service that should be unblocked. This command may be used to incrementally enable a set of PSM values. The use of the 'invalid' PSM 0x0000 enables all connectionless traffic. The output parameter *Result* indicates the success or failure of the command. A limited device might support only general enabling rather than PSM-specific filters, and would fail to enable a single non-zero PSM value.

#### **Input Parameters:**

PSM Type: uint Size: 2 octets

| Value  | Description                                  |
|--------|----------------------------------------------|
| 0x0000 | Enable all connectionless traffic            |
| 0xXXXX | Protocol/Service Multiplexer field to enable |

#### **Output Parameters:**

Result Type: uint Size: 2 octets

| Value  | Description             |
|--------|-------------------------|
| 0x0000 | Successful              |
| 0x0001 | Failure – not supported |

page 313 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth

### 8 SUMMARY

The Logical Link Control and Adaptation Protocol (L2CAP) is one of two link level protocols running over the Baseband. L2CAP is responsible for higher level protocol multiplexing, MTU abstraction, group management, and conveying quality of service information to the link level.

Protocol multiplexing is supported by defining channels. Each channel is bound to a single protocol in a many-to-one fashion. Multiple channels can be bound to the same protocol, but a channel cannot be bound to multiple protocols. Each L2CAP packet received on a channel is directed to the appropriate higher level protocol.

L2CAP abstracts the variable-sized packets used by the Baseband Protocol (page 33). It supports large packet sizes up to 64 kilobytes using a low-overhead segmentation-and-reassembly mechanism.

Group management provides the abstraction of a group of units allowing more efficient mapping between groups and members of the Bluetooth piconet. Group communication is connectionless and unreliable. When composed of only a pair of units, groups provide connectionless channel alternative to L2CAP's connection-oriented channel.

L2CAP conveys QoS information across channels and provides some admission control to prevent additional channels from violating existing QoS contracts.

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 314 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

# 9 REFERENCES

[1] Internet Engineering Task Force, "A Proposed Flow Specification", RFC 1363, September 1992.

Logical Link Control and Adaptation Protocol Specification

# Bluetooth.

# 10 LIST OF FIGURES

| Figure 1.1:  | L2CAP within protocol layers                               | 249 |
|--------------|------------------------------------------------------------|-----|
| Figure 1.2:  | ACL Payload Header for single-slot packets                 | 250 |
| Figure 1.3:  | ACL Payload Header for multi-slot packets                  | 250 |
| Figure 1.4:  | L2CAP in Bluetooth Protocol Architecture                   | 251 |
| Figure 2.1:  | Channels between devices                                   | 254 |
| Figure 2.2:  | L2CAP Architecture                                         | 255 |
| Figure 2.3:  | L2CAP SAR Variables                                        | 255 |
| Figure 2.4:  | L2CAP segmentation                                         | 256 |
| Figure 2.5:  | Segmentation and Reassembly Services in a unit with an HCI | 257 |
| Figure 3.1:  | L2CAP Layer Interactions                                   | 258 |
| Figure 3.2:  | MSC of Layer Interactions                                  |     |
| Figure 3.3:  | State Machine Example                                      |     |
| Figure 3.4:  | Message Sequence Chart of Basic Operation                  | 271 |
| Figure 4.1:  | L2CAP Packet (field sizes in bits)                         |     |
| Figure 4.2:  | Connectionless Packet                                      |     |
| Figure 5.1:  | Signalling Command Packet Format                           | 275 |
| Figure 5.2:  | Command format                                             |     |
| Figure 5.3:  | Command Reject Packet                                      | 277 |
| Figure 5.4:  | Connection Request Packet                                  | 278 |
| Figure 5.5:  | Connection Response Packet                                 | 279 |
| Figure 5.6:  | Configuration Request Packet                               | 281 |
| Figure 5.7:  | Configuration Request Flags field format                   | 281 |
| Figure 5.8:  | Configuration Response Packet                              | 283 |
| Figure 5.9:  | Configuration Response Flags field format                  | 283 |
| Figure 5.10: | Disconnection Request Packet                               | 285 |
| Figure 5.11: | Disconnection Response Packet                              | 286 |
| Figure 5.12: | Echo Request Packet                                        | 286 |
|              | Echo Response Packet                                       |     |
| Figure 5.14: | Information Request Packet                                 | 287 |
| Figure 5.15: | Information Response Packet                                | 288 |
| Figure 6.1:  | Configuration option format                                | 289 |
| Figure 6.2:  | MTU Option Format                                          | 290 |
| Figure 6.3:  | Flush Timeout                                              | 290 |
| Figure 6.4:  | Quality of Service Flow Specification                      | 291 |
| Figure 6.5:  | Configuration State Machine                                | 294 |
| Figure I     | Basic MTU exchange                                         |     |
| Figure II    | Dealing with Unknown Options                               | 319 |
| Figure III   | Unsuccessful Configuration Request                         | 320 |

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 316 of 1082

Logical Link Control and Adaptation Protocol Specification

# Bluetooth.

# 11 LIST OF TABLES

| Table 1.1:  | Logical channel L_CH field contents    | 250 |
|-------------|----------------------------------------|-----|
| Table 2.1:  | CID Definitions                        | 253 |
| Table 2.2:  | Types of Channel Identifiers           | 254 |
| Table 3.1:  | L2CAP Channel State Machine            | 267 |
| Table 5.1:  | Signalling Command Codes               | 276 |
| Table 5.2:  | Reason Code Descriptions               | 277 |
| Table 5.3:  | Reason Data values                     | 278 |
| Table 5.4:  | Defined PSM Values                     | 278 |
| Table 5.5:  | Result values                          | 280 |
| Table 5.6:  | Status values                          | 280 |
| Table 5.7:  | Configuration Response Result codes    | 284 |
| Table 5.8:  | InfoType definitions                   | 287 |
| Table 5.9:  | Information Response Result values     | 288 |
| Table 5.10: | Information Response Data fields       | 288 |
| Table 6.1:  | Service type definitions               |     |
| Table 6.2:  | Parameters allowed in Request          | 293 |
| Table 6.3:  | Parameters allowed in Response         | 294 |
| Table I     | Result of Second Link Timeout Request  | 322 |
| Table II    | Result of Second Flush Timeout Request | 322 |
|             |                                        |     |

page 317 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

# **TERMS AND ABBREVIATIONS**

| Baseband | Baseband Protocol                                                     |
|----------|-----------------------------------------------------------------------|
| IETF     | Internet Engineering Task Force                                       |
| IP       | Internet Protocol                                                     |
| IrDA     | Infra-red Data Association                                            |
| L_CH     | Logical Channel                                                       |
| LC       | Link Controller                                                       |
| LM       | Link Manager                                                          |
| LMP      | Link Manager Protocol                                                 |
| MTU      | Maximum Transmission Unit                                             |
| PPP      | Point-to-Point Protocol                                               |
| Reliable | Characteristic of an L2CAP channel that has an infinite flush timeout |
| RFC      | Request For Comments                                                  |
| SAR      | Segmentation and Reassembly                                           |

Logical Link Control and Adaptation Protocol Specification

**Bluetooth** 

#### **APPENDIX A: CONFIGURATION MSCs**

The examples in this appendix describe a sample of the multiple possible configuration scenarios that might occur. Currently, these are provided as suggestions and may change in the next update of the Specification.

Figure I illustrates the basic configuration process. In this example, the devices exchange MTU information. All other values are assumed to be default.

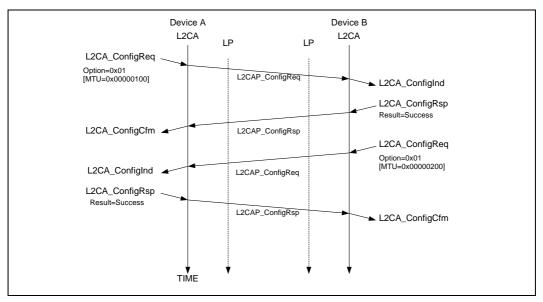



Figure I: Basic MTU exchange

Figure II on page 319 illustrates how two devices interoperate even though one device supports more options than the other does. Device A is an upgraded version. It uses a hypothetically defined option type 0x20 for link-level security. Device B rejects the command using the Configuration Response packet with result 'unknown parameter' informing Device A that option 0x20 is not understood. Device A then resends the request omitting option 0x20. Device B notices that it does not need to such a large MTU and accepts the request but includes in the response the MTU option informing Device A that Device B will not send an L2CAP packet with a payload larger than 0x80 octets over this channel. On receipt of the response, Device A could reduce the buffer allocated to hold incoming traffic.

Logical Link Control and Adaptation Protocol Specification

Bluetooth

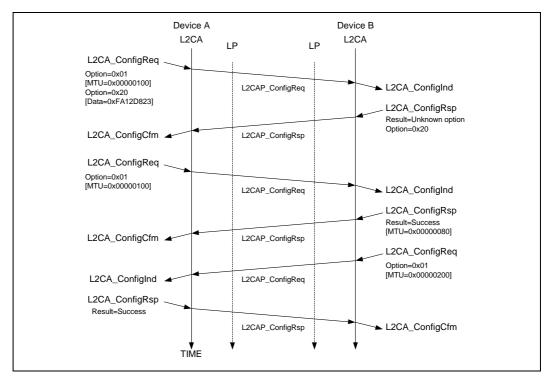



Figure II: Dealing with Unknown Options

Figure III on page 320 illustrates an unsuccessful configuration request. There are two problems described by this example. The first problem is that the configuration request is placed in an L2CAP packet that cannot be accepted by the remote device, due to its size. The remote device informs the sender of this problem using the Command Reject message. Device A then resends the configuration options using two smaller L2CAP\_ConfigReq messages.

The second problem is an attempt to configure a channel with an invalid CID. For example device B may not have an open connection on that CID (0x01234567 in this example case).

page 320 of 1082

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

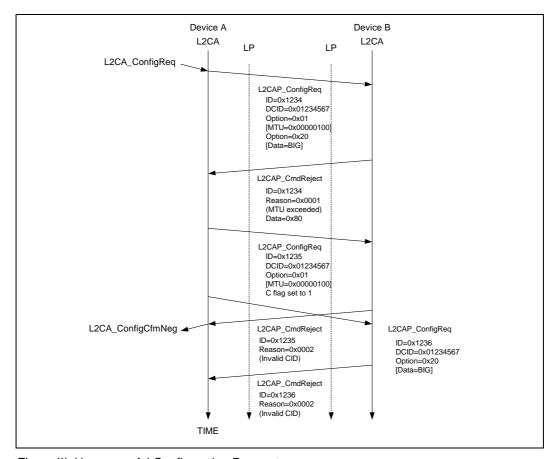



Figure III: Unsuccessful Configuration Request

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### APPENDIX B: IMPLEMENTATION GUIDELINES

This section contains some guidelines for implementations. These guidelines are not part of the compliance tests. At the moment they are simply suggestions on how to solve some difficult problems.

#### **RTX TIMER**

Implementations should not start this timer on an L2CAP Connection Request packet unless the physical link has been established. Otherwise the Baseband paging mechanism might increase the cost of the request beyond that of the minimal timeout value. If an implementation performs some form of security check it is recommended that the connection pending response be sent back prior to any consultation with a security manager that might perform Baseband authentication commands. If any security check requires user interaction, the link might timeout waiting for the user to enter a PIN.

#### QOS MAPPING TO LM AND L2CAP IMPLEMENTATIONS

#### **Token Rate**

The Link Manager (LM) should ensure data is removed from the transmission buffer at this rate. The LM should ensure the polling interval is fast enough to support this data rate. The polling interval should be adjusted if the packet type changes. If the buffer overflows, and the service type is Guaranteed, a QoS violation should be reported. If the service type is Best Effort, and a Token Rate was non-zero, a QoS violation should also be reported.

Given a Token Rate of 0xFFFFFFF, and Service Type of Guaranteed, the LM should refuse any additional connections from remote devices and disable all periodic scans.

#### **Token Bucket Size**

L2CAP implementations should ensure that a buffer meeting the size request is allocated for the channel. If no buffer is available, and the service type is Guaranteed, the request should be rejected. If no appropriately sized buffer is available, and the service type is Best Effort, the largest available buffer should be allocated.

#### **Peak Bandwidth**

If the token bucket buffer overflows, a QoS violation should be raised.

Logical Link Control and Adaptation Protocol Specification

Bluetooth.

#### Latency

The LM should ensure the polling interval is at least this value. If the polling interval necessary to support the token rate is less than this value, the smaller interval should be used. If this interval cannot be supported, a QoS violation should be raised.

## **Delay Variation**

The LM may ignore this value because there is no clear mapping between L2CAP packet delays and the necessary polling interval without requiring the LM to comprehend the length field in L2CAP packets.

#### **COLLISION TABLES**

| Current Value | Requested Value | Result                    |  |
|---------------|-----------------|---------------------------|--|
| X             | X               | X                         |  |
| X             | Υ               | If (X < Y) then X, else Y |  |

Table I: Result of Second Link Timeout Request

| Current Value | Requested Value | Result |
|---------------|-----------------|--------|
| N             | 0               | N      |
| N             | N               | N      |
| N             | M != N          | Reject |

Table II: Result of Second Flush Timeout Request

# Part E **SERVICE DISCOVERY** PROTOCOL (SDP) This specification defines a protocol for locating services provided by or available through a Bluetooth device.

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 324 of 1082

Service Discovery Protocol

Bluetooth.

# Bluetooth.

# **CONTENTS**

| 1 | Intro | oduction                                    | 327 |  |
|---|-------|---------------------------------------------|-----|--|
|   | 1.1   | General Description                         | 327 |  |
|   | 1.2   | Motivation                                  | 327 |  |
|   | 1.3   | Requirements                                | 327 |  |
|   | 1.4   | Non-requirements and Deferred Requirements  | 328 |  |
|   | 1.5   | Conventions                                 | 329 |  |
|   |       | 1.5.1 Bit And Byte Ordering Conventions     | 329 |  |
| 2 | Ove   | rview                                       | 330 |  |
|   | 2.1   | SDP Client-Server Interaction               | 330 |  |
|   | 2.2   | Service Record.                             |     |  |
|   | 2.3   | Service Attribute                           |     |  |
|   | 2.4   | Attribute ID                                | 335 |  |
|   | 2.5   | Attribute Value                             |     |  |
|   | 2.6   | Service Class                               | 336 |  |
|   |       | 2.6.1 A Printer Service Class Example       | 336 |  |
|   | 2.7   | Searching for Services                      |     |  |
|   |       | 2.7.1 UUID                                  | 337 |  |
|   |       | 2.7.2 Service Search Patterns               | 338 |  |
|   | 2.8   | Browsing for Services                       | 338 |  |
|   |       | 2.8.1 Example Service Browsing Hierarchy    | 339 |  |
| 3 | Data  | Data Representation                         |     |  |
|   | 3.1   | Data Element                                | 341 |  |
|   | 3.2   | Data Element Type Descriptor                | 341 |  |
|   | 3.3   | Data Element Size Descriptor                | 342 |  |
|   | 3.4   | Data Element Examples                       | 343 |  |
| 4 | Prot  | ocol Description                            | 344 |  |
|   | 4.1   | Transfer Byte Order                         |     |  |
|   | 4.2   | Protocol Data Unit Format                   |     |  |
|   | 4.3   | Partial Responses and Continuation State340 |     |  |
|   | 4.4   |                                             |     |  |
|   |       | 4.4.1 SDP_ErrorResponse PDU                 | 347 |  |
|   | 4.5   | ServiceSearch Transaction                   | 348 |  |
|   |       | 4.5.1 SDP_ServiceSearchRequest PDU          | 348 |  |
|   |       | 4.5.2 SDP_ServiceSearchResponse PDU         | 349 |  |
|   | 4.6   | ServiceAttribute Transaction                | 351 |  |
|   |       | 4.6.1 SDP_ServiceAttributeRequest PDU       |     |  |
|   |       | 4.6.2 SDP_ServiceAttributeResponse PDU      | 352 |  |

| Service | e Discov | ery Proto | col                                              | <b>Bluetoot</b> h |
|---------|----------|-----------|--------------------------------------------------|-------------------|
|         | 4.7      | Service   | SearchAttribute Transaction                      | 354               |
|         |          | 4.7.1     | SDP_ServiceSearchAttributeRequest PDU            |                   |
|         |          | 4.7.2     | · ·                                              |                   |
| 5       | Serv     | ice Attri | bute Definitions                                 | 358               |
|         | 5.1      |           | sal Attribute Definitions                        |                   |
|         |          | 5.1.1     | ServiceRecordHandle Attribute                    |                   |
|         |          | 5.1.2     | ServiceClassIDList Attribute                     |                   |
|         |          | 5.1.3     | ServiceRecordState Attribute                     |                   |
|         |          | 5.1.4     | ServiceID Attribute                              |                   |
|         |          | 5.1.5     | ProtocolDescriptorList Attribute                 |                   |
|         |          | 5.1.6     | BrowseGroupList Attribute                        |                   |
|         |          | 5.1.7     | LanguageBaseAttributeIDList Attribute            |                   |
|         |          | 5.1.8     | ServiceInfoTimeToLive Attribute                  |                   |
|         |          | 5.1.9     | ServiceAvailability Attribute                    |                   |
|         |          | 5.1.10    | BluetoothProfileDescriptorList Attribute         |                   |
|         |          | 5.1.11    | DocumentationURL Attribute                       |                   |
|         |          | 5.1.12    | ClientExecutableURL Attribute                    | 364               |
|         |          | 5.1.13    | IconURL Attribute                                | 365               |
|         |          | 5.1.14    | ServiceName Attribute                            | 365               |
|         |          | 5.1.15    | ServiceDescription Attribute                     | 366               |
|         |          | 5.1.16    | ProviderName Attribute                           |                   |
|         |          | 5.1.17    | Reserved Universal Attribute IDs                 | 366               |
|         | 5.2      | Service   | DiscoveryServer Service Class Attribute Definit  | ions 367          |
|         |          | 5.2.1     | ServiceRecordHandle Attribute                    | 367               |
|         |          | 5.2.2     | ServiceClassIDList Attribute                     | 367               |
|         |          | 5.2.3     | VersionNumberList Attribute                      | 367               |
|         |          | 5.2.4     | ServiceDatabaseState Attribute                   | 368               |
|         |          | 5.2.5     | Reserved Attribute IDs                           | 368               |
|         | 5.3      | Browse    | eGroupDescriptor Service Class Attribute Definit |                   |
|         |          | 5.3.1     | ServiceClassIDList Attribute                     |                   |
|         |          | 5.3.2     | GroupID Attribute                                | 369               |
|         |          | 5.3.3     | Reserved Attribute IDs                           |                   |
| Appe    | ndix A   | – Back    | ground Information                               | 370               |
|         |          |           | nole SDP Transactions                            | 371               |

Bluetooth.

## 1 INTRODUCTION

#### 1.1 GENERAL DESCRIPTION

The service discovery protocol (SDP) provides a means for applications to discover which services are available and to determine the characteristics of those available services.

#### 1.2 MOTIVATION

Service Discovery in the Bluetooth environment, where the set of services that are available changes dynamically based on the RF proximity of devices in motion, is qualitatively different from service discovery in traditional network-based environments. The service discovery protocol defined in this specification is intended to address the unique characteristics of the Bluetooth environment. See "Appendix A – Background Information," on page 370, for further information on this topic.

#### 1.3 REQUIREMENTS

The following capabilities have been identified as requirements for version 1.0 of the Service Discovery Protocol.

- 1. SDP shall provide the ability for clients to search for needed services based on specific attributes of those services.
- 2. SDP shall permit services to be discovered based on the class of service.
- 3. SDP shall enable browsing of services without a priori knowledge of the specific characteristics of those services.
- 4. SDP shall provide the means for the discovery of new services that become available when devices enter RF proximity with a client device as well as when a new service is made available on a device that is in RF proximity with the client device.
- 5. SDP shall provide a mechanism for determining when a service becomes unavailable when devices leave RF proximity with a client device as well as when a service is made unavailable on a device that is in RF proximity with the client device.
- 6. SDP shall provide for services, classes of services, and attributes of services to be uniquely identified.
- 7. SDP shall allow a client on one device to discover a service on another device without consulting a third device.
- 8. SDP should be suitable for use on devices of limited complexity.
- 9. SDP shall provide a mechanism to incrementally discover information about the services provided by a device. This is intended to minimize the quantity

Introduction 29 November 1999 327

# Bluetooth

- of data that must be exchanged in order to determine that a particular service is not needed by a client.
- 10.SDP should support the caching of service discovery information by intermediary agents to improve the speed or efficiency of the discovery process.
- 11.SDP should be transport independent.
- 12.SDP shall function while using L2CAP as its transport protocol.
- 13.SDP shall permit the discovery and use of services that provide access to other service discovery protocols.
- 14.SDP shall support the creation and definition of new services without requiring registration with a central authority.

#### 1.4 NON-REQUIREMENTS AND DEFERRED REQUIREMENTS

The Bluetooth SIG recognizes that the following capabilities are related to service discovery. These items are not addressed in SDP version 1.0. However, some may be addressed in future revisions of the specification.

- 1. SDP 1.0 does not provide access to services. It only provides access to information about services.
- 2. SDP 1.0 does not provide brokering of services.
- 3. SDP 1.0 does not provide for negotiation of service parameters.
- 4. SDP 1.0 does not provide for billing of service use.
- 5. SDP 1.0 does not provide the means for a client to control or change the operation of a service.
- 6. SDP 1.0 does not provide an event notification when services, or information about services, become unavailable.
- 7. SDP 1.0 does not provide an event notification when attributes of services are modified.
- 8. This specification does not define an application programming interface for SDP.
- 9. SDP 1.0 does not provide support for service agent functions such as service aggregation or service registration.

page 329 of 1082

Service Discovery Protocol

Bluetooth.

#### 1.5 CONVENTIONS

#### 1.5.1 Bit And Byte Ordering Conventions

When multiple bit fields are contained in a single byte and represented in a drawing in this specification, the more significant (high-order) bits are shown toward the left and less significant (low-order) bits toward the right.

Multiple-byte fields are drawn with the more significant bytes toward the left and the less significant bytes toward the right. Multiple-byte fields are transferred in network byte order. See Section 4.1 Transfer Byte Order on page 344.

Bluetooth.

#### 2 OVERVIEW

#### 2.1 SDP CLIENT-SERVER INTERACTION

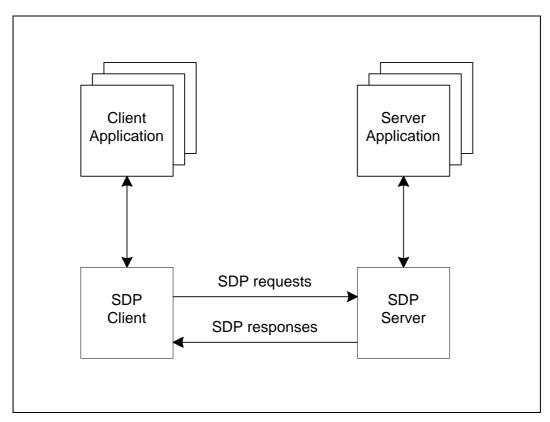



Figure 2.1:

The service discovery mechanism provides the means for client applications to discover the existence of services provided by server applications as well as the attributes of those services. The attributes of a service include the type or class of service offered and the mechanism or protocol information needed to utilize the service.

As far as the Service Discovery Protocol (SDP) is concerned, the configuration shown in Figure 1 may be simplified to that shown in Figure 2.

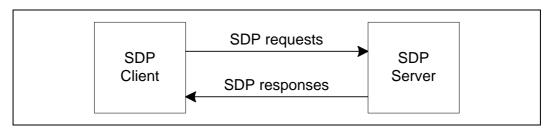



Figure 2.2:

Bluetooth.

SDP involves communication between an SDP server and an SDP client. The server maintains a list of service records that describe the characteristics of services associated with the server. Each service record contains information about a single service. A client may retrieve information from a service record maintained by the SDP server by issuing an SDP request.

If the client, or an application associated with the client, decides to use a service, it must open a separate connection to the service provider in order to utilize the service. SDP provides a mechanism for discovering services and their attributes (including associated service access protocols), but it does not provide a mechanism for utilizing those services (such as delivering the service access protocols).

There is a maximum of one SDP server per Bluetooth device. (If a Bluetooth device acts only as a client, it needs no SDP server.) A single Bluetooth device may function both as an SDP server and as an SDP client. If multiple applications on a device provide services, an SDP server may act on behalf of those service providers to handle requests for information about the services that they provide.

Similarly, multiple client applications may utilize an SDP client to query servers on behalf of the client applications.

The set of SDP servers that are available to an SDP client can change dynamically based on the RF proximity of the servers to the client. When a server becomes available, a potential client must be notified by a means other than SDP so that the client can use SDP to query the server about its services. Similarly, when a server leaves proximity or becomes unavailable for any reason, there is no explicit notification via the service discovery protocol. However, the client may use SDP to poll the server and may infer that the server is not available if it no longer responds to requests.

Additional information regarding application interaction with SDP is contained in the Bluetooth Service Discovery Profile document.

Bluetooth

#### 2.2 SERVICE RECORD

A service is any entity that can provide information, perform an action, or control a resource on behalf of another entity. A service may be implemented as software, hardware, or a combination of hardware and software.

All of the information about a service that is maintained by an SDP server is contained within a single service record. The service record consists entirely of a list of service attributes.

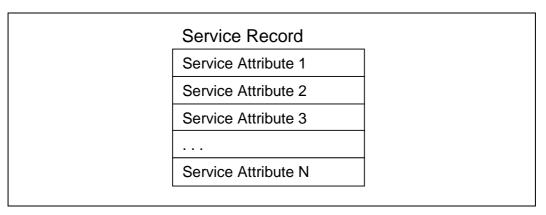



Figure 2.3: Service Record

A service record handle is a 32-bit number that uniquely identifies each service record within an SDP server. It is important to note that, in general, each handle is unique only within each SDP server. If SDP server S1 and SDP server S2 both contain identical service records (representing the same service), the service record handles used to reference these identical service records are completely independent. The handle used to reference the service on S1 will be meaningless if presented to S2.

The service discovery protocol does not provide a mechanism for notifying clients when service records are added to or removed from an SDP server. While an L2CAP (Logical Link Control and Adaptation Protocol) connection is established to a server, a service record handle acquired from the server will remain valid unless the service record it represents is removed. If a service is removed from the server, further requests to the server (during the L2CAP connection in which the service record handle was acquired) using the service's (now stale) record handle will result in an error response indicating an invalid service record handle. An SDP server must ensure that no service record handle values are re-used while an L2CAP connection remains established. Note that service record handles are known to remain valid across successive L2CAP connections while the ServiceDatabaseState attribute value remains unchanged. See the ServiceRecordState and ServiceDatabaseState attributes in Section 5 Service Attribute Definitions on page 358.

There is one service record handle whose meaning is consistent across all SDP servers. This service record handle has the value 0x00000000 and is a

page 333 of 1082

Service Discovery Protocol

Bluetooth.

handle to the service record that represents the SDP server itself. This service record contains attributes for the SDP server and the protocol it supports. For example, one of its attributes is the list of SDP protocol versions supported by the server. Service record handle values 0x00000001-0x0000FFFF are reserved.

Bluetooth.

#### 2.3 SERVICE ATTRIBUTE

Each service attribute describes a single characteristic of a service. Some examples of service attributes are:

| ServiceClassIDList     | Identifies the type of service represented by a service record. In other words, the list of classes of which the service is an instance |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ServiceID              | Uniquely identifies a specific instance of a service                                                                                    |
| ProtocolDescriptorList | Specifies the protocol stack(s) that may be used to utilize a service                                                                   |
| ProviderName           | The textual name of the individual or organization that provides a service                                                              |
| IconURL                | Specifies a URL that refers to an icon image that may be used to represent a service                                                    |
| ServiceName            | A text string containing a human-readable name for the service                                                                          |
| ServiceDescription     | A text string describing the service                                                                                                    |

See Section 5.1 Universal Attribute Definitions on page 358, for attribute definitions that are common to all service records. Service providers can also define their own service attributes.

A service attribute consists of two components: an attribute ID and an attribute value.

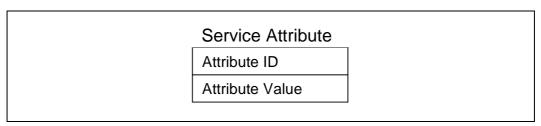



Figure 2.4: Service Attribute

**Bluetooth** 

#### 2.4 ATTRIBUTE ID

An attribute ID is a 16-bit unsigned integer that distinguishes each service attribute from other service attributes within a service record. The attribute ID also identifies the semantics of the associated attribute value.

A service class definition specifies each of the attribute IDs for a service class and assigns a meaning to the attribute value associated with each attribute ID.

For example, assume that service class C specifies that the attribute value associated with attribute ID 12345 is a text string containing the date the service was created. Assume further that service A is an instance of service class C. If service A's service record contains a service attribute with an attribute ID of 12345, the attribute value must be a text string containing the date that service A was created. However, services that are not instances of service class C may assign a different meaning to attribute ID 12345.

All services belonging to a given service class assign the same meaning to each particular attribute ID. See Section 2.6 Service Class on page 336.

In the Service Discovery Protocol, an attribute ID is often represented as a data element. See Section 3 Data Representation on page 341.

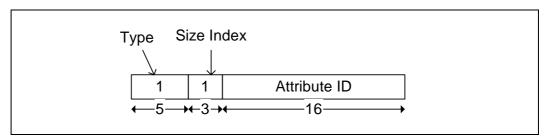



Figure 2.5:

#### 2.5 ATTRIBUTE VALUE

The attribute value is a variable length field whose meaning is determined by the attribute ID associated with it and by the service class of the service record in which the attribute is contained. In the Service Discovery Protocol, an attribute value is represented as a data element. (See Section 3 Data Representation on page 341.) Generally, any type of data element is permitted as an attribute value, subject to the constraints specified in the service class definition that assigns an attribute ID to the attribute and assigns a meaning to the attribute value. See Section 5 Service Attribute Definitions on page 358, for attribute value examples.

page 336 of 1082

Service Discovery Protocol

Bluetooth

# 2.6 SERVICE CLASS

Each service is an instance of a service class. The service class definition provides the definitions of all attributes contained in service records that represent instances of that class. Each attribute definition specifies the numeric value of the attribute ID, the intended use of the attribute value, and the format of the attribute value. A service record contains attributes that are specific to a service class as well as universal attributes that are common to all services.

Each service class is also assigned a unique identifier. This service class identifier is contained in the attribute value for the ServiceClassIDList attribute, and is represented as a UUID (see Section 2.7.1 UUID on page 337). Since the format and meanings of many attributes in a service record are dependent on the service class of the service record, the ServiceClassIDList attribute is very important. Its value should be examined or verified before any class-specific attributes are used. Since all of the attributes in a service record must conform to all of the service's classes, the service class identifiers contained in the ServiceClassIDList attribute are related. Typically, each service class is a subclass of another class whose identifier is contained in the list. A service subclass definition differs from its superclass in that the subclass contains additional attribute definitions that are specific to the subclass. The service class identifiers in the ServiceClassIDList attribute are listed in order from the most specific class to the most general class.

When a new service class is defined that is a subclass of an existing service class, the new service class retains all of the attributes defined in its superclass. Additional attributes will be defined that are specific to the new service class. In other words, the mechanism for adding new attributes to some of the instances of an existing service class is to create a new service class that is a subclass of the existing service class.

#### 2.6.1 A Printer Service Class Example

A color postscript printer with duplex capability might conform to 4 Service-Class definitions and have a ServiceClassIDList with UUIDs (See Section 2.7.1 UUID on page 337.) representing the following ServiceClasses:

DuplexColorPostscriptPrinterServiceClassID, ColorPostscriptPrinterServiceClassID, PostscriptPrinterServiceClassID, PrinterServiceClassID

Note that this example is only illustrative. This may not be a practical printer class hierarchy.

Bluetooth.

# 2.7 SEARCHING FOR SERVICES

Once an SDP client has a service record handle, it may easily request the values of specific attributes, but how does a client initially acquire a service record handle for the desired service records? The Service Search transaction allows a client to retrieve the service record handles for particular service records based on the values of attributes contained within those service records.

The capability search for service records based on the values of arbitrary attributes is not provided. Rather, the capability is provided to search only for attributes whose values are Universally Unique Identifiers<sup>1</sup> (UUIDs). Important attributes of services that can be used to search for a service are represented as UUIDs.

#### 2.7.1 UUID

A UUID is a universally unique identifier that is guaranteed to be unique across all space and all time. UUIDs can be independently created in a distributed fashion. No central registry of assigned UUIDs is required. A UUID is a 128-bit value.

To reduce the burden of storing and transferring 128-bit UUID values, a range of UUID values has been pre-allocated for assignment to often-used, registered purposes. The first UUID in this pre-allocated range is known as the Bluetooth Base UUID and has the value 00000000-0000-1000-7007-00805F9B34FB, from the Bluetooth Assigned Numbers document. UUID values in the pre-allocated range have aliases that are represented as 16-bit or 32-bit values. These aliases are often called 16-bit and 32-bit UUIDs, but it is important to note that each actually represents a 128-bit UUID value.

The full 128-bit value of a 16-bit or 32-bit UUID may be computed by a simple arithmetic operation.

A 16-bit UUID may be converted to 32-bit UUID format by zero-extending the 16-bit value to 32-bits. An equivalent method is to add the 16-bit UUID value to a zero-valued 32-bit UUID.

Note that two 16-bit UUIDs may be compared directly, as may two 32-bit UUIDs or two 128-bit UUIDs. If two UUIDs of differing sizes are to be compared, the shorter UUID must be converted to the longer UUID format before comparison.

Overview 29 November 1999 337

The format of UUIDs is defined by the International Organization for Standardization in ISO/ IEC 11578:1996. "Information technology – Open Systems Interconnection – Remote Procedure Call (RPC)"

page 338 of 1082

Service Discovery Protocol

Bluetooth

# 2.7.2 Service Search Patterns

A service search pattern is a list of UUIDs used to locate matching service records. A service search pattern is said to match a service record if each and every UUID in the service search pattern is contained within any of the service record's attribute values. The UUIDs need not be contained within any specific attributes or in any particular order within the service record. The service search pattern matches if the UUIDs it contains constitute a subset of the UUIDs in the service record's attribute values. The only time a service search pattern does not match a service record is if the service search pattern contains at least one UUID that is not contained within the service record's attribute values. Note also that a valid service search pattern must contain at least one UUID.

# 2.8 BROWSING FOR SERVICES

Normally, a client searches for services based on some desired characteristic(s) (represented by a UUID) of the services. However, there are times when it is desirable to discover which types of services are described by an SDP server's service records without any a priori information about the services. This process of looking for any offered services is termed browsing. In SDP, the mechanism for browsing for services is based on an attribute shared by all service classes. This attribute is called the BrowseGroupList attribute. The value of this attribute contains a list of UUIDs. Each UUID represents a browse group with which a service may be associated for the purpose of browsing.

When a client desires to browse an SDP server's services, it creates a service search pattern containing the UUID that represents the root browse group. All services that may be browsed at the top level are made members of the root browse group by having the root browse group's UUID as a value within the BrowseGroupList attribute.

Normally, if an SDP server has relatively few services, all of its services will be placed in the root browse group. However, the services offered by an SDP server may be organized in a browse group hierarchy, by defining additional browse groups below the root browse group. Each of these additional browse groups is described by a service record with a service class of BrowseGroupDescriptor.

A browse group descriptor service record defines a new browse group by means of its Group ID attribute. In order for a service contained in one of these newly defined browse groups to be browseable, the browse group descriptor service record that defines the new browse group must in turn be browseable. The hierarchy of browseable services that is provided by the use of browse group descriptor service records allows the services contained in an SDP server to be incrementally browsed and is particularly useful when the SDP server contains many service records.

Bluetooth.

# 2.8.1 Example Service Browsing Hierarchy

Here is a fictitious service browsing hierarchy that may illuminate the manner in which browse group descriptors are used. Browse group descriptor service records are identified with (G); other service records with (S).

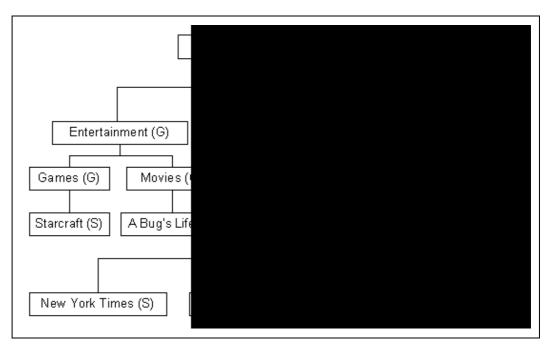



Figure 2.6:

This table shows the services records and service attributes necessary to implement the browse hierarchy.

| Service Name  | Service Class         | Attribute Name  | Attribute Value  |
|---------------|-----------------------|-----------------|------------------|
| Entertainment | BrowseGroupDescriptor | BrowseGroupList | PublicBrowseRoot |
|               |                       | GroupID         | EntertainmentID  |
| News          | BrowsegroupDescriptor | BrowseGroupList | PublicBrowseRoot |
|               |                       | GroupID         | NewsID           |
| Reference     | BrowseGroupDescriptor | BrowseGroupList | PublicBrowseRoot |
|               |                       | GroupID         | ReferenceID      |
| Games         | BrowseGroupDescriptor | BrowseGroupList | EntertainmentID  |
|               |                       | GroupID         | GamesID          |
| Movies        | BrowseGroupDescriptor | BrowseGroupList | EntertainmentID  |
|               |                       | GroupID         | MoviesID         |
| Starcraft     | Video Game Class ID   | BrowseGroupList | GamesID          |

Table 2.1:

page 340 of 1082

Service Discovery Protocol

# Bluetooth.

| A Bug's Life    | Movie Class ID        | BrowseGroupList | MovieID     |
|-----------------|-----------------------|-----------------|-------------|
| Dictionary Z    | Dictionary Class ID   | BrowseGroupList | ReferenceID |
| Encyclopedia X  | Encyclopedia Class ID | BrowseGroupList | ReferenceID |
| New York Times  | Newspaper ID          | BrowseGroupList | NewspaperID |
| London Times    | Newspaper ID          | BrowseGroupList | NewspaperID |
| Local Newspaper | Newspaper ID          | BrowseGroupList | NewspaperID |

Table 2.1:

Bluetooth.

# 3 DATA REPRESENTATION

Attribute values can contain information of various types with arbitrary complexity; thus enabling an attribute list to be generally useful across a wide variety of service classes and environments.

SDP defines a simple mechanism to describe the data contained within an attribute value. The primitive construct used is the data element.

#### 3.1 DATA ELEMENT

A data element is a typed data representation. It consists of two fields: a header field and a data field. The header field, in turn, is composed of two parts: a type descriptor and a size descriptor. The data is a sequence of bytes whose length is specified in the size descriptor (described in Section 3.3 Data Element Size Descriptor on page 342) and whose meaning is (partially) specified by the type descriptor.

#### 3.2 DATA ELEMENT TYPE DESCRIPTOR

A data element type is represented as a 5-bit type descriptor. The type descriptor is contained in the most significant (high-order) 5 bits of the first byte of the data element header. The following types have been defined.

| Type<br>Descriptor<br>Value | Valid Size<br>Descriptor<br>Values | Type Description                                                                                                                      |
|-----------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0                           | 0                                  | Nil, the null type                                                                                                                    |
| 1                           | 0, 1, 2, 3, 4                      | Unsigned Integer                                                                                                                      |
| 2                           | 0, 1, 2, 3, 4                      | Signed twos-complement integer                                                                                                        |
| 3                           | 1, 2, 4                            | UUID, a universally unique identifier                                                                                                 |
| 4                           | 5, 6, 7                            | Text string                                                                                                                           |
| 5                           | 0                                  | Boolean                                                                                                                               |
| 6                           | 5, 6, 7                            | Data element sequence, a data element whose data field is a sequence of data elements                                                 |
| 7                           | 5, 6, 7                            | Data element alternative, data element whose data field is a sequence of data elements from which one data element is to be selected. |
| 8                           | 5, 6, 7                            | URL, a uniform resource locator                                                                                                       |
| 9-31                        |                                    | Reserved                                                                                                                              |

Table 3.1:

Bluetooth.

# 3.3 DATA ELEMENT SIZE DESCRIPTOR

The data element size descriptor is represented as a 3-bit size index followed by 0, 8, 16, or 32 bits. The size index is contained in the least significant (low-order) 3 bits of the first byte of the data element header. The size index is encoded as follows.

| Size<br>Index | Additional bits | Data Size                                                                                           |
|---------------|-----------------|-----------------------------------------------------------------------------------------------------|
| 0             | 0               | 1 byte. Exception: if the data element type is nil, the data size is 0 bytes.                       |
| 1             | 0               | 2 bytes                                                                                             |
| 2             | 0               | 4 bytes                                                                                             |
| 3             | 0               | 8 bytes                                                                                             |
| 4             | 0               | 16 bytes                                                                                            |
| 5             | 8               | The data size is contained in the additional 8 bits, which are interpreted as an unsigned integer.  |
| 6             | 16              | The data size is contained in the additional 16 bits, which are interpreted as an unsigned integer. |
| 7             | 32              | The data size is contained in the additional 32 bits, which are interpreted as an unsigned integer. |

Table 3.2:

Bluetooth.

# 3.4 DATA ELEMENT EXAMPLES

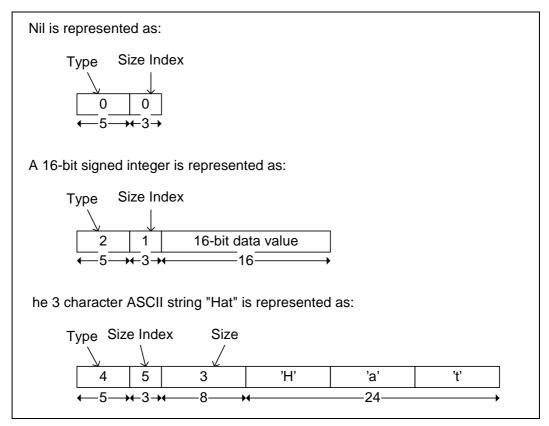



Figure 3.1:

Bluetooth.

# 4 PROTOCOL DESCRIPTION

SDP is a simple protocol with minimal requirements on the underlying transport. It can function over a reliable packet transport (or even unreliable, if the client implements timeouts and repeats requests as necessary).

SDP uses a request/response model where each transaction consists of one request protocol data unit (PDU) and one response PDU. However, the requests may potentially be pipelined and responses may potentially be returned out of order.

In the specific case where SDP utilises the Bluetooth L2CAP transport protocol, multiple SDP PDUs may be sent in a single L2CAP packet, but only one L2CAP packet per connection to a given SDP server may be outstanding at a given instant. Limiting SDP to sending one unacknowledged packet provides a simple form of flow control.

The protocol examples found in Appendix B – Example SDP Transactions, may be helpful in understanding the protocol transactions.

# 4.1 TRANSFER BYTE ORDER

The service discovery protocol transfers multiple-byte fields in standard network byte order (Big Endian), with more significant (high-order) bytes being transferred before less-significant (low-order) bytes.

#### 4.2 PROTOCOL DATA UNIT FORMAT

Every SDP PDU consists of a PDU header followed by PDU-specific parameters. The header contains three fields: a PDU ID, a Transaction ID, and a ParameterLength. Each of these header fields is described here. Parameters may include a continuation state parameter, described below; PDU-specific parameters for each PDU type are described later in separate PDU descriptions.

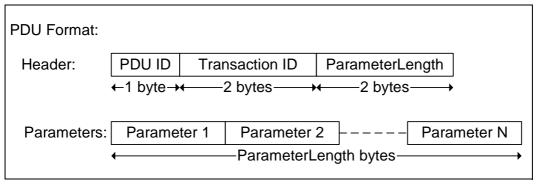



Figure 4.1:

Bluetooth.

PDU ID: Size: 1 Byte

| Value     | Parameter Description                                                                      |
|-----------|--------------------------------------------------------------------------------------------|
| N         | The PDU ID field identifies the type of PDU. I.e. its meaning and the specific parameters. |
| 0x00      | Reserved                                                                                   |
| 0x01      | SDP_ErrorResponse                                                                          |
| 0x02      | SDP_ServiceSearchRequest                                                                   |
| 0x03      | SDP_ServiceSearchResponse                                                                  |
| 0x04      | SDP_ServiceAttributeRequest                                                                |
| 0x05      | SDP_ServiceAttributeResponse                                                               |
| 0x06      | SDP_ServiceSearchAttributeRequest                                                          |
| 0x07      | SDP_ServiceSearchAttributeResponse                                                         |
| 0x07-0xFF | Reserved                                                                                   |

TransactionID: Size: 2 Bytes

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | The TransactionID field uniquely identifies request PDUs and is used to match response PDUs to request PDUs. The SDP client can choose any value for a request's TransactionID provided that it is different from all outstanding requests. The TransactionID value in response PDUs is required to be the same as the request that is being responded to. Range: 0x0000 – 0xFFFF |

ParameterLength:

| Value | Parameter Description                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------|
| N     | The ParameterLength field specifies the length (in bytes) of all parameters contained in the PDU.  Range: 0x0000 – 0xFFFF |

Size: 2 Bytes

Bluetooth.

# 4.3 PARTIAL RESPONSES AND CONTINUATION STATE

Some SDP requests may require responses that are larger than can fit in a single response PDU. In this case, the SDP server will generate a partial response along with a continuation state parameter. The continuation state parameter can be supplied by the client in a subsequent request to retrieve the next portion of the complete response. The continuation state parameter is a variable length field whose first byte contains the number of additional bytes of continuation information in the field. The format of the continuation information is not standardized among SDP servers. Each continuation state parameter is meaningful only to the SDP server that generated it.

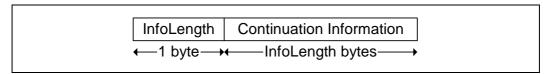



Figure 4.2: Continuation State Format

After a client receives a partial response and the accompanying continuation state parameter, it can re-issue the original request (with a new transaction ID) and include the continuation state in the new request indicating to the server that the remainder of the original response is desired. The maximum allowable value of the InfoLength field is 16 (0x10).

Note that an SDP server can split a response at any arbitrary boundary when it generates a partial response. The SDP server may select the boundary based on the contents of the reply, but is not required to do so.

# 4.4 ERROR HANDLING

Each transaction consists of a request and a response PDU. Generally, each type of request PDU has a corresponding type of response PDU. However, if the server determines that a request is improperly formatted or for any reason the server cannot respond with the appropriate PDU type, it will respond with an SDP\_ErrorResponse PDU.

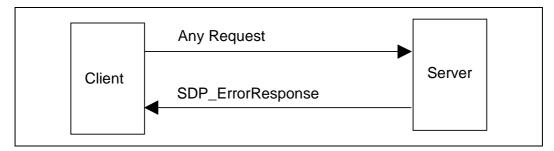



Figure 4.3:

Bluetooth.

# 4.4.1 SDP\_ErrorResponse PDU

| PDU Type          | PDU ID | Parameters              |
|-------------------|--------|-------------------------|
| SDP_ErrorResponse | 0x01   | ErrorCode,<br>ErrorInfo |

# **Description:**

The SDP server generates this PDU type in response to an improperly formatted request PDU or when the SDP server, for whatever reason, cannot generate an appropriate response PDU.

#### **PDU Parameters:**

ErrorCode: Size: 2 Bytes

| Value         | Parameter Description                                                            |
|---------------|----------------------------------------------------------------------------------|
| N             | The ErrorCode identifies the reason that an SDP_ErrorResponse PDU was generated. |
| 0x0000        | Reserved                                                                         |
| 0x0001        | Invalid/unsupported SDP version                                                  |
| 0x0002        | Invalid Service Record Handle                                                    |
| 0x0003        | Invalid request syntax                                                           |
| 0x0004        | Invalid PDU Size                                                                 |
| 0x0005        | Invalid Continuation State                                                       |
| 0x0006        | Insufficient Resources to satisfy Request                                        |
| 0x0007-0xFFFF | Reserved                                                                         |

ErrorInfo: Size: N Bytes

| Value          | Parameter Description                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error-specific | ErrorInfo is an ErrorCode-specific parameter. Its interpretation depends on the ErrorCode parameter. The currently defined ErrorCode values do not specify the format of an ErrorInfo field. |

Bluetooth.

# 4.5 SERVICESEARCH TRANSACTION

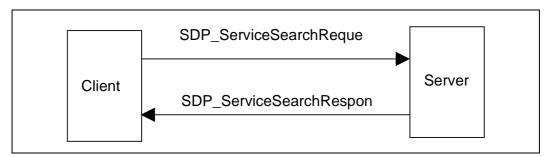



Figure 4.4:

# 4.5.1 SDP\_ServiceSearchRequest PDU

| PDU Type                 | PDU ID | Parameters                                                         |
|--------------------------|--------|--------------------------------------------------------------------|
| SDP_ServiceSearchRequest | 0x02   | ServiceSearchPattern, MaximumServiceRecordCount, ContinuationState |

# **Description:**

The SDP client generates an SDP\_ServiceSearchRequest to locate service records that match the service search pattern given as the first parameter of the PDU. Upon receipt of this request, the SDP server will examine its service record data base and return an SDP\_ServiceSearchResponse containing the service record handles of service records that match the given service search pattern.

Note that no mechanism is provided to request information for all service records. However, see Section 2.8 Browsing for Services on page 338 for a description of a mechanism that permits browsing for non-specific services without a priori knowledge of the services.

#### **PDU Parameters:**

#### ServiceSearchPattern:

| Value                    | Parameter Description                                                                                                                                                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Element<br>Sequence | The ServiceSearchPattern is a data element sequence where each element in the sequence is a UUID. The sequence must contain at least one UUID. The maximum number of UUIDs in the sequence is 12 <sup>*</sup> . The list of UUIDs constitutes a service search pattern. |

<sup>\*.</sup> The value of 12 has been selected as a compromise between the scope of a service search and the size of a search request PDU. It is not expected that more than 12 UUIDs will be useful in a service search pattern.

Size: Varies

page 349 of 1082

Service Discovery Protocol

# Bluetooth.

Size: 2 Bytes

Size: 1 to 17 Bytes

349

#### MaximumServiceRecordCount:

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | MaximumServiceRecordCount is a 16-bit count specifying the maximum number of service record handles to be returned in the response(s) to this request. The SDP server should not return more handles than this value specifies. If more than N service records match the request, the SDP server determines which matching service record handles to return in the response(s).  Range: 0x0001-0xFFFF |

#### ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation state information that were returned in a previous response from the server. N is required to be less than or equal to 16. If no continuation state is to be provided in the request, N is set to 0. |

# 4.5.2 SDP\_ServiceSearchResponse PDU

| PDU Type                  | PDU ID | Parameters                                                                                     |
|---------------------------|--------|------------------------------------------------------------------------------------------------|
| SDP_ServiceSearchResponse | 0x03   | TotalServiceRecordCount, CurrentServiceRecordCount, ServiceRecordHandleList, ContinuationState |

#### **Description:**

The SDP server generates an SDP\_ServiceSearchResponse upon receipt of a valid SDP\_ServiceSearchRequest. The response contains a list of service record handles for service records that match the service search pattern given in the request. Note that if a partial response is generated, it must contain an integral number of complete service record handles; a service record handle value may not be split across multiple PDUs.

page 350 of 1082

Size: 2 Bytes

Service Discovery Protocol

Bluetooth.

# **PDU Parameters:**

# TotalServiceRecordCount:

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | The TotalServiceRecordCount is an integer containing the number of service records that match the requested service search pattern. If no service records match the requested service search pattern, this parameter is set to 0. N should never be larger than the MaximumServiceRecordCount value specified in the SDP_ServiceSearchRequest. When multiple partial responses are used, each partial response contains the same value for TotalServiceRecordCount.  Range: 0x0000-0xFFFF |

# CurrentServiceRecordCount:

| Size: | 2 B | ytes |
|-------|-----|------|
|-------|-----|------|

Size: 1 to 17 Bytes

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | The CurrentServiceRecordCount is an integer indicating the number of service record handles that are contained in the next parameter. If no service records match the requested service search pattern, this parameter is set to 0. N should never be larger than the TotalServiceRecord-Count value specified in the current response.  Range: 0x0000-0xFFFF |

# ServiceRecordHandleList: Size: (CurrentServiceRecordCount\*4) Bytes

| Value                     | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of<br>32-bit handles | The ServiceRecordHandleList contains a list of service record handles. The number of handles in the list is given in the CurrentServiceRecord-Count parameter. Each of the handles in the list refers to a service record that matches the requested service search pattern. Note that this list of service record handles does not have the format of a data element. It contains no header fields, only the 32-bit service record handles. |

# ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation information. If the current response is complete, this parameter consists of a single byte with the value 0. If a partial response is contained in the PDU, the ContinuationState parameter may be supplied in a subsequent request to retrieve the remainder of the response. |

Bluetooth.

# 4.6 SERVICEATTRIBUTE TRANSACTION

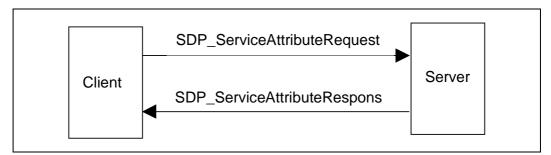



Figure 4.5:

# 4.6.1 SDP\_ServiceAttributeRequest PDU

| PDU Type                    | PDU ID | Parameters                                                                         |
|-----------------------------|--------|------------------------------------------------------------------------------------|
| SDP_ServiceAttributeRequest | 0x04   | ServiceRecordHandle, MaximumAttributeByteCount, AttributeIDList, ContinuationState |

# **Description:**

The SDP client generates an SDP\_ServiceAttributeRequest to retrieve specified attribute values from a specific service record. The service record handle of the desired service record and a list of desired attribute IDs to be retrieved from that service record are supplied as parameters.

#### **Command Parameters:**

#### ServiceRecordHandle:

| Value         | Parameter Description                                                                                                                                                                |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32-bit handle | The ServiceRecordHandle parameter specifies the service record from which attribute values are to be retrieved. The handle is obtained via a previous SDP_ServiceSearch transaction. |

#### MaximumAttributeByteCount:

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | MaximumAttributeByteCount specifies the maximum number of bytes of attribute data to be returned in the response(s) to this request. The SDP server should not return more than N bytes of attribute data in the response(s). If the requested attributes require more than N bytes, the SDP server determines how to truncate the list. Range: 0x0007-0xFFFF |

Size: 4 Bytes

Size: 2 Bytes

page 352 of 1082

Service Discovery Protocol

Bluetooth.

Size: Varies

Size: 1 to 17 Bytes

Size: 2 Bytes

# AttributeIDList:

| Value                    | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Element<br>Sequence | The AttributeIDList is a data element sequence where each element in the list is either an attribute ID or a range of attribute IDs. Each attribute ID is encoded as a 16-bit unsigned integer data element. Each attribute ID range is encoded as a 32-bit unsigned integer data element, where the high order 16 bits are interpreted as the beginning attribute ID of the range and the low order 16 bits are interpreted as the ending attribute ID of the range. The attribute IDs contained in the AttributeIDList must be listed in ascending order without duplication of any attribute ID values. Note that all attributes may be requested by specifying a range of 0x0000-0xFFFF. |

# ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation state information that were returned in a previous response from the server. N is required to be less than or equal to 16. If no continuation state is to be provided in the request, N is set to 0. |

# 4.6.2 SDP\_ServiceAttributeResponse PDU

| PDU Type                     | PDU ID | Parameters                                                     |
|------------------------------|--------|----------------------------------------------------------------|
| SDP_ServiceAttributeResponse | 0x05   | AttributeListByteCount,<br>AttributeList,<br>ContinuationState |

# **Description:**

The SDP server generates an SDP\_ServiceAttributeResponse upon receipt of a valid SDP\_ServiceAttributeRequest. The response contains a list of attributes (both attribute ID and attribute value) from the requested service record.

# **PDU Parameters:**

# AttributeListByteCount:

| Value | Parameter Description                                                                                                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | The AttributeListByteCount contains a count of the number of bytes in the AttributeList parameter. N must never be larger than the MaximumAttributeByteCount value specified in the SDP_ServiceAttributeRequest.  Range: 0x0002-0xFFFF |

Size: AttributeListByteCount

page 353 of 1082

Size: 1 to 17 Bytes

Service Discovery Protocol

# Bluetooth.

# AttributeList:

| Value                    | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Element<br>Sequence | The AttributeList is a data element sequence containing attribute IDs and attribute values. The first element in the sequence contains the attribute ID of the first attribute to be returned. The second element in the sequence contains the corresponding attribute value. Successive pairs of elements in the list contain additional attribute ID and value pairs. Only attributes that have non-null values within the service record and whose attribute IDs were specified in the SDP_ServiceAttributeRequest are contained in the AttributeList. Neither an attribute ID nor an attribute value is placed in the AttributeList for attributes in the service record that have no value. The attributes are listed in ascending order of attribute ID value. |

# ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation information. If the current response is complete, this parameter consists of a single byte with the value 0. If a partial response is given, the ContinuationState parameter may be supplied in a subsequent request to retrieve the remainder of the response. |

Bluetooth.

# 4.7 SERVICESEARCHATTRIBUTE TRANSACTION

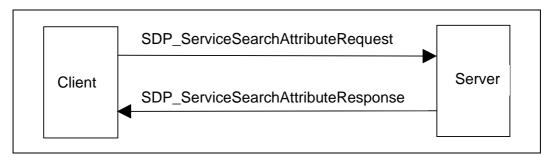



Figure 4.6:

# 4.7.1 SDP\_ServiceSearchAttributeRequest PDU

| PDU Type                          | PDU ID | Parameters                                                                          |
|-----------------------------------|--------|-------------------------------------------------------------------------------------|
| SDP_ServiceSearchAttributeRequest | 0x06   | ServiceSearchPattern, MaximumAttributeByteCount, AttributeIDList, ContinuationState |

# **Description:**

The SDP\_ServiceSearchAttributeRequest transaction combines the capabilities of the SDP\_ServiceSearchRequest and the SDP\_ServiceAttributeRequest into a single request. As parameters, it contains both a service search pattern and a list of attributes to be retrieved from service records that match the service search pattern. The SDP\_ServiceSearchAttributeRequest and its response are more complex and may require more bytes than separate SDP\_ServiceSearchAttributeRequest may reduce the total number of SDP transactions, particularly when retrieving multiple service records.

Note that the service record handle for each service record is contained in the ServiceRecordHandle attribute of that service and may be requested along with other attributes.

page 355 of 1082

Service Discovery Protocol

Bluetooth.

Size: Varies

Size: 2 Bytes

Size: 1 to 17 Bytes

# **PDU Parameters:**

# ServiceSearchPattern:

| Value                    | Parameter Description                                                                                                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Element<br>Sequence | The ServiceSearchPattern is a data element sequence where each element in the sequence is a UUID. The sequence must contain at least one UUID. The maximum number of UUIDs in the sequence is 12*. The list of UUIDs constitutes a service search pattern. |

<sup>\*.</sup> The value of 12 has been selected as a compromise between the scope of a service search and the size of a search request PDU. It is not expected that more than 12 UUIDs will be useful in a service search pattern.

# MaximumAttributeByteCount:

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | MaximumAttributeByteCount specifies the maximum number of bytes of attribute data to be returned in the response(s) to this request. The SDP server should not return more than N bytes of attribute data in the response(s). If the requested attributes require more than N bytes, the SDP server determines how to truncate the list. Range: 0x0009-0xFFFF |

#### AttributeIDList: Size: Varies

| Value                    | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Element<br>Sequence | The AttributeIDList is a data element sequence where each element in the list is either an attribute ID or a range of attribute IDs. Each attribute ID is encoded as a 16-bit unsigned integer data element. Each attribute ID range is encoded as a 32-bit unsigned integer data element, where the high order 16 bits are interpreted as the beginning attribute ID of the range and the low order 16 bits are interpreted as the ending attribute ID of the range. The attribute IDs contained in the AttributeIDList must be listed in ascending order without duplication of any attribute ID values. Note that all attributes may be requested by specifying a range of 0x0000-0xFFFF. |

# ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation state information that were returned in a previous response from the server. N is required to be less than or equal to 16. If no continuation state is to be provided in the request, N is set to 0. |

Bluetooth.

Size: 2 Bytes

# 4.7.2 SDP\_ServiceSearchAttributeResponse PDU

| PDU Type                           | PDU ID | Parameters                                                       |
|------------------------------------|--------|------------------------------------------------------------------|
| SDP_ServiceSearchAttributeResponse | 0x07   | AttributeListsByteCount,<br>AttributeLists,<br>ContinuationState |

# **Description:**

The SDP server generates an SDP\_ServiceSearchAttributeResponse upon receipt of a valid SDP\_ServiceSearchAttributeRequest. The response contains a list of attributes (both attribute ID and attribute value) from the service records that match the requested service search pattern.

# **PDU Parameters:**

# AttributeListsByteCount:

| Value | Parameter Description                                                                                                                                                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N     | The AttributeListsByteCount contains a count of the number of bytes in the AttributeLists parameter. N must never be larger than the Maximu-mAttributeByteCount value specified in the SDP_ServiceSearchAttributeRequest.  Range: 0x0002-0xFFFF |

#### AttributeLists: Size: Varies

| Value                    | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Data Element<br>Sequence | The AttributeLists is a data element sequence where each element in turn is a data element sequence representing an attribute list. Each attribute list contains attribute IDs and attribute values from one service record. The first element in each attribute list contains the attribute ID of the first attribute to be returned for that service record. The second element in each attribute list contains the corresponding attribute value. Successive pairs of elements in each attribute list contain additional attribute ID and value pairs. Only attributes that have non-null values within the service record and whose attribute IDs were specified in the SDP_ServiceSearchAttributeRequest are contained in the AttributeLists. Neither an attribute ID nor attribute value is placed in AttributeLists for attributes in the service record that have no value. Within each attribute list, the attributes are listed in ascending order of attribute ID value. |  |

page 357 of 1082

Size: 1 to 17 Bytes

Service Discovery Protocol

# Bluetooth.

# ContinuationState:

| Value                 | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuation<br>State | ContinuationState consists of an 8-bit count, N, of the number of bytes of continuation state information, followed by the N bytes of continuation information. If the current response is complete, this parameter consists of a single byte with the value 0. If a partial response is given, the ContinuationState parameter may be supplied in a subsequent request to retrieve the remainder of the response. |

Bluetooth

# 5 SERVICE ATTRIBUTE DEFINITIONS

The service classes and attributes contained in this document are necessarily a partial list of the service classes and attributes supported by SDP. Only service classes that directly support the SDP server are included in this document. Additional service classes will be defined in other documents and possibly in future revisions of this document. Also, it is expected that additional attributes will be discovered that are applicable to a broad set of services; these may be added to the list of Universal attributes in future revisions of this document.

# 5.1 UNIVERSAL ATTRIBUTE DEFINITIONS

Universal attributes are those service attributes whose definitions are common to all service records. Note that this does not mean that every service record must contain values for all of these service attributes. However, if a service record has a service attribute with an attribute ID allocated to a universal attribute, the attribute value must conform to the universal attribute's definition.

Only two attributes are required to exist in every service record instance. They are the ServiceRecordHandle (attribute ID 0x0000) and the ServiceClassIDList (attribute ID 0x0001). All other service attributes are optional within a service record.

#### 5.1.1 ServiceRecordHandle Attribute

| Attribute Name      | Attribute ID | Attribute Value Type    |
|---------------------|--------------|-------------------------|
| ServiceRecordHandle | 0x0000       | 32-bit unsigned integer |

#### **Description:**

A service record handle is a 32-bit number that uniquely identifies each service record within an SDP server. It is important to note that, in general, each handle is unique only within each SDP server. If SDP server S1 and SDP server S2 both contain identical service records (representing the same service), the service record handles used to reference these identical service records are completely independent. The handle used to reference the service on S1 will, in general, be meaningless if presented to S2.

Bluetooth

# 5.1.2 ServiceClassIDList Attribute

| Attribute Name     | Attribute ID | Attribute Value Type  |
|--------------------|--------------|-----------------------|
| ServiceClassIDList | 0x0001       | Data Element Sequence |

# **Description:**

The ServiceClassIDList attribute consists of a data element sequence in which each data element is a UUID representing the service classes that a given service record conforms to. The UUIDs are listed in order from the most specific class to the most general class. The ServiceClassIDList must contain at least one service class UUID.

#### 5.1.3 ServiceRecordState Attribute

| Attribute Name     | Attribute ID | Attribute Value Type    |
|--------------------|--------------|-------------------------|
| ServiceRecordState | 0x0002       | 32-bit unsigned integer |

# **Description:**

The ServiceRecordState is a 32-bit integer that is used to facilitate caching of ServiceAttributes. If this attribute is contained in a service record, its value is guaranteed to change when any other attribute value is added to, deleted from or changed within the service record. This permits a client to check the value of this single attribute. If its value has not changed since it was last checked, the client knows that no other attribute values within the service record have changed.

#### 5.1.4 ServiceID Attribute

| Attribute Name | Attribute ID | Attribute Value Type |
|----------------|--------------|----------------------|
| ServiceID      | 0x0003       | UUID                 |

#### **Description:**

The ServiceID is a UUID that universally and uniquely identifies the service instance described by the service record. This service attribute is particularly useful if the same service is described by service records in more than one SDP server.

page 360 of 1082

Service Discovery Protocol

Bluetooth

# 5.1.5 ProtocolDescriptorList Attribute

| Attribute Name         | Attribute ID | Attribute Value Type                              |
|------------------------|--------------|---------------------------------------------------|
| ProtocolDescriptorList | 0x0004       | Data Element Sequence or Data Element Alternative |

# **Description:**

The ProtocolDescriptorList attribute describes one or more protocol stacks that may be used to gain access to the service described by the service record.

If the ProtocolDescriptorList describes a single stack, it takes the form of a data element sequence in which each element of the sequence is a protocol descriptor. Each protocol descriptor is, in turn, a data element sequence whose first element is a UUID identifying the protocol and whose successive elements are protocol-specific parameters. Potential protocol-specific parameters are a protocol version number and a connection-port number. The protocol descriptors are listed in order from the lowest layer protocol to the highest layer protocol used to gain access to the service.

If it is possible for more than one kind of protocol stack to be used to gain access to the service, the ProtocolDescriptorList takes the form of a data element alternative where each member is a data element sequence as described in the previous paragraph.

#### **Protocol Descriptors**

A protocol descriptor identifies a communications protocol and provides protocol-specific parameters. A protocol descriptor is represented as a data element sequence. The first data element in the sequence must be the UUID that identifies the protocol. Additional data elements optionally provide protocol-specific information, such as the L2CAP protocol/service multiplexer (PSM) and the RFCOMM server channel number (CN) shown below.

# **ProtocolDescriptorList Examples**

These examples are intended to be illustrative. The parameter formats for each protocol are not defined within this specification.

In the first two examples, it is assumed that a single RFCOMM instance exists on top of the L2CAP layer. In this case, the L2CAP protocol specific information (PSM) points to the single instance of RFCOMM. In the last example, two different and independent RFCOMM instances are available on top of the L2CAP layer. In this case, the L2CAP protocol specific information (PSM) points to a distinct identifier that distinguishes each of the RFCOMM instances. According to the L2CAP specification, this identifier takes values in the range 0x1000-0xFFFF.

Bluetooth.

```
Service Discovery Protocol
```

```
IrDA-like printer
((L2CAP, PSM=RFCOMM), (RFCOMM, CN=1), (PostscriptStream))
IP Network Printing
((L2CAP, PSM=RFCOMM), (RFCOMM, CN=2), (PPP), (IP), (TCP), (IPP))
Synchronization Protocol Descriptor Example
((L2CAP, PSM=0x1001), (RFCOMM, CN=1), (Obex), (vCal))
((L2CAP, PSM=0x1002), (RFCOMM, CN=1), (Obex), (otherSynchronisationApplication))
```

#### 5.1.6 BrowseGroupList Attribute

| Attribute Name  | Attribute ID | Attribute Value Type  |
|-----------------|--------------|-----------------------|
| BrowseGroupList | 0x0005       | Data Element Sequence |

# **Description:**

The BrowseGroupList attribute consists of a data element sequence in which each element is a UUID that represents a browse group to which the service record belongs. The top-level browse group ID, called PublicBrowseRoot and representing the root of the browsing hierarchy, has the value 00001002-0000-1000-7007-00805F9B34FB (UUID16: 0x1002) from the Bluetooth Assigned Numbers document.

# 5.1.7 LanguageBaseAttributeIDList Attribute

| Attribute Name              | Attribute ID | Attribute Value Type  |
|-----------------------------|--------------|-----------------------|
| LanguageBaseAttributeIDList | 0x0006       | Data Element Sequence |

#### Description:

In order to support human-readable attributes for multiple natural languages in a single service record, a base attribute ID is assigned for each of the natural languages used in a service record. The human-readable universal attributes are then defined with an attribute ID offset from each of these base values, rather than with an absolute attribute ID.

The LanguageBaseAttributeIDList attribute is a list in which each member contains a language identifier, a character encoding identifier, and a base attribute

page 362 of 1082

Service Discovery Protocol

Bluetooth

ID for each of the natural languages used in the service record. The Language-BaseAttributeIDList attribute consists of a data element sequence in which each element is a 16-bit unsigned integer. The elements are grouped as triplets (threes).

The first element of each triplet contains an identifier representing the natural language. The language is encoded according to ISO 639:1988 (E/F): "Code for the representation of names of languages".

The second element of each triplet contains an identifier that specifies a character encoding used for the language. Values for character encoding can be found in IANA's database<sup>2</sup>, and have the values that are referred to as MIBEnum values. The recommended character encoding is UTF-8.

The third element of each triplet contains an attribute ID that serves as the base attribute ID for the natural language in the service record. Different service records within a server may use different base attribute ID values for the same language.

To facilitate the retrieval of human-readable universal attributes in a principal language, the base attribute ID value for the primary language supported by a service record must be 0x0100. Also, if a LanguageBaseAttributeIDList attribute is contained in a service record, the base attribute ID value contained in its first element must be 0x0100.

#### 5.1.8 ServiceInfoTimeToLive Attribute

| Attribute Name        | Attribute ID | Attribute Value Type    |
|-----------------------|--------------|-------------------------|
| ServiceInfoTimeToLive | 0x0007       | 32-bit unsigned integer |

#### **Description:**

The ServiceTimeToLive attribute is a 32-bit integer that contains the number of seconds for which the information in a service record is expected to remain valid and unchanged. This time interval is measured from the time that the attribute value is retrieved from the SDP server. This value does not imply a guarantee that the service record will remain available or unchanged. It is simply a hint that a client may use to determine a suitable polling interval to revalidate the service record contents.

Bluetooth

# 5.1.9 ServiceAvailability Attribute

| Attribute Name      | Attribute ID | Attribute Value Type   |
|---------------------|--------------|------------------------|
| ServiceAvailability | 0x0008       | 8-bit unsigned integer |

# **Description:**

The ServiceAvailability attribute is an 8-bit unsigned integer that represents the relative ability of the service to accept additional clients. A value of 0xFF indicates that the service is not currently in use and is thus fully available, while a value of 0x00 means that the service is not accepting new clients. For services that support multiple simultaneous clients, intermediate values indicate the relative availability of the service on a linear scale.

For example, a service that can accept up to 3 clients should provide Service-Availability values of 0xFF, 0xAA, 0x55, and 0x00 when 0, 1, 2, and 3 clients, respectively, are utilising the service. The value 0xAA is approximately (2/3) \* 0xFF and represents 2/3 availability, while the value 0x55 is approximately (1/3)\*0xFF and represents 1/3 availability. Note that the availability value may be approximated as

(1 - (current\_number\_of\_clients / maximum\_number\_of\_clients)) \* 0xFF

When the maximum number of clients is large, this formula must be modified to ensure that ServiceAvailability values of 0x00 and 0xFF are reserved for their defined meanings of unavailability and full availability, respectively.

Note that the maximum number of clients a service can support may vary according to the resources utilised by the service's current clients.

A non-zero value for ServiceAvailability does not guarantee that the service will be available for use. It should be treated as a hint or an approximation of availability status.

# 5.1.10 BluetoothProfileDescriptorList Attribute

| Attribute Name                 | Attribute ID | Attribute Value Type  |
|--------------------------------|--------------|-----------------------|
| BluetoothProfileDescriptorList | 0x0009       | Data Element Sequence |

#### **Description:**

The BluetoothProfileDescriptorList attribute consists of a data element sequence in which each element is a profile descriptor that contains information about a Bluetooth profile to which the service represented by this service record conforms. Each profile descriptor is a data element sequence whose

Bluetooth

first element is the UUID assigned to the profile and whose second element is a 16-bit profile version number.

Each version of a profile is assigned a 16-bit unsigned integer profile version number, which consists of two 8-bit fields. The higher-order 8 bits contain the major version number field and the lower-order 8 bits contain the minor version number field. The initial version of each profile has a major version of 1 and a minor version of 0. When upward compatible changes are made to the profile, the minor version number will be incremented. If incompatible changes are made to the profile, the major version number will be incremented.

#### 5.1.11 DocumentationURL Attribute

| Attribute Name   | Attribute ID | Attribute Value Type |
|------------------|--------------|----------------------|
| DocumentationURL | 0x000A       | URL                  |

# **Description:**

This attribute is a URL which points to documentation on the service described by a service record.

#### 5.1.12 ClientExecutableURL Attribute

| Attribute Name      | Attribute ID | Attribute Value Type |
|---------------------|--------------|----------------------|
| ClientExecutableURL | 0x000B       | URL                  |

# **Description:**

This attribute contains a URL that refers to the location of an application that may be used to utilize the service described by the service record. Since different operating environments require different executable formats, a mechanism has been defined to allow this single attribute to be used to locate an executable that is appropriate for the client device's operating environment. In the attribute value URL, the first byte with the value 0x2A (ASCII character '\*') is to be replaced by the client application with a string representing the desired operating environment before the URL is to be used.

The list of standardized strings representing operating environments is contained in the Bluetooth Assigned Numbers document.

For example, assume that the value of the ClientExecutableURL attribute is http://my.fake/public/\*/client.exe. On a device capable of executing SH3 WindowsCE files, this URL would be changed to http://my.fake/public/sh3-microsoft-wince/client.exe. On a device capable of executing Windows 98 binaries, this URL would be changed to http://my.fake/public/i86-microsoft-win98/client.exe.

Bluetooth

#### 5.1.13 IconURL Attribute

| Attribute Name | Attribute ID | Attribute Value Type |
|----------------|--------------|----------------------|
| IconURL        | 0x000C       | URL                  |

# **Description:**

This attribute contains a URL that refers to the location of an icon that may be used to represent the service described by the service record. Since different hardware devices require different icon formats, a mechanism has been defined to allow this single attribute to be used to locate an icon that is appropriate for the client device. In the attribute value URL, the first byte with the value 0x2A (ASCII character '\*') is to be replaced by the client application with a string representing the desired icon format before the URL is to be used.

The list of standardized strings representing icon formats is contained in the Bluetooth Assigned Numbers document.

For example, assume that the value of the IconURL attribute is http://my.fake/public/icons/\*. On a device that prefers 24 x 24 icons with 256 colors, this URL would be changed to http://my.fake/public/icons/24x24x8.png. On a device that prefers 10 x 10 monochrome icons, this URL would be changed to http://my.fake/public/icons/10x10x1.png.

#### 5.1.14 ServiceName Attribute

| Attribute Name | Attribute ID Offset | Attribute Value Type |
|----------------|---------------------|----------------------|
| ServiceName    | 0x0000              | String               |

#### **Description:**

The ServiceName attribute is a string containing the name of the service represented by a service record. It should be brief and suitable for display with an Icon representing the service. The offset 0x0000 must be added to the attribute ID base (contained in the LanguageBaseAttributeIDList attribute) in order to compute the attribute ID for this attribute.

page 366 of 1082

Service Discovery Protocol

Bluetooth

# 5.1.15 ServiceDescription Attribute

| Attribute Name     | Attribute ID Offset | Attribute Value Type |
|--------------------|---------------------|----------------------|
| ServiceDescription | 0x0001              | String               |

# **Description:**

This attribute is a string containing a brief description of the service. It should be less than 200 characters in length. The offset 0x0001 must be added to the attribute ID base (contained in the LanguageBaseAttributeIDList attribute) in order to compute the attribute ID for this attribute.

# 5.1.16 ProviderName Attribute

| Attribute Name | Attribute ID Offset | Attribute Value Type |
|----------------|---------------------|----------------------|
| ProviderName   | 0x0002              | String               |

# **Description:**

This attribute is a string containing the name of the person or organization providing the service. The offset 0x0002 must be added to the attribute ID base (contained in the LanguageBaseAttributeIDList attribute) in order to compute the attribute ID for this attribute.

# 5.1.17 Reserved Universal Attribute IDs

Attribute IDs in the range of 0x000D-0x01FF are reserved.

Bluetooth

# 5.2 SERVICEDISCOVERYSERVER SERVICE CLASS ATTRIBUTE DEFINITIONS

This service class describes service records that contain attributes of service discovery server itself. The attributes listed in this section are only valid if the ServiceClassIDList attribute contains the

ServiceDiscoveryServerServiceClassID. Note that all of the universal attributes may be included in service records of the ServiceDiscoveryServer class.

#### 5.2.1 ServiceRecordHandle Attribute

Described in the universal attribute definition for ServiceRecordHandle.

#### Value

A 32-bit integer with the value 0x000000000.

#### 5.2.2 ServiceClassIDList Attribute

Described in the universal attribute definition for ServiceClassIDList.

#### Value

A UUID representing the ServiceDiscoveryServerServiceClassID.

#### 5.2.3 VersionNumberList Attribute

| Attribute Name    | Attribute ID | Attribute Value Type  |
|-------------------|--------------|-----------------------|
| VersionNumberList | 0x0200       | Data Element Sequence |

#### **Description:**

The VersionNumberList is a data element sequence in which each element of the sequence is a version number supported by the SDP server.

A version number is a 16-bit unsigned integer consisting of two fields. The higher-order 8 bits contain the major version number field and the low-order 8 bits contain the minor version number field. The initial version of SDP has a major version of 1 and a minor version of 0. When upward compatible changes are made to the protocol, the minor version number will be incremented. If incompatible changes are made to SDP, the major version number will be incremented. This guarantees that if a client and a server support a common major version number, they can communicate if each uses only features of the specification with a minor version number that is supported by both client and server.

page 368 of 1082

Service Discovery Protocol

Bluetooth

#### 5.2.4 ServiceDatabaseState Attribute

| Attribute Name       | Attribute ID | Attribute Value Type    |
|----------------------|--------------|-------------------------|
| ServiceDatabaseState | 0x0201       | 32-bit unsigned integer |

# **Description:**

The ServiceDatabaseState is a 32-bit integer that is used to facilitate caching of service records. If this attribute exists, its value is guaranteed to change when any of the other service records are added to or deleted from the server's database. If this value has not changed since the last time a client queried its value, the client knows that a) none of the other service records maintained by the SDP server have been added or deleted; and b) any service record handles acquired from the server are still valid. A client should query this attribute's value when a connection to the server is established, prior to using any service record handles acquired during a previous connection.

Note that the ServiceDatabaseState attribute does not change when existing service records are modified, including the addition, removal, or modification of service attributes. A service record's ServiceRecordState attribute indicates when that service record is modified.

#### 5.2.5 Reserved Attribute IDs

Attribute IDs in the range of 0x0202-0x02FF are reserved.

Bluetooth.

# 5.3 BROWSEGROUPDESCRIPTOR SERVICE CLASS ATTRIBUTE DEFINITIONS

This service class describes the ServiceRecord provided for each Browse-GroupDescriptor service offered on a Bluetooth device. The attributes listed in this section are only valid if the ServiceClassIDList attribute contains the BrowseGroupDescriptorServiceClassID. Note that all of the universal attributes may be included in service records of the BrowseGroupDescriptor class.

#### 5.3.1 ServiceClassIDList Attribute

Described in the universal attribute definition for ServiceClassIDList.

#### **Value**

A UUID representing the BrowseGroupDescriptorServiceClassID.

# 5.3.2 GroupID Attribute

| Attribute Name | Attribute ID | Attribute Value Type |
|----------------|--------------|----------------------|
| GroupID        | 0x0200       | UUID                 |

#### **Description:**

This attribute contains a UUID that can be used to locate services that are members of the browse group that this service record describes.

#### 5.3.3 Reserved Attribute IDs

Attribute IDs in the range of 0x0201-0x02FF are reserved.

page 370 of 1082

Service Discovery Protocol

Bluetooth.

# APPENDIX A – BACKGROUND INFORMATION

# A.1. Service Discovery

As computing continues to move to a network-centric model, finding and making use of services that may be available in the network becomes increasingly important. Services can include common ones such as printing, paging, FAXing, and so on, as well as various kinds of information access such as teleconferencing, network bridges and access points, eCommerce facilities, and so on — most any kind of service that a server or service provider might offer. In addition to the need for a standard way of discovering available services, there are other considerations: getting access to the services (finding and obtaining the protocols, access methods, "drivers" and other code necessary to utilize the service), controlling access to the services, advertising the services, choosing among competing services, billing for services, and so on. This problem is widely recognized; many companies, standards bodies and consortia are addressing it at various levels in various ways. Service Location Protocol (SLP), Jini<sup>TM</sup>, and Salutation<sup>TM</sup>, to name just a few, all address some aspect of service discovery.

# A.2. Bluetooth Service Discovery

Bluetooth Service Discovery Protocol (SDP) addresses service discovery specifically for the Bluetooth environment. It is optimized for the highly dynamic nature of Bluetooth communications. SDP focuses primarily on discovering services available from or through Bluetooth devices. SDP does not define methods for accessing services; once services are discovered with SDP, they can be accessed in various ways, depending upon the service. This might include the use of other service discovery and access mechanisms such as those mentioned above; SDP provides a means for other protocols to be used along with SDP in those environments where this can be beneficial. While SDP can coexist with other service discovery protocols, it does not require them. In Bluetooth environments, services can be discovered using SDP and can be accessed using other protocols defined by Bluetooth.

Bluetooth.

# APPENDIX B - EXAMPLE SDP TRANSACTIONS

The following are simple examples of typical SDP transactions. These are meant to be illustrative of SDP flows. The examples do not consider:

- Caching (in a caching system, the SDP client would make use of the ServiceRecordState and ServiceDatabaseState attributes);
- Service availability (if this is of interest, the SDP client should use the ServiceAvailability and/or ServiceTimeToLive attributes);
- SDP versions (the VersionNumberList attribute could be used to determine compatible SDP versions);
- SDP Error Responses (an SDP error response is possible for any SDP request that is in error); and
- Communication connection (the examples assume that an L2CAP connection is established).

The examples are meant to be illustrative of the protocol. The format used is <code>ObjectName[ObjectSizeInBytes]</code> {SubObjectDefinitions}, but this is not meant to illustrate an interface. The <code>ObjectSizeInBytes</code> is the size of the object in decimal. The <code>SubObjectDefinitions</code> (inside of {} characters) are components of the immediately enclosing object. Hexadecimal values shown as lower-case letters, such as for transaction IDs and service handles, are variables (the particular value is not important for the illustration, but each such symbol always represents the same value). Comments are included in this manner: <code>/\* comment text \*/</code>.

# **B.1. SDP Example 1 – ServiceSearchRequest**

The first example is that of an SDP client searching for a generic printing service. The client does not specify a particular type of printing service. In the example, the SDP server has two available printing services. The transaction illustrates:

- 1. SDP client to SDP server: SDP\_ServiceSearchRequest, specifying the PrinterServiceClassID (represented as a DataElement with a 32-bit UUID value of ppp...ppp) as the only element of the ServiceSearchPattern. The PrinterServiceClassID is assumed to be a 32-bit UUID and the data element type for it is illustrated. The TransactionID is illustrated as tttt.
- 2. SDP server to SDP client: SDP\_ServiceSearchResponse, returning handles to two printing services, represented as qqqqqqqq for the first printing service and rrrrrrr for the second printing service. The Transaction ID is the same value as supplied by the SDP client in the corresponding request (TTTT).

```
/* Sent from SDP Client to SDP server */
SDP_ServiceSearchRequest[15] {
   PDUID[1] {
```

page 372 of 1082

Service Discovery Protocol

```
0 \times 02
  TransactionID[2] {
    0xtttt
  ParameterLength[2] {
    0x000A
  ServiceSearchPattern[7] {
    DataElementSequence[7] {
      0b00110 0b101 0x05
      UUID[5] {
        /* PrinterServiceClassID */
        0b00011 0b010 0xpppppppp
  MaximumServiceRecordCount[2] {
    0 \times 0003
  ContinuationState[1] {
    /* no continuation state */
    0x00
  }
}
/* Sent from SDP server to SDP client */
SDP_ServiceSearchResponse[16] {
  PDUID[1] {
    0x03
  TransactionID[2] {
    0xtttt
  ParameterLength[2] {
    0x000D
  TotalServiceRecordCount[2] {
    0 \times 0002
  CurrentServiceRecordCount[2] {
    0 \times 0002
  ServiceRecordHandleList[8] {
    /* print service 1 handle */
    0xqqqqqqq
    /* print service 2 handle */
    0xrrrrrrr
  ContinuationState[1] {
    /* no continuation state */
    0 \times 00
  }
```

Service Discovery Protocol

Bluetooth.

# **B.2. SDP Example 2 – ServiceAttributeTransaction**

The second example continues the first example. In Example 1, the SDP client obtained handles to two printing services. In Example 2, the client uses one of those service handles to obtain the ProtocolDescriptorList attribute for that printing service. The transaction illustrates:

- 1. SDP client to SDP server: SDP\_ServiceAttributeRequest, presenting the previously obtained service handle (the one denoted as qqqqqqq) and specifying the ProtocolDescriptorList attribute ID (AttributeID 0x0004) as the only attribute requested (other attributes could be retrieved in the same transaction if desired). The TransactionID is illustrated as uuuu to distinguish it from the TransactionID of Example 1.
- 2. SDP server to SDP client: SDP\_ServiceAttributeResponse, returning the ProtocolDescriptorList for the specified printing service. This protocol stack is assumed to be ( (L2CAP), (RFCOMM, 2), (PostscriptStream) ). The ProtocolDescriptorList is a data element sequence in which each element is, in turn, a data element sequence whose first element is a UUID representing the protocol, and whose subsequent elements are protocol-specific parameters. In this example, one such parameter is included for the RFCOMM protocol, an 8-bit value indicating RFCOMM server channel 2. The Transaction ID is the same value as supplied by the SDP client in the corresponding request (uuuu). The Attributes returned are illustrated as a data element sequence where the protocol descriptors are 32-bit UUIDs and the RFCOMM server channel is a data element with an 8-bit value of 2.

```
/* Sent from SDP Client to SDP server */
SDP_ServiceAttributeRequest[17] {
 PDUID[1] {
    0 \times 04
 TransactionID[2] {
    0xuuuu
 ParameterLength[2] {
    0x000C
 ServiceRecordHandle[4] {
    0xqqqqqqq
 MaximumAttributeByteCount[2] {
 AttributeIDList[5] {
    DataElementSequence[5] {
      0b00110 0b101 0x03
     AttributeID[3] {
        0b00001 0b001 0x0004
  }
```

Appendix 29 November 1999 373

page 374 of 1082

#### Service Discovery Protocol

```
ContinuationState[1] {
    /* no continuation state */
    0x00
}
/* Sent from SDP server to SDP client */
SDP_ServiceAttributeResponse[36] {
  PDUID[1] {
    0 \times 05
  TransactionID[2] {
    0xuuuu
  ParameterLength[2] {
    0 \times 0021
  AttributeListByteCount[2] {
    0x001E
  AttributeList[30] {
    DataElementSequence[30] {
      0b00110 0b101 0x1C
      Attribute[28] {
        AttributeID[3] {
          0b00001 0b001 0x0004
        AttributeValue[25] {
          /* ProtocolDescriptorList */
          DataElementSequence[25] {
            0b00110 0b101 0x17
            /* L2CAP protocol descriptor */
            DataElementSequence[7] {
              0b00110 0b101 0x05
              UUID[5] {
                /* L2CAP Protocol UUID */
                0b00011 0b010 <32-bit L2CAP UUID>
            /* RFCOMM protocol descriptor */
            DataElementSequence[9] {
              0b00110 0b101 0x07
              UUID[5] {
                /* RFCOMM Protocol UUID */
                0b00011 0b010 <32-bit RFCOMM UUID>
              /* parameter for server 2 */
              Uint8[2] {
                0b00001 0b000 0x02
            /* PostscriptStream protocol descriptor */
            DataElementSequence[7] {
              0b00110 0b101 0x05
              UUID[5] {
                /* PostscriptStream Protocol UUID */
                0b00011 0b010 <32-bit PostscriptStream UUID>
```

page 375 of 1082

Service Discovery Protocol

```
}
}
}

}
ContinuationState[1] {
  /* no continuation state */
  0x00
}
```

page 376 of 1082

Service Discovery Protocol

Bluetooth.

# **B.3. SDP Example 3 – ServiceSearchAttributeTransaction**

The third example is a form of service browsing, although it is not generic browsing in that it does not make use of SDP browse groups. Instead, an SDP client is searching for available Synchronization services that can be presented to the user for selection. The SDP client does not specify a particular type of synchronization service. In the example, the SDP server has three available synchronization services: an address book synchronization service and a calendar synchronization service (both from the same provider), and a second calendar synchronization service from a different provider. The SDP client is retrieving the same attributes for each of these services; namely, the data formats supported for the synchronization service (vCard, vCal, ICal, etc.) and those attributes that are relevant for presenting information to the user about the services. Also assume that the maximum size of a response is 400 bytes. Since the result is larger than this, the SDP client will repeat the request supplying a continuation state parameter to retrieve the remainder of the response. The transaction illustrates:

1. SDP client to SDP server: SDP\_ServiceSearchAttributeRequest, specifying the generic SynchronisationServiceClassID (represented as a data element whose 32-bit UUID value is sss...sss) as the only element of the Service-SearchPattern. The SynchronisationServiceClassID is assumed to be a 32-bit UUID. The requested attributes are the ServiceRecordHandle (attribute ID 0x0000), ServiceClassIDList (attribute ID 0x0001), IconURL (attribute ID 0x000C), ServiceName (attribute ID 0x0100), ServiceDescription (attribute ID 0x0101), and ProviderName (attributeID 0x0102) attributes; as well as the service-specific SupportedDataStores (AttributeID 0x0301). Since the first two attribute IDs (0x0000 and 0x0001) and three other attribute IDs(0x0100, 0x0101, and 0x0102 are consecutive, they are specified as attribute ranges. The TransactionID is illustrated as vvvvv to distinguish it from the TransactionIDs of the other Examples.

Note that values in the service record's primary language are requested for the text attributes (ServiceName, ServiceDescription and ProviderName) so that absolute attribute IDs may be used, rather than adding offsets to a base obtained from the LanguageBaseAttributeIDList attribute.

2. SDP server to SDP client: SDP\_ServiceSearchAttributeResponse, returning the specified attributes for each of the three synchronization services. In the example, each ServiceClassIDList is assumed to contain a single element, the generic SynchronisationServiceClassID (a 32-bit UUID represented as sss...sss). Each of the other attributes contain illustrative data in the example (the strings have illustrative text; the icon URLs are illustrative, for each of the respective three synchronization services; and the SupportedDataStore attribute is represented as an unsigned 8-bit integer where 0x01 = vCard2.1, 0x02 = vCard3.0, 0x03 = vCal1.0 and 0x04 = iCal). Note that one of the service records (the third for which data is returned) has no Service-Description attribute. The attributes are returned as a data element sequence, where each element is in turn a data element sequence repre-

Service Discovery Protocol

# Bluetooth

senting a list of attributes. Within each attribute list, the ServiceClassIDList is a data element sequence while the remaining attributes are single data elements. The Transaction ID is the same value as supplied by the SDP client in the corresponding request (๑๑๑๑). Since the entire result cannot be returned in a single response, a non-null continuation state is returned in this first response.

Note that the total length of the initial data element sequence (487 in the example) is indicated in the first response, even though only a portion of this data element sequence (368 bytes in the example, as indicated in the AttributeLists byte count) is returned in the first response. The remainder of this data element sequence is returned in the second response (without an additional data element header).

- 3. SDP client to SDP server: SDP\_ServiceSearchAttributeRequest, with the same parameters as in step 1, except that the continuation state received from the server in step 2 is included as a request parameter. The TransactionID is changed to  $\omega\omega\omega\omega$  to distinguish it from previous request.
- 4. SDP server to SDP client: SDP\_ServiceSearchAttributeResponse, with the remainder of the result computed in step 2 above. Since all of the remaining result fits in this second response, a null continuation state is included.

```
/* Part 1 -- Sent from SDP Client to SDP server */
SdpSDP_ServiceSearchAttributeRequest[33] {
  PDUID[1] {
    0x06
  TransactionID[2] {
    0xvvvv
  ParameterLength[2] {
    0x001B
  ServiceSearchPattern[7] {
    DataElementSequence[7] {
      0b00110 0b101 0x05
      UUID[5] {
        /* SynchronisationServiceClassID */
        0b00011 0b010 0xsssssss
  }
  MaximumAttributeByteCount[2] {
    0 \times 0190
AttributeIDList[18] {
    DataElementSequence[18] {
      0b00110 0b101 0x10
      AttributeIDRange[5] {
        0b00001 0b010 0x00000001
      AttributeID[3] {
        0b00001 0b001 0x000C
```

Appendix 29 November 1999 377

page 378 of 1082

Service Discovery Protocol

```
AttributeIDRange[5] {
        0b00001 0b010 0x01000102
      AttributeID[3] {
        0b00001 0b001 0x0301
  ContinuationState[1] {
    /* no continuation state */
    0x00
  }
}
/* Part 2 -- Sent from SDP server to SDP client */
SdpSDP_ServiceSearchAttributeResponse[384] {
  PDUID[1] {
    0 \times 07
  TransactionID[2] {
    0xvvvv
  ParameterLength[2] {
    0 \times 017B
  AttributeListByteCount[2] {
    0 \times 0170
  AttributeLists[368] {
    DataElementSequence[487] {
      0b00110 0b110 0x01E4
      DataElementSequence[178] {
        0b00110 0b101 0xB0
        Attribute[8] {
          AttributeID[3] {
            0b00001 0b001 0x0000
          AttributeValue[5] {
            /* service record handle */
            0b00001 0b010 0xhhhhhhh
        Attribute[10] {
          AttributeID[3] {
            0b00001 0b001 0x0001
AttributeValue[7] {
            DataElementSequence[7] {
              0b00110 0b101 0x05
                 /* SynchronisationServiceClassID */
                 0b00011 0b010 0xsssssss
        Attribute[35] {
```

page 379 of 1082

Service Discovery Protocol

```
AttributeID[3] {
      0b00001 0b001 0x000C
    AttributeValue[32] {
     /* IconURL; '*' replaced by client application */
      0b01000 0b101 0x1E
      "http://Synchronisation/icons/*"
  Attribute[22] {
    AttributeID[3] {
      0b00001 0b001 0x0100
    AttributeValue[19] {
      /* service name */
      0b00100 0b101 0x11
      "Address Book Sync"
  }
  Attribute[59] {
   AttributeID[3] {
     0b00001 0b001 0x0101
    AttributeValue[56] {
      /* service description */
      0b00100 0b101 0x36
      "Synchronisation Service for"
      " vCard Address Book Entries"
  }
  Attribute[37] {
    AttributeID[3] {
      0b00001 0b001 0x0102
    AttributeValue[34] {
     /* service provider */
      0b00100 0b101 0x20
      "Synchronisation Specialists Inc."
  }
  Attribute[5] {
    AttributeID[3] {
      0b00001 0b001 0x0301
    AttributeValue[2] {
      /* Supported Data Store 'phonebook' */
      0b00001 0b000 0x01
  }
DataElementSequence[175] {
  0b00110 0b101 0xAD
  Attribute[8] {
    AttributeID[3] {
      0b00001 0b001 0x0000
    AttributeValue[5] {
```

page 380 of 1082

Service Discovery Protocol

```
/* service record handle */
    0b00001 0b010 0xmmmmmmm
Attribute[10] {
  AttributeID[3] {
    0b00001 0b001 0x0001
            AttributeValue[7] {
    DataElementSequence[7] {
      0b00110 0b101 0x05
      UUID[5] {
        /* SynchronisationServiceClassID */
        0b00011 0b010 0xsssssss
Attribute[35] {
  AttributeID[3] {
    0b00001 0b001 0x000C
  AttributeValue[32] {
    /* IconURL; '*' replaced by client application */
    0b01000 0b101 0x1E
    "http://Synchronisation/icons/*"
Attribute[21] {
  AttributeID[3] {
    0b00001 0b001 0x0100
  AttributeValue[18] {
    /* service name */
    0b00100 0b101 0x10
    "Appointment Sync"
Attribute[57] {
  AttributeID[3] {
    0b00001 0b001 0x0101
  AttributeValue[54] {
    /* service description */
    0b00100 0b101 0x34
    "Synchronisation Service for"
    " vCal Appointment Entries"
  }
Attribute[37] {
  AttributeID[3] {
    0b00001 0b001 0x0102
  AttributeValue[34] {
    /* service provider */
    0b00100 0b101 0x20
    "Synchronisation Specialists Inc."
```

Service Discovery Protocol

```
Attribute[5] {
          AttributeID[3] {
            0b00001 0b001 0x0301
          AttributeValue[2] {
            /* Supported Data Store 'calendar' */
            0b00001 0b000 0x03
    /* } Data element sequence of attribute lists */
    /* is not completed in this PDU. */
 ContinuationState[9] {
    /* 8 bytes of continuation state */
   0x08 0xzzzzzzzzzzzzzzzz
}
/* Part 3 -- Sent from SDP Client to SDP server */
SdpSDP_ServiceSearchAttributeRequest[41] {
  PDUID[1] {
    0x06
  TransactionID[2] {
    0xwwww
  ParameterLength[2] {
    0 \times 0024
  ServiceSearchPattern[7] {
   DataElementSequence[7] {
      0b00110 0b101 0x05
      UUID[5] {
        /* SynchronisationServiceClassID */
        0b00011 0b010 0xsssssss
    }
 MaximumAttributeByteCount[2] {
    0 \times 0180
   AttributeIDList[18] {
   DataElementSequence[18] {
      0b00110 0b101 0x10
      AttributeIDRange[5] {
        0b00001 0b010 0x00000001
      AttributeID[3] {
        0b00001 0b001 0x000C
      AttributeIDRange[5] {
        0b00001 0b010 0x01000102
      AttributeID[3] {
```

page 382 of 1082

Service Discovery Protocol

```
0b00001 0b001 0x0301
  ContinuationState[9] {
    /* same 8 bytes of continuation state */
    /* received in part 2 */
    0x08 0xzzzzzzzzzzzzzzz
  }
}
Part 4 -- Sent from SDP server to SDP client
SdpSDP_ServiceSearchAttributeResponse[115] {
  PDUID[1] {
    0 \times 07
  TransactionID[2] {
    0xwwww
  ParameterLength[2] {
    0x006E
  AttributeListByteCount[2] {
    0x006B
  AttributeLists[107] {
    /* Continuing the data element sequence of */
    /* attribute lists begun in Part 2. */
      DataElementSequence[107] {
        0b00110 0b101 0x69
        Attribute[8] {
          AttributeID[3] {
            0b00001 0b001 0x0000
          AttributeValue[5] {
            /* service record handle */
            0b00001 0b010 0xffffffff
        Attribute[10] {
          AttributeID[3] {
            0b00001 0b001 0x0001
          AttributeValue[7] {
            DataElementSequence[7] {
              0b00110 0b101 0x05
              UUID[5] {
                /* SynchronisationServiceClassID */
                0b00011 0b010 0xsssssss
        Attribute[35] {
          AttributeID[3] {
            0b00001 0b001 0x000C
```

Service Discovery Protocol

```
AttributeValue[32] {
            /* IconURL; '*' replaced by client application */
            0b01000 0b101 0x1E
            "http://DevManufacturer/icons/*"
        }
        Attribute[18] {
         AttributeID[3] {
            0b00001 0b001 0x0100
          AttributeValue[15] {
            /* service name */
            0b00100 0b101 0x0D
            "Calendar Sync"
        }
        Attribute[29] {
          AttributeID[3] {
            0b00001 0b001 0x0102
          AttributeValue[26] {
            /* service provider */
            0b00100 0b101 0x18
            "Device Manufacturer Inc."
        }
        Attribute[5] {
          AttributeID[3] {
            0b00001 0b001 0x0301
          AttributeValue[2] {
            /* Supported Data Store 'calendar' */
            0b00001 0b000 0x03
    /* This completes the data element sequence */
    /* of attribute lists begun in Part 2.
 ContinuationState[1] {
    /* no continuation state */
    0x00
  }
}
```

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 384 of 1082

Service Discovery Protocol

# **Part F:1**

# **RFCOMM with TS 07.10**

**Serial Port Emulation** 

This document specifies the RFCOMM protocol by specifying a subset of the ETSITS 07.10 standard, along with some Bluetooth-specific adaptations

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 386 of 1082

RFCOMM with TS 07.10

# Bluetooth.

# **CONTENTS**

| 1 | Intro | oduction                                                                       | 389  |  |  |  |
|---|-------|--------------------------------------------------------------------------------|------|--|--|--|
|   | 1.1   | Overview                                                                       | 389  |  |  |  |
|   | 1.2   | Device Types                                                                   |      |  |  |  |
|   | 1.3   | Byte Ordering                                                                  |      |  |  |  |
| 2 | RFC   | OMM Service Overview                                                           | 391  |  |  |  |
|   | 2.1   | RS-232 Control Signals                                                         | 391  |  |  |  |
|   | 2.2   | Null Modem Emulation                                                           | 391  |  |  |  |
|   | 2.3   | Multiple Emulated Serial Ports                                                 |      |  |  |  |
|   |       | 2.3.1 Multiple Emulated Serial Ports between two Devices                       | .393 |  |  |  |
|   |       | 2.3.2 Multiple Emulated Serial Ports and Multiple BT Devices                   | 393  |  |  |  |
| 3 | Serv  | vice Interface Description                                                     | 395  |  |  |  |
|   | 3.1   | Service Definition Model                                                       |      |  |  |  |
| 4 | TS 0  | 7.10 Subset Supported by RFCOMM                                                | 396  |  |  |  |
| - | 4.1   | Options and Modes                                                              |      |  |  |  |
|   | 4.2   | Frame Types                                                                    |      |  |  |  |
|   | 4.3   | Commands                                                                       |      |  |  |  |
|   | 4.4   | Convergence Layers                                                             | 397  |  |  |  |
| 5 | TS 0  | 7.10 Adaptations for RFCOMM                                                    | 398  |  |  |  |
|   | 5.1   | Media Adaptation                                                               |      |  |  |  |
|   |       | 5.1.1 FCS calculation                                                          | 398  |  |  |  |
|   | 5.2   | TS 07.10 Multiplexer Start-up and Closedown Procedure 5.2.1 Start-up procedure |      |  |  |  |
|   |       | 5.2.2 Close-down procedure                                                     | 399  |  |  |  |
|   |       | 5.2.3 Link loss handling                                                       |      |  |  |  |
|   | 5.3   | System Parameters                                                              |      |  |  |  |
|   | 5.4   | DLCI allocation with RFCOMM server channels                                    |      |  |  |  |
|   | 5.5   | Multiplexer Control Commands                                                   |      |  |  |  |
|   |       | 5.5.1 Remote Port Negotiation Command (RPN)                                    |      |  |  |  |
|   |       | 5.5.2 Remote Line Status Command (RLS)                                         | 402  |  |  |  |
|   |       | 5.5.3 DLC parameter negotiation (PN)                                           | 402  |  |  |  |
| 6 | Flow  | v Control                                                                      | 403  |  |  |  |
|   | 6.1   | L2CAP Flow Control in Overview                                                 |      |  |  |  |
|   | 6.2   | Wired Serial Port Flow Control                                                 |      |  |  |  |
|   | 6.3   | RFCOMM Flow Control403                                                         |      |  |  |  |
|   | 6.4   | Port Emulation Entity Serial Flow Control                                      | 403  |  |  |  |

# **ATTACHMENT H**

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 388 of 1082

| RFC | OMM wit | h TS 07.10                             | Bluetooth |
|-----|---------|----------------------------------------|-----------|
| 7   | Inte    | raction with Other Entities            | 405       |
|     | 7.1     | Port Emulation and Port Proxy Entities | 405       |
|     |         | 7.1.1 Port Emulation Entity            |           |
|     |         | 7.1.2 Port Proxy Entity                | 405       |
|     | 7.2     | Service Registration and Discovery     | 405       |
|     | 7.3     | Lower Layer Dependencies               | 407       |
|     |         | 7.3.1 Reliability                      | 407       |
|     |         | 7.3.2 Low power modes                  | 407       |
| 8   | Refe    | erences                                | 408       |
| 9   | Tern    | ns and Abbreviations                   | 409       |

Bluetooth.

# 1 INTRODUCTION

The RFCOMM protocol provides emulation of serial ports over the L2CAP protocol. The protocol is based on the ETSI standard TS 07.10. This document does not contain a complete specification. Instead, references are made to the relevant parts of the TS 07.10 standard. Only a subset of the TS 07.10 standard is used, and some adaptations of the protocol are specified in this document.

## 1.1 OVERVIEW

RFCOMM is a simple transport protocol, with additional provisions for emulating the 9 circuits of RS-232 (EIATIA-232-E) serial ports.

The RFCOMM protocol supports up to 60 simultaneous connections between two BT devices. The number of connections that can be used simultaneously in a BT device is implementation-specific.

#### 1.2 DEVICE TYPES

For the purposes of RFCOMM, a complete communication path involves two applications running on different devices (the communication endpoints) with a communication segment between them. Figure 1.1 shows the complete communication path. (In this context, the term *application* may mean other things than end-user application; e.g. higher layer protocols or other services acting on behalf of end-user applications.)

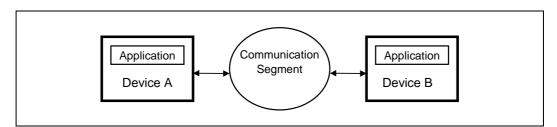



Figure 1.1: RFCOMM Communication Segment

RFCOMM is intended to cover applications that make use of the serial ports of the devices in which they reside. In the simple configuration, the communication segment is a BT link from one device to another (direct connect), see Figure 1.2. Where the communication segment is another network, BT is used for the path between the device and a network connection device like a modem. RFCOMM is only concerned with the connection between the devices in the direct connect case, or between the device and a modem in the network case. RFCOMM can support other configurations, such as modules that communicate via BT on one side and provide a wired interface on the other side, as shown in Figure 1.3. These devices are not really modems but offer a similar service. They are therefore not explicitly discussed here.

page 390 of 1082

RFCOMM with TS 07.10

Bluetooth.

Basically two device types exist that RFCOMM must accommodate. Type 1 devices are communication end points such as computers and printers. Type 2 devices are those that are part of the communication segment; e.g. modems. Though RFCOMM does not make a distinction between these two device types in the protocol, accommodating both types of devices impacts the RFCOMM protocol.

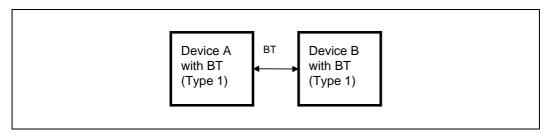



Figure 1.2: RFCOMM Direct Connect

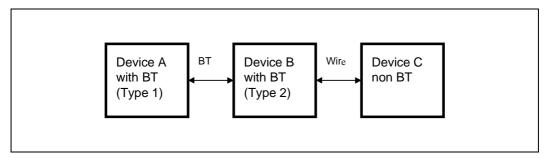



Figure 1.3: RFCOMM used with legacy COMM device

The information transferred between two RFCOMM entities has been defined to support both type 1 and type 2 devices. Some information is only needed by type 2 devices while other information is intended to be used by both. In the protocol, no distinction is made between type 1 and type 2. It is therefore up to the RFCOMM implementers to determine if the information passed in the RFCOMM protocol is of use to the implementation. Since the device is not aware of the type of the other device in the communication path, each must pass on all available information specified by the protocol.

# 1.3 BYTE ORDERING

This document uses the same byte ordering as the TS 07.10 specification; i.e. all binary numbers are in Least Significant Bit to Most Significant Bit order, reading from left to right.

Bluetooth.

# 2 RFCOMM SERVICE OVERVIEW

RFCOMM emulates RS-232 (EIATIA-232-E) serial ports. The emulation includes transfer of the state of the non-data circuits. RFCOMM has a built-in scheme for null modem emulation.

In the event that a baud rate is set for a particular port through the RFCOMM service interface, that will not affect the actual data throughput in RFCOMM; i.e. RFCOMM does not incur artificial rate limitation or pacing. However, if either device is a type 2 device (relays data onto other media), or if data pacing is done above the RFCOMM service interface in either or both ends, actual throughput will, on an average, reflect the baud rate setting.

RFCOMM supports emulation of multiple serial ports between two devices and also emulation of serial ports between multiple devices, see Section 2.3 on page 393.

#### 2.1 RS-232 CONTROL SIGNALS

RFCOMM emulates the 9 circuits of an RS-232 interface. The circuits are listed below.

| Pin | Circuit Name              |  |  |  |
|-----|---------------------------|--|--|--|
| 102 | Signal Common             |  |  |  |
| 103 | Transmit Data (TD)        |  |  |  |
| 104 | Received Data (RD)        |  |  |  |
| 105 | Request to Send (RTS)     |  |  |  |
| 106 | Clear to Send (CTS)       |  |  |  |
| 107 | Data Set Ready (DSR)      |  |  |  |
| 108 | Data Terminal Ready (DTR) |  |  |  |
| 109 | Data Carrier Detect (CD)  |  |  |  |
| 125 | Ring Indicator (RI)       |  |  |  |

Table 2.1: Emulated RS-232 circuits in RFCOMM

#### 2.2 NULL MODEM EMULATION

RFCOMM is based on TS 07.10. When it comes to transfer of the states of the non-data circuits, TS 07.10 does not distinguish between DTE and DCE devices. The RS-232 control signals are sent as a number of DTE/DCE independent signals, see Table 2.2.

# Bluetooth.

| TS 07.10 Signals | Corresponding RS-232 Control Signals |
|------------------|--------------------------------------|
| RTC              | DSR, DTR                             |
| RTR              | RTS, CTS                             |
| IC               | RI                                   |
| DV               | DCD                                  |

Table 2.2: TS 07.10 Serial Port Control Signals

The way in which TS 07.10 transfers the RS-232 control signals creates an implicit null modem when two devices of the same kind are connected together. Figure 2.1 shows the null modem that is created when two DTE are connected via RFCOMM. No single null-modem cable wiring scheme works in all cases; however the null modem scheme provided in RFCOMM should work in most cases.

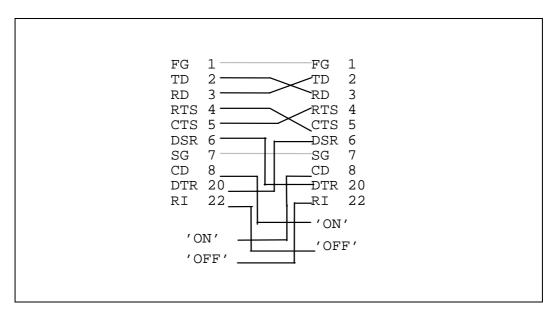



Figure 2.1: RFCOMM DTE-DTE Null Modem Emulation

Bluetooth.

## 2.3 MULTIPLE EMULATED SERIAL PORTS

#### 2.3.1 Multiple Emulated Serial Ports between two Devices

Two BT devices using RFCOMM in their communication may open multiple emulated serial ports. RFCOMM supports up to 60 open emulated ports; however the number of ports that can be used in a device is implementation-specific.

A Data Link Connection Identifier (DLCI) [1] identifies an ongoing connection between a client and a server application. The DLCI is represented by 6 bits, but its usable value range is 2...61; in TS 07.10, DLCI 0 is the dedicated control channel, DLCI 1 is unusable due to the concept of Server Channels, and DLCI 62-63 is reserved. The DLCI is unique within one RFCOMM session between two devices. (This is explained further in Section 2.3.2) To account for the fact that both client and server applications may reside on both sides of an RFCOMM session, with clients on either side making connections independent of each other, the DLCI value space is divided between the two communicating devices using the concept of RFCOMM server channels. This is further described in Section 5.4.

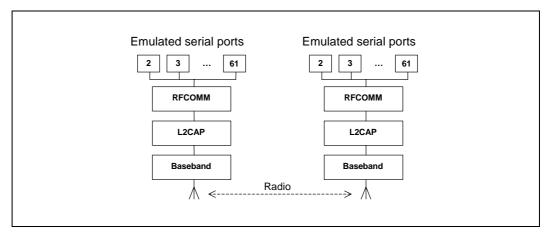



Figure 2.2: Multiple Emulated Serial Ports.

# 2.3.2 Multiple Emulated Serial Ports and Multiple BT Devices

If a BT device supports multiple emulated serial ports and the connections are allowed to have endpoints in different BT devices, then the RFCOMM entity must be able to run multiple TS 07.10 multiplexer sessions, see Figure 2.3. Note that each multiplexer session is using its own L2CAP channel ID (CID). The ability to run multiple sessions of the TS 07.10 multiplexer is optional for RFCOMM.

page 394 of 1082

RFCOMM with TS 07.10

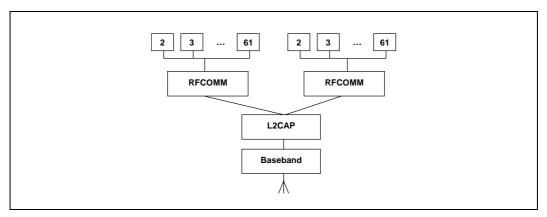



Figure 2.3: Emulating serial ports coming from two BT devices.

Bluetooth.

# 3 SERVICE INTERFACE DESCRIPTION

RFCOMM is intended to define a protocol that can be used to emulate serial ports. In most systems, RFCOMM will be part of a port driver which includes a serial port emulation entity.

#### 3.1 SERVICE DEFINITION MODEL

The figure below shows a model of how RFCOMM fits into a typical system. This figure represents the RFCOMM reference model.

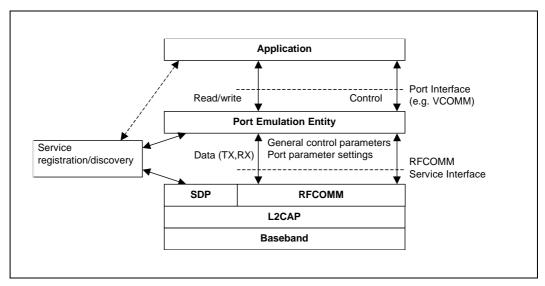



Figure 3.1: RFCOMM reference model

The elements of the RFCOMM reference model are described below.

| Element                              | Description                                                                                                                                                        |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application                          | Applications that utilize a serial port communication interface                                                                                                    |
| Port Emulation<br>Entity             | The port emulation entity maps a system-specific communication interface (API) to the RFCOMM services. The port emulation entity plus RFCOMM make up a port driver |
| RFCOMM                               | Provides a transparent data stream and control channel over an L2CAP channel. Multiplexes multiple emulated serial ports                                           |
| Service Registra-<br>tion/ Discovery | Server applications register here on local device, and it provides services for client applications to discover how to reach server applications on other devices  |
| L2CAP                                | Protocol multiplexing, SAR                                                                                                                                         |
| Baseband                             | Baseband protocols defined by BT                                                                                                                                   |

page 396 of 1082

RFCOMM with TS 07.10

Bluetooth

# 4 TS 07.10 SUBSET SUPPORTED BY RFCOMM

# 4.1 OPTIONS AND MODES

RFCOMM uses the basic option of TS 07.10.

# 4.2 FRAME TYPES

Table 4.1 shows the TS 7.10 frame types that are supported in RFCOMM.

| Frame Types                                                         |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| Set Asynchronous Balanced Mode (SABM) command                       |  |  |  |  |
| Unnumbered Acknowledgement (UA) response                            |  |  |  |  |
| Disconnected Mode (DM) response                                     |  |  |  |  |
| Disconnect (DISC) command                                           |  |  |  |  |
| Unnumbered information with header check (UIH) command and response |  |  |  |  |

Table 4.1: Supported frame types in RFCOMM

The 'Unnumbered Information (UI) command and response' are not supported by RFCOMM. Since the error recovery mode option of the TS 07.10 protocol is not used in RFCOMM none of the associated frame types are supported.

#### 4.3 COMMANDS

TS 07.10 defines a multiplexer that has a dedicated control channel, DLCI 0. The control channel is used to convey information between two multiplexers. The following commands in TS 07.10 are supported by RFCOMM:

| Supported Control Channel Commands    |  |  |  |  |
|---------------------------------------|--|--|--|--|
| Test Command (Test)                   |  |  |  |  |
| Flow Control On Command (Fcon)        |  |  |  |  |
| Flow Control Off Command (Fcoff)      |  |  |  |  |
| Modem Status Command (MSC)            |  |  |  |  |
| Remote Port Negotiation Command (RPN) |  |  |  |  |
| Remote Line Status (RLS)              |  |  |  |  |
| DLC parameter negotiation (PN)        |  |  |  |  |
| Non Supported Command Response (NSC)  |  |  |  |  |

Whenever a non-supported command type is received a 'Non-Supported Command Response (NSC)' should be sent.

page 397 of 1082

RFCOMM with TS 07.10

Bluetooth.

# 4.4 CONVERGENCE LAYERS

RFCOMM only supports the type 1 convergence layer in TS 07.10.

The Modem Status Command (MSC) shall be used to convey the RS-232 control signals and the break signal for all emulated serial ports.

Bluetooth.

# 5 TS 07.10 ADAPTATIONS FOR RECOMM

# 5.1 MEDIA ADAPTATION

The opening flag and the closing flags in the 07.10 basic option frame are not used in RFCOMM, instead it is only the fields contained between the flags that are exchanged between the L2CAP layer and RFCOMM layer, see Figure 5.1.

| Flag         | Address | Control | Length<br>Indicator | Information                                      | FCS     | Flag         |
|--------------|---------|---------|---------------------|--------------------------------------------------|---------|--------------|
| 0111<br>1101 | 1 octet | 1 octet | 1 or 2 octets       | Unspecified length but integral number of octets | 1 octet | 0111<br>1101 |

Figure 5.1: Frame Structure for Basic option. Note that the opening and closing flags from the 07.10 Basic option are excluded in RFCOMM.

#### 5.1.1 FCS calculation

In 07.10, the frame check sequence (FCS) is calculated on different sets of fields for different frame types. These are the fields that the FCS are calculated on:

For SABM, DISC, UA, DM frames: on Address, Control and length field.

For UIH frames: on Address and Control field.

(This is stated here for clarification, and to set the standard for RFCOMM; the fields included in FCS calculation have actually changed in version 7.0.0 of TS 07.10, but RFCOMM will not change the FCS calculation scheme from the one above.)

**Bluetooth** 

# 5.2 TS 07.10 MULTIPLEXER START-UP AND CLOSEDOWN PROCEDURE

The start-up and closedown procedures as specified in section 5.7 in TS 07.10 are not supported. This means that the AT-command AT+CMUX is not supported by RFCOMM, neither is the multiplexer close down (CLD) command.

At any time, there must be at most one RFCOMM session between any pair of devices. When establishing a new DLC, the initiating entity must check if there already exists an RFCOMM session with the remote device, and if so, establish the new DLC on that. A session is identified by the Bluetooth BD\_ADDR of the two endpoints<sup>1</sup>.

# 5.2.1 Start-up procedure

The device opening up the first emulated serial port connection between two devices is responsible for first establishing the multiplexer control channel. This involves the following steps:

- Establish an L2CAP channel to the peer RFCOMM entity, using L2CAP service primitives, see L2CAP "Service Primitives" on page 295.
- Start the RFCOMM multiplexer by sending SABM command on DLCI 0, and await UA response from peer entity. (Further optional negotiation steps are possible.)

After these steps, DLCs for user data traffic can be established.

# 5.2.2 Close-down procedure

The device closing the last connection (DLC) on a particular session is responsible for closing the multiplexer by closing the corresponding L2CAP channel.

Closing the multiplexer by first sending a DISC command frame on DLCI 0 is optional, but it is mandatory to respond correctly to a DISC (with UA response).

#### 5.2.3 Link loss handling

If an L2CAP link loss notification is received, the local RFCOMM entity is responsible for sending a connection loss notification to the port emulation/proxy entity for each active DLC. Then all resources associated with the RFCOMM session should be freed.

The appropriate action to take in the port emulation/proxy entity depends on the API on top. For example, for an emulated serial port (vCOMM), it would be suitable to drop CD, DSR and CTS signals (assuming device is a DTE).

<sup>1.</sup> This implies that, when responding to an L2CAP connection indication, the RFCOMM entity should save and associate the new RFCOMM session with the remote BD\_ADDR. This is, at least, necessary if subsequent establishment of a DLC in the opposite direction is possible (which may depend on device capabilities).

page 400 of 1082

RFCOMM with TS 07.10

Bluetooth

## **5.3 SYSTEM PARAMETERS**

Table 5.1 contains all the applicable system parameters for the RFCOMM implementation of the TS 07.10 multiplexer.

| System Parameter                                    | Value                                      |
|-----------------------------------------------------|--------------------------------------------|
| Maximum Frame Size (N1)                             | Default: 127 (negotiable range 23 – 32767) |
| Acknowledgement Timer (T1)                          | 60 seconds                                 |
| Response Timer for Multiplexer Control Channel (T2) | 60 seconds                                 |

Table 5.1: System parameter values

Note: The timer T1 is the timeout for *frames* sent with the P/F-bit set to one (this applies only to SABM and DISC frames in RFCOMM). T2 is the timeout for *commands* sent in UIH frames on DLCI 0.

Since RFCOMM relies on lower layers to provide reliable transmission, the default action performed on timeouts is to close down the multiplexer session. The only exception to this is when trying to set up a new DLC on an existing session; i.e. waiting for the UA response for a SABM command. In this case, the initiating side may defer the timeout by an unspecified amount of time if it has knowledge that the delay is due to user interaction (e.g. authentication procedure in progress). When/if the connection attempt is eventually considered to have timed out, the initiating side must send a DISC command frame on the same DLCI as the original SABM command frame, in order to notify the other party that the connection attempt is aborted. (After that the initiating side will, as usual, expect a UA response for the DISC command.)

#### 5.4 DLCI ALLOCATION WITH RFCOMM SERVER CHANNELS

To account for the fact that both client and server applications may reside on both sides of an RFCOMM session, with clients on either side making connections independent of each other, the DLCI value space is divided between the two communicating devices using the concept of RFCOMM server channels and a direction bit.

The RFCOMM server channel number is a subset of the bits in the DLCI part of the address field in the TS 07.10 frame.

| Bit No.  | 1  | 2   | 3 4 5 6 7        |  | 8 |  |
|----------|----|-----|------------------|--|---|--|
| TS 07.10 | EA | C/R | DLCI             |  |   |  |
| RFCOMM   | EA | C/R | D Server Channel |  |   |  |

Table 5.2: The format of the Address Field

Bluetooth.

Server applications registering with an RFCOMM service interface are assigned a Server Channel number in the range 1...30. [0 and 31 should not be used since the corresponding DLCIs are reserved in TS 07.10] It is this value that should be registered in the Service Discovery Database, see Section 7.2.

For an RFCOMM session, the initiating device is given the direction bit D=1 (and conversely, D=0 in the other device). When establishing a new data link connection on an existing RFCOMM session, the direction bit is used in conjunction with the Server Channel to determine the DLCI to use to connect to a specific application. This DLCI is thereafter used for all packets in both directions between the endpoints.

In effect, this partitions the DLCI value space such that server applications on the non-initiating device are reachable on DLCIs 2,4,6,...,60; and server applications on the initiating device are reachable on DLCIs 3,5,7,...,61. (Note that for a device that supports multiple simultaneous RFCOMM sessions to two or more devices, the direction bit might not be the same on all sessions.)

An RFCOMM entity making a new DLC on an existing session forms the DLCI by combining the Server Channel for the application on the other device, and the inverse of its own direction bit for the session.

DLCI 1 and 62-63 are reserved and never used in RFCOMM.

# 5.5 MULTIPLEXER CONTROL COMMANDS

Note that in TS 07.10, some Multiplexer Control commands pertaining to specific DLCIs may be exchanged on the control channel (DLCI 0) *before* the corresponding DLC has been established. (This refers the PN and RPN commands.) All such states associated with an individual DLC must be reset to their default values upon receiving a DISC command frame, or when closing the DLC from the local side. This is to ensure that all DLC (re-)establishments on the same session will have predictable results, irrespective of the session history.

# 5.5.1 Remote Port Negotiation Command (RPN)

The RPN command can be used before a new DLC is opened and should be used whenever the port settings change.

The RPN command is specified as optional in TS 07.10, but it is mandatory to recognize and respond to it in RFCOMM. (Although the handling of individual settings are implementation-dependent.)

page 402 of 1082

RFCOMM with TS 07.10

Bluetooth

# 5.5.2 Remote Line Status Command (RLS)

This command is used for indication of remote port line status.

The RLS command is specified as optional in TS 07.10, but it is mandatory to recognize and respond to it in RFCOMM. (Although the handling of individual settings are implementation-dependent.)

# 5.5.3 DLC parameter negotiation (PN)

The PN command is specified as optional in TS 07.10, but it is mandatory to recognize and respond to it in RFCOMM. This command can be used before a new DLC is opened.

There are some parameters in the PN command which convey information not applicable to RFCOMM. These fields must therefore be set to predetermined values by the sender, and they must be ignored by the receiver. This concern the following fields (see table 3 in ref. [1]):

- I1-I4 must be set to 0. (Meaning: use UIH frames.)
- CL1-CL4 must be set to 0. (Meaning: use convergence layer type 1.)
- T1-T8 must be set to 0. (Meaning: acknowledgment timer *T1*, which is not negotiable in RFCOMM.)
- NA1-NA8 must be set to 0. (Meaning: number of retransmissions N2; always 0 for RFCOMM)
- K1-K3 must be set to 0. (Meaning: defines the window size for error recovery mode, which is not used for RFCOMM.)

If a command is received with invalid (or for some reason unacceptable) values in any field, a DLC parameter negotiation response must be issued with values that are acceptable to the responding device.

Bluetooth.

# 6 FLOW CONTROL

Wired ports commonly use flow control such as RTS/CTS to control communications. On the other hand, the flow control between RFCOMM and the lower layer L2CAP depends on the service interface supported by the implementation. In addition RFCOMM has its own flow control mechanisms. This section describes the different flow control mechanisms.

#### 6.1 L2CAP FLOW CONTROL IN OVERVIEW

L2CAP relies on the flow control mechanism provided by the Link Manager layer in the baseband. The flow control mechanism between the L2CAP and RFCOMM layers is implementation-specific.

# 6.2 WIRED SERIAL PORT FLOW CONTROL

Wired Serial ports falls into two camps – software flow control using characters such as XON/XOFF, and flow control using RTS/CTS or DTR/DSR circuits. These methods may be used by both sides of a wired link, or may be used only in one direction.

#### 6.3 RFCOMM FLOW CONTROL

The RFCOMM protocol provides two flow control mechanisms:

- 1. The RFCOMM protocol contains flow control commands that operate on the aggregate data flow between two RFCOMM entities; i.e. all DLCIs are affected. The control channel commands, FCon and FCoff, are defined in section 5.4.6.3 in ref [1].
- 2. The Modem Status command as defined in section 5.4.6.3 in ref [1] is the flow control mechanism that operates on individual DLCI.

#### 6.4 PORT EMULATION ENTITY SERIAL FLOW CONTROL

On Type 1 devices some port drivers (Port Emulation Entities plus RFCOMM) will need to provide flow control services as specified by the API they are emulating. An application may request a particular flow control mechanism like XON/XOFF or RTS/CTS and expect the port driver to handle the flow control. On type 2 devices the port driver may need to perform flow control on the non-RFCOMM part of the communication path; i.e. the physical RS-232 port. This flow control is specified via the control parameters sent by the peer RFCOMM entity (usually a type 1 device). The description of flow control in this section is for port drivers on type 1 devices.

Since RFCOMM already has its own flow control mechanism, the port driver does not need to perform flow control using the methods requested by the application. In the ideal case, the application sets a flow control mechanism

page 404 of 1082

RFCOMM with TS 07.10

Bluetooth.

and assumes that the COMM system will handle the details. The port driver could then simply ignore the request and rely on RFCOMM's flow control. The application is able to send and receive data, and does not know or care that the port driver did not perform flow control using the mechanism requested. However, in the real world some problems arise.

- The RFCOMM-based port driver is running on top of a packet-based protocol where data may be buffered somewhere in the communication path.
   Thus, the port driver cannot perform flow control with the same precision as in the wired case.
- The application may decide to apply the flow control mechanism itself in addition to requesting flow control from the port driver.

These problems suggest that the port driver must do some additional work to perform flow control emulation properly. Here are the basic rules for flow control emulation.

- The port driver will not solely rely on the mechanism requested by the application but use a combination of flow control mechanisms.
- The port driver must be aware of the flow control mechanisms requested by the application and behave like the wired case when it sees changes on the non-data circuits (hardware flow control) or flow control characters in the incoming data (software flow control). For example, if XOFF and XON characters would have been stripped in the wired case they must be stripped by the RFCOMM based port driver.
- If the application sets a flow control mechanism via the port driver interface
  and then proceeds to invoke the mechanism on its own, the port driver must
  behave in a manner similar to that of the wired case (e.g. If XOFF and XON
  characters would have been passed through to the wire in the wired case
  the port driver must also pass these characters).

These basic rules are applied to emulate each of the wired flow control schemes. Note that multiple types of flow control can be set at the same time. Section 5.4.8 in ref [1] defines each flow control mechanism.

Bluetooth.

# 7 INTERACTION WITH OTHER ENTITIES

# 7.1 PORT EMULATION AND PORT PROXY ENTITIES

This section defines how the RFCOMM protocol should be used to emulate serial ports. Figure 7.1 shows the two device types that the RFCOMM protocol supports.

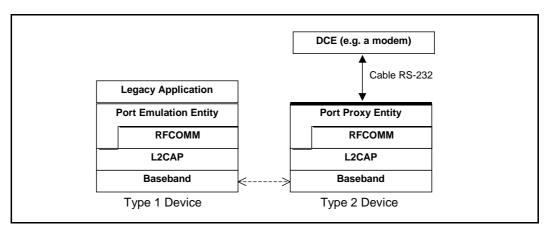



Figure 7.1: The RFCOMM communication model

Type 1 devices are communication endpoints such as computers and printers. Type 2 devices are part of a communication segment; e.g. modems.

# 7.1.1 Port Emulation Entity

The port emulation entity maps a system specific communication interface (API) to the RFCOMM services.

## 7.1.2 Port Proxy Entity

The port proxy entity relays data from RFCOMM to an external RS-232 interface linked to a DCE. The communications parameters of the RS-232 interface are set according to received RPN commands, see Section 5.5.1.

#### 7.2 SERVICE REGISTRATION AND DISCOVERY

Registration of individual applications or services, along with the information needed to reach those (i.e. the RFCOMM Server Channel) is the responsibility of each application respectively (or possibly a Bluetooth configuration application acting on behalf of legacy applications not directly aware of Bluetooth).

Below is a template/example for developing service records for a given service or profile using RFCOMM. It illustrates the inclusion of the ServiceClassList with a single service class, a ProtocolDescriptor List with two protocols

page 406 of 1082

RFCOMM with TS 07.10

Bluetooth.

(although there may be more protocols on top of RFCOMM). The example shows the use of one other universal attribute (ServiceName). For each service running on top of RFCOMM, appropriate SDP-defined universal attributes and/or service-specific attributes will apply. For additional information on Service Records, see the SDP Specification, Section 2.2 on page 332.

The attributes that a client application needs (at a minimum) to connect to a service on top of RFCOMM are the ServiceClassIDList and the ProtocolDescriptorList (corresponding to the shaded rows in the table below).

| Item                                                         | Definition            | Type/Size              | Value                   | Attribute ID |
|--------------------------------------------------------------|-----------------------|------------------------|-------------------------|--------------|
| ServiceClassIDList                                           |                       |                        | Note1                   | 0x0001       |
| ServiceClass0                                                | Note5                 | UUID/32-bit            | Note1                   |              |
| ProtocolDescriptorList                                       |                       |                        |                         | 0x0004       |
| Protocol0                                                    | L2CAP                 | UUID/32-bit            | L2CAP<br>/Note1         |              |
| Protocol1                                                    | RFCOMM                | UUID/32-bit            | RFCOMM<br>/Note1        |              |
| ProtocolSpecificParameter0                                   | Server<br>Channel     | Uint8                  | N = server<br>channel # |              |
| [other protocols]                                            |                       | UUID/32-bit            | Note1                   |              |
| [other protocol-specific parameters]                         | Note3                 | Note3                  | Note3                   |              |
| ServiceName                                                  | Displayable text name | DataElement/<br>String | 'Example<br>service'    | Note2        |
| [other universal attributes as appropriate for this service] | Note4                 | Note4                  | Note4                   | Note4        |
| [service-specific attributes]                                | Note3                 | Note3                  | Note3                   | Note3        |

#### Notes:

- 1. Defined in "Bluetooth Assigned Numbers" on page 1009.
- 2. For national language support for all 'displayable' text string attributes, an offset has to be added to the LanguageBaseAttributeIDList value for the selected language (see the SDP Specification, Section 5.1.14 on page 365 for details).
- 3. To be defined (where necessary) for the specific service.
- 4. For a specific service some of the SDP-defined universal attributes may apply. See the SDP Specification, Section 5.1 on page 358.
- 5. This indicates the class of service. It can be a single entry or a list of service classes ranging from generic to most specific.

page 407 of 1082

RFCOMM with TS 07.10

Bluetooth.

## 7.3 LOWER LAYER DEPENDENCIES

#### 7.3.1 Reliability

RFCOMM uses the services of L2CAP to establish L2CAP channels to RFCOMM entities on other devices. An L2CAP channel is used for the RFCOMM/TS 07.10 multiplexer session. On such a channel, the TS 07.10 frames listed in Section 4.2 are sent, with the adaptation defined in Section 5.1.

Some frame types (SABM and DISC) as well as UIH frames with multiplexer control commands sent on DLCI 0 always require a response from the remote entity, so they are acknowledged on the RFCOMM level (but not retransmitted in the absence of acknowledgment, see Section 5.3). Data frames do not require any response in the RFCOMM protocol, and are thus unacknowledged.

Therefore, RFCOMM must require L2CAP to provide channels with maximum reliability, to ensure that all frames are delivered in order, and without duplicates. Should an L2CAP channel fail to provide this, RFCOMM expects a link loss notification, which should be handled by RFCOMM as described in Section 5.2.3.

# 7.3.2 Low power modes

If all L2CAP channels towards a certain device are idle for a certain amount of time, a decision may be made to put that device in a low power mode (i.e. use hold, sniff or park, see 'Baseband Specification' Section 10.10.3 on page 125). This will be done without any interference from RFCOMM. RFCOMM can state its latency requirements to L2CAP. This information may be used by lower layers to decide which low power mode(s) to use.

The RFCOMM protocol as such does not suffer from latency delays incurred by low power modes, and consequentially, this specification does not state any maximum latency requirement on RFCOMM's behalf. Latency sensitivity inherently depends on application requirements, which suggests that an RFCOMM service interface implementation could include a way for applications to state latency requirements, to be aggregated and conveyed to L2CAP by the RFCOMM implementation. (That is if such procedures make sense for a particular platform.)

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 408 of 1082

RFCOMM with TS 07.10

Bluetooth..

# 8 REFERENCES

- [1] TS 07.10, ver 6.3.0, ETSI
- [2] Bluetooth L2CAP Specification
- [3] Bluetooth SDP Specification
- [4] Bluetooth Assigned Numbers

page 409 of 1082

RFCOMM with TS 07.10

Bluetooth.

# 9 TERMS AND ABBREVIATIONS

The following terms are used throughout the document.

| DTE                      | Data Terminal Equipment – in serial communications, DTE refers to a device at the endpoint of the communications path; typically a computer or terminal                                                  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCE                      | Data Circuit-Terminating Equipment – in serial communications, DCE refers to a device between the communication endpoints whose sole task is to facilitate the communications process; typically a modem |
| RFCOMM initiator         | The device initiating the RFCOMM session; i.e.setting up RFCOMM channel on L2CAP and starting RFCOMM multiplexing with the SABM command frame on DLCI 0 (zero)                                           |
| RFCOMM Client            | An RFCOMM client is an application that requests a connection to another application (RFCOMM server)                                                                                                     |
| RFCOMM Server            | An RFCOMM server is an application that awaits a connection from an RFCOMM client on another device. What happens after such a connection is established is not within the scope of this definition      |
| RFCOMM Server<br>Channel | This is a subfield of the TS 07.10 DLCI number. This abstraction is used to allow both server and client applications to reside on both sides of an RFCOMM session                                       |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 410 of 1082

RFCOMM with TS 07.10

Bluetooth.

# Part F:2

# IrDA INTEROPERABILITY

The IrOBEX protocol is utilized by the Bluetooth technology. In Bluetooth, OBEX offers the same features for applications as within the IrDA protocol hierarchy, enabling the applications to work over the Bluetooth protocol stack as well as the IrDA stack.

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 412 of 1082

IrDA Interoperability

Bluetooth.

# Bluetooth.

# **CONTENTS**

| 1 | Intro | oduction                                     | 414 |  |  |
|---|-------|----------------------------------------------|-----|--|--|
| - | 1.1   | OBEX and Bluetooth Architecture              |     |  |  |
|   | 1.2   | Bluetooth OBEX-Related Specifications        |     |  |  |
|   | 1.3   | Other IrOBEX Implementations                 |     |  |  |
| 2 | OBE   | X Object and Protocol                        | 417 |  |  |
|   | 2.1   | Object                                       |     |  |  |
|   | 2.2   | Session Protocol                             | 417 |  |  |
|   |       | 2.2.1 Connect Operation                      | 418 |  |  |
|   |       | 2.2.2 Disconnect Operation                   | 419 |  |  |
|   |       | 2.2.3 Put Operation                          | 419 |  |  |
|   |       | 2.2.4 Get Operation                          | 420 |  |  |
|   |       | 2.2.5 Other Operations                       | 420 |  |  |
| 3 | OBE   | X over RFCOMM                                | 421 |  |  |
|   | 3.1   | OBEX Server Start-up on RFCOMM               |     |  |  |
|   | 3.2   | Receiving OBEX Packets from Serial Port      |     |  |  |
|   | 3.3   | Connection Establishment                     |     |  |  |
|   | 3.4   | Disconnection                                | 422 |  |  |
|   | 3.5   | Pushing and Pulling OBEX Packets over RFCOMM | 422 |  |  |
| 4 | OBE   | X over TCP/IP                                | 423 |  |  |
|   | 4.1   | OBEX Server Start-up on TCP/IP               |     |  |  |
|   | 4.2   | Connection Establishment                     |     |  |  |
|   | 4.3   | Disconnection                                |     |  |  |
|   | 4.4   | Pushing and Pulling OBEX Packets over TCP    | 424 |  |  |
| 5 | Blue  | etooth Application Profiles using OBEX       | 425 |  |  |
|   | 5.1   | Synchronization                              | 425 |  |  |
|   | 5.2   | File Transfer                                | 425 |  |  |
|   | 5.3   | Object Push                                  | 426 |  |  |
| 6 | Refe  | eferences                                    |     |  |  |
| 7 | Liet  | List of Acronyms and Abbroviations           |     |  |  |

page 414 of 1082

IrDA Interoperability

Bluetooth.

#### 1 INTRODUCTION

The goal of this document is to enable the development of application programs that function well over both short-range RF and IR media. Each media type has its advantages and disadvantages but the goal is for applications to work over both. Rather than fragment the application domain, this document defines the intersection point where Bluetooth and IrDA applications may converge. That intersection point is IrOBEX [1].

IrOBEX is a session protocol defined by IrDA. This protocol is now also utilized by the Bluetooth technology, making it possible for applications to use either the Bluetooth radio technology or the IrDA IR technology. However, even though both IrDA and Bluetooth are designed for short-range wireless communications, they have some fundamental differences relating to the lower-layer protocols. IrOBEX will therefore be mapped over the lower layer protocols which are adopted by Bluetooth.

This document defines how IrOBEX (OBEX for short) is mapped over RFCOMM [2] and TCP/IP [3]. Originally, OBEX (Object Exchange Protocol) was developed to exchange data objects over an infrared link and was placed within the IrDA protocol hierarchy. However, it can appear above other transport layers, now RFCOMM and TCP/IP. At this moment, it is worth mentioning that the OBEX over TCP/IP implementation is an optional feature for Bluetooth devices supporting the OBEX protocol.

The IrOBEX specification [1] provides a model for representing objects and a session protocol, which structures the dialogue between two devices. The IrOBEX protocol follows a client/server **request-response** paradigm for the conversation format.

Bluetooth uses only the connection-oriented OBEX even though IrDA has specified the connectionless OBEX also. The reasons for the connection-oriented approach are:

- OBEX is mapped over the connection-oriented protocols in the Bluetooth architecture.
- Most of application profiles using OBEX and Bluetooth needs a connectionoriented OBEX to provide the functionality described for the features included in these profiles.
- The connectionless OBEX with the connection-oriented one would raise the interoperability problems, which are not desirable.

Bluetooth.

#### 1.1 OBEX AND BLUETOOTH ARCHITECTURE

Figure 1.1 depicts part of the hierarchy of the Bluetooth architecture and shows the placement of the OBEX protocol and the application profiles using it (See also Section 5 on page 425). The protocols can also communicate with the service discovery DB even though the figure does not show it.

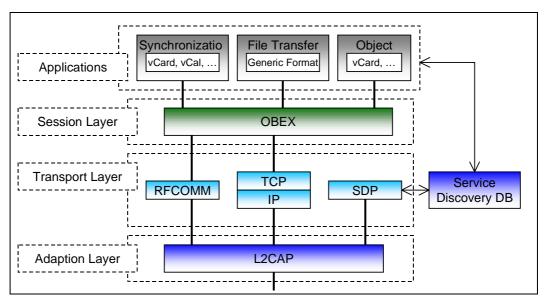



Figure 1.1: Part of Bluetooth Protocol Hierarchy

In the Bluetooth system, the purpose of the OBEX protocol is to enable the exchange of data objects. The typical example could be an object push of business cards to someone else. A more complex example is synchronizing calendars on multiple devices using OBEX. Also, the File Transfer applications can be implemented using OBEX. For the Object Push and Synchronization applications, content formats can be the vCard [4], vCalendar [5], vMessage [6], and vNotes [6] formats. The vCard, vCalendar, vMessage, and vNotes describe the formats for the electronic business card, the electronic calendaring and scheduling, the electronic message and mails, and the electronic notes, respectively.

#### 1.2 BLUETOOTH OBEX-RELATED SPECIFICATIONS

Bluetooth Specification includes five separate specifications related to OBEX and applications using it:

- 1. Bluetooth IrDA Interoperability Specification (This specification)
- Defines how the applications can function over both Bluetooth and IrDA
- Specifies how OBEX is mapped over RFCOMM and TCP
- Defines the application profiles using OBEX over Bluetooth

Introduction 29 November 1999 415

page 416 of 1082

IrDA Interoperability

Bluetooth.

- 2. Bluetooth Generic Object Exchange Profile Specification [7]
- Generic interoperability specification for the application profiles using OBEX
- Defines the interoperability requirements of the lower protocol layers (e.g. Baseband and LMP) for the application profiles
- 3. Bluetooth Synchronization Profile Specification [8]
- Application Profile for the Synchronization applications
- Defines the interoperability requirements for the applications within the Synchronization application profile
- Does <u>not</u> define the requirements for the Baseband, LMP, L2CAP, or RFCOMM.
- 4. Bluetooth File Transfer Profile Specification [9]
- Application Profile for the File Transfer applications
- Defines the interoperability requirements for the applications within the File Transfer application profile.
- Does <u>not</u> define the requirements for the Baseband, LMP, L2CAP, or RFCOMM.
- 5. Bluetooth Object Push Profile Specification [10]
- Application Profile for the Object Push applications
- Defines the interoperability requirements for the applications within the Object Push application profile.
- Does <u>not</u> define the requirements for the Baseband, LMP, L2CAP, or RFCOMM.

#### 1.3 OTHER IROBEX IMPLEMENTATIONS

Over IR, OBEX has also been implemented over IrCOMM and Tiny TP. The Bluetooth technology does not define these protocols as transport protocols for OBEX, but they can be supported by independent software vendors if desired.

page 417 of 1082

IrDA Interoperability

Bluetooth.

#### 2 OBEX OBJECT AND PROTOCOL

This section is dedicated to the model of OBEX objects and the OBEX session protocol. The section is intended to be read with the IrOBEX specification [1].

#### 2.1 OBJECT

The OBEX object model (Section 2 in [1]) describes how OBEX objects are presented. The OBEX protocol can transfer an object by using the **Put**- and **Get**-operations (See Section 2.2.3 and 2.2.4). One object can be exchanged in one or more **Put**-requests or **Get**-responses.

The model handles both information about the object (e.g. type) and object itself. It is composed of headers, which consist of a header ID and value (See Section 2.1 in [1]). The header ID describes what the header contains and how it is formatted, and the header value consists of one or more bytes in the format and meaning specified by Header ID. The specified headers are Count, Name, Type, Length, Time, Description, Target, HTTP, Body, End of Body, Who, Connection ID, Application Parameters, Authenticate Challenge, Authenticate Response, Object Class, and User-Defined Headers. These are explained in detail by Section 2.2 in the IrOBEX specification.

#### 2.2 SESSION PROTOCOL

The OBEX operations are formed by **response-request** pairs. Requests are issued by the client and responses by the server. After sending a request, the client waits for a response from the server before issuing a new request. Each request packet consists of a one-byte opcode (See Section 3.3 in [1]), a two-byte length indicator, and required or optional data depending on the operation. Each response packet consists of a one-byte response code (See Section 3.2.1 in [1]), a two-byte length indicator, and required or optional data depending on the operation.

In the following subsections, the OBEX operations are explained in general.

page 418 of 1082

IrDA Interoperability

Bluetooth.

#### 2.2.1 Connect Operation

An OBEX session is started, when an application asks the first time to transmit an OBEX object. An OBEX client starts the establishment of an OBEX connection. The session is started by sending a **Connect**-request (See Section 3.3.1 in [1]). The request format is:

| Byte 0           | Bytes 1 and 2                       | Byte 3              | Byte 4 | Bytes 5 and 6                    | Byte 7 to n         |
|------------------|-------------------------------------|---------------------|--------|----------------------------------|---------------------|
| 0x80<br>(opcode) | Connect<br>request packet<br>length | OBEX version number | Flags  | Maximum<br>OBEX packet<br>length | Optional<br>headers |

Note. The Big Endian format is used to define the byte ordering for the PDUs (requests and responses) in this specification as well as in the IrOBEX specification; i.e. the most significant byte (MSB) is always on left and the least significant byte (LSB) on right.

At the remote host, the **Connect**-request is received by the OBEX server, if it exists. The server accepts the connection by sending the successful response to the client. Sending any other response (i.e. a non-successful response) back to the client indicates a failure to make a connection. The response format is:

| Byte 0        | Bytes 1 and 2                        | Byte 3              | Byte 4 | Bytes 5 and 6                    | Byte 7 to n         |
|---------------|--------------------------------------|---------------------|--------|----------------------------------|---------------------|
| Response code | Connect<br>response<br>packet length | OBEX version number | Flags  | Maximum<br>OBEX packet<br>length | Optional<br>headers |

The response codes are list in the Section 3.2.1 in the IrOBEX specification. The bytes 5 and 6 define the maximum OBEX packet length, which can be received by the server. This value may differ from the length, which can be received by the client. These **Connect**-request and response packets must each fit in a single packet.

Once a connection is established it remains 'alive', and is only disconnected by requests/responses or by failures (i.e. the connection is not automatically disconnected after each OBEX object has completely transmitted).

Bluetooth.

#### 2.2.2 Disconnect Operation

The disconnection of an OBEX session occurs when an application, which is needed for an OBEX connection, is closed or the application wants to change the host to which the requests are issued. The client issues the **Disconnect**-request (See Section 3.3.2 in [1]) to the server. The request format is:

| Byte 0 | Bytes 1 and 2 | Byte 3           |
|--------|---------------|------------------|
| 0x81   | Packet length | Optional headers |

The request cannot be refused by the server. Thus, it has to send the response, and the response format is:

| Byte 0 | Bytes 1 and 2          | Byte 3                    |
|--------|------------------------|---------------------------|
| 0xA0   | Response packet length | Optional response headers |

#### 2.2.3 Put Operation

When the connection has been established between the client and server the client is able to push OBEX objects to the server. The **Put**-request is used to push an OBEX object (See Section 3.3.3 in [1]). The request has the following format.

| Byte 0                         | Bytes 1 and 2 | Byte 3              |
|--------------------------------|---------------|---------------------|
| 0x02 (0x82 when Final bit set) | Packet length | Sequence of headers |

A **Put**-request consists of one or more request packets, depending on how large the transferred object is, and how large the packet size is. A response packet from the server is required for every **Put**-request packet. Thus, one response is not permitted for several request packets, although they consist of one OBEX object. The response format is:

| Byte 0        | Bytes 1 and 2          | Byte 3                    |
|---------------|------------------------|---------------------------|
| Response code | Response packet length | Optional response headers |

page 420 of 1082

IrDA Interoperability

Bluetooth.

#### 2.2.4 Get Operation

When the connection has been established between the client and server, the client is also able to pull OBEX objects from the server. The **Get**-request is used to pull an OBEX object (See Section 3.3.4 in [1]). The request has the following format.

| Byte 0                            | Bytes 1 and 2 | Byte 3                                       |
|-----------------------------------|---------------|----------------------------------------------|
| 0x03 (0x83 when<br>Final bit set) | Packet length | Sequence of<br>headers starting<br>with Name |

The object is returned as a sequence of headers, and the client has to send a request packet for every response packet. The response format is:

| Byte 0        | Bytes 1 and 2          | Byte 3                    |
|---------------|------------------------|---------------------------|
| Response code | Response packet length | Optional response headers |

#### 2.2.5 Other Operations

Other OBEX operations consist of a **SetPath**-, and an **Abort**-operation. These are carefully explained in the Sections 3.3.5-6 in the IrOBEX specification. It is important to note that the client can send an **Abort**-request after each response – even in the middle of a request/response sequence. Thus, the whole OBEX object does <u>not</u> have to be received before sending an **Abort**-request. In addition to these operations, the IrOBEX specification facilitates user-defined operations, but their use may not necessarily be adopted in Bluetooth.

Bluetooth.

#### 3 OBEX OVER RFCOMM

This section specifies how OBEX is mapped over RFCOMM, which is the multiplexing and transport protocol based on ETSI TS 07.10 [11] and which also provides a support for serial cable emulation. The Bluetooth devices supporting the OBEX protocol must satisfy the following requirements.

- The device supporting OBEX must be able to function as either a client, a server, or both
- 2. All servers running simultaneously on a device must use separate RFCOMM server channels
- 3. Applications (service/server) using OBEX must be able to register the proper information into the service discovery database. This information for different application profiles is specified in the profile specifications

#### 3.1 OBEX SERVER START-UP ON RFCOMM

When a client sends a connecting request, a server is assumed to be ready to receive requests. However, before the server is ready to receive (i.e. is running) certain prerequisites must be fulfilled before the server can enter the listening mode:

- 1. The server must open an RFCOMM server channel
- 2. The server must register its capabilities into the service discovery database

After this, other hosts are able to find the server if needed, and the server listens for get requests from clients.

#### 3.2 RECEIVING OBEX PACKETS FROM SERIAL PORT

As discussed earlier, one object can be exchanged over one or more **Put**-requests or **Get**-responses (i.e. the object is received in one or several packets). However, if OBEX is running directly over the serial port, it does not receive packets from RFCOMM. Instead, a byte stream is received by OBEX from a serial port emulated by RFCOMM.

To detect packets in the byte stream, OBEX has to look for opcodes or response codes (See Chapter 2.2) depending on whether a packet is a request or a response. The opcodes and response code can be thought of as the start flags of packets. In OBEX packets, there is no 'end flag' that would indicate the end of a packet. However, after the opcode or response code, the length of a packet is received in the next two bytes. Thus, the whole length of a packet is known, and the boundary of two packets can be determined.

Bluetooth

All data that is not recognized must be dumped. This could cause a synchronization problem but, considering the nature of the OBEX protocol, this is not a problem over RFCOMM, which provides reliable transport over Bluetooth.

#### 3.3 CONNECTION ESTABLISHMENT

A client initiates the establishment of a connection. However, the following sequence of tasks must occur before the client is able to send the first request for data:

- By using the SD protocol described in the SDP specification [12], the client must discover the proper information (e.g. RFCOMM channel) associated with the server on which the connection can be established
- 2. The client uses the discovered RFCOMM channel to establish the RFCOMM connection
- 3. The client sends the **Connect**-request to the server, to establish an OBEX session. The session is established correctly if the client receives a successful response from the server

#### 3.4 DISCONNECTION

The disconnection of an OBEX session over RFCOMM is straightforward. The disconnection is done by using the **Disconnect**-request (See Section 2.2.2). When the client has received the response, the next operation is to close the RFCOMM channel assigned to the OBEX client.

#### 3.5 PUSHING AND PULLING OBEX PACKETS OVER RFCOMM

Data is pushed in OBEX packets over RFCOMM by using **Put**-requests (See Section 2.2.3). After each request, a response is required before the next request with the data can be pushed.

Pulling data from a remote host happens by sending a **Get**-request (See Section 2.2.4. The data arrives in OBEX response packets. After each response, a new request has to be sent, to pull more data.

Bluetooth.

#### 4 OBEX OVER TCP/IP

This section specifies how OBEX is mapped over the TCP/IP creating reliable connection-oriented services for OBEX. This specification does <u>not</u> define how TCP/IP is mapped over Bluetooth.

The Bluetooth devices, which support the OBEX protocol over TCP/IP, must satisfy the following requirements:

- 1. The device supporting OBEX must be able to function as either a client, or a server, or both
- 2. For the server, the TCP port number 650 is assigned by IANA. If an assigned number is not desirable, the port number can be a value above 1023. However, the use of the TCP port number (650) defined by IANA is highly recommended. The 0-1023 range is reserved by IANA (See [13])
- 3. The client must use a port number (on the client side), which is not within the 0-1023 range
- 4. Applications (service/server) using OBEX must be able to register the proper information into the service discovery database. This information for different application profiles is specified in the profile specifications

#### 4.1 OBEX SERVER START-UP ON TCP/IP

When a client sends a **Put**- or **Get**-request, a server is assumed to be ready to receive requests. However, when the server is ready (i.e. is running), certain prerequisites must be fulfilled before the server can enter the listening mode:

- 1. The server must initialize a TCP port with the value 650 or value above 1023
- 2. The server registers its capabilities into the service discovery database

After this, other devices are able to find the server if needed, and the server listens for get requests from clients.

#### 4.2 CONNECTION ESTABLISHMENT

A client initiates a connection. However, the following sequence of tasks must occur before a connection can be established:

- By using, the SD protocol described in the SDP specification [12], the client discovers the proper information (e.g. TCP port number) associated with the server, to enable the connection can be established
- 2. The client initializes a socket associated to a TCP port number above 1023, and establishes a TCP connection with the host of the server
- The client sends the Connect-request to the server, to establish an OBEX session. The session is established correctly if the client receives a successful response from the server.

page 424 of 1082

IrDA Interoperability

Bluetooth.

#### 4.3 DISCONNECTION

The disconnection of an OBEX session over TCP is straightforward. The disconnection is done by using the **Disconnect**-request (See Section 2.2.2). When the client has received the response, the next operation is to close the TCP port dedicated for this session.

#### 4.4 PUSHING AND PULLING OBEX PACKETS OVER TCP

See Section 3.5.

page 425 of 1082

IrDA Interoperability

Bluetooth.

# 5 BLUETOOTH APPLICATION PROFILES USING OBEX

Bluetooth SIG (Special Interest Group) has defined three separate application profiles using OBEX. These profiles are briefly introduced in this section.

#### 5.1 SYNCHRONIZATION

Basically, the synchronization means comparing two object stores, determining their inequalities, and then unifying these two object stores. The Bluetooth devices supporting the synchronization may be desktop PCs, notebooks, PDAs, cellular phones, or smart phones.

The Bluetooth Synchronization profile uses the servers and clients compliant to the IrMC synchronization specified by IrDA (See Section 5 in [6]). The Bluetooth Synchronization servers and clients must support the level 4 synchronization functionality specified in the IrMC specification.

The actual logic of the synchronization engines which process the synchronization algorithm at the client device is implementation-specific. It is therefore left to the participating software vendors, and is not considered in the Bluetooth specifications.

The synchronization is not limited to one type of application. The Bluetooth synchronization (i.e. the IrMC synchronization) enables four different application classes:

- 1. Phone Book provides a means for a user to manage contact records
- 2. Calendar enables a user to manage calendar items, and can also be used for 'to-do' or task lists
- Messaging lets a user manage messages (e.g. e-mails)
- 4. Notes provides a means for a user to manage small notes

The interoperability requirements for the Bluetooth Synchronization profile are defined in the Synchronization Profile [8] and Generic Object Exchange Profile [7] specifications.

#### 5.2 FILE TRANSFER

At the minimum, the File Transfer profile is intended for sending and retrieving generic files to and from the Bluetooth device. The File Transfer service also facilitates the browsing of the remote Bluetooth device's folder.

The interoperability requirements for the Bluetooth File Transfer profile are defined in the File Transfer Profile [9] and Generic Object Exchange Profile [7] specifications.

page 426 of 1082

IrDA Interoperability

Bluetooth.

#### 5.3 OBJECT PUSH

The Object Push profile is the special case of the File Transfer Profile for beaming objects and optionally pulling the default objects. At a minimum, it offers the capability to exchange business cards, but is not limited to this service.

The interoperability requirements for the Object Push profile are defined in the Object Push Profile [10] and Generic Object Exchange Profile [7] specifications.

Bluetooth.

#### **6 REFERENCES**

- [1] Infrared Data Association, IrDA Object Exchange Protocol (IrOBEX), Version 1.2, April 1999
- [2] Bluetooth RFCOMM with TS 07.10, on page 385
- [3] Internet Engineering Task Force, IETF Directory List of RFCs (http://www.ietf.org/rfc/), May 1999.
- [4] The Internet Mail Consortium, vCard The Electronic Business Card Exchange Format, Version 2.1, September 1996.
- [5] The Internet Mail Consortium, vCalendar The Electronic Calendaring and Scheduling Exchange Format, Version 1.0, September 1996.
- [6] Infrared Data Association, IrMC (Ir Mobile Communications) Specification, Version 1.1, February 1999.
- [7] Bluetooth Generic Object Exchange Profile, see Volume 2.
- [8] Bluetooth Synchronization Profile, see Volume 2.
- [9] Bluetooth File Transfer Profile, see Volume 2.
- [10] Bluetooth Object Push Profile, see Volume 2.
- [11] ETSI, TS 07.10, Version 6.3.0
- [12] Bluetooth Service Discovery Protocol, see Volume 2.
- [13] Internet Assigned Numbers Authority, IANA Protocol/Number Assignments Directory (http://www.iana.org/numbers.html), May 1999.

References 29 November 1999 427

page 428 of 1082

IrDA Interoperability

Bluetooth.

# 7 LIST OF ACRONYMS AND ABBREVIATIONS

| Abbreviation or Acronym | Meaning                                                |
|-------------------------|--------------------------------------------------------|
| GEOP                    | Generic Object Exchange Profile                        |
| IrDA                    | Infrared Data Association                              |
| IrMC                    | Ir Mobile Communications                               |
| L2CAP                   | Logical Link Control and Adaptation Protocol           |
| LSB                     | Least Significant Byte                                 |
| MSB                     | Most Significant Byte                                  |
| OBEX                    | Object exchange protocol                               |
| PDU                     | Protocol Data Unit                                     |
| RFCOMM                  | Serial cable emulation protocol based on ETSI TS 07.10 |
| SD                      | Service Discovery                                      |
| SDP                     | Service Discovery Protocol                             |
| SDDB                    | Service Discovery Database                             |
| TCP/IP                  | Transport Control Protocol/Internet Protocol           |

# Part F:3

# TELEPHONY CONTROL PROTOCOL SPECIFICATION

**TCS Binary** 

This document describes the Bluetooth
Telephony Control protocol Specification –
Binary (TCS Binary), using a bit-oriented
protocol. This protocol defines the call control
signalling for the establishment of speech and
data calls between Bluetooth devices.
In addition, it defines mobility management
procedures for handling Bluetooth TCS
devices.

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 430 of 1082

Telephony Control Protocol Specification

Bluetooth.

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 431 of 1082

Telephony Control Protocol Specification

# Bluetooth.

# **CONTENTS**

| 1 | Gen  | eral Des | cription                                 | 435 |
|---|------|----------|------------------------------------------|-----|
|   | 1.1  | Overvi   | ew                                       | 435 |
|   | 1.2  | Operat   | tion between devices                     | 435 |
|   | 1.3  | Operat   | ion between layers                       | 437 |
| 2 | Call | Control  | (CC)                                     | 439 |
|   | 2.1  | Call Sta | ates                                     | 439 |
|   | 2.2  | Call Es  | stablishment                             | 439 |
|   |      | 2.2.1    | Call Request                             | 439 |
|   |      | 2.2.2    | Bearer selection                         | 440 |
|   |      | 2.2.3    | Overlap Sending                          | 441 |
|   |      | 2.2.4    | Call Proceeding                          | 441 |
|   |      |          | 2.2.4.1 Call proceeding, enbloc sending  | 441 |
|   |      |          | 2.2.4.2 Call proceeding, overlap sending |     |
|   |      |          | 2.2.4.3 Expiry of timer T310             |     |
|   |      | 2.2.5    | Call Confirmation                        | 442 |
|   |      | 2.2.6    | Call Connection                          | 442 |
|   |      | 2.2.7    | Call Information                         | 443 |
|   |      | 2.2.8    | Non-selected user clearing               | 443 |
|   |      | 2.2.9    | In-band tones and announcements          | 443 |
|   |      | 2.2.10   | Failure of call establishment            | 444 |
|   |      | 2.2.11   | Call Establishment Message Flow          | 445 |
|   | 2.3  | Call Cl  | earing                                   | 446 |
|   |      | 2.3.1    | Normal Call Clearing                     | 446 |
|   |      | 2.3.2    | Abnormal Call Clearing                   | 447 |
|   |      | 2.3.3    | Clear Collision                          | 447 |
|   |      | 2.3.4    | Call Clearing Message Flow               | 448 |

#### page 432 of 1082

| Telephony Control Protocol Specification |     |                         |                                 |     |  |  |
|------------------------------------------|-----|-------------------------|---------------------------------|-----|--|--|
| 3                                        | Gro | 449                     |                                 |     |  |  |
|                                          | 3.1 |                         |                                 |     |  |  |
|                                          | 3.2 | The Wireless User Group |                                 | 449 |  |  |
|                                          |     | 3.2.1                   | Description                     |     |  |  |
|                                          |     | 3.2.2                   | Encryption within the WUG       | 450 |  |  |
|                                          |     | 3.2.3                   | Unconscious pairing             | 450 |  |  |
|                                          | 3.3 | Obtain                  | Access Rights                   | 451 |  |  |
|                                          |     | 3.3.1                   | Procedure description           | 451 |  |  |
|                                          |     | 3.3.2                   | Message flow                    | 451 |  |  |
|                                          | 3.4 | Config                  | juration Distribution           | 452 |  |  |
|                                          |     | 3.4.1                   | Procedure Description           | 452 |  |  |
|                                          |     | 3.4.2                   | Message flow                    | 452 |  |  |
|                                          | 3.5 |                         | nter-member Access              |     |  |  |
|                                          |     | 3.5.1                   | Listen Request                  | 453 |  |  |
|                                          |     | 3.5.2                   | Listen Accept                   | 453 |  |  |
|                                          |     | 3.5.3                   | Listen Reject by the WUG Master | 454 |  |  |
|                                          |     | 3.5.4                   | Listen Reject by the WUG Member | 454 |  |  |
|                                          |     | 3.5.5                   | Message flow                    | 454 |  |  |
| 4                                        | Con | Connectionless TCS (CL) |                                 |     |  |  |
| 5                                        | Sup | 456                     |                                 |     |  |  |
|                                          | 5.1 | Calling                 | 456                             |     |  |  |
|                                          | 5.2 |                         | start & stop                    |     |  |  |
|                                          |     | 5.2.1                   | Start DTMF request              |     |  |  |
|                                          |     | 5.2.2                   | Start DTMF response             | 457 |  |  |
|                                          |     | 5.2.3                   | Stop DTMF request               | 457 |  |  |
|                                          |     | 5.2.4                   | Stop DTMF response              | 457 |  |  |
|                                          |     | 5.2.5                   | Message flow                    | 457 |  |  |
|                                          | 5.3 | Regist                  | 458                             |     |  |  |

| Telephony Control Protocol Specification |     |                |                                                  |     |  |
|------------------------------------------|-----|----------------|--------------------------------------------------|-----|--|
| 6                                        | Mes | 459            |                                                  |     |  |
|                                          | 6.1 | _              | ontrol Message Formats                           |     |  |
|                                          |     | 6.1.1          | ALERTING                                         |     |  |
|                                          |     | 6.1.2          | CALL PROCEEDING                                  | 460 |  |
|                                          |     | 6.1.3          | CONNECT                                          | 461 |  |
|                                          |     | 6.1.4          | CONNECT ACKNOWLEDGE                              | 461 |  |
|                                          |     | 6.1.5          | DISCONNECT                                       | 462 |  |
|                                          |     | 6.1.6          | INFORMATION                                      | 462 |  |
|                                          |     | 6.1.7          | PROGRESS                                         | 463 |  |
|                                          |     | 6.1.8          | RELEASE                                          | 463 |  |
|                                          |     | 6.1.9          | RELEASE COMPLETE                                 | 464 |  |
|                                          |     | 6.1.10         | SETUP                                            | 464 |  |
|                                          |     | 6.1.11         | SETUP ACKNOWLEDGE                                | 465 |  |
|                                          |     | 6.1.12         | Start DTMF                                       | 465 |  |
|                                          |     | 6.1.13         | Start DTMF Acknowledge                           | 466 |  |
|                                          |     | 6.1.14         | Start DTMF Reject                                | 466 |  |
|                                          |     | 6.1.15         | Stop DTMF                                        | 466 |  |
|                                          |     | 6.1.16         | Stop DTMF Acknowledge                            | 467 |  |
|                                          | 6.2 | Group<br>6.2.1 | Management Message Formats ACCESS RIGHTS REQUEST | 467 |  |
|                                          |     | 6.2.2          | ACCESS RIGHTS ACCEPT                             |     |  |
|                                          |     | 6.2.3          | ACCESS RIGHTS REJECT                             |     |  |
|                                          |     | 6.2.4          | INFO SUGGEST                                     |     |  |
|                                          |     | 6.2.5          | INFO ACCEPT                                      |     |  |
|                                          |     | 6.2.6          | LISTEN REQUEST                                   |     |  |
|                                          |     |                | LISTEN SUGGEST                                   |     |  |
|                                          |     | 6.2.8          | LISTEN ACCEPT                                    |     |  |
|                                          |     | 6.2.9          | LISTEN REJECT                                    |     |  |
|                                          | 6.3 |                | onnectionless Message Formats                    |     |  |
|                                          | 0.0 | 6.3.1          | CL INFO                                          | 470 |  |
| 7                                        | Mes | sage co        | ding                                             | 471 |  |
|                                          | 7.1 |                | ew                                               |     |  |
|                                          | 7.2 | Protoco        | 472                                              |     |  |
|                                          | 7.3 |                | ge Type                                          |     |  |
|                                          | 7.4 |                | nformation Elements                              |     |  |
|                                          |     | 7.4.1          | Coding rules                                     |     |  |
|                                          |     | 7.4.2          | Audio control                                    |     |  |
|                                          |     | 7.4.3          | Bearer capability                                |     |  |
|                                          |     | 7.4.4          | Call class                                       | 479 |  |

# **ATTACHMENT H**

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 434 of 1082

| Telep | hony Co                | ntrol Proto                             | col Specification    | Bluetooth |  |
|-------|------------------------|-----------------------------------------|----------------------|-----------|--|
|       |                        | 7.4.5                                   | Called party number  | 480       |  |
|       |                        | 7.4.6                                   | Calling party number | 481       |  |
|       |                        | 7.4.7                                   | Cause                | 482       |  |
|       |                        | 7.4.8                                   | Clock offset         | 482       |  |
|       |                        | 7.4.9                                   | Company specific     | 483       |  |
|       |                        | 7.4.10                                  | Configuration data   | 484       |  |
|       |                        | 7.4.11                                  | Destination CID      | 485       |  |
|       |                        | 7.4.12                                  | Keypad facility      | 485       |  |
|       |                        | 7.4.13                                  | Progress indicator   | 485       |  |
|       |                        | 7.4.14                                  | SCO Handle           |           |  |
|       |                        | 7.4.15                                  | Sending complete     | 486       |  |
|       |                        | 7.4.16                                  | Signal               | 486       |  |
| 8     | Message Error handling |                                         | 487                  |           |  |
|       | 8.1                    |                                         |                      |           |  |
|       | 8.2                    | Message Too Short or Unrecognized48     |                      |           |  |
|       | 8.3                    | Message Type or Message Sequence Errors |                      |           |  |
|       | 8.4                    | Information Element Errors              |                      |           |  |
| 9     | Protocol Parameters    |                                         |                      | 489       |  |
|       | 9.1                    | Protoco                                 | 489                  |           |  |
| 10    | Refe                   | 490                                     |                      |           |  |
| 11    | List                   | 491                                     |                      |           |  |
| 12    | List of Tables         |                                         |                      |           |  |
| Δnn   | endix 1                | L-TCS C                                 | Call States          | 493       |  |

Bluetooth.

#### 1 GENERAL DESCRIPTION

#### 1.1 OVERVIEW

The Bluetooth Telephony Control protocol Specification Binary (TCS *Binary*) is based on the ITU-T Recommendation Q.931[1], applying the symmetrical provisions as stated in Annex D of Q.931. The resulting text does not discriminate between user and network side, but merely between Outgoing Side (the party originating the call) and Incoming Side (the party terminating the call). Effort was made to only apply those changes necessary for Bluetooth and foreseen applications, enabling re-use of Q.931 to the largest extent possible.

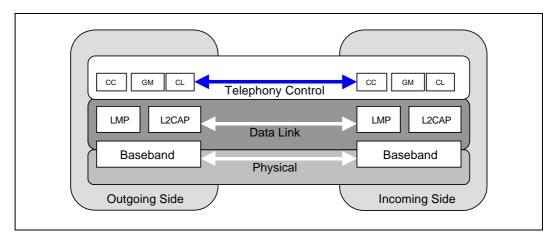



Figure 1.1: TCS within the Bluetooth stack

The TCS contains the following functionality:

- Call Control (CC) signalling for the establishment and release of speech and data calls between Bluetooth devices
- Group Management signalling to ease the handling of groups of Bluetooth devices
- ConnectionLess TCS (CL) provisions to exchange signalling information not related to an ongoing call

#### 1.2 OPERATION BETWEEN DEVICES

TCS uses point-to-point signalling and may use point-to-multipoint signalling. Point-to-point signalling is used when it is known to which side (Bluetooth device) a call needs to be established (single-point configuration).

Point-to-multipoint signalling may be used when there are more sides available for call establishment (*multi-point configuration*); e.g. when, for an incoming call, a home base station needs to alert all phones in range.

# Bluetooth.

Point-to-point signalling is mapped towards a connection-oriented L2CAP channel, whereas point-to-multipoint signalling is mapped towards the connectionless L2CAP channel, which in turn is sent as broadcast information on the beacon channel (piconet broadcast).

Figure 1.2 illustrates point-to-point signalling to establish a voice or data call in a single-point configuration. First the other device is notified of the call request using the point-to-point signalling channel (A). Next, this signalling channel is used to further establish the speech or data channel (B).

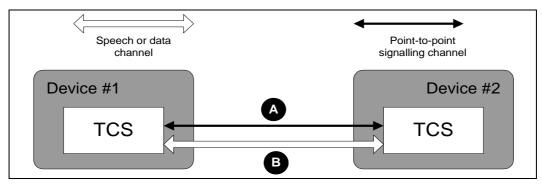



Figure 1.2: Point-to-point signalling in a single-point configuration

Figure 1.3 below illustrates how point-to-multipoint signalling and point-to-point signalling is used to establish a voice or data call in a multi-point configuration. First all devices are notified of the call request using point-to-multipoint signalling channel (A). Next, one of the devices answers the call on the point-to-point signalling channel (B); this signalling channel is used to further establish the speech or data channel (C).

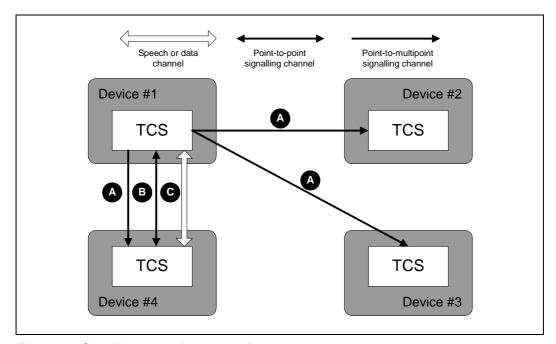



Figure 1.3: Signalling in a multi-point configuration

Bluetooth.

#### 1.3 OPERATION BETWEEN LAYERS

TCS implementations should follow the general architecture described below (note that, for simplicity, handling of data calls is not drawn).

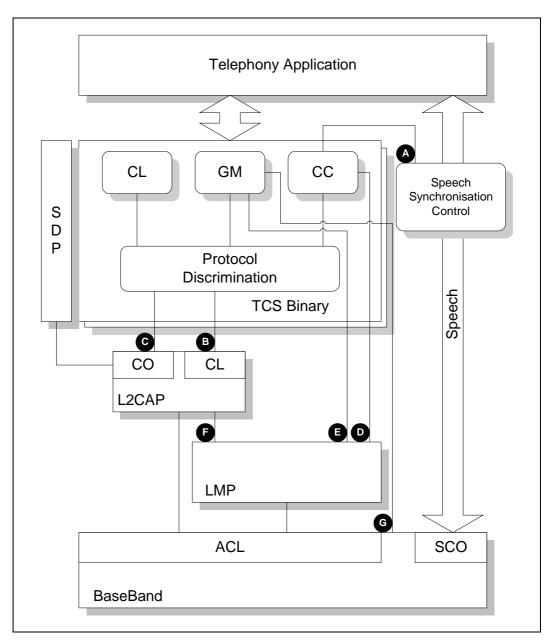



Figure 1.4: TCS Architecture

The internal structure of TCS Binary contains the functional entities Call Control, Group Management and ConnectionLess as described in Section 1.1 on page 435, complemented with the Protocol Discrimination which, based upon the TCS internal protocol discriminator, routes traffic to the appropriate functional entity.

page 438 of 1082

Telephony Control Protocol Specification

Bluetooth.

To handle more calls simultaneously, multiple instances of TCS Binary may exist at the same time. Discrimination between the multiple instances can be based on the L2CAP channel identifier.

TCS Binary interfaces with a number of other (Bluetooth) entities to provide its (telephone) services to the application. The interfaces are identified in Figure 1.4 above, and information is exchanged across these interfaces for the following purposes:

- A The Call Control entity provides information to the speech synchronization control about when to connect (disconnect) the speech paths. This information is based upon the call control messages (e.g. reception of CONNECT ACKNOWLEDGE or DISCONNECT, see Section 2 on page 439)
- B To send a SETUP message (see Section 2.2.1 on page 439) using point-to-multipoint signalling, it is delivered on this interface to L2CAP for transmission on the connectionless channel. The other way round L2CAP uses this interface to inform TCS of a SETUP message received on the connectionless channel. The connectionless L2CAP channel maps onto the piconet broadcast
- C Whenever a TCS message needs to be sent using point-to-point signalling, it is delivered on this interface to L2CAP for transmission on a connection-oriented channel. During L2CAP channel establishment specific quality of service to be used for the connection will be indicated, in particular the usage of low power modes (L2CAP will inform LMP about this interface F)
- D The Call Control entity controls the LMP directly, for the purpose of establishing and releasing SCO links
- E & G. The Group Management entity controls the LMP and LC/Baseband directly during initialization procedures to control (for example) the inquiry, paging and pairing.

Bluetooth.

# 2 CALL CONTROL (CC)

#### 2.1 CALL STATES

The call states used by the TCS are those identified in Q.931[1], for the user side only. To allow for implementation within computing power- and memory-restricted devices, only a subset of the states is mandatory for TCS based implementations. This mandatory subset is termed **Lean TCS**.

The states are named as follows. States in bold are mandatory states, part of Lean TCS:

**General States** 

Null (0)

Active (10)

Disconnect request (11)

Disconnect indication (12)

Release request (19)

**Outgoing Side States** 

Call initiated (1)

Overlap sending (2)

Outgoing call proceeding (3)

Call delivered (4)

**Incoming Side States** 

Call present (6)

Call received (7)

Connect request (8)

Incoming call proceeding (9)

Overlap receiving (25)

These states, together with the state transitions, have been indicated in the state diagram contained in Appendix 1 – TCS Call States. For clarity, a separate state diagram has been included for Lean TCS.

#### 2.2 CALL ESTABLISHMENT

A connection-oriented L2CAP channel between the Outgoing and Incoming Side shall be available before any of the CC procedures can operate.

Additionally, in a multi-point configuration (see Section 1.2 on page 435), a connectionless L2CAP channel shall be available between the Outgoing and Incoming Side.

#### 2.2.1 Call Request

The Outgoing Side initiates call establishment by sending a SETUP message, and starting timer T303.

Bluetooth.

In case of a single-point configuration (see Section 1.2 on page 435), the SETUP message is delivered on the connection-oriented channel.

In case of a multi-point configuration (see Section 1.2 on page 435), the SETUP message may be delivered on the connection-less channel. This causes the SETUP message to be transmitted as a broadcast message at every beacon instant (as described in Baseband Specification Section 10.8.4 on page 115).

If no response (as prescribed in Section 2.2.4 on page 441) is received from the Incoming Side before timer T303 expires, the Outgoing Side shall:

- 1. If the SETUP message was delivered on a connection-less channel, return to the Null state. This stops the transmission of the SETUP message.
- 2. If the SETUP message was delivered on a connection-oriented channel, send a RELEASE COMPLETE message to the Incoming Side. This message should contain cause # 102, recovery on timer expiry.

The SETUP message shall always contain the call class. It shall also contain all the information required by the Incoming Side to process the call. The number digits within the Called party number information element may optionally be incomplete, thus requiring the use of overlap sending (Section 2.2.3 on page 441). The SETUP message may optionally contain the Sending complete information element in order to indicate that the number is complete.

Following the transmission of the SETUP message, the Outgoing Side shall enter the Call initiated state. On receipt of the SETUP message the Incoming Side shall enter the Call present state.

#### 2.2.2 Bearer selection

The SETUP message sent during the Call Request may contain the Bearer capability information element, to indicate the requested bearer. The Incoming Side may negotiate on the requested bearer by including a Bearer capability information element in the first message in response to the SETUP message.

The Bearer capability information element indicates which lower layer resources (the *bearer channel*) are used during a call. If bearer capability 'Synchronous Connection-Oriented (SCO)' is indicated, an SCO link will be used, with the indicated packet type and voice coding to enable speech calls. If bearer capability 'Asynchronous Connection-Less (ACL)' is indicated, an ACL link will be used. On top of this, there will be an L2CAP channel with indicated QoS requirements, to enable data calls. If bearer capability 'None' is indicated, no separate bearer channel will be established.

Note: it is the responsibility of the implementation to assure that the bearer capability as indicated is available to the call.

Bluetooth.

#### 2.2.3 Overlap Sending

If the received SETUP message does not contain a Sending complete indication information element, and contains either –

- a) incomplete called-number information, or
- b) called-number information which the Incoming Side cannot determine to be complete,

then the Incoming Side shall start timer T302, send a SETUP ACKNOWL-EDGE message to the Outgoing Side, and enter the Overlap receiving state.

When the SETUP ACKNOWLEDGE message is received, the Outgoing Side shall enter the Overlap sending state, stop timer T303, and start timer T304.

After receiving the SETUP ACKNOWLEDGE message, the Outgoing Side shall send the remainder of the call information (if any) in the called party number information element of one or more INFORMATION messages.

The Outgoing Side shall restart timer T304 when each INFORMATION message is sent.

The INFORMATION message, which completes the information sending, may contain a sending complete information element. The Incoming Side shall restart timer T302 on receipt of every INFORMATION message not containing a sending complete indication, if it cannot determine that the called party number is complete.

At the expiry of timer T304, the Outgoing Side shall initiate call clearing in accordance with Section 2.3.1 with cause #102, recovery on timer expiry.

At the expiry of timer T302, the Incoming Side shall:

- if it determines that the call information is incomplete, initiate call clearing in accordance with Section 2.3.1 with cause #28, *invalid number format*.
- otherwise the Incoming Side shall reply with a CALL PROCEEDING, ALERTING or CONNECT message.

#### 2.2.4 Call Proceeding

#### 2.2.4.1 Call proceeding, enbloc sending

If enbloc sending is used (i.e. the Incoming Side can determine it has received sufficient information in the SETUP message from the Outgoing Side to establish the call) the Incoming Side shall send a CALL PROCEEDING message to the Outgoing Side to acknowledge the SETUP message and to indicate that the call is being processed. Upon receipt of the CALL PROCEEDING message, the Outgoing Side shall enter the Outgoing Call proceeding state stop

Bluetooth

timer T303 and start timer T310. After sending the CALL PROCEEDING message, the Incoming Side shall enter the Incoming Call proceeding state.

#### 2.2.4.2 Call proceeding, overlap sending

Following the occurrence of one of these conditions –

- the receipt by the Incoming Side of a Sending complete indication, or
- analysis by the Incoming Side that all call information necessary to effect call establishment has been received,

the Incoming Side shall send a CALL PROCEEDING message to the Outgoing Side, stop timer T302, and enter the Incoming Call proceeding state.

When the Outgoing Side receives of the CALL PROCEEDING message it shall enter the Outgoing Call proceeding state, stop timer T304 and, if applicable, start timer T310.

#### 2.2.4.3 Expiry of timer T310

On expiry of T310 (i.e. if the Outgoing Side does not receive an ALERTING, CONNECT, DISCONNECT or PROGRESS message), the Outgoing Side shall initiate call clearing in accordance with Section 2.3.1 on page 446 with cause #102, recovery on timer expiry.

#### 2.2.5 Call Confirmation

Upon receiving an indication that user alerting has been initiated at the called address, the Incoming Side shall send an ALERTING message, and shall enter the Call received state.

When the Outgoing Side receives the ALERTING message, the Outgoing Side may begin an internally generated alerting indication and shall enter the Call delivered state. The Outgoing Side shall stop timer T304 (in case of overlap receiving), stop timer T303 or T310 (if running), and start timer T301 (unless another internal altering supervision timer function exists).

On expiry of T301, the Outgoing Side shall initiate call clearing in accordance with Section 2.3.1 on page 446 with cause #102, recovery on timer expiry.

#### 2.2.6 Call Connection

An Incoming Side indicates acceptance of an incoming call by sending a CONNECT message to the Outgoing Side, and stopping the user alerting. Upon sending the CONNECT message the Incoming Side shall start timer T313.

Bluetooth.

On receipt of the CONNECT message, the Outgoing Side shall stop any internally generated alerting indications, shall stop (if running) timers T301, T303, T304, and T310, shall complete the requested bearer channel to the Incoming Side, shall send a CONNECT ACKNOWLEDGE message, and shall enter the Active state.

The CONNECT ACKNOWLEDGE message indicates completion of the requested bearer channel. Upon receipt of the CONNECT ACKNOWLEDGE message, the Incoming Side shall connect to the bearer channel, stop timer T313 and enter the Active state.

When timer T313 expires prior to the receipt of a CONNECT ACKNOWLEDGE message, the Incoming Side shall initiate call clearing in accordance with Section 2.3.1 on page 446 with cause #102, recovery on timer expiry.

#### 2.2.7 Call Information

While in the Active state, both sides may exchange any information related to the ongoing call using INFORMATION messages.

#### 2.2.8 Non-selected user clearing

When the call has been delivered on a connection-less channel (in case of a multi-point configuration), in addition to sending a CONNECT ACKNOWL-EDGE message to the Incoming Side selected for the call, the Outgoing Side shall send a RELEASE message (indicating cause #26, non-selected user clearing) to all other Incoming Sides that have sent SETUP ACKNOWLEDGE, CALL PROCEEDING, ALERTING, or CONNECT messages in response to the SETUP message. These RELEASE messages are used to notify the Incoming Sides that the call is no longer offered to them.

#### 2.2.9 In-band tones and announcements

When the Incoming Side provides in-band tones/announcements, and if the requested bearer implies speech call, the Incoming Side will first complete the bearer channel (if not already available). Then a progress indicator #8, *in-band information or appropriate pattern is now available* is sent simultaneously with the application of the in-band tone/announcement. This progress indicator may be included in any call control message that is allowed to contain the progress indicator information element or, if there is no call state change, in a dedicated PROGRESS message.

Upon receipt of this message, the Outgoing Side may connect (if not already connected) to the bearer channel to receive the in-band tone/announcement.

page 444 of 1082

Telephony Control Protocol Specification

Bluetooth.

#### 2.2.10 Failure of call establishment

In the Call present, Overlap receiving, Incoming call proceeding, or Call received states, the Incoming Side may initiate clearing as described in Section 2.3 on page 446 with a cause value indicated. Examples of some the cause values that may be used to clear the call, when the Incoming Side is in the Call present, Overlap receiving, or Incoming call proceeding state are the following:

#1 unassigned (unallocated) number #3 no route to destination #17 user busy #18 no user responding #22 number changed #28 invalid number format (incomplete number) #34 no circuit/channel available #44 requested circuit/channel not available #58 bearer capability not presently available #65 bearer capability not implemented

Examples of two of the cause values that may be used to clear the call when the Incoming Side is in the Call received state are as follows:

#19 no answer from user (user alerted) #21 call rejected by user

Bluetooth.

# 2.2.11 Call Establishment Message Flow

The figure below provides a complete view of the messages exchanged during successful Call Establishment, as described in the sections above. The mandatory messages, part of the Lean TCS, are indicated by a solid arrow. A dotted arrow indicates the optional messages. A triangle indicates a running timer.

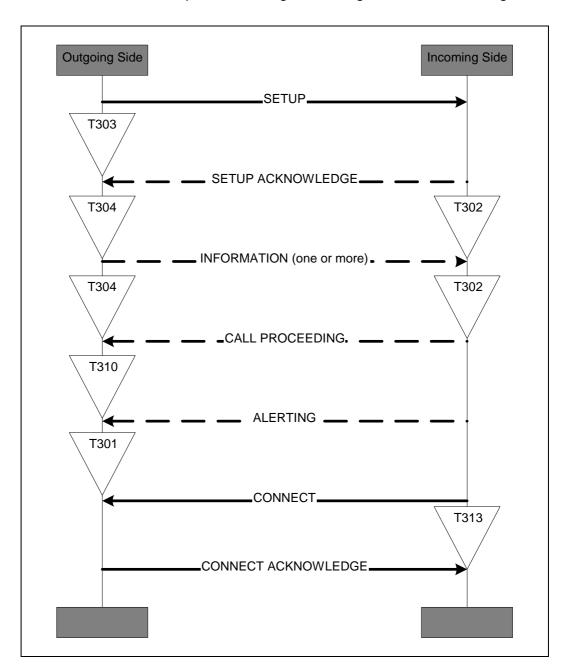



Figure 2.1: Call establishment message flow

page 446 of 1082

Telephony Control Protocol Specification

Bluetooth

#### 2.3 CALL CLEARING

# 2.3.1 Normal Call Clearing

Apart from the exceptions identified in Section 2.3.2 on page 447, the clearing procedures are symmetrical and may be initiated by either the Outgoing or the Incoming Side. In the interest of clarity, the following procedures describe only the case where the Outgoing Side initiates clearing.

On sending or receiving any call clearing message, any protocol timer other than T305 and T308 shall be stopped.

The Outgoing Side shall initiate clearing by sending a DISCONNECT message, starting timer T305, disconnecting from the bearer channel, and entering the Disconnect request state.

The Incoming Side shall enter the Disconnect indication state upon receipt of a DISCONNECT message. This message prompts the Incoming Side to disconnect from the bearer channel. Once the channel used for the call has been disconnected, the Incoming Side shall send a RELEASE message to the Outgoing Side, start timer T308, and enter the Release request state.

On receipt of the RELEASE message the Outgoing Side shall cancel timer T305, release the bearer channel, send a RELEASE COMPLETE message, and return to the Null state.

Following the receipt of a RELEASE COMPLETE message from the Outgoing Side, the Incoming Side shall stop timer T308, release the bearer channel, and return to the Null state.

If the Outgoing Side does not receive a RELEASE message in response to the DISCONNECT message before timer T305 expires, it shall send a RELEASE message to the Incoming Side with the cause number originally contained in the DISCONNECT message, start timer T308 and enter the Release request state.

If in the Release request state, a RELEASE COMPLETE message is not received before timer T308 expires, the side that expected the message shall return to the Null state.

# Clearing by the called user employing user-provided tones/announcements

In addition to the procedures described above, if the requested bearer signals a speech call, the Outgoing Side may apply in-band tones/announcements in the clearing phase. When in-band tones/announcements are provided, the Outgoing Side will first complete the bearer channel (if not already available), and next send the DISCONNECT message containing progress indicator #8, in-band information or appropriate pattern is now available.

Bluetooth.

Upon receipt of this message, the Incoming Side may connect (if not already connected) to the bearer channel to receive the in-band tone/announcement, and enter the Disconnect indication state.

The Incoming Side may subsequently continue clearing (before the receipt of a RELEASE from the Outgoing Side) by disconnecting from the bearer channel, sending a RELEASE message, starting timer T308, and entering the Release request state.

# 2.3.2 Abnormal Call Clearing

Under normal conditions, call clearing is initiated when either side sends a DIS-CONNECT message and follows the procedures defined in Section 2.3.1 on page 446. The only exceptions to the above rule are as follows:

- a In response to a SETUP message, the Incoming Side can reject a call (e.g. because of unavailability of suitable resources) by responding with a RELEASE COMPLETE message provided no other response has previously been sent, and enter the Null state
- b In case of a multi-point configuration, non-selected user call clearing will be initiated with RELEASE message(s) from the Outgoing Side (Section 2.2.8 on page 443)
- c In case of a multi-point configuration, where the SETUP message is delivered on an connection-less channel, if a remote (calling) user disconnect indication is received during call establishment, any Incoming Side which has responded, or subsequently responds, shall be cleared by a RELEASE message, and the procedures of Section 2.3.1 on page 446 are then followed for that user. The Outgoing Side enters the Null state upon completion of clearing procedures for all responding Incoming Sides.

#### 2.3.3 Clear Collision

Clear collision occurs when the Incoming and the Outgoing Sides simultaneously transfer DISCONNECT messages. When either side receives a DISCONNECT message while in the Disconnect request state, the side shall stop timer T305, disconnect the bearer channel (if not disconnected), send a RELEASE message, start timer T308, and enter the Release request state.

Clear collision can also occur when both sides simultaneously transfer RELEASE messages. The entity receiving such a RELEASE message while within the Release request state shall stop timer T308, release the bearer channel, and enter the Null state (without sending or receiving a RELEASE COMPLETE message).

Bluetooth.

# 2.3.4 Call Clearing Message Flow

The figure below provides the complete view on the messages exchanged during normal Call Clearing, as described in the sections above. All messages are mandatory.

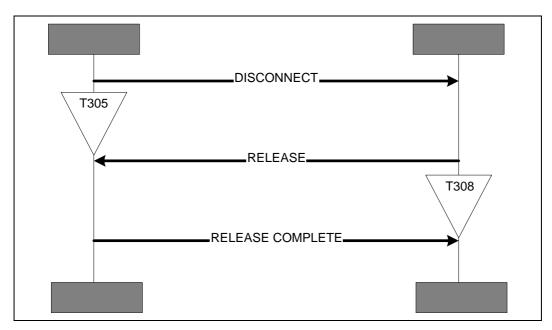



Figure 2.2: Call clearing message flow

Bluetooth.

# 3 GROUP MANAGEMENT (GM)

#### 3.1 OVERVIEW

The Group Management entity provides procedures for managing a group of devices.

The following procedures are supported:

- Obtain access rights (Section 3.3 on page 451)
   enables the requesting device to use the telephony services
   of another device, part of a group of devices
- Configuration distribution (Section 3.4 on page 452)
   facilitates the handling and operation of a group of devices
- Fast inter-member access (Section 3.5 on page 453)
   enables faster contact establishment between devices of the same group

A connection-oriented L2CAP channel between devices shall be available before any of the GM procedures can operate.

For group management, the concept of Wireless User Group (WUG) is used.

#### 3.2 THE WIRELESS USER GROUP

# 3.2.1 Description

A WUG consists of a number of Bluetooth units supporting TCS. One of the devices is called the WUG master. The WUG master is typically a gateway, providing the other Bluetooth devices – called WUG members – with access to an external network. All members of the WUG in range are members of a piconet (active or parked). Master of this piconet is always the WUG master.

The main relational characteristics of a WUG are:

- All units that are part of a WUG know which unit is the WUG master and which other units are member of this WUG. WUG members receive this information from the WUG master.
- When a new unit has paired with the WUG master, it is able to communicate
  and perform authentication and encryption with any other unit part of the
  WUG without any further pairing/initialization. The WUG master provides the
  required authentication and encryption parameters to the WUG members.

Both relational characteristics are maintained through the Configuration distribution procedure.

page 450 of 1082

Telephony Control Protocol Specification

Bluetooth

# 3.2.2 Encryption within the WUG

In order to allow for encrypted transmission on the connectionless L2CAP channel, the WUG master issues a temporary key (K<sub>master</sub>). As a Bluetooth unit is not capable of switching between two or more encryption keys in real time, this key is normally also used for encrypted transmission on the connection-oriented channel (individually addressed traffic). Since the WUG master piconet may be in operation for extended periods without interruption, the K<sub>master</sub> shall be changed periodically.

In order to allow for authentication and encryption to be performed between WUG members, the WUG master may use the Configuration distribution procedure to issue link keys that the WUG members use for communication with each other. Just as if pairing had created these keys, the keys are unique to a pair of WUG members and hence a WUG member uses a different key for every other WUG member it connects to.

The Configuration distribution shall always be performed using encrypted links. The  $K_{master}$  shall not be used for encryption; rather the WUG master shall ensure that the semi-permanent key for the specific WUG member addressed shall be used.

# 3.2.3 Unconscious pairing

For TCS, pairing a device with the WUG master implies pairing a device with all members of the WUG. This is achieved using the Configuration distribution procedure. This avoids the user of the device having to pair with each and every device of the WUG individually.

In Bluetooth, pairing is not related to a specific service but rather to a specific device. After pairing, all services provided by a device are accessible, if no further application- or device-specific protection is provided.

Without further provisions, pairing a device with the WUG master implies that all services provided by the new device are accessible to all other WUG members. And vice versa, without further provisions, the new device can access all services provided by other WUG members.

For this reason, implementers of TCS – and in particular the Configuration distribution procedure – are recommended to add provisions where:

- 1. a new device entering the WUG is not mandated to initiate the Obtain access rights procedure to become a WUG member, and is consequently only able to use the services provided by the WUG master (gateway)
- 2. a WUG master can reject a request to obtain access rights
- 3. a WUG member is not forced to accept the pairing information received during the Configuration distribution

This applies in particular to devices offering more than just TCS- related services.

Bluetooth.

#### 3.3 OBTAIN ACCESS RIGHTS

Using the Obtain access rights procedure, a device can obtain the rights to use the telephony services provided by another device, part of a WUG.

#### 3.3.1 Procedure description

A device requests access rights by sending an ACCESS RIGHTS REQUEST message and starting timer T401. Upon receipt of the ACCESS RIGHTS REQUEST message, the receiving device accepts the request for access rights by sending an ACCESS RIGHTS ACCEPT.

When the requesting device receives the ACCESS RIGHTS ACCEPT, it shall stop timer T401. Then, the access rights procedure has completed successfully.

If no response has been received before the expiration of timer T401, the requesting device shall consider the request for access rights to be denied.

If, upon receipt of the ACCESS RIGHTS REQUEST message, the receiving device is for some reason unable to accept the access rights, it shall reply with an ACCESS RIGHTS REJECT message. Upon receipt of an ACCESS RIGHTS REJECT message, the requesting device shall stop timer T401 and consider the request for access rights to be denied.

#### 3.3.2 Message flow

The figure below provides the complete view on the messages exchanged during the Obtain access rights procedure.

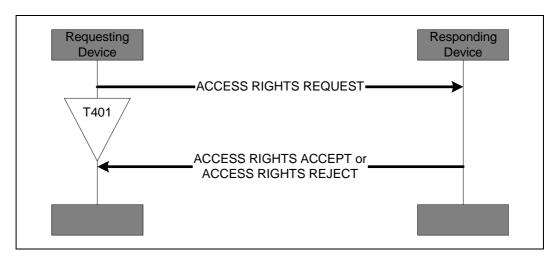



Figure 3.1: Obtain access rights message flow

Bluetooth

#### 3.4 CONFIGURATION DISTRIBUTION

The units in the WUG need to be informed about changes in the WUG; e.g. when a unit is added or removed. The Configuration distribution procedure is used to exchange this data.

When a WUG configuration change occurs, the WUG master initiates the Configuration distribution procedure on all WUG members. The WUG master keeps track of which WUG members have been informed of WUG configuration changes.

Some WUG members may be out of range and may therefore not be reached. The update of these WUG members will be performed when these members renew contact with the WUG master.

#### 3.4.1 Procedure Description

The WUG master initiates the Configuration distribution procedure by starting timer T403, and transferring the INFO SUGGEST message. The INFO SUGGEST message contains the complete WUG configuration information. Upon receipt of the INFO SUGGEST message, the WUG member shall send an INFO ACCEPT message, to acknowledge the proper receipt of the WUG configuration information.

When the WUG master receives the INFO ACCEPT, the timer T401 is stopped, and the Configuration distribution procedure has completed successfully. On expiry of timer T403, the Configuration distribution procedure is terminated.

#### 3.4.2 Message flow

The figure below provides the complete view on the messages exchanged during the Configuration distribution procedure, as described in the sections above.

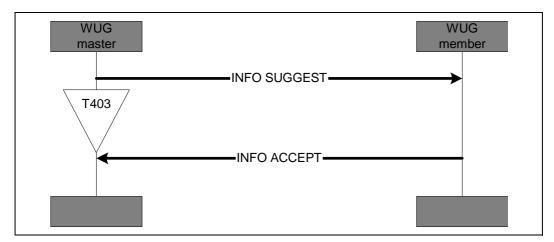



Figure 3.2: Configuration distribution message flow

Bluetooth.

#### 3.5 FAST INTER-MEMBER ACCESS

When two WUG members are both active in the WUG master piconet, a WUG member can use the Fast inter-member access procedure to obtain fast access to another WUG member. With the Fast inter-member access procedure, the originating WUG member obtains clock information from the terminating WUG member and forces the terminating WUG member to go into PAGE\_SCAN for a defined period (T406).

#### 3.5.1 Listen Request

The originating WUG member initiates the Fast inter-member access procedure by starting timer T404 and transferring the LISTEN REQUEST message to the WUG master, indicating the WUG member with which it wishes to establish contact.

If, before expiry of timer T404, the originating WUG member receives no response to the LISTEN REQUEST message, the originating WUG member shall terminate the procedure.

#### 3.5.2 Listen Accept

Upon receipt of the LISTEN REQUEST message, the WUG master checks that the indicated WUG member is part of the WUG. If this is the case, the WUG master initiates the Fast inter-member access towards the terminating WUG member side by starting timer T405 and sending the LISTEN SUGGEST message to the terminating WUG member.

Upon receipt of the LISTEN SUGGEST message, the terminating WUG member confirms the suggested action (internal call) by sending a LISTEN ACCEPT message to the WUG master. This message contains the terminating WUG member's clock offset. After sending the LISTEN ACCEPT, the terminating WUG member shall go to PAGE-SCAN state, for T406 seconds, to enable connection establishment by the originating WUG member.

Upon receipt of the LISTEN ACCEPT message, the WUG master stops timer T405, and informs the originating WUG member of the result of the WUG fast inter-member access by sending a LISTEN ACCEPT message. This message contains the terminating WUG member's clock offset. Upon receipt of the LISTEN ACCEPT message, the originating WUG member stops timer T404, and starts paging the terminating WUG member.

If no response to the LISTEN SUGGEST message is received by the WUG master before the first expiry of timer T405, then the WUG master shall terminate the Fast inter-member access procedure by sending a LISTEN REJECT message to both originating and terminating WUG member using cause #102, recovery on timer expiry.

Bluetooth.

# 3.5.3 Listen Reject by the WUG Master

If the WUG master rejects the Fast inter-member access procedure, it sends a LISTEN REJECT message to the originating WUG member.

Valid cause values are:

#1, *Unallocated (unassigned) number* (when the indicated WUG member is not part of the WUG)

#17, *User busy* (in case terminating WUG member is engaged in an external call)

#20, Subscriber absent (upon failure to establish contact with the terminating WUG member), or

any cause value indicated in a LISTEN REJECT message received from/sent to the terminating WUG member.

Upon receipt of the LISTEN REJECT message, the originating WUG member stops timer T404, and terminates the procedure.

#### 3.5.4 Listen Reject by the WUG Member

If the terminating WUG member rejects the suggested action received in the LISTEN SUGGEST message, it sends a LISTEN REJECT message to the WUG master. Valid cause value is #17, *User busy* (in case terminating WUG member is engaged in another internal call).

Upon receipt of the LISTEN REJECT, the WUG master stops timer T405, and continues as described in Section 3.5.3 on page 454.

#### 3.5.5 Message flow

The figure below provides a view of the messages exchanged during Fast intermember access, as described in the sections above. A successful Fast intermember access procedure ends with the terminating WUG member going into page scan, thus allowing the originating WUG member to contact him directly.

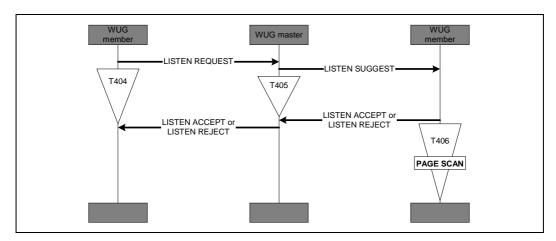



Figure 3.3: Fast inter-member access message flow

page 455 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 4 CONNECTIONLESS TCS (CL)

A connectionless TCS message can be used to exchange signalling information without establishing a TCS call. It is thus a connectionless service offered by TCS.

A connectionless TCS message is a CL INFO message (as defined in Section 6.3.1 on page 470).

A connection-oriented L2CAP channel between the Outgoing and Incoming Side shall be available before a CL INFO message can be sent.

Note: In the case of a connection-oriented channel, it may choose to delay the termination of the channel for a defined period to exchange more CL INFO messages.

Alternatively, in a multi-point configuration (see Section 1.2 on page 435), a connectionless L2CAP channel may be used and, if so, shall be available before a CL INFO can be sent.

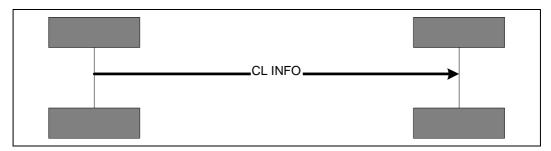



Figure 4.1: Connectionless TCS message flow

page 456 of 1082

Telephony Control Protocol Specification

Bluetooth.

# **5 SUPPLEMENTARY SERVICES (SS)**

The TCS provides explicit support for only one supplementary service, the Calling Line Identity (seeSection 5.1 on page 456).

For supplementary services provided by an external network, using DTMF sequences for the activation/de-activation and interrogation of supplementary services, the DTMF start & stop procedure is supported (see Section 5.2 on page 456). This procedure allows both finite and infinite tone lengths.

Section 5.3 on page 458 specifies how a specific supplementary service, provided by an external network, called register recall is supported.

For other means of supplementary service control, no explicit support is specified. Support may be realized by either using the service call, or use the company specific information element, or a combination.

# 5.1 CALLING LINE IDENTITY

To inform the Incoming Side of the identity of the originator of the call, the Outgoing Side may include the calling party number information element (see Section 7.4.6 on page 481) in the SETUP message transferred as part of the call request.

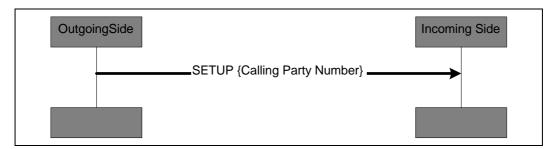



Figure 5.1: Calling line identity message flow

#### 5.2 DTMF START & STOP

The DTMF start & stop procedure is supported to provide supplementary service control on PSTN type of networks.

In principle DTMF messages can be initiated by either (Outgoing or Incoming) Side; in practice, however, the Side (gateway) connected to the external PSTN network will be the recipient.

DTMF messages can be transmitted only in the active state of a call. Tone generation shall end when the call is disconnected.

Bluetooth.

#### 5.2.1 Start DTMF request

A user may cause a DTMF tone to be generated; e.g. by depression of a key. The relevant action is interpreted as a requirement for a DTMF digit to be sent in a START DTMF message on an established signalling channel. This message contains the value of the digit to be transmitted (0, 1...9, A, B, C, D, \*, #).

Only a single digit will be transferred in each START DTMF message.

#### 5.2.2 Start DTMF response

The side receiving the START DTMF message will reconvert the received digit back into a DTMF tone which is applied toward the remote user, and return a START DTMF ACKNOWLEDGE message to the initiating side. This acknowledgment may be used to generate an indication as a feedback for a successful transmission.

If the receiving side cannot accept the START DTMF message, a START DTMF REJECT message will be sent to the initiating side, using cause #29, *Facility rejected*, indicating that sending DTMF is not supported by the external network.

# 5.2.3 Stop DTMF request

When the user indicates the DTMF sending should cease (e.g. by releasing the key) the initiating side will send a STOP DTMF message to the other side.

#### 5.2.4 Stop DTMF response

Upon receiving the STOP DTMF message, the receiving side will stop sending the DTMF tone (if still being sent) and return a STOP DTMF ACKNOWLEDGE message to the initiating side.

#### 5.2.5 Message flow

The figure below provides a view of the messages exchanged when a single DTMF tone needs to be generated.

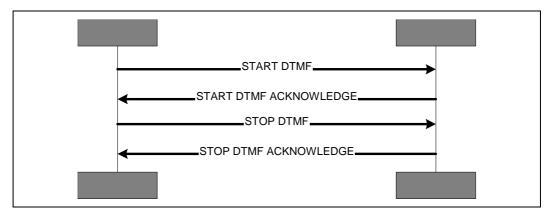



Figure 5.2: DTMF start & stop message flow

page 458 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 5.3 REGISTER RECALL

Register recall means to seize a register (with dial tone) to permit input of further digits or other action. In some markets, this is referred to as 'hook flash'. Register recall is supported by sending an INFORMATION message with a keypad facility information element, indicating 'register recall' (value 16H). Further digits are sent using the procedures as indicated in Section 5.2 above.

page 459 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 6 MESSAGE FORMATS

This section provides an overview of the structure of messages used in this specification, and defines the function and information contents (i.e. semantics) of each message.

Whenever a message is sent according to the procedures of Sections 2, 3 and 4, it shall contain the mandatory information elements, and optionally any combination of the optional information elements specified in this section for that message.

A message shall always be delivered in a single L2CAP packet. The start of a message (the LSB of the first octet) shall be aligned with the start of the L2CAP payload.

#### Each definition includes:

- a) A brief description of the message direction and use
- b) A table listing the information elements in order of their appearance in the message (same relative order for all message types)
- c) Indications for each information element in the table, specifying
  - the section of this specification describing the information element
  - whether inclusion in mandatory ('M') or optional ('O')
  - the length (or length range) of the information element, where '\*'
    denotes an undefined maximum length which may be application
    dependent.
- d) Further explanatory notes, as necessary

All message formats are denoted in octets.

Bluetooth.

# 6.1 CALL CONTROL MESSAGE FORMATS

#### 6.1.1 ALERTING

This message is sent by the incoming side to indicate that the called user alerting has been initiated.

Message Type: ALERTING

Direction: incoming to outgoing

| Information Element | Ref.   | Туре      | Length |
|---------------------|--------|-----------|--------|
| Message type        | 7.3    | М         | 1      |
| Bearer capability   | 7.4.3  | O Note 1) | 4(26)  |
| Progress indicator  | 7.4.13 | 0         | 2      |
| SCO Handle          | 7.4.14 | 0         | 2      |
| Destination CID     | 7.4.11 | 0         | 4      |
| Company specific    | 7.4.9  | 0         | 3-*    |

Table 6.1: ALERTING message content

Note 1: Allowed only in the first message sent by the incoming side.

#### **6.1.2 CALL PROCEEDING**

This message is sent by the incoming side to indicate that the requested call establishment has been initiated and no more call establishment information will be accepted.

Message Type: CALL PROCEEDING

Direction: incoming to outgoing

| Information Element | Ref.   | Туре      | Length |
|---------------------|--------|-----------|--------|
| Message type        | 7.3    | М         | 1      |
| Bearer capability   | 7.4.3  | O Note 1) | 4(26)  |
| Progress indicator  | 7.4.13 | 0         | 2      |
| SCO Handle          | 7.4.14 | 0         | 2      |
| Destination CID     | 7.4.11 | 0         | 4      |
| Company specific    | 7.4.9  | 0         | 3-*    |

Table 6.2: CALL PROCEEDING message content

Note 1: Allowed only in the first message sent by the incoming side.

Bluetooth.

#### **6.1.3 CONNECT**

This message is sent by the incoming side to indicate call acceptance by the called user.

Message Type: CONNECT

Direction: incoming to outgoing

| Information Element | Ref.   | Туре                 | Length |
|---------------------|--------|----------------------|--------|
| Message type        | 7.3    | М                    | 1      |
| Bearer capability   | 7.4.3  | O <sup>Note 1)</sup> | 4(26)  |
| SCO Handle          | 7.4.14 | 0                    | 2      |
| Company specific    | 7.4.9  | 0                    | 3-*    |

Table 6.3: CONNECT message content

Note 1: Allowed only in the first message sent by the incoming side.

#### 6.1.4 CONNECT ACKNOWLEDGE

This message is sent by the outgoing side to acknowledge the receipt of a CONNECT message.

Message Type: CONNECT ACKNOWLEDGE

Direction: outgoing to incoming

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| SCO Handle          | 7.4.14 | 0    | 2      |
| Destination CID     | 7.4.11 | 0    | 4      |
| Company specific    | 7.4.9  | 0    | 3-*    |

Table 6.4: CONNECT ACKNOWLEDGE message content

page 462 of 1082

Telephony Control Protocol Specification

Bluetooth.

#### 6.1.5 DISCONNECT

This message is sent by either side as an invitation to terminate the call.

Message Type: DISCONNECT

Direction: both

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Cause               | 7.4.7  | 0    | 2      |
| Progress indicator  | 7.4.13 | 0    | 2      |
| SCO Handle          | 7.4.14 | 0    | 2      |
| Destination CID     | 7.4.11 | 0    | 4      |
| Company specific    | 7.4.9  | 0    | 3-*    |

Table 6.5: DISCONNECT message content

#### **6.1.6 INFORMATION**

This message is sent by either side to provide additional information during call establishment (in case of overlap sending).

Message Type: INFORMATION

Direction: both

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Sending complete    | 7.4.15 | 0    | 1      |
| Keypad facility     | 7.4.12 | 0    | 2      |
| Called party number | 7.4.5  | 0    | 3-*    |
| Audio control       | 7.4.2  | 0    | 3-*    |
| Company specific    | 7.4.9  | 0    | 3-*    |

Table 6.6: INFORMATION message content

Bluetooth.

#### 6.1.7 PROGRESS

This message is sent by the incoming side to indicate the progress of a call in the event of interworking or by either side in the call with the provision of optional in-band information/patterns.

Message Type: PROGRESS

Direction: incoming to outgoing

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Progress indicator  | 7.4.13 | М    | 2      |
| SCO Handle          | 7.4.14 | 0    | 2      |
| Destination CID     | 7.4.11 | 0    | 4      |
| Company specific    | 7.4.9  | 0    | 3-*    |

Table 6.7: PROGRESS message content

#### 6.1.8 RELEASE

This message is used to indicate that the device sending the message had disconnected the channel (if any) and intends to release the channel, and that receiving device should release the channel after sending RELEASE COMPLETE.

Message Type: RELEASE

Direction: both

| Information Element | Ref.  | Туре                 | Length |
|---------------------|-------|----------------------|--------|
| Message type        | 7.3   | М                    | 1      |
| Cause               | 7.4.7 | O <sup>Note 1)</sup> | 2      |
| Company specific    | 7.4.9 | 0                    | 3-*    |

Table 6.8: RELEASE message content

Note 1: Mandatory in the first call clearing message.

Bluetooth.

#### **6.1.9 RELEASE COMPLETE**

This message is used to indicate that the device sending the message has released the channel (if any), and that the channel is available for re-use.

Message Type: RELEASE COMPLETE

Direction: both

| Information Element | Ref.  | Туре                 | Length |
|---------------------|-------|----------------------|--------|
| Message type        | 7.3   | М                    | 1      |
| Cause               | 7.4.7 | O <sup>Note 1)</sup> | 2      |
| Company specific    | 7.4.9 | 0                    | 3-*    |

Table 6.9: RELEASE COMPLETE message content

Note 1: Mandatory in the first call clearing message.

#### 6.1.10 **SETUP**

This message is sent by the outgoing side to initiate call establishment.

Message Type:

Direction:

| Information Element  | Ref.   | Туре | Length |
|----------------------|--------|------|--------|
| Message type         | 7.3    | М    | 1      |
| Call class           | 7.4.4  | М    | 2      |
| Sending complete     | 7.4.15 | 0    | 1      |
| Bearer capability    | 7.4.3  | 0    | 4(26)  |
| Signal               | 7.4.16 | 0    | 2      |
| Calling party number | 7.4.6  | 0    | 3-*    |
| Called party number  | 7.4.5  | 0    | 3-*    |
| Company specific     | 7.4.9  | 0    | 3-*    |

Table 6.10: SETUP message content

Bluetooth.

#### **6.1.11 SETUP ACKNOWLEDGE**

This message is sent by the incoming side to indicate that call establishment has been initiated, but additional information may be required.

Message Type: SETUP ACKNOWLEDGE

Direction: incoming to outgoing

| Information Element | Ref.   | Туре                 | Length |
|---------------------|--------|----------------------|--------|
| Message type        | 7.3    | М                    | 1      |
| Bearer capability   | 7.4.3  | O <sup>Note 1)</sup> | 4(26)  |
| Progress indicator  | 7.4.13 | 0                    | 2      |
| SCO Handle          | 7.4.14 | 0                    | 2      |
| Destination CID     | 7.4.11 | 0                    | 4      |
| Company specific    | 7.4.9  | 0                    | 3-*    |

Table 6.11: SETUP ACKNOWLEDGE message content

Note 1: Allowed only in the first message sent by the incoming side.

#### 6.1.12 Start DTMF

This message contains the digit the other side should reconvert back into a DTMF tone, which is then applied towards the remote user.

Message Type: Start DTMF

Direction: both

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Keypad facility     | 7.4.12 | М    | 2      |

Table 6.12: Start DTMF message content

page 466 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 6.1.13 Start DTMF Acknowledge

This message is sent to indicate the successful initiation of the action required by the Start DTMF message.

Message Type: Start DTMF Acknowledge

Direction: both

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Keypad facility     | 7.4.12 | М    | 2      |

Table 6.13: Start DTMF Acknowledge message content

# 6.1.14 Start DTMF Reject

This message is sent to indicate that the other side cannot accept the Start DTMF message.

Message Type: Start DTMF Reject

Direction: both

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Cause               | 7.4.7 | 0    | 2      |

Table 6.14: Start DTMF Reject message content

#### **6.1.15 Stop DTMF**

This message is used to stop the DTMF tone sent towards the remote user.

Message Type: Stop DTMF

Direction: both

| Information Element | Ref. | Туре | Length |
|---------------------|------|------|--------|
| Message type        | 7.3  | М    | 1      |

Table 6.15: Stop DTMF message content

Bluetooth.

467

#### 6.1.16 Stop DTMF Acknowledge

This message is sent to indicate that the sending of the DTMF tone has been stopped.

Message Type: Stop DTMF Acknowledge

Direction: both

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Keypad facility     | 7.4.12 | М    | 2      |

Table 6.16: Stop DTMF Acknowledge message content

# 6.2 GROUP MANAGEMENT MESSAGE FORMATS

#### 6.2.1 ACCESS RIGHTS REQUEST

This message is sent by the initiating side to obtain access rights.

Message Type: ACCESS RIGHTS REQUEST

Direction:

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.17: ACCESS RIGHTS REQUEST message content

#### 6.2.2 ACCESS RIGHTS ACCEPT

This message is sent by the responding side to indicate granting of access rights.

Message Type: ACCESS RIGHTS ACCEPT

Direction:

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.18: ACCESS RIGHTS ACCEPT message content

Bluetooth.

# **6.2.3 ACCESS RIGHTS REJECT**

This message is sent by the responding side to indicate denial of access rights.

Message Type: ACCESS RIGHTS REJECT

Direction:

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.19: ACCESS RIGHTS REJECT message content

#### 6.2.4 INFO SUGGEST

This message is sent by the WUG master to indicate that a change has occurred in the WUG configuration.

Message Type: INFO SUGGEST

Direction: WUG master to WUG member

| Information Element | Ref.   | Туре | Length |
|---------------------|--------|------|--------|
| Message type        | 7.3    | М    | 1      |
| Configuration Data  | 7.4.10 | М    | *      |
| Company specific    | 7.4.9  | 0    | 3-*    |

Table 6.20: INFO SUGGEST message content

### 6.2.5 INFO ACCEPT

This message is sent by the WUG member to indicate the acceptance of the updated WUG configuration.

Message Type: INFO ACCEPT

Direction: WUG member to WUG master

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.21: INFO ACCEPT message content

Bluetooth.

#### **6.2.6 LISTEN REQUEST**

This message is sent by a WUG member to indicate to the WUG master the request for a Fast inter-member access to the indicated WUG member.

Message Type: LISTEN REQUEST

Direction: WUG member to WUG master

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Called party number | 7.4.6 | М    | 3-*    |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.22: LISTEN REQUEST message content

#### 6.2.7 LISTEN SUGGEST

This message is sent by a WUG master to indicate to the WUG member the request for a Fast inter-member access.

Message Type: LISTEN SUGGEST

Direction: WUG master to WUG member

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.23: LISTEN SUGGEST message content

#### **6.2.8 LISTEN ACCEPT**

This message is sent to indicate the acceptance of the previous request for a Fast inter-member access.

Message Type: LISTEN ACCEPT

Direction: both

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Clock offset        | 7.4.8 | 0    | 4      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.24: LISTEN ACCEPT message content

page 470 of 1082

Telephony Control Protocol Specification

Bluetooth.

#### **6.2.9 LISTEN REJECT**

This message is sent to indicate the rejection of the previous request for a Fast inter-member access.

Message Type: LISTEN REJECT

Direction: both

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Cause               | 7.4.7 | 0    | 2      |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.25: LISTEN REJECT message content

# 6.3 TCS CONNECTIONLESS MESSAGE FORMATS

#### 6.3.1 CL INFO

This message is sent by either side to provide additional information in a connectionless manner.

Message Type: CL INFO

Direction: both

| Information Element | Ref.  | Туре | Length |
|---------------------|-------|------|--------|
| Message type        | 7.3   | М    | 1      |
| Audio control       | 7.4.2 | 0    | 3-*    |
| Company specific    | 7.4.9 | 0    | 3-*    |

Table 6.26: CL INFO message content

Bluetooth.

# 7 MESSAGE CODING

The figures and text in this section describe message contents. Within each octet, the bit designated 'bit 1' is transmitted first, followed by bit 2, 3, 4, etc. Similarly, the octet shown at the top of the figure is sent first.

Whenever a message is sent, according to the procedures of Sections 2, 3 and 4, it shall be coded as specified in this section.

#### 7.1 OVERVIEW

The coding rules follow ITU-T Recommendation Q.931, but is tailored to the specific needs of TCS.

Every message consists of:

- a) Protocol discriminator
- b) Message type, and
- c) Other information elements, as required

The Protocol discriminator and Message type is part of every TCS message, while the other information elements are specific to each message type.

| 8         | 7          | 6          | 5           | 4      | 3 | 2 | 1 |         |
|-----------|------------|------------|-------------|--------|---|---|---|---------|
| Protocol  | discrimina | ator       | Message     | e type |   |   |   | octet 1 |
| Other inf | ormation e | elements a | as required | d      |   |   |   | octet 2 |

Table 7.1: General message format

A particular information element shall be present only once in a given message.

The term 'default' implies that the value defined shall be used in the absence of any assignment or negotiation of alternative values.

For notation purposes – when a field extends over more than one octet, the order of bit values progressively decreases as the octet number increases. The least significant bit of the field is represented by the lowest numbered bit of the highest-numbered octet of the field. In general, bit 1 of each octet contains the least significant bit of a field.

page 472 of 1082

Telephony Control Protocol Specification

Bluetooth.

#### 7.2 PROTOCOL DISCRIMINATOR

The purpose of the protocol discriminator is to distinguish the TCS messages into different functional groups. The protocol discriminator is the first part of every message.

The protocol discriminator is coded according to Figure 7.1 and Table 7.2.

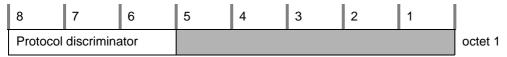



Figure 7.1: Protocol discriminator

| Bi  | Bits                      |   |                                |  |  |  |  |  |  |  |  |  |
|-----|---------------------------|---|--------------------------------|--|--|--|--|--|--|--|--|--|
| 8   | 7                         | 6 |                                |  |  |  |  |  |  |  |  |  |
| 0   | 0                         | 0 | Bluetooth TCS Call Control     |  |  |  |  |  |  |  |  |  |
| 0   | 0                         | 1 | Bluetooth TCS Group management |  |  |  |  |  |  |  |  |  |
| 0   | 1                         | 0 | Bluetooth TCS Connectionless   |  |  |  |  |  |  |  |  |  |
| All | All other values reserved |   |                                |  |  |  |  |  |  |  |  |  |

Table 7.2: Protocol discriminator

#### 7.3 MESSAGE TYPE

The purpose of the message type is to identify the function of the message being sent.

The Message type is the first part of every message and it is coded as shown in Figure 7.2 and Table 7.3.



Figure 7.2: Message type

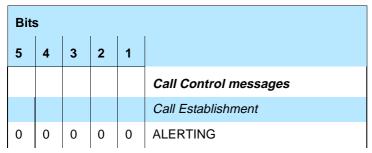



Table 7.3: Message type

# Bluetooth.

| Bits | S |   |   |   |                           |  |  |  |  |
|------|---|---|---|---|---------------------------|--|--|--|--|
| 5    | 4 | 3 | 2 | 1 |                           |  |  |  |  |
| 0    | 0 | 0 | 0 | 1 | CALL PROCEEDING           |  |  |  |  |
| 0    | 0 | 0 | 1 | 0 | CONNECT                   |  |  |  |  |
| 0    | 0 | 0 | 1 | 1 | CONNECT ACKNOWLEDGE       |  |  |  |  |
| 0    | 0 | 1 | 0 | 0 | PROGRESS                  |  |  |  |  |
| 0    | 0 | 1 | 0 | 1 | SETUP                     |  |  |  |  |
| 0    | 0 | 1 | 1 | 0 | SETUP ACKNOWLEDGE         |  |  |  |  |
|      |   |   |   |   | Call clearing             |  |  |  |  |
| 0    | 0 | 1 | 1 | 1 | DISCONNECT                |  |  |  |  |
| 0    | 1 | 0 | 0 | 0 | RELEASE                   |  |  |  |  |
| 0    | 1 | 0 | 0 | 1 | RELEASE COMPLETE          |  |  |  |  |
|      |   |   |   |   | Miscellaneous             |  |  |  |  |
| 0    | 1 | 0 | 1 | 0 | INFORMATION               |  |  |  |  |
| 1    | 0 | 0 | 0 | 0 | START DTMF                |  |  |  |  |
| 1    | 0 | 0 | 0 | 1 | START DTMF ACKNOWLEDGE    |  |  |  |  |
| 1    | 0 | 0 | 1 | 0 | START DTMF REJECT         |  |  |  |  |
| 1    | 0 | 0 | 1 | 1 | STOP DTMF                 |  |  |  |  |
| 1    | 0 | 1 | 0 | 0 | STOP DTMF ACKNOWLEDGE     |  |  |  |  |
|      |   |   |   |   | Group management messages |  |  |  |  |
| 0    | 0 | 0 | 0 | 0 | INFO SUGGEST              |  |  |  |  |
| 0    | 0 | 0 | 0 | 1 | INFO ACCEPT               |  |  |  |  |
| 0    | 0 | 0 | 1 | 0 | LISTEN REQUEST            |  |  |  |  |
| 0    | 0 | 0 | 1 | 1 | LISTEN ACCEPT             |  |  |  |  |
| 0    | 0 | 1 | 0 | 0 | LISTEN SUGGEST            |  |  |  |  |
| 0    | 0 | 1 | 0 | 1 | LISTEN REJECT             |  |  |  |  |
| 0    | 0 | 1 | 1 | 0 | ACCESS RIGHTS REQUEST     |  |  |  |  |
| 0    | 0 | 1 | 1 | 1 | ACCESS RIGHTS ACCEPT      |  |  |  |  |
| 0    | 1 | 0 | 0 | 0 | ACCESS RIGHTS REJECT      |  |  |  |  |
|      |   |   |   |   | Connectionless messages   |  |  |  |  |
| 0    | 0 | 0 | 0 | 0 | CL INFO                   |  |  |  |  |

Table 7.3: Message type

page 474 of 1082

Telephony Control Protocol Specification

**Bluetooth** 

# 7.4 OTHER INFORMATION ELEMENTS

# 7.4.1 Coding rules

The coding of other information elements follows the coding rules described below.

Three categories of information elements are defined:

- a) single octet information elements (see Figure 7.3 on page 474)
- b) double octet information element (see Figure 7.4 on page 474)
- c) variable length information elements (see Figure 7.5 on page 474).

Table 7.4 on page 474 summarizes the coding of the information element identified bits for those information elements used in this specification.

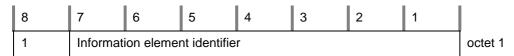



Figure 7.3: Single octet information element format

| 8        | 7                              | 6 | 5 | 4 | 3 | 2 | 1 |  |  |
|----------|--------------------------------|---|---|---|---|---|---|--|--|
| 1        | Information element identifier |   |   |   |   |   |   |  |  |
| Contents | s of information element       |   |   |   |   |   |   |  |  |

Figure 7.4: Double octet information element format

| I | 8                                                  | 7                              | 6 | 5 | 4 | 3 | 2 | 1 |  |  |  |  |
|---|----------------------------------------------------|--------------------------------|---|---|---|---|---|---|--|--|--|--|
|   | 0                                                  | Information element identifier |   |   |   |   |   |   |  |  |  |  |
|   | Length of contents of information element (octets) |                                |   |   |   |   |   |   |  |  |  |  |
|   | Contents of Information element                    |                                |   |   |   |   |   |   |  |  |  |  |

Figure 7.5: Variable length information element format

|   | Coding |   |   |   |   |   |   |                                   | Ref.   | Max                |
|---|--------|---|---|---|---|---|---|-----------------------------------|--------|--------------------|
| 8 | 7      | 6 | 5 | 4 | 3 | 2 | 1 |                                   | Rei.   | Length<br>(octets) |
| 1 |        |   |   |   |   |   |   | Single octet information elements |        |                    |
|   | 0      | 1 | 0 | 0 | 0 | 0 | 1 | Sending complete                  | 7.4.15 | 1                  |
| 1 |        |   |   |   |   |   |   | Double octet information elements |        |                    |

Table 7.4: Information element identifier coding

# Bluetooth

|   |   |   | Coc | ling |   |   |   |                                      | Def    | Max             |
|---|---|---|-----|------|---|---|---|--------------------------------------|--------|-----------------|
| 8 | 7 | 6 | 5   | 4    | 3 | 2 | 1 |                                      | Ref.   | Length (octets) |
|   | 1 | 0 | 0   | 0    | 0 | 0 | 0 | Call class                           | 7.4.4  | 2               |
|   | 1 | 0 | 0   | 0    | 0 | 0 | 1 | Cause                                | 7.4.7  | 2               |
|   | 1 | 0 | 0   | 0    | 0 | 1 | 0 | Progress indicator                   | 7.4.13 | 2               |
|   | 1 | 0 | 0   | 0    | 0 | 1 | 1 | Signal                               | 7.4.16 | 2               |
|   | 1 | 0 | 0   | 0    | 1 | 0 | 0 | Keypad facility                      | 7.4.12 | 2               |
|   | 1 | 0 | 0   | 0    | 1 | 0 | 1 | SCO handle                           | 7.4.14 | 2               |
| 0 |   |   |     |      |   |   |   | Variable length information elements |        |                 |
|   | 0 | 0 | 0   | 0    | 0 | 0 | 0 | Clock offset                         | 7.4.8  | 4               |
|   | 0 | 0 | 0   | 0    | 0 | 0 | 1 | Configuration data                   | 7.4.2  | *               |
|   | 0 | 0 | 0   | 0    | 0 | 1 | 0 | Bearer capability                    | 7.4.3  | 4(26)           |
|   | 0 | 0 | 0   | 0    | 0 | 1 | 1 | Destination CID                      | 7.4.11 | 4               |
|   | 0 | 0 | 0   | 0    | 1 | 0 | 0 | Calling party number                 | 7.4.6  | *               |
|   | 0 | 0 | 0   | 0    | 1 | 0 | 1 | Called party number                  | 7.4.5  | *               |
|   | 0 | 0 | 0   | 0    | 1 | 1 | 0 | Audio control                        | 7.4.2  | *               |
|   | 0 | 0 | 0   | 0    | 1 | 1 | 1 | Company specific                     | 7.4.9  | *               |

Table 7.4: Information element identifier coding

The descriptions of the information elements below are organized in alphabetical order. However, there is a particular order of appearance for each information element in a message. The code values of the information element identifier for the variable length formats are assigned in ascending numerical order, according to the actual order of appearance of each information element in a message. This allows the receiving devices to detect the presence or absence of a particular information element without scanning through an entire message.

Where the description of information elements in this specification contains spare bits, these bits are indicated as being set to '0'. In order to allow compatibility with future implementation, messages should not be rejected simply because a spare bit is set to '1'.

The second octet of a variable length information element indicates the total length of the contents of that information element regardless of the coding of the first octet (i.e. the length is calculated starting from octet 3). It is the binary coding of the number of octets of the contents, with bit 1 as the least significant bit (2°).

An optional variable-length information element may be present, but empty (zero length). The receiver should interpret this as if that information element

page 476 of 1082

Telephony Control Protocol Specification

Bluetooth.

was absent. Similarly, an absent information element should be interpreted by the receiver as if that information element was empty.

#### 7.4.2 Audio control

The purpose of the Audio control information elements is to indicate information relating to the control of audio.

| 8         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|-----------|---|---|---|---|---|---|---|--------|
| 0         | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1      |
| Length o  | 2 |   |   |   |   |   |   |        |
| Control i | 3 |   |   |   |   |   |   |        |

Figure 7.6:

| Cor | Control information (octet 3) |   |   |   |   |   |   |                                        |  |  |  |  |  |  |  |
|-----|-------------------------------|---|---|---|---|---|---|----------------------------------------|--|--|--|--|--|--|--|
|     | Bits                          |   |   |   |   |   |   |                                        |  |  |  |  |  |  |  |
|     | 7 6 5 4 3 2 1                 |   |   |   |   |   |   |                                        |  |  |  |  |  |  |  |
|     | 0 0 0 0 0 0                   |   |   |   |   |   |   | Volume increase                        |  |  |  |  |  |  |  |
|     | 0 0 0 0 0 0                   |   |   |   |   |   | 1 | Volume decrease                        |  |  |  |  |  |  |  |
|     | 0                             | 0 | 0 | 0 | 0 | 1 | 0 | Microphone gain increase               |  |  |  |  |  |  |  |
|     | 0 0 0 0 0 1                   |   |   |   |   |   |   | Microphone gain decrease               |  |  |  |  |  |  |  |
|     | 0 X X X X X                   |   |   |   |   |   |   | Reserved for Bluetooth standardization |  |  |  |  |  |  |  |
|     | 1                             | Χ | Χ | Χ | Χ | Χ | Χ | Company specific                       |  |  |  |  |  |  |  |

Table 7.5: Audio Control information element coding

#### 7.4.3 Bearer capability

The purpose of the Bearer capability information elements is to indicate a requested or available bearer service.

If this information element is absent, the default Bearer capability is Link type Synchronous Connection-Oriented with packet type HV3, using CVSD coding for the User information layer 1.

| 8                                                  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |  |  |
|----------------------------------------------------|---|---|---|---|---|---|---|--------|--|--|
| 0                                                  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1      |  |  |
| Length of contents of information element (octets) |   |   |   |   |   |   |   |        |  |  |
| Link type                                          | ) |   |   |   |   |   |   | 3      |  |  |

Figure 7.7:

Link type element coding = 00000000 (SCO)

page 477 of 1082

### Telephony Control Protocol Specification

Bluetooth.

| User information layer 1 | Packet type | 4 |
|--------------------------|-------------|---|
|--------------------------|-------------|---|

Figure 7.8:

Link type element coding = 00000001 (ACL)

| Fla                      | 4                        |    |  |  |  |  |
|--------------------------|--------------------------|----|--|--|--|--|
| Service                  | 5                        |    |  |  |  |  |
|                          |                          |    |  |  |  |  |
| Toker                    | Token Rate               |    |  |  |  |  |
|                          |                          | 8  |  |  |  |  |
|                          |                          | 9  |  |  |  |  |
|                          |                          | 10 |  |  |  |  |
| Token Bucke              | 11                       |    |  |  |  |  |
|                          | 12                       |    |  |  |  |  |
|                          |                          | 13 |  |  |  |  |
|                          |                          |    |  |  |  |  |
| Peak Bandwidth           | 15                       |    |  |  |  |  |
|                          | 16                       |    |  |  |  |  |
|                          | 17                       |    |  |  |  |  |
|                          |                          | 18 |  |  |  |  |
| Latency (mi              | 19                       |    |  |  |  |  |
|                          | 20                       |    |  |  |  |  |
|                          | 21                       |    |  |  |  |  |
|                          | 22                       |    |  |  |  |  |
| Delay Variation          | 23                       |    |  |  |  |  |
|                          | 24                       |    |  |  |  |  |
|                          |                          | 25 |  |  |  |  |
| User information layer 3 | User information layer 2 | 26 |  |  |  |  |

Figure 7.9:

Note: the Quality of Service is repeated at TCS level, as only TCS has the knowledge of end-to-end Quality of Service requirements.

page 478 of 1082

Telephony Control Protocol Specification

Bluetooth.

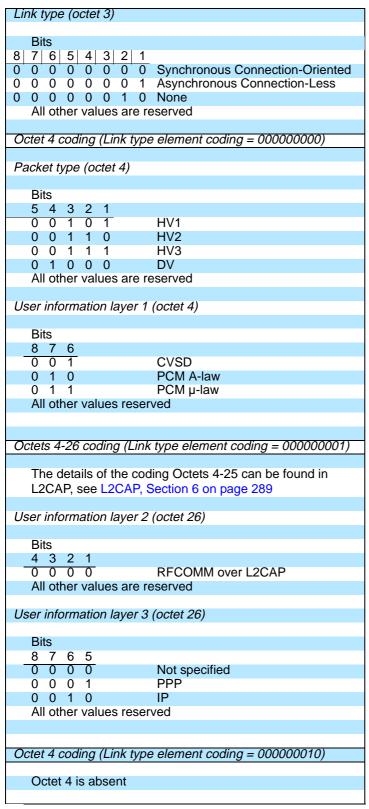



Table 7.6: Bearer capability information element coding

Bluetooth.

#### 7.4.4 Call class

The purpose of the Call class is to indicate the basic aspects of the service requested. This element allows the user to indicate the use of default attributes, thereby reducing the length of the set-up message.

| 8          | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|------------|---|---|---|---|---|---|---|--------|
| 1          | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1      |
| Call Class |   |   |   |   |   |   |   |        |

Figure 7.10:

| Call class (octet 2) |                           |    |   |   |   |   |   |                |  |
|----------------------|---------------------------|----|---|---|---|---|---|----------------|--|
|                      |                           |    |   |   |   |   |   |                |  |
|                      | Bi                        | ts |   |   |   |   |   |                |  |
| 8                    | 7                         | _  | _ |   | _ |   |   |                |  |
| 0                    |                           |    |   |   |   |   |   | External call  |  |
| 0                    | 0                         | 0  | 0 | 0 | 0 | 0 | 1 | Intercom call  |  |
| 0                    |                           |    |   |   |   |   |   | Service call   |  |
| 0                    |                           |    |   |   |   |   |   | Emergency call |  |
|                      | All other values reserved |    |   |   |   |   |   |                |  |
|                      |                           |    |   |   |   |   |   |                |  |

Table 7.7: Call class information element coding

#### Note

- An external call is a call to/from an external network; e.g. the PSTN.
- An intercom call is a call between Bluetooth devices.
- A service call is a call for configuration purposes.
- An emergency call is an external call using a dedicated emergency call number, using specific properties.

page 480 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 7.4.5 Called party number

The purpose of the Called party number information element is to identify the called party of a call.

| 8 | 7                                                  | 6          | 5   | 4   | 3          | 2            | 1     | Octets |  |  |  |
|---|----------------------------------------------------|------------|-----|-----|------------|--------------|-------|--------|--|--|--|
| 0 | 0                                                  | 1          |     |     |            |              |       |        |  |  |  |
|   | Length of contents of information element (octets) |            |     |     |            |              |       |        |  |  |  |
| 0 | Ту                                                 | pe of numb | oer | Num | bering pla | an identific | ation | 3      |  |  |  |
| 0 | 0 Number digits (IA5 characters) (Note)            |            |     |     |            |              |       |        |  |  |  |

Note – The number digits appear in multiple octet 4's in the same order in which they would be entered, that is, the number digit which would be entered first is located in the first octet 4.

Figure 7.11:

| Туре | of n  | umi   | ber (  | (octet 3)                           |
|------|-------|-------|--------|-------------------------------------|
|      |       |       |        |                                     |
| Bi   | ts    |       |        |                                     |
| 7    | _     | _     |        |                                     |
| 0    |       | 0     |        | Unknown                             |
|      | 0     |       |        | International number                |
| 0    | 1     | 0     |        | National number                     |
|      | 1     |       |        | Network specific number             |
|      |       |       |        | Subscriber number                   |
|      | 1     | 0     |        | Abbreviated number                  |
| 1    | 1     | 1     |        | Reserved for extension              |
| Al   | l oth | ner ' | valu   | es are reserved                     |
|      |       |       |        |                                     |
| Numb | erir  | ng p  | olan i | identification (octet 3)            |
| _    |       |       |        |                                     |
|      | ts    |       |        |                                     |
| 4    | _     | 2     | =      |                                     |
| 0    | -     |       | -      | Unknown                             |
| 0    | 0     | 0     | 1      | ISDN/telephony numbering plan E.164 |
|      | 0     |       |        | Data numbering plan Rec. X.121      |
|      | 1     |       | _      | Reserved                            |
| 1    | _     |       |        | National standard numbering plan    |
| 1    | 0     |       | 1      | Private numbering plan              |
| Al   | l oth | ner ' | valu   | es are reserved                     |
|      |       |       |        |                                     |

Table 7.8: Called party information element coding

Telephony Control Protocol Specification

Bluetooth.

# 7.4.6 Calling party number

The purpose of the Calling party number information element is to identify the origin of a call.

| 8 | 7               | 6       | 5 | 4 | 3 | 2 | 1              | Octets |
|---|-----------------|---------|---|---|---|---|----------------|--------|
| 0 | 0               | 0       | 0 | 0 | 1 | 0 | 0              | 1      |
|   | 2               |         |   |   |   |   |                |        |
| 0 | Тур             | ication | 3 |   |   |   |                |        |
| 0 | Presei<br>indic |         | 0 | 0 | 0 |   | ening<br>cator | 4      |
| 0 |                 | 5 etc.  |   |   |   |   |                |        |

Figure 7.12:

| Type of number (   | ,                                        |  |  |  |  |  |  |  |  |  |  |
|--------------------|------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 7 6 5              | Linknown                                 |  |  |  |  |  |  |  |  |  |  |
| 7 6 5              | Linknown                                 |  |  |  |  |  |  |  |  |  |  |
|                    | Unknown                                  |  |  |  |  |  |  |  |  |  |  |
|                    | 0 0 Unknown                              |  |  |  |  |  |  |  |  |  |  |
| 0 0                | International number                     |  |  |  |  |  |  |  |  |  |  |
|                    | National number                          |  |  |  |  |  |  |  |  |  |  |
|                    | Network specific number                  |  |  |  |  |  |  |  |  |  |  |
|                    | Subscriber number                        |  |  |  |  |  |  |  |  |  |  |
|                    | Abbreviated number                       |  |  |  |  |  |  |  |  |  |  |
|                    | Reserved for extension                   |  |  |  |  |  |  |  |  |  |  |
|                    | es are reserved                          |  |  |  |  |  |  |  |  |  |  |
| 7 0 0              |                                          |  |  |  |  |  |  |  |  |  |  |
| Numbering plan i   | dentification (octet 3)                  |  |  |  |  |  |  |  |  |  |  |
|                    |                                          |  |  |  |  |  |  |  |  |  |  |
| Bits               |                                          |  |  |  |  |  |  |  |  |  |  |
| 4 3 2 1            |                                          |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0            | Unknown                                  |  |  |  |  |  |  |  |  |  |  |
| 0 0 0 1            | ISDN/telephony numbering plan E.164      |  |  |  |  |  |  |  |  |  |  |
| 0 0 1 1            | Data numbering plan Rec. X.121           |  |  |  |  |  |  |  |  |  |  |
| 0 1 0 0            | Reserved                                 |  |  |  |  |  |  |  |  |  |  |
| 1 0 0 0            | National standard numbering plan         |  |  |  |  |  |  |  |  |  |  |
| 1 0 0 1            | Private numbering plan                   |  |  |  |  |  |  |  |  |  |  |
| All other value    | es are reserved                          |  |  |  |  |  |  |  |  |  |  |
|                    |                                          |  |  |  |  |  |  |  |  |  |  |
| Presentation indic | cator (octet 4)                          |  |  |  |  |  |  |  |  |  |  |
|                    |                                          |  |  |  |  |  |  |  |  |  |  |
| Bits               |                                          |  |  |  |  |  |  |  |  |  |  |
| 7 6                |                                          |  |  |  |  |  |  |  |  |  |  |
| 0 0                | Presentation allowed                     |  |  |  |  |  |  |  |  |  |  |
| _                  | Presentation restricted                  |  |  |  |  |  |  |  |  |  |  |
|                    | Number not available due to interworking |  |  |  |  |  |  |  |  |  |  |
|                    | Reserved                                 |  |  |  |  |  |  |  |  |  |  |
| All other value    | es are reserved                          |  |  |  |  |  |  |  |  |  |  |
|                    |                                          |  |  |  |  |  |  |  |  |  |  |

Table 7.9: Calling party information element coding

page 482 of 1082

Telephony Control Protocol Specification

Bluetooth.

| So | creening indicator (octet 4) |                                    |  |  |  |  |  |  |  |  |  |
|----|------------------------------|------------------------------------|--|--|--|--|--|--|--|--|--|
|    |                              |                                    |  |  |  |  |  |  |  |  |  |
|    | Bits                         |                                    |  |  |  |  |  |  |  |  |  |
|    | 2 1                          |                                    |  |  |  |  |  |  |  |  |  |
|    | 0 0                          | User-provided, not screened        |  |  |  |  |  |  |  |  |  |
|    | 0 1                          | User-provided, verified and passed |  |  |  |  |  |  |  |  |  |
|    | 1 0                          | User-provided, verified and failed |  |  |  |  |  |  |  |  |  |
|    | 1 1                          | Network provided                   |  |  |  |  |  |  |  |  |  |
|    | All ot                       | her values are reserved            |  |  |  |  |  |  |  |  |  |
|    |                              |                                    |  |  |  |  |  |  |  |  |  |

Table 7.9: Calling party information element coding

## 7.4.7 Cause

The purpose of the Cause is to indicate the remote side of the cause of the failure of the requested service.

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|---|---|---|---|---|---|---|---|--------|
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1      |
|   | 2 |   |   |   |   |   |   |        |

Figure 7.13:

| Ca | ause (octet 2)                                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------|
| 8  | Bits   7 6 5 4 3 2 1                                                                                             |
| 0  | These 7 bits are coded alike the Cause value subfield defined in Section 2.2.5 of ITU-T Recommendation Q.850[2]. |
|    | Q.000[2].                                                                                                        |

Table 7.10: Cause information element coding

#### 7.4.8 Clock offset

The purpose of the Clock offset information element is to indicate the Bluetooth clock offset used.

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|---|---|---|---|---|---|---|---|--------|
| 0 | 1 |   |   |   |   |   |   |        |
|   | 2 |   |   |   |   |   |   |        |
|   | 3 |   |   |   |   |   |   |        |
|   | 4 |   |   |   |   |   |   |        |

Figure 7.14:

Telephony Control Protocol Specification

Bluetooth.

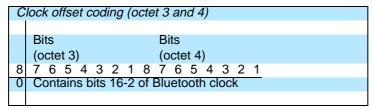



Table 7.11: Clock offset information element coding

# 7.4.9 Company specific

The purpose of the Company specific information element is to send non-standardized information.

| 8 | 7                         | 6 | 5         | 4            | 3 | 2 | 1 | Octets |  |  |  |
|---|---------------------------|---|-----------|--------------|---|---|---|--------|--|--|--|
| 0 | 0 0 0 0 1 1 1             |   |           |              |   |   |   |        |  |  |  |
|   | 2                         |   |           |              |   |   |   |        |  |  |  |
|   | Company Identification    |   |           |              |   |   |   |        |  |  |  |
|   |                           | С | ompany lo | dentificatio | n |   |   | 4      |  |  |  |
|   | Company specific contents |   |           |              |   |   |   |        |  |  |  |
|   |                           |   |           |              |   |   |   |        |  |  |  |

Figure 7.15:

| C | Company identification coding (octet 3 and octet 4) |     |     |   |   |   |   |   |    |     |     |   |   |   |   |              |
|---|-----------------------------------------------------|-----|-----|---|---|---|---|---|----|-----|-----|---|---|---|---|--------------|
|   | Bits Bits                                           |     |     |   |   |   |   |   |    |     |     |   |   |   |   |              |
|   | ы                                                   | เร  |     |   |   |   |   |   | ы  | เร  |     |   |   |   |   |              |
|   | (0                                                  | cte | t 3 | ) |   |   |   |   | (0 | cte | t 4 | ) |   |   |   |              |
| 8 | 7                                                   | 6   | 5   | 4 | 3 | 2 | 1 | 8 | 7  | 6   | 5   | 4 | 3 | 2 | 1 |              |
| 0 | 0                                                   | 0   | 0   | 0 | 0 | 0 | 0 | 0 | 0  | 0   | 0   | 0 | 0 | 0 | 0 | Ericsson     |
| ^ | Λ                                                   | Λ   | Λ   | 0 | 0 | Λ | 0 | 0 | 0  | 0   | 0   | 0 | Λ | 0 | 1 | Nokia Mobile |
| U | U                                                   | U   | U   | U | U | U | U | U | U  | U   | U   | U | U | U | ' | Phones       |
| 0 | Λ                                                   | Λ   | Λ   | Λ | Λ | 0 | Λ | Λ | Λ  | Λ   | Λ   | Λ | Λ | 1 | Λ | Intel        |
| U | U                                                   | U   | U   | U | U | U | U | U | U  | U   | U   | U | U | ' | U | Corporation  |
| ^ | ^                                                   | ^   | ^   | ^ | ^ | ^ | ^ | ^ | ^  | ^   | ^   | ^ | ^ | 4 | 4 | IBM          |
| U | U                                                   | 0   | U   | 0 | U | U | 0 | U | U  | 0   | 0   | 0 | U | 1 | 1 | Corporation  |
| ^ | Λ                                                   | 0   | Λ   | Λ | Λ | Λ | Λ | Λ | Λ  | Λ   | Λ   | 0 | 4 | 0 | Λ | Toshiba      |
| U | U                                                   | U   | 0   | 0 | U | 0 | U | 0 | U  | 0   | 0   | U | 1 | U | U | Corporation  |
|   | All other values are reserved                       |     |     |   |   |   |   |   |    |     |     |   |   |   |   |              |
|   |                                                     |     |     |   |   |   |   |   |    |     |     |   |   |   |   |              |

Table 7.12: Company specific information element coding

page 484 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 7.4.10 Configuration data

The purpose of the Configuration data information element is to indicate the Configuration data.

| 8 | 7      | 6         | 5           | 4        | 3          | 2         | 1    | Octets        |  |  |  |  |
|---|--------|-----------|-------------|----------|------------|-----------|------|---------------|--|--|--|--|
| 0 | 0      | 0         | 0           | 0        | 0          | 0         | 1    | 1             |  |  |  |  |
|   | Length | of conte  | nts of info | ormation | element    | (octets)  |      | 2             |  |  |  |  |
| 0 | Inte   | rnal num  | ber of W    | UG mem   | ber 1 (IA  | 5 charact | ers) | 3             |  |  |  |  |
| 0 | Inte   | ers)      | 4           |          |            |           |      |               |  |  |  |  |
|   |        | 5         |             |          |            |           |      |               |  |  |  |  |
|   | Е      |           |             |          |            |           |      |               |  |  |  |  |
|   |        |           | 10          |          |            |           |      |               |  |  |  |  |
|   |        | 11        |             |          |            |           |      |               |  |  |  |  |
|   | Link   |           |             |          |            |           |      |               |  |  |  |  |
|   |        | 26        |             |          |            |           |      |               |  |  |  |  |
|   |        |           |             |          |            |           |      |               |  |  |  |  |
| 0 | Inte   | ernal num | nber of W   | /UG men  | nber n (IA | 5 charac  | ter) | 3+((n-1)*24)  |  |  |  |  |
| 0 | Inte   | ernal num | nber of W   | /UG mem  | nber n (IA | 5 charac  | ter) | 4+((n-1)*24)  |  |  |  |  |
|   | •      |           |             |          |            |           |      | 5+((n-1)*24)  |  |  |  |  |
|   | Е      | Bluetooth | address     | of WUG   | member     | n         |      |               |  |  |  |  |
|   |        |           |             |          |            |           |      | 10+((n-1)*24) |  |  |  |  |
|   |        |           |             |          |            |           |      | 11+((n-1)*24) |  |  |  |  |
|   | Link   | key to be | e used to   | wards W  | UG mem     | ber n     |      |               |  |  |  |  |
|   |        |           |             |          |            |           |      | 2+(n*24)      |  |  |  |  |

Note – The internal number (2 digits) appears in octets 3 and 4 in the same order in which they would be entered; that is, the number digit which would be entered first is located in octet 3.

Note – The octets 3-26 are repeated for all *n* WUG members.

Figure 7.16:

Telephony Control Protocol Specification

Bluetooth.

#### 7.4.11 Destination CID

The purpose of the Destination CID information element is to enable the remote side to associate the established L2CAP channel with the ongoing call. The Destination CID is identical to the Destination CID (DCID) exchanged in the Configuration Request packet (see L2CAP, Section 5.4 on page 280).

| 8 | 7                                                  | 6 | 5 | 4 | 3 | 2 | 1 | Octets |  |  |  |
|---|----------------------------------------------------|---|---|---|---|---|---|--------|--|--|--|
| 0 | 1                                                  |   |   |   |   |   |   |        |  |  |  |
|   | Length of contents of information element (octets) |   |   |   |   |   |   |        |  |  |  |
|   | DCID byte 1                                        |   |   |   |   |   |   |        |  |  |  |
|   | DCID byte 0                                        |   |   |   |   |   |   |        |  |  |  |

Figure 7.17:

# 7.4.12 Keypad facility

The purpose of the Keypad facility information element is to convey IA5 characters; e.g. entered by means of a terminal keypad.

| 8 | 7                                           | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|---|---------------------------------------------|---|---|---|---|---|---|--------|
| 1 | 1                                           | 0 | 0 | 0 | 1 | 0 | 0 | 1      |
| 0 | Keypad facility information (IA5 character) |   |   |   |   |   |   | 2      |

Figure 7.18:

#### 7.4.13 Progress indicator

The purpose of the Progress indicator information element is to describe an event that has occurred during the life of a call.

| 8 | 7                    | 6 | 5 | 4 | 3 | 2 | 1 | Octets |
|---|----------------------|---|---|---|---|---|---|--------|
| 1 | 1                    | 0 | 0 | 0 | 0 | 1 | 0 | 1      |
| 0 | Progress description |   |   |   |   |   |   |        |

Figure 7.19:

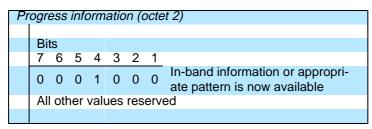



Table 7.13: Progress indicator information element coding

page 486 of 1082

Telephony Control Protocol Specification

Bluetooth.

## 7.4.14 SCO Handle

The purpose of the SCO handle information element is to enable the remote side to associate the established SCO link with the ongoing call. The SCO handle is identical to the SCO handle exchanged in the LMP\_SCO\_link\_req sent by the piconet master (see LMP, Section 3.21 on page 219).

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octets |  |
|---|---|---|---|---|---|---|---|--------|--|
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1      |  |
|   | 2 |   |   |   |   |   |   |        |  |

Figure 7.20:

## 7.4.15 Sending complete

The purpose of the Sending complete information element is to optionally indicate completion of called party number.

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Octet |
|---|---|---|---|---|---|---|---|-------|
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1     |

Figure 7.21:

# 7.4.16 Signal

The purpose of the Signal information element is to convey information to a user regarding tones and alerting signals.

| 8 | 7            | 6 | 5 | 4 | 3 | 2 | 1 | Octets |  |
|---|--------------|---|---|---|---|---|---|--------|--|
| 1 | 1            | 0 | 0 | 0 | 0 | 1 | 1 | 1      |  |
|   | Signal value |   |   |   |   |   |   |        |  |

Figure 7.22:

| Si | gna  | l va | lue | (oc | tet 2 | 2) |   |                                        |
|----|------|------|-----|-----|-------|----|---|----------------------------------------|
|    |      |      |     |     |       |    |   |                                        |
|    | Bits |      |     |     |       |    |   |                                        |
| 8  | 7    | 6    | 5   | 4   | 3     | 2  | 1 |                                        |
| 0  | 1    | 0    | 0   | 0   | 0     | 0  | 0 | External call                          |
| 0  | 1    | 0    | 0   | 0   | 0     | 0  | 1 | Internal call                          |
| 0  | 1    | _    | _   | _   | _     | •  | _ | Call back                              |
| 0  | Х    | Χ    | Χ   | Χ   | Χ     | Χ  | Χ | Reserved for Bluetooth standardization |
| 1  | Х    | Χ    | Χ   | Χ   | Χ     | Χ  | Χ | Company specific                       |
|    |      |      |     |     |       |    |   |                                        |

Table 7.14: Signal information element coding

Telephony Control Protocol Specification

Bluetooth.

# 8 MESSAGE ERROR HANDLING<sup>1</sup>

## 8.1 PROTOCOL DISCRIMINATION ERROR

When a message is received with a protocol discriminator coded other than the ones defined in Section 7.2 on page 472, that message shall be ignored.

## 8.2 MESSAGE TOO SHORT OR UNRECOGNIZED

When a message is received that is too short to contain a complete message type information element, that message shall be ignored.

When a message is received that contains a complete message type information element, but with a value which is not recognized as a defined message type, that message shall be ignored.

#### 8.3 MESSAGE TYPE OR MESSAGE SEQUENCE ERRORS

Whenever an unexpected message, except RELEASE or RELEASE COM-PLETE message is received in any state other than the Null state, that message shall be ignored.

When an unexpected RELEASE message is received, the receiving side shall disconnect and release the bearer channel if established, return a RELEASE COMPLETE message, stop all timers, and enter the Null state.

When an unexpected RELEASE COMPLETE message is received, the receiving side shall disconnect and release the bearer channel if established, stop all timers, and enter the Null state.

## 8.4 INFORMATION ELEMENT ERRORS

The information elements in a message shall appear (if present for information elements indicated as optional) in the exact order as indicated in Section 6.

When a message is received which misses a mandatory information element, or which contains a mandatory information element with invalid content, the message shall be ignored.

In case the error occurred with a mandatory information element in a SETUP message, a RELEASE COMPLETE message shall be returned, either with cause #96, mandatory information element is missing, or with cause #100, invalid information element contents.

Message Error handling

<sup>1.</sup> In this section, when it is stated to ignore a certain message or part of a message (information element), this shall be interpreted as to do nothing – as if the (part of the) message had never been received.

page 488 of 1082

Telephony Control Protocol Specification

Bluetooth.

When a message is received which has an unrecognized information element, or has an optional information element with an invalid content, or has a recognized information element not defined to be contained in that message, the receiving side shall ignore the information element.

Information elements with a length exceeding the maximum length (as given in Section 7 on page 471) shall be treated as an information element with invalid content.

Telephony Control Protocol Specification

Bluetooth.

# 9 PROTOCOL PARAMETERS

# 9.1 PROTOCOL TIMERS

| Timer name | Value             |
|------------|-------------------|
| T301       | Minimum 3 minutes |
| T302       | 15 seconds        |
| T303       | 20 seconds        |
| T304       | 30 seconds        |
| T305       | 30 seconds        |
| T308       | 4 seconds         |
| T310       | 30 -120 seconds   |
| T313       | 4 seconds         |
| T401       | 8 second          |
| T402       | 8 seconds         |
| T403       | 4 second          |
| T404       | 2.5 seconds       |
| T405       | 2 seconds         |
| T406       | 20 seconds        |

Table 9.1: Timer values

page 490 of 1082

Telephony Control Protocol Specification

Bluetooth.

# 10 REFERENCES

- [1] Q.931, "Digital Subscriber Signalling System No. 1(DSS 1) ISDN User-Network interface Layer 3 Specification for Basic Call Control", 03/93
- [2] Q.850, "Digital Subscriber Signalling System No. 1 General Usage of cause of location in the Digital Subscriber Signalling system No. 1 and the signalling system No. 7 ISDN User Part", 03/93

page 491 of 1082

Telephony Control Protocol Specification

# Bluetooth.

# 11 LIST OF FIGURES

| Figure 1.1:  | TCS within the Bluetooth stack                            | 435 |
|--------------|-----------------------------------------------------------|-----|
| Figure 1.2:  | Point-to-point signalling in a single-point configuration |     |
| Figure 1.3:  | Signalling in a multi-point configuration                 |     |
| Figure 1.4:  | TCS Architecture                                          |     |
| Figure 2.1:  | Call establishment message flow                           | 445 |
| Figure 2.2:  | Call clearing message flow                                |     |
| Figure 3.1:  | Obtain access rights message flow                         |     |
| Figure 3.2:  | Configuration distribution message flow                   |     |
| Figure 3.3:  | Fast inter-member access message flow                     |     |
| Figure 4.1:  | Connectionless TCS message flow                           |     |
| Figure 5.1:  | Calling line identity message flow                        | 456 |
| Figure 5.2:  | DTMF start & stop message flow                            |     |
| Figure 7.1:  | Protocol discriminator                                    |     |
| Figure 7.2:  | Message type                                              | 472 |
| Figure 7.3:  | Single octet information element format                   | 474 |
| Figure 7.4:  | Double octet information element format                   |     |
| Figure 7.5:  | Variable length information element format                | 474 |
| Figure 7.6:  | -                                                         |     |
| Figure 7.7:  |                                                           | 476 |
| Figure 7.8:  |                                                           | 477 |
| Figure 7.9:  |                                                           | 477 |
| Figure 7.10: |                                                           | 479 |
| Figure 7.11: |                                                           | 480 |
| Figure 7.12: |                                                           | 481 |
| Figure 7.13: |                                                           | 482 |
| Figure 7.14: |                                                           | 482 |
| Figure 7.15: |                                                           | 483 |
| Figure 7.16: |                                                           | 484 |
| Figure 7.17: |                                                           | 485 |
| Figure 7.18: |                                                           | 485 |
| Figure 7.19: |                                                           | 485 |
| Figure 7.20: |                                                           | 486 |
| Figure 7.21: |                                                           | 486 |
| Figure 7.22: |                                                           | 486 |
| Figure A: Fu | II TCS State Diagram                                      | 493 |
| Figure B: Le | an TCS State Diagram                                      | 494 |

Telephony Control Protocol Specification

# Bluetooth.

# 12 LIST OF TABLES

| Table 6.1:  | ALERTING message content                      | 460 |
|-------------|-----------------------------------------------|-----|
| Table 6.2:  | CALL PROCEEDING message content               |     |
| Table 6.3:  | CONNECT message content                       |     |
| Table 6.4:  | CONNECT ACKNOWLEDGE message content           |     |
| Table 6.5:  | DISCONNECT message content                    |     |
| Table 6.6:  | INFORMATION message content                   |     |
| Table 6.7:  | PROGRESS message content                      |     |
| Table 6.8:  | RELEASE message content                       |     |
| Table 6.9:  | RELEASE COMPLETE message content              |     |
| Table 6.10: | SETUP message content                         |     |
| Table 6.11: | SETUP ACKNOWLEDGE message content             |     |
| Table 6.12: | Start DTMF message content                    |     |
| Table 6.13: | Start DTMF Acknowledge message content        |     |
| Table 6.14: | Start DTMF Reject message content             |     |
| Table 6.15: | Stop DTMF message content                     |     |
| Table 6.16: | Stop DTMF Acknowledge message content         |     |
| Table 6.17: | ACCESS RIGHTS REQUEST message content         |     |
| Table 6.18: | ACCESS RIGHTS ACCEPT message content          |     |
| Table 6.19: | ACCESS RIGHTS REJECT message content          |     |
| Table 6.20: | INFO SUGGEST message content                  |     |
| Table 6.21: | INFO ACCEPT message content                   |     |
| Table 6.22: | LISTEN REQUEST message content                |     |
| Table 6.23: | LISTEN SUGGEST message content                |     |
| Table 6.24: | LISTEN ACCEPT message content                 |     |
| Table 6.25: | LISTEN REJECT message content                 |     |
| Table 6.26: | CL INFO message content                       |     |
| Table 7.1:  | General message format                        |     |
| Table 7.2:  | Protocol discriminator                        |     |
| Table 7.3:  | Message type                                  |     |
| Table 7.4:  | Information element identifier coding         |     |
| Table 7.5:  | Audio Control information element coding      |     |
| Table 7.6:  | Bearer capability information element coding  |     |
| Table 7.7:  | Call class information element coding         |     |
| Table 7.8:  | Called party information element coding       |     |
| Table 7.9:  | Calling party information element coding      |     |
| Table 7.10: | Cause information element coding              |     |
| Table 7.11: | Clock offset information element coding       |     |
| Table 7.12: | Company specific information element coding   |     |
| Table 7.13: | Progress indicator information element coding |     |
| Table 7.14: | Signal information element coding             |     |
| Table 9.1:  | Timer values                                  |     |

Telephony Control Protocol Specification

Bluetooth.

# **APPENDIX 1 - TCS CALL STATES**

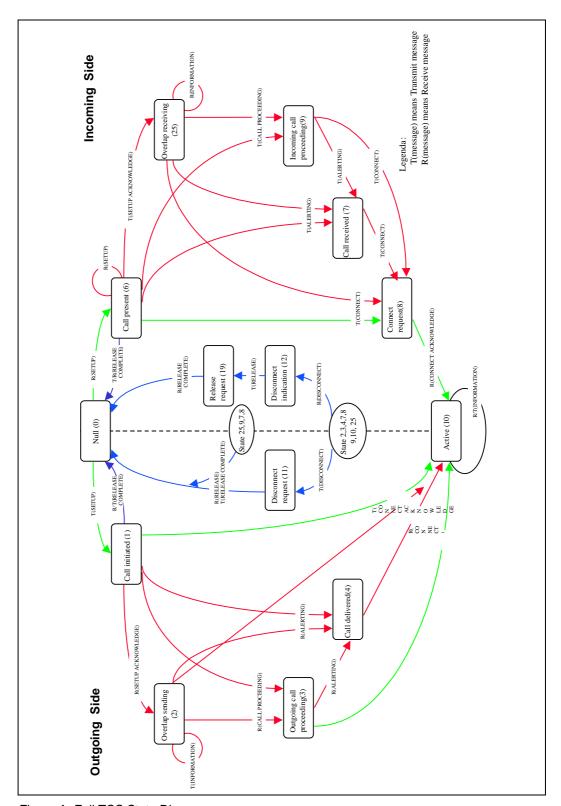



Figure A: Full TCS State Diagram

page 494 of 1082

Telephony Control Protocol Specification

Bluetooth.

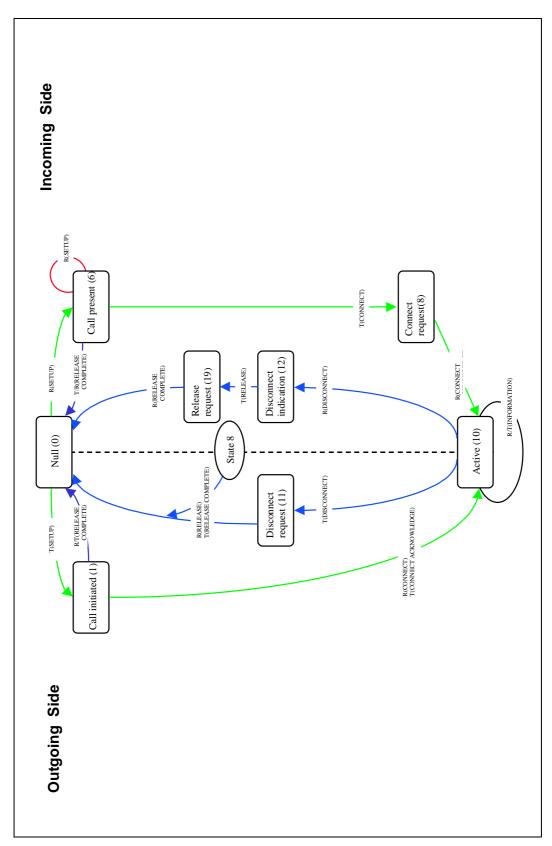



Figure B: Lean TCS State Diagram

# Part F:4

# INTEROPERABILITY REQUIREMENTS FOR BLUETOOTH AS A WAP BEARER

**PPP Adaptation** 

Many of the characteristics of Bluetooth devices are shared with the target platforms for the Wireless Application Protocol. In some cases, the same device may be enabled for both types of communication. This document describes the interoperability requirements for using Bluetooth with PPP as the communications bearer for WAP protocols and applications.

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 496 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 497 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

# Bluetooth.

# **CONTENTS**

| 1 | Intro | duction               | 1                                        | 499 |  |  |  |  |  |
|---|-------|-----------------------|------------------------------------------|-----|--|--|--|--|--|
|   | 1.1   |                       | nent Scope                               |     |  |  |  |  |  |
| 2 | The   | Use of V              | WAP In the Bluetooth Environment         | 500 |  |  |  |  |  |
|   | 2.1   |                       |                                          |     |  |  |  |  |  |
|   | 2.2   |                       | Cases                                    |     |  |  |  |  |  |
|   |       | 2.2.1                 | Briefcase Trick                          |     |  |  |  |  |  |
|   |       | 2.2.2                 | Forbidden Message                        | 501 |  |  |  |  |  |
|   |       | 2.2.3                 | WAP Smart Kiosk                          | 501 |  |  |  |  |  |
| 3 | WAF   | WAP Services Overview |                                          |     |  |  |  |  |  |
|   | 3.1   |                       | Entities                                 |     |  |  |  |  |  |
|   |       | 3.1.1                 | WAP Client                               |     |  |  |  |  |  |
|   |       | 3.1.2                 | WAP Proxy/Gateway                        | 503 |  |  |  |  |  |
|   |       | 3.1.3                 | WAP Server                               | 503 |  |  |  |  |  |
|   | 3.2   | WAP F                 | Protocols                                | 503 |  |  |  |  |  |
|   |       | 3.2.1                 | Wireless Datagram Protocol (WDP)         |     |  |  |  |  |  |
|   |       | 3.2.2                 | Wireless Transaction Protocol (WTP)      | 504 |  |  |  |  |  |
|   |       | 3.2.3                 | Wireless Transport Layer Security (WTLS) | 504 |  |  |  |  |  |
|   |       | 3.2.4                 | Wireless Session Protocol (WSP)          |     |  |  |  |  |  |
|   | 3.3   | Contra                | asting WAP and Internet Protocols        |     |  |  |  |  |  |
|   |       | 3.3.1                 | UDP/WDP                                  |     |  |  |  |  |  |
|   |       | 3.3.2                 | WTP/TCP                                  | 505 |  |  |  |  |  |
|   |       | 3.3.3                 | WTLS/SSL                                 | 505 |  |  |  |  |  |
|   |       | 3.3.4                 | WSP/HTTP                                 | 505 |  |  |  |  |  |
|   |       | 3.3.5                 | WML/HTML                                 |     |  |  |  |  |  |
|   |       | 3.3.6                 | WMLScript/JavaScript                     |     |  |  |  |  |  |

497

# **ATTACHMENT H**

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 498 of 1082

| Inter | roperabilit | y Requirements for Bluetooth as a WAP Bearer | Bluetooth |
|-------|-------------|----------------------------------------------|-----------|
| 4     | WAF         | in the Bluetooth Piconet                     | 506       |
|       | 4.1         | WAP Server Communications                    | 506       |
|       |             | 4.1.1 Initiation by the Client Device        |           |
|       |             | 4.1.1.1 Discovery of Services                | 507       |
|       |             | 4.1.2 Termination by the Client Device       |           |
|       |             | 4.1.3 Initiation by the Server Device        | 507       |
|       |             | 4.1.3.1 Discovery of Services                | 508       |
|       | 4.2         | Implementation of WAP for Bluetooth          |           |
|       |             | 4.2.1 WDP Management Entity                  |           |
|       |             | 4.2.1.1 Asynchronous Notifications.          | 508       |
|       |             | 4.2.1.2 Alternate Bearers                    |           |
|       |             | 4.2.2 Addressing                             | 509       |
|       | 4.3         | Network Support for WAP                      | 509       |
|       |             | 4.3.1 PPP/RFCOMM                             |           |
| 5     | Inter       | operability Requirements                     | 511       |
|       | 5.1         | Stage 1 – Basic Interoperability             |           |
|       | 5.2         | Stage 2 – Advanced Interoperability          |           |
| 6     | Serv        | ice Discovery                                | 512       |
|       | 6.1         | SDP Service Records                          |           |
|       | 6.2         | SDP Protocol Data Units                      |           |
|       | 6.3         | Service discovery procedure                  |           |
| 7     | Defe        | rango                                        | E4.6      |

page 499 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 1 INTRODUCTION

# 1.1 DOCUMENT SCOPE

This document is intended for Bluetooth implementers who wish to take advantage of the dynamic, ad-hoc characteristics of the Bluetooth environment in providing access to value-added services using the WAP environment and protocols.

Bluetooth provides the physical medium and link control for communications between WAP client and server. This document describes how PPP may be used to achieve this communication.

The information contained in this document is not sufficient to allow the implementation of a general-purpose WAP client or server device. Instead, this document provides the following information:

- An overview of the use of WAP in the Bluetooth environment will explain how the concept of value-added services fits within the Bluetooth vision. Examples are given of how the WAP value-added services model can be used to fulfil specific Bluetooth usage models.
- The WAP Services Overview attempts to place the WAP environment in a familiar context. Each component of WAP is introduced, and is contrasted with equivalent Internet protocols (where applicable).
- A discussion of WAP in the Bluetooth Piconet describes how the particular structure of Bluetooth communications relates to WAP behaviors.
- Finally, the Interoperability Requirements describe the specific Bluetooth features that must be implemented in order to ensure interoperability between any two WAP enabled Bluetooth devices.

page 500 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth

# 2 THE USE OF WAP IN THE BLUETOOTH ENVIRONMENT

## 2.1 VALUE-ADDED SERVICES

The presence of communications capabilities in a device is unlikely to be an end in itself. The end users are generally not as interested in the technology as in what the technology allows them to do.

Traditional telecommunications relies on voice communications as the single application of the technology, and this approach has been successful in the marketplace. As data communications services have become more widely available, there is increasing pressure to provide services that take advantage of those data capabilities.

The Wireless Application Protocol Forum was formed to create a standardsbased framework, in which value-added data services can be deployed, ensuring some degree of interoperability.

#### 2.2 USAGE CASES

The unique quality of Bluetooth, for the purposes of delivering value-added services, is the limited range of the communications link. Devices that incorporate Bluetooth are ideally suited for the receipt of location-dependent services. The following are examples of how the WAP client / server model can be applied to Bluetooth usage cases.

#### 2.2.1 Briefcase Trick



Figure 2.1: The 'Briefcase Trick' Hidden Computing Scenario

The Briefcase Trick usage case allows the user's laptop and mobile phone to communicate, without user intervention, in order to update the user's e-mail. The user can review the received messages from the handset, all without removing the laptop from its storage in a briefcase.

page 501 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 2.2.2 Forbidden Message



Figure 2.2: The 'Forbidden Message' Hidden Computing Scenario

The Forbidden Message usage case is similar to the briefcase trick. The user can compose messages in an environment where no dial-up connection is possible. At a later time the laptop wakes up, and checks the mobile phone to see if it is possible to send the pending messages. If the communications link is present, then the mail is transmitted.

#### 2.2.3 WAP Smart Kiosk

The WAP Smart Kiosk usage case allows a user to connect a mobile PC or handheld device to communicate with a kiosk in a public location. The kiosk can provide information to the device that is specific to the user's location. For example, information on flights and gates in an airport, store locations in a shopping centre, or train schedules or destination information on a railway platform.

Bluetooth.

# 3 WAP SERVICES OVERVIEW

The Wireless Application Protocol is designed to provide Internet and Internet-like access to devices that are constrained in one or more ways. Limited communications bandwidth, memory, processing power, display capabilities and input devices are all factors driving the development of WAP. Although some devices may only exhibit some of the above constraints, WAP can still provide substantial benefit for those devices as well.

The WAP environment typically consists of three types of device: the WAP Client device, the WAP Proxy/gateway and WAP Server. In some cases the WAP Proxy/gateway may also include the server functionality.

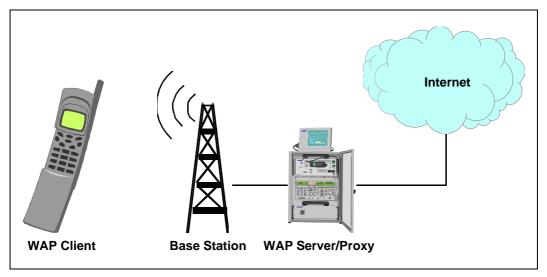



Figure 3.1: Typical WAP Environment

#### 3.1 WAP ENTITIES

#### 3.1.1 WAP Client

The WAP Client device is usually found in the hands of the end user. This device can be as powerful as a portable computer, or as compact as a mobile phone. The essential feature of the client is the presence of some type of display and some type of input device.

The WAP Client is typically connected to a WAP Proxy/gateway through a wireless network. (Figure 3.2 on page 503) This network may be based on any available technology. The WAP protocols allow the network to exhibit low reliability and high latency without interruption in service.

Bluetooth.

# 3.1.2 WAP Proxy/Gateway

The WAP Proxy/gateway acts as an interface between the wireless network, and the larger Internet. The primary functions of the proxy are to provide DNS name resolution services to WAP client devices and translation of Internet protocols and content formats to their WAP equivalents.

#### 3.1.3 WAP Server

The WAP Server performs a function that is similar to a server in the Internet world. In fact, the WAP server is often an HTTP server. The server exists as a storage location for information that the user can access. This 'content' may include text, graphics, and even scripts that allow the client device to perform processing on behalf of the server.

The WAP Server logic may exist on the same physical device as the Proxy/ gateway, or it may reside anywhere in the network that is reachable from the Proxy/gateway.

The server may fill the role of an HTTP server, a WSP server, or both.

## 3.2 WAP PROTOCOLS

The WAP environment consists of a layered protocol stack that is used to isolate the user agents from the details of the communications network. Figure 4.1 on page 506 illustrates the general architecture of the WAP protocol stack. Bluetooth will provide an additional data bearer service, appearing at the bottom of this diagram.

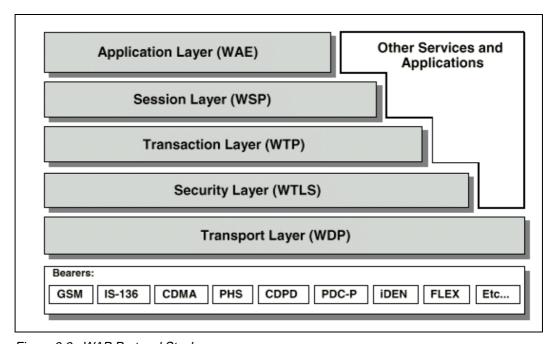



Figure 3.2: WAP Protocol Stack

page 504 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 3.2.1 Wireless Datagram Protocol (WDP)

The WDP layer provides a service interface that behaves as a socket-based UDP implementation. For a bearer service based on IP, then this layer is UDP. For bearer which do not provide a UDP service interface, then an implementation of WDP must be provided to act as an adaptation layer to allow socket-based UDP datagrams over the native bearer.

## 3.2.2 Wireless Transaction Protocol (WTP)

The WTP layer provides a reliable datagram service on top of the WDP (UDP) layer below.

#### 3.2.3 Wireless Transport Layer Security (WTLS)

The WTLS layer is an optional component of the protocol stack that provides a secure data pipe between a client WSP session and its peer server WSP session. In the current version of the WAP specification, this session will terminate at the WAP server. There is currently a proposal before the WAP Forum for a proxy protocol, which will allow the intermediate WAP proxy to pass WTLS traffic across the proxy/gateway without decrypting the data stream.

## 3.2.4 Wireless Session Protocol (WSP)

The WSP layer establishes a relationship between the client application, and the WAP server. This session is relatively long-lived and able to survive service interruptions. The WSP uses the services of the WTP for reliable transport to the destination proxy/gateway.

## 3.3 CONTRASTING WAP AND INTERNET PROTOCOLS

The intent and implementation of the WAP protocol stack has many parallels with those of the Internet Engineering Task Force (IETF). The primary objective of the WAP Forum has been to make Internet content available to devices that are constrained in ways that make Internet protocols unsuitable for deployment.

This section compares the roles of the WAP protocol stack's layers with those of the IETF.

#### 3.3.1 UDP/WDP

At the most basic layer, WAP and Internet protocols are the same. The WAP stack uses the model of a socket-based datagram (UDP) service as its transport interface.

Some Internet protocols also use the UDP service, but most actually use a connection-oriented stream protocol (TCP).

Bluetooth.

#### 3.3.2 WTP/TCP

The wireless transport protocol (WTP) provides services that, in some respects, fill the same requirements as TCP. The Internet Transmission Control Protocol (TCP) provides a reliable, connection-oriented, character-stream protocol that is based on IP services. In contrast, WTP provides both reliable and unreliable, one-way and reliable two-way message transports. The transport is optimized for WAP's 'short request, long response' dialogue characteristic. WTP also provides message concatenation to reduce the number of messages transferred.

#### 3.3.3 WTLS/SSL

The Wireless Transport Layer Security (WTLS) is derived from the Secure Sockets Layer (SSL) specification. As such, it performs the same authentication and encryption services as SSL.

#### **3.3.4 WSP/HTTP**

Session services in WAP are provided by the Wireless Session Protocol (WSP). This protocol incorporates the semantics and functionality of HTTP 1.1, while adding support for long-lived sessions, data push, suspend and resume. Additionally, the protocol uses compact encoding methods to adapt to narrowband communications channels.

# 3.3.5 WML/HTML

The markup language used by WAP is a compact implementation that is similar to HTML, but optimized for use in hand-held devices. WML is an XML-defined markup language.

#### 3.3.6 WMLScript/JavaScript

WAP also incorporates a scripting language that is similar to JavaScript, but adapted to the types of constrained devices that WAP is targeted for.

Bluetooth.

# **4 WAP IN THE BLUETOOTH PICONET**

In many ways, Bluetooth can be used like other wireless networks with regard to WAP. Bluetooth can be used to provide a bearer for transporting data between the WAP Client and its adjacent WAP Server.

Additionally, Bluetooth's *ad hoc* nature provides capabilities that are exploited uniquely by the WAP protocols.

#### 4.1 WAP SERVER COMMUNICATIONS

The traditional form of WAP communications involves a client device that communicates with a Server/Proxy device using the WAP protocols. In this case the Bluetooth medium is expected to provide a bearer service as specified by the WAP architecture.

#### 4.1.1 Initiation by the Client Device

When a WAP client is actively 'listening' for available Bluetooth devices, it can discover the presence of a WAP server using Bluetooth's Service Discovery Protocol.



Figure 4.1: WAP Server / Proxy in Piconet

In Figure 4.1, stage 1 the WAP Client device is moving into range of the WAP Proxy/gateway's piconet. When the client detects the presence of the WAP proxy/gateway, it can automatically, or at the client's request, connect to the server.

Bluetooth

# 4.1.1.1 Discovery of Services

The client must be able to determine the specific nature of the WAP proxy/ gateway that it has detected. It is expected that the Bluetooth Service Discovery Protocol will be used to learn the following information about the server:

- Server Name this is a user readable descriptive name for the server.
- Server Home Page Document Name this is the home page URL for the server. This is optional.
- Server/Proxy Capability indicates if the device is a WAP content server, a
  Proxy or both. If the device is a Proxy, it must be able to resolve URLs that
  are not local to the Server/Proxy device.

In Figure 4.1, stage 2, the device is communicating with the WAP proxy/gate-way. All WAP data services normally available are possible.

# 4.1.2 Termination by the Client Device

In Figure 4.1, stage 3, the device is exiting the piconet. When the device detects that communication has been lost with the WAP proxy/gateway, it may optionally decide to resume communications using the information obtained at discovery.

For example, a client device that supports alternate bearers may query the alternate address information of the server when that capability is indicated. The information should be cached for later access because the client device may leave the piconet at any time, and that information will no longer be available.

In the WAP Smart Kiosk example above, if the user wishes to continue receiving information while out of Bluetooth range, the Kiosk would provide an Internet address to the client device. When Bluetooth communications are not possible, the device could use cellular packet data to resume the client-server session.

This capability is implementation-dependent, and is provided here for illustrative purposes only.

# 4.1.3 Initiation by the Server Device

An alternative method of initiating communications between a client and server is for the server to periodically check for available client devices. When the server device discovers a client that indicates that it has WAP Client capability, the server may optionally connect and push data to the client.

The client device has the option of ignoring pushed data at the end user's discretion.

page 508 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth

# 4.1.3.1 Discovery of Services

Through the Bluetooth Service Discovery Protocol, the server can determine the following information about the client:

- Client Name this is a friendly format name that describes the client device
- Client capabilities this information allows the server to determine basic information regarding the client's Bluetooth-specific capabilities

## 4.2 IMPLEMENTATION OF WAP FOR BLUETOOTH

In order to effectively implement support for WAP over Bluetooth, certain capabilities must be considered.

# 4.2.1 WDP Management Entity

Associated with an instance of the WDP layer in the WAP Protocol Stack is an entity that is responsible for managing the services provided by that layer. The WDP Management Entity (WDP-ME) acts as an out-of-band mechanism for controlling the protocol stack.

#### 4.2.1.1 Asynchronous Notifications

The WDP-ME will need to be able to generate asynchronous notifications to the application layer when certain events occur. Example notifications are:

- New Client Node Detected
- New Server Node Detected
- Client Node Signal Lost
- Server Node Signal Lost
- Server Push Detected (detected as unsolicited content)

Platform support for these events is implementation-specific. All of the listed events may be derived through the Bluetooth Host Controller Interface (page 517), with the exception of Server Push.

#### 4.2.1.2 Alternate Bearers

An implementation of WAP on a particular device may choose to support multiple bearers. Methods of performing bearer selection are beyond the scope of this document. The procedure to be followed is implementation-dependent. See Section 4.1.2 above.

Bluetooth.

#### 4.2.2 Addressing

Two basic types of addressing are being used in the WAP environment: User Addressing and Proxy/gateway Addressing. User addressing describes the location of objects within the network, and is independent of the underlying bearer. Proxy/Gateway Addressing describes the location of the WAP proxy/gateway that the device is communicating with. Proxy/Gateway addressing is dependent on the bearer type.

The end user deals mainly with Uniform Resource Locators (URL). These addresses are text strings that describe the document that is being accessed. Typically, the Proxy/gateway in conjunction with Internet Domain Name.

Servers resolve these strings into network addresses.

The address of the WAP Proxy/gateway is usually a static value that is configured by the user or network operator. When the user enters a URL, the request is forwarded to the configured WAP proxy/gateway. If the URL is within the domain of a co-located server, then it indicates that the document is actually WAP content. If the URL is outside of the WAP proxy/gateway's domain, then the WAP Proxy/gateway typically uses DNS name resolution to determine the IP address of the server on which the document resides.

The client device would first identify a proxy/gateway that is reachable through Bluetooth, then it would use the service discovery protocol to present the user with a server name or description. When the user selects a server, then the WAP client downloads the home page of the server (as determined by the discovery process; see section 4.1.1.1 on page 507) Once the user has navigated to the home page of the desired server, then all subsequent URLs are relative to this home page. This scenario presumes that the WAP Proxy/gateway and WAP Content server are all co-located in the Bluetooth device, although this structure is not required for interoperability.

A WAP Proxy/gateway/Server will typically provide a default URL containing the home page content for the server. A proxy-only device typically provides no URL or associated content.

#### 4.3 NETWORK SUPPORT FOR WAP

The following specifies a protocol stack, which may be used below the WAP components. Support for other protocol stack configurations is optional, and must be indicated through the Bluetooth Service Discovery Protocol.

#### 4.3.1 PPP/RFCOMM

Devices that support Bluetooth as a bearer for WAP services using PPP provide the following protocol stack support:

page 510 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

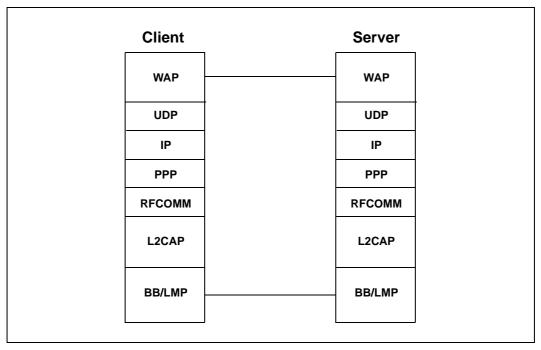



Figure 4.2: Protocol Support for WAP

For the purposes of interoperability, this document assumes that a WAP client conforms to the role of Data Terminal as defined in LAN Access Profile using PPP [6]. Additionally, the WAP server or proxy device is assumed to conform to the role of the LAN Access Point defined in [6].

The Baseband (page 33), LMP (page 185) and L2CAP (page 245) are the OSI layer 1 and 2 Bluetooth protocols. RFCOMM (page 385) is the Bluetooth adaptation of GSM TS 07.10 [1]. SDP (page 323) is the Bluetooth Service Discovery Protocol.

PPP is the IETF Point-to-Point Protocol [3]. WAP is the Wireless Application Protocol stack and application environment [5].

page 511 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 5 INTEROPERABILITY REQUIREMENTS

## 5.1 STAGE 1 – BASIC INTEROPERABILITY

Stage 1 interoperability for WAP over Bluetooth (all mandatory):

- Provide WAP Class A device compliance [7]
- Provide, through service discovery mechanisms, the network address for devices that support WAP proxy/gateway functionality.

## 5.2 STAGE 2 - ADVANCED INTEROPERABILITY

Stage 2 interoperability for WAP over Bluetooth (mandatory):

- All Stage 1 interoperability requirements are supported
- Provide Server Name and information about Server/Proxy capabilities through service discovery.
- Provide Client Name and information about Client Capabilities through service discovery.
- Asynchronous Notifications for Server.
- Asynchronous Notifications for Client.

page 512 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# **6 SERVICE DISCOVERY**

#### 6.1 SDP SERVICE RECORDS

Service records are provided as a mechanism through which WAP client devices and proxy/gateways become aware of each other dynamically. This usage differs from other WAP bearers in that the relationship between the two devices will be transitory. That is, a Bluetooth device will not have a bearer-specific address configured or provisioned to a specific proxy/gateway.

Clients and proxy/gateways become aware of each other as they come in proximity of one another. The Bluetooth Service Discovery Protocol allows the devices to query the capabilities of each other as listed in the Interoperability Requirements section of this document.

Table 6.1 shows the service record for the WAP Proxy/gateway device.

| It  | em                               | Definition                             | Туре   | Value                     | AttrID | Req |
|-----|----------------------------------|----------------------------------------|--------|---------------------------|--------|-----|
| S   | erviceClassIDList                |                                        |        |                           | 0x0001 | М   |
| S   | erviceClass0                     | WAP Proxy/Gateway                      | UUID   | WAP                       |        | М   |
|     | luetoothProfile<br>escriptorList |                                        |        |                           |        | М   |
|     | ProfileDescriptor0               |                                        |        |                           | 0x0009 | М   |
|     | Profile                          | Supported Profile                      | UUID   | LANAccess<br>UsingPPP [4] |        | М   |
|     | Version                          | Profile Version                        | Uint16 | (varies)                  |        | М   |
| 1 - | rotocol<br>escriptorList         |                                        |        |                           |        | 0   |
|     | Descriptor0                      | UDP                                    | UUID   | UDP                       |        | 0   |
|     | Parameter0                       | WSP Connectionless<br>Session Port No. | Uint16 | 9200 (default)            |        | О   |
|     | Parameter1                       | WTP Session Port No.                   | Uint16 | 9201 (default)            |        | 0   |
|     | Parameter2                       | WSP Secure Connectionless Port No.     | Uint16 | 9202 (default)            |        | О   |
|     | Parameter3                       | WTP Secure Session Port No.            | Uint16 | 9203 (default)            |        | О   |
|     | Parameter4                       | WAP vCard Port No.                     | Uint16 | 9204 (default)            |        | 0   |
|     | Parameter5                       | WAP vCal Port No.                      | Uint16 | 9205 (default)            |        | 0   |
|     | Parameter6                       | WAP vCard Secure Port No.              | Uint16 | 9206 (default)            |        | 0   |
|     | Parameter7                       | WAP vCal Secure<br>Port No.            | Uint16 | 9207 (default)            |        | О   |

Table 6.1: Service Record format for WAP Proxy/Gateway devices

page 513 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

# Bluetooth.

| Item           | Definition                                    | Туре   | Value                                                                             | AttrID | Req             |
|----------------|-----------------------------------------------|--------|-----------------------------------------------------------------------------------|--------|-----------------|
| ServiceName    | Displayable<br>Text name                      | String | (varies, e.g. 'Airport information')                                              |        |                 |
| NetworkAddress | IP Network Address of Server                  | Uint32 | (varies)                                                                          |        | М               |
| WAPGateway*    | Indicates if device is origin server or proxy | Uint8  | 0x01 = Origin<br>Server;<br>0x02 = Proxy;<br>0x03 = Origin<br>Server and<br>Proxy |        | М               |
| HomePageURL    | URL of home page document                     | URL    |                                                                                   |        | C1 <sup>†</sup> |

Table 6.1: Service Record format for WAP Proxy/Gateway devices

<sup>†.</sup> If this parameter is omitted, then a default is assumed for origin servers as: http://networkaddress/index.wml

| It | em                                 | Definition                         | Туре   | Value                     | AttrID | Req |
|----|------------------------------------|------------------------------------|--------|---------------------------|--------|-----|
| S  | ServiceClassIDList                 |                                    |        |                           | 0x0001 | М   |
|    | ServiceClass0                      | WAP Client                         | UUID   | WAP_CLIENT                |        | М   |
|    | BluetoothProfile<br>DescriptorList |                                    |        |                           |        | М   |
|    | ProfileDescriptor0                 |                                    |        |                           | 0x0009 | М   |
|    | Profile                            | Supported Profile                  | UUID   | LANAccess<br>UsingPPP [4] |        | М   |
|    | Version                            | Profile Version                    | Uint16 | (varies)                  |        | М   |
| S  | ServiceName                        | Displayable<br>Text name of client | String | (varies)                  |        | 0   |

Table 6.2: Service Record format for WAP Client devices

<sup>\*.</sup> Stage 2 interoperability requirements.

page 514 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 6.2 SDP PROTOCOL DATA UNITS

Table 6.3 shows the specified SDP PDUs (Protocol Data Units), which are required for WAP Interoperability.

| DDII       |                                   | Ability to Send |              | Ability to Retrieve |              |
|------------|-----------------------------------|-----------------|--------------|---------------------|--------------|
| PDU<br>No. | SDP PDU                           |                 | WAP<br>Proxy | WAP<br>Client       | WAP<br>Proxy |
| 1          | SdpErrorResponse                  | М               | М            | М                   | М            |
| 2          | SdpServiceSearchAttributeRequest  | М               | 0            | М                   | М            |
| 3          | SdpServiceSearchAttributeResponse | М               | М            | М                   | М            |

Table 6.3: SDP PDU:s

# 6.3 SERVICE DISCOVERY PROCEDURE

In the simplest form, the signaling can be like this:

| WAP Client or Proxy |                                            | WAP Client or Proxy |
|---------------------|--------------------------------------------|---------------------|
|                     | SdpServiceSearchAttributeRequest =====>    |                     |
|                     | SdpServiceSearchAttributeResponse <======= |                     |

WAP service discovery procedures are symmetrical. Each device must be able to handle all of the PDUs without regard for the current device role. A minimal implementation must return the service name string.

page 515 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

# 7 REFERENCES

- [1] TS 101 369 (GSM 07.10) version 6.2.0
- [2] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 50, RFC 1661, Daydreamer, July 1994.
- [3] Simpson, W., Editor, "PPP in HDLC Framing", STD 51, RFC 1662, Daydreamer, July 1994.
- [4] See Appendix VIII, "Bluetooth Assigned Numbers" on page 1009
- [5] Wireless Application Protocol Forum, "Wireless Application Protocol", version 1.0, 1998
- [6] Bluetooth Special Interest Group, "Bluetooth LAN Access Profile using PPP"
- [7] Wireless Application Protocol Forum, "WAP Conformance", Draft version 27 May 1998

### **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 516 of 1082

Interoperability Requirements for Bluetooth as a WAP Bearer

Bluetooth.

### Part H:1

# HOST CONTROLLER INTERFACE FUNCTIONAL SPECIFICATION

This document describes the functional specification for the Host Controller Interface (HCI). The HCI provides a command interface to the baseband controller and link manager, and access to hardware status and control registers. This interface provides a uniform method of accessing the Bluetooth baseband capabilities.

### **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 518 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### Bluetooth.

### **CONTENTS**

| duction |                                                                                                                                                                                                                                             | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower I | Layers of the Bluetooth Software Stack                                                                                                                                                                                                      | 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bluetoc | oth Hardware Block Diagram                                                                                                                                                                                                                  | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.2.1   | Link Controller                                                                                                                                                                                                                             | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.2.2   | CPU Core                                                                                                                                                                                                                                    | 526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| view of | Host Controller Transport Layer                                                                                                                                                                                                             | 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Flow Co | ntrol                                                                                                                                                                                                                                       | 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Commar  | nds                                                                                                                                                                                                                                         | 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.2   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.3   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.4   | • •                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.5   | • •                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.6   | <del>_</del>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.7   | Add SCO Connection                                                                                                                                                                                                                          | 553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.5.8   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.9   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | • • •                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | •                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.5.18  | Master_Link_Key                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | Lower Bluetod 1.2.1 1.2.2 Possibl 1.3.1 1.3.2 view of Flow Co Commar Introdu Termine Data at Exchar 4.4.1 4.4.2 4.4.3 Link Co 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 4.5.10 4.5.11 4.5.12 4.5.13 4.5.14 4.5.15 4.5.16 4.5.17 | 1.2.2 CPU Core Possible Physical Bus Architectures 1.3.1 USB HCI Architecture  1.3.2 PC Card HCI Architecture  view of Host Controller Transport Layer  Flow Control  Commands Introduction Terminology  Data and Parameter Formats  Exchange of HCI-Specific Information  4.4.1 HCI Command Packet  4.4.2 HCI Event Packet  4.4.3 HCI Data Packets  Link Control Commands  4.5.1 Inquiry  4.5.2 Inquiry_Cancel  4.5.3 Periodic_Inquiry_Mode  4.5.4 Exit_Periodic_Inquiry_Mode  4.5.5 Create_Connection  4.5.6 Disconnect  4.5.7 Add_SCO_Connection  4.5.8 Accept_Connection_Request  4.5.9 Reject_Connection_Request  4.5.10 Link_Key_Request_Reply  4.5.11 Link_Key_Request_Reply  4.5.12 PIN_Code_Request_Negative_Reply  4.5.13 PIN_Code_Request_Negative_Reply  4.5.14 Change_Connection_Packet_Type  4.5.15 Authentication_Requested  4.5.16 Set_Connection_Encryption  4.5.17 Change_Connection_Link_Key. |

| Host Controller | <sup>r</sup> Interface | Functional Specification                      | Bluetooth |
|-----------------|------------------------|-----------------------------------------------|-----------|
|                 | 4.5.19                 | Remote_Name_Request                           | 571       |
|                 | 4.5.20                 | Read_Remote_Supported_Features                | 573       |
|                 | 4.5.21                 | Read_Remote_Version_Information               | 574       |
|                 | 4.5.22                 | Read_Clock_Offset                             | 575       |
| 4.6             | Link Po                | olicy Commands                                | 576       |
|                 | 4.6.1                  | Hold_Mode                                     | 578       |
|                 | 4.6.2                  | Sniff_Mode                                    | 580       |
|                 | 4.6.3                  | Exit_Sniff_Mode                               | 582       |
|                 | 4.6.4                  | Park_Mode                                     | 583       |
|                 | 4.6.5                  | Exit_Park_Mode                                | 585       |
|                 | 4.6.6                  | QoS_Setup                                     | 586       |
|                 | 4.6.7                  | Role_Discovery                                | 588       |
|                 | 4.6.8                  | Switch_Role                                   | 589       |
|                 | 4.6.9                  | Read_Link_Policy_Settings                     | 590       |
|                 | 4.6.10                 | Write_Link_Policy_Settings                    | 592       |
| 4.7             | Host C<br>4.7.1        | ontroller & Baseband Commands  Set_Event_Mask |           |
|                 | 4.7.2                  | Reset                                         | 602       |
|                 | 4.7.3                  | Set_Event_Filter                              | 603       |
|                 | 4.7.4                  | Flush                                         | 609       |
|                 | 4.7.5                  | Read_PIN_Type                                 | 611       |
|                 | 4.7.6                  | Write_PIN_Type                                | 612       |
|                 | 4.7.7                  | Create_New_Unit_Key                           | 613       |
|                 | 4.7.8                  | Read_Stored_Link_Key                          | 614       |
|                 | 4.7.9                  | Write_Stored_Link_Key                         |           |
|                 | 4.7.10                 | Delete_Stored_Link_Key                        | 618       |
|                 | 4.7.11                 | Change_Local_Name                             | 620       |
|                 | 4.7.12                 | Read_Local_Name                               | 621       |
|                 | 4.7.13                 | Read_Connection_Accept_Timeout                | 622       |
|                 | 4.7.14                 | Write_Connection_Accept_Timeout               | 623       |
|                 | 4.7.15                 | Read_Page_Timeout                             | 624       |
|                 | 4.7.16                 | Write_Page_Timeout                            | 625       |
|                 | 4.7.17                 | Read_Scan_Enable                              | 626       |
|                 | 4.7.18                 | Write_Scan_Enable                             | 627       |
|                 | 4.7.19                 | Read_Page_Scan_Activity                       | 628       |
|                 | 4.7.20                 | Write_Page_Scan_Activity                      |           |
|                 | 4.7.21                 | Read_Inquiry_Scan_Activity                    |           |
|                 |                        | Write_Inquiry_Scan_Activity                   |           |

| Host Controlle | r Interface  | Functional Specification                  | <b>Bluetooth</b> |
|----------------|--------------|-------------------------------------------|------------------|
|                | 4.7.23       | Read_Authentication_Enable                | 636              |
|                | 4.7.24       | Write_Authentication_Enable               |                  |
|                | 4.7.25       | Read_Encryption_Mode                      | 638              |
|                | 4.7.26       | Write_Encryption_Mode                     | 639              |
|                | 4.7.27       | Read_Class_of_Device                      | 641              |
|                | 4.7.28       | Write_Class_of_Device                     | 642              |
|                | 4.7.29       | Read_Voice_Setting                        | 643              |
|                | 4.7.30       | Write_Voice_Setting                       | 645              |
|                | 4.7.31       | Read_Automatic_Flush_Timeout              | 647              |
|                | 4.7.32       | Write_Automatic_Flush_Timeout             | 649              |
|                | 4.7.33       | Read_Num_Broadcast_Retransmissions        | 651              |
|                | 4.7.34       | Write_Num_Broadcast_Retransmissions       | 652              |
|                | 4.7.35       | Read_Hold_Mode_Activity                   | 653              |
|                | 4.7.36       | Write_Hold_Mode_Activity                  | 655              |
|                | 4.7.37       | Read_Transmit_Power_Level                 | 656              |
|                | 4.7.38       | Read_SCO_Flow_Control_Enable              | 658              |
|                | 4.7.39       | Write_SCO_Flow_Control_Enable             | 659              |
|                | 4.7.40       | Set_Host_Controller_To_Host_Flow_Control. | 660              |
|                | 4.7.41       | Host_Buffer_Size                          | 661              |
|                | 4.7.42       | Host_Number_Of_Completed_Packets          | 663              |
|                | 4.7.43       | Read_Link_Supervision_Timeout             | 665              |
|                | 4.7.44       | Write Link_Supervision_Timeout            | 667              |
|                | 4.7.45       | Read_Number_Of_Supported_IAC              | 669              |
|                | 4.7.46       | Read_Current_IAC_LAP                      | 670              |
|                | 4.7.47       | Write_Current_IAC_LAP                     | 671              |
|                | 4.7.48       | Read_Page_Scan_Period_Mode                | 673              |
|                | 4.7.49       | Write_Page_Scan_Period_Mode               | 675              |
|                | 4.7.50       | Read_Page_Scan_Mode                       | 676              |
|                | 4.7.51       | Write_Page_Scan_Mode                      | 677              |
| 4.8            |              | ational Parameters                        |                  |
|                | 4.8.1        | Read_Local_Version_Information            |                  |
|                | 4.8.2        | Read_Local_Supported_Features             |                  |
|                | 4.8.3        | Read_Buffer_Size                          |                  |
|                | 4.8.4        | Read_Country_Code                         |                  |
| 4.0            | 4.8.5        | Read_BD_ADDR                              |                  |
| 4.9            | Status 4.9.1 | Parameters  Read_Failed_Contact_Counter   |                  |
|                | 4.9.2        | Reset_Failed_Contact_Counter              |                  |
|                |              |                                           |                  |

| 4.9.3       Get_Link_Quality       691         4.9.4       Read_RSSI       693         4.10       Testing Commands       695         4.10.1       Read_Loopback_Mode       696         4.10.2       Write_Loopback_Mode       699         4.10.3       Enable_Device_Under_Test_Mode       703         5       Events       703         5.1       Event       703         5.2       Possible Events       706         5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       707         5.2.4       Connection Complete event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       714         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Version Information Complete event       718         5.2.12       Read Remote Version Information Complete                                                                | Host | Controlle | r Interface | Functional Specification                   | Bluetooth |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-------------|--------------------------------------------|-----------|
| 4.9.4       Read_RSSI       693         4.10       Testing Commands       695         4.10.1       Read_Loopback_Mode       696         4.10.2       Write_Loopback_Mode       699         4.10.3       Enable_Device_Under_Test_Mode       702         5       Events       703         5.1       Event       703         5.2       Possible Events       706         5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       714         5.2.9       Change Connection Link Key Complete event       716         5.2.11       Read Remote Supported Features Complete event       717         5.2.12       Read Remote Version Information Complete event       718         5.2.13       QoS Setup Complete event       722         5.2.14       Command Status eve                                                               |      |           | 4.9.3       | Get Link Quality                           | 691       |
| 4.10.1       Read_Loopback_Mode       698         4.10.2       Write_Loopback_Mode       698         4.10.3       Enable_Device_Under_Test_Mode       702         5       Events       703         5.1       Event       703         5.2       Possible Events       706         5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       718         5.2.13       QoS Setup Complete event       723         5.2.14       Command Status event       724         5.2.15                                                            |      |           | 4.9.4       |                                            |           |
| 4.10.1       Read_Loopback_Mode       698         4.10.2       Write_Loopback_Mode       698         4.10.3       Enable_Device_Under_Test_Mode       702         5       Events       703         5.1       Event       703         5.2       Possible Events       706         5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       718         5.2.13       QoS Setup Complete event       723         5.2.14       Command Status event       724         5.2.15                                                            |      | 4.10      | Testing     | Commands                                   | 695       |
| 4.10.3       Enable_Device_Under_Test_Mode.       702         5       Events.       703         5.1       Event.       703         5.2       Possible Events.       706         5.2.1       Inquiry Complete event.       706         5.2.2       Inquiry Result event.       707         5.2.3       Connection Complete event.       709         5.2.4       Connection Request event.       711         5.2.5       Disconnection Complete event.       712         5.2.6       Authentication Complete event.       713         5.2.7       Remote Name Request Complete event.       714         5.2.8       Encryption Change event.       715         5.2.9       Change Connection Link Key Complete event.       715         5.2.10       Master Link Key Complete event.       717         5.2.11       Read Remote Supported Features Complete event.       718         5.2.12       Read Remote Version Information Complete event.       718         5.2.13       QoS Setup Complete event.       724         5.2.14       Command Status event.       724         5.2.15       Command Status event.       725         5.2.18       Role Change event.       726                                                       |      |           | _           |                                            |           |
| 5         Events         703           5.1         Event         703           5.2         Possible Events         706           5.2.1         Inquiry Complete event         706           5.2.2         Inquiry Result event         707           5.2.3         Connection Complete event         709           5.2.4         Connection Request event         711           5.2.5         Disconnection Complete event         712           5.2.6         Authentication Complete event         713           5.2.7         Remote Name Request Complete event         714           5.2.8         Encryption Change event         715           5.2.9         Change Connection Link Key Complete event         715           5.2.9         Change Connection Link Key Complete event         716           5.2.10         Master Link Key Complete event         717           5.2.11         Read Remote Supported Features Complete event         718           5.2.12         Read Remote Version Information Complete event         718           5.2.13         QoS Setup Complete event         721           5.2.14         Command Status event         724           5.2.15         Command Status event         725 |      |           | 4.10.2      | Write_Loopback_Mode                        | 699       |
| 5.1       Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           | 4.10.3      | Enable_Device_Under_Test_Mode              | 702       |
| 5.2       Possible Events       706         5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       730         5.2.21       Return Link Keys event       732                                           | 5    | Even      | its         |                                            | 703       |
| 5.2.1       Inquiry Complete event       706         5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       726         5.2.21       Return Link Keys event       730         5.2.22       PIN Code Request event       733                                 |      | 5.1       | Event       |                                            | 703       |
| 5.2.2       Inquiry Result event       707         5.2.3       Connection Complete event       709         5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       730         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       7                            |      | 5.2       |             |                                            |           |
| 5.2.3       Connection Complete event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |             |                                            |           |
| 5.2.4       Connection Request event       711         5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       734         5.2.23       Link Key Notification event                              |      |           | 5.2.2       |                                            |           |
| 5.2.5       Disconnection Complete event       712         5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       736         5.2.23       Link Key Notification event       736         5.2.24       Link Key Notification event                          |      |           | 5.2.3       | Connection Complete event                  | 709       |
| 5.2.6       Authentication Complete event       713         5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       736         5.2.24       Link Key Notification event       736         5.2.25       Loopback Command event       7                            |      |           | 5.2.4       | Connection Request event                   | 711       |
| 5.2.7       Remote Name Request Complete event       714         5.2.8       Encryption Change event       715         5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Notification event       736         5.2.24       Link Key Notification event       736         5.2.25       Loopback Command event       737         5.2.27       Max Slots Change event       73                            |      |           | 5.2.5       | Disconnection Complete event               | 712       |
| 5.2.8       Encryption Change event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           | 5.2.6       | Authentication Complete event              | 713       |
| 5.2.9       Change Connection Link Key Complete event       716         5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       734         5.2.24       Link Key Notification event       735         5.2.25       Loopback Command event       736         5.2.26       Data Buffer Overflow event       737         5.2.27       Max Slots Change event       739                                                                                             |      |           | 5.2.7       | Remote Name Request Complete event         | 714       |
| 5.2.10       Master Link Key Complete event       717         5.2.11       Read Remote Supported Features Complete event       718         5.2.12       Read Remote Version Information Complete event       719         5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       734         5.2.24       Link Key Notification event       735         5.2.25       Loopback Command event       736         5.2.26       Data Buffer Overflow event       737         5.2.27       Max Slots Change event       738         5.2.28       Read Clock Offset Complete event       739                                                                                                     |      |           | 5.2.8       | Encryption Change event                    | 715       |
| 5.2.11       Read Remote Supported Features Complete event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           | 5.2.9       | Change Connection Link Key Complete event  | 716       |
| 5.2.12       Read Remote Version Information Complete event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           | 5.2.10      | Master Link Key Complete event             | 717       |
| 5.2.13       QoS Setup Complete event       721         5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       734         5.2.24       Link Key Notification event       735         5.2.25       Loopback Command event       736         5.2.26       Data Buffer Overflow event       737         5.2.27       Max Slots Change event       738         5.2.28       Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                              |      |           | 5.2.11      | Read Remote Supported Features Complete    | event718  |
| 5.2.14       Command Complete event       723         5.2.15       Command Status event       724         5.2.16       Hardware Error event       725         5.2.17       Flush Occurred event       726         5.2.18       Role Change event       727         5.2.19       Number Of Completed Packets event       728         5.2.20       Mode Change event       730         5.2.21       Return Link Keys event       732         5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       734         5.2.24       Link Key Notification event       735         5.2.25       Loopback Command event       736         5.2.26       Data Buffer Overflow event       737         5.2.27       Max Slots Change event       738         5.2.28       Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                                                                                      |      |           | 5.2.12      | Read Remote Version Information Complete e | vent719   |
| 5.2.15       Command Status event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           | 5.2.13      | QoS Setup Complete event                   | 721       |
| 5.2.15       Command Status event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           | 5.2.14      | Command Complete event                     | 723       |
| 5.2.17 Flush Occurred event       726         5.2.18 Role Change event       727         5.2.19 Number Of Completed Packets event       728         5.2.20 Mode Change event       730         5.2.21 Return Link Keys event       732         5.2.22 PIN Code Request event       733         5.2.23 Link Key Request event       734         5.2.24 Link Key Notification event       735         5.2.25 Loopback Command event       736         5.2.26 Data Buffer Overflow event       737         5.2.27 Max Slots Change event       738         5.2.28 Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           | 5.2.15      |                                            |           |
| 5.2.18       Role Change event       .727         5.2.19       Number Of Completed Packets event       .728         5.2.20       Mode Change event       .730         5.2.21       Return Link Keys event       .732         5.2.22       PIN Code Request event       .733         5.2.23       Link Key Request event       .734         5.2.24       Link Key Notification event       .735         5.2.25       Loopback Command event       .736         5.2.26       Data Buffer Overflow event       .737         5.2.27       Max Slots Change event       .738         5.2.28       Read Clock Offset Complete event       .739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           | 5.2.16      | Hardware Error event                       | 725       |
| 5.2.19       Number Of Completed Packets event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |           | 5.2.17      | Flush Occurred event                       | 726       |
| 5.2.20 Mode Change event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           | 5.2.18      | Role Change event                          | 727       |
| 5.2.20 Mode Change event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |           | 5.2.19      | Number Of Completed Packets event          | 728       |
| 5.2.21 Return Link Keys event       732         5.2.22 PIN Code Request event       733         5.2.23 Link Key Request event       734         5.2.24 Link Key Notification event       735         5.2.25 Loopback Command event       736         5.2.26 Data Buffer Overflow event       737         5.2.27 Max Slots Change event       738         5.2.28 Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           | 5.2.20      | •                                          |           |
| 5.2.22       PIN Code Request event       733         5.2.23       Link Key Request event       734         5.2.24       Link Key Notification event       735         5.2.25       Loopback Command event       736         5.2.26       Data Buffer Overflow event       737         5.2.27       Max Slots Change event       738         5.2.28       Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |           | 5.2.21      |                                            |           |
| 5.2.23 Link Key Request event       734         5.2.24 Link Key Notification event       735         5.2.25 Loopback Command event       736         5.2.26 Data Buffer Overflow event       737         5.2.27 Max Slots Change event       738         5.2.28 Read Clock Offset Complete event       739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           | 5.2.22      |                                            |           |
| 5.2.24 Link Key Notification event7355.2.25 Loopback Command event7365.2.26 Data Buffer Overflow event7375.2.27 Max Slots Change event7385.2.28 Read Clock Offset Complete event739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |           |             |                                            |           |
| 5.2.25Loopback Command event7365.2.26Data Buffer Overflow event7375.2.27Max Slots Change event7385.2.28Read Clock Offset Complete event739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           |             |                                            |           |
| 5.2.26 Data Buffer Overflow event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |           |             | •                                          |           |
| 5.2.27 Max Slots Change event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |           |             |                                            |           |
| 5.2.28 Read Clock Offset Complete event739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           |             |                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |             |                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |           |             |                                            |           |

### **ATTACHMENT H**

### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 523 of 1082

| Host | Controlle | r Interface Functional Specification            | Bluetooth |
|------|-----------|-------------------------------------------------|-----------|
|      |           | 5.2.30 QoS Violation event                      | 742       |
|      |           | 5.2.31 Page Scan Mode Change event              | 743       |
|      |           | 5.2.32 Page Scan Repetition Mode Change event   | 744       |
| 6    | List      | of Error Codes                                  | 745       |
|      | 6.1       | List of Error Codes                             |           |
|      | 6.2       | HCI Error Code Usage Descriptions               | 747       |
|      | 6.3       | Unknown HCI Command (0x01)                      |           |
|      | 6.4       | No Connection (0x02)                            |           |
|      | 6.5       | Hardware Failure (0x03)                         | 748       |
|      | 6.6       | Page Timeout (0x04)                             | 748       |
|      | 6.7       | Authentication Failed (0x05)                    | 748       |
|      | 6.8       | Key Missing (0x06)                              | 748       |
|      | 6.9       | Memory Full (0x07)                              | 749       |
|      | 6.10      | Connection Timeout (0x08)                       | 749       |
|      | 6.11      | Max Number Of Connections (0x09)                | 749       |
|      | 6.12      | Max Number Of SCO Connections To A Device (0x0A | A)750     |
|      | 6.13      | ACL Connection Already Exists (0x0B)            | 750       |
|      | 6.14      | Command Disallowed (0x0C)                       | 750       |
|      | 6.15      | Host Rejected due to (0x0D-0x0F)                | 750       |
|      | 6.16      | Host Timeout (0x10)                             | 751       |
|      | 6.17      | Unsupported Feature or Parameter Value (0x11)   | 751       |
|      | 6.18      | Invalid HCI Command Parameters (0x12)           | 751       |
|      | 6.19      | Other End Terminated Connection: (0x13-0x15)    | 752       |
|      | 6.20      | Connection Terminated By Local Host (0x16)      | 752       |
|      | 6.21      | Repeated Attempts (0x17)                        | 752       |
|      | 6.22      | Pairing Not Allowed (0x18)                      |           |
|      | 6.23      | Unsupported Remote Feature (0x1A)               | 753       |
|      | 6.24      | Unspecified error (0x1F)                        |           |
|      | 6.25      | Unsupported LMP Parameter Value (0x20)          | 753       |
|      | 6.26      | Role Change Not Allowed (0x21)                  |           |
|      | 6.27      | 1 /                                             |           |
|      | 6.28      | LMP Error Transaction Collision (0X23)          |           |
|      | 6.29      | LMP PDU Not Allowed (0X24)                      | 754       |
| 7    |           | of Acronyms and Abbreviations                   |           |
| 8    | List      | of Figures                                      | 756       |
| 9    | List      | of Tables                                       | 757       |

Bluetooth.

### 1 INTRODUCTION

This document describes the functional specifications for the Host Controller Interface (HCI). The HCI provides a uniform interface method of accessing the Bluetooth hardware capabilities. The next two sections provide a brief overview of the lower layers of the Bluetooth software stack and of the Bluetooth hardware. Section 2, provides an overview of the Lower HCI Device Driver Interface on the host device. Section 3, describes the flow control used between the Host and the Host Controller. Section 4, describes each of the HCI Commands in details, identifies parameters for each of the commands, and lists events associated with each command.

## 1.1 LOWER LAYERS OF THE BLUETOOTH SOFTWARE STACK

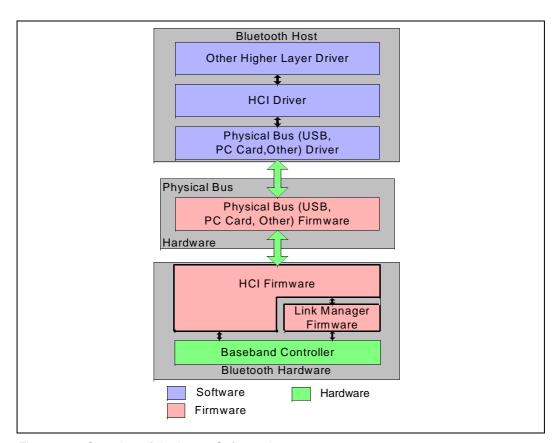



Figure 1.1: Overview of the Lower Software Layers

Figure 1.1, provides an overview of the lower software layers. The HCI firmware implements the HCI Commands for the Bluetooth hardware by accessing baseband commands link manager commands, hardware status registers, control registers, and event registers.

### Bluetooth.

Several layers may exist between the HCI driver on the host system and the HCI firmware in the Bluetooth hardware. These intermediate layers, the Host Controller Transport Layer, provide the ability to transfer data without intimate knowledge of the data.

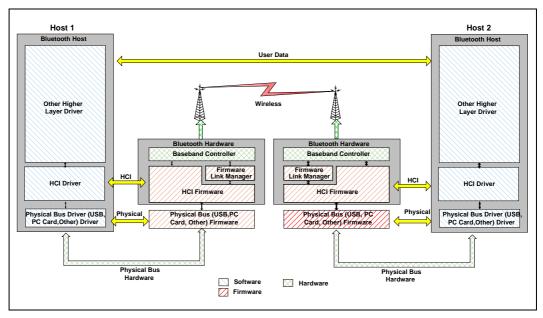



Figure 1.2: End to End Overview of Lower Software Layers to Transfer Data

Figure 1.2, illustrates the path of a data transfer from one device to another. The HCl driver on the Host exchanges data and commands with the HCl firmware on the Bluetooth hardware. The Host Control Transport Layer (i.e. physical bus) driver provides both HCl layers with the ability to exchange information with each other.

The Host will receive asynchronous notifications of HCI events independent of which Host Controller Transport Layer is used. HCI events are used for notifying the Host when something occurs. When the Host discovers that an event has occurred it will then parse the received event packet to determine which event occurred.

### 1.2 BLUETOOTH HARDWARE BLOCK DIAGRAM

A general overview of the Bluetooth hardware is outlined in Figure 1.3 on page 526. It consists of an analog part – the Bluetooth radio, and a digital part – the Host Controller. The Host Controller has a hardware digital signal processing part –the Link Controller (LC), a CPU core, and it interfaces to the host environment. The hardware and software parts of the Host Controller are described below.

Introduction 29 November 1999 525

page 526 of 1082

Host Controller Interface Functional Specification

Bluetooth.

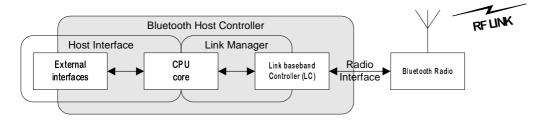



Figure 1.3: Bluetooth Hardware Architecture Overview.

#### 1.2.1 Link Controller

The Link Controller (LC) consists of hardware and software parts that perform Bluetooth baseband processing, and physical layer protocols such as ARQ-protocol and FEC coding.

The functions performed by the Link Controller include:

- Transfer types with selected Quality-of-Service (QoS) parameters
- Asynchronous transfers with guaranteed delivery using hardware fast Automatic Repeat reQuest (fARQ). Frames can be flushed from the retransmission buffer, for use with isochronous data
- Synchronous transfers
- Audio coding. A power-efficient hardware implementation of a robust 64 Kbits/s Continuous Variable Slope Delta (CVSD) coding, as well as 64 Kbits/s log-PCM
- Encryption

### 1.2.2 CPU Core

The CPU core will allow the Bluetooth module to handle Inquiries and filter Page requests without involving the host device. The Host Controller can be programmed to answer certain Page messages and authenticate remote links.

The Link Manager (LM) software runs on the CPU Core. The LM discovers other remote LMs and communicates with them via the Link Manager Protocol (LMP) to perform its service provider role using the services of the underlying Link Controller (LC). For details see "Link Manager Protocol" on page 185

Bluetooth.

### 1.3 POSSIBLE PHYSICAL BUS ARCHITECTURES

Bluetooth devices will have various physical bus interfaces that could be used to connect to the Bluetooth hardware. These buses may have different architectures and different parameters. The Bluetooth Host Controller will initially support two physical bus architectures, USB, and PC Card.

#### 1.3.1 USB HCI Architecture

The following block diagram shows the Bluetooth connection to the Host PC via the USB HCI. USB can handle several logic channels over the same single physical channel (via Endpoints). Therefore control, data, and voice channels do not require any additional physical interfaces. Note that there is no direct access to registers/memory on the Bluetooth module over USB. Instead, this is done by using the appropriate HCI Commands and by using the Host Controller Transport Layer interface.

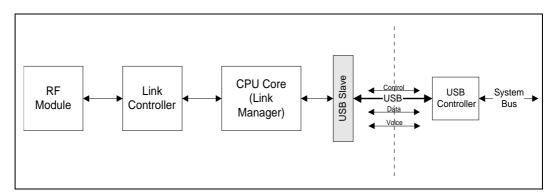



Figure 1.4: Bluetooth Block Diagram with USB HCI

#### 1.3.2 PC Card HCI Architecture

Besides the USB interface, derivatives of the ISA bus (Compact Flash/PC Card interfaces) are an option for an integrated PC solution. Unlike USB, all traffic between the Host and the Bluetooth module will go across the PC Card bus interface. Communications between the host PC and the Bluetooth module will be primarily done directly via registers/memory. The following block diagram shows the data flow for a PC-Card HCI.

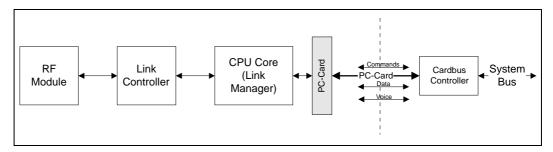



Figure 1.5: Bluetooth Block Diagram with PC-Card HCI

Introduction 29 November 1999 527

page 528 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# 2 OVERVIEW OF HOST CONTROLLER TRANSPORT LAYER

The host driver stack has a transport layer between the Host Controller driver and the Host Controller. On a laptop, this transport layer might be PC Card or Universal Serial Bus (USB).

The main goal of this transport layer is transparency. The Host Controller driver (which talks to the Host Controller) should not care whether it is running over USB or a PC Card. Nor should USB or PC Card require any visibility into the data that the Host Controller driver passes to the Host Controller. This allows the interface (HCI) or the Host Controller to be upgraded without affecting the transport layer.

The Host Controller Transport Layer is described in separate documents for each physical media.

- "HCI USB Transport Layer" on page 759.
- "HCI RS232 Transport Layer" on page 775.
- "HCI UART Transport Layer" on page 795.

page 529 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 3 HCI FLOW CONTROL

Flow control is used in the direction from the Host to the Host Controller to avoid filling up the Host Controller data buffers with ACL data destined for a remote device (connection handle) that is not responding. It is the Host that manages the data buffers of the Host Controller.

On Initialization, the Host will issue the Read Buffer Size command. Two of the return parameters of this command determine the maximum size of HCI ACL and SCO Data Packets (excluding header) sent from the Host to the Host Controller. There are also two additional return parameters that specify the total number of HCI ACL and SCO Data Packets that the Host Controller can have waiting for transmission in its buffers. When there is at least one connection to another device, or when in local loopback mode, the Host Controller uses the Number Of Completed Packets event to control the flow of data from the Host. This event contains a list of connection handles and a corresponding number of HCI Data Packets that have been completed (transmitted, flushed, or looped back to the Host) since the previous time the event was returned (or since the connection was established, if the event has not been returned before for a particular connection handle). Based on the information returned in this event, and the return parameters of the Read\_Buffer\_Size command that specify the total number of HCI ACL and SCO Data Packets that can be stored in the Host Controller, the Host can decide for which Connection Handles the following HCI Data Packets should be sent. After every time it has sent an HCI Data Packet, the Host must assume that the free buffer space for the corresponding link type (ACL or SCO) in the Host Controller has decreased by one HCI Data Packet. When the Host receives a new Number Of Completed Packets event, the Host gets information about how much the buffer usage has decreased since the previous time the event was returned. It can then calculate the actual current buffer usage. While the Host Controller has HCl data packets in its buffer, it must keep sending the Number Of Completed Packets event to the Host at least periodically, until it finally reports that all the pending ACL Data Packets have been transmitted or flushed. The rate with which this event is sent is manufacturer specific. Note that Number Of Completed Packets events will not report on SCO connection handles if SCO Flow Control is disabled. (See Read/Write\_SCO\_Flow\_Control\_Enable on page 658 and page 659.)

Note that for each individual Connection Handle, the data must be sent to the Host Controller in HCI Data Packets in the order in which it was created in the Host. The Host Controller must also transmit data on the air that is received from the Host for a given Connection Handle in the same order as it is received from the Host. Furthermore, data that is received on the air from another device must, for the corresponding Connection Handle, be sent in HCI Data Packets to the Host in the same order as it is received. This means that the scheduling is made on a Connection Handle basis. For each individual Connection Handle, the order of the data must not be changed from the order in which the data has been created.

page 530 of 1082

Host Controller Interface Functional Specification

Bluetooth.

In certain cases, flow control may also be necessary in the direction from the Host Controller to the Host. There is therefore a command – Set Host Controller To Host Flow Control – to turn flow control on or off in that direction. If turned on, it works in exactly the same way as described above. On initialization, the Host uses the Host Buffer Size command to notify the Host Controller about the maximum size of HCI ACL and SCO Data Packets sent from the Host Controller to the Host. The command also contains two additional command parameters to notify the Host Controller about the total number of ACL and SCO Data Packets that can be stored in the data buffers of the Host. The Host then uses the Host Number Of Completed Packets command in exactly the same way as the Host Controller uses the Number Of Completed Packets event (as was previously described in this section). The Host Number Of Completed Packets command is a special command for which no command flow control is used, and which can be sent anytime there is a connection or when in local loopback mode. This makes it possible for the flow control to work in exactly the same way in both directions, and the flow of normal commands will not be disturbed.

When the Host receives a Disconnection Complete event, the Host can assume that all HCI Data Packets that have been sent to the Host Controller for the returned Connection\_Handle have been flushed, and that the corresponding data buffers have been freed. The Host Controller does not have to notify the Host about this in a Number Of Completed Packets event. If flow control is also enabled in the direction from the Host Controller to the Host, the Host Controller can after it has sent a Disconnection\_Complete event assume that the Host will flush its data buffers for the sent Connection\_Handle when it receives the Disconnection\_Complete event. The Host does not have to notify the Host Controller about this in a Host\_Number\_Of\_Completed\_Packets command.

page 531 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4 HCI COMMANDS

### 4.1 INTRODUCTION

The HCI provides a uniform command method of accessing the Bluetooth hardware capabilities. The HCI Link commands provide the Host with the ability to control the link layer connections to other Bluetooth devices. These commands typically involve the Link Manager (LM) to exchange LMP commands with remote Bluetooth devices. For details see "Link Manager Protocol" on page 185.

The HCI Policy commands are used to affect the behavior of the local and remote LM. These Policy commands provide the Host with methods of influencing how the LM manages the piconet. The Host Controller & Baseband, Informational, and Status commands provide the Host access to various registers in the Host Controller.

HCI commands may take different amounts of time to be completed. Therefore, the results of commands will be reported back to the Host in the form of an event. For example, for most HCI commands the Host Controller will generate the Command Complete event when a command is completed. This event contains the return parameters for the completed HCI command. To detect errors on the HCI-Transport Layer a response timeout needs to be defined between the Host Controller receiving a command and sending a response to the command (e.g. a Command Complete or Command Status event). Since the maximum response timeout is strongly dependent on the HCI-Transport Layer used, it is recommended to use a default value of one second for this timer. This amount of time is also dependent on the number of commands unprocessed in the command queue.

### 4.2 TERMINOLOGY

Baseband Packet: The smallest unit of data that is transmitted by one device to another, as defined by the "Baseband Specification" on page 33.

Packet: A higher-level protocol message than the baseband packet, currently only L2CAP (see "Logical Link Control and Adaptation Protocol Specification" on page 245) is defined, but additional packet types may be defined later.

Connection Handle: A connection handle is a 12-bit identifier which is used to uniquely address a data/voice connection from one Bluetooth device to another. The connection handles can be visualized as identifying a unique data pipe that connects two Bluetooth devices. The connection handle is maintained for the lifetime of a connection, including when a device enters Park, Sniff, or Hold mode. The Connection Handle value has local scope between Host and Host Controller. There can be multiple connection handles for any given pair of Bluetooth devices but only one ACL connection.

Event: A mechanism that the HCI uses to notify the Host for command completion, link layer status changes, etc.

Bluetooth.

### 4.3 DATA AND PARAMETER FORMATS

- All values are in Binary and Hexadecimal Little Endian formats unless otherwise noted
- In addition, all parameters which can have negative values must use 2's complement when specifying values
- Arrayed parameters are specified using the following notation: ParameterA[i]. If more than one set of arrayed parameters are specified (e.g. ParameterA[i], ParameterB[i]), then the order of the parameters are as follows: ParameterA[0], ParameterB[0], ParameterA[1], ParameterB[1], ParameterA[2], ParameterB[2], ... ParameterA[n], ParameterB[n]
- Unless noted otherwise, all parameter values are sent and received in Little Endian format (i.e. for multi-byte parameters the rightmost (Least Signification Byte) is transmitted first)
- All command and event parameters that are not-arrayed and all elements in an arrayed parameter have fixed sizes (an integer number of bytes). The parameters and the size of each not arrayed parameter (or of each element in an arrayed parameter) contained in a command or an event is specified for each command or event. The number of elements in an arrayed parameter is not fixed.

### 4.4 EXCHANGE OF HCI-SPECIFIC INFORMATION

The Host Controller Transport Layer provides transparent exchange of HCI-specific information. These transporting mechanisms provide the ability for the Host to send HCI commands, ACL data, and SCO data to the Host Controller. These transport mechanisms also provide the ability for the Host to receive HCI events, ACL data, and SCO data from the Host Controller.

Since the Host Controller Transport Layer provides transparent exchange of HCI-specific information, the HCI specification specifies the format of the commands, events, and data exchange between the Host and the Host Controller. The next sections specify the HCI packet formats.

#### 4.4.1 HCI Command Packet

The HCI Command Packet is used to send commands to the Host Controller from the Host. The format of the HCI Command Packet is shown in Figure 4.1, and the definition of each field is explained below. When the Host Controller completes most of the commands, a Command Complete event is sent to the Host. Some commands do not receive a Command Complete event when they have been completed. Instead, when the Host Controller receives one of these commands the Host Controller sends a Command Status event back to the Host when it has begun to execute the command. Later on, when the actions associated with the command have finished, an event that is associated with the sent command will be sent by the Host Controller to the Host. However, if the command does not begin to execute (there may be a parameter error or the

page 533 of 1082

Host Controller Interface Functional Specification

Bluetooth.

command may currently not be allowed), the event associated with the sent command will not be returned. The Command Status event will, in this case, return the appropriate error code in the Status parameter. On initial power-on, and after a reset, the Host can send a maximum of one outstanding HCI Command Packet until a Command Complete or Command Status event has been received. If an error occurs for a command for which a Command Complete event is returned, the Return Parameters field may not contain all the return parameters specified for the command. The Status parameter, which explains the error reason and which is the first return parameter, will always be returned. If there is a Connection\_Handle parameter or a BD\_ADDR parameter right after the Status parameter, this parameter will also be returned so that the Host can identify to which instance of a command the Command Complete event belongs. In this case, the Connection Handle or BD ADDR parameter will have exactly the same value as that in the corresponding command parameter. It is implementation specific whether more parameters will be returned in case of an error.

Note: The BD\_ADDR return parameter of the command Read\_BD\_ADDR is not used to identify to which instance of the Read\_BD\_ADDR command the Command Complete event belongs. It is therefore not mandatory for the Host Controller to return this parameter in case of an error.

If an error occurs for a command for which no Command Complete event is returned, all parameters returned with the event associated with this command may not be valid. The Host must take care as to which parameters may have valid values depending on the value of the Status parameter of the Complete event associated with the given command. The Command Complete and Command Status events contain a parameter called

Num\_HCI\_Command\_Packets, which indicates the number of HCI Command Packets the Host is currently allowed to send to the Host Controller. The Host Controller may buffer one or more HCI command packets, but the Host Controller must start performing the commands in the order in which they are received. The Host Controller can start performing a command before it completes previous commands. Therefore, the commands do not always complete in the order they are started. The Host Controller must be able to accept HCI Command Packets with up to 255 bytes of data excluding the HCI Command Packet header.

Each command is assigned a 2 byte Opcode used to uniquely identify different types of commands. The Opcode parameter is divided into two fields, called the OpCode Group Field (OGF) and OpCode Command Field (OCF). The OGF occupies the upper 6 bits of the Opcode, while the OCF occupies the remaining 10 bits. The OGF of 0x3F is reserved for vendor-specific debug commands. The OGF of 0x3E is reserved for Bluetooth Logo Testing. The organization of the Opcodes allows additional information to be inferred without fully decoding the entire Opcode.

page 534 of 1082

Host Controller Interface Functional Specification

### Bluetooth.

Size: 1 Byte

Note: the OGF composed of all 'ones' has been reserved for vendor-specific debug commands. These commands are vendor-specific and are used during manufacturing, for a possible method for updating firmware, and for debugging.

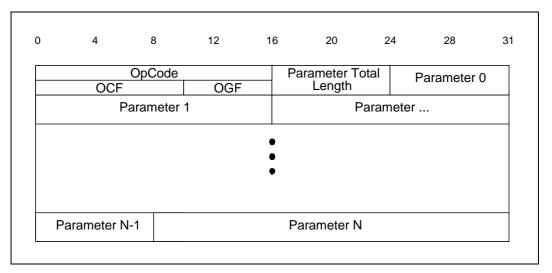



Figure 4.1: HCI Command Packet

Op\_Code: Size: 2 Bytes

| Value  | Parameter Description                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | OGFRange (6 bits): 0x00-0x3F (0x3E reserved for Bluetooth logo testing and 0x3F reserved for vendor-specific debug commands) OCF Range (10 bits): 0x0000-0x03FF |

### Parameter\_Total\_Length:

| Value | Parameter Description                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Lengths of all of the parameters contained in this packet measured in bytes. (N.B.: total length of parameters, not number of parameters) |

### Parameter 0 - N: Size: Parameter Total Length

| Value | Parameter Description                                                                                                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Each command has a specific number of parameters associated with it.  These parameters and the size of each of the parameters are defined for each command. Each parameter is an integer number of bytes in size. |

Bluetooth.

### 4.4.2 HCI Event Packet

The HCI Event Packet is used by the Host Controller to notify the Host when events occur. The Host must be able to accept HCI Event Packets with up to 255 bytes of data excluding the HCI Event Packet header. The format of the HCI Event Packet is shown in Figure 4.2, and the definition of each field is explained below.




Figure 4.2: HCI Event Packet

Event\_Code: Size: 1 Byte

| Value | Parameter Description                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Each event is assigned a 1-Byte event code used to uniquely identify different types of events.                                                                                           |
|       | Range: 0x00-0xFF (The event code 0xFF is reserved for the event code used for vendor-specific debug events. In addition, the event code 0xFE is also reserved for Bluetooth Logo Testing) |

### Parameter\_Total\_Length:

| Value | Parameter Description                                                       |
|-------|-----------------------------------------------------------------------------|
| 0xXX  | Length of all of the parameters contained in this packet, measured in bytes |

### Event\_Parameter 0 - N:

| Value | Parameter Description                                                                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Each event has a specific number of parameters associated with it. These parameters and the size of each of the parameters are defined for each event. Each parameter is an integer number of bytes in size. |

Size: 1 Byte

Size: Parameter Total Length

page 536 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.4.3 HCI Data Packets

HCI Data Packets are used to exchange data between the Host and Host Controller. The data packets are defined for both ACL and SCO data types. The format of the HCI ACL Data Packet is shown in Figure 4.3, and the format of the SCO Data Packet is shown in Figure 4.4. The definition for each of the fields in the data packets is explained below.

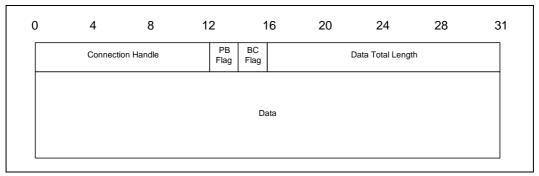



Figure 4.3: HCI ACL Data Packet

page 537 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 12 Bits

### Connection\_Handle:

| Value | Parameter Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXX | Connection Handle to be used for transmitting a data packet or segment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | The first time the Host sends an HCI Data Packet with Broadcast_Flag set to 01b (active broadcast) or 10b (piconet broadcast) after a power-on or a reset, the value of the Connection_Handle parameter must be a value which is not currently assigned by the Host Controller. The Host must use different connection handles for active broadcast and piconet broadcast. The Host Controller must then continue to use the same connection handles for each type of broadcast until a reset is made.                                                                                                                                                                                                                    |
|       | Note: The Host Controller must not send a Connection Complete event containing a new Connection_Handle that it knows is used for broadcast. Note: In some situations, it may happen that the Host Controller sends a Connection Complete event before having interpreted a Broadcast packet received from the Host, and that the Connection_Handles of both Connection Complete event and HCI Data packet are the same. This conflict has to be avoided as follows:                                                                                                                                                                                                                                                       |
|       | If a Connection Complete event is received containing one of the connection handles used for broadcast, the Host has to wait before sending any packets for the new connection until it receives a Number Of Completed Packets event indicating that there are no pending broadcast packets belonging to the connection handle. In addition, the Host must change the Connection_Handle used for the corresponding type of broadcast to a Connection_Handle which is currently not assigned by the Host Controller. This Connection_Handle must then be used for all the following broadcasts of that type until a reset is performed or the same conflict situation happens again. However, this will occur very rarely. |
|       | The Host Controller must, in the above conflict case, be able to distinguish between the Broadcast message sent by the Host and the new connection made (this could be even a new SCO link) even though the connection handles are the same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | For an HCI Data Packet sent from the Host Controller to the Host where the Broadcast_Flag is 01 or 10, the Connection_Handle parameter should contain the connection handle for the ACL connection to the master that sent the broadcast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Note: Connection handles used for Broadcast do not identify an ACL point-to-point connection, so they must not be used in any command having a Connection_Handle parameter and they will not be returned in any event having a Connection_Handle parameter except the Number Of Completed Packets event.                                                                                                                                                                                                                                                                                                                                                                                                                  |

Flags: Size: 2 Bits

The Flag Bits consist of the Packet\_Boundary\_Flag and Broadcast\_Flag. The Packet\_Boundary\_Flag is located in bit 4 and bit 5, and the Broadcast\_Flag is located in bit 6 and 7 in the second byte of the HCI ACL Data packet.

page 538 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bits

### Packet\_Boundary\_Flag:

| Value | Parameter Description                                                |
|-------|----------------------------------------------------------------------|
| 00    | Reserved for future use                                              |
| 01    | Continuing fragment packet of Higher Layer Message                   |
| 10    | First packet of Higher Layer Message (i.e. start of an L2CAP packet) |
| 11    | Reserved for future use                                              |

### Broadcast\_Flag (in packet from Host to Host Controller):

| Size: | 2 | Bits |
|-------|---|------|
|       |   |      |

| Value | Parameter Description                                                             |
|-------|-----------------------------------------------------------------------------------|
| 00    | No broadcast. Only point-to-point.                                                |
| 01    | Active Broadcast: packet is sent to all active slaves.                            |
| 10    | Piconet Broadcast: packet is sent to all slaves, including slaves in 'Park' mode. |
| 11    | Reserved for future use.                                                          |

### Broadcast\_Flag (in packet from Host Controller to Host ):

| Size: | 2 | <b>Bits</b> |
|-------|---|-------------|
|-------|---|-------------|

| Value | Parameter Description                                                             |
|-------|-----------------------------------------------------------------------------------|
| 00    | Point-to-point                                                                    |
| 01    | Packet received at an active slave (either Active Broadcast or Piconet Broadcast) |
| 10    | Packet received at a slave in 'Park' mode (Piconet Broadcast)                     |
| 11    | Reserved for future use.                                                          |

### Data\_Total\_Length:

| Size: | 21 | Byi | tes |
|-------|----|-----|-----|
|       |    |     |     |

| Value  | Parameter Description             |  |
|--------|-----------------------------------|--|
| 0xXXXX | Length of data measured in bytes. |  |



Figure 4.4: HCI SCO Data Packet

### **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 539 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 12 Bits

Size: 1 Byte

### Connection\_Handle:

| Value | Parameter Description                                                          |
|-------|--------------------------------------------------------------------------------|
| 0xXXX | Connection handle to be used to for transmitting a SCO data packet or segment. |
|       | Range: 0x0000-0x0EFF (0x0F00- 0x0FFF Reserved for future use)                  |

The Reserved Bits consist of four bits which are located from bit 4 to bit 7 in the second byte of the HCI SCO Data packet.

Reserved: Size: 4 Bits

| Value | Parameter Description    |
|-------|--------------------------|
| XXXX  | Reserved for future use. |

### Data\_Total\_Length:

| Value | Parameter Description                |
|-------|--------------------------------------|
| 0xXX  | Length of SCO data measured in bytes |

Bluetooth.

### 4.5 LINK CONTROL COMMANDS

The Link Control commands allow the Host Controller to control connections to other Bluetooth devices. When the Link Control commands are used, the Link Manager (LM) controls how the Bluetooth piconets and scatternets are established and maintained. These commands instruct the LM to create and modify link layer connections with Bluetooth remote devices, perform Inquiries of other Bluetooth devices in range, and other LMP commands. For the Link Control commands, the OGF is defined as 0x01.

| Command                    | Command Summary Description                                                                                                                                                                                                                                 |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inquiry                    | The Inquiry command will cause the Bluetooth device to enter Inquiry Mode. Inquiry Mode is used to discovery other nearby Bluetooth devices.                                                                                                                |
| Inquiry_Cancel             | The Inquiry_Cancel command will cause the Bluetooth device to stop the current Inquiry if the Bluetooth device is in Inquiry Mode.                                                                                                                          |
| Periodic_Inquiry_Mode      | The Periodic_Inquiry_Mode command is used to configure the Bluetooth device to perform an automatic Inquiry based on a specified period range.                                                                                                              |
| Exit_Periodic_Inquiry_Mode | The Exit_Periodic_Inquiry_Mode command is used to end the Periodic Inquiry mode when the local device is in Periodic Inquiry Mode.                                                                                                                          |
| Create_Connection          | The Create_Connection command will cause the link manager to create an ACL connection to the Bluetooth device with the BD_ADDR specified by the command parameters.                                                                                         |
| Disconnect                 | The Disconnect command is used to terminate an existing connection.                                                                                                                                                                                         |
| Add_SCO_Connection         | The Add_SCO_Connection command will cause the link manager to create a SCO connection using the ACL connection specified by the Connection Handle command parameter.                                                                                        |
| Accept_Connection_Request  | The Accept_Connection_Request command is used to accept a new incoming connection request.                                                                                                                                                                  |
| Reject_Connection_Request  | The Reject_Connection_Request command is used to decline a new incoming connection request.                                                                                                                                                                 |
| Link_Key_Request_Reply     | The Link_Key_Request_Reply command is used to reply to a Link Key Request event from the Host Controller, and specifies the Link Key stored on the Host to be used as the link key for the connection with the other Bluetooth device specified by BD_ADDR. |

### Bluetooth.

| Command                         | Command Summary Description                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Link_Key_Request_Negative_Reply | The Link_Key_Request_Negative_Reply command is used to reply to a Link Key Request event from the Host Controller if the Host does not have a stored Link Key for the connection with the other Bluetooth Device specified by BD_ADDR. |
| PIN_Code_Request_Reply          | The PIN_Code_Request_Reply command is used to reply to a PIN Code Request event from the Host Controller and specifies the PIN code to use for a connection.                                                                           |
| PIN_Code_Request_Negative_Reply | The PIN_Code_Request_Negative_Reply command is used to reply to a PIN Code Request event from the Host Controller when the Host cannot specify a PIN code to use for a connection.                                                     |
| Change_Connection_Packet_Type   | The Change_Connection_Packet_Type command is used to change which packet types can be used for a connection that is currently established.                                                                                             |
| Authentication_Requested        | The Authentication_Requested command is used to establish authentication between the two devices associated with the specified Connection Handle.                                                                                      |
| Set_Connection_Encryption       | The Set_Connection_Encryption command is used to enable and disable the link level encryption.                                                                                                                                         |
| Change_Connection_Link_Key      | The Change_Connection_Link_Key command is used to force both devices of a connection associated to the connection handle, to generate a new link key.                                                                                  |
| Master_Link_Key                 | The Master_Link_Key command is used to force both devices of a connection associated to the connection handle to use the temporary link key of the Master device or the regular link keys.                                             |
| Remote_Name_Request             | The Remote_Name_Request command is used to obtain the user-friendly name of another Bluetooth device.                                                                                                                                  |
| Read_Remote_Supported_Features  | The Read_Remote_Supported_Features command requests a list of the supported features of a remote device.                                                                                                                               |
| Read_Remote_Version_Information | The Read_Remote_Version_Information command will read the values for the version information for the remote Bluetooth device.                                                                                                          |
| Read_Clock_Offset               | The Read_Clock_Offset command allows the Host to read the clock offset of remote devices.                                                                                                                                              |

page 542 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 4.5.1 Inquiry

| Command     | OCF    | Command Parameters   | Return Parameters |
|-------------|--------|----------------------|-------------------|
| HCI_Inquiry | 0x0001 | LAP, Inquiry_Length, |                   |
|             |        | Num_Responses        |                   |

### **Description:**

This command will cause the Bluetooth device to enter Inquiry Mode. Inquiry Mode is used to discover other nearby Bluetooth devices. The LAP input parameter contains the LAP from which the inquiry access code shall be derived when the inquiry procedure is made. The Inquiry\_Length parameter specifies the total duration of the Inquiry Mode and, when this time expires, Inquiry will be halted. The Num\_Responses parameter specifies the number of responses that can be received before the Inquiry is halted. A Command Status event is sent from the Host Controller to the Host when the Inquiry command has been started by the Bluetooth device. When the Inquiry process is completed, the Host Controller will send an Inquiry Complete event to the Host indicating that the Inquiry has finished. The event parameters of Inquiry Complete event will have a summary of the result from the Inquiry process, which reports the number of nearby Bluetooth devices that responded. When a Bluetooth device responds to the Inquiry message, an Inquiry Result event will occur to notify the Host of the discovery.

A device which responds during an inquiry or inquiry period should always be reported to the Host in an Inquiry Result event if the device has not been reported earlier during the current inquiry or inquiry period and the device has not been filtered out using the command Set\_Event\_Filter. If the device has been reported earlier during the current inquiry or inquiry period, it may or may not be reported depending on the implementation (depending on if earlier results have been saved in the Host Controller and in that case how many responses that have been saved). It is recommended that the Host Controller tries to report a particular device only once during an inquiry or inquiry period.

#### **Command Parameters:**

LAP: Size: 3 Bytes

| Value     | Parameter Description                                                              |
|-----------|------------------------------------------------------------------------------------|
| 0x9E8B00- | This is the LAP from which the inquiry access code should be derived               |
| 0X9E8B3F  | when the inquiry procedure is made; see "Bluetooth Assigned Numbers" on page 1009. |

page 543 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 1 Byte

### Inquiry\_Length:

| Value    | Parameter Description                                          |
|----------|----------------------------------------------------------------|
| N = 0xXX | Maximum amount of time specified before the Inquiry is halted. |
|          | Size: 1 byte                                                   |
|          | Range: 0x01 – 0x30                                             |
|          | Time = N * 1.28 sec                                            |
|          | Range: 1.28 – 61.44 Sec                                        |

### Num Responses:

| Value | Parameter Description                                                                          |
|-------|------------------------------------------------------------------------------------------------|
| 0x00  | Default. Unlimited number of responses.                                                        |
| 0xXX  | Maximum number of responses from the Inquiry before the Inquiry is halted.  Range: 0x01 – 0xFF |

### **Return Parameters:**

None.

### Event(s) generated (unless masked away):

A Command Status event is sent from the Host Controller to the Host when the Host Controller has started the Inquiry process. An Inquiry Result event will be created for each Bluetooth device which responds to the Inquiry message. In addition, multiple Bluetooth devices which respond to the Inquire message may be combined into the same event. An Inquiry Complete event is generated when the Inquiry process has completed.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Inquiry Complete event will indicate that this command has been completed. No Inquiry Complete event will be generated for the canceled Inquiry process.

page 544 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 4.5.2 Inquiry\_Cancel

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| HCI_Inquiry_Cancel | 0x0002 |                    | Status            |

### **Description:**

This command will cause the Bluetooth device to stop the current Inquiry if the Bluetooth device is in Inquiry Mode. This command allows the Host to interrupt the Bluetooth device and request the Bluetooth device to perform a different task. The command should only be issued after the Inquiry command has been issued, a Command Status event has been received for the Inquiry command, and before the Inquiry Complete event occurs.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                             |
|-----------|-----------------------------------------------------------------------------------|
| 0x00      | Inquiry_Cancel command succeeded.                                                 |
| 0x01-0xFF | Inquiry_Cancel command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Event(s) generated (unless masked away):

When the Inquiry Cancel command has completed, a Command Complete event will be generated. No Inquiry Complete event will be generated for the canceled Inquiry process.

Bluetooth.

545

### 4.5.3 Periodic\_Inquiry\_Mode

| Command       | OCF    | Command Parameters | Return Parameters |
|---------------|--------|--------------------|-------------------|
| HCI_Periodic_ | 0x0003 | Max_Period_Length, | Status            |
| Inquiry_Mode  |        | Min_Period_Length, |                   |
|               |        | LAP,               |                   |
|               |        | Inquiry_Length,    |                   |
|               |        | Num_Responses      |                   |

### **Description:**

The Periodic Inquiry Mode command is used to configure the Bluetooth device to enter the Periodic Inquiry Mode that performs an automatic Inquiry. Max Period Length and Min Period Length define the time range between two consecutive inquiries, from the beginning of an inquiry until the start of the next inquiry. The Host Controller will use this range to determine a new random time between two consecutive inquiries for each Inquiry. The LAP input parameter contains the LAP from which the inquiry access code shall be derived when the inquiry procedure is made. The Inquiry Length parameter specifies the total duration of the InquiryMode and, when time expires, Inquiry will be halted. The Num\_Responses parameter specifies the number of responses that can be received before the Inquiry is halted. This command is completed when the Inquiry process has been started by the Bluetooth device, and a Command Complete event is sent from the Host Controller to the Host. When each of the periodic Inquiry processes are completed, the Host Controller will send an Inquiry Complete event to the Host indicating that the latest periodic Inquiry process has finished. The event parameters of Inquiry Complete event will have a summary of the result from the previous Periodic Inquiry process, which reports the number of nearby Bluetooth devices that responded. When a Bluetooth device responds to the Inquiry message an Inquiry Result event will occur to notify the Host of the discovery.

Note: Max\_Period\_Length > Min\_Period\_Length > Inquiry\_Length

A device which responds during an inquiry or inquiry period should always be reported to the Host in an Inquiry Result event if the device has not been reported earlier during the current inquiry or inquiry period and the device has not been filtered out using the command Set\_Event\_Filter. If the device has been reported earlier during the current inquiry or inquiry period, it may or may not be reported depending on the implementation (depending on if earlier results have been saved in the Host Controller and in that case how many responses that have been saved). It is recommended that the Host Controller tries to report a particular device only once during an inquiry or inquiry period.

page 546 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Size: 2 Bytes

Size: 1 Byte

Size: 1 Byte

### **Command Parameters:**

### Max\_Period\_Length:

| Value      | Parameter Description                                           |
|------------|-----------------------------------------------------------------|
| N = 0xXXXX | Maximum amount of time specified between consecutive inquiries. |
|            | Size: 2 bytes                                                   |
|            | Range: 0x03 – 0xFFFF                                            |
|            | Time = N * 1.28 sec                                             |
|            | Range: 3.84 – 83884.8 Sec                                       |
|            | 0.0 – 23.3 hours                                                |

### Min\_Period\_Length:

| Value      | Parameter Description                                           |
|------------|-----------------------------------------------------------------|
| N = 0xXXXX | Minimum amount of time specified between consecutive inquiries. |
|            | Size: 2 bytes                                                   |
|            | Range: 0x02 – 0xFFFE                                            |
|            | Time = N * 1.28 sec                                             |
|            | Range: 2.56 – 83883.52 Sec                                      |
|            | 0.0 – 23.3 hours                                                |

### LAP: Size: 3 Bytes

| Value                 | Parameter Description                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x9E8B00-<br>0X9E8B3F | This is the LAP from which the inquiry access code should be derived when the inquiry procedure is made, see "Bluetooth Assigned Numbers" on page 1009. |

### Inquiry\_Length:

| Value    | Parameter Description                                          |
|----------|----------------------------------------------------------------|
| N = 0xXX | Maximum amount of time specified before the Inquiry is halted. |
|          | Size: 1 byte                                                   |
|          | Range: 0x01 – 0x30                                             |
|          | Time = N * 1.28 sec                                            |
|          | Range: 1.28 – 61.44 Sec                                        |

### Num\_Responses:

| Value | Parameter Description                                                      |
|-------|----------------------------------------------------------------------------|
| 0x00  | Default. Unlimited number of responses.                                    |
| 0xXX  | Maximum number of responses from the Inquiry before the Inquiry is halted. |
|       | Range: 0x01 – 0xFF                                                         |

page 547 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                    |
|-----------|------------------------------------------------------------------------------------------|
| 0x00      | Periodic Inquiry Mode command succeeded.                                                 |
| 0x01-0xFF | Periodic Inquiry Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

### **Event(s) generated (unless masked away):**

The Periodic Inquiry Mode begins when the Host Controller sends the Command Complete event for this command to the Host. An Inquiry Result event will be created for each Bluetooth device which responds to the Inquiry message. In addition, multiple Bluetooth devices which response to the Inquiry message may be combined into the same event. An Inquiry Complete event is generated when each of the periodic Inquiry processes has completed. No Inquiry Complete event will be generated for the canceled Inquiry process.

page 548 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 4.5.4 Exit\_Periodic\_Inquiry\_Mode

| Command                        | OCF    | Command<br>Parameters | Return Parameters |
|--------------------------------|--------|-----------------------|-------------------|
| HCI_Exit_Periodic_Inquiry_Mode | 0x0004 |                       | Status            |

### **Description**:

The Exit Periodic Inquiry Mode command is used to end the Periodic Inquiry mode when the local device is in Periodic Inquiry Mode. If the local device is currently in an Inquiry process, the Inquiry process will be stopped directly and the Host Controller will no longer perform periodic inquiries until the Periodic Inquiry Mode command is reissued.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Exit Periodic Inquiry Mode command succeeded.                                                 |
| 0x01-0xFF | Exit Periodic Inquiry Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

### **Event(s) generated (unless masked away):**

A Command Complete event for this command will occur when the local device is no longer in Periodic Inquiry Mode. No Inquiry Complete event will be generated for the canceled Inquiry process.

page 549 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.5.5 Create\_Connection

| Command               | OCF    | Command Parameters         | Return<br>Parameters |
|-----------------------|--------|----------------------------|----------------------|
| HCI_Create_Connection | 0x0005 | BD_ADDR,                   |                      |
|                       |        | Packet_Type,               |                      |
|                       |        | Page_Scan_Repetition_Mode, |                      |
|                       |        | Page_Scan_Mode,            |                      |
|                       |        | Clock_Offset,              |                      |
|                       |        | Allow_Role_Switch          |                      |

### **Description:**

This command will cause the Link Manager to create a connection to the Bluetooth device with the BD ADDR specified by the command parameters. This command causes the local Bluetooth device to begin the Page process to create a link level connection. The Link Manager will determine how the new ACL connection is established. This ACL connection is determined by the current state of the device, its piconet, and the state of the device to be connected. The Packet\_Type command parameter specifies which packet types the Link Manager shall use for the ACL connection. The Link Manager must use only the packet type(s) specified by the Packet\_Type command parameter for sending HCI ACL Data Packets. Multiple packet types may be specified for the Packet Type parameter by performing a bit-wise OR operation of the different packet types. The Link Manager may choose which packet type to be used from the list of acceptable packet types. The Page Scan Repetition Mode and Page Scan Mode parameters specify the page scan modes supported by the remote device with the BD\_ADDR. This is the information that was acquired during the inquiry process. The Clock\_Offset parameter is the difference between its own clock and the clock of the remote device with BD ADDR. Only bits 2 through 16 of the difference are used, and they are mapped to this parameter as bits 0 through 14 respectively. A Clock\_Offset\_Valid\_Flag, located in bit 15 of the Clock Offset parameter, is used to indicate if the Clock Offset is valid or not. A Connection handle for this connection is returned in the Connection Complete event (see below). The Allow Role Switch parameter specifies if the local device accepts or rejects the request of a master-slave role switch when the remote device requests it at the connection setup (in the Role parameter of the Accept\_Connection\_Request command) (before the local Host Controller returns a Connection Complete event). For a definition of the different packet types see the "Baseband Specification" on page 33.

Note: At least one packet type must be specified. The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

page 550 of 1082

Host Controller Interface Functional Specification

Bluetooth..

### **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                  |
|---------------|----------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device to be connected. |

Packet\_Type: Size: 2 Bytes

| T donot_Typo: | 0/20. 2 Dytoo            |
|---------------|--------------------------|
| Value         | Parameter Description    |
| 0x0001        | Reserved for future use. |
| 0x0002        | Reserved for future use. |
| 0x0004        | Reserved for future use. |
| 0x0008        | DM1                      |
| 0x0010        | DH1                      |
| 0x0020        | Reserved for future use. |
| 0x0040        | Reserved for future use. |
| 0x0080        | Reserved for future use. |
| 0x0100        | Reserved for future use. |
| 0x0200        | Reserved for future use. |
| 0x0400        | DM3                      |
| 0x0800        | DH3                      |
| 0x1000        | Reserved for future use. |
| 0x2000        | Reserved for future use. |
| 0x4000        | DM5                      |
| 0x8000        | DH5                      |

Page\_Scan\_Repetition\_Mode:

| Value       | Parameter Description |
|-------------|-----------------------|
| 0x00        | R0                    |
| 0x01        | R1                    |
| 0x02        | R2                    |
| 0x03 – 0xFF | Reserved.             |

I

Size: 1 Byte

### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 551 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 2 Bytes

Size: 1 Byte

### Page\_Scan\_Mode:

| Value       | Parameter Description        |
|-------------|------------------------------|
| 0x00        | Mandatory Page Scan Mode.    |
| 0x01        | Optional Page Scan Mode I.   |
| 0x02        | Optional Page Scan Mode II.  |
| 0x03        | Optional Page Scan Mode III. |
| 0x04 – 0xFF | Reserved.                    |

### Clock\_Offset:

| Bit format | Parameter Description                                                    |
|------------|--------------------------------------------------------------------------|
| Bit 14.0   | Bit 16.2 of CLKslave-CLKmaster.                                          |
| Bit 15     | Clock_Offset_Valid_Flag Invalid Clock Offfset = 0 Valid Clock Offset = 1 |

### Allow Role Switch:

| Value     | Parameter Description                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00      | The local device will be a master, and will not accept a master-slave switch requested by the remote device at the connection setup.                  |
| 0x01      | The local device may be a master, or may become a slave after accepting a master-slave switch requested by the remote device at the connection setup. |
| 0x02-0xFF | Reserved for future use.                                                                                                                              |

### **Return Parameters:**

None.

### Event(s) generated (unless masked away):

When the Host Controller receives the Create Connection command, the Host Controller sends the Command Status event to the Host. In addition, when the LM determines the connection is established, the Host Controller, on both Bluetooth devices that form the connection, will send a Connection Complete event to each Host. The Connection Complete event contains the Connection Handle if this command is successful.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

HCI Commands

page 552 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.5.6 Disconnect

| Command        | OCF    | Command Parameters | Return Parameters |
|----------------|--------|--------------------|-------------------|
| HCI_Disconnect | 0x0006 | Connection_Handle, |                   |
|                |        | Reason             |                   |

## **Description:**

The Disconnection command is used to terminate an existing connection. The Connection\_Handle command parameter indicates which connection is to be disconnected. The Reason command parameter indicates the reason for ending the connection. The remote Bluetooth device will receive the Reason command parameter in the Disconnection Complete event. All SCO connections on a physical link should be disconnected before the ACL connection on the same physical connection is disconnected.

#### **Command Parameters:**

Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle for the connection being disconnected.       |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Reason: Size: 1 Byte

| Value              | Parameter Description                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x13-0x15,<br>0x1A | Other End Terminated Connection error codes (0x13-0x15) and Unsupported Remote Feature error code (0x1A) see Table 6.1 on page 745 for list of Error Codes. |

#### **Return Parameters:**

None.

#### **Event(s)** generated (unless masked away):

When the Host Controller receives the Disconnect command, it sends the Command Status event to the Host. The Disconnection Complete event will occur at each Host when the termination of the connection has completed, and indicates that this command has been completed.

Note: No Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Disconnection Complete event will indicate that this command has been completed.

Bluetooth.

## 4.5.7 Add\_SCO\_Connection

| Command                | OCF    | Command Parameters             | Return<br>Parameters |
|------------------------|--------|--------------------------------|----------------------|
| HCI_Add_SCO_Connection | 0x0007 | Connection_Handle, Packet_Type |                      |

#### **Description:**

This command will cause the link manager to create a SCO connection using the ACL connection specified by the Connection\_Handle command parameter. This command causes the local Bluetooth device to create a SCO connection. The Link Manager will determine how the new connection is established. This connection is determined by the current state of the device, its piconet, and the state of the device to be connected. The Packet\_Type command parameter specifies which packet types the Link Manager should use for the connection. The Link Manager must only use the packet type(s) specified by the

Packet\_Type command parameter for sending HCI SCO Data Packets. Multiple packet types may be specified for the Packet\_Type command parameter by performing a bitwise OR operation of the different packet types. The Link Manager may choose which packet type is to be used from the list of acceptable packet types. A Connection Handle for this connection is returned in the Connection Complete event (see below).

Note: SCO-Connection can only be created when an ACL Connection already exists. For a definition of the different packet types, see the "Baseband Specification" on page 33.

Note: At least one packet type must be specified. The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

#### **Command Parameters:**

#### Connection Handle

Size 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                            |
|--------|----------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle for the ACL connection being used to create an SCO connection. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                   |

page 554 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Packet\_Type:

| Size: | 2 | Byte |  |
|-------|---|------|--|
|       |   |      |  |

| Value  | Parameter Description    |
|--------|--------------------------|
| 0x0001 | Reserved for future use. |
| 0x0002 | Reserved for future use. |
| 0x0004 | Reserved for future use. |
| 0x0008 | Reserved for future use. |
| 0x0010 | Reserved for future use. |
| 0x0020 | HV1                      |
| 0x0040 | HV2                      |
| 0x0080 | HV3                      |
| 0x0100 | Reserved for future use. |
| 0x0200 | Reserved for future use. |
| 0x0400 | Reserved for future use. |
| 0x0800 | Reserved for future use. |
| 0x1000 | Reserved for future use. |
| 0x2000 | Reserved for future use. |
| 0x4000 | Reserved for future use. |
| 0x8000 | Reserved for future use. |

#### **Return Parameters:**

None.

#### **Event(s)** generated (unless masked away):

When the Host Controller receives the Add\_SCO\_Connection command, it sends the Command Status event to the Host. In addition, when the LM determines the connection is established, the Host Controller, on both Bluetooth devices that form the connection, will send a Connection Complete event to each Host. The Connection Complete event contains the Connection Handle if this command is successful.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

**Bluetooth** 

## 4.5.8 Accept\_Connection\_Request

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Accept_Connection | 0x0009 | BD_ADDR,           |                   |
| Request               |        | Role               |                   |

## **Description:**

The Accept\_Connection\_Request command is used to accept a new incoming connection request. The Accept\_Connection\_Request command shall only be issued after a Connection Request event has occurred. The Connection Request event will return the BD\_ADDR of the device which is requesting the connection. This command will cause the Link Manager to create a connection to the Bluetooth device, with the BD\_ADDR specified by the command parameters. The Link Manager will determine how the new connection will be established. This will be determined by the current state of the device, its piconet, and the state of the device to be connected. The Role command parameter allows the Host to specify if the Link Manager shall perform a Master-Slave switch, and become the Master for this connection. Also, the decision to accept a connection must be completed before the connection accept timeout expires on the local Bluetooth Module.

Note: when accepting SCO connection request, the Role parameter is not used and will be ignored by the Host Controller.

#### **Command Parameters:**

BD ADDR: Size: 6 Bytes

| Value         | Parameter Description                 |
|---------------|---------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device to be connected |

Role: Size: 1 Byte

| Value | Parameter Description                                                                         |
|-------|-----------------------------------------------------------------------------------------------|
| 0x00  | Become the Master for this connection. The LM will perform the Master/Slave switch.           |
| 0x01  | Remain the Slave for this connection. The LM will <b>NOT</b> perform the Master/Slave switch. |

#### **Return Parameters:**

None.

page 556 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## Event(s) generated (unless masked away):

The Accept\_Connection\_Request command will cause the Command Status event to be sent from the Host Controller when the Host Controller begins setting up the connection. In addition, when the Link Manager determines the connection is established, the Host Controllers on both Bluetooth devices that form the connection will send a Connection Complete event to each Host. The Connection Complete event contains the Connection Handle if this command is successful.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

Bluetooth

557

# 4.5.9 Reject\_Connection\_Request

| Command                        | OCF    | Command Parameters | Return Parameters |
|--------------------------------|--------|--------------------|-------------------|
| HCI_Reject_Connection _Request | 0x000A | BD_ADDR, Reason    |                   |

#### **Description:**

The Reject\_Connection\_Request command is used to decline a new incoming connection request. The Reject\_Connection\_Request command shall only be called after a Connection Request event has occurred. The Connection Request event will return the BD\_ADDR of the device that is requesting the connection. The Reason command parameter will be returned to the connecting device in the Status parameter of the Connection Complete event returned to the Host of the connection device, to indicate why the connection was declined.

## **Command Parameters:**

BD ADDR: Size: 6 Bytes

| Value        | Parameter Description                                |
|--------------|------------------------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR of the Device to reject the connection from. |

Reason: Size: 1 Byte

| Value     | Parameter Description                                                                       |
|-----------|---------------------------------------------------------------------------------------------|
| 0x0D-0x0F | Host Reject Error Code. See Table 6.1 on page 745 for list of Error Codes and descriptions. |

#### **Return Parameters:**

None.

#### **Event(s)** generated (unless masked away):

When the Host Controller receives the Reject\_Connection\_Request command, the Host Controller sends the Command Status event to the Host. A Connection Complete event will then be sent, both to the local Host and to the Host of the device attempting to make the connection. The Status parameter of the Connection Complete event, which is sent to the Host of the device attempting to make the connection, will contain the Reason command parameter from this command.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Connection Complete event will indicate that this command has been completed.

page 558 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.5.10 Link\_Key\_Request\_Reply

| Command                    | OCF    | Command<br>Parameters | Return Parameters |
|----------------------------|--------|-----------------------|-------------------|
| HCI_Link_Key_Request_Reply | 0x000B | BD_ADDR, Link_Key     | Status, BD_ADDR   |

## **Description:**

The Link\_Key\_Request\_Reply command is used to reply to a Link Key Request event from the Host Controller, and specifies the Link Key stored on the Host to be used as the link key for the connection with the other Bluetooth Device specified by BD\_ADDR. The Link Key Request event will be generated when the Host Controller needs a Link Key for a connection.

When the Host Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a Link\_Key\_Request\_Reply or Link\_Key\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

#### **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                               |
|---------------|-----------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device of which the Link Key is for. |

Link\_Key: Size: 16 Bytes

| Value                                  | Parameter Description                |
|----------------------------------------|--------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Link Key for the associated BD_ADDR. |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                     |
|-----------|-------------------------------------------------------------------------------------------|
| 0x00      | Link_Key_Request_Reply command succeeded.                                                 |
| 0x01-0xFF | Link_Key_Request_Reply command failed. See Table 6.1 on page 745 for list of Error Codes. |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 559 of 1082

Host Controller Interface Functional Specification

Bluetooth.

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description                                                    |
|--------------------|--------------------------------------------------------------------------|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the Device of which the Link Key request reply has completed. |

# Event(s) generated (unless masked away):

The Link\_Key\_Request\_Reply command will cause a Command Complete event to be generated.

page 560 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.5.11 Link\_Key\_Request\_Negative\_Reply

| Command                              | OCF    | Command Parameters | Return Parameters |
|--------------------------------------|--------|--------------------|-------------------|
| HCI_Link_Key_Request _Negative_Reply | 0x000C | BD_ADDR            | Status, BD_ADDR   |

## **Description:**

The Link\_Key\_Request\_Negative\_Reply command is used to reply to a Link Key Request event from the Host Controller if the Host does not have a stored Link Key for the connection with the other Bluetooth Device specified by BD\_ADDR. The Link Key Request event will be generated when the Host Controller needs a Link Key for a connection.

When the Host Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a Link\_Key\_Request\_Reply or Link\_Key\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

#### **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value                                  | Parameter Description                            |
|----------------------------------------|--------------------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR of the Device which the Link Key is for. |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                              |
|-----------|----------------------------------------------------------------------------------------------------|
| 0x00      | Link_Key_Request_Negative_Reply command succeeded.                                                 |
| 0x01-0xFF | Link_Key_Request_Negative_Reply command failed. See Table 6.1 on page 745 for list of Error Codes. |

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description                                                          |
|--------------------|--------------------------------------------------------------------------------|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the Device which the Link Key request negative reply has completed. |

## **Event(s) generated (unless masked away):**

The Link\_Key\_Request\_Negative\_Reply command will cause a Command Complete event to be generated.

Bluetooth.

## 4.5.12 PIN\_Code\_Request\_Reply

| Command                    | OCF    | Command<br>Parameters | Return Parameters |
|----------------------------|--------|-----------------------|-------------------|
| HCI_PIN_Code_Request_Reply | 0x000D | BD_ADDR,              | Status, BD_ADDR   |
|                            |        | PIN_Code_Length,      |                   |
|                            |        | PIN_Code              |                   |

#### **Description:**

The PIN\_Code\_Request\_Reply command is used to reply to a PIN Code request event from the Host Controller, and specifies the PIN code to use for a connection. The PIN Code Request event will be generated when a connection with remote initiating device has requested pairing.

When the Host Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a PIN\_Code\_Request\_Reply or PIN\_Code\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

#### **Command Parameters:**

BD ADDR: Size: 6 Bytes

| Value                                  | Parameter Description                            |
|----------------------------------------|--------------------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR of the Device which the PIN code is for. |

#### PIN\_Code\_Length:

| Value | Parameter Description                                                           |
|-------|---------------------------------------------------------------------------------|
| 0xXX  | The PIN code length specifics the length, in bytes, of the PIN code to be used. |
|       | Range: 0x01-0x10                                                                |

#### PIN\_Code: Size: 16 Bytes

| Value                                  | Parameter Description                                                                                                                                                                             |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | PIN code for the device that is to be connected. The Host should insure that strong PIN Codes are used. PIN Codes can be up to a maximum of 128 bits. The MSB of the PIN Code occupies byte zero. |  |

Size: 1 Byte

page 562 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                     |  |
|-----------|-------------------------------------------------------------------------------------------|--|
| 0x00      | PIN_Code_Request_Reply command succeeded.                                                 |  |
| 0x01-0xFF | PIN_Code_Request_Reply command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description                                                 |
|--------------------|-----------------------------------------------------------------------|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the Device which the PIN Code request reply has completed. |

# Event(s) generated (unless masked away):

The PIN\_Code\_Request\_Reply command will cause a Command Complete event to be generated.

Bluetooth.

## 4.5.13 PIN\_Code\_Request\_Negative\_Reply

| Command                                 | OCF    | Command Parameters | Return Parameters |
|-----------------------------------------|--------|--------------------|-------------------|
| HCI_PIN_Code_<br>Request_Negative Reply | 0x000E | BD_ADDR            | Status, BD_ADDR   |

#### **Description:**

The PIN\_Code\_Request\_Negative\_Reply command is used to reply to a PIN Code request event from the Host Controller when the Host cannot specify a PIN code to use for a connection. This command will cause the pair request with remote device to fail.

When the Host Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a PIN\_Code\_Request\_Reply or PIN\_Code\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

## **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value        | Parameter Description                                      |
|--------------|------------------------------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR of the Device which this command is responding to. |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                               |  |
|-----------|-----------------------------------------------------------------------------------------------------|--|
| 0x00      | PIN_Code_Request_Negative_Reply command succeeded.                                                  |  |
| 0x01-0xFF | PIN_Code_Request_Negative_Reply command failed. See Table 6.1 on page 7450 for list of Error Codes. |  |

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description                                                          |  |
|--------------------|--------------------------------------------------------------------------------|--|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the Device which the PIN Code request negative reply has completed. |  |

## Event(s) generated (unless masked away):

The PIN\_Code\_Request\_Negative\_Reply command will cause a Command Complete event to be generated.

Bluetooth.

# 4.5.14 Change\_Connection\_Packet\_Type

| Command                | OCF    | Command Parameters | Return Parameters |
|------------------------|--------|--------------------|-------------------|
| HCI_Change_Connection_ | 0x000F | Connection_Handle, |                   |
| Packet_Type            |        | Packet_Type        |                   |

## **Description:**

The Change\_Connection\_Packet\_Type command is used to change which packet types can be used for a connection that is currently established. This allows current connections to be dynamically modified to support different types of user data. The Packet\_Type command parameter specifies which packet types the Link Manager can use for the connection. The Link Manager must only use the packet type(s) specified by the Packet\_Type command parameter for sending HCI Data Packets. The interpretation of the value for the Packet\_Type command parameter will depend on the Link\_Type command parameter returned in the Connection Complete event at the connection setup. Multiple packet types may be specified for the Packet\_Type command parameter by bitwise OR operation of the different packet types. For a definition of the different packet types see the "Baseband Specification" on page 33.

Note: At least one packet type must be specified. The Host should enable as many packet types as possible for the Link Manager to perform efficiently. However, the Host must not enable packet types that the local device does not support.

#### **Command Parameters:**

Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                                              |  |
|--------|--------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to for transmitting and receiving voice or data. Returned from creating a connection. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                                     |  |

Packet\_Type: Size: 2 Bytes

#### For ACL Link Type

| Value  | Parameter Description    |
|--------|--------------------------|
| 0x0001 | Reserved for future use. |
| 0x0002 | Reserved for future use. |
| 0x0004 | Reserved for future use. |
| 0x0008 | DM1                      |

# Bluetooth.

|   | Value  | Parameter Description    |
|---|--------|--------------------------|
|   | 0x0010 | DH1                      |
|   | 0x0020 | Reserved for future use. |
|   | 0x0040 | Reserved for future use. |
|   | 0x0080 | Reserved for future use. |
|   | 0x0100 | Reserved for future use. |
| I | 0x0200 | Reserved for future use. |
|   | 0x0400 | DM3                      |
|   | 0x0800 | DH3                      |
|   | 0x1000 | Reserved for future use. |
|   | 0x2000 | Reserved for future use. |
|   | 0x4000 | DM5                      |
|   | 0x8000 | DH5                      |

# For SCO Link Type

| Value  | Parameter Description    |
|--------|--------------------------|
| 0x0001 | Reserved for future use. |
| 0x0002 | Reserved for future use. |
| 0x0004 | Reserved for future use. |
| 0x0008 | Reserved for future use. |
| 0x0010 | Reserved for future use. |
| 0x0020 | HV1                      |
| 0x0040 | HV2                      |
| 0x0080 | HV3                      |
| 0x0100 | Reserved for future use. |
| 0x0200 | Reserved for future use. |
| 0x0400 | Reserved for future use. |
| 0x0800 | Reserved for future use. |
| 0x1000 | Reserved for future use. |
| 0x2000 | Reserved for future use. |
| 0x4000 | Reserved for future use. |
| 0x8000 | Reserved for future use. |

# **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 566 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### **Return Parameters:**

None.

## **Event(s) generated (unless masked away):**

When the Host Controller receives the Change Connection Packet Type command, the Host Controller sends the Command Status event to the Host. In addition, when the Link Manager determines the packet type has been changed for the connection, the Host Controller on the local device will send a Connection Packet Type Changed event to the Host. This will be done at the local side only.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Connection Packet Type Changed event will indicate that this command has been completed.

Bluetooth

## 4.5.15 Authentication\_Requested

| Command             | OCF    | Command Parameters | Return Parameters |
|---------------------|--------|--------------------|-------------------|
| HCI_Authentication_ | 0x0011 | Connection_Handle  |                   |
| Requested           |        |                    |                   |

## **Description:**

The Authentication\_Requested command is used to try to authenticate the remote device associated with the specified Connection Handle. The Host must not issue the Authentication\_Requested command with a Connection\_Handle corresponding to an encrypted link. On an authentication failure, the Host Controller or Link Manager shall not automatically detach the link. The Host is responsible for issuing a Disconnect command to terminate the link if the action is appropriate.

Note: the Connection\_Handle command parameter is used to identify the other Bluetooth device, which forms the connection. The Connection Handle should be a Connection Handle for an ACL connection.

#### **Command Parameters:**

Connection\_Handle:

Size 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to set up authentication for all Connection Handles with the same Bluetooth device end-point as the specified Connection Handle.  Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

#### **Return Parameters:**

None.

#### **Event(s) generated (unless masked away):**

When the Host Controller receives the Authentication\_Requested command, it sends the Command Status event to the Host. The Authentication Complete event will occur when the authentication has been completed for the connection and is indication that this command has been completed.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Authentication Complete event will indicate that this command has been completed.

Note: When the local or remote Host Controller does not have a link key for the specified Connection\_Handle, it will request the link key from its Host, before the local Host finally receives the Authentication Complete event.

page 568 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.5.16 Set\_Connection\_Encryption

| Command                           | OCF    | Command Parameters                      | Return Parameters |
|-----------------------------------|--------|-----------------------------------------|-------------------|
| HCI_Set_Connection_<br>Encryption | 0x0013 | Connection_Handle,<br>Encryption_Enable |                   |

## **Description:**

The Set\_Connection\_Encryption command is used to enable and disable the link level encryption. Note: the Connection\_Handle command parameter is used to identify the other Bluetooth device which forms the connection. The Connection Handle should be a Connection Handle for an ACL connection. While the encryption is being changed, all ACL traffic must be turned off for all Connection Handles associated with the remote device.

#### **Command Parameters:**

Connection\_Handle:

Size 2 Bytes (12 Bits meaningful)

Size: 1 Byte

| Value  | Parameter Description                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to enable/disable the link layer encryption for all Connection Handles with the same Bluetooth device end-point as the specified Connection Handle. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                                                                                                   |

#### Encryption\_Enable:

| Value | Parameter Description           |
|-------|---------------------------------|
| 0x00  | Turn Link Level Encryption OFF. |
| 0x01  | Turn Link Level Encryption ON.  |

#### **Return Parameters:**

None.

## **Event(s) generated (unless masked away):**

When the Host Controller receives the Set\_Connection\_Encryption command, the Host Controller sends the Command Status event to the Host. When the Link Manager has completed enabling/disabling encryption for the connection, the Host Controller on the local Bluetooth device will send an Encryption Change event to the Host, and the Host Controller on the remote device will also generate an Encryption Change event.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Encryption Change event will indicate that this command has been completed.

Bluetooth

# 4.5.17 Change\_Connection\_Link\_Key

| Command                | OCF    | Command Parameters | Return Parameters |
|------------------------|--------|--------------------|-------------------|
| HCI_Change_Connection_ | 0x0015 | Connection_Handle  |                   |
| Link_Key               |        |                    |                   |

## **Description:**

The Change\_Connection\_Link\_Key command is used to force both devices of a connection associated with the connection handle to generate a new link key. The link key is used for authentication and encryption of connections. Note: the Connection\_Handle command parameter is used to identify the other Bluetooth device forming the connection. The Connection Handle should be a Connection Handle for an ACL connection. If the connection encryption is enabled, and the temporary link key is currently used, then the Bluetooth master device will automatically restart the encryption.

#### **Command Parameters:**

## Connection\_Handle:

## Size 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle used to identify a connection.               |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

#### **Return Parameters:**

None.

#### Event(s) generated (unless masked away):

When the Host Controller receives the Change\_Connection\_Link\_Key command, the Host Controller sends the Command Status event to the Host. When the Link Manager has changed the Link Key for the connection, the Host Controller on the local Bluetooth device will send a Link Key Notification event and a Change Connection Link Key Complete event to the Host, and the Host Controller on the remote device will also generate a Link Key Notification event. The Link Key Notification event indicates that a new connection link key is valid for the connection.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Change Connection Link Key Complete event will indicate that this command has been completed.

page 570 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.5.18 Master\_Link\_Key

| Command             | OCF    | Command Parameters | Return Parameters |
|---------------------|--------|--------------------|-------------------|
| HCI_Master_Link_Key | 0x0017 | Key_Flag           |                   |

## **Description:**

The Master Link Key command is used to force the device that is master of the piconet to use the temporary link key of the master device, or the semi-permanent link keys. The temporary link key is used for encryption of broadcast messages within a piconet, and the semi-permanent link keys are used for private encrypted point-to-point communication. The Key\_Flag command parameter is used to indicate which Link Key (temporary link key of the Master, or the semi-permanent link keys) shall be used.

## **Command Parameters:**

Key\_Flag: Size: 1 Byte

| Value | Parameter Description         |
|-------|-------------------------------|
| 0x00  | Use semi-permanent Link Keys. |
| 0x01  | Use Temporary Link Key.       |

#### **Return Parameters:**

None.

#### **Event(s)** generated (unless masked away):

When the Host Controller receives the Master\_Link\_Key command, the Host Controller sends the Command Status event to the Host. When the Link Manager has changed link key, the Host Controller on both the local and the remote device will send a Master Link Key Complete event to the Host. The Connection Handle on the master side will be a Connection Handle for one of the existing connections to a slave. On the slave side, the Connection Handle will be a Connection Handle to the initiating master.

The Master Link Key Complete event contains the status of this command. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Master Link Key Complete event will indicate that this command has been completed.

Bluetooth.

Size: 1 Byte

## 4.5.19 Remote\_Name\_Request

| Command                 | OCF    | Command Parameters                                               | Return<br>Parameters |
|-------------------------|--------|------------------------------------------------------------------|----------------------|
| HCI_Remote_Name_Request | 0x0019 | BD_ADDR, Page_Scan_Repetition_Mode, Page_Scan_Mode, Clock_Offset |                      |

## **Description:**

The Remote\_Name\_Request command is used to obtain the user-friendly name of another Bluetooth device. The user-friendly name is used to enable the user to distinguish one Bluetooth device from another. The BD ADDR command parameter is used to identify the device for which the user-friendly name is to be obtained. The Page\_Scan\_Repetition\_Mode and Page\_Scan\_Mode command parameters specify the page scan modes supported by the remote device with the BD ADDR. This is the information that was acquired during the inquiry process. The Clock Offset parameter is the difference between its own clock and the clock of the remote device with BD ADDR. Only bits 2 through 16 of the difference are used and they are mapped to this parameter as bits 0 through 14 respectively. A Clock Offset Valid Flag, located in bit 15 of the Clock Offset command parameter, is used to indicate if the Clock Offset is valid or not. Note: if no connection exists between the local device and the device corresponding to the BD ADDR, a temporary link layer connection will be established to obtain the name of the remote device.

#### **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value                                  | Parameter Description                           |
|----------------------------------------|-------------------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR for the device whose name is requested. |

#### Page\_Scan\_Repetition\_Mode:

| Value       | Parameter Description |
|-------------|-----------------------|
| 0x00        | R0                    |
| 0x01        | R1                    |
| 0x02        | R2                    |
| 0x03 – 0xFF | Reserved.             |

page 572 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

#### Page Scan Mode:

| Value       | Parameter Description        |  |  |
|-------------|------------------------------|--|--|
| 0x00        | Mandatory Page Scan Mode.    |  |  |
| 0x01        | Optional Page Scan Mode I.   |  |  |
| 0x02        | Optional Page Scan Mode II.  |  |  |
| 0x03        | Optional Page Scan Mode III. |  |  |
| 0x04 – 0xFF | Reserved.                    |  |  |

#### Clock\_Offset: Size: 2 Bytes

| Bit format | Parameter Description                                                   |  |
|------------|-------------------------------------------------------------------------|--|
| Bit 14.0   | Bit 16.2 of CLKslave-CLKmaster.                                         |  |
| Bit 15     | Clock_Offset_Valid_Flag Invalid Clock Offset = 0 Valid Clock Offset = 1 |  |

#### **Return Parameters:**

None.

## **Event(s) generated (unless masked away):**

When the Host Controller receives the Remote\_Name\_Request command, the Host Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to obtain the remote name, the Host Controller on the local Bluetooth device will send a Remote Name Request Complete event to the Host. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Remote Name Request Complete event will indicate that this command has been completed.

Bluetooth.

573

# 4.5.20 Read\_Remote\_Supported\_Features

| Command                            | OCF Command Parameters |                   | Return<br>Parameter<br>s |
|------------------------------------|------------------------|-------------------|--------------------------|
| HCI_Read_Remote_Supported_Features | 0x001B                 | Connection_Handle |                          |

## **Description:**

This command requests a list of the supported features for the remote device identified by the Connection\_Handle parameter. The Connection\_Handle must be a Connection\_Handle for an ACL connection. The Read Remote Supported Features Complete event will return a list of the LMP features. For details see "Link Manager Protocol" on page 185.

#### **Command Parameters:**

Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                   |  |
|--------|-------------------------------------------------------------------------|--|
| 0xXXXX | Specifies which Connection Handle's LMP-supported features list to get. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)          |  |

#### **Return Parameters:**

None.

## Event(s) generated (unless masked away):

When the Host Controller receives the Read\_Remote\_Supported\_Features command, the Host Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to determine the remote features, the Host Controller on the local Bluetooth device will send a Read Remote Supported Features Complete event to the Host. The Read Remote Supported Features Complete event contains the status of this command, and parameters describing the supported features of the remote device. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Read Remote Supported Features Complete event will indicate that this command has been completed.

page 574 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.5.21 Read Remote Version Information

| Command                                 | OCF    | Command Parameters | Return<br>Parameters |
|-----------------------------------------|--------|--------------------|----------------------|
| HCI_Read_Remote_Version_<br>Information | 0x001D | Connection_Handle  |                      |

# **Description:**

This command will obtain the values for the version information for the remote Bluetooth device identified by the Connection\_Handle parameter. The Connection\_Handle must be a Connection\_Handle for an ACL connection.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                           |  |  |
|--------|-----------------------------------------------------------------|--|--|
| 0xXXXX | Specifies which Connection Handle's version information to get. |  |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)  |  |  |

#### **Return Parameters:**

None.

## Event(s) generated (unless masked away):

When the Host Controller receives the Read\_Remote\_Version\_Information command, the Host Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to determine the remote version information, the Host Controller on the local Bluetooth device will send a Read Remote Version Information Complete event to the Host. The Read Remote Version Information Complete event contains the status of this command, and parameters describing the version and subversion of the LMP used by the remote device.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the Read Remote Version Information Complete event will indicate that this command has been completed.

Bluetooth

#### 4.5.22 Read Clock Offset

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Read_Clock_Offset | 0x001F | Connection_Handle  |                   |

## **Description:**

Both the System Clock and the clock offset of a remote device are used to determine what hopping frequency is used by a remote device for page scan. This command allows the Host to read clock offset of remote devices. The Connection\_Handle must be a Connection\_Handle for an ACL connection. This command could be used to facilitate handoffs of Bluetooth devices from one device to another.

## **Command Parameters:**

#### Connection Handle:

Size: 2 Bytes (12 bits meaningful)

| Value  | Parameter Description                                                   |  |
|--------|-------------------------------------------------------------------------|--|
| 0xXXXX | Specifies which Connection Handle's Clock Offset parameter is returned. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)          |  |

#### **Return Parameters:**

None.

#### Event(s) generated (unless masked away):

When the Host Controller receives the Read\_Clock\_Offset command, the Host Controller sends the Command Status event to the Host. If this command was requested at the master and the Link Manager has completed the LMP messages to obtain the Clock Offset information, the Host Controller on the local Bluetooth device will send a Read Clock Offset Complete event to the Host. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Read Clock Offset Complete event will indicate that this command has been completed. If the command is requested at the slave, the LM will immediately send a Command Status event and a Read Clock Offset Complete event to the Host, without an exchange of LMP PDU.

page 576 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 4.6 LINK POLICY COMMANDS

The Link Policy Commands provide methods for the Host to affect how the Link Manager manages the piconet. When Link Policy Commands are used, the LM still controls how Bluetooth piconets and scatternets are established and maintained, depending on adjustable policy parameters. These policy commands modify the Link Manager behavior that can result in changes to the link layer connections with Bluetooth remote devices.

Note: only one ACL connection can exist between two Bluetooth Devices, and therefore there can only be one ACL HCI Connection Handle for each physical link layer Connection. The Bluetooth Host Controller provides policy adjustment mechanisms to provide support for a number of different policies. This capability allows one Bluetooth module to be used to support many different usage models, and the same Bluetooth module can be incorporated in many different types of Bluetooth devices. For the Link Policy Commands, the OGF is defined as 0x02.

| Command         | Command Summary Description                                                                                                                                             |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hold_Mode       | The Hold_Mode command is used to alter the behavior of the LM and have the LM place the local or remote device into the hold mode.                                      |  |
| Sniff_Mode      | The Sniff_Mode command is used to alter the behavior of the LM and have the LM place the local or remote device into the sniff mode.                                    |  |
| Exit_Sniff_Mode | The Exit_Sniff_Mode command is used to end the sniff mode for a connection handle which is currently in sniff mode.                                                     |  |
| Park_Mode       | The Park_Mode command is used to alter the behavior of the LM and have the LM place the local or remote device into the Park mode.                                      |  |
| Exit_Park_Mode  | The Exit_Park_Mode command is used to switch the Bluetooth device from park mode back to active mode.                                                                   |  |
| QoS_Setup       | The QoS_Setup command is used to specify Quality of Service parameters for a connection handle.                                                                         |  |
| Role_Discovery  | The Role_Discovery command is used for a Bluetooth device to determine which role the device is performing for a particular Connection Handle.                          |  |
| Switch_Role     | The Switch_Role command is used for a Bluetooth device switch the current role the device is performing for a particular connection with the specified Bluetooth device |  |

page 577 of 1082

Host Controller Interface Functional Specification

# Bluetooth.

| Command                    | Command Summary Description                                                                                                                                                                                                             |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Read_Link_Policy_Settings  | The Read_Link_Policy_Settings command will read the Link Policy settings for the specified Connection Handle. The Link Policy settings allow the Host to specify which Link Modes the LM can use for the specified Connection Handle.   |  |
| Write_Link_Policy_Settings | The Write_Link_Policy_Settings command will write the Link Policy settings for the specified Connection Handle. The Link Policy settings allow the Host to specify which Link Modes the LM can use for the specified Connection Handle. |  |

page 578 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.1 Hold Mode

| Command       | OCF    | Command Parameters                         | Return Parameters |
|---------------|--------|--------------------------------------------|-------------------|
| HCI_Hold_Mode | 0x0001 | Connection_Handle, Hold Mode Max Interval, |                   |
|               |        | Hold_Mode_Min_Interval                     |                   |

## **Description:**

The Hold\_Mode command is used to alter the behavior of the Link Manager, and have it place the ACL baseband connection associated by the specified Connection Handle into the hold mode. The Hold\_Mode\_Max\_Interval and Hold\_Mode\_Min\_Interval command parameters specify the length of time the Host wants to put the connection into the hold mode. The local and remote devices will negotiate the length in the hold mode. The Hold Mode Max Interval parameter is used to specify the maximum length of the Hold interval for which the Host may actually enter into the hold mode after negotiation with the remote device. The Hold interval defines the amount of time between when the Hold Mode begins and when the Hold Mode is completed. The Hold Mode\_Min\_Interval parameter is used to specify the minimum length of the Hold interval for which the Host may actually enter into the hold mode after the negotiation with the remote device. Therefore the Hold Mode Min Interval cannot be greater than the Hold Mode Max Interval. The Host Controller will return the actual Hold interval in the Interval parameter of the Mode Change event, if the command is successful. This command enables the Host to support a low-power policy for itself or several other Bluetooth devices, and allows the devices to enter Inquiry Scan, Page Scan, and a number of other possible

Note: the connection handle cannot be of the SCO link type.

#### **Command Parameters:**

Connection\_Handle:

| Size: 2 Bytes | (12 Bits meaningtui | ) |
|---------------|---------------------|---|
|---------------|---------------------|---|

Size: 2 Bytes

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

#### Hold Mode Max Interval:

| Value      | Parameter Description                                             |
|------------|-------------------------------------------------------------------|
| N = 0xXXXX | Maximum acceptable number of Baseband slots to wait in Hold Mode. |
|            | Time Length of the Hold = N * 0.625 msec (1 Baseband slot)        |
|            | Range for N: 0x0001-0xFFFF                                        |
|            | Time Range: 0.625ms - 40.9 sec                                    |

page 579 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Hold\_Mode\_Min\_Interval:

| Value      | Parameter Description                                             |  |
|------------|-------------------------------------------------------------------|--|
| N = 0xXXXX | Minimum acceptable number of Baseband slots to wait in Hold Mode. |  |
|            | Time Length of the Hold = N * 0.625 msec (1 Baseband slot)        |  |
|            | Range for N: 0x0001-0xFFFF                                        |  |
|            | Time Range: 0.625 msec - 40.9 sec                                 |  |

#### **Return Parameters:**

None.

## Event(s) generated (unless masked away):

The Host Controller sends the Command Status event for this command to the Host when it has received the Hold\_Mode command. The Mode Change event will occur when the Hold Mode has started and the Mode Change event will occur again when the Hold Mode has completed for the specified connection handle. The Mode Change event signaling the end of the Hold Mode is an estimation of the hold mode ending if the event is for a remote Bluetooth device. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate the error.

page 580 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.2 Sniff Mode

| Command        | OCF    | Command Parameters  | Return Parameters |
|----------------|--------|---------------------|-------------------|
| HCI_Sniff_Mode | 0x0003 | Connection_Handle,  |                   |
|                |        | Sniff_Max_Interval, |                   |
|                |        | Sniff_Min_Interval, |                   |
|                |        | Sniff_Attempt,      |                   |
|                |        | Sniff_Timeout       |                   |

## **Description:**

The Sniff Mode command is used to alter the behavior of the Link Manager and have it place the ACL baseband connection associated with the specified Connection Handle into the sniff mode. The Connection\_Handle command parameter is used to identify which ACL link connection is to be placed in sniff mode. The Sniff\_Max\_Interval and Sniff\_Min\_Interval command parameters are used to specify the requested acceptable maximum and minimum periods in the Sniff Mode. The Sniff Min Interval cannot be greater than the Sniff Max Interval. The sniff interval defines the amount of time between each consecutive sniff period. The Host Controller will return the actual sniff interval in the Interval parameter of the Mode Change event, if the command is successful. The slave will listen at the end of every actual sniff interval, for the period specified by the Sniff Attempt command parameter. The slave will continue listening for packets for an additional period specified by Sniff Timeout, as long as it is receiving packets. This command enables the Host to support a low-power policy for itself or several other Bluetooth devices, and allows the devices to enter Inquiry Scan, Page Scan, and a number of other possible actions.

Note: in addition, the connection handle cannot be one of SCO link type.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

Size: 2 Byte

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Sniff\_Max\_Interval:

| Value      | Parameter Description                                                  |
|------------|------------------------------------------------------------------------|
| N = 0xXXXX | Maximum acceptable number of Baseband slots between each sniff period. |
|            | (Sniff_Max_Interval >= Sniff_Min_Interval)                             |
|            | Length = N * 0.625 msec (1 Baseband slot)                              |
|            | Range for N: 0x0001 – 0xFFFF                                           |
|            | Time Range: 0.625 msec - 40.9 Seconds                                  |

page 581 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Byte

Size: 2 Byte

Size: 2 Byte

#### Sniff\_Min\_Interval:

| Value      | Parameter Description                                                  |
|------------|------------------------------------------------------------------------|
| N = 0xXXXX | Minimum acceptable number of Baseband slots between each sniff period. |
|            | (Sniff_Max_Interval >= Sniff_Min_Interval)                             |
|            | Length = N * 0.625 msec (1 Baseband slot)                              |
|            | Range for N: 0x0001 – 0xFFFF                                           |
|            | Time Range: 0.625 msec - 40.9 Seconds                                  |

## Sniff\_Attempt:

| Value      | Parameter Description                       |  |
|------------|---------------------------------------------|--|
| N = 0xXXXX | Number of Baseband slots for sniff attempt. |  |
|            | Length = N * 0.625 msec (1 Baseband slot)   |  |
|            | Range for N: 0x0001 – 0xFFFF                |  |
|            | Time Range: 0.625 msec - 40.9 Seconds       |  |

## Sniff\_Timeout:

| Value      | Parameter Description                       |  |
|------------|---------------------------------------------|--|
| N = 0xXXXX | Number of Baseband slots for sniff timeout. |  |
|            | Length = N * 0.625 msec (1 Baseband slot)   |  |
|            | Range for N: 0x0001 – 0xFFFF                |  |
|            | Time Range: 0.625 msec - 40.9 Seconds       |  |

#### **Return Parameters:**

None.

## Event(s) generated (unless masked away):

The Host Controller sends the Command Status event for this command to the Host when it has received the Sniff\_Mode command. The Mode Change event will occur when the Sniff Mode has started for the specified connection handle. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate the error.

page 582 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.3 Exit Sniff Mode

| Command             | OCF    | Command Parameters | Return Parameters |
|---------------------|--------|--------------------|-------------------|
| HCI_Exit_Sniff_Mode | 0x0004 | Connection_Handle  |                   |

## **Description:**

The Exit\_Sniff\_Mode command is used to end the sniff mode for a connection handle, which is currently in sniff mode. The Link Manager will determine and issue the appropriate LMP commands to remove the sniff mode for the associated Connection Handle.

Note: in addition, the connection handle cannot be one of SCO link type.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

#### **Return Parameters:**

None.

## **Event(s) generated (unless masked away):**

A Command Status event for this command will occur when Host Controller has received the Exit\_Sniff\_Mode command. The Mode Change event will occur when the Sniff Mode has ended for the specified connection handle. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed.

Bluetooth.

## 4.6.4 Park\_Mode

| Command       | OCF    | <b>Command Parameters</b>                                   | Return Parameters |
|---------------|--------|-------------------------------------------------------------|-------------------|
| HCI_Park_Mode | 0x0005 | Connection_Handle, Beacon_Max_Interval, Beacon Min Interval |                   |

## **Description:**

The Park Mode command is used to alter the behavior of the Link Manager, and have the LM place the baseband connection associated by the specified Connection Handle into the Park mode. The Connection\_Handle command parameter is used to identify which connection is to be placed in Park mode. The Connection Handle must be a Connection Handle for an ACL connection. The Beacon Interval command parameters specify the acceptable length of the interval between beacons. However, the remote device may request shorter interval. The Beacon\_Max\_Interval parameter specifies the acceptable longest length of the interval between beacons. The Beacon Min Interval parameter specifies the acceptable shortest length of the interval between beacons. Therefore, the Beacon Min Interval cannot be greater than the Beacon Max Interval. The Host Controller will return the actual Beacon interval in the Interval parameter of the Mode Change event, if the command is successful. This command enables the Host to support a low-power policy for itself or several other Bluetooth devices, allows the devices to enter Inquiry Scan, Page Scan, provides support for large number of Bluetooth Devices in a single piconet, and a number of other possible activities.

#### **Command Parameters:**

## Connection\_Handle:

Size: 2 Bytes

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to identify a connection.         |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

#### Beacon\_Max\_Interval:

| Value      | Parameter Description                                                    |
|------------|--------------------------------------------------------------------------|
| N = 0xXXXX | Maximum acceptable number of Baseband slots between consecutive beacons. |
|            | Interval Length = N * 0.625 msec (1 Baseband slot)                       |
|            | Range for N: 0x0001 – 0xFFFF                                             |
|            | Time Range: 0.625 msec - 40.9 Seconds                                    |

page 584 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

#### Beacon Min Interval

| Value      | Parameter Description                                                   |
|------------|-------------------------------------------------------------------------|
| N = 0xXXXX | Minimum acceptable number of Baseband slots between consecutive beacons |
|            | Interval Length = N * 0.625 msec (1 Baseband slot)                      |
|            | Range for N: 0x0001 – 0xFFFF                                            |
|            | Time Range: 0.625 msec - 40.9 Seconds                                   |

#### **Return Parameters:**

None.

## **Event(s) generated (unless masked away):**

The Host Controller sends the Command Status event for this command to the Host when it has received the Park\_Mode command. The Mode Change event will occur when the Park Mode has started for the specified connection handle. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed. If an error occurs after the Command Status event has occurred, then the status in the Mode Change event will indicate the error.

page 585 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 4.6.5 Exit Park Mode

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| HCI_Exit_Park_Mode | 0x0006 | Connection_Handle  |                   |

## **Description:**

The Exit\_Park\_Mode command is used to switch the Bluetooth device from park mode back to active mode. This command may only be issued when the device associated with the specified Connection Handle is in Park Mode. The Connection\_Handle must be a Connection\_Handle for an ACL connection. This function does not complete immediately.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to identify a connection.         |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

#### **Return Parameters:**

None.

# Event(s) generated (unless masked away):

A Command Status event for this command will occur when the Host Controller has received the Exit\_Park\_Mode command. The Mode Change event will occur when the Park Mode has ended for the specified connection handle. Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Mode Change event will indicate that this command has been completed.

page 586 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.6 QoS\_Setup

| Command       | OCF    | Command<br>Parameters | Return Parameters |
|---------------|--------|-----------------------|-------------------|
| HCI_QoS_Setup | 0x0007 | Connection_Handle,    |                   |
|               |        | Flags,                |                   |
|               |        | Service_Type,         |                   |
|               |        | Token_Rate,           |                   |
|               |        | Peak_Bandwidth,       |                   |
|               |        | Latency,              |                   |
|               |        | Delay_Variation       |                   |

#### **Description:**

The QoS\_Setup command is used to specify Quality of Service parameters for a connection handle. The Connection\_Handle must be a Connection\_Handle for an ACL connection. These QoS parameter are the same parameters as L2CAP QoS. For more detail see "Logical Link Control and Adaptation Protocol Specification" on page 245. This allows the Link Manager to have all of the information about what the Host is requesting for each connection. The LM will determine if the QoS parameters can be met. Bluetooth devices that are both slaves and masters can use this command. When a device is a slave, this command will trigger an LMP request to the master to provide the slave with the specified QoS as determined by the LM. When a device is a master, this command is used to request a slave device to accept the specified QoS as determined by the LM of the master. The Connection\_Handle command parameter is used to identify for which connection the QoS request is requested.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                        |
|--------|------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to identify which connection for the QoS Setup. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)               |

Flags: Size: 1 Byte

| Value       | Parameter Description    |
|-------------|--------------------------|
| 0x00 – 0xFF | Reserved for Future Use. |

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 587 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 4 Bytes

Service\_Type:

| Value     | Parameter Description    |
|-----------|--------------------------|
| 0x00      | No Traffic.              |
| 0x01      | Best Effort.             |
| 0x02      | Guaranteed.              |
| 0x03-0xFF | Reserved for Future Use. |

Token Rate: Size: 4 Bytes

| Value     | Parameter Description           |
|-----------|---------------------------------|
| 0xXXXXXXX | Token Rate in bytes per second. |

Peak\_Bandwidth:

| Value     | Parameter Description               |
|-----------|-------------------------------------|
| 0xXXXXXXX | Peak Bandwidth in bytes per second. |

Latency: Size: 4 Bytes

| Value     | Parameter Description    |
|-----------|--------------------------|
| 0xXXXXXXX | Latency in microseconds. |

Delay\_Variation: Size: 4 Bytes

| Value     | Parameter Description            |
|-----------|----------------------------------|
| 0xXXXXXXX | Delay Variation in microseconds. |

#### **Return Parameters:**

None.

#### **Event(s)** generated (unless masked away):

When the Host Controller receives the QoS\_Setup command, the Host Controller sends the Command Status event to the Host. When the Link Manager has completed the LMP messages to establish the requested QoS parameters, the Host Controller on the local Bluetooth device will send a QoS Setup Complete event to the Host, and the event may also be generated on the remote side if there was LMP negotiation. The values of the parameters of the QoS Setup Complete event may, however, be different on the initiating and the remote side. The QoS Setup Complete event returned by the Host Controller on the local side contains the status of this command, and returned QoS parameters describing the supported QoS for the connection. Note: No Command Complete event will be sent by the Host Controller to

Note: No Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, the QoS Setup Complete event will indicate that this command has been completed.

HCI Commands 29 November 1999 587

page 588 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.6.7 Role\_Discovery

| Command            | OCF    | Command Parameters | Return Parameters                       |
|--------------------|--------|--------------------|-----------------------------------------|
| HCI_Role_Discovery | 0x0009 | Connection_Handle  | Status, Connection_Handle, Current_Role |

## **Description:**

The Role\_Discovery command is used for a Bluetooth device to determine which role the device is performing for a particular Connection Handle. The Connection\_Handle must be a Connection\_Handle for an ACL connection.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |  |
|--------|----------------------------------------------------------------|--|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |  |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                             |  |
|-----------|-----------------------------------------------------------------------------------|--|
| 0x00      | Role_Discovery command succeeded,                                                 |  |
| 0x01-0xFF | Role_Discovery command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                               |
|--------|-----------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to identify which connection the Role_Discovery command was issued on. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                      |

Current\_Role: Size: 1 Byte

| Value | Parameter Description                              |  |
|-------|----------------------------------------------------|--|
| 0x00  | Current Role is Master for this Connection Handle. |  |
| 0x01  | Current Role is Slave for this Connection Handle.  |  |

## **Event(s) generated (unless masked away):**

When the Role\_Discovery command has completed, a Command Complete event will be generated.

Bluetooth

### 4.6.8 Switch Role

| Command         | OCF    | Command Parameters | Return Parameters |
|-----------------|--------|--------------------|-------------------|
| HCI_Switch_Role | 0x000B | BD_ADDR, Role      |                   |

## **Description:**

The Switch\_Role command is used for a Bluetooth device to switch the current role the device is performing for a particular connection with another specified Bluetooth device. The BD\_ADDR command parameter indicates for which connection the role switch is to be performed. The Role indicates the requested new role that the local device performs.

Note: the BD\_ADDR command parameter must specify a Bluetooth device for which a connection already exists.

#### **Command Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value                                  | Parameter Description                                                         |
|----------------------------------------|-------------------------------------------------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR for the connected device with which a role switch is to be performed. |

Role: Size: 1 Byte

|                                                  | Value | Parameter Description                       |  |
|--------------------------------------------------|-------|---------------------------------------------|--|
| 0x00 Change own Role to Master for this BD_ADDR. |       | Change own Role to Master for this BD_ADDR. |  |
| 0x01 Change own Role to Slave for this BD_ADDR.  |       | Change own Role to Slave for this BD_ADDR.  |  |

#### **Return Parameters:**

None.

#### Event(s) generated (unless masked away):

A Command Status event for this command will occur when the Host Controller has received the Switch\_Role command. When the role switch is performed, a Role Change event will occur to indicate that the roles have been changed, and will be communicated to both Hosts.

Note: no Command Complete event will be sent by the Host Controller to indicate that this command has been completed. Instead, only the Role Change event will indicate that this command has been completed.

page 590 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.9 Read\_Link\_Policy\_Settings

| Command                           | OCF    | Command Parameters | Return Parameters                              |
|-----------------------------------|--------|--------------------|------------------------------------------------|
| HCI_Read_Link_Policy_<br>Settings | 0x000C | Connection_Handle  | Status, Connection_Handle Link_Policy_Settings |

## **Description:**

This command will read the Link Policy setting for the specified Connection Handle. The Link Policy Settings parameter determines the behavior of the local Link Manager when it receives a request from a remote device or it determines itself to change the master-slave role or to enter the hold, sniff, or park mode. The local Link Manager will automatically accept or reject such a request from the remote device, and may even autonomously request itself, depending on the value of the Link\_Policy\_Settings parameter for the corresponding Connection\_Handle. When the value of the Link\_Policy\_ Settings parameter is changed for a certain Connection Handle, the new value will only be used for requests from a remote device or from the local Link Manager itself made after this command has been completed. The Connection\_Handle must be a Connection Handle for an ACL connection. By enabling each mode individually, the Host can choose any combination needed to support various modes of operation. Multiple LM policies may be specified for the Link\_Policy\_Settings parameter by performing a bitwise OR operation of the different activity types.

#### **Command Parameters:**

Connection Handle:

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

## **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                        |
|-----------|----------------------------------------------------------------------------------------------|
| 0x00      | Read_Link_Policy_Settings command succeeded.                                                 |
| 0x01-0xFF | Read_Link_Policy_Settings command failed. See Table 6.1 on page 745 for list of Error Codes. |

page 591 of 1082

Host Controller Interface Functional Specification

## Bluetooth.

## Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

## Link\_Policy\_Settings

Size: 2 Bytes

| Value  | Parameter Description       |
|--------|-----------------------------|
| 0x0000 | Disable All LM Modes.       |
| 0x0001 | Enable Master Slave Switch. |
| 0x0002 | Enable Hold Mode.           |
| 0x0004 | Enable Sniff Mode.          |
| 0x0008 | Enable Park Mode.           |
| 0x0010 | Reserved for Future Use.    |
| _      |                             |
| 0x8000 |                             |

## **Event(s) generated (unless masked away):**

When the Read\_Link\_Policy\_Settings command has completed, a Command Complete event will be generated.

page 592 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.6.10 Write\_Link\_Policy\_Settings

| Command                            | OCF    | Command Parameters                      | Return Parameters         |
|------------------------------------|--------|-----------------------------------------|---------------------------|
| HCI_Write_Link_Policy_<br>Settings | 0x000D | Connection_Handle, Link_Policy_Settings | Status, Connection_Handle |

## **Description:**

This command will write the Link Policy setting for the specified Connection Handle. The Link\_Policy\_Settings parameter determines the behavior of the local Link Manager when it receives a request from a remote device or it determines itself to change the master-slave role or to enter the hold, sniff, or park mode. The local Link Manager will automatically accept or reject such a request from the remote device, and may even autonomously request itself, depending on the value of the Link Policy Settings parameter for the corresponding Connection Handle. When the value of the Link Policy Settings parameter is changed for a certain Connection Handle, the new value will only be used for requests from a remote device or from the local Link Manager itself made after this command has been completed. The Connection Handle must be a Connection Handle for an ACL connection. By enabling each mode individually, the Host can choose any combination needed to support various modes of operation. Multiple LM policies may be specified for the Link Policy Settings parameter by performing a bitwise OR operation of the different activity types.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

page 593 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

## Link\_Policy\_Settings

| Value  | Parameter Description                 |
|--------|---------------------------------------|
| 0x0000 | Disable All LM Modes <b>Default</b> . |
| 0x0001 | Enable Master Slave Switch.           |
| 0x0002 | Enable Hold Mode.                     |
| 0x0004 | Enable Sniff Mode.                    |
| 0x0008 | Enable Park Mode.                     |
| 0x0010 | Reserved for Future Use.              |
| _      |                                       |
| 0x8000 |                                       |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Write_Link_Policy_Settings command succeeded.                                                 |
| 0x01-0xFF | Write_Link_Policy_Settings command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify a connection.         |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

## Event(s) generated (unless masked away):

When the Write\_Link\_Policy\_Settings command has completed, a Command Complete event will be generated.

Bluetooth.

## 4.7 HOST CONTROLLER & BASEBAND COMMANDS

The Host Controller & Baseband Commands provide access and control to various capabilities of the Bluetooth hardware. These parameters provide control of Bluetooth devices and of the capabilities of the Host Controller, Link Manager, and Baseband. The host device can use these commands to modify the behavior of the local device. For the HCI Control and Baseband Commands, the OGF is defined as 0x03

| Command               | Command Summary Description                                                                                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set_Event_Mask        | The Set_Event_Mask command is used to control which events are generated by the HCI                                                                                                                                                                               |
|                       | for the Host.                                                                                                                                                                                                                                                     |
| Reset                 | The Reset command will reset the Bluetooth Host Controller, Link Manager, and the radio module.                                                                                                                                                                   |
| Set_Event_Filter      | The Set_Event_Filter command is used by the Host to specify different event filters. The Host may issue this command multiple times to request various conditions for the same type of event filter and for different types of event filters.                     |
| Flush                 | The Flush command is used to discard all data that is currently pending for transmission in the Host Controller for the specified connection handle, even if there currently are chunks of data that belong to more than one L2CAP packet in the Host Controller. |
| Read_PIN_Type         | The Read_PIN_Type command is used for the Host to read the value that is specified to indicate whether the Host supports variable PIN or only fixed PINs.                                                                                                         |
| Write_PIN_Type        | The Write_PIN_Type command is used for the Host to specify whether the Host supports variable PIN or only fixed PINs.                                                                                                                                             |
| Create_New_Unit_Key   | The Create_New_Unit_Key command is used to create a new unit key.                                                                                                                                                                                                 |
| Read_Stored_Link_Key  | The Read_Stored_Link_Key command provides the ability to read one or more link keys stored in the Bluetooth Host Controller.                                                                                                                                      |
| Write_Stored_Link_Key | The Write_Stored_Link_Key command provides the ability to write one or more link keys to be stored in the Bluetooth Host Controller.                                                                                                                              |

# Bluetooth.

| Command                         | Command Summary Description                                                                                                                                                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delete_Stored_Link_Key          | The Delete_Stored_Link_Key command provides the ability to remove one or more of the link keys stored in the Bluetooth Host Controller.                                                                                                                                                        |
| Change_Local_Name               | The Change_Local_Name command provides the ability to modify the user-friendly name for the Bluetooth device.                                                                                                                                                                                  |
| Read_Local_Name                 | The Read_Local_Name command provides the ability to read the stored user-friendly name for the Bluetooth device.                                                                                                                                                                               |
| Read_Connection_Accept_Timeout  | The Read_Connection_Accept_Timeout command will read the value for the Connection_Accept_Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny a connection request after a specified period has occurred, and to refuse a new connection.                |
| Write_Connection_Accept_Timeout | The Write_Connection_Accept_Timeout will write the value for the Connection_Accept_ Timeout configuration parameter, which allows the Bluetooth hardware to automatically deny a connection request after a specified period has occurred, and to refuse a new connection.                     |
| Read_Page_Timeout               | The Read_Page_Timeout command will read the value for the Page_Reply_Timeout configuration parameter, which allows the Bluetooth hardware to define the amount of time a connection request will wait for the remote device to respond before the local device returns a connection failure.   |
| Write_Page_Timeout              | The Write_Page_Timeout command will write the value for the Page_Reply_Timeout configuration parameter, which allows the Bluetooth hardware to define the amount of time a connection request will wait for the remote device to respond before the local device returns a connection failure. |
| Read_Scan_Enable                | The Read_Scan_Enable command will read the value for the Scan_Enable configuration parameter, which controls whether or not the Bluetooth device will periodically scan for page attempts and/or inquiry requests from other Bluetooth devices.                                                |

# Bluetooth.

| Command                     | Command Summary Description                                                                                                                                                                                                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write_Scan_Enable           | The Write_Scan_Enable command will write the value for the Scan_Enable configuration parameter, which controls whether or not the Bluetooth device will periodically scan for page attempts and/or inquiry requests from other Bluetooth devices.                                                                 |
| Read_Page_Scan_Activity     | The Read_Page_Scan_Activity command will read the values for the Page_Scan_Interval and Page_Scan_Window configuration parameters. Page_Scan_Interval defines the amount of time between consecutive page scans. Page_Scan_Window defines the duration of the page scan.                                          |
| Write_Page_Scan_Activity    | The Write_Page_Scan_Activity command will write the value for Page_Scan_Interval and_ Page_Scan_Window configuration parameters. Page_Scan_Interval defines the amount of time between consecutive page scans. Page_Scan_Window defines the duration of the page scan.                                            |
| Read_Inquiry_Scan_Activity  | The Read_Inquiry_Scan_Activity command will read the value for Inquiry_Scan_Interval and Inquiry_Scan_Window configuration parameters. Inquiry_Scan_Interval defines the amount of time between consecutive inquiry scans. Inquiry_Scan_Window defines the amount of time for the duration of the inquiry scan.   |
| Write_Inquiry_Scan_Activity | The Write_Inquiry_Scan_Activity command will write the value for Inquiry_Scan_Interval and Inquiry_Scan_Window configuration parameters. Inquiry_Scan_Interval defines the amount of time between consecutive inquiry scans. Inquiry_Scan_Window defines the amount of time for the duration of the inquiry scan. |
| Read_Authentication_Enable  | The Read_Authentication_Enable command will read the value for the Authentication_ Enable parameter, which controls whether the Bluetooth device will require authentication for each connection with other Bluetooth devices.                                                                                    |
| Write_Authentication_Enable | The Write_Authentication_Enable command will write the value for the Authentication_ Enable parameter, which controls whether the Bluetooth device will require authentication for each connection with other Bluetooth devices.                                                                                  |
| Read_Encryption_Mode        | The Read_Encryption_Mode command will read the value for the Encryption_Mode parameter, which controls whether the Bluetooth device will require encryption for each connection with other Bluetooth devices.                                                                                                     |

# Bluetooth.

597

| Command                             | Command Summary Description                                                                                                                                                                                                                                                                                                             |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write_Encryption_Mode               | The Write_Encryption_Mode command will write the value for the Encryption_Mode parameter, which controls whether the Bluetooth device will require encryption for each connection with other Bluetooth devices.                                                                                                                         |
| Read_Class_of_Device                | The Read_Class_of_Device command will read the value for the Class_of_Device parameter, which is used to indicate its capabilities to other devices.                                                                                                                                                                                    |
| Write_Class_of_Device               | The Write_Class_of_Device command will write the value for the Class_of_Device parameter, which is used to indicate its capabilities to other devices.                                                                                                                                                                                  |
| Read_Voice_Setting                  | The Read_Voice_Setting command will read the values for the Voice_Setting parameter, which controls all the various settings for the voice connections.                                                                                                                                                                                 |
| Write_Voice_Setting                 | The Write_Voice_Setting command will write the values for the Voice_Setting parameter, which controls all the various settings for the voice connections.                                                                                                                                                                               |
| Read_Automatic_Flush_Timeout        | The Read_Automatic_Flush_Timeout will read the value for the Flush_Timeout parameter for the specified connection handle. The Flush_Timeout parameter is only used for ACL connections.                                                                                                                                                 |
| Write_Automatic_Flush_Timeout       | The Write_Automatic_Flush_Timeout will write the value for the Flush_Timeout parameter for the specified connection handle. The Flush_Timeout parameter is only used for ACL connections.                                                                                                                                               |
| Read_Num_Broadcast_Retransmissions  | The Read_Num_Broadcast_Retransmissions command will read the parameter value for the Number of Broadcast Retransmissions for the device. Broadcast packets are not acknowledged and are unreliable. This parameter is used to increase the reliability of a broadcast message by retransmitting the broadcast message multiple times.   |
| Write_Num_Broadcast_Retransmissions | The Write_Num_Broadcast_Retransmissions command will write the parameter value for the Number of Broadcast Retransmissions for the device. Broadcast packets are not acknowledged and are unreliable. This parameter is used to increase the reliability of a broadcast message by retransmitting the broadcast message multiple times. |

# Bluetooth.

| Command                                  | Command Summary Description                                                                                                                                                                                                                                                                           |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read_Hold_Mode_Activity                  | The Read_Hold_Mode_Activity command will read the value for the Hold_Mode_Activity parameter. This value is used to determine what activity the device should do when it is in hold mode.                                                                                                             |
| Write_Hold_Mode_Activity                 | The Write_Hold_Mode_Activity command will write the value for the Hold_Mode_Activity parameter. This value is used to determine what activity the device should do when it is in hold mode.                                                                                                           |
| Read_Transmit_Power_Level                | The Read_Transmit_Power_Level command will read the values for the Transmit_Power_ Level parameter for the specified Connection Handle.                                                                                                                                                               |
| Read_SCO_Flow_Control_Enable             | The Read_SCO_Flow_Control_Enable command provides the ability to read the SCO_Flow_Control_Enable setting. By using this setting, the Host can decide if the Host Controller will send Number Of Completed Packets events for SCO Connection Handles.                                                 |
| Write_SCO_Flow_Control_Enable            | The Write_SCO_Flow_Control_Enable command provides the ability to write the SCO_Flow_Control_Enable setting. By using this setting, the Host can decide if the Host Controller will send Number Of Completed Packets events for SCO Connection Handles.                                               |
| Set_Host_Controller_To_Host_Flow_Control | The Set_Host_Controller_To_Host_Flow_Control command is used by the Host to turn flow control on or off in the direction from the Host Controller to the Host.                                                                                                                                        |
| Host_Buffer_Size                         | The Host_Buffer_Size command is used by the Host to notify the Host Controller about its buffer sizes for ACL and SCO data. The Host Controller will segment the data to be transmitted from the Host Controller to the Host, so that data contained in HCI Data Packets will not exceed these sizes. |
| Host_Number_Of_Completed_Packets         | The Host_Number_Of_Completed_Packets command is used by the Host to indicate to the Host Controller when the Host is ready to receive more HCI packets for any connection handle.                                                                                                                     |
| Read_Link_Supervision_Timeout            | The Read_Link_Supervision_Timeout command will read the value for the Link_Supervision_Timeout parameter for the device. This parameter is used by the master or slave Bluetooth device to monitor link loss.                                                                                         |

# Bluetooth.

| Command                        | Command Summary Description                                                                                                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write Link_Supervision_Timeout | The Write Link_Supervision_Timeout command will write the value for the Link_Supervision_Timeout parameter for the device. This parameter is used by the master or slave Bluetooth device to monitor link loss. |
| Read_Number_Of_Supported_IAC   | The Read_Number_Of_Supported_IAC command will read the value for the number of Inquiry Access Codes (IAC) that the local Bluetooth device can simultaneously listen for during an Inquiry Scan.                 |
| Read_Current_IAC_LAP           | The Read_Current_IAC_LAP command will read the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans.                        |
| Write_Current_IAC_LAP          | The Write_Current_IAC_LAP will write the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans.                              |
| Read_Page_Scan_Period_Mode     | The Read_Page_Scan_Period_Mode command is used to read the mandatory Page_Scan_Period_Mode of the local Bluetooth device.                                                                                       |
| Write_Page_Scan_Period_Mode    | The Write_Page_Scan_Period_Mode command is used to write the mandatory Page_Scan_Period_Mode of the local Bluetooth device.                                                                                     |
| Read_Page_Scan_Mode            | The Read_Page_Scan_Mode command is used to read the default Page_Scan_Mode of the local Bluetooth device.                                                                                                       |
| Write_Page_Scan_Mode           | The Write_Page_Scan_Mode command is used to write the default Page_Scan_Mode of the local Bluetooth device.                                                                                                     |

page 600 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.7.1 Set Event Mask

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| HCI_Set_Event_Mask | 0x0001 | Event_Mask         | Status            |

## **Description:**

The Set\_Event\_Mask command is used to control which events are generated by the HCl for the Host. If the bit in the Event\_Mask is set to a one, then the event associated with that bit will be enabled. The Host has to deal with each event that occurs by the Bluetooth devices. The event mask allows the Host to control how much it is interrupted.

Note: the Command Complete event, Command Status event and Number Of Completed Packets event cannot be masked. These events always occur. The Event\_Mask is a bit mask of all of the events specified in Table 5.1 on page 703.

#### **Command Parameters:**

Event\_Mask: Size: 8 Bytes

| Value                                  | Parameter Description                          |
|----------------------------------------|------------------------------------------------|
| 0x000000000000000                      | No events specified                            |
| 0x000000000000001                      | Inquiry Complete event                         |
| 0x0000000000000002                     | Inquiry Result event                           |
| 0x0000000000000004                     | Connection Complete event                      |
| 0x0000000000000008                     | Connection Request event                       |
| 0x000000000000010                      | Disconnection Complete event                   |
| 0x000000000000000000000000000000000000 | Authentication Complete event                  |
| 0x0000000000000040                     | Remote Name Request Complete event             |
| 0x000000000000000000                   | Encryption Change event                        |
| 0x000000000000100                      | Change Connection Link Key Complete event      |
| 0x0000000000000200                     | Master Link Key Complete event                 |
| 0x0000000000000400                     | Read Remote Supported Features Complete event  |
| 0x00000000000000000                    | Read Remote Version Information Complete event |
| 0x000000000001000                      | QoS Setup Complete event                       |
| 0x0000000000002000                     | Command Complete event                         |
| 0x0000000000004000                     | Command Status event                           |

page 601 of 1082

Host Controller Interface Functional Specification

## Bluetooth.

| 0x000000000000000000 | Hardware Error event |
|----------------------|----------------------|
| 0x000000000010000    | Flush Occurred event |
| 0x0000000000020000   | Role Change event    |

Value **Parameter Description** 0x0000000000040000 Number Of Completed Packets event 0x000000000080000 Mode Change event 0x000000000100000 Return Link Keys event 0x0000000000200000 PIN Code Request event 0x0000000000400000 Link Key Request event 0x000000000800000 Link Key Notification event Loopback Command event 0x000000001000000 Data Buffer Overflow event 0x0000000002000000 0x0000000004000000 Max Slots Change event 0x000000008000000 Read Clock Offset Complete event 0x000000010000000 Connection Packet Type Changed event 0x0000000020000000 QoS Violation event 0x0000000040000000 Page Scan Mode Change event 0x0000000080000000 Page Scan Repetition Mode Change event Reserved for future use 0x000000100000000 0x8000000000000000 0x0000000FFFFFFF **Default** (All events enabled)

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                             |
|-----------|-----------------------------------------------------------------------------------|
| 0x00      | Set_Event_Mask command succeeded.                                                 |
| 0x01-0xFF | Set_Event_Mask command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

When the Set\_Event\_Mask command has completed, a Command Complete event will be generated.

page 602 of 1082

Host Controller Interface Functional Specification

Bluetooth

#### 4.7.2 Reset

| Command   | OCF    | Command Parameters | Return Parameters |
|-----------|--------|--------------------|-------------------|
| HCI_Reset | 0x0003 |                    | Status            |

## **Description:**

The Reset command will reset the Bluetooth Host Controller, Link Manager, and the radio module. The current operational state will be lost, and all queued packets will be lost. After the reset is completed, the Bluetooth device will enter standby mode.

Note: after the reset has completed, the Host Controller will automatically revert to the default values for the parameters for which default values are defined in this specification.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                    |
|-----------|--------------------------------------------------------------------------|
| 0x00      | Reset command succeeded, was received and will be executed.              |
| 0x01-0xFF | Reset command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

Before the Reset command will be executed, a Command Complete event needs to be returned to indicate to the Host that the Reset command was received and will be executed.

Bluetooth.

### 4.7.3 Set Event Filter

| Command              | OCF    | Command Parameters                            | Return Parameters |
|----------------------|--------|-----------------------------------------------|-------------------|
| HCI_Set_Event_Filter | 0x0005 | Filter_Type, Filter_Condition_Type, Condition | Status            |

## **Description:**

The Set\_Event\_Filter command is used by the Host to specify different event filters. The Host may issue this command multiple times to request various conditions for the same type of event filter and for different types of event filters. The event filters are used by the Host to specify items of interest, which allow the Host Controller to send only events which interest the Host. Only some of the events have event filters. By default (before this command has been issued after power-on or Reset) no filters are set, and the Auto\_Accept\_Flag is off (incoming connections are not automatically accepted). An event filter is added each time this command is sent from the Host and the Filter\_Condition\_Type is not equal to 0x00. (The old event filters will not be overwritten). To clear all event filters, the Filter\_Type = 0x00 is used. The Auto\_Accept\_Flag will then be set to off.

To clear event filters for only a certain Filter\_Type, the Filter\_Condition\_Type = 0x00 is used. The Inquiry Result filter allows the Host Controller to filter out Inquiry Result events. The Inquiry Result filter allows the Host to specify that the Host Controller only sends Inquiry Results to the Host if the Inquiry Result event meets one of the specified conditions set by the Host. For the Inquiry Result filter, the Host can specify one or more of the following Filter Condition Types:

- 1. A new device responded to the Inquiry process
- 2. A device with a specific Class of Device responded to the Inquiry process
- A device with a specific BD\_ADDR responded to the Inquiry process

The Inquiry Result filter is used in conjunction with the Inquiry and Periodic Inquiry command. The Connection Setup filter allows the Host to specify that the Host Controller only sends a Connection Complete or Connection Request event to the Host if the event meets one of the specified conditions set by the Host. For the Connection Setup filter, the Host can specify one or more of the following Filter Condition Types:

- 1. Allow Connections from all devices
- 2. Allow Connections from a device with a specific Class of Device
- 3. Allow Connections from a device with a specific BD\_ADDR

page 604 of 1082

Host Controller Interface Functional Specification

Bluetooth.

For each of these conditions, an Auto\_Accept\_Flag parameter allows the Host to specify what action should be done when the condition is met. The Auto\_Accept\_Flag allows the Host to specify if the incoming connection should be auto accepted (in which case the Host Controller will send the Connection Complete event to the Host when the connection is completed) or if the Host should make the decision (in which case the Host Controller will send the Connection Request event to the Host, to elicit a decision on the connection).

The Connection Setup filter is used in conjunction with the Read/Write\_Scan\_Enable commands. If the local device is in the process of a page scan, and is paged by another device which meets one on the conditions set by the Host, and the Auto\_Accept\_Flag is off for this device, then a Connection Request event will be sent to the Host by the Host Controller. A Connection Complete event will be sent later on after the Host has responded to the incoming connection attempt. In this same example, if the Auto\_Accept\_Flag is on, then a Connection Complete event will be sent to the Host by the Host Controller. (No Connection Request event will be sent in that case.)

The Host Controller will store these filters in volatile memory until the Host clears the event filters using the Set\_Event\_Filter command or until the Reset command is issued. The number of event filters the Host Controller can store is implementation dependent. If the Host tries to set more filters than the Host Controller can store, the Host Controller will return the "Memory Full" error code and the filter will not be installed.

Note: the Clear All Filters has no Filter Condition Types or Conditions.

Note: In the condition that a connection is auto accepted, a Link Key Request event and possibly also a PIN Code Request event and a Link Key Notification event could be sent to the Host by the Host Controller before the Connection Complete event is sent.

If there is a contradiction between event filters, the latest set event filter will override older ones. An example is an incoming connection attempt where more than one Connection Setup filter matches the incoming connection attempt, but the Auto-Accept\_Flag has different values in the different filters.

page 605 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 1 Byte

#### **Command Parameters:**

Filter\_Type: Size: 1 Byte

| Value     | Parameter Description                                                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00      | Clear All Filters (Note: In this case, the Filter_Condition_type and Condition parameters should not be given, they should have a length of 0 bytes. Filter_Type should be the only parameter.) |
| 0x01      | Inquiry Result.                                                                                                                                                                                 |
| 0x02      | Connection Setup.                                                                                                                                                                               |
| 0x03-0xFF | Reserved for Future Use.                                                                                                                                                                        |

Filter Condition Types: For each Filter Type one or more Filter Condition types exists.

Inquiry\_Result\_Filter\_Condition\_Type:

| Value     | Parameter Description                                                                                                                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00      | A new device responded to the Inquiry process. (Note: A device may be reported to the Host in an Inquiry Result event more than once during an inquiry or inquiry period depending on the implementation, see description in Section 4.5.1 on page 542 and Section 4.5.3 on page 545) |
| 0x01      | A device with a specific Class of Device responded to the Inquiry process.                                                                                                                                                                                                            |
| 0x02      | A device with a specific BD_ADDR responded to the Inquiry process.                                                                                                                                                                                                                    |
| 0x03-0xFF | Reserved for Future Use                                                                                                                                                                                                                                                               |

Connection\_Setup\_Filter\_Condition\_Type:

| Value     | Parameter Description                                            |
|-----------|------------------------------------------------------------------|
| 0x00      | Allow Connections from all devices.                              |
| 0x01      | Allow Connections from a device with a specific Class of Device. |
| 0x02      | Allow Connections from a device with a specific BD_ADDR.         |
| 0x03-0xFF | Reserved for Future Use.                                         |

Condition: For each Filter Condition Type defined for the Inquiry Result Filter and the Connection Setup Filter, zero or more Condition parameters are required – depending on the filter condition type and filter type.

Condition for Inquiry\_Result\_Filter\_Condition\_Type = 0x00

Condition: Size: 0 Byte

| Value | Parameter Description                |  |
|-------|--------------------------------------|--|
|       | The Condition parameter is not used. |  |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 606 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Condition for Inquiry\_Result\_Filter\_Condition\_Type = 0x01

**Condition:** 

Size: 6 Bytes

Class\_of\_Device:

Size: 3 Bytes

| Value    | Parameter Description        |
|----------|------------------------------|
| 0x000000 | Default, Return All Devices. |
| 0xXXXXXX | Class of Device of Interest. |

Class\_of\_Device\_Mask:

| Value   | Parameter Description                                                                                                                                                       |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXXX | Bit Mask used to determine which bits of the Class of Device parameter are 'don't care'. Zero-value bits in the mask indicate the 'don't care' bits of the Class of Device. |

Condition for Inquiry\_Result\_Filter\_Condition\_Type = 0x02

**Condition:** 

Size: 6 Bytes

BD\_ADDR: Size: 6 Bytes

| Value                                  | Parameter Description             |
|----------------------------------------|-----------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR of the Device of Interest |

Condition for Connection\_Setup\_Filter\_Condition\_Type = 0x00

**Condition:** 

Size: 1 Byte

Auto\_Accept\_Flag:

| Size:1 Byte |  |
|-------------|--|
|-------------|--|

**HCI Commands** 

| Value       | Parameter Description              |
|-------------|------------------------------------|
| 0x01        | Do NOT Auto accept the connection. |
| 0x02        | Do Auto accept the connection.     |
| 0x03 – 0xFF | Reserved for future use.           |

page 607 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 3 Bytes

Size: 3 Bytes

Size: 1 Byte

Size: 1 Byte

Condition for Connection\_Setup\_Filter\_Condition\_Type = 0x01

#### **Condition:**

Size: 7 Bytes

Class\_of\_Device:

| 0.20. 0 <b>2</b> ) 100 |
|------------------------|
|                        |
|                        |
|                        |
|                        |
|                        |
|                        |

Value **Parameter Description** 0x000000 Default, Return All Devices. 0xXXXXXX Class of Device of Interest.

### Class\_of\_Device\_Mask:

| Value   | Parameter Description                                                                                                                                                       |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXXX | Bit Mask used to determine which bits of the Class of Device parameter are 'don't care'. Zero-value bits in the mask indicate the 'don't care' bits of the Class of Device. |

## Auto\_Accept\_Flag:

| Value       | Parameter Description              |
|-------------|------------------------------------|
| 0x01        | Do NOT Auto accept the connection. |
| 0x02        | Do Auto accept the connection.     |
| 0x03 – 0xFF | Reserved for future use.           |

Condition for Connection\_Setup\_Filter\_Condition\_Type = 0x02

#### **Condition:**

Size: 7 Bytes

BD ADDR: Size: 6 Bytes

| Value                                  | Parameter Description              |
|----------------------------------------|------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR of the Device of Interest. |

### Auto\_Accept\_Flag:

| Value       | Parameter Description              |
|-------------|------------------------------------|
| 0x01        | Do NOT Auto accept the connection. |
| 0x02        | Do Auto accept the connection.     |
| 0x03 – 0xFF | Reserved for future use.           |

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 608 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                               |
|-----------|-------------------------------------------------------------------------------------|
| 0x00      | Set_Event_Filter command succeeded.                                                 |
| 0x01-0xFF | Set_Event_Filter command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Event(s) generated (unless masked away):

A Command Complete event for this command will occur when the Host Controller has enabled the filtering of events. When one of the conditions are met, a specific event will occur.

Bluetooth

#### 4.7.4 Flush

| Command   | OCF    | Command Parameters | Return Parameters         |  |
|-----------|--------|--------------------|---------------------------|--|
| HCI_Flush | 0x0008 | Connection_Handle  | Status, Connection_Handle |  |

## **Description:**

The Flush command is used to discard all data that is currently pending for transmission in the Host Controller for the specified connection handle, even if there currently are chunks of data that belong to more than one L2CAP packet in the Host Controller. After this, all data that is sent to the Host Controller for the same connection handle will be discarded by the Host Controller until an HCI Data Packet with the start Packet\_Boundary\_Flag (0x02) is received. When this happens, a new transmission attempt can be made. This command will allow higher-level software to control how long the baseband should try to retransmit a baseband packet for a connection handle before all data that is currently pending for transmission in the Host Controller should be flushed. Note that the Flush command is used for ACL connections ONLY. In addition to the Flush command, the automatic flush timers (see section 4.7.31 on page 647) can be used to automatically flush the L2CAP packet that is currently being transmitted after the specified flush timer has expired.

### **Command Parameters:**

Connection\_Handle:

| Size: 2 Bytes (12 Bits meanin | gtui, | ) |
|-------------------------------|-------|---|
|-------------------------------|-------|---|

| Value  | Parameter Description                                               |  |  |
|--------|---------------------------------------------------------------------|--|--|
| 0xXXXX | Connection Handle to be used to identify which connection to flush. |  |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)      |  |  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                    |
|-----------|--------------------------------------------------------------------------|
| 0x00      | Flush command succeeded.                                                 |
| 0x01-0xFF | Flush command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                      |  |
|--------|--------------------------------------------------------------------------------------------|--|
| 0xXXXX | Connection Handle to be used to identify which connection the flush command was issued on. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                             |  |

page 610 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## Event(s) generated (unless masked away):

The Flush Occurred event will occur once the flush is completed. A Flush Occurred event could be from an automatic Flush or could be cause by the Host issuing the Flush command. When the Flush command has completed, a Command Complete event will be generated, to indicate that the Host caused the Flush.

Bluetooth.

## 4.7.5 Read\_PIN\_Type

| Command           | OCF    | Command Parameters | Return Parameters |
|-------------------|--------|--------------------|-------------------|
| HCI_Read_PIN_Type | 0x0009 |                    | Status, PIN_Type  |

## **Description:**

The Read\_PIN\_Type command is used for the Host to read whether the Link Manager assumes that the Host supports variable PIN codes only a fixed PIN code. The Bluetooth hardware uses the PIN-type information during pairing.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                            |
|-----------|----------------------------------------------------------------------------------|
| 0x00      | Read_PIN_Type command succeeded.                                                 |
| 0x01-0xFF | Read_PIN_Type command failed. See Table 6.1 on page 745 for list of Error Codes. |

PIN\_Type: Size: 1 Byte

| Value | Parameter Description |  |
|-------|-----------------------|--|
| 0x00  | Variable PIN.         |  |
| 0x01  | Fixed PIN.            |  |

## Event(s) generated (unless masked away):

When the Read\_PIN\_Type command has completed, a Command Complete event will be generated.

page 612 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.6 Write\_PIN\_Type

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| HCI_Write_PIN_Type | 0x000A | PIN_Type           | Status            |

## **Description:**

The Write\_PIN\_Type command is used for the Host to write to the Host Controller whether the Host supports variable PIN codes or only a fixed PIN code. The Bluetooth hardware uses the PIN-type information during pairing.

## **Command Parameters:**

PIN\_Type: Size: 1 Byte

| Value | Parameter Description |
|-------|-----------------------|
| 0x00  | Variable PIN.         |
| 0x01  | Fixed PIN.            |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                             |
|-----------|-----------------------------------------------------------------------------------|
| 0x00      | Write PIN Type command succeeded.                                                 |
| 0x01-0xFF | Write PIN Type command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

When the Write\_PIN\_Type command has completed, a Command Complete event will be generated.

page 613 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.7 Create\_New\_Unit\_Key

| Command                 | OCF    | Command Parameters | Return Parameters |
|-------------------------|--------|--------------------|-------------------|
| HCI_Create_New_Unit_Key | 0x000B |                    | Status            |

## **Description:**

The Create\_New\_Unit\_Key command is used to create a new unit key. The Bluetooth hardware will generate a random seed that will be used to generate the new unit key. All new connection will use the new unit key, but the old unit key will still be used for all current connections.

Note: this command will not have any effect for a device which doesn't use unit keys (i.e. a device which uses only combination keys).

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                  |  |
|-----------|----------------------------------------------------------------------------------------|--|
| 0x00      | Create New Unit Key command succeeded.                                                 |  |
| 0x01-0xFF | Create New Unit Key command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

## Event(s) generated (unless masked away):

When the Create\_New\_Unit\_Key command has completed, a Command Complete event will be generated.

page 614 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.7.8 Read\_Stored\_Link\_Key

| Command OCF                  |        | Command Parameters        | Return Parameters                   |
|------------------------------|--------|---------------------------|-------------------------------------|
| HCI_Read_Stored_<br>Link_Key | 0x000D | BD_ADDR,<br>Read_All_Flag | Status, Max_Num_Keys, Num_Keys_Read |

## **Description:**

The Read\_Stored\_Link\_Key command provides the ability to read one or more link keys stored in the Bluetooth Host Controller. The Bluetooth Host Controller can store a limited number of link keys for other Bluetooth devices. Link keys are shared between two Bluetooth devices, and are used for all security transactions between the two devices. A Host device may have additional storage capabilities, which can be used to save additional link keys to be reloaded to the Bluetooth Host Controller when needed. The Read\_All\_Flag parameter is used to indicate if all of the stored Link Keys should be returned. If Read\_All\_Flag indicates that all Link Keys are to be returned, then the BD\_ADDR command parameter must be ignored The BD\_ADDR command parameter is used to identify which link key to read. The stored Link Keys are returned by one or more Return Link Keys events.

#### **Command Parameters:**

BD ADDR: Size: 6 Bytes

| Value        | Parameter Description                       |
|--------------|---------------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR for the stored link key to be read. |

Read\_All\_Flag: Size: 1 Byte

| Value     | Parameter Description                  |
|-----------|----------------------------------------|
| 0x00      | Return Link Key for specified BD_ADDR. |
| 0x01      | Return all stored Link Keys.           |
| 0x02-0xFF | Reserved for future use.               |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                   |
|-----------|-----------------------------------------------------------------------------------------|
| 0x00      | Read_Stored_Link_Key command succeeded.                                                 |
| 0x01-0xFF | Read_Stored_Link_Key command failed. See Table 6.1 on page 745 for list of Error Codes. |

page 615 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Byte

Size: 2 Bytes

## Max\_Num\_Keys:

| Value  | Parameter Description                                            |  |
|--------|------------------------------------------------------------------|--|
| 0xXXXX | Maximum Number of Link Keys which the Host Controller can store. |  |
|        | Range: 0x0000 – 0xFFFF                                           |  |

### Num\_Keys\_Read:

| Value  | Parameter Description     |  |
|--------|---------------------------|--|
| 0xXXXX | Number of Link Keys Read. |  |
|        | Range: 0x0000 – 0xFFFF    |  |

## Event(s) generated (unless masked away):

Zero or more instances of the Return Link Keys event will occur after the command is issued. When there are no link keys stored, no Return Link Keys events will be returned. When there are link keys stored, the number of link keys returned in each Return Link Keys event is implementation specific. When the Read Stored Link Key command has completed a Command Complete event will be generated.

Bluetooth

## 4.7.9 Write\_Stored\_Link\_Key

| Command                   | OCF    | Command<br>Parameters | Return Parameters |
|---------------------------|--------|-----------------------|-------------------|
| HCI_Write_Stored_Link_Key | 0x0011 | Num_Keys_To_Write,    | Status,           |
|                           |        | BD_ADDR[i],           | Num_Keys_Written  |
|                           |        | Link_Key[i]           |                   |

### **Description:**

The Write\_Stored\_Link\_Key command provides the ability to write one or more link keys to be stored in the Bluetooth Host Controller. The Bluetooth Host Controller can store a limited number of link keys for other Bluetooth devices. If no additional space is available in the Bluetooth Host Controller then no additional link keys will be stored. If space is limited and if all the link keys to be stored will not fit in the limited space, then the order of the list of link keys without any error will determine which link keys are stored. Link keys at the beginning of the list will be stored first. The Num\_Keys\_Written parameter will return the number of link keys that were successfully stored. If no additional space is available, then the Host must delete one or more stored link keys before any additional link keys are stored. The link key replacement algorithm is implemented by the Host and not the Host Controller. Link keys are shared between two Bluetooth devices and are used for all security transactions between the two devices. A Host device may have additional storage capabilities, which can be used to save additional link keys to be reloaded to the Bluetooth Host Controller when needed.

Note: Link Keys are only stored by issuing this command.

#### **Command Parameters:**

Num Keys To Write:

| Value | Parameter Description         |  |
|-------|-------------------------------|--|
| 0xXX  | Number of Link Keys to Write. |  |

BD\_ADDR [i]:

| Size: 6 Bytes ' | * Num_Ke | eys_To_ | Write |
|-----------------|----------|---------|-------|
|-----------------|----------|---------|-------|

Size: 1 Byte

| Value         | Parameter Description                |
|---------------|--------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR for the associated Link Key. |

Link\_Key[i]: Size: 16 Bytes \* Num\_Keys\_To\_Write

| Value                                  | Parameter Description             |      |
|----------------------------------------|-----------------------------------|------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Link Key for the associated BD_AI | DDR. |

page 617 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Bytes

## **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                    |
|-----------|------------------------------------------------------------------------------------------|
| 0x00      | Write_Stored_Link_Key command succeeded.                                                 |
| 0x01-0xFF | Write_Stored_Link_Key command failed. See Table 6.1 on page 745 for list of Error Codes. |

Num\_Keys\_Written:

| Value | Parameter Description                     |  |
|-------|-------------------------------------------|--|
| 0xXX  | Number of Link Keys successfully written. |  |
|       | Range: 0x00 – 0xFF                        |  |

## Event(s) generated (unless masked away):

When the Write\_Stored\_Link\_Key command has completed, a Command Complete event will be generated.

page 618 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.7.10 Delete\_Stored\_Link\_Key

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| HCI_Delete_Stored_ | 0x0012 | BD_ADDR,           | Status,           |
| Link_Key           |        | Delete_All_Flag    | Num_Keys_Deleted  |

## **Description:**

The Delete\_Stored\_Link\_Key command provides the ability to remove one or more of the link keys stored in the Bluetooth Host Controller. The Bluetooth Host Controller can store a limited number of link keys for other Bluetooth devices. Link keys are shared between two Bluetooth devices and are used for all security transactions between the two devices. The Delete\_All\_Flag parameter is used to indicate if all of the stored Link Keys should be deleted. If the Delete\_All\_Flag indicates that all Link Keys are to be deleted, then the BD\_ADDR command parameter must be ignored This command provides the ability to negate all security agreements between two devices. The BD\_ADDR command parameter is used to identify which link key to delete. If a link key is currently in use for a connection, then the link key will be deleted when all of the connections are disconnected.

#### **Command Parameters:**

BD ADDR: Size: 6 Bytes

| Value         | Parameter Description                   |
|---------------|-----------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR for the link key to be deleted. |

Delete\_All\_Flag: Size: 1 Byte

| Value     | Parameter Description                           |
|-----------|-------------------------------------------------|
| 0x00      | Delete only the Link Key for specified BD_ADDR. |
| 0x01      | Delete all stored Link Keys.                    |
| 0x02-0xFF | Reserved for future use.                        |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                     |
|-----------|-------------------------------------------------------------------------------------------|
| 0x00      | Delete_Stored_Link_Key command succeeded.                                                 |
| 0x01-0xFF | Delete_Stored_Link_Key command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 619 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Num\_Keys\_Deleted:

| Value  | Parameter Description       |
|--------|-----------------------------|
| 0xXXXX | Number of Link Keys Deleted |

## Event(s) generated (unless masked away):

When the Delete\_Stored\_Link\_Key command has completed, a Command Complete event will be generated.

page 620 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.7.11 Change\_Local\_Name

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Change_Local_Name | 0x0013 | Name               | Status            |

## **Description:**

The Change\_Local\_Name command provides the ability to modify the user-friendly name for the Bluetooth device. A Bluetooth device may send a request to get the user-friendly name of another Bluetooth device. The user-friendly name provides the user with the ability to distinguish one Bluetooth device from another. The Name command parameter is a UTF-8 encoded string with up to 248 bytes in length. The Name command parameter should be null-terminated (0x00) if the UTF-8 encoded string is less than 248 bytes.

Note: the Name Parameter is transmitted starting with the first byte of the name. This is an exception to the Little Endian order format for transmitting multi-byte parameters.

#### **Command Parameters:**

Name: Size: 248 Bytes

| Value | Parameter Description                                                                                                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | A UTF-8 encoded User-Friendly Descriptive Name for the device.  The UTF-8 encoded Name can be up to 248 bytes in length. If it is shorter than 248 bytes, the end is indicated by a NULL byte (0x00). |
|       | Null terminated Zero length String. <b>Default.</b>                                                                                                                                                   |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| 0x00      | Change_Local_Name command succeeded.                                                 |
| 0x01-0xFF | Change_Local_Name command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

When the Change\_Local\_Name command has completed, a Command Complete event will be generated.

Bluetooth.

### 4.7.12 Read Local Name

| Command             | OCF    | Command Parameters | Return Parameters |
|---------------------|--------|--------------------|-------------------|
| HCI_Read_Local_Name | 0x0014 |                    | Status, Name      |

## **Description:**

The Read\_Local\_Name command provides the ability to read the stored user-friendly name for the Bluetooth device. The user-friendly name provides the user the ability to distinguish one Bluetooth device from another. The Name return parameter is a UTF-8 encoded string with up to 248 bytes in length. The Name return parameter will be null terminated (0x00) if the UTF-8 encoded string is less than 248 bytes.

Note: the Name Parameter is transmitted starting with the first byte of the name. This is an exception to the Little Endian order format for transmitting multi-byte parameters.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                            |
|-----------|----------------------------------------------------------------------------------|
| 0x00      | Read_Local_Name command succeeded                                                |
| 0x01-0xFF | Read_Local_Name command failed see Table 6.1 on page 746 for list of Error Codes |

Name: Size: 248 Bytes

| Value | Parameter Description                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|
|       | A UTF-8 encoded User Friendly Descriptive Name for the device.                                                                        |
|       | The UTF-8 encoded Name can be up to 248 bytes in length. If it is shorter than 248 bytes, the end is indicated by a NULL byte (0x00). |

## Event(s) generated (unless masked away):

When the Read\_Local\_Name command has completed a Command Complete event will be generated.

page 622 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

## 4.7.13 Read\_Connection\_Accept\_Timeout

| Command                                | OCF    | Command Parameters | Return Parameters           |
|----------------------------------------|--------|--------------------|-----------------------------|
| HCI_Read_Connection_<br>Accept_Timeout | 0x0015 |                    | Status, Conn_Accept_Timeout |

## **Description:**

This command will read the value for the Connection\_Accept\_Timeout configuration parameter. The Connection\_Accept\_Timeout configuration parameter allows the Bluetooth hardware to automatically deny a connection request after a specified time period has occurred and the new connection is not accepted. The parameter defines the time duration from when the Host Controller sends a Connection Request event until the Host Controller will automatically reject an incoming connection.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                             |
|-----------|---------------------------------------------------------------------------------------------------|
| 0x00      | Read_Connection_Accept_Timeout command succeeded.                                                 |
| 0x01-0xFF | Read_Connection_Accept_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Conn\_Accept\_Timeout:

| Value      | Parameter Description                                           |
|------------|-----------------------------------------------------------------|
| N = 0xXXXX | Connection Accept Timeout measured in Number of Baseband slots. |
|            | Interval Length = N * 0.625 msec (1 Baseband slot)              |
|            | Range for N: 0x0001 – 0xB540                                    |
|            | Time Range: 0.625 msec -29 seconds                              |

## **Event(s) generated (unless masked away):**

When the Read\_Connection\_Timeout command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 2 Bytes

## 4.7.14 Write\_Connection\_Accept\_Timeout

| Command                                 | OCF    | Command Parameters  | Return Parameters |
|-----------------------------------------|--------|---------------------|-------------------|
| HCI_Write_Connection_<br>Accept_Timeout | 0x0016 | Conn_Accept_Timeout | Status            |

## **Description:**

This command will write the value for the Connection\_Accept\_Timeout configuration parameter. The Connection\_Accept\_Timeout configuration parameter allows the Bluetooth hardware to automatically deny a connection request after a specified time interval has occurred and the new connection is not accepted. The parameter defines the time duration from when the Host Controller sends a Connection Request event until the Host Controller will automatically reject an incoming connection.

#### **Command Parameters:**

Conn\_Accept\_Timeout:

| Value      | Parameter Description                                           |
|------------|-----------------------------------------------------------------|
| N = 0xXXXX | Connection Accept Timeout measured in Number of Baseband slots. |
|            | Interval Length = N * 0.625 msec (1 Baseband slot)              |
|            | Range for N: 0x0001 – 0xB540                                    |
|            | Time Range: 0.625 msec - 29 seconds                             |
|            | Default: N = 0x1FA0 Time = 5 Sec                                |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                              |
|-----------|----------------------------------------------------------------------------------------------------|
| 0x00      | Write_Connection_Accept_Timeout command succeeded.                                                 |
| 0x01-0xFF | Write_Connection_Accept_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Event(s) generated (unless masked away):

When the Write\_Connection\_Accept\_Timeout command has completed, a Command Complete event will be generated.

page 624 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.15 Read\_Page\_Timeout

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Read_Page_Timeout | 0x0017 |                    | Status,           |
|                       |        |                    | Page_Timeout      |

# **Description:**

This command will read the value for the Page\_Timeout configuration parameter. The Page\_Timeout configuration parameter defines the maximum time the local Link Manager will wait for a baseband page response from the remote device at a locally initiated connection attempt. If this time expires and the remote device has not responded to the page at baseband level, the connection attempt will be considered to have failed.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| 0x00      | Read_Page_Timeout command succeeded.                                                 |
| 0x01-0xFF | Read_Page_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Page\_Timeout: Size: 2 Bytes

| Value      | Parameter Description                              |
|------------|----------------------------------------------------|
| N = 0xXXXX | Page Timeout measured in Number of Baseband slots. |
|            | Interval Length = N * 0.625 msec (1 Baseband slot) |
|            | Range for N: 0x0001 – 0xFFFF                       |
|            | Time Range: 0.625 msec -40.9 Seconds               |

### **Event(s) generated (unless masked away):**

When the Read\_Page\_Timeout command has completed, a Command Complete event will be generated.

page 625 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

## 4.7.16 Write\_Page\_Timeout

| Command                | OCF    | Command Parameters | Return Parameters |
|------------------------|--------|--------------------|-------------------|
| HCI_Write_Page_Timeout | 0x0018 | Page_Timeout       | Status            |

## **Description:**

This command will write the value for the Page\_Timeout configuration parameter. The Page\_Timeout configuration parameter defines the maximum time the local Link Manager will wait for a baseband page response from the remote device at a locally initiated connection attempt. If this time expires and the remote device has not responded to the page at baseband level, the connection attempt will be considered to have failed.

#### **Command Parameters:**

Page Timeout:

| <b>o</b> – | ,                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Value      | Parameter Description                                                                                                                                                                                        |
| 0          | Illegal Page Timeout. Must be larger than 0.                                                                                                                                                                 |
| N = 0xXXXX | Page Timeout measured in Number of Baseband slots. Interval Length = N * 0.625 msec (1 Baseband slot) Range for N: 0x0001 – 0xFFFF Time Range: 0.625 msec -40.9 Seconds  Default: N = 0x2000 Time = 5.12 Sec |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                 |
|-----------|---------------------------------------------------------------------------------------|
| 0x00      | Write_Page_Timeout command succeeded.                                                 |
| 0x01-0xFF | Write_Page_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### **Event(s)** generated (unless masked away):

When the Write\_Page\_Timeout command has completed, a Command Complete event will be generated.

page 626 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.7.17 Read Scan Enable

| Command              | OCF    | Command Parameters | Return Parameters   |
|----------------------|--------|--------------------|---------------------|
| HCI_Read_Scan_Enable | 0x0019 |                    | Status, Scan_Enable |

## **Description:**

This command will read the value for the Scan\_Enable parameter. The Scan\_Enable parameter controls whether or not the Bluetooth device will periodically scan for page attempts and/or inquiry requests from other Bluetooth devices. If Page\_Scan is enabled, then the device will enter page scan mode based on the value of the Page\_Scan\_Interval and Page\_Scan\_Window parameters. If Inquiry\_Scan is enabled, then the device will enter Inquiry Scan mode based on the value of the Inquiry\_Scan\_Interval and Inquiry\_Scan\_Window parameters.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                               |
|-----------|-------------------------------------------------------------------------------------|
| 0x00      | Read_Scan_Enable command succeeded.                                                 |
| 0x01-0xFF | Read_Scan_Enable command failed. See Table 6.1 on page 745 for list of Error Codes. |

Scan\_Enable: Size: 1 Byte

| Value | Parameter Description                        |
|-------|----------------------------------------------|
| 0x00  | No Scans enabled.                            |
| 0x01  | Inquiry Scan enabled.<br>Page Scan disabled. |
| 0x02  | Inquiry Scan disabled.<br>Page Scan enabled. |
| 0x03  | Inquiry Scan enabled.<br>Page Scan enabled.  |

#### **Event(s)** generated (unless masked away):

When the Read\_Scan\_Enable command has completed, a Command Complete event will be generated.

page 627 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.18 Write\_Scan\_Enable

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Write_Scan_Enable | 0x001A | Scan_Enable        | Status            |

# **Description:**

This command will write the value for the Scan\_Enable parameter. The Scan\_Enable parameter controls whether or not the Bluetooth device will periodically scan for page attempts and/or inquiry requests from other Bluetooth devices. If Page\_Scan is enabled, then the device will enter page scan mode based on the value of the Page\_Scan\_Interval and Page\_Scan\_Window parameters. If Inquiry\_Scan is enabled, then the device will enter Inquiry Scan mode based on the value of the Inquiry\_Scan\_Interval and Inquiry\_Scan\_Window parameters.

#### **Command Parameters:**

Scan\_Enable: Size: 1 Byte

| Value | Parameter Description                        |
|-------|----------------------------------------------|
| 0x00  | No Scans enabled. <b>Default.</b>            |
| 0x01  | Inquiry Scan enabled. Page Scan disabled.    |
| 0x02  | Inquiry Scan disabled.<br>Page Scan enabled. |
| 0x03  | Inquiry Scan enabled. Page Scan enabled.     |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| 0x00      | Write_Scan_Enable command succeeded.                                                 |
| 0x01-0xFF | Write_Scan_Enable command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Event(s) generated (unless masked away):

When the Write\_Scan\_Enable command has completed, a Command Complete event will be generated.

page 628 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.19 Read\_Page\_Scan\_Activity

| Command                         | OCF    | Command Parameters | Return Parameters                            |
|---------------------------------|--------|--------------------|----------------------------------------------|
| HCI_Read_Page_Scan_<br>Activity | 0x001B |                    | Status, Page_Scan_Interval, Page_Scan_Window |

## **Description:**

This command will read the value for Page\_Scan\_Activity configuration parameters. The Page\_Scan\_Interval configuration parameter defines the amount of time between consecutive page scans. This time interval is defined from when the Host Controller started its last page scan until it begins the next page scan. The Page\_Scan\_Window configuration parameter defines the amount of time for the duration of the page scan. The Page\_Scan\_Window can only be less than or equal to the Page\_Scan\_Interval.

Note: Page Scan is only performed when Page\_Scan is enabled (see 4.7.17 and 4.7.18).

A changed Page\_Scan\_Interval could change the local Page\_Scan\_ Repetition\_Mode (see "Baseband Specification" on page 33, Keyword: SR-Mode).

#### **Command Parameters:**

None.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                      |
|-----------|--------------------------------------------------------------------------------------------|
| 0x00      | Read_Page_Scan_Activity command succeeded.                                                 |
| 0x01-0xFF | Read_Page_Scan_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Page\_Scan\_Interval: Size: 2 Bytes

| Value      | Parameter Description         |
|------------|-------------------------------|
| N = 0xXXXX | Size: 2 Bytes                 |
|            | Range: 0x0012 - 0x1000        |
|            | Time = N * 0.625 msec         |
|            | Range: 11.25 msec – 2560 msec |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 629 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Page\_Scan\_Window:

| Value      | Parameter Description         |  |
|------------|-------------------------------|--|
| N = 0xXXXX | Size: 2 Bytes                 |  |
|            | Range: 0x0012 – 0x1000        |  |
|            | Time = N * 0.625 msec         |  |
|            | Range: 11.25 msec – 2560 msec |  |

# Event(s) generated (unless masked away):

When the Read\_Page\_Scan\_Activity command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 2 Bytes

Size: 2 Bytes

## 4.7.20 Write\_Page\_Scan\_Activity

| Command                          | OCF    | Command Parameters                   | Return Parameters |
|----------------------------------|--------|--------------------------------------|-------------------|
| HCI_Write_Page_Scan_<br>Activity | 0x001C | Page_Scan_Interval, Page_Scan_Window | Status            |

### **Description:**

This command will write the value for Page\_Scan\_Activity configuration parameter. The Page\_Scan\_Interval configuration parameter defines the amount of time between consecutive page scans. This is defined as the time interval from when the Host Controller started its last page scan until it begins the next page scan. The Page\_Scan\_Window configuration parameter defines the amount of time for the duration of the page scan. The Page\_Scan\_Window can only be less than or equal to the Page\_Scan\_Interval.

Note: Page Scan is only performed when Page\_Scan is enabled (see 4.7.17 and 4.7.18). A changed Page\_Scan\_Interval could change the local Page.

Note: Page Scan is only performed when Page\_Scan is enabled (see 4.7.17 and 4.7.18). A changed Page\_Scan\_Interval could change the local Page\_Scan\_Repetition\_Mode (see "Baseband Specification" on page 33, Keyword: SR-Mode).

#### **Command Parameters:**

### Page\_Scan\_Interval:

| Value      | Parameter Description        |
|------------|------------------------------|
| N = 0xXXXX | Size: 2 Bytes                |
|            | Range: 0x0012 – 0x1000       |
|            | Time = N * 0.625 msec        |
|            | Range: 11.25 msec –2560 msec |
|            | Default: N = 0x0800          |
|            | Time = 1.28 Sec              |

### Page\_Scan\_Window:

| Value      | Parameter Description         |
|------------|-------------------------------|
| N = 0xXXXX | Size: 2 Bytes                 |
|            | Range: 0x0012 – 0x1000        |
|            | Time = N * 0.625 msec         |
|            | Range: 11.25 msec – 2560 msec |
|            | Default: N = 0x0012           |
|            | Time = 11.25 msec             |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 631 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                       |
|-----------|---------------------------------------------------------------------------------------------|
| 0x00      | Write_Page_Scan_Activity command succeeded.                                                 |
| 0x01-0xFF | Write_Page_Scan_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Page\_Scan\_Activity command has completed, a Command Complete event will be generated.

page 632 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

# 4.7.21 Read\_Inquiry\_Scan\_Activity

| Command                            | OCF    | Command Parameters | Return Parameters                                  |
|------------------------------------|--------|--------------------|----------------------------------------------------|
| HCI_Read_<br>Inquiry_Scan_Activity | 0x001D |                    | Status, Inquiry_Scan_Interval, Inquiry_Scan_Window |

## **Description:**

This command will read the value for Inquiry\_Scan\_Activity configuration parameter. The Inquiry\_Scan\_Interval configuration parameter defines the amount of time between consecutive inquiry scans. This is defined as the time interval from when the Host Controller started its last inquiry scan until it begins the next inquiry scan.

The Inquiry\_Scan\_Window configuration parameter defines the amount of time for the duration of the inquiry scan. The Inquiry\_Scan\_Window can only be less than or equal to the Inquiry\_Scan\_Interval.

Note: Inquiry Scan is only performed when Inquiry\_Scan is enabled see 4.7.17 and 4.7.18).

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Read_Inquiry_Scan_Activity command succeeded.                                                 |
| 0x01-0xFF | Read_Inquiry_Scan_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Inquiry\_Scan\_Interval:

| Value      | Parameter Description  |
|------------|------------------------|
| N = 0xXXXX | Size: 2 Bytes          |
|            | Range: 0x0012 – 0x1000 |
|            | Time = N * 0.625 msec  |
|            | Range: 11.25 –         |
|            | 2560 msec              |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 633 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

# Inquiry\_Scan\_Window:

| Value      | Parameter Description         |
|------------|-------------------------------|
| N = 0xXXXX | Size: 2 Bytes                 |
|            | Range: 0x0012 - 0x1000        |
|            | Time = N * 0.625 msec         |
|            | Range: 0.625 msec – 2560 msec |

# Event(s) generated (unless masked away):

When the Read\_Inquiry\_Scan\_Activity command has completed, a Command Complete event will be generated.

page 634 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Size: 2 Bytes

# 4.7.22 Write\_Inquiry\_Scan\_Activity

| Command                             | OCF    | Command Parameters                         | Return Parameters |
|-------------------------------------|--------|--------------------------------------------|-------------------|
| HCI_Write_Inquiry_<br>Scan_Activity | 0x001E | Inquiry_Scan_Interval, Inquiry_Scan_Window | Status            |

## **Description:**

This command will write the value for Inquiry\_Scan\_Activity configuration parameter. The Inquiry\_Scan\_Interval configuration parameter defines the amount of time between consecutive inquiry scans. This is defined as the time interval from when the Host Controller started its last inquiry scan until it begins the next inquiry scan.

The Inquiry\_Scan\_Window configuration parameter defines the amount of time for the duration of the inquiry scan. The Inquiry\_Scan\_Window can only be less than or equal to the Inquiry\_Scan\_Interval.

Note: Inquiry Scan is only performed when Inquiry\_Scan is enabled (see 4.7.17 and 4.7.18).

#### **Command Parameters:**

Inquiry\_Scan\_Interval:

| Value      | Parameter Description    |
|------------|--------------------------|
| N = 0xXXXX | Size: 2 Bytes            |
|            | Range: 0x0012 - 0x1000   |
|            | Time = N * 0.625 msec    |
|            | Range: 11.25 – 2560 msec |
|            | Default: N = 0x0800      |
|            | Time = 1.28 Sec          |

## Inquiry\_Scan\_Window:

| Value      | Parameter Description         |
|------------|-------------------------------|
| N = 0xXXXX | Size: 2 Bytes                 |
|            | Range: 0x0012 - 0x1000        |
|            | Time = N * 0.625 msec         |
|            | Range: 11.25 msec – 2560 msec |
|            | Default: N = 0x0012           |
|            | Time = 11.25 msec             |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 635 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                          |
|-----------|------------------------------------------------------------------------------------------------|
| 0x00      | Write_Inquiry_Scan_Activity command succeeded.                                                 |
| 0x01-0xFF | Write_Inquiry_Scan_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Inquiry\_Scan\_Activity command has completed, a Command Complete event will be generated.

page 636 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 4.7.23 Read Authentication Enable

| Command               | OCF    | Command Parameters | Return Parameters     |
|-----------------------|--------|--------------------|-----------------------|
| HCI_Read_             | 0x001F |                    | Status,               |
| Authentication_Enable |        |                    | Authentication_Enable |

### **Description:**

This command will read the value for the Authentication\_Enable parameter. The Authentication\_Enable parameter controls if the local device requires to authenticate the remote device at connection setup (between the Create\_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only the device(s) with the Authentication\_Enable parameter enabled will try to authenticate the other device.

Note: Changing this parameter does not affect existing connections.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                        |
|-----------|----------------------------------------------------------------------------------------------|
| 0x00      | Read_Authentication_Enable command succeeded.                                                |
| 0x01-0xFF | Read_Authentication_Enable command failed.See Table 6.1 on page 745 for list of Error Codes. |

### Authentication\_Enable: Size: 1 Byte

| Value     | Parameter Description                       |
|-----------|---------------------------------------------|
| 0x00      | Authentication disabled.                    |
| 0x01      | Authentication enabled for all connections. |
| 0x02-0xFF | Reserved                                    |

## **Event(s) generated (unless masked away):**

When the Read\_Authentication\_Enable command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

637

### 4.7.24 Write Authentication Enable

| Command               | OCF    | Command Parameters    | Return Parameters |
|-----------------------|--------|-----------------------|-------------------|
| HCI_Write_            | 0x0020 | Authentication_Enable | Status            |
| Authentication_Enable |        |                       |                   |

### **Description:**

This command will write the value for the Authentication\_Enable parameter. The Authentication\_Enable parameter controls if the local device requires to authenticate the remote device at connection setup (between the Create\_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only the device(s) with the Authentication\_Enable parameter enabled will try to authenticate the other device.

Note: Changing this parameter does not affect existing connections.

#### **Command Parameters:**

Authentication\_Enable:

| Value     | Parameter Description                      |
|-----------|--------------------------------------------|
| 0x00      | Authentication disabled. <b>Default.</b>   |
| 0x01      | Authentication enabled for all connection. |
| 0x02-0xFF | Reserved                                   |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                          |
|-----------|------------------------------------------------------------------------------------------------|
| 0x00      | Write Authentication_Enable command succeeded.                                                 |
| 0x01-0xFF | Write Authentication_Enable command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

When the Write\_Authentication\_Enable command has completed, a Command Complete event will be generated.

page 638 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.7.25 Read\_Encryption\_Mode

| Command                  | OCF    | Command Parameters | Return Parameters |
|--------------------------|--------|--------------------|-------------------|
| HCI_Read_Encryption_Mode | 0x0021 |                    | Status,           |
|                          |        |                    | Encryption_Mode   |

## **Description:**

This command will read the value for the Encryption\_Mode parameter. The Encryption\_Mode parameter controls if the local device requires encryption to the remote device at connection setup (between the Create\_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only the device(s) with the Authentication\_Enable parameter enabled and Encryption\_Mode parameter enabled will try to encrypt the connection to the other device.

Note: Changing this parameter does not affect existing connections.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                   |
|-----------|-----------------------------------------------------------------------------------------|
| 0x00      | Read_Encryption_Mode command succeeded.                                                 |
| 0x01-0xFF | Read_Encryption_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Encryption\_Mode: Size: 1 Byte

| Value     | Parameter Description                                     |
|-----------|-----------------------------------------------------------|
| 0x00      | Encryption disabled.                                      |
| 0x01      | Encryption only for point-to-point packets.               |
| 0x02      | Encryption for both point-to-point and broadcast packets. |
| 0x03-0xFF | Reserved.                                                 |

### **Event(s) generated (unless masked away):**

When the Read\_Encryption\_Mode command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

# 4.7.26 Write\_Encryption\_Mode

| Command                   | OCF    | Command Parameters | Return Parameters |
|---------------------------|--------|--------------------|-------------------|
| HCI_Write_Encryption_Mode | 0x0022 | Encryption_Mode    | Status            |

## **Description:**

This command will write the value for the Encryption\_Mode parameter. The Encryption\_Mode parameter controls if the local device requires encryption to the remote device at connection setup (between the Create\_Connection command or acceptance of an incoming ACL connection and the corresponding Connection Complete event). At connection setup, only the device(s) with the Authentication\_Enable parameter enabled and Encryption\_Mode parameter enabled will try to encrypt the connection to the other device.

Note: Changing this parameter does not affect existing connections. A temporary link key must be used when both broadcast and point-to-point traffic shall be encrypted.

The Host must not specify the Encryption\_Mode parameter with more encryption capability than its local device currently supports, although the parameter is used to request the encryption capability to the remote device. Note that the Host must not request the command with the Encryption\_Mode parameter set to either 0x01 or 0x02, when the local device does not support encryption. Also note that the Host must not request the command with the parameter set to 0x02, when the local device does not support broadcast encryption.

Note that the actual Encryption\_Mode to be returned in an event for a new connection (or in a Connection Complete event) will only support a part of the capability, when the local device requests more encryption capability than the current remote device supports. For example, 0x00 will always be returned in the event when the remote device supports no encryption, and either 0x00 or 0x01 will be returned when it supports only point-to-point encryption.

#### **Command Parameters:**

#### Encryption Mode:

| Value     | Parameter Description                                     |
|-----------|-----------------------------------------------------------|
| 0x00      | Encryption disabled. <b>Default.</b>                      |
| 0x01      | Encryption only for point-to-point packets.               |
| 0x02      | Encryption for both point-to-point and broadcast packets. |
| 0x03-0xFF | Reserved.                                                 |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 640 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                    |
|-----------|------------------------------------------------------------------------------------------|
| 0x00      | Write_Encryption_Mode command succeeded.                                                 |
| 0x01-0xFF | Write_Encryption_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Encryption\_Mode command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 3 Bytes

### 4.7.27 Read\_Class\_of\_Device

| Command                  | OCF    | Command Parameters | Return Parameters |
|--------------------------|--------|--------------------|-------------------|
| HCI_Read_Class_of_Device | 0x0023 |                    | Status,           |
|                          |        |                    | Class_of_Device   |

### **Description:**

This command will read the value for the Class\_of\_Device parameter. The Class\_of\_Device parameter is used to indicate the capabilities of the local device to other devices.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                   |
|-----------|-----------------------------------------------------------------------------------------|
| 0x00      | Read_Class_of_Device command succeeded.                                                 |
| 0x01-0xFF | Read_Class_of_Device command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Class\_of\_Device:

| Value    | Parameter Description           |
|----------|---------------------------------|
| 0xXXXXXX | Class of Device for the device. |

## Event(s) generated (unless masked away):

When the Read\_Class\_of\_Device command has completed, a Command Complete event will be generated.

page 642 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 3 Bytes

## 4.7.28 Write\_Class\_of\_Device

| Command                   | OCF    | Command Parameters | Return<br>Parameters |
|---------------------------|--------|--------------------|----------------------|
| HCI_Write_Class_of_Device | 0x0024 | Class_of_Device    | Status               |

### **Description:**

This command will write the value for the Class\_of\_Device parameter. The Class\_of\_Device parameter is used to indicate the capabilities of the local device to other devices.

#### **Command Parameters:**

Class\_of\_Device:

| Value    | Parameter Description           |
|----------|---------------------------------|
| 0xXXXXXX | Class of Device for the device. |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                    |
|-----------|------------------------------------------------------------------------------------------|
| 0x00      | Write_Class_of_Device command succeeded.                                                 |
| 0x01-0xFF | Write_Class_of_Device command failed. See Table 6.1 on page 745 for list of Error Codes. |

## **Event(s) generated (unless masked away):**

When the Write\_Class\_of\_Device command has completed, a Command Complete event will be generated.

Bluetooth.

# 4.7.29 Read\_Voice\_Setting

| Command                | OCF    | <b>Command Parameters</b> | Return Parameters     |
|------------------------|--------|---------------------------|-----------------------|
| HCI_Read_Voice_Setting | 0x0025 |                           | Status, Voice_Setting |

### **Description:**

This command will read the values for the Voice\_Setting parameter. The Voice\_Setting parameter controls all the various settings for voice connections. These settings apply to all voice connections, and **cannot** be set for individual voice connections. The Voice\_Setting parameter controls the configuration for voice connections: Input Coding, Air coding format, input data format, Input sample size, and linear PCM parameter.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                 |
|-----------|---------------------------------------------------------------------------------------|
| 0x00      | Read_Voice_Setting command succeeded.                                                 |
| 0x01-0xFF | Read_Voice_Setting command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Voice\_Setting: Size: 2 Bytes (10 Bits meaningful)

| Value      | Parameter Description                          |
|------------|------------------------------------------------|
| 00XXXXXXX  | Input Coding: Linear                           |
| 01XXXXXXXX | Input Coding: μ-law Input Coding               |
| 10XXXXXXXX | Input Coding: A-law Input Coding               |
| 11XXXXXXXX | Reserved for Future Use                        |
| XX00XXXXXX | Input Data Format: 1's complement              |
| XX01XXXXXX | Input Data Format: 2's complement              |
| XX10XXXXXX | Input Data Format: Sign-Magnitude              |
| XX11XXXXXX | Reserved for Future Use                        |
| XXXX0XXXXX | Input Sample Size: 8-bit (only for Liner PCM)  |
| XXXX1XXXXX | Input Sample Size: 16-bit (only for Liner PCM) |

page 644 of 1082

Host Controller Interface Functional Specification

Bluetooth.

| Value      | Parameter Description                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------|
| XXXXXnnnXX | Linear_PCM_Bit_Pos: # bit positions that MSB of sample is away from starting at MSB (only for Liner PCM). |
| XXXXXXXX00 | Air Coding Format: CVSD                                                                                   |
| XXXXXXXX01 | Air Coding Format: μ-law                                                                                  |
| XXXXXXXX10 | Air Coding Format: A-law                                                                                  |
| XXXXXXXX11 | Reserved                                                                                                  |

# Event(s) generated (unless masked away):

When the Read\_Voice\_Setting command has completed, a Command Complete event will be generated.

Bluetooth.

# 4.7.30 Write\_Voice\_Setting

| Command                 | OCF    | Command Parameters | Return Parameters |
|-------------------------|--------|--------------------|-------------------|
| HCI_Write_Voice_Setting | 0x0026 | Voice_Setting      | Status            |

## **Description:**

This command will write the values for the Voice\_Setting parameter. The Voice\_Setting parameter controls all the various settings for the voice connections. These settings apply to all voice connections and **cannot** be set for individual voice connections. The Voice\_Setting parameter controls the configuration for voice connections: Input Coding, Air coding format, input data format, Input sample size, and linear PCM parameter.

#### **Command Parameters:**

Voice\_Setting:

Size: 2 Bytes (10 Bits meaningful)

| Value      | Parameter Description                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------|
| 00XXXXXXX  | Input Coding: Linear                                                                                     |
| 01XXXXXXXX | Input Coding: μ-law Input Coding                                                                         |
| 10XXXXXXXX | Input Coding: A-law Input Coding                                                                         |
| 11XXXXXXXX | Reserved for Future Use                                                                                  |
| XX00XXXXXX | Input Data Format: 1's complement                                                                        |
| XX01XXXXXX | Input Data Format: 2's complement                                                                        |
| XX10XXXXXX | Input Data Format: Sign-Magnitude                                                                        |
| XX11XXXXXX | Reserved for Future Use                                                                                  |
| XXXX0XXXXX | Input Sample Size: 8 bit (only for Liner PCM)                                                            |
| XXXX1XXXXX | Input Sample Size: 16 bit (only for Liner PCM)                                                           |
| XXXXXnnnXX | Linear_PCM_Bit_Pos: # bit positions that MSB of sample is away from starting at MSB (only for Liner PCM) |
| XXXXXXXX00 | Air Coding Format: CVSD                                                                                  |
| XXXXXXXX01 | Air Coding Format: μ-law                                                                                 |
| XXXXXXXX10 | Air Coding Format: A-law                                                                                 |
| XXXXXXXX11 | Reserved                                                                                                 |
| 0001100000 | Default Condition                                                                                        |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 646 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                  |
|-----------|----------------------------------------------------------------------------------------|
| 0x00      | Write_Voice_Setting command succeeded.                                                 |
| 0x01-0xFF | Write_Voice_Setting command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Voice\_Setting command has completed, a Command Complete event will be generated.

Bluetooth.

## 4.7.31 Read Automatic Flush Timeout

| Command                   | OCF    | Command Parameters | Return Parameters  |
|---------------------------|--------|--------------------|--------------------|
| HCI_Read_Automatic_Flush_ | 0x0027 | Connection_Handle  | Status,            |
| Timeout                   |        |                    | Connection_Handle, |
|                           |        |                    | Flush_Timeout      |

### **Description:**

This command will read the value for the Flush\_Timeout parameter for the specified connection handle. The Flush Timeout parameter is used for ACL connections ONLY. The Flush\_Timeout parameter defines the amount of time before all chunks of the L2CAP packet, of which a baseband packet is currently being transmitted, are automatically flushed by the Host Controller. The timeout period starts when a transmission attempt is made for the first baseband packet of an L2CAP packet. This allows ACL packets to be automatically flushed without the Host device issuing a Flush command. The Read Automatic Flush Timeout command provides support for isochronous data, such as video. When the L2CAP packet that is currently being transmitted is automatically 'flushed', the Failed Contact Counter is incremented by one. The first chunk of the next L2CAP packet to be transmitted for the specified connection handle may already be stored in the Host Controller. In that case, the transmission of the first baseband packet containing data from that L2CAP packet can begin immediately. If the next L2CAP packet is not stored in the Host Controller, all data that is sent to the Host Controller after the flush for the same connection handle will be discarded by the Host Controller until an HCI Data Packet having the start Packet\_Boundary\_Flag (0x02) is received. When this happens, a new transmission attempt will be made.

#### **Command Parameters:**

Connection Handle:

Value

0xXXXX

| Parameter Description                                      |
|------------------------------------------------------------|
| Specifies which Connection Handle's Flush Timeout to read. |

Size: 2 Bytes (12 Bits meaningful)

### **Return Parameters:**

Size: 1 Byte Status:

Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)

| Value     | Parameter Description                                                                           |
|-----------|-------------------------------------------------------------------------------------------------|
| 0x00      | Read_Automatic_Flush_Timeout command succeeded.                                                 |
| 0x01-0xFF | Read_Automatic_Flush_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

page 648 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                            |  |  |
|--------|------------------------------------------------------------------|--|--|
| 0xXXXX | Specifies which Connection Handle's Flush Timeout has been read. |  |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)   |  |  |

## Flush\_Timeout:

Size: 2 Bytes

| Value      | Parameter Description                                               |
|------------|---------------------------------------------------------------------|
| 0          | Timeout = ∞; No Automatic Flush                                     |
| N = 0xXXXX | Flush Timeout = N * 0.625 msec Size: 11 bits Range: 0x0001 – 0x07FF |

# Event(s) generated (unless masked away):

When the Read\_Automatic\_Flush\_Timeout command has completed, a Command Complete event will be generated.

Bluetooth.

## 4.7.32 Write\_Automatic\_Flush\_Timeout

| Command                               | OCF    | Command Parameters               | Return Parameters         |
|---------------------------------------|--------|----------------------------------|---------------------------|
| HCI_Write_Automatic_Flush_<br>Timeout | 0x0028 | Connection_Handle, Flush_Timeout | Status, Connection_Handle |

### **Description:**

This command will write the value for the Flush\_Timeout parameter for the specified connection handle. The Flush\_Timeout parameter is used for ACL connections ONLY. The Flush\_Timeout parameter defines the amount of time before all chunks of the L2CAP packet, of which a baseband packet is currently being transmitted, are automatically flushed by the Host Controller. The timeout period starts when a transmission attempt is made for the first baseband packet of an L2CAP packet. This allows ACL packets to be automatically flushed without the Host device issuing a Flush command. The Write Automatic Flush Timeout command provides support for isochronous data, such as video. When the L2CAP packet that is currently being transmitted is automatically 'flushed', the Failed Contact Counter is incremented by one. The first chunk of the next L2CAP packet to be transmitted for the specified connection handle may already be stored in the Host Controller. In that case, the transmission of the first baseband packet containing data from that L2CAP packet can begin immediately. If the next L2CAP packet is not stored in the Host Controller, all data that is sent to the Host Controller after the flush for the same connection handle will be discarded by the Host Controller until an HCI Data Packet having the start Packet Boundary Flag (0x02) is received. When this happens, a new transmission attempt will be made.

#### **Command Parameters:**

#### Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

Size: 2 Bytes

| Value  | Parameter Description                                          |  |  |
|--------|----------------------------------------------------------------|--|--|
| 0xXXXX | Specifies which Connection Handle's Flush Timeout to write to. |  |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |  |

#### Flush\_Timeout:

| Value      | Parameter Description                                                     |
|------------|---------------------------------------------------------------------------|
| 0          | Timeout = ∞; No Automatic Flush. <b>Default.</b>                          |
| N = 0xXXXX | Flush Timeout = N * 0.625 msec<br>Size: 11 bits<br>Range: 0x0001 – 0x07FF |

page 650 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                            |
|-----------|--------------------------------------------------------------------------------------------------|
| 0x00      | Write_Automatic_Flush_Timeout command succeeded.                                                 |
| 0x01-0xFF | Write_Automatic_Flush_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle:

I

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                               |
|--------|---------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Flush Timeout has been written. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)      |

# Event(s) generated (unless masked away):

When the Write\_Automatic\_Flush\_Timeout command has completed, a Command Complete event will be generated.

29 November 1999 HCI Commands

Bluetooth.

### 4.7.33 Read Num Broadcast Retransmissions

| Command                                    | OCF    | Command<br>Parameters | Return Parameters            |
|--------------------------------------------|--------|-----------------------|------------------------------|
| HCI_Read_Num_Broadcast_<br>Retransmissions | 0x0029 |                       | Status, Num_Broadcast_Retran |

### **Description:**

This command will read the device's parameter value for the Number of Broadcast Retransmissions. Broadcast packets are not acknowledged and are unreliable. The Number of Broadcast Retransmissions parameter is used to increase the reliability of a broadcast message by retransmitting the broadcast message multiple times. This parameter defines the number of times the device will retransmit a broadcast data packet. This parameter should be adjusted as the link quality measurement changes.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------|
| 0x00      | Read_Num_Broadcast_Retransmissions command succeeded.                                                 |
| 0x01-0xFF | Read_Num_Broadcast_Retransmissions command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Num\_Broadcast\_Retran:

| Value    | Parameter Description                   |  |
|----------|-----------------------------------------|--|
| N = 0xXX | Number of Broadcast Retransmissions = N |  |
|          | Range 0x00-0xFF                         |  |

#### Event(s) generated (unless masked away):

When the Read\_Num\_Broadcast\_Retransmission command has completed, a Command Complete event will be generated.

Size: 1 Byte

page 652 of 1082

Host Controller Interface Functional Specification

Bluetooth

Size: 1 Byte

### 4.7.34 Write Num Broadcast Retransmissions

| Command                  | OCF    | Command Parameters   | Return Parameters |
|--------------------------|--------|----------------------|-------------------|
| HCI_Write_Num_Broadcast_ | 0x002A | Num_Broadcast_Retran | Status            |
| Retransmissions          |        |                      |                   |

# **Description:**

This command will write the device's parameter value for the Number of Broadcast Retransmissions. Broadcast packets are not acknowledged and are unreliable. The Number of Broadcast Retransmissions parameter is used to increase the reliability of a broadcast message by retransmitting the broadcast message multiple times. This parameter defines the number of times the device will retransmit a broadcast data packet. This parameter should be adjusted as link quality measurement change.

#### **Command Parameters:**

Num\_Broadcast\_Retran:

| Value    | Parameter Description                   |  |
|----------|-----------------------------------------|--|
| N = 0xXX | Number of Broadcast Retransmissions = N |  |
|          | Range 0x00-0xFF                         |  |
|          | Default: N = 0x01                       |  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------|
| 0x00      | Write_Num_Broadcast_Retransmissions command succeeded.                                                 |
| 0x01-0xFF | Write_Num_Broadcast_Retransmissions command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Num\_Broadcast\_Retransmissions command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

## 4.7.35 Read\_Hold\_Mode\_Activity

| Command                     | OCF    | Command<br>Parameters | Return Parameters          |
|-----------------------------|--------|-----------------------|----------------------------|
| HCI_Read_Hold_Mode_Activity | 0x002B |                       | Status, Hold_Mode_Activity |

### **Description:**

This command will read the value for the Hold\_Mode\_Activity parameter. The Hold\_Mode\_Activity value is used to determine what activities should be suspended when the device is in hold mode. After the hold period has expired, the device will return to the previous mode of operation. Multiple hold mode activities may be specified for the Hold\_Mode\_Activity parameter by performing a bitwise OR operation of the different activity types. If no activities are suspended, then all of the current Periodic Inquiry, Inquiry Scan, and Page Scan settings remain valid during the Hold Mode. If the Hold\_Mode\_Activity parameter is set to Suspend Page Scan, Suspend Inquiry Scan, and Suspend Periodic Inquiries, then the device can enter a low-power state during the Hold Mode period, and all activities are suspended. Suspending multiple activities can be specified for the Hold\_Mode\_Activity parameter by performing a bitwise OR operation of the different activity types. The Hold Mode Activity is only valid if all connections are in Hold Mode.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                      |
|-----------|--------------------------------------------------------------------------------------------|
| 0x00      | Read_Hold_Mode_Activity command succeeded.                                                 |
| 0x01-0xFF | Read_Hold_Mode_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Hold\_Mode\_Activity:

| Value     | Parameter Description         |  |
|-----------|-------------------------------|--|
| 0x00      | laintain current Power State. |  |
| 0x01      | Suspend Page Scan.            |  |
| 0x02      | Suspend Inquiry Scan.         |  |
| 0x04      | Suspend Periodic Inquiries.   |  |
| 0x08-0xFF | Reserved for Future Use.      |  |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 654 of 1082

Host Controller Interface Functional Specification

Bluetooth..

# Event(s) generated (unless masked away):

When the Read\_Hold\_Mode\_Activity command has completed, a Command Complete event will be generated.

**Bluetooth** 

Size: 1 Byte

## 4.7.36 Write\_Hold\_Mode\_Activity

| Command                      | OCF    | Command<br>Parameters | Return<br>Parameters |
|------------------------------|--------|-----------------------|----------------------|
| HCI_Write_Hold_Mode_Activity | 0x002C | Hold_Mode_Activity    | Status               |

### **Description:**

This command will write the value for the Hold\_Mode\_Activity parameter. The Hold\_Mode\_Activity value is used to determine what activities should be suspended when the device is in hold mode. After the hold period has expired, the device will return to the previous mode of operation. Multiple hold mode activities may be specified for the Hold\_Mode\_Activity parameter by performing a bitwise OR operation of the different activity types. If no activities are suspended, then all of the current Periodic Inquiry, Inquiry Scan, and Page Scan settings remain valid during the Hold Mode. If the Hold\_Mode\_Activity parameter is set to Suspend Page Scan, Suspend Inquiry Scan, and Suspend Periodic Inquiries, then the device can enter a low power state during the Hold Mode period and all activities are suspended. Suspending multiple activities can be specified for the Hold\_Mode\_Activity parameter by performing a bitwise OR operation of the different activity types. The Hold Mode Activity is only valid if all connections are in Hold Mode.

#### **Command Parameters:**

Hold\_Mode\_Activity:

| Value     | Parameter Description                         |
|-----------|-----------------------------------------------|
| 0x00      | Maintain current Power State. <b>Default.</b> |
| 0x01      | Suspend Page Scan.                            |
| 0x02      | Suspend Inquiry Scan.                         |
| 0x04      | Suspend Periodic Inquiries.                   |
| 0x08-0xFF | Reserved for Future Use.                      |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                       |
|-----------|---------------------------------------------------------------------------------------------|
| 0x00      | Write_Hold_Mode_Activity command succeeded.                                                 |
| 0x01-0xFF | Write_Hold_Mode_Activity command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Event(s) generated (unless masked away):

When the Write\_Hold\_Mode\_Activity command has completed, a Command Complete event will be generated.

page 656 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# 4.7.37 Read\_Transmit\_Power\_Level

| Command            | OCF    | Command Parameters | Return Parameters    |
|--------------------|--------|--------------------|----------------------|
| HCI_Read_Transmit_ | 0x002D | Connection_Handle, | Status,              |
| Power_Level        |        | Туре               | Connection_Handle,   |
|                    |        |                    | Transmit_Power_Level |

# **Description:**

This command will read the values for the Transmit\_Power\_Level parameter for the specified Connection Handle. The Connection\_Handle must be a Connection\_Handle for an ACL connection.

### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                     |
|--------|---------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Transmit Power Level setting to read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)            |

Type: Size: 1 Byte

| Value     | Parameter Description              |
|-----------|------------------------------------|
| 0x00      | Read Current Transmit Power Level. |
| 0x01      | Read Maximum Transmit Power Level. |
| 0x02-0xFF | Reserved                           |

# **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                        |
|-----------|----------------------------------------------------------------------------------------------|
| 0x00      | Read_Transmit_Power_Level command succeeded.                                                 |
| 0x01-0xFF | Read_Transmit_Power_Level command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                         |
|--------|-------------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Transmit Power Level setting is returned. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 657 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Transmit\_Power\_Level:

| Value    | Parameter Description         |
|----------|-------------------------------|
| N = 0xXX | Size: 1 Byte (signed integer) |
|          | Range: -30 ≤ N ≤ 20           |
|          | Units: dBm                    |

# **Event(s) generated (unless masked away):**

When the Read\_Transmit\_Power\_Level command has completed, a Command Complete event will be generated.

page 658 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

### 4.7.38 Read SCO Flow Control Enable

| Command                              | OCF    | Command Parameters | Return Parameters                  |
|--------------------------------------|--------|--------------------|------------------------------------|
| HCI_Read_SCO_<br>Flow_Control_Enable | 0x002E |                    | Status,<br>SCO_Flow_Control_Enable |

### **Description:**

The Read\_SCO\_Flow\_Control\_Enable command provides the ability to read the SCO\_Flow\_Control\_Enable setting. By using this setting, the Host can decide if the Host Controller will send Number Of Completed Packets events for SCO Connection Handles. This setting allows the Host to enable and disable SCO flow control.

Note: the SCO\_Flow\_Control\_Enable setting can only be changed if no connections exist.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Read_SCO_Flow_Control_Enable command succeeded                                                |
| 0x01-0xFF | Read_SCO_Flow_Control_Enable command failed see Table 6.1 on page 746 for list of Error Codes |

### SCO\_Flow\_Control\_Enable:

| Value | Parameter Description                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0x00  | SCO Flow Control is disabled. No Number of Completed Packets events will be sent from the Host Controller for SCO Connection Handles. |
| 0x01  | SCO Flow Control is enabled. Number of Completed Packets events will be sent from the Host Controller for SCO Connection Handles.     |

## **Event(s) generated (unless masked away):**

When the Read\_SCO\_Flow\_Control\_Enable command has completed a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

### 4.7.39 Write SCO Flow Control Enable

| Command                            | OCF    | Command Parameters      | Return Parameters |
|------------------------------------|--------|-------------------------|-------------------|
| HCI_Write_SCO_Flow _Control_Enable | 0x002F | SCO_Flow_Control_Enable | Status            |

### **Description:**

The Write\_SCO\_Flow\_Control\_Enable command provides the ability to write the SCO\_Flow\_Control\_Enable setting. By using this setting, the Host can decide if the Host Controller will send Number Of Completed Packets events for SCO Connection Handles. This setting allows the Host to enable and disable SCO flow control.

Note: the SCO\_Flow\_Control\_Enable setting can only be changed if no connections exist.

#### **Command Parameters:**

SCO\_Flow\_Control\_Enable:

| Value | Parameter Description                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00  | SCO Flow Control is disabled. No Number of Completed Packets events will be sent from the Host Controller for SCO Connection Handles.  Default |
| 0x01  | SCO Flow Control is enabled. Number of Completed Packets events will be sent from the Host Controller for SCO Connection Handles.              |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                          |
|-----------|------------------------------------------------------------------------------------------------|
| 0x00      | Write_SCO_Flow_Control_Enable command succeeded                                                |
| 0x01-0xFF | Write_SCO_Flow_Control_Enable command failed see Table 6.1 on page 746 for list of Error Codes |

## **Event(s) generated (unless masked away):**

When the Write\_SCO\_Flow\_Control\_Enable command has completed a Command Complete event will be generated.

page 660 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

### 4.7.40 Set\_Host\_Controller\_To\_Host\_Flow\_Control

| Command                                          | OCF    | Command Parameters  | Return Parameters |
|--------------------------------------------------|--------|---------------------|-------------------|
| HCI_Set_Host_Controller_<br>To_Host_Flow_Control | 0x0031 | Flow_Control_Enable | Status            |

### **Description:**

This command is used by the Host to turn flow control on or off in the direction from the Host Controller to the Host. If flow control is turned off, the Host should not send the Host\_Number\_Of\_Completed\_Packets command. That command will be ignored by the Host Controller if it is sent by the Host and flow control is off.

#### **Command Parameters:**

Flow\_Control\_Enable:

| Value     | Parameter Description                                                |
|-----------|----------------------------------------------------------------------|
| 0x00      | Flow control off in direction from Host Controller to Host. Default. |
| 0x01      | Flow control <b>on</b> in direction from Host Controller to Host.    |
| 0x02-0xFF | Reserved                                                             |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------|
| 0x00      | Set_Host_Controller_To_Host_Flow_Control command succeeded.                                                  |
| 0x01-0xFF | Set_Host_Controller_To_Host_Flow_Control command failed. See Table 6.1 on page 7450 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Set\_Host\_Controller\_To\_Host\_Flow\_Control command has completed, a Command Complete event will be generated.

page 661 of 1082

Host Controller Interface Functional Specification

Bluetooth

#### 4.7.41 Host Buffer Size

| Command              | OCF    | Command Parameters                                               | Return<br>Parameters |
|----------------------|--------|------------------------------------------------------------------|----------------------|
| HCI_Host_Buffer_Size | 0x0033 | Host_ACL_Data_Packet_Length, Host_SCO_Data_Packet_Length,        | Status               |
|                      |        | Host_Total_Num_ACL_Data_Packets, Host_Total_Num_SCO_Data_Packets |                      |

### **Description:**

The Host\_Buffer\_Size command is used by the Host to notify the Host Controller about the maximum size of the data portion of HCI ACL and SCO Data Packets sent from the Host Controller to the Host. The Host Controller will segment the data to be transmitted from the Host Controller to the Host according to these sizes, so that the HCI Data Packets will contain data with up to these sizes. The Host\_Buffer\_Size command also notifies the Host Controller about the total number of HCI ACL and SCO Data Packets that can be stored in the data buffers of the Host. If flow control from the Host Controller to the Host is turned off, and the Host\_Buffer\_Size command has not been issued by the Host, this means that the Host Controller will send HCI Data Packets to the Host with any lengths the Host Controller wants to use, and it is assumed that the data buffer sizes of the Host are unlimited. If flow control from the Host controller to the Host is turned on, the Host\_Buffer\_Size command must after a power-on or a reset always be sent by the Host before the first Host\_Number\_Of\_Completed\_Packets command is sent.

(The Set\_Host\_Controller\_To\_Host\_Flow\_Control command is used to turn flow control on or off.) The Host\_ACL\_Data\_Packet\_Length command parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets, which are transferred from the Host Controller to the Host. The Host\_SCO\_Data\_Packet\_Length command parameter is used to determine the maximum size of HCI SCO Data Packets. Both the Host and the Host Controller must support command and event packets, where the data portion (excluding header) contained in the packets is 255 bytes in size.

The Host\_Total\_Num\_ACL\_Data\_Packets command parameter contains the total number of HCI ACL Data Packets that can be stored in the data buffers of the Host. The Host Controller will determine how the buffers are to be divided between different Connection Handles. The Host\_Total\_Num\_SCO\_Data\_Packets command parameter gives the same information for HCI SCO Data Packets.

Note: the Host\_ACL\_Data\_Packet\_Length and Host\_SCO\_Data\_Packet\_ Length command parameters do not include the length of the HCI Data Packet header.

page 662 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Size: 1 Byte

Size: 2 Bytes

Size: 2 Bytes

#### **Command Parameters:**

## Host\_ACL\_Data\_Packet\_Length:

| Value  | Parameter Description                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Maximum length (in bytes) of the data portion of each HCI ACL Data Packet that the Host is able to accept. |

### Host\_SCO\_Data\_Packet\_Length:

| Value | Parameter Description                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------|
| 0xXX  | Maximum length (in bytes) of the data portion of each HCI SCO Data Packet that the Host is able to accept. |

# Host\_Total\_Num\_ACL\_Data\_Packets:

| Value  | Parameter Description                                                                    |
|--------|------------------------------------------------------------------------------------------|
| 0xXXXX | Total number of HCI ACL Data Packets that can be stored in the data buffers of the Host. |

### Host\_Total\_Num\_SCO\_Data\_Packets:

| Value  | Parameter Description                                                                    |
|--------|------------------------------------------------------------------------------------------|
| 0xXXXX | Total number of HCI SCO Data Packets that can be stored in the data buffers of the Host. |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                               |
|-----------|-------------------------------------------------------------------------------------|
| 0x00      | Host_Buffer_Size command succeeded.                                                 |
| 0x01-0xFF | Host_Buffer_Size command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Host\_Buffer\_Size command has completed, a Command Complete event will be generated.

Bluetooth.

### 4.7.42 Host\_Number\_Of\_Completed\_Packets

| Command                                  | OCF    | Command Parameters                                                                | Return<br>Parameters |
|------------------------------------------|--------|-----------------------------------------------------------------------------------|----------------------|
| HCI_Host_Number_Of_<br>Completed_Packets | 0x0035 | Number_Of_Handles, Connection_<br>Handle[i],<br>Host_Num_Of_Completed_Packets [i] |                      |

#### **Description:**

The Host\_Number\_Of\_Completed\_Packets command is used by the Host to indicate to the Host Controller the number of HCI Data Packets that have been completed for each Connection Handle since the previous Host Number Of Completed\_Buffers command was sent to the Host Controller. This means that the corresponding buffer space has been freed in the Host. Based on this information, and the Host Total Num ACL Data Packets and Host Total Num SCO Data Packets command parameters of the Host Buffer Size command. the Host Controller can determine for which Connection Handles the following HCI Data Packets should be sent to the Host. The command should only be issued by the Host if flow control in the direction from the Host Controller to the Host is on and there is at least one connection, or if the Host Controller is in local loopback mode. Otherwise, the command will be ignored by the Host Controller. While the Host has HCI Data Packets in its buffers, it must keep sending the Host Number Of Completed Packets command to the Host Controller at least periodically, until it finally reports that all buffer space in the Host used by ACL Data Packets has been freed. The rate with which this command is sent is manufacturer specific.

(The Set\_Host\_Controller\_To\_Host\_Flow\_Control command is used to turn flow control on or off.) If flow control from the Host controller to the Host is turned on, the Host\_Buffer\_Size command must after a power-on or a reset always be sent by the Host before the first

Host Number Of Completed Packets command is sent.

Note: the Host\_Number\_Of\_Completed\_Packets command is a special command in the sense that no event is normally generated after the command has completed. The command may be sent at any time by the Host when there is at least one connection, or if the Host Controller is in local loopback mode independent of other commands. The normal flow control for commands is not used for the Host\_Number\_Of\_Completed\_Packets command.

page 664 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

### **Command Parameters:**

Number\_Of\_Handles:

| Value | Parameter Description                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | The number of Connection Handles and Host_Num_Of_Completed_Packets parameters pairs contained in this command.  Range: 0-255 |

Connection\_Handle[i]: Size: Number\_Of\_Handles\*2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle                                              |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Host\_Num\_Of\_Completed\_Packets [i]: Size: Number\_Of\_Handles \* 2 Bytes

| Value      | Parameter Description                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| N = 0xXXXX | The number of HCI Data Packets that have been completed for the associated Connection Handle since the previous time the event was returned. |
|            | Range for N: 0x0000-0xFFFF                                                                                                                   |

#### **Return Parameters:**

None.

### **Event(s) generated (unless masked away):**

Normally, no event is generated after the Host\_Number\_Of\_Completed\_Packets command has completed. However, if the Host\_Number\_Of\_Completed\_Packets command contains one or more invalid parameters, the Host Controller will return a Command Complete event with a failure status indicating the Invalid HCI Command Parameters error code. The Host may send the Host\_Number\_Of\_Completed\_Packets command at any time when there is at least one connection, or if the Host Controller is in local loopback mode. The normal flow control for commands is not used for this command.

Bluetooth.

### 4.7.43 Read\_Link\_Supervision\_Timeout

| Command                               | OCF    | Command<br>Parameters | Return Parameters                                    |
|---------------------------------------|--------|-----------------------|------------------------------------------------------|
| HCI_Read_Link_Supervision_<br>Timeout | 0x0036 | Connection_Handle     | Status, Connection_Handle, Link_Supervision_ Timeout |

#### **Description:**

This command will read the value for the Link\_Supervision\_Timeout parameter for the device. The Link\_Supervision\_Timeout parameter is used by the master or slave Bluetooth device to monitor link loss. If, for any reason, no Baseband packets are received from that Connection Handle for a duration longer than the Link\_Supervision\_Timeout, the connection is disconnected. The same timeout value is used for both SCO and ACL connections for the device specified by the Connection Handle.

Note: the Connection\_Handle used for this command must be the ACL connection to the appropriate device. This command will set the Link\_Supervision\_ Timeout values for other SCO Connection\_Handle to that device.

Note: Setting the Link\_Supervision\_Timeout to No Link\_Supervision\_Timeout (0x0000) will disable the Link\_Supervision\_Timeout check for the specified Connection Handle. This makes it unnecessary for the master of the piconet to unpark and then park each Bluetooth Device every ~40 seconds. By using the No Link\_Supervision\_Timeout setting, the scalability of the Park mode is not limited.

#### **Command Parameters:**

#### Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                             |
|--------|-----------------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Link Supervision Timeout value is to be read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                    |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                            |  |
|-----------|--------------------------------------------------------------------------------------------------|--|
| 0x00      | Read_Link_Supervision_Timeout command succeeded.                                                 |  |
| 0x01-0xFF | Read_Link_Supervision_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

page 666 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                        |
|--------|------------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Link Supervision Timeout value was read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)               |

# Link\_Supervision\_Timeout:

Size: 2 Bytes

| Value      | Parameter Description                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0000     | No Link_Supervision_Timeout.                                                                                                                                    |
| N = 0xXXXX | Measured in Number of Baseband slots  Link_Supervision_Timeout = N * 0.625 msec (1 Baseband slot)  Range for N: 0x0001 – 0xFFFF  Time Range: 0.625ms - 40.9 sec |

# Event(s) generated (unless masked away):

When the Read\_Link\_Supervision\_Timeout command has completed, a Command Complete event will be generated.

Bluetooth.

### 4.7.44 Write Link\_Supervision\_Timeout

| Command                                | OCF    | Command Parameters                           | Return Parameters         |
|----------------------------------------|--------|----------------------------------------------|---------------------------|
| HCI_Write_Link_Supervision_<br>Timeout | 0x0037 | Connection_Handle, Link_Supervision_ Timeout | Status, Connection_Handle |

#### **Description:**

This command will write the value for the Link\_Supervision\_Timeout parameter for the device. The Link\_Supervision\_Timeout parameter is used by the master or slave Bluetooth device to monitor link loss. If, for any reason, no Baseband packets are received from that Connection\_Handle for a duration longer than the Link\_Supervision\_Timeout, the connection is disconnected. The same timeout value is used for both SCO and ACL connections for the device specified by the Connection\_Handle.

Note: the Connection\_Handle used for this command must be the ACL connection to the appropriate device. This command will set the Link\_Supervision\_ Timeout values for other SCO Connection\_Handle to that device.

Note: Setting the Link\_Supervision\_Timeout parameter to No Link\_Supervision\_Timeout (0x0000) will disable the Link\_Supervision\_Timeout check for the specified Connection Handle. This makes it unnecessary for the master of the piconet to unpark and then park each Bluetooth Device every ~40 seconds. By using the No Link\_Supervision\_Timeout setting, the scalability of the Park mode is not limited.

#### **Command Parameters:**

Connection Handle:

| Size: 2 Bytes (12 Bits meaningfu | Size: 2 By | /tes (12 | Bits me | eaninafu |
|----------------------------------|------------|----------|---------|----------|
|----------------------------------|------------|----------|---------|----------|

Size: 2 Bytes

| Value  | Parameter Description                                                                |
|--------|--------------------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Link Supervision Timeout value is to be written. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                       |

# Link\_Supervision\_Timeout:

| Value      | Parameter Description                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0000     | No Link_Supervision_Timeout.                                                                                                                                                                                          |
| N = 0xXXXX | Measured in Number of Baseband slots  Link_Supervision_Timeout = N*0.625 msec (1 Baseband slot)  Range for N: 0x0001 – 0xFFFF  Time Range: 0.625ms – 40.9 sec  Default: N = 0x7D00  Link_Supervision_Timeout = 20 sec |

page 668 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                             |  |
|-----------|---------------------------------------------------------------------------------------------------|--|
| 0x00      | Write_Link_Supervision_Timeout command succeeded.                                                 |  |
| 0x01-0xFF | Write_Link_Supervision_Timeout command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                           |
|--------|---------------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Link Supervision Timeout value was written. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                  |

# **Event(s) generated (unless masked away):**

When the Write\_Link\_Supervision\_Timeout command has completed, a Command Complete event will be generated.

page 669 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# 4.7.45 Read\_Number\_Of\_Supported\_IAC

| Command                          | OCF    | Command<br>Parameters | Return<br>Parameters    |
|----------------------------------|--------|-----------------------|-------------------------|
| HCI_Read_Number_Of_Supported_IAC | 0x0038 |                       | Status, Num_Support_IAC |

### **Description:**

This command will read the value for the number of Inquiry Access Codes (IAC) that the local Bluetooth device can simultaneous listen for during an Inquiry Scan. All Bluetooth devices are required to support at least one IAC, the General Inquiry Access Code (GIAC or UIAC), but some Bluetooth devices support additional IACs.

#### **Command Parameters:**

None

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                           |
|-----------|-------------------------------------------------------------------------------------------------|
| 0x00      | Read_Number_Of_Supported_IAC command succeeded.                                                 |
| 0x01-0xFF | Read_Number_Of_Supported_IAC command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Num\_Support\_IAC

| Value | Parameter Description                                                                                                     |
|-------|---------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Specifies the number of Supported IAC that the local Bluetooth device can simultaneous listen for during an Inquiry Scan. |
|       | Range: 0x01-0x40                                                                                                          |

### Event(s) generated (unless masked away):

When the Read\_Number\_Of\_Supported\_IAC command has completed, a Command Complete event will be generated.

Size: 1 Byte

page 670 of 1082

Host Controller Interface Functional Specification

Bluetooth.

**HCI Commands** 

### 4.7.46 Read\_Current\_IAC\_LAP

| Command                  | OCF    | Command Parameters | Return Parameters        |
|--------------------------|--------|--------------------|--------------------------|
| HCI_Read_Current_IAC_LAP | 0x0039 |                    | Status, Num_Current_IAC, |
|                          |        |                    | IAC_LAP[i]               |

# **Description:**

This command reads the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans. All Bluetooth devices are required to support at least one IAC (GIAC or UIAC). Some Bluetooth devices support additional IACs.

#### **Command Parameters:**

None

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                   |
|-----------|-----------------------------------------------------------------------------------------|
| 0x00      | Read_Current_IAC_LAP command succeeded.                                                 |
| 0x01-0xFF | Read_Current_IAC_LAP command failed. See Table 6.1 on page 745 for list of Error Codes. |

Num Current IAC Size: 1 Byte

| Value | Parameter Description                                                                                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Specifies the number of IACs which are currently in use by the local Bluetooth device to simultaneously listen for during an Inquiry Scan. |
|       | Range: 0x01-0x40                                                                                                                           |

IAC\_LAP[i] Size: 3 Bytes \* Num\_Current\_IAC

| Value    | Parameter Description                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXXXX | LAPs used to create the IAC which is currently in use by the local Bluetooth device to simultaneously listen for during an Inquiry Scan. |
|          | Range: 0x9E8B00-0x9E8B3F                                                                                                                 |

### **Event(s) generated (unless masked away):**

When the Read\_Current\_IAC\_LAP command has completed, a Command Complete event will be generated.

page 671 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

### 4.7.47 Write\_Current\_IAC\_LAP

| Command                   | OCF    | Command Parameters             | Return Parameters |
|---------------------------|--------|--------------------------------|-------------------|
| HCI_Write_Current_IAC_LAP | 0x003A | Num_Current_IAC,<br>IAC_LAP[i] | Status            |

### **Description:**

This command writes the LAP(s) used to create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously scanning for during Inquiry Scans. All Bluetooth devices are required to support at least one IAC (GIAC or UIAC). Some Bluetooth devices support additional IACs. Therefore, the LAP used to create the GIAC or UIAC must be among the IAC\_LAP parameters of this command.

Note: this command writes over the current IACs used by the Bluetooth device. If the value of the NumCurrentIAC is more than the number of supported IACs, then only the first, X Inquiry Access Codes (where X equals the number of supported IACs) will be stored without any error.

#### **Command Parameters:**

Num\_Current\_IAC

| Value | Parameter Description                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Specifies the number of IACs which are currently in use by the local Bluetooth device to simultaneously listen for during an Inquiry Scan.  Range: 0x01-0x40 |

IAC\_LAP[i] Size: 3 Bytes \* Num\_Current\_IAC

| Value   | Parameter Description                                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXXX | LAP(s) used to create IAC which is currently in use by the local Bluetooth device to simultaneously listen for during an Inquiry Scan.   |
|         | Range: 0x9E8B00-0x9E8B3F.                                                                                                                |
|         | The GIAC is the default IAC to be used. If additional IACs are supported, additional default IAC will be determined by the manufacturer. |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 672 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                    |
|-----------|------------------------------------------------------------------------------------------|
| 0x00      | Write_Current_IAC_LAP command succeeded.                                                 |
| 0x01-0xFF | Write_Current_IAC_LAP command failed. See Table 6.1 on page 745 for list of Error Codes. |

# Event(s) generated (unless masked away):

When the Write\_Current\_IAC\_LAP command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

### 4.7.48 Read\_Page\_Scan\_Period\_Mode

| Command                            | OCF    | Command<br>Parameters | Return Parameters             |
|------------------------------------|--------|-----------------------|-------------------------------|
| HCI_Read_Page_Scan_Period_<br>Mode | 0x003B |                       | Status, Page_Scan_Period_Mode |

#### **Description:**

This command is used to read the mandatory Page\_Scan\_Period\_Mode of the local Bluetooth device. Every time an inquiry response message is sent, the Bluetooth device will start a timer (T\_mandatory\_pscan), the value of which is dependent on the Page\_Scan\_Period\_Mode. As long as this timer has not expired, the Bluetooth device will use the Page\_Scan\_Period\_Mode for all following page scans.

Note: the timer T\_mandatory\_pscan will be reset at each new inquiry response. For details see the "Baseband Specification" on page 33. (Keyword: SP-Mode, FHS-Packet, T\_mandatory\_pscan, Inquiry-Response).

After transmitting one or more inquiry response (FHS) packets as a result of the inquiry scan process, the local Bluetooth device is allowed to enter the page scan state using mandatory page scan mode regardless of the setting of the Scan\_Enable parameter.

#### **Command Parameters:**

None

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Read_Page_Scan_Period_Mode command succeeded.                                                 |
| 0x01-0xFF | Read_Page_Scan_Period_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Page Scan Period Mode:

| Value     | Parameter Description |
|-----------|-----------------------|
| 0x00      | P0                    |
| 0x01      | P1                    |
| 0x02      | P2                    |
| 0x03-0xFF | Reserved.             |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 674 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# Event(s) generated (unless masked away):

When the Read\_Page\_Scan\_Period\_Mode command has completed, a Command Complete event will be generated.

Bluetooth.

Size: 1 Byte

### 4.7.49 Write\_Page\_Scan\_Period\_Mode

| Command                          | OCF    | Command Parameters    | Return Parameters |
|----------------------------------|--------|-----------------------|-------------------|
| HCI_Write_Page_Scan_P eriod_Mode | 0x003C | Page_Scan_Period_Mode | Status            |

#### **Description:**

This command is used to write the mandatory Page\_Scan\_Period\_Mode of the local Bluetooth device. Every time an inquiry response message is sent, the Bluetooth device will start a timer (T\_mandatory\_pscan), the value of which is dependent on the Page\_Scan\_Period\_Mode. As long as this timer has not expired, the Bluetooth device will use the Page\_Scan\_Period\_Mode for all following page scans.

Note: the timer T\_mandatory\_pscan will be reset at each new inquiry response. For details see the "Baseband Specification" on page 33. (Keyword: SP-Mode, FHS-Packet, T\_mandatory\_pscan, Inquiry-Response).

After transmitting one or more inquiry response (FHS) packets as a result of the inquiry scan process, the local Bluetooth device is allowed to enter the page scan state using mandatory page scan mode regardless of the setting of the Scan\_Enable parameter.

#### **Command Parameters:**

Page Scan Period Mode:

| Value     | Parameter Description |
|-----------|-----------------------|
| 0x00      | P0. <b>Default.</b>   |
| 0x01      | P1                    |
| 0x02      | P2                    |
| 0x03-0xFF | Reserved.             |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                          |
|-----------|------------------------------------------------------------------------------------------------|
| 0x00      | Write_Page_Scan_Period_Mode command succeeded.                                                 |
| 0x01-0xFF | Write_Page_Scan_Period_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Event(s) generated (unless masked away):

When the Write\_Page\_Scan\_Period\_Mode command has completed, a Command Complete event will be generated.

page 676 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 4.7.50 Read\_Page\_Scan\_Mode

| Command                 | OCF    | Command<br>Parameters | Return Parameters      |
|-------------------------|--------|-----------------------|------------------------|
| HCI_Read_Page_Scan_Mode | 0x003D |                       | Status, Page_Scan_Mode |

# **Description:**

This command is used to read the default page scan mode of the local Bluetooth device. The Page\_Scan\_Mode parameter indicates the page scan mode that is used for default page scan. Currently one mandatory page scan mode and three optional page scan modes are defined. Following an inquiry response, if the Baseband timer T\_mandatory\_pscan has not expired, the mandatory page scan mode must be applied. For details see the "Baseband Specification" on page 33 (Keyword: Page-Scan-Mode, FHS-Packet, T\_mandatory\_pscan)

#### **Command Parameters:**

None

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                  |
|-----------|----------------------------------------------------------------------------------------|
| 0x00      | Read_Page_Scan_Mode command succeeded.                                                 |
| 0x01-0xFF | Read_Page_Scan_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Page\_Scan\_Mode:

| Value     | Parameter Description       |
|-----------|-----------------------------|
| 0x00      | Mandatory Page Scan Mode    |
| 0x01      | Optional Page Scan Mode I   |
| 0x02      | Optional Page Scan Mode II  |
| 0x03      | Optional Page Scan Mode III |
| 0x04-0xFF | Reserved                    |

### **Event(s) generated (unless masked away):**

When the Read\_Page\_Scan\_Mode command has completed, a Command Complete event will be generated.

Size: 1 Byte

Bluetooth.

Size: 1 Byte

677

# 4.7.51 Write\_Page\_Scan\_Mode

| Command                         | OCF | Command Parameters | Return<br>Parameters |
|---------------------------------|-----|--------------------|----------------------|
| HCI_Write_Page_Scan_Mode 0x003E |     | Page_Scan_Mode     | Status               |

## **Description:**

This command is used to write the default page scan mode of the local Bluetooth device. The Page\_Scan\_Mode parameter indicates the page scan mode that is used for the default page scan. Currently, one mandatory page scan mode and three optional page scan modes are defined. Following an inquiry response, if the Baseband timer T\_mandatory\_pscan has not expired, the mandatory page scan mode must be applied. For details see the "Baseband Specification" on page 33. (Keyword: Page-Scan-Mode, FHS-Packet, T\_mandatory\_pscan).

#### **Command Parameters:**

Page\_Scan\_Mode:

| Value     | Parameter Description                      |
|-----------|--------------------------------------------|
| 0x00      | Mandatory Page Scan Mode. <b>Default</b> . |
| 0x01      | Optional Page Scan Mode I                  |
| 0x02      | Optional Page Scan Mode II                 |
| 0x03      | Optional Page Scan Mode III                |
| 0x04-0xFF | Reserved.                                  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                   |
|-----------|-----------------------------------------------------------------------------------------|
| 0x00      | Write_Page_Scan_Mode command succeeded.                                                 |
| 0x01-0xFF | Write_Page_Scan_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

### Event(s) generated (unless masked away):

When the Write\_Page\_Scan\_Mode command has completed, a Command Complete event will be generated.

page 678 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.8 INFORMATIONAL PARAMETERS

The Informational Parameters are fixed by the manufacturer of the Bluetooth hardware. These parameters provide information about the Bluetooth device and the capabilities of the Host Controller, Link Manager, and Baseband. The host device cannot modify any of these parameters. For Informational Parameters Commands, the OGF is defined as 0x04

| Command                        | Command Summary Description                                                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read_Local_Version_Information | The Read_Local_Version_Information command will read the values for the version information for the local Bluetooth device.                                                                         |
| Read_Local_Supported_Features  | The Read_Local_Supported_Features command requests a list of the supported features for the local device.                                                                                           |
| Read_Buffer_Size               | The Read_Buffer_Size command returns the size of the HCI buffers. These buffers are used by the Host Controller to buffer data that is to be transmitted.                                           |
| Read_Country_Code              | The Read_Country_Code command will read the value for the Country Code status parameter. The Country Code defines which range of frequency band of the ISM 2.4 GHz band will be used by the device. |
| Read_BD_ADDR                   | The Read_BD_ADDR command will read the value for the BD_ADDR parameter. The BD_ADDR is a 48-bit unique identifier for a Bluetooth device.                                                           |

Bluetooth.

#### 4.8.1 Read Local Version Information

| Command                 | OCF    | Command<br>Parameters | Return Parameters  |
|-------------------------|--------|-----------------------|--------------------|
| HCI_Read_Local_Version_ | 0x0001 |                       | Status,            |
| Information             |        |                       | HCI Version,       |
|                         |        |                       | HCI Revision,      |
|                         |        |                       | LMP Version,       |
|                         |        |                       | Manufacturer_Name, |
|                         |        |                       | LMP Subversion     |

### **Description:**

This command will read the values for the version information for the local Bluetooth device. The version information consists of two parameters: the version and revision parameters.

The version parameter defines the major hardware version of the Bluetooth hardware. The version parameter only changes when new versions of the Bluetooth hardware are produced for new Bluetooth SIG specifications. The version parameter is controlled by the SIG.

The revision parameter should be controlled by the manufacturer and should be changed as needed. The Manufacturer\_Name parameter indicates the manufacturer of the local Bluetooth module as specified by the LMP definition of this parameter. The subversion parameter should be controlled by the manufacturer and should be changed as needed. The subversion parameter defines the various revisions that each version of the Bluetooth hardware will go through as design processes change and errors are fixed. This allows the software to determine what Bluetooth hardware is being used, and to work around various bugs in the hardware if necessary.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                             |
|-----------|---------------------------------------------------------------------------------------------------|
| 0x00      | Read_Local_Version_Information command succeeded.                                                 |
| 0x01-0xFF | Read_Local_Version_Information command failed. See Table 6.1 on page 745 for list of Error Codes. |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 680 of 1082

Host Controller Interface Functional Specification

Bluetooth.

HCI\_Version:

| Size: 1 | By |
|---------|----|
|---------|----|

| Value | Parameter Description                                 |  |  |
|-------|-------------------------------------------------------|--|--|
| 0xXX  | Version of the Current HCI in the Bluetooth hardware. |  |  |
|       | 0x00: Bluetooth HCI Specification 1.0                 |  |  |
|       | 0x01-0xFF: Reserved                                   |  |  |

HCI\_Revision:

Size: 2 Bytes

| Value  | Parameter Description                                  |  |
|--------|--------------------------------------------------------|--|
| 0xXXXX | Revision of the Current HCI in the Bluetooth hardware. |  |

LMP\_Version:

Size: 1 Byte

| Value | Parameter Description                                                                                                                      |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXX  | Version of the Current LMP in the Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (VersNr). |  |

Manufacturer\_Name:

Size: 2 Bytes

| Value  | Parameter Description                                                                                                             |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXX | Manufacturer Name of the Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (Compld). |  |

LMP Subversion:

Size: 2 Bytes

| Value  | Parameter Description                                                                                                                            |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXXXX | Subversion of the Current LMP in the Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (SubVersNr). |  |

# **Event(s) generated (unless masked away):**

When the Read\_Local\_Version\_Information command has completed, a Command Complete event will be generated.

Bluetooth.

### 4.8.2 Read\_Local\_Supported\_Features

| Command                           | OCF    | Command<br>Parameters | Return Parameters       |
|-----------------------------------|--------|-----------------------|-------------------------|
| HCI_Read_Local_Supported_Features | 0x0003 |                       | Status,<br>LMP_Features |

# **Description:**

This command requests a list of the supported features for the local device. This command will return a list of the LMP features. For details see "Link Manager Protocol" on page 185.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                            |  |
|-----------|--------------------------------------------------------------------------------------------------|--|
| 0x00      | Read_Local_Supported_Features command succeeded.                                                 |  |
| 0x01-0xFF | Read_Local_Supported_Features command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

# LMP\_Features: Size: 8 Bytes

|     | Value                  | Parameter Description                                                              |  |
|-----|------------------------|------------------------------------------------------------------------------------|--|
| - 1 | 0xXXXXXXXX<br>XXXXXXXX | Bit Mask List of LMP features. For details see "Link Manager Protocol" on page 185 |  |

# Event(s) generated (unless masked away):

When the Read\_Local\_Supported\_Features command has completed, a Command Complete event will be generated.

page 682 of 1082

Host Controller Interface Functional Specification

Bluetooth

#### 4.8.3 Read Buffer Size

| Command              | OCF    | Command Parameters | Return Parameters              |
|----------------------|--------|--------------------|--------------------------------|
| HCI_Read_Buffer_Size | 0x0005 |                    | Status,                        |
|                      |        |                    | HC_ACL_Data_Packet_Length,     |
|                      |        |                    | HC_SCO_Data_Packet_Length, HC_ |
|                      |        |                    | Total_Num_ACL_Data_Packets,    |
|                      |        |                    | HC_Total_Num_SCO_Data_Packets  |

### **Description:**

The Read\_Buffer\_Size command is used to read the maximum size of the data portion of HCI ACL and SCO Data Packets sent from the Host to the Host Controller. The Host will segment the data to be transmitted from the Host to the Host Controller according to these sizes, so that the HCI Data Packets will contain data with up to these sizes. The Read\_Buffer\_Size command also returns the total number of HCI ACL and SCO Data Packets that can be stored in the data buffers of the Host Controller. The Read\_Buffer\_Size command must be issued by the Host before it sends any data to the Host Controller.

The HC\_ACL\_Data\_Packet\_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets, which are transferred from the Host to the Host Controller to be broken up into baseband packets by the Link Manager. The HC\_SCO\_Data\_Packet\_Length return parameter is used to determine the maximum size of HCI SCO Data Packets. Both the Host and the Host Controller must support command and event packets, where the data portion (excluding header) contained in the packets is 255 bytes in size. The HC\_Total\_Num\_ACL\_Data\_Packets return parameter contains the total number of HCI ACL Data Packets that can be stored in the data buffers of the Host Controller. The Host will determine how the buffers are to be divided between different Connection Handles. The

HC\_Total\_Num\_SCO\_Data\_

Packets return parameter gives the same information but for HCI SCO Data Packets.

Note: the HC\_ACL\_Data\_Packet\_Length and HC\_SCO\_Data\_Packet\_Length return parameters do not include the length of the HCI Data Packet header.

#### **Command Parameters:**

None.

page 683 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 2 Bytes

Size: 1 Byte

Size: 2 Bytes

Size: 2 Bytes

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                               |  |
|-----------|-------------------------------------------------------------------------------------|--|
| 0x00      | Read_Buffer_Size command succeeded.                                                 |  |
| 0x01-0xFF | Read_Buffer_Size command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

### HC\_ACL\_Data\_Packet\_Length:

| Value  | Parameter Description                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Maximum length (in bytes) of the data portion of each HCI ACL Data Packet that the Host Controller is able to accept. |

### HC\_SCO\_Data\_Packet\_Length:

| Value | Parameter Description                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Maximum length (in bytes) of the data portion of each HCI SCO Data Packet that the Host Controller is able to accept. |

# HC\_Total\_Num\_ACL\_Data\_Packets:

| Value  | Parameter Description                                                                               |
|--------|-----------------------------------------------------------------------------------------------------|
| 0xXXXX | Total number of HCI ACL Data Packets that can be stored in the data buffers of the Host Controller. |

### HC\_Total\_Num\_SCO\_Data\_Packets:

| Value  | Parameter Description                                                                               |
|--------|-----------------------------------------------------------------------------------------------------|
| 0xXXXX | Total number of HCI SCO Data Packets that can be stored in the data buffers of the Host Controller. |

### Event(s) generated (unless masked away):

When the Read\_Buffer\_Size command has completed, a Command Complete event will be generated.

page 684 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# 4.8.4 Read\_Country\_Code

| Command               | OCF    | Command Parameters | Return Parameters |
|-----------------------|--------|--------------------|-------------------|
| HCI_Read_Country_Code | 0x0007 |                    | Status,           |
|                       |        |                    | Country_Code      |

### **Description:**

This command will read the value for the Country\_Code return parameter. The Country\_Code defines which range of frequency band of the ISM 2.4 GHz band will be used by the device. Each country has local regulatory bodies regulating which ISM 2.4 GHz frequency ranges can be used.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |  |
|-----------|--------------------------------------------------------------------------------------|--|
| 0x00      | Read_Country_Code command succeeded.                                                 |  |
| 0x01-0xFF | Read_Country_Code command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

Country\_Code: Size: 1 Byte

| Value   | Parameter Description    |
|---------|--------------------------|
| 0x00    | North America & Europe*  |
| 0x01    | France                   |
| 0x02    | Spain                    |
| 0x03    | Japan                    |
| 0x04-FF | Reserved for Future Use. |

<sup>\*.</sup> Except Spain and France

# **Event(s) generated (unless masked away):**

When the Read\_Country\_Code command has completed, a Command Complete event will be generated.

page 685 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 4.8.5 Read\_BD\_ADDR

| Command          | OCF    | Command<br>Parameters | Return Parameters  |
|------------------|--------|-----------------------|--------------------|
| HCI_Read_BD_ADDR | 0x0009 |                       | Status,<br>BD_ADDR |

### **Description:**

This command will read the value for the BD\_ADDR parameter.

The BD\_ADDR is a 48-bit unique identifier for a Bluetooth device. See the "Baseband Specification" on page 33 for details of how BD\_ADDR is used.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                           |  |
|-----------|---------------------------------------------------------------------------------|--|
| 0x00      | Read_BD_ADDR command succeeded.                                                 |  |
| 0x01-0xFF | Read_BD_ADDR command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description |
|---------------|-----------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device |

# Event(s) generated (unless masked away):

When the Read\_BD\_ADDR command has completed, a Command Complete event will be generated.

page 686 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 4.9 STATUS PARAMETERS

The Host Controller modifies all status parameters. These parameters provide information about the current state of the Host Controller, Link Manager, and Baseband. The host device cannot modify any of these parameters other than to reset certain specific parameters. For the Status and baseband, the OGF is defined as 0x05

| Command                      | Command Summary Description                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read_Failed_Contact_Counter  | The Read_Failed_Contact_Counter will read the value for the Failed_Contact_Counter parameter for a particular connection to another device. The Failed_Contact_Counter records the number of consecutive incidents in which either the slave or master didn't respond after the flush timeout had expired, and the L2CAP packet that was currently being transmitted was automatically 'flushed'.  |
| Reset_Failed_Contact_Counter | The Reset_Failed_Contact_Counter will reset the value for the Failed_Contact_Counter parameter for a particular connection to another device. The Failed_Contact_Counter records the number of consecutive incidents in which either the slave or master didn't respond after the flush timeout had expired and the L2CAP packet that was currently being transmitted was automatically 'flushed'. |
| Get_Link_Quality             | The Get_Link_Quality command will read the value for the Link_Quality for the specified Connection Handle.                                                                                                                                                                                                                                                                                         |
| Read_RSSI                    | The Read_RSSI command will read the value for the Received Signal Strength Indication (RSSI) for a connection handle to another Bluetooth device.                                                                                                                                                                                                                                                  |

Bluetooth.

### 4.9.1 Read\_Failed\_Contact\_Counter

| Command                             | OCF    | Command Parameters | Return Parameters                                 |
|-------------------------------------|--------|--------------------|---------------------------------------------------|
| HCI_Read_Failed_<br>Contact_Counter | 0x0001 | Connection_Handle  | Status, Connection_Handle, Failed_Contact_Counter |

# **Description:**

This command will read the value for the Failed\_Contact\_Counter parameter for a particular connection to another device. The Connection\_Handle must be a Connection\_Handle for an ACL connection. The Failed\_Contact\_Counter records the number of consecutive incidents in which either the slave or master didn't respond after the flush timeout had expired, and the L2CAP packet that was currently being transmitted was automatically 'flushed'. When this occurs, the Failed\_Contact\_Counter is incremented by 1. The Failed\_Contact\_Counter for a connection is reset to zero on the following conditions:

- 1. When a new connection is established
- 2. When the Failed\_Contact\_Counter is > zero and an L2CAP packet is acknowledged for that connection
- 3. When the Reset Failed Contact Counter command has been issued

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                         |  |
|--------|-----------------------------------------------------------------------------------------------|--|
| 0xXXXX | The Connection Handle for the Connection for which the Failed Contact Counter should be read. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                |  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                          |  |
|-----------|------------------------------------------------------------------------------------------------|--|
| 0x00      | Read_Failed_Contact_Counter command succeeded.                                                 |  |
| 0x01-0xFF | Read_Failed_Contact_Counter command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

page 688 of 1082

Host Controller Interface Functional Specification

Bluetooth..

# Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                        |  |
|--------|----------------------------------------------------------------------------------------------|--|
| 0xXXXX | The Connection Handle for the Connection for which the Failed Contact Counter has been read. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                               |  |

# Failed\_Contact\_Counter:

Size: 2 Bytes

| Value  | Parameter Description                                                                          |
|--------|------------------------------------------------------------------------------------------------|
| 0xXXXX | Number of consecutive failed contacts for a connection corresponding to the connection handle. |

# Event(s) generated (unless masked away):

When the Read\_Failed\_Contact\_Counter command has completed, a Command Complete event will be generated.

Bluetooth.

#### 4.9.2 Reset Failed Contact Counter

| Command                              | OCF    | Command Parameters | Return Parameters         |
|--------------------------------------|--------|--------------------|---------------------------|
| HCI_Reset_Failed_<br>Contact_Counter | 0x0002 | Connection_Handle  | Status, Connection_Handle |

### **Description:**

This command will reset the value for the Failed\_Contact\_Counter parameter for a particular connection to another device. The Connection\_Handle must be a Connection\_Handle for an ACL connection. The Failed\_Contact\_Counter records the number of consecutive incidents in which either the slave or master didn't respond after the flush timeout had expired, and the L2CAP packet that was currently being transmitted was automatically 'flushed'. When this occurs, the Failed\_Contact\_Counter is incremented by 1.The Failed\_Contact\_Counter for a connection is reset to zero on the following conditions:

- 1. When a new connection is established
- 2. When the Failed\_Contact\_Counter is > zero and an L2CAP packet is acknowledged for that connection
- 3. When the Reset Failed Contact Counter command has been issued

#### **Command Parameters:**

Connection\_Handle:

| Size: 2 Bytes | (12 Bits meaningful) |
|---------------|----------------------|
|---------------|----------------------|

| Value  | Parameter Description                                                                          |
|--------|------------------------------------------------------------------------------------------------|
| 0xXXXX | The Connection Handle for the Connection for which the Failed Contact Counter should be reset. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                 |

### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                           |  |
|-----------|-------------------------------------------------------------------------------------------------|--|
| 0x00      | Reset_Failed_Contact_Counter command succeeded.                                                 |  |
| 0x01-0xFF | Reset_Failed_Contact_Counter command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

page 690 of 1082

Host Controller Interface Functional Specification

Bluetooth..

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                         |  |
|--------|-----------------------------------------------------------------------------------------------|--|
| 0xXXXX | The Connection Handle for the Connection for which the Failed Contact Counter has been reset. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                |  |

# **Event(s) generated (unless masked away):**

When the Reset\_Failed\_Contact\_Counter command has completed, a Command

Complete event will be generated.

Bluetooth.

# 4.9.3 Get\_Link\_Quality

| Command              | OCF    | Command Parameters | Return Parameters                       |
|----------------------|--------|--------------------|-----------------------------------------|
| HCI_Get_Link_Quality | 0x0003 | Connection_Handle  | Status, Connection_Handle, Link_Quality |

# **Description:**

This command will return the value for the Link\_Quality for the specified Connection Handle. The Connection\_Handle must be a Connection\_Handle for an ACL connection. This command will return a Link\_Quality value from 0-255, which represents the quality of the link between two Bluetooth devices. The higher the value, the better the link quality is. Each Bluetooth module vendor will determine how to measure the link quality.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                      |  |
|--------|--------------------------------------------------------------------------------------------|--|
| 0xXXXX | The Connection Handle for the connection for which link quality parameters are to be read. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                             |  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                              |
|-----------|------------------------------------------------------------------------------------|
| 0x00      | Get_Link_Quality command succeeded.                                                |
| 0x01-0xFF | Get_Link_Quality command failed.See Table 6.1 on page 745 for list of Error Codes. |

# Connection\_Handle:

| Value  | Parameter Description                                                                        |
|--------|----------------------------------------------------------------------------------------------|
| 0xXXXX | The Connection Handle for the connection for which the link quality parameter has been read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                               |

page 692 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Link\_Quality: Size: 1 Byte

| Value | Parameter Description                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | The current quality of the Link connection between the local device and the remote device specified by the Connection Handle |
|       | Range: 0x00 – 0xFF                                                                                                           |
|       | The higher the value, the better the link quality is.                                                                        |

# Event(s) generated (unless masked away):

When the Get\_Link\_Quality command has completed, a Command Complete event will be generated.

Bluetooth.

# 4.9.4 Read\_RSSI

| Command       | OCF    | Command Parameters | Return Parameters      |
|---------------|--------|--------------------|------------------------|
| HCI_Read_RSSI | 0x0005 | Connection_Handle  | Status,                |
|               |        |                    | Connection_Handle,RSSI |

### **Description:**

This command will read the value for the difference between the measured Received Signal Strength Indication (RSSI) and the limits of the Golden Receive Power Range (see Radio Specification Section 4.7 on page 26) for a connection handle to another Bluetooth device. The Connection\_Handle must be a Connection\_Handle for an ACL connection. Any positive RSSI value returned by the Host Controller indicates how many dB the RSSI is above the upper limit, any negative value indicates how many dB the RSSI is below the lower limit. The value zero indicates that the RSSI is inside the Golden Receive Power Range.

Note: how accurate the dB values will be depends on the Bluetooth hardware. The only requirements for the hardware are that the Bluetooth device is able to tell whether the RSSI is inside, above or below the Golden Device Power Range.

#### **Command Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                      |
|--------|----------------------------------------------------------------------------|
| 0xXXXX | The Connection Handle for the Connection for which the RSSI is to be read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)             |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                        |
|-----------|------------------------------------------------------------------------------|
| 0x00      | Read_RSSI command succeeded.                                                 |
| 0x01-0xFF | Read_RSSI command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                      |
|--------|----------------------------------------------------------------------------|
| 0xXXXX | The Connection Handle for the Connection for which the RSSI has been read. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)             |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 694 of 1082

Host Controller Interface Functional Specification

Bluetooth

RSSI: Size: 1 Byte

| Value    | Parameter Description         |
|----------|-------------------------------|
| N = 0xXX | Size: 1 Byte (signed integer) |
|          | Range: -128 ≤ N ≤ 127         |
|          | Units: dB                     |
|          |                               |

# Event(s) generated (unless masked away):

When the Read\_RSSI command has completed, a Command Complete event will be generated.

page 695 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# 4.10 TESTING COMMANDS

The Testing commands are used to provide the ability to test various functionalities of the Bluetooth hardware. These commands provide the ability to arrange various conditions for testing. For the Testing Commands, the OGF is defined as 0x06

| Command                       | Command Summary Description                                                                                                                                                                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read_Loopback_Mode            | The Read_Loopback_Mode will read the value for the setting of the Host Controllers Loopback Mode. The setting of the Loopback Mode will determine the path of information.                                                                                                      |
| Write_Loopback_Mode           | The Write_Loopback_Mode will write the value for the setting of the Host Controllers Loopback Mode. The setting of the Loopback Mode will determine the path of information.                                                                                                    |
| Enable_Device_Under_Test_Mode | The Enable_Device_Under_Test_Mode command will allow the local Bluetooth module to enter test mode via LMP test commands. The Host issues this command when it wants the local device to be the DUT for the Testing scenarios as described in the Bluetooth Test Mode document. |

page 696 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.10.1 Read\_Loopback\_Mode

| Command                | OCF    | Command Parameters | Return Parameters |
|------------------------|--------|--------------------|-------------------|
| HCI_Read_Loopback_Mode | 0x0001 |                    | Status,           |
|                        |        |                    | Loopback_Mode     |

## **Description:**

This command will read the value for the setting of the Host Controller's Loopback Mode. The setting of the Loopback Mode will determine the path of information. In Non-testing Mode operation, the Loopback Mode is set to Nontesting Mode and the path of the information is as specified by the Bluetooth specifications. In Local Loopback Mode, every Data Packet (ACL and SCO) and Command Packet that is sent from the Host to the Host Controller is sent back with no modifications by the Host Controller, as shown in Fig. 4.5 on page 697.

When the Bluetooth Host Controller enters Local Loopback Mode, it shall respond with four Connection Complete events, one for an ACL channel and three for SCO channels, so that the Host gets connection handles to use when sending ACL and SCO data. When in Local Loopback Mode the Host Controller loops back commands and data to the Host. The Loopback Command event is used to loop back commands that the Host sends to the Host Controller.

There are some commands that are not looped back in Local Loopback Mode: Reset, Set\_Host\_Controller\_To\_Host\_Flow\_Control, Host\_Buffer\_Size, Host\_Number\_Of\_Completed\_Packets, Read\_Buffer\_Size, Read\_Loopback\_Mode and Write\_Loopback\_Mode. These commands should be executed in the way they are normally executed. The commands Reset and Write\_Loopback\_Mode can be used to exit local loopback mode. If Write\_Loopback\_Mode is used to exit Local Loopback Mode, four Disconnection Complete events should be sent to the Host, corresponding to the Connection Complete events that were sent when entering Local Loopback Mode. Furthermore, no connections are allowed in Local Loopback mode. If there is a connection and there is an attempt to set the device to Local Loopback Mode, the attempt will be refused. When the device is in Local Loopback Mode, the Host Controller will refuse incoming connection attempts. This allows the Host Controller Transport Layer to be tested without any other variables.

If a device is set to Remote Loopback Mode, it will send back all data (ACL and SCO) that comes over the air, and it will only allow a maximum of one ACL connection and three SCO connections – and these should be all to the same remote device. If there already are connections to more than one remote device and there is an attempt to set the local device to Remote Loopback Mode, the attempt will be refused. See Fig. 4.6 on page 697 where the rightmost device is set to Remote Loopback Mode and the leftmost device is set to

# Bluetooth.

Non-testing Mode. This allows the Bluetooth Air link to be tested without any other variables.

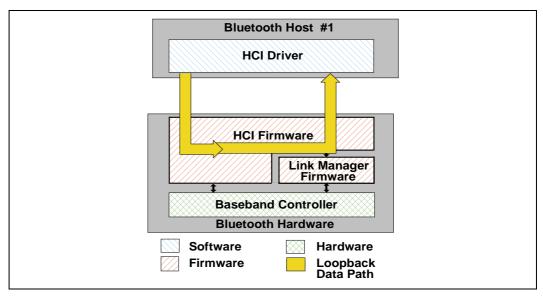



Figure 4.5: Local Loopback Mode

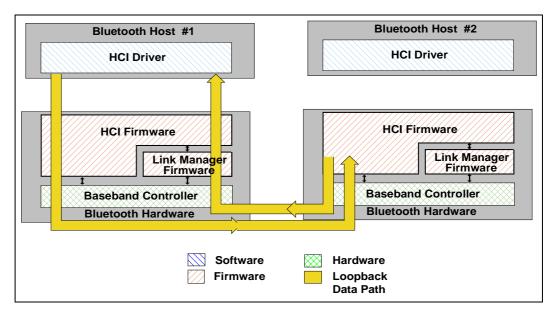



Figure 4.6: Remote Loopback Mode

#### **Command Parameters:**

None.

page 698 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                               |
|-----------|-------------------------------------------------------------------------------------|
| 0x00      | Read_Loopback_Mode command succeeded.                                               |
| 0x01-0xFF | Read_Loopback_Mode command failed. See Table 2 on page 260 for list of Error Codes. |

Loopback\_Mode:

| Value     | Parameter Description                     |
|-----------|-------------------------------------------|
| 0x00      | No Loopback mode enabled. <b>Default.</b> |
| 0x01      | Enable Local Loopback.                    |
| 0x02      | Enable Remote Loopback.                   |
| 0x03-0xFF | Reserved for Future Use.                  |

## Event(s) generated (unless masked away):

When the Read\_Loopback\_Mode command has completed, a Command Complete event will be generated.

page 699 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 4.10.2 Write\_Loopback\_Mode

| Command                 | OCF    | Command Parameters | Return Parameters |
|-------------------------|--------|--------------------|-------------------|
| HCI_Write_Loopback_Mode | 0x0002 | Loopback_Mode      | Status            |

#### **Description:**

This command will write the value for the setting of the Host Controller's Loopback Mode. The setting of the Loopback Mode will determine the path of information. In Non-testing Mode operation, the Loopback Mode is set to Nontesting Mode and the path of the information as specified by the Bluetooth specifications. In Local Loopback Mode, every Data Packet (ACL and SCO) and Command Packet that is sent from the Host to the Host Controller is sent back with no modifications by the Host Controller, as shown in Fig. 4.7 on page 700.

When the Bluetooth Host Controller enters Local Loopback Mode, it shall respond with four Connection Complete events, one for an ACL channel and three for SCO channels, so that the Host gets connection handles to use when sending ACL and SCO data. When in Local Loopback Mode, the Host Controller loops back commands and data to the Host. The Loopback Command event is used to loop back commands that the Host sends to the Host Controller.

There are some commands that are not looped back in Local Loopback Mode: Reset, Set\_Host\_Controller\_To\_Host\_Flow\_Control, Host\_Buffer\_Size, Host\_Number\_Of\_Completed\_Packets, Read\_Buffer\_Size, Read\_Loopback\_Mode and Write\_Loopback\_Mode. These commands should be executed in the way they are normally executed. The commands Reset and Write\_Loopback\_Mode can be used to exit local loopback mode.

If Write\_Loopback\_Mode is used to exit Local Loopback Mode, four Disconnection Complete events should be sent to the Host corresponding to the Connection Complete events that were sent when entering Local Loopback Mode. Furthermore, no connections are allowed in Local Loopback mode. If there is a connection, and there is an attempt to set the device to Local Loopback Mode, the attempt will be refused. When the device is in Local Loopback Mode, the Host Controller will refuse incoming connection attempts. This allows the Host Controller Transport Layer to be tested without any other variables.

If a device is set to Remote Loopback Mode, it will send back all data (ACL and SCO) that comes over the air. It will only allow a maximum of one ACL connection and three SCO connections, and these should all be to the same remote device. If there already are connections to more than one remote device and there is an attempt to set the local device to Remote Loopback Mode, the attempt will be refused.

page 700 of 1082

Host Controller Interface Functional Specification

## Bluetooth.

See Fig. 4.8 on page 700, where the rightmost device is set to Remote Loopback Mode and the leftmost device is set to Non-testing Mode. This allows the Bluetooth Air link to be tested without any other variables.

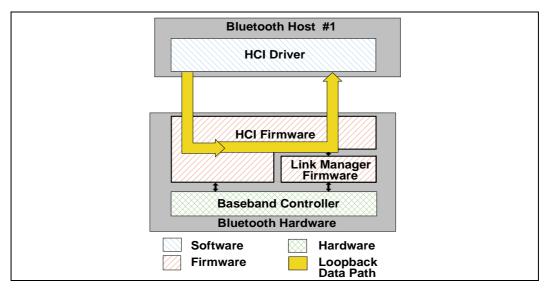



Figure 4.7: Local Loopback Mode

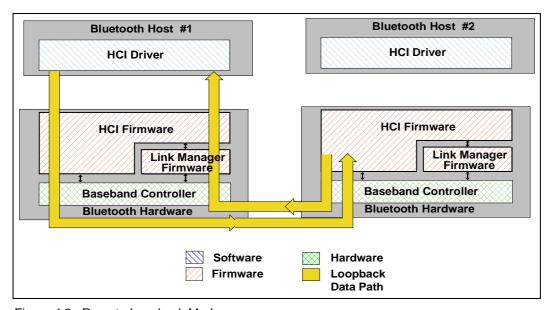



Figure 4.8: Remote Loopback Mode

page 701 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

#### **Command Parameters:**

Loopback\_Mode:

| Value     | Parameter Description                     |
|-----------|-------------------------------------------|
| 0x00      | No Loopback mode enabled. <b>Default.</b> |
| 0x01      | Enable Local Loopback.                    |
| 0x02      | Enable Remote Loopback.                   |
| 0x03-0xFF | Reserved for Future Use.                  |

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                  |
|-----------|----------------------------------------------------------------------------------------|
| 0x00      | Write_Loopback_Mode command succeeded.                                                 |
| 0x01-0xFF | Write_Loopback_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Event(s) generated (unless masked away):

When the Write\_Loopback\_Mode command has completed, a Command Complete event will be generated.

Bluetooth

## 4.10.3 Enable\_Device\_Under\_Test\_Mode

| Command                               | OCF    | Command<br>Parameters | Return Parameters |
|---------------------------------------|--------|-----------------------|-------------------|
| HCI_Enable_Device_Under_<br>Test_Mode | 0x0003 |                       | Status            |

## **Description:**

The Enable\_Device\_Under\_Test\_Mode command will allow the local Bluetooth module to enter test mode via LMP test commands. For details see "Link Manager Protocol" on page 185. The Host issues this command when it wants the local device to be the DUT for the Testing scenarios as described in the "Bluetooth Test Mode" on page 803. When the Host Controller receives this command, it will complete the command with a Command Complete event. The Host Controller functions as normal until the remote tester issues the LMP test command to place the local device into Device Under Test mode. To disable and exit the Device Under Test Mode, the Host can issue the HCI\_Reset command. This command prevents remote Bluetooth devices from causing the local Bluetooth device to enter test mode without first issuing this command.

#### **Command Parameters:**

None.

#### **Return Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                           |
|-----------|-------------------------------------------------------------------------------------------------|
| 0x00      | Enter_Device_Under_Test_Mode command succeeded.                                                 |
| 0x01-0xFF | Enter_Device_Under_Test_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### **Event(s) generated (unless masked away):**

When the Enter\_Device\_Under\_Test\_Mode command has completed, a Command Complete event will be generated.

Bluetooth.

## **5 EVENTS**

## **5.1 EVENT**

In addition to the events listed below, event code 0xFF is reserved for the event code used for vendor-specific debug events, and event code 0xFE is reserved for Bluetooth Logo Testing.

| Event                                         | Event Summary Description                                                                                                                                                                                                                   |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Inquiry Complete event                        | The Inquiry Complete event indicates that the Inquiry is finished.                                                                                                                                                                          |  |
| Inquiry Result event                          | The Inquiry Result event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process.                                                                                          |  |
| Connection Complete event                     | The Connection Complete event indicates to both of the Hosts forming the connection that a new connection has been established.                                                                                                             |  |
| Connection Request event                      | The Connection Request event is used to indicate that a new incoming connection is trying to be established.                                                                                                                                |  |
| Disconnection Complete event                  | The Disconnection Complete event occurs when a connection has been terminated.                                                                                                                                                              |  |
| Authentication Complete event                 | The Authentication Complete event occurs when authentication has been completed for the specified connection.                                                                                                                               |  |
| Remote Name Request<br>Complete event         | The Remote Name Request Complete event is used to indicate a remote name request has been completed. The Remote_Name event parameter is a UTF-8 encoded string with up to 248 bytes in length.                                              |  |
| Encryption Change event                       | The Encryption Change event is used to indicate that the change in the encryption has been completed for the Connection Handle specified by the Connection_Handle event parameter.                                                          |  |
| Change Connection Link<br>Key Complete event  | The Change Connection Link Key Complete event is used to indicate that the change in the Link Key for the Connection Handle specified by the Connection_Handle event parameter had been completed.                                          |  |
| Master Link Key Complete event                | The Master Link Key Complete event is used to indicate that the change in the temporary Link Key or in the semi-permanent link keys on the Bluetooth master side has been completed.                                                        |  |
| Read Remote Supported Features Complete event | The Read Remote Supported Features Complete event is used to indicate the completion of the process of the Link Manager obtaining the supported features of the remote Bluetooth device specified by the Connection_Handle event parameter. |  |

Table 5.1: List of Supported Events

page 704 of 1082

Host Controller Interface Functional Specification

# Bluetooth.

| Event                                                | Event Summary Description                                                                                                                                                                                                                     |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Read Remote Version<br>Information Complete<br>event | The Read Remote Version Information Complete event is used to indicate the completion of the process of the Link Manager obtaining the version information of the remote Bluetooth device specified by the Connection_Handle event parameter. |
| QoS Setup Complete event                             | The QoS Setup Complete event is used to indicate the completion of the process of the Link Manager setting up QoS with the remote Bluetooth device specified by the Connection_Handle event parameter.                                        |
| Command Complete event                               | The Command Complete event is used by the Host Controller to pass the return status of a command and the other event parameters for each HCI Command.                                                                                         |
| Command Status event                                 | The Command Status event is used to indicate that the command described by the Command_Opcode parameter has been received and the Host Controller is currently performing the task for this command.                                          |
| Hardware Error event                                 | The Error event is used to indicate some type of hardware failure for the Bluetooth device.                                                                                                                                                   |
| Flush Occurred event                                 | The Flush Occurred event is used to indicate that, for the specified Connection Handle, the current user data to be transmitted has been removed.                                                                                             |
| Role Change event                                    | The Role Change event is used to indicate that the current Bluetooth role related to the particular connection has been changed.                                                                                                              |
| Number Of Completed Packets event                    | The Number Of Completed Packets event is used by the Host Controller to indicate to the Host how many HCI Data Packets have been completed for each Connection Handle since the previous Number Of Completed Packets event was sent.          |
| Mode Change event                                    | The Mode Change event is used to indicate when the device associated with the Connection Handle changes between Active, Hold, Sniff and Park mode.                                                                                            |
| Return Link Keys event                               | The Return Link Keys event is used to return stored link keys after a Read_Stored_Link_Key command is used.                                                                                                                                   |
| PIN Code Request event                               | The PIN Code Request event is used to indicate that a PIN code is required to create a new link key for a connection.                                                                                                                         |
| Link Key Request event                               | The Link Key Request event is used to indicate that a Link Key is required for the connection with the device specified in BD_ADDR.                                                                                                           |
| Link Key Notification event                          | The Link Key Notification event is used to indicate to the Host that a new Link Key has been created for the connection with the device specified in BD_ADDR.                                                                                 |
| Loopback Command event                               | The Loopback Command event is used to loop back most commands that the Host sends to the Host Controller.                                                                                                                                     |

Table 5.1: List of Supported Events

# Bluetooth.

| Event                                     | Event Summary Description                                                                                                                                                                         |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data Buffer Overflow event                | The Data Buffer Overflow event is used to indicate that the Host Controller's data buffers have overflowed, because the Host has sent more packets than allowed.                                  |  |  |
| Max Slots Change event                    | This event is used to notify the Host about the LMP_Max_Slots parameter when the value of this parameter changes.                                                                                 |  |  |
| Read Clock Offset Complete event          | The Read Clock Offset Complete event is used to indicate the completion of the process of the LM obtaining the Clock offset information.                                                          |  |  |
| Connection Packet Type<br>Changed event   | The Connection Packet Type Changed event is used to indicate the completion of the process of the Link Manager changing the Packet Types used for the specified Connection_Handle.                |  |  |
| QoS Violation event                       | The QoS Violation event is used to indicate the Link Manager is unable to provide the current QoS requirement for the Connection Handle.                                                          |  |  |
| Page Scan Mode Change event               | The Page Scan Mode Change event indicates that the connected remote Bluetooth device with the specified Connection_Handle has successfully changed the Page_Scan_Mode.                            |  |  |
| Page Scan Repetition<br>Mode Change event | The Page Scan Repetition Mode Change event indicates that the connected remote Bluetooth device with the specified Connection_Handle has successfully changed the Page_Scan_Repetition_Mode (SR). |  |  |

Table 5.1: List of Supported Events

page 706 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 5.2 POSSIBLE EVENTS

The events provide a method to return parameters and data associated for each event.

#### **5.2.1 Inquiry Complete event**

| Event            | Event Code | Event Parameters |
|------------------|------------|------------------|
| Inquiry Complete | 0x01       | Status,          |
|                  |            | Num_Responses    |

#### **Description:**

The Inquiry Complete event indicates that the Inquiry is finished. This event contains a status parameter, which is used to indicate if the Inquiry completed successfully or if the Inquiry was not completed. In addition, the Num\_Responses parameter contains the number of Bluetooth devices, which responded during the latest inquiry.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                      |
|-----------|----------------------------------------------------------------------------|
| 0x00      | Inquiry command completed successfully.                                    |
| 0x01-0xFF | Inquiry command failed. See Table 6.1 on page 745 for list of Error Codes. |

Num\_Responses: Size: 1 Byte

| Value | Parameter Description                 |
|-------|---------------------------------------|
| 0xXX  | Number of responses from the Inquiry. |

Bluetooth.

## 5.2.2 Inquiry Result event

| Event          | Event Code | Event Parameters              |
|----------------|------------|-------------------------------|
| Inquiry Result | 0x02       | Num_Responses,                |
|                |            | BD_ADDR[i],                   |
|                |            | Page_Scan_Repetition_Mode[i], |
|                |            | Page_Scan_Period_Mode[i],     |
|                |            | Page_Scan_Mode[i],            |
|                |            | Class_of_Device[i]            |
|                |            | Clock_Offset[i]               |

#### **Description:**

The Inquiry Result event indicates that a Bluetooth device or multiple Bluetooth devices have responded so far during the current Inquiry process. This event will be sent from the Host Controller to the Host as soon as an Inquiry Response from a remote device is received if the remote device supports only mandatory paging scheme. The Host Controller may queue these Inquiry Responses and send multiple Bluetooth devices information in one Inquiry Result event. The event can be used to return one or more Inquiry responses in one event. This event contains the BD\_ADDR,

Page\_Scan\_Repetition\_Mode, Page\_Scan\_Period\_Mode, Page\_Scan\_Mode, Clock\_Offset, and the Class of Device for each Bluetooth device that responded to the latest inquiry.

#### **Event Parameters:**

Num\_Responses:

| Value | Parameter Description                 |
|-------|---------------------------------------|
| 0xXX  | Number of responses from the Inquiry. |

#### BD ADDR[i]:

Size: 1 Byte

| Value                                  | Parameter Description                    |
|----------------------------------------|------------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | BD_ADDR for each device which responded. |

page 708 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Page\_Scan\_Repetition\_Mode[i]:

| Size: | 1 Byte* | Num_ | Resp | onses |
|-------|---------|------|------|-------|

| Value       | Parameter Description |
|-------------|-----------------------|
| 0x00        | R0                    |
| 0x01        | R1                    |
| 0x02        | R2                    |
| 0x03 – 0xFF | Reserved              |

Page\_Scan\_Period\_Mode[i]:

| Size: 1 | Byte* | Num | Res | ponses |
|---------|-------|-----|-----|--------|
|---------|-------|-----|-----|--------|

| Value       | Parameter Description |
|-------------|-----------------------|
| 0x00        | P0                    |
| 0x01        | P1                    |
| 0x02        | P2                    |
| 0x03 – 0xFF | Reserved              |

Page\_Scan\_Mode[i]:

| Size: 1 i | Byte* Num_ | _Responses |
|-----------|------------|------------|
|-----------|------------|------------|

| Value       | Parameter Description       |
|-------------|-----------------------------|
| 0x00        | Mandatory Page Scan Mode    |
| 0x01        | Optional Page Scan Mode I   |
| 0x02        | Optional Page Scan Mode II  |
| 0x03        | Optional Page Scan Mode III |
| 0x04 – 0xFF | Reserved                    |

Class\_of\_Device[i]:

| Value    | Parameter Description          |
|----------|--------------------------------|
| 0xXXXXXX | Class of Device for the device |

Clock\_Offset[i]:

| Size: 2 Bytes * Num_Response. | Size: 2 B | ytes * | `Num_ | Res | ponse |
|-------------------------------|-----------|--------|-------|-----|-------|
|-------------------------------|-----------|--------|-------|-----|-------|

| Bit format | Parameter Description           |
|------------|---------------------------------|
| Bit 14.0   | Bit 16.2 of CLKslave-CLKmaster. |
| Bit 15     | Reserved                        |

Bluetooth.

## **5.2.3 Connection Complete event**

| Event               | Event Code | Event Parameters   |
|---------------------|------------|--------------------|
| Connection Complete | 0x03       | Status,            |
|                     |            | Connection_Handle, |
|                     |            | BD_ADDR,           |
|                     |            | Link_Type,         |
|                     |            | Encryption_Mode    |

## **Description:**

The Connection Complete event indicates to both of the Hosts forming the connection that a new connection has been established. This event also indicates to the Host, which issued the Create Connection, Add\_SCO\_Connection, or Accept\_Connection\_Request or Reject\_Connection\_Request command and then received a Command Status event, if the issued command failed or was successful.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                             |
|-----------|-----------------------------------------------------------------------------------|
| 0x00      | Connection successfully completed.                                                |
| 0x01-0xFF | Connection failed to Complete. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                                                                                                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle to be used to identify a connection between to Bluetooth devices. The Connection Handle is used as an identifier for transmitting and receiving voice or data.  Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                                         |
|---------------|---------------------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the other connected Device forming the connection. |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 710 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 1 Byte

Link\_Type:

| Value     | Parameter Description            |
|-----------|----------------------------------|
| 0x00      | SCO connection (Voice Channels). |
| 0x01      | ACL connection (Data Channels).  |
| 0x02-0xFF | Reserved for Future Use.         |

## Encryption\_Mode:

| Value     | Parameter Description                                     |
|-----------|-----------------------------------------------------------|
| 0x00      | Encryption disabled.                                      |
| 0x01      | Encryption only for point-to-point packets.               |
| 0x02      | Encryption for both point-to-point and broadcast packets. |
| 0x03-0xFF | Reserved.                                                 |

Bluetooth.

## 5.2.4 Connection Request event

| Event              | Event Code | Event Parameters                    |
|--------------------|------------|-------------------------------------|
| Connection Request | 0x04       | BD_ADDR, Class_of_Device, Link_Type |

## **Description:**

The Connection Request event is used to indicate that a new incoming connection is trying to be established. The connection may either be accepted or rejected. If this event is masked away and there is an incoming connection attempt and the Host Controller is not set to auto-accept this connection attempt, the Host Controller will automatically refuse the connection attempt. When the Host receives this event, it should respond with either an Accept\_Connection\_Request or Reject\_Connection\_Request command before the timer Conn\_Accept\_Timeout expires.

#### **Event Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value        | Parameter Description                               |
|--------------|-----------------------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR of the device that requests the connection. |

Class\_of\_Device: Size: 3 Bytes

| Value   | Parameter Description                                         |
|---------|---------------------------------------------------------------|
| 0xXXXXx | Class of Device for the device, which request the connection. |

Link\_Type: Size: 1 Byte

| Value     | Parameter Description                      |
|-----------|--------------------------------------------|
| 0x00      | SCO connection requested (Voice Channels). |
| 0x01      | ACL connection requested (Data Channels).  |
| 0x02-0xFF | Reserved for Future Use.                   |

page 712 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 5.2.5 Disconnection Complete event

| Event                  | Event Code | Event Parameters          |
|------------------------|------------|---------------------------|
| Disconnection Complete | 0x05       | Status,                   |
|                        |            | Connection_Handle, Reason |

## **Description:**

The Disconnection Complete event occurs when a connection is terminated. The status parameter indicates if the disconnection was successful or not. The reason parameter indicates the reason for the disconnection if the disconnection was successful. If the disconnection was not successful, the value of the reason parameter can be ignored by the Host. For example, this can be the case if the Host has issued the Disconnect command and there was a parameter error, or the command was not presently allowed, or a connection handle that didn't correspond to a connection was given.

Note: When a physical link fails, one Disconnection Complete event will be returned for each logical channel on the physical link with the corresponding Connection handle as a parameter.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| 0x00      | Disconnection has occurred.                                                          |
| 0x01-0xFF | Disconnection failed to complete. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle which was disconnected.                      |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Reason: Size: 1 Byte

| Value                     | Parameter Description                                                                                                                                                                                                                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x08, 0x13-<br>0x16, 0x1A | Connection Timeout (0x08), Other End Terminated Connection error codes (0x13-0x15), Connection Terminated by Local Host (0x16), and Unsupported Remote Feature error code (0x1A). See Table 6.1 on page 745 for list of Error Codes. |

Bluetooth.

## 5.2.6 Authentication Complete event

| Event                   | Event Code | Event Parameters          |
|-------------------------|------------|---------------------------|
| Authentication Complete | 0x06       | Status, Connection_Handle |

## **Description:**

The Authentication Complete event occurs when authentication has been completed for the specified connection. The Connection\_Handle must be a Connection\_Handle for an ACL connection.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Authentication Request successfully completed.                                                |
| 0x01-0xFF | Authentication Request failed to complete. See Table 6.1 on page 745 for list of Error Codes. |

## Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle for which Authentication has been performed. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

page 714 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.7 Remote Name Request Complete event

| Event                        | Event Code | Event Parameters     |
|------------------------------|------------|----------------------|
| Remote Name Request Complete | 0x07       | Status,              |
|                              |            | BD_ADDR, Remote_Name |

## **Description:**

The Remote Name Request Complete event is used to indicate that a remote name request has been completed. The Remote\_Name event parameter is a UTF-8 encoded string with up to 248 bytes in length. The Remote\_Name event parameter will be null-terminated (0x00) if the UTF-8 encoded string is less than 248 bytes. The BD\_ADDR event parameter is used to identify which device the user-friendly name was obtained from.

Note: the Remote\_Name Parameter is received starting with the first byte of the name. This is an exception to the Little Endian order format for transmitting multi-byte parameters.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                  |
|-----------|----------------------------------------------------------------------------------------|
| 0x00      | Remote_Name_Request command succeeded.                                                 |
| 0x01-0xFF | Remote_Name_Request command failed. See Table 6.1 on page 745 for list of Error Codes. |

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                            |
|---------------|--------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR for the device whose name was requested. |

Remote Name: Size: 248 Bytes

| Value     | Parameter Description                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| Name[248] | A UTF-8 encoded user-friendly descriptive name for the remote device.                                                               |
|           | A UTF-8 encoded name can be up to 248 bytes in length. If it is shorter than 248 bytes, the end is indicated by a NULL byte (0x00). |

Bluetooth.

Size: 1 Byte

## 5.2.8 Encryption Change event

| Event             | Event Code | Event Parameters   |
|-------------------|------------|--------------------|
| Encryption Change | 80x0       | Status,            |
|                   |            | Connection_Handle, |
|                   |            | Encryption_Enable  |

## **Description:**

The Encryption Change event is used to indicate that the change in the encryption has been completed for the Connection Handle specified by the Connection\_Handle event parameter. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The Encryption\_Enable event parameter specifies the new Encryption Enable for the Connection Handle specified by the Connection\_Handle event parameter. This event will occur on both devices to notify both Hosts when Encryption has changed for the specified Connection Handle between two devices.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                        |
|-----------|------------------------------------------------------------------------------|
| 0x00      | Encryption Change has occurred.                                              |
| 0x01-0xFF | Encryption Change failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle for which the link layer encryption has been enabled/disabled for all Connection Handles with the same Bluetooth device endpoint as the specified Connection Handle. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                                                                                                         |

#### Encryption\_Enable:

| Value | Parameter Description         |
|-------|-------------------------------|
| 0x00  | Link Level Encryption is OFF. |
| 0x01  | Link Level Encryption is ON.  |

Events 29 November 1999 715

page 716 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.9 Change Connection Link Key Complete event

| Event                               | Event Code | Event Parameters          |
|-------------------------------------|------------|---------------------------|
| Change Connection Link Key Complete | 0x09       | Status, Connection_Handle |

## **Description:**

The Change Connection Link Key Complete event is used to indicate that the change in the Link Key for the Connection Handle specified by the Connection\_Handle event parameter has been completed. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The Change Connection Link Key Complete event is sent only to the Host which issued the Change\_Connection\_Link\_Key command.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                         |
|-----------|-----------------------------------------------------------------------------------------------|
| 0x00      | Change_Connection_Link_Key command succeeded.                                                 |
| 0x01-0xFF | Change_Connection_Link_Key command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle which the Link Key has been change for all Connection Handles with the same Bluetooth device end point as the specified Connection Handle.  Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

Bluetooth.

## 5.2.10 Master Link Key Complete event

| Event                    | Event Code | Event Parameters            |
|--------------------------|------------|-----------------------------|
| Master Link Key Complete | 0x0A       | Status,                     |
|                          |            | Connection_Handle, Key_Flag |

## **Description:**

The Master Link Key Complete event is used to indicate that the Link Key managed by the master of the piconet has been changed. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The link key used for the connection will be the temporary link key of the master device or the semi-permanent link key indicated by the Key\_Flag. The Key\_Flag event parameter is used to indicate which Link Key (temporary link key of the Master, or the semi-permanent link keys) is now being used in the piconet.

Note: for a master, the change from a semi-permanent Link Key to temporary Link Key will affect all Connection Handles related to the piconet. For a slave, this change affects only this particular connection handle. A temporary link key must be used when both broadcast and point-to-point traffic shall be encrypted.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                              |
|-----------|------------------------------------------------------------------------------------|
| 0x00      | Master_Link_Key command succeeded.                                                 |
| 0x01-0xFF | Master_Link_Key command failed. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                                          |
|--------|------------------------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle for which the Link Key has been changed for all devices in the same piconet. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                                 |

Key\_Flag: Size: 1 Byte

| Value | Parameter Description          |
|-------|--------------------------------|
| 0x00  | Using Semi-permanent Link Key. |
| 0x01  | Using Temporary Link Key.      |

page 718 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.11 Read Remote Supported Features Complete event

| Event                 | Event Code | Event Parameters                |
|-----------------------|------------|---------------------------------|
| Read Remote Supported | 0x0B       | Status,                         |
| Features Complete     |            | Connection_Handle, LMP_Features |

## **Description:**

The Read Remote Supported Features Complete event is used to indicate the completion of the process of the Link Manager obtaining the supported features of the remote Bluetooth device specified by the Connection\_Handle event parameter. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The event parameters include a list of LMP features. For details see "Link Manager Protocol" on page 185.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                             |
|-----------|---------------------------------------------------------------------------------------------------|
| 0x00      | Read_Remote_Supported_Features command succeeded.                                                 |
| 0x01-0xFF | Read_Remote_Supported_Features command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                           |  |
|--------|---------------------------------------------------------------------------------|--|
| 0xXXXX | Connection Handle which is used for the Read_Remote_Supported_Features command. |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                  |  |

# LMP\_Features: Size: 8 Bytes

| Value                  | Parameter Description                                                   |
|------------------------|-------------------------------------------------------------------------|
| 0xXXXXXXXX<br>XXXXXXXX | Bit Mask List of LMP features. See "Link Manager Protocol" on page 185. |

Bluetooth.

## 5.2.12 Read Remote Version Information Complete event

| Event                           | Event Code | Event Parameters   |
|---------------------------------|------------|--------------------|
| Read Remote Version Information | 0x0C       | Status,            |
| Complete                        |            | Connection_Handle, |
|                                 |            | LMP_Version,       |
|                                 |            | Manufacturer_Name, |
|                                 |            | LMP_Subversion     |

#### **Description:**

The Read Remote Version Information Complete event is used to indicate the completion of the process of the Link Manager obtaining the version information of the remote Bluetooth device specified by the Connection\_Handle event parameter. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The LMP\_Version event parameter defines the major hardware version of the Bluetooth hardware. This event parameter only changes when new versions of the Bluetooth hardware are produced for new Bluetooth SIG specifications; it is controlled by the SIG. The Manufacturer\_Name event parameter indicates the manufacturer of the remote Bluetooth module. The LMP\_

Subversion event parameter should be controlled by the manufacturer and should be changed as needed. The LMP\_Subversion event parameter defines the various revisions that each version of the Bluetooth hardware will go through as design processes change and errors are fixed. This allows the software to determine what Bluetooth hardware is being used and, if necessary, to work around various bugs in the hardware.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                              |
|-----------|----------------------------------------------------------------------------------------------------|
| 0x00      | Read_Remote_Version_Information command succeeded.                                                 |
| 0x01-0xFF | Read_Remote_Version_Information command failed. See Table 6.1 on page 745 for list of Error Codes. |

## Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                            |
|--------|----------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle which is used for the Read_Remote_Version_Information command. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                   |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 720 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Size: 2 Bytes

Size: 2 Bytes

## LMP\_Version:

| Value | Parameter Description                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | Version of the Current LMP in the remote Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (VersNr). |

## Manufacturer\_Name:

| Value  | Parameter Description                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXXXX | Manufacturer Name of the remote Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (Compld). |

## LMP\_Subversion:

| Value | Э   | Parameter Description                                                                                                                                   |
|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xXX  | XXX | Subversion of the Current LMP in the remote Bluetooth Hardware, see Table 5.2 on page 231 in the Link Manager Protocol for assigned values (SubVersNr). |

Bluetooth.

## 5.2.13 QoS Setup Complete event

| Event              | Event Code | Event Parameters   |
|--------------------|------------|--------------------|
| QoS Setup Complete | 0x0D       | Status,            |
|                    |            | Connection_Handle, |
|                    |            | Flags,             |
|                    |            | Service_Type,      |
|                    |            | Token_Rate,        |
|                    |            | Peak_Bandwidth,    |
|                    |            | Latency,           |
|                    |            | Delay_Variation    |

#### **Description:**

The QoS Setup Complete event is used to indicate the completion of the process of the Link Manager setting up QoS with the remote Bluetooth device specified by the Connection\_Handle event parameter. The Connection\_Handle will be a Connection\_Handle for an ACL connection. For more detail see "Logical Link Control and Adaptation Protocol Specification" on page 245.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                        |
|-----------|------------------------------------------------------------------------------|
| 0x00      | QoS_Setup command succeeded.                                                 |
| 0x01-0xFF | QoS_Setup command failed. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle: Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle which is used for the QoS_Setup command.     |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Flags: Size: 1 Byte

| Value       | Parameter Description    |
|-------------|--------------------------|
| 0x00 – 0xFF | Reserved for Future Use. |

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 722 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

Service\_Type:

| Value     | Parameter Description    |
|-----------|--------------------------|
| 0x00      | No Traffic Available.    |
| 0x01      | Best Effort Available.   |
| 0x02      | Guaranteed Available.    |
| 0x03-0xFF | Reserved for Future Use. |

Token\_Rate: Size: 4 Bytes

| Value     | Parameter Description                      |  |
|-----------|--------------------------------------------|--|
| 0xXXXXXXX | Available Token Rate, in bytes per second. |  |

Peak\_Bandwidth: Size: 4 Bytes

| Value     | Parameter Description                               |  |
|-----------|-----------------------------------------------------|--|
| 0xXXXXXXX | XXXX Available Peak Bandwidth, in bytes per second. |  |

Latency: Size: 4 Bytes

| Value     | Parameter Description               |  |
|-----------|-------------------------------------|--|
| 0xXXXXXXX | Available Latency, in microseconds. |  |

Delay\_Variation: Size: 4 Bytes

| Value                                                 | Parameter Description |  |
|-------------------------------------------------------|-----------------------|--|
| 0xXXXXXXX Available Delay Variation, in microseconds. |                       |  |

**Bluetooth** 

Size: 1 Byte

Size: 2 Bytes

Size: Depends on Command

## 5.2.14 Command Complete event

| Event            | Event Code | Event Parameters                  |
|------------------|------------|-----------------------------------|
| Command Complete | 0x0E       | Num_HCI_Command_Packets,          |
|                  |            | Command_Opcode, Return_Parameters |

## **Description:**

The Command Complete event is used by the Host Controller for most commands to transmit return status of a command and the other event parameters that are specified for the issued HCI command.

The Num\_HCI\_Command\_Packets event parameter allows the Host Controller to indicate the number of HCI command packets the Host can send to the Host Controller. If the Host Controller requires the Host to stop sending commands, the Num\_HCI\_Command\_Packets event parameter will be set to zero. To indicate to the Host that the Host Controller is ready to receive HCI command packets, the Host Controller generates a Command Complete event with the Command\_Opcode 0x0000, and the Num\_HCI\_Command\_Packets event parameter is set to 1 or more. Command\_Opcode, 0x0000 is a NOP (No OPeration), and can be used to change the number of outstanding HCI command packets that the Host can send before waiting. See each command for the parameters that are returned by this event.

#### **Event Parameters:**

## Num\_HCI\_Command\_Packets:

| Value    | Parameter Description                                                                                                      |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|--|
| N = 0xXX | The Number of HCl command packets which are allowed to be sent to the Host Controller from the Host.  Range for N: 0 – 255 |  |

#### Command\_Opcode:

| Va | alue                                                | Parameter Description |  |
|----|-----------------------------------------------------|-----------------------|--|
| 0х | XXXX Opcode of the command which caused this event. |                       |  |

#### Return Parameter(s):

| Value | Parameter Description                                                                                                                                                                          |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0xXX  | This is the return parameter(s) for the command specified in the Command_Opcode event parameter. See each command's definition for the list of return parameters associated with that command. |  |

page 724 of 1082

Host Controller Interface Functional Specification

Bluetooth

#### 5.2.15 Command Status event

| Event          | Event Code | Event Parameters                                |
|----------------|------------|-------------------------------------------------|
| Command Status | 0x0F       | Status, Num_HCI_Command_Packets, Command_Opcode |

## **Description:**

The Command Status event is used to indicate that the command described by the Command\_Opcode parameter has been received, and that the Host Controller is currently performing the task for this command. This event is needed to provide mechanisms for asynchronous operation, which makes it possible to prevent the Host from waiting for a command to finish. If the command can not begin to execute (a parameter error may have occurred, or the command may currently not be allowed), the Status event parameter will contain the corresponding error code, and no complete event will follow since the command was not started. The Num\_HCI\_Command\_Packets event parameter allows the Host Controller to indicate the number of HCI command packets the Host can send to the Host Controller. If the Host Controller requires the Host to stop sending commands, the Num HCI Command Packets event parameter will be set to zero. To indicate to the Host that the Host Controller is ready to receive HCl command packets, the Host Controller generates a Command Status event with Status 0x00 and Command Opcode 0x0000, and the Num HCI Command Packets event parameter is set to 1 or more. Command Opcode, 0x0000 is a NOP (No OPeration) and can be used to change the number of outstanding HCI command packets that the Host can send before waiting.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                              |  |
|-----------|--------------------------------------------------------------------|--|
| 0x00      | Command currently in pending.                                      |  |
| 0x01-0xFF | Command failed. See Table 6.1 on page 745 for list of Error Codes. |  |

#### Num\_HCI\_Command\_Packets:

| Value    | Parameter Description                                                                                |  |
|----------|------------------------------------------------------------------------------------------------------|--|
| N = 0xXX | The Number of HCl command packets which are allowed to be sent to the Host Controller from the Host. |  |
|          | Range for N: 0 – 255                                                                                 |  |

#### Command\_Opcode:

| Value  | Parameter Description                                                    |
|--------|--------------------------------------------------------------------------|
| 0xXXXX | Opcode of the command which caused this event and is pending completion. |

Size: 1 Byte

Size: 2 Bytes

page 725 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

#### 5.2.16 Hardware Error event

| Event          | Event Code | Event Parameters |
|----------------|------------|------------------|
| Hardware Error | 0x10       | Hardware_Code    |

## **Description:**

The Hardware Error event is used to indicate some type of hardware failure for the Bluetooth device. This event is used to notify the Host that a hardware failure has occurred in the Bluetooth module.

#### **Event Parameters:**

#### Hardware Code:

| Value | Parameter Description                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------|
| 0x00  | These Hardware_Codes will be implementation-specific, and will be assigned to indicate various hardware problems. |

page 726 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 5.2.17 Flush Occurred event

| Event          | Event Code | Event Parameters  |
|----------------|------------|-------------------|
| Flush Occurred | 0x11       | Connection_Handle |

## **Description:**

The Flush Occurred event is used to indicate that, for the specified Connection Handle, the current user data to be transmitted has been removed. The Connection\_Handle will be a Connection\_Handle for an ACL connection. This could result from the flush command, or be due to the automatic flush. Multiple blocks of an L2CAP packet could have been pending in the Host Controller. If one baseband packet part of an L2CAP packet is flushed, then the rest of the HCI data packets for the L2CAP packet must also be flushed.

#### **Event Parameters:**

Connection Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |  |
|--------|----------------------------------------------------------------|--|
| 0xXXXX | Connection Handle which was flushed.                           |  |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |  |

Bluetooth.

727

## 5.2.18 Role Change event

| Event       | Event Code | Event Parameters  |
|-------------|------------|-------------------|
| Role Change | 0x12       | Status,           |
|             |            | BD_ADDR, New_Role |

## **Description:**

The Role Change event is used to indicate that the current Bluetooth role related to the particular connection has changed. This event only occurs when both the remote and local Bluetooth devices have completed their role change for the Bluetooth device associated with the BD\_ADDR event parameter. This event allows both affected Hosts to be notified when the Role has been changed.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                  |  |
|-----------|------------------------------------------------------------------------|--|
| 0x00      | Role change has occurred.                                              |  |
| 0x01-0xFF | Role change failed. See Table 6.1 on page 745 for list of Error Codes. |  |

BD\_ADDR: Size: 6 Bytes

| Value        | Parameter Description                                        |
|--------------|--------------------------------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR of the Device for which a role change has completed. |

New\_Role: Size: 1 Byte

| Value | Parameter Description                       |
|-------|---------------------------------------------|
| 0x00  | Currently the Master for specified BD_ADDR. |
| 0x01  | Currently the Slave for specified BD_ADDR.  |

page 728 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.19 Number Of Completed Packets event

| Event                       | Event Code | Event Parameters                         |
|-----------------------------|------------|------------------------------------------|
| Number Of Completed Packets | 0x13       | Number_of_Handles, Connection_Handle[i], |
|                             |            | HC_Num_Of_Completed_Packets[i]           |

## **Description:**

The Number Of Completed Packets event is used by the Host Controller to indicate to the Host how many HCI Data Packets have been completed (transmitted or flushed) for each Connection Handle since the previous Number Of Completed Packets event was sent to the Host. This means that the corresponding buffer space has been freed in the Host Controller. Based on this information, and the HC\_Total\_Num\_ACL\_Data\_Packets and HC\_Total\_

Num\_SCO\_Data\_Packets return parameter of the Read\_Buffer\_Size command, the Host can determine for which Connection Handles the following HCI Data Packets should be sent to the Host Controller. The Number Of Completed Packets event must not be sent before the corresponding Connection Complete event. While the Host Controller has HCI data packets in its buffer, it must keep sending the Number Of Completed Packets event to the Host at least periodically, until it finally reports that all the pending ACL Data Packets have been transmitted or flushed. The rate with which this event is sent is manufacturer specific.

Note that Number Of Completed Packets events will not report on SCO connection handles if SCO Flow Control is disabled. (See Read/Write\_SCO\_Flow\_Control\_Enable on page 658 and page 659.)

#### **Event Parameters:**

#### Number of Handles:

| Value | Parameter Description                                                                               |
|-------|-----------------------------------------------------------------------------------------------------|
| 0xXX  | The number of Connection Handles and Num_HCI_Data_Packets parameters pairs contained in this event. |
|       | Range: 0-255                                                                                        |

#### Connection Handle[i]: Size: Number of Handles \* 2 Bytes(12 Bits meaningful)

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle.                                             |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

Size: 1 Byte

page 729 of 1082

Host Controller Interface Functional Specification

# Bluetooth.

HC\_Num\_Of\_Completed\_Packets [i]: Size: Number\_of\_Handles \* 2 Bytes

| Value      | Parameter Description                                                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N = 0xXXXX | The number of HCl Data Packets that have been completed (transmitted or flushed) for the associated Connection Handle since the previous time the event was returned.  Range for N: 0x0000-0xFFFF |

page 730 of 1082

Host Controller Interface Functional Specification

Bluetooth

## 5.2.20 Mode Change event

| Event       | Event Code | Event Parameters   |
|-------------|------------|--------------------|
| Mode Change | 0x14       | Status,            |
|             |            | Connection_Handle, |
|             |            | Current_Mode,      |
|             |            | Interval           |

## **Description:**

The Mode Change event is used to indicate when the device associated with the Connection Handle changes between Active, Hold, Sniff and Park mode. The Connection\_Handle will be a Connection\_Handle for an ACL connection. The Connection\_Handle event parameter is used to indicate which connection the Mode Change event is for. The Current\_Mode event parameter is used to indicate which state the connection is currently in. The Interval parameter is used to specify a time amount specific to each state. Each Host Controller that is associated with the Connection Handle which has changed Modes will send the Mode Change event to its Host.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0x00      | A Mode Change has occurred.                                                                                                             |
| 0x01-0xFF | Hold_Mode, Sniff_Mode, Exit_Sniff_Mode, Park_Mode, or Exit_Park_Mode command failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle:

Size: 2 Bytes(12 Bits meaningful)

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle.                                             |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

page 731 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Size: 1 Byte

## Current\_Mode:

| Value     | Parameter Description    |
|-----------|--------------------------|
| 0x00      | Active Mode.             |
| 0x01      | Hold Mode.               |
| 0x02      | Sniff Mode.              |
| 0x03      | Park Mode.               |
| 0x04-0xFF | Reserved for future use. |

Interval: Size: 2 Bytes

| Value      | Parameter Description                                       |
|------------|-------------------------------------------------------------|
| N = 0xXXXX | Hold:                                                       |
|            | Number of Baseband slots to wait in Hold Mode.              |
|            | Hold Interval = N * 0.625 msec (1 Baseband slot)            |
|            | Range for N: 0x0000-0xFFFF                                  |
|            | Time Range: 0-40.9 sec                                      |
|            |                                                             |
|            | Sniff:                                                      |
|            | Number of Baseband slots between sniff intervals.           |
|            | Time between sniff intervals = 0.625 msec (1 Baseband slot) |
|            | Range for N: 0x0000-0xFFFF                                  |
|            | Time Range: 0-40.9 sec                                      |
|            |                                                             |
|            | Park:                                                       |
|            | Number of Baseband slots between consecutive beacons.       |
|            | Interval Length = N * 0.625 msec (1 Baseband slot)          |
|            | Range for N: 0x0000-0xFFFF                                  |
|            | Time Range: 0-40.9 Seconds                                  |

page 732 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 5.2.21 Return Link Keys event

| Event            | Event Code | Event Parameters         |
|------------------|------------|--------------------------|
| Return Link Keys | 0x15       | Num_Keys,                |
|                  |            | BD_ADDR [i], Link_Key[i] |

### **Description:**

The Return Link Keys event is used by the Host Controller to send the Host one or more stored Link Keys. Zero or more instances of this event will occur after the Read\_Stored\_Link\_Key command. When there are no link keys stored, no Return Link Keys events will be returned. When there are link keys stored, the number of link keys returned in each Return Link Keys event is implementation specific.

#### **Event Parameters:**

Num\_Keys: Size: 1 Byte

| Value | Parameter Description                        |
|-------|----------------------------------------------|
| 0xXX  | Number of Link Keys contained in this event. |
|       | Range: 0x01 – 0xFF                           |

BD\_ADDR [i]: Size: 6 Bytes \* Num\_Keys

| Value        | Parameter Description                |
|--------------|--------------------------------------|
| 0xXXXXXXXXXX | BD_ADDR for the associated Link Key. |

Link\_Key[i]: Size:16 Bytes \* Num\_Keys

| Value                                  | Parameter Description                |
|----------------------------------------|--------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Link Key for the associated BD_ADDR. |

page 733 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 5.2.22 PIN Code Request event

| Event            | Event Code | Event Parameters |
|------------------|------------|------------------|
| PIN Code Request | 0x16       | BD_ADDR          |

#### **Description:**

The PIN Code Request event is used to indicate that a PIN code is required to create a new link key. The Host must respond using either the PIN Code Request Reply or the PIN Code Request Negative Reply command, depending on whether the Host can provide the Host Controller with a PIN code or not. Note: If the PIN Code Request event is masked away, then the Host Controller will assume that the Host has no PIN Code.

When the Host Controller generates a PIN Code Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a PIN\_Code\_Request\_Reply or PIN\_Code\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

#### **Event Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                                            |
|---------------|------------------------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device which a new link key is being created for. |

page 734 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 5.2.23 Link Key Request event

| Event            | Event Code | Event Parameters |
|------------------|------------|------------------|
| Link Key Request | 0x17       | BD_ADDR          |

## **Description:**

The Link Key Request event is used to indicate that a Link Key is required for the connection with the device specified in BD\_ADDR. If the Host has the requested stored Link Key, then the Host will pass the requested Key to the Host Controller using the Link\_Key\_Request\_Reply Command. If the Host does not have the requested stored Link Key, then the Host will use the Link\_Key\_Request\_Negative\_Reply Command to indicate to the Host Controller that the Host does not have the requested key.

Note: If the Link Key Request event is masked away, then the Host Controller will assume that the Host has no additional link keys.

When the Host Controller generates a Link Key Request event in order for the local Link Manager to respond to the request from the remote Link Manager (as a result of a Create\_Connection or Authentication\_Requested command from the remote Host), the local Host must respond with either a Link\_Key\_Request\_Reply or Link\_Key\_Request\_Negative\_Reply command before the remote Link Manager detects LMP response timeout. (See "Link Manager Protocol" on page 185.)

#### **Event Parameters:**

BD ADDR: Size: 6 Bytes

| Value         | Parameter Description                                             |
|---------------|-------------------------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device which a stored link key is being requested. |

Bluetooth.

### 5.2.24 Link Key Notification event

| Event                 | Event Code | Event Parameters  |
|-----------------------|------------|-------------------|
| Link Key Notification | 0x18       | BD_ADDR, Link_Key |

## **Description:**

The Link Key Notification event is used to indicate to the Host that a new Link Key has been created for the connection with the device specified in BD\_ADDR. The Host can save this new Link Key in its own storage for future use. Also, the Host can decided to store the Link Key in the Host Controller's Link Key Storage by using the Write\_Stored\_Link\_Key command.

#### **Event Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value         | Parameter Description                                                |
|---------------|----------------------------------------------------------------------|
| 0xXXXXXXXXXXX | BD_ADDR of the Device for which the new link key has been generated. |

Link\_Key: Size: 16 Bytes

| Value                                  | Parameter Description                |
|----------------------------------------|--------------------------------------|
| 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Link Key for the associated BD_ADDR. |

page 736 of 1082

Host Controller Interface Functional Specification

Bluetooth

### 5.2.25 Loopback Command event

| Event            | Event Code | Event Parameters   |
|------------------|------------|--------------------|
| Loopback Command | 0x19       | HCI_Command_Packet |

## **Description:**

When in Local Loopback mode, the Host Controller loops back commands and data to the Host. The Loopback Command event is used to loop back all commands that the Host sends to the Host Controller with some exceptions. See Section 4.10.1, "Read\_Loopback\_Mode," on page 696 for a description of which commands that are not looped back. The HCI\_Command\_Packet event parameter contains the entire HCI Command Packet including the header. Note: the event packet is limited to a maximum of 255 bytes in the payload; since an HCI Command Packet has 3 bytes of header data, only the first 252 bytes of the command parameters will be returned.

#### **Event Parameters:**

#### HCI\_Command\_Packet:

| Value    | Parameter Description                 |
|----------|---------------------------------------|
| 0xXXXXXX | HCI Command Packet, including header. |

page 737 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 5.2.26 Data Buffer Overflow event

| Event                | Event Code | Event Parameters |
|----------------------|------------|------------------|
| Data Buffer Overflow | 0x1A       | Link_Type        |

## **Description:**

This event is used to indicate that the Host Controller's data buffers have been overflowed. This can occur if the Host has sent more packets than allowed. The Link\_Type parameter is used to indicate that the overflow was caused by ACL or SCO data.

#### **Event Parameters:**

Link\_Type: Size: 1 Byte

| Value     | Parameter Description                 |
|-----------|---------------------------------------|
| 0x00      | SCO Buffer Overflow (Voice Channels). |
| 0x01      | ACL Buffer Overflow (Data Channels).  |
| 0x02-0xFF | Reserved for Future Use.              |

page 738 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.27 Max Slots Change event

| Event            | Event Code | Event Parameters   |
|------------------|------------|--------------------|
| Max Slots Change | 0x1B       | Connection_Handle, |
|                  |            | LMP_Max_Slots      |

## **Description:**

This event is used to notify the Host about the LMP\_Max\_Slots parameter when the value of this parameter changes. It will be sent each time the value of the LMP\_Max\_Slots parameter changes, as long as there is at least one connection to another device. The Connection\_Handle will be a Connection Handle for an ACL connection.

#### **Event Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                          |
|--------|----------------------------------------------------------------|
| 0xXXXX | Connection Handle.                                             |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

LMP\_Max\_Slots:

| Cizar | 1 | h.                 | 40  |
|-------|---|--------------------|-----|
| Size: | 1 | $\boldsymbol{\nu}$ | νιe |

| Value | Parameter Description                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------|
| 0xXX  | Maximum number of slots allowed to use for baseband packets, see "Link Manager Protocol" on page 185. |

page 739 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 5.2.28 Read Clock Offset Complete event

| Event                      | Event Code | Event Parameters                |
|----------------------------|------------|---------------------------------|
| Read Clock Offset Complete | 0x1C       | Status,                         |
|                            |            | Connection_Handle, Clock_Offset |

### **Description:**

The Read Clock Offset Complete event is used to indicate the completion of the process of the Link Manager obtaining the Clock Offset information of the Bluetooth device specified by the Connection\_Handle event parameter. The Connection\_Handle will be a Connection\_Handle for an ACL connection.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                |
|-----------|--------------------------------------------------------------------------------------|
| 0x00      | Read_Clock_Offset command succeeded.                                                 |
| 0x01-0xFF | Read_Clock_Offset command failed. See Table 6.1 on page 745 for list of Error Codes. |

Connection\_Handle: Size: 2 Bytes (12 bits meaningful)

| Value  | Parameter Description                                                   |
|--------|-------------------------------------------------------------------------|
| 0xXXXX | Specifies which Connection Handle's Clock Offset parameter is returned. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)          |

Clock\_Offset: Size: 2 Bytes

| Bit format | Parameter Description           |
|------------|---------------------------------|
| Bit 14.0   | Bit 16.2 of CLKslave-CLKmaster. |
| Bit 15     | Reserved.                       |

page 740 of 1082

Host Controller Interface Functional Specification

Bluetooth.

## 5.2.29 Connection Packet Type Changed event

| Event                          | Event Code | Event Parameters               |
|--------------------------------|------------|--------------------------------|
| Connection Packet Type Changed | 0x1D       | Status,                        |
|                                |            | Connection_Handle, Packet_Type |

## **Description:**

The Connection Packet Type Changed event is used to indicate that the process has completed of the Link Manager changing which packet types can be used for the connection. This allows current connections to be dynamically modified to support different types of user data. The Packet\_Type event parameter specifies which packet types the Link Manager can use for the connection identified by the Connection\_Handle event parameter for sending L2CAP data or voice. The Packet\_Type event parameter does not decide which packet types the LM is allowed to use for sending LMP PDUs.

#### **Event Parameters:**

Status: Size: 1 Byte

| Value     | Parameter Description                                                                     |
|-----------|-------------------------------------------------------------------------------------------|
| 0x00      | Connection Packet Type changed successfully.                                              |
| 0x01-0xFF | Connection Packet Type Changed failed. See Table 6.1 on page 745 for list of Error Codes. |

#### Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                             |
|--------|-----------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle. Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use) |

Packet\_Type: Size: 2 Bytes

For ACL Link Type

| 2. 1. 10 = = 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                          |  |
|-----------------------------------------------------|--------------------------|--|
| Value                                               | Parameter Description    |  |
| 0x0001                                              | Reserved for future use. |  |
| 0x0002                                              | Reserved for future use. |  |
| 0x0004                                              | Reserved for future use. |  |
| 0x0008                                              | DM1                      |  |
| 0x0010                                              | DH1                      |  |
| 0x0020                                              | Reserved for future use. |  |
| 0x0040                                              | Reserved for future use. |  |
| 0x0080                                              | Reserved for future use. |  |

Bluetooth.

| Value  | Parameter Description    |
|--------|--------------------------|
| 0x0100 | Reserved for future use. |
| 0x0200 | Reserved for future use. |
| 0x0400 | DM3                      |
| 0x0800 | DH3                      |
| 0x1000 | Reserved for future use. |
| 0x2000 | Reserved for future use. |
| 0x4000 | DM5                      |
| 0x8000 | DH5                      |

## For SCO\_Link\_Type

|   | Value  | Parameter Description    |
|---|--------|--------------------------|
|   | 0x0001 | Reserved for future use. |
|   | 0x0002 | Reserved for future use. |
|   | 0x0004 | Reserved for future use. |
| I | 0x0008 | Reserved for future use. |
|   | 0x0010 | Reserved for future use. |
|   | 0x0020 | HV1                      |
|   | 0x0040 | HV2                      |
|   | 0x0080 | HV3                      |
| ı | 0x0100 | Reserved for future use. |
|   | 0x0200 | Reserved for future use. |
|   | 0x0400 | Reserved for future use. |
|   | 0x0800 | Reserved for future use. |
|   | 0x1000 | Reserved for future use. |
|   | 0x2000 | Reserved for future use. |
|   | 0x4000 | Reserved for future use. |
|   | 0x8000 | Reserved for future use. |

page 742 of 1082

Host Controller Interface Functional Specification

Bluetooth.

#### 5.2.30 QoS Violation event

| Event         | Event Code | Event Parameters  |
|---------------|------------|-------------------|
| QoS Violation | 0x1E       | Connection_Handle |

## **Description:**

The QoS Violation event is used to indicate the Link Manager is unable to provide the current QoS requirement for the Connection Handle. This event indicates that the Link Manager is unable to provide one or more of the agreed QoS parameters. The Host chooses what action should be done. The Host can reissue QoS\_Setup command to renegotiate the QoS setting for Connection Handle. The Connection\_Handle will be a Connection\_Handle for an ACL connection.

#### **Event Parameters:**

Connection\_Handle:

Size: 2 Bytes (12 Bits meaningful)

| Value  | Parameter Description                                                             |
|--------|-----------------------------------------------------------------------------------|
| 0xXXXX | Connection Handle that the LM is unable to provide the current QoS requested for. |
|        | Range: 0x0000-0x0EFF (0x0F00 - 0x0FFF Reserved for future use)                    |

Bluetooth.

Size: 1 Byte

### 5.2.31 Page Scan Mode Change event

| Event                 | Event Code | Event Parameters        |
|-----------------------|------------|-------------------------|
| Page Scan Mode Change | 0x1F       | BD_ADDR, Page_Scan_Mode |

## **Description:**

The Page Scan Mode Change event indicates that the remote Bluetooth device with the specified BD\_ADDR has successfully changed the Page\_Scan\_Mode.

#### **Event Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description         |
|--------------------|-------------------------------|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the remote device. |

#### Page\_Scan\_Mode:

| Value       | Parameter Description        |  |
|-------------|------------------------------|--|
| 0x00        | Mandatory Page Scan Mode.    |  |
| 0x01        | Optional Page Scan Mode I.   |  |
| 0x02        | Optional Page Scan Mode II.  |  |
| 0x03        | Optional Page Scan Mode III. |  |
| 0x04 – 0xFF | Reserved.                    |  |

page 744 of 1082

Host Controller Interface Functional Specification

Bluetooth.

### 5.2.32 Page Scan Repetition Mode Change event

| Event                            | Event<br>Code | Event Parameters          |
|----------------------------------|---------------|---------------------------|
| Page Scan Repetition Mode Change | 0x20          | BD_ADDR,                  |
|                                  |               | Page_Scan_Repetition_Mode |

## **Description:**

The Page Scan Repetition Mode Change event indicates that the remote Bluetooth device with the specified BD\_ADDR has successfully changed the Page\_Scan\_Repetition\_Mode (SR).

#### **Event Parameters:**

BD\_ADDR: Size: 6 Bytes

| Value              | Parameter Description         |
|--------------------|-------------------------------|
| 0xXXXXXXXX<br>XXXX | BD_ADDR of the remote device. |

## Page\_Scan\_Repetition\_Mode: Size: 1 Byte

| Value       | Parameter Description |
|-------------|-----------------------|
| 0x00        | R0                    |
| 0x01        | R1                    |
| 0x02        | R2                    |
| 0x03 – 0xFF | Reserved.             |

Bluetooth.

## **6 LIST OF ERROR CODES**

### 6.1 LIST OF ERROR CODES

This section of the document lists the various possible error codes. When a command fails, Error codes are returned to indicate the reason for the error. Error codes have a size of one byte, and the possible range of failure codes is 0x01-0xFF. Section 6.2 provides an error code usage description for each error code.

| Error<br>Code | Description                                                   |
|---------------|---------------------------------------------------------------|
| 0x01          | Unknown HCI Command.                                          |
| 0x02          | No Connection.                                                |
| 0x03          | Hardware Failure.                                             |
| 0x04          | Page Timeout.                                                 |
| 0x05          | Authentication Failure.                                       |
| 0x06          | Key Missing.                                                  |
| 0x07          | Memory Full.                                                  |
| 0x08          | Connection Timeout.                                           |
| 0x09          | Max Number Of Connections.                                    |
| 0x0A          | Max Number Of SCO Connections To A Device.                    |
| 0x0B          | ACL connection already exists.                                |
| 0x0C          | Command Disallowed.                                           |
| 0x0D          | Host Rejected due to limited resources.                       |
| 0x0E          | Host Rejected due to security reasons.                        |
| 0x0F          | Host Rejected due to remote device is only a personal device. |
| 0x10          | Host Timeout.                                                 |
| 0x11          | Unsupported Feature or Parameter Value.                       |
| 0x12          | Invalid HCI Command Parameters.                               |
| 0x13          | Other End Terminated Connection: User Ended Connection.       |
| 0x14          | Other End Terminated Connection: Low Resources.               |
| 0x15          | Other End Terminated Connection: About to Power Off.          |
| 0x16          | Connection Terminated by Local Host.                          |
| 0x17          | Repeated Attempts.                                            |

page 746 of 1082

Host Controller Interface Functional Specification

# Bluetooth.

| Error<br>Code | Description                      |
|---------------|----------------------------------|
| 0x18          | Pairing Not Allowed.             |
| 0x19          | Unknown LMP PDU.                 |
| 0x1A          | Unsupported Remote Feature.      |
| 0x1B          | SCO Offset Rejected.             |
| 0x1C          | SCO Interval Rejected.           |
| 0x1D          | SCO Air Mode Rejected.           |
| 0x1E          | Invalid LMP Parameters.          |
| 0x1F          | Unspecified Error.               |
| 0x20          | Unsupported LMP Parameter Value. |
| 0x21          | Role Change Not Allowed          |
| 0x22          | LMP Response Timeout             |
| 0x23          | LMP Error Transaction Collision  |
| 0x24          | LMP PDU Not Allowed              |
| 0x25-0xFF     | Reserved for Future Use.         |

Table 6.1: List of Possible Error Codes

Bluetooth.

#### 6.2 HCI ERROR CODE USAGE DESCRIPTIONS

The purpose of this section is to give descriptions of how the error codes specified in Table 6.1 on page 745 should be used. It is beyond the scope of this document to give detailed descriptions of all situations where error codes can be used – especially as this may also, in certain cases, be implementation-dependent. However, some error codes that are to be used only in very special cases are described in more detail than other, more general, error codes.

The following error codes are only used in LMP messages, and are therefore not described in this section:

- Unknown LMP PDU (0x19)
- SCO Offset Rejected (0x1B)
- SCO Interval Rejected (0x1C)
- SCO Air Mode Rejected (0x1D)
- Invalid LMP Parameters (0x1E)

Some of the following error code descriptions describe as implementation-dependent whether the error should be returned using a Command Status event or the event associated with the issued command (following a Command Status event with Status=0x00). In these cases, the command can not start executing because of the error, and it is therefore recommended to use the Command Status event. The reason for this suggested course of action is that it is not possible to use the Command Status event in all software architectures.

## 6.3 UNKNOWN HCI COMMAND (0X01)

The 'Unknown HCI Command' error code is returned by the Host Controller in the Status parameter in a Command Complete event or a Command Status event when the Host Controller receives an HCI Command Packet with an Opcode that it does not recognize. The OpCode given might not correspond to any of the OpCodes specified in this document, or any vendor-specific OpCodes, or the command may not have been implemented. If a Command Complete event is returned, the Status parameter is the only parameter contained in the Return\_Parameters event parameter. Which of the two events is used is implementation-dependent.

Bluetooth

## 6.4 NO CONNECTION (0X02)

The 'No Connection' error code is returned by the Host Controller in the Status parameter in an event when the Host has issued a command which requires an existing connection and there is currently no connection corresponding to the specified Connection Handle or BD Address. If the issued command is a command for which a Command Complete event should be returned, the event containing the error code is a Command Complete event. Otherwise, the event containing the error code is a Command Status event or the event associated with the issued command (following a Command Status event with Status=0x00), depending on the implementation.

## 6.5 HARDWARE FAILURE (0X03)

The 'Hardware Failure' error code is returned by the Host Controller in the Status parameter in an event when the Host has issued a command and this command can not be executed because of a hardware failure. If the issued command is a command for which a Command Complete event should be returned, the event containing the error code is a Command Complete event. Otherwise, the event containing the error code is a Command Status event or the event associated with the issued command (following a Command Status event with Status=0x00) depending on the implementation.

## 6.6 PAGE TIMEOUT (0X04)

The 'Page Timeout' error code is returned by the Host Controller in the Status parameter of the Connection Complete event when the Host has issued a Create\_Connection command and the specified device to connect to does not respond to a page at baseband level before the page timer expires (a page timeout occurs). The error code can also be returned in the Status parameter of a Remote Name Request Complete event when the Host has issued a Remote\_Name\_Request command and a temporary connection needs to be established but a page timeout occurs. (The page timeout is set using the Write\_Page\_Timeout command.)

## 6.7 AUTHENTICATION FAILED (0X05)

The 'Authentication Failed' error code is returned by the Host Controller in the Status parameter in a Connection Complete event or Authentication Complete event when pairing or authentication fails due to incorrect results in the pairing/authentication calculations (because of incorrect PIN code or link key).

## 6.8 KEY MISSING (0X06)

The 'Key Missing' error code is returned by the Host Controller in the Status parameter in a Connection Complete event or Authentication Complete event when pairing fails because of missing PIN code(s).

Bluetooth.

749

## 6.9 MEMORY FULL (0X07)

The 'Memory Full' error code is returned by the Host Controller in the Status parameter in a Command Complete event when the Host has issued a command that requires the Host Controller to store new parameters and the Host Controller does not have memory capacity for this. This may be the case after the Set\_Event\_Filter command has been issued. Note that for the Write\_Stored\_Link\_Key command, no error is returned when the Host Controller can not store any more link keys. The Host Controller stores as many link keys as there is free memory to store in, and the Host is notified of how many link keys were successfully stored.

## 6.10 CONNECTION TIMEOUT (0X08)

Note: this error code is used to indicate a reason for disconnection. It is normally returned in the Reason parameter of a Disconnection Complete event. It is therefore called reason code in the following description.

The 'Connection Timeout' reason code is sent by the Host Controller in an event when the link supervision timer (see "Baseband Timers" on page 993) expires and the link therefore is considered to be lost. The link supervision timeout is set using Write\_Link\_Supervision\_Timeout. The event that returns this reason code will most often be a Disconnection Complete event (in the Reason parameter). The event will be returned on both sides of the connection, where one Disconnection Complete event will be sent from the Host Controller to the Host for each Connection Handle that exists for the physical link to the other device.

(It is possible for a link loss to be detected during connection set up, in which case the reason code would be returned in a Connection Complete event.)

## 6.11 MAX NUMBER OF CONNECTIONS (0X09)

The 'Max Number Of Connections' error code is returned by the Host Controller in the Status parameter of a Command Status event, a Connection Complete event or a Remote Name Request Complete event when the Bluetooth module can not establish any more connections. It is implementation specific whether the error is returned in a Command Status event or the event following the Command Status event (where Status=0x00 in the Command Status event). The reason for this error may be hardware or firmware limitations. Before the error is returned, the Host has issued a Create\_Connection, Add\_SCO\_Connection or Remote\_Name\_Request command. The error can be returned in a Remote Name Request Complete event when a temporary connection needs to be established to request the name.

Bluetooth.

# 6.12 MAX NUMBER OF SCO CONNECTIONS TO A DEVICE (0X0A)

The 'Max Number Of SCO Connections To A Device' error code is returned by the Host Controller in the Status parameter of a Command Status event or a Connection Complete event (following a Command Status event with Status=0x00) when the maximum number of SCO connections to a device has been reached. Which of the two events that is used depends on the implementation. The device is a device that has been specified in a previously issued Add SCO Connection command.

## 6.13 ACL CONNECTION ALREADY EXISTS (0X0B)

The 'ACL connection already exists' error code is returned by the Host Controller in the Status parameter of a Command Status event or a Connection Complete event (following a Command Status event with Status=0x00) when there already is one ACL connection to a device and the Host tries to establish another one using Create\_Connection. Which of the two events that is used depends on the implementation.

## 6.14 COMMAND DISALLOWED (0X0C)

The 'Command Disallowed' error code is returned by the Host Controller in the Status parameter in a Command Complete event or a Command Status event when the Host Controller is in a state where it is only prepared to accept commands with certain OpCodes and the HCI Command Packet received does not contain any of these OpCodes. The Command Complete event should be used if the issued command is a command for which a Command Complete event should be returned. Otherwise, the Command Status event should be used. The Host Controller is not required to use the 'Unknown HCI Command' error code, since this may require unnecessary processing of the received (and currently not allowed) OpCode. When to use the 'Command Disallowed' error code is mainly implementation-dependent. Certain implementations may, for example, only accept the appropriate HCI response commands after the Connection Request, Link Key Request or PIN Code Request events. Note: the Reset command should always be allowed.

## 6.15 HOST REJECTED DUE TO ... (0X0D-0X0F)

Note: these error codes are used to indicate a reason for rejecting an incoming connection. They are therefore called reason codes in the following description.

When a Connection Request event has been received by the Host and the Host rejects the incoming connection by issuing the Reject\_Connection\_ Request command, one of these reason codes is used as value for the Reason parameter. The issued reason code will be returned in the Status parameter of the Connection Complete event that will follow the Command Status event

page 751 of 1082

Host Controller Interface Functional Specification

Bluetooth.

(with Status=0x00) returned by the Host Controller after the Reject\_Connection\_Request command has been issued. The reason code issued in the Reason parameter of the Reject\_Connection\_Request command will also be sent over the air, so that it is returned in a Connection Complete event on the initiating side. Before this, the initiating side has issued a Create\_Connection command or Add\_SCO\_Connection command, and has received a Command Status event (with Status=0x00).

## 6.16 HOST TIMEOUT (0X10)

Note: this error code is used to indicate a reason for rejecting an incoming connection. It is therefore called reason code in the following description.

Assume that a Connection Request event has been received by the Host and that the Host does not issue the Accept\_Connection\_Request or Reject\_Connection\_Request command before the connection accept timer expires (the connection accept timeout is set using Write\_Connection\_Accept\_Timeout). In this case, the 'Host Timeout' reason code will be sent by the Host Controller in the Status parameter of a Connection Complete event. The reason code will also be sent over the air, so that it is returned in a Connection Complete event on the initiating side. The initiating side has before this issued a Create\_Connection or Add\_SCO\_Connection command and has received a Command Status event (with Status=0x00).

# 6.17 UNSUPPORTED FEATURE OR PARAMETER VALUE (0X11)

The 'Unsupported Feature or Parameter Value' error code is returned by the Host Controller in the Status parameter in an event when the Host Controller has received a command where one or more parameters have values that are not supported by the hardware (the parameters are, however, within the allowed parameter range specified in this document). If the issued command is a command for which a Command Complete event should be returned, the event containing the error code is a Command Complete event. Otherwise, the event containing the error code is a Command Status event or the event associated with the issued command (following a Command Status event with Status=0x00) depending on the implementation.

## 6.18 INVALID HCI COMMAND PARAMETERS (0X12)

The 'Invalid HCI Command Parameters' error code is returned by the Host Controller in the Status parameter of an event when the total parameter length (or the value of one or more parameters in a received command) does not conform to what is specified in this document.

The error code can also be returned if a parameter value is currently not allowed although it is inside the allowed range for the parameter. One case is when a command requires a Connection Handle for an ACL connection but the

page 752 of 1082

Host Controller Interface Functional Specification

Bluetooth.

Host has given a Connection Handle for an SCO connection as a parameter instead. Another case is when a link key, a PIN code or a reply to an incoming connection has been requested by the Host Controller by using an event but the Host replies using a response command with a BD\_ADDR for which no request has been made.

If the issued command is a command for which a Command Complete event should be returned, the event containing the error code is a Command Complete event. Otherwise, the event containing the error code is a Command Status event or the event associated with the issued command (following a Command Status event with Status=0x00), depending on the implementation.

## 6.19 OTHER END TERMINATED CONNECTION: ... (0X13-0X15)

Note: these error codes are used to indicate a reason for disconnecting a connection. They are therefore called reason codes in the following description.

When the Host issues the Disconnect command, one of these reason codes is used as value for the reason parameter. The 'Connection Terminated By Local Host' reason code will then be returned in the Reason parameter of the Disconnection Complete event that will follow the Command Status event (with Status=0x00) that is returned by the Host Controller after the Disconnect command has been issued. The reason code issued in the Reason parameter of the Disconnect command will also be sent over the air, so that it is returned in the Reason parameter of a Disconnection Complete event on the remote side.

## 6.20 CONNECTION TERMINATED BY LOCAL HOST (0X16)

See description in 6.19. This error code is called a reason code, since it is returned in the Reason parameter of a Disconnection Complete event.

## 6.21 REPEATED ATTEMPTS (0X17)

The 'Repeated Attempts' error code is returned by the Host Controller in the Status parameter in a Connection Complete event or Authentication Complete event when a device does not allow authentication or pairing because too little time has elapsed since an unsuccessful authentication or pairing attempt. See "Link Manager Protocol" on page 185 for a description of how repeated attempts work.

## 6.22 PAIRING NOT ALLOWED (0X18)

The 'Pairing Not Allowed' error code is returned by the Host Controller in the Status parameter in a Connection Complete event or Authentication Complete event when a device for some reason does not allow pairing. An example may be a PSTN adapter that only allows pairing during a certain time window after a button has been pressed on the adapter.

Bluetooth.

## 6.23 UNSUPPORTED REMOTE FEATURE (0X1A)

The 'Unsupported Remote Feature' error code is returned by the Host Controller in the Status parameter of the event associated with the issued command when a remote device that has been specified in the command parameters does not support the feature associated with the issued command. The 'Unsupported Remote Feature' error code can also be used as a value for the Reason parameter in the Disconnect command (as a reason code). The error code will then be sent over the air so that it is returned in the Reason parameter of a Disconnection Complete event on the remote side. In the Disconnection Complete event following a Command Status event (where Status=0x00) on the local side on which the Disconnect command has been issued, the Reason parameter will however contain the reason code 'Connection Terminated By Local Host'. (The 'Unsupported Remote Feature' error code is called 'Unsupported LMP Feature' in the LMP specification, see "Link Manager Protocol" on page 185.)

## 6.24 UNSPECIFIED ERROR (0X1F)

The 'Unspecified error' error code is used when no other error code specified in this document is appropriate to use.

## 6.25 UNSUPPORTED LMP PARAMETER VALUE (0X20)

The 'Unsupported LMP Parameter Value' error code is returned by the Host Controller in the Status parameter of the event associated with the issued command when a remote device that has been specified in the command parameters sent back an LMP message containing the LMP error code 0x20, 'Unsupported parameter values' (see "Link Manager Protocol" on page 185).

## 6.26 ROLE CHANGE NOT ALLOWED (0X21)

The 'Role Change Not Allowed' error code is returned by the Host Controller in the Status parameter in a Connection Complete event or Role Change event when role change is not allowed. If the local Host issues the Switch\_Role command and the remote device rejects the role change, the error code will be returned in a Role Change event. If a connection fails because a device accepts an incoming ACL connection with a request for role change and the role change is rejected by the initiating device, the error code will be returned in a Connection Complete event on both sides.

## 6.27 LMP RESPONSE TIMEOUT (0X22)

The 'LMP Response Timeout' error code is returned by the Host Controller in the Status parameter in a Command Complete event or an event associated with the issued command following a Command Status event with Status=0x00, when the remote device does not respond to the LMP PDUs from

page 754 of 1082

Host Controller Interface Functional Specification

Bluetooth

the local device as a result of the issued command within LMP response timeout. (See "Link Manager Protocol" on page 185)

## 6.28 LMP ERROR TRANSACTION COLLISION (0X23)

The 'LMP Error Transaction Collision' error code is returned by the Host Controller in the Status parameter of the event associated with the issued command when a remote device that has been specified in the command parameters sends back an LMP message containing the LMP error code 0x23, "LMP Error Transaction Collision" (see "Link Manager Protocol" on page 185).

## 6.29 LMP PDU NOT ALLOWED (0X24)

The 'LMP PDU Not Allowed' error code is returned by the Host Controller in the Status parameter of the event associated with the issued command when a remote device that has been specified in the command parameters sends back an LMP message containing the LMP error code 0x24, "PDU Not Allowed" (see "Link Manager Protocol" on page 185).

Bluetooth.

## 7 LIST OF ACRONYMS AND ABBREVIATIONS

| Acronym or abbreviation | Complete name                                |
|-------------------------|----------------------------------------------|
| ACL                     | Asynchronous Connection Less                 |
| BD_ADDR                 | Bluetooth Device Address                     |
| DH                      | Data High rate                               |
| DIAC                    | Dedicated Inquiry Access Code                |
| DM                      | Data Medium rate                             |
| DUT                     | Device Under Test                            |
| DV                      | Data Voice                                   |
| GIAC                    | General Inquiry Access Code                  |
| HCI                     | Host Controller Interface                    |
| L2CAP                   | Logical Link Control and Adaptation Protocol |
| L_CH                    | Logical Channel                              |
| LAP                     | Lower Address Part                           |
| LC                      | Link Controller                              |
| LM                      | Link Manager                                 |
| LMP                     | Link Manager Protocol                        |
| OCF                     | Opcode Command Field                         |
| OGF                     | OpCode Group Field                           |
| RF                      | Radio Frequency                              |
| RSSI                    | Received Signal Strength Indication          |
| SCO                     | Synchronous Connection Oriented              |
| TBD                     | To Be Defined                                |
| UA                      | User Asynchronous                            |
| UI                      | User Isochronous                             |
| US                      | User Synchronous                             |
| USB                     | Universal Serial Bus                         |

Table 7.1: List of Acronyms and Abbreviations

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 756 of 1082

Host Controller Interface Functional Specification

# Bluetooth.

## **8 LIST OF FIGURES**

| Figure 1.1: | Overview of the Lower Software Layers        | 524 |
|-------------|----------------------------------------------|-----|
| Figure 1.2: | End to End Overview of Lower Software Layers |     |
| _           | to Transfer Data                             | 525 |
| Figure 1.3: | Bluetooth Hardware Architecture Overview     | 526 |
| Figure 1.4: | Bluetooth Block Diagram with USB HCI         | 527 |
| Figure 1.5: | Bluetooth Block Diagram with PC-Card HCI     | 527 |
| Figure 4.1: | HCI Command Packet                           | 534 |
| Figure 4.2: | HCI Event Packet                             | 535 |
| Figure 4.3: | HCI ACL Data Packet                          | 536 |
| Figure 4.4: | HCI SCO Data Packet                          | 538 |
| Figure 4.5: | Local Loopback Mode                          | 697 |
| Figure 4.6: | Remote Loopback Mode                         | 697 |
| Figure 4.7: | Local Loopback Mode                          | 700 |
| Figure 4.8: | Remote Loopback Mode                         | 700 |
|             |                                              |     |

| BLUETOOTH | SPECIFICATION | Version 1.0 B |
|-----------|---------------|---------------|
|-----------|---------------|---------------|

page 757 of 1082

| Host Controller Interface Functional Specification |                                    | Bluetooth |
|----------------------------------------------------|------------------------------------|-----------|
| 9 LIST                                             | OF TABLES                          |           |
| Table 5.1:                                         | List of Supported Events           | 703       |
| Table 6.1:                                         | List of Possible Error Codes       | 746       |
| Table 7.1:                                         | List of Acronyms and Abbreviations | 755       |

List of Tables 29 November 1999 757

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 758 of 1082

Host Controller Interface Functional Specification

Bluetooth.

# Part H:2

# HCI USB TRANSPORT LAYER

An addendum to the HCI document

This document describes the USB transport layer (between a host and the host controller). HCl commands flow through this layer, but the layer does not decode the commands.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 760 of 1082

HCI USB Transport Layer

Bluetooth.

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 761 of 1082

HCI USB Transport Layer

# Bluetooth.

# **CONTENTS**

| 1 | Ove  | rview                              | 762 |
|---|------|------------------------------------|-----|
| 2 | USB  | B Endpoint Expectations            | 764 |
|   | 2.1  | Descriptor Overview                | 764 |
|   | 2.2  | Control Endpoint Expectations      | 769 |
|   | 2.3  | Bulk Endpoints Expectations        | 769 |
|   | 2.4  | Interrupt Endpoint Expectations    | 769 |
|   | 2.5  | Isochronous Endpoints Expectations | 770 |
| 3 | Clas | ss Code                            | 771 |
| 4 | Devi | ice Firmware Upgrade               | 772 |
| 5 | Limi | itations                           | 773 |
|   | 5.1  | Power Specific Limitations         | 773 |
|   | 5.2  | Other Limitations                  | 773 |

page 762 of 1082

HCI USB Transport Layer

Bluetooth.

## 1 OVERVIEW

This document discusses the requirements of the Universal Serial Bus (USB) interface for Bluetooth hardware. Readers should be familiar with USB, USB design issues, Advanced Configuration Power Interface (ACPI), the overall Bluetooth architecture, and the basics of the radio interface.

The reader should also be familiar with the Bluetooth Host Controller Interface.

Referring to Figure 1.1 below, notice that this document discusses the implementation details of the two-way arrow labelled 'USB Function'.

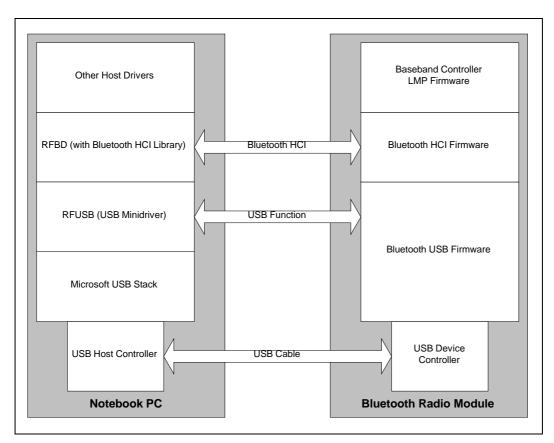



Figure 1.1: The Figure illustrates the relationship between the host and the Bluetooth Radio Module

The USB hardware can be embodied in one of two ways:

- 1. As a USB dongle, and
- 2. Integrated onto the motherboard of a notebook PC.

page 763 of 1082

HCI USB Transport Layer

Bluetooth.

763

Finally, for an overview of the connection that is established between two Bluetooth devices, reference Figure 1.2, below.

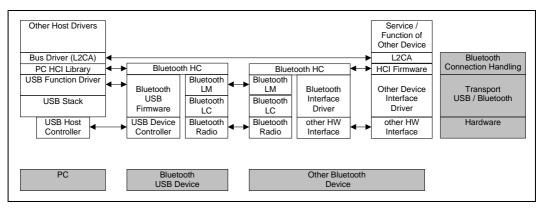



Figure 1.2: The figure illustrates the flow of data from one Bluetooth device to another

page 764 of 1082

HCI USB Transport Layer

Bluetooth.

## 2 USB ENDPOINT EXPECTATIONS

This section outlines specific USB endpoints that are required in order to function properly with the host. This section assumes a basic familiarity with USB. The endpoint numbers (labelled 'Suggested Endpoint Address' below) may be dynamically recognized upon driver initialization – this depends on the implementation.

#### 2.1 DESCRIPTOR OVERVIEW

The USB device is expected to be a high-speed device.

The firmware configuration consists of two interfaces. The first interface (interface zero) has no alternate settings and contains the bulk and interrupt endpoints. The second interface (interface one) provides scalable isochronous bandwidth consumption. The second interface has four alternate settings that provide different consumption based on the required isochronous bandwidth. The default interface is empty so that the device is capable of scaling down to no isochronous bandwidth.

An HCI frame - consisting of an HCI header and HCI data - should be contained in one USB transaction. A USB transaction is defined as one or more USB frames that contain the data from one IO request. For example, an ACL data packet containing 256 bytes (both HCI header and HCI data) would be sent over the bulk endpoint in one IO request. That IO request will require four 64-byte USB frames - and forms a transaction.

The endpoints are spread across two interfaces so, when adjusting isochronous bandwidth consumption (via select interface calls), any pending bulk and/or interrupt transactions do not have to be terminated and resubmitted.

HCI USB Transport Layer

# Bluetooth.

## The following table outlines the required configuration

| Interface<br>Number | Alternate<br>Setting                      | Suggested<br>Endpoint Address | Endpoint<br>Type  | Suggested Max<br>Packet Size |  |
|---------------------|-------------------------------------------|-------------------------------|-------------------|------------------------------|--|
|                     | HCI Commands                              |                               |                   |                              |  |
| 0                   | 0                                         | 0x00                          | Control           | 8/16/32/64                   |  |
|                     |                                           | HCI Events                    |                   |                              |  |
| 0                   | 0                                         | 0x81                          | Interrupt (IN)    | 16                           |  |
|                     |                                           | ACL Data                      |                   |                              |  |
| 0                   | 0                                         | 0x82                          | Bulk (IN)         | 32/64                        |  |
| 0                   | 0                                         | 0x02                          | Bulk (OUT)        | 32/64                        |  |
|                     | No activ                                  | e voice channels (for         | USB compliance)   |                              |  |
| 1                   | 0                                         | 0x83                          | Isoch (IN)        | 0                            |  |
| 1                   | 0                                         | 0x03                          | Isoch (OUT)       | 0                            |  |
|                     | One                                       | voice channel with 8          | B-bit encoding    |                              |  |
| 1                   | 1                                         | 0x83                          | Isoch (IN)        | 9                            |  |
| 1                   | 1                                         | 0x03                          | Isoch (OUT)       | 9                            |  |
| Two voice c         | hannels with 8                            | 3-bit encoding & One          | voice channel wit | h 16-bit encoding            |  |
| 1                   | 2                                         | 0x83                          | Isoch (IN)        | 17                           |  |
| 1                   | 2                                         | 0x03                          | Isoch (OUT)       | 17                           |  |
|                     | Three                                     | voice channels with           | 8-bit encoding    |                              |  |
| 1                   | 3                                         | 0x83                          | Isoch (IN)        | 25                           |  |
| 1                   | 3                                         | 0x03                          | Isoch (OUT)       | 25                           |  |
|                     | Two                                       | voice channels with 1         | 6-bit encoding    |                              |  |
| 1                   | 4                                         | 0x83                          | Isoch (IN)        | 33                           |  |
| 1                   | 4                                         | 0x03                          | Isoch (OUT)       | 33                           |  |
|                     | Three voice channels with 16-bit encoding |                               |                   |                              |  |
| 1                   | 5                                         | 0x83                          | Isoch (IN)        | 49                           |  |
| 1                   | 5                                         | 0x03                          | Isoch (OUT)       | 49                           |  |

page 766 of 1082

HCI USB Transport Layer

## Bluetooth.

The following two examples are used to demonstrate the flow of data given the describe endpoints.

| Number of voice channels | Duration of voice data | Encoding |  |
|--------------------------|------------------------|----------|--|
| One                      | 3 ms per IO Request    | 8-bit    |  |

| Time<br>(ms | USB data<br>(header refers to HCI header)<br>(Receive & Send from the host) | Queued data (read / write) | Time<br>(ms) | Air data   | Amount<br>Received /<br>Sent (ms) |
|-------------|-----------------------------------------------------------------------------|----------------------------|--------------|------------|-----------------------------------|
| 0           | Receive 0 bytes<br>Send 9 bytes (3 header, 6 data)                          | 0/6                        | 0            | Send 0     | 0/0                               |
|             |                                                                             | 10/6                       | 0.625        | Receive 10 | 1.25 / 0                          |
| 1           | Receive 0 bytes<br>Send 9 bytes (9 bytes HCI data)                          | 10 / 15                    | 1.25         | Send 0     | 1.25 / 0                          |
|             |                                                                             | 20 / 15                    | 1.875        | Receive 10 | 2.50 / 0                          |
| 2           | Receive 0 bytes<br>Send 9 bytes (9 bytes HCI data)                          | 20 / 24                    | 2.50         | Send 0     | 2.50 / 0                          |
|             |                                                                             | 30 / 24                    | 3.125        | Receive 10 | 3.75 / 0                          |
| 3           | Receive 9 bytes (3 header, 6 data)<br>Send 9 bytes (3 header, 6 data)       | 24 / 20                    | 3.75         | Send 10    | 3.75 / 1.25                       |
| 4           | Receive 9 bytes (9 bytes data)<br>Send 9 bytes (9 bytes HCI data)           | 25 / 29                    | 4.375        | Receive 10 | 5.0 / 1.25                        |
| 5           | Receive 9 bytes (9 bytes data) Send 9 bytes (9 bytes HCI data)              | 16 / 28                    | 5.0          | Send 10    | 5.0 / 2.50                        |
|             |                                                                             | 26 / 28                    | 5.625        | Receive 10 | 6.25 / 2.50                       |
| 6           | Receive 9 bytes (3 header, 6 data)<br>Send 9 bytes (3 header, 6 data)       | 20 / 24                    | 6.25         | Send 10    | 6.25 / 3.75                       |
|             |                                                                             | 30 / 24                    | 6.875        | Receive 10 | 7.5 / 3.75                        |
| 7           | Receive 9 bytes (9 bytes data)<br>Send 9 bytes (9 bytes HCI data)           | 21 / 23                    | 7.5          | Send 10    | 7.5 / 5.0                         |
| 8           | Receive 9 bytes (9 bytes data)<br>Send 9 bytes (9 bytes HCI data)           | 22 / 32                    | 8.125        | Receive 10 | 8.75 / 5.0                        |
|             |                                                                             | 22 / 22                    | 8.75         | Send 10    | 8.75 / 6.25                       |
| 9           | Receive 9 bytes (3 header, 6 data)<br>Send 9 bytes (3 header, 6 data)       | 26 / 28                    | 9.375        | Receive 10 | 10.0 / 6.25                       |

Table 2.1:

HCI USB Transport Layer

## Bluetooth.

| Time<br>(ms | USB data<br>(header refers to HCI header)<br>(Receive & Send from the host) | Queued data (read / write) | Time<br>(ms) | Air data   | Amount<br>Received /<br>Sent (ms) |
|-------------|-----------------------------------------------------------------------------|----------------------------|--------------|------------|-----------------------------------|
| 10          | Receive 9 bytes (9 bytes data) Send 9 bytes (9 bytes HCI data)              | 17 / 27                    | 10           | Send 10    | 10.0 / 7.5                        |
|             |                                                                             | 27 / 27                    | 10.625       | Receive 10 | 11.25 / 7.5                       |
| 11          | Receive 9 bytes (9 bytes data)<br>Send 9 bytes (9 bytes HCl data)           | 18 / 26                    | 11.25        | Send 10    | 11.25 / 8.75                      |

Table 2.1:

Convergence is expected because the radio is sending out an average of 8 bytes of voice data every 1 ms and USB is sending 8 bytes of voice data every 1 ms.

| Number of voice channels | Duration of voice data | Encoding |  |
|--------------------------|------------------------|----------|--|
| Two                      | 3 ms per IO Request    | 8-bit    |  |

| Time<br>(ms | USB data<br>(header refers to HCI header)<br>(Receive & Send from the host)           | Queued<br>data (read<br>/ write) | Time<br>(ms) | Air data          | Amount<br>Received /<br>Sent (ms) |
|-------------|---------------------------------------------------------------------------------------|----------------------------------|--------------|-------------------|-----------------------------------|
| 0           | Receive 0 bytes for Channel #1<br>Send 17 bytes (3 header, 14 data)<br>for Channel #1 | C1- 0/14<br>C2- 0/0              | 0            | Send 0 for<br>C1  | C1- 0/0<br>C2- 0/0                |
|             |                                                                                       | C1- 20/14<br>C2- 0/0             | 0.625        | Receive 20 for C1 | C1- 2.5/0<br>C2- 0/0              |
| 1           | Receive 0 bytes for Channel #1<br>Send 17 bytes (17 bytes HCl data)<br>for Channel #1 | C1- 20/31<br>C2- 0/0             | 1.25         | Send 0 for<br>C2  | C1- 2.5/0<br>C2- 0/0              |
|             |                                                                                       | C1- 20/31<br>C2- 20/0            | 1.875        | Receive 20 for C2 | C1- 2.5/0<br>C2- 2.5/0            |
| 2           | Receive 0 bytes for Channel #1<br>Send 17 bytes (17 bytes HCl data)<br>for Channel #1 | C1- 20/28<br>C2- 20/0            | 2.50         | Send 20<br>for C1 | C1- 2.5/2.5<br>C2- 2.5/0          |
|             |                                                                                       | C1- 40/28<br>C2- 0/0             | 3.125        | Receive 20 for C1 | C1- 5.0/2.5<br>C2- 2.5/0          |

Table 2.2:

HCI USB Transport Layer

## Bluetooth.

| Time<br>(ms | USB data<br>(header refers to HCI header)<br>(Receive & Send from the host)                               | Queued<br>data (read<br>/ write) | Time<br>(ms) | Air data          | Amount<br>Received /<br>Sent (ms) |
|-------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-------------------|-----------------------------------|
| 3           | Receive 0 bytes for Channel #2<br>Send 17 bytes (3 header, 14 data)<br>for Channel #2                     | C1- 40/28<br>C2- 20/14           | 3.75         | Send 0 for<br>C2  | C1- 5.0/2.5<br>C2- 2.5/0          |
| 4           | Receive 0 bytes for Channel #2<br>Send 17 bytes (17 bytes HCl data)<br>for Channel #2                     | C1- 40/28<br>C2- 40/31           | 4.375        | Receive 20 for C2 | C1- 5.0/2.5<br>C2- 5.0/0          |
| 5           | Receive 0 bytes for Channel #2<br>Send 17 bytes (17 bytes HCl data)<br>for Channel #2                     | C1- 40/8<br>C2- 40/48            | 5.0          | Send 20<br>for C1 | C1- 5.0/5.0<br>C2- 5.0/0          |
|             |                                                                                                           | C1- 60/8<br>C2- 40/48            | 5.625        | Receive 20 for C1 | C1- 7.5/5.0<br>C2- 5.0/0          |
| 6           | Receive 17 bytes (3 header, 14 data) for Channel #1 Send 17 bytes (3 header, 14 data) for Channel #1      | C1- 46/22<br>C2- 40/28           | 6.25         | Send 20<br>for C2 | C1- 7.5/5.0<br>C2- 5.0/2.5        |
|             |                                                                                                           | C1- 46/22<br>C2- 60/28           | 6.875        | Receive 20 for C2 | C1- 7.5/5.0<br>C2- 7.5/2.5        |
| 7           | Receive 17 bytes (17 bytes data)<br>for Channel #1<br>Send 17 bytes (17 bytes HCI data)<br>for Channel #1 | C1- 29/19<br>C2- 60/28           | 7.5          | Send 20<br>for C1 | C1- 7.5/7.5<br>C2- 7.5/2.5        |
| 8           | Receive 17 bytes (17 bytes data) for Channel #1 Send 17 bytes (17 bytes HCl data) for Channel #1          | C1- 32/36<br>C2- 60/28           | 8.125        | Receive 20 for C1 | C1- 10/7.5<br>C2- 7.5/2.5         |
|             |                                                                                                           | C1- 32/36<br>C2- 60/8            | 8.75         | Send 20<br>for C2 | C1- 10/7.5<br>C2- 7.5/5.0         |
| 9           | Receive 17 bytes (3 header, 14 data) for Channel #2 Send 17 bytes (3 header, 14 data) for Channel #2      | C1- 32/36<br>C2- 54/22           | 9.375        | Receive 20 for C2 | C1- 10/7.5<br>C2- 10/5.0          |
| 10          | Receive 17 bytes (17 bytes data)<br>for Channel #2<br>Send 17 bytes (17 bytes HCI data)<br>for Channel #2 | C1- 32/16<br>C2- 37/39           | 10           | Send 20<br>for C1 | C1- 10/10<br>C2- 10/5.0           |
|             |                                                                                                           | C1- 52/16<br>C2- 37/39           | 10.625       | Receive 20 for C1 | C1- 12.5/10<br>C2- 10/5.0         |

Table 2.2:

HCI USB Transport Layer

#### Bluetooth

| Time<br>(ms | USB data<br>(header refers to HCI header)<br>(Receive & Send from the host)                               | Queued<br>data (read<br>/ write) | Time<br>(ms) | Air data          | Amount<br>Received /<br>Sent (ms) |
|-------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-------------------|-----------------------------------|
| 11          | Receive 17 bytes (17 bytes data)<br>for Channel #2<br>Send 17 bytes (17 bytes HCl data)<br>for Channel #2 | C1- 52/16<br>C2- 20/36           | 11.25        | Send 20<br>for C2 | C1- 12.5/10<br>C2- 10/7.5         |

Table 2.2:

#### 2.2 CONTROL ENDPOINT EXPECTATIONS

Endpoint 0 is used to configure and control the USB device. Endpoint 0 will also be used to allow the host to send HCI-specific commands to the host controller. When the USB firmware receives a packet over this endpoint that has the Bluetooth class code, it should treat the packet as an HCI command packet.

#### 2.3 BULK ENDPOINTS EXPECTATIONS

Data integrity is a critical aspect for ACL data. This, in combination with bandwidth requirements, is the reason for using a bulk endpoint. Multiple 64-byte packets can be shipped, per millisecond, across the bus.

Suggested bulk max packet size is 64 bytes. Bulk has the ability to transfer multiple 64-byte buffers per one millisecond frame, depending on available bus bandwidth.

Bulk has the ability to detect errors and correct them. Data flowing through this pipe might be destined for several different slaves. In order to avoid starvation, a flow control model similar to the shared endpoint model is recommended for the host controller.

#### 2.4 INTERRUPT ENDPOINT EXPECTATIONS

An interrupt endpoint is necessary to ensure that events are delivered in a predictable and timely manner. Event packets can be sent across USB with a guaranteed latency.

The interrupt endpoint should have an interval of 1 ms.

The USB software and firmware requires no intimate knowledge of the events passed to the host controller.

page 770 of 1082

HCI USB Transport Layer

Bluetooth.

#### 2.5 ISOCHRONOUS ENDPOINTS EXPECTATIONS

These isochronous endpoints transfer SCO data to and from the host controller of the radio.

Time is the critical aspect for this type of data. The USB firmware should transfer the contents of the data to the host controllers' SCO FIFOs. If the FIFOs are full, the data should be overwritten with new data.

These endpoints have a one (1) ms interval, as required by Chapter 9 of the USB Specification, Versions 1.0 and 1.1.

The radio is capable of three (3) 64Kb/s voice channels (and can receive the data coded in different ways – 16-bit linear audio coding is the method that requires the most data). A suggested max packet size for this endpoint would be at least 64 bytes. (It is recommended that max packet sizes be on power of 2 boundaries for optimum throughput.) However, if it is not necessary to support three voice channels with 16-bit coding, 32 bytes could also be considered an acceptable max packet size.

page 771 of 1082

HCI USB Transport Layer

Bluetooth.

#### 3 CLASS CODE

A class code will be used that is specific to all USB Bluetooth devices. This will allow the proper driver stack to load, regardless of which vendor built the device. It also allows HCI commands to be differentiated from USB commands across the control endpoint.

The class code (bDeviceClass) is 0xE0 – Wireless Controller.

The SubClass code (bDeviceSubClass) is 0x01 – RF Controller.

The Protocol code (bDeviceProtocol) is 0x01 – Bluetooth programming.

page 772 of 1082

HCI USB Transport Layer

Bluetooth.

#### **4 DEVICE FIRMWARE UPGRADE**

Firmware upgrade capability is not a required feature. But if implemented, the firmware upgrade shall be compliant with the "Universal Serial Bus Device Class Specification for Device Firmware Upgrade" (version 1.0 dated May 13, 1999) available on the USB Forum web site at <a href="http://www.usb.org">http://www.usb.org</a>.

HCI USB Transport Layer

Bluetooth.

#### **5 LIMITATIONS**

#### 5.1 POWER SPECIFIC LIMITATIONS

Today, the host controller of USB-capable machines resides inside a chip known as PIIX4. Unfortunately, because of errata, the USB host controller will not receive power while the system is in S3 or S4. This means that a USB wake-up can only occur when the system is in S1 or S2.

Another issue with the USB host controller is that, while a device is attached, it continually snoops memory to see if there is any work that needs to be done. The frequency that it checks memory is 1ms. This prevents the processor from dropping into a low power state known as C3. Because the notebook processor is not able to enter the C3 state, significant power loss will occur. This is a real issue for business users – as a typical business user will spend almost 90% of their time in the C3 state.

#### 5.2 OTHER LIMITATIONS

Data corruption may occur across isochronous endpoints. Endpoints one and two may suffer from data corruption.

USB provides 16-CRC on all data transfers. The USB has a bit error rate of  $10^{-13}$ 

Note that when a dongle is removed from the system, the radio will lose power (assuming this is a bus-powered device). This means that devices will lose connection.

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 774 of 1082

HCI USB Transport Layer

Bluetooth.

# Part H:3

# **HCIRS232 TRANSPORT LAYER**

An addendum to the HCI document

This document describes the RS232 transport layer (between the Host and the Host Controller). HCI command, event and data packets flow through this layer, but the layer does not decode them.

## **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 776 of 1082

HCI RS232 Transport Layer

Bluetooth.

## **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 777 of 1082

HCI RS232 Transport Layer

## Bluetooth.

## **CONTENTS**

| 1 | Gen  | eral     |                                                    | 778 |
|---|------|----------|----------------------------------------------------|-----|
| 2 | Ove  | rview    |                                                    | 779 |
| 3 | Neg  | otiation | Protocol                                           | 780 |
| 4 |      |          | sfer Protocol                                      |     |
| 5 | Usin | ıg delim | iters with COBS for synchronization                | 785 |
|   | 5.1  | _        | Delimiters with COBS and CRC, Protocol Mode 0x13   |     |
|   | 5.2  | •        | Format                                             |     |
|   | 5.3  | Error N  | Message Packet                                     | 786 |
|   | 5.4  | Consis   | stent Overhead Byte Stuffing                       | 787 |
| 6 | Usin | g RTS/0  | CTS for Synchronization                            | 788 |
|   | 6.1  | _        | RTS/CTS for Sync without CRC, Protocol Mode 0x1    |     |
|   | 6.2  | Error N  | Message Packet                                     | 789 |
|   | 6.3  |          | ole of Signalling                                  |     |
|   | 6.4  |          | ol Flow Examples                                   |     |
|   |      | 6.4.1    | Case 1, Normal Recovery Process                    | 791 |
|   |      | 6.4.2    | Case 2, Both sides detect an error simultaneously. | 791 |
|   |      | 6.4.3    | Case 3, Error Message with an error                | 792 |
| 7 | Pofe | roncos   | -<br>-                                             | 704 |

page 778 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### 1 GENERAL

The objective of the HCI RS232 Transport Layer is to make it possible to use the Bluetooth HCI over one physical RS232 interface between the Bluetooth Host and the Bluetooth Host Controller.

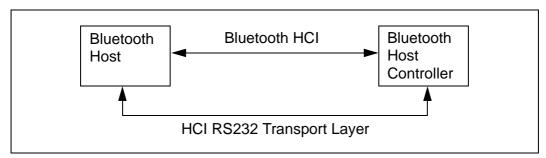



Figure 1.1:

HCI RS232 Transport Layer

Bluetooth.

#### 2 OVERVIEW

There are four kinds of HCI packets that can be sent via the RS232 Transport Layer; i.e. HCI Command Packet, HCI Event Packet, HCI ACL Data Packet and HCI SCO Data Packet (see "Host Controller Interface Functional Specification" on page 517). HCI Command Packets can only be sent to the Bluetooth Host Controller, HCI Event Packets can only be sent from the Bluetooth Host Controller, and HCI ACL/SCO Data Packets can be sent both to and from the Bluetooth Host Controller.

However, HCl does not provide the ability to differentiate the four HCl packet types. Therefore, if the HCl packets are sent via a common physical interface, a HCl packet indicator has to be added according to the Table 2.1 below.

| HCI packet type       | HCI packet indicator |
|-----------------------|----------------------|
| HCI Command Packet    | 0x01                 |
| HCI ACL Data Packet   | 0x02                 |
| HCI SCO Data Packet   | 0x03                 |
| HCI Event Packet      | 0x04                 |
| Error Message Packet* | 0x05                 |
| Negotiation Packet*   | 0x06                 |

Table 2.1: HCI RS232 Packet Header

In addition to those four HCI packet types, two additional packet types are introduced to support dynamic negotiation and error reporting. The Error Message Packet (0x05) is used by the receiver to report the nature of error to the transmitting side. The Negotiation Packet (0x06) is used to negotiate the communication settings and protocols.

The HCI packet indicator shall be followed by an 8-bit sequence number that is incremented by 1 every time any of the above packets are sent, except when the retransmission packets are sent as a part of the error recovery. The HCI packet shall immediately follow the sequence number field. All four kinds of HCI packets have a length field, which is used to determine how many bytes are expected for the HCI packet. The Error Message Packet and Negotiation Packet are fixed-length packets, although the negotiation packet can be extended up to 7 more bytes, based on the number in the extension field.

The frame of the basic RS232 Transport Packet is shown below.

LSB MSB

| Packet<br>Type<br>(8-bit) | SEQ<br>No<br>(8-bit) | HCI Packet or Error Message/Negotiation Packet payload |
|---------------------------|----------------------|--------------------------------------------------------|
|---------------------------|----------------------|--------------------------------------------------------|

The least significant byte is transmitted first.

page 780 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### 3 NEGOTIATION PROTOCOL

Before sending any bytes over the RS232 link, the baud rate, parity type, number of stop bit and protocol mode should be negotiated between the Host Controller and the Host. Tdetect is the maximum time required for the transmitter to detect the CTS state change, plus the time it takes to flush the transmit buffer if RTS/CTS is used for error indication and re-synchronization. Otherwise, Tdetect represents the local-side interrupt latency. Host will first send a negotiation packet with the maximum suggested values, plus Host's Tdetect value with Ack code = 000b at the default UART settings specified below, using protocol mode = 0x13. At the same time, the Host Controller side also sets its UART settings to the same initiating parameters and waits for the negotiation packet from the Host.

If the Host Controller side can accept the suggested values from the Host, it sends back the negotiation packet with the same UART setting values, plus Host Controller's Tdetect value with Ack code = 001b. Then, the Host sends back the negotiation packet with the same UART setting values, plus Host's Tdetect with Ack code = 001b as the final acknowledgment, and then sets its Host's UART to the new value. After it has received the final acknowledgment packet from the Host, the Host Controller also changes its UART setting to the new values.

On the other hand, if the Host Controller side cannot accept the suggested value, it should send a set of new suggested values and its own Tdetect value with Ack code = 010b. Each side should continue these steps until both sides receive the accepted Ack code value. Error detection and error recovery during the initial negotiation are performed in the same manner as described in Section 5 on page 785 (Protocol Mode 0x13)

The negotiation phase can be initiated again by either side at any time in order to renegotiate the new values, or just to inform the new Tdetect time. When the negotiation is reinitiated during the data transfer, it should use the previously negotiated settings to exchange the new parameters rather than using the default values.

The initiating parameters:

baud rate: 9600 bps parity type: no parity

number of data bit: 8 (Note: Only 8-bit data length is allowed.)

number of stop bit: 1

protocol mode: 0x13 (HDLC like framing with COBS/CCITT-CRC)

page 781 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### The negotiation packet format:

LSB MSB

| Packet<br>Type<br>header<br>0x06<br>(8 bits) | SEQ<br>No<br>(8<br>bits) | UART<br>Settings<br>and ACK<br>(8 bits) | Baud Rate<br>(16 bits) | Tdetect Time<br>(16 bits) | Protocol<br>Mode<br>(8 bit) |
|----------------------------------------------|--------------------------|-----------------------------------------|------------------------|---------------------------|-----------------------------|
|----------------------------------------------|--------------------------|-----------------------------------------|------------------------|---------------------------|-----------------------------|

#### **SEQ No:**

This is an 8-bit number that is incremented by 1 each time a packet is transmitted, excluding the retransmission packet. The unsigned Little Endian format is used.

#### **UART Settings and ACK Field**

| Bit 0-1  | Bit 2            | Bit 3                    | Bit 4                  | Bit 5-7              |
|----------|------------------|--------------------------|------------------------|----------------------|
| Reserved | Stop bit (1 bit) | Parity Enable<br>(1 bit) | Parity Type<br>(1 bit) | Ack Code<br>(3 bits) |

#### Stop Bit:

0: 1 stop bit 1: 2 stop bits

#### **Parity Enable:**

0: No parity1: Parity

#### **Parity Type:**

0: Odd Parity1: Even Parity

#### Ack Code:

000b: Request 001b: Accepted

010b: Not accepted with new suggested values

011b-111b: Reserved

#### **Baud Rate:**

N should be entered for baud rate where Baud rate = 27,648,000 / N N=0 is invalid

Maximum possible rate is therefore 27.648Mbps Minimum possible rate is therefore 421.88bps HCI RS232 Transport Layer

Bluetooth

The unsigned Little Endian format is used, and the least significant byte should be transmitted first.

#### **Tdetect Time:**

This 16-bit field should be filled with the maximum required time for the transmitter to detect the CTS change, plus the time it takes to flush the transmit FIFO if RTS and CTS are used for resynchronization. Otherwise, it should be filled with the local interrupt latency.

The unit of time should be specified in 100 microseconds.

The unsigned Little Endian format is used, and the least significant byte should be transmitted first.

#### **Protocol Mode**

| Bit 0    | Bit 1             | Bit 2            | Bit 3           | Bit 4                     | Bit 5 | Bit 6 | Bit 7 |
|----------|-------------------|------------------|-----------------|---------------------------|-------|-------|-------|
| CRC Used | Delimiter<br>Used | RTS /CTS<br>used | RTS/CTS<br>Mode | Error<br>Recovery<br>Used | Ext0  | Ext1  | Ext2  |

#### **CRC Used:**

- 0: CRC-CCITT is not attached at the end of the packet.
- 1: CRC-CCITT is attached at the end of the packet. (Default)

16-bit CRC can be used with either RTS/CTS or delimiters, although this specification only describes a case when it is used with delimiters.

Generator Polynomial =  $x^{16}+x^{12}+x^5+1$ 

#### **Delimiter Used:**

- 0: Delimiter, 0x7E, is not used.
- 1: Delimiter, 0x7E, is used with COBS. (Default)

#### RTS/CTS Used:

- 0: RTS/CTS is not used. (Default)
- 1: RTS/CTS is used.

#### RTS/CTS Mode:

- 0: RTS/CTS is used for Error indication and resynchronization. (Default)
- 1: RTS/CTS is used for hardware flow control. Please refer to "HCI UART Transport Layer" on page 795 for details.

page 783 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### **Error Recovery Used:**

- Error Recovery is not supported.
   Even if Error Recovery is not supported, Error Message has to be sent.
- 1: Error Recovery is supported. (Default)
  Error Recovery retransmits the packet with error and all subsequent
  packets if RTS/CTS are used for synchronization. On the other hand, if
  0x7E is used as a delimiter with COBS as a synchronization mechanism,
  then the error recovery retransmits only the packet with error. Please
  refer to following sections for details.

#### Ext2,Ext1,Ext0:

These three bits indicate the number of extra bytes attached to the negotiation packet for future expansion.

page 784 of 1082

HCI RS232 Transport Layer

**Bluetooth** 

#### 4 PACKET TRANSFER PROTOCOL

The packet can be transferred with parity enabled or disabled, and with or without CRC – depending on the environment – as a mechanism to detect the error.

As a synchronization mechanism, one can select either RTS/CTS, or delimiters. Usage of RTS/CTS reduces the computation time for COBS encoding, but it requires two extra copper wires which may not be suitable in some applications. If three-wire cable must be used, or programmable RTS and CTS are not available, delimiter, 0x7E, can be used with COBS.

However, error recovery for these two alternatives may differ slightly. If the RTS/CTS is used for resynchronization, it would be simpler to retransmit all the packets, starting with the packet that had an error. If delimiters are used, the transmitter should retransmit only the packet with an error. The error recovery can be disabled, but the error message packet should still be sent to the transmitter side when the receiver side detects an error.

The HCI RS232 transport layer always uses a data length of 8 bits, and this specification assumes the Little Endian format. Furthermore, the least significant byte should be transmitted first.

The Host Controller may choose to support only one protocol mode, but the Host should be able to support any combination.

Two common schemes (Protocol mode = 0x13 and 0x14) are defined in the following sections to illustrate the usage of each mode.

page 785 of 1082

HCI RS232 Transport Layer

Bluetooth.

## 5 USING DELIMITERS WITH COBS FOR **SYNCHRONIZATION**

This section illustrates how delimiters with COBS are used for synchronization, and how error recovery procedure is performed if delimiters are used as a mechanism to synchronize. This is described using protocol mode 0x13.

#### USING DELIMITERS WITH COBS AND CRC, PROTOCOL MODE 0X13

In case RTS/CTS are not available, or if they are hard-wired to be used as a hardware flow control, the HDLC-like framing with the 16-bit CRC (CRC-CCITT) and delimiter 0x7E with COBS (Consistent Overhead Byte Stuffing) [2] are used as a means to detect an error and to resynchronize.

The CRC-CCITT uses the following generator polynomial for 16-bit checksum:  $x^{16}+x^{12}+x^5+1$ . The 16-bit CRC should be attached to the end of the packet, but right before the ending delimiter, 0x7E. The beginning delimiter, 0x7E, should be followed by the packet type indicator field.

The Consistent Overhead Byte Stuffing is a recent proposal to PPP that yields less than 0.5% overhead, regardless of the data pattern. It uses two steps to escape the delimiter, 0x7E. The first step is eliminating zeros and then replacing all 0x7E with 0x00 between the beginning and ending delimiters.

A simple error recovery scheme is adapted here to minimize the overhead of supporting the error recovery. When the receiving end detects any error, it should send the error message packet with an error type back to the transmitting side. This error message packet will contain a Sequence Number with Error field (SEQ No with Error) indicating in which packet the error was detected. The Sequence Number field (SEQ No) that is on every packet is an 8-bit field that is incremented by 1 each time any type of packet is transmitted, except for the retransmission packets. The retransmitted packets should contain the original sequence number in the SEQ No field.

The transmitting side should retransmit only the HCl packets that had an error, which is indicated by the SEQ No with Error field. It is the responsibility of the receiving end to reorder the packets in the right order. If the transmitting side doesn't have the packet with the correct sequence number in the retransmission holding buffer, it should send the error message packet with the Error Type equal to 0x81 and SEQ No with Error field with the missing sequence number for the retransmission packet, so that the receiving end can detect missing packets. In this case the full error recovery cannot be performed. However, the receiving side can at least detect the loss of packets.

The receiving side should wait at least 4 times the sum of remote Tdetect, local Tdetect and the transmission time of the error message packet, plus the retransmission packet, before it times out when it is waiting for the retransmission packet. When it times out, the receiver has an option of re-requesting it by

page 786 of 1082

HCI RS232 Transport Layer

Bluetooth.

sending another error message packet with error type = 0x09, or simply dropping it and reporting it to the higher layer.

#### 5.2 FRAME FORMAT

BOF(0x7E), CRC-CCITT, and EOF(0x7E) are added as shown below to those basic packets described in this document. When the CRC is transmitted, the least significant byte should be transmitted first.

LSB

| 0x7E<br>BOF<br>(8 bits) | Packet<br>Type<br>(8 bits) | SEQ No<br>(8 bits) | Payload | CRC<br>(16 bits) | 0x7E<br>EOF<br>(8 bits) |
|-------------------------|----------------------------|--------------------|---------|------------------|-------------------------|
|-------------------------|----------------------------|--------------------|---------|------------------|-------------------------|

#### 5.3 ERROR MESSAGE PACKET

The error-message packet format is the following:

LSB MSB

| Packet Type, 0x05 | Sequence No   | Error Type    | SEQ No with Error |
|-------------------|---------------|---------------|-------------------|
| (8-bit field)     | (8-bit field) | (8-bit field) | (8-bit field)     |
| (o-bit field)     | (o-bit field) | (o-bit field) | (o-bit field)     |

| Error Type | Description                   |
|------------|-------------------------------|
| 0x00       | Reserved                      |
| 0x01       | Overrun Error                 |
| 0x02       | Parity Error                  |
| 0x03       | Reserved                      |
| 0x04       | Framing Error                 |
| 0x05-0x07  | Reserved                      |
| 0x08       | CRC Error                     |
| 0x09       | Missing SEQ No                |
| 0x0A-0x80  | Reserved                      |
| 0x81       | Missing Retransmission Packet |
| 0x82- 0xFF | Reserved                      |

Table 5.1: Error Type available

HCI RS232 Transport Layer

**Bluetooth** 

#### 5.4 CONSISTENT OVERHEAD BYTE STUFFING

| Code(n)   | Followed by     | Description                                     |
|-----------|-----------------|-------------------------------------------------|
| 0x00      |                 | Unused.                                         |
| 0x01-0xCF | n-1 data bytes  | The n-1 data bytes plus implicit trailing zero. |
| 0xD0      | n-1 data bytes  | The n-1 data bytes without trailing zero.       |
| 0XD1      |                 | Unused.                                         |
| 0xD2      |                 | Reserved for future.                            |
| 0xD3-0xDF | none            | A run of n-0xD0 zeros.                          |
| 0xE0-0xFE | n-E0 data bytes | The data bytes with two trailing zeros.         |
| 0xFF      |                 | Unused.                                         |

Table 5.2:

The COBS requires two step encodes.

The first step is the zero-elimination step. This step takes place after attaching the 16-bit CRC if CRC is enabled, but before adding the beginning and ending delimiters, 0x7E. Each COBS code block consists of the COBS code followed by zero or more data bytes. Code bytes 0x00, 0xD1, 0xD2 and 0xFF are never used. The COBS zero-elimination procedure searches the packet for the first occurrence of value zero. To simplify the encoding, a zero is added temporarily at the end of the packet, after the CRC, as a temporary place holder. The number of octets up to and including the first zero determines the code to be used. If this number is 207 or less, then the number itself is used as a COBS code byte, followed by the actual non-zero data bytes themselves, excluding the last byte, which is zero. On the other hand, if the number is more than 207, then the code byte 0xD0 is used, followed by the first 207 non-zero bytes. This process is repeated until all of the bytes of the packet, including the temporary placeholding zero at the end, have been encoded. If a pair of 0x00 is detected after 0 to 30 non-zero octets, the count of octets plus 0xE0 is used as the COBS code, followed by the non-zero octets, excluding the pair of zeros. If a run of three to fifteen 0x00 octets are detected, then the count of these 0x00 octets, plus 0xD0, is used as the code, followed by no other bytes.

The second step is replacing 0x7E with 0x00. The two steps can be done together in a loop, to reduce the encoding time.

For more details and a reference code, please refer to "PPP Consistent Overhead Byte Stuffing (COBS)" by J. Carlson et al [2].

page 788 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### **6 USING RTS/CTS FOR SYNCHRONIZATION**

This section illustrates how RTS and CTS are used to resynchronize, and how error-recovery procedure is performed if RTS and CTS are used as a mechanism to synchronize. This is described using protocol mode 0x14.

# 6.1 USING RTS/CTS FOR SYNC WITHOUT CRC, PROTOCOL MODE 0X14

The flow of HCI packet transfer is handled by two MODEM control/status signals, -RTS and -CTS. -RTS and -CTS are connected in a null MODEM fashion, meaning that the local-side -RTS should be connected to the remote-side -CTS, and the local-side -CTS should be connected to the remote-side -RTS. These MODEM control/status signals are used to notify the detection of an error to the other side, as well as to resynchronize the beginning of the packet after an error is detected. A very simple error-recovery scheme is adapted here to minimize the overhead of supporting this.

The HCI packet is transmitted only while CTS bit is 1. If the CTS bit changes to 0 during the HCI packet transfer or after the last byte is transmitted, this indicates that there was some error. The receiving end will deassert RTS as soon as it detects any error, and should send the error packet with an error type back to the transmission side. This error packet will contain a Sequence Number with Error field that indicates in which packet the error was detected. The sequence number field that is on every packet is an 8-bit field that is incremented by 1 each time any type of packet is transmitted, except for the retransmission packets. The retransmitted packets should contain the original sequence number in the SEQ No field.

When the transmitting end detects CTS bit changing from 1 to 0 at any time, the transmitting end should hold the transmission and wait until the error packet is received before resuming the transmission. When the receiving end is ready to receive the new data, it should assert RTS after the minimum of Tdetect time. Tdetect time is the maximum time required for the transmit side to detect the state change on CTS bit, plus the time it takes to flush the transmit buffer. The Tdetect value of each side should be informed to the other side during the negotiation phase. The local Tdetect value and the remote side Tdetect value together, along with the baud rate, can also be used to estimate the queue length required for the retransmission holding buffer. Before the receiving side asserts RTS line again, it should flush the RX buffer.

The transmission side should retransmit all of the HCI packets from the packet that had an error, which is indicated by SEQ No with Error field. Before it retransmits, it should flush the transmit buffer that may hold the leftover data from the aborted previous packet. As it retransmits the packets from the retransmission holding buffer, it should start transmitting the packet with the Sequence Number that matches the SEQ No with Error. If the transmitting side doesn't have the packet with the correct sequence number in the retransmission holding buffer, the transmitter should send an error message packet with

page 789 of 1082

HCI RS232 Transport Layer

Bluetooth.

error type 0x81, and it should skip to the packet with the sequence number that is available in the buffer. In this case, the full error recovery cannot be performed. However, the receiving side can, at least, detect the loss of packets.

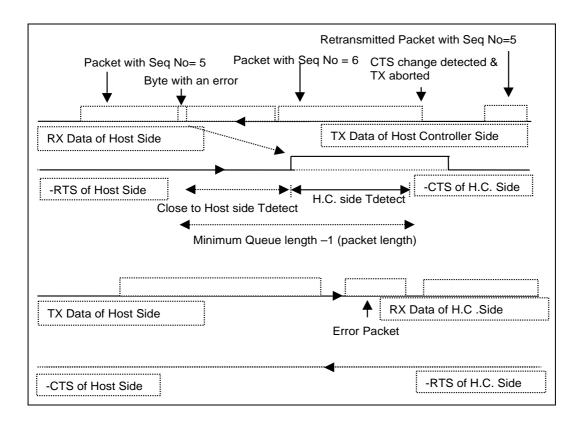
#### **6.2 ERROR MESSAGE PACKET**

The error-message packet format is the following:

LSB

| Packet header 0x05 (8-bit field) | Sequence No (8-bit field) | Error Type<br>(8-bit field) | SEQ No with Error<br>(8-bit field) |
|----------------------------------|---------------------------|-----------------------------|------------------------------------|
| (8-bit field)                    | (8-bit field)             | (8-bit field)               | (8-bit field)                      |

| Error Type | Description                   | Comment                     |
|------------|-------------------------------|-----------------------------|
| 0x00       | Reserved                      |                             |
| 0x01       | Overrun Error                 |                             |
| 0x02       | Parity Error                  |                             |
| 0x03       | Reserved                      |                             |
| 0x04       | Framing Error                 |                             |
| 0x05-0x07  | Reserved                      |                             |
| 0x08       | CRC Error*                    | Not applicable In Mode 0x14 |
| 0x09       | Missing SEQ No                |                             |
| 0x0A-0x80  | Reserved                      |                             |
| 0x81       | Missing Retransmission Packet |                             |
| 0x82- 0xFF | Reserved                      |                             |


Table 6.1: Error Type available

page 790 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### 6.3 EXAMPLE OF SIGNALLING



HCI RS232 Transport Layer

Bluetooth.

#### 6.4 CONTROL FLOW EXAMPLES

#### 6.4.1 Case 1, Normal Recovery Process

| Controller Side                                                                                                                                                                                           | Host Side                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTS is asserted and the asserted CTS is detected.                                                                                                                                                         | RTS is asserted and the asserted CTS is detected.                                                                                                                   |
|                                                                                                                                                                                                           | Ctrl/Data[n] is sent out and Ctrl/Data[n] is stored in the retransmission holding buffer.                                                                           |
| 2) Ctrl/Data[n] is received with an error.                                                                                                                                                                |                                                                                                                                                                     |
| 3) Deasserts RTS                                                                                                                                                                                          |                                                                                                                                                                     |
| <ul><li>4a) Error message for [n] is sent and Error message for [n] is stored in the TX retransmit holding buffer.</li><li>4b) Empties the RX FIFO and waits for Tdetect (Host) amount of time.</li></ul> | 4) Detects CTS deasserted.                                                                                                                                          |
|                                                                                                                                                                                                           | <ul><li>5a) Stops further transmission and waits until the TX FiFO is empty (or Flush the FIFO if it can.)</li><li>5b) Error message for [n] is received.</li></ul> |
| 6) Asserts RTS                                                                                                                                                                                            |                                                                                                                                                                     |
|                                                                                                                                                                                                           | 7) The asserted CTS is detected.                                                                                                                                    |
|                                                                                                                                                                                                           | 8) Retransmits Ctrl/Data[n].                                                                                                                                        |

#### 6.4.2 Case 2, Both sides detect an error simultaneously

| Controller Side                                                                                                   | Host Side                                                                                          |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 0) RTS is asserted and the asserted CTS is detected.                                                              | RTS is asserted and the asserted CTS is detected.                                                  |
| <ol> <li>Ctrl/Data[x] is sent and Ctrl/Data[x] is<br/>stored in the retransmission holding<br/>buffer.</li> </ol> | Ctrl/Data[n] is sent and Ctrl/Data[n] is stored in the retransmission holding buffer.              |
| 2) Ctrl/Data[n] is received with an error.                                                                        | 2) Ctrl/Data[x] is received with an error.                                                         |
| 3) Deasserts RTS.                                                                                                 | 3) Deasserts RTS.                                                                                  |
| 4) Detects CTS deasserted.                                                                                        | 4) Detects CTS deasserted.                                                                         |
| 5a) Stops further transmission and waits until the TX FiFO is empty (or Flush the FIFO if it can).                | 5a) Stops further transmission and waits until the TX FiFO is empty (or Flush the FIFO if it can). |

page 792 of 1082

HCI RS232 Transport Layer

## Bluetooth.

| Controller Side                                                                                                                    | Host Side                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 5b) Empties the RX FIFO and waits for Tde-<br>tect (Host) amount of time.                                                          | 5b) Empties the RX FIFO and waits for Tdetect (Controller) amount of time.                                |
| 6) Asserts RTS.                                                                                                                    | 6) Asserts RTS.                                                                                           |
| 7) The asserted CTS is detected.                                                                                                   | 7) The asserted CTS is detected.                                                                          |
| <ol> <li>Error message for [n] is sent and Error<br/>message for [n] is stored in the TX<br/>retransmit holding buffer.</li> </ol> | 8) Error message for [x] is sent and Error message for [x] is stored in the TX retransmit holding buffer. |
| 9) Error message for [x] is received.                                                                                              | 9) Error message for [n] is received.                                                                     |
| 10) Retransmits Ctrl/Data[x].                                                                                                      | 10) Retransmits Ctrl/Data[n].                                                                             |

### 6.4.3 Case 3, Error Message with an error

| Controller Side                                                                                              | Host Side                                                                                          |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| RTS is asserted and the asserted CTS is detected.                                                            | RTS is asserted and the asserted CTS is detected.                                                  |
|                                                                                                              | Ctrl/Data[n] is sent and Ctrl/Data[n] is stored in the retransmission holding buffer.              |
| 2) Ctrl/Data[n] is received with an error.                                                                   |                                                                                                    |
| 3) Deasserts RTS.                                                                                            |                                                                                                    |
| 4a) Error message for [n] (Err[n]) is sent and<br>Err[n] is stored in the TX retransmit hold-<br>ing buffer. | 4) Detects CTS deasserted.                                                                         |
| 4b) Empties the RX FIFO and waits for Tde-<br>tect (Host) amount of time.                                    |                                                                                                    |
|                                                                                                              | 5a) Stops further transmission and waits until the TX FiFO is empty (or Flush the FIFO if it can.) |
|                                                                                                              | 5b) Error message for [n] is received with an error.                                               |
| 6) Asserts RTS.                                                                                              | 6a) Deasserts RTS.                                                                                 |
|                                                                                                              | 6b) Empties the RX FIFO and waits for Tdetect (Controller) amount of time.                         |
| 7) Detects CTS deasserted.                                                                                   |                                                                                                    |
| 8) Stops further transmission and waits until the TX FiFO is empty (or Flush the FIFO if it can.)            | 8) The asserted CTS detected.                                                                      |

page 793 of 1082

| HCI RS232 | Transport Layer |
|-----------|-----------------|
|-----------|-----------------|

## Bluetooth.

| Controller Side                                                                                      | Host Side                                                                                                                           |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      | 9a) Error message for Err[n] is sent and Error message for Err[n] is stored in the retransmission holding buffer.  9b) Asserts RTS. |
| <ul><li>10a) Error message for Err[n] is received.</li><li>10b) The asserted CTS detected.</li></ul> |                                                                                                                                     |
| 11) Retransmits Error message for [n].                                                               |                                                                                                                                     |
|                                                                                                      | 12) Error message for [n] is received.                                                                                              |
|                                                                                                      | 13) Retransmit Ctrl/Data[n].                                                                                                        |

### **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 794 of 1082

HCI RS232 Transport Layer

Bluetooth.

#### 7 REFERENCES

- [1] Bluetooth Host Controller Interface Function Specification
- [2] J. Carlson, S. Cheshire, M. Baker, draft-ietf-pppext-cobs-00, "PPP Consistent Overhead Byte Stuffing (COBS)", November, 1997
- [3] Bluetooth HCI UART Transport Layer Specification

# Part H:4

# HCLUART TRANSPORT LAYER

An addendum to the HCI document

This document describes the UART transport layer (between the Host and the Host Controller). HCl command, event and data packets flow through this layer, but the layer does not decode them.

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 796 of 1082

HCI UART Transport Layer

Bluetooth.

## **ATTACHMENT H**

| BLUETOOTH | SPECIFICATION | Version 1.0 B |
|-----------|---------------|---------------|
|-----------|---------------|---------------|

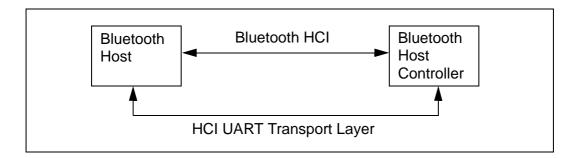
page 797 of 1082

| HCI UART | Transport l | Layer |
|----------|-------------|-------|
|----------|-------------|-------|

# Bluetooth.

# **CONTENTS**

| 1 | General        | 798 |
|---|----------------|-----|
| 2 | Protocol       | 799 |
| 3 | RS232 Settings | 800 |
| 4 | Error Recovery | 801 |


page 798 of 1082

HCI UART Transport Layer

Bluetooth.

#### 1 GENERAL

The objective of this HCI UART Transport Layer is to make it possible to use the Bluetooth HCI over a serial interface between two UARTs on the same PCB. The HCI UART Transport Layer assumes that the UART communication is free from line errors. See also "HCI RS232 Transport Layer" on page 775.



HCI UART Transport Layer

Bluetooth.

#### 2 PROTOCOL

There are four kinds of HCI packets that can be sent via the UART Transport Layer; i.e. HCI Command Packet, HCI Event Packet, HCI ACL Data Packet and HCI SCO Data Packet (see "Host Controller Interface Functional Specification" on page 517). HCI Command Packets can only be sent to the Bluetooth Host Controller, HCI Event Packets can only be sent from the Bluetooth Host Controller, and HCI ACL/SCO Data Packets can be sent both to and from the Bluetooth Host Controller.

HCl does not provide the ability to differentiate the four HCl packet types. Therefore, if the HCl packets are sent via a common physical interface, a HCl packet indicator has to be added according to Table 2.11 below.

| HCI packet type     | HCI packet indicator |
|---------------------|----------------------|
| HCI Command Packet  | 0x01                 |
| HCI ACL Data Packet | 0x02                 |
| HCI SCO Data Packet | 0x03                 |
| HCI Event Packet    | 0x04                 |

Table 2.1: HCI packet indicators

The HCI packet indicator shall be sent immediately before the HCI packet. All four kinds of HCI packets have a length field, which is used to determine how many bytes are expected for the HCI packet. When an entire HCI packet has been received, the next HCI packet indicator is expected for the next HCI packet. Over the UART Transport Layer, only HCI packet indicators followed by HCI packets are allowed.

page 800 of 1082

HCI UART Transport Layer

Bluetooth.

#### 3 RS232 SETTINGS

The HCI UART Transport Layer uses the following settings for RS232:

| Baud rate:              | manufacturer-specific |
|-------------------------|-----------------------|
| Number of data bits:    | 8                     |
| Parity bit:             | no parity             |
| Stop bit:               | 1 stop bit            |
| Flow control:           | RTS/CTS               |
| Flow-off response time: | 3 ms                  |

Flow control with RTS/CTS is used to prevent temporary UART buffer overrun. It should not be used for flow control of HCI, since HCI has its own flow control mechanisms for HCI commands, HCI events and HCI data.

If CTS is 1, then the Host/Host Controller is allowed to send. If CTS is 0, then the Host/Host Controller is not allowed to send.

The flow-off response time defines the maximum time from setting RTS to 0 until the byte flow actually stops.

The RS232 signals should be connected in a null-modem fashion; i.e. the local TXD should be connected to the remote RXD and the local RTS should be connected to the remote CTS and vice versa.

page 801 of 1082

HCI UART Transport Layer

Bluetooth.

#### 4 ERROR RECOVERY

If the Host or the Host Controller lose synchronization in the communication over RS232, then a reset is needed. A loss of synchronization means that an incorrect HCI packet indicator has been detected, or that the length field in an HCI packet is out of range.

If the UART synchronization is lost in the communication from Host to Host Controller, then the Host Controller shall send a Hardware Error Event to tell the Host about the synchronization error. The Host Controller will then expect to receive an HCI\_Reset command from the Host in order to perform a reset. The Host Controller will also use the HCI\_Reset command in the byte stream from Host to Host Controller to re-synchronize.

If the UART synchronization is lost in the communication from Host Controller to Host, then the Host shall send the HCI\_Reset command in order to reset the Host Controller. The Host shall then re-synchronize by looking for the HCI Command Complete event for the HCI\_Reset command in the byte stream from Host Controller to Host.

See "Host Controller Interface Functional Specification" on page 517 for HCI commands and HCI events.

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 802 of 1082

HCI UART Transport Layer

Bluetooth.

# Part I:1

# **BLUETOOTH TEST MODE**

This document describes the test mode for hardware and low-level functionality tests of Bluetooth devices. The test mode includes transmitter tests (packets with constant bit patterns) and loop back tests.

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 805 of 1082

Bluetooth Test Mode

# Bluetooth.

# **CONTENTS**

| 1 | Gen  | eral Des       | scription                                   | 806 |  |  |  |
|---|------|----------------|---------------------------------------------|-----|--|--|--|
|   | 1.1  |                |                                             |     |  |  |  |
|   | 1.2  | Activa         | tion                                        | 807 |  |  |  |
|   | 1.3  | Contro         | 807                                         |     |  |  |  |
| 2 | Test | Test Scenarios |                                             |     |  |  |  |
|   | 2.1  |                | mitter Test                                 |     |  |  |  |
|   |      | 2.1.1          | Packet Format                               | 808 |  |  |  |
|   |      | 2.1.2          | Pseudorandom Sequence                       | 810 |  |  |  |
|   |      | 2.1.3          | Reduced Hopping Sequence                    | 811 |  |  |  |
|   |      | 2.1.4          | Control of Transmit Parameters              | 811 |  |  |  |
|   |      | 2.1.5          | Power Control                               | 812 |  |  |  |
|   |      | 2.1.6          | Switch between different Frequency Settings | 812 |  |  |  |
|   | 2.2  | LoopBack Test  |                                             |     |  |  |  |
| 3 | Outl | ine of P       | roposed LMP Messages                        | 817 |  |  |  |
| 4 | Refe | rences         |                                             | 819 |  |  |  |

**Bluetooth** 

# 1 GENERAL DESCRIPTION

The test mode supports testing of the Bluetooth transmitter and receiver. It is intended mainly for certification/compliance testing of the radio and baseband layer, and may also be used for regulatory approval or in-production and aftersales testing.

A device in test mode must not support normal operation. For security reasons the test mode is designed such that it offers no benefit to the user. Therefore, no data output or acceptance on a HW or SW interface is allowed.

# 1.1 TEST SETUP

The setup consists of a device under test (DUT) and a tester. Optionally, additional measurement equipment may be used.

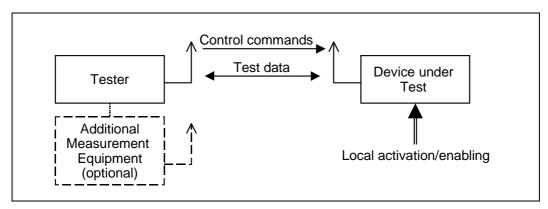



Figure 1.1: Setup for Test Mode

Tester and DUT form a piconet where the tester acts as master and has full control over the test procedure. The DUT acts as slave.

The control is done via the air interface using LMP commands (see Section 3 on page 817 and "Link Manager Protocol" on page 185). Hardware interfaces to the DUT may exist, but are not subject to standardization.

The test mode is a special state of the Bluetooth model. For security and type approval reasons, a device in test mode may not support normal operation. When the DUT leaves the test mode it enters the standby state. After power-off the Bluetooth device must return to standby state.

Bluetooth

### 1.2 ACTIVATION

The activation may be carried out locally (via a HW or SW interface), or using the air interface.

- For activation over the air interface, entering the test mode must be locally enabled for security and type approval reasons. The implementation of this local enabling is not subject to standardization.
  - The tester sends an LMP command that forces the DUT to enter test mode. The DUT terminates all normal operation before entering the test mode.
  - The DUT shall return an LMP\_Accepted on reception of an activation command. LMP\_Not\_Accepted shall be returned if the DUT is not locally enabled.
- If the activation is performed locally using a HW or SW interface, the DUT terminates all normal operation before entering the test mode.
   Until a connection to the tester exists, the device shall perform page scan

and inquiry scan. Extended scan activity is recommended.

# 1.3 CONTROL

Control and configuration is performed using special LMP commands (see Section 3 on page 817). These commands must be rejected if the Bluetooth device is not in test mode. In this case, an LMP\_not\_accepted is returned. The DUT shall return an LMP\_accepted on reception of a control command when in test mode.

A Bluetooth device in test mode must ignore all LMP commands not related to control of the test mode. LMP commands dealing with power control and the request for LMP features (LMP\_features\_req) are allowed in test mode; the normal procedures are also used to test the adaptive power control.

The DUT can be commanded to leave the test mode by an LMP\_Detach command or by sending an LMP\_test\_control command with test scenario set to 'exit test mode'.

**Bluetooth** 

# **2 TEST SCENARIOS**

# 2.1 TRANSMITTER TEST

The Bluetooth device transmits a constant bit pattern. This pattern is transmitted periodically with packets aligned to the slave TX timing of the piconet formed by tester and DUT. The same test packet is repeated for each transmission.

The transmitter test is started when the master sends the first POLL packet. In non-hopping mode agreed frequency is used for this POLL packet.

The tester transmits at his TX slots (control commands or POLL packets). The slave starts burst transmission in the following slave TX slot. The master's polling interval is fixed and defined beforehand. The device under test may transmit its burst according to the normal timing even if no packet from the tester was received.

The burst length may exceed the length of a one slot packet. In this case the tester may take the next free master TX slot for polling. The timing is illustrated in Figure 2.1.

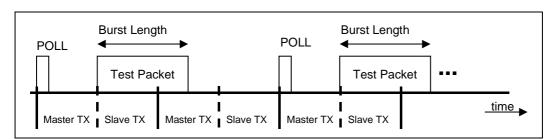



Figure 2.1: Timing for Transmitter Test

#### 2.1.1 Packet Format

The test packet is a normal Bluetooth packet, see Figure 2.2. For the payload itself see below.

page 809 of 1082

Bluetooth Test Mode Bluetooth

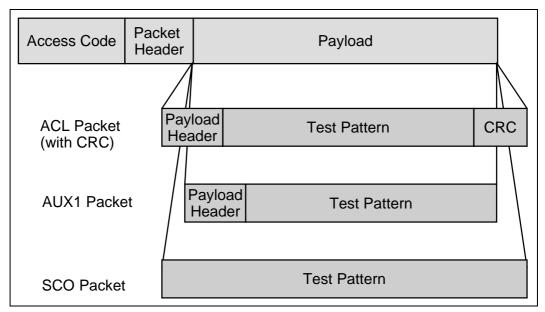



Figure 2.2: General Format of TX Packet

During configuration the tester defines:

- · the packet type to be used
- · payload length

For the payload length, the restrictions from the baseband specification apply (see "Baseband Specification" on page 33.). In case of ACL packets the payload structure defined in the baseband specification is preserved as well, see Figure 2.2.

For the transmitter test mode, only packets without FEC should be used; i.e. HV3, DH1, DH3, DH5and AUX1packets. Support of packet type is only mandatory up to the longest implemented packet type.

In transmitter test mode, the packets exchanged between tester and DUT are not scrambled with the whitening sequence. Whitening is turned off when the DUT has accepted to enter the transmitter test mode, and is turned on when the DUT has accepted to exit the transmitter test mode, see Figure 2.3.<sup>1</sup>

Test Scenarios

<sup>1.</sup> Note: Implementations must ensure that retransmissions of the LMP\_Accepted messages use the same whitening status.

page 810 of 1082

Bluetooth Test Mode Bluetooth

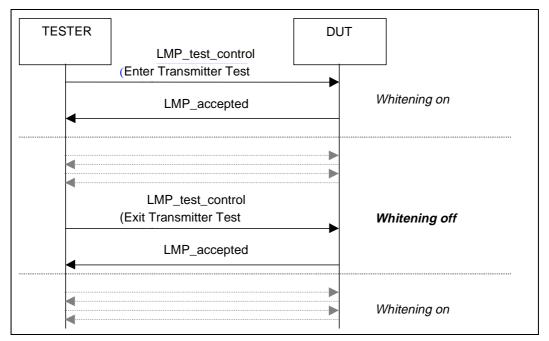



Figure 2.3: Use of whitening in Transmitter mode

# 2.1.2 Pseudorandom Sequence

In case of pseudorandom bit sequence, the same sequence of bits is used for each transmission (i.e. the packet is repeated, see above). A PRBS-9 Sequence<sup>2</sup> is used, see [2] and [3].

- The properties of this sequence are as follows (see [3]). The sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage (see Figure 2.4), and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.
  - Number of shift register stages:
  - Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits
  - Longest sequence of zeros:
     8 (non-inverted signal)



Figure 2.4: Linear Feedback Shift Register for Generation of the PRBS sequence

Some uncertainties about Japanese regulatory requirements have been reported. If necessary for regulatory type approval in Japan, some features might be added; e.g. a longer PN sequence.

Bluetooth.

# 2.1.3 Reduced Hopping Sequence

To support quick testing of the radio over the complete frequency range, a reduced hopping mode is defined. Implementation of this mode is optional for Bluetooth devices and modules.

Reduced hopping uses only five frequencies, on which a sequential hopping is done (channels 0, 23, 46, 69 and 93 are used<sup>3</sup>), see Figure 2.5.



Figure 2.5: Reduced hopping scheme

The timing is based on the Bluetooth clock of the tester. The value of  $CLK_{27-1}$  (i.e. not using  $CLK_0$ , representing half slots) modulo 5 is used to determine the transmit frequency.

### 2.1.4 Control of Transmit Parameters

The following parameters can be set to configure the transmitter test:

- 1. Bit pattern:
  - Constant zero
  - Constant one
  - Alternating 1010...<sup>4</sup>
  - Alternating 1111 0000 1111 0000...<sup>4</sup>
  - Pseudorandom bit pattern
  - Transmission off
- 2. Frequency selection:
  - Single frequency
  - Hopping Europe/USA
  - Hopping Japan
  - Hopping France
  - Hopping Spain
  - Reduced Hopping (implementation in Bluetooth devices and modules is optional)
- 3. TX frequency
  - $k \Rightarrow f := (2402 + k) MHz$

<sup>3.</sup> The range is chosen to test the whole frequency range, which covers the normal 79 channels, as well as Spanish, French and Japanese hopping schemes. The frequency assignment rule is the same as for the fixed TX frequency: f = (2402 + k) MHz.

<sup>4.</sup> It is recommended that the sequence starts with a one; but, as this is irrelevant for measurements, it is also allowed to start with a zero.

page 812 of 1082

Bluetooth Test Mode

Bluetooth

- 4. Default poll period in TDD frames (n \* 1.25 ms)
- 5. Packet Type
- 6. Length of Test Sequence (user data of packet definition in Baseband Specification" on page 33.)

#### 2.1.5 Power Control

If adaptive power control is tested, the normal LMP commands will be used. The DUT starts to transmit at the maximum power and reduces/increases its power by one step on every command received.

# 2.1.6 Switch between different Frequency Settings

A change in the frequency selection becomes effective when the LMP procedure is completed:

The tester switches to a new frequency or hopping pattern after the LMP\_Accepted message has been received.

The DUT switches after the LMP\_accepted message has been sent.

<u>Note</u>: Loss of the LMP\_Accepted packet will eventually lead to a loss of frequency synchronization that cannot be recovered. Similar problems occur in normal operation, when the hopping pattern changes.

### 2.2 LOOPBACK TEST

The device under test receives normal baseband packets. The received packets are decoded in the DUT, and the payload is sent back using the same packet type. The return packet is sent back in either the TX slot directly following the transmission of the tester, or it is delayed and sent back in the slot after the next transmission of the tester (see Figure 2.7 to Figure 2.9 on page 815).

Alternatively, it is possible to implement a delayed loopback instead. Then the return packet is delayed to the following TX slot. There is no signalling to determine or control the mode. The device behavior must be fixed or adjusted by other means, but must not change randomly.

The tester can select, whether whitening is on or off. This setting holds for both up- and downlink. For switching the whitening status, the same rules as in Section 2.1 on page 808 (Figure 2.3) apply.

The following rules apply (for illustration see Figure 2.6 on page 814):

- Clearly, if the synch word was not detected, there will be no reply.
- If the header error check (HEC) fails, the DUT replies with a NULL packet with the ARQN bit set to NAK. It is not mandatory to return a NULL packet in this case; the DUT may send nothing.

page 813 of 1082

Bluetooth Test Mode

Bluetooth.

- If the packet contains an LMP message relating to the control of the test mode this command is executed and the packet is not returned, though ACK or NAK is still returned as usual procedure. Other LMP commands are ignored and no packet is returned.
- The payload FEC is decoded and the payload is coded again for transmission. This allows testing of the FEC handling. If the pure bit error rate shall be determined the tester chooses a packet type without FEC.
- The CRC is evaluated. In case of a failure, the payload is returned with ARQN = NAK. The CRC for the return packet is calculated for the returned payload.
- If the CRC fails the number of bytes as indicated in the (possibly erroneous) payload header shall be looped back.

Test Scenarios 29 November 1999 813

Bluetooth.

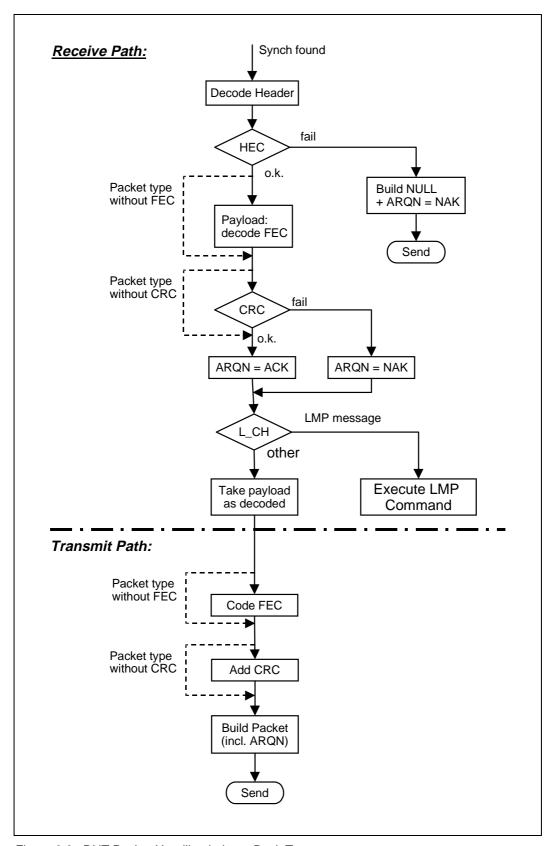



Figure 2.6: DUT Packet Handling in Loop Back Test

page 815 of 1082

Bluetooth Test Mode

Bluetooth.

The timing for normal and delayed loopback is illustrated in Figure 2.7 to Figure 2.9:

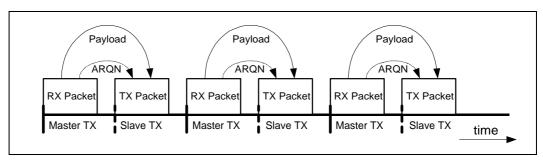



Figure 2.7: Payload & ARQN handling in normal loopback.

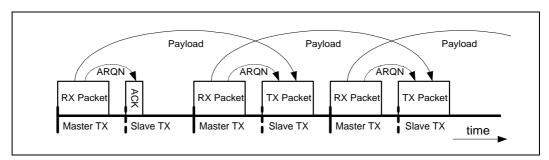



Figure 2.8: Payload & ARQN handling in delayed loopback - start.

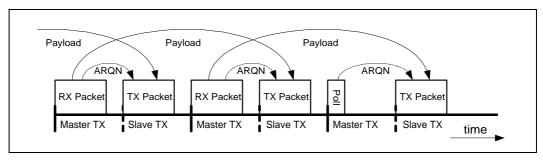



Figure 2.9: Payload & ARQN handling in delayed loopback - end.

The whitening is performed in the same way as it is used in normal active mode.

The following parameters can be set to configure the loop back test:

- 1. Packet Class<sup>5</sup>
  - ACL Packets
  - SCO Packets
  - ACL Packets without whitening
  - SCO Packets without whitening

Test Scenarios

<sup>5.</sup> This is included because, in the future, the packet type numbering may not remain unambiguous.

page 816 of 1082

Bluetooth Test Mode

Bluetooth.

- 2. Frequency Selection
  - Single frequency (independent for RX and TX)
  - Hopping Europe/USA
  - Hopping Japan
  - Hopping France
  - Hopping Spain
  - Hopping reduced (optional)

Hopping reduced uses only five frequencies on which a sequential hopping is done on (channel: 0, 23, 46, 69 and 93 is used).

- 3. Power level: (To be used according radio specification requirements)
  - power control or fixed TX power

The switch of the frequency setting is done exactly as for the transmitter test (see Section 2.1.6 on page 812).

Bluetooth.

# 3 OUTLINE OF PROPOSED LMP MESSAGES

Table 3.1 lists all LMP messages used for test mode (see Link Manager Protocol, Section 6 on page 237).

| LMP PDU           | PDU<br>number | Possible<br>Direction | Contents                                                                                                            | Position in Payload                     |
|-------------------|---------------|-----------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| LMP_test_activate | 56            | $m \rightarrow s$     |                                                                                                                     |                                         |
| LMP_test_control  | 57            | $m \rightarrow s$     | test scenario hopping mode TX frequency RX frequency power control mode poll period packet type length of test data | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9-10 |
| LMP_detach        | 7             | $m \rightarrow s$     |                                                                                                                     |                                         |
| LMP_accepted      | 3             | $m \leftarrow s$      |                                                                                                                     |                                         |
| LMP_not_accepted  | 4             | $m \leftarrow s$      |                                                                                                                     |                                         |

Table 3.1: LMP messages used for Test Mode

| Name                   | Length (bytes) | Туре   | Unit | Detailed                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|----------------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test scenario          | 1              | u_int8 |      | 0 Pause (TX off) 1 Transmitter test – 0 pattern 2 Transmitter test – 1 pattern 3 Transmitter test – 1010 pattern 4 Pseudorandom bit sequence 5 Closed Loop Back – ACL packets 6 Closed Loop Back – SCO packets 7 ACL Packets without whitening 8 SCO Packets without whitening 9 Transmitter test – 1111 0000 pattern 10–254 reserved 255 Exit Test Mode |
| Hopping mode           | 1              | u_int8 |      | 0 RX/TX on single frequency 1 Hopping Europe/USA 2 Hopping Japan 3 Hopping France 4 Hopping Spain 5 Reduced Hopping (optional) 6–255 reserved                                                                                                                                                                                                            |
| TX frequency (for DUT) | 1              | u_int8 |      | f = [2402 + k] MHz                                                                                                                                                                                                                                                                                                                                       |

Table 3.2: Parameters used in LMP\_Test\_Control PDU

page 818 of 1082

Bluetooth Test Mode

# Bluetooth.

| Name                                                                                | Length (bytes) | Туре    | Unit       | Detailed                                                   |
|-------------------------------------------------------------------------------------|----------------|---------|------------|------------------------------------------------------------|
| RX frequency (for DUT)                                                              | 1              | u_int8  |            | f = [2402 + k] MHz                                         |
| Power control mode                                                                  | 1              | u_int8  |            | 0 fixed TX output power<br>1 adaptive power control        |
| Poll period                                                                         | 1              | u_int8  | 1.25<br>ms |                                                            |
| Packet type                                                                         | 1              | u_int8  |            | numbering as in packet header, see Baseband Specification) |
| length of test sequence<br>(=length of user data in<br>Baseband Specifica-<br>tion) | 2              | u_int16 | 1 byte     | unsigned binary number                                     |

Table 3.2: Parameters used in LMP\_Test\_Control PDU

The control PDU is used for both transmitter and loop back tests. The following restrictions apply for the parameter settings:

| Parameter               | Restrictions<br>Transmitter Test                                                                           | Restrictions<br>Loopback Test |  |
|-------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| TX frequency            | 0 ≤ k ≤ 93                                                                                                 | 0 ≤ k ≤ 93                    |  |
| RX frequency            | same as TX frequency                                                                                       | 0 ≤ k ≤ 93                    |  |
| Poll period             |                                                                                                            | not applicable (set to 0)     |  |
| Length of test sequence | depends on packet type:  DH1: ≤ 28 byte  DH3: ≤ 181 byte  DH5: ≤ 339 byte  AUX1: ≤ 29 Byte  HV3: = 30 byte | not applicable (set to 0)     |  |

Table 3.3: Restrictions for Parameters used in LMP\_Test\_Control PDU

page 819 of 1082

Bluetooth Test Mode

Bluetooth.

# **4 REFERENCES**

- [1] Bluetooth Link Manager Protocol.
- [2] CCITT Recommendation O.153 (1992), Basic parameters for the measurement of error performance at bit rates below the primary rate.
- [3] ITU-T Recommendation O.150 (1996), General requirements for instrumentation for performance measurements on digital transmission equipment.
- [4] Bluetooth Baseband Specification.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 820 of 1082

Bluetooth Test Mode

Bluetooth.

# Part I:2

# BLUETOOTH COMPLIANCE REQUIREMENTS

This document specifies the requirements for Bluetooth compliance.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 822 of 1082

Bluetooth Compliance Requirements

Bluetooth.

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 823 of 1082

Bluetooth Compliance Requirements

# Bluetooth.

# **CONTENTS**

| Scop  | oe      |                                              | 825 |  |  |  |
|-------|---------|----------------------------------------------|-----|--|--|--|
| Term  | ns used |                                              |     |  |  |  |
|       |         |                                              |     |  |  |  |
|       |         | tsts the Bluetooth Brand                     |     |  |  |  |
|       |         |                                              |     |  |  |  |
|       |         | th qualification program                     |     |  |  |  |
|       |         | cense requirements for products              |     |  |  |  |
| 6.1   | Blueto  | oth radio link requirements                  |     |  |  |  |
|       | 6.1.1   | Requirement description                      | 832 |  |  |  |
|       | 6.1.2   | Qualification                                | 832 |  |  |  |
| 6.2   | Blueto  | oth protocol requirements                    | 832 |  |  |  |
|       | 6.2.1   | Qualification                                | 833 |  |  |  |
| 6.3   | Blueto  | oth profile requirements                     | 833 |  |  |  |
|       | 6.3.1   | Requirement description                      | 833 |  |  |  |
|       | 6.3.2   | Qualification                                | 834 |  |  |  |
| 6.4   | Blueto  | oth information requirements                 | 834 |  |  |  |
|       | 6.4.1   | Requirement description                      | 834 |  |  |  |
|       | 6.4.2   | Qualification                                | 834 |  |  |  |
| 6.5   | Requir  | rements on Bluetooth accessory products      | 834 |  |  |  |
|       | 6.5.1   | Definition of 'Bluetooth accessory products' | 834 |  |  |  |
|       | 6.5.2   | Qualification                                |     |  |  |  |
| 6.6   | Requir  | ements on Bluetooth components               |     |  |  |  |
|       | 6.6.1   | Definition of "Bluetooth components"         |     |  |  |  |
|       | 6.6.2   | Requirement description                      |     |  |  |  |
|       | 6.6.3   | Qualification.                               |     |  |  |  |
| Divis |         | cense provisions for early products          |     |  |  |  |

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 824 of 1082

| Bluet | ooth Coi                                                                         | mpliance l                            | Requirements                                          | Bluetooth |  |  |
|-------|----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-----------|--|--|
| 8     | Bluetooth Brand License provisions for special products & marketing              |                                       |                                                       |           |  |  |
|       | 8.1                                                                              | Bluetooth Development tools and demos |                                                       |           |  |  |
|       |                                                                                  | 8.1.1                                 | Definition of 'Bluetooth Development tools and demos' | 837       |  |  |
|       |                                                                                  | 8.1.2                                 | Requirement description                               | 837       |  |  |
|       |                                                                                  | 8.1.3                                 | Qualification                                         | 837       |  |  |
|       | 8.2                                                                              | Marke                                 | ting                                                  | 837       |  |  |
| 9     | Recommendations concerning information about a product's Bluetooth capabilities8 |                                       |                                                       |           |  |  |
| 10    | Quality management, configuration management and version control                 |                                       |                                                       |           |  |  |
| 11    | Appendix A – Example of a "Bluetooth Capability Statement"84                     |                                       |                                                       |           |  |  |
| 12    | App                                                                              | endix B                               | - Marketing names of Bluetooth profiles               | 841       |  |  |

page 825 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 1 SCOPE

The Bluetooth Promoters and the Bluetooth Adopters have signed the Promoters' Agreement and the Adopters' Agreement respectively. These agreements grant Promoters and Adopters a Bluetooth license for "products which comply with the Specification".

This document specifies the requirements which must be met by a Promoter or Adopter to demonstrate that a particular product does "comply with the Specification", thereby qualifying that particular product to be subject to the rights extended by the Promoters' and Adopters' Agreements respectively.

The Bluetooth Qualification Program is the process by which a Promoter or an Adopter demonstrates that a particular product meets the requirements specified herein. This document provides an overview of the requirements and the Bluetooth Qualification Program. Further details are available through the Bluetooth Web site.

Regulatory requirements and governmental type approval requirements are outside the scope of this document.

page 826 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 2 TERMS USED

Bluetooth Trademark – As defined in the Promoters' Agreement and the Adopters' Agreement.

Bluetooth Brand – Covers all the brand elements specified in the "The Bluetooth Brand Book". Equal to the Bluetooth Trademark.

Bluetooth Logo or Logo – the brand element referred to as the 'figure mark' in the 'The Bluetooth Brand Book'.

Bluetooth License – all the rights, defined in the Promoters' and Adopters' Agreements respectively, that are granted by compliance with the specification, i.e. the Bluetooth Patent License and the Bluetooth Brand License.

Bluetooth Patent License – the applicable parts of the Bluetooth license consisting of patent rights or parts thereof as defined in the Promoters' and Adopters' Agreements respectively.

Bluetooth Brand License – the applicable parts of the Bluetooth license consisting of trademark rights as defined in the Promoters' and Adopters' Agreements respectively.

*Protocol specification* – defines the communication between two peer devices at a certain layer.

*Profile specification* – defines the usage of (parts of) the protocol stack for a certain Bluetooth usage model.

Bluetooth qualification process – the rules and procedures by which the manufacturer demonstrates compliance to the Bluetooth specification.

Bluetooth qualification program – the implementation of the Bluetooth qualification process.

Bluetooth Qualification Review Board (BQRB) – responsible for managing, reviewing and improving the Bluetooth qualification program. The original Bluetooth SIG companies will appoint BQRB initial members.

Bluetooth Qualification Test Facility (BQTF) – a test facility that is officially authorized by BQRB to test Bluetooth products.

Bluetooth Qualification Body (BQB) – a specific person authorized by the BQRB to be responsible for checking declarations and documents against requirements, reviewing product test reports, and listing products on the official database of Bluetooth qualified products.

Bluetooth Qualification Administrator (BQA) – a person responsible for administering the Bluetooth Qualification Program on behalf of BQRB.

page 827 of 1082

Bluetooth Compliance Requirements

# Bluetooth.

Implementation Conformance Statement (ICS) – a document that the manufacturer attaches to the product when submitting it for qualification. It specifies all the implemented Bluetooth capabilities in detail.

Bluetooth Fellow Adopter – equal to Bluetooth Promoters + Bluetooth Adopters.

page 828 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 3 LEGAL ASPECTS

Rules and guidelines on how to use the Bluetooth Brand elements are stated in the document "The Bluetooth Brand Book" which is available on the Bluetooth Web site.

The Bluetooth Specification has been created, according to our best knowledge, to meet regulatory requirements worldwide. Regulatory certification as such is not a part of the Bluetooth qualification requirements, yet it is a requirement in all markets. It is the sole responsibility of each manufacturer to ensure that their products have all necessary regulatory approvals for the markets where their product(s) are intended to be sold or used.

A product must complete Bluetooth Qualification to meet the requirements for "complying with the Specification". The Bluetooth license granted by the Promoters' and Adopters' Agreements respectively is valid only for qualified products and is not transferable to other products.

In this document, the 'Bluetooth license' is sometimes divided into the 'Bluetooth patent license' and the 'Bluetooth brand license' for practical reasons. These terms correspond, respectively, to the terms 'necessary claims' and 'trademark' in the Promoters' and Adopters' Agreements respectively.

Sanctions will be invoked against any company responsible for producing or trading (a) products containing elements of the Bluetooth Interface, as defined in the Bluetooth Promoters' Agreement and Adopters' Agreement respectively, that do not comply with the Specification, or (b) products containing elements of the Bluetooth Interface that have not completed Bluetooth Qualification.

The Bluetooth SIG reserves the right to define a process for adding new Bluetooth profiles after the release of the Specification 1.0.

A Bluetooth brand license is granted by Ericsson to all Fellow Adopters for the use of the trademark in connection with products complying with the Specification.

Ericsson further provides Fellow Adopters a limited indemnity for costs and expenses incurred by the Fellow Adopter based upon the use of the trade mark within countries where Ericsson has registered the trademark. Ericsson does not take upon itself any liability regarding product, whether such liability is based on damages caused by the product for persons or property, or defects in the product itself.

page 829 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 4 THE VALUE OF THE BLUETOOTH BRAND

The purpose of this document is to define the requirements for Bluetooth compliance This has been done while bearing the basic Bluetooth philosophy in mind:

"Wireless Connections Made Easy"

Examples of important end-user experiences are:

- · Reliable high-quality radio links,
- Interoperability between products of any brands,
- Easily understood product capabilities.

A reliable radio link experience depends upon all products demonstrating compliance with the Bluetooth radio link performance specifications. Interoperability is achieved by protocol and profile implementation conformance. Ease of use depends upon clear, consistent documentation of Bluetooth capabilities in product literature. All these elements are addressed in the requirements for Bluetooth compliance.

Bluetooth Compliance Requirements

Bluetooth.

# 5 THE BLUETOOTH QUALIFICATION PROGRAM

This paragraph specifies the framework of the Bluetooth qualification program that a Bluetooth qualification applicant must perform. When completed, the full Bluetooth qualification program will be published at the Bluetooth web site.

The Bluetooth qualification program ('Program') establishes the rules and procedures by which the manufacturer demonstrates compliance to the Bluetooth specifications, and the process by which the Bluetooth license may be used by product manufacturers and distributors.

The Program defines the following entities:

- Bluetooth Qualification Review Board (BQRB) responsible for managing, reviewing and improving the Bluetooth qualification program. The original Bluetooth SIG companies will appoint BQRB initial members.
- Bluetooth Qualification Administrator (BQA) responsible for administering the Bluetooth Qualification Program on behalf of BQRB.
- Bluetooth Qualification Test Facility (BQTF) a test facility that is officially authorized by BQRB to test Bluetooth products.
- Bluetooth Qualification Body (BQB) a specific person authorized by the BQRB to be responsible for checking declarations and documents against requirements, reviewing product test reports, and listing products on the official database of Bluetooth qualified products.

Functions and relationships are illustrated in Figure 5.1.

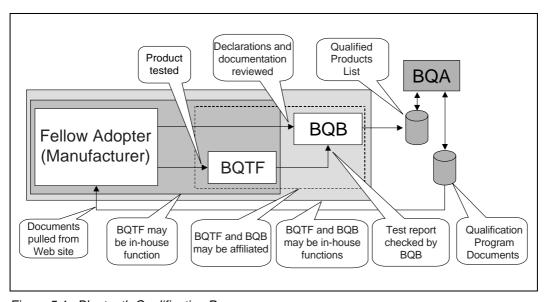



Figure 5.1: Bluetooth Qualification Process

Bluetooth Compliance Requirements

Bluetooth.

# **Summary of the Qualification process:**

- 1. The Fellow Adopter submits the product for Bluetooth qualification to a BQTF. The manufacturer must add temporary interfaces and/or functionality so that all implemented Bluetooth capabilities can be tested. The BQTF is not responsible for providing any secondary systems such as a LAN, PSTN or GSM network to facilitate the testing. Necessary documentation shall be provided; e.g. product description, user's manual and the Implementation Conformance Statement (a template for this document will be available at the Bluetooth web site). The BQTF tests each Bluetooth feature declared in the Implementation Conformance Statement according to the current Test Specification and BQRB policies and prepares a test report.
- 2. The test results and product documentation are then sent to the BQB. The Fellow Adopter sends an application to the BQB requesting that the product be listed as 'Bluetooth Qualified'. The application shall contain
  - a) Precise product description, and
  - b) Declaration of Compliance with the Bluetooth Specification (including this entire document) and the Bluetooth Brand Book, signed by a duly authorized official of the Fellow Adopter.
- When the application is complete, the BQB issues a Qualified Product notice and (with the applicant's permission) lists the product on the official Bluetooth Qualified products databases which can be viewed by all Fellow Adopters.

The BQTF may either be a third-party test house or an internal function of the applying Fellow Adopter. Also the BQB can be either internal or external. Both the BQTF and the BQB must always be authorized by the BQRB.

It is the responsibility of the manufacturer to establish any necessary nondisclosure agreements with BQTF, BQB and (if required) BQA. In the event the BQB cannot determine compliance the BQB may, with the applicant's permission, submit information to the BQA for a ruling. In the event the BQRB must be consulted, the applicant will be requested to prepare a submission according to BQRB guidelines.

The Fellow Adopter will be invoiced directly from BQTF and BQB for their respective services and expenses. The BQRB will also charge a fee to finance the administration associated with the Qualification program. Initially, this fee will be \$3000 per listed product. It will subsequently be adjusted once per year, to reflect the actual cost.

page 832 of 1082

Bluetooth Compliance Requirements

Bluetooth

# 6 BLUETOOTH LICENSE REQUIREMENTS FOR PRODUCTS

This section summarizes the product requirements that must be met to complete a Bluetooth Qualification.

The product requirements are divided into:

- · Bluetooth radio link requirements
- Bluetooth protocol requirements
- Bluetooth profile requirements
- Bluetooth information requirements

#### 6.1 BLUETOOTH RADIO LINK REQUIREMENTS

### 6.1.1 Requirement description

The Bluetooth radio link shall meet certain minimum requirements, which are documented in the Test Specification. This is to establish and maintain the Bluetooth technology as the preferred choice for wireless short-range links. The Test Specification for the Bluetooth radio link requirements will be based on the Bluetooth specification Part A (Radio specification).

#### 6.1.2 Qualification

The BQRB will issue a list of BQTFs that are allowed to qualify products against the Bluetooth performance requirements.

#### 6.2 BLUETOOTH PROTOCOL REQUIREMENTS

The implementation of the lower layers of the Bluetooth protocol stack shall meet certain minimum requirements, which are documented in the Test Specification. In order to verify that these requirements are met, individual testing of these protocols will be performed. The verification will be done by accessing the upper interface of these protocols through the Bluetooth Test Control Interface, TCI. How this test control interface will be used during verification is described in the Test Specification.

The Test Specification for the Bluetooth protocol requirements will be based on the Bluetooth specification Part B, C, D and H (Base band, Link Manager, Logical Link Control and Adaptation and, if applicable, the Host Controller Interface). Bluetooth Compliance Requirements

Bluetooth

#### 6.2.1 Qualification

The BQRB will issue a list of BQTFs that are allowed to qualify products against the Bluetooth protocol requirements.

The manufacturer is allowed to modify both the HW and SW of the product, to make it possible to perform the protocol tests. If this is done, the manufacturer must guarantee that an identical implementation of Bluetooth specification Part B, C, D and H (Base band, Link Manager, Logical Link Control and Adaptation and, if applicable, the Host Controller Interface) is used in the real product.

# 6.3 BLUETOOTH PROFILE REQUIREMENTS

# 6.3.1 Requirement description

The Bluetooth products shall meet certain minimum Bluetooth profile requirements which, for each profile, is defined in the Test Specification. This is to ensure that the end user can benefit from interoperability between different products and brands. The Test Specification for the Bluetooth profile requirements will be based on the Bluetooth specification Part K (Profile specifications).

The following general Bluetooth profile requirements must always be met:

- The "Generic Access" profile must be complied with.
- All implemented Bluetooth services must be described in the "Implementation Conformance Statement".
- All Bluetooth profiles declared in the "Implementation Conformance Statement" must be implemented according to each profile specification.
- All mandatory features of a Bluetooth profile role shall be implemented. All
  implemented optional Bluetooth features of a profile role shall be implemented according to the profile specification.
- If a service, for which there exists a Bluetooth profile, shall be implemented, it must be done according to that profile. It is permitted to make improvements or add features to a profile, as long as interoperability is maintained with other products that have implemented the standard profile as described in the previous paragraph. Improvements or new features can only be activated after proper negotiation between two Bluetooth devices.

Notification: A Fellow Adopter that wants to implement a new service, for which there is no sufficient standardized Bluetooth profile specification available, is allowed to do so. However, this new service must never be referred to in a way that it could mistakenly be interpreted as being a standard Bluetooth profile and part of the Bluetooth specification. The manufacturer must inform the market as well as the end user in a clear and consistent way about these limitations in general interoperability.

Bluetooth Compliance Requirements

Bluetooth

#### 6.3.2 Qualification

The BQRB will issue a list of BQTF that are allowed to qualify products against the Bluetooth profile requirements.

### 6.4 BLUETOOTH INFORMATION REQUIREMENTS

# 6.4.1 Requirement description

The manufacturer shall inform the market and end users in a clear and consistent way about the implemented Bluetooth capabilities.

#### 6.4.2 Qualification

The product will be qualified against the Bluetooth information requirements.

# 6.5 REQUIREMENTS ON BLUETOOTH ACCESSORY PRODUCTS

# 6.5.1 Definition of 'Bluetooth accessory products'

A Bluetooth accessory product is defined as "A product marketed to the end user, containing at least the hardware for the Bluetooth radio and baseband, yet not being a stand-alone Bluetooth product. After being installed in a host system, the product acts like a complete Bluetooth product." Examples of Bluetooth accessory products: PC-Cards, serial port dongles, USB dongles.

Bluetooth accessory products must also pass through the complete Bluetooth qualification process. To facilitate testing, the Bluetooth accessory product and the provided Bluetooth SW will be installed in a host device that is provided by the manufacturer.

#### 6.5.2 Qualification

Same as in Section 6.1 - Section 6.4 above.

#### 6.6 REQUIREMENTS ON BLUETOOTH COMPONENTS

# 6.6.1 Definition of "Bluetooth components"

A Bluetooth component is defined as "A component product designed and marketed for the enabling of a complete Bluetooth product, which component product containing at least a subset of an existing Bluetooth Profile (see Section 6.3 on page 833), yet not being able to function as a complete Bluetooth product". For example, a Bluetooth component might be a complete module designed for integration on a PC board, or an integrated circuit implementing all Bluetooth baseband and protocol functions.

page 835 of 1082

Bluetooth Compliance Requirements

Bluetooth.

A Bluetooth component is typically purchased and integrated by an original equipment manufacturer (OEM) into a product designed for sale to an end user.

A Bluetooth component manufacturer will typically obtain a limited Bluetooth License enabling the manufacturer to identify the component's Bluetooth capabilities. A component manufacturer may also wish to minimize their OEM customer's qualification testing requirements through one-time qualification testing of a reference design based on the component. Qualifying a component is not necessary as long as the final product is qualified. The possibility has been created only to ease the marketing of Bluetooth components.

# 6.6.2 Requirement description

Bluetooth components must pass through the complete Bluetooth qualification process in a reference design configuration documented in an application note.

Bluetooth products incorporating a limitedly licensed Bluetooth component must also pass through the complete Bluetooth qualification process. However, certain tests may be waived if so indicated in the limited Bluetooth License valid for the component.

A component's limited Bluetooth License identifies specific qualification tests that may be considered pre-qualified by an OEM manufacturer using the component in an end-user product. Those specific qualification tests are identified by the BQTF, which performs qualification testing of the Bluetooth component in its reference design. BQTF identifies those tests based on the unique design characteristics of the component in consultation with the manufacturer.

#### 6.6.3 Qualification

A product which includes an integrated Bluetooth component must be qualified as described in Section 6.1 - Section 6.4 above, possibly with some of the tests waived if so indicated in the limited Bluetooth License valid for the component.

page 836 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 7 BLUETOOTH LICENSE PROVISIONS FOR EARLY PRODUCTS

The process and conditions for qualifying early products (that may contain reasonable deviations from the Bluetooth specification) will be defined and published on the Bluetooth web site.

Bluetooth Compliance Requirements

Bluetooth.

# 8 BLUETOOTH BRAND LICENSE PROVISIONS FOR SPECIAL PRODUCTS & MARKETING

This section defines the requirements for using the Bluetooth Brand elements for special products and marketing.

# 8.1 BLUETOOTH DEVELOPMENT TOOLS AND DEMOS

### 8.1.1 Definition of 'Bluetooth Development tools and demos'

Bluetooth Development tools and demos are products intended either for developing commercial Bluetooth products or for demonstrating the Bluetooth technology in a certain application. Neither one may be sold to ordinary consumers.

# 8.1.2 Requirement description

The manufacturer and/or seller of these products shall clearly inform the targeted audience/customer that the products are for development and/or demonstration purpose only, and that they have not been qualified to the Bluetooth specification.

### 8.1.3 Qualification

Qualification testing by a BQTF is not required. Qualification is based upon the applicant's declaration of compliance with the Specification and Brand Book.

#### 8.2 MARKETING

The Bluetooth Brand elements may be used for general marketing and product announcements. The rules of the Bluetooth Brand Book must be followed.

If the Bluetooth Brand is used on a give-away item, where it is not obvious to everyone that the product doesn't contain a Bluetooth radio, then a clear disclaimer has to be displayed on the product (e.g. a give-away calculator with the Bluetooth brand must have a visible disclaimer since the idea of calculators with in-built Bluetooth actually makes sense).

page 838 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 9 RECOMMENDATIONS CONCERNING INFORMATION ABOUT A PRODUCT'S BLUETOOTH CAPABILITIES

In addition to the requirements set forth in the Brand Book, it is recommended that at least the following pieces of information are provided for the market and the end-user:

- The Bluetooth capabilities of the product should be stated, at least in brief, on the product box.
- The user's manual (or corresponding information) should contain a section
  where all the Bluetooth capabilities are described. A list of qualified standard
  profiles using the profile names listed in Appendix B should be contained. If
  applicable, revision numbers of the implemented profiles shall be included.
  For early products a list of interoperable products instead of profiles should
  be contained.

Important places for end-user information are user's manuals (user guides), leaflets, boxes and other advertisement material.

An example of information in a user's manual can be found in Appendix A on page 840.

It is important that new profiles, not sanctioned by the Bluetooth SIG, cannot be mistaken for profiles contained in the Bluetooth specification. In case of new profiles it is important that the manufacturer inform the market and the end user about what other *products* that interoperability can be expected with.

page 839 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 10 QUALITY MANAGEMENT, CONFIGURATION MANAGEMENT AND VERSION CONTROL

Each manufacturer is responsible for keeping a high quality level when massproducing an approved product. Products that are put on the market shall meet the requirements for which the product has been qualified.

A Bluetooth Qualification covers specific product hardware and software versions. The product's manufacturer is responsible for ensuring that all production units perform identically to the qualified version, by maintaining appropriate quality management and configuration management programs.

Major hardware or software modifications related to the Bluetooth part of a qualified product, shall be documented and submitted to the BQB for review. Based on the manufacturer's representations, the BQB may certify that the product requires no further testing and allow the license to be updated to include the new version. In other cases, the BQB may identify a limited subset of tests that must be performed by a BQTF to qualify the new version.

Addition of Bluetooth capabilities requires a new qualification of the product.

page 840 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# 11 APPENDIX A – EXAMPLE OF A "BLUETOOTH CAPABILITY STATEMENT"

| This is an example of a Bluetooth Capability Statement in a User's Manual.                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bluetooth Capability Statement                                                                                                                                                                                                  |
| This product is manufactured to meet the Bluetooth Specification 1.0. The following Bluetooth functions are supported:                                                                                                          |
| Service Discovery                                                                                                                                                                                                               |
| Cordless Telephony                                                                                                                                                                                                              |
| Local Telephony                                                                                                                                                                                                                 |
| Headset                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                 |
| The profiles normally use roles. In most cases it is obvious which role a certain product has implemented. Where doubt or misunderstanding could arise, the implemented role shall be explicitly stated after the profile name. |

Bluetooth Compliance Requirements

Bluetooth.

# 12 APPENDIX B - MARKETING NAMES OF BLUETOOTH PROFILES

Bluetooth uses profiles to ensure interoperability between products and brands. The profile specifications are technical documents. In the marketing communication it is strongly recommended to use the names listed in Table 12.1.

| Profile name               | Marketing name       | Comments  |
|----------------------------|----------------------|-----------|
| Generic Access             | Generic Access       | Mandatory |
| Service Discovery          | Service Discovery    |           |
| Cordless Telephony         | Cordless Telephony   |           |
| Intercom                   | Local Telephony      |           |
| Headset                    | Headset              |           |
| Speaker phone              | Speakerphone         |           |
| Dial-up networking         | Modem                |           |
| Fax                        | Fax                  |           |
| LAN Access                 | Network access point |           |
| Conferencing               | Conferencing         |           |
| Serial port                | Serial port          |           |
| Generic Object Exchange    | Object Exchange      |           |
| Object Push                | Object push          |           |
| File Transfer and Browsing | Data sharing         |           |
| Synchronization            | Synchronization      |           |

Table 12.1: Marketing names for Bluetooth profiles

## **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 842 of 1082

Bluetooth Compliance Requirements

Bluetooth.

# Part I:3

# **TEST CONTROL INTERFACE**

This document describes the Bluetooth Test Control Interface (TCI). The TCI provides a uniform method of accessing the upper interface of the System Under Test (SUT) and/or the Implementation Under Test (IUT).

# **ATTACHMENT H**

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 844 of 1082

Test Control Interface

Bluetooth.

#### Test Control Interface

# Bluetooth.

# **CONTENTS**

| Intro | duction   |                                      | 847 |
|-------|-----------|--------------------------------------|-----|
| 1.1   | Terms l   | Used                                 | 847 |
| 1.2   | The ne    | eds for a unified test interface     | 847 |
| 1.3   | Usage     | of the interface                     | 848 |
| Gen   | eral Desc | cription                             | 849 |
| 2.1   | Baseba    | and and Link Management verification | 849 |
| 2.2   | HCI vei   | rification                           | 851 |
| 2.3   | L2CAP     | verification                         | 852 |
| Test  | Configu   | rations                              | 854 |
| 3.1   | Bluetoc   | oth RF Link requirements             | 854 |
|       | 3.1.1     | Required Interface(s)                | 854 |
| 3.2   | Bluetoc   | oth protocol requirements            | 854 |
|       | 3.2.1     | Required Interface(s)                | 855 |
| 3.3   | Bluetoc   | oth profile requirements             | 855 |
|       | 3.3.1     | Required Interface(s)                | 855 |
| TCI-  | L2CAP S   | Specification                        | 856 |
| 4.1   |           |                                      |     |
|       | 4.1.1     | Connect Indication                   | 856 |
|       | 4.1.2     | Configuration Indication             | 857 |
|       | 4.1.3     | Disconnect Indication                | 857 |
|       | 4.1.4     | Violation Indication                 | 857 |
| 4.2   | Comma     | ands                                 | 857 |
|       | 4.2.1     | Connection Establishment             | 858 |
|       | 4.2.2     | Connect Response                     | 859 |
|       | 4.2.3     | Connection Release (Disconnect)      | 859 |
|       | 4.2.4     | Configuration                        | 859 |
|       | 4.2.5     | Configure Response                   | 860 |
|       | 4.2.6     | Disable Connectionless Traffic       | 860 |
|       | 4.2.7     | Enable Connectionless Traffic        | 860 |
|       | 4.2.8     | Group Create                         | 860 |
|       | 4.2.9     | Group Close                          | 861 |
|       | 4.2.10    | Group Add Member                     | 861 |
|       | 4.2.11    | Group Remove Member                  | 862 |
|       | 4.2.12    | Group Membership                     | 862 |
|       | 4.2.13    | Ping                                 | 862 |
|       | 1211      | Cot Info                             | 060 |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 846 of 1082

| Test Control Interface |     | Bluetooth |         |     |
|------------------------|-----|-----------|---------|-----|
|                        | 4.3 | Data T    | ransfer | 863 |
|                        |     | 4.3.1     | Write   | 863 |
|                        |     | 4.3.2     | Read    | 864 |
| 5                      | Δhh | reviatio  | ns.     | 868 |

Test Control Interface

Bluetooth.

### 1 INTRODUCTION

#### 1.1 TERMS USED

**IUT** = Implementation Under Test: An implementation of one or more OSI protocols in an adjacent user/provider relationship, being that part of a real open system which is to be studied by testing.

This term will be used when describing the test concept for Bluetooth accessory products and Bluetooth components. The definition of Bluetooth accessory products and Bluetooth components can be found in Part I:2 / Section 6.5.1 on page 834 and in Part I:2 / Section 6.6.1 on page 834.

**SUT** = System Under Test: The real open system in which the IUT resides. This term will be used when describing the test concept for Bluetooth products.

**TCI** = Test Control Interface: The interface and protocol used by the tester to send and receive commands and messages to and from the upper interface of the SUT/IUT.

#### 1.2 THE NEEDS FOR A UNIFIED TEST INTERFACE

For all Bluetooth accessory products, Bluetooth components and Bluetooth products, protocol testing will be used to verify the implemented functionality in the lowest layers; i.e. conformance testing.

For this type of testing, an upper tester (UT) will be required to completely test the implementation.

In order to shield the tester from having to adopt to each and every implementation of IUTs or SUTs, the use of a standardized control interface is mandated. This concept puts some extra burden upon the manufacturer of the IUT/SUT. The manufacturer must:

- adopt the implementation-dependent interface to the TCI
- supply, with the IUT, the adapter needed (can be HW, SW or FW)

page 848 of 1082

Test Control Interface

Bluetooth.

## 1.3 USAGE OF THE INTERFACE

The Bluetooth Test Control Interface, TCI, will be used when verifying the Bluetooth protocol requirements for a Bluetooth accessory product, Bluetooth component or a Bluetooth product. More specifically, the TCI will be used when verifying implemented functionality of the:

- Baseband layer, BB (the protocol-related part)
- · Link Manager Protocol, LMP
- Logical Link Control and Adaptation Protocol, L2CAP

and, if support of the HCI is claimed by the manufacturer:

Host Control Interface, HCI

Test Control Interface

Bluetooth.

### 2 GENERAL DESCRIPTION

The interface used between the tester and the SUT/IUT will be either of two types:

#### 1. TCI-HCI

This interface is semantically and syntactically identical to the HCI interface described in "Part H:1" on page 517.

#### 2. TCI-L2CAP

This interface is based on the HCI interface, and will be used during verification of the L2CAP layer of the SUT/IUT.

The proposed physical bearer is one of the transport layers specified for the HCI: USB, RS232 or UART, see "Part H:2" on page 759, "Part H:3" on page 775 or "Part H:4" on page 795. However, alternatives do exist. More details will be given in the following sections.

#### 2.1 BASEBAND AND LINK MANAGEMENT VERIFICATION

For the verification of the link control part of the Baseband layer and for the Link Manager layer, the TCI-HCI interface will be used as the interface between the test system and the upper interface of the SUT/IUT. The test system accesses the upper interface of the SUT/IUT by sending HCI commands and receiving HCI events from the SUT/IUT as described in the "Host Controller Interface Functional Specification" on page 517. The supported functionality on the TCI-HCI interface depends on the implemented functionality of the BB and LM layers.

The transport bearer used between the tester and the SUT/IUT can be of either of two types:

- A physical bearer of one of the types USB, RS232 or UART, as defined in Part H:2, Part H:3 or Part H:4. It is recommended to use one of these three physical bearers as transport bearer between the SUT/IUT and the test system.
- 2. A 'software' transfer bearer; i.e. there is no physical connection between the tester and the SUT/IUT. In this case, the manufacturer of the SUT/IUT must supply, when sending in the device for testing, a test software that can be operated by a test operator. The operator will receive instructions from the tester and will execute them on the SUT/IUT. The software must support the same functionality as if using the TCI-HCI with a physical bearer. Use of the 'software' interface must be agreed upon between the manufacturer of the SUT/IUT and the test facility that will perform the verification. The test facilities can themselves specify requirements placed on such an interface.

A schematic example is shown in Figure 2.1 of a possible test configuration for BB and LM verification of Bluetooth products which do not support HCI, and which use a physical transport bearer for the TCI-HCI interface. In this figure,

page 850 of 1082

Test Control Interface

Bluetooth.

the TC (Test Control) Software represents what the manufacturer has to supply with the SUT/IUT when sending it in for verification. The functionality of the TC software is to adapt the implementation-dependent interface to the TCI-HCI interface.

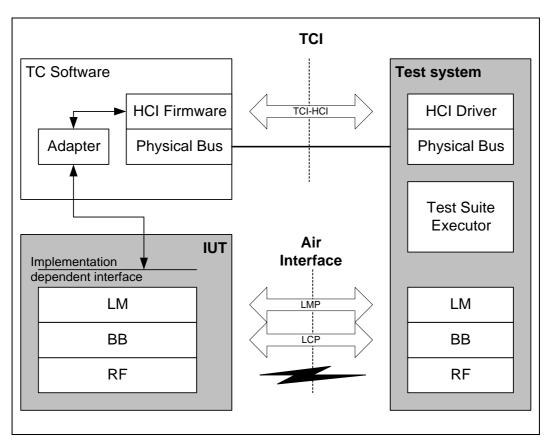



Figure 2.1: Baseband and LM verification without HCI - physical transport bearer

Figure 2.2 shows a schematic example of the test configuration for the same Bluetooth product using a 'software' transfer bearer for the TCI-HCI interface. Here, the role of the TC Software is to represent the application that can be controlled by the test operator.

Test Control Interface

Bluetooth.

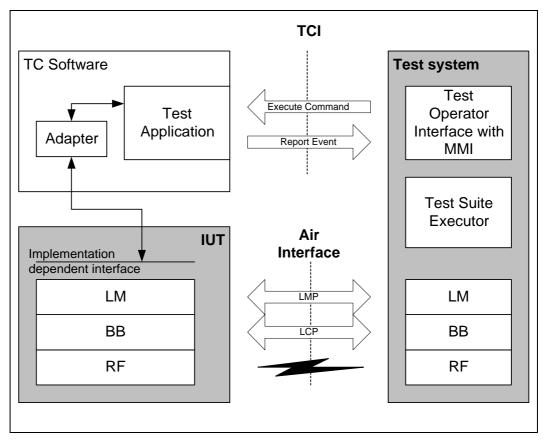



Figure 2.2: Baseband and LM verification without HCI – software transport bearer

#### 2.2 HCI VERIFICATION

The TCI-HCI interface may also be used for HCI signalling verification. The HCI signalling will only be verified if support of the HCI functionality is claimed by the manufacturer.

The transport bearer between the tester and the SUT/IUT shall be one of the types USB, RS232, or UART, as defined in Part H:2, Part H:3 or Part H:4.

A schematic example is shown in Figure 2.3 of one possible test configuration for HCI verification of Bluetooth products, using a physical transport bearer for the TCI-HCI interface. As can be seen from the figure, no extra test control software is needed. Instead, the implemented HCI will be used as the interface to the tester.

Test Control Interface

Bluetooth

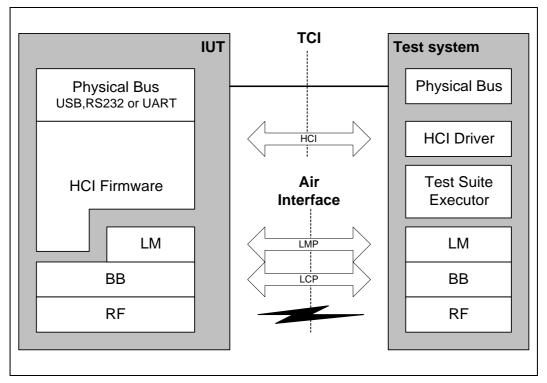



Figure 2.3: HCI verification

#### 2.3 L2CAP VERIFICATION

The TCI-L2CAP interface is based on the HCI and will be used during verification of the L2CAP layer of the SUT/IUT. It uses the general event and command syntax as specified in Part H:1, and the mapping to transport layers is also identical to the ones defined in Part H:2, Part H:3 or Part H:4. Commands and events are defined according to the specified L2CAP service interface. See Part D / Section 7 on page 295.

The defined service primitives in the Logical Link and Control Layer specification, Part D / Section 7 on page 295, will be used as reference. However, the primitives for L2CAP events and commands must be converted into messages of the same format as used for the HCI events and commands. The mapping of the L2CAP events and commands to HCI format is described in Section 4 of this document.

A schematic example is shown in Figure 2.4. of how the test configuration can look for L2CAP verification of Bluetooth products, using a physical transport bearer for the TCI-L2CAP interface. In this figure, the TC (Test Control) Software represents what the manufacturer has to supply with the SUT/IUT when sending it in for verification. The functionality of the TC software is to adapt the implementation-dependent interface to the TCI-L2CAP interface.

Test Control Interface Bluetooth.

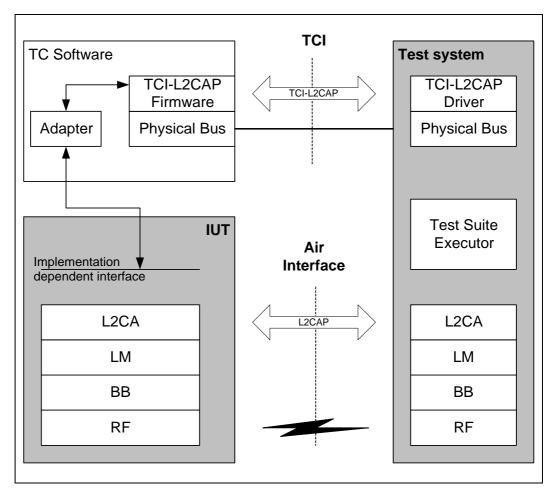



Figure 2.4: L2CAP verification

page 854 of 1082

Test Control Interface

Bluetooth.

## 3 TEST CONFIGURATIONS

This section describes the test configurations that will be used when verifying the different Bluetooth requirements.

#### 3.1 BLUETOOTH RF LINK REQUIREMENTS

For the verification of the Bluetooth RF Link requirements, the defined test mode will be used, see "Part I:1" on page 803.

The Test Specification for the Bluetooth radio link requirements will be based on the Bluetooth specification Parts A and B, and will contain the relevant test instructions that should be carried out on the SUT/IUT.

#### 3.1.1 Required Interface(s)

For this type of verification, only the air interface is required. See Figure 3.1. As stated in Part I:1 / Section 1.2 on page 807, for security reasons, the test mode must be locally enabled. The implementation of this local enabling is not subject to standardization.

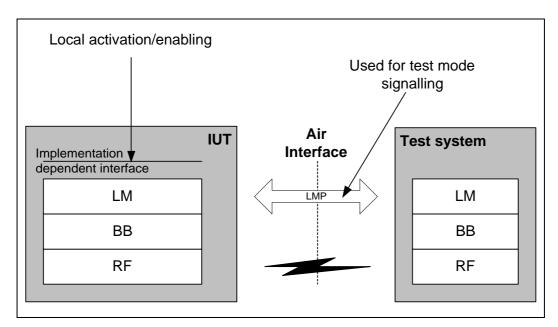



Figure 3.1: Test Configuration for RF link requirement verification

#### 3.2 BLUETOOTH PROTOCOL REQUIREMENTS

Dependent on which Bluetooth layers BB, LM, HCI or L2CAP are implemented in the product sent in for verification, the amount of testing needed to verify the Bluetooth protocol requirements will differ. Also, the TCI used during the verification may be different.

Test Control Interface

Bluetooth.

The Test Specification for the Bluetooth protocol requirements will be based on the Bluetooth specification Part A to Part D and Part H, if applicable, and will contain the relevant test instructions that should be carried out on the SUT/IUT.

#### 3.2.1 Required Interface(s)

For this type of verification, both the air interface of the SUT/IUT and the test control interface are required. The latter will be one of the types described in section 2.

#### 3.3 BLUETOOTH PROFILE REQUIREMENTS

For each profile the Bluetooth product claims to conform to, profile testing will be performed to verify the Bluetooth profile requirements in order to ensure interoperability between products; i.e. interoperability testing.

The Test Specification for the Bluetooth profile requirements will be based on the Bluetooth specification Part K Volume 2, and will contain the relevant test instructions that should be carried out on the SUT.

#### 3.3.1 Required Interface(s)

For this type of verification, both the air interface of the SUT and the supported MMI, as described in the profile, will be used during verification, see Figure 3.2.




Figure 3.2: Test Configuration for Profile requirement verification

page 856 of 1082

Test Control Interface

Bluetooth.

## 4 TCI-L2CAP SPECIFICATION

Note: This specification maps the L2CAP service interface to an appropriate TCI. This section is based on the 0.95b version of the L2CAP specification.

#### 4.1 EVENTS

In the L2CAP service interface, indications are mapped to callback functions. The corresponding response parameters are submitted in the return parameter of these functions. For the TCI, the indications are mapped to events and the responses to commands.

A single event code is reserved for testing purposes: 0xFE. To distinguish the L2CAP events, a parameter 'Event\_ID' is submitted as first parameter. This parameter is a single octet, resulting in 256 possible events. The assignment is given in Table 4.1.

| Event_ID    | L2CAP event          |  |
|-------------|----------------------|--|
| 0x00        | Reserved             |  |
| 0x01        | L2CA_ConnectInd      |  |
| 0x02        | L2CA_ConfigInd       |  |
| 0x03        | L2CA_DisconnectInd   |  |
| 0x04        | L2CA_QoSViolationInd |  |
| 0x05 – 0xFF | Reserved             |  |

Table 4.1: Assignment of event IDs

The events in this test interface follow the HCI syntax as defined in Part H:1 / Section 4.4.2 on page 535.

#### 4.1.1 Connect Indication

| Event           | Event Code | Event Parameters                        |
|-----------------|------------|-----------------------------------------|
| L2CA_ConnectInd | 0xFE       | Event_ID, BD_ADDR, CID, PSM, Identifier |

For more details and the event parameter, see Part D / Section 7.1 on page 295.

page 857 of 1082

Test Control Interface

Bluetooth.

#### 4.1.2 Configuration Indication

| Event          | Event Code | Event Parameters                       |
|----------------|------------|----------------------------------------|
| L2CA_ConfigInd | 0xFE       | Event_ID, CID, OutMTU, InFlow, FlushTO |

For more details and the event parameter, see Part D / Section 7.1 on page 295.

#### 4.1.3 Disconnect Indication

| Event              | Event Code | Event Parameters |
|--------------------|------------|------------------|
| L2CA_DisconnectInd | 0xFE       | Event_ID, CID    |

For more details and the event parameter, see Part D / Section 7.1 on page 295.

#### 4.1.4 Violation Indication

| Event                | Event Code | Event Parameters  |
|----------------------|------------|-------------------|
| L2CA_QoSViolationInd | 0xFE       | Event_ID, BD_ADDR |

For more details and the event parameter, see Part D / Section 7.1 on page 295.

#### 4.2 COMMANDS

The commands in this test interface follow the HCI syntax as defined in Part H:1 / Section 4.4.1 on page 532. The return parameters are sent back using a Command Complete event, see Part H:1 / Section 5.2.14 on page 723 and Part H:1 / Section 4.4.1 on page 532.

To distinguish the commands used for L2CAP testing from HCI commands, a single subgroup is reserved for the L2CAP test interface. Figure 4.1 shows how to code and decode the OpCode field in the HCI command packet used for testing.

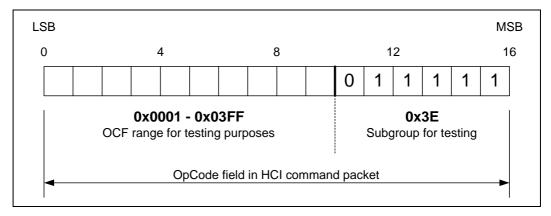



Figure 4.1: HCI Opcode field values used for testing

page 858 of 1082

Test Control Interface

Bluetooth.

The assignment of the OpCode Command Field, OCF, for the L2CAP commands is summarized in Table 4.2. It is also detailed following the table, in a format similar to the HCl specification, see "Part H:1" on page 517.

| OCF             | L2CAP command          |  |
|-----------------|------------------------|--|
| 0x0000          | Reserved               |  |
| 0x0001          | L2CA_ConnectReq        |  |
| 0x0002          | L2CA_DisconnectReq     |  |
| 0x0003          | L2CA_ConfigReq         |  |
| 0x0004          | L2CA_DisableCLT        |  |
| 0x0005          | L2CA_EnableCLT         |  |
| 0x0006          | L2CA_GroupCreate       |  |
| 0x0007          | L2CA_GroupClose        |  |
| 0x0008          | L2CA_GroupAddMember    |  |
| 0x0009          | L2CA_GroupRemoveMember |  |
| 0x000A          | L2CA_GroupMemebership  |  |
| 0x000B          | L2CA_WriteData         |  |
| 0x000C          | L2CA_ReadData          |  |
| 0x000D          | L2CA_Ping              |  |
| 0x000E          | L2CA_GetInfo           |  |
| 0x000F          | Reserved               |  |
| 0x0010          | Reserved               |  |
| 0x0011          | L2CA_ConnectRsp        |  |
| 0x0012          | Reserved               |  |
| 0x0013          | L2CA_ConfigRsp         |  |
| 0x0014 - 0x03FF | Reserved               |  |

Table 4.2: Assignment of Opcode Command Field values

#### 4.2.1 Connection Establishment

| Command         | OCF    | Command Parameters | Return Parameters    |
|-----------------|--------|--------------------|----------------------|
| L2CA_ConnectReq | 0x0001 | PSM, BD_ADDR       | LCID, Result, Status |

page 859 of 1082

Test Control Interface

Bluetooth.

#### Description:

Requests the creation of a channel representing a logical connection to a physical address (for more details and input/output parameter definition see Part D / Section 7.2 on page 296).

#### 4.2.2 Connect Response

| Command         | OCF    | Command Parameters                             | Return Parameters |
|-----------------|--------|------------------------------------------------|-------------------|
| L2CA_ConnectRsp | 0x0011 | BD_ADDR, Identifier,<br>LCID, Response, Status | Result            |

#### Description:

Issues a response to a connection request event indication (for more details and input/output parameters definition see Part D / Section 7.3 on page 298)

#### 4.2.3 Connection Release (Disconnect)

| Command            | OCF    | Command Parameters | Return Parameters |
|--------------------|--------|--------------------|-------------------|
| L2CA_DisconnectReq | 0x0002 | CID                | Result            |

#### Description:

Requests the disconnection of the channel. Input parameter is the *CID* representing the local channel endpoint (for more details and input/output parameter definition see Part D / Section 7.6 on page 302).

#### 4.2.4 Configuration

| Command        | OCF    | Command Parameters                      | Return Parameters                    |
|----------------|--------|-----------------------------------------|--------------------------------------|
| L2CA_ConfigReq | 0x0003 | CID, InMTU, OutFlow,<br>FlushTO, LinkTO | Result, InMTU, Out-<br>Flow, FlushTO |

#### **Description:**

Requests the initial or new configuration of a channel to a new set of channel parameters (for more details and input/output parameter definition see Part D / Section 7.4 on page 299).

page 860 of 1082

Test Control Interface

Bluetooth.

#### 4.2.5 Configure Response

| Command        | OCF    | Command Parameters  | Return Parameters |
|----------------|--------|---------------------|-------------------|
| L2CA_ConfigRsp | 0x0013 | CID, OutMTU, InFlow | Result            |

#### **Description**:

Issues a response to a configuration request event indication (for more details and input/output parameter definition see Part D / Section 7.5 on page 301).

#### 4.2.6 Disable Connectionless Traffic

| Command         | OCF    | Command Parameters | Return Parameters |
|-----------------|--------|--------------------|-------------------|
| L2CA_DisableCLT | 0x0004 | N, List of PSMs    | Result            |

#### **Description**:

For details and input/output parameter definition see Part D / Section 7.16 on page 311.

#### 4.2.7 Enable Connectionless Traffic

| Command        | OCF    | Command Parameters | Return Parameters |
|----------------|--------|--------------------|-------------------|
| L2CA_EnableCLT | 0x0005 | N, List of PSMs    | Result            |

#### **Description**:

For details and input/output parameter definition see Part D / Section 7.17 on page 312.

#### 4.2.8 Group Create

| Command          | OCF    | Command Parameters | Return Parameters |
|------------------|--------|--------------------|-------------------|
| L2CA_GroupCreate | 0x0006 | PSM                | CID               |

page 861 of 1082

Test Control Interface

Bluetooth.

#### **Description:**

Request the creation of a channel identifier to represent a logical connection to multiple devices. On creation, the group is empty (for more details and input/output parameter definition see Part D / Section 7.9 on page 305).

#### 4.2.9 Group Close

| Command         | OCF    | Command Parameters | Return Parameters |
|-----------------|--------|--------------------|-------------------|
| L2CA_GroupClose | 0x0007 | CID                | Result            |

#### Description:

This command closes down a Group (for more details and input/output parameter definition see Part D / Section 7.10 on page 305).

#### 4.2.10 Group Add Member

| Command             | OCF    | Command Parameters | Return Parameters |
|---------------------|--------|--------------------|-------------------|
| L2CA_GroupAddMember | 0x0008 | CID, BD_ADDR       | Result            |

#### Description:

This command adds a member to the group (for more details and input/output parameter definition see Part D / Section 7.11 on page 306).

page 862 of 1082

Test Control Interface

Bluetooth.

#### 4.2.11 Group Remove Member

| Command                | OCF    | Command Parameters | Return Parameters |
|------------------------|--------|--------------------|-------------------|
| L2CA_GroupRemoveMember | 0x0009 | CID, BD_ADDR       | Result            |

### **Description**:

Remove a member from the group (for more details and input/output parameter definition see Part D / Section 7.12 on page 307).

#### 4.2.12 Group Membership

| Command              | OCF    | Command Parameters | Return Parameters         |
|----------------------|--------|--------------------|---------------------------|
| L2CA_GroupMembership | 0x000A | CID                | Result, N,<br>BD_ADDR_Lst |

#### **Description**:

Get report of the members of the group (for more details and input/output parameter definition see Part D / Section 7.13 on page 308).

#### 4.2.13 Ping

| Command   | OCF    | Command Parameters | Return Parameters |
|-----------|--------|--------------------|-------------------|
| L2CA_Ping | 0x000D | BD_ADDR, ECHO_DATA | Result, ECHO_DATA |

#### **Description**:

For more details and input/output parameter definition see Part D / Section 7.14 on page 309.

page 863 of 1082

Test Control Interface

Bluetooth.

#### 4.2.14 Get Info

| Command      | OCF    | Command Parameters | Return Parameters |
|--------------|--------|--------------------|-------------------|
| L2CA_GetInfo | 0x000E | BD_ADDR, InfoType  | Result, InfoData  |

#### **Description**:

For more details and input/output parameter definition see Part D / Section 7.15 on page 310.

#### 4.3 DATA TRANSFER

Data transfer is modelled with read and write functions. Handling is like an L2CAP command.

To be able to send the amount of data that is needed to verify how the L2CAP implementation handles large chunks of data (i.e. segmentation and reassembly), and since it is not possible to use HCI Command packets as well as HCI Event packets to send the data, the use of HCI ACL Data packets will be used. The procedure/signalling used on the TCI-L2CAP interface to transfer data packets will be described with MSCs.

#### 4.3.1 Write

| Command        | OCF    | Command Parameters     | Return Parameters |
|----------------|--------|------------------------|-------------------|
| L2CA_WriteData | 0x000B | CID, Length, OutBuffer | Size, Result      |

#### Description:

Parameters are the CID, the length of the data and the data itself. The data will be sent in a HCI ACL data packets as described in Figure 4.2. For more details and input/output parameter definition see Part D / Section 7.7 on page 303.

page 864 of 1082

Test Control Interface

Bluetooth

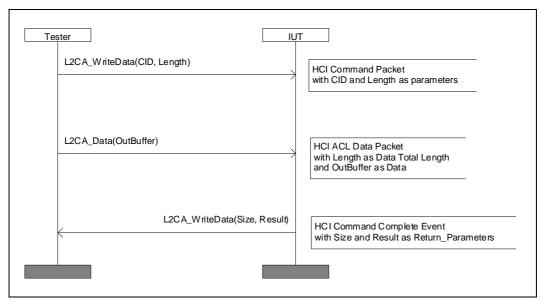



Figure 4.2: MSC showing how to write data to L2CAP

The L2CA\_Data primitive is used as an abstract name for the data transmitted between the Tester and the IUT. The Tester will use Connection Handle 0x0001 for the data and will set the Flags-field to 0x02. The Data Total Length field will contain the length of the OutBuffer.

After the IUT has received the data, it shall send back an HCI Command Complete Event (named L2CAP\_WriteData in the figure) with the N parameter set to 0x01, the OpCode parameter set to the corresponding OCF and subgroup (that is OCF = 0x000B and the subgroup = 0x3E). The Size and Result are sent in the Return\_Parameters field of the HCI ACL Data packet.

#### 4.3.2 Read

| Command       | OCF    | Command Parameters    | Return Parameters |  |
|---------------|--------|-----------------------|-------------------|--|
| L2CA_ReadData | 0x000C | CID, Length, InBuffer | Result            |  |

#### **Description:**

Input parameter is the CID, length and the InBuffer. Output parameters are the result. The data will be sent in HCI ACL data packets as described in Figure 4.3. For more details and input/output parameter definition see Part D / Section 7.8 on page 304).

page 865 of 1082

Test Control Interface Bluetooth

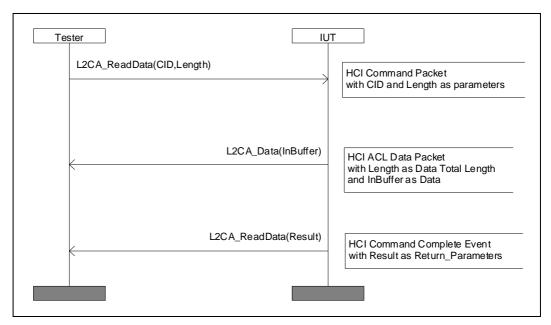
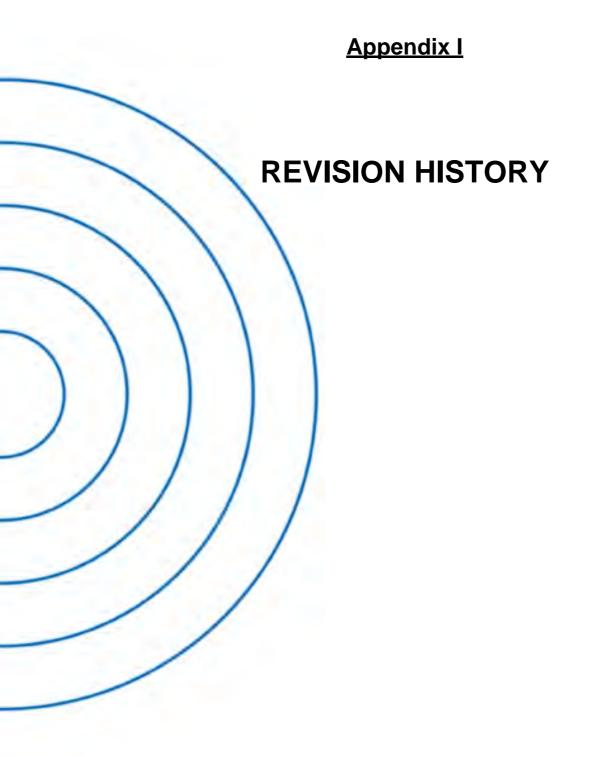



Figure 4.3: MSC showing how to read data from L2CAP

The L2CA\_Data primitive is used as an abstract name for the data transmitted between the Tester and the IUT. The IUT shall use Connection Handle 0x0001 for the data and shall set the Flags-field to 0x02. The Data Total Length field shall contain the length of the InBuffer.

After the IUT has sent the data, it shall send back an HCI Command Complete Event (named L2CAP\_ReadData in the figure) with the N parameter set to 0x01, the OpCode parameter set to the corresponding OCF and subgroup (that is OCF = 0x000C and the subgroup = 0x3E). The Size and Result are sent in the Return\_Parameters field of the HCI ACL Data packet.


page 866 of 1082

Test Control Interface

Bluetooth.

## **5 ABBREVIATIONS**

| ВВ    | BaseBand (see LC)                                                        |
|-------|--------------------------------------------------------------------------|
| FW    | Firmware                                                                 |
| HCI   | Host Controller Interface                                                |
| HW    | Hardware                                                                 |
| IUT   | Implementation Under Test                                                |
| L2CA  | Logical Link Control And Management part of the Bluetooth protocol stack |
| L2CAP | Logical Link Control And Management Protocol                             |
| LC    | Link Controller (or baseband) part of the Bluetooth protocol stack       |
| LCP   | Link Control Protocol                                                    |
| LM    | Link Manager part of the Bluetooth Protocol Stack                        |
| LMP   | Link Management Protocol                                                 |
| MMI   | Man-Machine Interface                                                    |
| OCF   | Opcode Command Field                                                     |
| RF    | Radio part of the Bluetooth protocol stack                               |
| SUT   | System Under Test                                                        |
| SW    | Software                                                                 |
| TC    | Test Control layer for the test interface                                |
| TCI   | Test Control Interface                                                   |
| UART  | Universal Asynchronous receiver Transmitter                              |
| USB   | Universal Serial Bus                                                     |
| UT    | Upper Tester                                                             |
|       |                                                                          |



page 868 of 1082

Appendix I - Revision History

Bluetooth.

# **Revision History**

# Part A / Radio Specification

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8          | Jan<br>21st<br>1999   | <ul> <li>System ambient temperature range</li> <li>Power control step size</li> <li>Transmit Spectrum mask</li> <li>Frequency drift in a packet</li> <li>New paragraph "Receiver susceptibility to frequency drift"</li> <li>Adjacent interference levels</li> <li>Measurement frequency for intermodulation test</li> <li>Maximum useable level defined</li> <li>New paragraph "Reference Interference-Signal Definition"</li> </ul> |
| 0.9          | April<br>30th<br>1999 | <ul><li>Eye-diagram added</li><li>Out-of band blocking included</li><li>RSSI included</li></ul>                                                                                                                                                                                                                                                                                                                                       |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Appendix A and B added, (extreme conditions definition and test conditions)</li> <li>Tolerances of the Eye-diagram added</li> </ul>                                                                                                                                                                                                                                                                                          |
| 1.0B         | Dec<br>1st<br>1999    | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.</li> <li>These corrections and clarifications are marked with correction bars.</li> </ul>                                                                                                                                                                                                                  |

# Part B / Baseband Specification

| Rev          | Date                | Comments                                                                                                                                                                                                             |
|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.7          | Oct<br>19th<br>1998 | <ul> <li>Minor changes in chapter 1-9.</li> <li>"Link Monitoring" chapter removed (chapter 12 in v0.6).</li> <li>Most parts of chapter 10 - 14 re-written.</li> </ul>                                                |
| 0.8          | Jan<br>21st<br>1999 | <ul> <li>Some editorial changes in chapter 1-13.</li> <li>Chapter 14 revised and partly re-written.</li> </ul>                                                                                                       |
| 1.0<br>draft | July<br>5th<br>1999 | Please see revision bars in document.                                                                                                                                                                                |
| 1.0B         | Dec<br>1st<br>1999  | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.</li> <li>These corrections and clarifications are marked with correction bars.</li> </ul> |

Bluetooth.

## Part C / Link Manager Protocol

| Rev | Date                | <ul> <li>Comments</li> <li>EEE address ⇒ BD_ADDR (or BD address)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.7 | Oct<br>19th<br>1998 | <ul> <li>M_ADDR ⇒ AM_ADDR</li> <li>response nbr ⇒ PM_ADDR</li> <li>Added section 3.1.4</li> <li>Added section 3.5 "Encryption". Added negotiation for encryption mode and encryption key size.</li> <li>3.14 "Sniff mode". Removed author's note in italic. It is now decided how to determine the first sniff slot.</li> <li>3.15 "Park mode". This section is totally changed.</li> <li>3.18 "Quality of Service". Added a parameter N<sub>BC</sub> in one of the LMP messages.</li> <li>3.19 "SCO links". Removed author's note in italic. It is now decided how to determine the first SCO slot.</li> <li>Added section 4 "Connection establishment"</li> <li>5.1 "Description of parameters" The length, type and unit of many parameters changed. Especially, all time-parameters are now measured in slots.</li> <li>Added section 6 "Test modes"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.8 | Jan<br>21st<br>1999 | <ul> <li>general: Changed "PDU nbr" to OpCode throughout the document. Two errors found in 0.80 were corrected. Table5.1: It says that the length of LMP_SCO_link_req is 7. This should be 8. Table 5.2: It says that the length of hold_time is 1. This should be 2.</li> <li>2. Added transactionID in bit0 of the byte in the payload where we have the OpCode.</li> <li>3.1 Removed LMP_accepted/not_accepted after receiving LMP_sres (3.1).</li> <li>3.1.2 Removed the last sentence "It the claimant is Ö initiate pairing, see 3.2.1"</li> <li>3.2 Major change since the initiator of the pairing procedure does not have to be the master.</li> <li>3.2.3 Minor clarification.</li> <li>3.3 Clearified that if the unit key is changed, the units must go through the initialisation procedure in order to change the link key.</li> <li>3.5.3 Modified the calculation of Kc according to changes in chapter 14 of the Baseband Specification.</li> <li>3.10 Switch can now be done anytime during the connection and it can be initiated by both master and slave.</li> <li>3.15 Clearified that the broadcast scan window is only valid for the current beacon.</li> <li>3.19.5 Added description that the PDU includes a reason parameter with information about why the SCO link is removed.</li> <li>3.21 This section was removed. Instead error handling is described in a separate chapter (CH. 7)</li> <li>4. Added LMP_host_connection_req and removed the LMP_accepted or LMP_not_accepted that the slave sends after the paging procedure.</li> <li>5.1 Added reason "invalid parameters"</li> <li>6. Added sequences. The slave can return LMP_not_accepted if not allowed to enter test or if not in test mode. Changed OpCodes for the two test mode PDU</li> </ul> |

# Bluetooth.

| 0.9          | April<br>30th<br>1999 | <ul> <li>Name request procedure: Coding of the characters was changed from ASCII to UTF-8. The length of the name parameter was increased from 16 bytes to 248 bytes.</li> <li>The detach reason and the reason parameter were merged into one parameter (reason). The coding of this parameter was changed and is now the same as in HCI.</li> <li>Sniff procedure: Sniff interval and sniff offset parameters were changed from one byte to two bytes. Two parameters, sniff offset and sniff timeout, were also added.</li> <li>The PDU LMP_slot_offset was added.</li> <li>The PDU LMP_page_mode_req was added.</li> <li>The PDU LMP_page_scan_mode_req was added.</li> <li>Caption text was added to all figures, tables and sequences where such text was missing.</li> <li>A maximum reply time was defined for response messages in LMP procedures.</li> <li>The pairing procedure was modified to allow a claimant with fixed PIN to request to become verifier.</li> <li>Changed some parameters in LMP_test_control to match the latest revision of "Bluetooth test modes".</li> <li>The PDU LMP_supervision_timeout was added.</li> <li>The parameter user data rate was removed from the PDU LMP_SCO_link request.</li> <li>The length of the parameters Compld and SubVersNr included in the PDU LMP_version_req/res was increased to two bytes.</li> <li>Some editorial changes and clarifications were made here and there.</li> </ul> |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Added figure 3 explaining sequence diagram conventions (Section 3).</li> <li>Modified procedure to negotiate encryption key size to match changes in the Baseband specification (Section 3.6.2).</li> <li>Added further description about the parameters in the version request (Section 3.10).</li> <li>Clearified name request procedure and changed parameter name from "name" to "name fragment" (Section 3.13).</li> <li>Added description that test mode can also be ended by sending LMP_test_control (Section 6.1).</li> <li>Some editorial comments.</li> <li>Decoupled RSSI and power control in the features parameter. Changed parameter "TBD" to "for future use".</li> <li>Rewrote Section 3.20.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0a         | July<br>26th<br>1999  | Correction of Table 5.3:     Byte 1/Bit 1 "and power control" deleted     Byte 2/Bit 2 "power control" added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0B         | Dec<br>1st<br>1999    | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.         These corrections and clarifications are marked with correction bars.     </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Bluetooth.

# Part D Logical Link Control and Adaptation Protocol Specification

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8          | Jan<br>21st<br>1999   | <ul> <li>Changes include the addition of an operational overview section, increasing CID lengths to 16 bits and removing the source CID from normal data flow. Moved all connection, termination, and configuration commands to a separate "CID". Changed the name of the "Connection ID" to the "Channel ID".</li> <li>Added the state machine</li> <li>Re-defined the timers to more clearly indicate their responsibilities. New Flags field in Configuration Request packet defined.</li> <li>Several minor editorial corrections.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.9          | April<br>30th<br>1999 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Replaced all references to "termination" with "disconnection". KTX timer removed - link loss results in channel loss. OSI naming terms applied to state machine. State machine table revised to remove superfluous states. Added some message sequence charts for clarification. Service interface defined in more detail and no longer specified as a guideline - this interface still needs work to complete.</li> <li>Service interface revised corrections to state machine added, and security key management removed from service interface.</li> <li>Editorial cleanup of various sections with the majority of the edits being in the state machine and service interface.</li> <li>Added L2CA_Response service primitives. Clean up of state machined, closed outstanding issues dealing with MTU,</li> <li>Implements major editorial changes to the configuration process (section 6.3), replacing SCID and DCID with RCID and LCID, removal of flush signalling PDU, and editorial comments from reviewers.</li> </ul> |
| 1.0B         | Dec<br>1st<br>1999    | Revised from a linguistic point of view.     Errata items previously published on the web has been included.     These corrections and clarifications are marked with correction bars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Bluetooth.

# Part E / Service Discovery Protocol (SDP)

| Rev          | Date                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>draft | July<br>5th<br>1999 | <ul> <li>Removed the Icon10 attribute and the Icon data element type. Reassigned the IconURL attribute ID to be 0x000C. Updated Example 3. Removed "notes to reviewers". Removed the list of TBD items, since it is empty.</li> <li>A few corrections to example 3. Modified the BluetoothProfileList attribute to become the BluetoothProfileDescriptorList attribute, which contains a version number for each profile as well as the profile's UUID</li> <li>Added a description of the protocol version number included in the BluetoothProfileDescriptorList attribute. No change to the 'phonebook' and 'calendar' data store indicators as the values in example 3 already match those of the synchronization profile. Replaced the browse hierarchy diagram in 2.8.1 because the previous version triggered a bug in MS-Word.</li> </ul> |
| 1.0B         | Dec<br>1st<br>1999  | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included. These corrections and clarifications are marked with correction bars.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## Part F:1 / RFCOMM with TS 0710

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8          | Jan<br>21st<br>1999   | <ul> <li>Table 2.1 corrected.</li> <li>Revised section 2.3.</li> <li>Revised chapter 3.</li> <li>Revised section 5.2, 5.3.</li> <li>Clarifications added to Figure 5.1.</li> <li>Changed title and contents of section 5.4 (old section 5.4 not needed any more).</li> <li>Text removed from section 5.5 and 5.6.</li> <li>Added text on Service Discovery in section 7.3.</li> </ul>                                                                                                                   |
| 0.9          | April<br>30th<br>1999 | <ul> <li>Lots of editorial changes and clarifications.</li> <li>Added statement on baud rate settings vs. RFCOMM throughput in chapter 2.</li> <li>Removed section 7.2 on flow control (information duplicated in TS 07.10).</li> <li>Added DLC parameter negotiation command support (section 4.3, 5.7)</li> <li>Added clarifications on session closure handling in section 5.2.</li> <li>Major update regarding SDP; section 7.2.</li> <li>Added section 7.3 on lower layer dependencies.</li> </ul> |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Editorial changes and clarifications in chapters 5 and 7.</li> <li>Removed sections implying possibility to have more than one RFCOMM entity in a device.</li> </ul>                                                                                                                                                                                                                                                                                                                           |
| 1.0B         | Dec<br>1st<br>1999    | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.</li> <li>These corrections and clarifications are marked with correction bars.</li> </ul>                                                                                                                                                                                                                                                                                    |

Bluetooth.

## Part F:2 / IrDA Interoperability

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9          | April<br>30th<br>1999 | <ul> <li>Many linguistical changes made, Bluetooth OBEX related specifications chapter added, Separate Application profile chapters gathered into one chapter, OBEX operation requirements moved into the profile specifications, Refers to COMM-ports removed.</li> <li>Service Records moved into the profile specifications, and added clarification for the use of connection-oriented OBEX</li> </ul> |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Changed reference to new version of IrOBEX specification, corrected wrong TCP port number, reference list updated</li> <li>Updated Chapter 3.2</li> </ul>                                                                                                                                                                                                                                         |
| 1.0B         | Dec<br>1st<br>1999    | Revised from a linguistic point of view.                                                                                                                                                                                                                                                                                                                                                                   |

## Part F:3 / Telephony Control Specification (TCS)

| Rev          | Date                | Comments                                                                                                                                                                                                                                                                         |
|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>draft | July<br>5th<br>1999 | Version for 1.0 Release, only editorial changes since 0.9                                                                                                                                                                                                                        |
| 1.0B         | Dec<br>1st<br>1999  | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.         These corrections and clarifications are marked with correction bars.         Figure A and Figure B in Appendix are replaced.     </li> </ul> |

## Part F:4 Interoperability Requirements for Bluetooth as a WAP Bearer

| Rev  | Date               | Comments                                 |
|------|--------------------|------------------------------------------|
| 1.0B | Dec<br>1st<br>1999 | Revised from a linguistic point of view. |

Bluetooth.

# Part H:1 Bluetooth Host Controller Interface Functional Specification

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8          | Jan<br>21st<br>1999   | Many editorial corrections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9          | April<br>30th<br>1999 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Flow control for data changed.</li> <li>Format of HCl Data Packet header changed.</li> <li>Command Pending Event replaced by Command Status Event and functionality regarding which event should be returned when a command involving LMP actions can not start to execute due to an error changed.</li> <li>Some commands and events have been renamed.</li> <li>Changed parameters, descriptions and functionality for many commands and events.</li> <li>Many new commands have been added.</li> <li>HCl_Store_Clock_Offset command has been removed. This information is now provided at connection set up or name request as a parameter together with other new baseband related parameters.</li> <li>Some new events have been added.</li> <li>Descriptions of error codes added.</li> </ul> |
| 1.0B         | Dec<br>1st<br>1999    | Revised from a linguistic point of view.     Errata items previously published on the web has been included.     These corrections and clarifications are marked with correction bars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# Part H:2 / HCI USB Transport Layer

| Rev          | Date                  | Comments                                                                                                                                                                                                                 |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8          | Jan<br>21st<br>1999   | <ul> <li>Added info about 64 byte isochronous endpoints.</li> <li>Added a section detailing one of the mail messages - that discussed how<br/>SCO traffic would travel across the interface</li> </ul>                   |
| 0.9          | April<br>30th<br>1999 | <ul> <li>Updated revision # &amp; HCI Header sizes</li> <li>•</li> </ul>                                                                                                                                                 |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Updated endpoint information, interface information relating to isoch, and Device Firmware Upgrade Requirements</li> <li>Tidied up table describing interface/endpoint/alternate setting information</li> </ul> |
| 1.0B         | Dec<br>1st<br>1999    | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.</li> <li>These corrections and clarifications are marked with correction bars.</li> </ul>     |

Bluetooth.

## Part H:3 / HCI RS232 Transport Layer

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9          | April<br>30th<br>1999 | <ul> <li>Assumption about error free link has been removed.</li> <li>A simple error recovery, negotiation scheme and a resynchronisation/error indication scheme using RTS/CTS were added as proposed by IBM.</li> <li>New document outline.</li> <li>Added synchronisation using delimiters with COBS.</li> <li>Added a support for CCITT-CRC.</li> <li>Available Baud Rate Changed.</li> <li>Only 8 bit data length is valid.</li> <li>HCI Event packet type is added.</li> <li>Available error type has been modified.</li> <li>Editorial changes.</li> </ul> |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Assumption about error free link has been removed.</li> <li>A simple error recovery, negotiation scheme and a resynchronisation/error indication scheme using RTS/CTS were added.</li> <li>New document outline.</li> <li>Added synchronisation using delimiters with COBS.</li> <li>Added a support for CCITT-CRC</li> <li>Available Baud Rate Changed.</li> <li>Only 8 bit data length is valid.</li> <li>HCI Event packet type is added.</li> <li>Available error type has been modified.</li> <li>Editorial changes.</li> </ul>                     |
| 1.0B         | Dec<br>1st<br>1999    | Revised from a linguistic point of view.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Part H:4 HCI UART Transport Layer

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                             |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9          | April<br>30th<br>1999 | <ul> <li>was not a part of 0.8</li> <li>First revision. Based on HCI RS232 Transport Layer 0.80.</li> <li>Added Default Settings, HW flow control and Error Recovery.</li> <li>Improved description of RTS/CTS</li> <li>Changed HCI packet indicator for HCI event packet</li> </ul> |
| 1.0<br>draft | July<br>5th<br>1999   | No changes since 0.9                                                                                                                                                                                                                                                                 |
| 1.0B         | Dec<br>1st<br>1999    | Revised from a linguistic point of view.                                                                                                                                                                                                                                             |

Appendix I - Revision History

Bluetooth.

#### Part I:1 / Test Mode

| Rev          | Date                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.9          | April<br>30th<br>1999 | <ul> <li>Transmitter Test: added pseudorandom bit sequence</li> <li>Corresponding changes for LMP messages</li> <li>Editorial Changes:     Explanatory paragraph and figure added to the test packet format of the transmitter test</li> <li>Proposal of a loopback alternative that has less demanding time constraints.</li> <li>Reduced Hopping Sequence added</li> <li>Modification/Clearification of TX packet format</li> <li>Editorial changes</li> <li>Statement in introduction that test mode may be used also for regulatory approval.</li> <li>Description of delayed loopback added</li> <li>proposed timing for reduced hopping scheme from Ericsson</li> <li>timing for reduced hopping scheme refined</li> <li>Loopback: transmission of NULL packet on failed HEC is not mandatory.</li> <li>Added AUX1 packet explicitely to Figure 3</li> <li>Included AUX1 to Table 3</li> <li>Mentioned delayed loopback in first paragraph of Section 2.2</li> <li>Features request command is allowed, while in test mode.</li> <li>Added codes for LMP packets according to LMP V0.9 review document Changed maximum packet length in Table 3</li> <li>FH timing: clearify that clock of tester is used</li> <li>editorial changes</li> <li>Clearifications about Whitening for both TX and Loopback mode</li> <li>Clearification that RX and TX in the control command refer to the DUT.</li> <li>Clearification in Table 3: For ACL packets a maximum length is given, for HV3 the exact length is given.</li> <li>Editorial Changes</li> </ul> |  |
| 1.0<br>draft | July<br>5th<br>1999   | <ul> <li>Description over use of whitening in transmitter test mode.</li> <li>Added an exit command in the test mode control.</li> <li>Editorial changes to whitening in transmitter test.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1.0B         | Dec<br>1st<br>1999    | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.<br/>These corrections and clarifications are marked with correction bars.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

# **Part I:2 Bluetooth Compliance Requirements**

| Rev  | Date                 | Comments                                                                                         |
|------|----------------------|--------------------------------------------------------------------------------------------------|
| 1.0A | July<br>26th<br>1999 | The text in Section 6.6.1 "Definition of Bluetooth components" first paragraph has been revised. |
| 1.0B | Dec<br>1st<br>1999   | Revised from a linguistic point of view.                                                         |

Appendix I - Revision History

Bluetooth.

#### Part I:3 Test Control Interface

| Rev  | Date               | Comments                                 |
|------|--------------------|------------------------------------------|
| 1.0B | Dec<br>1st<br>1999 | Revised from a linguistic point of view. |

#### **Appendix IV / Sample Data**

| Rev  | Date               | Comments                                 |
|------|--------------------|------------------------------------------|
| 1.0B | Dec<br>1st<br>1999 | Revised from a linguistic point of view. |

#### Appendix V / Bluetooth Audio

| Rev  | Date               | Comments                                 |
|------|--------------------|------------------------------------------|
| 1.0B | Dec<br>1st<br>1999 | Revised from a linguistic point of view. |

#### **Appendix VI / Baseband Timers**

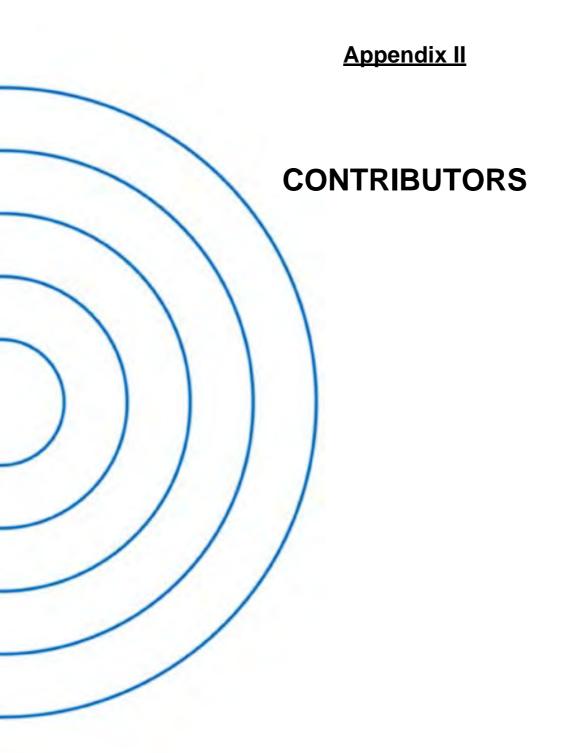
| Rev  | Date               | Comments                                                                                                                                                                                                        |  |
|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.0B | Dec<br>1st<br>1999 | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.<br/>These corrections and clarifications are marked with correction bars.</li> </ul> |  |

### **Appendix VII /Optional Paging Scheme**

| Re  | v Date             | Comments                                 |
|-----|--------------------|------------------------------------------|
| 1.0 | Dec<br>1st<br>1999 | Revised from a linguistic point of view. |

### **Appendix VIII / Bluetooth Assigned Numbers**

| Rev          | Date                | Comments                                                                                                                                                                                                                                                                                                                                  |  |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.0<br>draft | July<br>5th<br>1999 | <ul> <li>Renamed some of the service class mnemonics. Added a bit to indicate if a node is in Limited Discoverable Mode (useful in a reply to GIAC).</li> <li>Updated after review. Added the IAC LAP codes.</li> <li>Minor editoral and clarifications, including section "Universally Unique Identifier (UUID) short forms".</li> </ul> |  |
| 1.0B         | Dec<br>1st<br>1999  | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included.</li> <li>These corrections and clarifications are marked with correction bars.</li> </ul>                                                                                                                      |  |


page 878 of 1082

Appendix I - Revision History

Bluetooth..

## **Appendix IX / Message Sequence Charts**

| Rev          | Date                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.0<br>draft | July<br>5th<br>1999 | <ul> <li>Command and Parameter updated; Chapter 7 added; Local- and Remote Hold-Mode removed; Chapter 8 clarified; No HCI-Num-Completed-Packets-Event in ACL- and SCO-Connection creation; LMP-feature-req/-res added in ACL-Connection-Setup; LMP-feature-req/-res removed in SCO-Connection-Setup</li> <li>MSC "Onetime-Inquiry" and "Periodic-Inquiry" clarified with additional ID-Packet;</li> <li>MSC "Local Loopback-Mode" exited with HCI_Write_Loopback_Mode instead with HCI_Reset;</li> <li>MSC "Remote Loopback-Mode" exited with HCI_Write_Loopback_Mode instead with HCI_Reset;</li> <li>MSC "Switch Role" updated with LMP_clkoffset_req/-res and LMP_slot_offset;</li> <li>Editorial changes;</li> <li>MSC "Switch Role": subscenario 2 added; Modified as Toru's proposal;</li> <li>MSC "ACL-Connection Request": slot-offset and clock-offset exchange subscenario3;</li> <li>Figure 4: no loopback to Page/Page-Res in case of Role-Switch;</li> <li>LMP_features_req/-res: added in MSC "Pairing" and MSC "Authentication", removed in MSC "Encryption and Setup Complete";</li> <li>MSC "Local Loopback Mode": two additional SCO-Connections added;</li> </ul> |  |
| 1.0B         | Dec<br>1st<br>1999  | <ul> <li>Revised from a linguistic point of view.</li> <li>Errata items previously published on the web has been included. These corrections and clarifications are marked with correction bars. The following figures are modified: 3.2, 3.3, 4.3 and 4.9</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



## **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 880 of 1082

Appendix II - Contributors

Bluetooth.

#### **Contributors**

#### Part A / Radio Specification

| Sven Mattisson    | Ericsson Mobile Communications AB |
|-------------------|-----------------------------------|
| Lars Nord (owner) | Ericsson Mobile Communications AB |
| Anders Svensson   | Ericsson Mobile Communications AB |
| Paul Burgess      | Nokia Mobile Phones               |
| Olaf Joeressen    | Nokia Mobile Phones               |
| Thomas Muller     | Nokia Mobile Phones               |
| Troy Beukema      | IBM Corporation                   |
| Brian Gaucher     | IBM Corporation                   |
| Allen Huotari     | Toshiba Corporation               |

#### Part B / Baseband Specification

| Ayse Findikli         | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Jaap Haartsen (owner) | Ericsson Mobile Communications AB |
| Joakim Persson        | Ericsson Mobile Communications AB |
| Chatschik Bisdikian   | IBM Corp.                         |
| Kris Fleming          | Intel Corp.                       |
| Olaf Joeressen        | Nokia Mobile Phones               |
| Thomas Muller         | Nokia Mobile Phones               |

#### Part C / Link Manager Protocol

| Johannes Elg         | Ericsson Mobile Communications AB |
|----------------------|-----------------------------------|
| Jaap Haartsen        | Ericsson Mobile Communications AB |
| Tobias Melin (owner) | Ericsson Mobile Communications AB |
| Chatschik Bisdikian  | IBM Corporation                   |
| Kris Fleming         | Intel Corporation                 |
| Thomas Busse         | Nokia Mobile Phones               |
| Olaf Joeressen       | Nokia Mobile Phones               |
| Thomas Müller        | Nokia Mobile Phones               |
| Dong Nguyen          | Nokia Mobile Phones               |

Bluetooth...

# Part D Logical Link Control and Adaptation Protocol Specification

| Burgess, Jon         | зсом                              |
|----------------------|-----------------------------------|
| Moran, Paul          | зсом                              |
| Elg, Johannes        | Ericsson Mobile Communications AB |
| Haartsen, Jaap       | Ericsson Mobile Communications AB |
| Nilsson, Ingemar     | Ericsson Mobile Communications AB |
| Runesson, Stefan     | Ericsson Mobile Communications AB |
| Slot, Gerrit         | Ericsson Mobile Communications AB |
| Sörensen, Johan      | Ericsson Mobile Communications AB |
| Svennarp, Goran      | Ericsson Mobile Communications AB |
| Aihara, Tohru        | IBM Corporation                   |
| Bisdikian, Chatschik | IBM Corporation                   |
| Fleming, Kris        | Intel Corporation                 |
| Gadamsetty, Uma      | Intel Corporation                 |
| Hunter, Robert       | Intel Corporation                 |
| Inouye, Jon (owner)  | Intel Corporation                 |
| Lo, Steve C.         | Intel Corporation                 |
| Zhu, Chunrong        | Intel Corporation                 |
| Busse, Thomas        | Nokia Mobile Phones               |
| Makinen, Rauno       | Nokia Mobile Phones               |
| Müller, Thomas       | Nokia Mobile Phones               |
| Nykänen, Petri       | Nokia Mobile Phones               |
| Ollikainen, Peter    | Nokia Mobile Phones               |
| Kinoshita, Katsuhiro | Toshiba Corporation               |

Bluetooth.

### Part E Service Discovery Protocol (SDP)

| Plasson, Ned             | 3Com        |
|--------------------------|-------------|
| Avery, John              | Convergence |
| Kronz, Jason             | Convergence |
| Elg, Johannes            | Ericsson    |
| Bisdikian, Chatschik     | IBM         |
| Kermani, Parviz          | IBM         |
| Miller, Brent            | IBM         |
| Osterman, Dick           | IBM         |
| Inouye, Jon              | Intel       |
| Kambhatla, Srikanth      | Intel       |
| Eaglstun, Jay            | Motorola    |
| Farnsworth, Dale (owner) | Motorola    |
| Rosso, Jean-Michel       | Motorola    |
| Grönholm, Jan            | Nokia       |
| Müller, Thomas           | Nokia       |
| Iwamura, Kazuaki         | Toshiba     |
| Pascoe, Bob              | Xtraworx    |

#### Part F:1 RFCOMM with TS 07.10

| Ingemar Nilsson        | Ericsson Mobile Communications AB |
|------------------------|-----------------------------------|
| Patrik Olsson          | Ericsson Mobile Communications AB |
| Gerrit Slot            | Ericsson Mobile Communications AB |
| Johan Sörensen (owner) | Ericsson Mobile Communications AB |
| Srikanth Kambhatla     | Intel Corporation                 |
| Michael Camp           | Nokia Mobile Phones               |
| Riku Mettälä           | Nokia Mobile Phones               |

Bluetooth..

# Part F:2 IrDA Interoperability

| 3Com                              |
|-----------------------------------|
| Ericsson Mobile Communications AB |
| Extended Systems                  |
| IBM                               |
| IBM                               |
| IBM                               |
| IBM                               |
| Intel Corporation                 |
| Nokia Mobile Phones               |
| Puma Technology                   |
| Puma Technology                   |
|                                   |

Part F:3
Telephony Control Protocol Specification

| Richard Shaw          | зсом                              |
|-----------------------|-----------------------------------|
| Ken Morley            | зсом                              |
| Olof Dellien          | Ericsson Mobile Communications AB |
| Gert-jan van Lieshout | Ericsson Mobile Communications AB |
| Erik Slotboom (owner) | Ericsson Mobile Communications AB |
| Shridar Rajagopal     | Intel Corporation                 |
| Ramu Ramakeshavan     | Intel Corporation                 |
| Brian Redding         | Motorola                          |
| Thomas Müller         | Nokia Mobile Phones               |
| Christian Zechlin     | Nokia Mobile Phones               |
| Jun'ichi Yoshizawa    | Toshiba Corporation               |

Bluetooth.

Part F:4
Interoperability Requirements for Bluetooth as a WAP Bearer

| Johannes Elg            | Ericsson Mobile Communications AB |
|-------------------------|-----------------------------------|
| Robert Hed              | Ericsson Mobile Communications AB |
| Jon Inouye              | Intel Corporation                 |
| Michael T. Camp (owner) | Nokia Mobile Phones               |
| Riku Mettala            | Nokia Mobile Phones               |
| Kevin Wagner            | Nokia Mobile Phones               |

# Part H:1 Bluetooth Host Controller Interface Functional Specification

| Todor Cooklev        | 3Com Corporation                  |
|----------------------|-----------------------------------|
| Johannes Elg         | Ericsson Mobile Communications AB |
| Christian Johansson  | Ericsson Mobile Communications AB |
| Patrik Lundin        | Ericsson Mobile Communications AB |
| Tobias Melin         | Ericsson Mobile Communications AB |
| Toru Aihara          | IBM Corporation                   |
| Chatschik Bisdikian  | IBM Corporation                   |
| Nathan Lee           | IBM Corporation                   |
| Akihiko Mizutani     | IBM Corporation                   |
| Les Cline            | Intel Corporation                 |
| Bailey Cross         | Intel Corporation                 |
| Kris Fleming (owner) | Intel Corporation                 |
| Robert Hunter        | Intel Corporation                 |
| Jon Inouye           | Intel Corporation                 |
| Srikanth Kambhatla   | Intel Corporation                 |
| Steve Lo             | Intel Corporation                 |
| Vijay Suthar         | Intel Corporation                 |
| Greg Muchnik         | Motorola                          |
| Thomas Busse         | Nokia Mobile Phones               |
| Thomas Muller        | Nokia Mobile Phones               |
| Dong Nguyen          | Nokia Mobile Phones               |
| Christian Zechlin    | Nokia Mobile Phones               |
| Masahiro Tada        | Toshiba Corporation               |

Bluetooth.

#### Part H:2 / HCI USB Transport Layer

| Patrik Lundin         | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Nathan Lee            | IBM Corporation                   |
| Les Cline             | Intel Corporation                 |
| Brad Hosler           | Intel Corporation                 |
| John Howard           | Intel Corporation                 |
| Robert Hunter (owner) | Intel Corporation                 |
| Srikanth Kambhatla    | Intel Corporation                 |
| Kosta Koeman          | Intel Corporation                 |
| John McGrath          | Intel Corporation                 |
| Uwe Gondrum           | Nokia Mobile Phone                |

## Part H:3 / HCI RS232 Transport Layer

| Johannes Elg        | Ericsson Mobile Communications AB |
|---------------------|-----------------------------------|
| Sven Jerlhagen      | Ericsson Mobile Communications AB |
| Patrik Lundin       | Ericsson Mobile Communications AB |
| Chatschik Bisdikian | IBM Corporation                   |
| Edgar Kerstan       | IBM Corporation                   |
| Nathan Lee (owner)  | IBM Corporation                   |
| Robert Hunter       | Intel Corporation                 |
| Patrick Kane        | Motorola                          |
| Uwe Gondrum         | Nokia Mobile Phone                |
| Masahiro Tada       | Toshiba Corporation               |

# Part H:4 / HCI UART Transport Layer

| Johannes Elg          | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Sven Jerlhagen        | Ericsson Mobile Communications AB |
| Patrik Lundin (owner) | Ericsson Mobile Communications AB |
| Lars Novak            | Ericsson Mobile Communications AB |
| Edgar Kerstan         | IBM Corporation                   |
| Nathan Lee            | IBM Corporation                   |
| Robert Hunter         | Intel Corporation                 |
| Patrick Kane          | Motorola                          |
| Uwe Gondrum           | Nokia Mobile Phone                |
| Masahiro Tada         | Toshiba Corporation               |

Bluetooth.

#### Part I:1 / Bluetooth Test Mode

| Ayse Findikli         | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Mårten Mattsson       | Ericsson Mobile Communications AB |
| Tobias Melin          | Ericsson Mobile Communications AB |
| Lars Nord             | Ericsson Mobile Communications AB |
| Fredrik Töörn         | Ericsson Mobile Communications AB |
| Jeffrey Schiffer      | Intel Corporation                 |
| Daniel Bencak         | Nokia Mobile Phones               |
| Arno Kefenbaum        | Nokia Mobile Phones               |
| Thomas Müller (owner) | Nokia Mobile Phones               |
| Roland Schmale        | Nokia Mobile Phones               |

#### Part I:2 / Bluetooth Compliance Requirements

| Lawrence Jones         | ComBit,Inc.                       |
|------------------------|-----------------------------------|
| Magnus Hansson (owner) | Ericsson Mobile Communications AB |
| Göran Svennarp         | Ericsson Mobile Communications AB |
| Gary Robinson          | IBM Corporation                   |
| John Webb              | Intel Corporation                 |
| Petri Morko            | Nokia Mobile Phones               |
| Warren Allen           | Toshiba Corporation               |

#### Part I:3 / Bluetooth Test Control Interface

| Mårten Mattsson (owner) | Ericsson Mobile Communications AB |
|-------------------------|-----------------------------------|
| Dan Sönnerstam          | Ericsson Mobile Communications AB |
| Thomas Müller           | Nokia Mobile Phones               |

#### **Appendix IV / Encryption Sample Data**

| Joakim Persson (owner) | Ericsson Mobile Communications AB |
|------------------------|-----------------------------------|
| Thomas Müller          | Nokia Mobile Phones               |
| Thomas Sander          | Nokia Mobile Phones               |

#### Appendix V / Bluetooth Audio

| Joakim Persson (owner) | Ericsson Mobile Communication AB |
|------------------------|----------------------------------|
| Fisseha Mekuria        | Ericsson Mobile Communication AB |
| Magnus Hansson         | Ericsson Mobile Communication AB |
| Mats Omrin             | Ericsson Mobile Communication AB |

page 888 of 1082

Appendix II - Contributors

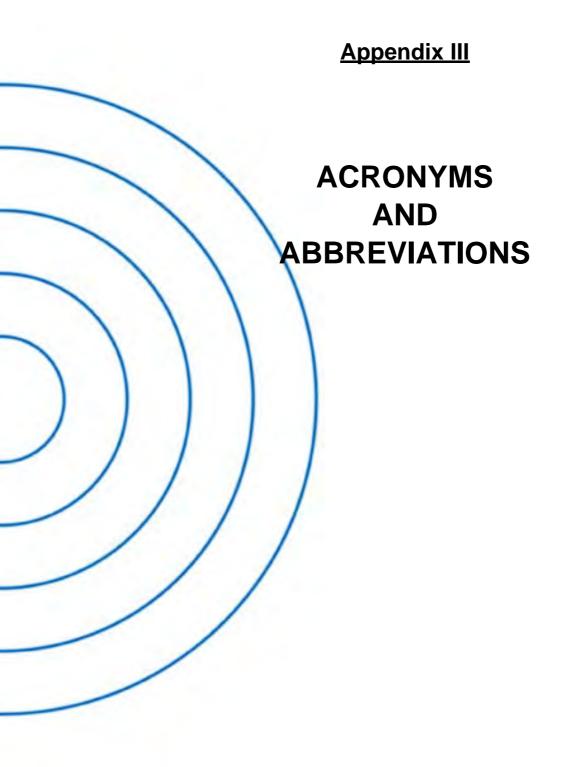
Bluetooth.

#### **Appendix VI / Baseband Timers**

| Ayse Findikli         | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Jaap Haartsen (owner) | Ericsson Mobile Communications AB |
| Joakim Persson        | Ericsson Mobile Communications AB |

### **Appendix VII / Optional Paging Scheme**

| Ayse Findikli         | Ericsson Mobile Communications AB |
|-----------------------|-----------------------------------|
| Jaap Haartsen (owner) | Ericsson Mobile Communications AB |
| Joakim Persson        | Ericsson Mobile Communications AB |
| Olaf Joeressen        | Nokia Mobile Phones               |
| Thomas Muller         | Nokia Mobile Phones               |
| Markus Schetelig      | Nokia Mobile Phones               |


#### **Appendix VIII / Bluetooth Assigned Numbers**

| Johannes Elg (owner)                                                     | Ericsson Mobile Communications AB |  |
|--------------------------------------------------------------------------|-----------------------------------|--|
| Numerous SIG members contributed directly or indirectly to this revision |                                   |  |

#### **Appendix IX / Message Sequence Charts between**

| Todor Cooklev       | 3Com Corporation                  |
|---------------------|-----------------------------------|
| Christian Johansson | Ericsson Mobile Communications AB |
| Tobias Melin        | Ericsson Mobile Communications AB |
| Toru Aihara         | IBM Corporation                   |
| Chatschik Bisdikian | IBM Corporation                   |
| Nathan Lee          | IBM Corporation                   |
| Kris Fleming        | Intel Cop.                        |
| Greg Muchnik        | Motorola                          |
| Thomas Busse        | Nokia Mobile Phones               |
| Dong Nguyen (owner) | Nokia Mobile Phones               |

The Bluetooth Specification was compiled and edited by Dan Sonnerstam, Pyramid Communication AB



## **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 890 of 1082

Appendix III - Acronyms

Bluetooth.

# **List of Acronyms and Abbreviations**

| Acronym or abbreviation | Writing out in full                           | Which means                                                                    |
|-------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|
| ACK                     | Acknowledge                                   |                                                                                |
| ACL link                | Asynchronous Connection-Less link             | Provides a packet-switched connection.(Master to any slave)                    |
| ACO                     | Authenticated Ciphering Offset                |                                                                                |
| AM_ADDR                 | Active Member Address                         |                                                                                |
| AR_ADDR                 | Access Request Address                        |                                                                                |
| ARQ                     | Automatic Repeat reQuest                      |                                                                                |
| В                       |                                               |                                                                                |
| ВВ                      | BaseBand                                      |                                                                                |
| ВСН                     | Bose, Chaudhuri & Hocquenghem                 | Type of code The persons who discovered these codes in 1959 (H) and 1960 (B&C) |
| BD_ADDR                 | Bluetooth Device Address                      |                                                                                |
| BER                     | Bit Error Rate                                |                                                                                |
| ВТ                      | Bandwidth Time                                |                                                                                |
| BT                      | Bluetooth                                     |                                                                                |
| C                       |                                               |                                                                                |
| CAC                     | Channel Access Code                           |                                                                                |
| CC                      | Call Control                                  |                                                                                |
| CL                      | Connectionless                                |                                                                                |
| CODEC                   | COder DECoder                                 |                                                                                |
| COF                     | Ciphering Offset                              |                                                                                |
| CRC                     | Cyclic Redundancy Check                       |                                                                                |
| CVSD                    | Continuous Variable Slope Delta<br>Modulation |                                                                                |
| D                       |                                               |                                                                                |
| DAC                     | Device Access Code                            |                                                                                |
| DCE                     | Data Communication Equipment                  |                                                                                |

| Acronym or abbreviation | Writing out in full                                | Which means                                                                                                                                                         |
|-------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCE                     | Data Circuit-Terminating Equipment                 | In serial communications, DCE refers to a device between the communication endpoints whose sole task is to facilitate the communications process; typically a modem |
| DCI                     | Default Check Initialization                       |                                                                                                                                                                     |
| DH                      | Data-High Rate                                     | Data packet type for high rate data                                                                                                                                 |
| DIAC                    | Dedicated Inquiry Access Code                      |                                                                                                                                                                     |
| DM                      | Data - Medium Rate                                 | Data packet type for medium rate data                                                                                                                               |
| DTE                     | Data Terminal Equipment                            | In serial communications, DTE refers to a device at the endpoint of the communications path; typically a computer or terminal.                                      |
| DTMF                    | Dual Tone Multiple<br>Frequency                    |                                                                                                                                                                     |
| DUT                     | Device Under Test                                  |                                                                                                                                                                     |
| DV                      | Data Voice                                         | Data packet type for data and voice                                                                                                                                 |
| E                       |                                                    |                                                                                                                                                                     |
| ETSI                    | European Telecommunications<br>Standards Institute |                                                                                                                                                                     |
| F                       |                                                    |                                                                                                                                                                     |
| FCC                     | Federal Communications Commission                  |                                                                                                                                                                     |
| FEC                     | Forward Error Correction code                      |                                                                                                                                                                     |
| FH                      | Frequency Hopping                                  |                                                                                                                                                                     |
| FHS                     | Frequency Hop Synchronization                      |                                                                                                                                                                     |
| FIFO                    | First In First Out                                 |                                                                                                                                                                     |
| FSK                     | Frequency Shift Keying                             | type of modulation                                                                                                                                                  |
| FW                      | Firmware                                           |                                                                                                                                                                     |
| G                       |                                                    |                                                                                                                                                                     |
| GEOP                    | Generic Object Exchange Profile                    |                                                                                                                                                                     |
| GFSK                    | Gaussian Frequency Shift Keying                    |                                                                                                                                                                     |
| GIAC                    | General Inquiry Access Code                        |                                                                                                                                                                     |
| GM                      | Group Management                                   |                                                                                                                                                                     |

| Acronym or abbreviation | Writing out in full                                | Which means                                                                                                       |
|-------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Н                       |                                                    |                                                                                                                   |
| НА                      | Host Application                                   | SW using Bluetooth                                                                                                |
| HCI                     | Host Controller Interface                          |                                                                                                                   |
| HEC                     | Header-Error-Check                                 |                                                                                                                   |
| HID                     | Human Interface Device                             |                                                                                                                   |
| HV                      | High quality Voice                                 | e.g. HV1 packet                                                                                                   |
| HW                      | Hardware                                           |                                                                                                                   |
| 1                       |                                                    |                                                                                                                   |
| IAC                     | Inquiry Access Code                                |                                                                                                                   |
| IEEE                    | Institute of Electronic and Electrical Engineering |                                                                                                                   |
| IETF                    | Internet Engineering Task Force                    |                                                                                                                   |
| IP                      | Internet Protocol                                  |                                                                                                                   |
| IrDA                    | Infra-red Data Association                         |                                                                                                                   |
| IrMC                    | Ir Mobile Communications                           |                                                                                                                   |
| ISDN                    | Integrated Services Digital Networks               |                                                                                                                   |
| ISM                     | Industrial, Scientific, Medical                    |                                                                                                                   |
| IUT                     | Implementation Under Tes                           |                                                                                                                   |
| L                       |                                                    |                                                                                                                   |
| L_CH                    | Logical Channel                                    |                                                                                                                   |
| L2CA                    | Logical Link Control and Adaption                  | Logical Link Control And Management part of the Bluetooth protocol stack                                          |
| L2CAP                   | Logical Link Control and Adaption Protocol         |                                                                                                                   |
| LAP                     | Lower Address Part                                 |                                                                                                                   |
| LC                      | Link Controller                                    | Link Controller (or baseband) part<br>of the Bluetooth protocol stack<br>Low level Baseband protocol han-<br>dler |
| LCP                     | Link Control Protocol                              |                                                                                                                   |
| LCSS                    | Link Controller Service Signalling                 |                                                                                                                   |
| LFSR                    | Linear Feedback Shift Register                     |                                                                                                                   |
| LM                      | Link Manager                                       |                                                                                                                   |
|                         |                                                    |                                                                                                                   |

| Acronym or abbreviation | Writing out in full                                        | Which means                       |
|-------------------------|------------------------------------------------------------|-----------------------------------|
| LMP                     | Link Manager Protocol                                      | For LM peer to peer communication |
| LSB                     | Least Significant Bit                                      |                                   |
| M                       |                                                            |                                   |
| М                       | Master or Mandatory                                        |                                   |
| M_ADDR                  | Medium Access Control Address                              |                                   |
| MAC                     | Medium Access Control                                      |                                   |
| MAPI                    | Messaging Application Procedure Interface                  |                                   |
| MMI                     | Man Machine Interface                                      |                                   |
| MS                      | Mobile Station                                             |                                   |
| MS                      | Multiplexing sublayer                                      |                                   |
| MSB                     | Most Significant Bit                                       |                                   |
| MSC                     | Message Sequence Chart                                     |                                   |
| MTU                     | Maximum Transmission Unit                                  |                                   |
| MUX                     | Multiplexing Sublayer                                      | a sublayer of the L2CAP layer     |
| N                       |                                                            |                                   |
| NAK                     | Negative Acknowledge                                       |                                   |
| NAP                     | Non-significant Address Part                               |                                   |
| 0                       |                                                            |                                   |
| 0                       | Optional                                                   |                                   |
| OBEX                    | OBject EXchange protocol                                   |                                   |
| OCF                     | Opcode Command Field                                       |                                   |
| Р                       |                                                            |                                   |
| PCM                     | Pulse Coded Modulation                                     |                                   |
| PCMCIA                  | Personal Computer Memory Card<br>International Association |                                   |
| PDU                     | Protocol Data Unit                                         | a message                         |
| PIN                     | Personal Identification Number                             |                                   |
| PM_ADDR                 | Parked Member Address                                      |                                   |
| PN                      | Pseudo-random Noise                                        |                                   |
| PnP                     | Plug and Play                                              |                                   |
| POTS                    | Plain Old Telephone system                                 |                                   |

| Acronym or abbreviation | Writing out in full                  | Which means                                                            |
|-------------------------|--------------------------------------|------------------------------------------------------------------------|
| PPM                     | Part Per Million                     |                                                                        |
| PPP                     | Point-to-Point Protocol              |                                                                        |
| PRBS                    | Pseudo Random Bit Sequence           |                                                                        |
| PRNG                    | Pseudo Random Noise Generation       |                                                                        |
| PSTN                    | Public Switched Telephone Network    |                                                                        |
| Q                       |                                      |                                                                        |
| QoS                     | Quality of Service                   |                                                                        |
| R                       |                                      |                                                                        |
| RAND                    | Random number                        |                                                                        |
| RF                      | Radio Frequency                      |                                                                        |
| RFC                     | Request For Comments                 |                                                                        |
| RFCOMM                  |                                      | Serial cable emulation protocol based on ETSI TS 07.10                 |
| RSSI                    | Received Signal Strength Indication  |                                                                        |
| RX                      | Receiver                             |                                                                        |
| S                       |                                      |                                                                        |
| S                       | Slave                                |                                                                        |
| SAP                     | Service Access Points                |                                                                        |
| SAR                     | Segmentation and Reassembly          |                                                                        |
| SCO link                | Synchronous Connection-Oriented link | Supports time-bounded information like voice. (Master to single slave) |
| SD                      | Service Discovery                    |                                                                        |
| SDDB                    | Service Discovery Database           |                                                                        |
| SDP                     | Service Discovery Protocol           |                                                                        |
| SEQN                    | Sequential Numbering scheme          |                                                                        |
| SRES                    | Signed Response                      |                                                                        |
| SS                      | Supplementary Services               |                                                                        |
| SSI                     | Signal Strength Indication           |                                                                        |
| SUT                     | System Under Test                    |                                                                        |
| SW                      | Software                             |                                                                        |

page 896 of 1082

Appendix III - Acronyms

| Acronym or abbreviation | Writing out in full                                | Which means                                    |
|-------------------------|----------------------------------------------------|------------------------------------------------|
| Т                       |                                                    |                                                |
| TAE                     | Terminal Adapter Equipment                         |                                                |
| TBD                     | To Be Defined                                      |                                                |
| TC                      | Test Control                                       | Test Control layer for the test inter-<br>face |
| TCI                     | Test Control Interface                             |                                                |
| TCP/IP                  | Transport Control Protocol/Internet Protocol       |                                                |
| TCS                     | Telephony Control protocol<br>Specification        |                                                |
| TDD                     | Time-Division Duplex                               |                                                |
| TTP                     | Tiny Transport Protocol between OBEX and UDP [TBD] |                                                |
| TX                      | Transmit                                           |                                                |
| U                       |                                                    |                                                |
| UA                      | User Asynchronous                                  | Asynchronous user data                         |
| UAP                     | Upper Address Part                                 |                                                |
| UART                    | Universial Asynchronous receiver<br>Transmitte     |                                                |
| UC                      | User Control                                       |                                                |
| UDP/IP                  | User Datagram Protocol/Internet Protocol           |                                                |
| UI                      | User Isochronous                                   | Isochronous user data                          |
| UIAC                    | Unlimited Inquiry Access Code                      |                                                |
| US                      | User Synchronous                                   | Synchronous user data                          |
| USB                     | Universal Serial Bus                               |                                                |
| UT                      | Upper Tester                                       |                                                |
| W                       |                                                    |                                                |
| WAP                     | Wireless Application Prtocol                       |                                                |
| WUG                     | Wireless User Group                                |                                                |

page 897 of 1082

Appendix III - Acronyms

Bluetooth.

#### **Definitions**

**Baseband.** The Bluetooth baseband specifies the medium access and physical layers procedures to support the exchange of real-time voice and data information streams and ad-hoc networking between Bluetooth units.

**Coverage area**. The area where two Bluetooth units can exchange messages with acceptable quality and performance.

**Host Terminal interface.** Host terminal interface is the Interface between Bluetooth Host and Bluetooth Unit.

**Inquiry.** A Bluetooth unit transmits inquiry messages in order to discover the other Bluetooth units that are active within the coverage area. The Bluetooth units that capture inquiry messages may send a response to the inquiring Bluetooth unit. The response contains information about the Bluetooth unit itself and its Bluetooth Host.

**Isochronous user channel .** Channel used for time bounded information like i.e. compressed audio (ACL link).

**Logical Channel.** The different types of channels on a Physical Link.

**Bluetooth Host.** Bluetooth Host is a computing device, peripheral, cellular telephone, access point to PSTN network, etc. A Bluetooth Host attached to a Bluetooth unit may communicate with other Bluetooth Hosts attached to their Bluetooth units as well. The communication channel through the Bluetooth units provides almost wire-like transparency.

**Bluetooth Unit.** Bluetooth Unit is a voice/data circuit equipment for a short-range wireless communication link. It allows voice and data communications between Bluetooth Hosts.

**Bluetooth.** Bluetooth is a wireless communication link, operating in the unlicensed ISM band at 2,4 GHz using a frequency hopping tranceiver. It allows real-time voice and data communications between Bluetooth Hosts. The link protocol is based on time slots.

**Packet.** Format of aggregated bits that can be transmitted in 1, 3, or 5 time slots.

**Paging.** An Bluetooth unit transmits paging messages in order to set up a communication link to another Bluetooth unit who is active within the coverage area.

page 898 of 1082

Appendix III - Acronyms

Bluetooth

Physical Channel. Synchronized RF hopping sequence in a piconet

Physical Link. Connection between devices.

**Piconet.** In the Bluetooth system, the channel is shared among several Bluetooth units. The units sharing a common channel constitute a piconet.

**RFCOMM Client.** An RFCOMM client is an application that requests a connection to another application (RFCOMM server).

**RFCOMM initiator.** The device initiating the RFCOMM session, i.e.setting up RFCOMM channel on L2CAP and starting RFCOMM multiplexing with the SABM command on DLCI 0 (zero).

**RFCOMM Server.** An RFCOMM server is an application that awaits a connection from an RFCOMM client on another device. What happens after such a connection is established is out of scope of this definition.

**RFCOMM Server Channel.** This is a subfield of the TS 07.10 DLCI number. This abstraction is used to allow both server and client applications to reside on both sides of an RFCOMM session.

**Service Discovery.** The ability to discover the capability of connecting devices or hosts

**Scatternet.** Two or more piconets co-located in the same area (with or witout inter-piconet communication).

**Time Slot.** The Physical Channel is divided into 625 µs long time slots.

## **Appendix IV**

# SAMPLE DATA

This appendix contains sample data for various parts of the Bluetooth baseband specification. All sample data are provided for reference purpose only; they are intended as a complement to the definitions provided elsewhere in the specification. They can be used to check the behavior of an implementation and avoid misunderstandings. Fulfilling these sample data is a necessary but not sufficient condition for an implementation to be fully Bluetooth compliant.

## **ATTACHMENT H**

BLUETOOTH SPECIFICATION Version 1.0 B

page 900 of 1082

Appendix IV - Sample Data

Appendix IV - Sample Data

# Bluetooth.

#### **CONTENTS**

| 1 | Enci | ryption Sample Data                        | 902 |
|---|------|--------------------------------------------|-----|
|   | 1.1  | Generating Kc' from Kc,                    |     |
|   | 1.2  | First Set of Sample Data                   | 905 |
|   | 1.3  | Second Set of Sample Data                  | 913 |
|   | 1.4  | Third Set of Samples                       | 921 |
|   | 1.5  | Fourth Set of Samples                      | 929 |
| 2 | Fred | uency Hopping Sample Data—Mandatory Scheme | 937 |
|   | 2.1  | The 79-hop System Sample Data              |     |
|   |      | 2.1.1 First set                            |     |
|   |      | 2.1.2 Second set                           | 940 |
|   |      | 2.1.3 Third set                            | 942 |
|   | 2.2  | The 23-hop System Sample Data              | 943 |
|   |      | 2.2.1 First set                            |     |
|   |      | 2.2.2 Second set                           | 946 |
|   |      | 2.2.3 Third set                            | 948 |
| 3 | Acc  | ess Code Sample Data                       | 950 |
| 4 |      | and Packet Header Sample Data              |     |
| 5 |      | Sample Data                                |     |
| 6 | Com  | plete Sample Packets                       | 955 |
|   | 6.1  | Example of DH1 Packet                      |     |
|   | 6.2  | Example of DM1 Packet                      |     |
| 7 | Whit | tening Sequence Sample Data                | 957 |
| 8 |      | Sample Data                                |     |
| 9 | Enci | ryption Key Sample Data                    | 961 |
|   | 9.1  | Four Tests of E1                           |     |
|   | 9.2  | Four Tests of E21                          |     |
|   | 9.3  | Three Tests of E22                         |     |
|   | 9.4  | Tests of E22 With Pin Augmenting           |     |
|   | 9.5  | Four Tests of E3                           |     |

Appendix IV - Sample Data

**Bluetooth** 

#### 1 ENCRYPTION SAMPLE DATA

This part consist of four sets of sample data for the encryption process.

With respect to the functional description of the encryption engine in the Bluetooth baseband specification, the contents of registers and resulting concurrent values are listed as well. This by no means excludes different implementations (as far as they produce the same encryption stream) but is intended to describe the functional behavior.

In case of misunderstandings or inconsistencies, these sample data form the normative reference.

#### 1.1 GENERATING KC' FROM KC,

where  $Kc'(x) = g2(x)(Kc(x) \mod g1(x))$ .

```
Note: All polynomials are in hexadecimal notation. 
 'L' is the effective key length in bytes. 
 The notation 'p: [m]' implies that deg(p(x)) = m.
```

page 903 of 1082

| Appendix IV - Sar | mple Data |                                     | Bluetooth |
|-------------------|-----------|-------------------------------------|-----------|
| L = 5             |           |                                     |           |
| g1:               | [40]      | 00000000 00000000 00000100 00000039 |           |
| g2:               | [88]      | 00000000 01630632 91da50ec 55715247 |           |
| Kc:               |           | 785c915b dd25b9c6 0102ab00 b6cd2a68 |           |
| Kc mod g1:        | [38]      | 00000000 00000000 0000007f 13d44436 |           |
| g2(Kc mod g1):    | [126]     | 6fb5651c cb80c8d7 ealee56d flec5d02 |           |
| L = 6             |           |                                     |           |
| g1:               | [48]      | 00000000 00000000 00010000 00000291 |           |
| g2:               | [77]      | 00000000 00002c93 52aa6cc0 54468311 |           |
| Kc:               |           | 5e77d19f 55ccd7d5 798f9a32 3b83e5d8 |           |
| Kc mod g1:        | [47]      | 00000000 00000000 000082eb 4af213ed |           |
| g2(Kc mod g1):    | [124]     | 16096bcb afcf8def 1d226a1b 4d3f9a3d |           |

page 904 of 1082

#### Appendix IV - Sample Data Bluetooth.

| L = 7          |         |          |          |          |          |
|----------------|---------|----------|----------|----------|----------|
| g1:            | [56]    |          |          | 01000000 |          |
| g2:            | [71]    |          |          |          |          |
| Kc:            |         |          |          | ed024b2d |          |
| Kc mod g1:     |         | 00000000 |          |          |          |
| g2(Kc mod g1): |         | 50f9c0d4 |          |          |          |
|                |         |          |          |          |          |
| L = 8          | [ ( 4 ] | 0000000  | 00000001 | 0000000  | 00000011 |
| g1:            | [64]    |          |          | 00000000 |          |
| g2:            | [63]    |          |          | alab815b |          |
| Kc:            | [62]    |          |          | 2a5d8a41 |          |
| Kc mod g1:     |         |          |          | 8660806c |          |
| g2(Kc mod g1): | [126]   | 53203604 | 500954e0 | 92298906 | 8261/8ac |
| L = 9          |         |          | <b></b>  | <b></b>  | <b>-</b> |
|                | [72]    | 00000000 | 00000100 | 00000000 | 00000609 |
| g2:            | [49]    |          |          |          |          |
| Kc:            |         |          |          | 9c051726 |          |
| Kc mod g1:     | [71]    |          |          |          |          |
| g2(Kc mod g1): |         |          |          |          |          |
|                | - · · · |          |          |          |          |
| L = 10         |         |          |          |          |          |
| g1:            | [80]    | 00000000 | 00010000 | 00000000 | 00000215 |
| g2:            | [42]    | 00000000 | 00000000 | 0000058e | 24f9a4bb |
| Kc:            |         | 7b13846e | 88beb4de | 34e7160a | fd44dc65 |
| Kc mod g1:     | [79]    | 00000000 | 0000b4de | 34171767 | f36981c3 |
| g2(Kc mod g1): | [121]   | 023bclec | 34a0029e | f798dcfb | 618ba58d |
|                |         |          |          |          |          |
| L = 11         |         |          |          |          |          |
| g1:            |         | 00000000 |          |          |          |
| g2:            | [35]    | 00000000 |          |          |          |
| Kc:            |         |          |          | 8dfe2d49 |          |
| Kc mod g1:     |         | 00000000 |          |          |          |
| g2(Kc mod g1): | [121]   | 022e08a9 | 3aa51d8d | 2f93fa78 | 85cc1f87 |
| T 10           |         |          |          |          |          |
| L = 12         | [06]    | 00000001 | 0000000  | 0000000  | 00000044 |
| g1:            | [96]    |          |          | 00000000 |          |
| g2:            | [28]    |          |          |          |          |
| Kc:            |         | e6483b1c |          |          |          |
| Kc mod g1:     |         | 00000000 |          |          |          |
| g2(Kc mod g1): | [ 121 ] | 030a/52b | ∠10167Ap | υδδυ2/5C | u/ebibiy |
| L = 13         |         |          |          |          | =        |
| g1:            | [104]   | 00000100 | 00000000 | 00000000 | 0000049d |
| g2:            |         | 00000000 |          |          |          |
| Kc:            | 1       |          |          | 6b223c46 |          |
| Kc mod g1:     | [100]   |          |          |          |          |
|                |         |          |          |          |          |
| g2(Kc mod g1): |         |          |          |          |          |

page 905 of 1082

| Appendix IV - Sar | mple Data |                                        | Bluetooth. |
|-------------------|-----------|----------------------------------------|------------|
| L = 14            |           |                                        |            |
| g1:               | [112]     | 00010000 00000000 00000000 0000014f    |            |
| g2:               | [14]      | 00000000 00000000 00000000 00004377    |            |
| Kc:               |           | cad9a65b 9fca1c1d a2320fcf 7c4ae48e    |            |
| Kc mod g1:        | [111]     | 0000a65b 9fcalc1d a2320fcf 7cb6a909    |            |
| g2(Kc mod g1):    | [125]     | 284840fd f1305f3c 529f5703 76adf7cf    |            |
| L = 15            |           |                                        |            |
| g1:               | [120]     | 01000000 00000000 00000000 000000e7    |            |
| g2:               | [7]       | 00000000 00000000 00000000 00000089    |            |
| Kc:               |           | 21f0cc31 049b7163 d375e9e1 06029809    |            |
| Kc mod g1:        | [119]     | 00f0cc31 049b7163 d375e9e1 0602840e    |            |
| g2(Kc mod g1):    | [126]     | 7f10b53b 6df84b94 f22e566a 3754a37e    |            |
| L = 16            |           |                                        |            |
| g1:               | [128]     | 0000001 0000000 0000000 0000000 000000 | 00         |
| g2:               | [0]       | 00000000 00000000 00000000 00000001    |            |
| Kc:               |           | 35ec8fc3 d50ccd32 5f2fd907 bde206de    |            |
| Kc mod g1:        | [125]     | 35ec8fc3 d50ccd32 5f2fd907 bde206de    |            |
| g2(Kc mod g1):    | [125]     | 35ec8fc3 d50ccd32 5f2fd907 bde206de    |            |

#### 1.2 FIRST SET OF SAMPLE DATA

```
Initial values for the key, pan address and clock

K'c1[0] = 00   K'c1[1] = 00   K'c1[2] = 00   K'c1[3] = 00

K'c1[4] = 00   K'c1[5] = 00   K'c1[6] = 00   K'c1[7] = 00

K'c1[8] = 00   K'c1[9] = 00   K'c1[10] = 00   K'c1[11] = 00

K'c1[12] = 00   K'c1[13] = 00   K'c1[14] = 00   K'c1[15] = 00

Addr1[0] = 00   Addr1[1] = 00   Addr1[2] = 00

Addr1[3] = 00   Addr1[4] = 00   Addr1[5] = 00
Clk1[0] = 00   Clk1[1] = 00   Clk1[2] = 00   Clk1[3] = 00
```

Fill LFSRs with initial data

t clk# LFSR1 LFSR2 LFSR3 LFSR4 X1 X2 X3 X4 Z C[t+1] C[t] C[t-1]

| 0 | 0 | 0000000* | 00000000* | 000000000* | 0000000000* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
|---|---|----------|-----------|------------|-------------|---|---|---|---|---|----|----|----|
| 1 | 1 | 0000000* | 00000001* | 000000000* | 000000001*  | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
| 2 | 2 | 0000000* | 00000002* | 000000000* | 000000003*  | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
| 3 | 3 | 0000000* | 00000004* | 000000000* | 0000000007* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
| 4 | 4 | 0000000* | 00000008* | 000000000* | 000000000E* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
| 5 | 5 | 0000000* | 00000010* | 000000000* | 000000001C* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |
| 6 | 6 | 0000000* | 00000020* | 000000000* | 0000000038* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00 |

page 906 of 1082

| Арр      | pendix i | IV - Samp  | le Data              |             |                            |   |   |   |   |   |    | ļ  | Bluetooth |
|----------|----------|------------|----------------------|-------------|----------------------------|---|---|---|---|---|----|----|-----------|
| 7        | 7        | 0000000*   | 00000040*            | 000000000*  | 0000000070*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 8        | 8        |            |                      |             | 00000000E0*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 9        | 9        | 0000000*   | 00000100*            | 000000000*  | 0000001C0*                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 10       | 10       | 0000000*   | 00000200*            | 000000000*  | 0000000380*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 11       | 11       | 0000000*   | 00000400*            | 000000000*  | 0000000700*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 12       | 12       | 0000000*   | 00000800*            | 000000000*  | 0000000E00*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 13       | 13       |            |                      |             | 0000001C00*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 14       | 14       |            |                      |             | 0000003800*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 15       | 15       |            |                      |             | 0000007000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 16<br>17 | 16<br>17 |            |                      |             | 000000E000*<br>000001C000* | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 18       | 18       |            |                      |             | 0000010000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 19       | 19       |            |                      |             | 0000030000                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 20       | 20       |            |                      |             | 00000E0000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 21       | 21       | 0000000*   | 00100000*            | 000000000*  | 00001C0000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 22       | 22       | 0000000*   | 00200000*            | 000000000*  | 0000380000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 23       | 23       | 0000000*   | 00400000*            | 000000000*  | 0000700000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 24       | 24       | 0000000*   | 00800000*            | 000000000*  | 0000E00000*                | 0 | 1 | 0 | 0 | 1 | 00 | 00 | 00        |
| 25       | 25       | 0000000*   | 01000000*            | 000000000*  | 0001C00000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 26       | 26       | 0000000    | 02000000*            | 000000000*  | 0003800000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 27       | 27       | 0000000    |                      |             | 0007000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 28       | 28       | 0000000    |                      |             | 000E000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 29       | 29       | 0000000    |                      |             | 001C000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 30       | 30<br>31 | 0000000    |                      |             | 0038000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 31<br>32 | 32       | 0000000    | 00000000             |             | 0070000000*                | 0 | 0 | 0 | 1 | 1 | 00 | 00 | 00        |
| 33       | 33       | 0000000    | 00000001             |             | 01C0000000*                | 0 | 0 | 0 | 1 | 1 | 00 | 00 | 00        |
| 34       | 34       | 0000000    | 00000004             | 000000000   | 0380000000*                | 0 | 0 | 0 | 1 | 1 | 00 | 00 | 00        |
| 35       | 35       | 0000000    | 00000008             | 000000000   | 0700000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 36       | 36       | 0000000    | 00000010             | 000000000   | 0E00000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 37       | 37       | 0000000    | 00000020             | 000000000   | 1C00000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 38       | 38       | 0000000    | 00000040             | 000000000   | 3800000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 39       | 39       | 0000000    | 080000080            | 000000000   | 7000000000*                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
|          | St       | art clocki | ng Summati           | on Combiner |                            |   |   |   |   |   |    |    |           |
| 40       | 1        | 0000000    | 00000100             | 000000000   | 6000000001                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 41       | 2        | 0000000    | 00000200             | 000000000   | 4000000003                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 42       | 3        | 0000000    | 00000400             | 000000000   | 0000000007                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 43       | 4        | 0000000    | 00800000             | 000000000   | 00000000E                  | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 44       | 5        | 0000000    | 00001001             | 000000000   | 00000001D                  | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 45       | 6        | 0000000    | 00002002             | 000000000   | 000000003B                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 46       | 7        | 0000000    | 00004004             | 000000000   | 0000000077                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 47       | 8        | 0000000    | 000080008            | 000000000   | 00000000EE                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 48       | 9        | 0000000    | 00010011             | 000000000   | 00000001DD<br>00000003BB   | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 49<br>50 | 10<br>11 | 0000000    | 00020022<br>00040044 | 00000000    | 00000003BB                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 51       | 12       | 0000000    | 00080088             | 000000000   | 0000000777                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 52       | 13       | 0000000    | 00100110             | 000000000   | 00000001DDD                | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 53       | 14       | 0000000    | 00200220             | 000000000   | 0000003BBB                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 54       | 15       | 0000000    | 00400440             | 000000000   | 0000007777                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 55       | 16       | 0000000    | 00800880             | 000000000   | 000000EEEE                 | 0 | 1 | 0 | 0 | 1 | 00 | 00 | 00        |
| 56       | 17       | 0000000    | 01001100             | 000000000   | 000001DDDD                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 57       | 18       | 0000000    | 02002200             | 000000000   | 000003BBBB                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 58       | 19       | 0000000    | 04004400             | 000000000   | 0000077777                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 59       | 20       | 0000000    | 08008800             | 00000000    | 00000EEEEE                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |
| 60       | 21       | 0000000    | 10011000             | 000000000   | 00001DDDDD                 | 0 | 0 | 0 | 0 | 0 | 00 | 00 | 00        |

page 907 of 1082

| Арр        | endix I  | V - Samp | ole Data             |           |                          |   |   |   |    |   |          | E        | Bluetooth |
|------------|----------|----------|----------------------|-----------|--------------------------|---|---|---|----|---|----------|----------|-----------|
| 61         | 22       | 0000000  | 20022000             | 000000000 | 00003BBBBB               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 62         | 23       | 0000000  | 40044000             | 000000000 | 0000777777               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 63         | 24       | 0000000  | 00088001             | 000000000 | 0000EEEEE                | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 64         | 25       | 0000000  | 00110003             | 000000000 | 0001DDDDDD               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 65         | 26       | 0000000  | 00220006             | 000000000 | 0003BBBBBB               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 66         | 27       | 0000000  | 0044000C             | 000000000 | 0007777777               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 67         | 28       | 0000000  | 00880018             | 000000000 | 000EEEEEE                | 0 | 1 | 0 | 0  | 1 | 00       | 00       | 00        |
| 68         | 29       | 0000000  | 01100031             | 000000000 | 001DDDDDDC               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 69         | 30       | 0000000  | 02200062             | 000000000 | 003BBBBBB8               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 70         | 31       | 0000000  | 044000C4             | 000000000 | 0077777770               | 0 | 0 | 0 | 0  | 0 | 00       | 00       | 00        |
| 71         | 32       | 0000000  | 08800188             | 000000000 | 00EEEEEEE0               | 0 | 1 | 0 | 1  | 0 | 01       | 0 0      | 00        |
| 72         | 33       | 0000000  | 11000311             | 000000000 | 01DDDDDDC1               | 0 | 0 | 0 | 1  | 0 | 00       | 01       | 00        |
| 73         | 34       | 0000000  | 22000622             | 000000000 | 03BBBBBB83               | 0 | 0 | 0 | 1  | 1 | 11       | 00       | 01        |
| 74         | 35       | 0000000  | 44000C44             | 000000000 | 077777707                | 0 | 0 | 0 | 0  | 1 | 10       | 11       | 00        |
| 75         | 36       | 0000000  | 08001888             | 000000000 | 0EEEEEE0E                | 0 | 0 | 0 | 1  | 1 | 01       | 10       | 11        |
| 76         | 37       | 0000000  | 10003111             | 000000000 | 1DDDDDDDC1D              | 0 | 0 | 0 | 1  | 0 | 01       | 01       | 10        |
| 77         | 38       | 0000000  | 20006222             | 000000000 | 3BBBBBBB83B              | 0 | 0 | 0 | 1  | 0 | 11       | 01       | 01        |
| 78         | 39       | 0000000  | 4000C444             | 000000000 | 7777777077               | 0 | 0 | 0 | 0  | 1 | 01       | 11       | 01        |
| 79         | 40       | 0000000  | 00018888             | 000000000 | 6EEEEEE0EF               | 0 | 0 | 0 | 1  | 0 | 10       | 01       | 11        |
| 80         | 41       | 0000000  | 00031110             | 000000000 | 5DDDDDC1DE               | 0 | 0 | 0 | 1  | 1 | 00       | 10       | 01        |
| 81         | 42       | 0000000  | 00062220             | 000000000 | 3BBBBB83BC               | 0 | 0 | 0 | 1  | 1 | 01       | 00       | 10        |
| 82         | 43       | 0000000  | 000C4440             | 000000000 | 7777770779               | 0 | 0 | 0 | 0  | 1 | 01       | 01       | 00        |
| 83         | 44       | 0000000  | 00188880             | 000000000 | 6EEEEE0EF2               | 0 | 0 | 0 | 1  | 0 | 11       | 01       | 01        |
| 84         | 4.5      | 0000000  | 00311100             | 000000000 | 5DDDDC1DE5               | 0 | 0 | 0 | 1  | 0 | 10       | 11       | 01        |
| 85         | 46       | 0000000  | 00622200             | 000000000 | 3BBBB83BCB               | 0 | 0 | 0 | 1  | 1 | 01       | 10       | 11        |
| 86         | 47       | 0000000  | 00C44400             | 000000000 | 7777707797               | 0 | 1 | 0 | 0  | 0 | 01       | 01       | 10        |
| 87         | 48       | 0000000  | 01888801             | 000000000 | 6EEEE0EF2F               | 0 | 1 | 0 | 1  | 1 | 11       | 01       | 01        |
| 88<br>89   | 49<br>50 | 0000000  | 03111003<br>06222006 | 000000000 | 5DDDC1DE5E<br>3BBB83BCBC | 0 | 0 | 0 | 1  | 0 | 10       | 11<br>10 | 01<br>11  |
| 90         | 51       | 0000000  | 06222006<br>0C44400C | 000000000 | 7777077979               | 0 | 0 | 0 | 0  | 1 | 00       | 01       | 10        |
| 91         | 52       | 0000000  | 18888018             | 000000000 | 6EEE0EF2F2               | 0 | 1 | 0 | 1  | 0 | 10       | 00       | 01        |
| 92         | 53       | 0000000  | 31110030             | 000000000 | 5DDC1DE5E5               | 0 | 0 | 0 | 1  | 1 | 11       | 10       | 00        |
| 93         | 54       | 0000000  | 62220060             | 000000000 | 3BB83BCBCB               | 0 | 0 | 0 | 1  | 0 | 0.0      | 11       | 10        |
| 94         | 55       | 0000000  | 444400C1             | 000000000 | 7770779797               | 0 | 0 | 0 | 0  | 0 | 10       | 00       | 11        |
| 95         | 56       | 0000000  | 08880183             | 000000000 | 6EE0EF2F2F               | 0 | 1 | 0 | 1  | 0 | 00       | 10       | 00        |
| 96         | 57       | 0000000  | 11100307             | 000000000 | 5DC1DE5E5F               | 0 | 0 | 0 | 1  | 1 | 01       | 00       | 10        |
| 97         | 58       | 0000000  | 2220060E             | 000000000 | 3B83BCBCBF               | 0 | 0 | 0 | 1  | 0 | 00       | 01       | 00        |
| 98         | 59       | 0000000  | 44400C1C             | 000000000 | 770779797E               | 0 | 0 | 0 | 0  | 0 | 11       | 00       | 01        |
| 99         | 60       | 0000000  | 08801838             | 000000000 | 6E0EF2F2FC               | 0 | 1 | 0 | 0  | 0 | 01       | 11       | 00        |
| 100        | 61       | 0000000  | 11003070             | 000000000 | 5C1DE5E5F8               | 0 | 0 | 0 | 0  | 1 | 11       | 01       | 11        |
| 101        | 62       | 0000000  | 220060E0             | 000000000 | 383BCBCBF0               | 0 | 0 | 0 | 0  | 1 | 01       | 11       | 01        |
| 102        | 63       | 0000000  | 4400C1C0             | 00000000  | 70779797E0               | 0 | 0 | 0 | 0  | 1 | 11       | 01       | 11        |
| 103        | 64       | 0000000  | 08018380             | 000000000 | 60EF2F2FC1               | 0 | 0 | 0 | 1  | 0 | 10       | 11       | 01        |
| 104        | 65       | 0000000  | 10030701             | 000000000 | 41DE5E5F82               | 0 | 0 | 0 | 1  | 1 | 01       | 10       | 11        |
| 105        | 66       | 0000000  | 20060E02             | 000000000 | 03BCBCBF04               | 0 | 0 | 0 | 1  | 0 | 01       | 01       | 10        |
| 106        | 67       | 0000000  | 400C1C05             | 000000000 | 0779797E09               | 0 | 0 | 0 | 0  | 1 | 10       | 01       | 01        |
| 107        | 68       | 0000000  |                      | 000000000 | 0EF2F2FC12               | 0 | 0 | 0 | 1  | 1 | 00       | 10       | 01        |
| 108        | 69       | 0000000  |                      | 000000000 | 1DE5E5F825               | 0 | 0 | 0 | 1  | 1 | 01       | 00       | 10        |
| 109        | 70       | 0000000  |                      | 000000000 | 3BCBCBF04B               | 0 | 0 | 0 | 1  | 0 | 00       | 01       | 00        |
| 110        | 71       | 0000000  | 00C1C055             | 000000000 | 779797E097               | 0 | 1 | 0 | 1  | 0 | 10       | 00       | 01        |
| 111        | 72       | 0000000  |                      | 000000000 | 6F2F2FC12F               | 0 | 1 | 0 | 0  | 1 | 11       | 10       | 00        |
| 112        | 73       | 0000000  | 03070154             | 000000000 | 5E5E5F825E               | 0 | 0 | 0 | 0  | 1 | 11       | 11       | 10        |
| 113        | 74<br>75 | 0000000  | 060E02A8             | 000000000 | 3CBCBF04BC               | 0 | 0 | 0 | 1  | 0 | 11       | 11       | 11        |
| 114<br>115 | 75<br>76 | 0000000  | 0C1C0550<br>18380AA0 | 000000000 | 79797E0979               | 0 | 0 | 0 | 1  | 1 | 00<br>10 | 11<br>00 | 11<br>11  |
| 116        | 76<br>77 | 0000000  |                      | 000000000 | 72F2FC12F2<br>65E5F825E5 | 0 | 0 | 0 | 1  | 1 | 11       | 10       | 00        |
| 117        | 78       | 0000000  |                      | 000000000 | 4BCBF04BCB               | 0 | 1 | 0 | 1  | 1 | 00       | 11       | 10        |
| ±±/        | 10       | 0000000  | OULUZAOZ             | 55555555  | 100010400                | U | 1 | U | Τ. | 1 | 00       | 11       | ±0        |

page 908 of 1082

| Арр        | endix i    | IV - Samp | ole Data             |            |                          |   |   |   |   |   |          |          | Bluetooth |
|------------|------------|-----------|----------------------|------------|--------------------------|---|---|---|---|---|----------|----------|-----------|
| 118        | 79         | 0000000   | 41C05505             | 000000000  | 1797E09796               | 0 | 1 | 0 | 1 | 0 | 11       | 00       | 11        |
| 119        | 80         | 0000000   | 0380AA0A             | 000000000  | 2F2FC12F2C               | 0 | 1 | 0 | 0 | 0 | 01       | 11       | 00        |
| 120        | 81         | 0000000   | 07015415             | 000000000  | 5E5F825E59               | 0 | 0 | 0 | 0 | 1 | 11       | 01       | 11        |
| 121        | 82         | 0000000   | 0E02A82A             | 000000000  | 3CBF04BCB2               | 0 | 0 | 0 | 1 | 0 | 10       | 11       | 01        |
| 122        | 83         | 0000000   | 1C055054             | 000000000  | 797E097964               | 0 | 0 | 0 | 0 | 0 | 01       | 10       | 11        |
| 123        | 84         | 0000000   | 380AA0A8             | 000000000  | 72FC12F2C9               | 0 | 0 | 0 | 1 | 0 | 01       | 01       | 10        |
| 124        | 85         | 0000000   | 70154151             | 000000000  | 65F825E593               | 0 | 0 | 0 | 1 | 0 | 11       | 01       | 01        |
| 125        | 86         | 0000000   | 602A82A3             | 000000000  | 4BF04BCB26               | 0 | 0 | 0 | 1 | 0 | 10       | 11       | 01        |
| 126        | 87         | 0000000   | 40550546             | 000000000  | 17E097964C               | 0 | 0 | 0 | 1 | 1 | 01       | 10       | 11        |
| 127        | 88         | 0000000   | 00AA0A8D             | 000000000  | 2FC12F2C99               | 0 | 1 | 0 | 1 | 1 | 01       | 01       | 10        |
| 128        | 89         | 0000000   | 0154151A             | 000000000  | 5F825E5932               | 0 | 0 | 0 | 1 | 0 | 11       | 01       | 01        |
| 129        | 90         | 0000000   | 02A82A34             | 000000000  | 3F04BCB264               | 0 | 1 | 0 | 0 | 0 | 10       | 11       | 01        |
| 130        | 91         | 0000000   | 05505468             | 000000000  | 7E097964C9               | 0 | 0 | 0 | 0 | 0 | 01       | 10       | 11        |
| 131        | 92         | 0000000   | 0AA0A8D0             | 000000000  | 7C12F2C992               | 0 | 1 | 0 | 0 | 0 | 01       | 01       | 10        |
| 132        | 93         | 0000000   | 154151A1             | 000000000  | 7825E59324               | 0 | 0 | 0 | 0 | 1 | 10       | 01       | 01        |
| 133        | 94         | 0000000   | 2A82A342             | 000000000  | 704BCB2648               | 0 | 1 | 0 | 0 | 1 | 00       | 10       | 01        |
| 134        | 95         | 0000000   | 55054684             | 000000000  | 6097964C91               | 0 | 0 | 0 | 1 | 1 | 01       | 0.0      | 10        |
| 135        | 96         | 0000000   | 2A0A8D09             | 000000000  | 412F2C9923               | 0 | 0 | 0 | 0 | 1 | 01       | 01       | 00        |
| 136        | 97         | 0000000   | 54151A12             | 000000000  | 025E593246               | 0 | 0 | 0 | 0 | 1 | 10       | 01       | 01        |
| 137        | 98         | 0000000   | 282A3424             | 000000000  | 04BCB2648D               | 0 | 0 | 0 | 1 | 1 | 00       | 10       | 01        |
| 138        | 99         | 0000000   | 50546848             | 000000000  | 097964C91A               | 0 | 0 | 0 | 0 | 0 | 01       | 00       | 10        |
| 139        | 100        | 0000000   | 20A8D090             | 000000000  | 12F2C99235               | 0 | 1 | 0 | 1 | 1 | 00       | 01       | 00        |
| 140        | 101        | 0000000   | 4151A120             | 000000000  | 25E593246A               | 0 | 0 | 0 | 1 | 1 | 11       | 00       | 01        |
| 141        | 102        | 0000000   | 02A34240             | 000000000  | 4BCB2648D5               | 0 | 1 | 0 | 1 | 1 | 01<br>10 | 11       | 00<br>11  |
| 142<br>143 | 103<br>104 | 0000000   | 05468481<br>0A8D0903 | 000000000  | 17964C91AB<br>2F2C992357 | 0 | 0 | 0 | 1 | 0 | 00       | 01<br>10 | 01        |
| 144        | 105        | 0000000   | 151A1206             | 000000000  | 5E593246AE               | 0 | 0 | 0 | 0 | 0 | 01       | 00       | 10        |
| 145        | 106        | 0000000   | 2A34240C             | 000000000  | 3CB2648D5C               | 0 | 0 | 0 | 1 | 0 | 00       | 01       | 00        |
| 146        | 107        | 0000000   | 54684818             | 000000000  | 7964C91AB8               | 0 | 0 | 0 | 0 | 0 | 11       | 00       | 01        |
| 147        | 108        | 0000000   | 28D09030             | 000000000  | 72C9923571               | 0 | 1 | 0 | 1 | 1 | 01       | 11       | 00        |
| 148        | 109        | 0000000   | 51A12060             | 000000000  | 6593246AE2               | 0 | 1 | 0 | 1 | 1 | 10       | 01       | 11        |
| 149        | 110        | 0000000   | 234240C0             | 000000000  | 4B2648D5C5               | 0 | 0 | 0 | 0 | 0 | 0.0      | 10       | 01        |
| 150        | 111        | 0000000   | 46848180             | 000000000  | 164C91AB8A               | 0 | 1 | 0 | 0 | 1 | 01       | 0.0      | 10        |
| 151        | 112        | 0000000   | 0D090301             | 000000000  | 2C99235714               | 0 | 0 | 0 | 1 | 0 | 00       | 01       | 00        |
| 152        | 113        | 0000000   | 1A120602             | 000000000  | 593246AE28               | 0 | 0 | 0 | 0 | 0 | 11       | 0.0      | 01        |
| 153        | 114        | 0000000   | 34240C04             | 000000000  | 32648D5C51               | 0 | 0 | 0 | 0 | 1 | 10       | 11       | 00        |
| 154        | 115        | 0000000   | 68481809             | 000000000  | 64C91AB8A2               | 0 | 0 | 0 | 1 | 1 | 01       | 10       | 11        |
| 155        | 116        | 0000000   | 50903012             | 000000000  | 4992357144               | 0 | 1 | 0 | 1 | 1 | 01       | 01       | 10        |
| 156        | 117        | 0000000   | 21206024             | 000000000  | 13246AE288               | 0 | 0 | 0 | 0 | 1 | 10       | 01       | 01        |
| 157        | 118        | 0000000   | 4240C048             | 000000000  | 2648D5C511               | 0 | 0 | 0 | 0 | 0 | 00       | 10       | 01        |
| 158        | 119        | 0000000   | 04818090             | 000000000  | 4C91AB8A23               | 0 | 1 | 0 | 1 | 0 | 00       | 00       | 10        |
| 159        | 120        | 0000000   | 09030120             | 000000000  | 1923571446               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00        |
| 160        | 121        | 0000000   | 12060240             | 000000000  | 3246AE288D               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00        |
| 161        | 122        | 0000000   | 240C0480             | 000000000  | 648D5C511B               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00        |
| 162        | 123        | 0000000   | 48180900             | 000000000  | 491AB8A237               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00        |
| 163        | 124        | 0000000   | 10301200             | 00000000   | 123571446F               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00        |
| 164        | 125        | 0000000   |                      | 000000000  | 246AE288DF               | 0 | 0 | 0 | 0 | 0 | 00       | 00       |           |
| 165        | 126        | 0000000   | 40C04800             | 000000000  | 48D5C511BE               | 0 | 1 | 0 | 1 | 0 | 01       | 00       |           |
| 166        | 127        | 0000000   |                      |            | 11AB8A237D               | 0 | 1 | 0 | 1 | 1 | 00       | 01       |           |
| 167        | 128        | 0000000   |                      | 000000000  | 23571446FA               | 0 | 0 | 0 | 0 | 0 | 11       | 0.0      |           |
| 168        | 129        | 0000000   | 06024004             | 000000000  | 46AE288DF5               | 0 | 0 | 0 | 1 | 0 | 01       | 11       |           |
| 169        | 130        | 0000000   | 0C048008             | 000000000  | OD5C511BEA               | 0 | 0 | 0 | 0 | 1 | 11       | 01       |           |
| 170        | 131        | 0000000   |                      |            | 1AB8A237D5               | 0 | 0 | 0 | 1 | 0 | 10       | 11       |           |
| 171        | 132        | 0000000   |                      | 000000000  | 3571446FAA               | 0 | 0 | 0 | 0 | 0 | 01       | 10       |           |
| 172        | 133        | 0000000   |                      | 000000000  | 6AE288DF55               | 0 | 0 | 0 | 1 | 0 | 01       | 01       |           |
| 173        | 134        | 0000000   |                      |            | 55C511BEAA               | 0 | 0 | 0 | 1 | 0 | 11       | 01       |           |
| 174        | 135        | 0000000   | 00300113             | 0000000000 | 2B8A237D54               | 0 | 1 | 0 | 1 | 1 | 10       | 11       | 01        |

page 909 of 1082

| Арр        | endix i    | IV - Samp | ole Data             |           |                          |   |   |   |   |   |     | E        | Bluetooth |
|------------|------------|-----------|----------------------|-----------|--------------------------|---|---|---|---|---|-----|----------|-----------|
| 175        | 136        | 0000000   | 01200227             | 000000000 | 571446FAA8               | 0 | 0 | 0 | 0 | 0 | 01  | 10       | 11        |
| 176        | 137        | 0000000   | 0240044E             | 000000000 | 2E288DF550               | 0 | 0 | 0 | 0 | 1 | 0.0 | 01       | 10        |
| 177        | 138        | 0000000   | 0480089C             | 000000000 | 5C511BEAA0               | 0 | 1 | 0 | 0 | 1 | 11  | 0.0      | 01        |
| 178        | 139        | 0000000   | 09001138             | 000000000 | 38A237D540               | 0 | 0 | 0 | 1 | 0 | 01  | 11       | 00        |
| 179        | 140        | 0000000   | 12002270             | 000000000 | 71446FAA81               | 0 | 0 | 0 | 0 | 1 | 11  | 01       | 11        |
| 180        | 141        | 0000000   | 240044E0             | 000000000 | 6288DF5503               | 0 | 0 | 0 | 1 | 0 | 10  | 11       | 01        |
| 181        | 142        | 0000000   | 480089C0             | 000000000 | 4511BEAA06               | 0 | 0 | 0 | 0 | 0 | 01  | 10       | 11        |
| 182        | 143        | 0000000   | 10011381             | 000000000 | 0A237D540D               | 0 | 0 | 0 | 0 | 1 | 00  | 01       | 10        |
| 183        | 144        | 0000000   | 20022702             | 000000000 | 1446FAA81A               | 0 | 0 | 0 | 0 | 0 | 11  | 00       | 01        |
| 184        | 145        | 0000000   | 40044E04             | 000000000 | 288DF55035               | 0 | 0 | 0 | 1 | 0 | 01  | 11       | 00        |
| 185        | 146        | 0000000   | 00089C08             | 000000000 | 511BEAA06A               | 0 | 0 | 0 | 0 | 1 | 11  | 01       | 11        |
| 186        | 147        | 0000000   | 00113810             | 000000000 | 2237D540D5               | 0 | 0 | 0 | 0 | 1 | 01  | 11       | 01        |
| 187        | 148        | 0000000   | 00227021             | 000000000 | 446FAA81AA               | 0 | 0 | 0 | 0 | 1 | 11  | 01       | 11        |
| 188        | 149        | 0000000   | 0044E042             | 000000000 | 08DF550355               | 0 | 0 | 0 | 1 | 0 | 10  | 11       | 01        |
| 189        | 150        | 0000000   | 0089C085             | 000000000 | 11BEAA06AA               | 0 | 1 | 0 | 1 | 0 | 10  | 10       | 11        |
| 190        | 151        | 0000000   | 0113810A             | 000000000 | 237D540D54               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 191        | 152        | 0000000   | 02270215             | 000000000 | 46FAA81AA9               | 0 | 0 | 0 | 1 | 1 | 10  | 10       | 10        |
| 192        | 153        | 0000000   | 044E042A             | 000000000 | 0DF5503553               | 0 | 0 | 0 | 1 | 1 | 10  | 10       | 10        |
| 193        | 154        | 0000000   | 089C0854             | 000000000 | 1BEAA06AA7               | 0 | 1 | 0 | 1 | 0 | 01  | 10       | 10        |
| 194        | 155        | 0000000   | 113810A8             | 000000000 | 37D540D54E               | 0 | 0 | 0 | 1 | 0 | 01  | 01       | 10        |
| 195        | 156        | 0000000   | 22702150             | 000000000 | 6FAA81AA9D               | 0 | 0 | 0 | 1 | 0 | 11  | 01       | 01        |
| 196        | 157        | 0000000   | 44E042A0             | 000000000 | 5F5503553A               | 0 | 1 | 0 | 0 | 0 | 10  | 11       | 01        |
| 197        | 158        | 0000000   | 09C08540             | 000000000 | 3EAA06AA75               | 0 | 1 | 0 | 1 | 0 | 10  | 10       | 11        |
| 198        | 159        | 0000000   | 13810A80             | 000000000 | 7D540D54EA               | 0 | 1 | 0 | 0 | 1 | 10  | 10       | 10        |
| 199        | 160        | 0000000   | 27021500             | 000000000 | 7AA81AA9D5               | 0 | 0 | 0 | 1 | 1 | 10  | 10       | 10        |
| 200        | 161        | 0000000   | 4E042A00             | 000000000 | 75503553AB               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 201        | 162        | 0000000   | 1C085400             | 000000000 | 6AA06AA756               | 0 | 0 | 0 | 1 | 1 | 10  | 10       | 10        |
| 202        | 163        | 0000000   | 3810A800             | 000000000 | 5540D54EAC               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 203        | 164        | 0000000   | 70215000             | 000000000 | 2A81AA9D58               | 0 | 0 | 0 | 1 | 1 | 10  | 10       | 10        |
| 204        | 165        | 0000000   | 6042A001             | 000000000 | 5503553AB0               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 205        | 166        | 0000000   | 40854002             | 000000000 | 2A06AA7561               | 0 | 1 | 0 | 0 | 1 | 10  | 10       | 10        |
| 206        | 167        | 0000000   | 010A8004             | 000000000 | 540D54EAC3               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 207        | 168        | 0000000   | 02150009             | 000000000 | 281AA9D586               | 0 | 0 | 0 | 0 | 0 | 10  | 10       | 10        |
| 208<br>209 | 169<br>170 | 0000000   | 042A0012<br>08540024 | 000000000 | 503553AB0C<br>206AA75618 | 0 | 0 | 0 | 0 | 0 | 10  | 10<br>10 | 10<br>10  |
| 210        | 171        | 0000000   | 10A80048             | 000000000 | 40D54EAC30               | 0 | 1 | 0 | 1 | 0 | 01  | 10       | 10        |
| 211        | 172        | 0000000   | 21500091             | 000000000 | 01AA9D5861               | 0 | 0 | 0 | 1 | 0 | 01  | 01       | 10        |
| 212        | 173        | 0000000   | 42A00122             | 000000000 | 03553AB0C3               | 0 | 1 | 0 | 0 | 0 | 11  | 01       | 01        |
| 213        | 174        | 0000000   | 05400244             | 000000000 | 06AA756186               | 0 | 0 | 0 | 1 | 0 | 10  | 11       | 01        |
| 214        | 175        | 0000000   | 0A800488             | 000000000 | 0D54EAC30D               | 0 | 1 | 0 | 0 | 1 | 01  | 10       | 11        |
| 215        | 176        | 0000000   |                      | 000000000 | 1AA9D5861A               | 0 | 0 | 0 | 1 | 0 | 01  | 01       | 10        |
| 216        | 177        | 0000000   | 2A001223             | 000000000 | 3553AB0C35               | 0 | 0 | 0 | 0 | 1 | 10  | 01       | 01        |
| 217        | 178        | 0000000   | 54002446             | 000000000 | 6AA756186A               | 0 | 0 | 0 | 1 | 1 | 00  | 10       | 01        |
| 218        | 179        | 0000000   | 2800488D             | 000000000 | 554EAC30D5               | 0 | 0 | 0 | 0 | 0 | 01  | 0.0      | 10        |
| 219        | 180        | 0000000   | 5000911B             | 000000000 | 2A9D5861AA               | 0 | 0 | 0 | 1 | 0 | 00  | 01       | 00        |
| 220        | 181        | 0000000   | 20012236             | 000000000 | 553AB0C355               | 0 | 0 | 0 | 0 | 0 | 11  | 00       | 01        |
| 221        | 182        | 0000000   | 4002446C             | 000000000 | 2A756186AA               | 0 | 0 | 0 | 0 | 1 | 10  | 11       | 00        |
| 222        | 183        | 0000000   | 000488D9             | 000000000 | 54EAC30D54               | 0 | 0 | 0 | 1 | 1 | 01  | 10       | 11        |
| 223        | 184        | 0000000   | 000911B2             | 000000000 | 29D5861AA8               | 0 | 0 | 0 | 1 | 0 | 01  | 01       | 10        |
| 224        | 185        | 0000000   | 00122364             | 000000000 | 53AB0C3550               | 0 | 0 | 0 | 1 | 0 | 11  | 01       | 01        |
| 225        | 186        | 0000000   | 002446C8             | 000000000 | 2756186AA0               | 0 | 0 | 0 | 0 | 1 | 01  | 11       | 01        |
| 226        | 187        | 0000000   | 00488D90             | 000000000 | 4EAC30D540               | 0 | 0 | 0 | 1 | 0 | 10  | 01       | 11        |
| 227        | 188        | 0000000   | 00911B20             | 000000000 | 1D5861AA81               | 0 | 1 | 0 | 0 | 1 | 00  | 10       | 01        |
| 228        | 189        | 0000000   | 01223640             | 000000000 | 3AB0C35502               | 0 | 0 | 0 | 1 | 1 | 01  | 00       | 10        |
| 229        | 190        | 0000000   | 02446C80             | 000000000 | 756186AA05               | 0 | 0 | 0 | 0 | 1 | 01  | 01       | 00        |
| 230        | 191        | 0000000   |                      | 000000000 | 6AC30D540B               | 0 | 1 | 0 | 1 | 1 | 11  | 01       | 01        |
| 231        | 192        | 0000000   | 0911B203             | 000000000 | 55861AA817               | 0 | 0 | 0 | 1 | 0 | 10  | 11       | 01        |

page 910 of 1082

|                                                                                                                        | IGIA I                                                  | V - Samp                                                                                                                                  | o Dala                                                                                                                                                                          |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         | E                                           | 3lueto                                                                     |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|
| 32 1                                                                                                                   | .93                                                     | 0000000                                                                                                                                   | 12236407                                                                                                                                                                        | 000000000                                                                          | 2B0C35502F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0                                                     | 0                                                                 | 0                                                                                 | 0                                                                                                    | 01                                                      | 10                                          | 11                                                                         |
| 33 1                                                                                                                   | 94                                                      | 0000000                                                                                                                                   | 2446C80E                                                                                                                                                                        | 000000000                                                                          | 56186AA05F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0                                                     | 0                                                                 | 0                                                                                 | 1                                                                                                    | 00                                                      | 01                                          | 10                                                                         |
| 34 1                                                                                                                   | .95                                                     | 0000000                                                                                                                                   | 488D901C                                                                                                                                                                        | 000000000                                                                          | 2C30D540BF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 1                                                     | 0                                                                 | 0                                                                                 | 1                                                                                                    | 11                                                      | 00                                          | 01                                                                         |
| 35 1                                                                                                                   | 96                                                      | 0000000                                                                                                                                   | 111B2039                                                                                                                                                                        | 000000000                                                                          | 5861AA817E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0                                                     | 0                                                                 | 0                                                                                 | 1                                                                                                    | 10                                                      | 11                                          | 00                                                                         |
| 36 1                                                                                                                   | 97                                                      | 0000000                                                                                                                                   | 22364072                                                                                                                                                                        | 000000000                                                                          | 30C35502FD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0                                                     | 0                                                                 | 1                                                                                 | 1                                                                                                    | 01                                                      | 10                                          | 11                                                                         |
| 37 1                                                                                                                   | 98                                                      | 0000000                                                                                                                                   | 446C80E4                                                                                                                                                                        | 000000000                                                                          | 6186AA05FB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0                                                     | 0                                                                 | 1                                                                                 | 0                                                                                                    | 01                                                      | 01                                          | 10                                                                         |
| 38 1                                                                                                                   | 99                                                      | 0000000                                                                                                                                   | 08D901C8                                                                                                                                                                        | 000000000                                                                          | 430D540BF6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 1                                                     | 0                                                                 | 0                                                                                 | 0                                                                                                    | 11                                                      | 01                                          | 01                                                                         |
| 39 2                                                                                                                   | 200                                                     | 0000000                                                                                                                                   | 11B20391                                                                                                                                                                        | 000000000                                                                          | 061AA817EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 1                                                     | 0                                                                 | 0                                                                                 | 0                                                                                                    | 10                                                      | 11                                          | 01                                                                         |
| [0] =                                                                                                                  | 3D                                                      |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [1] =                                                                                                                  | : C1                                                    |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [2] =                                                                                                                  | F0                                                      |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [3] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [4] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [5] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [6] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [7] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [8] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [9] =                                                                                                                  |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [10] =                                                                                                                 |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [11] =                                                                                                                 |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [12] =                                                                                                                 |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [13] =                                                                                                                 |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
| [14] =                                                                                                                 |                                                         |                                                                                                                                           |                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                       |                                                                   |                                                                                   |                                                                                                      |                                                         |                                             |                                                                            |
|                                                                                                                        | Rel<br>Hol                                              | oad this                                                                                                                                  | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | er regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1                                                                                                          | Rel<br>Hol<br>======                                    | oad this d content EB583D                                                                                                                 | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2                                                                                                  | Rel<br>Hol<br>=====<br><= 04<br><= 20                   | oad this d content ======= B583D 8E1EC1                                                                                                   | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3                                                                                          | Rel<br>Hol<br>======<br><= 04<br><= 20<br><= 06         | oad this d content ======= B583D 8E1EC1 3C142F0                                                                                           | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4                                                                                  | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F          | oad this d content ======= B583D 8E1EC1 3C142F0                                                                                           | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3                                                                                          | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F          | oad this d content ======= B583D 8E1EC1 3C142F0                                                                                           | pattern in<br>of Summat                                                                                                                                                         | to the LFSR                                                                        | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .culat                                            | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]                                                                         | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ======= .B583D .8E1EC1 .3C142F0 .7A2A42BB                                                                              | pattern in<br>of Summat                                                                                                                                                         | to the LFSR<br>ion Combine                                                         | s<br>r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culat                                             | e n                                                   | ew                                                                | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]                                                                         | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ======= .B583D .8E1EC1 .3C142F0 .7A2A42BB                                                                              | pattern in of Summat ===================================                                                                                                                        | to the LFSR ion Combine =========                                                  | s regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat                                             | e n                                                   | ew                                                                | C[t+<br>====<br>]                                                                 | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]                                                                         | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ======== B583D 8E1EC1 3C142F0 7A2A42BB                                                                                 | pattern in of Summat ===================================                                                                                                                        | to the LFSR ion Combine ====================================                       | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat                                             | e n                                                   | ew<br>====                                                        | C[t+                                                                              | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>======                                                               | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ==================================                                                                                     | pattern in of Summat 25 key sym 208E1EC1                                                                                                                                        | to the LFSR ion Combine ========  bols (encry ==================================== | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat                                             | e n<br>===<br>que<br>===<br>1                         | ew ====================================                           | C[t+<br>====<br>)<br>====<br>0                                                    | 1] a                                                                                                 | nd Z                                                    | values                                      |                                                                            |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>======<br>40                                                        | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ======= .B583D 8E1EC1 3C142F0 7A2A42BB ======== erating 1 ====== 04B583D 096B07A                                       | pattern in of Summat 25 key sym 208E1EC1 411C3D82                                                                                                                               | to the LFSR ion Combine ========  bols (encry ==================================== | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat                                             | e n<br>====<br>que<br>====<br>1<br>0                  | ew nce 0                                                          | C[t+<br>====<br>)<br>====<br>0                                                    | 1] a                                                                                                 | nd Z                                                    | values:                                     | <br><br>01                                                                 |
| ======<br>FSR1<br>FSR2<br>FSR4<br>[[t+1]]<br>=======<br>40<br>41<br>42                                                 | Rel<br>Hol<br><= 04<br><= 20<br><= 06<br><= 0F<br><= 10 | oad this d content ==================================                                                                                     | pattern in of Summat   ===================================                                                                                                                      | to the LFSR ion Combine ====================================                       | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat<br><br>on se<br><br>0                       | e n ==== que === 1 0                                  | ew ==== nce === 0 1 1                                             | C[t+<br>====<br>)<br>====<br>0                                                    | 1] a                                                                                                 | nd Z                                                    | values:                                     | 01                                                                         |
| =====<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[[t+1]                                                                        | Rel<br>Hol<br>==================================        | oad this d content ==================================                                                                                     | pattern in of Summat                                                                                                                                                            | to the LFSR ion Combine ====================================                       | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat:====== on se 0 1 0                          | e n ==== que === 1 0                                  | ====<br>nce<br>====<br>0<br>1<br>1                                | C[t+<br>====<br>)<br>====<br>0<br>1                                               | 1] a                                                                                                 | nd Z                                                    | values:                                     | 01<br>11                                                                   |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>E[t+1]<br>=======<br>40<br>41<br>42<br>43<br>44                              | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ======= B583D 8E1EC1 3C142F0 7A2A42BB  ======= 04B583D 096B07A 12D60F4 05AC1E9 0B583D2                                 | pattern in of Summat   ===================================                                                                                                                      | to the LFSR ion Combine ====================================                       | r regs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat on se 0 1 0 0 1                             | e n ==== que === 1 0 0                                | =====<br>0<br>1<br>0<br>0                                         | C[t+<br>====<br>)<br>====<br>0<br>1<br>1                                          | 1] a                                                                                                 | nd Z                                                    | values::====::::::::::::::::::::::::::::::: | 01<br>11<br>10                                                             |
| ======<br>FSR1<br>FSR2<br>FSR4<br>[t+1]<br>======<br>40<br>41<br>42<br>43<br>44<br>45                                  | Rel Hol                                                 | oad this d content ======= .B583D .8E1EC1 .3C142F0 .7A2A42BB                                                                              | pattern in of Summat   ========   25 key sym   =======   208E1EC1   411C3D82   0470F609   08E1EC13   11C3D827                                                                   | ======================================                                             | rregs and cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | culat on se 0 1 0 0 1                             | e n ==== que === 1 0 0 1 1                            | new ===== 0 1 1 0 0 0 0                                           | C[t+<br>====<br>)<br>====<br>0<br>1<br>1<br>1                                     | 1] a ==== 0 1 0 0 0 1 1                                                                              | nd Z                                                    | values::====::::::::::::::::::::::::::::::: | 01<br>11<br>10<br>10<br>01                                                 |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>======<br>40<br>41<br>42<br>43<br>44<br>45<br>46                    | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ======= .B583D .8E1EC1 .3C142F0 .7A2A42BB                                                                              | pattern in of Summat   ========   25 key sym   =======   208E1EC1   411C3D82   0470F609   08E1EC13   11C3D827   2387B04F                                                        | to the LFSR ion Combine ====================================                       | rregs and cal<br>erregs and cal<br>erregs and cal<br>erregs and cal<br>erregs<br>ption/decrypti<br>of7a2a42BB<br>1EF4548577<br>3DE8A90AEF<br>7BD15215DF<br>77A2A42BBF<br>6F4548577E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culat on se 0 1 0 0 1                             | e n ==== que === 1 0 0 1 1                            | new ===== 0 1 1 0 0 0 0                                           | C[t+<br>====<br>)<br>====<br>0<br>1<br>1<br>1                                     | 1] a ===== 0 1 0 0 0 1 1                                                                             | nd Z                                                    | values::====::::::::::::::::::::::::::::::: | 01<br>11<br>10<br>10<br>01                                                 |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>=======<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47             | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ======= B583D 8E1EC1 3C142F0 7A2A42BB  ======= 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97         | 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E                                                                                                         | to the LFSR ion Combine ====================================                       | ption/decrypti of7a2A42BB 1Ef4548577 3DE8A90AEF 77A2A42BBF 6F4548577E 5E8A90AEFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culat on se 0 1 0 0 1 1 1                         | e n ==== que === 1 0 0 1 1                            | ====<br>0<br>1<br>1<br>0<br>0                                     | C[t+<br>====<br>)<br>====<br>0<br>1<br>1<br>1<br>0                                | 1] a ===== 0 1 0 0 0 1 1                                                                             | nd Z                                                    | values::=====:::::::::::::::::::::::::::::: | 01<br>11<br>10<br>10<br>01<br>01                                           |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>=======<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48       | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ======= B583D 8E1EC1 3C142F0 7A2A42BB  ======= 04B583D 096B07A 12D60F4 05AC1E9 0B583D2 16B07A5 0D60F4B 1AC1E97 1583D2E | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D                                                                                     | to the LFSR ion Combine ====================================                       | rregs and cal rregs and cal rregs and cal rregs and cal regs rregs and cal regs rregs regs regs regs regs regs reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culat on se 0 1 0 1 1                             | e n ==== que === 1 0 0 1 1 1                          | ====<br>0<br>1<br>0<br>0<br>0<br>1                                | C[t+<br>=====<br>)<br>=====<br>0<br>1<br>1<br>1<br>0<br>1                         | 1] a ==== 0 1 0 0 0 1 1 0 0                                                                          | nd Z                                                    | values:                                     | 01<br>11<br>10<br>10<br>01<br>01<br>01                                     |
| ======<br>FSR1<br>FSR2<br>FSR3<br>FSR4<br>[t+1]<br>=======<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49 | Rel Hol ==================================              | oad this d content ==================================                                                                                     | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D                                                                                     | to the LFSR ion Combine ====================================                       | rregs and cal rregs and cal rregs and cal rregs and cal regs regs regs regs regs regs regs regs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culat on se 0 1 0 1 0 1 0 1                       | e n ==== que ==== 1 0 0 1 1 0 0                       | ew ==== 0 1 1 0 0 0 1 1 1                                         | C[t+<br>=====<br>)<br>=====<br>0<br>1<br>1<br>1<br>0<br>0                         | 1] a ===== 0 1 0 0 0 1 1 0 0 0 0                                                                     | nd Z ====== 10 10 01 01 00 11 00 11 01 01               | values:                                     | 01<br>11<br>10<br>10<br>01<br>01<br>01<br>01                               |
| ======<br>FSR1<br>FSR2<br>FSR4<br>[t+1]<br>======<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50    | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7                                                                   | to the LFSR ion Combine ====================================                       | rregs and cal<br>erregs | culat on se 0 1 0 1 0 1 1 0 1                     | e n ==== que === 1 0 0 1 1 0 0 0 0 0                  | new ==== 0 1 1 0 0 1 1 1 1 1                                      | C[t+<br>=====<br>)<br>=====<br>0<br>1<br>1<br>1<br>0<br>0<br>0                    | 1] a ===== 0 1 0 0 0 1 1 0 0 0 1                                                                     | nd Z ====== 10 10 01 00 11 00 11 10                     | values:                                     | 01<br>11<br>10<br>10<br>01<br>01<br>01<br>00<br>11                         |
| ====== FSR1 FSR2 FSR3 FSR4 [t+1] ====== 40 41 42 43 44 45 46 47 48 49 50 51                                            | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7                                                                   | to the LFSR ion Combine ====================================                       | rregs and cal<br>erregs | culat on se 0 1 0 1 0 1 1 0 1                     | e n ==== que === 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1      | =====<br>0<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0                | C[t+<br>====<br>)<br>====<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0                 | 1] a ===== 0 1 0 0 0 1 1 0 0 0 1 1 0 0                                                               | nd Z ====== 10 10 01 00 11 00 11 00 01                  | values:                                     | 01<br>11<br>10<br>10<br>01<br>01<br>01<br>00<br>11<br>00                   |
| ====== FSR1 FSR2 FSR3 FSR4 [[t+1]] ======= 40 41 42 43 44 45 46 47 48 49 50 51                                         | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD                                                 | to the LFSR ion Combine ====================================                       | rregs and cal<br>erregs | culat on se 0 1 0 0 1 1 0 1 1 0 1                 | e n ==== que === 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1      | ======================================                            | C[t+<br>====<br>)<br>====<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0                 | 1] a ===== 0 1 0 0 0 1 1 0 0 0 1 1 0 0                                                               | nd Z ===== 10 10 01 00 11 00 11 00 00 00                | values:                                     | 01<br>11<br>10<br>10<br>01<br>01<br>01<br>00<br>11<br>00<br>11             |
| ====== FSR1 FSR2 FSR4 F(t+1) ====================================                                                      | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | 25 key sym 208E1EC1 411C3D82 02387B04 0470F609 08E1EC13 11C3D827 2387B04F 470F609E 0E1EC13D 1C3D827B 387B04F7 70F609EE 61EC13DD 43D827BA                                        | to the LFSR ion Combine ====================================                       | rregs and cal<br>erregs | culat on se 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 | e n ==== que = == 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1   | =====0<br>1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0                   | C[t+<br>====<br>)<br>=====<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 1] a ===== 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | nd Z ====== 10 10 01 00 11 00 11 00 00 00 00 00         | values:                                     | 01<br>11<br>10<br>01<br>01<br>00<br>11<br>00<br>11<br>01<br>10             |
| ====== FSR1 FSR2 FSR4 [[t+1]] ======= 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54                                     | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | 208e1ec1<br>411c3D82<br>02387B04<br>470F609<br>08E1ec13<br>11c3D827<br>2387B04F<br>470F609E<br>0E1ec13D<br>1c3D827B<br>387B04F7<br>70F609EE<br>61ec13DD<br>43D827BA<br>07B04F74 | to the LFSR ion Combine ====================================                       | rregs and cal<br>rregs and cal<br>reserved.<br>ption/decrypti<br>reserved.<br>oF7A2A42BB<br>1EF4548577<br>3DE8A90AEF<br>7BD15215DF<br>77A2A42BBF<br>6F4548577E<br>5E8A90AEFD<br>3D15215DFA<br>7A2A42BBF4<br>74548577E9<br>68A90AEFD2<br>515215DFA5<br>22A42BBF4B<br>4548577E97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | culat on see                                      | e n ==== que ==== 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1   | =====<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0 | C[t+<br>====<br>)<br>=====<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 | 1] a ===== 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1                                                           | nd Z ====== 10 10 10 01 01 01 11 00 01 10 00 01 10 00 0 | values:                                     | 01<br>11<br>10<br>01<br>01<br>00<br>11<br>00<br>11<br>00<br>01             |
| ====== FSR1 FSR2 FSR4 [t+1] ======= 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54                                       | Rel Hol Hol Hol Hol Hol Hol Hol Hol Hol Ho              | oad this d content ==================================                                                                                     | pattern in of Summat   ===================================                                                                                                                      | to the LFSR ion Combine ====================================                       | rregs and cal<br>rregs and cal<br>ption/decrypti<br>offa2A42BB<br>1Ef4548577<br>3DE8A90AEF<br>7BD15215DF<br>77A2A42BBF<br>6F4548577E<br>5E8A90AEFD<br>3D15215DFA<br>7A2A42BBF4<br>74548577E9<br>68A90AEFD2<br>515215DFA5<br>22A42BBF4B<br>4548577E97<br>0A90AEFD2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | culat on see                                      | e n ==== que ==== 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 | ======================================                            | C[t+<br>====<br>)<br>=====<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>1 | 1] a ===== 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1                                                           | nd Z ====== 10 10 10 01 01 00 11 00 00 01 10 00 11 00   | values:                                     | 01<br>11<br>10<br>01<br>01<br>01<br>00<br>11<br>00<br>11<br>10<br>00<br>00 |

page 911 of 1082

| Appendix IV - Sample Data  Bluetoot |          |                    |                      |                        |                          |   |   |   |   |   |    |          | Bluetooth. |
|-------------------------------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----|----------|------------|
| 258                                 | 19       | 0F4BB4F            | 7B04F740             | 10BC302F6              | 290AEFD2E5               | 1 | 0 | 0 | 0 | 0 | 01 | 11       | 00         |
| 259                                 | 20       | 1E9769F            | 7609EE80             | 0178605ED              | 5215DFA5CA               | 1 | 0 | 0 | 0 | 0 | 10 | 01       | 11         |
| 260                                 | 21       | 1D2ED3F            | 6C13DD01             | 02F0C0BDA              | 242BBF4B94               | 1 | 0 | 0 | 0 | 1 | 00 | 10       | 01         |
| 261                                 | 22       | 1A5DA7E            | 5827BA03             | 05E1817B4              | 48577E9729               | 1 | 0 | 0 | 0 | 1 | 01 | 00       | 10         |
| 262                                 | 23       | 14BB4FC            | 304F7407             | 0BC302F69              | 10AEFD2E53               | 0 | 0 | 1 | 1 | 1 | 00 | 01       | 00         |
| 263                                 | 24       | 09769F9            | 609EE80E             | 178605ED2              | 215DFA5CA7               | 1 | 1 | 0 | 0 | 0 | 10 | 00       | 01         |
| 264                                 | 25       | 12ED3F2            | 413DD01C             | 0F0C0BDA4              | 42BBF4B94F               | 0 | 0 | 1 | 1 | 0 | 00 | 10       | 00         |
| 265                                 | 26       | 05DA7E5            | 027BA038             | 1E1817B49              | 0577E9729F               | 0 | 0 | 1 | 0 | 1 | 01 | 00       | 10         |
| 266                                 | 27       | 0BB4FCA            | 04F74071             | 1C302F693              | 0AEFD2E53F               | 1 | 1 | 1 | 1 | 1 | 11 | 01       | 00         |
| 267                                 | 28       | 1769F95            | 09EE80E3             | 18605ED27              | 15DFA5CA7F               | 0 | 1 | 1 | 1 | 0 | 11 | 11       | 01         |
| 268                                 | 29       | 0ED3F2B            | 13DD01C6             | 10C0BDA4F              | 2BBF4B94FE               | 1 | 1 | 0 | 1 | 0 | 10 | 11       | 11         |
| 269                                 | 30       | 1DA7E56            | 27BA038D             | 01817B49F              | 577E9729FD               | 1 | 1 | 0 | 0 | 0 | 10 | 10       | 11         |
| 270                                 | 31       | 1B4FCAD            | 4F74071B             | 0302F693E              | 2EFD2E53FB               | 1 | 0 | 0 | 1 | 0 | 01 | 10       | 10         |
| 271                                 | 32       | 169F95B            | 1EE80E37             | 0605ED27D              | 5DFA5CA7F7               | 0 | 1 | 0 | 1 | 1 | 01 | 01       | 10         |
| 272                                 | 33       | 0D3F2B7            | 3DD01C6E             | 0C0BDA4FB              | 3BF4B94FEF               | 1 | 1 | 1 | 1 | 1 | 00 | 01       | 01         |
| 273                                 | 34       | 1A7E56F            | 7BA038DC             | 1817B49F6              | 77E9729FDE               | 1 | 1 | 1 | 1 | 0 | 01 | 00       | 01         |
| 274                                 | 35       | 14FCADF            | 774071B9             | 102F693ED              | 6FD2E53FBD               | 0 | 0 | 0 | 1 | 0 | 00 | 01       | 00         |
| 275                                 | 36       | 09F95BE            | 6E80E373             | 005ED27DB              | 5FA5CA7F7B               | 1 | 1 | 0 | 1 | 1 | 10 | 00       | 01         |
| 276                                 | 37       | 13F2B7C            | 5D01C6E7             | 00BDA4FB6              | 3F4B94FEF7               | 0 | 0 | 0 | 0 | 0 | 11 | 10       | 00         |
| 277                                 | 38       | 07E56F9            | 3A038DCE             | 017B49F6C              | 7E9729FDEE               | 0 | 0 | 0 | 1 | 0 | 00 | 11       | 10         |
| 278                                 | 39       | 0FCADF2            | 74071B9C             | 02F693ED8              | 7D2E53FBDD               | 1 | 0 | 0 | 0 | 1 | 10 | 0.0      | 11         |
| 279                                 | 40       | 1F95BE5            | 680E3738             | 05ED27DB0              | 7A5CA7F7BA               | 1 | 0 | 0 | 0 | 1 | 11 | 10       | 00         |
| 280                                 | 41       | 1F2B7CA            | 501C6E71             | 0BDA4FB60              | 74B94FEF74               | 1 | 0 | 1 | 1 | 0 | 01 | 11       | 10         |
| 281                                 | 42       | 1E56F94            | 2038DCE2             | 17B49F6C0              | 69729FDEE8               | 1 | 0 | 0 | 0 | 0 | 10 | 01       | 11         |
| 282                                 | 43       | 1CADF29            | 4071B9C4             | 0F693ED80              | 52E53FBDD1               | 1 | 0 | 1 | 1 | 1 | 11 | 10       | 01         |
| 283                                 | 44       | 195BE53            | 00E37389             | 1ED27DB01              | 25CA7F7BA3               | 1 | 1 | 1 | 1 | 1 | 01 | 11       | 10         |
| 284                                 | 45       | 12B7CA6            | 01C6E713             | 1DA4FB602              | 4B94FEF747               | 0 | 1 | 1 | 1 | 0 | 01 | 01       | 11         |
| 285                                 | 46       | 056F94C            | 038DCE26             | 1B49F6C04              | 1729FDEE8E               | 0 | 1 | 1 | 0 | 1 | 11 | 01       | 01         |
| 286                                 | 47       | 0ADF299            | 071B9C4D             | 1693ED808              | 2E53FBDD1C               | 1 | 0 | 0 | 0 | 0 | 10 | 11       | 01         |
| 287                                 | 48       | 15BE532            | 0E37389A             | 0D27DB011              | 5CA7F7BA38               | 0 | 0 | 1 | 1 | 0 | 10 | 10       | 11         |
| 288                                 | 49       | 0B7CA64            | 1C6E7135             | 1A4FB6022              | 394FEF7471               | 1 | 0 | 1 | 0 | 0 | 01 | 10       | 10         |
| 289<br>290                          | 50<br>51 | 16F94C9<br>0DF2993 | 38DCE26A<br>71B9C4D4 | 149F6C044<br>093ED8089 | 729FDEE8E2<br>653FBDD1C4 | 0 | 1 | 0 | 1 | 1 | 01 | 01<br>01 | 10<br>01   |
| 290                                 | 52       | 1BE5327            | 637389A9             |                        | 4A7F7BA388               | 1 | 0 | 0 | 0 | 1 | 11 | 00       | 01         |
| 292                                 | 53       | 17CA64E            | 46E71353             | 127DB0112<br>04FB60224 | 14FEF74710               | 0 | 1 | 0 | 1 | 1 | 01 | 11       | 00         |
| 293                                 | 54       | 0F94C9C            | 0DCE26A6             | 09F6C0448              | 29FDEE8E21               | 1 | 1 | 1 | 1 | 1 | 01 | 01       | 11         |
| 294                                 | 55       | 1F29939            | 1B9C4D4D             | 13ED80890              | 53FBDD1C42               | 1 | 1 | 0 | 1 | 0 | 00 | 01       | 01         |
| 295                                 | 56       | 1E53272            | 37389A9A             | 07DB01121              | 27F7BA3884               | 1 | 0 | 0 | 1 | 0 | 10 | 00       | 01         |
| 296                                 | 57       | 1CA64E5            |                      |                        | 4FEF747108               | 1 | 0 | 1 | 1 | 1 | 00 | 10       | 00         |
| 297                                 | 58       | 194C9CB            |                      | 1F6C04485              | 1FDEE8E210               | 1 | 1 | 1 | 1 | 0 | 11 | 00       | 10         |
| 298                                 | 59       | 1299397            | 39C4D4D3             |                        |                          | 0 | 1 | 1 | 1 | 0 | 00 | 11       | 00         |
| 299                                 | 60       | 053272F            | 7389A9A6             | 1DB011214              | 7F7BA38840               | 0 | 1 | 1 | 0 | 0 | 11 | 0.0      | 11         |
| 300                                 | 61       | 0A64E5E            | 6713534C             | 1B6022428              | 7EF7471081               | 1 | 0 | 1 | 1 | 0 | 00 | 11       | 00         |
| 301                                 | 62       | 14C9CBD            | 4E26A699             | 16C044850              | 7DEE8E2102               | 0 | 0 | 0 | 1 | 1 | 10 | 00       | 11         |
| 302                                 | 63       | 099397A            | 1C4D4D32             | 0D80890A0              | 7BDD1C4205               | 1 | 0 | 1 | 1 | 1 | 00 | 10       | 00         |
| 303                                 | 64       | 13272F4            | 389A9A65             | 1B0112141              | 77BA38840B               | 0 | 1 | 1 | 1 | 1 | 00 | 0.0      | 10         |
| 304                                 | 65       | 064E5E8            | 713534CB             | 160224283              | 6F74710817               | 0 | 0 | 0 | 0 | 0 | 00 | 0.0      | 00         |
| 305                                 | 66       | 0C9CBD1            | 626A6997             | 0C0448507              | 5EE8E2102E               | 1 | 0 | 1 | 1 | 1 | 01 | 00       | 00         |
| 306                                 | 67       | 19397A3            | 44D4D32E             | 180890A0E              | 3DD1C4205C               | 1 | 1 | 1 | 1 | 1 | 11 | 01       | 00         |
| 307                                 | 68       | 1272F46            | 09A9A65D             | 10112141D              | 7BA38840B8               | 0 | 1 | 0 | 1 | 1 | 10 | 11       | 01         |
| 308                                 | 69       | 04E5E8C            | 13534CBA             | 00224283A              | 7747108171               | 0 | 0 | 0 | 0 | 0 | 01 | 10       | 11         |
| 309                                 | 70       | 09CBD19            | 26A69975             | 004485075              | 6E8E2102E3               | 1 | 1 | 0 | 1 | 0 | 10 | 01       | 10         |
| 310                                 | 71       | 1397A32            | 4D4D32EB             | 00890A0EA              | 5D1C4205C7               | 0 | 0 | 0 | 0 | 0 | 00 | 10       | 01         |
| 311                                 | 72       | 072F465            | 1A9A65D7             | 0112141D5              | 3A38840B8F               | 0 | 1 | 0 | 0 | 1 | 01 | 00       | 10         |
| 312                                 | 73       | 0E5E8CA            | 3534CBAF             |                        | 747108171F               | 1 | 0 | 0 | 0 | 0 | 00 | 01       | 00         |
| 313                                 | 74       |                    |                      |                        | 68E2102E3E               | 1 | 0 | 0 | 1 | 0 | 10 | 00       | 01         |
| 314                                 | 75       | 197A329            | 54D32EBC             | 0890A0EAB              | 51C4205C7D               | 1 | 1 | 1 | 1 | 0 | 01 | 10       | 00         |

page 912 of 1082

| Арр        | endix      | IV - Samp          | ole Data             |           |                          |   |   |   |   |   |    | ı  | Bluetooth. |
|------------|------------|--------------------|----------------------|-----------|--------------------------|---|---|---|---|---|----|----|------------|
| 315        | 76         | 12F4653            | 29A65D79             | 112141D56 | 238840B8FA               | 0 | 1 | 0 | 1 | 1 | 01 | 01 | 10         |
| 316        | 77         | 05E8CA6            | 534CBAF2             | 024283AAD | 47108171F4               | 0 | 0 | 0 | 0 | 1 | 10 | 01 | 01         |
| 317        | 78         | 03E8CA0            | 269975E5             | 04850755B | 0E2102E3E9               | 1 | 1 | 0 | 0 | 0 | 11 | 10 | 01         |
| 318        | 79         | 17A329A            | 4D32EBCB             | 090A0EAB6 | 1C4205C7D2               | 0 | 0 | 1 | 0 | 0 | 00 | 11 | 10         |
| 319        | 80         | 0F46535            | 1A65D797             | 12141D56D | 38840B8FA5               | 1 | 0 | 0 | 1 | 0 | 11 | 00 | 11         |
| 320        | 81         | 1E8CA6A            | 34CBAF2F             | 04283AADA | 7108171F4B               | 1 | 1 | 0 | 0 | 1 | 01 | 11 | 00         |
| 321        | 82         | 1D194D5            | 69975E5F             | 0850755B4 | 62102E3E97               | 1 | 1 | 1 | 0 | 0 | 01 | 01 | 11         |
| 322        | 83         | 1A329AA            | 532EBCBF             | 10A0EAB68 | 44205C7D2F               | 1 | 0 | 0 | 0 | 0 | 11 | 01 | 01         |
| 323        | 84         | 1465355            | 265D797F             | 0141D56D1 | 0840B8FA5E               | 0 | 0 | 0 | 0 | 1 | 01 | 11 | 01         |
| 324        | 85         | 08CA6AB            | 4CBAF2FF             | 0283AADA2 | 108171F4BC               | 1 | 1 | 0 | 1 | 0 | 01 | 01 | 11         |
| 325        | 86         | 1194D56            | 1975E5FF             | 050755B45 | 2102E3E979               | 0 | 0 | 0 | 0 | 1 | 10 | 01 | 01         |
| 326        | 87         | 0329AAD            | 32EBCBFF             | 0A0EAB68A | 4205C7D2F3               | 0 | 1 | 1 | 0 | 0 | 11 | 10 | 01         |
| 327        | 88         | 065355A            | 65D797FF             | 141D56D14 | 040B8FA5E7               | 0 | 1 | 0 | 0 | 0 | 00 | 11 | 10         |
| 328        | 89         | 0CA6AB4            | 4BAF2FFF             | 083AADA28 | 040B0FA3E7               | 1 | 1 | 1 | 0 | 1 | 11 | 00 | 11         |
| 329        | 90         | 194D569            | 175E5FFF             | 10755B450 | 102E3E979E               | 1 | 0 | 0 | 0 | 0 | 01 | 11 | 00         |
| 330        | 91         | 129AAD3            | 2EBCBFFF             | 00EAB68A1 | 205C7D2F3C               | 0 | 1 | 0 | 0 | 0 | 10 | 01 | 11         |
| 331        | 92         | 05355A6            | 5D797FFF             | 01D56D142 | 40B8FA5E78               | 0 | 0 | 0 | 1 | 1 | 00 | 10 | 01         |
| 332        | 93         | 03333A0<br>0A6AB4D | 3AF2FFFE             | 03AADA285 | 0171F4BCF1               | 1 | 1 | 0 | 0 | 0 | 00 | 00 | 10         |
| 333        | 94         | 14D569B            | 75E5FFFD             | 0755B450A | 02E3E979E2               | 0 | 1 | 0 | 1 | 0 | 01 | 00 | 00         |
|            | 95         |                    |                      |           |                          |   |   | 1 | 1 | 1 | 11 | 01 | 00         |
| 334        |            | 09AAD37<br>1355A6E | 6BCBFFFA             | 0EAB68A15 | 05C7D2F3C4<br>0B8FA5E788 | 1 | 1 |   |   | 0 |    |    |            |
| 335        | 96         |                    | 5797FFF4             | 1D56D142A |                          | 0 | 1 | 1 | 1 |   | 11 | 11 | 01         |
| 336        | 97         | 06AB4DC            | 2F2FFFE8             | 1AADA2854 | 171F4BCF11               | 0 | 0 | 1 | 0 | 0 | 11 | 11 | 11         |
| 337        | 98         | 0D569B8            | 5E5FFFD0             | 155B450A9 | 2E3E979E23               | 1 | 0 | 0 | 0 | 0 | 11 | 11 | 11         |
| 338        | 99         | 1AAD370            | 3CBFFFA1             | 0AB68A153 | 5C7D2F3C46               | 1 | 1 | 1 | 0 | 0 | 10 | 11 | 11         |
| 339        | 100        | 155A6E0            | 797FFF43             | 156D142A7 | 38FA5E788D               | 0 | 0 | 0 | 1 | 1 | 01 | 10 | 11         |
| 340        | 101        | 0AB4DC0            | 72FFFE87             | 0ADA2854E | 71F4BCF11B               | 1 | 1 | 1 | 1 | 1 | 10 | 01 | 10         |
| 341        | 102        | 1569B81            | 65FFFD0E             | 15B450A9D | 63E979E236               | 0 | 1 | 0 | 1 | 0 | 11 | 10 | 01         |
| 342        | 103        | 0AD3703            | 4BFFFA1C             | 0B68A153B | 47D2F3C46C               | 1 | 1 | 1 | 1 | 1 | 01 | 11 | 10         |
| 343        | 104        | 15A6E07            | 17FFF438             | 16D142A76 | 0FA5E788D8               | 0 | 1 | 0 | 1 | 1 | 10 | 01 | 11         |
| 344        | 105        | 0B4DC0F            | 2FFFE870             | 0DA2854EC | 1F4BCF11B0               | 1 | 1 | 1 | 0 | 1 | 11 | 10 | 01         |
| 345        | 106        | 169B81F<br>0D3703F | 5FFFD0E1<br>3FFFA1C3 | 1B450A9D8 | 3E979E2360<br>7D2F3C46C1 | 0 | 1 | 1 | 1 | 0 | 01 | 11 | 10         |
| 346        | 107<br>108 |                    |                      | 168A153B0 |                          | 1 | 1 | 0 | 0 | 1 | 10 | 01 | 11<br>01   |
| 347        |            | 1A6E07E            | 7FFF4386             | 0D142A761 | 7A5E788D83               | 1 | 1 | 1 |   | 1 | 11 | 10 |            |
| 348        | 109        | 14DC0FD            | 7FFE870C             | 1A2854EC2 | 74BCF11B07               | 0 | 1 | 1 | 1 | 0 | 01 | 11 | 10         |
| 349<br>350 | 110        | 09B81FB<br>13703F6 | 7FFD0E19             | 1450A9D84 | 6979E2360E<br>52F3C46C1C | 1 | 1 | 0 | 0 | 1 | 10 | 01 | 11         |
|            | 111        |                    | 7FFA1C33             | 08A153B09 |                          |   | 1 | 1 | 1 | 1 | 11 | 10 | 01         |
| 351        | 112        |                    |                      |           | 25E788D838               | 0 | 1 | 0 | 1 | 1 | 00 | 11 | 10         |
| 352        | 113        |                    |                      |           | 4BCF11B071               |   | 1 |   | 1 | 1 | 11 | 00 | 11<br>00   |
| 353        | 114        |                    |                      |           | 179E2360E3               | 1 | 1 |   | 1 | 0 | 00 | 11 |            |
| 354        | 115        |                    |                      |           | 2F3C46C1C7               | 0 | 1 |   | 0 | 0 | 11 | 00 | 11         |
| 355        | 116        |                    |                      |           | 5E788D838E               | 1 | 0 | 0 | 0 | 0 | 01 | 11 | 00         |
| 356        | 117        | 1C0FD88            |                      |           | 3CF11B071C               | 1 | 1 | 1 | 1 | 1 | 01 | 01 | 11         |
| 357        | 118        |                    |                      |           | 79E2360E38               | 1 | 0 | 0 | 1 | 1 | 11 | 01 | 01         |
| 358        | 119        |                    |                      |           | 73C46C1C71               | 0 | 0 | 0 | 1 | 0 | 10 | 11 | 01         |
| 359        | 120        |                    |                      |           | 6788D838E3               | 0 | 0 | 0 | 1 | 1 | 01 | 10 | 11         |
| 360        | 121        |                    |                      |           | 4F11B071C6               | 0 | 0 | 0 | 0 | 1 | 00 | 01 | 10         |
| 361        | 122        | 01FB117            |                      |           | 1E2360E38C               | 0 | 1 | 1 | 0 | 0 | 10 | 00 | 01         |
| 362        | 123        | 03F622F            |                      |           | 3C46C1C718               | 0 | 1 | 0 | 0 | 1 | 11 | 10 | 00         |
| 363        | 124        | 07EC45F            |                      |           | 788D838E30               | 0 | 1 |   | 1 | 0 | 01 | 11 | 10         |
| 364        | 125        | 0FD88BF            | 070CF6B9             | 14EC259C4 | 711B071C61               | 1 | 0 | 0 | 0 | 0 | 10 | 01 | 11         |

page 913 of 1082

Appendix IV - Sample Data

Bluetooth.

### 1.3 SECOND SET OF SAMPLE DATA

```
Initial values for the key, BD_ADDR and clock

K'c2[0] = 00    K'c2[1] = 00    K'c2[2] = 00    K'c2[3] = 00

K'c2[4] = 00    K'c2[5] = 00    K'c2[6] = 00    K'c2[7] = 00

K'c2[8] = 00    K'c2[9] = 00    K'c2[10] = 00    K'c2[11] = 00

K'c2[12] = 00    K'c2[13] = 00    K'c2[14] = 00    K'c2[15] = 00

Addr2[0] = 00   Addr2[1] = 00   Addr2[2] = 00

Addr2[3] = 00   Addr2[4] = 00   Addr2[5] = 00

Clk2[0] = 00   Clk2[1] = 00   Clk2[2] = 00   Clk2[3] = 03
```

------

Fill LFSRs with initial data

\_\_\_\_\_\_

| t  | clk# | LFSR1    | LFSR2     | LFSR3      | LFSR4       | X1 | Х2 | х3 | X4 | Z | C[t+1] | C[t] | C[t-1] |
|----|------|----------|-----------|------------|-------------|----|----|----|----|---|--------|------|--------|
| 0  | 0    | 0000000* | 00000000* | 000000000* | 0000000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 1  | 1    | 0000001* | 00000001* | 000000001* | 000000001*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 2  | 2    | 0000002* | 00000002* | 000000002* | 000000003*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 3  | 3    | 0000004* | 00000004* | 000000004* | 0000000007* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 4  | 4    | 0000008* | 00000008* | 00000008*  | 00000000E*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 5  | 5    | 0000010* | 00000010* | 000000010* | 00000001C*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 6  | 6    | 0000020* | 00000020* | 000000020* | 000000038*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 7  | 7    | 0000040* | 00000040* | 000000040* | 0000000070* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 8  | 8    | 0000080* | 00000080* | 000000080* | 00000000E0* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 9  | 9    | 0000100* | 00000100* | 000000100* | 0000001C0*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 10 | 10   | 0000200* | 00000200* | 000000200* | 0000000380* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 11 | 11   | 0000400* | 00000400* | 000000400* | 0000000700* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 12 | 12   | 0000800* | 00000800* | 000000800* | 0000000E00* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 13 | 13   | 0001000* | 00001000* | 000001000* | 0000001C00* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 14 | 14   | 0002000* | 00002000* | 000002000* | 0000003800* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 15 | 15   | 0004000* | 00004000* | 000004000* | 0000007000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 16 | 16   | 0008000* | 00008000* | 000008000* | 000000E000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 17 | 17   | 0010000* | 00010000* | 000010000* | 000001C000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 18 | 18   | 0020000* | 00020000* | 000020000* | 0000038000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 19 | 19   | 0040000* | 00040000* | 000040000* | 0000070000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 20 | 20   | 0080000* | 00080000* | 000080000* | 00000E0000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 21 | 21   | 0100000* | 00100000* | 000100000* | 00001C0000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 22 | 22   | 0200000* | 00200000* | 000200000* | 0000380000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 23 | 23   | 0400000* | 00400000* | 000400000* | 0000700000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 24 | 24   | 0800000* | 00800000* | 00080000*  | 0000E00000* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 25 | 25   | 1000000* | 01000000* | 001000000* | 0001C00000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 26 | 26   | 0000001  | 02000000* | 002000000* | 0003800000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 27 | 27   | 0000002  | 04000000* | 004000000* | 0007000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 28 | 28   | 0000004  | 08000000* | 008000000* | 000E000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 29 | 29   | 800000   | 10000000* | 010000000* | 001C000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 30 | 30   | 0000010  | 20000000* | 020000000* | 0038000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 31 | 31   | 0000020  | 40000000* | 040000000* | 0070000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 32 | 32   | 0000040  | 0000001   | 080000000* | 00E0000000* | 0  | 0  | 1  | 1  | 0 | 01     | 00   | 00     |
| 33 | 33   | 0000080  | 00000002  | 100000000* | 01C0000000* | 0  | 0  | 0  | 1  | 1 | 00     | 00   | 00     |
| 34 | 34   | 0000101  | 00000004  | 00000001   | 0380000000* | 0  | 0  | 0  | 1  | 1 | 00     | 00   | 00     |

page 914 of 1082

| ppe        | endix I     | IV - Samp          | ole Data   |                        |                          |   |   |   |   |   |          | E        | Bluetoot |
|------------|-------------|--------------------|------------|------------------------|--------------------------|---|---|---|---|---|----------|----------|----------|
| 35         | 35          | 0000202            | 80000000   | 000000002              | 0700000000*              | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 36         | 36          | 0000404            | 00000010   | 000000004              | 0E00000000*              | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 37         | 37          | 8080000            | 00000020   | 800000008              | 1C00000000*              | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 88         | 38          | 0001011            | 00000040   | 000000011              | 3800000000*              | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 89<br>==== | 39<br>===== | 0002022            | 00000080   | 000000022              | 7000000000*              | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
|            | St          | art clocki         | ng Summati | on Combiner            |                          |   |   |   |   |   |          |          |          |
| ====<br>40 | 1           | 0004044            | 00000100   | 000000044              | 6000000001               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 1          | 2           | 0008088            | 00000200   | 000000088              | 4000000003               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 2          | 3           | 0010111            | 00000400   | 000000111              | 0000000007               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 13         | 4           | 0020222            | 00000800   | 000000222              | 00000000E                | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 4          | 5           | 0040444            | 00001001   | 000000444              | 00000001D                | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 5          | 6           | 0080888            | 00002002   | 000000888              | 00000003B                | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 6          | 7           | 0101111            | 00004004   | 000001111              | 0000000077               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 7          | 8           | 0202222            | 80080000   | 000002222              | 0000000EE                | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 8          | 9           | 0404444            | 00010011   | 000004444              | 0000001DD                | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 9          | 10          | 0808888            | 00020022   | 888800000              | 00000003BB               | 1 | 0 | 0 | 0 | 1 | 00       | 00       | 00       |
| 0          | 11          | 1011110            | 00040044   | 000011111              | 0000000777               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 1          | 12          | 0022221            | 88008000   | 000022222              | 0000000EEE               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 2          | 13          | 0044442            | 00100110   | 000044444              | 0000001DDD               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 3          | 14          | 0088884            | 00200220   | 000088888              | 0000003BBB               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 4          | 15          | 0111109            | 00400440   | 000111111              | 0000007777               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 5          | 16          | 0222212            | 00800880   | 000222222              | 000000EEEE               | 0 | 1 | 0 | 0 | 1 | 00       | 00       | 00       |
| 6          | 17          | 0444424            | 01001100   | 000444444              | 000001DDDD               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 7          | 18          | 0888848            | 02002200   | 000888888              | 000003BBBB               | 1 | 0 | 0 | 0 | 1 | 00       | 00       | 00       |
| 8          | 19          | 1111090            | 04004400   | 001111110              | 0000077777               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 9          | 20          | 0222120            | 08008800   | 002222220              | 00000EEEEE               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 0          | 21          | 0444240            | 10011000   | 004444440              | 00001DDDDD               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 1          | 22          | 0888480            | 20022000   | 008888880              | 00003BBBBB               | 1 | 0 | 0 | 0 | 1 | 00       | 00       | 00       |
| 2          | 23          | 1110900            | 40044000   | 011111100              | 0000777777               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 3          | 24          | 0221200            | 00088001   | 022222200              | 0000EEEEEE               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 54         | 25          | 0442400            | 00110003   | 044444400              | 0001DDDDDD               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00       |
| 5          | 26          | 0884800            | 00220006   | 088888800              | 0003BBBBBB               | 1 | 0 | 1 | 0 | 0 | 01       | 00       | 00       |
| 6          | 27          | 1109000            | 0044000C   | 1111111000             | 000777777                | 0 | 0 | 0 | 0 | 1 | 01       | 01       | 00       |
| 7          | 28          | 0212001            | 00880018   | 022222001              | 000EEEEEE                | 0 | 1 | 0 | 0 | 0 | 11       | 01       | 01       |
| 9          | 29<br>30    | 0424002<br>0848004 |            | 044444002<br>088888004 | 001DDDDDDC<br>003BBBBBBB | 0 | 0 | 0 | 0 | 1 | 01<br>10 | 11<br>01 | 01<br>11 |
| 0          | 31          | 1090008            |            |                        | 0038888880               | 0 | 0 | 0 | 0 | 0 | 00       | 10       | 01       |
| 1          | 32          |                    |            |                        | 00EEEEEEE0               | 0 | 1 | 0 | 1 | 0 | 00       | 00       | 10       |
| 2          | 33          |                    |            |                        | 01DDDDDDC1               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00       |
| 3          | 34          | 0480040            |            |                        | 03BBBBBB83               | 0 | 0 | 1 | 1 | 0 | 01       | 00       | 00       |
| 4          | 35          | 0900081            |            |                        | 0777777707               | 1 | 0 | 0 | 0 | 0 | 00       | 01       | 00       |
| 5          | 36          |                    |            |                        | 0EEEEEEE0E               | 0 | 0 | 0 | 1 | 1 | 11       | 00       | 01       |
| 6          | 37          | 0400207            |            |                        | 1DDDDDDC1D               | 0 | 0 | 0 | 1 | 0 | 01       | 11       | 00       |
| 7          | 38          | 080040E            |            |                        | 3BBBBBBB83B              | 1 | 0 | 1 | 1 | 0 | 01       | 01       | 11       |
| 8          | 39          | 100081C            | 4000C444   | 111000808              | 777777077                | 0 | 0 | 0 | 0 | 1 | 10       | 01       | 01       |
| 9          | 40          | 0001038            |            | 022001010              | 6EEEEEE0EF               | 0 | 0 | 0 | 1 | 1 | 00       | 10       | 01       |
| 0          | 41          | 0002070            |            |                        | 5DDDDDC1DE               | 0 | 0 | 0 | 1 | 1 | 01       | 00       | 10       |
| 1          | 42          | 00040E0            |            |                        | 3BBBBBB83BC              | 0 | 0 | 1 | 1 | 1 | 00       | 01       | 00       |
| 2          | 43          | 00081C1            |            |                        | 7777770779               | 0 | 0 | 0 | 0 | 0 | 11       | 0.0      | 01       |
| 3          | 44          | 0010383            |            |                        | 6EEEEE0EF2               | 0 | 0 | 0 | 1 | 0 | 01       | 11       | 00       |
| 4          | 45          | 0020707            |            | 040020206              | 5DDDDC1DE5               | 0 | 0 | 0 | 1 | 0 | 10       | 01       | 11       |
| 5          | 46          | 0040E0E            | 00622200   | 08004040C              | 3BBBB83BCB               | 0 | 0 | 1 | 1 | 0 | 11       | 10       | 01       |
| 6          | 47          | 0081C1D            | 00C44400   | 100080819              | 7777707797               | 0 | 1 | 0 | 0 | 0 | 00       | 11       | 10       |
| 7          | 48          | 010383A            | 01888801   | 000101032              | 6EEEE0EF2F               | 0 | 1 | 0 | 1 | 0 | 11       | 00       | 11       |
| 8          | 49          | 0007075            | 03111003   | 000000064              | EDDDG1DDED               | 0 | 0 | 0 | 1 | 0 | 01       | 11       | 00       |

page 915 of 1082

| App        | endix I  | V - Samp           | ole Data             |                        |                          |   |   |   |   |   |          | E        | Sluetooth. |
|------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----------|----------|------------|
| 89         | 50       | 040E0EA            | 06222006             | 0004040C8              | 3BBB83BCBC               | 0 | 0 | 0 | 1 | 0 | 10       | 01       | 11         |
| 90         | 51       | 081C1D5            | 0C44400C             | 000808191              | 7777077979               | 1 | 0 | 0 | 0 | 1 | 00       | 10       | 01         |
| 91         | 52       | 10383AB            | 18888018             | 001010323              | 6EEE0EF2F2               | 0 | 1 | 0 | 1 | 0 | 00       | 00       | 10         |
| 92         | 53       | 0070756            | 31110030             | 002020646              | 5DDC1DE5E5               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00         |
| 93         | 54       | 00E0EAC            | 62220060             | 004040C8C              | 3BB83BCBCB               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00         |
| 94         | 55       | 01C1D59            | 444400C1             | 008081919              | 7770779797               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00         |
| 95         | 56       | 0383AB2            | 08880183             | 010103232              | 6EE0EF2F2F               | 0 | 1 | 0 | 1 | 0 | 01       | 00       | 00         |
| 96         | 57       | 0707565            | 11100307             | 020206464              | 5DC1DE5E5F               | 0 | 0 | 0 | 1 | 0 | 00       | 01       | 00         |
| 97         | 58       | 0E0EACA            | 2220060E             | 04040C8C8              | 3B83BCBCBF               | 1 | 0 | 0 | 1 | 0 | 10       | 00       | 01         |
| 98         | 59       | 1C1D594            | 44400C1C             | 080819191              | 770779797E               | 1 | 0 | 1 | 0 | 0 | 00       | 10       | 00         |
| 99         | 60       | 183AB28            | 08801838             | 101032323              | 6E0EF2F2FC               | 1 | 1 | 0 | 0 | 0 | 00       | 00       | 10         |
| 100        | 61       | 1075650            | 11003070             | 002064647              | 5C1DE5E5F8               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00         |
| 101        | 62       | 00EACA1            | 220060E0             | 0040C8C8E              | 383BCBCBF0               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00         |
| 102        | 63       | 01D5943            | 4400C1C0             | 00819191D              | 70779797E0               | 0 | 0 | 0 | 0 | 0 | 00       | 00       | 00         |
| 103        | 64       | 03AB286            | 08018380             | 01032323A              | 60EF2F2FC1               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00         |
| 104        | 65       | 075650C            | 10030701             | 020646475              | 41DE5E5F82               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00         |
| 105        | 66       | 0EACA18            | 20060E02             | 040C8C8EA              | 03BCBCBF04               | 1 | 0 | 0 | 1 | 0 | 01       | 00       | 00         |
| 106        | 67       | 1D59430            | 400C1C05             | 0819191D4              | 0779797E09               | 1 | 0 | 1 | 0 | 1 | 00       | 01       | 00         |
| 107        | 68<br>69 | 1AB2861<br>15650C3 | 0018380A<br>00307015 | 1032323A9              | 0EF2F2FC12<br>1DE5E5F825 | 1 | 0 | 0 | 1 | 0 | 10<br>11 | 00       | 01<br>00   |
| 108<br>109 | 70       | 0ACA186            | 00307013<br>0060E02A | 006464752<br>00C8C8EA4 | 3BCBCBF04B               | 1 | 0 | 0 | 1 | 1 | 00       | 10<br>11 | 10         |
| 110        | 71       | 159430C            | 0000E02A             | 019191D48              | 779797E097               | 0 | 1 | 0 | 1 | 0 | 11       | 00       | 11         |
| 111        | 72       | 0B28618            | 018380AA             | 032323A90              | 6F2F2FC12F               | 1 | 1 | 0 | 0 | 1 | 01       | 11       | 00         |
| 112        | 73       | 1650C30            | 03070154             | 064647520              | 5E5E5F825E               | 0 | 0 | 0 | 0 | 1 | 11       | 01       | 11         |
| 113        | 74       | 0CA1860            | 060E02A8             | 0C8C8EA40              | 3CBCBF04BC               | 1 | 0 | 1 | 1 | 0 | 11       | 11       | 01         |
| 114        | 75       | 19430C0            | 0C1C0550             | 19191D480              | 79797E0979               | 1 | 0 | 1 | 0 | 1 | 11       | 11       | 11         |
| 115        | 76       | 1286180            | 18380AA0             | 12323A900              | 72F2FC12F2               | 0 | 0 | 0 | 1 | 0 | 11       | 11       | 11         |
| 116        | 77       | 050C301            | 30701541             | 046475201              | 65E5F825E5               | 0 | 0 | 0 | 1 | 0 | 11       | 11       | 11         |
| 117        | 78       | 0A18602            | 60E02A82             | 08C8EA402              | 4BCBF04BCB               | 1 | 1 | 1 | 1 | 1 | 10       | 11       | 11         |
| 118        | 79       | 1430C04            | 41C05505             | 1191D4804              | 1797E09796               | 0 | 1 | 0 | 1 | 0 | 10       | 10       | 11         |
| 119        | 80       | 0861808            | 0380AA0A             | 0323A9008              | 2F2FC12F2C               | 1 | 1 | 0 | 0 | 0 | 01       | 10       | 10         |
| 120        | 81       | 10C3011            | 07015415             | 064752011              | 5E5F825E59               | 0 | 0 | 0 | 0 | 1 | 00       | 01       | 10         |
| 121        | 82       | 0186022            | 0E02A82A             | 0C8EA4022              | 3CBF04BCB2               | 0 | 0 | 1 | 1 | 0 | 10       | 00       | 01         |
| 122        | 83       | 030C045            | 1C055054             | 191D48044              | 797E097964               | 0 | 0 | 1 | 0 | 1 | 11       | 10       | 00         |
| 123        | 84       | 061808A            | 380AA0A8             | 123A90088              | 72FC12F2C9               | 0 | 0 | 0 | 1 | 0 | 00       | 11       | 10         |
| 124        | 85       | 0C30115            | 70154151             | 047520111              | 65F825E593               | 1 | 0 | 0 | 1 | 0 | 11       | 00       | 11         |
| 125        | 86       |                    |                      |                        | 4BF04BCB26               | 1 | 0 | 1 | 1 | 0 | 00       | 11       | 00         |
| 126        | 87       |                    |                      |                        | 17E097964C               | 0 |   | 0 | 1 | 1 | 10       | 00       | 11         |
| 127        | 88       |                    |                      |                        | 2FC12F2C99               | 0 |   | 0 | 1 | 0 | 00       | 10       | 00         |
| 128        | 89       |                    |                      |                        | 5F825E5932               | 0 | 0 | 0 | 1 | 1 | 01       | 00       | 10         |
| 129        | 90       |                    |                      |                        | 3F04BCB264               | 0 | 1 | 1 | 0 | 1 | 00       | 01       | 00         |
| 130        | 91<br>92 |                    |                      |                        | 7E097964C9               | 1 | 0 | 1 | 0 | 0 | 10       | 00<br>10 | 01<br>00   |
| 131<br>132 | 93       |                    |                      |                        | 7C12F2C992<br>7825E59324 | 1 | 0 | 0 | 0 | 1 | 01       | 00       | 10         |
| 133        | 94       |                    |                      |                        | 704BCB2648               | 0 | 1 | 1 | 0 | 1 | 00       | 01       | 00         |
| 134        | 95       |                    |                      |                        | 6097964C91               | 0 | 0 | 0 | 1 | 1 | 11       | 00       | 01         |
| 135        | 96       |                    |                      |                        | 412F2C9923               | 0 | 0 | 1 | 0 | 0 | 01       | 11       | 00         |
| 136        | 97       |                    |                      |                        | 025E593246               | 0 | 0 | 0 | 0 | 1 | 11       | 01       | 11         |
| 137        | 98       |                    |                      |                        | 04BCB2648D               | 0 | 0 | 0 | 1 | 0 | 10       | 11       | 01         |
| 138        | 99       |                    |                      |                        | 097964C91A               | 0 | 0 | 1 | 0 | 1 | 01       | 10       | 11         |
| 139        | 100      | 08AAAC8            | 20A8D090             | 100888AEA              | 12F2C99235               | 1 | 1 | 0 | 1 | 0 | 10       | 01       | 10         |
| 140        | 101      | 1155591            | 4151A120             | 0011115D5              | 25E593246A               | 0 | 0 | 0 | 1 | 1 | 00       | 10       | 01         |
| 141        | 102      | 02AAB22            | 02A34240             | 002222BAA              | 4BCB2648D5               | 0 | 1 | 0 | 1 | 0 | 00       | 00       | 10         |
| 142        | 103      | 0555644            | 05468481             | 004445755              | 17964C91AB               | 0 | 0 | 0 | 1 | 1 | 00       | 00       | 00         |
| 143        | 104      | 0AAAC88            | 0A8D0903             | 00888AEAA              | 2F2C992357               | 1 | 1 | 0 | 0 | 0 | 01       | 00       | 00         |
| 144        | 105      | 1555911            | 151A1206             | 011115D55              | 5E593246AE               | 0 | 0 | 0 | 0 | 1 | 01       | 01       | 00         |
| 145        | 106      | 0AAB222            | 2A34240C             | 02222BAAA              | 3CB2648D5C               | 1 | 0 | 0 | 1 | 1 | 11       | 01       | 01         |
|            |          |                    |                      |                        |                          |   |   |   |   |   |          |          |            |

page 916 of 1082

| DLO |       | )         | JII 107 (11) | 714 VOI 01011 | 1.0 B      |   |   |   |   |   |     | pago | 010 01 1002 |
|-----|-------|-----------|--------------|---------------|------------|---|---|---|---|---|-----|------|-------------|
| Арр | endix | IV - Samp | ole Data     |               |            |   |   |   |   |   |     | ı    | 3luetooth.  |
| 146 | 107   | 1556445   | 54684818     | 044457555     | 7964C91AB8 | 0 | 0 | 0 | 0 | 1 | 01  | 11   | 01          |
| 147 | 108   | 0AAC88B   | 28D09030     | 0888AEAAA     | 72C9923571 | 1 | 1 | 1 | 1 | 1 | 01  | 01   | 11          |
| 148 | 109   | 1559117   | 51A12060     | 11115D555     | 6593246AE2 | 0 | 1 | 0 | 1 | 1 | 11  | 01   | 01          |
| 149 | 110   | 0AB222F   | 234240C0     | 0222BAAAB     | 4B2648D5C5 | 1 | 0 | 0 | 0 | 0 | 10  | 11   | 01          |
| 150 | 111   | 156445F   | 46848180     | 044575557     | 164C91AB8A | 0 | 1 | 0 | 0 | 1 | 01  | 10   | 11          |
| 151 | 112   | 0AC88BF   | 0D090301     | 088AEAAAE     | 2C99235714 | 1 | 0 | 1 | 1 | 0 | 10  | 01   | 10          |
| 152 | 113   | 159117F   | 1A120602     | 1115D555D     | 593246AE28 | 0 | 0 | 0 | 0 | 0 | 00  | 10   | 01          |
| 153 | 114   | 0B222FE   | 34240C04     | 022BAAABA     | 32648D5C51 | 1 | 0 | 0 | 0 | 1 | 01  | 00   | 10          |
| 154 | 115   | 16445FD   | 68481809     | 045755574     | 64C91AB8A2 | 0 | 0 | 0 | 1 | 0 | 00  | 01   | 00          |
| 155 | 116   | 0C88BFA   | 50903012     | 08AEAAAE8     | 4992357144 | 1 | 1 | 1 | 1 | 0 | 01  | 00   | 01          |
| 156 | 117   | 19117F5   | 21206024     | 115D555D1     | 13246AE288 | 1 | 0 | 0 | 0 | 0 | 00  | 01   | 00          |
| 157 | 118   | 1222FEA   | 4240C048     | 02BAAABA2     | 2648D5C511 | 0 | 0 | 0 | 0 | 0 | 11  | 00   | 01          |
| 158 | 119   | 0445FD5   | 04818090     | 057555744     | 4C91AB8A23 | 0 | 1 | 0 | 1 | 1 | 01  | 11   | 00          |
| 159 | 120   | 088BFAA   | 09030120     | 0AEAAAE88     | 1923571446 | 1 | 0 | 1 | 0 | 1 | 10  | 01   | 11          |
| 160 | 121   | 1117F55   | 12060240     | 15D555D11     | 3246AE288D | 0 | 0 | 0 | 0 | 0 | 00  | 10   | 01          |
| 161 | 122   | 022FEAA   | 240C0480     | 0BAAABA22     | 648D5C511B | 0 | 0 | 1 | 1 | 0 | 00  | 00   | 10          |
| 162 | 123   | 045FD54   | 48180900     | 175557444     | 491AB8A237 | 0 | 0 | 0 | 0 | 0 | 00  | 00   | 00          |
| 163 | 124   | 08BFAA9   | 10301200     | 0EAAAE889     | 123571446F | 1 | 0 | 1 | 0 | 0 | 01  | 00   | 00          |
| 164 | 125   | 117F553   | 20602400     | 1D555D113     | 246AE288DF | 0 | 0 | 1 | 0 | 0 | 00  | 01   | 00          |
| 165 | 126   | 02FEAA7   | 40C04800     | 1AAABA227     | 48D5C511BE | 0 | 1 | 1 | 1 | 1 | 10  | 00   | 01          |
| 166 | 127   | 05FD54F   | 01809001     | 15557444F     | 11AB8A237D | 0 | 1 | 0 | 1 | 0 | 00  | 10   | 00          |
| 167 | 128   | 0BFAA9F   | 03012002     | 0AAAE889E     | 23571446FA | 1 | 0 | 1 | 0 | 0 | 00  | 00   | 10          |
| 168 | 129   | 17F553F   | 06024004     | 1555D113D     | 46AE288DF5 | 0 | 0 | 0 | 1 | 1 | 00  | 00   | 00          |
| 169 | 130   | 0FEAA7E   | 0C048008     | 0AABA227A     | OD5C511BEA | 1 | 0 | 1 | 0 | 0 | 01  | 00   | 00          |
| 170 | 131   | 1FD54FC   | 18090011     | 1557444F5     | 1AB8A237D5 | 1 | 0 | 0 | 1 | 1 | 00  | 01   | 00          |
| 171 | 132   | 1FAA9F9   | 30120022     | OAAE889EB     | 3571446FAA | 1 | 0 | 1 | 0 | 0 | 10  | 00   | 01          |
| 172 | 133   | 1F553F2   | 60240044     | 155D113D7     | 6AE288DF55 | 1 | 0 | 0 | 1 | 0 | 00  | 10   | 00          |
| 173 | 134   | 1EAA7E4   | 40480089     | 0ABA227AE     | 55C511BEAA | 1 | 0 | 1 | 1 | 1 | 00  | 00   | 10          |
| 174 | 135   | 1D54FC9   | 00900113     | 157444F5D     | 2B8A237D54 | 1 | 1 | 0 | 1 | 1 | 01  | 00   | 00          |
| 175 | 136   | 1AA9F93   | 01200227     | 0AE889EBA     | 571446FAA8 | 1 | 0 | 1 | 0 | 1 | 00  | 01   | 00          |
| 176 | 137   | 1553F26   | 0240044E     | 15D113D75     | 2E288DF550 | 0 | 0 | 0 | 0 | 0 | 11  | 00   | 01          |
| 177 | 138   | 0AA7E4C   | 0480089C     | OBA227AEA     | 5C511BEAA0 | 1 | 1 | 1 | 0 | 0 | 00  | 11   | 00          |
| 178 | 139   | 154FC98   | 09001138     | 17444F5D4     | 38A237D540 | 0 | 0 | 0 | 1 | 1 | 10  | 00   | 11          |
| 179 | 140   | 0A9F931   | 12002270     | 0E889EBA9     | 71446FAA81 | 1 | 0 | 1 | 0 | 0 | 00  | 10   | 00          |
| 180 | 141   | 153F262   | 240044E0     | 1D113D753     | 6288DF5503 | 0 | 0 | 1 | 1 | 0 | 00  | 00   | 10          |
| 181 | 142   | 0A7E4C5   | 480089C0     | 1A227AEA7     | 4511BEAA06 | 1 | 0 | 1 | 0 | 0 | 01  | 00   | 00          |
| 182 | 143   | 14FC98B   | 10011381     | 1444F5D4F     | 0A237D540D | 0 | 0 | 0 | 0 | 1 | 01  | 01   | 00          |
| 183 | 144   | 09F9316   | 20022702     | 0889EBA9E     | 1446FAA81A | 1 | 0 | 1 | 0 | 1 | 11  | 01   | 01          |
| 184 | 145   | 13F262D   | 40044E04     | 1113D753D     | 288DF55035 | 0 | 0 | 0 | 1 | 0 | 10  | 11   | 01          |
| 185 | 146   | 07E4C5A   | 00089C08     | 0227AEA7A     | 511BEAA06A | 0 | 0 | 0 | 0 | 0 | 01  | 10   | 11          |
| 186 | 147   | 0FC98B4   | 00113810     | 044F5D4F5     | 2237D540D5 | 1 | 0 | 0 | 0 | 0 | 01  | 01   | 10          |
| 187 | 148   | 1F93169   | 00227021     | 089EBA9EB     | 446FAA81AA | 1 | 0 | 1 | 0 | 1 | 11  | 01   | 01          |
| 188 | 149   | 1F262D2   | 0044E042     | 113D753D7     | 08DF550355 | 1 | 0 | 0 | 1 | 1 | 10  | 11   | 01          |
| 189 | 150   | 1E4C5A4   | 0089C085     | 027AEA7AE     | 11BEAA06AA | 1 | 1 | 0 | 1 | 1 | 10  | 10   | 11          |
| 190 | 151   | 1C98B48   | 0113810A     | 04F5D4F5C     | 237D540D54 | 1 | 0 | 0 | 0 | 1 | 10  | 10   | 10          |
| 191 | 152   | 1931691   | 02270215     | 09EBA9EB8     | 46FAA81AA9 | 1 | 0 | 1 | 1 | 1 | 01  | 10   | 10          |
| 192 | 153   | 1262D22   | 044E042A     | 13D753D71     | 0DF5503553 | 0 | 0 | 0 | 1 | 0 | 01  | 01   | 10          |
| 193 | 154   | 04C5A44   | 089C0854     | 07AEA7AE2     | 1BEAA06AA7 | 0 | 1 | 0 | 1 | 1 | 11  | 01   | 01          |
| 194 | 155   | 098B488   | 113810A8     | 0F5D4F5C4     | 37D540D54E | 1 | 0 | 1 | 1 | 0 | 11  | 11   | 01          |
| 195 | 156   | 1316910   | 22702150     | 1EBA9EB89     | 6FAA81AA9D | 0 | 0 | 1 | 1 | 1 | 11  | 11   | 11          |
| 196 | 157   | 062D220   | 44E042A0     | 1D753D712     | 5F5503553A | 0 | 1 | 1 | 0 | 1 | 11  | 11   | 11          |
| 197 | 158   | 0C5A440   | 09C08540     | 1AEA7AE25     | 3EAA06AA75 | 1 | 1 | 1 | 1 | 1 | 10  | 11   | 11          |
| 198 | 159   |           |              |               | 7D540D54EA | 1 | 1 | 0 | 0 | 0 | 10  | 10   | 11          |
| 199 | 160   | 1169100   |              |               | 7AA81AA9D5 | 0 | 0 | 1 | 1 | 0 | 01  | 10   | 10          |
| 200 | 161   |           |              |               | 75503553AB | 0 | 0 | 0 | 0 | 1 | 00  | 01   | 10          |
| 201 | 162   |           |              |               | 6AA06AA756 | 0 | 0 | 1 | 1 | 0 | 10  | 0.0  | 01          |
| 202 | 163   |           |              |               | 5540D54EAC | 1 |   | 1 | 0 | 0 | 0.0 | 10   | 00          |
|     |       |           |              |               |            | _ |   | - | - | - |     |      |             |

page 917 of 1082

| Appe  | endix I | V - Samp | le Data  |           |            |   |   |   |   |   |    | В  | luetoot | h, |
|-------|---------|----------|----------|-----------|------------|---|---|---|---|---|----|----|---------|----|
| 203   | 164     | 169100F  | 70215000 | 1A9EB8971 | 2A81AA9D58 | 0 | 0 | 1 | 1 | 0 | 00 | 00 | 10      |    |
| 204   | 165     | 0D2201E  | 6042A001 | 153D712E3 | 5503553AB0 | 1 | 0 | 0 | 0 | 1 | 00 | 00 | 00      |    |
| 205   | 166     | 1A4403C  | 40854002 | 0A7AE25C6 | 2A06AA7561 | 1 | 1 | 1 | 0 | 1 | 01 | 00 | 00      |    |
| 206   | 167     | 1488079  | 010A8004 | 14F5C4B8D | 540D54EAC3 | 0 | 0 | 0 | 0 | 1 | 01 | 01 | 00      |    |
| 207   | 168     | 09100F2  | 02150009 | 09EB8971B | 281AA9D586 | 1 | 0 | 1 | 0 | 1 | 11 | 01 | 01      |    |
| 208   | 169     | 12201E5  | 042A0012 | 13D712E37 | 503553AB0C | 0 | 0 | 0 | 0 | 1 | 01 | 11 | 01      |    |
| 209   | 170     | 04403CA  | 08540024 | 07AE25C6E | 206AA75618 | 0 | 0 | 0 | 0 | 1 | 11 | 01 | 11      |    |
| 210   | 171     | 0880795  | 10A80048 | 0F5C4B8DD | 40D54EAC30 | 1 | 1 | 1 | 1 | 1 | 11 | 11 | 01      |    |
| 211   | 172     | 1100F2A  | 21500091 | 1EB8971BA | 01AA9D5861 | 0 | 0 | 1 | 1 | 1 | 11 | 11 | 11      |    |
| 212   | 173     | 0201E54  | 42A00122 | 1D712E374 | 03553AB0C3 | 0 | 1 | 1 | 0 | 1 | 11 | 11 | 11      |    |
| 213   | 174     | 0403CA9  | 05400244 | 1AE25C6E9 | 06AA756186 | 0 | 0 | 1 | 1 | 1 | 11 | 11 | 11      |    |
| 214   | 175     | 0807952  | 0A800488 | 15C4B8DD3 | 0D54EAC30D | 1 | 1 | 0 | 0 | 1 | 11 | 11 | 11      |    |
| 215   | 176     | 100F2A5  | 15000911 | 0B8971BA6 | 1AA9D5861A | 0 | 0 | 1 | 1 | 1 | 11 | 11 | 11      |    |
| 216   | 177     | 001E54A  | 2A001223 | 1712E374C | 3553AB0C35 | 0 | 0 | 0 | 0 | 1 | 00 | 11 | 11      |    |
| 217   | 178     | 003CA94  | 54002446 | 0E25C6E98 | 6AA756186A | 0 | 0 | 1 | 1 | 0 | 11 | 00 | 11      |    |
| 218   | 179     | 0079528  | 2800488D | 1C4B8DD31 | 554EAC30D5 | 0 | 0 | 1 | 0 | 0 | 01 | 11 | 00      |    |
| 219   | 180     | 00F2A50  | 5000911B | 18971BA62 | 2A9D5861AA | 0 | 0 | 1 | 1 | 1 | 10 | 01 | 11      |    |
| 220   | 181     | 01E54A0  | 20012236 | 112E374C4 | 553AB0C355 | 0 | 0 | 0 | 0 | 0 | 00 | 10 | 01      |    |
| 221   | 182     | 03CA940  | 4002446C | 025C6E988 | 2A756186AA | 0 | 0 | 0 | 0 | 0 | 01 | 00 | 10      |    |
| 222   | 183     | 0795280  | 000488D9 | 04B8DD310 | 54EAC30D54 | 0 | 0 | 0 | 1 | 0 | 00 | 01 | 00      |    |
| 223   | 184     | 0F2A500  | 000911B2 | 0971BA620 | 29D5861AA8 | 1 | 0 | 1 | 1 | 1 | 10 | 00 | 01      |    |
| 224   | 185     | 1E54A00  | 00122364 | 12E374C40 | 53AB0C3550 | 1 | 0 | 0 | 1 | 0 | 00 | 10 | 00      |    |
| 225   | 186     | 1CA9400  | 002446C8 | 05C6E9880 | 2756186AA0 | 1 | 0 | 0 | 0 | 1 | 01 | 00 | 10      |    |
| 226   | 187     | 1952800  | 00488D90 | 0B8DD3101 | 4EAC30D540 | 1 | 0 | 1 | 1 | 0 | 11 | 01 | 00      |    |
| 227   | 188     | 12A5000  | 00911B20 | 171BA6202 | 1D5861AA81 | 0 | 1 | 0 | 0 | 0 | 10 | 11 | 01      |    |
| 228   | 189     | 054A000  | 01223640 | 0E374C404 | 3AB0C35502 | 0 | 0 | 1 | 1 | 0 | 10 | 10 | 11      |    |
| 229   | 190     | 0A94000  | 02446C80 | 1C6E98808 | 756186AA05 | 1 | 0 | 1 | 0 | 0 | 01 | 10 | 10      |    |
| 230   | 191     | 1528001  | 0488D901 | 18DD31011 | 6AC30D540B | 0 | 1 | 1 | 1 | 0 | 10 | 01 | 10      |    |
| 231   | 192     | 0A50003  | 0911B203 | 11BA62023 | 55861AA817 | 1 | 0 | 0 | 1 | 0 | 11 | 10 | 01      |    |
| 232   | 193     | 14A0006  | 12236407 | 0374C4047 | 2B0C35502F | 0 | 0 | 0 | 0 | 1 | 11 | 11 | 10      |    |
| 233   | 194     | 094000C  | 2446C80E | 06E98808E | 56186AA05F | 1 | 0 | 0 | 0 | 0 | 11 | 11 | 11      |    |
| 234   | 195     | 1280018  | 488D901C | 0DD31011D | 2C30D540BF | 0 | 1 | 1 | 0 | 1 | 11 | 11 | 11      |    |
| 235   | 196     | 0500030  | 111B2039 | 1BA62023A | 5861AA817E | 0 | 0 | 1 | 0 | 0 | 11 | 11 | 11      |    |
| 236   | 197     | 0A00060  | 22364072 | 174C40475 | 30C35502FD | 1 | 0 | 0 | 1 | 1 | 11 | 11 | 11      |    |
| 237   | 198     | 14000C0  | 446C80E4 | 0E98808EA | 6186AA05FB | 0 | 0 | 1 | 1 | 1 | 11 | 11 | 11      |    |
| 238   | 199     | 0800180  | 08D901C8 | 1D31011D5 | 430D540BF6 | 1 | 1 | 1 | 0 | 0 | 10 | 11 | 11      |    |
| 239   | 200     | 1000301  | 11B20391 | 1A62023AB | 061AA817EC | 0 | 1 | 1 | 0 | 0 | 10 | 10 | 11      |    |
|       | = 25    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 45    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 6B    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 55    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 5F    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = C2    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 20    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = E5    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = C4    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = F8    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 3A    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = F1    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = FF    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 89    |          |          |           |            |   |   |   |   |   |    |    |         |    |
|       | = 02    |          |          |           |            |   |   |   |   |   |    |    |         |    |
| Z[15] | = 35    |          |          |           |            |   |   |   |   |   |    |    |         |    |

Reload this pattern into the LFSRs

\_\_\_\_\_\_

page 918 of 1082

#### Appendix IV - Sample Data

### Bluetooth.

Hold content of Summation Combiner regs and calculate new C[t+1] and Z values

\_\_\_\_\_

LFSR1 <= 1C45F25 LFSR2 <= 7FF8C245 LFSR3 <= 1893A206B

LFSR4 <= 1A02F1E555 C[t+1] <= 10

| C[t+1      | ] <= 10  | 0                  |                      |                        |                            |   |   |   |   |   |          |          |        |
|------------|----------|--------------------|----------------------|------------------------|----------------------------|---|---|---|---|---|----------|----------|--------|
|            |          |                    |                      |                        |                            |   |   |   |   |   |          |          |        |
|            |          |                    |                      |                        | ========<br>ption/decrypt: |   |   |   |   |   |          |          |        |
| =====      |          |                    |                      |                        | ==========                 |   |   |   |   |   | ====     |          | ====== |
| 240        | 1        | 1C45F25            | 7FF8C245             | 1893A206B              | 1A02F1E555                 | 1 | 1 | 1 | 0 | 1 | 10       | 10       | 11     |
| 241        | 2        | 188BE4A            | 7FF1848B             | 1127440D7              | 3405E3CAAB                 | 1 | 1 | 0 | 0 | 0 | 01       | 10       | 10     |
| 242        | 3        | 1117C95            | 7FE30917             | 024E881AF              | 680BC79557                 | 0 | 1 | 0 | 0 | 0 | 01       | 01       | 10     |
| 243        | 4        | 022F92B            | 7FC6122F             | 049D1035E              | 50178F2AAF                 | 0 | 1 | 0 | 0 | 0 | 11       | 01       | 01     |
| 244        | 5        | 045F257            | 7F8C245E             | 093A206BD              | 202F1E555E                 | 0 | 1 | 1 | 0 | 1 | 10       | 11       | 01     |
| 245        | 6        | 08BE4AE            | 7F1848BC             | 127440D7A              | 405E3CAABC                 | 1 | 0 | 0 | 0 | 1 | 01       | 10       | 11     |
| 246        | 7        | 117C95C            | 7E309178             | 04E881AF4              | 00BC795579                 | 0 | 0 | 0 | 1 | 0 | 01       | 01       | 10     |
| 247        | 8        | 02F92B8            | 7C6122F0             | 09D1035E8              | 0178F2AAF2                 | 0 | 0 | 1 | 0 | 0 | 11       | 01       | 01     |
| 248        | 9        | 05F2570            | 78C245E1             | 13A206BD0              | 02F1E555E5                 | 0 | 1 | 0 | 1 | 1 | 10       | 11       | 01     |
| 249        | 10       | OBE4AE1            | 71848BC2             | 07440D7A0              | 05E3CAABCA                 | 1 | 1 | 0 | 1 | 1 | 10       | 10       | 11     |
| 250        | 11       | 17C95C3            | 63091784             | 0E881AF40              | 0BC7955795                 | 0 | 0 | 1 | 1 | 0 | 01       | 10       | 10     |
| 251        | 12       | 0F92B87            | 46122F09             | 1D1035E80              | 178F2AAF2B                 | 1 | 0 | 1 | 1 | 0 | 10       | 01       | 10     |
| 252        | 13       | 1F2570F            | 0C245E12             | 1A206BD01              | 2F1E555E56                 | 1 | 0 | 1 | 0 | 0 | 11       | 10       | 01     |
| 253        | 14       | 1E4AE1F            | 1848BC25             | 1440D7A03              | 5E3CAABCAC                 | 1 | 0 | 0 | 0 | 0 | 00       | 11       | 10     |
| 254        | 15       | 1C95C3E            | 3091784A             | 0881AF407              | 3C79557958                 | 1 | 1 | 1 | 0 | 1 | 11       | 00       | 11     |
| 255        | 16       | 192B87D            | 6122F094             | 11035E80F              | 78F2AAF2B1                 | 1 | 0 | 0 | 1 | 1 | 01       | 11       | 00     |
| 256        | 17       | 12570FA            | 4245E128             | 0206BD01E              | 71E555E562                 | 0 | 0 | 0 | 1 | 0 | 10       | 01       | 11     |
| 257        | 18       | 04AE1F4            | 048BC250             | 040D7A03D              | 63CAABCAC5                 | 0 | 1 | 0 | 1 | 0 | 11       | 10       | 01     |
| 258        | 19       | 095C3E8            | 091784A0             | 081AF407A              | 479557958A                 | 1 | 0 | 1 | 1 | 0 | 01       | 11       | 10     |
| 259        | 20       | 12B87D1            | 122F0941             | 1035E80F4              | 0F2AAF2B14                 | 0 | 0 | 0 | 0 | 1 | 11       | 01       | 11     |
| 260        | 21       | 0570FA3            | 245E1283             | 006BD01E9              | 1E555E5628                 | 0 | 0 | 0 | 0 | 1 | 01       | 11       | 01     |
| 261        | 22       | 0AE1F46            | 48BC2506             | 00D7A03D2              | 3CAABCAC50                 | 1 | 1 | 0 | 1 | 0 | 01       | 01       | 11     |
| 262        | 23       | 15C3E8C            | 11784A0C             | 01AF407A5              | 79557958A0                 | 0 | 0 | 0 | 0 | 1 | 10       | 01       | 01     |
| 263        | 24       | 0B87D18            | 22F09419             | 035E80F4A              | 72AAF2B140                 | 1 | 1 | 0 | 1 | 1 | 11       | 10       | 01     |
| 264        | 25       | 170FA30            | 45E12832             | 06BD01E94              | 6555E56280                 | 0 | 1 | 0 | 0 | 0 | 00       | 11       | 10     |
| 265        | 26       | 0E1F460            | 0BC25065             | 0D7A03D28              | 4AABCAC501                 | 1 | 1 | 1 | 1 | 0 | 00       | 00       | 11     |
| 266        | 27       | 1C3E8C0            | 1784A0CB             | 1AF407A50              | 1557958A03                 | 1 | 1 | 1 | 0 | 1 | 01       | 00       | 00     |
| 267<br>268 | 28<br>29 | 187D181<br>10FA302 | 2F094196<br>5E12832C | 15E80F4A0<br>0BD01E941 | 2AAF2B1406<br>555E56280C   | 1 | 0 | 0 | 1 | 1 | 00<br>11 | 01<br>00 | 00     |
| 269        | 30       | 01F4604            | 3C250658             | 17A03D283              | 2ABCAC5019                 | 0 | 0 | 0 | 1 | 0 | 01       | 11       | 00     |
| 270        | 31       | 03E8C09            | 784A0CB0             | 0F407A506              | 557958A033                 | 0 | 0 | 1 | 0 | 0 | 10       | 01       | 11     |
| 271        | 32       | 07D1812            | 70941960             | 1E80F4A0C              | 2AF2B14066                 | 0 | 1 | 1 | 1 | 1 | 11       | 10       | 01     |
| 272        | 33       | 07B1012            | 612832C1             | 1D01E9419              | 55E56280CD                 | 1 | 0 | 1 | 1 | 0 | 01       | 11       | 10     |
| 273        | 34       | 1F46049            | 42506583             | 1A03D2832              | 2BCAC5019A                 | 1 | 0 | 1 | 1 | 0 | 01       | 01       | 11     |
| 274        | 35       | 1E8C093            | 04A0CB07             | 1407A5065              | 57958A0335                 | 1 | 1 | 0 | 1 | 0 | 00       | 01       | 01     |
| 275        | 36       | 1D18127            |                      |                        | 2F2B14066B                 | 1 | 0 | 1 | 0 | 0 | 10       | 00       | 01     |
| 276        | 37       | 1A3024F            | 12832C1F             | 101E94196              | 5E56280CD7                 | 1 | 1 | 0 | 0 | 0 | 00       | 10       | 00     |
| 277        | 38       | 146049F            | 2506583E             |                        | 3CAC5019AE                 | 0 | 0 | 0 | 1 | 1 | 01       | 00       | 10     |
| 278        | 39       | 08C093E            | 4A0CB07D             | 007A50658              | 7958A0335D                 | 1 | 0 | 0 | 0 | 0 | 00       | 01       | 00     |
| 279        | 40       | 118127C            | 141960FA             | 00F4A0CB0              | 72B14066BA                 | 0 | 0 | 0 | 1 | 1 | 11       | 00       | 01     |
| 280        | 41       | 03024F8            | 2832C1F4             | 01E941961              | 656280CD74                 | 0 | 0 | 0 | 0 | 1 | 10       | 11       | 00     |
| 281        | 42       | 06049F1            | 506583E9             | 03D2832C2              | 4AC5019AE9                 | 0 | 0 | 0 | 1 | 1 | 01       | 10       | 11     |
| 282        | 43       | 0C093E2            | 20CB07D2             | 07A506585              | 158A0335D3                 | 1 | 1 | 0 | 1 | 0 | 10       | 01       | 10     |
| 283        | 44       | 18127C5            | 41960FA5             | 0F4A0CB0B              | 2B14066BA7                 | 1 | 1 | 1 | 0 | 1 | 11       | 10       | 01     |
| 284        | 45       | 1024F8A            | 032C1F4B             | 1E9419616              | 56280CD74F                 | 0 | 0 | 1 | 0 | 0 | 00       | 11       | 10     |
| 285        | 46       | 0049F15            | 06583E97             | 1D2832C2C              | 2C5019AE9F                 | 0 | 0 | 1 | 0 | 1 | 10       | 00       | 11     |
|            |          |                    |                      |                        |                            |   |   |   |   |   |          |          |        |

page 919 of 1082

| Арр        | endix I  | V - Samp           | le Data              |                        |                          |   |   |   |   |   |     | E        | Bluetooth |
|------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|-----|----------|-----------|
| 286        | 47       | 0093E2B            | 0CB07D2F             | 1A5065859              | 58A0335D3E               | 0 | 1 | 1 | 1 | 1 | 00  | 10       | 00        |
| 287        | 48       | 0127C56            | 1960FA5E             | 14A0CB0B2              | 314066BA7D               | 0 | 0 | 0 | 0 | 0 | 01  | 0.0      | 10        |
| 288        | 49       | 024F8AD            | 32C1F4BC             | 094196164              | 6280CD74FB               | 0 | 1 | 1 | 1 | 0 | 11  | 01       | 00        |
| 289        | 50       | 049F15A            | 6583E978             | 12832C2C8              | 45019AE9F6               | 0 | 1 | 0 | 0 | 0 | 10  | 11       | 01        |
| 290        | 51       | 093E2B5            | 4B07D2F0             | 050658591              | 0A0335D3ED               | 1 | 0 | 0 | 0 | 1 | 01  | 10       | 11        |
| 291        | 52       | 127C56B            | 160FA5E0             | 0A0CB0B22              | 14066BA7DA               | 0 | 0 | 1 | 0 | 0 | 01  | 01       | 10        |
| 292        | 53       | 04F8AD7            | 2C1F4BC1             | 141961645              | 280CD74FB5               | 0 | 0 | 0 | 0 | 1 | 10  | 01       | 01        |
| 293        | 54       | 09F15AF            | 583E9783             | 0832C2C8A              | 5019AE9F6A               | 1 | 0 | 1 | 0 | 0 | 11  | 10       | 01        |
| 294        | 55       | 13E2B5E            | 307D2F06             | 106585915              | 20335D3ED5               | 0 | 0 | 0 | 0 | 1 | 11  | 11       | 10        |
| 295        | 56       | 07C56BD            | 60FA5E0D             | 00CB0B22B              | 4066BA7DAA               | 0 | 1 | 0 | 0 | 0 | 11  | 11       | 11        |
| 296        | 57       | 0F8AD7A            | 41F4BC1B             | 019616457              | 00CD74FB54               | 1 | 1 | 0 | 1 | 0 | 10  | 11       | 11        |
| 297        | 58       | 1F15AF4            | 03E97836             | 032C2C8AF              | 019AE9F6A9               | 1 | 1 | 0 | 1 | 1 | 10  | 10       | 11        |
| 298        | 59       | 1E2B5E9            | 07D2F06C             | 06585915E              | 0335D3ED52               | 1 | 1 | 0 | 0 | 0 | 01  | 10       | 10        |
| 299        | 60       | 1C56BD2            | 0FA5E0D8             | 0CB0B22BC              | 066BA7DAA4               | 1 | 1 | 1 | 0 | 0 | 10  | 01       | 10        |
| 300        | 61       | 18AD7A5            | 1F4BC1B0             | 196164578              | 0CD74FB549               | 1 | 0 | 1 | 1 | 1 | 11  | 10       | 01        |
| 301        | 62       | 115AF4B            | 3E978361             | 12C2C8AF0              | 19AE9F6A92               | 0 | 1 | 0 | 1 | 1 | 00  | 11       | 10        |
| 302        | 63       | 02B5E96            | 7D2F06C2             | 0585915E0              | 335D3ED524               | 0 | 0 | 0 | 0 | 0 | 10  | 00       | 11        |
| 303        | 64       | 056BD2D            | 7A5E0D85             | 0B0B22BC1              | 66BA7DAA49               | 0 | 0 | 1 | 1 | 0 | 00  | 10       | 00        |
| 304        | 65       | 0AD7A5B            | 74BC1B0A             | 161645783              | 4D74FB5493               | 1 | 1 | 0 | 0 | 0 | 00  | 00       | 10        |
| 305        | 66       | 15AF4B6            | 69783615             | 0C2C8AF07              | 1AE9F6A926               | 0 | 0 | 1 | 1 | 0 | 01  | 00       | 00        |
| 306        | 67       | 0B5E96D            | 52F06C2B             | 185915E0F              | 35D3ED524C               | 1 | 1 | 1 | 1 | 1 | 11  | 01       | 00        |
| 307        | 68       | 16BD2DB            | 25E0D857             | 10B22BC1F              | 6BA7DAA499               | 0 | 1 | 0 | 1 | 1 | 10  | 11       | 01        |
| 308        | 69       | 0D7A5B7            | 4BC1B0AF             | 01645783F              | 574FB54933               | 1 | 1 | 0 | 0 | 0 | 10  | 10       | 11        |
| 309        | 70       | 1AF4B6F            | 1783615F             | 02C8AF07F              | 2E9F6A9266               | 1 | 1 | 0 | 1 | 1 | 01  | 10       | 10        |
| 310        | 71       | 15E96DF            | 2F06C2BF             | 05915E0FF              | 5D3ED524CC               | 0 | 0 | 0 | 0 | 1 | 00  | 01       | 10        |
| 311        | 72       | 0BD2DBF            | 5E0D857F             | 0B22BC1FE              | 3A7DAA4998               | 1 | 0 | 1 | 0 | 0 | 10  | 00       | 01        |
| 312        | 73       | 17A5B7F            | 3C1B0AFE             | 1645783FD              | 74FB549331               | 0 | 0 | 0 | 1 | 1 | 11  | 10       | 00        |
| 313        | 74       | 0F4B6FF            | 783615FD             | 0C8AF07FA              | 69F6A92662               | 1 | 0 | 1 | 1 | 0 | 01  | 11       | 10        |
| 314        | 75       | 1E96DFF            | 706C2BFB             | 1915E0FF5              | 53ED524CC4               | 1 | 0 | 1 | 1 | 0 | 01  | 01       | 11        |
| 315        | 76       | 1D2DBFE            | 60D857F6             | 122BC1FEB              | 27DAA49988               | 1 | 1 | 0 | 1 | 0 | 00  | 01       | 01        |
| 316        | 77       | 1A5B7FD            | 41B0AFEC             | 045783FD7              | 4FB5493310               | 1 | 1 | 0 | 1 | 1 | 10  | 00       | 01        |
| 317        | 78       | 14B6FFA            | 03615FD8<br>06C2BFB1 | 08AF07FAE              | 1F6A926620<br>3ED524CC40 | 0 | 0 | 1 | 0 | 1 | 11  | 10       | 00        |
| 318        | 79       | 096DFF4            |                      | 115E0FF5D              |                          | 1 | 1 | 0 | 1 | 0 | 01  | 11       | 10        |
| 319<br>320 | 80<br>81 | 12DBFE8<br>05B7FD0 | 0D857F63<br>1B0AFEC6 | 02BC1FEBB<br>05783FD77 | 7DAA499881<br>7B54933103 | 0 | 1 | 0 | 1 | 1 | 10  | 01<br>10 | 11<br>01  |
| 321        | 82       | 0367FD0<br>0B6FFA1 | 3615FD8C             | 03763FD77<br>0AF07FAEF | 76A9266206               | 1 | 0 | 1 | 1 | 1 | 00  | 00       | 10        |
| 322        | 83       | 16DFF42            | 6C2BFB18             | 15E0FF5DE              | 6D524CC40C               | 0 | 0 | 0 | 0 | 0 | 00  | 00       | 00        |
| 323        | 84       | 0DBFE85            | 5857F631             | 0BC1FEBBD              | 5AA4998819               | 1 | 0 | 1 | 1 | 1 | 01  | 00       | 00        |
| 324        | 85       | 1B7FD0B            |                      |                        | 3549331033               | 1 | 1 | 0 | 0 | 1 | 00  | 01       | 00        |
| 325        | 86       | 16FFA16            |                      |                        | 6A92662067               | 0 | 0 | 1 | 1 | 0 | 10  | 00       | 01        |
| 326        | 87       | 0DFF42D            |                      |                        | 5524CC40CE               | 1 | 1 | 1 | 0 | 1 | 0.0 | 10       | 00        |
| 327        | 88       |                    | 057F6317             |                        | 2A4998819C               | 1 | 0 | 1 | 0 | 0 | 0.0 | 00       | 10        |
| 328        | 89       | 17FD0B7            | 0AFEC62E             | 183FD77AA              | 5493310339               | 0 | 1 | 1 | 1 | 1 | 01  | 0.0      | 00        |
| 329        | 90       | 0FFA16F            | 15FD8C5C             | 107FAEF55              | 2926620672               | 1 | 1 | 0 | 0 | 1 | 00  | 01       | 00        |
| 330        | 91       | 1FF42DF            | 2BFB18B9             | 00FF5DEAA              | 524CC40CE5               | 1 | 1 | 0 | 0 | 0 | 10  | 00       | 01        |
| 331        | 92       | 1FE85BF            | 57F63172             | 01FEBBD55              | 24998819CA               | 1 | 1 | 0 | 1 | 1 | 00  | 10       | 00        |
| 332        | 93       | 1FD0B7F            | 2FEC62E4             | 03FD77AAA              | 4933103394               | 1 | 1 | 0 | 0 | 0 | 00  | 00       | 10        |
| 333        | 94       | 1FA16FF            | 5FD8C5C9             | 07FAEF555              | 1266206728               | 1 | 1 | 0 | 0 | 0 | 01  | 00       | 00        |
| 334        | 95       | 1F42DFF            | 3FB18B93             | 0FF5DEAAA              | 24CC40CE51               | 1 | 1 | 1 | 1 | 1 | 11  | 01       | 00        |
| 335        | 96       | 1E85BFF            | 7F631727             | 1FEBBD554              | 4998819CA3               | 1 | 0 | 1 | 1 | 0 | 11  | 11       | 01        |
| 336        | 97       | 1D0B7FE            | 7EC62E4F             | 1FD77AAA9              | 1331033947               | 1 | 1 | 1 | 0 | 0 | 10  | 11       | 11        |
| 337        | 98       | 1A16FFC            | 7D8C5C9F             | 1FAEF5553              | 266206728E               | 1 | 1 | 1 | 0 | 1 | 10  | 10       | 11        |
| 338        | 99       | 142DFF9            | 7B18B93F             | 1F5DEAAA7              | 4CC40CE51D               | 0 | 0 | 1 | 1 | 0 | 01  | 10       | 10        |
| 339        | 100      | 085BFF3            | 7631727F             | 1EBBD554E              | 198819CA3B               | 1 | 0 | 1 | 1 | 0 | 10  | 01       | 10        |
| 340        | 101      | 10B7FE6            | 6C62E4FF             | 1D77AAA9C              | 3310339477               | 0 | 0 | 1 | 0 | 1 | 00  | 10       | 01        |
| 341        | 102      | 016FFCC            | 58C5C9FE             | 1AEF55538              | 66206728EE               | 0 | 1 | 1 | 0 | 0 | 00  | 00       | 10        |
| 342        | 103      | 02DFF98            | 318B93FC             | 15DEAAA70              | 4C40CE51DC               | 0 | 1 | 0 | 0 | 1 | 00  | 00       | 00        |

# **ATTACHMENT H**

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 920 of 1082

| Арр | endix | IV - Samp | ole Data |           |            |   |   |   |   |   |    | В   | Sluetooth. |
|-----|-------|-----------|----------|-----------|------------|---|---|---|---|---|----|-----|------------|
| 343 | 104   | 05BFF31   | 631727F8 | 0BBD554E1 | 18819CA3B9 | 0 | 0 | 1 | 1 | 0 | 01 | 00  | 00         |
| 344 | 105   | 0B7FE62   | 462E4FF1 | 177AAA9C2 | 3103394772 | 1 | 0 | 0 | 0 | 0 | 00 | 01  | 00         |
| 345 | 106   | 16FFCC5   | OC5C9FE2 | 0EF555384 | 6206728EE4 | 0 | 0 | 1 | 0 | 1 | 11 | 00  | 01         |
| 346 | 107   | 0DFF98A   | 18B93FC4 | 1DEAAA709 | 440CE51DC9 | 1 | 1 | 1 | 0 | 0 | 00 | 11  | 00         |
| 347 | 108   | 1BFF315   | 31727F88 | 1BD554E12 | 0819CA3B93 | 1 | 0 | 1 | 0 | 0 | 11 | 0.0 | 11         |
| 348 | 109   | 17FE62A   | 62E4FF11 | 17AAA9C24 | 1033947726 | 0 | 1 | 0 | 0 | 0 | 01 | 11  | 00         |
| 349 | 110   | 0FFCC54   | 45C9FE22 | 0F5553849 | 206728EE4C | 1 | 1 | 1 | 0 | 0 | 01 | 01  | 11         |
| 350 | 111   | 1FF98A8   | 0B93FC44 | 1EAAA7093 | 40CE51DC99 | 1 | 1 | 1 | 1 | 1 | 00 | 01  | 01         |
| 351 | 112   | 1FF3150   | 1727F889 | 1D554E127 | 019CA3B933 | 1 | 0 | 1 | 1 | 1 | 10 | 00  | 01         |
| 352 | 113   | 1FE62A0   | 2E4FF112 | 1AAA9C24F | 0339477267 | 1 | 0 | 1 | 0 | 0 | 00 | 10  | 00         |
| 353 | 114   | 1FCC541   | 5C9FE225 | 15553849E | 06728EE4CF | 1 | 1 | 0 | 0 | 0 | 00 | 00  | 10         |
| 354 | 115   | 1F98A82   | 393FC44B | 0AAA7093C | 0CE51DC99F | 1 | 0 | 1 | 1 | 1 | 01 | 00  | 00         |
| 355 | 116   | 1F31504   | 727F8897 | 1554E1279 | 19CA3B933E | 1 | 0 | 0 | 1 | 1 | 00 | 01  | 00         |
| 356 | 117   | 1E62A09   | 64FF112F | 0AA9C24F2 | 339477267D | 1 | 1 | 1 | 1 | 0 | 01 | 00  | 01         |
| 357 | 118   | 1CC5412   | 49FE225E | 1553849E4 | 6728EE4CFB | 1 | 1 | 0 | 0 | 1 | 00 | 01  | 00         |
| 358 | 119   | 198A824   | 13FC44BC | 0AA7093C9 | 4E51DC99F7 | 1 | 1 | 1 | 0 | 1 | 10 | 00  | 01         |
| 359 | 120   | 1315049   | 27F88979 | 154E12792 | 1CA3B933EE | 0 | 1 | 0 | 1 | 0 | 00 | 10  | 00         |
| 360 | 121   | 062A093   | 4FF112F3 | 0A9C24F24 | 39477267DC | 0 | 1 | 1 | 0 | 0 | 00 | 00  | 10         |
| 361 | 122   | 0C54127   | 1FE225E6 | 153849E48 | 728EE4CFB8 | 1 | 1 | 0 | 1 | 1 | 01 | 00  | 00         |
| 362 | 123   | 18A824E   | 3FC44BCD | 0A7093C91 | 651DC99F71 | 1 | 1 | 1 | 0 | 0 | 11 | 01  | 00         |
| 363 | 124   | 115049C   | 7F88979A | 14E127922 | 4A3B933EE2 | 0 | 1 | 0 | 0 | 0 | 10 | 11  | 01         |
| 364 | 125   | 02A0938   | 7F112F35 | 09C24F244 | 1477267DC5 | 0 | 0 | 1 | 0 | 1 | 01 | 10  | 11         |

page 921 of 1082

Appendix IV - Sample Data

Bluetooth.

### 1.4 THIRD SET OF SAMPLES

```
Initial values for the key, pan address and clock

K'c3[0] = FF    K'c3[1] = FF    K'c3[2] = FF    K'c3[3] = FF

K'c3[4] = FF    K'c3[5] = FF    K'c3[6] = FF    K'c3[7] = FF

K'c3[8] = FF    K'c3[9] = FF    K'c3[10] = FF    K'c3[11] = FF

K'c3[12] = FF    K'c3[13] = FF    K'c3[14] = FF    K'c3[15] = FF

Addr3[0] = FF    Addr3[1] = FF    Addr3[2] = FF

Addr3[3] = FF    Addr3[4] = FF    Addr3[5] = FF
Clk3[0] = FF    Clk3[1] = FF    Clk3[2] = FF    Clk3[3] = 03
```

Fill LFSRs with initial data

| t  | clk# | LFSR1    | LFSR2     | LFSR3      | LFSR4       | X1 | X2 | х3 | х4 | Z | C[t+1] | C[t] | C[t-1] |
|----|------|----------|-----------|------------|-------------|----|----|----|----|---|--------|------|--------|
| 0  | 0    | 0000000* | 00000000* | 000000000* | 0000000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 1  | 1    | 0000001* | 00000001* | 00000001*  | 000000001*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 2  | 2    | 0000003* | 00000002* | 00000003*  | 000000003*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 3  | 3    | 0000007* | 00000004* | 000000007* | 0000000007* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 4  | 4    | 000000F* | 00000009* | 0000000F*  | 00000000F*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 5  | 5    | 000001F* | 00000013* | 0000001F*  | 00000001F*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 6  | 6    | 000003F* | 00000027* | 00000003F* | 000000003F* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 7  | 7    | 000007F* | 0000004F* | 00000007F* | 000000007F* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 8  | 8    | 00000FF* | 0000009F* | 0000000FF* | 00000000FF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 9  | 9    | 00001FF* | 0000013F* | 0000001FF* | 00000001FF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 10 | 10   | 00003FF* | 0000027F* | 0000003FF* | 00000003FF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 11 | 11   | 00007FF* | 000004FF* | 0000007FF* | 00000007FF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 12 | 12   | 0000FFF* | 000009FF* | 000000FFF* | 0000000FFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 13 | 13   | 0001FFF* | 000013FF* | 000001FFF* | 0000001FFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 14 | 14   | 0003FFF* | 000027FF* | 000003FFF* | 0000003FFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 15 | 15   | 0007FFF* | 00004FFF* | 000007FFF* | 0000007FFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 16 | 16   | 000FFFF* | 00009FFF* | 00000FFFF* | 000000FFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 17 | 17   | 001FFFF* | 00013FFF* | 00001FFFF* | 000001FFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 18 | 18   | 003FFFF* | 00027FFF* | 00003FFFF* | 000003FFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 19 | 19   | 007FFFF* | 0004FFFF* | 00007FFFF* | 000007FFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 20 | 20   | 00FFFFF* | 0009FFFF* | 0000FFFFF* | 00000FFFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 21 | 21   | 01FFFFF* | 0013FFFF* | 0001FFFFF* | 00001FFFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 22 | 22   | 03FFFFF* | 0027FFFF* | 0003FFFFF* | 00003FFFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 23 | 23   | 07FFFFF* | 004FFFFF* | 0007FFFFF* | 00007FFFFF* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 24 | 24   | OFFFFFF* | 009FFFFF* | 000FFFFFF* | 0000FFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 25 | 25   | 1FFFFFF* | 013FFFFF* | 001FFFFFF* | 0001FFFFFF* | 1  | 0  | 0  | 0  | 1 | 00     | 00   | 00     |
| 26 | 26   | 1FFFFFF  | 027FFFFF* | 003FFFFFF* | 0003FFFFFF* | 1  | 0  | 0  | 0  | 1 | 00     | 00   | 00     |
| 27 | 27   | 1FFFFFF  | 04FFFFFF* | 007FFFFFF* | 0007FFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 28 | 28   | 1FFFFFF  | 09FFFFFF* | 00FFFFFFF* | 000FFFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 29 | 29   | 1FFFFFF  | 13FFFFFF* | 01FFFFFFF* | 001FFFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 30 | 30   | 1FFFFFF  | 27FFFFFF* | 03FFFFFFF* | 003FFFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 31 | 31   | 1FFFFFF  | 4FFFFFFF* | 07FFFFFFF* | 007FFFFFFF* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 32 | 32   | 1FFFFFF  | 1FFFFFFF  | OFFFFFFF*  | 00FFFFFFFF* | 1  | 1  | 1  | 1  | 0 | 10     | 00   | 00     |
| 33 | 33   | 1FFFFFF  | 3FFFFFFE  | 1FFFFFFFF* | 01FFFFFFFF* | 1  | 1  | 1  | 1  | 0 | 10     | 00   | 00     |
| 34 | 34   | 1FFFFFF  | 7FFFFFC   | 1FFFFFFF   | 03FFFFFFF*  | 1  | 1  | 1  | 1  | 0 | 10     | 00   | 00     |

page 922 of 1082

| Appe | endix I | IV - Samp | ole Data |             |                 |       |     |     |   |      |       | I     | <b>Bluetooth</b> |
|------|---------|-----------|----------|-------------|-----------------|-------|-----|-----|---|------|-------|-------|------------------|
| 35   | 35      | 1FFFFFF   | 7FFFFFF9 | 1FFFFFFFF   | 07FFFFFFF*      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 36   | 36      | 1FFFFFF   | 7FFFFFF3 | 1FFFFFFFF   | OFFFFFFFF*      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 37   | 37      | 1FFFFFF   | 7FFFFFE7 | 1FFFFFFFF   | 1FFFFFFFF*      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 38   | 38      | 1FFFFFF   | 7FFFFFCF | 1FFFFFFFF   | 3FFFFFFFF*      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 39   | 39      | 1FFFFFF   | 7FFFFF9F | 1FFFFFFFF   | 7FFFFFFFF*      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
|      |         |           |          | on Combiner | ·=========<br>· | ===== | === |     |   | ==== | ===== | ===== | =======          |
|      |         |           | ======   | =======     |                 |       | === | === |   |      |       | ===== | ======           |
| 40   | 1       | 1FFFFFF   | 7FFFFF3F | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 01    | 10    | 00               |
| 41   | 2       | 1FFFFFF   | 7FFFFE7F | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 1    | 10    | 01    | 10               |
| 42   | 3       | 1FFFFFF   | 7FFFFCFF | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 10    | 10    | 01               |
| 43   | 4       | 1FFFFFF   | 7FFFF9FF | 1FFFFFFF    | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 00    | 10    | 10               |
| 44   | 5       | 1FFFFFF   | 7FFFF3FF | 1FFFFFFF    | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 11    | 00    | 10               |
| 45   | 6       | 1FFFFFF   | 7FFFE7FE | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 1    | 00    | 11    | 00               |
| 46   | 7       | 1FFFFFF   | 7FFFCFFC | 1FFFFFFF    | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 00    | 00    | 11               |
| 47   | 8       | 1FFFFFF   | 7FFF9FF9 | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 48   | 9       | 1FFFFFF   | 7FFF3FF3 | 1FFFFFFFF   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 01    | 10    | 00               |
| 49   | 10      | 1FFFFFF   | 7FFE7FE6 | 1FFFFFFF    | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 1    | 10    | 01    | 10               |
| 50   | 11      | 1FFFFFE   | 7FFCFFCC | 1FFFFFFE    | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 10    | 10    | 01               |
| 51   | 12      | 1FFFFFC   | 7FF9FF99 | 1FFFFFFFC   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 00    | 10    | 10               |
| 52   | 13      | 1FFFFF8   | 7FF3FF33 | 1FFFFFFF8   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 11    | 00    | 10               |
| 53   | 14      | 1FFFFF0   | 7FE7FE67 | 1FFFFFFF0   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 1    | 00    | 11    | 00               |
| 54   | 15      | 1FFFFE0   | 7FCFFCCF | 1FFFFFFE1   | 7FFFFFFFF       | 1     | 1   | 1   | 1 | 0    | 00    | 00    | 11               |
| 55   | 16      | 1FFFFC0   | 7F9FF99F | 1FFFFFFC3   | 7FFFFFFFFF      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 56   | 17      | 1FFFF80   | 7F3FF33E | 1FFFFFF87   | 7FFFFFFFE       | 1     | 0   | 1   | 1 | 1    | 00    | 10    | 00               |
| 57   | 18      | 1FFFF00   | 7E7FE67C | 1FFFFFF0F   | 7FFFFFFFC       | 1     | 0   | 1   | 1 | 1    | 00    | 00    | 10               |
| 58   | 19      | 1FFFE01   | 7CFFCCF8 | 1FFFFFE1E   | 7FFFFFFF8       | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 59   | 20      | 1FFFC03   | 79FF99F0 | 1FFFFFC3C   | 7FFFFFFFF0      | 1     | 1   | 1   | 1 | 0    | 01    | 10    | 00               |
| 50   | 21      | 1FFF807   | 73FF33E0 | 1FFFFF878   | 7FFFFFFFE1      | 1     | 1   | 1   | 1 | 1    | 10    | 01    | 10               |
| 51   | 22      | 1FFF00F   | 67FE67C0 | 1FFFFF0F0   | 7FFFFFFC3       | 1     | 1   | 1   | 1 | 0    | 10    | 10    | 01               |
| 52   | 23      | 1FFE01E   | 4FFCCF80 | 1FFFFE1E1   | 7FFFFFF87       | 1     | 1   | 1   | 1 | 0    | 00    | 10    | 10               |
| 63   | 24      | 1FFC03C   | 1FF99F00 | 1FFFFC3C3   | 7FFFFFFF0F      | 1     | 1   | 1   | 1 | 0    | 11    | 00    | 10               |
| 64   | 25      | 1FF8078   | 3FF33E01 | 1FFFF8787   | 7FFFFFFE1E      | 1     | 1   | 1   | 1 | 1    | 00    | 11    | 00               |
| 65   | 26      | 1FF00F0   | 7FE67C02 | 1FFFF0F0F   | 7FFFFFFC3C      | 1     | 1   | 1   | 1 | 0    | 00    | 00    | 11               |
| 66   | 27      | 1FE01E1   | 7FCCF805 | 1FFFE1E1E   | 7FFFFFF878      | 1     | 1   | 1   | 1 | 0    | 10    | 00    | 00               |
| 67   | 28      | 1FC03C3   | 7F99F00A | 1FFFC3C3C   | 7FFFFFF0F0      | 1     | 1   | 1   | 1 | 0    | 01    | 10    | 00               |
| 68   | 29      | 1F80787   | 7F33E015 | 1FFF87878   | 7FFFFFE1E1      | 1     | 0   |     | 1 | 0    | 10    | 01    | 10               |
| 59   | 30      | 1F00F0F   |          | 1FFF0F0F0   | 7FFFFFC3C3      | 1     | 0   | 1   | 1 | 1    | 11    | 10    | 01               |
| 70   | 31      | 1E01E1E   |          |             | 7FFFFF8787      | 1     | 1   | 1   | 1 | 1    | 01    | 11    | 10               |
| 71   | 32      | 1C03C3C   |          |             | 7FFFFF0F0F      | 1     | 1   | 1   | 1 | 1    | 01    | 01    | 11               |
| 72   | 33      | 1807878   |          |             | 7FFFFE1E1E      | 1     | 0   | 1   | 1 | 0    | 00    | 01    | 01               |
| 73   | 34      | 100F0F0   |          |             | 7FFFFC3C3C      | 0     | 0   | 1   | 1 | 0    | 10    | 00    | 01               |
| 74   | 35      | 001E1E0   |          |             | 7FFFF87878      | 0     | 1   | 1   | 1 | 1    | 0.0   | 10    | 00               |
| 75   | 36      | 003C3C1   |          |             | 7FFFF0F0F0      | 0     | 1   | 1   | 1 | 1    | 00    | 00    | 10               |
| 76   | 37      | 0078783   |          |             | 7FFFE1E1E1      | 0     | 1   | 1   | 1 | 1    | 01    | 00    | 00               |
| 77   | 38      | 00F0F07   |          | 1F0F0F0FF   | 7FFFC3C3C3      | 0     | 1   | 1   | 1 | 0    | 11    | 01    | 00               |
| 78   | 39      | 01E1E0E   |          |             | 7FFF878787      | 0     | 1   |     | 1 | 0    | 11    | 11    | 01               |
| 79   | 40      | 03C3C1C   |          | 1C3C3C3FF   | 7FFF0F0F0F      | 0     | 0   | 1   | 1 | 1    | 11    | 11    | 11               |
| 30   | 41      | 0787838   |          | 1878787FF   | 7FFE1E1E1E      | 0     | 0   | 1   | 1 | 1    | 11    | 11    | 11               |
| 31   | 42      | 0F0F070   |          |             | 7FFC3C3C3C      | 1     | 0   | 0   | 1 | 1    | 11    | 11    | 11               |
| 32   | 43      | 1E1E0E0   |          |             | 7FF8787878      | 1     | 0   | 0   | 1 | 1    | 11    | 11    | 11               |
| 33   | 44      | 1C3C1C0   |          |             | 7FF0F0F0F0      | 1     | 0   | 0   | 1 | 1    | 11    | 11    | 11               |
| 34   | 45      | 1878380   |          |             | 7FE1E1E1E0      | 1     | 0   | 0   | 1 | 1    | 11    | 11    | 11               |
| 35   | 46      | 10F0700   |          | 0F0F0FFF8   | 7FC3C3C3C0      | 0     | 0   | 1   | 1 | 1    | 11    | 11    | 11               |
| 36   | 47      | 01E0E00   |          | 1E1E1FFF0   | 7F87878780      | 0     | 0   | 1   | 1 | 1    | 11    | 11    | 11               |
| 37   | 48      | 03C1C00   | 00A96601 | 1C3C3FFE0   | 7F0F0F0F00      | 0     | 1   | 1   | 0 | 1    | 11    | 11    | 11               |
| 38   | 49      | 0783800   | 0152CC03 | 18787FFC0   | 7E1E1E1E01      | 0     | 0   | 1   | 0 | 0    | 11    | 11    | 11               |

page 923 of 1082

| App        | endix I  | V - Samp           | le Data              |                        |                          |   |   |   |   |   |          | В        | Sluetooth. |
|------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----------|----------|------------|
| 89         | 50       | 0F07000            | 02A59806             | 10F0FFF80              | 7C3C3C3C03               | 1 | 1 | 0 | 0 | 1 | 11       | 11       | 11         |
| 90         | 51       | 1E0E000            | 054B300D             | 01E1FFF00              | 7878787807               | 1 | 0 | 0 | 0 | 0 | 11       | 11       | 11         |
| 91         | 52       | 1C1C001            | 0A96601A             | 03C3FFE01              | 70F0F0F00F               | 1 | 1 | 0 | 1 | 0 | 10       | 11       | 11         |
| 92         | 53       | 1838003            | 152CC035             | 0787FFC03              | 61E1E1E01E               | 1 | 0 | 0 | 1 | 0 | 10       | 10       | 11         |
| 93         | 54       | 1070007            | 2A59806B             | 0F0FFF807              | 43C3C3C03C               | 0 | 0 | 1 | 1 | 0 | 01       | 10       | 10         |
| 94         | 55       | 00E000F            | 54B300D7             | 1E1FFF00F              | 0787878078               | 0 | 1 | 1 | 1 | 0 | 10       | 01       | 10         |
| 95         | 56       | 01C001F            | 296601AE             | 1C3FFE01F              | 0F0F0F00F1               | 0 | 0 | 1 | 0 | 1 | 00       | 10       | 01         |
| 96         | 57       | 038003F            | 52CC035C             | 187FFC03F              | 1E1E1E01E2               | 0 | 1 | 1 | 0 | 0 | 00       | 00       | 10         |
| 97         | 58       | 070007F            | 259806B8             | 10FFF807F              | 3C3C3C03C4               | 0 | 1 | 0 | 0 | 1 | 00       | 00       | 00         |
| 98         | 59       | 0E000FE            | 4B300D71             | 01FFF00FE              | 7878780788               | 1 | 0 | 0 | 0 | 1 | 00       | 00       | 00         |
| 99         | 60       | 1C001FD            | 16601AE2             | 03FFE01FD              | 70F0F00F10               | 1 | 0 | 0 | 1 | 0 | 01       | 00       | 00         |
| 100        | 61       | 18003FA            | 2CC035C5             | 07FFC03FB              | 61E1E01E21               | 1 | 1 | 0 | 1 | 0 | 11       | 01       | 00         |
| 101        | 62       | 10007F4            | 59806B8B             | 0FFF807F7              | 43C3C03C43               | 0 | 1 | 1 | 1 | 0 | 11       | 11       | 01         |
| 102        | 63<br>64 | 0000FE8<br>0001FD0 | 3300D717             | 1FFF00FEE              | 0787807887               | 0 | 0 | 1 | 1 | 1 | 11       | 11<br>11 | 11<br>11   |
| 103<br>104 | 65       | 0001FD0            | 6601AE2F<br>4C035C5F | 1FFE01FDC<br>1FFC03FB8 | 0F0F00F10E<br>1E1E01E21D | 0 | 0 | 1 | 0 | 0 | 11       | 11       | 11         |
| 105        | 66       | 0003FA0            | 1806B8BE             | 1FF807F70              | 3C3C03C43B               | 0 | 0 | 1 | 0 | 0 | 11       | 11       | 11         |
| 106        | 67       | 0007F10            | 300D717C             | 1FF00FEE1              | 7878078877               | 0 | 0 | 1 | 0 | 0 | 11       | 11       | 11         |
| 107        | 68       | 001FD02            | 601AE2F8             | 1FE01FDC2              | 70F00F10EF               | 0 | 0 | 1 | 1 | 1 | 11       | 11       | 11         |
| 108        | 69       | 003FA05            | 4035C5F0             | 1FC03FB84              | 61E01E21DE               | 0 | 0 | 1 | 1 | 1 | 11       | 11       | 11         |
| 109        | 70       | 007F40B            | 006B8BE0             | 1F807F708              | 43C03C43BC               | 0 | 0 | 1 | 1 | 1 | 11       | 11       | 11         |
| 110        | 71       | 00FE816            | 00D717C0             | 1F00FEE11              | 0780788778               | 0 | 1 | 1 | 1 | 0 | 10       | 11       | 11         |
| 111        | 72       | 01FD02C            | 01AE2F81             | 1E01FDC23              | 0F00F10EF1               | 0 | 1 | 1 | 0 | 0 | 10       | 10       | 11         |
| 112        | 73       | 03FA059            | 035C5F02             | 1C03FB847              | 1E01E21DE3               | 0 | 0 | 1 | 0 | 1 | 10       | 10       | 10         |
| 113        | 74       | 07F40B3            | 06B8BE05             | 1807F708F              | 3C03C43BC7               | 0 | 1 | 1 | 0 | 0 | 01       | 10       | 10         |
| 114        | 75       | 0FE8166            | 0D717C0B             | 100FEE11E              | 780788778F               | 1 | 0 | 0 | 0 | 0 | 01       | 01       | 10         |
| 115        | 76       | 1FD02CD            | 1AE2F817             | 001FDC23D              | 700F10EF1F               | 1 | 1 | 0 | 0 | 1 | 11       | 01       | 01         |
| 116        | 77       | 1FA059B            | 35C5F02F             | 003FB847A              | 601E21DE3F               | 1 | 1 | 0 | 0 | 1 | 10       | 11       | 01         |
| 117        | 78       | 1F40B37            | 6B8BE05E             | 007F708F4              | 403C43BC7F               | 1 | 1 | 0 | 0 | 0 | 10       | 10       | 11         |
| 118        | 79<br>80 | 1E8166E            | 5717C0BD             | 00FEE11E9              | 00788778FF               | 1 | 0 | 0 | 0 | 1 | 10       | 10       | 10<br>10   |
| 119<br>120 | 81       | 1D02CDC<br>1A059B9 | 2E2F817A<br>5C5F02F5 | 01FDC23D3<br>03FB847A6 | 00F10EF1FE<br>01E21DE3FD | 1 | 0 | 0 | 1 | 0 | 01       | 10<br>01 | 10         |
| 121        | 82       | 140B373            | 38BE05EB             | 07F708F4C              | 03C43BC7FB               | 0 | 1 | 0 | 1 | 1 | 11       | 01       | 01         |
| 122        | 83       | 08166E7            | 717C0BD7             | 0FEE11E98              | 0788778FF7               | 1 | 0 | 1 | 1 | 0 | 11       | 11       | 01         |
| 123        | 84       | 102CDCF            | 62F817AE             | 1FDC23D31              | OF10EF1FEF               | 0 | 1 | 1 | 0 | 1 | 11       | 11       | 11         |
| 124        | 85       | 0059B9F            | 45F02F5C             | 1FB847A63              | 1E21DE3FDE               | 0 | 1 | 1 | 0 | 1 | 11       | 11       | 11         |
| 125        | 86       | 00B373E            | 0BE05EB9             | 1F708F4C7              | 3C43BC7FBC               | 0 | 1 | 1 | 0 | 1 | 11       | 11       | 11         |
| 126        | 87       | 0166E7D            | 17C0BD72             | 1EE11E98F              | 788778FF78               | 0 | 1 | 1 | 1 | 0 | 10       | 11       | 11         |
| 127        | 88       | 02CDCFB            | 2F817AE5             | 1DC23D31F              | 710EF1FEF1               | 0 | 1 | 1 | 0 | 0 | 10       | 10       | 11         |
| 128        | 89       | 059B9F7            | 5F02F5CA             | 1B847A63F              | 621DE3FDE2               | 0 | 0 | 1 | 0 | 1 | 10       | 10       | 10         |
| 129        | 90       | 0B373EF            | 3E05EB94             | 1708F4C7F              | 443BC7FBC4               | 1 | 0 | 0 | 0 | 1 | 10       | 10       | 10         |
| 130        | 91       | 166E7DF            | 7C0BD728             | 0E11E98FF              | 08778FF788               | 0 | 0 | 1 | 0 | 1 | 10       | 10       | 10         |
| 131        | 92       |                    |                      |                        | 10EF1FEF10               | 1 | 0 | 1 | 1 | 1 |          | 10       | 10         |
| 132        | 93       |                    |                      |                        | 21DE3FDE21               | 1 | 0 | 1 | 1 | 0 | 10       | 01       | 10         |
| 133        | 94       |                    |                      |                        | 43BC7FBC43               | 0 | 0 | 0 | 1 | 1 | 00       | 10       | 01         |
| 134        | 95       |                    |                      |                        | 0778FF7886<br>0EF1FEF10D | 0 | 1 | 0 | 0 | 1 | 01       | 00       | 10<br>00   |
| 135<br>136 | 96<br>97 |                    |                      |                        | 1DE3FDE21A               | 1 | 0 | 0 | 1 | 1 | 00<br>10 | 01<br>00 | 01         |
| 137        | 98       |                    |                      |                        | 3BC7FBC434               | 0 | 1 | 1 | 1 | 1 |          | 10       | 00         |
| 138        | 99       |                    |                      |                        | 778FF78869               | 1 | 1 | 0 | 1 | 1 |          | 00       | 10         |
| 139        | 100      |                    |                      |                        | 6F1FEF10D3               | 1 | 1 | 0 | 0 | 0 | 01       | 00       | 00         |
| 140        | 101      |                    |                      |                        | 5E3FDE21A7               | 1 |   | 0 | 0 | 0 | 00       | 01       | 00         |
| 141        | 102      |                    |                      |                        | 3C7FBC434F               | 0 | 1 | 1 | 0 | 0 | 10       | 00       | 01         |
| 142        | 103      | 07DF7F8            | 3D728566             | 1E98FF878              | 78FF78869F               | 0 | 0 | 1 | 1 | 0 | 00       | 10       | 00         |
| 143        | 104      | 0FBEFF0            | 7AE50ACD             | 1D31FF0F0              | 71FEF10D3E               | 1 | 1 | 1 | 1 | 0 | 11       | 00       | 10         |
| 144        | 105      | 1F7DFE1            | 75CA159B             | 1A63FE1E1              | 63FDE21A7D               | 1 | 1 | 1 | 1 | 1 | 00       | 11       | 00         |
| 145        | 106      | 1EFBFC3            | 6B942B36             | 14C7FC3C3              | 47FBC434FB               | 1 | 1 | 0 | 1 | 1 | 11       | 00       | 11         |

page 924 of 1082

| Арр        | endix      | IV - Samp          | ole Data             |                        |                          |   |   |   |   |   |    |          | Bluetooth |
|------------|------------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----|----------|-----------|
| 146        | 107        | 1DF7F86            | 5728566D             | 098FF8786              | 0FF78869F7               | 1 | 0 | 1 | 1 | 0 | 00 | 11       | 00        |
| 147        | 108        | 1BEFF0C            | 2E50ACDB             | 131FF0F0C              | 1FEF10D3EF               | 1 | 0 | 0 | 1 | 0 | 11 | 00       | 11        |
| 148        | 109        | 17DFE19            | 5CA159B6             | 063FE1E19              | 3FDE21A7DF               | 0 | 1 | 0 | 1 | 1 | 01 | 11       | 00        |
| 149        | 110        | 0FBFC33            | 3942B36D             | 0C7FC3C32              | 7FBC434FBF               | 1 | 0 | 1 | 1 | 0 | 01 | 01       | 11        |
| 150        | 111        | 1F7F866            | 728566DB             | 18FF87865              | 7F78869F7E               | 1 | 1 | 1 | 0 | 0 | 00 | 01       | 01        |
| 151        | 112        | 1EFF0CC            | 650ACDB6             | 11FF0F0CB              | 7EF10D3EFC               | 1 | 0 | 0 | 1 | 0 | 10 | 00       | 01        |
| 152        | 113        | 1DFE199            | 4A159B6D             | 03FE1E196              | 7DE21A7DF9               | 1 | 0 | 0 | 1 | 0 | 00 | 10       | 00        |
| 153        | 114        | 1BFC333            | 142B36DB             | 07FC3C32C              | 7BC434FBF3               | 1 | 0 | 0 | 1 | 0 | 00 | 00       | 10        |
| 154        | 115        | 17F8666            | 28566DB6             | 0FF878659              | 778869F7E6               | 0 | 0 | 1 | 1 | 0 | 01 | 00       | 00        |
| 155        | 116        | 0FF0CCC            | 50ACDB6D             | 1FF0F0CB3              | 6F10D3EFCC               | 1 | 1 | 1 | 0 | 0 | 11 | 01       | 00        |
| 156        | 117        | 1FE1999            | 2159B6DA             | 1FE1E1966              | 5E21A7DF99               | 1 | 0 | 1 | 0 | 1 | 10 | 11       | 01        |
| 157        | 118        | 1FC3332            | 42B36DB5             | 1FC3C32CC              | 3C434FBF33               | 1 | 1 | 1 | 0 | 1 | 10 | 10       | 11        |
| 158        | 119        | 1F86664            | 0566DB6B             | 1F8786599              | 78869F7E67               | 1 | 0 | 1 | 1 | 1 | 01 | 10       | 10        |
| 159        | 120        | 1F0CCC8            | 0ACDB6D6             | 1F0F0CB33              | 710D3EFCCE               | 1 | 1 | 1 | 0 | 0 | 10 | 01       | 10        |
| 160        | 121        | 1E19991            | 159B6DAC             | 1E1E19666              | 621A7DF99D               | 1 | 1 | 1 | 0 | 1 | 11 | 10       | 01        |
| 161        | 122        | 1C33323            | 2B36DB58             | 1C3C32CCC              | 4434FBF33B               | 1 | 0 | 1 | 0 | 1 | 00 | 11       | 10        |
| 162        | 123        | 1866647            | 566DB6B0             | 187865999              | 0869F7E676               | 1 | 0 | 1 | 0 | 0 | 11 | 00       | 11        |
| 163        | 124        | 10CCC8F            | 2CDB6D60             | 10F0CB333              | 10D3EFCCEC               | 0 | 1 | 0 | 1 | 1 | 01 | 11       | 00        |
| 164        | 125        | 019991E            | 59B6DAC0             | 01E196666              | 21A7DF99D9               | 0 | 1 | 0 | 1 | 1 | 10 | 01       | 11        |
| 165        | 126        | 033323C            | 336DB580             | 03C32CCCD              | 434FBF33B3               | 0 | 0 | 0 | 0 | 0 | 00 | 10       | 01        |
| 166        | 127<br>128 | 0666478            | 66DB6B01<br>4DB6D603 | 07865999A              | 069F7E6766               | 0 | 1 | 0 | 0 | 0 | 00 | 00       | 10<br>00  |
| 167<br>168 | 128        | 0CCC8F0<br>19991E1 | 1B6DAC07             | 0F0CB3334<br>1E1966669 | 0D3EFCCECD<br>1A7DF99D9B | 1 | 0 | 1 | 0 | 1 | 01 | 01       | 00        |
| 169        | 130        | 13323C3            | 36DB580E             | 1C32CCCD3              | 34FBF33B37               | 0 | 1 | 1 | 1 | 1 | 10 | 00       | 01        |
| 170        | 131        | 0664786            | 6DB6B01C             | 1865999A7              | 69F7E6766F               | 0 | 1 | 1 | 1 | 1 | 00 | 10       | 00        |
| 171        | 132        | 0CC8F0D            | 5B6D6039             | 10CB3334F              | 53EFCCECDF               | 1 | 0 | 0 | 1 | 0 | 00 | 00       | 10        |
| 172        | 133        | 1991E1A            | 36DAC073             | 01966669E              | 27DF99D9BF               | 1 | 1 | 0 | 1 | 1 | 01 | 00       | 00        |
| 173        | 134        | 1323C35            | 6DB580E6             | 032CCCD3C              | 4FBF33B37E               | 0 | 1 | 0 | 1 | 1 | 00 | 01       | 00        |
| 174        | 135        | 064786A            | 5B6B01CD             | 065999A78              | 1F7E6766FC               | 0 | 0 | 0 | 0 | 0 | 11 | 0.0      | 01        |
| 175        | 136        | 0C8F0D5            | 36D6039B             | 0CB3334F0              | 3EFCCECDF9               | 1 | 1 | 1 | 1 | 1 | 00 | 11       | 00        |
| 176        | 137        | 191E1AA            | 6DAC0737             | 1966669E1              | 7DF99D9BF3               | 1 | 1 | 1 | 1 | 0 | 00 | 00       | 11        |
| 177        | 138        | 123C354            | 5B580E6E             | 12CCCD3C3              | 7BF33B37E7               | 0 | 0 | 0 | 1 | 1 | 00 | 00       | 00        |
| 178        | 139        | 04786A9            | 36B01CDC             | 05999A787              | 77E6766FCE               | 0 | 1 | 0 | 1 | 0 | 01 | 00       | 00        |
| 179        | 140        | 08F0D53            | 6D6039B8             | 0B3334F0E              | 6FCCECDF9C               | 1 | 0 | 1 | 1 | 0 | 11 | 01       | 00        |
| 180        | 141        | 11E1AA6            | 5AC07370             | 166669E1D              | 5F99D9BF38               | 0 | 1 | 0 | 1 | 1 | 10 | 11       | 01        |
| 181        | 142        | 03C354C            | 3580E6E0             | OCCCD3C3A              | 3F33B37E70               | 0 | 1 | 1 | 0 | 0 | 10 | 10       | 11        |
| 182        | 143        | 0786A99            | 6B01CDC0             | 1999A7875              | 7E6766FCE1               | 0 | 0 | 1 | 0 | 1 | 10 | 10       | 10        |
| 183        | 144        | 0F0D533            | 56039B81             | 13334F0EB              | 7CCECDF9C2               | 1 | 0 | 0 | 1 | 0 | 01 | 10       | 10        |
| 184        | 145        | 1E1AA66            | 2C073703             | 06669E1D6              | 799D9BF385               | 1 | 0 | 0 | 1 | 1 | 01 | 01       | 10        |
| 185        | 146        | 1C354CC            | 580E6E06             | OCCD3C3AC              | 733B37E70B               | 1 | 0 | 1 | 0 | 1 | 11 | 01       | 01        |
| 186        | 147        | 186A998            |                      |                        | 66766FCE17               | 1 | 0 | 1 | 0 | 1 | 10 | 11       | 01        |
| 187        | 148        |                    |                      |                        | 4CECDF9C2F               | 0 | 0 | 0 | 1 | 1 | 01 | 10       | 11        |
| 188        | 149        | 01AA662            |                      |                        | 19D9BF385E               | 0 | 0 | 0 | 1 | 0 | 01 | 01       | 10        |
| 189        | 150        | 0354CC5            |                      |                        | 33B37E70BD               | 0 | 1 | 1 | 1 | 0 | 00 | 01       | 01        |
| 190        | 151        |                    |                      |                        | 6766FCE17B<br>4ECDF9C2F6 | 0 | 1 | 1 | 0 | 0 | 10 | 00       | 01        |
| 191<br>192 | 152<br>153 | 0D53315            |                      |                        | 1D9BF385ED               | 1 | 0 | 0 | 1 | 1 | 00 | 10<br>00 | 00<br>10  |
| 193        | 154        |                    |                      |                        | 3B37E70BDB               | 0 | 0 | 1 | 0 | 1 | 00 | 00       | 00        |
| 194        | 155        |                    |                      |                        | 766FCE17B6               | 1 | 1 | 1 | 0 | 1 | 01 | 00       | 00        |
| 195        | 156        |                    |                      |                        | 6CDF9C2F6C               | 0 | 1 | 0 | 1 | 1 | 00 | 01       | 00        |
| 196        | 157        |                    |                      |                        | 59BF385ED8               | 1 | 0 | 1 | 1 | 1 | 10 | 00       | 01        |
| 197        | 158        |                    |                      |                        | 337E70BDB0               | 0 | 1 | 0 | 0 | 1 | 11 | 10       | 00        |
| 198        | 159        |                    |                      | 078759675              |                          | 1 | 1 | 0 | 1 | 0 | 01 | 11       | 10        |
| 199        | 160        | 133151D            |                      |                        | 4DF9C2F6C2               | 0 | 1 | 1 | 1 | 0 | 01 | 01       | 11        |
| 200        | 161        | 0662A3B            | 3703180B             | 1E1D659D6              | 1BF385ED85               | 0 | 0 | 1 | 1 | 1 | 11 | 01       | 01        |
| 201        | 162        | 0CC5477            | 6E063017             | 1C3ACB3AC              | 37E70BDB0B               | 1 | 0 | 1 | 1 | 0 | 11 | 11       | 01        |
| 202        | 163        | 198A8EF            | 5C0C602F             | 187596759              | 6FCE17B617               | 1 | 0 | 1 | 1 | 0 | 10 | 11       | 11        |
|            |            |                    |                      |                        |                          |   |   |   |   |   |    |          |           |

page 925 of 1082

| Appe | endix I      | V - Samp | le Data  |           |            |   |   |   |   |   |    |    | Blue | tooth |
|------|--------------|----------|----------|-----------|------------|---|---|---|---|---|----|----|------|-------|
| 203  | 164          | 13151DE  | 3818C05F | 10EB2CEB2 | 5F9C2F6C2F | 0 | 0 | 0 | 1 | 1 | 01 | 10 | 11   |       |
| 204  | 165          | 062A3BC  | 703180BF | 01D659D65 | 3F385ED85E | 0 | 0 | 0 | 0 | 1 | 00 | 01 | 10   |       |
| 205  | 166          | 0C54779  | 6063017E | 03ACB3ACB | 7E70BDB0BD | 1 | 0 | 0 | 0 | 1 | 11 | 00 | 01   |       |
| 206  | 167          | 18A8EF2  | 40C602FD | 075967597 | 7CE17B617B | 1 | 1 | 0 | 1 | 0 | 00 | 11 | 00   |       |
| 207  | 168          | 1151DE4  | 018C05FA | 0EB2CEB2F | 79C2F6C2F7 | 0 | 1 | 1 | 1 | 1 | 11 | 00 | 11   |       |
| 208  | 169          | 02A3BC9  | 03180BF5 | 1D659D65E | 7385ED85EE | 0 | 0 | 1 | 1 | 1 | 01 | 11 | 00   |       |
| 209  | 170          | 0547793  | 063017EB | 1ACB3ACBC | 670BDB0BDC | 0 | 0 | 1 | 0 | 0 | 10 | 01 | 11   |       |
| 210  | 171          | 0A8EF27  | 0C602FD6 | 159675978 | 4E17B617B9 | 1 | 0 | 0 | 0 | 1 | 00 | 10 | 01   |       |
| 211  | 172          | 151DE4E  | 18C05FAD | 0B2CEB2F1 | 1C2F6C2F73 | 0 | 1 | 1 | 0 | 0 | 00 | 00 | 10   |       |
| 212  | 173          | 0A3BC9C  | 3180BF5A | 1659D65E3 | 385ED85EE6 | 1 | 1 | 0 | 0 | 0 | 01 | 00 | 00   |       |
| 213  | 174          | 1477938  | 63017EB5 | 0CB3ACBC6 | 70BDB0BDCC | 0 | 0 | 1 | 1 | 1 | 00 | 01 | 00   |       |
| 214  | 175          | 08EF270  | 4602FD6A | 19675978D | 617B617B99 | 1 | 0 | 1 | 0 | 0 | 10 | 00 | 01   |       |
| 215  | 176          | 11DE4E1  | 0C05FAD5 | 12CEB2F1A | 42F6C2F733 | 0 | 0 | 0 | 1 | 1 | 11 | 10 | 00   |       |
| 216  | 177          | 03BC9C3  | 180BF5AA | 059D65E34 | 05ED85EE67 | 0 | 0 | 0 | 1 | 0 | 00 | 11 | 10   |       |
| 217  | 178          | 0779387  | 3017EB55 | 0B3ACBC68 | 0BDB0BDCCF | 0 | 0 | 1 | 1 | 0 | 11 | 00 | 11   |       |
| 218  | 179          | 0EF270F  | 602FD6AA | 1675978D0 | 17B617B99F | 1 | 0 | 0 | 1 | 1 | 01 | 11 | 00   |       |
| 219  | 180          | 1DE4E1F  | 405FAD54 | OCEB2F1A1 | 2F6C2F733F | 1 | 0 | 1 | 0 | 1 | 10 | 01 | 11   |       |
| 220  | 181          | 1BC9C3F  | 00BF5AA9 | 19D65E342 | 5ED85EE67F | 1 | 1 | 1 | 1 | 0 | 10 | 10 | 01   |       |
| 221  | 182          | 179387F  | 017EB552 | 13ACBC684 | 3DB0BDCCFE | 0 | 0 | 0 | 1 | 1 | 10 | 10 | 10   |       |
| 222  | 183          | 0F270FF  | 02FD6AA5 | 075978D09 | 7B617B99FC | 1 | 1 | 0 | 0 | 0 | 01 | 10 | 10   |       |
| 223  | 184          | 1E4E1FF  | 05FAD54A | 0EB2F1A12 | 76C2F733F9 | 1 | 1 | 1 | 1 | 1 | 10 | 01 | 10   |       |
| 224  | 185          | 1C9C3FE  | 0BF5AA94 | 1D65E3425 | 6D85EE67F2 | 1 | 1 | 1 | 1 | 0 | 10 | 10 | 01   |       |
| 225  | 186          | 19387FD  | 17EB5529 | 1ACBC684B | 5B0BDCCFE4 | 1 | 1 | 1 | 0 | 1 | 01 | 10 | 10   |       |
| 226  | 187          | 1270FFA  | 2FD6AA53 | 15978D096 | 3617B99FC9 | 0 | 1 | 0 | 0 | 0 | 01 | 01 | 10   |       |
| 227  | 188          | 04E1FF5  | 5FAD54A7 | 0B2F1A12C | 6C2F733F93 | 0 | 1 | 1 | 0 | 1 | 11 | 01 | 01   |       |
| 228  | 189          | 09C3FEB  | 3F5AA94E | 165E34258 | 585EE67F27 | 1 | 0 | 0 | 0 | 0 | 10 | 11 | 01   |       |
| 229  | 190          | 1387FD7  | 7EB5529C | 0CBC684B1 | 30BDCCFE4F | 0 | 1 | 1 | 1 | 1 | 10 | 10 | 11   |       |
| 230  | 191          | 070FFAE  | 7D6AA538 | 1978D0962 | 617B99FC9E | 0 | 0 | 1 | 0 | 1 | 10 | 10 | 10   |       |
| 231  | 192          | 0E1FF5C  | 7AD54A70 | 12F1A12C4 | 42F733F93D | 1 | 1 | 0 | 1 | 1 | 01 | 10 | 10   |       |
| 232  | 193          | 1C3FEB9  | 75AA94E1 | 05E342588 | 05EE67F27A | 1 | 1 | 0 | 1 | 0 | 10 | 01 | 10   |       |
| 233  | 194          | 187FD73  | 6B5529C3 | 0BC684B10 | 0BDCCFE4F4 | 1 | 0 | 1 | 1 | 1 | 11 | 10 | 01   |       |
| 234  | 195          | 10FFAE6  | 56AA5386 | 178D09621 | 17B99FC9E8 | 0 | 1 | 0 | 1 | 1 | 00 | 11 | 10   |       |
| 235  | 196          | 01FF5CC  | 2D54A70C | 0F1A12C43 | 2F733F93D0 | 0 | 0 | 1 | 0 | 1 | 10 | 00 | 11   |       |
| 236  | 197          | 03FEB98  | 5AA94E19 | 1E3425887 | 5EE67F27A1 | 0 | 1 | 1 | 1 | 1 | 00 | 10 | 00   |       |
| 237  | 198          | 07FD731  | 35529C33 | 1C684B10F | 3DCCFE4F42 | 0 | 0 | 1 | 1 | 0 | 00 | 00 | 10   |       |
| 238  | 199          | OFFAE63  | 6AA53866 | 18D09621F | 7B99FC9E84 | 1 | 1 | 1 | 1 | 0 | 10 | 00 | 00   |       |
|      |              |          |          |           |            |   |   | 0 |   |   |    |    |      |       |
| 39   | 200          | TFF5CC6  | 554A70CD | 11A12C43F | 7733F93D09 | 1 | U | U | U | 1 | 11 | 10 | 00   |       |
|      | = 59<br>= 3B |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | - 3B<br>= EF |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      |              |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 07         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 13<br>= 70 |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      |              |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 9B         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = B7         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 52         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 8F         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = 3E         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = B9         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = A5         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = AC         |          |          |           |            |   |   |   |   |   |    |    |      |       |
|      | = EA         |          |          |           |            |   |   |   |   |   |    |    |      |       |
| [15] | = 9E         |          |          |           |            |   |   |   |   |   |    |    |      |       |

page 926 of 1082

```
Appendix IV - Sample Data
```

# Bluetooth.

\_\_\_\_\_

Reload this pattern into the LFSRs

Hold content of Summation Combiner regs and calculate new C[t+1] and Z values

------

LFSR1 <= 1521359 LFSR2 <= 528F703B LFSR3 <= 0AC3E9BEF

LFSR4 <= 4FEAB9B707

C[t+1] <= 00

\_\_\_\_\_\_

Generating 125 key symbols (encryption/decryption sequence)

| ==== |    |         | =======  | =======   |            |   | === | === | === |   |    | ====== | ====== |
|------|----|---------|----------|-----------|------------|---|-----|-----|-----|---|----|--------|--------|
| 240  | 1  | 1521359 | 528F703B | 0AC3E9BEF | 4FEAB9B707 | 0 | 1   | 1   | 1   | 1 | 00 | 10     | 00     |
| 241  | 2  | 0A426B3 | 251EE076 | 1587D37DE | 1FD5736E0F | 1 | 0   | 0   | 1   | 0 | 00 | 00     | 10     |
| 242  | 3  | 1484D67 | 4A3DC0ED | 0B0FA6FBD | 3FAAE6DC1E | 0 | 0   | 1   | 1   | 0 | 01 | 00     | 00     |
| 243  | 4  | 0909ACF | 147B81DA | 161F4DF7A | 7F55CDB83D | 1 | 0   | 0   | 0   | 0 | 00 | 01     | 00     |
| 244  | 5  | 121359E | 28F703B5 | OC3E9BEF5 | 7EAB9B707B | 0 | 1   | 1   | 1   | 1 | 10 | 00     | 01     |
| 245  | 6  | 0426B3C | 51EE076B | 187D37DEB | 7D5736E0F6 | 0 | 1   | 1   | 0   | 0 | 00 | 10     | 00     |
| 246  | 7  | 084D679 | 23DC0ED6 | 10FA6FBD7 | 7AAE6DC1EC | 1 | 1   | 0   | 1   | 1 | 00 | 00     | 10     |
| 247  | 8  | 109ACF2 | 47B81DAC | 01F4DF7AF | 755CDB83D8 | 0 | 1   | 0   | 0   | 1 | 00 | 00     | 00     |
| 248  | 9  | 01359E4 | 0F703B59 | 03E9BEF5E | 6AB9B707B1 | 0 | 0   | 0   | 1   | 1 | 00 | 00     | 00     |
| 249  | 10 | 026B3C8 | 1EE076B3 | 07D37DEBD | 55736E0F63 | 0 | 1   | 0   | 0   | 1 | 00 | 00     | 00     |
| 250  | 11 | 04D6791 | 3DC0ED67 | 0FA6FBD7A | 2AE6DC1EC7 | 0 | 1   | 1   | 1   | 1 | 01 | 00     | 00     |
| 251  | 12 | 09ACF22 | 7B81DACF | 1F4DF7AF4 | 55CDB83D8F | 1 | 1   | 1   | 1   | 1 | 11 | 01     | 00     |
| 252  | 13 | 1359E44 | 7703B59E | 1E9BEF5E8 | 2B9B707B1F | 0 | 0   | 1   | 1   | 1 | 10 | 11     | 01     |
| 253  | 14 | 06B3C88 | 6E076B3C | 1D37DEBD0 | 5736E0F63F | 0 | 0   | 1   | 0   | 1 | 01 | 10     | 11     |
| 254  | 15 | 0D67911 | 5C0ED678 | 1A6FBD7A1 | 2E6DC1EC7E | 1 | 0   | 1   | 0   | 1 | 01 | 01     | 10     |
| 255  | 16 | 1ACF223 | 381DACF0 | 14DF7AF42 | 5CDB83D8FD | 1 | 0   | 0   | 1   | 1 | 11 | 01     | 01     |
| 256  | 17 | 159E446 | 703B59E0 | 09BEF5E85 | 39B707B1FA | 0 | 0   | 1   | 1   | 1 | 10 | 11     | 01     |
| 257  | 18 | 0B3C88C | 6076B3C0 | 137DEBD0A | 736E0F63F4 | 1 | 0   | 0   | 0   | 1 | 01 | 10     | 11     |
| 258  | 19 | 1679118 | 40ED6780 | 06FBD7A15 | 66DC1EC7E8 | 0 | 1   | 0   | 1   | 1 | 01 | 01     | 10     |
| 259  | 20 | 0CF2231 | 01DACF00 | 0DF7AF42A | 4DB83D8FD1 | 1 | 1   | 1   | 1   | 1 | 00 | 01     | 01     |
| 260  | 21 | 19E4463 | 03B59E01 | 1BEF5E854 | 1B707B1FA3 | 1 | 1   | 1   | 0   | 1 | 10 | 00     | 01     |
| 261  | 22 | 13C88C6 | 076B3C03 | 17DEBD0A9 | 36E0F63F47 | 0 | 0   | 0   | 1   | 1 | 11 | 10     | 00     |
| 262  | 23 | 079118C | 0ED67807 | 0FBD7A152 | 6DC1EC7E8E | 0 | 1   | 1   | 1   | 0 | 01 | 11     | 10     |
| 263  | 24 | 0F22318 | 1DACF00E | 1F7AF42A4 | 5B83D8FD1D | 1 | 1   | 1   | 1   | 1 | 01 | 01     | 11     |
| 264  | 25 | 1E44630 | 3B59E01C | 1EF5E8548 | 3707B1FA3B | 1 | 0   | 1   | 0   | 1 | 11 | 01     | 01     |
| 265  | 26 | 1C88C61 | 76B3C039 | 1DEBD0A91 | 6E0F63F477 | 1 | 1   | 1   | 0   | 0 | 11 | 11     | 01     |
| 266  | 27 | 19118C3 | 6D678073 | 1BD7A1523 | 5C1EC7E8EF | 1 | 0   | 1   | 0   | 1 | 11 | 11     | 11     |
| 267  | 28 | 1223187 | 5ACF00E6 | 17AF42A46 | 383D8FD1DE | 0 | 1   | 0   | 0   | 0 | 11 | 11     | 11     |
| 268  | 29 | 044630E | 359E01CC | 0F5E8548D | 707B1FA3BD | 0 | 1   | 1   | 0   | 1 | 11 | 11     | 11     |
| 269  | 30 | 088C61C | 6B3C0399 | 1EBD0A91A | 60F63F477B | 1 | 0   | 1   | 1   | 0 | 10 | 11     | 11     |
| 270  | 31 | 1118C39 | 56780733 | 1D7A15234 | 41EC7E8EF6 | 0 | 0   | 1   | 1   | 0 | 10 | 10     | 11     |
| 271  | 32 | 0231872 | 2CF00E67 | 1AF42A468 | 03D8FD1DEC | 0 | 1   | 1   | 1   | 1 | 01 | 10     | 10     |
| 272  | 33 | 04630E5 | 59E01CCE | 15E8548D1 | 07B1FA3BD8 | 0 | 1   | 0   | 1   | 1 | 01 | 01     | 10     |
| 273  | 34 | 08C61CB | 33C0399D | 0BD0A91A3 | 0F63F477B1 | 1 | 1   | 1   | 0   | 0 | 00 | 01     | 01     |
| 274  | 35 | 118C396 | 6780733A | 17A152347 | 1EC7E8EF63 | 0 | 1   | 0   | 1   | 0 | 10 | 00     | 01     |
| 275  | 36 | 031872D | 4F00E674 | 0F42A468E | 3D8FD1DEC7 | 0 | 0   | 1   | 1   | 0 | 00 | 10     | 00     |
| 276  | 37 | 0630E5A | 1E01CCE8 | 1E8548D1D | 7B1FA3BD8E | 0 | 0   | 1   | 0   | 1 | 01 | 00     | 10     |
| 277  | 38 | 0C61CB5 | 3C0399D0 | 1D0A91A3B | 763F477B1C | 1 | 0   | 1   | 0   | 1 | 00 | 01     | 00     |
| 278  | 39 | 18C396A | 780733A0 | 1A1523477 | 6C7E8EF639 | 1 | 0   | 1   | 0   | 0 | 10 | 00     | 01     |
| 279  | 40 | 11872D5 | 700E6741 | 142A468EF | 58FD1DEC72 | 0 | 0   | 0   | 1   | 1 | 11 | 10     | 00     |
| 280  | 41 | 030E5AB | 601CCE83 | 08548D1DF | 31FA3BD8E5 | 0 | 0   | 1   | 1   | 1 | 00 | 11     | 10     |
| 281  | 42 | 061CB57 | 40399D07 | 10A91A3BF | 63F477B1CB | 0 | 0   | 0   | 1   | 1 | 10 | 00     | 11     |
| 282  | 43 | 0C396AF | 00733A0F | 01523477E | 47E8EF6396 | 1 | 0   | 0   | 1   | 0 | 00 | 10     | 00     |
| 283  | 44 | 1872D5F | 00E6741F | 02A468EFD | 0FD1DEC72C | 1 | 1   | 0   | 1   | 1 | 00 | 00     | 10     |

page 927 of 1082

| Арр        | endix I  | V - Samp           | le Data              |                        |                          |   |   |   |   |   |    | E        | Sluetooth. |
|------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----|----------|------------|
| 284        | 45       | 10E5ABE            | 01CCE83F             | 0548D1DFA              | 1FA3BD8E58               | 0 | 1 | 0 | 1 | 0 | 01 | 00       | 00         |
| 285        | 46       | 01CB57C            | 0399D07F             | 0A91A3BF4              | 3F477B1CB0               | 0 | 1 | 1 | 0 | 1 | 00 | 01       | 00         |
| 286        | 47       | 0396AF9            | 0733A0FE             | 1523477E9              | 7E8EF63961               | 0 | 0 | 0 | 1 | 1 | 11 | 00       | 01         |
| 287        | 48       | 072D5F3            | 0E6741FD             | 0A468EFD2              | 7D1DEC72C3               | 0 | 0 | 1 | 0 | 0 | 01 | 11       | 00         |
| 288        | 49       | 0E5ABE7            | 1CCE83FA             | 148D1DFA4              | 7A3BD8E587               | 1 | 1 | 0 | 0 | 1 | 10 | 01       | 11         |
| 289        | 50       | 1CB57CE            | 399D07F4             | 091A3BF49              | 7477B1CB0F               | 1 | 1 | 1 | 0 | 1 | 11 | 10       | 01         |
| 290        | 51       | 196AF9D            | 733A0FE9             | 123477E92              | 68EF63961E               | 1 | 0 | 0 | 1 | 1 | 00 | 11       | 10         |
| 291        | 52       | 12D5F3B            | 66741FD2             | 0468EFD25              | 51DEC72C3C               | 0 | 0 | 0 | 1 | 1 | 10 | 00       | 11         |
| 292        | 53       | 05ABE77            | 4CE83FA4             | 08D1DFA4B              | 23BD8E5879               | 0 | 1 | 1 | 1 | 1 | 00 | 10       | 00         |
| 293        | 54       | 0B57CEE            | 19D07F49             | 11A3BF496              | 477B1CB0F2               | 1 | 1 | 0 | 0 | 0 | 00 | 00       | 10         |
| 294        | 55       | 16AF9DC            | 33A0FE92             | 03477E92C              | 0EF63961E4               | 0 | 1 | 0 | 1 | 0 | 01 | 00       | 00         |
| 295        | 56       | 0D5F3B8            | 6741FD25             | 068EFD259              | 1DEC72C3C9               | 1 | 0 | 0 | 1 | 1 | 00 | 01       | 00         |
| 296        | 57       | 1ABE771            | 4E83FA4B             | 0D1DFA4B3              | 3BD8E58793               | 1 | 1 | 1 | 1 | 0 | 01 | 00       | 01         |
| 297        | 58       | 157CEE2            | 1D07F496             | 1A3BF4967              | 77B1CB0F26               | 0 | 0 | 1 | 1 | 1 | 00 | 01       | 00         |
| 298        | 59       | 0AF9DC5            | 3A0FE92D             | 1477E92CE              | 6F63961E4D               | 1 | 0 | 0 | 0 | 1 | 11 | 00       | 01         |
| 299        | 60       | 15F3B8B            | 741FD25A             | 08EFD259C              | 5EC72C3C9B               | 0 | 0 | 1 | 1 | 1 | 01 | 11       | 00         |
| 300        | 61       | 0BE7716            | 683FA4B4             | 11DFA4B39              | 3D8E587937               | 1 | 0 | 0 | 1 | 1 | 10 | 01       | 11         |
| 301        | 62       | 17CEE2D            | 507F4968             | 03BF49672              | 7B1CB0F26E               | 0 | 0 | 0 | 0 | 0 | 00 | 10       | 01         |
| 302        | 63       | 0F9DC5B            | 20FE92D0             | 077E92CE4              | 763961E4DC               | 1 | 1 | 0 | 0 | 0 | 00 | 00       | 10         |
| 303        | 64       | 1F3B8B6            | 41FD25A0             | 0EFD259C9              | 6C72C3C9B9               | 1 | 1 | 1 | 0 | 1 | 01 | 00       | 00         |
| 304        | 65       | 1E7716D            | 03FA4B40             | 1DFA4B393              | 58E5879373               | 1 | 1 | 1 | 1 | 1 | 11 | 01       | 00         |
| 305        | 66       | 1CEE2DB            | 07F49680             | 1BF496727              | 31CB0F26E6               | 1 | 1 | 1 | 1 | 1 | 11 | 11       | 01         |
| 306        | 67       | 19DC5B7            | 0FE92D00             | 17E92CE4E              | 63961E4DCD               | 1 | 1 | 0 | 1 | 0 | 10 | 11       | 11         |
| 307        | 68       | 13B8B6F            | 1FD25A00             | 0FD259C9C              | 472C3C9B9A               | 0 | 1 | 1 | 0 | 0 | 10 | 10       | 11         |
| 308        | 69       | 07716DF            | 3FA4B400             | 1FA4B3938              | 0E58793735               | 0 | 1 | 1 | 0 | 0 | 01 | 10       | 10         |
| 309        | 70       | 0EE2DBF            | 7F496800             | 1F4967271              | 1CB0F26E6A               | 1 | 0 | 1 | 1 | 0 | 10 | 01       | 10         |
| 310        | 71       | 1DC5B7F            | 7E92D000             | 1E92CE4E2              | 3961E4DCD4               | 1 | 1 | 1 | 0 | 1 | 11 | 10       | 01         |
| 311        | 72       | 1B8B6FF            | 7D25A001             | 1D259C9C4              | 72C3C9B9A9               | 1 | 0 | 1 | 1 | 0 | 01 | 11       | 10         |
| 312        | 73<br>74 | 1716DFF            | 7A4B4002<br>74968005 | 1A4B39389              | 6587937352               | 0 | 0 | 1 | 1 | 1 | 10 | 01       | 11         |
| 313<br>314 | 75       | 0E2DBFF<br>1C5B7FE | 692D000B             | 149672713<br>092CE4E26 | 4B0F26E6A5<br>161E4DCD4B | 1 | 1 | 0 | 0 | 1 | 11 | 10<br>11 | 01<br>10   |
| 315        | 76       | 18B6FFC            | 525A0017             | 1259C9C4D              | 2C3C9B9A96               | 1 | 0 | 0 | 0 | 1 | 10 | 00       | 11         |
| 316        | 77       | 116DFF8            | 24B4002F             | 04B39389B              | 587937352C               | 0 | 1 | 0 | 0 | 1 | 11 | 10       | 00         |
| 317        | 78       | 02DBFF1            | 4968005F             | 096727136              | 30F26E6A58               | 0 | 0 | 1 | 1 | 1 | 00 | 11       | 10         |
| 318        | 79       | 05B7FE3            | 12D000BF             | 12CE4E26C              | 61E4DCD4B1               | 0 | 1 | 0 | 1 | 0 | 11 | 00       | 11         |
| 319        | 80       | 0B6FFC7            | 25A0017F             | 059C9C4D8              | 43C9B9A963               | 1 | 1 | 0 | 1 | 0 | 00 | 11       | 00         |
| 320        | 81       | 16DFF8E            | 4B4002FF             | 0B39389B1              | 07937352C6               | 0 | 0 | 1 | 1 | 0 | 11 | 00       | 11         |
| 321        | 82       | 0DBFF1C            |                      |                        | 0F26E6A58C               | 1 | 1 | 0 | 0 | 1 | 01 | 11       | 00         |
| 322        | 83       | 1B7FE38            | 2D000BFF             | 0CE4E26C7              | 1E4DCD4B18               | 1 | 0 | 1 | 0 | 1 | 10 | 01       | 11         |
| 323        | 84       | 16FFC70            | 5A0017FF             | 19C9C4D8F              | 3C9B9A9631               | 0 | 0 | 1 | 1 | 0 | 11 | 10       | 01         |
| 324        | 85       | 0DFF8E1            | 34002FFF             | 139389B1E              | 7937352C62               | 1 | 0 | 0 | 0 | 0 | 00 | 11       | 10         |
| 325        | 86       | 1BFF1C3            | 68005FFF             | 07271363D              | 726E6A58C4               | 1 | 0 | 0 | 0 | 1 | 10 | 00       | 11         |
| 326        | 87       | 17FE387            | 5000BFFE             | 0E4E26C7B              | 64DCD4B188               | 0 | 0 | 1 | 1 | 0 | 00 | 10       | 00         |
| 327        | 88       | 0FFC70F            | 20017FFD             | 1C9C4D8F6              | 49B9A96311               | 1 | 0 | 1 | 1 | 1 | 00 | 00       | 10         |
| 328        | 89       | 1FF8E1F            | 4002FFFB             | 19389B1ED              | 137352C623               | 1 | 0 | 1 | 0 | 0 | 01 | 00       | 00         |
| 329        | 90       | 1FF1C3F            | 0005FFF7             | 1271363DB              | 26E6A58C46               | 1 | 0 | 0 | 1 | 1 | 00 | 01       | 00         |
| 330        | 91       | 1FE387F            | 000BFFEE             | 04E26C7B6              | 4DCD4B188C               | 1 | 0 | 0 | 1 | 0 | 10 | 00       | 01         |
| 331        | 92       | 1FC70FF            | 0017FFDC             | 09C4D8F6D              | 1B9A963118               | 1 | 0 | 1 | 1 | 1 | 00 | 10       | 00         |
| 332        | 93       | 1F8E1FF            | 002FFFB8             | 1389B1EDA              | 37352C6231               | 1 | 0 | 0 | 0 | 1 | 01 | 00       | 10         |
| 333        | 94       | 1F1C3FF            | 005FFF70             | 071363DB4              | 6E6A58C462               | 1 | 0 | 0 | 0 | 0 | 00 | 01       | 00         |
| 334        | 95       | 1E387FE            | 00BFFEE0             | 0E26C7B68              | 5CD4B188C5               | 1 | 1 | 1 | 1 | 0 | 01 | 00       | 01         |
| 335        | 96       | 1C70FFC            |                      |                        | 39A963118A               | 1 | 0 | 1 | 1 | 0 | 11 | 01       | 00         |
| 336        | 97       | 18E1FF9            |                      |                        | 7352C62315               | 1 | 1 | 1 | 0 | 0 | 11 | 11       | 01         |
| 337        | 98       | 11C3FF2            |                      |                        | 66A58C462B               | 0 | 1 | 0 | 1 | 1 | 11 | 11       | 11         |
| 338        | 99       |                    |                      |                        | 4D4B188C56               | 0 | 1 | 0 | 0 | 0 | 11 | 11       | 11         |
| 339        | 100      |                    |                      |                        | 1A963118AD               | 0 | 1 | 0 | 1 | 1 | 11 | 11       | 11         |
| 340        | 101      | 0E1FF92            | 2FFFB82B             | 09B1EDA2C              | 352C62315A               | 1 | 1 | 1 | 0 | 0 | 10 | 11       | 11         |

# **ATTACHMENT H**

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 928 of 1082

| App | endix | IV - Samp | ole Data |           |            |   |   |   |   |   |    | E  | <b>Sluetooth</b> . |
|-----|-------|-----------|----------|-----------|------------|---|---|---|---|---|----|----|--------------------|
| 341 | 102   | 1C3FF24   | 5FFF7057 | 1363DB458 | 6A58C462B4 | 1 | 1 | 0 | 0 | 0 | 10 | 10 | 11                 |
| 342 | 103   | 187FE48   | 3FFEE0AE | 06C7B68B0 | 54B188C569 | 1 | 1 | 0 | 1 | 1 | 01 | 10 | 10                 |
| 343 | 104   | 10FFC90   | 7FFDC15C | 0D8F6D161 | 2963118AD2 | 0 | 1 | 1 | 0 | 1 | 01 | 01 | 10                 |
| 344 | 105   | 01FF920   | 7FFB82B9 | 1B1EDA2C2 | 52C62315A5 | 0 | 1 | 1 | 1 | 0 | 00 | 01 | 01                 |
| 345 | 106   | 03FF240   | 7FF70573 | 163DB4584 | 258C462B4B | 0 | 1 | 0 | 1 | 0 | 10 | 00 | 01                 |
| 346 | 107   | 07FE481   | 7FEE0AE6 | 0C7B68B08 | 4B188C5696 | 0 | 1 | 1 | 0 | 0 | 00 | 10 | 00                 |
| 347 | 108   | 0FFC902   | 7FDC15CD | 18F6D1610 | 163118AD2D | 1 | 1 | 1 | 0 | 1 | 00 | 00 | 10                 |
| 348 | 109   | 1FF9204   | 7FB82B9A | 11EDA2C20 | 2C62315A5B | 1 | 1 | 0 | 0 | 0 | 01 | 00 | 00                 |
| 349 | 110   | 1FF2408   | 7F705735 | 03DB45841 | 58C462B4B6 | 1 | 0 | 0 | 1 | 1 | 00 | 01 | 00                 |
| 350 | 111   | 1FE4810   | 7EE0AE6B | 07B68B082 | 3188C5696C | 1 | 1 | 0 | 1 | 1 | 10 | 00 | 01                 |
| 351 | 112   | 1FC9021   | 7DC15CD6 | 0F6D16105 | 63118AD2D8 | 1 | 1 | 1 | 0 | 1 | 00 | 10 | 00                 |
| 352 | 113   | 1F92042   | 7B82B9AD | 1EDA2C20B | 462315A5B0 | 1 | 1 | 1 | 0 | 1 | 00 | 00 | 10                 |
| 353 | 114   | 1F24084   | 7705735A | 1DB458416 | 0C462B4B61 | 1 | 0 | 1 | 0 | 0 | 01 | 00 | 00                 |
| 354 | 115   | 1E48108   | 6E0AE6B5 | 1B68B082C | 188C5696C3 | 1 | 0 | 1 | 1 | 0 | 11 | 01 | 00                 |
| 355 | 116   | 1C90211   | 5C15CD6A | 16D161059 | 3118AD2D86 | 1 | 0 | 0 | 0 | 0 | 10 | 11 | 01                 |
| 356 | 117   | 1920422   | 382B9AD5 | 0DA2C20B3 | 62315A5B0D | 1 | 0 | 1 | 0 | 0 | 10 | 10 | 11                 |
| 357 | 118   | 1240845   | 705735AA | 1B4584167 | 4462B4B61A | 0 | 0 | 1 | 0 | 1 | 10 | 10 | 10                 |
| 358 | 119   | 048108A   | 60AE6B55 | 168B082CF | 08C5696C34 | 0 | 1 | 0 | 1 | 0 | 01 | 10 | 10                 |
| 359 | 120   | 0902114   | 415CD6AB | 0D161059E | 118AD2D869 | 1 | 0 | 1 | 1 | 0 | 10 | 01 | 10                 |
| 360 | 121   | 1204228   | 02B9AD56 | 1A2C20B3D | 2315A5B0D2 | 0 | 1 | 1 | 0 | 0 | 11 | 10 | 01                 |
| 361 | 122   | 0408451   | 05735AAD | 14584167B | 462B4B61A4 | 0 | 0 | 0 | 0 | 1 | 11 | 11 | 10                 |
| 362 | 123   | 08108A2   | 0AE6B55B | 08B082CF7 | 0C5696C348 | 1 | 1 | 1 | 0 | 0 | 10 | 11 | 11                 |
| 363 | 124   | 1021144   | 15CD6AB6 | 1161059EF | 18AD2D8690 | 0 | 1 | 0 | 1 | 0 | 10 | 10 | 11                 |

364 125 0042289 2B9AD56C 02C20B3DE 315A5B0D20 0 1 0 0 1 10 10 10

page 929 of 1082

Appendix IV - Sample Data

Bluetooth.

### 1.5 FOURTH SET OF SAMPLES

```
Initial values for the key, pan address and clock

K'c4[0] = 21    K'c4[1] = 87    K'c4[2] = F0    K'c4[3] = 4A    K'c4[4] = BA    K'c4[5] = 90    K'c4[6] = 31    K'c4[7] = D0    K'c4[8] = 78    K'c4[9] = 0D    K'c4[10] = 4C    K'c4[11] = 53    K'c4[12] = E0    K'c4[13] = 15    K'c4[14] = 3A    K'c4[15] = 63    Addr4[0] = 2C    Addr4[1] = 7F    Addr4[2] = 94    Addr4[3] = 56    Addr4[4] = 0F    Addr4[5] = 1B    Clk4[0] = 5F    Clk4[1] = 1A    Clk4[2] = 00    Clk4[3] = 02
```

------

Fill LFSRs with initial data

t. clk# LFSR1 LFSR2 LFSR3 LFSR4 X1 X2 X3 X4 Z C[t+1] C[t] C[t-1]

| t  | clk# | LFSR1    | LFSR2     | LFSR3      | LFSR4       | X1 | X2 | Х3 | X4 | Z | C[t+1] | C[t] | C[t-1] |
|----|------|----------|-----------|------------|-------------|----|----|----|----|---|--------|------|--------|
| 0  | 0    | 0000000* | 00000000* | 000000000* | 0000000000* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 1  | 1    | 0000000* | 00000001* | 000000001* | 000000001*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 2  | 2    | 0000001* | 00000002* | 000000002* | 000000003*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 3  | 3    | 0000002* | 00000004* | 000000004* | 0000000007* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 4  | 4    | 0000004* | 00000009* | 000000008* | 00000000F*  | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 5  | 5    | 0000008* | 00000013* | 000000010* | 000000001E* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 6  | 6    | 0000010* | 00000027* | 000000021* | 000000003D* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 7  | 7    | 0000021* | 0000004F* | 000000043* | 000000007A* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 8  | 8    | 0000042* | 0000009F* | 000000087* | 00000000F4* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 9  | 9    | 0000084* | 0000013F* | 00000010F* | 00000001E9* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 10 | 10   | 0000108* | 0000027F* | 00000021F* | 00000003D2* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 11 | 11   | 0000211* | 000004FE* | 00000043E* | 00000007A5* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 12 | 12   | 0000422* | 000009FC* | 00000087C* | 0000000F4A* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 13 | 13   | 0000845* | 000013F8* | 0000010F8* | 0000001E94* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 14 | 14   | 000108B* | 000027F0* | 0000021F1* | 0000003D29* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 15 | 15   | 0002117* | 00004FE1* | 0000043E3* | 0000007A52* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 16 | 16   | 000422E* | 00009FC2* | 0000087C6* | 000000F4A4* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 17 | 17   | 000845D* | 00013F84* | 000010F8C* | 000001E948* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 18 | 18   | 00108BA* | 00027F08* | 000021F18* | 000003D290* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 19 | 19   | 0021174* | 0004FE10* | 000043E30* | 000007A520* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 20 | 20   | 00422E8* | 0009FC21* | 000087C61* | 00000F4A41* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 21 | 21   | 00845D1* | 0013F842* | 00010F8C3* | 00001E9482* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 22 | 22   | 0108BA3* | 0027F084* | 00021F186* | 00003D2905* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 23 | 23   | 0211747* | 004FE109* | 00043E30C* | 00007A520B* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 24 | 24   | 0422E8F* | 009FC213* | 00087C619* | 0000F4A417* | 0  | 1  | 0  | 0  | 1 | 00     | 00   | 00     |
| 25 | 25   | 0845D1E* | 013F8426* | 0010F8C32* | 0001E9482F* | 1  | 0  | 0  | 0  | 1 | 00     | 00   | 00     |
| 26 | 26   | 108BA3D  | 027F084D* | 0021F1864* | 0003D2905E* | 0  | 0  | 0  | 0  | 0 | 00     | 00   | 00     |
| 27 | 27   | 011747B  | 04FE109B* | 0043E30C9* | 0007A520BC* | 0  | 1  | 0  | 0  | 1 | 00     | 00   | 00     |
| 28 | 28   | 022E8F6  | 09FC2136* | 0087C6192* | 000F4A4179* | 0  | 1  | 0  | 0  | 1 | 00     | 00   | 00     |
| 29 | 29   | 045D1EC  | 13F8426C* | 010F8C325* | 001E9482F2* | 0  | 1  | 0  | 0  | 1 | 00     | 00   | 00     |
| 30 | 30   | 08BA3D9  | 27F084D8* | 021F1864B* | 003D2905E5* | 1  | 1  | 0  | 0  | 0 | 01     | 00   | 00     |
| 31 | 31   | 11747B3  | 4FE109B0* | 043E30C97* | 007A520BCA* | 0  | 1  | 0  | 0  | 1 | 00     | 00   | 00     |
| 32 | 32   | 02E8F67  | 1FC21360  | 087C6192E* | 00F4A41795* | 0  | 1  | 1  | 1  | 1 | 01     | 00   | 00     |
| 33 | 33   | 05D1ECF  | 3F8426C1  | 10F8C325C* | 01E9482F2B* | 0  | 1  | 0  | 1  | 0 | 01     | 00   | 00     |
| 34 | 34   | 0BA3D9F  | 7F084D82  | 01F1864B8  | 03D2905E56* | 1  | 0  | 0  | 1  | 0 | 01     | 00   | 00     |

page 930 of 1082

| lppε       | endix i | IV - Samp  | ole Data   |             |             |   |   |   |   |   |     | F  | Bluetootl |
|------------|---------|------------|------------|-------------|-------------|---|---|---|---|---|-----|----|-----------|
| 35         | 35      | 1747B3E    | 7E109B04   | 03E30C970   | 07A520BCAC* | 0 | 0 | 0 | 1 | 1 | 00  | 00 | 00        |
| 36         | 36      | 0E8F67C    | 7C213608   | 07C6192E1   | 0F4A417958* | 1 | 0 | 0 | 0 | 1 | 00  | 00 | 00        |
| 37         | 37      | 1D1ECF8    | 78426C11   | 0F8C325C3   | 1E9482F2B1* | 1 | 0 | 1 | 1 | 1 | 01  | 00 | 00        |
| 38         | 38      | 1A3D9F0    | 7084D822   | 1F1864B86   | 3D2905E563* | 1 | 1 | 1 | 0 | 1 | 01  | 00 | 00        |
| 39<br>     | 39      | 147B3E1    | 6109B044   | 1E30C970C   | 7A520BCAC6* | 0 | 0 | 1 | 0 | 1 | 00  | 00 | 00        |
|            | St      | art clocki | ng Summati | on Combiner |             |   |   |   |   |   |     |    |           |
| ====<br>40 | 1       | 08F67C2    | 42136088   | 1C6192E18   | 74A417958D  | 1 | 0 | 1 | 1 | 1 | 01  | 00 | 00        |
| 41         | 2       | 11ECF84    | 0426C111   | 18C325C30   | 69482F2B1B  | 0 | 0 | 1 | 0 | 0 | 00  | 01 | 00        |
| 42         | 3       | 03D9F08    | 084D8222   | 11864B861   | 52905E5637  | 0 | 0 | 0 | 1 | 1 | 11  | 00 | 01        |
| 43         | 4       | 07B3E10    | 109B0444   | 030C970C3   | 2520BCAC6E  | 0 | 1 | 0 | 0 | 0 | 01  | 11 | 00        |
| 14         | 5       | 0F67C21    | 21360889   | 06192E186   | 4A417958DC  | 1 | 0 | 0 | 0 | 0 | 10  | 01 | 11        |
| 15         | 6       | 1ECF843    | 426C1112   | 0C325C30C   | 1482F2B1B8  | 1 | 0 | 1 | 1 | 1 | 11  | 10 | 01        |
| 46         | 7       | 1D9F086    | 04D82225   | 1864B8619   | 2905E56370  | 1 | 1 | 1 | 0 | 0 | 01  | 11 | 10        |
| 47         | 8       | 1B3E10D    | 09B0444B   | 10C970C32   | 520BCAC6E1  | 1 | 1 | 0 | 0 | 1 | 10  | 01 | 11        |
| 18         | 9       | 167C21B    | 13608897   | 0192E1865   | 2417958DC3  | 0 | 0 | 0 | 0 | 0 | 00  | 10 | 01        |
| 19         | 10      | 0CF8436    | 26C1112F   | 0325C30CB   | 482F2B1B87  | 1 | 1 | 0 | 0 | 0 | 00  | 00 | 10        |
| 50         | 11      | 19F086D    | 4D82225E   | 064B86197   | 105E56370F  | 1 | 1 | 0 | 0 | 0 | 01  | 00 | 00        |
| 51         | 12      | 13E10DB    | 1B0444BC   | 0C970C32F   | 20BCAC6E1F  | 0 | 0 | 1 | 1 | 1 | 00  | 01 | 00        |
| 2          | 13      | 07C21B7    | 36088979   | 192E1865E   | 417958DC3F  | 0 | 0 | 1 | 0 | 1 | 11  | 00 | 01        |
| 3          | 14      | 0F8436E    | 6C1112F2   | 125C30CBD   | 02F2B1B87F  | 1 | 0 | 0 | 1 | 1 | 01  | 11 | 00        |
| 54         | 15      | 1F086DD    | 582225E4   | 04B86197B   | 05E56370FF  | 1 | 0 | 0 | 1 | 1 | 10  | 01 | 11        |
| 55         | 16      | 1E10DBA    | 30444BC9   | 0970C32F7   | 0BCAC6E1FF  | 1 | 0 | 1 | 1 | 1 | 11  | 10 | 01        |
| 6          | 17      | 1C21B75    | 60889793   | 12E1865EE   | 17958DC3FF  | 1 | 1 | 0 | 1 | 0 | 01  | 11 | 10        |
| 57         | 18      | 18436EA    | 41112F27   | 05C30CBDD   | 2F2B1B87FF  | 1 | 0 | 0 | 0 | 0 | 10  | 01 | 11        |
| 8          | 19      | 1086DD4    | 02225E4E   | 0B86197BA   | 5E56370FFF  | 0 | 0 | 1 | 0 | 1 | 00  | 10 | 01        |
| 59         | 20      | 010DBA8    | 0444BC9D   | 170C32F74   | 3CAC6E1FFF  | 0 | 0 | 0 | 1 | 1 | 01  | 00 | 10        |
| 50         | 21      | 021B750    | 0889793A   | 0E1865EE8   | 7958DC3FFF  | 0 | 1 | 1 | 0 | 1 | 00  | 01 | 00        |
| 51         | 22      | 0436EA0    | 1112F274   | 1C30CBDD0   | 72B1B87FFE  | 0 | 0 | 1 | 1 | 0 | 10  | 00 | 01        |
| 52         | 23      | 086DD40    | 2225E4E9   | 186197BA1   | 656370FFFC  | 1 | 0 | 1 | 0 | 0 | 00  | 10 | 00        |
| 53         | 24      | 10DBA81    | 444BC9D3   | 10C32F743   | 4AC6E1FFF8  | 0 | 0 | 0 | 1 | 1 | 01  | 00 | 10        |
| 54         | 25      | 01B7502    | 089793A7   | 01865EE86   | 158DC3FFF1  | 0 | 1 | 0 | 1 | 1 | 00  | 01 | 00        |
| 55         | 26      | 036EA05    | 112F274E   | 030CBDD0D   | 2B1B87FFE3  | 0 | 0 | 0 | 0 | 0 | 11  | 00 | 01        |
| 56         | 27      | 06DD40B    | 225E4E9C   | 06197BA1A   | 56370FFFC6  | 0 | 0 | 0 | 0 | 1 | 10  | 11 | 00        |
| 57         | 28      | 0DBA817    | 44BC9D39   | 0C32F7434   | 2C6E1FFF8D  | 1 | 1 | 1 | 0 | 1 | 10  | 10 | 11        |
| 8          | 29      | 1B7502E    | 09793A72   | 1865EE868   | 58DC3FFF1B  | 1 | 0 | 1 | 1 | 1 | 01  | 10 | 10        |
| 59         | 30      | 16EA05D    | 12F274E5   | 10CBDD0D0   | 31B87FFE36  | 0 | 1 | 0 | 1 | 1 | 01  | 01 | 10        |
| 70         | 31      | 0DD40BA    | 25E4E9CB   | 0197BA1A1   | 6370FFFC6D  | 1 | 1 | 0 | 0 | 1 | 11  | 01 | 01        |
| 1          | 32      |            |            |             | 46E1FFF8DA  | 1 | 1 | 0 | 1 | 0 | 11  | 11 | 01        |
| 2          | 33      |            |            |             | 0DC3FFF1B4  | 0 | 1 | 0 | 1 | 1 | 11  | 11 | 11        |
| 13         | 34      |            |            |             | 1B87FFE369  | 1 |   | 1 | 1 | 0 | 10  | 11 | 11        |
| 4          | 35      | 1D40BA0    |            |             | 370FFFC6D2  | 1 |   |   | 0 | 0 | 10  | 10 | 11        |
| 75         | 36      | 1A81741    |            |             | 6E1FFF8DA5  | 1 |   | 0 |   | 0 | 01  | 10 | 10        |
| 76         | 37      |            |            |             | 5C3FFF1B4B  | 0 | 0 | 0 | 0 | 1 | 00  | 01 | 10        |
| 77         | 38      |            |            |             | 387FFE3696  | 1 | 0 | 1 | 0 | 0 | 10  | 00 | 01        |
| 78         | 39      |            |            |             | 70FFFC6D2C  | 0 | 1 | 0 |   | 0 | 00  | 10 | 00        |
| 19         | 40      |            |            |             | 61FFF8DA59  | 1 | 1 |   | 1 | 0 | 11  | 00 | 10        |
| 30         | 41      |            |            |             | 43FFF1B4B3  | 0 | 1 | 1 | 1 | 0 | 00  | 11 | 00        |
| 31         | 42      |            |            |             | 07FFE36966  | 0 | 0 | 1 | 1 | 0 | 11  | 00 | 11        |
| 32         | 43      |            |            |             | 0FFFC6D2CD  | 0 | 1 | 1 | 1 | 0 | 00  | 11 | 00        |
| 33         | 44      |            |            |             | 1FFF8DA59B  | 0 | 0 | 0 | 1 | 1 | 10  | 00 | 11        |
| 34         | 45      | 02E82C0    |            |             | 3FFF1B4B37  | 0 | 0 | 1 | 1 | 0 | 00  | 10 | 10        |
| 35         | 46      |            |            |             | 7FFE36966E  | 0 | 1 | 1 | 1 | 1 | 00  | 00 | 10        |
| 36         | 47      |            |            |             | 7FFC6D2CDC  | 1 | 1 | 1 | 1 | 0 | 10  | 00 | 00        |
| 37         | 48      | 1741600    | 339/B4AC   | 14343FEA6   | 7FF8DA59B8  | 0 | 1 | 0 | 1 | 0 | 0.0 | 10 | 00        |

page 931 of 1082

| App        | endix l  | V - Samp           | le Data              |                        |                          |   |   |   |   |   |    | E        | Bluetooth |
|------------|----------|--------------------|----------------------|------------------------|--------------------------|---|---|---|---|---|----|----------|-----------|
| 89         | 50       | 1D05802            | 4E5ED2B3             | 10D0FFA9A              | 7FE36966E0               | 1 | 0 | 0 | 1 | 0 | 01 | 00       | 00        |
| 90         | 51       | 1A0B004            | 1CBDA566             | 01A1FF535              | 7FC6D2CDC0               | 1 | 1 | 0 | 1 | 0 | 11 | 01       | 00        |
| 91         | 52       | 1416009            | 397B4ACC             | 0343FEA6B              | 7F8DA59B80               | 0 | 0 | 0 | 1 | 0 | 10 | 11       | 01        |
| 92         | 53       | 082C013            | 72F69599             | 0687FD4D7              | 7F1B4B3701               | 1 | 1 | 0 | 0 | 0 | 10 | 10       | 11        |
| 93         | 54       | 1058026            | 65ED2B33             | 0D0FFA9AF              | 7E36966E03               | 0 | 1 | 1 | 0 | 0 | 01 | 10       | 10        |
| 94         | 55       | 00B004D            | 4BDA5667             | 1A1FF535E              | 7C6D2CDC06               | 0 | 1 | 1 | 0 | 1 | 01 | 01       | 10        |
| 95         | 56       | 016009В            | 17B4ACCE             | 143FEA6BD              | 78DA59B80D               | 0 | 1 | 0 | 1 | 1 | 11 | 01       | 01        |
| 96         | 57       | 02C0137            | 2F69599D             | 087FD4D7B              | 71B4B3701A               | 0 | 0 | 1 | 1 | 1 | 10 | 11       | 01        |
| 97         | 58       | 058026F            | 5ED2B33B             | 10FFA9AF6              | 636966E034               | 0 | 1 | 0 | 0 | 1 | 01 | 10       | 11        |
| 98         | 59       | 0B004DF            | 3DA56677             | 01FF535ED              | 46D2CDC068               | 1 | 1 | 0 | 1 | 0 | 10 | 01       | 10        |
| 99         | 60       | 16009BF            | 7B4ACCEF             | 03FEA6BDB              | 0DA59B80D0               | 0 | 0 | 0 | 1 | 1 | 00 | 10       | 01        |
| 100        | 61       | 0C0137F            | 769599DF             | 07FD4D7B7              | 1B4B3701A1               | 1 | 1 | 0 | 0 | 0 | 00 | 00       | 10        |
| 101        | 62       | 18026FE            | 6D2B33BE             | OFFA9AF6E              | 36966E0342               | 1 | 0 | 1 | 1 | 1 | 01 | 00       | 00        |
| 102        | 63       | 1004DFC            | 5A56677D             | 1FF535EDD              | 6D2CDC0684               | 0 | 0 | 1 | 0 | 0 | 00 | 01       | 00        |
| 103        | 64       | 0009BF9            | 34ACCEFB             | 1FEA6BDBB              | 5A59B80D09               | 0 | 1 | 1 | 0 | 0 | 10 | 00       | 01        |
| 104        | 65       | 00137F2            | 69599DF7             | 1FD4D7B76              | 34B3701A12               | 0 | 0 | 1 | 1 | 0 | 00 | 10       | 00        |
| 105        | 66       | 0026FE5            | 52B33BEF             | 1FA9AF6EC              | 6966E03424               | 0 | 1 | 1 | 0 | 0 | 00 | 00       | 10        |
| 106        | 67       | 004DFCA            | 256677DF             | 1F535EDD8              | 52CDC06848               | 0 | 0 | 1 | 1 | 0 | 01 | 00       | 00        |
| 107        | 68       | 009BF94            | 4ACCEFBE             | 1EA6BDBB0              | 259B80D091               | 0 | 1 | 1 | 1 | 0 | 11 | 01       | 00        |
| 108        | 69       | 0137F29            | 1599DF7C             | 1D4D7B760              | 4B3701A123               | 0 | 1 | 1 | 0 | 1 | 10 | 11       | 01        |
| 109        | 70       | 026FE53            | 2B33BEF9             | 1A9AF6EC0              | 166E034246               | 0 | 0 | 1 | 0 | 1 | 01 | 10       | 11        |
| 110        | 71       | 04DFCA7            | 56677DF2             | 1535EDD81              | 2CDC06848D               | 0 | 0 | 0 | 1 | 0 | 01 | 01       | 10        |
| 111        | 72       | 09BF94F            | 2CCEFBE4             | 0A6BDBB03              | 59B80D091B               | 1 | 1 | 1 | 1 | 1 | 00 | 01       | 01        |
| 112        | 73       | 137F29E            | 599DF7C9             | 14D7B7607              | 33701A1236               | 0 | 1 | 0 | 0 | 1 | 11 | 00       | 01        |
| 113        | 74       | 06FE53C            | 333BEF93             | 09AF6EC0E              | 66E034246C               | 0 | 0 | 1 | 1 | 1 | 01 | 11       | 00        |
| 114        | 75       | 0DFCA79            | 6677DF26             | 135EDD81D              | 4DC06848D8               | 1 | 0 | 0 | 1 | 1 | 10 | 01       | 11        |
| 115        | 76       | 1BF94F2            | 4CEFBE4D             | 06BDBB03B              | 1B80D091B1               | 1 | 1 | 0 | 1 | 1 | 11 | 10       | 01        |
| 116        | 77       | 17F29E5            | 19DF7C9A             | 0D7B76077              | 3701A12363               | 0 | 1 | 1 | 0 | 1 | 00 | 11       | 10        |
| 117        | 78       | 0FE53CA            | 33BEF934             | 1AF6EC0EF              | 6E034246C6               | 1 | 1 | 1 | 0 | 1 | 11 | 00       | 11        |
| 118        | 79       | 1FCA794            | 677DF269             | 15EDD81DF              | 5C06848D8C               | 1 | 0 | 0 | 0 | 0 | 01 | 11       | 00        |
| 119        | 80       | 1F94F29            | 4EFBE4D2             | 0BDBB03BE              | 380D091B19               | 1 | 1 | 1 | 0 | 0 | 01 | 01       | 11        |
| 120<br>121 | 81<br>82 | 1F29E53<br>1E53CA6 | 1DF7C9A5<br>3BEF934B | 17B76077D<br>0F6EC0EFB | 701A123633<br>6034246C66 | 1 | 1 | 0 | 0 | 1 | 11 | 01<br>11 | 01<br>01  |
| 122        | 83       | 1E53CA6            | 77DF2696             |                        | 406848D8CD               | 1 | 1 | 1 | 0 | 0 | 10 | 11       | 11        |
| 123        | 84       | 194F29B            | 6FBE4D2C             | 1EDD81DF6<br>1DBB03BED | 00D091B19B               | 1 | 1 | 1 | 1 | 0 | 11 | 10       | 11        |
| 124        | 85       | 129E536            | 5F7C9A59             | 1B76077DA              | 01A1236337               | 0 | 0 | 1 | 1 | 1 | 00 | 11       | 10        |
| 125        | 86       | 053CA6C            | 3EF934B3             | 16EC0EFB4              | 034246C66E               | 0 | 1 | 0 | 0 | 1 | 10 | 00       | 11        |
| 126        | 87       |                    | 7DF26967             |                        | 06848D8CDD               | 1 | 1 | 1 | 1 | 0 | 01 | 10       | 00        |
| 127        | 88       | 14F29B3            |                      |                        | 0D091B19BB               | 0 | 1 | 1 | 0 | 1 | 01 | 01       | 10        |
| 128        | 89       |                    |                      |                        | 1A12363377               | 1 | 1 | 0 | 0 | 1 | 11 | 01       | 01        |
| 129        | 90       |                    |                      |                        | 34246C66EF               | 0 | 1 | 1 | 0 | 1 | 10 | 11       | 01        |
| 130        | 91       | 0794D9B            | 5F26967F             | 1D81DF69A              | 6848D8CDDF               | 0 | 0 | 1 | 0 | 1 | 01 | 10       | 11        |
| 131        | 92       | 0F29B37            | 3E4D2CFE             | 1B03BED35              | 5091B19BBE               | 1 | 0 | 1 | 1 | 0 | 10 | 01       | 10        |
| 132        | 93       | 1E5366F            | 7C9A59FD             | 16077DA6B              | 212363377C               | 1 | 1 | 0 | 0 | 0 | 11 | 10       | 01        |
| 133        | 94       | 1CA6CDF            | 7934B3FB             | 0C0EFB4D6              | 4246C66EF9               | 1 | 0 | 1 | 0 | 1 | 00 | 11       | 10        |
| 134        | 95       | 194D9BE            | 726967F6             | 181DF69AD              | 048D8CDDF2               | 1 | 0 | 1 | 1 | 1 | 11 | 00       | 11        |
| 135        | 96       | 129B37D            | 64D2CFED             | 103BED35B              | 091B19BBE5               | 0 | 1 | 0 | 0 | 0 | 01 | 11       | 00        |
| 136        | 97       | 05366FA            | 49A59FDA             | 0077DA6B7              | 12363377CA               | 0 | 1 | 0 | 0 | 0 | 10 | 01       | 11        |
| 137        | 98       | 0A6CDF5            | 134B3FB4             | 00EFB4D6E              | 246C66EF95               | 1 | 0 | 0 | 0 | 1 | 00 | 10       | 01        |
| 138        | 99       | 14D9BEA            | 26967F69             | 01DF69ADD              | 48D8CDDF2B               | 0 | 1 | 0 | 1 | 0 | 00 | 00       | 10        |
| 139        | 100      | 09B37D4            | 4D2CFED2             | 03BED35BB              | 11B19BBE56               | 1 | 0 | 0 | 1 | 0 | 01 | 00       | 00        |
| 140        | 101      | 1366FA8            | 1A59FDA5             | 077DA6B77              | 2363377CAC               | 0 | 0 | 0 | 0 | 1 | 01 | 01       | 00        |
| 141        | 102      | 06CDF51            | 34B3FB4A             | 0EFB4D6EF              | 46C66EF959               | 0 | 1 | 1 | 1 | 0 | 00 | 01       | 01        |
| 142        | 103      | OD9BEA2            | 6967F695             | 1DF69ADDF              | 0D8CDDF2B2               | 1 | 0 | 1 | 1 | 1 | 10 | 00       | 01        |
| 143        | 104      | 1B37D45            | 52CFED2A             | 1BED35BBF              | 1B19BBE564               | 1 | 1 | 1 | 0 | 1 | 00 | 10       | 00        |
| 144        | 105      | 166FA8A            | 259FDA54             | 17DA6B77E              | 363377CAC8               | 0 | 1 | 0 | 0 | 1 | 01 | 00       | 10        |
| 145        | 106      | 0CDF515            | 4B3FB4A9             | 0FB4D6EFC              | 6C66EF9591               | 1 | 0 | 1 | 0 | 1 | 00 | 01       | 00        |

page 932 of 1082

| DLO |       | 7111 OI L | JII 107 (11) | 51 <b>4</b> VOI 01011 | 1.0 5      |   |   |   |   |   |    | pago | 002 01 1002 |
|-----|-------|-----------|--------------|-----------------------|------------|---|---|---|---|---|----|------|-------------|
| Арр | endix | IV - Samp | ole Data     |                       |            |   |   |   |   |   |    | I    | Bluetooth.  |
| 146 | 107   | 19BEA2B   | 167F6952     | 1F69ADDF8             | 58CDDF2B22 | 1 | 0 | 1 | 1 | 1 | 10 | 00   | 01          |
| 147 | 108   | 137D457   | 2CFED2A5     | 1ED35BBF1             | 319BBE5645 | 0 | 1 | 1 | 1 | 1 | 00 | 10   | 00          |
| 148 | 109   | 06FA8AF   | 59FDA54A     | 1DA6B77E2             | 63377CAC8B | 0 | 1 | 1 | 0 | 0 | 00 | 00   | 10          |
| 149 | 110   | 0DF515F   | 33FB4A95     | 1B4D6EFC4             | 466EF95916 | 1 | 1 | 1 | 0 | 1 | 01 | 00   | 00          |
| 150 | 111   | 1BEA2BF   | 67F6952A     | 169ADDF88             | 0CDDF2B22C | 1 | 1 | 0 | 1 | 0 | 11 | 01   | 00          |
| 151 | 112   | 17D457F   | 4FED2A55     | 0D35BBF10             | 19BBE56459 | 0 | 1 | 1 | 1 | 0 | 11 | 11   | 01          |
| 152 | 113   | 0FA8AFE   | 1FDA54AB     | 1A6B77E20             | 3377CAC8B3 | 1 | 1 | 1 | 0 | 0 | 10 | 11   | 11          |
| 153 | 114   | 1F515FD   | 3FB4A957     | 14D6EFC40             | 66EF959166 | 1 | 1 | 0 | 1 | 1 | 10 | 10   | 11          |
| 154 | 115   | 1EA2BFA   | 7F6952AF     | 09ADDF880             | 4DDF2B22CC | 1 | 0 | 1 | 1 | 1 | 01 | 10   | 10          |
| 155 | 116   | 1D457F4   | 7ED2A55F     | 135BBF100             | 1BBE564598 | 1 | 1 | 0 | 1 | 0 | 10 | 01   | 10          |
| 156 | 117   | 1A8AFE8   | 7DA54ABF     | 06B77E200             | 377CAC8B31 | 1 | 1 | 0 | 0 | 0 | 11 | 10   | 01          |
| 157 | 118   | 1515FD0   | 7B4A957F     | 0D6EFC401             | 6EF9591663 | 0 | 0 | 1 | 1 | 1 | 00 | 11   | 10          |
| 158 | 119   | 0A2BFA1   | 76952AFE     | 1ADDF8803             | 5DF2B22CC7 | 1 | 1 | 1 | 1 | 0 | 00 | 00   | 11          |
| 159 | 120   | 1457F42   | 6D2A55FD     | 15BBF1007             | 3BE564598E | 0 | 0 | 0 | 1 | 1 | 00 | 00   | 00          |
| 160 | 121   | 08AFE84   | 5A54ABFB     | 0B77E200F             | 77CAC8B31C | 1 | 0 | 1 | 1 | 1 | 01 | 00   | 00          |
| 161 | 122   | 115FD09   | 34A957F7     | 16EFC401F             | 6F95916639 | 0 | 1 | 0 | 1 | 1 | 00 | 01   | 00          |
| 162 | 123   | 02BFA12   | 6952AFEF     | 0DDF8803E             | 5F2B22CC73 | 0 | 0 | 1 | 0 | 1 | 11 | 00   | 01          |
| 163 | 124   | 057F424   | 52A55FDF     | 1BBF1007D             | 3E564598E7 | 0 | 1 | 1 | 0 | 1 | 01 | 11   | 00          |
| 164 | 125   | 0AFE848   | 254ABFBF     | 177E200FA             | 7CAC8B31CF | 1 | 0 | 0 | 1 | 1 | 10 | 01   | 11          |
| 165 | 126   | 15FD090   | 4A957F7E     | 0EFC401F5             | 795916639E | 0 | 1 | 1 | 0 | 0 | 11 | 10   | 01          |
| 166 | 127   | 0BFA121   | 152AFEFD     | 1DF8803EA             | 72B22CC73C | 1 | 0 | 1 | 1 | 0 | 01 | 11   | 10          |
| 167 | 128   | 17F4243   | 2A55FDFA     | 1BF1007D4             | 6564598E78 | 0 | 0 | 1 | 0 | 0 | 10 | 01   | 11          |
| 168 | 129   | 0FE8486   | 54ABFBF4     | 17E200FA8             | 4AC8B31CF0 | 1 | 1 | 0 | 1 | 1 | 11 | 10   | 01          |
| 169 | 130   | 1FD090C   | 2957F7E8     | 0FC401F51             | 15916639E1 | 1 | 0 | 1 | 1 | 0 | 01 | 11   | 10          |
| 170 | 131   | 1FA1219   | 52AFEFD1     | 1F8803EA3             | 2B22CC73C2 | 1 | 1 | 1 | 0 | 0 | 01 | 01   | 11          |
| 171 | 132   | 1F42432   | 255FDFA2     | 1F1007D47             | 564598E785 | 1 | 0 | 1 | 0 | 1 | 11 | 01   | 01          |
| 172 | 133   | 1E84865   | 4ABFBF44     | 1E200FA8F             | 2C8B31CF0B | 1 | 1 | 1 | 1 | 1 | 11 | 11   | 01          |
| 173 | 134   | 1D090CB   | 157F7E88     | 1C401F51E             | 5916639E17 | 1 | 0 | 1 | 0 | 1 | 11 | 11   | 11          |
| 174 | 135   | 1A12196   | 2AFEFD11     | 18803EA3C             | 322CC73C2E | 1 | 1 | 1 | 0 | 0 | 10 | 11   | 11          |
| 175 | 136   | 142432C   | 55FDFA23     | 11007D479             | 64598E785C | 0 | 1 | 0 | 0 | 1 | 01 | 10   | 11          |
| 176 | 137   | 0848659   | 2BFBF446     | 0200FA8F2             | 48B31CF0B9 | 1 | 1 | 0 | 1 | 0 | 10 | 01   | 10          |
| 177 | 138   | 1090CB2   | 57F7E88C     | 0401F51E4             | 116639E173 | 0 | 1 | 0 | 0 | 1 | 00 | 10   | 01          |
| 178 | 139   | 0121964   | 2FEFD118     | 0803EA3C8             | 22CC73C2E6 | 0 | 1 | 1 | 1 | 1 | 00 | 00   | 10          |
| 179 | 140   | 02432C9   | 5FDFA230     | 1007D4791             | 4598E785CD | 0 | 1 | 0 | 1 | 0 | 01 | 00   | 00          |
| 180 | 141   | 0486593   | 3FBF4461     | 000FA8F23             | 0B31CF0B9B | 0 | 1 | 0 | 0 | 0 | 00 | 01   | 00          |
| 181 | 142   | 090CB26   | 7F7E88C3     | 001F51E47             | 16639E1736 | 1 | 0 | 0 | 0 | 1 | 11 | 00   | 01          |
| 182 | 143   | 121964D   | 7EFD1187     | 003EA3C8F             | 2CC73C2E6C | 0 | 1 | 0 | 1 | 1 | 01 | 11   | 00          |
| 183 | 144   | 0432C9B   | 7DFA230E     | 007D4791E             | 598E785CD8 | 0 | 1 | 0 | 1 | 1 | 10 | 01   | 11          |
| 184 | 145   | 0865936   | 7BF4461C     | 00FA8F23C             | 331CF0B9B0 | 1 | 1 | 0 | 0 | 0 | 11 | 10   | 01          |
| 185 | 146   | 10CB26D   | 77E88C38     | 01F51E479             | 6639E17361 | 0 | 1 | 0 | 0 | 0 | 00 | 11   | 10          |
| 186 | 147   | 01964DA   | 6FD11870     | 03EA3C8F2             | 4C73C2E6C2 | 0 | 1 | 0 | 0 | 1 | 10 | 00   | 11          |
| 187 | 148   | 032C9B4   | 5FA230E1     | 07D4791E4             | 18E785CD84 | 0 | 1 | 0 | 1 | 0 | 00 | 10   | 00          |
| 188 | 149   | 0659368   | 3F4461C2     | 0FA8F23C9             | 31CF0B9B09 | 0 | 0 | 1 | 1 | 0 | 00 | 00   | 10          |
| 189 | 150   | 0CB26D0   | 7E88C384     | 1F51E4793             | 639E173612 | 1 | 1 | 1 | 1 | 0 | 10 | 00   | 00          |
| 190 | 151   | 1964DA0   | 7D118709     | 1EA3C8F27             | 473C2E6C24 | 1 | 0 | 1 | 0 | 0 | 00 | 10   | 00          |
| 191 | 152   | 12C9B41   | 7A230E12     | 1D4791E4E             | 0E785CD848 | 0 | 0 | 1 | 0 | 1 | 01 | 00   | 10          |
| 192 | 153   | 0593683   | 74461C24     | 1A8F23C9C             | 1CF0B9B091 | 0 | 0 | 1 | 1 | 1 | 00 | 01   | 00          |
| 193 | 154   | 0B26D06   | 688C3848     | 151E47938             | 39E1736123 | 1 | 1 | 0 | 1 | 1 | 10 | 00   | 01          |
| 194 | 155   | 164DA0D   | 51187091     | 0A3C8F271             | 73C2E6C247 | 0 | 0 | 1 | 1 | 0 | 00 | 10   | 00          |
| 195 | 156   | 0C9B41A   | 2230E123     | 14791E4E3             | 6785CD848F | 1 | 0 | 0 | 1 | 0 | 00 | 00   | 10          |
| 196 | 157   | 1936835   | 4461C247     | 08F23C9C6             | 4F0B9B091E | 1 | 0 | 1 | 0 | 0 | 01 | 00   | 00          |
| 197 | 158   | 126D06A   | 08C3848E     | 11E47938D             | 1E1736123C | 0 | 1 | 0 | 0 | 0 | 00 | 01   | 00          |
| 198 | 159   | 04DA0D5   | 1187091C     | 03C8F271B             | 3C2E6C2478 | 0 | 1 | 0 | 0 | 1 | 11 | 00   | 01          |
| 199 | 160   | 09B41AA   | 230E1238     | 0791E4E37             | 785CD848F1 | 1 | 0 | 0 | 0 | 0 | 01 | 11   | 00          |
| 200 | 161   | 1368354   | 461C2470     | 0F23C9C6F             | 70B9B091E3 | 0 | 0 | 1 | 1 | 1 | 10 | 01   | 11          |
| 201 | 162   | 06D06A9   | 0C3848E1     | 1E47938DF             | 61736123C6 | 0 | 0 | 1 | 0 | 1 | 00 | 10   | 01          |
| 202 | 163   | 0DA0D52   | 187091C3     | 1C8F271BE             | 42E6C2478D | 1 | 0 | 1 | 1 | 1 | 00 | 00   | 10          |
|     |       |           |              |                       |            |   |   |   |   |   |    |      |             |

page 933 of 1082

| Арре  | endix I | V - Samp | ole Data |           |            |   |   |   |   |   |     | F   | Bluetooth |
|-------|---------|----------|----------|-----------|------------|---|---|---|---|---|-----|-----|-----------|
| 203   | 164     | 1B41AA4  | 30E12387 | 191E4E37C | 05CD848F1A | 1 | 1 | 1 | 1 | 0 | 10  | 00  | 00        |
| 203   | 165     | 1683549  | 61C2470F | 123C9C6F9 | 0B9B091E34 | 0 | 1 | 0 | 1 | 0 | 00  | 10  | 00        |
| 205   | 166     | 0D06A92  | 43848E1E | 047938DF3 | 1736123C68 | 1 | 1 | 0 | 0 | 0 | 00  | 00  | 10        |
| 206   | 167     | 1A0D524  | 07091C3C | 08F271BE7 | 2E6C2478D1 | 1 | 0 | 1 | 0 | 0 | 01  | 00  | 00        |
| 207   | 168     | 141AA49  | 07091C3C | 11E4E37CF | 5CD848F1A2 | 0 | 0 | 0 | 1 | 0 | 00  | 01  | 00        |
| 207   | 169     | 0835492  | 1C2470F3 | 03C9C6F9F | 39B091E345 | 1 | 0 | 0 | 1 | 0 | 10  | 00  | 01        |
| 209   | 170     | 106A925  | 3848E1E6 | 07938DF3F | 736123C68B | 0 | 0 | 0 | 0 | 0 | 11  | 10  | 00        |
| 210   | 171     | 00D524A  | 7091C3CD | 0F271BE7E | 66C2478D16 | 0 | 1 | 1 | 1 | 0 | 01  | 11  | 10        |
| 211   | 172     | 01AA495  | 6123879B | 1E4E37CFD | 4D848F1A2D | 0 | 0 | 1 | 1 | 1 | 10  | 01  | 11        |
| 212   | 173     | 035492A  | 42470F36 | 1C9C6F9FB | 1B091E345B | 0 | 0 | 1 | 0 | 1 | 00  | 10  | 01        |
| 213   | 174     | 06A9255  | 048E1E6C | 1938DF3F6 | 36123C68B7 | 0 | 1 | 1 | 0 | 0 | 00  | 00  | 10        |
| 214   | 175     | 0D524AB  | 091C3CD8 | 1271BE7EC | 6C2478D16E | 1 | 0 | 0 | 0 | 1 | 0.0 | 00  | 00        |
| 215   | 176     | 1AA4957  | 123879B1 | 04E37CFD8 | 5848F1A2DD | 1 | 0 | 0 | 0 | 1 | 0.0 | 00  | 00        |
| 216   | 177     | 15492AF  | 2470F363 | 09C6F9FB0 | 3091E345BA | 0 | 0 | 1 | 1 | 0 | 01  | 00  | 00        |
| 217   | 178     | 0A9255E  | 48E1E6C7 | 138DF3F61 | 6123C68B75 | 1 | 1 | 0 | 0 | 1 | 0.0 | 01  | 00        |
| 218   | 179     | 1524ABD  | 11C3CD8F | 071BE7EC3 | 42478D16EB | 0 | 1 | 0 | 0 | 1 | 11  | 00  | 01        |
| 219   | 180     | 0A4957B  | 23879B1F | 0E37CFD87 | 048F1A2DD6 | 1 | 1 | 1 | 1 | 1 | 00  | 11  | 00        |
| 220   | 181     | 1492AF6  | 470F363F | 1C6F9FB0E | 091E345BAD | 0 | 0 | 1 | 0 | 1 | 10  | 0.0 | 11        |
| 221   | 182     | 09255EC  | 0E1E6C7F | 18DF3F61D | 123C68B75B | 1 | 0 | 1 | 0 | 0 | 0.0 | 10  | 00        |
| 222   | 183     | 124ABD9  | 1C3CD8FF | 11BE7EC3A | 2478D16EB6 | 0 | 0 | 0 | 0 | 0 | 01  | 00  | 10        |
| 223   | 184     | 04957B3  | 3879B1FE | 037CFD874 | 48F1A2DD6D | 0 | 0 | 0 | 1 | 0 | 0.0 | 01  | 00        |
| 224   | 185     | 092AF66  | 70F363FD | 06F9FB0E9 | 11E345BADB | 1 | 1 | 0 | 1 | 1 | 10  | 00  | 01        |
| 225   | 186     | 1255ECD  | 61E6C7FA | 0DF3F61D3 | 23C68B75B7 | 0 | 1 | 1 | 1 | 1 | 00  | 10  | 00        |
| 226   | 187     | 04ABD9B  | 43CD8FF5 | 1BE7EC3A7 | 478D16EB6E | 0 | 1 | 1 | 1 | 1 | 00  | 0.0 | 10        |
| 227   | 188     | 0957B37  | 079B1FEA | 17CFD874E | 0F1A2DD6DD | 1 | 1 | 0 | 0 | 0 | 01  | 0.0 | 00        |
| 228   | 189     | 12AF66F  | 0F363FD4 | 0F9FB0E9C | 1E345BADBB | 0 | 0 | 1 | 0 | 0 | 00  | 01  | 00        |
| 229   | 190     | 055ECDE  | 1E6C7FA9 | 1F3F61D39 | 3C68B75B76 | 0 | 0 | 1 | 0 | 1 | 11  | 00  | 01        |
| 230   | 191     | 0ABD9BC  | 3CD8FF53 | 1E7EC3A73 | 78D16EB6EC | 1 | 1 | 1 | 1 | 1 | 00  | 11  | 00        |
| 231   | 192     | 157B379  | 79B1FEA7 | 1CFD874E6 | 71A2DD6DD9 | 0 | 1 | 1 | 1 | 1 | 11  | 00  | 11        |
| 232   | 193     | 0AF66F3  | 7363FD4E | 19FB0E9CD | 6345BADBB2 | 1 | 0 | 1 | 0 | 1 | 01  | 11  | 00        |
| 233   | 194     | 15ECDE6  | 66C7FA9D | 13F61D39A | 468B75B765 | 0 | 1 | 0 | 1 | 1 | 10  | 01  | 11        |
| 234   | 195     | 0BD9BCC  | 4D8FF53A | 07EC3A735 | OD16EB6ECA | 1 | 1 | 0 | 0 | 0 | 11  | 10  | 01        |
| 235   | 196     | 17B3799  | 1B1FEA75 | 0FD874E6A | 1A2DD6DD94 | 0 | 0 | 1 | 0 | 0 | 00  | 11  | 10        |
| 236   | 197     | 0F66F33  | 363FD4EA | 1FB0E9CD5 | 345BADBB28 | 1 | 0 | 1 | 0 | 0 | 11  | 00  | 11        |
| 237   | 198     | 1ECDE67  | 6C7FA9D5 | 1F61D39AA | 68B75B7650 | 1 | 0 | 1 | 1 | 0 | 00  | 11  | 00        |
| 238   | 199     | 1D9BCCF  | 58FF53AB | 1EC3A7354 | 516EB6ECA0 | 1 | 1 | 1 | 0 | 1 | 11  | 00  | 11        |
| 239   | 200     | 1B3799E  | 31FEA756 | 1D874E6A8 | 22DD6DD940 | 1 | 1 | 1 | 1 | 1 | 00  | 11  | 00        |
| Z[0]  | = 3F    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[1]  | = B1    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[2]  | = 67    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[3]  | = D2    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[4]  | = 2F    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[5]  | = A6    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[6]  | = 1F    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = B9    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = E6    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = 84    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = 43    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = 07    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = D8    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = 1E    |          |          |           |            |   |   |   |   |   |     |     |           |
|       | = E7    |          |          |           |            |   |   |   |   |   |     |     |           |
| Z[15] | = C3    |          |          |           |            |   |   |   |   |   |     |     |           |

page 934 of 1082

```
Appendix IV - Sample Data
```

### Bluetooth.

\_\_\_\_\_\_

Reload this pattern into the LFSRs

Hold content of Summation Combiner regs and calculate new C[t+1] and Z values

\_\_\_\_\_\_

LFSR1 <= 0E62F3F LFSR2 <= 6C84A6B1 LFSR3 <= 11E431F67

LFSR4 <= 61E707B9D2

C[t+1] <= 00

\_\_\_\_\_\_

Generating 125 key symbols (encryption/decryption sequence)

| ==== |    |         |          |           | =======    |   |   |   |   |   |    |    |    |
|------|----|---------|----------|-----------|------------|---|---|---|---|---|----|----|----|
| 240  | 1  | 0E62F3F | 6C84A6B1 | 11E431F67 | 61E707B9D2 | 1 | 1 | 0 | 1 | 0 | 00 | 11 | 00 |
| 241  | 2  | 1CC5E7F | 59094D63 | 03C863ECE | 43CE0F73A5 | 1 | 0 | 0 | 1 | 0 | 11 | 00 | 11 |
| 242  | 3  | 198BCFF | 32129AC6 | 0790C7D9D | 079C1EE74A | 1 | 0 | 0 | 1 | 1 | 01 | 11 | 00 |
| 243  | 4  | 13179FE | 6425358C | 0F218FB3A | 0F383DCE94 | 0 | 0 | 1 | 0 | 0 | 10 | 01 | 11 |
| 244  | 5  | 062F3FD | 484A6B19 | 1E431F675 | 1E707B9D28 | 0 | 0 | 1 | 0 | 1 | 00 | 10 | 01 |
| 245  | 6  | 0C5E7FB | 1094D632 | 1C863ECEB | 3CE0F73A50 | 1 | 1 | 1 | 1 | 0 | 11 | 00 | 10 |
| 246  | 7  | 18BCFF7 | 2129AC64 | 190C7D9D7 | 79C1EE74A1 | 1 | 0 | 1 | 1 | 0 | 00 | 11 | 00 |
| 247  | 8  | 1179FEE | 425358C8 | 1218FB3AE | 7383DCE942 | 0 | 0 | 0 | 1 | 1 | 10 | 00 | 11 |
| 248  | 9  | 02F3FDD | 04A6B190 | 0431F675D | 6707B9D285 | 0 | 1 | 0 | 0 | 1 | 11 | 10 | 00 |
| 249  | 10 | 05E7FBB | 094D6320 | 0863ECEBB | 4E0F73A50B | 0 | 0 | 1 | 0 | 0 | 00 | 11 | 10 |
| 250  | 11 | 0BCFF77 | 129AC640 | 10C7D9D77 | 1C1EE74A16 | 1 | 1 | 0 | 0 | 0 | 11 | 00 | 11 |
| 251  | 12 | 179FEEE | 25358C80 | 018FB3AEE | 383DCE942C | 0 | 0 | 0 | 0 | 1 | 10 | 11 | 00 |
| 252  | 13 | 0F3FDDC | 4A6B1900 | 031F675DD | 707B9D2859 | 1 | 0 | 0 | 0 | 1 | 01 | 10 | 11 |
| 253  | 14 | 1E7FBB8 | 14D63200 | 063ECEBBA | 60F73A50B3 | 1 | 1 | 0 | 1 | 0 | 10 | 01 | 10 |
| 254  | 15 | 1CFF771 | 29AC6401 | 0C7D9D774 | 41EE74A167 | 1 | 1 | 1 | 1 | 0 | 10 | 10 | 01 |
| 255  | 16 | 19FEEE2 | 5358C803 | 18FB3AEE9 | 03DCE942CE | 1 | 0 | 1 | 1 | 1 | 01 | 10 | 10 |
| 256  | 17 | 13FDDC4 | 26B19007 | 11F675DD2 | 07B9D2859C | 0 | 1 | 0 | 1 | 1 | 01 | 01 | 10 |
| 257  | 18 | 07FBB88 | 4D63200E | 03ECEBBA4 | 0F73A50B38 | 0 | 0 | 0 | 0 | 1 | 10 | 01 | 01 |
| 258  | 19 | 0FF7711 | 1AC6401D | 07D9D7748 | 1EE74A1670 | 1 | 1 | 0 | 1 | 1 | 11 | 10 | 01 |
| 259  | 20 | 1FEEE23 | 358C803B | OFB3AEE91 | 3DCE942CE1 | 1 | 1 | 1 | 1 | 1 | 01 | 11 | 10 |
| 260  | 21 | 1FDDC47 | 6B190076 | 1F675DD23 | 7B9D2859C2 | 1 | 0 | 1 | 1 | 0 | 01 | 01 | 11 |
| 261  | 22 | 1FBB88F | 563200ED | 1ECEBBA47 | 773A50B385 | 1 | 0 | 1 | 0 | 1 | 11 | 01 | 01 |
| 262  | 23 | 1F7711E | 2C6401DB | 1D9D7748F | 6E74A1670A | 1 | 0 | 1 | 0 | 1 | 10 | 11 | 01 |
| 263  | 24 | 1EEE23D | 58C803B6 | 1B3AEE91E | 5CE942CE15 | 1 | 1 | 1 | 1 | 0 | 11 | 10 | 11 |
| 264  | 25 | 1DDC47A | 3190076C | 1675DD23D | 39D2859C2B | 1 | 1 | 0 | 1 | 0 | 01 | 11 | 10 |
| 265  | 26 | 1BB88F4 | 63200ED9 | OCEBBA47A | 73A50B3856 | 1 | 0 | 1 | 1 | 0 | 01 | 01 | 11 |
| 266  | 27 | 17711E8 | 46401DB2 | 19D7748F5 | 674A1670AD | 0 | 0 | 1 | 0 | 0 | 11 | 01 | 01 |
| 267  | 28 | 0EE23D0 | 0C803B64 | 13AEE91EA | 4E942CE15B | 1 | 1 | 0 | 1 | 0 | 11 | 11 | 01 |
| 268  | 29 | 1DC47A0 | 190076C8 | 075DD23D4 | 1D2859C2B7 | 1 | 0 | 0 | 0 | 0 | 11 | 11 | 11 |
| 269  | 30 | 1B88F41 | 3200ED90 | 0EBBA47A9 | 3A50B3856E | 1 | 0 | 1 | 0 | 1 | 11 | 11 | 11 |
| 270  | 31 | 1711E83 | 6401DB20 | 1D7748F53 | 74A1670ADC | 0 | 0 | 1 | 1 | 1 | 11 | 11 | 11 |
| 271  | 32 | 0E23D07 | 4803B641 | 1AEE91EA7 | 6942CE15B8 | 1 | 0 | 1 | 0 | 1 | 11 | 11 | 11 |
| 272  | 33 | 1C47A0F | 10076C82 | 15DD23D4F | 52859C2B71 | 1 | 0 | 0 | 1 | 1 | 11 | 11 | 11 |
| 273  | 34 | 188F41E | 200ED905 | OBBA47A9E | 250B3856E3 | 1 | 0 | 1 | 0 | 1 | 11 | 11 | 11 |
| 274  | 35 | 111E83C | 401DB20A | 17748F53D | 4A1670ADC7 | 0 | 0 | 0 | 0 | 1 | 00 | 11 | 11 |
| 275  | 36 | 023D078 | 003B6414 | 0EE91EA7A | 142CE15B8E | 0 | 0 | 1 | 0 | 1 | 10 | 00 | 11 |
| 276  | 37 | 047A0F0 | 0076C828 | 1DD23D4F5 | 2859C2B71C | 0 | 0 | 1 | 0 | 1 | 11 | 10 | 00 |
| 277  | 38 | 08F41E1 | 00ED9050 | 1BA47A9EA | 50B3856E39 | 1 | 1 | 1 | 1 | 1 | 01 | 11 | 10 |
| 278  | 39 | 11E83C2 | 01DB20A0 | 1748F53D5 | 21670ADC72 | 0 | 1 | 0 | 0 | 0 | 10 | 01 | 11 |
| 279  | 40 | 03D0785 | 03B64141 | 0E91EA7AA | 42CE15B8E4 | 0 | 1 | 1 | 1 | 1 | 11 | 10 | 01 |
| 280  | 41 | 07A0F0A | 076C8283 | 1D23D4F54 | 059C2B71C8 | 0 | 0 | 1 | 1 | 1 | 00 | 11 | 10 |
| 281  | 42 | 0F41E14 | 0ED90507 | 1A47A9EA9 | 0B3856E390 | 1 | 1 | 1 | 0 | 1 | 11 | 00 | 11 |
| 282  | 43 | 1E83C29 | 1DB20A0F | 148F53D52 | 1670ADC720 | 1 | 1 | 0 | 0 | 1 | 01 | 11 | 00 |
| 283  | 44 | 1D07853 | 3B64141E | 091EA7AA5 | 2CE15B8E40 | 1 | 0 | 1 | 1 | 0 | 01 | 01 | 11 |
|      |    |         |          |           |            |   |   |   |   |   |    |    |    |

page 935 of 1082

| Арр  | endix I | IV - Samp | le Data       |                 |            |   |   |   |   |   |    | E   | <b>Sluetooth</b> |
|------|---------|-----------|---------------|-----------------|------------|---|---|---|---|---|----|-----|------------------|
| 284  | 45      | 1A0F0A6   | 76C8283C      | 123D4F54B       | 59C2B71C81 | 1 | 1 | 0 | 1 | 0 | 00 | 01  | 01               |
| 285  | 46      | 141E14C   | 6D905079      | 047A9EA97       | 33856E3902 | 0 | 1 | 0 | 1 | 0 | 10 | 00  | 01               |
| 286  | 47      | 083C299   | 5B20A0F2      | 08F53D52F       | 670ADC7204 | 1 | 0 | 1 | 0 | 0 | 00 | 10  | 00               |
| 287  | 48      | 1078533   | 364141E4      | 11EA7AA5E       | 4E15B8E408 | 0 | 0 | 0 | 0 | 0 | 01 | 0.0 | 10               |
| 288  | 49      | 00F0A67   | 6C8283C8      | 03D4F54BC       | 1C2B71C811 | 0 | 1 | 0 | 0 | 0 | 00 | 01  | 00               |
| 289  | 50      | 01E14CE   | 59050791      | 07A9EA978       | 3856E39022 | 0 | 0 | 0 | 0 | 0 | 11 | 0.0 | 01               |
| 290  | 51      | 03C299C   | 320A0F23      | 0F53D52F1       | 70ADC72045 | 0 | 0 | 1 | 1 | 1 | 01 | 11  | 00               |
| 291  | 52      | 0785339   | 64141E47      | 1EA7AA5E2       | 615B8E408A | 0 | 0 | 1 | 0 | 0 | 10 | 01  | 11               |
| 292  | 53      | 0F0A673   | 48283C8E      | 1D4F54BC4       | 42B71C8115 | 1 | 0 | 1 | 1 | 1 | 11 | 10  | 01               |
| 293  | 54      | 1E14CE6   | 1050791C      | 1A9EA9788       | 056E39022B | 1 | 0 | 1 | 0 | 1 | 00 | 11  | 10               |
| 294  | 55      | 1C299CD   | 20A0F239      | 153D52F10       | 0ADC720456 | 1 | 1 | 0 | 1 | 1 | 11 | 0.0 | 11               |
| 295  | 56      | 185339B   | 4141E472      | 0A7AA5E20       | 15B8E408AC | 1 | 0 | 1 | 1 | 0 | 00 | 11  | 00               |
| 296  | 57      | 10A6736   | 0283C8E4      | 14F54BC41       | 2B71C81158 | 0 | 1 | 0 | 0 | 1 | 10 | 0.0 | 11               |
| 297  | 58      | 014CE6C   | 050791C9      | 09EA97882       | 56E39022B0 | 0 | 0 | 1 | 1 | 0 | 00 | 10  | 00               |
| 298  | 59      | 0299CD9   | 0A0F2393      | 13D52F104       | 2DC7204561 | 0 | 0 | 0 | 1 | 1 | 01 | 0.0 | 10               |
| 299  | 60      | 05339B3   | 141E4726      | 07AA5E208       | 5B8E408AC3 | 0 | 0 | 0 | 1 | 0 | 00 | 01  | 00               |
| 300  | 61      | 0A67366   | 283C8E4C      | 0F54BC411       | 371C811587 | 1 | 0 | 1 | 0 | 0 | 10 | 0.0 | 01               |
| 301  | 62      | 14CE6CC   | 50791C98      | 1EA978822       | 6E39022B0F | 0 | 0 | 1 | 0 | 1 | 11 | 10  | 00               |
| 302  | 63      | 099CD99   | 20F23930      | 1D52F1045       | 5C7204561E | 1 | 1 | 1 | 0 | 0 | 01 | 11  | 10               |
| 303  | 64      | 1339B33   | 41E47260      | 1AA5E208B       | 38E408AC3D | 0 | 1 | 1 | 1 | 0 | 01 | 01  | 11               |
| 304  | 65      | 0673666   | 03C8E4C0      | 154BC4117       | 71C811587A | 0 | 1 | 0 | 1 | 1 | 11 | 01  | 01               |
| 305  | 66      | 0CE6CCC   | 0791C980      | 0A978822E       | 639022B0F5 | 1 | 1 | 1 | 1 | 1 | 11 | 11  | 01               |
| 306  | 67      | 19CD999   | 0F239301      | 152F1045C       | 47204561EB | 1 | 0 | 0 | 0 | 0 | 11 | 11  | 11               |
| 307  | 68      | 139B332   | 1E472603      | 0A5E208B9       | 0E408AC3D6 | 0 | 0 | 1 | 0 | 0 | 11 | 11  | 11               |
| 308  | 69      | 0736664   | 3C8E4C06      | 14BC41172       | 1C811587AD | 0 | 1 | 0 | 1 | 1 | 11 | 11  | 11               |
| 309  | 70      | 0E6CCC8   | 791C980C      | 0978822E5       | 39022B0F5A | 1 | 0 | 1 | 0 | 1 | 11 | 11  | 11               |
| 310  | 71      | 1CD9990   | 72393019      | 12F1045CB       | 7204561EB4 | 1 | 0 | 0 | 0 | 0 | 11 | 11  | 11               |
| 311  | 72      | 19B3320   | 64726033      | 05E208B97       | 6408AC3D69 | 1 | 0 | 0 | 0 | 0 | 11 | 11  | 11               |
| 312  | 73      | 1366640   | 48E4C067      | 0BC41172F       | 4811587AD3 | 0 | 1 | 1 | 0 | 1 | 11 | 11  | 11               |
| 313  | 74      | 06CCC81   | 11C980CF      | 178822E5E       | 1022B0F5A6 | 0 | 1 | 0 | 0 | 0 | 11 | 11  | 11               |
| 314  | 75      | 0D99903   | 2393019E      | 0F1045CBC       | 204561EB4C | 1 | 1 | 1 | 0 | 0 | 10 | 11  | 11               |
| 315  | 76      | 1B33206   | 4726033D      | 1E208B979       | 408AC3D699 | 1 | 0 | 1 | 1 | 1 | 10 | 10  | 11               |
| 316  | 77      | 166640D   | 0E4C067B      | 1C41172F2       | 011587AD33 | 0 | 0 | 1 | 0 | 1 | 10 | 10  | 10               |
| 317  | 78      | 0CCC81B   | 1C980CF6      | 18822E5E5       | 022B0F5A66 | 1 | 1 | 1 | 0 | 1 | 01 | 10  | 10               |
| 318  | 79      | 1999036   | 393019EC      | 11045CBCA       | 04561EB4CD | 1 | 0 | 0 | 0 | 0 | 01 | 01  | 10               |
| 319  | 80      | 133206C   | 726033D9      | 0208B9794       | 08AC3D699B | 0 | 0 | 0 | 1 | 0 | 11 | 01  | 01               |
| 320  | 81      | 06640D9   |               | 041172F29       | 11587AD337 | 0 | 1 | 0 | 0 | 0 | 10 | 11  | 01               |
| 321  | 82      | 0CC81B3   | 4980CF66      | 0822E5E53       | 22B0F5A66F | 1 | 1 | 1 | 1 | 0 | 11 | 10  | 11               |
| 322  | 83      | 1990366   | 13019ECC      | 1045CBCA6       | 4561EB4CDF | 1 | 0 | 0 | 0 | 0 | 00 | 11  | 10               |
| 323  | 84      | 13206CC   | 26033D98      | 008B9794D       | 0AC3D699BE | 0 | 0 | 0 | 1 | 1 | 10 | 0.0 | 11               |
| 324  | 85      | 0640D98   | 4C067B31      | 01172F29B       | 1587AD337C | 0 | 0 | 0 | 1 | 1 | 11 | 10  | 00               |
| 325  | 86      | 0C81B30   | 180CF662      | 022E5E537       | 2B0F5A66F9 | 1 | 0 | 0 | 0 | 0 | 00 | 11  | 10               |
| 326  | 87      | 1903660   | 3019ECC5      | 045CBCA6F       | 561EB4CDF3 | 1 | 0 | 0 | 0 | 1 | 10 | 0.0 | 11               |
| 327  | 88      | 1206CC1   | 6033D98A      | 08B9794DE       | 2C3D699BE6 | 0 | 0 | 1 | 0 | 1 | 11 | 10  | 00               |
| 328  | 89      | 040D983   | 4067B315      | 1172F29BD       | 587AD337CC | 0 | 0 | 0 | 0 | 1 | 11 | 11  | 10               |
| 329  | 90      |           |               |                 | 30F5A66F98 | 1 | 1 | 0 | 1 | 0 | 10 | 11  | 11               |
| 330  | 91      |           |               |                 | 61EB4CDF31 | 0 | 1 | 0 | 1 | 0 | 10 | 10  | 11               |
| 331  | 92      |           |               |                 | 43D699BE62 | 0 | 0 | 1 | 1 | 0 | 01 | 10  | 10               |
| 332  | 93      | 00D9833   | 067B3156      | 172F29BD0       | 07AD337CC5 | 0 | 0 | 0 | 1 | 0 | 01 | 01  | 10               |
| 333  | 94      |           |               |                 | 0F5A66F98B | 0 | 1 | 1 | 0 | 1 | 11 | 01  | 01               |
| 334  | 95      |           |               |                 | 1EB4CDF317 | 0 | 1 | 1 | 1 | 0 | 11 | 11  | 01               |
| 335  | 96      |           |               |                 | 3D699BE62F | 0 | 1 | 1 | 0 | 1 | 11 | 11  | 11               |
| 336  | 97      |           |               |                 | 7AD337CC5F | 1 | 1 | 0 | 1 | 0 | 10 | 11  | 11               |
| 337  | 98      |           |               |                 | 75A66F98BF | 1 | 0 | 0 | 1 | 0 | 10 | 10  | 11               |
| 338  | 99      |           |               |                 | 6B4CDF317E | 0 | 1 | 1 | 0 | 0 | 01 | 10  | 10               |
| 339  | 100     |           |               |                 | 5699BE62FC | 1 |   | 0 | 1 | 0 | 10 | 01  | 10               |
| 340  | 101     |           |               |                 | 2D337CC5F9 |   | 0 |   | 0 | 0 |    | 10  | 01               |
| 2 20 |         | 1,0330F   | , 23 23 0 3 3 | J. 2.7 DD 0 0 Z |            | _ | 0 | _ | 5 | 0 |    | 10  | <b>-</b>         |

page 936 of 1082

| App | endix | IV - Samp | ole Data |           |            |   |   |   |   |   |    |    | Bluetooth. |
|-----|-------|-----------|----------|-----------|------------|---|---|---|---|---|----|----|------------|
| 341 | 102   | 13066DE   | 7662ACA7 | 1E537A0C5 | 5A66F98BF2 | 0 | 0 | 1 | 0 | 0 | 00 | 11 | 10         |
| 342 | 103   | 060CDBC   | 6CC5594F | 1CA6F418B | 34CDF317E4 | 0 | 1 | 1 | 1 | 1 | 11 | 00 | 11         |
| 343 | 104   | 0C19B78   | 598AB29F | 194DE8317 | 699BE62FC9 | 1 | 1 | 1 | 1 | 1 | 00 | 11 | 00         |
| 344 | 105   | 18336F1   | 3315653F | 129BD062E | 5337CC5F92 | 1 | 0 | 0 | 0 | 1 | 10 | 00 | 11         |
| 345 | 106   | 1066DE2   | 662ACA7E | 0537A0C5C | 266F98BF25 | 0 | 0 | 0 | 0 | 0 | 11 | 10 | 00         |
| 346 | 107   | 00CDBC5   | 4C5594FD | 0A6F418B9 | 4CDF317E4B | 0 | 0 | 1 | 1 | 1 | 00 | 11 | 10         |
| 347 | 108   | 019B78B   | 18AB29FA | 14DE83172 | 19BE62FC96 | 0 | 1 | 0 | 1 | 0 | 11 | 00 | 11         |
| 348 | 109   | 0336F16   | 315653F4 | 09BD062E5 | 337CC5F92C | 0 | 0 | 1 | 0 | 0 | 01 | 11 | 00         |
| 349 | 110   | 066DE2D   | 62ACA7E8 | 137A0C5CA | 66F98BF258 | 0 | 1 | 0 | 1 | 1 | 10 | 01 | 11         |
| 350 | 111   | 0CDBC5B   | 45594FD1 | 06F418B95 | 4DF317E4B1 | 1 | 0 | 0 | 1 | 0 | 11 | 10 | 01         |
| 351 | 112   | 19B78B6   | 0AB29FA2 | 0DE83172B | 1BE62FC962 | 1 | 1 | 1 | 1 | 1 | 01 | 11 | 10         |
| 352 | 113   | 136F16C   | 15653F45 | 1BD062E57 | 37CC5F92C5 | 0 | 0 | 1 | 1 | 1 | 10 | 01 | 11         |
| 353 | 114   | 06DE2D9   | 2ACA7E8B | 17A0C5CAE | 6F98BF258B | 0 | 1 | 0 | 1 | 0 | 11 | 10 | 01         |
| 354 | 115   | 0DBC5B2   | 5594FD16 | 0F418B95D | 5F317E4B16 | 1 | 1 | 1 | 0 | 0 | 01 | 11 | 10         |
| 355 | 116   | 1B78B64   | 2B29FA2C | 1E83172BB | 3E62FC962C | 1 | 0 | 1 | 0 | 1 | 10 | 01 | 11         |
| 356 | 117   | 16F16C8   | 5653F458 | 1D062E577 | 7CC5F92C58 | 0 | 0 | 1 | 1 | 0 | 11 | 10 | 01         |
| 357 | 118   | 0DE2D91   | 2CA7E8B0 | 1A0C5CAEF | 798BF258B1 | 1 | 1 | 1 | 1 | 1 | 01 | 11 | 10         |
| 358 | 119   | 1BC5B23   | 594FD161 | 1418B95DF | 7317E4B163 | 1 | 0 | 0 | 0 | 0 | 10 | 01 | 11         |
| 359 | 120   | 178B647   | 329FA2C2 | 083172BBF | 662FC962C7 | 0 | 1 | 1 | 0 | 0 | 11 | 10 | 01         |
| 360 | 121   | 0F16C8E   | 653F4584 | 1062E577F | 4C5F92C58E | 1 | 0 | 0 | 0 | 0 | 00 | 11 | 10         |
| 361 | 122   | 1E2D91C   | 4A7E8B09 | 00C5CAEFE | 18BF258B1C | 1 | 0 | 0 | 1 | 0 | 11 | 00 | 11         |
| 362 | 123   | 1C5B238   | 14FD1613 | 018B95DFC | 317E4B1639 | 1 | 1 | 0 | 0 | 1 | 01 | 11 | 00         |
| 363 | 124   | 18B6471   | 29FA2C27 | 03172BBF9 | 62FC962C72 | 1 | 1 | 0 | 1 | 0 | 01 | 01 | 11         |
| 364 | 125   | 116C8E2   | 53F4584E | 062E577F3 | 45F92C58E4 | 0 | 1 | 0 | 1 | 1 | 11 | 01 | 01         |

page 937 of 1082

Appendix IV - Sample Data

Bluetooth.

# 2 FREQUENCY HOPPING SAMPLE DATA—MANDATORY SCHEME

These sets of sample data show the mandatory frequency hopping scheme for three different combinations of addresses and initial clock values. The first part is for the 79-hop system, the second is for the 23-hop system.

### 2.1 THE 79-HOP SYSTEM SAMPLE DATA

page 938 of 1082

Appendix IV - Sample Data

Bluetooth.

#### 2.1.1 First set

| 79 HOP SYSTEM                                                                                                |                                                                |                                              |                                                              |                                                |                                              |                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|--|
| ==========                                                                                                   |                                                                | :=======                                     |                                                              |                                                | ======                                       |                                                                                         |  |
| Hop sequence {k CLKN start: ULAP: #ticks:                                                                    | for PAGE SO<br>0x0000000<br>0x00000000<br>0000   1000          |                                              | SCAN:                                                        | 5000   6                                       | 5000   70                                    | 000                                                                                     |  |
| 0x0000000:<br>0x0008000:<br>0x0010000:<br>0x0018000:<br>0x0020000:<br>0x0028000:<br>0x0030000:<br>0x0038000: | 0 2 16 18 32 34 48 50 0 2 16 18 32 34 48 50                    | 4<br>20<br>36<br>52<br>4<br>20<br>36<br>52   | 6 8 22 24 38 40 56 8 22 24 38 40 56                          | 10   26   42   58   10   26   42   58          | 12<br>28<br>44<br>60<br>12<br>28<br>44<br>60 | 14<br>30<br>46<br>62<br>14<br>30<br>46<br>62                                            |  |
| Hop sequence {k CLKE start: ULAP: #ticks:                                                                    | for PAGE ST<br>0x0000000<br>0x00000000<br>00 01 02 03          | CATE/INQUIRY                                 |                                                              | 0a 0b   0                                      | od 0e                                        | 0f                                                                                      |  |
| 0x0000000:<br>0x0000010:<br>0x0000020:<br>0x0000030:                                                         | 48 50 09 13<br>00 02 64 68<br>48 50 09 13<br>00 02 64 68       | 52 54 41<br>04 06 17<br>52 54 41<br>04 06 17 | 21 08 10<br>45 56 58                                         | 66 70 1<br>11 15 6                             | 50 62 43<br>2 14 19<br>50 62 43<br>2 14 19   | 23<br>47                                                                                |  |
| 0x0001000:<br>0x0001010:<br>0x0001020:<br>0x0001030:                                                         | 48 18 09 05<br>32 34 72 76<br>48 18 09 05<br>32 34 72 76       | 20 22 33<br>36 38 25<br>20 22 33<br>36 38 25 | 29   40 42<br>37   24 26                                     | 74 78   4<br>03 07   2                         | 28 30 35<br>14 46 27<br>28 30 35<br>14 46 27 |                                                                                         |  |
| 0x0002000:<br>0x0002010:<br>0x0002020:<br>0x0002030:                                                         | 16 18 01 05<br>00 02 64 68<br>16 18 01 05<br>00 02 64 68       | 52 54 41<br>04 06 17<br>52 54 41<br>04 06 17 | 21 08 10<br>45 56 58                                         | 66 70 1<br>11 15 6                             | 50 62 43<br>.2 14 19<br>50 62 43<br>.2 14 19 | 23<br>47                                                                                |  |
| 0x0003000:<br>0x0003010:<br>0x0003020:<br>0x0003030:                                                         | 48 50 09 13<br>32 34 72 76<br>48 50 09 13<br>32 34 72 76       | 52 22 41<br>36 38 25<br>52 22 41<br>36 38 25 | 29   40 42<br>37   24 26                                     | 74 78 4<br>03 07 2                             | 28 30 35<br>14 46 27<br>28 30 35<br>14 46 27 | 39                                                                                      |  |
| Hop sequence {k<br>CLKN* =<br>ULAP:<br>#ticks:                                                               | for SLAVE F<br>0x0000010<br>0x00000000<br>00   02 04           |                                              | SE STATE:<br>a Oc   Oe 10                                    | )   12 14                                      | 16 18                                        | la lc   le                                                                              |  |
| 0x0000012:<br>0x0000032:<br>0x0000052:<br>0x0000072:                                                         | 64   02 68<br>01   18 05<br>72   34 76<br>09   50 13           | 20 33 22<br>36 25 38                         | 6 21   08 66<br>2 37   24 03<br>8 29   40 74<br>4 45   56 11 | 3 26 07<br>4 42 78                             | 12 19<br>28 35<br>44 27<br>60 43             | 14     23       16       30     39     32       46     31     48       62     47     00 |  |
| <pre>Hop sequence {k Offset value: CLKE* = ULAP: #ticks:</pre>                                               | t) for MASTER<br>24<br>0x0000012<br>0x00000000<br>00 02   04 0 |                                              | NSE STATE:                                                   | ) 12   14                                      | 16   18                                      | 1a   1c 1e                                                                              |  |
| 0x0000014:<br>0x0000034:<br>0x0000054:<br>0x0000074:                                                         | 02 68   04 1<br>18 05   20 3<br>34 76   36 2<br>50 13   52 4   | 33   22 37<br>25   38 29                     | 24 03   26<br>40 74   42                                     | 70   12<br>5 07   28<br>2 78   44<br>3 15   60 | 35   30<br>27   46                           | 23   16 01  <br>39   32 72  <br>31   48 09  <br>47   00 64                              |  |
|                                                                                                              |                                                                |                                              |                                                              |                                                |                                              |                                                                                         |  |

# Bluetooth.

| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks: | 0x0000010<br>0x0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                       | STATE: 08 0a   0c 0e                            | 10 12                                                                                                                                                                                                                         | 14 16   1                                                                                                                                                                                                        | 18 1a   1c 1e                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                | 00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02   00 02 |                         | 08 0a   0c 0e                                   | 10 12   16 01   32 72   48 09   32 17   48 33   64 25   01 41   64 49   72 57   17 65   25 73   17 02   25 10   49 18   57 26   49 34   65 50   02 38   18 03   34 68   50 05   34 19   42 27   66 23   74 31   66 23   74 59 | 18 05   34 76   50 13   36 19   52 35   68 27   05 43   66 53   74 61   19 69   27 77   21 04   29 12   53 20   61 28   51 42   67 58   04 46   20 62   11 38 76   54 13   36 35   44 43   68 39   76 47   70 67 | 18 1a   1c 1e                                 |
| 0x0000350:<br>0x00003d0:<br>0x00003f0:         | 76 63 0<br>21 57 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 00<br>25 73<br>33 02 | 13 16   17 32<br>37 10   41 26<br>45 18   49 34 | 19 53<br>27 61<br>19 04                                                                                                                                                                                                       | 23 69<br>31 77                                                                                                                                                                                                   | 35 06   39 22   43 14   47 30   23 20   25 24 |

page 940 of 1082

Appendix IV - Sample Data

Bluetooth.

#### 2.1.2 Second set

# Bluetooth.

| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks: | (k) for C0<br>0x00000<br>0x2a966<br>00 02 |                | N STATE:       | 0c 0e          | 10 12          | 14 16          | 18 1a          | 1c 1e         |
|------------------------------------------------|-------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
| тстскь.                                        |                                           |                | 00 0a  <br>    |                |                |                | 10 1a<br>      |               |
| 0x0000010:                                     | 55 26                                     | 19 20          | 23 22          | 53 40          | 57 42          | 21 36          | 25 38          | 27 63         |
| 0x0000030:                                     | 31 65                                     | 74 59          | 78 61          | 29 00          | 33 02          | 76 75          | 01 77          | 35 71         |
| 0x0000050:                                     | 39 73                                     | 03 67          | 07 69          | 37 08          | 41 10          | 05 04          | 09 06          | 43 16         |
| 0x0000070:                                     | 47 18                                     | 11 12          | 15 14          | 45 32          | 02 66          | 47 60          | 49 64          | 04 54         |
| 0x0000090:                                     | 06 58                                     | 51 52          | 53 56          | 08 70          | 10 74          | 55 68          | 57 72          | 59 14         |
| 0x00000b0:                                     | 61 18                                     | 27 12          | 29 16          | 63 30          | 65 34          | 31 28          | 33 32          | 67 22         |
| 0x00000d0:                                     | 69 26                                     | 35 20          | 37 24          | 71 38          | 73 42          | 39 36          | 41 40          | 75 46         |
| 0x00000f0:                                     | 77 50                                     | 43 44          | 45 48          | 00 62          | 26 11          | 69 05          | 73 07          | 36 17         |
| 0x0000110:                                     | 40 19                                     | 04 13          | 08 15          | 38 25          | 42 27          | 06 21          | 10 23          | 12 48         |
| 0x0000130:                                     | 16 50                                     | 59 44          | 63 46          | 14 56          | 18 58          | 61 52          | 65 54          | 28 64         |
| 0x0000150:                                     | 32 66                                     | 75 60          | 00 62          | 30 72          | 34 74          | 77 68          | 02 70          | 20 01         |
| 0x0000170:                                     | 24 03                                     | 67 76          | 71 78          | 22 09          | 58 43          | 24 37          | 26 41          | 68 47         |
| 0x0000190:                                     | 70 51                                     | 36 45          | 38 49          | 72 55          | 74 59          | 40 53          | 42 57          | 44 78         |
| 0x00001b0:                                     | 46 03                                     | 12 76          | 14 01          | 48 07          | 50 11          | 16 05          | 18 09          | 60 15         |
| 0x00001d0:                                     | 62 19                                     | 28 13          | 30 17          | 64 23          | 66 27          | 32 21          | 34 25          | 52 31         |
| 0x00001f0:                                     | 54 35                                     | 20 29          | 22 33          | 56 39          | 19 04          | 62 63          | 66 00          | 07 73         |
| 0x0000210:                                     | 11 10                                     | 54 69          | 58 06          | 23 75          | 27 12          | 70 71          | 74 08          | 76 33         |
| 0x0000230:                                     | 01 49                                     | 44 29          | 48 45          | 13 35          | 17 51          | 60 31          | 64 47          | 05 41         |
| 0x0000250:                                     | 09 57                                     | 52 37          | 56 53          | 21 43          | 25 59          | 68 39          | 72 55          | 78 65         |
| 0x0000270:                                     | 03 02                                     | 46 61          | 50 77          | 15 67          | 51 36          | 17 18          | 19 34          | 41 24         |
| 0x0000290:                                     | 43 40                                     | 09 22          | 11 38          | 57 28          | 59 44          | 25 26          | 27 42          | 29 63         |
| 0x00002b0:                                     | 31 00                                     | 76 61          | 78 77          | 45 67          | 47 04<br>55 12 | 13 65<br>21 73 | 15 02          | 37 71         |
| 0x00002d0:<br>0x00002f0:                       | 39 08<br>35 32                            | 05 69<br>01 14 | 07 06<br>03 30 | 53 75<br>49 20 | 55 12<br>75 60 | 39 48          | 23 10<br>43 56 | 33 16   00 66 |
| 0x0000210:                                     | 35 32<br>04 74                            | 47 62          | 51 70          | 08 68          | 12 76          | 55 64          | 59 72          | 61 18         |
| 0x0000310:                                     | 65 26                                     | 29 14          | 33 22          | 69 20          | 73 28          | 37 16          | 41 24          | 77 34         |
| 0x0000330:                                     | 02 42                                     | 45 30          | 49 38          | 06 36          | 10 44          | 53 32          | 57 40          | 63 50         |
| 0x0000350:                                     | 67 58                                     | 31 46          | 35 54          | 71 52          | 28 13          | 73 03          | 75 11          | 34 17         |
| 0x0000370:                                     | 36 25                                     | 02 15          | 04 23          | 42 21          | 44 29          | 10 19          | 12 27          | 14 48         |
| 0x0000390:                                     | 16 56                                     | 61 46          | 63 54          | 22 52          | 24 60          | 69 50          | 71 58          | 30 64         |
| 0x00003d0:                                     | TO 20                                     | 1 07 40 1      | 1 00 04 1      | 44 34          | 1 4 7 00 1     | 0000           | 1 1 20         | JU UT         |
| orocogac.                                      | 32 72                                     | 77 62          | l 00 70 l      | 38 68          | 40 76          | 06 66          | 08 74          | 18 01         |

page 942 of 1082

Appendix IV - Sample Data

Bluetooth.

#### 2.1.3 Third set

| Set mode:<br>Set clock:<br>Set ULAP:                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| =========                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| =========                                                                                                    | 79 HOP SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ====                 |
| Hop sequence { CLKN start: ULAP: #ticks:                                                                     | <pre>{k} for PAGE SCAN/INQUIRY SCAN:     0x0000000     0x6587cba9     0000   1000   2000   3000   4000   5000   6000   7000  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 0x0000000:<br>0x0008000:<br>0x0010000:<br>0x0018000:<br>0x0020000:<br>0x0028000:<br>0x0030000:<br>0x0038000: | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| <pre>Hop sequence { CLKE start: ULAP: #ticks:</pre>                                                          | <pre>{k} for PAGE STATE/INQUIRY STATE:     0x0000000     0x6587cba9     00 01 02 03   04 05 06 07   08 09 0a 0b   0c 0d 0e 0f  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| 0x0000000:<br>0x0000010:<br>0x0000020:<br>0x0000030:                                                         | 00 49 36 38   51 02 42 40   04 61 44 46   63 14 50 48   16 65 52 54   67 18 58 56   20 53 60 62   55 06 66 64   00 49 36 38   51 02 42 40   04 61 44 46   63 14 50 48   16 65 52 54   67 18 58 56   20 53 60 62   55 06 66 64                                                                                                                                                                                                                                                                                                                               |                      |
| 0x0001000:<br>0x0001010:<br>0x0001020:<br>0x0001030:                                                         | 00 57 36 70   59 10 74 72   12 69 76 78   71 22 03 01   24 73 05 07   75 26 11 09   28 45 13 30   47 77 34 32   00 57 36 70   59 10 74 72   12 69 76 78   71 22 03 01   24 73 05 07   75 26 11 09   28 45 13 30   47 77 34 32                                                                                                                                                                                                                                                                                                                               |                      |
| 0x0002000:<br>0x0002010:<br>0x0002020:<br>0x0002030:                                                         | 08 57 68 70   51 02 42 40   04 61 44 46   63 14 50 48   16 65 52 54   67 18 58 56   20 53 60 62   55 06 66 64   08 57 68 70   51 02 42 40   04 61 44 46   63 14 50 48   16 65 52 54   67 18 58 56   20 53 60 62   55 06 66 64                                                                                                                                                                                                                                                                                                                               |                      |
| 0x0003000:<br>0x0003010:<br>0x0003020:<br>0x0003030:                                                         | 00     49     36     38     51     10     42     72     12     69     76     78     71     22     03     01       24     73     05     07     75     26     11     09     28     45     13     30     47     77     34     32       00     49     36     38     51     10     42     72     12     69     76     78     71     22     03     01       24     73     05     07     75     26     11     09     28     45     13     30     47     77     34     32                                                                                           |                      |
| <pre>Hop sequence { CLKN* = ULAP: #ticks:</pre>                                                              | <pre>{k} for SLAVE PAGE RESPONSE STATE:     0x0000010     0x6587cba9     00   02 04   06 08   0a 0c   0e 10   12 14   16 18   1a 1c  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                 | 1e                   |
| 0x0000012:<br>0x0000032:<br>0x0000052:<br>0x0000072:                                                         | 52       65       54       67       58       18       56       20       60       53       62       55       66       06       64         68       57       70       59       74       10       72       12       76       69       78       71       03       22       01         05       73       07       75       11       26       09       28       13       45       30       47       34       77       32         36       49       38       51       42       02       40       04       44       61       46       63       50       14       48 | 08<br>24<br>00<br>16 |
| <pre>Hop sequence { Offset value: CLKE* = ULAP: #ticks:</pre>                                                | <pre>{k} for MASTER PAGE RESPONSE STATE:     24     0x00000012     0x6587cba9     00 02   04 06   08 0a   0c 0e   10 12   14 16   18 1a   1c 16</pre>                                                                                                                                                                                                                                                                                                                                                                                                       | e                    |
| 0x0000014:<br>0x0000034:<br>0x0000054:<br>0x00000074:                                                        | 65 54   67 58   18 56   20 60   53 62   55 66   06 64   08 68 57 70   59 74   10 72   12 76   69 78   71 03   22 01   24 09 73 07   75 11   26 09   28 13   45 30   47 34   77 32   00 36 49 38   51 42   02 40   04 44   61 46   63 50   14 48   16 52                                                                                                                                                                                                                                                                                                     | 5                    |

Bluetooth.

| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | {k} for C0<br>0x00000<br>0x65870<br>00 02                                                                                                                                                                                                                |                                                                                                                                                                                                                                                 | 08 0a                                                                                                                                                                                                                                                             | 0c 0e                                                                                                                                                                    | 10 12                                                                                                                                                                                                                                                | 14 16                                                                                                                                                                                                                                                             | 18 1a                                                                                                                                                                                                                                                             | 1c 1e                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0000010: 0x0000050: 0x0000050: 0x0000050: 0x0000000: 0x0000000: 0x0000000: 0x0000010: 0x0000110: 0x0000150: 0x0000150: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000250: 0x0000350: 0x0000350: 0x0000370: 0x0000390: | 20 60<br>12 76<br>28 13<br>04 44<br>52 13<br>44 29<br>60 45<br>36 76<br>76 69<br>13 77<br>68 37<br>29 77<br>37 22<br>45 30<br>21 69<br>69 30<br>73 58<br>77 62<br>65 26<br>22 62<br>28 13<br>30 15<br>20 60<br>46 15<br>58 43<br>62 47<br>42 11<br>78 47 | 53 62<br>69 78<br>45 30<br>61 46<br>06 15<br>22 31<br>77 62<br>14 78<br>46 47<br>54 55<br>30 15<br>38 23<br>78 00<br>07 08<br>62 47<br>70 55<br>23 32<br>27 36<br>15 00<br>19 04<br>55 64<br>47 32<br>49 34<br>16 17<br>20 21<br>00 68<br>48 49 | 55 66<br>71 03<br>47 34<br>63 50<br>10 17<br>26 33<br>02 64<br>18 01<br>48 51<br>56 59<br>32 19<br>40 27<br>03 02<br>11 10<br>66 49<br>74 57<br>25 48<br>29 52<br>17 16<br>21 20<br>59 01<br>61 03<br>51 48<br>53 50<br>18 25<br>22 29<br>02 72<br>06 76<br>52 57 | 06 64 22 01 77 32 14 48 38 19 54 35 30 66 46 03 78 757 62 17 70 25 31 04 39 12 15 51 23 59 55 34 59 38 47 02 51 06 08 68 10 70 00 36 02 38 48 19 52 23 32 66 30 70 01 53 | 08 68   24 05   00 36   50 05   42 21   58 37   34 68   72 29   01 53 09 61   64 21   27 61   35 06   43 14   19 53   53 22   57 50   61 54   49 18   06 54   12 05   14 07   04 52   38 78   50 27   54 31   34 74   70 61   61   10 5 61   10 5 61 | 57 70<br>73 07<br>49 38<br>16 07<br>08 23<br>24 39<br>00 70<br>42 39<br>50 63<br>58 71<br>34 31<br>72 71<br>01 16<br>09 24<br>64 63<br>35 12<br>39 40<br>43 44<br>31 08<br>65 42<br>71 72<br>73 74<br>63 40<br>12 05<br>24 33<br>28 37<br>08 01<br>42 35<br>56 65 | 59 74<br>75 11<br>51 42<br>20 09<br>12 25<br>28 41<br>04 72<br>44 43<br>52 67<br>60 75<br>36 35<br>76 73<br>05 18<br>13 26<br>45 60<br>37 28<br>41 56<br>45 60<br>33 24<br>69 58<br>75 09<br>77 11<br>67 56<br>14 13<br>26 41<br>30 45<br>10 09<br>46 43<br>60 73 | 10 72<br>26 09<br>02 40<br>48 11<br>40 27<br>56 43<br>32 74<br>74 41<br>03 65<br>11 73<br>66 33<br>25 75<br>33 20<br>41 28<br>17 67<br>67 14<br>71 42<br>75 46<br>63 10<br>18 46<br>24 76<br>26 78<br>16 44<br>44 07<br>56 35<br>60 39<br>40 03<br>74 39<br>09 69 |
| 0x00003b0:<br>0x00003d0:<br>0x00003f0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 77<br>15 00<br>76 45                                                                                                                                                                                                                                  | 50 51<br>32 17<br>34 19                                                                                                                                                                                                                         | 54 59<br>36 25<br>38 27                                                                                                                                                                                                                                           | 03 55<br>64 21<br>66 23                                                                                                                                                  | 07 63<br>68 29<br>11 71                                                                                                                                                                                                                              | 58 67<br>40 33<br>05 18                                                                                                                                                                                                                                           | 62 75<br>44 41<br>07 22                                                                                                                                                                                                                                           | 11 71<br>72 37<br>13 20                                                                                                                                                                                                                                           |

### 2.2 THE 23-HOP SYSTEM SAMPLE DATA

#### 2.2.1 First set

# Bluetooth.

| Set mode:<br>Set clock:<br>Set ULAP:                 |                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| =======================================              |                                                                                                                                                                                                                                                                                                                 |
|                                                      | 23 HOP SYSTEM                                                                                                                                                                                                                                                                                                   |
| =                                                    |                                                                                                                                                                                                                                                                                                                 |
| <pre>Hop sequence {k CLKN start: ULAP: #ticks:</pre> | x} for PAGE SCAN/INQUIRY SCAN:<br>0x0000000<br>0x00000000<br>0000   1000   2000   3000   4000   5000   6000   7000                                                                                                                                                                                              |
| 0x0000000:                                           | 0   2   4   6   8   10   12   14                                                                                                                                                                                                                                                                                |
| 0x0008000:<br>0x0010000:                             | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                          |
| 0x0018000:<br>0x0020000:                             | 16     18     20     22     1     3     5     7       0     2     4     6     8     10     12     14                                                                                                                                                                                                            |
| 0x0028000:<br>0x0030000:<br>0x0038000:               | 16     18     20     22     1     3     5     7       0     2     4     6     8     10     12     14       16     18     20     22     1     3     5     7                                                                                                                                                      |
| ,                                                    | ts for PAGE STATE/INQUIRY STATE:                                                                                                                                                                                                                                                                                |
| CLKE start:<br>ULAP:<br>#ticks:                      | 0x0000000<br>0x00000000<br>00 01 02 03   04 05 06 07   08 09 0a 0b   0c 0d 0e 0f                                                                                                                                                                                                                                |
| 0x0000000:                                           | 16 18 02 10   20 22 06 14   01 03 04 12   05 07 08 16                                                                                                                                                                                                                                                           |
| 0x0000010:<br>0x0000020:<br>0x0000030:               | 00 02 09 17   04 06 13 21   08 10 11 19   12 14 15 00   16 18 02 10   20 22 06 14   01 03 04 12   05 07 08 16   00 02 09 17   04 06 13 21   08 10 11 19   12 14 15 00                                                                                                                                           |
| 0x0001000:<br>0x0001010:                             | 18 20 10 06   22 01 14 04   03 05 12 08   07 00 16 09   02 04 17 13   06 08 21 11   10 12 19 15   14 16 00 02                                                                                                                                                                                                   |
| 0x0001020:<br>0x0001030:                             | 18 20 10 06   22 01 14 04   03 05 12 08   07 00 16 09   02 04 17 13   06 08 21 11   10 12 19 15   14 16 00 02                                                                                                                                                                                                   |
| 0x0002000:<br>0x0002010:                             | 20 22 06 14   01 03 04 12   05 07 08 16   00 02 09 17   04 06 13 21   08 10 11 19   12 14 15 00   16 18 02 10                                                                                                                                                                                                   |
| 0x0002020:<br>0x0002030:                             | 20 22 06 14   01 03 04 12   05 07 08 16   00 02 09 17 04 06 13 21   08 10 11 19   12 14 15 00   16 18 02 10                                                                                                                                                                                                     |
| 0x0003000:<br>0x0003010:                             | 22 01 14 04   03 05 12 08   07 00 16 09   02 04 17 13   06 08 21 11   10 12 19 15   14 16 00 02   18 20 10 06                                                                                                                                                                                                   |
| 0x0003020:<br>0x0003030:                             | 22 01 14 04   03 05 12 08   07 00 16 09   02 04 17 13   06 08 21 11   10 12 19 15   14 16 00 02   18 20 10 06                                                                                                                                                                                                   |
| Hop sequence {k<br>CLKN* =                           | for SLAVE PAGE RESPONSE STATE:<br>0x0000010                                                                                                                                                                                                                                                                     |
| ULAP:<br>#ticks:                                     | 0x0000000<br>00   02 04   06 08   0a 0c   0e 10   12 14   16 18   1a 1c   1e                                                                                                                                                                                                                                    |
| 0x0000012:                                           | 09   02 17   04 13   06 21   08 11   10 19   12 15   14 00   16 02   18 10   20 06   22 14   01 04   03 12   05 08   07 16   00                                                                                                                                                                                 |
| 0x0000032:<br>0x0000052:<br>0x0000072:               | 02       18 10       20 06       22 14       01 04       03 12       05 08       07 16       00         09       02 17       04 13       06 21       08 11       10 19       12 15       14 00       16         02       18 10       20 06       22 14       01 04       03 12       05 08       07 16       00 |
| Hop sequence {k Offset value:                        | x} for MASTER PAGE RESPONSE STATE:                                                                                                                                                                                                                                                                              |
| CLKE* = ULAP:                                        | 0x0000012<br>0x00000000<br>00 02   04 06   08 02   00 02   10 12   14 16   18 12   16 10                                                                                                                                                                                                                        |
| #ticks:<br>0x0000014:                                | 00 02   04 06   08 0a   0c 0e   10 12   14 16   18 1a   1c 1e                                                                                                                                                                                                                                                   |
| 0x0000014:                                           | 18 10   20 06   22 14   01 04   03 12   05 08   07 16   00 09                                                                                                                                                                                                                                                   |

# Bluetooth.

| 0x0000054:<br>0x0000074:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                             | 04 13  <br>20 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   | 08 11  <br>01 04                                                                                                                                                                                                                                                                                                                         | 10 19<br>03 12                                                                                                                                                       | 12 15<br>05 08                                                                                                                                                                            | 14 00<br>  07 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 02  <br>  00 09                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x000001<br>0x000000                                                                                                                                                                                                                                                        | _0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | 0c 0e                                                                                                                                                                                                                                                                                                                                    | 10 12                                                                                                                                                                | 14 16                                                                                                                                                                                     | 18 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1c 1e                                                                                                                                                                                                                                                                            |
| 0x0000010: 0x0000030: 0x0000030: 0x0000070: 0x00000000: 0x00000000: 0x00000010: 0x0000110: 0x0000150: 0x0000150: 0x0000150: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000170: 0x0000120: 0x0000210: 0x0000250: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: | 01 04<br>01 04<br>17 20<br>17 22<br>10 15<br>10 15<br>03 08<br>11 06<br>19 14<br>04 22<br>12 07<br>20 17<br>05 02<br>13 10<br>21 18<br>21 15<br>00 17<br>14 08<br>16 10<br>07 01<br>11 05<br>00 17<br>04 21<br>01 02<br>03 04<br>17 18<br>19 20<br>10 11<br>11 4 5<br>03 04 | 10 19<br>03 12<br>03 12<br>19 05<br>21 07<br>14 00<br>14 00<br>17 16<br>13 22<br>21 07<br>06 15<br>14 00<br>01 10<br>09 18<br>17 03<br>02 11<br>14 00<br>16 02<br>07 16<br>09 18<br>09 18<br>17 03<br>02 11<br>14 00<br>16 02<br>07 16<br>09 18<br>11 20<br>00 06<br>01 10<br>09 18<br>11 20<br>00 10<br>10 10<br>10<br>10 10<br>10<br>10 10<br>10<br>10 10<br>10<br>10 10<br>10 10<br>10 10<br>10 10 | 05 08<br>05 08<br>21 01<br>19 01<br>12 17<br>12 17<br>05 10<br>15 10<br>00 18<br>08 03<br>16 11<br>22 19<br>07 04<br>15 12<br>00 20<br>02 19<br>04 21<br>18 12<br>20 14<br>09 03<br>13 07<br>02 19<br>06 00<br>07 08<br>21 22<br>00 01<br>12 13<br>16 17<br>05 06 | 14 00   07 16 07 16 00 09 00 09 16 02 16 02 17 03 02 11 10 19 18 04 03 12 11 20 19 05 04 13 18 04 22 08 11 20 06 15 18 04 12 20 15 01 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 15 08 17 20 06 01 10 13 22 | 16 02 16 02 09 18 09 18 09 18 04 11 18 04 18 04 13 12 21 20 06 05 14 13 22 15 01 06 15 08 17 22 08 03 12 15 01 19 05 08 17 10 19 01 10 03 12 17 03 21 07 10 19 14 00 | 18 10 18 10 11 03 13 03 06 19 06 19 22 12 20 20 05 05 13 13 21 21 08 06 16 14 01 22 09 07 06 07 08 09 22 00 01 02 15 16 19 20 08 09 12 13 16 10 18 12 09 03 11 05 02 19 06 00 18 12 22 16 | 20 06<br>20 06<br>13 22<br>11 20<br>04 13<br>20 06<br>22 08<br>07 16<br>15 01<br>00 09<br>06 15<br>14 00<br>22 08<br>07 16<br>17 03<br>19 05<br>10 19<br>12 21<br>01 10<br>01 01 01<br>01 01 01<br>01 01 01<br>01 01 01<br>01 01 01<br>01 01 01<br>01 01 01 01 01 01 01 01 01 01 01 01 01 0 | 22 14   22 14   15 07   15 05   08 21   01 14   01 01   09 09   17 17   02 02   10 08   18 16   03 01   11 09   10 11   12 13   03 04   05 06   17 18   21 22   10 11   14 15   20 14   22 16   13 07   15 09   04 21   08 02   20 14   01 18   18   18   18   18   18   19   19 |
| 0x00003f0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07 08                                                                                                                                                                                                                                                                       | 15 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09 10                                                                                                                                                                                                                                                             | 17 03                                                                                                                                                                                                                                                                                                                                    | 03 12                                                                                                                                                                | 05 16                                                                                                                                                                                     | 11 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 01                                                                                                                                                                                                                                                                            |

page 946 of 1082

Appendix IV - Sample Data

Bluetooth.

#### 2.2.2 Second set

Set mode: Set clock: Set ULAP: \_\_\_\_\_\_ 23 HOP SYSTEM \_\_\_\_\_\_

Hop sequence  $\{k\}$  for PAGE SCAN/INQUIRY SCAN: CLKN start: 0x0000000

CLKN start: 0x2a96ef25

| ULIAF.     | UAZaju | CLZJ |      |      |      |      |      |      |  |
|------------|--------|------|------|------|------|------|------|------|--|
| #ticks:    | 0000   | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 |  |
|            |        |      |      |      |      |      |      |      |  |
| 0x0000000: | 7      | 18   | 3    | 8    | 16   | 4    | 12   | 1    |  |
| 0x0008000: | 9      | 20   | 5    | 6    | 14   | 2    | 10   | 22   |  |
| 0x0010000: | 7      | 18   | 3    | 8    | 16   | 4    | 12   | 1    |  |
| 0x0018000: | 9      | 20   | 5    | 6    | 14   | 2    | 10   | 22   |  |
| 0x0020000: | 7      | 18   | 3    | 8    | 16   | 4    | 12   | 1    |  |
| 0x0028000: | 9      | 20   | 5    | 6    | 14   | 2    | 10   | 22   |  |
| 0x0030000: | 7      | 18   | 3    | 8    | 16   | 4    | 12   | 1    |  |
| 0x0038000: | 9      | 20   | 5    | 6    | 14   | 2    | 10   | 22   |  |

Hop sequence  $\{k\}$  for PAGE STATE/INQUIRY STATE: CLKE start: 0x0000000

CLKE start: TIT.AP: 0x2a96ef25

#ticks: 00 01 02 03 | 04 05 06 07 | 08 09 0a 0b | 0c 0d 0e 0f |  $0 \times 000000000$ : 09 20 18 00 05 06 02 04 14 02 06 11 10 22 13 12 0x000010: 07 18 14 19 03 08 21 08 16 04 10 15 12 01 17 16 0x0000020: 09 20 18 00 05 06 02 04 14 02 06 11 10 22 13 12 0x0000030: 07 18 14 19 03 08 21 08 | 16 04 10 15 12 01 17 16 0x0001000: 20 05 00 02 06 14 04 06 02 10 11 22 07 12 14 08 16 08 10 04 12 15 17 0x0001010: 18 03 19 21 01 09 16 18 06 14 04 06 08 16 08 10 02 10 11 13 04 12 15 17 0x0001020: 20 05 00 02 22 07 12 14 18 03 19 21  $0 \times 0001030$ : 01 09 16 18  $0 \times 0002000$ : 05 06 02 04 14 02 06 11 07 18 14 19 10 22 13 12 0x0002010: 03 08 21 08 16 04 10 15 12 01 17 16 09 20 18 00 0x0002020: 05 06 02 04 14 02 06 11 10 22 13 12 07 18 14 19 0x0002030: 03 08 21 08 16 04 10 15 12 01 17 16 09 20 18 00 0x0003000: 06 14 04 06 02 10 11 13 0x0003010: 08 16 08 10 04 12 15 17 01 09 16 18 20 05 00 02 0x0003020: 06 14 04 06 02 10 11 13 22 07 12 14 18 03 19 21 0x0003030: 08 16 08 10 | 04 12 15 17 01 09 16 18 20 05 00 02

Hop sequence {k} for SLAVE PAGE RESPONSE STATE: 0x0000010

CLKN\* =

ULAP: 0x2a96ef25

00 | 02 04 | 06 08 | 0a 0c | 0e 10 | 12 14 | 16 18 | 1a 1c | 1e #ticks: 04 15 01 16 0x0000012: 14 18 19 03 21 08 08 16 10 12 17 09 20 00 0x0000032: 18 05 02 06 04 14 06 02 11 10 13 22 12 07 04 15 0x0000052: 18 19 03 21 80 08 16 10 12 17 01 16 09 0x0000072: 18 | 20 00 | 05 02 | 06 04 14 06 02 11 10 13

Hop sequence  $\{k\}$  for MASTER PAGE RESPONSE STATE: Offset value: 24

CLKE\* = 0x0000012 ULAP: 0x2a96ef25

00 02 | 04 06 | 08 0a | 0c 0e | 10 12 | 14 16 | 18 1a | 1c 1e | #ticks: 18 19 | 03 21 | 08 08 | 16 10 | 04 15 | 12 17 | 01 16 | 09 18 20 00 | 05 02 | 06 04 | 14 06 | 02 11 | 10 13 | 22 12 | 07 14  $0 \times 0000014$ :  $0 \times 0000034$ :

page 947 of 1082

| Appendix I | V - | Sample | Data |
|------------|-----|--------|------|
|------------|-----|--------|------|

# Bluetooth.

| 0x0000054:<br>0x0000074:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18 19   01<br>20 00   01                                            |                                           | 111_2<br>08 08  <br>06 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3_B.LXL<br>16 10  <br>14 06                                                                                                                                                        | 04 15  <br>02 11                                                                                                                                                     | 12 17<br>10 13                                                                                                                                                                                                                                           | 01 16 22 12                                                                                                                                                                                           | 09 18  <br>07 14                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>{k} for CONNI     0x0000010     0x2a96ef29     00 02   0</pre> | 5 .                                       | TATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0c 0e                                                                                                                                                                              | 10 12                                                                                                                                                                | 14 16                                                                                                                                                                                                                                                    | 18 1a                                                                                                                                                                                                 | 1c 1e                                                                                                                                                                                |
| 0x0000010: 0x0000030: 0x0000050: 0x0000070: 0x0000000: 0x0000000: 0x0000010: 0x0000110: 0x0000170: |                                                                     | 4 15   1   1   2   11   1   1   1   1   1 | 2 17   13   15   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   16   1 | 01 16   22 12 17 09 15 05 10 00 06 21 03 16 22 14 11 11 09 07 04 04 02 00 20 18 16 16 13 11 09 09 18 06 16 21 11 22 09 14 06 13 02 05 22 06 18 21 13 01 11 08 06 17 04 01 17 04 01 | 09 18 00 07 02 11 14 02 18 04 07 18 11 20 09 04 13 18 02 20 06 09 20 13 22 02 13 06 15 20 00 22 08 13 16 15 01 04 09 08 17 20 02 01 10 15 10 17 03 08 03 10 19 22 19 | 20 00<br>11 12<br>13 16<br>04 05<br>08 07<br>20 21<br>01 00<br>05 22<br>07 03<br>21 15<br>00 19<br>14 08<br>18 10<br>07 01<br>11 03<br>08 05<br>10 13<br>01 21<br>03 06<br>17 12<br>21 20<br>10 05<br>14 13<br>18 00<br>20 16<br>11 16<br>13 09<br>04 07 | 05 02<br>19 14<br>21 18<br>12 09<br>16 11<br>05 02<br>09 04<br>21 01<br>00 05<br>14 17<br>16 21<br>07 12<br>11 14<br>00 05<br>04 07<br>12 07<br>12 07<br>12 07<br>12 07<br>12 09<br>16 10<br>10 00 11 | 06 04   01 01 22 20 17 15 13 13 10 08 06 06 06 03 18 01 14 19 11 17 07 12 02 08 00 00 5 18 01 16 02 02 00 17 18 18 18 16 10 13 11 09 03 06 04 02 19 05 20 03 04 21 13 19 20 16 06 06 |
| 0x0000390:<br>0x00003b0:<br>0x00003d0:<br>0x00003f0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 10   00<br>14 17   19<br>11 03   10<br>07 10   13                | 9 05   2<br>5 14   1                      | 02 02  <br>21 09  <br>8 18  <br>4 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 08<br>20 15<br>17 01<br>13 08                                                                                                                                                   | 03 12<br>15 12<br>19 05<br>19 17                                                                                                                                     | 08 00<br>20 00<br>01 16<br>07 22                                                                                                                                                                                                                         | 10 04<br>22 04<br>03 20<br>15 15                                                                                                                                                                      | 12 13<br>09 22<br>05 06<br>02 20                                                                                                                                                     |

page 948 of 1082

Appendix IV - Sample Data

Bluetooth.

### 2.2.3 Third set

Set mode: Set clock: Set ULAP:

\_\_\_\_\_\_

23 HOP SYSTEM

\_\_\_\_\_\_

Hop sequence  $\{k\}$  for PAGE SCAN/INQUIRY SCAN: CLKN start: 0x0000000CLKN start:

ULAP: 0x6587cba9

| #ticks:    | 0000 | 1000 | 2000 | 3000 | 4000 | 5000    | 6000 | 7000 | İ    |
|------------|------|------|------|------|------|---------|------|------|------|
| 0x0000000: | 0    | 10   | 14   | 12   | 16   | <br>  9 | 13   | 11   | <br> |
| 0x0008000: | 15   | 2    | 6    | 4    | 8    | 17      | 21   | 19   |      |
| 0x0010000: | 0    | 10   | 14   | 12   | 16   | 9       | 13   | 11   | ĺ    |
| 0x0018000: | 15   | 2    | 6    | 4    | 8    | 17      | 21   | 19   | ĺ    |
| 0x0020000: | 0    | 10   | 14   | 12   | 16   | 9       | 13   | 11   | ĺ    |
| 0x0028000: | 15   | 2    | 6    | 4    | 8    | 17      | 21   | 19   | ĺ    |
| 0x0030000: | 0    | 10   | 14   | 12   | 16   | 9       | 13   | 11   | ĺ    |
| 0x0038000: | 15   | 2    | 6    | 4    | 8    | l 17 l  | 21   | 19   | ĺ    |

Hop sequence  $\{k\}$  for PAGE STATE/INQUIRY STATE:

0x0000000 CLKE start: ULAP: 0x6587cba9

00 01 02 03 | 04 05 06 07 | 08 09 0a 0b | 0c 0d 0e 0f | #ticks:  $0 \times 000000000$ : 15 02 05 11 06 04 19 13 08 17 21 22 21 19 07 01 00 10 09 15 15 02 05 11 16 09 02 18  $0 \times 0000010$ : 14 12 00 17 13 11 03 20 21 19 07 01 13 11 03 20 08 17 21 22 06 04 19 13  $0 \times 0000020$ : 14 12 00 17 0x0000030: 00 10 09 15 16 09 02 18 0x0001000: 02 06 11 19 04 08 13 21 17 21 22 07 19 00 01 09 0x0001010: 10 14 15 00 12 16 17 02 09 13 18 03 11 15 20 05 0x0001020: 02 06 11 19 04 08 13 21 17 21 22 07 19 00 01 09 09 13 18 03 0x0001030: 10 14 15 00 12 16 17 02 11 15 20 05 0x0002000: 06 04 19 13 08 17 21 22 21 19 07 01 00 10 09 15 16 09 02 18 08 17 21 22  $0 \times 0002010$ : 14 12 00 17 06 04 19 13 13 11 03 20 21 19 07 01 15 02 05 11 00 10 09 15  $0 \times 0002020$ : 14 12 00 17 16 09 02 18  $0 \times 0002030$ : 13 11 03 20 15 02 05 11 0x0003000: 04 08 13 21 17 21 22 07 19 00 01 09 10 14 15 00 12 16 17 02 0x0003010: 09 13 18 03 11 15 20 05 02 06 11 19 0x0003020: 04 08 13 21 17 21 22 07 19 00 01 09 10 14 15 00 0x0003030: 12 16 17 02 | 09 13 18 03 11 15 20 05 02 06 11 19

Hop sequence {k} for SLAVE PAGE RESPONSE STATE: CLKN\* = 0x0000010

CLKN\* = ULAP: 0x6587cba9

00 | 02 04 | 06 08 | 0a 0c | 0e 10 | 12 14 | 16 18 | 1a 1c | 1e #ticks: 0x0000012: 10 15 09 | 12 17 16 02 09 18 13 03 11 20 15 14 00 04 13 17 22 21 07 19 01  $0 \times 0000032$ : 0.5 02 11 06 19 08 21 0.0 0x0000052: 09 10 15 14 00 12 17 16 02 09 18 13 03 11 20 15 0x0000072: 05 02 11 | 06 19 04 13 08 21 17 22

Hop sequence  $\{k\}$  for MASTER PAGE RESPONSE STATE: Offset value: 24

Offset value: CLKE\* =

0x0000012

ULAP: 0x6587cba9

#ticks: 00 02 | 04 06 | 08 0a | 0c 0e | 10 12 | 14 16 | 18 1a | 1c 1e | 
 10
 15
 | 14
 00
 | 12
 17
 | 16
 02
 | 09
 18
 | 13
 03
 | 11
 20
 | 15
 05

 02
 11
 | 06
 19
 | 04
 13
 | 08
 21
 | 17
 22
 | 21
 07
 | 19
 01
 | 00
 09
 0x0000014:  $0 \times 0000034$ :

| Appendix | IV - | Sample | Data |
|----------|------|--------|------|
|----------|------|--------|------|

| 0x0000054:<br>0x0000074:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 15   14 00<br>02 11   06 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 17  <br>  04 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 02  <br>08 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09 18<br>17 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 03<br>21 07                                                                                                                                                                                                                                                                                                                                                               | 11 20<br>  19 01                                                                                                                                                                                                                                                                             | 15 05  <br>  00 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hop sequence<br>CLK start:<br>ULAP:<br>#ticks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>{k} for CONNECTI     0x0000010     0x6587cba9     00 02   04 06</pre>                                                                                                                                                                                                                                                                                                                                                                                                                     | ON STATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0c 0e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 16                                                                                                                                                                                                                                                                                                                                                                        | 18 1a                                                                                                                                                                                                                                                                                        | 1c 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0x0000010: 0x0000030: 0x0000050: 0x0000070: 0x00000000: 0x00000000: 0x0000010: 0x0000110: 0x0000150: 0x0000170: 0x0000150: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000160: 0x0000170: 0x0000170: 0x0000210: 0x0000210: 0x0000210: 0x0000250: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: 0x0000350: | 16 02   09 18 08 21 17 22 09 18 02 11 18 04 17 09 03 06 18 04 11 20 11 20 04 13 10 15 20 06 15 22 08 15 01 20 04 17 05 15 01 08 17 01 10 04 15 05 12 06 17 03 12 20 66 17 03 12 15 22 12 06 17 03 12 20 10 19 03 12 06 17 07 14 03 12 19 05 12 20 10 19 03 12 06 17 07 14 03 12 19 05 12 20 10 19 03 12 06 17 07 14 03 12 19 05 12 10 19 03 12 12 19 05 12 10 19 03 12 12 19 05 12 10 19 03 12 12 19 05 12 10 19 03 12 12 19 05 12 10 19 03 12 12 19 05 12 10 19 03 12 12 19 05 12 10 10 00 07 | 13 03<br>21 07<br>06 19<br>14 00<br>20 12<br>05 14<br>13 05<br>21 07<br>08 06<br>01 10<br>01 22<br>17 03<br>15 15<br>08 17<br>08 08<br>01 10<br>03 10<br>05 14<br>19 03<br>21 07<br>10 03<br>11 07<br>10 03<br>10 05<br>14 19 03<br>21 07<br>10 05<br>11 00<br>11 00<br>10 | 11 20   19 01   04 13   12 17   22 08   07 10   15 01   00 03   06 15   22 19   22 08   15 12   17 03   10 05   16 09 20   00 09   02 13   16 02   20 04   09 18   13 20   10 19   12 00   03 12   05 16   19 05   06 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05   16 19 05 | 15 05<br>16 02<br>08 21<br>09 18<br>01 16<br>02 11<br>17 09<br>03 12<br>10 08<br>19 05<br>14 12 12<br>13 22<br>11 18<br>06 15<br>04 11<br>22 08<br>18 06 15<br>04 11<br>22 11 22<br>16 02<br>17 09<br>18 04<br>12 12 12<br>16 02<br>17 09<br>18 04<br>11 22<br>16 02<br>17 09<br>18 04<br>17 09<br>18 04<br>11 22<br>16 02<br>17 09<br>18 04<br>19 05<br>10 08<br>10 08 | 02 11<br>03 08<br>18 04<br>19 22<br>11 20<br>12 15<br>04 13<br>05 02<br>12 21<br>21 18<br>05 14<br>14 09<br>21 07<br>07 02<br>14 00<br>17 05<br>15 01<br>10 21<br>08 17<br>05 12<br>01 10<br>21 05<br>17 03<br>04 15<br>02 11<br>20 08<br>15 02<br>11 20<br>08 15<br>04 13<br>05 12<br>17 10<br>18 15<br>18 16<br>18 16<br>18 17<br>18 18 18 18 18 18 18 18 18 18 18 18 18 1 | 06 19<br>07 16<br>22 12<br>21 07<br>13 05<br>14 00<br>06 21<br>09 18<br>16 14<br>02 11<br>09 07<br>16 02<br>00 00<br>09 18<br>16 16<br>21 07<br>19 03<br>14 00<br>12 19<br>07 16<br>03 14<br>00 09<br>19 07<br>08 17<br>06 13<br>01 10<br>22 06<br>17 03<br>13 01<br>10 19<br>06 17<br>17 03 | 04 13<br>05 10<br>20 06<br>00 03<br>15 01<br>16 19<br>08 17<br>07 04<br>14 00<br>00 20<br>07 16<br>18 13<br>02 11<br>11 06<br>18 04<br>02 13<br>00 09<br>18 06<br>16 02<br>13 20<br>09 18<br>06 13<br>02 11<br>20 08<br>18 04<br>13 01<br>11 20<br>08 15<br>04 13<br>01 08<br>15 04<br>10 08<br>10 08 |

Appendix IV - Sample Data

Bluetooth.

# 3 ACCESS CODE SAMPLE DATA

Different access codes (GIAC, DIACs, others...)

LAP with LSB as rightmost bit.

Bit transmit order on air

| Preamble: | Sync word: | Trailer: | LAP: 000000 5 | 7e7041e3 4000000d | | e758b522 7ffffff2 | ffffff 9e8b33 | 475c58cc 73345e72 | 5 | 28ed3c34 cb345e72 | 9e8b34 9e8b36 | 62337b64 1b345e72 | 9e8b39 | c05747b9 e7345e72 | 9e8b3d 5 | 7084eab0 2f345e72 | | 64c86d2b 90b45e72 | 9e8b42 9e8b48 | e3c3725e 04b45e72 | 9e8b4f | 8c7216a6 bcb45e72 | | b2f16c30 fab45e72 | 9e8b57 а | 57bd3b22 c1b45e72 | 9e8b60 9e8b6a | d0b62457 55b45e72 | 9e8b75 | 81843a39 abb45e72 | | 0ca96681 e0745e72 | 9e8b81 9e8b8e | aecd5a5c 1c745e72 | | 17453fbf ce745e72 | 9e8b9c а | f20968ad f5745e72 | 9e8bab 9e8bbb | 015f4ale f7745e72 | 9e8bcc | d8c695a0 0cf45e72 | 9e8bde | 614ef043 def45e72 | 9e8bf1 | ba81ddc7 a3f45e72 | 5 | 64a7dc4f 680c5e72 | 9e8c05 а 9e8cla | 3595c221 960c5e72 | 9e8c30 | cb35cc0d 830c5e72 | | 12ac13b3 788c5e72 | 9e8c47 9e8c5f 5 | 2c2f6925 3e8c5e72 | 9e8c78 | 3a351c84 078c5e72 | | 7396d0f3 124c5e72 | 5 9e8c92 9e8cad | 5b0fdfc4 6d4c5e72 | 9e8cc9 | aea2eb38 e4cc5e72 | | 756dc6bc 99cc5e72 | 9e8ce6 9e8d04 5 | 214cf934 882c5e72 | 9e8d23 | 37568c95 b12c5e72 | | 72281560 f0ac5e72 | 9e8d43 а 9e8d64 | 643260c1 c9ac5e72 | 9e8d86 | e044f493 986c5e72 | | 3b8bd917 e56c5e72 | 9e8da9 9e8dcd ce26edeb 6cec5e72 а 9e8df2 | e6bfe2dc 13ec5e72 | | 82dcde3d c61c5e72 | 9e8e18 а

9e8e3f

| 94c6ab9c ff1c5e72 |

#### Appendix IV - Sample Data Bluetooth. 9e8e67 | 969059a6 799c5e72 | 9e8e90 | c4dfccef 425c5e72 | | 3a7fc2c3 575c5e72 | 9e8eba 9e8ee5 | 57985401 69dc5e72 | 9e8f11 | 0ae2a363 623c5e72 | | d12d8ee7 1f3c5e72 | 9e8f3e 5 | 547063a8 0dbc5e72 | 9e8f6c 9e8f9b | 063ff6e1 367c5e72 | 9e8fcb | c9bc5cfe f4fc5e72 | 9e8ffc | 2cf00bec cffc5e72 | 9e902e | 8ec5052f 5d025e72 | 9e9061 | 1074b15e 61825e72 | 9e9095 | 9d59ede6 2a425e72 | а | f0be7b24 14c25e72 | 9e90ca 9e9100 | 10e10dd0 c0225e72 | | f5ad5ac2 fb225e72 | 9e9137 | f7fba8f8 7da25e72 | 9e916f а 9e91a8 | 2f490e5b c5625e72 | | 94979982 91e25e72 | 9e91e2 | 26cda478 2e125e72 | 9e921d 9e9259 | aacb81dd 26925e72 | | bfac7f5b da525e72 | 9e9296 9e92d4 | c9a7b0a7 cad25e72 | 9e9313 | c142bdde 32325e72 | 5 | 586a491f 0dcda18d | 616cec 616ceb | 37db2de7 b5cda18d | 5 616ce9 | 7d056ab7 65cda18d | 616ce6 | df61566a 99cda18d | 616ce2 | 6fb2fb63 51cda18d | 5 616cdd | 472bf454 2ecda18d | | c020eb21 bacda18d | 616cd7 616cd0 | af918fd9 02cda18d | 5 616cc8 | 9112f54f 44cda18d | | 488b2af1 bf4da18d | 616cbf 5 616cb5 | cf803584 2b4da18d | 5 616caa | 9eb22bea d54da18d | | a49cb509 9e4da18d |

5

5

5

5

5

5

5

5

616c9e

616c91

616c83 616c74

616664

616c53

616c41

616c2e

616cla

616c05

616bef 616bd8

616bc0

616ba7

616b8d

616b72

5

5

5

а

| 06f889d4 624da18d |

| bf70ec37 b04da18d |

| ed3f797e 8b8da18d |

| 1e695bcd 898da18d |

| fb250cdf b28da18d |

| 42ad693c 608da18d |

| a5b7cc14 dd0da18d |

| 9f9952f7 960da18d |

| ceab4c99 680da18d |

| d403ddde fdf5a18d |

| 314f8acc c6f5a18d |

| 0fccf05a 80f5a18d |

| 25030d57 7975a18d |

| dba3037b 6c75a18d |

| 4439ce17 13b5a18d |

page 952 of 1082

### Appendix IV - Sample Data Bluetooth.

| 616b56 | a | 8d417247 | 5ab5a18d | 5 |  |
|--------|---|----------|----------|---|--|
| 616b39 | 5 | 6a5bd76f | e735a18d | 5 |  |
| 616b1b | 5 | 592e8166 | b635a18d | 5 |  |
| 616afc | 5 | 28609d46 | cfd5a18d | 5 |  |
| 616adc | 5 | 51cb8c1f | 4ed5a18d | 5 |  |
| 616abb | 5 | 7b047112 | b755a18d | 5 |  |
| 616a99 | 5 | 4871271b | e655a18d | 5 |  |
| 616a76 | 5 | 24bdc8c4 | 9b95a18d | 5 |  |
| 616a52 | a | edc57494 | d295a18d | 5 |  |
| 616a2d | а | f989f30f | 6d15a18d | 5 |  |
| 616a07 | 5 | 0729fd23 | 7815a18d | 5 |  |
| 6169e0 | а | 8bf0ba4f | 81e5a18d | 5 |  |
| 6169b8 | а | 89a64875 | 0765a18d | 5 |  |
| 61698f | 5 | 6cealf67 | 3c65a18d | 5 |  |
| 616965 | 5 | 2549d310 | 29a5a18d | 5 |  |
| 61693a | 5 | 48ae45d2 | 1725a18d | 5 |  |
| 61690e | 5 | 7280db31 | 5c25a18d | 5 |  |
| 6168e1 | а | celb9f34 | 61c5a18d | 5 |  |
| 6168b3 | 5 | 4b46727b | 7345a18d | 5 |  |
| 616884 | а | ae0a2569 | 4845a18d | 5 |  |
| 616854 | а | ea5fc581 | 4a85a18d | 5 |  |
| 616823 | 5 | 33c61a3f | b105a18d | 5 |  |
| 6167f1 | а | c49fb8c5 | 63f9a18d | 5 |  |
| 6167be | 5 | 5a2e0cb4 | 5f79a18d | 5 |  |
| 61678a | 5 | 60009257 | 1479a18d | 5 |  |
| 616755 | а | 86314e62 | eab9a18d | 5 |  |
| 61671f | 5 | 3defd9bb | be39a18d | 5 |  |
| 6166e8 | а | bff7e728 | c5d9a18d | 5 |  |
| 6166b0 | а | bda11512 | 4359a18d | 5 |  |
| 616677 | 5 | 6513b3b1 | fb99a18d | 5 |  |
| 61663d | а | decd2468 | af19a18d | 5 |  |
| 616602 | а | f6542b5f | d019a18d | 5 |  |
| 6165c6 | а | dc44b49b | d8e9a18d | 5 |  |
| 616589 | 5 | 42f500ea | e469a18d | 5 |  |
| 61654b | а | bf2885e1 | 34a9a18d | 5 |  |
| 61650c | а | ec4c69b5 | 4c29a18d | 5 |  |
|        |   |          |          |   |  |

page 953 of 1082

Appendix IV - Sample Data

Bluetooth.

# 4 HEC AND PACKET HEADER SAMPLE DATA

Test vectors for HEC and header. Note that UAP, Data, and HEC are in hexadecimal notation, while the header is in octal notation. The header is transmitted from left to right over air.

|    |     | HEC | Header | ,      | •      |
|----|-----|-----|--------|--------|--------|
| 00 | 123 |     |        | 007070 |        |
| 47 | 123 | 06  | 770007 | 007007 | 700000 |
| 00 | 124 | 32  | 007007 | 007007 | 007700 |
| 47 | 124 | d5  | 007007 | 007070 | 707077 |
| 00 | 125 | 5a  | 707007 | 007007 | 077070 |
| 47 | 125 | bd  | 707007 | 007070 | 777707 |
| 00 | 126 | e2  | 077007 | 007007 | 000777 |
| 47 | 126 | 05  | 077007 | 007070 | 700000 |
| 00 | 127 | 8a  | 777007 | 007007 | 070007 |
| 47 | 127 | 6d  | 777007 | 007070 | 770770 |
| 00 | 11b | 9e  | 770770 | 007007 | 777007 |
| 47 | 11b | 79  | 770770 | 007070 | 077770 |
| 00 | 11c | 4d  | 007770 | 007070 | 770070 |
| 47 | 11c | aa  | 007770 | 007007 | 070707 |
| 00 | 11d | 25  | 707770 | 007070 | 700700 |
| 47 | 11d | c2  | 707770 | 007007 | 000077 |
| 00 | 11e | 9d  | 077770 | 007070 | 777007 |
| 47 | 11e | 7a  | 077770 | 007007 | 077770 |
| 00 | 11f | f5  | 777770 | 007070 | 707777 |
| 47 | 11f | 12  | 777770 | 007007 | 007000 |

page 954 of 1082

Appendix IV - Sample Data

Bluetooth.

# **5 CRC SAMPLE DATA**

Sample CRC generation

Data:

----

data[0] = 0x4e

data[1] = 0x01

data[2] = 0x02

data[3] = 0x03

data[4] = 0x04

data[5] = 0x05

data[6] = 0x06

data[7] = 0x07

data[8] = 0x08

data[9] = 0x09

UAP = 0x47

==> CRC = 6d d2

 ${\tt Codeword\ (hexadecimal\ notation):}$ 

\_\_\_\_\_\_

4e 01 02 03 04 05 06 07 08 09 6d d2

NB: Over air each byte in the codeword is sent with the LSB first.

page 955 of 1082

Appendix IV - Sample Data

Bluetooth

# **6 COMPLETE SAMPLE PACKETS**

### 6.1 EXAMPLE OF DH1 PACKET

```
Packet header: (MSB...LSB)
______
AM_ADDR = 011
TYPE = 0100 (DH1)
FLOW = 0
ARQN = 1
SEQN = 0
Payload: (MSB...LSB)
payload length: 5 bytes
logical channel = 10 (UA/I, Start L2CAP message)
data byte 1 = 00000001
data byte 2 = 00000010
data byte 3 = 00000011
data byte 4 = 00000100
data byte 5 = 00000101
HEC and CRC initialization: (MSB...LSB)
_____
uap = 01000111
NO WHITENING USED
AIR DATA (LSB...MSB)
Packet header (incl HEC):
_____
111111000
000000111000
000111000
000111111000000000000000
Payload (incl payload header and CRC):
01110100
10000000
01000000
11000000
00100000
10100000
1110110000110110
```

page 956 of 1082

Appendix IV - Sample Data

Bluetooth.

### 6.2 EXAMPLE OF DM1 PACKET

```
Packet header: (MSB...LSB)
AM_ADDR = 011
TYPE = 0011 (DM1)
FLOW = 0
ARQN = 1
SEQN = 0
Payload: (MSB...LSB)
_____
payload length: 5 bytes
logical channel = 10 (UA/I, Start L2CAP message)
flow = 1
data byte 1 = 00000001
data byte 2 = 00000010
data byte 3 = 00000011
data byte 4 = 00000100
data byte 5 = 00000101
HEC and CRC initialization: (MSB...LSB)
_____
uap = 01000111
NO WHITENING USED
AIR DATA (LSB...MSB)
Packet header (incl HEC):
111111000
111111000000
000111000
1110000001111111111111000
Payload (incl payload header, FEC23, CRC and 6 padded zeros):
______
0111010010 11001
000000100 01011
0000110000 11110
0000100000 00111
1010000011 01100
1011000011 00010
0110000000 10001
```

page 957 of 1082

Appendix IV - Sample Data

Bluetooth.

# 7 WHITENING SEQUENCE SAMPLE DATA

Whitening sequence generator.

| Whitening | Whitening |
|-----------|-----------|
| Sequence  | LFSR      |
| (=D7)     | D7D0      |
|           |           |
| 1         | 1111111   |
| 1         | 1101111   |
| 1         | 1001111   |
| 0         | 0001111   |
| 0         | 001111    |
| 0         | 011110    |
| 1         | 111100    |
| 1         |           |
|           | 1100001   |
| 1         | 1010011   |
| 0         | 0110111   |
| 1         | 1101110   |
| 1         | 1001101   |
| 0         | 0001011   |
| 0         | 0010110   |
| 0         | 0101100   |
| 1         | 1011000   |
| 0         | 0100001   |
| 1         | 1000010   |
| 0         | 0010101   |
| 0         | 0101010   |
| 1         | 1010100   |
| 0         | 0111001   |
| 1         | 1110010   |
| 1         | 1110101   |
| 1         | 1111011   |
| 1         | 1100111   |
| 1         | 1011111   |
| 0         | 0101111   |
| 1         | 1011110   |
| 0         | 0101101   |
| 1         | 1011010   |
| 0         | 0100101   |
| 1         | 1001010   |
| 0         | 0000101   |
| 0         | 0001010   |
| 0         | 0010100   |
| 0         | 0101000   |
| 1         | 1010000   |
| 0         | 0110000   |
|           |           |
| 1         | 1100010   |
| 1         | 1010101   |
| 0         | 0111011   |
| 1         | 1110110   |
|           |           |

page 958 of 1082

## Appendix IV - Sample Data

|   | <b>,</b> |
|---|----------|
| 1 | 1111101  |
| 1 | 1101011  |
| 1 | 100011   |
| 0 | 001111   |
|   | 011111   |
| 0 |          |
| 1 | 1111100  |
| 1 | 1101001  |
| 1 | 1000011  |
| 0 | 0010111  |
| 0 | 0101110  |
| 1 | 1011100  |
| 0 | 0101001  |
| 1 | 1010010  |
| 0 | 0110101  |
| 1 | 1101010  |
| 1 | 1000101  |
| 0 | 0011011  |
| 0 | 0110110  |
| 1 | 1101100  |
| 1 | 1001001  |
| 0 | 0000011  |
| 0 | 0000110  |
| 0 | 0001100  |
| 0 | 0011000  |
| 0 | 0110000  |
| 1 | 1100000  |
| 1 | 1010001  |
| 0 | 0110001  |
|   |          |
| 1 | 1100110  |
| 1 | 1011101  |
| 0 | 0101011  |
| 1 | 1010110  |
| 0 | 0111101  |
| 1 | 1111010  |
| 1 | 1100101  |
| 1 | 1011011  |
| 0 | 0100111  |
| 1 | 1001110  |
| 0 | 0001101  |
| 0 | 0011010  |
| 0 | 0110100  |
| 1 | 1101000  |
| 1 | 1000001  |
| 0 | 0010011  |
| 0 | 0100110  |
| 1 | 1001100  |
| 0 | 0001001  |
| 0 | 001001   |
|   |          |
| 0 | 0100100  |
| 1 | 1001000  |
| 0 | 0000001  |
| 0 | 0000010  |

## Appendix IV - Sample Data

# Bluetooth.

| 0 | 0000100 |
|---|---------|
| 0 | 0001000 |
| 0 | 0010000 |
| 0 | 0100000 |
| 1 | 1000000 |
| 0 | 0010001 |
| 0 | 0100010 |
| 1 | 1000100 |
| 0 | 0011001 |
| 0 | 0110010 |
| 1 | 1100100 |
| 1 | 1011001 |
| 0 | 0100011 |
| 1 | 1000110 |
| 0 | 0011101 |
| 0 | 0111010 |
| 1 | 1110100 |
| 1 | 1111001 |
| 1 | 1100011 |
| 1 | 1010111 |
| 0 | 0111111 |
| 1 | 1111110 |
| 1 | 1101101 |
| 1 | 1001011 |
| 0 | 0000111 |
| 0 | 0001110 |
| 0 | 0011100 |
| 0 | 0111000 |
| 1 | 1110000 |
| 1 | 1110001 |
| 1 | 1110011 |
| 1 | 1110111 |
| 1 | 1111111 |

page 960 of 1082

Appendix IV - Sample Data

Bluetooth.

# **8 FEC SAMPLE DATA**

Rate 2/3 FEC -- (15,10) Shortened Hamming Code \_\_\_\_\_

Data is in hexadecimal notation, the codewords are in binary notation. The codeword bits are sent from left to right over the air interface. The space in the codeword indicates the start of parity bits.

| Data: | Codewor    | rd:   |
|-------|------------|-------|
| 0x001 | 1000000000 | 11010 |
| 0x002 | 0100000000 | 01101 |
| 0x004 | 0010000000 | 11100 |
| 0x008 | 0001000000 | 01110 |
| 0x010 | 0000100000 | 00111 |
| 0x020 | 0000010000 | 11001 |
| 0x040 | 000001000  | 10110 |
| 0x080 | 000000100  | 01011 |
| 0x100 | 000000010  | 11111 |
| 0x200 | 000000001  | 10101 |

page 961 of 1082

Appendix IV - Sample Data

Bluetooth

# 9 ENCRYPTION KEY SAMPLE DATA

### **Explanation:**

Key [i]: denotes the ith sub-key in Ar or A'r; round r: denotes the input to the rth round; added ->: denotes the input to round 3 in

A'r after adding original input (of round 1).

### 9.1 FOUR TESTS OF E1

rand address :000000000000 Key [ 2]:4697b1baa3b7100ac537b3c95a28ac64 round 2:78d19f9307d2476a523ec7a8a026042a Kev [ 3]:ecabaac66795580df89af66e66dc053d Key [ 4]:8ac3d8896ae9364943bfebd4969b68a0 round 3:600265247668dda0e81c07bbb30ed503 Key [ 5]:5d57921fd5715cbb22c1be7bbc996394 Key [ 6]:2a61b8343219fdfb1740e6511d41448f round 4:d7552ef7cc9dbde568d80c2215bc4277 Key [ 7]:dd0480dee731d67f01a2f739da6f23ca Key [ 8]:3ad01cd1303e12a1cd0fe0a8af82592c round 5:fb06bef32b52ab8f2a4f2b6ef7f6d0cd Key [ 9]:7dadb2efc287ce75061302904f2e7233 Key [10]:c08dcfa981e2c4272f6c7a9f52e11538 round 6:b46b711ebb3cf69e847a75f0ab884bdd Key [11]:fc2042c708e409555e8c147660ffdfd7 Key [12]:fa0b21001af9a6b9e89e624cd99150d2 round 7:c585f308ff19404294f06b292e978994 Key [13]:18b40784ea5ba4c80ecb48694b4e9c35 Key [14]:454d54e5253c0c4a8b3fcca7db6baef4 round 8:2665fadb13acf952bf74b4ab12264b9f Key [15]:2df37c6d9db52674f29353b0f011ed83 Key [16]:b60316733b1e8e70bd861b477e2456f1 Key [17]:884697b1baa3b7100ac537b3c95a28ac round 1:158ffe43352085e8a5ec7a88e1ff2ba8 Key [ 1]:e9e5dfc1b3a79583e9e5dfc1b3a79583 Key [ 2]:7595bf57e0632c59f435c16697d4c864 round 2:0b5cc75febcdf7827ca29ec0901b6b5b Key [ 3]:e31b96afcc75d286ef0ae257cbbc05b7 Key [ 4]:0d2a27b471bc0108c6263aff9d9b3b6b round 3:e4278526c8429211f7f2f0016220aef4 added ->:f1b68365fd6217f952de6a89831fd95c Key [ 5]:98d1eb5773cf59d75d3b17b3bc37c191 Key [ 6]:fd2b79282408ddd4ea0aa7511133336f round 4:d0304ad18337f86040145d27aa5c8153 Key [ 7]:331227756638a41d57b0f7e071ee2a98

page 962 of 1082

## Appendix IV - Sample Data

| Key [ 8]:aa0dd8cc68b406533d0f1d64aabacf20 |  |
|-------------------------------------------|--|
| round 5:84db909d213bb0172b8b6aaf71bf1472  |  |
| Key [ 9]:669291b0752e63f806fce76f10e119c8 |  |
| Key [10]:ef8bdd46be8ee0277e9b78adef1ec154 |  |
| round 6:f835f52921e903dfa762f1df5abd7f95  |  |
| Key [11]:f3902eb06dc409cfd78384624964bf51 |  |
| Key [12]:7d72702b21f97984a721c99b0498239d |  |
| round 7:ae6c0b4bb09f25c6a5d9788a31b605d1  |  |
| Key [13]:532e60bceaf902c52a06c2c283ecfa32 |  |
| Key [14]:181715e5192efb2a64129668cf5d9dd4 |  |
| round 8:744a6235b86cc0b853cc9f74f6b65311  |  |
| Key [15]:83017c1434342d4290e961578790f451 |  |
| Key [16]:2603532f365604646ff65803795ccce5 |  |
| Key [17]:882f7c907b565ea58dae1c928a0dcf41 |  |
| sres :056c0fe6                            |  |
| aco :48afcdd4bd40fef76693b113             |  |
| aco .40a1cuu4bu401e170093b113             |  |
| rand :bc3f30689647c8d7c5a03ca80a91eceb    |  |
| address:7ca89b233c2d                      |  |
|                                           |  |
| key :159dd9f43fc3d328efba0cd8a861fa57     |  |
| round 1:bc3f30689647c8d7c5a03ca80a91eceb  |  |
| Key [ 1]:159dd9f43fc3d328efba0cd8a861fa57 |  |
| Key [ 2]:326558b3c15551899a97790e65ff669e |  |
| round 2:3e950edf197615638cc19c09f8fedc9b  |  |
| Key [ 3]:62e879b65b9f53bbfbd020c624b1d682 |  |
| Key [ 4]:73415f30bac8ab61f410adc9442992db |  |
| round 3:6a7640791cb536678936c5ecd4ae5a73  |  |
| Key [ 5]:5093cfa1d31c1c48acd76df030ea3c31 |  |
| Key [ 6]:0b4acc2b8f1f694fc7bd91f4a70f3009 |  |
| round 4:fca2c022a577e2ffb2aa007589693ec7  |  |
| Key [ 7]:2ca43fc817947804ecff148d50d6f6c6 |  |
| Key [ 8]:3fcd73524b533e00b7f7825bea2040a4 |  |
| round 5:e97f8ea4edla6f4a36ffc179dc6bb563  |  |
| Key [ 9]:6c67bec76ae8c8cc4d289f69436d3506 |  |
| Key [10]:95ed95ee8cb97e61d75848464bffb379 |  |
| round 6:38b07261d7340d028749de1773a415c7  |  |
| Key [11]:ff566c1fc6b9da9ac502514550f3e9d2 |  |
| Key [12]:ab5ce3f5c887d0f49b87e0d380e12f47 |  |
| round 7:58241f1aed7c1c3e047d724331a0b774  |  |
| Key [13]:a2cab6f95eac7d655dbe84a6cd4c47f5 |  |
| Key [14]:f5caff88af0af8c42a20b5bbd2c8b460 |  |
| round 8:3d1aaeff53c0910de63b9788b13c490f  |  |
| Key [15]:185099c1131cf97001e2f36fda415025 |  |
|                                           |  |
| Key [16]:a0ebb82676bc75e8378b189eff3f6b1d |  |
| Key [17]:cf5b348aaee27ae332b4f1bfa10289a6 |  |
| round 1:2e4b417b9a2a9cfd7d8417d9a6a556eb  |  |
| Key [ 1]:fe78b835f26468ab069fd3991b086fda |  |
| Key [ 2]:095c5a51c6fa6d3ac1d57fa19aa382bd |  |
| round 2:b8bca81d6bb45af9d92beadd9300f5ed  |  |
| Key [ 3]:1af866df817fd9f4ec00bc704192cffc |  |
| Key [ 4]:f4a8a059c1f575f076f5fbb24bf16590 |  |
| round 3:351aa16dec2c3a4787080249ed323eae  |  |
|                                           |  |

page 963 of 1082

## Appendix IV - Sample Data

| added ->:1b65e2167656d6bafa8c19904bd79445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key [ 5]:8c9d18d9356a9954d341b4286e88ea1f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [ 6]:5c958d370102c9881bf753e69c7da029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| round 4:2ce8fef47dda6a5bee74372e33e478a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key [ 7]:7eb2985c3697429fbe0da334bb51f795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [ 8]:af900f4b63a1138e2874bfb7c628b7b8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| round 5:572787f563e1643c1c862b7555637fb4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key [ 9]:834c8588dd8f3d4f31117a488420d69b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [10]:bc2b9b81c15d9a80262f3f48e9045895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| round 6:16b4968c5d02853c3a43aa4cdb5f26ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key [11]:f08608c9e39ad3147cba61327919c958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [12]:2d4131decf4fa3a959084714a9e85c11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| round 7:10e4120c7cccef9dd4ba4e6da8571b01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key [13]:c934fd319c4a2b5361fa8eef05ae9572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [14]:4904c17aa47868e40471007cde3a97c0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| round 8:f9081772498fed41b6ffd72b71fcf6c6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Key [15]:ea5e28687e97fa3f833401c86e6053ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [16]:1168f58252c4ecfccafbdb3af857b9f2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [17]:b3440f69ef951b78b5cbd6866275301b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| sres :8d5205c5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| aco :3ed75df4abd9af638d144e94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rand :0891caee063f5da1809577ff94ccdcfb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| address :c62f19f6ce98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| key :45298d06e46bac21421ddfbed94c032b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| round 1:0891caee063f5da1809577ff94ccdcfb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Key [ 1]:45298d06e46bac21421ddfbed94c032b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [ 2]:8f03elelfelc191cad35a897bc400597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Key [ 2]:8f03elelfelc191cad35a897bc400597<br>round 2:1c6ca013480a685c1b28e0317f7167e1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Key [ 2]:8f03elelfelc191cad35a897bc400597<br>round 2:1c6ca013480a685c1b28e0317f7167e1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3dla06c582bld5512dddf</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3d1a06c582bld5512dddf Key [ 10]:a88bc477e3fald5a59b5e6cf793c7a41</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <pre>Key [ 2]:8f03elelfelc191cad35a897bc400597 round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3dla06c582bld5512dddf Key [10]:a88bc477e3fald5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <pre>Key [ 2]:8f03elelfelc19lcad35a897bc400597 round 2:lc6ca013480a685clb28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcclfc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca9lad9bd3dla06c582bld5512dddf Key [ 10]:a88bc477e3fald5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>Key [ 2]:8f03elelfelc19lcad35a897bc400597 round 2:lc6ca013480a685clb28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcclfc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3dla06c582bld5512dddf Key [10]:a88bc477e3fald5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [12]:77beb90670c5300b03aa2b2232d3d40c</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <pre>Key [ 2]:8f03elelfelc19lcad35a897bc400597 round 2:lc6ca013480a685clb28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcclfc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca9lad9bd3dla06c582bld5512dddf Key [10]:a88bc477e3fald5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149blce8d86f96e44a00065</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>Key [ 2]:8f03elelfelc19lcad35a897bc400597 round 2:lc6ca013480a685clb28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcclfc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3dla06c582bld5512dddf Key [10]:a88bc477e3fald5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149blce8d86f96e44a00065 Key [13]:b578373650af36a06e19fe335d726d32</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <pre>Key [ 2]:8f03elelfelc19lcad35a897bc400597 round 2:lc6ca013480a685clb28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcclfc55la52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3dla06c582bld5512dddf Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [ 12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149blce8d86f96e44a00065 Key [ 13]:b578373650af36a06e19fe335d726d32 Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3d1a06c582b1d5512dddf Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [ 12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149b1ce8d86f96e44a00065 Key [ 13]:b578373650af36a06e19fe335d726d32 Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53 round 8:04ef5f5a7ddf846cda0a07782fc23866                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| round 2:1c6ca013480a685c1b28e0317f7167e1 Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e Key [ 4]:968caee2ac6d7008c07283daec67f2f2 round 3:06b4915f5fcc1fc551a52048f0af8a26 Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92 round 4:077a92b040acc86e6e0a877db197a167 Key [ 7]:8f888952662b3db00d4e904e7ea53b5d Key [ 8]:5e18bfcc07799b0132db88cd6042f599 round 5:7204881fb300914825fdc863e8ceadf3 Key [ 9]:bfca91ad9bd3d1a06c582b1d5512dddf Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41 round 6:27031131d86cea2d747deb4f756143aa Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767 Key [ 12]:77beb90670c5300b03aa2b2232d3d40c round 7:fc8c13d49149b1ce8d86f96e44a00065 Key [ 13]:b578373650af36a06e19fe335d726d32 Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53 round 8:04ef5f5a7ddf846cda0a07782fc23866 Key [ 15]:399f158241eb3e079f45d7b96490e7ea                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Key [ 2]:8f03elelfelc19lcad35a897bc400597           round         2:1c6ca013480a685c1b28e0317f7167e1           Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e           Key [ 4]:968caee2ac6d7008c07283daec67f2f2           round         3:06b4915f5fcc1fc551a52048f0af8a26           Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c           Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92           round         4:077a92b040acc86e6e0a877db197a167           Key [ 7]:8f8888952662b3db00d4e904e7ea53b5d           Key [ 8]:5e18bfcc07799b0132db88cd6042f599           round         5:7204881fb300914825fdc863e8ceadf3           Key [ 9]:bfca91ad9bd3dla06c582b1d5512dddf           Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41           round         6:27031131d86cea2d747deb4f756143aa           Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767           Key [ 12]:77beb90670c5300b03aa2b2232d3d40c           round         7:fc8c13d49149b1ce8d86f96e44a00065           Key [ 13]:b578373650af36a06e19fe335d726d32           Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53           round         8:04ef5f5a7ddf846cda0a07782fc23866           Key [ 15]:399f158241eb3e079f45d7b96490e7ea           Key [ 16]:1bcfbe98ecde2add52aa63ea79fb917a                                                      |
| Key [ 2]:8f03elelfelc19lcad35a897bc400597           round         2:1c6ca013480a685c1b28e0317f7167e1           Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e           Key [ 4]:968caee2ac6d7008c07283daec67f2f2           round         3:06b4915f5fcc1fc551a52048f0af8a26           Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c           Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92           round         4:077a92b040acc86e6e0a877db197a167           Key [ 7]:8f8888952662b3db00d4e904e7ea53b5d           Key [ 8]:5e18bfcc07799b0132db88cd6042f599           round         5:7204881fb300914825fdc863e8ceadf3           Key [ 9]:bfca91ad9bd3dla06c582b1d5512dddf           Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41           round         6:27031131d86cea2d747deb4f756143aa           Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767           Key [ 12]:77beb90670c5300b03aa2b2232d3d40c           round         7:fc8c13d49149b1ce8d86f96e44a00065           Key [ 13]:b578373650af36a06e19fe335d726d32           Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53           round         8:04ef5f5a7ddf846cda0a07782fc23866           Key [ 15]:399f158241eb3e079f45d7b96490e7ea           Key [ 16]:1bcfbe98ecde2add52aa63ea79fb917a           Key [ 17]:ee8bc03ec08722bc2b075492873374af |
| Key [ 2]:8f03elelfelc19lcad35a897bc400597           round         2:1c6ca013480a685c1b28e0317f7167e1           Key [ 3]:4f2ce3a092dde854ef496c8126a69e8e           Key [ 4]:968caee2ac6d7008c07283daec67f2f2           round         3:06b4915f5fcc1fc551a52048f0af8a26           Key [ 5]:ab0d5c31f94259a6bf85ee2d22edf56c           Key [ 6]:dfb74855c0085ce73dc17b84bfd50a92           round         4:077a92b040acc86e6e0a877db197a167           Key [ 7]:8f8888952662b3db00d4e904e7ea53b5d           Key [ 8]:5e18bfcc07799b0132db88cd6042f599           round         5:7204881fb300914825fdc863e8ceadf3           Key [ 9]:bfca91ad9bd3dla06c582b1d5512dddf           Key [ 10]:a88bc477e3fa1d5a59b5e6cf793c7a41           round         6:27031131d86cea2d747deb4f756143aa           Key [ 11]:f3cfb8dac8aea2a6a8ef95af3a2a2767           Key [ 12]:77beb90670c5300b03aa2b2232d3d40c           round         7:fc8c13d49149b1ce8d86f96e44a00065           Key [ 13]:b578373650af36a06e19fe335d726d32           Key [ 14]:6bcee918c7d0d24dfdf42237fcf99d53           round         8:04ef5f5a7ddf846cda0a07782fc23866           Key [ 15]:399f158241eb3e079f45d7b96490e7ea           Key [ 16]:1bcfbe98ecde2add52aa63ea79fb917a                                                      |

page 964 of 1082

## Appendix IV - Sample Data

| Key [ 2]:acfaef7609c12567d537ae1cf9dc2198                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| round 2:8e76eb9a29b2ad5eea790db97aee37c1                                                                                                                                                                                                                  |
| Key [ 3]:079c8ff9b73d428df879906a0b87a6c8                                                                                                                                                                                                                 |
| Key [ 4]:19f2710baf403a494193d201f3a8c439                                                                                                                                                                                                                 |
| round 3:346bb7c35b2539676375aafe3af69089                                                                                                                                                                                                                  |
| added ->:edf48e675703a955b2f0fc062b71f95c                                                                                                                                                                                                                 |
| Key [ 5]:d623a6498f915cb2c8002765247b2f5a                                                                                                                                                                                                                 |
| Key [ 6]:900109093319bc30108b3d9434a77a72                                                                                                                                                                                                                 |
| round 4:fafb6c1f3ebbd2477be2da49dd923f69                                                                                                                                                                                                                  |
| Key [ 7]:e28e2ee6e72e7f4e5b5c11f10d204228                                                                                                                                                                                                                 |
| Key [ 8]:8e455cd11f8b9073a2dfa5413c7a4bc5                                                                                                                                                                                                                 |
| round 5:7c72230df588060a3cf920f9b0a08f06                                                                                                                                                                                                                  |
| Key [ 9]:28afb26e2c7a64238c41cefc16c53e74                                                                                                                                                                                                                 |
| Key [10]:d08dcafc2096395ba0d2dddd0e471f4d                                                                                                                                                                                                                 |
| round 6:55991df991db26ff00073a12baa3031d                                                                                                                                                                                                                  |
| Key [11]:fcffdcc3ad8faae091a7055b934f87c1                                                                                                                                                                                                                 |
| Key [12]:f8df082d77060252c02d91e55bd6a7d6                                                                                                                                                                                                                 |
| round 7:70ec682ff864375f63701fa4f6be5377                                                                                                                                                                                                                  |
| Key [13]:bef3706e523d708e8a44147d7508bc35                                                                                                                                                                                                                 |
| Key [14]:3e98ab283ca2422d56a56cf8b06caeb3                                                                                                                                                                                                                 |
| round 8:172f12ec933da85504b4ea5c90f8f0ea                                                                                                                                                                                                                  |
| Key [15]:87ad9625d06645d22598dd5ef811ea2c                                                                                                                                                                                                                 |
| Key [16]:8bd3db0cc8168009e5da90877e13a36f                                                                                                                                                                                                                 |
| Key [17]:0e74631d813a8351ac7039b348c41b42                                                                                                                                                                                                                 |
| sres :00507e5f                                                                                                                                                                                                                                            |
| aco :2a5f19fbf60907e69f39ca9f                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                           |
| rand :0ecd61782b4128480c05dc45542b1b8c                                                                                                                                                                                                                    |
| address :f428f0e624b3                                                                                                                                                                                                                                     |
| key :35949a914225fabad91995d226de1d92                                                                                                                                                                                                                     |
| round 1:0ecd61782b4128480c05dc45542b1b8c                                                                                                                                                                                                                  |
| Key [ 1]:35949a914225fabad91995d226de1d92                                                                                                                                                                                                                 |
| Key [ 2]:ea6b3dcccc8ee5d88de349fa5010404f                                                                                                                                                                                                                 |
| round 2:8935e2e263fbc4b9302cabdfc06bce3e                                                                                                                                                                                                                  |
| Key [ 3]:920f3a0f2543ce535d4e7f25ad80648a                                                                                                                                                                                                                 |
| Key [ 4]:ad47227edf9c6874e80ba80ebb95d2c9                                                                                                                                                                                                                 |
| round 3:b4c8b878675f184a0c72f3dab51f8f05                                                                                                                                                                                                                  |
| Key [ 5]:81a941ca7202b5e884ae8fa493ecac3d                                                                                                                                                                                                                 |
| Key [ 6]:bcde1520bee3660e86ce2f0fb78b9157                                                                                                                                                                                                                 |
| round 4:77ced9f2fc42bdd5c6312b87fc2377c5                                                                                                                                                                                                                  |
| Key [ 7]:c8eee7423d7c6efa75ecec0d2cd969d3                                                                                                                                                                                                                 |
| Key [ 8]:910b3f838a02ed441fbe863a02b4a1d0                                                                                                                                                                                                                 |
| round 5:fe28e8056f3004d60bb207e628b39cf2                                                                                                                                                                                                                  |
| Key [ 9]:56c647c1e865eb078348962ae070972d                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                           |
| Key [10]:883965da77ca5812d8104e2b640aec0d                                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                         |
| Key [10]:883965da77ca5812d8104e2b640aec0d                                                                                                                                                                                                                 |
| Key [10]:883965da77ca5812d8104e2b640aec0d round 6:1f2ba92259d9e88101518f145a33840f                                                                                                                                                                        |
| Key [10]:883965da77ca5812d8104e2b640aec0d<br>round 6:1f2ba92259d9e88101518f145a33840f<br>Key [11]:61d4cb7e4f8868a283327806a9bd8d4d                                                                                                                        |
| Key [10]:883965da77ca5812d8104e2b640aec0d<br>round 6:1f2ba92259d9e88101518f145a33840f<br>Key [11]:6ld4cb7e4f8868a283327806a9bd8d4d<br>Key [12]:9f57de3a3ff310e2ldcle696ce060304                                                                           |
| Key [10]:883965da77ca5812d8104e2b640aec0d round 6:1f2ba92259d9e88101518f145a33840f Key [11]:61d4cb7e4f8868a283327806a9bd8d4d Key [12]:9f57de3a3ff310e2ldcle696ce060304 round 7:cc9b5d0218d29037e88475152ebebb2f                                           |
| Key [10]:883965da77ca5812d8104e2b640aec0d round 6:1f2ba92259d9e88101518f145a33840f Key [11]:61d4cb7e4f8868a283327806a9bd8d4d Key [12]:9f57de3a3ff310e2ldc1e696ce060304 round 7:cc9b5d0218d29037e88475152ebebb2f Key [13]:7aald8adclaeed7127ef9a18f6eb2d8e |

page 965 of 1082

#### Appendix IV - Sample Data

Bluetooth

Key [15]:a13d7141ef1f6c7d867e3d175467381b Key [16]:08b2bc058e50d6141cdd566a307e1acc Key [17]:057b2b4b4be5dc0ac49e50489b8006c9 round 1:5cfacc773bae995cd7f1b81e7c9ec7df Key [ 1]:1e717950f5828f3930fe4a9395858815 Key [ 2]:d1623369b733d98bbc894f75866c544c round 2:d571ffa21d9daa797b1a0a3c962fc64c Key [ 3]:4abf27664ae364cc8a7e5bcf88214cc4 Key [ 4]:2aaedda8dc4933dd6aeaf6e5c0d5a482 round 3:e17c8e498a00f125bf654c938c23f36d added ->:bd765a3eb1ae8a796856048df0c1bab2 Key [ 5]:bc7f8ab2d86000f47b1946cc8d7a7a2b Key [ 6]:6b28544cb13ec6c5d98470df2cf900b7 round 4:a9727c26f2f06bd9920e83c8605dcd76 Key [ 7]:1be840d9107f2c9523f66bb19f5464a1 Key [ 8]:61d6fb1aa2f0c2b26fb2a3d6de8c177c round 5:aeff751f146eab7e4626b2e2c9e2fb39 Key [ 9]:adabfc82570c568a233173099f23f4c2 Key [10]:b7df6b55ad266c0f1ff7452101f59101 round 6:cf412b95f454d5185e67ca671892e5bd Key [11]:8e04a7282a2950dcbaea28f300e22de3 Key [12]:21362c114433e29bda3e4d51f803b0cf round 7:16165722fe4e07ef88f8056b17d89567 Key [13]:710c8fd5bb3cbb5f132a7061de518bd9 Key [14]:0791de7334f4c87285809343f3ead3bd round 8:28854cd6ad4a3c572b15490d4b81bc3f Key [15]:4f47f0e5629a674bfcd13770eb3a3bd9 Key [16]:58a6d9a16a284cc0aead2126c79608a1 Key [17]:a564082a0a98399f43f535fd5cefad34 :80e5629c sres :a6fe4dcde3924611d3cc6ba1 aco

-----

### 9.2 FOUR TESTS OF E21

rand address :000000000000 Key [ 2]:4697b1baa3b7100ac537b3c95a28dc94 round 2:98611307ab76bbde9a86af1ce8cad412 Key [ 3]:ecabaac66795580df89af66e665d863d Key [ 4]:8ac3d8896ae9364943bfebd4a2a768a0 round 3:820999ad2e6618f4b578974beeedf9e7 added ->:820999ad2e6618f4b578974beeedf9e7 Key [ 5]:5d57921fd5715cbb22c1bedb1c996394 Key [ 6]:2a61b8343219fdfb1740e9541d41448f round 4:acd6edec87581ac22dbdc64ea4ced3a2 Key [ 7]:dd0480dee731d67f01ba0f39da6f23ca Key [ 8]:3ad01cd1303e12a18dcfe0a8af82592c

page 966 of 1082

## Appendix IV - Sample Data

| round 5:1c7798732f09fbfe25795a4a2fbc93c2             |
|------------------------------------------------------|
| <pre>Key [ 9]:7dadb2efc287ce7b0c1302904f2e7233</pre> |
| Key [10]:c08dcfa981e2f4572f6c7a9f52e11538            |
| round 6:c05b88b56aa70e9c40c79bb81cd911bd             |
| Key [11]:fc2042c708658a555e8c147660ffdfd7            |
| Key [12]:fa0b21002605a6b9e89e624cd99150d2            |
| round 7:abacc71b481c84c798d1bdf3d62f7e20             |
| Key [13]:18b407e44a5ba4c80ecb48694b4e9c35            |
| Key [14]:454d57e8253c0c4a8b3fcca7db6baef4            |
| round 8:e8204e1183ae85cf19edb2c86215b700             |
| Key [15]:2d0b946d9db52674f29353b0f011ed83            |
|                                                      |
| Key [16]:76c316733b1e8e70bd861b477e2456f1            |
| Key [17]:8e4697b1baa3b7100ac537b3c95a28ac            |
| Ka :d14ca028545ec262cee700e39b5c39ee                 |
|                                                      |
| rand :2dd9a550343191304013b2d7e1189d09               |
| address :cac4364303b6                                |
| round 1:cac4364303b6cac4364303b6cac43643             |
| Key [ 1]:2dd9a550343191304013b2d7e1189d0f            |
| Key [ 2]:14c4335b2c43910c5dcc71d81a14242b            |
| round 2:e169f788aad45a9011f11db5270b1277             |
| <pre>Key [ 3]:55bfb712cba168d1a48f6e74cd9f4388</pre> |
| Key [ 4]:2a2b3aacca695caef2821b0fb48cc253            |
| round 3:540f9c76652e92c44987c617035037bf             |
| added ->:9ed3d23566e45c007fcac9a1c9146dfc            |
| Key [ 5]:a06aab22d9a287384042976b4b6b00ee            |
| Key [ 6]:c229d054bb72e8eb230e6dcdb32d16b7            |
| round 4:83659a41675f7171ea57909dc5a79ab4             |
| Key [ 7]:23c4812ab1905ddf77dedaed4105649a            |
| Key [ 8]:40d87e272a7a1554ae2e85e3638cdf52            |
| round 5:0b9382d0ed4f2fccdbb69d0db7b130a4             |
| Key [ 9]:bdc064c6a39f6b84fe40db359f62a3c4            |
| Key [10]:58228db841ce3cee983aa721f36aa1b9            |
|                                                      |
| round 6:c6ebda0f8f489792f09c189568226c1f             |
| Key [11]:a815bacd6fa747a0d4f52883ac63ebe7            |
| Key [12]:a9ce513b38ea006c333ecaaefcf1d0f8            |
| round 7:75a8aba07e69c9065bcd831c40115116             |
| Key [13]:3635e074792d4122130e5b824e52cd60            |
| Key [14]:511bdb61bb28de72a5d794bffbf407df            |
| round 8:57a6e279dcb764cf7dd6a749dd60c735             |
| <pre>Key [15]:a32f5f21044b6744b6d913b13cdb4c0a</pre> |
| Key [16]:9722bbaeef281496ef8c23a9d41e92f4            |
| Key [17]:807370560ad7e8a13a054a65a03b4049            |
| Ka :e62f8bac609139b3999aedbc9d228042                 |
|                                                      |
| rand :dab3cffe9d5739d1b7bf4a667ae5ee24               |
| address :02f8fd4cd661                                |
| round 1:02f8fd4cd66102f8fd4cd66102f8fd4c             |
| Key [ 1]:dab3cffe9d5739d1b7bf4a667ae5ee22            |
| Key [ 2]:e315a8a65d809ec7c289e69c899fbdcc            |
| round 2:ef85ff081b8709405e19f3e275cec7dc             |
|                                                      |
| Key [ 3]:df6a119bb50945fc8a3394e7216448f3            |

page 967 of 1082

#### Appendix IV - Sample Data

```
Key [ 4]:87fe86fb0d58b5dd0fb3b6b1dab51d07
round 3:aa25c21bf577d92dd97381e3e9edcc54
added ->:a81dbf5723d8dbd524bf5782ebe5c918
Key [ 5]:36cc253c506c0021c91fac9d8c469e90
Key [ 6]:d5fda00f113e303809b7f7d78a1a2b0e
round 4:9e69ce9b53caec3990894d2baed41e0d
Key [ 7]:c14b5edc10cabf16bc2a2ba4a8ae1e40
Key [ 8]:74c6131afc8dce7e11b03blea8610c16
round 5:a5460fa8cedca48a14fd02209e01f02e
Key [ 9]:346cfc553c6cbc9713edb55f4dcbc96c
Key [10]:bddf027cb059d58f0509f8963e9bdec6
round 6:92b33f11eadcacc5a43dd05f13d334dd
Key [11]:8eb9e040c36c4c0b4a7fd3dd354d53c4
Key [12]:c6ffecdd5e135b20879b9dfa4b34bf51
round 7:fb0541aa5e5df1a61c51aef606eb5a41
Key [13]:bf12f5a6ba08dfc4fda4bdfc68c997d9
Key [14]:37c4656b9215f3c959ea688fb64ad327
round 8:f0bbd2b94ae374346730581fc77a9c98
Key [15]:e87bb0d86bf421ea4f779a8eee3a866c
Key [16]:faa471e934fd415ae4c0113ec7f0a5ad
Key [17]:95204a80b8400e49db7cf6fd2fd40d9a
        :b0376d0a9b338c2e133c32b69cb816b3
        :13ecad08ad63c37f8a54dc56e82f4dc1
address:9846c5ead4d9
round 1:9846c5ead4d99846c5ead4d99846c5ea
Key [ 1]:13ecad08ad63c37f8a54dc56e82f4dc7
Key [ 2]:ad04f127bed50b5e671d6510d392eaed
round 2:97374e18cdd0a6f7a5aa49d1ac875c84
Key [ 3]:57ad159e5774fa222f2f3039b9cd5101
Kev [ 4]:9ale9e1068fede02ef90496e25fd8e79
round 3:9dd3260373edd9d5f4e774826b88fd2d
added ->:0519ebe9a7c6719331d1485bf3cec2c7
Key [ 5]:378dce167db62920b0b392f7cfca316e
Key [ 6]:db4277795c87286faee6c9e9a6b71a93
round 4:40ec6563450299ac4e120d88672504d6
Key [ 7]:ec01aa2f5a8a793b36c1bb858d254380
Kev [ 81:2921a66cfa5bf74ac535424564830e98
round 5:57287bbb041bd6a56c2bd931ed410cd4
Key [ 9]:07018e45aab61b3c3726ee3d57dbd5f6
Key [10]:627381f0fa4c02b0c7d3e7dfbffc3333
round 6:66affa66a8dcd36e36bf6c3f1c6a276e
Key [11]:33b57c925bd5551999f716e138efbe79
Kev [12]:a6dc7f9aa95bcc9243aebd12608f657a
round 7:450e65184fd8c72c578d5cdecb286743
Key [13]:a6a6db00fd8c72a28ea57ea542f6e102
Key [14]:dcf3377daeb2e24e61f0ad6620951c1f
round 8:e5eb180b519a4e673f21b7c4f4573f3d
Key [15]:621240b9506b462a7fa250da41844626
Key [16]:ae297810f01f43dc35756cd119ee73d6
Key [17]:b959835ec2501ad3894f8b8f1f4257f9
        :5b61e83ad04d23e9d1c698851fa30447
```

page 968 of 1082

Appendix IV - Sample Data

Bluetooth..

\_\_\_\_\_

# 9.3 THREE TESTS OF E22

# (for K\_master and overlay generation)

| rand :001de169248850245a5f7cc7f0d6d633               |
|------------------------------------------------------|
| PIN :d5a51083a04a1971f18649ea8b79311a                |
| round 1:001de169248850245a5f7cc7f0d6d623             |
| <pre>Key [ 1]:d5a51083a04a1971f18649ea8b79311a</pre> |
| <pre>Key [ 2]:7317cdbff57f9b99f9810a2525b17cc7</pre> |
| round 2:5f05c143347b59acae3cb002db23830f             |
| <pre>Key [ 3]:f08bd258adf1d4ae4a54d8ccb26220b2</pre> |
| <pre>Key [ 4]:91046cbb4ccc43db18d6dd36ca7313eb</pre> |
| round 3:c8f3e3300541a25b6ac5a80c3105f3c4             |
| added ->:c810c45921c9f27f302424cbc1dbc9e7            |
| <pre>Key [ 5]:67fb2336f4d9f069da58d11c82f6bd95</pre> |
| <pre>Key [ 6]:4fed702c75bd72c0d3d8f38707134c50</pre> |
| round 4:bd5e0c3a97fa55b91a3bbbf306ebb978             |
| <pre>Key [ 7]:41c947f80cdc0464c50aa89070af314c</pre> |
| <pre>Key [ 8]:680eecfa8daf41c7109c9a5cb1f26d75</pre> |
| round 5:21c1a762c3cc33e75ce8976a73983087             |
| <pre>Key [ 9]:6e33fbd94d00ff8f72e8a7a0d2cebc4c</pre> |
| <pre>Key [10]:f4d726054c6b948add99fabb5733ddc3</pre> |
| round 6:56d0df484345582f6b574a449ba155eb             |
| Key [11]:4eda2425546a24cac790f49ef2453b53            |
| <pre>Key [12]:cf2213624ed1510408a5a3e00b7333df</pre> |
| round 7:120cf9963fe9ff22993f7fdf9600d9b8             |
| <pre>Key [13]:d04b1a25b0b8fec946d5ecfa626d04c9</pre> |
| <pre>Key [14]:01e5611b0f0e140bdb64585fd3ae5269</pre> |
| round 8:a6337400ad8cb47fefb91332f5cb2713             |
| <pre>Key [15]:f15b2dc433f534f61bf718770a3698b1</pre> |
| Key [16]:f990d0273d8ea2b9e0b45917a781c720            |
| <pre>Key [17]:f41b3cc13d4301297bb6bdfcb3e5a1dd</pre> |
| Ka :539e4f2732e5ae2de1e0401f0813bd0d                 |
|                                                      |
| rand :67ed56bfcf99825f0c6b349369da30ab               |
| PIN :7885b515e84b1f082cc499976f1725ce                |
| round 1:67ed56bfcf99825f0c6b349369da30bb             |
| Key [ 1]:7885b515e84b1f082cc499976f1725ce            |
| Key [ 2]:72445901fdaf506beb036f4412512248            |
| round 2:6b160b66a1f6c26c1f3432f463ef5aa1             |
| <pre>Key [ 3]:59f0e4982e97633e5e7fd133af8f2c5b</pre> |
| <pre>Key [ 4]:b4946ec77a41bf7c729d191e33d458ab</pre> |
| round 3:3f22046c964c3e5ca2a26ec9a76a9f67             |
| added ->:580f5ad359e5c003ae0da25ace44cfdc            |
| <pre>Key [ 5]:eb0b839f97bdf534183210678520bbef</pre> |
| <pre>Key [ 6]:cff0bc4a94e5c8b2a2d24d9f59031e19</pre> |
| round 4:87aa61fc0ff88e744c195249b9a33632             |
| <pre>Key [ 7]:592430f14d8f93db95dd691af045776d</pre> |
| Key [ 8]:3b55b404222bf445a6a2ef5865247695            |
| round 5:83dcf592a854226c4dcd94e1ecf1bc75             |
|                                                      |

page 969 of 1082

#### Appendix IV - Sample Data

Bluetooth

```
Key [ 9]:a9714b86319ef343a28b87456416bd52
Key [10]:e6598b24390b3a0bf2982747993b0d78
round 6:dee0d13a52e96bcf7c72045a21609fc6
Key [11]:62051d8c51973073bff959b032c6e1e2
Key [12]:29e94f4ab73296c453c833e217a1a85b
round 7:08488005761e6c7c4dbb203ae453fe3a
Key [13]:0e255970b3e2fc235f59fc5acb10e8ce
Key [14]:d0dfbb3361fee6d4ffe45babf1cd7abf
round 8:0d81e89bddde7a7065316c47574feb8f
Key [15]:c12eee4eb38b7a171f0f736003774b40
Key [16]:8f962523f1c0abd9a087a0dfb11643d3
Key [17]:24be1c66cf8b022f12f1fb4c60c93fd1
       :04435771e03a9daceb8bb1a493ee9bd8
rand
       :40a94509238664f244ff8e3d13b119d3
PTN
       :1ce44839badde30396d03c4c36f23006
round 1:40a94509238664f244ff8e3d13b119c3
Key [ 1]:1ce44839badde30396d03c4c36f23006
Key [ 2]:6dd97a8f91d628be4b18157af1a9dcba
round 2:0eac5288057d9947a24eabc1744c4582
Key [ 3]:fef9583d5f55fd4107ad832a725db744
Key [ 4]:fc3893507016d7c1db2bd034a230a069
round 3:60b424f1082b0cc3bd61be7b4c0155f0
added ->:205d69f82bb17031f9604c465fb26e33
Key [ 5]:0834d04f3e7e1f7f85f0c1db685ab118
Key [ 6]:1852397f9a3723169058e9b62bb3682b
round 4:2c6b65a49d66af6566675afdd6fa7d7d
Key [ 7]:6c10da21d762ae4ac1ba22a96d9007b4
Key [ 8]:9aa23658b90470a78d686344b8a9b0e7
round 5:a2c537899665113a42f1ac24773bdc31
Key [ 9]:137dee3bf879fe7bd02fe6d888e84f16
Key [10]:466e315a1863f47d0f93bc6827cf3450
round 6:e26982980d79b21ed3e20f8c3e71ba96
Key [11]:0b33cf831465bb5c979e6224d7f79f7c
Key [12]:92770660268ede827810d707a0977d73
round 7:e7b063c4e2e3110b89b7e1631c762dd5
Key [13]:7be30ae4961cf24ca17625a77bb7a9f8
Key [14]:be65574a33ae30e6e82dbd2826d3cc1a
round 8:7a963e37b2c2e76b489cfe40a2cf00e5
Key [15]:ed0ba7dd30d60a5e69225f0a33011e5b
Key [16]:765c990f4445e52b39e6ed6105ad1c4f
Key [17]:52627bf9f35d94f30d5b07ef15901adc
        :9cde4b60f9b5861ed9df80858bac6f7f
```

-----

page 970 of 1082

Appendix IV - Sample Data

Bluetooth.

### 9.4 TESTS OF E22 WITH PIN AUGMENTING

## for PIN lengths 1,...,16 bytes

```
:24b101fd56117d42c0545a4247357048
PIN length =16 octets
       :fd397c7f5c1f937cdf82d8816cc377e2
round 1:24b101fd56117d42c0545a4247357058
Key [ 1]:fd397c7f5c1f937cdf82d8816cc377e2
Key [ 2]:0f7aac9c9b53f308d9fdbf2c78e3c30e
round 2:838edfe1226266953ccba8379d873107
Key [ 3]:0b8ac18d4bb44fad2efa115e43945abc
Key [ 4]:887b16b062a83bfa469772c25b456312
round 3:8cd0c9283120aba89a7f9d635dd4fe3f
added ->:a881cad5673128ea5ad3f7211a096e67
Key [ 5]:2248cbe6d299e9d3e8fd35a91178f65b
Key [ 6]:b92af6237385bd31f8fb57fb1bdd824e
round 4:2648d9c618a622b10ef80c4dbaf68b99
Key [ 7]:2bf5ffe84a37878ede2d4c30be60203b
Key [ 8]:c9cb6cec60cb8a8f29b99fcf3e71e40f
round 5:b5a7d9e96f68b14ccebf361de3914d0f
Key [ 9]:5c2f8a702e4a45575b103b0cce8a91c6
Key [10]:d453db0c9f9ddbd11e355d9a34d9b11b
round 6:632a091e7eefe1336857ddafd1ff3265
Key [11]:32805db7e59c5ed4acabf38d27e3fece
Key [12]:fde3a8eedfa3a12be09c1a8a00890fd7
round 7:048531e9fd3efa95910540150f8b137b
Key [13]:def07eb23f3a378f059039a2124bc4c2
Key [14]:2608c58f23d84a09b9ce95e5caac1ab4
round 8:461814ec7439d412d0732f0a6f799a6a
Key [15]:0a7ed16481a623e56ee1442ffa74f334
Key [16]:12add59aca0d19532f1516979954e369
Key [17]:dd43d02d39ffd6a386a4b98b4ac6eb23
       :a5f2adf328e4e6a2b42f19c8b74ba884
_____
       :321964061ac49a436f9fb9824ac63f8b
rand
PIN length =15 octets
PTN
      :ad955d58b6b8857820ac1262d617a6
address :0314c0642543
round 1:321964061ac49a436f9fb9824ac63f9b
Key [ 1]:ad955d58b6b8857820ac1262d617a603
Key [ 2]:f281736f68e3d30b2ac7c67f125dc416
round 2:7c4a4ece1398681f4bafd309328b7770
Key [ 3]:43c157f4c8b360387c32ab330f9c9aa8
Key [ 4]:3a3049945a298f6d076c19219c47c3cb
round 3:9672b00738bdfaf9bd92a855bc6f3afb
added ->:a48b1401228194bad23161d7f6357960
Key [ 5]:c8e2eaa6d73b7de18f3228ab2173bc69
Key [ 6]:8623f44488222e66a293677cf30bf2bb
round 4:9b30247aad3bf133712d034b46d21c68
Key [ 7]:f3e500902fba31db9bae50ef30e484a4
Key [ 8]:49d4b1137c18f4752dd9955a5a8d2f43
```

page 971 of 1082

### Appendix IV - Sample Data

Bluetooth

```
round 5:4492c25fda08083a768b4b5588966b23
Key [ 9]:9d59c451989e74785cc097eda7e42ab8
Key [10]:251de25f3917dcd99c18646107a641fb
round 6:21ae346635714d2623041f269978c0ee
Key [11]:80b8f78cb1a49ec0c3e32a238e60fddf
Key [12]:beb84f4d20a501e4a24ecfbde481902b
round 7:9b56a3d0f8932f20c6a77a229514fb00
Key [13]:852571b44f35fd9d9336d3c1d2506656
Key [14]:d0a0d510fb06ba76e69b8ee3ebc1b725
round 8:6cd8492b2fd31a86978bcdf644eb08a8
Key [15]:c7ffd523f32a874ed4a93430a25976de
Key [16]:16cdcb25e62964876d951fdcc07030d3
Key [17]:def32c0e12596f9582e5e3c52b303f52
        :c0ec1a5694e2b48d54297911e6c98b8f
_____
rand
       :d4ae20c80094547d7051931b5cc2a8d6
PIN length =14 octets
PIN
       :e1232e2c5f3b833b3309088a87b6
address :fabecc58e609
round 1:d4ae20c80094547d7051931b5cc2a8c6
Key [ 1]:e1232e2c5f3b833b3309088a87b6fabe
Key [ 2]:5f0812b47cd3e9a30d7707050fffa1f2
round 2:1f45f16be89794bef33e4547c9c0916a
Key [ 3]:77b681944763244ffa3cd71b248b79b5
Key [ 4]:e2814e90e04f485958ce58c9133e2be6
round 3:b10d2f4ac941035263cee3552d774d2f
added ->:65bb4f82c9d5572f131f764e7139f5e9
Key [ 5]:520acad20801dc639a2c6d66d9b79576
Key [ 6]:c72255cdb61d42be72bd45390dd25ba5
round 4:ead4dc34207b6ea721c62166e155aaad
Key [ 7]:ebf04c02075bf459ec9c3ec06627d347
Key [ 8]:a1363dd2812ee800a4491c0c74074493
round 5:f507944f3018e20586d81d7f326aae9d
Key [ 9]:b0b6ba79493dc833d7f425be7b8dadb6
Key [10]:08cd23e536b9b9b53e85eb004cba3111
round 6:fff450f4302a2b3571e8405e148346da
Key [11]:fec22374c6937dcd26171f4d2edfada3
Key [12]:0fla8ef5979c69ff44f620c2e007b6e4
round 7:de558779589897f3402a90ee78c3f921
Key [13]:901fb66f0779d6aad0c0fba1fe812cb5
Key [14]:a0cab3cd15cd23603adc8d4474efb239
round 8:b2df0aa0c9f07fbbaa02f510a29cf540
Key [15]:18edc3f4296dd6f1dea13f7c143117a1
Key [16]:8d3d52d700a379d72ded81687f7546c7
Key [17]:5927badfe602f29345f840bb53e1dea6
        :d7b39be13e3692c65b4a9e17a9c55e17
       :272b73a2e40db52a6a61c6520549794a
rand
PIN length =13 octets
       :549f2694f353f5145772d8aele
address :20487681eb9f
```

round 1:272b73a2e40db52a6a61c6520549795a

page 972 of 1082

#### Appendix IV - Sample Data

```
Key [ 1]:549f2694f353f5145772d8ae1e204876
Key [ 2]:42c855593d66b0c458fd28b95b6a5fbf
round 2:d7276dc8073f7677c31f855bde9501e2
Key [ 3]:75d0a69ae49a2da92e457d767879df52
Key [ 4]:b3aa7e7492971afaa0fb2b64827110df
round 3:71aae503831133d19bc452da4d0e409b
added ->:56d558a1671ee8fbf12518884857b9c1
Key [ 5]:9c8cf1604a98e9a503c342e272de5cf6
Key [ 6]:d35bc2df6b85540a27642106471057d9
round 4:f41a709c89ea80481aa3d2b9b2a9f8ca
Key [ 7]:b454dda74aeb4eff227ba48a58077599
Key [ 8]:bcba6aec050116aa9b7c6a9b7314d796
round 5:20fdda20f4a26b1bd38eb7f355a7be87
Key [ 9]:d41f8a9de0a716eb7167a1b6e321c528
Key [10]:5353449982247782d168ab43f17bc4d8
round 6:a70e316997eeed49a5a9ef9ba5e913b5
Key [11]:32cbc9cf1a81e36a45153972347ce4ac
Key [12]:5747619006cf4ef834c749f2c4b9feb6
round 7:e66f2317a825f589f76b47b6aa6e73fb
Key [13]:f9b68beba0a09d2a570a7dc88cc3c3c2
Key [14]:55718f9a4f0b1f9484e8c6b186a41a4b
round 8:5f68f940440a9798e074776019804ada
Key [15]:4ecc29be1b4d78433f6aa30db974a7fb
Key [16]:8470a066ffb00cda7b08059599f919f5
Key [17]:f39a36d74e960a051e1ca98b777848f4
       :9ac64309a37c25c3b4a584fc002a1618
_____
      :7edb65f01a2f45a2bc9b24fb3390667e
PIN length =12 octets
       :2e5a42797958557b23447ca8
address :04f0d2737f02
round 1:7edb65f01a2f45a2bc9b24fb3390666e
Key [ 1]:2e5a42797958557b23447ca804f0d273
Key [ 2]:18a97c856561eb23e71af8e9e1be4799
round 2:3436e12db8ffdc1265cb5a86da2fed0b
Key [ 3]:7c0908dcbc73201e17c4f7aa1ab8aec8
Key [ 4]:7cb58833602fbe4194c7cc797ce8c454
round 3:caed6af4226f67e4ad1914620803ef2a
added ->:b4c8cf04389eac4611b438993b935544
Key [ 5]:f4dce7d607b5234562d0ebb2267b08b8
Key [ 6]:560b75c5545751fd8fa99fa4346e654b
round 4:ee67c87d6f74bb75db98f68bff0192c1
Key [ 7]:32f10cefd8d3e6424c6f91f1437808af
Key [ 8]:a934a46045be30fb3be3a5f3f7b18837
round 5:792398dcbeb8d10bdb07ae3c819e943c
Key [ 9]:a0f12e97c677a0e8ac415cd2c8a7ca88
Key [10]:e27014c908785f5ca03e8c6a1da3bf13
round 6:e778b6e0c3e8e7edf90861c7916d97a8
Key [11]:1b4a4303bcc0b2e0f41c72d47654bd9f
Key [12]:4b1302a50046026d6c9054fc8387965a
round 7:1fafddc7efa5f04c1dec1869d3f2d9bb
Key [13]:58c334bb543d49eca562cdbe0280e0fc
```

page 973 of 1082

#### Appendix IV - Sample Data

```
Key [14]:bdb60d383c692d06476b76646c8dec48
round 8:3d7c326d074bd6aa222ea050f04a3c7f
Key [15]:78c0162506be0b5953e8403c01028f93
Key [16]:24d7dbbe834dbd7b67f57fcf0d39d60f
Key [17]:2e74f1f3331c0f6585e87b2f715e187e
       :d3af4c81e3f482f062999dee7882a73b
______
       :26a92358294dce97b1d79ec32a67e81a
PIN length =11 octets
       :05fbad03f52fa9324f7732
address: b9ac071f9d70
round 1:26a92358294dce97b1d79ec32a67e80a
Key [ 1]:05fbad03f52fa9324f7732b9ac071f9d
Key [ 2]:2504c9691c04a18480c8802e922098c0
round 2:0be20e3d76888e57b6bf77f97a8714fb
Key [ 3]:576b2791d1212bea8408212f2d43e77e
Key [ 4]:90ae36dcce8724adb618f912d1b27297
round 3:1969667060764453257d906b7e58bd5b
added ->:3f12892849c312c494542ea854bfa551
Key [ 5]:bc492c42c9e87f56ec31af5474e9226e
Key [ 6]:c135d1dbed32d9519acfb4169f3e1a10
round 4:ac404205118fe771e54aa6f392da1153
Key [ 7]:83ccbdbbaf17889b7d18254dc9252fa1
Key [ 8]:80b90a1767d3f2848080802764e21711
round 5:41795e89ae9a0cf776ffece76f47fd7a
Key [ 9]:cc24e4a86e8eed129118fd3d5223a1dc
Key [10]:7b1e9c0eb9dab083574be7b7015a62c9
round 6:29ca9e2f87ca00370ef1633505bfba4b
Key [11]:888e6d88cf4beb965cf7d4f32b696baa
Key [12]:6d642f3e5510b0b043a44daa2cf5eec0
round 7:81fc891c3c6fd99acc00028a387e2366
Key [13]:e224f85da2ab63a23e2a3a036e421358
Key [14]:c8dc22aaa739e2cb85d6a0c08226c7d0
round 8:e30b537e7a000e3d2424a9c0f04c4042
Key [15]:a969aa818c6b324bae391bedcdd9d335
Key [16]:6974b6f2f07e4c55f2cc0435c45bebd1
Key [17]:134b925ebd98e6b93c14aee582062fcb
       :be87b44d079d45a08a71d15208c5cb50
  _____
       :0edef05327eab5262430f21fc91ce682
PIN length =10 octets
PIN
       :8210e47390f3f48c32b3
address :7a3cdfe377d1
round 1:0edef05327eab5262430f21fc91ce692
Key [ 1]:8210e47390f3f48c32b37a3cdfe377d1
Key [ 2]:c6be4c3e425e749b620a94c779e33a7e
round 2:07ca3c7a7a6bcbc31d79a856d9cffc0e
Key [ 3]:2587cec2a4b8e4f996a9ed664350d5dd
Key [ 4]:70e4bf72834d9d3dbb7eb2c239216dc0
round 3:792ad2ac4e4559d1463714d2f161b6f4
added ->:7708c2ff692f0ef7626706cd387d9c66
Key [ 5]:6696e1e7f8ac037e1fff3598f0c164e2
```

page 974 of 1082

## Appendix IV - Sample Data

| Key [ 6 | 5]:23dbfe4d0b561bea08fbcef25e49b648      |
|---------|------------------------------------------|
| round   | 4:7d8c7la9d7fbdcbd85lbdf074550b100       |
| Key [ 7 | 7]:b03648acd021550edee904431a02f00c      |
| Key [ 8 | 3]:cb169220b7398e8f077730aa4bf06baa      |
| round   | 5:b6fcaa45064ffd557e4b7b30cfbb83e0       |
| Key [ 9 | 9]:af602c2ba16a454649951274c2be6527      |
| _       | -<br>)]:5d60b0a7a09d524143eca13ad680bc9c |
| -       | 6:b3416d391a0c26c558843debd0601e9e       |
|         | l]:9a2f39bfe558d9f562c5f09a5c3c0263      |
| -       | 2]:72cae8eebd7fabd9b1848333c2aab439      |
|         | 7:abe4b498d9c36ea97b8fd27d7f813913       |
|         | 3]:15f27ea11e83a51645d487b81371d7dc      |
| _       |                                          |
| _       | 1]:36083c8666447e03d33846edf444eb12      |
|         | 8:8032104338a945ba044d102eabda3b22       |
| _       | 5]:0a3a8977dd48f3b6c1668578befadd02      |
| _       | 5]:f06b6675d78ca0ee5b1761bdcdab516d      |
| Key [17 | 7]:cbc8a7952d33aa0496f7ea2d05390b23      |
| Ka      | :bf0706d76ec3b11cce724b311bf71ff5        |
|         |                                          |
|         | :86290e2892f278ff6c3fb917b020576a        |
|         | ngth = 9 octets                          |
|         | :3dcdffcfd086802107                      |
| address | s :791a6a2c5cc3                          |
| round   | 1:86290e2892f278ff6c3fb917b0205765       |
| Key [ 1 | l]:3dcdffcfd086802107791a6a2c5cc33d      |
| Key [ 2 | 2]:b4962f40d7bb19429007062a3c469521      |
| round   | 2:lec59ffd3065f19991872a7863b0ef02       |
| Key [ 3 | 3]:eb9ede6787dd196b7e340185562bf28c      |
| Key [ 4 | 1]:2964e58aacf7287d1717a35b100ae23b      |
| round   | 3:f817406f1423fc2fe33e25152679eaaf       |
| added - | ->:7e404e47861574d08f7dde02969941ca      |
| Key [ 5 | 5]:6abf9a314508fd61e486fa4e376c3f93      |
| -       | 5]:6da148b7ee2632114521842cbb274376      |
| -       | 4:e9c2a8fac22b8c7cf0c619e2b3f890ed       |
|         | 7]:df889cc34fda86f01096d52d116e620d      |
| -       | 3]:5eb04b147dc39d1974058761ae7b73fc      |
|         | 5:444a8aac0efee1c02f8d38f8274b7b28       |
|         |                                          |
|         | 9]:8426cc59eee391b2bd50cf8f1efef8b3      |
|         | 0]:8b5d220a6300ade418da791dd8151941      |
|         | 6:9185f983db150b1bccab1e5c12eb63a1       |
|         | l]:82ba4ddef833f6a4d18b07aa011f2798      |
| Key [12 | 2]:ce63d98794682054e73d0359dad35ec4      |
| round   | 7:5eded2668f5916dfd036c09e87902886       |
| Key [13 | 3]:da794357652e80c70ad8b0715dbe33d6      |
| Key [14 | 4]:732ef2c0c3220b31f3820c375e27bb29      |
| round   | 8:88a5291b4acbba009a85b7dd6a834b3b       |
| Key [15 | 5]:3ce75a61d4b465b70c95d7ccd5799633      |
| Key [16 | 5]:5df9bd2c3a17a840cdaafb76c171db7c      |
| Key [17 | 7]:3f8364b089733d902bccb0cd3386846f      |
| Ka      | :cdb0cc68f6f6fbd70b46652de3ef3ffb        |
|         |                                          |
| rand    | :3ab52a65bb3b24a08eb6cd284b4b9d4b        |
|         |                                          |

page 975 of 1082

#### Appendix IV - Sample Data

```
PIN length = 8 octets
        :d0fb9b6838d464d8
address :25a868db91ab
round 1:3ab52a65bb3b24a08eb6cd284b4b9d45
Key [ 1]:d0fb9b6838d464d825a868db91abd0fb
Key [ 2]:2573f47b49dad6330a7a9155b7ae8ba1
round 2:ad2ffdff408fcfab44941016a9199251
Key [ 3]:d2c5b8fb80cba13712905a589adaee71
Key [ 4]:5a3381511b338719fae242758dea0997
round 3:2ddc17e570d7931a2b1d13f6ace928a5
added ->:17914180cb12b7baa5d3e0dee734c5e0
Key [ 5]:e0a4d8ac27fbe2783b7bcb3a36a6224d
Key [ 6]:949324c6864deac3eca8e324853e11c3
round 4:62c1db5cf31590d331ec40ad692e8df5
Key [ 7]:6e67148088a01c2d4491957cc9ddc4aa
Key [ 8]:557431deab7087bb4c03fa27228f60c6
round 5:9c8933bc361f4bde4d1bda2b5f8bb235
Key [ 9]:a2551aca53329e70ade3fd2bb7664697
Key [10]:05d0ad35de68a364b54b56e2138738fe
round 6:9156db34136aa06655bf28a05be0596a
Key [11]:1616a6b13ce2f2895c722e8495181520
Key [12]:b12e78a1114847b01f6ed2f5a1429a23
round 7:84dcc292ed836c1c2d523f2a899a2ad5
Key [13]:316e144364686381944e95afd8a026bb
Key [14]:1ab551b88d39d97ea7a9fe136dbfe2e1
round 8:87bdcac878d777877f4eccf042cfee5e
Key [15]:70e21ab08c23c7544524b64492b25cc9
Key [16]:35f730f2ae2b950a49a1bf5c8b9f8866
Key [17]:2f16924c22db8b74e2eadf1ba4ebd37c
       :983218718ca9aa97892e312d86dd9516
______
        :a6dc447ff08d4b366ff96e6cf207e179
PIN length = 7 octets
       :9c57e10b4766cc
address:54ebd9328cb6
round 1:a6dc447ff08d4b366ff96e6cf207e174
Key [ 1]:9c57e10b4766cc54ebd9328cb69c57e1
Kev [ 2]:00a609f4d61db26993c8177e3ee2bba8
round 2:1ed26b96a306d7014f4e5c9ee523b73d
Key [ 3]:646d7b5f9aaa528384bda3953b542764
Key [ 4]:a051a42212c0e9ad5c2c248259aca14e
round 3:a53f526db18e3d7d53edbfc9711041ed
added ->:031b9612411b884b3ce62da583172299
Kev [ 5]:d1bd5e64930e7f838d8a33994462d8b2
Key [ 6]:5dc7e2291e32435665ebd6956bec3414
round 4:9438be308ec83f35c560e2796f4e0559
Key [ 7]:10552f45af63b0f15e2919ab37f64fe7
Key [ 8]:c44d5717c114a58b09207392ebe341f8
round 5:b79a7b14386066d339f799c40479cb3d
Key [ 9]:6886e47b782325568eaf59715a75d8ff
Key [10]:8e1e335e659cd36b132689f78c147bda
round 6:ef232462228aa166438d10c34e17424b
```

page 976 of 1082

### Appendix IV - Sample Data

```
Key [11]:8843efeedd5c2b7c3304d647f932f4d1
Key [12]:13785aaedd0adf67abb4f01872392785
round 7:02d133fe40d15f1073673b36bba35abd
Key [13]:837d7ca2722419e6be3fae35900c3958
Key [14]:93f8442973e7fccf2e7232d1d057c73a
round 8:275506a3d08c84e94cc58ed60054505e
Key [15]:8a7a9edffa3c52918bc6a45f57d91f5d
Key [16]:f214a95d777f763c56109882c4b52c84
Key [17]:10e2ee92c5ea1ddc5eb010e55510c403
       :9cd6650ead86323e87cafb1ff516d1e0
 _____
       :3348470a7ea6cc6eb81b40472133262c
PIN length = 6 octets
       :fcad169d7295
address :430d572f8842
round 1:3348470a7ea6cc6eb81b404721332620
Key [ 1]:fcad169d7295430d572f8842fcad169d
Key [ 2]:b3479d4d4fd178c43e7bc5b0c7d8983c
round 2:af976da9225066d563e10ab955e6fc32
Key [ 3]:7112462b37d82dd81a2a35d9eb43cb7c
Key [ 4]:c5a7030f8497945ac7b84600d1d161fb
round 3:d08f826ebd55a0bd7591c19a89ed9bde
added ->:e3d7c964c3fb6cd3cdac01dda820c1fe
Key [ 5]:84b0c6ef4a63e4dff19b1f546d683df5
Key [ 6]:f4023edfc95dle79ed4bb4de9b174f5d
round 4:6cd952785630dfc7cf81eea625e42c5c
Key [ 7]:ea38dd9a093ac9355918632c90c79993
Key [ 8]:dbba01e278ddc76380727f5d7135a7de
round 5:93573b2971515495978264b88f330f7f
Key [ 9]:d4dc3a31be34e412210fafa6eca00776
Key [10]:39d1e190ee92b0ff16d92a8be58d2fa0
round 6:b3f01d5e7fe1ce6da7b46d8c389baf47
Key [11]:1eb081328d4bcf94c9117b12c5cf22ac
Key [12]:7e047c2c552f9f1414d946775fabfe30
round 7:0b833bff6106d5bae033b4ce5af5a924
Key [13]:e78e685d9b2a7e29e7f2a19d1bc38ebd
Key [14]:1b582272a3121718c4096d2d8602f215
round 8:23de0bbdc70850a7803f4f10c63b2c0f
Key [15]:8569e860530d9c3d48a0870dac33f676
Key [16]:6966b528fdd1dc222527052c8f6cf5a6
Key [17]:a34244c757154c53171c663b0b56d5c2
      :98f1543ab4d87bd5ef5296fb5e3d3a21
-----
       :0f5bb150b4371ae4e5785293d22b7b0c
PIN length = 5 octets
      :b10d068bca
address :b44775199f29
round 1:0f5bb150b4371ae4e5785293d22b7b07
Key [ 1]:b10d068bcab44775199f29b10d068bca
Key [ 2]:aec70d1048f1bbd2c18040318a8402ad
round 2:342d2b79d7fb7cd110379742b9842c79
Key [ 3]:6d8d5cf338f29ef4420639ef488e4fa9
```

page 977 of 1082

#### Appendix IV - Sample Data

```
Key [ 4]:a1584117541b759ba6d9f7eb2bedcbba
round 3:9407e8e3e810603921bf81cfda62770a
added ->:9b6299b35c477addc437d35c088df20d
Key [ 5]:09a20676666aeed6f22176274eb433f4
Key [ 6]:840472c001add5811a054be5f5c74754
round 4:9a3ba953225a7862c0a842ed3d0b2679
Key [ 7]:fad9e45c8bf70a972fcd9bff0e8751f5
Key [ 8]:e8f30ff666dfd212263416496ff3b2c2
round 5:2c573b6480852e875df34b28a5c44509
Key [ 9]:964cdba0cf8d593f2fc40f96daf8267a
Key [10]:bcd65c11b13e1a70bcd4aafba8864fe3
round 6:21b0cc49e880c5811d24dee0194e6e9e
Key [11]:468c8548ea9653c1a10df6288dd03c1d
Key [12]:5d252d17af4b09d3f4b5f7b5677b8211
round 7:e6d6bdcd63e1d37d9883543ba86392fd
Key [13]:e814bf307c767428c67793dda2df95c7
Key [14]:4812b979fdc20f0ff0996f61673a42cc
round 8:e3dde7ce6bd7d8a34599aa04d6a760ab
Key [15]:5b1e2033d1cd549fc4b028146eb5b3b7
Key [16]:0f284c14fb8fe706a5343e3aa35af7b1
Key [17]:b1f7a4b7456d6b577fded6dc7a672e37
       :c55070b72bc982adb972ed05d1a74ddb
       :148662a4baa73cfadb55489159e476e1
PIN length = 4 octets
        :fb20f177
address :a683bd0b1896
round 1:148662a4baa73cfadb55489159e476eb
Key [ 1]:fb20f177a683bd0b1896fb20f177a683
Key [ 2]:47266cefbfa468ca7916b458155dc825
round 2:3a942eb6271c3f4e433838a5d3fcbd27
Key [ 3]:688853a6d6575eb2f6a2724b0fbc133b
Key [ 4]:7810df048019634083a2d9219d0b5fe0
round 3:9c835b98a063701c0887943596780769
added ->:8809bd3c1a0aace6d3dcdca4cf5c7d82
Key [ 5]:c78f6dcf56da1bbd413828b33f5865b3
Key [ 6]:eb3f3d407d160df3d293a76d1a513c4a
round 4:7e68c4bafa020a4a59b5a1968105bab5
Key [ 7]:d330e038d6b19d5c9bb0d7285a360064
Key [ 8]:9bd3ee50347c00753d165faced702d9c
round 5:227bad0cf0838bdb15b3b3872c24f592
Key [ 9]:9543ad0fb3fe74f83e0e2281c6d4f5f0
Key [10]:746cd0383c17e0e80e6d095a87fd0290
round 6:e026e98c71121a0cb739ef6f59e14d26
Key [11]:fa28bea4b1c417536608f11f406ea1dd
Key [12]:3aee0f4d21699df9cb8caf5354a780ff
round 7:cd6a6d8137d55140046f8991da1fa40a
Key [13]:372b71bc6d1aa6e785358044fbcf05f4
Key [14]:00a01501224c0405de00aa2ce7b6ab04
round 8:52cd7257fe8d0c782c259bcb6c9f5942
Key [15]:c7015c5c1d7c030e00897f104a006d4a
Key [16]:260a9577790c62e074e71e19fd2894df
```

page 978 of 1082

## Appendix IV - Sample Data

| Key [17]:c041b7a231493acd15ddcdaee94b9f52                                           |
|-------------------------------------------------------------------------------------|
| Ka :7ec864df2f1637c7e81f2319ae8f4671                                                |
|                                                                                     |
| rand :193a1b84376c888882c8d3b4ee93ba8d5                                             |
| PIN length = 3 octets                                                               |
| PIN :a123b9                                                                         |
| address :4459a44610f6                                                               |
| round 1:193a1b84376c888882c8d3b4ee93ba8dc                                           |
| Key [ 1]:a123b94459a44610f6a123b94459a446                                           |
| Key [ 2]:5f64d384c8e990c1d25080eb244dde9b                                           |
| round 2:3badbd58f100831d781ddd3ccedefd3f                                            |
| Key [ 3]:5abc00eff8991575c00807c48f6dbea5                                           |
| Key [ 4]:127521158ad6798fb6479d1d2268abe6                                           |
| round 3:0b53075a49c6bf2df2421c655fdedf68                                            |
| added ->:128d22de7e3247a5decf572bb61987b4                                           |
| Key [ 5]:f2a1f620448b8e56665608df2ab3952f                                           |
| Key [ 6]:7c84c0af02aad91dc39209c4edd220b1                                           |
| round 4:793f4484fb592e7a78756fd4662f990d  Key [ 7]:f6445b647317e7e493bb92bf6655342f |
| Key [ 8]:3cae503567c63d3595eb140ce60a84c0                                           |
| round 5:9e46a8df925916a342f299a8306220a0                                            |
| Key [ 9]:734ed5a806e072bbecb4254993871679                                           |
| Key [10]:cda69ccb4b07f65e3c8547c11c0647b8                                           |
| round 6:6bf9cd82c9e1be13fc58eae0b936c75a                                            |
| Key [11]:c48e53ld3175c2bd26fa25cc8990e394                                           |
| Key [12]:6d93d349a6c6e9ff5b26149565b13d15                                           |
| round 7:e96a9871471240f198811d4b8311e9a6                                            |
| Key [13]:5c4951e85875d663526092cd4cbdb667                                           |
| Key [14]:f19f7758f5cde86c3791efaf563b3fd0                                           |
| round 8:e94ca67d3721d5fb08ec069191801a46                                            |
| Key [15]:bf0c17f3299b37d984ac938b769dd394                                           |
| Key [16]:7edf4ad772a6b9048588f97be25bde1c                                           |
| Key [17]:6ee7ba6afefc5b561abbd8d6829e8150                                           |
| Ka :ac0daabf17732f632e34ef193658bf5d                                                |
|                                                                                     |
| rand :1453db4d057654e8eb62d7d62ec3608c                                              |
| PIN length = 2 octets                                                               |
| PIN :3eaf                                                                           |
| address :411fbbb51d1e                                                               |
| round 1:1453db4d057654e8eb62d7d62ec36084                                            |
| <pre>Key [ 1]:3eaf411fbbb51dle3eaf411fbbb51dle</pre>                                |
| Key [ 2]:c3ala997509f00fb424laba607109c64                                           |
| round 2:0b78276c1ebc65707d38c9c5fa1372bd                                            |
| Key [ 3]:3c729833ae1ce7f84861e4dbad6305cc                                           |
| Key [ 4]:c83a43c3a66595cb8136560ed29be4ff                                           |
| round 3:23f3f0f6441563d4c202cee0e5cb2335                                            |
| added ->:3746cbbb418bb73c2964a536cb8e83b1                                           |
| Key [ 5]:18b26300b86b70acdd1c8f5cbc7c5da8                                           |
| Key [ 6]:04efc75309b98cd8f1cef5513c18e41e                                           |
| round 4:c61afa90d3c14bdf588320e857afdc00                                            |
| Key [ 7]:517c789cecadc455751af73198749fb8                                           |
| Key [ 8]:fd9711f913b5c844900fa79dd765d0e2                                           |

page 979 of 1082

#### Appendix IV - Sample Data

Bluetooth

```
round 5:a8a0e02ceb556af8bfa321789801183a
Key [ 9]:bb5cf30e7d3ceb930651b1d16ee92750
Key [10]:3d97c7862ecab42720e984972f8efd28
round 6:0b58e922438d224db34b68fca9a5ea12
Key [11]:4ce730344f6b09e449dcdb64cd466666
Key [12]:38828c3a56f922186adcd9b713cdcc31
round 7:b90664c4ac29a8b4bb26debec9ffc5f2
Key [13]:d30fd865ea3e9edcff86a33a2c319649
Key [14]:1fdb63e54413acd968195ab6fa424e83
round 8:6934de3067817cefd811abc5736c163b
Key [15]:a16b7c655bbaa262c807cba8ae166971
Key [16]:7903dd68630105266049e23ca607cda7
Kev [17]:888446f2d95e6c2d2803e6f4e815ddc9
       :1674f9dc2063cc2b83d3ef8ba692ebef
_____
rand
       :1313f7115a9db842fcedc4b10088b48d
PIN length = 1 octets
PIN
       :6d
address:008aa9be62d5
round 1:1313f7115a9db842fcedc4b10088b48a
Key [ 1]:6d008aa9be62d56d008aa9be62d56d00
Key [ 2]:46ebfeafb6657b0a1984a8dc0893accf
round 2:839b23b83b5701ab095bafd162ec0ac7
Key [ 3]:8e15595edcf058af62498ee3c1dc6098
Key [ 4]:dd409c3444e94b9cc08396ae967542a0
round 3:c0a2010cc44f2139427f093f4f97ae68
added ->:d3b5f81d9eecd97bbe6ccd8e4f1f62e2
Key [ 5]:487deff5d519f6a6481e947b926f633c
Key [ 6]:5b4b6e3477ed5c2c01f6e607d3418963
round 4:1a5517a0efad3575931d8ea3bee8bd07
Key [ 7]:34b980088d2b5fd6b6a2aceeda99c9c4
Key [ 8]:e7d06d06078acc4ecdbc8da800b73078
round 5:d3celfdfe716d72c1075ff37a8a2093f
Key [ 9]:7d375bad245c3b757380021af8ecd408
Key [10]:14dac4bc2f4dc4929a6cceec47f4c3a3
round 6:47e90cb55be6e8dd0f583623c2f2257b
Key [11]:66cfda3c63e464b05e2e7e25f8743ad7
Kev [12]:77cfccda1ad380b9fdf1df10846b50e7
round 7:f866ae6624f7abd4a4f5bd24b04b6d43
Key [13]:3e11dd84c031a470a8b66ec6214e44cf
Key [14]:2f03549bdb3c511eea70b65ddbb08253
round 8:02e8e17cf8be4837c9c40706b613dfa8
Key [15]:e2f331229ddfcc6e7bea08b01ab7e70c
Kev [16]:b6b0c3738c5365bc77331b98b3fba2ab
Key [17]:f5b3973b636119e577c5c15c87bcfd19
       :38ec0258134ec3f08461ae5c328968a1
```

-----

page 980 of 1082

Appendix IV - Sample Data

Bluetooth.

### 9.5 FOUR TESTS OF E3

rand :48afcdd4bd40fef76693b113 aco kev Key [ 2]:4697b1baa3b7100ac537b3c95a28ac64 round 2:78d19f9307d2476a523ec7a8a026042a Kev [ 3]:ecabaac66795580df89af66e66dc053d Key [ 4]:8ac3d8896ae9364943bfebd4969b68a0 round 3:600265247668dda0e81c07bbb30ed503 Key [ 5]:5d57921fd5715cbb22c1be7bbc996394 Key [ 6]:2a61b8343219fdfb1740e6511d41448f round 4:d7552ef7cc9dbde568d80c2215bc4277 Key [ 7]:dd0480dee731d67f01a2f739da6f23ca Key [ 8]:3ad01cd1303e12a1cd0fe0a8af82592c round 5:fb06bef32b52ab8f2a4f2b6ef7f6d0cd Key [ 9]:7dadb2efc287ce75061302904f2e7233 Key [10]:c08dcfa981e2c4272f6c7a9f52e11538 round 6:b46b711ebb3cf69e847a75f0ab884bdd Key [11]:fc2042c708e409555e8c147660ffdfd7 Key [12]:fa0b21001af9a6b9e89e624cd99150d2 round 7:c585f308ff19404294f06b292e978994 Key [13]:18b40784ea5ba4c80ecb48694b4e9c35 Key [14]:454d54e5253c0c4a8b3fcca7db6baef4 round 8:2665fadb13acf952bf74b4ab12264b9f Key [15]:2df37c6d9db52674f29353b0f011ed83 Key [16]:b60316733b1e8e70bd861b477e2456f1 Key [17]:884697b1baa3b7100ac537b3c95a28ac round 1:5d3ecb17f26083df0b7f2b9b29aef87c Key [ 1]:e9e5dfc1b3a79583e9e5dfc1b3a79583 Key [ 2]:7595bf57e0632c59f435c16697d4c864 round 2:de6fe85c5827233fe22514a16f321bd8 Key [ 3]:e31b96afcc75d286ef0ae257cbbc05b7 Key [ 4]:0d2a27b471bc0108c6263aff9d9b3b6b round 3:7cd335b50d09d139ea6702623af85edb added ->:211100a2ff6954e6e1e62df913a656a7 Key [ 5]:98d1eb5773cf59d75d3b17b3bc37c191 Key [ 6]:fd2b79282408ddd4ea0aa7511133336f round 4:991dccb3201b5b1c4ceff65a3711e1e9 Key [ 7]:331227756638a41d57b0f7e071ee2a98 Key [ 8]:aa0dd8cc68b406533d0f1d64aabacf20 round 5:18768c7964818805fe4c6ecae8a38599 Key [ 9]:669291b0752e63f806fce76f10e119c8 Key [10]:ef8bdd46be8ee0277e9b78adef1ec154 round 6:82f9aa127a72632af43d1a17e7bd3a09 Key [11]:f3902eb06dc409cfd78384624964bf51 Key [12]:7d72702b21f97984a721c99b0498239d round 7:1543d7870bf2d6d6efab3cbf62dca97d Key [13]:532e60bceaf902c52a06c2c283ecfa32 Key [14]:181715e5192efb2a64129668cf5d9dd4

page 981 of 1082

## Appendix IV - Sample Data

| round 8:eee3e8744a5f8896de95831ed837ffd5             |
|------------------------------------------------------|
| Key [15]:83017c1434342d4290e961578790f451            |
| Key [16]:2603532f365604646ff65803795ccce5            |
| Key [17]:882f7c907b565ea58dae1c928a0dcf41            |
| kc :cc802aecc7312285912e90af6a1e1154                 |
|                                                      |
| rand :950e604e655ea3800fe3eb4a28918087               |
| aco :68f4f472b5586ac5850f5f74                        |
| key :34e86915d20c485090a6977931f96df5                |
| round 1:950e604e655ea3800fe3eb4a28918087             |
| Key [ 1]:34e86915d20c485090a6977931f96df5            |
| <pre>Key [ 2]:8de2595003f9928efaf37e5229935bdb</pre> |
| round 2:d46f5a04c967f55840f83d1cdb5f9afc             |
| Key [ 3]:46f05ec979a97cb6ddf842ecc159c04a            |
| Key [ 4]:b468f0190a0a83783521deae8178d071            |
| round 3:e16edede9cb6297f32e1203e442ac73a             |
| Key [ 5]:8a171624dedbd552356094daaadcf12a            |
| Key [ 6]:3085e07c85e4b99313f6e0c837b5f819            |
| round 4:805144e55e1ece96683d23366fc7d24b             |
| Key [ 7]:fe45c27845169a66b679b2097d147715            |
| <pre>Key [ 8]:44e2f0c35f64514e8bec66c5dc24b3ad</pre> |
| round 5:edbaf77af070bd22e9304398471042f1             |
| Key [ 9]:0d534968f3803b6af447eaf964007e7b            |
| Key [10]:f5499a32504d739ed0b3c547e84157ba            |
| round 6:0dabla4c846aef0b65b1498812a73b50             |
| Key [11]:e17e8e456361c46298e6592a6311f3fb            |
| Key [12]:ec6d14da05d60e8abac807646931711f            |
| round 7:1e7793cac7f55a8ab48bd33bc9c649e0             |
| Key [13]:2b53dde3d89e325e5ff808ed505706ae            |
| Key [14]:41034e5c3fb0c0d4f445f0cf23be79b0            |
| round 8:3723768baa78b6a23ade095d995404da             |
| Key [15]:e2ca373d405a7abf22b494f28a6fd247            |
| Key [16]:74e09c9068c0e8f1c6902d1b70537c30            |
| Key [17]:767a7f1acf75c3585a55dd4a428b2119            |
| round 1:39809afb773efd1b7510cd4cb7c49f34             |
| Key [ 1]:1d0d48d485abddd3798b483a82a0f878            |
| Key [ 2]:aed957e600a5aed5217984dd5fef6fd8            |
| round 2:6436ddbabe92655c87a7d0c12ae5e5f6             |
| Key [ 3]:fee00bb0de89b6ef0a289696a4faa884            |
| Key [ 4]:33ce2f4411db4dd9b7c42cc586b8a2ba            |
| round 3:cec690f7e0aa5f063062301e049a5cc5             |
| added ->:f7462a0c97e85c1d4572fd52b35efbf1            |
| Key [ 5]:b5116f5c6c29e05e4acb4d02a46a3318            |
| Key [ 6]:ff4fa1f0f73d1a3c67bc2298abc768f9            |
| round 4:dcdfe942e9f0163fc24a4718844b417d             |
| Key [ 7]:5453650c0819e001e48331ad0e9076e0            |
| Key [ 8]:b4ff8dda778e26c0dce08349b81c09a1            |
| round 5:265a16b2f766afae396e7a98c189fda9             |
| Key [ 9]:f638fa294427c6ed94300fd823b31d10            |
| Key [10]:1ccfa0bd86a9879b17d4bc457e3e03d6            |
| round 6:628576b5291d53d1eb8611c8624e863e             |
| Key [11]:0eaee2ef4602ac9ca19e49d74a76d335            |

page 982 of 1082

## Appendix IV - Sample Data

| Key [12]:6e1062f10a16e0d378476da3943842e9 |
|-------------------------------------------|
| round 7:d7b9c2e9b2d5ea5c27019324cae882b3  |
| Key [13]:40be960bd22c744c5b23024688e554b9 |
| Key [14]:95c9902cb3c230b44d14ba909730d211 |
| round 8:97fb6065498385e47eb3df6e2ca439dd  |
| Key [15]:10d4b6e1d1d6798aa00aa2951e32d58d |
| Key [16]:c5d4b91444b83ee578004ab8876ba605 |
| Key [17]:1663a4f98e2862eddd3ec2fb03dcc8a4 |
| kc :c1beafea6e747e304cf0bd7734b0a9e2      |
|                                           |
| rand :6a8ebcf5e6e471505be68d5eb8a3200c    |
| aco :658d791a9554b77c0b2f7b9f             |
| key :35cf77b333c29467ld426fa79993a133     |
| round 1:6a8ebcf5e6e471505be68d5eb8a3200c  |
| Key [ 1]:35cf77b333c29467ld426fa79993a133 |
| Key [ 2]:c4524e53b95b4bf2d7b2f095f63545fd |
|                                           |
| round 2:ade94ec585db0d27e17474b58192c87a  |
| Key [ 3]:c99776768c6e9f9dd3835c52cea8d18a |
| Key [ 4]:f1295db23823ba2792f21217fc01d23f |
| round 3:da8dc1a10241ef9e6e069267cd2c6825  |
| Key [ 5]:9083db95a6955235bbfad8aeefec5f0b |
| Key [ 6]:8bab6bc253d0d0c7e0107feab728ff68 |
| round 4:e6665ca0772ceecbc21222ff7be074f8  |
| Key [ 7]:2fa1f4e7a4cf3ccd876ec30d194cf196 |
| Key [ 8]:267364be247184d5337586a19df8bf84 |
| round 5:a857a9326c9ae908f53fee511c5f4242  |
| Key [ 9]:9aef21965b1a6fa83948d107026134c7 |
| Key [10]:d2080c751def5dc0d8ea353cebf7b973 |
| round 6:6678748a1b5f21ac05cf1b117a7c342f  |
| Key [11]:d709a8ab70b0d5a2516900421024b81e |
| Key [12]:493e4843805f1058d605c8d1025f8a56 |
| round 7:766c66fe9c460bb2ae39ec01e435f725  |
| Key [13]:bled21b71daea03f49fe74b2c11fc02b |
| Key [14]:0elded7ebf23c72324a0165a698c65c7 |
| round 8:396e0ff7b2b9b7a3b35c9810882c7596  |
| Key [15]:b3bf4841dc92f440fde5f024f9ce8be9 |
| Key [16]:1c69bc6c2994f4c84f72be8f6b188963 |
| Key [17]:bb7b66286dd679a471e2792270f3bb4d |
| round 1:45654f2f26549675287200f07cb10ec9  |
| Key [ 1]:1e2a5672e66529e4f427b0682a3a34b6 |
| Key [ 2]:974944f1ce0037b1febcf61a2bc961a2 |
| round 2:990cd869c534e76ed4f4af7b3bfbc6c8  |
| Key [ 3]:8147631fb1ce95d624b480fc7389f6c4 |
| Key [ 4]:6e90a2db33d284aa13135f3c032aa4f4 |
|                                           |
| round 3:ceb662f875aa6b94e8192b5989abf975  |
| added ->:8blbbld753fe01e1c08b2ba9f55c07bc |
| Key [ 5]:cbad246d24e36741c46401e6387a05f9 |
| Key [ 6]:dcf52aaec5713110345a41342c566fc8 |
| round 4:d4e000be5de78c0f56ff218f3c1df61b  |
| Key [ 7]:8197537aa9d27e67d17c16b182c8ec65 |
| Key [ 8]:d66e00e73d835927a307a3ed79d035d8 |
| round 5:9a4603bdef954cfaade2052604bed4e4  |
|                                           |

page 983 of 1082

## Appendix IV - Sample Data

| Key [ 9]:71d46257ecc1022bcd312ce6c114d75c            |
|------------------------------------------------------|
| Key [10]:f91212fa528379651fbd2c32890c5e5f            |
| round 6:09a0fd197ab81eb933eece2fe0132dbb             |
| Key [11]:283acc551591fadce821b02fb9491814            |
| Key [12]:ca5f95688788e20d94822f162b5a3920            |
| round 7:494f455a2e7a5db861ece816d4e363e4             |
| Key [13]:ba574aef663c462d35399efb999d0e40            |
| Key [14]:6267afc834513783fef1601955fe0628            |
| round 8:37a819f91c8380fb7880e640e99ca947             |
| Key [15]:fdcd9be5450eef0f8737e6838cd38e2b            |
|                                                      |
| Key [16]:8cfbd9b8056c6alce222b92b94319b38            |
| Key [17]:4f64c1072c891c39eeb95e63318462e0            |
| kc :a3032b4df1cceba8adc1a04427224299                 |
|                                                      |
| rand :5ecd6d75db322c75b6afbd799cb18668               |
| aco :63f701c7013238bbf88714ee                        |
| key :b9f90c53206792b1826838b435b87d4d                |
| round 1:5ecd6d75db322c75b6afbd799cb18668             |
| Key [ 1]:b9f90c53206792b1826838b435b87d4d            |
| <pre>Key [ 2]:15f74bbbde4b9d1e08f858721f131669</pre> |
| round 2:72abb85fc80c15ec2b00d72873ef9ad4             |
| <pre>Key [ 3]:ef7fb29f0b01f82706c7439cc52f2dab</pre> |
| <pre>Key [ 4]:3003a6aecdee06b9ac295cce30dcdb93</pre> |
| round 3:2f10bab93a0f73742183c68f712dfa24             |
| Key [ 5]:5fcdbb3afdf7df06754c954fc6340254            |
| Key [ 6]:ddaa90756635579573fe8ca1f93d4a38            |
| round 4:183b145312fd99d5ad08e7ca4a52f04e             |
| Key [ 7]:27ca8a7fc703aa61f6d7791fc19f704a            |
| Key [ 8]:702029d8c6e42950762317e730ec5d18            |
| round 5:cbad52d3a026b2e38b9ae6fefffecc32             |
| Key [ 9]:ff15eaa3f73f4bc2a6ccfb9ca24ed9c5            |
| Key [10]:034e745246cd2e2cfc3bda39531ca9c5            |
| round 6:ce5f159d0a1acaacd9fb4643272033a7             |
| Key [11]:0a4d8ff5673731c3dc8fe87e39a34b77            |
| Key [12]:637592fab43a19ac0044a21afef455a2            |
| round 7:8a49424a10c0bea5aba52dbbffcbcce8             |
| Key [13]:6b3fde58f4f6438843cdbe92667622b8            |
| Key [14]:a10bfa35013812f39bf2157f1c9fca4e            |
|                                                      |
| round 8:f5e12da0e93e26a5850251697ec0b917             |
| Key [15]:2228fe5384e573f48fdd19ba91f1bf57            |
| Key [16]:5f174db2bc88925c0fbc6b5485bafc08            |
| Key [17]:28ff90bd0dc31ea2bb479feb7d8fe029            |
| round 1:0c75eed2b54c1cfb9ff522daef94ed4d             |
| Key [ 1]:a21ceb92d3c027326b4de775865fe8d0            |
| Key [ 2]:26f64558a9f0a1652f765efd546f3208            |
| round 2:48d537ac209a6aa07b70000016c602e8             |
| Key [ 3]:e64f9ef630213260f1f79745a0102ae5            |
| <pre>Key [ 4]:af6a59d7cebfd0182dcca9a537c4add8</pre> |
| round 3:8b6d517ac893743a401b3fb7911b64e1             |
| added ->:87e23fa87ddf90c1df10616d7eaf51ac            |
| Key [ 5]:9a6304428b45da128ab64c8805c32452            |
| <pre>Key [ 6]:8af4dle9d80cb73ec6b44e9b6e4f39d8</pre> |
|                                                      |

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 984 of 1082

#### Appendix IV - Sample Data

Bluetooth

round 4:9f0512260a2f7a5067efc35bf1706831 Key [ 7]:79cc2d138606f0fca4e549c34a1e6d19 Key [ 8]:803dc5cdde0efdbee7a1342b2cd4d344 round 5:0cfd7856edfafac51f29e86365de6f57 Key [ 9]:e8fa996448e6b6459ab51e7be101325a Key [10]:2acc7add7b294acb444cd933f0e74ec9 round 6:2f1fa34bf352dc77c0983a01e8b7d622 Key [11]:f57de39e42182efd6586b86a90c86bb1 Key [12]:e418dfd1bb22ebf1bfc309cd27f5266c round 7:ee4f7a53849bf73a747065d35f3752b1 Key [13]:80a9959133856586370854db6e0470b3 Key [14]:f4c1bc2f764a0193749f5fc09011a1ae round 8:8fec6f7249760ebf69e370e9a4b80a92 Key [15]:d036cef70d6470c3f52f1b5d25b0c29d Key [16]:d0956af6b8700888a1cc88f07ad226dc Key [17]:1ce8b39c4c7677373c30849a3ee08794 :ea520cfc546b00eb7c3a6cea3ecb39ed

# **Appendix V**

# **BLUETOOTH AUDIO**

This recommendation outlines some general guidelines for voice transmission over the Bluetooth air interface. The recommendation is formed such that a smooth audio interface of a Bluetooth terminal to other audio, electronic devices and cellular terminal equipment can be carried out.

BLUETOOTH SPECIFICATION Version 1.0 B

page 986 of 1082

Appendix V - Bluetooth Audio

Bluetooth.

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 987 of 1082

Appendix V - Bluetooth Audio

# Bluetooth.

# **CONTENTS**

| 1 | Gen | eral Audio Recommendations           | 989        |
|---|-----|--------------------------------------|------------|
|   | 1.1 | Maximum Sound Pressure               | 989        |
|   | 1.2 | Other Telephony Network Requirements | 989        |
|   |     | Audio Levels For Bluetooth           |            |
|   | 1.4 | Microphone Path                      |            |
|   | 1.5 | Loudspeaker Path                     | 990<br>990 |
|   | 1.6 | Bluetooth Voice Interface            | 990        |
|   | 1.7 | Frequency Mask                       | 992        |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 988 of 1082

Appendix V - Bluetooth Audio

Bluetooth.

Appendix V - Bluetooth Audio

Bluetooth.

# 1 GENERAL AUDIO RECOMMENDATIONS

#### 1.1 MAXIMUM SOUND PRESSURE

It is the sole responsibility of each manufacturer to design their audio products in a safe way with regards to injury to the human ear. Bluetooth doesn't specify maximum sound pressure from an audio device.

#### 1.2 OTHER TELEPHONY NETWORK REQUIREMENTS

It is the sole responsibility of each manufacturer to design the Bluetooth audio product so that it meets the regulatory requirements of all telephony networks that it may be connected to.

#### 1.3 AUDIO LEVELS FOR BLUETOOTH

Audio levels shall be calculated as Send Loudness Rating, SLR, and Receive Loudness Rating, RLR. The calculation methods are specified in ITU-T Recommendation P.79.

The physical test set-up for Handsets and Headsets is described in ITU-T Recommendation P.51 and P.57

The physical test set-up for speakerphones and "Vehicle handsfree systems" is specified in ITU-T Recommendation P.34.

A general equation for computation of loudness rating (LR) for telephone sets is given by ITU-T recommendations P.79 and is given by

$$LR = -\frac{10}{m} \log_{10} \left( \sum_{i=N_1}^{N_2} 10^{m(s_i - w_i)/10} \right),$$
 (EQ 1)

where

*m* is a constant ( $\sim$  0.2).

 $w_i$  = weighting coefficient (different for the various LRs).

 $S_i$  = the sensitivity at frequency  $F_i$ , of the electro-acoustic path

N<sub>1</sub>,N<sub>2</sub>, consecutive filter bank numbers (Art. Index: 200-4000 Hz)

(EQ 1) is used for calculating the (SLR) according to Figure 1.1:, and (RLR) according to Figure 1.2:. When calculating LRs one must only include those parts of the frequency band where an actual signal transmission can occur in order to ensure that the additive property of LRs is retained. Therefore ITU-T P.79 uses only the frequency band 200-4000 Hz in LR computations.

page 990 of 1082

Appendix V - Bluetooth Audio

Bluetooth

#### 1.4 MICROPHONE PATH

#### 1.4.1 SLR measurement model

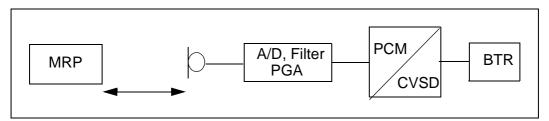



Figure 1.1: SLR measurement set-up.

#### 1.5 LOUDSPEAKER PATH

#### 1.5.1 RLR measurement model

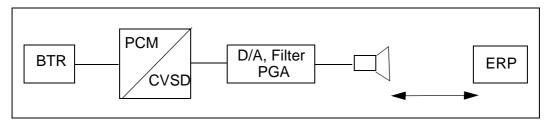



Figure 1.2: RLR measurement set-up.

#### 1.6 BLUETOOTH VOICE INTERFACE

The specification for the Bluetooth voice interface should follow in the first place the *ITU-T Recommendations P.79*, which specifies the loudness ratings for telephone sets. These recommendations give general guidelines and specific algorithms used for calculating the loudness ratings of the audio signal with respect to Ear Reference Point (ERP).

For Bluetooth voice interface to the different cellular system terminals, loudness and frequency recommendations based on the cellular standards should be used. For example, GSM 03.50 gives recommendation for both the loudness ratings and frequency mask for a GSM terminal interconnection with Bluetooth.

- 1- The output of the CVSD decoder are 16-bit linear PCM digital samples, at a sampling frequency of 8 ksample/second. Bluetooth also supports 8-bit log PCM samples of A-law and  $\mu$ -law type. The sound pressure at the ear reference point for a given 16-bit CVSD sample, should follow the sound pressure level given in the cellular standard specification.
- 2- A maximum sound pressure which can be represented by a 16-bit linear PCM sample at the output of the CVSD decoder should be specified according

page 991 of 1082

Appendix V - Bluetooth Audio

# Bluetooth.

to the loudness rating, in ITU P.79 and at PGA value of 0 dB. Programmable Gain Amplifiers (PGAs) are used to control the audio level at the terminals by the user. For conversion between various PCM representations: A-law,  $\mu$ -law and linear PCM, ITU-T G.711, G.712, G.714 give guidelines and PCM value relationships. Zero-code suppression based on ITU-T G.711 is also recommended to avoid network mismatches.

Appendix V - Bluetooth Audio

Bluetooth.

#### 1.7 FREQUENCY MASK

For interfacing a Bluetooth terminal to a digital cellular mobile terminal, a compliance of the CVSD decoder signal to the frequency mask given in the cellular standard, is recommended to guarantee correct function of the speech coders. A recommendation for a frequency mask is given in Table 1.1. Figure 1.3: shows a plot of the frequency mask for Bluetooth (solid line). The GSM frequency mask (dotted line) is shown in Figure 1.3: for comparison.

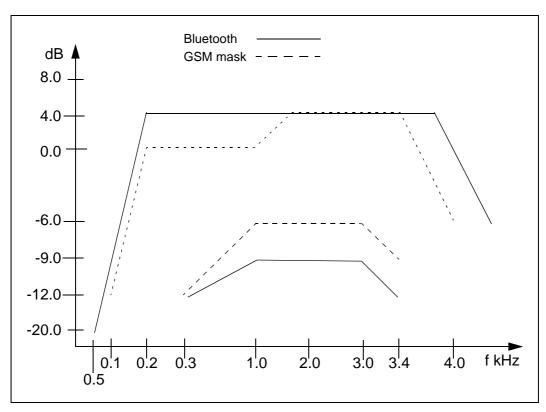



Figure 1.3: Plot of recommended frequency mask for Bluetooth. The GSM send frequency mask is given for comparison (dotted line)

| Frequency<br>(Hz) | Upper Limit<br>(dB) | Lower Limit<br>(dB) |
|-------------------|---------------------|---------------------|
| 50                | -20                 | -                   |
| 300               | 4                   | -12                 |
| 1000              | 4                   | -9                  |
| 2000              | 4                   | -9                  |
| 3000              | 4                   | 9                   |
| 3400              | 4                   | -12                 |
| 4000              | 0                   | -                   |

Table 1.1: Recommended Frequency Mask for Bluetooth

# **Appendix VI**

# **BASEBAND TIMERS**

This appendix contains a list of all timers defined the Baseband Specification.

BLUETOOTH SPECIFICATION Version 1.0 B

page 994 of 1082

Appendix VI - Baseband Timers

Bluetooth.

#### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 995 of 1082

Appendix VI - Baseband Timers

# Bluetooth.

# **CONTENTS**

| 1 | Base | eband T | imers           | 996 |
|---|------|---------|-----------------|-----|
|   | 1.1  | LIST C  | OF TIMERS       | 996 |
|   |      |         | inquiryTO       |     |
|   |      | 1.1.2   | pageTO          | 996 |
|   |      | 1.1.3   | pagerespTO      | 996 |
|   |      | 1.1.4   | inqrespTO       | 996 |
|   |      | 1.1.5   | newconnectionTO | 996 |
|   |      | 1.1.6   | supervisionTO   | 997 |
|   |      |         |                 |     |

page 996 of 1082

Appendix VI - Baseband Timers

**Bluetooth** 

## 1 BASEBAND TIMERS

This appendix contains a list of all timers defined in this specification. Definitions and default values of the timers are listed below.

All timer values are given in slots.

#### 1.1 LIST OF TIMERS

## 1.1.1 inquiryTO

The *inquiryTO* defines the number of slots the **inquiry** substate will last. Its value is determined by an HCI command.

#### 1.1.2 pageTO

The *pageTO* defines the number of slots the **page** substate can last before a response is received. Its value is determined by an HCI command.

## 1.1.3 pagerespTO

In the slave, it defines the number of slots the slave awaits the master's response, FHS packet, after sending the page acknowledgment ID packet. In the master, *pagerespTO* defines the number of slots the master should wait for the FHS packet acknowledgment before returning to **page** substate. Both master and slave units should use the same value for this timeout, to ensure common page/scan intervals after reaching *pagerespTO*.

The pagerespTO default value is 8 slots.

#### 1.1.4 ingrespTO

In the inquiry scan substate, when a device triggers on an inquiry, it waits a RAND random number of slots and returns to inquiry scan. The *inqRespTO* defines the number of slots the device will stay in the inquiry scan substate without triggering on an inquiry after the RAND wait period. The timeout value should preferably be in multiples of an inquiry train period. Upon reaching the *inqrespTO*, the device returns to **CONNECTION** or **STANDBY** state.

The *ingrespTO* default value is 128 slots.

#### 1.1.5 newconnectionTO

Every time a new connection is started through paging, scanning, master-slave switch or unparking, the master sends a POLL packet as the first packet in the new connection. Transmission and acknowledgment of this POLL packet is used to confirm the new connection. If the POLL packet is not received by the

page 997 of 1082

Appendix VI - Baseband Timers

Bluetooth.

slave or the response packet is not received by the master for *newconnecti-onTO* number of slots, both the master and the slave will return to the previous substate.

newconnectionTO default value is 32 slots.

#### 1.1.6 supervisionTO

The *supervisionTO* is used by both the master and slave to monitor link loss. If a device does not receive any packets that pass the HEC check and have the proper AM\_ADDR for a period of *supervisionTO*, it will reset the link *supervisionTO* will work through hold and sniff periods.

The *supervisionTO* value is determined by an HCI command. At the baseband level a default value that is equivalent to 20 seconds will be used.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 998 of 1082

Appendix VI - Baseband Timers

Bluetooth.

# **Appendix VII**

# **OPTIONAL PAGING SCHEMES**

#### BLUETOOTH SPECIFICATION Version 1.0 B

page 1001 of 1082

Appendix VII - Optional Paging Schemes

# Bluetooth.

# **CONTENTS**

| 1 | Gen  | eral                     | 1003 |
|---|------|--------------------------|------|
| 2 | Opti | ional Paging Scheme I    | 1004 |
|   | 2.1  | Page                     | 1004 |
|   |      | Page Scan                |      |
|   | 2.3  | Page Response Procedures | 1006 |
|   |      | Train Tracing            |      |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1002 of 1082

Appendix VII - Optional Paging Schemes

Bluetooth.

page 1003 of 1082

Appendix VII - Optional Paging Schemes

Bluetooth.

## 1 GENERAL

For the access procedure, several paging schemes may be used. There is one mandatory paging scheme which has to be supported by all Bluetooth devices. This scheme has been described in Baseband Specification Section 10.6 on page 99 In addition to the mandatory scheme, a Bluetooth unit may support one or more optional paging schemes. The method used for page scan is indicated in the FHS payload, see Baseband Specification Section 4.4.1.4 on page 56. Three additional optional paging schemes are possible; only optional paging scheme *I* has been defined yet.

page 1004 of 1082

Appendix VII - Optional Paging Schemes

Bluetooth.

# 2 OPTIONAL PAGING SCHEME I

In this section the first optional paging scheme is described which may be used according to the rules specified in Baseband Specification Section 10 on page 95 and LMP Specification Section 3.23 on page 223. The paging code for optional scheme  $\boldsymbol{I}$  is 1 (0 is used for the mandatory scheme), see also Baseband Specification Section 4.4.1.4 on page 56

The main difference between the first optional paging scheme and the mandatory scheme is the construction of the page train sent by the pager. In addition to transmission in the even master slots, the master is transmitting in the odd master slots as well. This allows the slave unit to reduce the scan window.

#### **2.1 PAGE**

The same 32 frequencies that are used for transmitting ID-packets in the mandatory paging scheme are used in the optional paging scheme *I* (for the construction of page trains, see Baseband Specification Section 11.3.2 on page 135. The 32 frequencies are also split into an **A-train** and **B train**. In contrast to the mandatory scheme, the same 32 frequencies that are used for transmitting are also used for reception trials, to catch the response from the addressed device.

The construction of the page train in optional page scheme I differs from the page train in the mandatory scheme in two ways:

- the page train consists of 10 slots, or 6.25 ms
- the first 8 slots of the train are used to transmit the ID packets, the 9th slot is used to send a marker packet, and the 10th slot is used for the return of a slave response

The marker packets precede the return slot, indicating the position where the slave can respond, and with which frequency. For the marker codes  $M_ID$ , bitinverted page access codes are used. If a marker code is received at  $T_m$  with frequency  $f_k$ , a return is expected at nominally  $T_m+625\mu s$  at frequency  $f_k$ .

**Note**: The bit-inverted code M\_ID to be used as marker code is beneficial for the implementation of the correlators, because the sign of the correlation peak can be used to identify the mark code during page scanning. Still, the transmitting party is uniquely identified, since inverted ID packets are not identical to the ID packets for the device with bit-wise inverted LAP.

The frequency ordering in the train and the frequencies used for the marker and receive slots change after every train. After 8 trains, all of which have a different appearance, the entire procedure is repeated. It is, therefore, more appropriate to talk about subtrains, each with length 6.25ms. Eight subtrains form a supertrain, which is repeated. An example of a supertrain with the eight subtrains is

page 1005 of 1082

Appendix VII - Optional Paging Schemes

# Bluetooth.

illustrated in Figure 2.1. The supertrain length is 50ms. In this example, the **A-train** is assumed with an estimated frequency of  $f_8$ ; as a consequence, the frequencies selected for the train range from  $f_0$  to  $f_{15}$ . The marker codes M\_ID are indicated as **M**; the receive (half) slots are indicated as **R**.

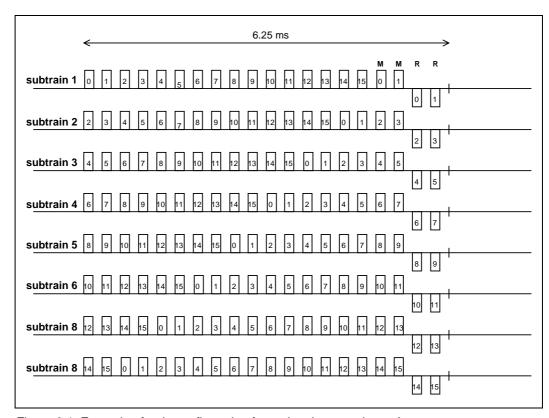



Figure 2.1: Example of train configuration for optional page scheme I.

Corresponding to the paging modes R0, R1 and R2 of the mandatory scheme, the optional scheme supports the same three modes as described for the mandatory scheme in Baseband Specification Section 10.6.2 on page 99

Since the subtrain length is now 10 slots, the 1.28s interval does not cover a multiple of (sub)trains any longer. Therefore, in contrast to the mandatory scheme, the exchange from **A-train** to **B-train** and vice versa is not based on the 1.28s interval, but instead on a multiple number of supertrains. For the R1 and R2 modes, the repetition of a supertrain  $N_{\text{sup}}$  is indicated in Table 2.1 below.

| mode | No SCO link          | One SCO link (HV3)    | Two SCO links (HV3)   |
|------|----------------------|-----------------------|-----------------------|
| R1   | N <sub>sup</sub> =26 | N <sub>sup</sub> =52  | N <sub>sup</sub> =77  |
| R2   | N <sub>sup</sub> =52 | N <sub>sup</sub> =103 | N <sub>sup</sub> =154 |

Table 2.1: Relation between repetition duration of **A**- and **B**-trains and paging modes R1 and R2 when SCO links are present

page 1006 of 1082

Appendix VII - Optional Paging Schemes

Bluetooth.

In accordance with the phase input to the hop selection scheme Xp in (EQ 4) on page 135 in the Baseband Specification (Section 11.3.2), the phase input  $Xp\_opt$  in the optional mode is determined by:

$$Xp\_opt = [k_{offset\_opt} + ST(cnt)] \mod 32$$
 (EQ A1)

where  $k_{offset\_opt}$  is determined by the A/B selection and the clock estimation of the recipient:

$$k_{offset\_opt} = \text{CLKE}_{16-12} + 24$$
 A-train  
 $\text{CLKE}_{16-12} + 8$  B-train (EQ A2)

and ST is a function determining the structure of the sub- and supertrain:

$$ST(cnt) = (cnt \mod 160 - 2*INT[((cnt \mod 160) + 18)/20]) \mod 16$$
 (EQ A3)

 $k_{offset\_opt}$  is determined once at the beginning of the repetition period. The CLKE value as is found at the beginning of the repetition interval is taken (the repetition interval being the interval in which the same supertrain is repeated all the time). As long as no train change takes place,  $k_{offset\_opt}$  is not updated. cnt is a counter which is reset to zero at the beginning of the repetition interval and is incremented at the half-slot rate (3200 cycles/s)

The first two ID-packets of a train are transmitted in an even numbered slot.

#### 2.2 PAGE SCAN

The basic page scanning is identical to the mandatory scheme except that a scan duration of  $9.5 \cdot 0.625 = 5.9375$  ms is sufficient at the slave side.

If a device wants to scan concurrently for the mandatory and optional mode (e.g. after an inquiry response was sent), the device shall try to identify whether the paging party uses the optional scheme after an ID packet was caught. This can be done by train tracing; i.e. the device can determine whether transmission takes place in consecutive slots (optional paging scheme I) or in every over slot (mandatory paging scheme), and/or whether mark codes are sent.

#### 2.3 PAGE RESPONSE PROCEDURES

The page response procedures at the master and slave sides are almost identical to the procedures described in the mandatory mode (see Baseband Specification Section 10.6.4 on page 104). There are two differences:

- The page response routine starts after the transmission and reception of the marker code M\_ID
- The ID packet sent by recipient is identical to the frequency in which the marker code was received

For the page response timing, see Figure 2.2 and Figure 2.3.

Appendix VII - Optional Paging Schemes

Bluetooth

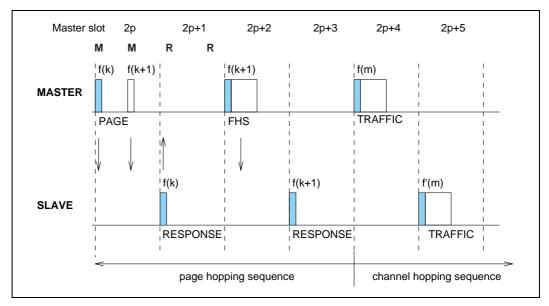



Figure 2.2: Messaging when marker code is received in first half slot of even master slot

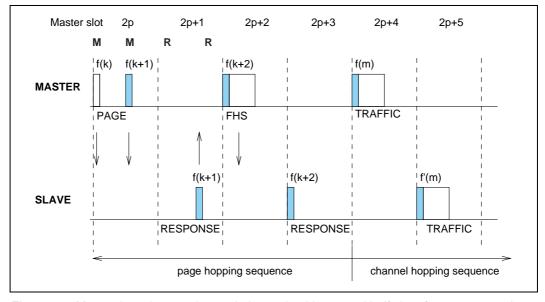



Figure 2.3: Messaging when marker code is received in second half slot of even master slot

#### 2.4 TRAIN TRACING

This section outlines how a slave may search for the mark code although the current partitioning into A- and B-trains at the master side is not known. Train tracing means that the slave tries to receive as many page access codes from the train as possible, to catch a mark code as soon as possible. When searching for the mark codes, or trying to distinguish between the mandatory paging mode and the optional paging mode, a unit shall set up a hopping pattern for train tracing after the reception of the first access code. The hopping pattern

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1008 of 1082

Appendix VII - Optional Paging Schemes

Bluetooth.

shall ensure that the transmission and reception is performed with a 50% probability on the same frequency regardless of the actual frequency set (16 frequencies) used for paging.

# **Appendix VIII**

# **BLUETOOTH ASSIGNED NUMBERS**

This is a living document that lists assigned numbers, codes and identifiers in the Bluetooth standard.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1010 of 1082

Bluetooth Assigned Numbers

Bluetooth.

# Bluetooth.

# **CONTENTS**

| 1 | Blue | tooth Base                                | eband                                                 | 1012 |  |  |  |
|---|------|-------------------------------------------|-------------------------------------------------------|------|--|--|--|
|   | 1.1  | The Gene                                  | ral- and Device-Specific Inquiry Access               |      |  |  |  |
|   |      |                                           | IACs)                                                 |      |  |  |  |
|   | 1.2  | The Class of Device/Service field         |                                                       |      |  |  |  |
|   |      |                                           | ajor Service Classes                                  |      |  |  |  |
|   |      |                                           | ajor Device Classes                                   |      |  |  |  |
|   |      |                                           | ne Minor Device Class field                           |      |  |  |  |
|   |      | 1.2.4 M                                   | inor Device Class field - Computer Major Class.       | 1015 |  |  |  |
|   |      | 1.2.5 M                                   | inor Device Class field - Phone Major Class           | 1015 |  |  |  |
|   |      |                                           | inor Device Class field - LAN Access Point ajor Class | 1016 |  |  |  |
|   |      |                                           | inor Device Class field - Audio Major Class           |      |  |  |  |
| 2 | Link | Manager F                                 | Protocol (LMP)                                        | 1018 |  |  |  |
|   | 2.1  | _                                         | Manger Version parameter                              |      |  |  |  |
|   | 2.2  | The LMP_                                  | Compld parameter codes                                | 1018 |  |  |  |
| 3 | Logi | cal Link Co                               | ontrol and Adaptation Protocol (L2CAP)                | 1019 |  |  |  |
|   | 3.1  |                                           | dentifiers                                            |      |  |  |  |
|   | 3.2  | Protocol a                                | and Service Multiplexor (PSM)                         | 1019 |  |  |  |
| 4 | Serv | ice Discov                                | ery Protocol (SDP)                                    | 1020 |  |  |  |
|   | 4.1  | Universall                                | y Unique Identifier (UUID) short forms                | 1020 |  |  |  |
|   | 4.2  | Base Universally Unique Identifier (UUID) |                                                       |      |  |  |  |
|   | 4.3  | Protocols                                 |                                                       |      |  |  |  |
|   | 4.4  | Service classes                           |                                                       |      |  |  |  |
|   | 4.5  |                                           | dentifier codes                                       |      |  |  |  |
|   | 4.6  |                                           | Parameters                                            |      |  |  |  |
|   | 4.7  |                                           | rating Environment Identifiers                        |      |  |  |  |
|   |      |                                           | lientExecutableURL substitution strings               |      |  |  |  |
|   |      |                                           | onURL substitution strings                            |      |  |  |  |
| 5 | Refe | rences                                    |                                                       | 1028 |  |  |  |
| 6 | Tern | s and Abb                                 | reviations                                            | 1029 |  |  |  |
| 7 | List | of Figures.                               |                                                       | 1030 |  |  |  |
| Q | Liet | of Tables                                 |                                                       | 1031 |  |  |  |

Bluetooth

# 1 BLUETOOTH BASEBAND

# 1.1 THE GENERAL- AND DEVICE-SPECIFIC INQUIRY ACCESS CODES (DIACS)

The Inquiry Access Code is the first level of filtering when finding Bluetooth devices and services. The main purpose of defining multiple IACs is to limit the number of responses that are received when scanning devices within range.

| #    | LAP value                               | Usage                                        |
|------|-----------------------------------------|----------------------------------------------|
| 0    | 0x9E8B33                                | General/Unlimited Inquiry Access Code (GIAC) |
| 1    | 0x9E8B00                                | Limited Dedicated Inquiry Access Code (LIAC) |
| 2-63 | 0x9E8B01-0x9E8B32,<br>0x9E8B34-0x9E8B3F | RESERVED FOR FUTURE USE                      |

Table 1.1: The Inquiry Access Codes

The Limited Inquiry Access Code (LIAC) is only intended to be used for limited time periods in scenarios where both sides have been explicitly caused to enter this state, usually by user action. For further explanation of the use of the LIAC, please refer to the Generic Access Profile [7].

In contrast it is allowed to be continuously scanning for the General Inquiry Access Code (GIAC) and respond whenever inquired.

#### 1.2 THE CLASS OF DEVICE/SERVICE FIELD

The Class of Device/Service (CoD) field has a variable format. The format is indicated using the 'Format Type field' within the CoD. The length of the Format Type field is variable and ends with two bits different from '11'. The version field starts at the least significant bit of the CoD and may extend upwards.

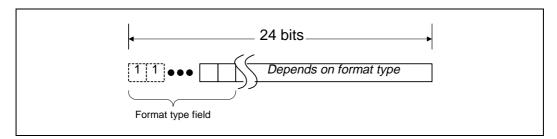



Figure 1.1: General format of Class of Device/Service

In the 'format #1' of the CoD (Format Type field = 00), 11 bits are assigned as a bit-mask (multiple bits can be set) each bit corresponding to a high level generic category of service class. Currently 7 categories are defined. These

# Bluetooth.

are primarily of a 'public service' nature. The remaining 11 bits are used to indicate device type category and other device-specific characteristics.

Any reserved but otherwise unassigned bits, such as in the Major Service Class field, should be set to 0.

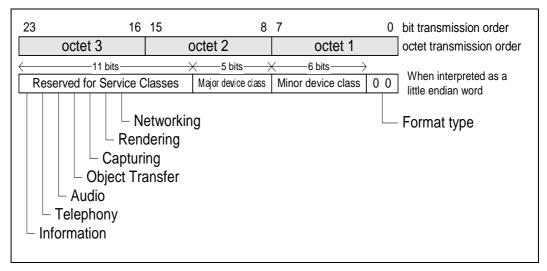



Figure 1.2: The Class of Device/Service field (format type 1). Note the order in which the octets are sent on the air and stored in memory.

## 1.2.1 Major Service Classes

| Bit no | Major Service Class                                     |  |  |  |  |  |  |
|--------|---------------------------------------------------------|--|--|--|--|--|--|
| 13     | Limited Discoverable Mode <sup>1</sup>                  |  |  |  |  |  |  |
| 14     | (reserved)                                              |  |  |  |  |  |  |
| 15     | (reserved)                                              |  |  |  |  |  |  |
| 16     | (reserved)                                              |  |  |  |  |  |  |
| 17     | Networking (LAN, Adhoc,)                                |  |  |  |  |  |  |
| 18     | Rendering (Printing, Speaker,)                          |  |  |  |  |  |  |
| 19     | Capturing (Scanner, Microphone,)                        |  |  |  |  |  |  |
| 20     | Object Transfer (v-Inbox, v-Folder,)                    |  |  |  |  |  |  |
| 21     | Audio (Speaker, Microphone, Headset service,)           |  |  |  |  |  |  |
| 22     | Telephony (Cordless telephony, Modem, Headset service,) |  |  |  |  |  |  |
| 23     | Information (WEB-server, WAP-server,)                   |  |  |  |  |  |  |

Table 1.2: Major Service Classes

1. As defined in [7]

page 1014 of 1082

Bluetooth Assigned Numbers

Bluetooth

#### 1.2.2 Major Device Classes

The Major Class segment is the highest level of granularity for defining a Bluetooth Device. The main function of a device is used to determine the major class grouping. There are 32 different possible major classes. The assignment of this Major Class field is defined in Table 1.3.

| Code (bits) |    |    |   |   | Major Device Class                              |
|-------------|----|----|---|---|-------------------------------------------------|
| 12          | 11 | 10 | 9 | 8 | bit no of CoD                                   |
| 0           | 0  | 0  | 0 | 0 | Miscellaneous <sup>1</sup>                      |
| 0           | 0  | 0  | 0 | 1 | Computer (desktop, notebook, PDA, organizers,)  |
| 0           | 0  | 0  | 1 | 0 | Phone (cellular, cordless, payphone, modem,)    |
| 0           | 0  | 0  | 1 | 1 | LAN Access Point                                |
| 0           | 0  | 1  | 0 | 0 | Audio (headset, speaker, stereo,)               |
| 0           | 0  | 1  | 0 | 1 | Peripheral (mouse, joystick, keyboards,)        |
| х           | х  | х  | х | х | Range 0x06 to 0x1E reserved                     |
| 1           | 1  | 1  | 1 | 1 | Unclassified, specific device code not assigned |

Table 1.3: Major Device Classes

#### 1.2.3 The Minor Device Class field

The 'Minor Device Class field' (bits 7 to 1 in the CoD), are to be interpreted only in the context of the Major Device Class (but independent of the Service Class field). Thus the meaning of the bits may change, depending on the value of the 'Major Device Class field'. When the Minor Device Class field indicates a device class, then the primary device class should be reported, e.g. a cellular phone that can also work as a cordless handset should use 'Cellular' in the minor device class field.

Used where a more specific Major Device Class code is not suited (but only as specified in this document. Devices that do not have a major class code assigned can use the all-1 code until 'classified')

Bluetooth.

# 1.2.4 Minor Device Class field - Computer Major Class

| Cod | Code (bits) |   |   |   |   | Minor Device Class                         |
|-----|-------------|---|---|---|---|--------------------------------------------|
| 7   | 6           | 5 | 4 | 3 | 2 | bit no of CoD                              |
| 0   | 0           | 0 | 0 | 0 | 0 | Unclassified, code for device not assigned |
| 0   | 0           | 0 | 0 | 0 | 1 | Desktop workstation                        |
| 0   | 0           | 0 | 0 | 1 | 0 | Server-class computer                      |
| 0   | 0           | 0 | 0 | 1 | 1 | Laptop                                     |
| 0   | 0           | 0 | 1 | 0 | 0 | Handheld PC/PDA (clam shell)               |
| 0   | 0           | 0 | 1 | 0 | 1 | Palm sized PC/PDA                          |
| х   | х           | х | х | х | х | Range 0x06-0x7F reserved                   |

Table 1.4: Sub Device Class field for the 'Computer' Major Class

# 1.2.5 Minor Device Class field - Phone Major Class

| Cod | Code (bits) |   |   |   |   | Minor Device Class              |
|-----|-------------|---|---|---|---|---------------------------------|
| 7   | 6           | 5 | 4 | 3 | 2 | bit no of CoD                   |
| 0   | 0           | 0 | 0 | 0 | 0 | Unclassified, code not assigned |
| 0   | 0           | 0 | 0 | 0 | 1 | Cellular                        |
| 0   | 0           | 0 | 0 | 1 | 0 | Cordless                        |
| 0   | 0           | 0 | 0 | 1 | 1 | Smart phone                     |
| 0   | 0           | 0 | 1 | 0 | 0 | Wired modem or voice gateway    |
| х   | х           | х | х | х | х | Range 0x05-0x7F reserved        |

Table 1.5: Sub Device Classes for the 'Phone' Major Class

I

Bluetooth.

#### 1.2.6 Minor Device Class field - LAN Access Point Major Class

| Code (bits) |   |   | Minor Device Class                |
|-------------|---|---|-----------------------------------|
| 7           | 6 | 5 | bit no of CoD                     |
| 0           | 0 | 0 | Fully available                   |
| 0           | 0 | 1 | 1-17% utilized                    |
| 0           | 1 | 0 | 17 - 33% utilized                 |
| 0           | 1 | 1 | 33 - 50% utilized                 |
| 1           | 0 | 0 | 50 - 67% utilized                 |
| 1           | 0 | 1 | 67 - 83% utilized                 |
| 1           | 1 | 0 | 83 - 99% utilized                 |
| 1           | 1 | 1 | No Service Available <sup>1</sup> |

Table 1.6: The LAN Access Point Load Factor field

The exact loading formula is not standardized. It is up to each LAN Access Point implementation to determine what internal conditions to report as a utilization percentage. The only requirement is that the number reflects an ever-increasing utilization of communication resources within the box. As a recommendation, a client that locates multiple LAN Access Points should attempt to connect to the one reporting the lowest load.

| Code (bits) |   | s) | Minor Device Class                              |
|-------------|---|----|-------------------------------------------------|
| 4           | 3 | 2  | bit no of CoD                                   |
| 0           | 0 | 0  | Unclassified (use this value if no other apply) |
| Х           | х | х  | range 0x01-0x0F reserved                        |

Table 1.7: Reserved sub-field for the LAN Access Point

<sup>1. &</sup>quot;Device is fully utilized and cannot accept additional connections at this time, please retry later"

page 1017 of 1082

Bluetooth Assigned Numbers

Bluetooth.

# 1.2.7 Minor Device Class field - Audio Major Class

| Cod | de (bi | its) |   |   |   | Minor Device Class                         |
|-----|--------|------|---|---|---|--------------------------------------------|
| 7   | 6      | 5    | 4 | 3 | 2 | bit no of CoD                              |
| 0   | 0      | 0    | 0 | 0 | 0 | Unclassified, code not assigned            |
| 0   | 0      | 0    | 0 | 0 | 1 | Device conforms to the Headset profile [9] |
| х   | х      | х    | х | х | х | Range 0x02-0x7F reserved                   |

Table 1.8: Sub Device Classes for the 'Audio' Major Class

page 1018 of 1082

Bluetooth Assigned Numbers

Bluetooth.

# 2 LINK MANAGER PROTOCOL (LMP)

## 2.1 THE LINK MANGER VERSION PARAMETER

| Parameter name | Assigned values |                        |  |
|----------------|-----------------|------------------------|--|
| VersNr         | 0               | Bluetooth LMP 1.0, [2] |  |
|                | 1-255           | (reserved)             |  |

Table 2.1: The LMP Version Parameter Values

# 2.2 THE LMP\_COMPID PARAMETER CODES

This is the parameter used in the LMP Version procedure.

| Code      | Company                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| 0         | Ericsson Mobile Communications                                                                                                 |
| 1         | Nokia Mobile Phones                                                                                                            |
| 2         | Intel Corp.                                                                                                                    |
| 3         | IBM Corp.                                                                                                                      |
| 4         | Toshiba Corp.                                                                                                                  |
| 5 - 65534 | (reserved)                                                                                                                     |
| 65535     | Unassigned. For use in internal and interoperability tests before a Company ID has been assigned. May not be used in products. |

Table 2.2: The LMP\_Compld parameter codes

Bluetooth.

# 3 LOGICAL LINK CONTROL AND ADAPTATION PROTOCOL (L2CAP)

Please see Section 4.3 for assigned PSM values.

## 3.1 CHANNEL IDENTIFIERS

| Destination CID | Protocol/usage              | Reference |
|-----------------|-----------------------------|-----------|
| 0x0000          | Illegal, should not be used | [3]       |
| 0x0001          | L2CAP signalling channel    | [3]       |
| 0x0002          | L2CA connection less data   | [3]       |
| 0x0003 - 0x003F | (reserved)                  |           |

Table 3.1: Pre-defined L2CAP Channel Identifiers

# 3.2 PROTOCOL AND SERVICE MULTIPLEXOR (PSM)

| Protocol         | PSM    | Reference |
|------------------|--------|-----------|
| SDP              | 0x0001 | [4]       |
| RFCOMM           | 0x0003 | [5]       |
| TCS-BIN          | 0x0005 | [6]       |
| TCS-BIN-CORDLESS | 0x0007 | [6]       |

Table 3.2: Assigned Protocol and Service Multiplexor values (PSM)

page 1020 of 1082

Bluetooth Assigned Numbers

Bluetooth.

## 4 SERVICE DISCOVERY PROTOCOL (SDP)

# 4.1 UNIVERSALLY UNIQUE IDENTIFIER (UUID) SHORT FORMS

The Bluetooth Service Discovery Protocol (SDP) specification defines a way to represent a range of UUIDs (which are nominally 128-bits) in a shorter form. A *reserved* range of 2<sup>32</sup> values can be represented using 32-bits (denoted uuid32). Of these, a sub-range of 2<sup>16</sup> values can be represented using only 16-bits (denoted uuid16). Any value in the 2<sup>32</sup> range that is not assigned in this document is reserved pending future revisions of this document. In other words, no value in this range may be used except as specified in this or future revisions of this document. UUID values outside of this range can be allocated as described in [19] for any purpose the allocater desires.

### 4.2 BASE UNIVERSALLY UNIQUE IDENTIFIER (UUID)

The Base UUID is used for calculating 128-bit UUIDs from 'short UUIDs' (uuid16 and uuid32) as described in the SDP Specification [4].

| Mnemonic  | UUID                                 |
|-----------|--------------------------------------|
| BASE_UUID | 00000000-0000-1000-8000-00805F9B34FB |

page 1021 of 1082

Bluetooth Assigned Numbers

Bluetooth.

### 4.3 PROTOCOLS

| Mnemonic | UUID                               | Name   | Ref. |
|----------|------------------------------------|--------|------|
| SDP      | uuid16: <i>0x0001</i> <sup>1</sup> | sdp.bt | [4]  |
| RFCOMM   | uuid16: <i>0x0003</i>              | com.bt | [5]  |
| TCS-BIN  | uuid16: <i>0x0005</i>              | tcs.bt | [6]  |
| L2CAP    | uuid16: <i>0x0100</i>              |        | [3]  |
| IP       | uuid16: <i>0x0009</i>              |        |      |
| UDP      | uuid16: <u>0x0002</u>              |        |      |
| TCP      | uuid16: <i>0x0004</i>              |        |      |
| TCS-AT   | uuid16: <i>0x0006</i>              | modem  |      |
| OBEX     | uuid16: <i>0x0008</i>              | obex   |      |
| FTP      | uuid16: <i>0x000A</i>              | ftp    |      |
| HTTP     | uuid16: <i>0x000C</i>              | http   |      |
| WSP      | uuid16: <i>0x000E</i>              | wsp    |      |

Table 4.1: Protocol Universally Unique Identifiers and Names

<sup>1. &#</sup>x27;Short UUID'

Bluetooth Assigned Numbers

Bluetooth.

### 4.4 SERVICE CLASSES

| Mnemonic                             | UUID                  | Profile <sup>1</sup> | AbstractName |
|--------------------------------------|-----------------------|----------------------|--------------|
| ServiceDiscoveryServerServiceClassID | uuid16: <i>0x1000</i> |                      |              |
| BrowseGroupDescriptorServiceClassID  | uuid16: <i>0x1001</i> |                      |              |
| PublicBrowseGroup                    | uuid16: <i>0x1002</i> |                      |              |
| SerialPort                           | uuid16: <i>0x1101</i> | [7]                  | serial.bt    |
| LANAccessUsingPPP                    | uuid16: <i>0x1102</i> |                      |              |
| DialupNetworking                     | uuid16: <i>0x1103</i> | [13]                 |              |
| IrMCSync                             | uuid16: <i>0x1104</i> | [17]                 |              |
| OBEXObjectPush                       | uuid16: <i>0x1105</i> | [16]                 |              |
| OBEXFileTransfer                     | uuid16: <i>0x1106</i> | [15]                 |              |
| IrMCSyncCommand                      | uuid16: <i>0x1107</i> | [17]                 |              |
| Headset                              | uuid16: <i>0x1108</i> | [7]                  | headset      |
| CordlessTelephony                    | uuid16: <i>0x1109</i> | [10]                 |              |
| Intercom                             | uuid16: <i>0x1110</i> | [11]                 |              |
| Fax                                  | uuid16: <i>0x1111</i> | [12]                 |              |
| HeadsetAudioGateway                  | uuid16: 0x1112        | [7]                  |              |
| PnPInformation                       | uuid16: <i>0x1200</i> |                      |              |
| GenericNetworking                    | uuid16: <i>0x1201</i> | n/a                  |              |
| GenericFileTransfer                  | uuid16: <i>0x1202</i> | n/a                  |              |
| GenericAudio                         | uuid16: <i>0x1203</i> | n/a                  |              |
| GenericTelephony                     | uuid16: <i>0x1204</i> | n/a                  |              |

Table 4.2: Service Class Identifiers and Names

The Profile column in Table 4.2 indicates which Service Class identifiers that also directly corresponds to a Bluetooth Profile. It is not allowed to use the Service Class UUID unless the service complies with the specified Profile. These UUIDs might also appear as Profile Identifiers in the BluetoothProfileDescriptorList attribute.

If the specified Service Class directly and exactly implies a certain Profile, the Profile is indicated here (i.e. for concrete Service Classes). Leave empty for abstract Service Classes.

Bluetooth Assigned Numbers

Bluetooth.

### 4.5 ATTRIBUTE IDENTIFIER CODES

| Mnemonic                       | Attribute ID        | Reference                                                        |
|--------------------------------|---------------------|------------------------------------------------------------------|
| ServiceRecordHandle            | 0x0000              | [4] Bluetooth Service Discovery<br>Protocol (SDP), Bluetooth SIG |
| ServiceClassIDList             | 0x0001              |                                                                  |
| ServiceRecordState             | 0x0002              |                                                                  |
| ServiceID                      | 0x0003              |                                                                  |
| ProtocolDescriptorList         | 0x0004              |                                                                  |
| BrowseGroupList                | 0x0005              |                                                                  |
| LanguageBaseAttributeIDList    | 0x0006              |                                                                  |
| ServiceInfoTimeToLive          | 0x0007              |                                                                  |
| ServiceAvailability            | 0x0008              |                                                                  |
| BluetoothProfileDescriptorList | 0x0009              |                                                                  |
| DocumentationURL               | 0x000A              |                                                                  |
| ClientExecutableURL            | 0x000B              |                                                                  |
| Icon10                         | 0x000C              |                                                                  |
| IconURL                        | 0x000D              |                                                                  |
| Reserved                       | 0x000E-<br>0x01FF   |                                                                  |
| ServiceName                    | $0x0000 + b^1$      |                                                                  |
| ServiceDescription             | 0x0001 + b          |                                                                  |
| ProviderName                   | 0x0002 + b          |                                                                  |
| VersionNumberList              | 0x0200              |                                                                  |
| ServiceDatabaseState           | 0x0201              |                                                                  |
| GroupID                        | 0x0200              |                                                                  |
|                                |                     |                                                                  |
| Remote audio volume control    | 0x0302 <sup>2</sup> | [7]                                                              |
| External network               | 0x0301              | [10]                                                             |
| Service Version                | 0x0300              |                                                                  |
| Supported Data Stores List     | 0x0301              | [17]                                                             |
|                                |                     |                                                                  |
| Supported Formats List         | 0x0303              | [16]                                                             |

Table 4.3: Attribute Identifiers

page 1024 of 1082

Bluetooth Assigned Numbers

### **Bluetooth**

| Mnemonic               | Attribute ID | Reference |
|------------------------|--------------|-----------|
| Fax Class 1 Support    | 0x0302       | [12]      |
| Fax Class 2.0 Support  | 0x0303       |           |
| Fax Class 2 Support    | 0x0304       |           |
| Audio Feedback Support | 0x0305       |           |

Table 4.3: Attribute Identifiers

- 1. 'b' in this table represents a base offset as given by the LanguageBaseAttributeIDList attribute. For the primary language, 'b' must be equal to 0x0100 as described in the SDP specification.
- 2. Items in italic are tentative values in this version of the document.

### 4.6 PROTOCOL PARAMETERS

| Protocol   | Parameter mnemonic | Index |
|------------|--------------------|-------|
| L2CAP      | PSM                | 1     |
| TCP or UDP | Port               | 1     |
| RFCOMM     | Channel            | 1     |

Table 4.4: Protocol Parameters

### 4.7 HOST OPERATING ENVIRONMENT IDENTIFIERS

### 4.7.1 ClientExecutableURL substitution strings

The operating environment identifier strings have the following format<sup>1</sup>:

<cpu\_type>-<manufacturer>-[<kernel>-]<os>[<version>][-<object\_format>]

The general rule is that is that a new identifier should only be defined as required to differentiate incompatible operating environments concerning an executable file image. That is, for example different <version>-tags should not be used for compatible versions of the same operating system.

<sup>1.</sup> It is based on a format used by the GNU AutoConfig tools

page 1025 of 1082

Bluetooth Assigned Numbers

Bluetooth.

### Currently defined tags:

| CPU-Type ID                              | Description                                                                                                                   |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| alpha                                    | Digital Alpha* compatible                                                                                                     |  |
| arm                                      | ARM* core or compatible                                                                                                       |  |
| i86                                      | Any Intel* 80x86-family compatible CPU                                                                                        |  |
| i960                                     | Intel* i960 compatible                                                                                                        |  |
| jvm                                      | Java Virtual Machine*                                                                                                         |  |
| mips                                     | MIPS MIPS* compatible                                                                                                         |  |
| ppc                                      | IBM/Motorola PowerPC* compatible                                                                                              |  |
| sh3                                      | Hitachi SH-3* compatible                                                                                                      |  |
| sh4                                      | Hitachi SH-4* compatible                                                                                                      |  |
| sparc                                    | Sun Sparc* compatible                                                                                                         |  |
| Kernel ID                                | Description                                                                                                                   |  |
| chorus, linux, javaos, os9, qnx, vxworks |                                                                                                                               |  |
| <0\$>                                    | An 'OS identifier' as listed below, might appear in the <kernel> field when the requested OS platform is Java based.</kernel> |  |

### **OS+Version-Identifiers**

amigaos, beos4.5, ejava, epocc, epoce, epocq, epocs, gnu, jre1.1, jre1.2, macos, macosx, os2, os9, palmos, pjava, pjava1.1, photon, plan9, qnx, rtjava, win95, win98, win2000, wince, winnt4

### Object Format Identifiers<sup>1</sup>

aout, bout, coff, elf, jar

#### **Manufacturer Identifiers**

amiga\*, apple\*, be\*, ericsson\*, ibm\*, intel\*, lucent\*, microsoft\*, microware\*, motorola\*, nokia\*, palm\*, psion\*, qnx\*, sun\*, symbian\*, toshiba\*, unknown²

- 1. Only applicable when the object format is not otherwise uniquely implied by the identifier string.
- 2. Use when no other applies.

page 1026 of 1082

Bluetooth Assigned Numbers

Bluetooth.

For Linux, the 'manufacturer' field may be used to indicate Linux distribution if so required (in which case <version> indicates the version of the distribution). Otherwise use 'unknown'.

### **Linux Distribution Identifiers**

caldera, debian, dlx, doslinux, linuxpro, linuxware, mandrake, mklinux, redhat, slackware, stampede, suse, turbolinux, yggdrasil

| Example Operating Environment Identifier Strings |                          |                       |  |
|--------------------------------------------------|--------------------------|-----------------------|--|
| i86-microsoft-win95                              | ppc-apple-macos          | i86-redhat-linux-gnu6 |  |
| i86-microsoft-win98                              | m68k-apple-macos         | ppc-mklinux-linux-gnu |  |
| i86-microsoft-winnt4                             | ppc-apple-macosx         |                       |  |
| alpha-microsoft-winnt4                           | i86-apple-macosx         |                       |  |
| i86-microsoft-win2000                            | m68k-amiga-amigaos       |                       |  |
| alpha-microsoft-win2000                          | ppc-amiga-amigaos        |                       |  |
| i86-be-beos4.5                                   | jvm-sun-jre1.2           |                       |  |
| ppc-be-beos4.5                                   | jvm-sun-pjava1.1         |                       |  |
| arm-symbian-epoc3                                | jvm-sun-ejava            |                       |  |
| i86-unknown-linux-gnu                            | m68k-palm-palmos-coff    |                       |  |
| sh3-microsoft-wince                              | ppc-ibm-vxworks-pjava1.2 |                       |  |
| arm-microsoft-wince                              | sparc-sun-javaos-jre1.2  |                       |  |

page 1027 of 1082

Bluetooth Assigned Numbers

Bluetooth.

### 4.7.2 IconURL substitution strings

The IconURL operating environment identifier strings have the following general format:

<horizontal\_pixels>x<vertical\_pixels>x<color\_depth>[m].<file\_format>

The optional tag 'm' indicates monochrome or grayscale. The host is free to try to match/request any graphics file format as indicated by a <file\_format> tag, however at a minimum files conforming to the Portable Network Graphic standard [18] should be made available at the resulting URL (indicated by <file\_format>=png)<sup>2</sup>.

| File format tag | Description                      |
|-----------------|----------------------------------|
| png             | Portable Network Graphics [18]   |
| gif             | Graphics Interchange File format |
| bmp             | Windows bitmap                   |

Currently defined IconURL Icon format identifier strings:

| Example Icon format Identifier Strings |                                                       |  |
|----------------------------------------|-------------------------------------------------------|--|
| 32x32x8.png                            | 256 color 32 by 32 icon (or 255 colors + transparent) |  |
| 16x16x8.png                            |                                                       |  |
| 16x16x1m.png                           | Black and white (or monochrome + transparent)         |  |
| 10x10x2m.png                           | 4 gray-scales                                         |  |

Service Discovery Protocol (SDP)

<sup>2.</sup> The use of PNG, and whether a subset of PNG should be required, is currently pending further investigation.

page 1028 of 1082

Bluetooth Assigned Numbers

Bluetooth.

### **5 REFERENCES**

- [1] Bluetooth Baseband Specification, Bluetooth SIG
- [2] Bluetooth Link Manager Specification, Bluetooth SIG
- [3] Logical Link Control and Adaptation Protocol Specification, Bluetooth SIG
- [4] Bluetooth Service Discovery Protocol (SDP), Bluetooth SIG
- [5] RFCOMM with TS 07.10, Bluetooth SIG
- [6] Bluetooth Telephony Control Specification / TCS Binary, Bluetooth SIG
- [7] Generic Access Profile, Bluetooth SIG
- [8] Serial Port Profile, Bluetooth SIG
- [9] Headset Profile, Bluetooth SIG
- [10] Cordless Telephony Profile, Bluetooth SIG
- [11] Intercom Profile, Bluetooth SIG
- [12] Fax Profile, Bluetooth SIG
- [13] Dial-up Networking Profile, Bluetooth SIG
- [14] IrDA Interoperability, Bluetooth SIG
- [15] File Transfer Profile, Bluetooth SIG
- [16] Object Push Profile, Bluetooth SIG
- [17] Synchronization Profile, Bluetooth SIG
- [18] Portable Network Graphics (PNG), <a href="http://www.w3.org/Graphics/PNG">http://www.w3.org/Graphics/PNG</a>
- [19] *UUIDs and GUIDs*, P. J. Leach et al, http://www.ietf.org/internet-drafts/draft-leach-uuids-guids-01.txt

page 1029 of 1082

Bluetooth Assigned Numbers

Bluetooth.

## **6 TERMS AND ABBREVIATIONS**

| LMP               | Link Management Protocol                                                      |
|-------------------|-------------------------------------------------------------------------------|
| L2CA              | Logical Link Control and Adaptation, protocol multiplexer layer for Bluetooth |
| MTU               | Maximum Transmission Unit                                                     |
| SAP               | Service Access Points                                                         |
| Baseband          | Baseband Protocol                                                             |
| Service Discovery | The ability to discover the capability of connecting devices or hosts.        |
| PnP               | Plug and Play                                                                 |
| SAR               | Segmentation and Reassembly                                                   |
| IP                | Internet Protocol                                                             |
| IrDA              | InfraRed Data Association                                                     |
| PPP               | Point-to-Point Protocol                                                       |
| IETF              | Internet Engineering Task Force                                               |
| RFC               | Request For Comments                                                          |

| BLUETOOTH | SPECIFICATION | Version | 1.0 B |
|-----------|---------------|---------|-------|
|-----------|---------------|---------|-------|

page 1030 of 1082

Bluetooth Assigned Numbers

# Bluetooth.

## **7 LIST OF FIGURES**

| Figure 1.1: | General format of Class of Device/Service         | 1012 |
|-------------|---------------------------------------------------|------|
| Figure 1.2: | The Class of Device/Service field (format type 1) | 1013 |

### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 1031 of 1082

Bluetooth Assigned Numbers

# Bluetooth.

## **8 LIST OF TABLES**

| Table 1.1: | The Inquiry Access Codes                              | 1012  |
|------------|-------------------------------------------------------|-------|
| Table 1.2: | Major Service Classes                                 | 1013  |
| Table 1.3: | Major Device Classes                                  | 1014  |
| Table 1.4: | Sub Device Class field for the 'Computer' Major Class | 1015  |
| Table 1.5: | Sub Device Classes for the 'Phone' Major Class        | 1015  |
| Table 1.6: | The LAN Access Point Load Factor field                | 1016  |
| Table 1.7: | Reserved sub-field for the LAN Access Point           | 1016  |
| Table 1.8: | Sub Device Classes for the 'Audio' Major Class        | 1017  |
| Table 2.1: | The LMP Version Parameter Values                      | 1018  |
| Table 2.2: | The LMP_Compld parameter codes                        | 1018  |
| Table 3.1: | Pre-defined L2CAP Channel Identifiers                 | 1019  |
| Table 3.2: | Assigned Protocol and Service Multiplexor values (PSM | )1019 |
| Table 4.1: | Protocol Universally Unique Identifiers and Names     | 1021  |
| Table 4.2: | Service Class Identifiers and Names                   | 1022  |
| Table 4.3: | Attribute Identifiers                                 | 1023  |
| Table 4.4: | Protocol Parameters                                   | 1024  |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1032 of 1082

Bluetooth Assigned Numbers

Bluetooth.

# **Appendix IX**

# **MESSAGE SEQUENCE CHARTS**

Between Host and Host Controller/Link Manager

This document shows examples of interworking between HCI Commands and LM Protocol Data Units in form of message sequence charts. It helps to understand and to correctly use the HCI Commands.

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1034 of 1082

Message Sequence Charts

Bluetooth.

page 1035 of 1082

Message Sequence Charts

# Bluetooth.

## **CONTENTS**

| 1 | Intro | oduction                                           | 1037 |
|---|-------|----------------------------------------------------|------|
| 2 | Serv  | vices without connection request                   | 1038 |
|   | 2.1   | Remote Name Request                                |      |
|   | 2.2   | One-Time Inquiry                                   | 1039 |
|   | 2.3   | Periodic Inquiry                                   | 1040 |
| 3 | ACL   | . connection establishment and detachment          | 1042 |
|   | 3.1   | ACL Connection Request phase                       | 1043 |
|   | 3.2   | ACL Connection Setup phase                         | 1045 |
|   |       | 3.2.1 Pairing                                      | 1045 |
|   |       | 3.2.2 Authentication                               | 1047 |
|   | 3.3   | Encryption and Connection Setup Complete           | 1047 |
|   | 3.4   | ACL Disconnection                                  | 1048 |
| 4 | Opti  | onal activities after ACL Connection establishment | 1050 |
|   | 4.1   | Authentication Requested                           | 1050 |
|   | 4.2   | Set Connection Encryption                          |      |
|   | 4.3   | Change Connection Link Key                         | 1052 |
|   | 4.4   | Master Link Key                                    | 1053 |
|   | 4.5   | Read Remote Supported Features                     |      |
|   | 4.6   | Read Clock Offset                                  | 1055 |
|   | 4.7   | Read Remote Version Information                    | 1056 |
|   | 4.8   | QoS Setup                                          | 1057 |
|   | 4.9   | Switch Role                                        | 1057 |
| 5 | SCO   | Connection establishment and detachment            | 1059 |
|   | 5.1   | SCO Connection setup                               | 1059 |
|   |       | 5.1.1 Master activates the SCO Connection setup    | 1059 |
|   |       | 5.1.2 Slave activates the SCO Connection setup     | 1060 |
|   | 5.2   | SCO Disconnection                                  | 1060 |
| 6 | Spe   | cial modes: sniff, hold, park                      | 1062 |
|   | 6.1   | Sniff Mode                                         | 1062 |
|   | 6.2   | Hold Mode                                          | 1063 |
|   | 6.3   | Park Mode                                          | 1065 |
|   |       | 6.3.1 Enter park mode                              | 1065 |
|   |       | 6.3.2 Exit Park Mode                               | 1066 |
| 7 | Buff  | er management, flow control                        | 1068 |
| 8 | Loo   | pback Mode                                         | 1070 |
|   | 8.1   | Local Loopback Mode                                |      |
|   | 8.2   | Remote Loopback Mode                               | 1072 |

### **BLUETOOTH SPECIFICATION Version 1.0 B**

page 1036 of 1082

| Mess | age Sequence Charts                | Bluetooth |  |
|------|------------------------------------|-----------|--|
| 9    | List of Acronyms and Abbreviations | 1073      |  |
| 10   | List of Figures                    | 1074      |  |
| 11   | List of Tables                     | 1075      |  |
| 12   | References                         | 1076      |  |

Message Sequence Charts

Bluetooth.

### 1 INTRODUCTION

The goal of this document is to show the interworkings of HCI-Commands and LM-PDUs. It focuses on the message sequence charts for the procedures specified in [3] "Bluetooth Host Controller Interface Functional Specification" with regard to LM Procedures from [2] "Link Manager Protocol".

We illustrate here the most useful scenarios, but we do not cover all possible alternatives. Furthermore, the message sequence charts do not consider the transfer error over Air Interface or Host Interface. In all message sequence charts it is assumed that all events are not masked, so the Host Controller will not filter out any events.

Notation used in the message sequence charts:

### Box:

- · Replaces a group of transactions
- Indicates the start of a procedure or a sub-scenario

Note: in a message sequence chart where several sub-scenarios exist, the sub-scenarios can be executed optionally, consequently, exclusively or independently from each other.

### Hexagon:

 Indicates a condition that is needed to start the transaction below this hexagon

#### Arrow:

Represents a message, signal or transaction

#### Comment:

• "/\* ... \*/" indicates editor comments

page 1038 of 1082

Message Sequence Charts

Bluetooth.

## **2 SERVICES WITHOUT CONNECTION REQUEST**

### 2.1 REMOTE NAME REQUEST

The service Remote Name Request is used to find out the name of the remote BT Device without an explicit ACL Connection request.

Sending an HCI\_Remote\_Name\_Request (BD\_ADDR, Page\_Scan\_ Repetition\_Mode, Page\_Scan\_Mode, Clock\_Offset), the Host expects that its local BT Device will automatically try to connect to the remote BT Device (with the specified BD\_ADDR). Then the local BT Device should try to get the name, to disconnect, and finally to return the name of the remote BT Device back to the Host (see Figure 2.1 Remote Name Request: sub-scenario 1).

Note: if an ACL Connection already exists (see Figure 2.1 Remote Name Request: sub-scenario 2), the Remote Name Request procedure will be executed like an optional service. No Paging and no ACL Detachment need to be done.

Message Sequence Charts

Bluetooth

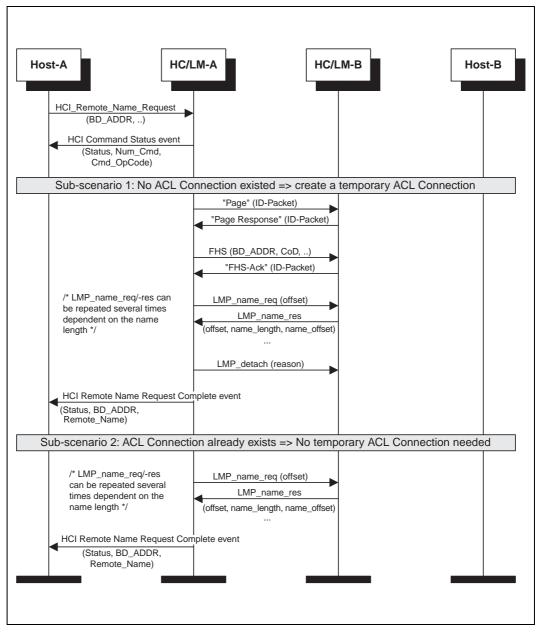



Figure 2.1: Remote Name Request

### 2.2 ONE-TIME INQUIRY

Inquiry is used to detect and collect nearby BT Devices. When receiving the command HCI\_Inquiry (LAP, Inquiry\_Length, Num\_Responses), HC will start the baseband inquiry procedure with an Inquiry Access Code (derived from the specified LAP) and Inquiry Length. When Inquiry Responses are received, HC will filter out and then return the information related to the found BT Devices using one or several Inquiry Result events (Num\_Responses, BD\_ADDR[I], Page\_Scan\_Repetition\_Mode[i], Page\_Scan\_Period\_Mode[i], Page\_Scan\_Mode[i], Class\_Of\_Device[i], Clock\_Offset[i]) to the Host.

page 1040 of 1082

Message Sequence Charts

Bluetooth

The filtering of found BT Devices is specified in HCI\_Set\_Event\_Filter (Filter\_Type, Filter\_Condition\_Type, Condition) with the Filter\_Type = Inquiry Result. When the Inquiry procedure is completed, Inquiry Complete event (Status, Num\_Responses) must be returned to the Host. Otherwise, the command HCI\_Inquiry\_Cancel() will be used to directly stop the inquiry procedure.

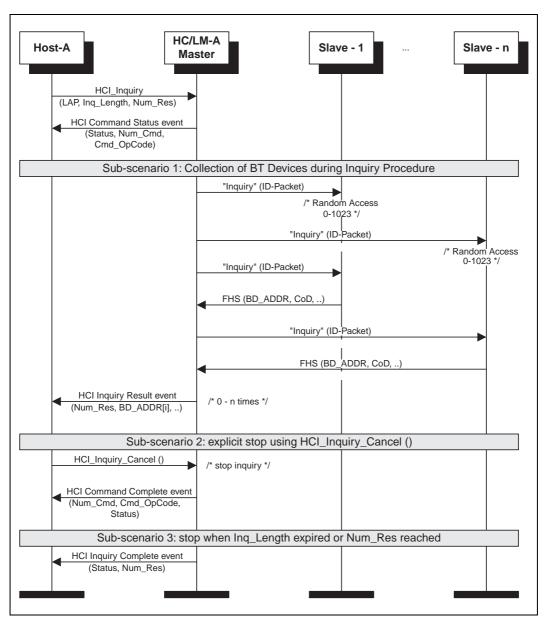



Figure 2.2: One-Time Inquiry

### 2.3 PERIODIC INQUIRY

Periodic inquiry is needed when the inquiry procedure is to be repeated periodically. Receipt of the command HCI\_Periodic\_Inquiry\_Mode (Max\_Period\_Length, Min\_Period\_Length, LAP, Inquiry\_Length, Num\_Responses) HC will start the periodic Inquiry Mode with the specified

Message Sequence Charts

### Bluetooth.

parameters Max\_Period\_Length, Min\_Period\_Length, Inquiry\_Access\_code (derived from LAP) and Inquiry\_Length. As in the one-time Inquiry procedure, only BT Devices that are specified in the HCI\_Set\_Event\_Filter (Filter\_Type, Filter\_Condition\_Type, Condition) with the Filter\_Type = Inquiry Result will not be filtered out. Therefore, in the inquiry cycle, one or several Inquiry Result events (Num\_Responses, BD\_ADDR[i], Page\_Scan\_Repetition\_ Mode[i], Page\_Scan\_Period\_Mode[i], Page\_Scan\_Mode[i], Class\_Of\_Device[i], Clock\_Offset[i]) and Inquiry Complete event (Status, Num\_Responses) will be returned to the Host with one, or a list of, found BT Devices. The periodic Inquiry can be stopped using HCI\_Exit\_Periodic\_Inquiry\_Mode().

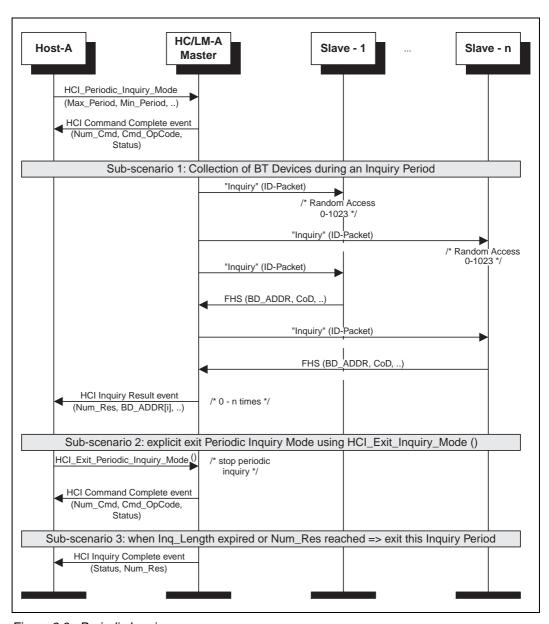



Figure 2.3: Periodic Inquiry

page 1042 of 1082

Message Sequence Charts

Bluetooth.

# 3 ACL CONNECTION ESTABLISHMENT AND DETACHMENT

The overview of the ACL Connection establishment and detachment is shown in Figure 3.1 Overview of ACL Connection establishment and detachment.

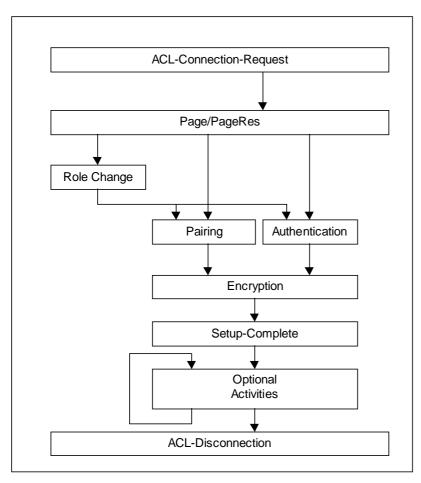



Figure 3.1: Overview of ACL Connection establishment and detachment

Message Sequence Charts

Bluetooth.

### 3.1 ACL CONNECTION REQUEST PHASE

The ACL Connection Request phase is identified between the HCI\_Create\_Connection (BD\_ADDR, Packet\_Type, Page\_Scan\_Repetition\_Mode, Page\_Scan\_Mode, Clock\_Offset, Allow\_Role\_Switch) from the master side and the response from the slave side with rejection or acceptation on the LM level. Three alternative sub-scenarios are shown in Figure 3.2, "ACL Connection Request phase," on page 1044.

Sub-scenario 1: Slave rejects ACL Connection Request

If the ACL Connection request is rejected by slave, a Connection Complete event (Status, Connection\_Handle, BD\_ADDR, Link\_Type, Encryption\_Mode) will be then returned to Host, whereby the Status will be copied from the Reason parameter of the command HCl\_Reject\_Connection\_Request (Reason, BD\_ADDR). The parameters Connection\_Handle and Encryption\_Mode will be meaningless.

Sub-scenario 2: Slave accepts ACL Connection Request

When the slave responds with LMP\_accepted () correspondent to LMP\_host\_connection\_req (), the ACL Connection Request is accepted. The master will continue with the ACL Connection Setup, where pairing, authentication or encryption will be executed.

Sub-scenario 3: Slave accepts ACL Connection Request with Role Change

This case is identified when the slave sends an LMP\_switch\_req () to initiate Role Change. If the master accepts, the baseband Master-Slave Switch will be executed. Thereafter, the ACL Connection Setup will continue.

Note: on the slave side, an incoming connection request can be automatically accepted by using HCI\_Set\_Event\_Filter (Filter\_Type, Filter\_Condition\_Type, Condition) with the Filter\_Type = 0x02 /\*Connection\_Setup\*/.

page 1044 of 1082

Message Sequence Charts

**Bluetooth** 

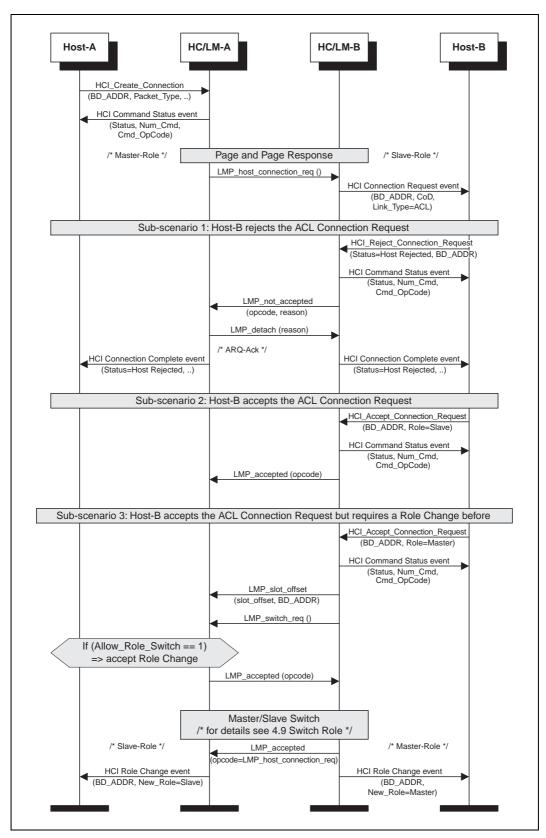



Figure 3.2: ACL Connection Request phase

page 1045 of 1082

Message Sequence Charts

Bluetooth.

### 3.2 ACL CONNECTION SETUP PHASE

If the ACL Connection Request phase was successful, the ACL Connection Setup phase will start, with the goal of executing security procedures like pairing, authentication and encryption. The ACL Connection Setup phase is successfully finished when LMP\_setup\_complete () is exchanged and the Connection Complete event (Status=0x00, Connection\_Handle, BD\_ADDR, Link\_Type, Encryption\_Mode) is sent to the Host.

### 3.2.1 Pairing

If authentication is required and the BT Devices to be connected don't have a common link key, the pairing procedure on LM Level will be executed using the PIN Input from Host. During the pairing, the authentication- and link key creation procedures will be done. Note: the created Link Key can be stored either in the BT Device or in the Host.

page 1046 of 1082

Message Sequence Charts

Bluetooth.

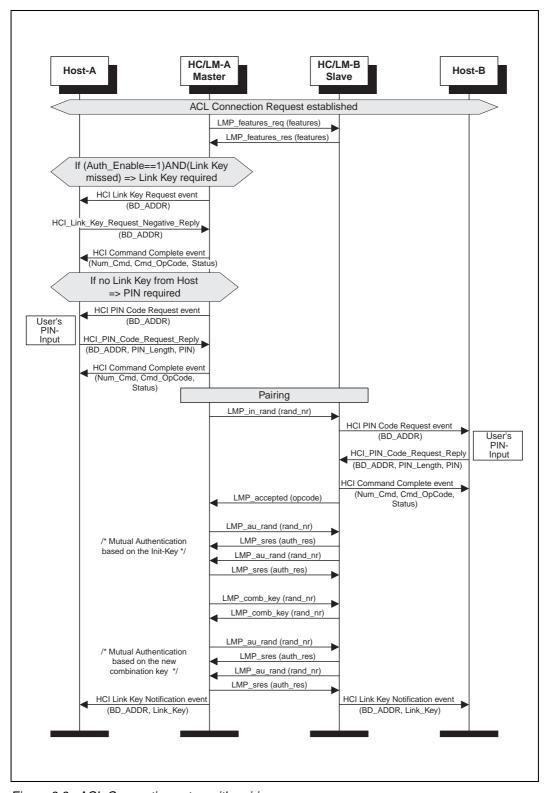



Figure 3.3: ACL Connection setup with pairing

Message Sequence Charts

**Bluetooth** 

### 3.2.2 Authentication

If a common link key already exists between the BT Devices, pairing is not needed. Note: a Link Key created during pairing can be stored either in the BT Device or in the Host. If the parameter Authentication Enable is set, the authentication procedure has to be executed. Here, the MSC only shows the case when Authentication\_Enable is set on both sides.

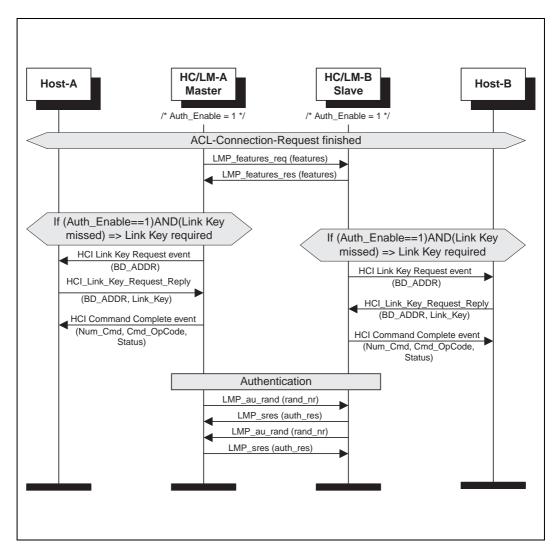



Figure 3.4: ACL Connection setup with authentication

#### ENCRYPTION AND CONNECTION SETUP COMPLETE

Once the pairing/authentication procedure is successful, the encryption procedure will be started. Here, the MSC only shows how to set up an encrypted point-to-point connection (Encryption\_Mode = 1 /\*point-to-point/). Note: an encrypted connection requires an established common link key.

page 1048 of 1082

Message Sequence Charts

**Bluetooth** 

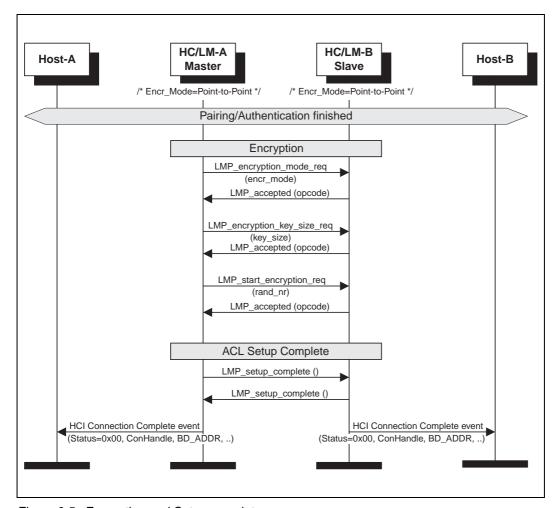



Figure 3.5: Encryption and Setup complete

### 3.4 ACL DISCONNECTION

At any time, an established ACL Connection can be detached by an HCI\_Disconnect (Connection\_Handle, Reason). If one or several SCO Connections exist, they must first be detached before the ACL Connection can be released.

Note: the disconnection procedure is one-sided and doesn't need an explicit acknowledgment from the remote LM. So the ARQ Acknowledgment from the LC is needed, to ensure that the remote LM has received the LMP\_detach (reason).

page 1049 of 1082

Message Sequence Charts

Bluetooth.

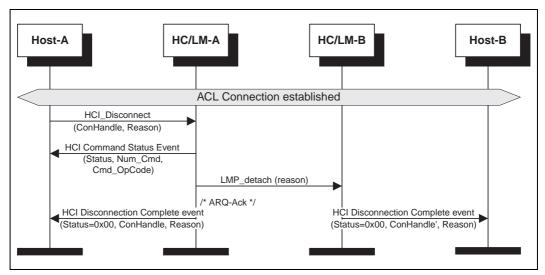



Figure 3.6: ACL Disconnection

page 1050 of 1082

Message Sequence Charts

Bluetooth.

# 4 OPTIONAL ACTIVITIES AFTER ACL CONNECTION ESTABLISHMENT

### 4.1 AUTHENTICATION REQUESTED

Authentication can be explicitly executed at any time after an ACL Connection has been established. If the Link Key was missed in HC/LM, the Link Key will be required from the Host, as in the authentication procedure (see 3.2.2).

Note: if the HC/LM and the Host don't have the Link Key a PIN Code Request event will be sent to the Host to request a PIN Code for pairing. A procedure identical to ACL Connection Setup with Pairing (see 3.2.1) will be used.

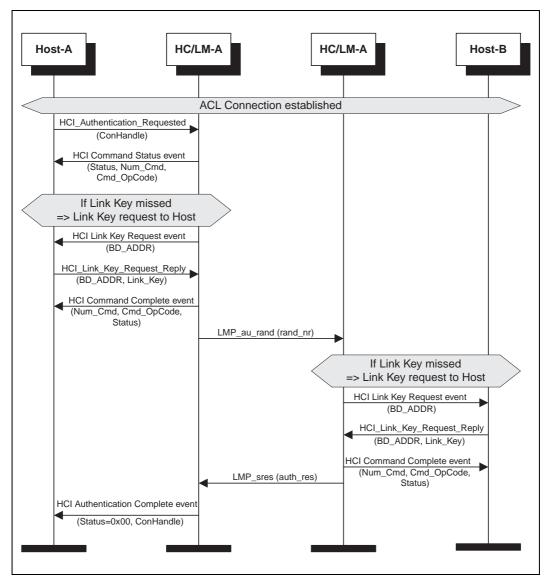



Figure 4.1: Authentication Requested

page 1051 of 1082

Message Sequence Charts

Bluetooth.

### 4.2 SET CONNECTION ENCRYPTION

Using the command HCI\_Set\_Connection\_Encryption (Connection\_Handle, Encryption\_Enable), the Host is able to switch the encryption of a connection with the specified Connection\_Handle to ON/OFF. This command can be applied on both the master- and slave sides (only the master side is shown in Figure 4.2 Set Connection Encryption). If this command occurs on the slave side, the only difference is that LMP\_encryption\_mode\_req (encryption\_mode) will be sent from the HC/LM Slave. LMP\_encryption\_key\_size\_req (key\_size) and LMP\_start\_encryption\_req (rand\_nr) will still be requested from the HC/LM master.

page 1052 of 1082

Message Sequence Charts

Bluetooth

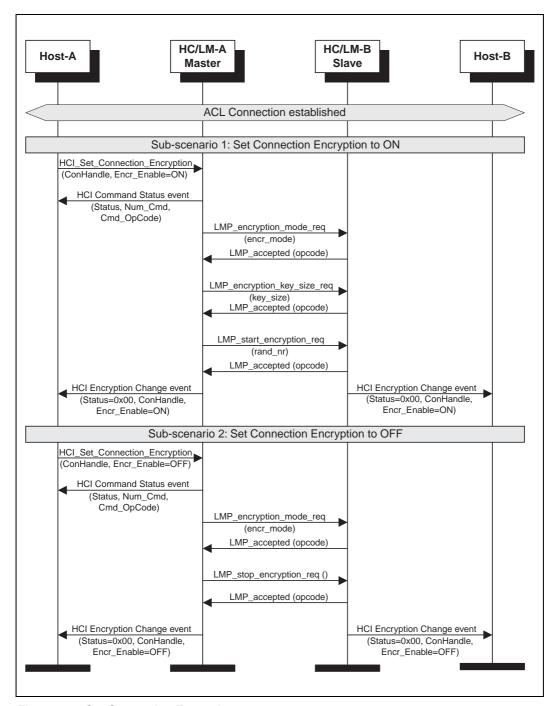



Figure 4.2: Set Connection Encryption

### 4.3 CHANGE CONNECTION LINK KEY

Using the command HCI\_Change\_Connection\_Link\_Key (Connection\_Handle), the Host can explicitly change the common link key shared between the BT Devices.

Message Sequence Charts

### **Bluetooth**

Note: if the connection encryption was enabled and the temporary link key was used, it is the task of the BT Master to automatically restart the encryption (first stop and then restart) after the link key is successfully changed.

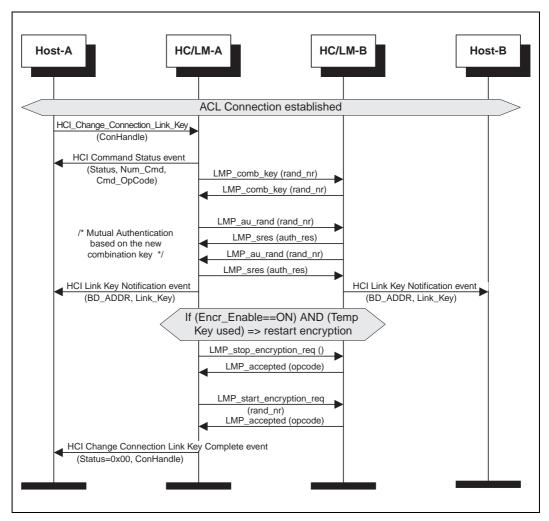



Figure 4.3: Change Connection Link Key

### 4.4 MASTER LINK KEY

The Figure 4.4 Master Link Key shows how the Host can explicitly switch between the temporary Link Key and the semi-permanent Link Key. Since this command can only be used for the BT Master, the Link Key switch will affect all connections.

Note: if encryption was enabled, it is the task of the BT Master to restart the encryption separately for each slave.

page 1054 of 1082

Message Sequence Charts

Bluetooth.

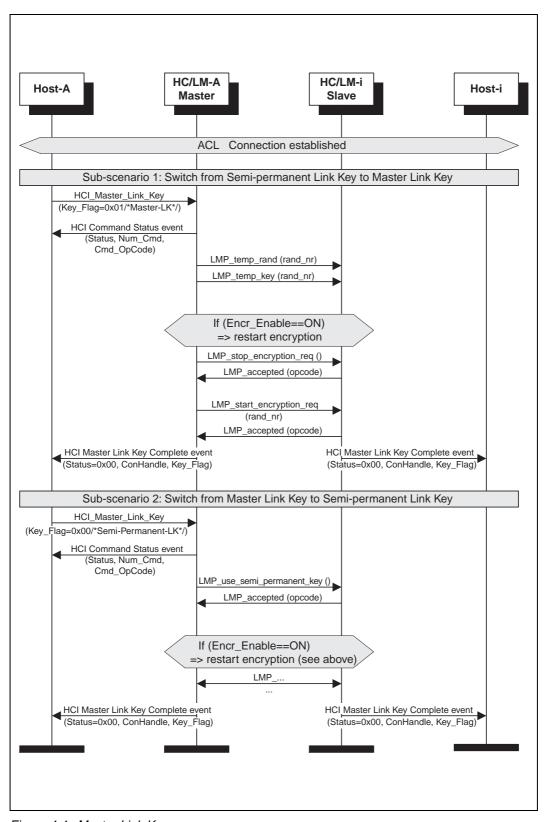



Figure 4.4: Master Link Key

Message Sequence Charts

Bluetooth.

### 4.5 READ REMOTE SUPPORTED FEATURES

Using the command HCI\_Read\_Remote\_Supported\_Features (Connection\_Handle) the supported LMP Features of a remote BT Device can be read. These features contain supported packet types, supported modes, supported audio coding modes, etc.

Note: if the LMP Features was exchanged during ACL Connection Setup, the HC/LM A may return the Read Remote Supported Features Complete event (Status, Connection\_Handle, LMP\_Features) without exchange of LMP PDUs.

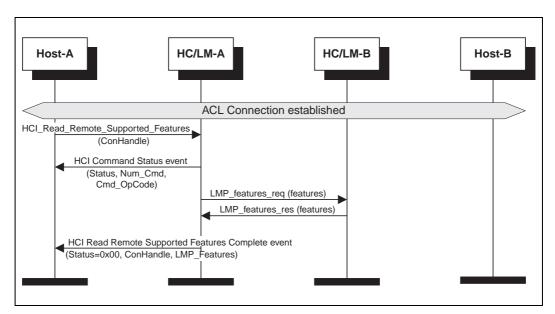



Figure 4.5: Read Remote Supported Features

### 4.6 READ CLOCK OFFSET

Using the command HCI\_Read\_Clock\_Offset (Connection\_Handle) the BT Master can read the Clock Offset of the BT Slaves. The Clock Offset can be used to speed up the paging procedure in a later connection attempt. If the command is requested from the slave device, the HC/LM Slave will directly return a Command Status event and an Read Clock Offset Complete event without exchange of LMP PDUs.

page 1056 of 1082

Message Sequence Charts

Bluetooth.

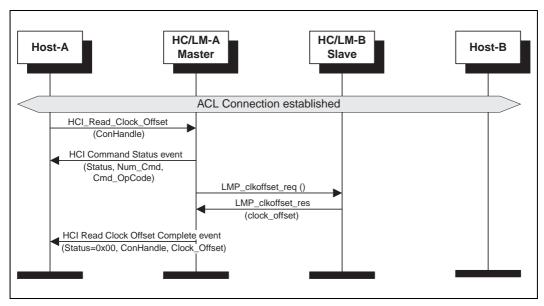



Figure 4.6: Read Clock Offset

# 4.7 READ REMOTE VERSION INFORMATION

Using HCI\_Read\_Remote\_Version\_Information (Connection\_Handle) the version information consisting of LMP\_Version, Manufacturer\_Name and LMP\_Subversion from the remote BT Device can be read.

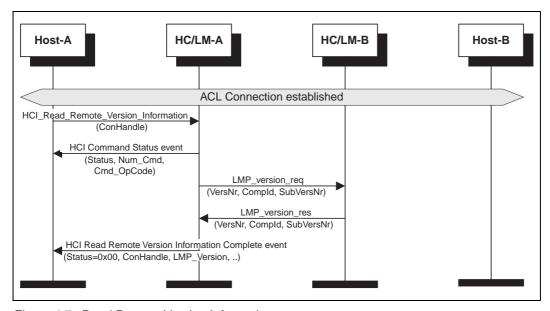



Figure 4.7: Read Remote Version Information

Message Sequence Charts

Bluetooth.

## 4.8 QOS SETUP

To set up the Quality of Service, the command HCI\_QoS\_Setup (Connection\_Handle, Flags, Service\_Type, Token\_Rate, Peak\_Bandwidth, Latency, Delay\_Variation) is used.

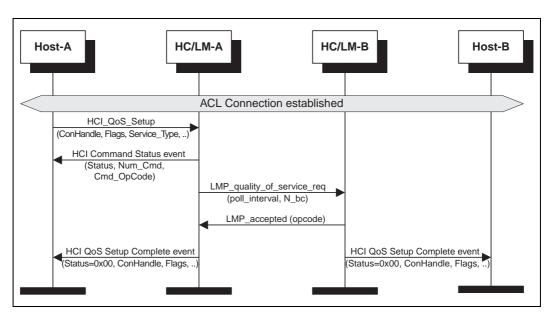



Figure 4.8: QoS Setup

# 4.9 SWITCH ROLE

The command HCI\_Switch\_Role (BD\_ADDR, Role) can be used to explicitly switch the current role of the local BT Device for a particular connection with the specified BT Device (BD\_ADDR). The local HC/LM has to check whether the switch is performed or not.

page 1058 of 1082

Message Sequence Charts

Bluetooth

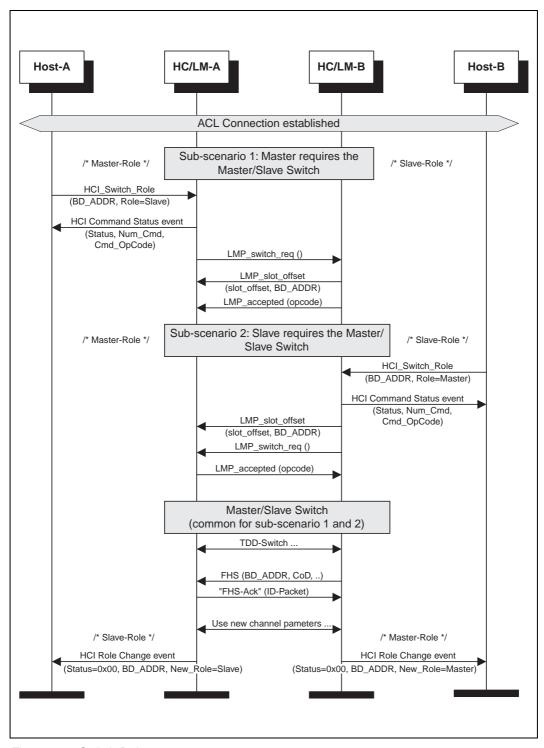



Figure 4.9: Switch Role

Message Sequence Charts

Bluetooth.

# 5 SCO CONNECTION ESTABLISHMENT AND DETACHMENT

# 5.1 SCO CONNECTION SETUP

SCO Connection setup requires an established ACL Connection. It is the task of the Host to create an ACL Connection first and then the SCO Link.

Note: On the slave side, an incoming connection request can be automatically accepted by using HCI\_Set\_Event\_Filter (Filter\_Type, Filter\_Condition\_Type, Condition) with the Filter\_Type = 0x02 /\*Connection\_Setup\*/. Furthermore, for each SCO Link to a BT Device, a separate SCO Connection Handle is needed.

# 5.1.1 Master activates the SCO Connection setup

To set up an SCO Connection, the HCI\_Add\_SCO\_Connection (Connection\_Handle, Packet\_Type) command is used. The specified Connection\_Handle is related to the ACL Connection that must have been created before the HCI\_Add\_SCO\_Connection is issued.

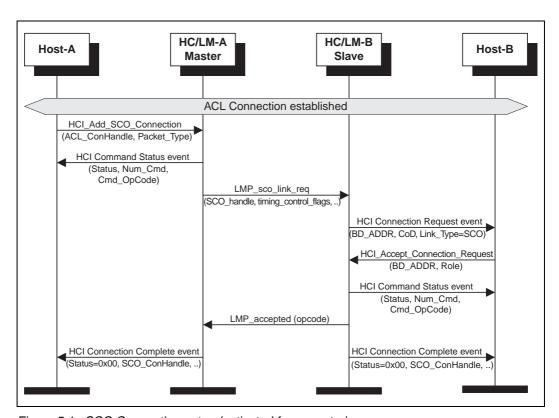



Figure 5.1: SCO Connection setup (activated from master)

page 1060 of 1082

Message Sequence Charts

**Bluetooth** 

# 5.1.2 Slave activates the SCO Connection setup

The same command HCI\_Add\_SCO\_Connection (Connection\_Handle, Packet\_Type) can be used to create an SCO Link when the local BT Device is a BT Slave. Here the specified Connection\_Handle belongs to the established ACL Connection between the BT Devices. Compared to 5.1.1, the only difference is that the HC/LM Slave starts the SCO Setup with LMP\_sco\_link\_req first.

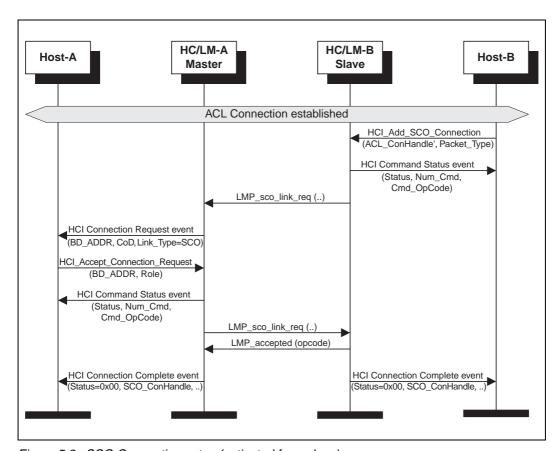



Figure 5.2: SCO Connection setup (activated from slave)

#### 5.2 SCO DISCONNECTION

An established SCO Connection can be detached at any time. Since several SCO Connections can exist between a BT Master and a BT Slave, an SCO Disconnection only removes the SCO Link with the specified SCO Connection Handle. The other SCO Connections will still exist.

page 1061 of 1082

Message Sequence Charts

Bluetooth.

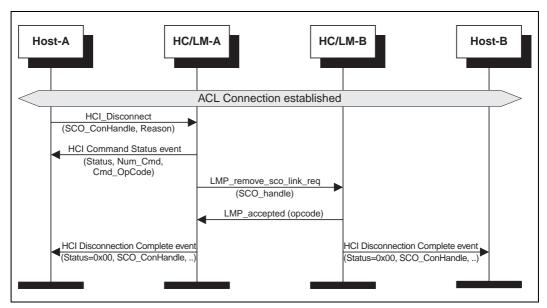



Figure 5.3: SCO Disconnection

page 1062 of 1082

Message Sequence Charts

Bluetooth.

# 6 SPECIAL MODES: SNIFF, HOLD, PARK

Entry into sniff, hold or park mode requires an established ACL Connection. The following table summarizes the modes and the BT Role that can request, force, activate or exit the modes.

|            | Sniff        | Hold         | Park         |
|------------|--------------|--------------|--------------|
| Request    | Master/Slave | Master/Slave | Master/Slave |
| Force      | Master       | Master/Slave | Master       |
| Activation | Master       | Master/Slave | Master       |
| Release    | Master/Slave | Automatic    | Master/Slave |

Table 6.1: Summary of modes (Sniff, Hold, Park)

#### 6.1 SNIFF MODE

Sniff Mode is used when a slave shall participate in the piconet only in a sniff interval. For the Sniff Mode negotiation, the Host specifies the Sniff\_Max\_Interval and the Sniff\_Min\_Interval so that HC/LM will be able to choose the one sniff interval in this range. The used command is HCI\_Sniff\_Mode (Connection\_Handle, Sniff\_Max\_Interval, Sniff\_Min\_Interval, Sniff\_Attempt, Sniff\_Timeout).

Since Sniff Mode is a periodic mode, the command HCI\_Exit\_Sniff\_Mode (Connection\_Handle) is needed to return to Active Mode.

Message Sequence Charts

Bluetooth

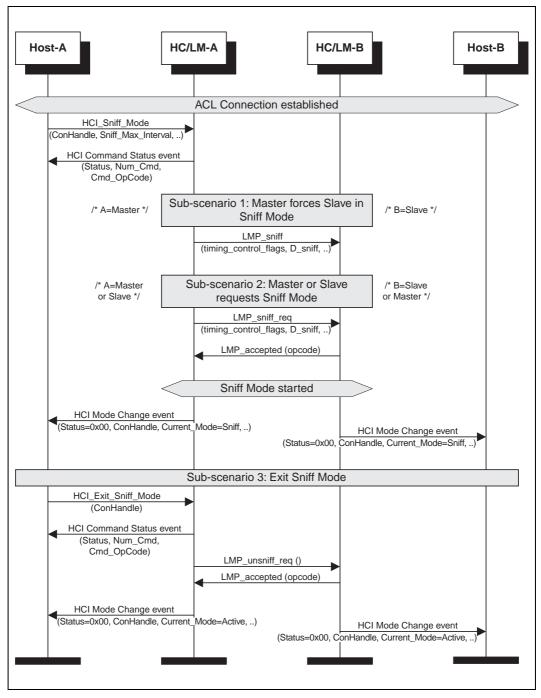



Figure 6.1: Sniff Mode

#### 6.2 HOLD MODE

Hold Mode is useful when a BT Device doesn't want to participate in the connection for a Hold Mode Length. Using the command HCI\_Hold\_Mode (Connection\_Handle, Hold\_Max\_Length, Hold\_Min\_Length), the Host specifies the Hold\_Max\_Length and Hold\_Min\_Length. The HC/LM will then be able to negotiate a Hold Mode Length in this range. When the hold mode is started

page 1064 of 1082

Message Sequence Charts

Bluetooth

or complete, Mode Change event (Status, Connection\_ Handle, Current\_Mode, Interval) will be used to inform the Host about the actual mode.

Note: the Hold Mode is exited when the Hold Mode Length has expired, so it is no guarantee that the remote BT Device is immediately active.

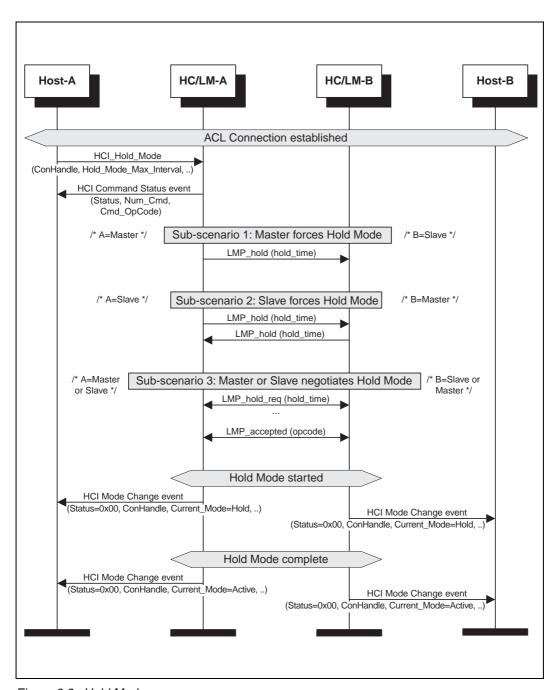



Figure 6.2: Hold Mode

page 1065 of 1082

Message Sequence Charts

Bluetooth.

# 6.3 PARK MODE

Park Mode is used to render the slaves inactive but still synchronized to the master using the beacon interval. In park mode, broadcast is performed.

# 6.3.1 Enter park mode

Using the command HCI\_Park\_Mode (Connection\_Handle, Beacon\_Max\_Interval, Beacon\_Min\_Interval) the Host specifies the Beacon\_Max\_Interval and Beacon\_Min\_Interval so that HC/LM can set up a Beacon-Interval in this range for the BT Slaves. In Park Mode, the BT Slave gives up its AM ADDR.

page 1066 of 1082

Message Sequence Charts

Bluetooth

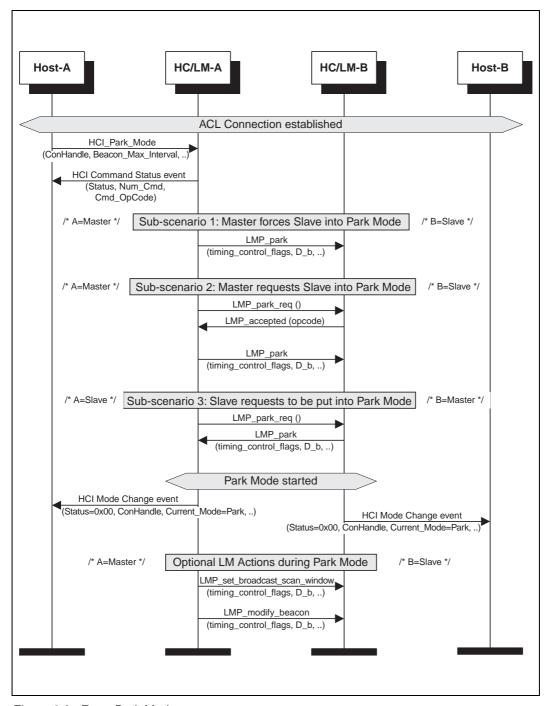



Figure 6.3: Enter Park Mode

#### 6.3.2 Exit Park Mode

Since Park Mode is a periodic mode, the command HCI\_Exit\_Park\_Mode (Connection\_Handle) will be used to return to Active Mode. A parked BT Slave can send an Access\_Request\_Message to request to leave the Park Mode. It is the task of master HC/LM to use LMP\_unpark\_PM\_ADDR\_req (..) or LMP\_unpark\_BD\_ADDR\_req (..) to unpark a BT Slave.

Message Sequence Charts

# Bluetooth

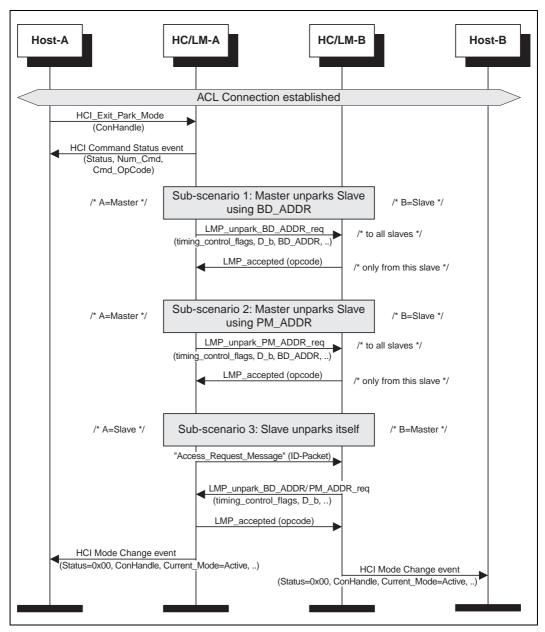



Figure 6.4: Exit Park Mode

page 1068 of 1082

Message Sequence Charts

Bluetooth

# 7 BUFFER MANAGEMENT, FLOW CONTROL

The HC Data buffers are configured by the HC and managed by the Host. On initialization, the Host will issue HCI\_Read\_Buffer\_Size. This specifies the maximum allowed length of HCI data packets sent from the Host to the HC, and the maximum number of ACL and SCO data packets that the HC can store in its buffer. After a connection is created, HC will frequently inform the Host about the number of sent packets using Number Of Completed Packets event (Number\_of\_Handles, Connection\_Handle[I], HC\_Num\_Of\_ Completed\_Packets[i]) (see Figure 7.1 Host-to-HC flow control).

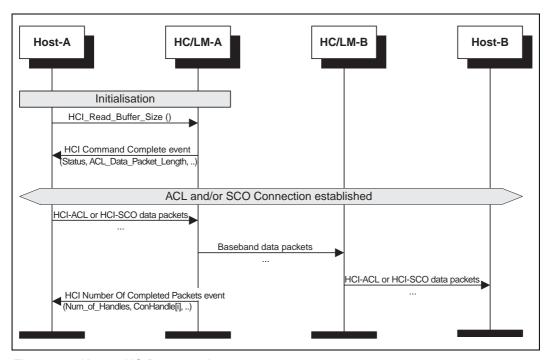



Figure 7.1: Host to HC flow control

Accordingly the HC to Host flow control can be applied in the same way so that during initialization the Host configures the Buffer Size and later the Host Controller will manage the Host Buffers.

Using HCI\_Set\_Host\_Controller\_To\_Host\_Flow\_Control (Flow\_Control\_Enable) the Host can decide to apply the HC to Host flow control or not. For flow control itself HCI\_Host\_Buffer\_Size (Host\_ACL\_Data\_Packet\_Length, Host\_SCO\_Data\_Packet\_Length, Host\_Total\_Num\_ACL\_Data\_Packets, Host\_Total\_Num\_SCO\_Data\_Packets) and HCI\_Host\_Number\_Of\_Completed\_Packets (Number\_of\_Handles, Connection\_Handle[I], Host\_Num\_Of\_Completed\_Packets[I]) will be used (for details see Figure 7.2 HC to Host Flow Control).

page 1069 of 1082

Message Sequence Charts

Bluetooth.

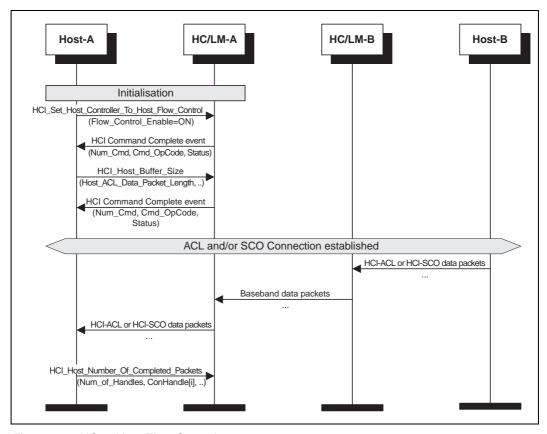



Figure 7.2: HC to Host Flow Control

page 1070 of 1082

Message Sequence Charts

Bluetooth.

# **8 LOOPBACK MODE**

# 8.1 LOCAL LOOPBACK MODE

The local Loopback Mode is used to loopback received HCI Commands, and HCI ACL and HCI SCO packets sent from the Host.

The HC will send four Connection Complete events (one for ACL, three for SCO Connections) so that the Host can use the Connection\_Handles to resend HCI ACL and HCI SCO Packet to HC. To exit the local Loopback Mode, HCI\_Write\_Loopback\_Mode (Loopback\_Mode=0x00) or HCI\_Reset () will be used.

Message Sequence Charts

# Bluetooth

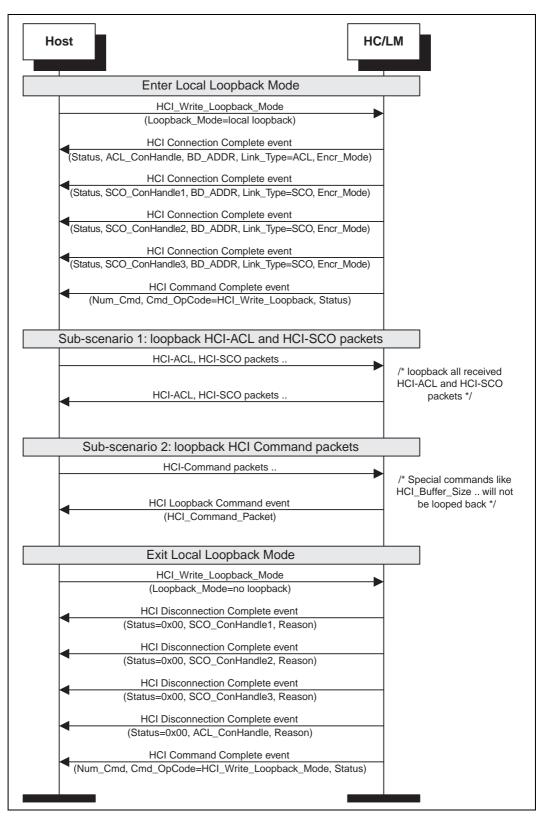



Figure 8.1: Local Loopback Mode

page 1072 of 1082

Message Sequence Charts

**Bluetooth** 

## 8.2 REMOTE LOOPBACK MODE

The remote Loopback Mode is used to loopback all received Baseband ACL and SCO Data received from a remote BT Device. During remote Loopback Mode, ACL and SCO Connection can be created. The remote Loopback Mode can be released with the command HCI\_Write\_Loopback\_Mode (Loopback\_Mode=0x00).

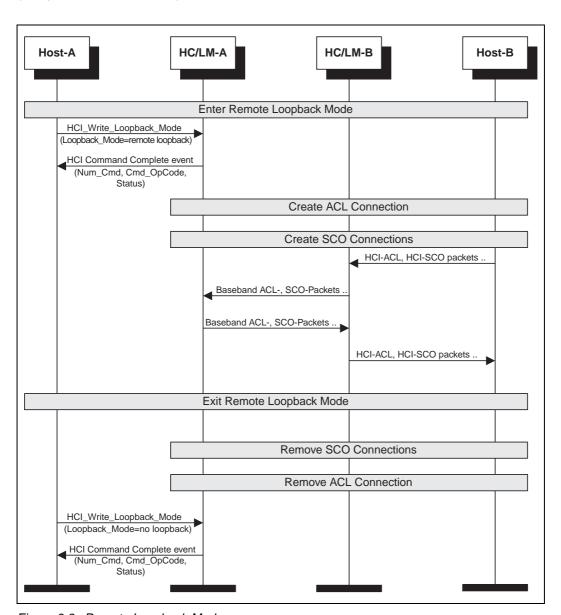



Figure 8.2: Remote Loopback Mode

page 1073 of 1082

Message Sequence Charts

Bluetooth.

# 9 LIST OF ACRONYMS AND ABBREVIATIONS

| вт  | Bluetooth                 |
|-----|---------------------------|
| НС  | Host Controller           |
| HCI | Host Controller Interface |
| LAP | Lower Address Part        |
| LC  | Link Controller           |
| LM  | Link Manager              |
| LMP | Link Manager Protocol     |
| MSC | Message Sequence Chart    |
| PDU | Protocol Data Unit        |

page 1074 of 1082

# Message Sequence Charts

# Bluetooth.

# **10 LIST OF FIGURES**

| Figure 2.1: | Remote Name Request                          | 1039 |
|-------------|----------------------------------------------|------|
| Figure 2.2: | One-Time Inquiry                             |      |
| Figure 2.3: | Periodic Inquiry                             |      |
| Figure 3.1: | Overview of ACL Connection establishment     |      |
| · ·         | and detachment                               | 1042 |
| Figure 3.2: | ACL Connection Request phase                 | 1044 |
| Figure 3.3: | ACL Connection setup with pairing            | 1046 |
| Figure 3.4: | ACL Connection setup with authentication     | 1047 |
| Figure 3.5: | Encryption and Setup complete                | 1048 |
| Figure 3.6: | ACL Disconnection                            | 1049 |
| Figure 4.1: | Authentication Requested                     | 1050 |
| Figure 4.2: | Set Connection Encryption                    | 1052 |
| Figure 4.3: | Change Connection Link Key                   | 1053 |
| Figure 4.4: | Master Link Key                              | 1054 |
| Figure 4.5: | Read Remote Supported Features               | 1055 |
| Figure 4.6: | Read Clock Offset                            | 1056 |
| Figure 4.7: | Read Remote Version Information              | 1056 |
| Figure 4.8: | QoS Setup                                    | 1057 |
| Figure 4.9: | Switch Role                                  | 1058 |
| Figure 5.1: | SCO Connection setup (activated from master) | 1059 |
| Figure 5.2: | SCO Connection setup (activated from slave)  | 1060 |
| Figure 5.3: | SCO Disconnection                            | 1061 |
| Figure 6.1: | Sniff Mode                                   | 1063 |
| Figure 6.2: | Hold Mode                                    | 1064 |
| Figure 6.3: | Enter Park Mode                              | 1066 |
| Figure 6.4: | Exit Park Mode                               | 1067 |
| Figure 7.1: | Host to HC flow control                      | 1068 |
| Figure 7.2: | HC to Host Flow Control                      | 1069 |
| Figure 8.1: | Local Loopback Mode                          | 1071 |
| Figure 8.2: | Remote Loopback Mode                         | 1072 |

BLUETOOTH SPECIFICATION Version 1.0 B

page 1075 of 1082

Message Sequence Charts

Bluetooth.

# 11 LIST OF TABLES

Table 6.1: Summary of modes (Sniff, Hold, Park)......1062

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1076 of 1082

Message Sequence Charts

Bluetooth..

# 12 REFERENCES

- [1] "Baseband Specification" on page 33
- [2] "Link Manager Protocol" on page 185
- [3] "Host Controller Interface Functional Specification" on page 517
- [4] "Logical Link Control and Adaptation Protocol Specification" on page 245

# Bluetooth.

# **Alphabetical Index**

| Numerics                                    | control channel [F:1] 396                     |  |
|---------------------------------------------|-----------------------------------------------|--|
| 0x7E [H:3] 784                              | convergence layer [F:1] 397                   |  |
|                                             | CRC [H:3] 782                                 |  |
| A                                           | CRC-CCITT [H:3] 785, [H:3] 786                |  |
| Abort- [F:2] 420                            | CTS [H:3] 788                                 |  |
| ACCESS RIGHTS ACCEPT [F:3] 451              | current link key [C] 198                      |  |
| ACCESS RIGHTS REJECT [F:3] 451              |                                               |  |
| ACCESS RIGHTS REQUEST [F:3] 451             | D                                             |  |
| Ack Code [H:3] 781                          | Data Link Connection Identifier [F:1] 393     |  |
| Ack code [H:3] 780                          | data throughput [F:1] 391                     |  |
| Acknowledgement Timer (T1) [F:1] 400        | DCE [F:1] 391                                 |  |
| ALERTING [F:3] 442                          | default URL [F:4] 509                         |  |
| asynchronous notifications [F:4] 508        | delayed loopback [I:1] 812                    |  |
| AT+CMUX [F:1] 399                           | Delimiter [H:3] 782                           |  |
| authentication [C] 194                      | delimiter 0x7E [H:3] 785                      |  |
| В                                           | delimiter, 0x7E [H:3] 784                     |  |
| basis option (E:41 206 (E:41 208            | direction bit [F:1] 400                       |  |
| basic option [F:1] 396, [F:1] 398           | DISC command [F:1] 400, [F:1] 401             |  |
| Baud Rate [H:3] 781                         | DISC command frame [F:1] 399                  |  |
| baud rate [F:1] 391, [H:3] 780              | DISCONNECT [F:3] 446                          |  |
| beacon [C] 211                              | Disconnect-request [F:2] 419                  |  |
| beginning delimiter [H:3] 785               | DNS [F:4] 503                                 |  |
| Bluetooth [F:2] 414                         | drift [C] 203                                 |  |
| BOF(0x7E) [H:3] 786                         | DTE [F:1] 391, [F:1] 399                      |  |
| Briefcase Trick [F:4] 500                   | DTMF ACKNOWLEDGE [F:3] 457                    |  |
| business card [F:2] 415                     | DTMF start & stop [F:3] 456                   |  |
| byte ordering [F:1] 390                     | DTR/DSR [F:1] 403                             |  |
| byte stream [F:2] 421                       | -                                             |  |
| С                                           | E                                             |  |
| Call Control [F:3] 435                      | EIATIA-232-E [F:1] 389, [F:1] 391             |  |
| CALL PROCEEDING [F:3] 441                   | eliminating zeros [H:3] 785                   |  |
| Calling Line Identity [F:3] 456             | emergency call [F:3] 479                      |  |
| checksum [H:3] 785                          | emulated ports [F:1] 393                      |  |
| CL INFO [F:3] 455                           | encryption [C] 199                            |  |
| claimant [C] 194                            | ending delimiter [H:3] 785                    |  |
| clock offset [C] 202                        | EOF(0x7E) [H:3] 786                           |  |
| COBS [H:3] 784, [H:3] 785, [H:3] 787        | Error detection [H:3] 780                     |  |
| COBS code block [H:3] 787                   | error message packet [H:3] 785, [H:3] 789     |  |
| COBS code byte [H:3] 787                    | Error Message Packet (0x05) [H:3] 779         |  |
| combination key [C] 197                     | error packet [H:3] 788                        |  |
| commands in TS 07.10 [F:1] 396              | Error Recovery [H:3] 783                      |  |
| Configuration distribution [F:3] 449        | error recovery [H:3] 780, [H:3] 784           |  |
| CONNECT [F:3] 442                           | error recovery procedure [H:3] 785, [H:3] 788 |  |
| Connect-request [F:2] 418                   | Error Type [H:3] 786, [H:3] 789               |  |
| Consistent Overhead Byte Stuffing [H:3] 785 | ETSI TS 07.10 [F:2] 421                       |  |
| Consistent Cromoda Dyto Otalling [11.0] 700 | external call [F:3] 479                       |  |

page 1078 of 1082

| Confidential Bluetooth                                | <b>Bluetooth</b> .                      |
|-------------------------------------------------------|-----------------------------------------|
| F                                                     | loop back test [I:1] 815                |
| Fast inter member access [F:3] 449<br>FCoff [F:1] 403 | low power mode [F:1] 407                |
| FCon [F:1] 403                                        | M                                       |
| flow control [F:1] 403                                | Management Entity [F:4] 508             |
| Forbidden Message [F:4] 501                           | Maximum Frame Size (N1) [F:1] 400       |
| frame types [F:1] 396                                 | Modem Status Command [F:1] 397          |
| 71                                                    | multiple bearers [F:4] 508              |
| G                                                     | multiplexer control channel [F:1] 399   |
| generator polynomial [H:3] 785                        | Multiplexer Control commands [F:1] 401  |
| Get-request [F:2] 420                                 | N.                                      |
| Group Management [F:3] 435                            | N                                       |
|                                                       | name request [C] 207                    |
| H                                                     | negotiation packet [H:3] 780, [H:3] 781 |
| HCI RS232 Transport Layer [H:3] 778                   | Negotiation Packet (0x06) [H:3] 779     |
| header ID [F:2] 417                                   | negotiation phase [H:3] 780             |
| hold mode [C] 208                                     | null modem [F:1] 392                    |
| Host Controller Interface [F:4] 508                   | null modem emulation [F:1] 391          |
| HTML [F:4] 505                                        | number of data bit [H:3] 780            |
| HTTP [F:4] 503, [F:4] 505                             | number of stop bit [H:3] 780            |
| I                                                     | 0                                       |
| in-band tones/announcements [F:3] 443                 | OBEX [F:2] 414                          |
| INFO ACCEPT [F:3] 452                                 | OBEX session protocol [F:2] 417         |
| INFO SUGGEST [F:3] 452                                | Obtain access rights [F:3] 449          |
| INFORMATION [F:3] 441                                 | output power [C] 215                    |
| initialisation key [C] 195                            | _                                       |
| intercom call [F:3] 479                               | P                                       |
| Internet Engineering Task Force (IETF) [F:4] 504      | paging scheme [C] 223 pairing [C] 195   |
| interoperability [F:4] 511                            | parity type [H:3] 780                   |
| interrupt latency [H:3] 780                           | park mode [C] 211                       |
| IrCOMM [F:2] 416                                      | payload heade [C] 192                   |
| IrDA [F:2] 414                                        | PIN [C] 195                             |
| IrMC [F:2] 425                                        | PN command [F:1] 402                    |
| IrOBEX [F:2] 414                                      | port emulation entity [F:1] 405         |
|                                                       | port proxy entity [F:1] 405             |
| J                                                     | Protocol Mode [H:3] 782                 |
| JavaScript [F:4] 505                                  | protocol mode [H:3] 780                 |
| jitter [C] 203                                        | protocol mode 0x13 [H:3] 785            |
| L                                                     | protocol mode 0x14 [H:3] 788            |
| L2CAP channel [F:1] 407                               | Proxy/gateway Addressing [F:4] 509      |
| latency requirements [F:1] 407                        | Put-request [F:2] 419                   |
| link key [C] 194                                      | 0                                       |
| link loss notification [F:1] 399, [F:1] 407           | <b>Q</b> Q.931 [F:3] 435                |
| link supervision [C] 224                              | Quality of Service [C] 218              |
| LISTEN REJECT [F:3] 454                               | Quality of Oct vioc [O] 210             |

R

register recall [F:3] 456

LISTEN REQUEST [F:3] 453

LISTEN SUGGEST [F:3] 453

# Bluetooth.

| RELEASE [F:3] 446                                                     | START DTMF REJECT [F:3] 457               |
|-----------------------------------------------------------------------|-------------------------------------------|
| RELEASE COMPLETE [F:3] 446                                            | STOP DTMF [F:3] 457                       |
| reliability [F:1] 407                                                 | STOP DTMF ACKNOWLEDGE [F:3] 457           |
| reliable transmission [F:1] 400                                       | supervision timeout [C] 224               |
| Response Timer for Multiplexer Control Chan-                          | synchronization [H:3] 785                 |
| nel (T2) [F:1] 400                                                    | synchronize [H:3] 788                     |
| resynchronization [H:3] 784                                           |                                           |
| resynchronize [H:3] 788                                               | Т                                         |
| retransmission holding buffer [H:3] 785, [H:3]                        | TCP [F:4] 505                             |
| 788                                                                   | TCP port number [F:2] 423                 |
| retransmission packets [H:3] 785, [H:3] 788                           | TCP/IP [F:2] 414                          |
| RFCOMM [F:2] 414                                                      | TCS Binary [F:3] 435                      |
| RFCOMM entity [F:1] 393                                               | Tdetect [H:3] 780                         |
| RFCOMM multiplexer [F:1] 399                                          | Tdetect Time [H:3] 782                    |
| RFCOMM reference model [F:1] 395                                      | Tdetect time [H:3] 788                    |
| RFCOMM Server Channel [F:1] 405                                       | temporary link key [C] 198                |
| RFCOMM server channels [F:1] 393, [F:1] 400                           | test mode [C] 237, [I:1] 806              |
| RFCOMM session [F:1] 393, [F:1] 399                                   | Tiny TP [F:2] 416                         |
| RLS command [F:1] 402                                                 | transmitter test [I:1] 811                |
| RPN command [F:1] 401                                                 | TS 07.10 [F:1] 389                        |
| RS-232 [F:1] 389, [F:1] 391, [F:1] 405                                | TS 07.10 multiplexer [F:1] 393, [F:1] 407 |
| RS232 [H:3] 778                                                       |                                           |
| RS-232 control signals [F:1] 392, [F:1] 397                           | U                                         |
| RS232 Transport Packet [H:3] 779                                      | UART [H:3] 780                            |
| RSSI [C] 215                                                          | UART Settings [H:3] 781                   |
| RTS [H:3] 788                                                         | UDP [F:4] 504                             |
| RTS/CTS [F:1] 403, [H:3] 780                                          | Uniform Resource Locators [F:4] 509       |
| RTS/CTS Mode [H:3] 782                                                | unit key [C] 197                          |
| S                                                                     | URL [F:4] 507                             |
| SABM command [F:1] 399, [F:1] 400                                     | User Addressing [F:4] 509                 |
| SCO link [C] 219                                                      | V                                         |
| semi-permanent link key [C] 198, [C] 199                              | vCalendar [F:2] 415                       |
| SEQ No with Error [H:3] 785                                           | vCard [F:2] 415                           |
| sequence number [H:3] 779                                             | verifier [C] 194                          |
| sequence number [in.5] 775 sequence number field [H:3] 785, [H:3] 788 | vMessage [F:2] 415                        |
| Sequence Number with Error field [H:3] 785,                           | vNotes [F:2] 415                          |
| [H:3] 788                                                             | VI (0.00 [1.2] 410                        |
| serial port emulation entity [F:1] 395                                | W                                         |
| service call [F:3] 479                                                | WAP Client [F:4] 502                      |
| Service Discovery Protocol [F:4] 506, [F:4] 512                       | WAP Proxy/gateway [F:4] 503               |
| service records [F:1] 405                                             | WAP Server [F:4] 503                      |
| SetPath- [F:2] 420                                                    | WDP [F:4] 504                             |
| SETUP [F:3] 439                                                       | Wireless User Group [F:3] 449             |
| SETUP ACKNOWLEDGE [F:3] 441                                           | WSP [F:4] 504                             |
| simple error recovery scheme [H:3] 788                                | WTLS [F:4] 504                            |
| Smart Kiosk [F:4] 501                                                 | WTP [F:4] 504                             |
| sniff mode [C] 209                                                    | WUG [F:3] 449                             |
| SSL [F:4] 505                                                         |                                           |
| START DTMF [F:3] 457                                                  |                                           |

**BLUETOOTH SPECIFICATION Version 1.0 B** 

page 1080 of 1082

Confidential Bluetooth

Bluetooth.

X

XML [F:4] 505 XON/XOFF [F:1] 403

Ζ

zero elimination [H:3] 787





Available online at www.sciencedirect.com

Interacting Computers

Interacting with Computers 17 (2005) 251-264

www.elsevier.com/locate/intcom

# Using handhelds for wireless remote control of PCs and appliances

Brad A. Myers\*,1

Human Computer Interaction Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA

> Received 16 January 2004; revised 31 May 2004; accepted 11 June 2004 Available online 28 July 2004

#### Abstract

This article provides an overview of the capabilities that we are developing as part of the Pebbles research project for wireless handheld devices such as mobile phones and palm-size computers like Palm Organizers and PocketPCs. Instead of just being used as a phone or organizer, handheld devices can also be used as remote controls for computers and household and office appliances. © 2004 Elsevier B.V. All rights reserved.

Keywords: Pebbles; Handhelds; Personal digital assistants; Remote control; Appliances

#### 1. Introduction

We believe that handhelds can improve the user interfaces of many other devices, rather than just being another gadget to be learned. Imagine the following scenario:

You come home and aim your Smartphone at your garage, and push a button on the phone. The garage door opens. As you enter, your phone displays a diagram of the lights and appliances in your home, and you tap on the entryway light to turn it on. When you walk into the family room, the phone display changes and shows various commands useful for the entertainment system. You hit 'Play DVD', and the phone turns the DVD player on, switches the TV to INPUT-3 where the DVD is connected,

<sup>\*</sup> Tel.: +1-412-268-5150; fax: +1-412-268-1266.

E-mail address: bam + @cs.cmu.edu (B.A. Myers).

<sup>1</sup> http://www.cs.cmu.edu/~bam.

252

turns on the stereo and switches it to AUX input, and finally, the starts the DVD playing. Later, you go to your home office and put the phone in its recharging cradle next to the computer. The phone display changes to serve as an extra screen for the application that is currently in use on the PC. When browsing the web, for example, the phone display has big BACK and FORWARD buttons, as well as a scroll bar for swiftly moving through pages. Since the phone is conveniently located to the left of the keyboard, you can tap on the phone display without looking to scroll and change pages, while using the mouse in your right hand. In the evening, you use the Smartphone as the remote control for your bedroom television, and also to set the alarm on the clock beside the bed. Later, you get a call from a colleague to say that a meeting is delayed for an hour, so you can sleep later than expected. Changing the alarm time automatically adjusts the thermostat to keep the household temperatures at the nighttime setting for a little longer, thereby saving some energy. The coffee maker is also automatically delayed an hour. In the morning, when you enter your car, you put the phone into its cradle, and it sends the meeting location that you had been emailed to the car's navigation system. After arriving at your destination, you give your presentation using the Smartphone display as a remote control for the slide show. You see your notes and a thumbnail-size picture of your slide on the phone's display, and you write on the phone's screen to draw on your slides. Pressing buttons on your phone with your thumb allows you to easily move back and forward in the presentation and switch to demonstrations and back to the slide show without fumbling.

All of these ideas are being investigated by the Pebbles research project at Carnegie Mellon University. They can be demonstrated now, and may soon be available in commercial products. This article summarizes the Pebbles project, focusing on the applications we have created to allow handheld devices to be used as remote controls for applications running on PCs, and for everyday appliances.

#### 2. What is a 'handheld' anyway?

What exactly is a 'handheld device'? I define a handheld device as a computerized, electronic machine that is designed to be held in one hand. The definition clearly includes calculators, organizers, pagers, mobile phones (generally called 'cell phones' in the US), and Personal Digital Assistants (PDAs) such as the Newton, Palm and PocketPC. All of these PDAs are designed to fit into one hand, and have a touch-sensitive screen on which a stylus can write. The built-in functions include a calendar, address book, a 'to-do' list, and memo pad for taking notes. These devices are programmable, and it is relatively easy to add other applications that can be downloaded from the Internet.

There are about 30 million PDAs in the world, but this pales in comparison to the 1.3 *billion* mobile phone devices worldwide (European Cellular Network, 2003). Increasingly, these mobile phones contain PDA-like capabilities, and are then often classified as 'Smartphones'. The sales of Smartphones were predicted to be 4 million units in Europe in 2003, beating the sales of PDAs, according to Canlys.com (RIMRoad News, 2003).

Clearly, handhelds are becoming devices used by an increasingly large percentage of the world's population.

What is *not* included by the term handheld? My definition excludes laptop computers, for example, since they cannot be easily used while being held in one hand; laptops are designed to be used while sitting, with the computer on a table or in your lap. Also excluded are so-called 'wearable' devices, such as special eye-glasses or heads-up displays, since these are not designed to be held. However, many of the applications and user interface issues discussed in this article could also apply to such wearable devices.

It is less clear whether or not to classify devices such as TabletPCs and 'clamshell' Windows CE devices as handhelds. TabletPCs run a full-functioning operating system (e.g. Windows XP), but are designed to be used like a writing tablet rather than with a keyboard (Fig. 1a). These might alternatively be called 'arm-helds' because they are too big to be held in one hand without using an arm. Another class of devices that are questionably called "handheld" is represented by the horizontal Windows CE devices such as the Jornada 680, which have built-in keyboards (Fig. 1b). Although small, these devices are very awkward to use while being held in one hand, and usually must be placed on a horizontal surface. Therefore, I do not call tablet computers or clamshell Windows CE devices "handhelds".

#### 3. What makes this scenario possible now?

How can the opening scenario be possible? There are a large number of technologies in development today that will soon be ready for widespread use that will make scenarios like the one above possible. These can be broken into advances with handhelds, with communication, and with appliances.

#### 3.1. Advances with handhelds

Handheld devices are getting more powerful. Today's PDAs often run at 400 MHz, which is as fast as the PCs of just 4 years ago. In fact, the speed of the processors for handhelds, and the size of their memories, is following the well-known Moore's law for computers; doubling about every year and a half. Therefore, almost any application that could be imagined running on a PC will find adequate performance on a handheld device.

Processors in mobile phones are also getting faster. Phone manufacturers are adding more functions and capabilities to phones, and most mobile phones today are capable of browsing the Internet and running a Java virtual machine. Manufacturers are pushing towards so-called Smartphones for which a variety of applications can be downloaded, just like for PDAs. Some Smartphones provide PalmOS or Windows CE operating systems and user interfaces, though such devices usually have a larger form-factor than conventional mobile phones. Other devices run operating systems specially designed for mobile phones, such as Symbian. Newer phones also include cameras, voice recognition, touch screens, and other technologies.

The displays on the Newton and the first Palms were black and white, but current versions of all PDAs increasingly use back-lit color screens, which are much easier to read

254



Fig. 1. TabletPC (a) and HPC WindowsCE device (b).

in most lighting conditions. Back-lit screens can be harder to read in full sunlight, but many devices, such as the Compaq iPaqs, use side-lit color screens, which are readable even in bright light. Mobile phones were once limited to small five-line displays, but now increasingly have larger color displays. These displays are often smaller than PDA screens, however, since people prefer smaller phone devices.

Battery life continues to improve, with color-display devices lasting at least 1 or 2 days between recharging. However, color devices with back or side lights still do not get the long life of the older black-and-white devices.

## 3.2. Advances with communication technology

In the original vision for ubiquitous computing (Weiser, 1993), all the devices would be in continuous communication with each other. The original Xerox PARCTabs (Want et al., 1995) used a custom infrared (IR) network to stay connected to the rest of the computers in the environment. However, the first generation of commercial PDAs did not have any communication abilities. For example, Sharp 'organizers' often had tiny keyboards and a number of handheld functions, but did not communicate with PCs at all. The first model of the Apple Newton only provided connectivity with other computers as an extra-cost option. One reason for the great success of the first Palm, released in 1996, was that it could easily synchronize all of its data with a desktop computer using a one-button HotSync™. PalmOS devices had built-in infrared wireless communication starting about 1998, which allowed Palms to 'beam' information to each other. Limitations of IR include that the handheld must be carefully aimed at the receiver, and the IR in handhelds tend to be very short ranged. Often the sending and receiving devices need to be less than 2 ft apart. This makes communicating using IR inappropriate for most of the scenarios described in this article, where the handheld may be at some distance from the device to be controlled, and may not be pointing at it.

Meanwhile, laptops were starting to get access to wireless technologies such as 802.11, which first appeared around 1994, but did not become widespread until around 2000. The most popular version is 802.11b, which is now also called 'Wi-Fi'. Initially, getting Wi-Fi required using a PC card (also called PCMCIA) for a laptop. Few of the early handheld devices could accept a PC card, and none had driver support for Wi-Fi cards until the Compaq iPaq, in about 2000. Eventually, handhelds with built-in Wi-Fi appeared, and smaller Wi-Fi cards (such as the CompactFlash form-factor) allowed Wi-Fi to be used with more handheld devices. Now, it is possible to get Wi-Fi access on many different kinds of PDAs. A problem with Wi-Fi, however, continues to be its high power usage. Using Wi-Fi communication on a current iPaq 5455 drains the battery in less than an hour.

Other radio technologies have addressed the power problem. In addition to research systems (Shih et al., 2002), the BlueTooth™ radio network technology was designed from the beginning to have low power usage. BlueTooth research started in 1994, but the standard was not released until 1998 with the technology not becoming widespread until 2003. Handheld devices with built-in BlueTooth are now available, and are becoming particularly common in the mobile phone market. Unlike Wi-Fi, which connects devices to the internet, BlueTooth is used primarily for connecting one device to one other device—such as a handheld to a personal computer—which is all that is required to

support most of the concepts described in this article. BlueTooth includes techniques for devices to find each other (also called 'Device Discovery'), which is important for the scenarios we are investigating, but which is not an area we are currently investigating (Section 5). Unfortunately, the device discovery and set-up time for BlueTooth can take 5–30 s, which means that BlueTooth is more appropriate for environments where new devices only appear rarely.

Another wireless technology is the mobile phone network. The mobile network is increasingly able to carry data, and therefore is relevant to handhelds interfacing with other technology. Currently, in the USA, it is easy to get data rates at 19.2 kHz, with some phone companies offering about 100 kHz with specialized interface cards. In Europe and Japan, higher data rates are already available, and will eventually be available in the USA. For the applications described here, even the low data rates may be sufficient. The main criterion is often not bandwidth—the number of bits-per-second. Instead, the main issue is latency—or how long it takes a message to get from the sender to the receiver. For a remote control device to say 'turn on' may only take a few bytes, but the receiver must be able to receive that message quickly, ideally in less than one-half-a-second, so that the user feels that the device is responsive. Unfortunately, most mobile networks today are optimized for bandwidth, and can take up to 30 s or even longer to transmit a message. If a number has to be dialed first and a connection made, then sending a message can take over a minute. Therefore, today's mobile technology (at least in the USA) does not seem appropriate for the kinds of applications described here. However, we expect that mobile phone data communication with low-latency and zero connect time will be available in the coming years.

There are many other wireless technologies also being researched. It seems clear that *some* kind of wireless technology will be available that will allow current and future handheld devices to communicate whenever necessary with computers and other devices in their vicinity. Furthermore, with the plethora of different communication technologies that will be available, people will *expect* their devices to communicate with each other.

#### 3.3. Advances with appliances

Meanwhile, appliances are also evolving to be able to communicate with other devices. The ubiquitous one-way infrared remote allows a device to control an appliance, but this does not allow the device to *query* the appliance to find out its status, which is necessary for many of the scenarios envisioned here. However, it would be possible to connect with today's existing appliances using IR.

More exciting are new developments that hold promise for *two-way* communication between devices and appliances. A number of rudimentary protocols exist today for commercial appliances, and standard bodies are working on many more.

For example, some Sony audio-visual appliances support a protocol called 'S-Link' that enables one Sony appliance to communicate with and control another appliance. Although it is a closed, proprietary protocol only supported by Sony appliances, it has been adapted to allow computers to control Sony devices.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> See, for example, information at http://www.brian-patti.com/s-link/.

Digital video devices, such as camcorders and high-end VCRs, often provide video output on a FireWire cable, which is also called IEEE 1394 (the official name of the standard), or i.Link. Many computers also have FireWire ports. FireWire supports two-way protocols, which allow the receiver, such as a computer, to send commands back to the sender, such as the camcorder, to tell it to play, stop, pause, and so on. Currently, we can remotely control a Sony DV camcorder using the AV/C protocol through FireWire from a Windows XP computer. Our remote-control device can then communicate with the computer using 802.11 or BlueTooth, and the data will be forwarded to the camcorder through the FireWire cable.

More promising is a large standardization effort for UPnP (which stands for Universal Plug and Play), which is supported by over 600 companies. The goal of UPnP is to 'create the means to easily connect devices and simplify the implementation of networks... UPnP technology is all about making home networking simple and affordable for users so the connected home experience becomes a mainstream experience for users and a great opportunity for the industry' (http://www.upnp.org). UPnP provides standard protocols for controlling appliances and receiving feedback about state, and defines standard sets of functionality for different classes of devices. Already, there are standards for devices such as printers, audio-visual equipment, lighting, and HVAC (heating, venting and air conditioning) equipment, and many other devices are being standardized. A number of appliances supporting UPnP are starting to appear, and others have been announced or planned.

Meanwhile, a number of industry groups have been formed to study or promote the 'connected appliances' or the 'internet-ready home'. For example, the Internet Home Alliance is a 'cross-industry network of leading companies advancing the home technology market ... (and) to accelerate the development of the market for home technologies that require a broadband or persistent connection to the Internet' (http://www.internethomealliance.com/).

The result of all of these initiatives will be more and more appliances that can talk to computers, and therefore will support at least some of the capabilities that we would need for the scenarios discussed here. If the appliances cannot directly support the remote control from handhelds, then it might still be possible by using a computer as an intermediary (which we call a 'bridge' or 'adapter'). Eventually, we hope the kinds of capabilities we and others are demonstrating will convince appliance and handheld manufacturers to build these technologies into future devices.

#### 4. Overview of the Pebbles project

The Pebbles project (Myers, 2001) (http://www.pebbles.hcii.cmu.edu) is investigating the many ways that handheld devices can be used at the same time as other computerized devices. Pebbles stands for *P* DAs for the *E*ntry of *B*oth *B*ytes and *L*ocations from *E*xternal *S*ources.

#### 4.1. Remote control of PCs

One aspect of this work is the remote control of PCs from handheld devices. We have created a wide range of applications that allow a handheld device to provide input and serve as the output to control applications running on a PC.

For example, in design reviews, brainstorming sessions, and organizational meetings, a PC is often used to display slides or a current plan, and the people in attendance provide input. Our *RemoteCommander* application (Fig. 2a,b) allows each person to use their PDA to control the PC's cursor and keyboard input from their seat (Myers et al., 1998). This will allow each person to participate without having to jump up and grab the PC's one mouse and keyboard. In the PalmOS version (Fig. 2a), the PDA provides mouse movement like a touchpad on a laptop, and the hard or soft buttons can be used for the mouse buttons. Graffiti or a soft keyboard can be used for typing, and word prediction is included. In addition to these functions, the PocketPC version (Fig. 2b) also downloads a picture of

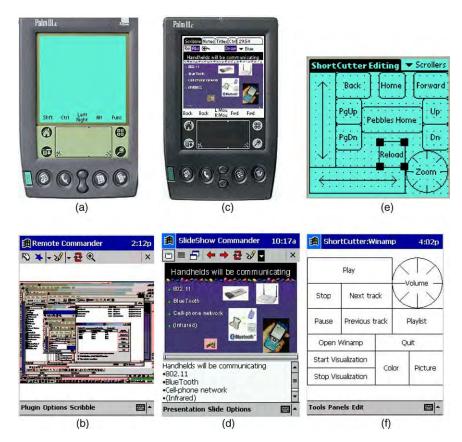



Fig. 2. RemoteCommander on a Palm (a) and a PocketPC (b). The PocketPC has sufficient bandwidth to display a screenshot of the PC. SlideShow Commander on a Palm (c) and PocketPC (d). Shortcutter in edit mode on a Palm, where the user is creating a scrolling panel (e). Shortcutter in run mode on a PocketPC with a panel for controlling the WinAmp media player (f).

the PC screen to the PDA, which can be zoomed and scrolled to see different parts of the PC's screen.

We also discovered that RemoteCommander was valuable as a replacement for the keyboard and mouse for people with certain physical disabilities, including Muscular Dystrophy and some forms of Cerebral Palsy (Myers et al., 2002b). People with these disabilities have difficulty moving their arms and hands, but may retain good control of their fingers, which often makes using a stylus for cursor control and typing using tiny keyboard easier than with standard input devices. We are now looking into other ways that handhelds might help people with disabilities control their computers, including addressing the problem of text input for people with motor control difficulties (Wobbrock et al., 2003).

Our *SlideShow Commander* application (Fig. 2c,d) allows a PDA to remotely control the PC when running a PowerPoint presentation. On the PDA, the user can see a small picture and the notes for the current slide, and can advance the slide show to the next or previous slide or any slide chosen from the list of slide titles. The user can also draw on the current slide by drawing on the PDA, and can easily switch to and from other applications running on the PC, for example for a live demonstration. SlideShow Commander helps make presentations proceed more smoothly.

In other research, we are investigating how a PDA can be useful in augmenting the Windows user interface for desktop applications (Myers et al., 2000b). For example, our *Shortcutter* application (Fig. 2e,f) allows panels of controls to be drawn by direct manipulation on the PDA, and then used to control any PC application. The user can choose from various widgets on the PDA, including buttons, sliders and a virtual knob, and assign actions to the widgets, including sending any keyboard key to the PC, running an application on the PC, scrolling, mouse buttons, or a macro containing multiple commands. One way people have used Shortcutter is to remotely control media players on PCs, like the Windows Media Player or WinAmp (Fig. 2f). Another use is to put scrolling controls on the PDA, and then use the PDA in a cradle on the non-dominant side of the keyboard, with the mouse on the other side. We performed a user study that showed that the PDA could be used effectively in the left hand as a scrolling device for desktop applications (Myers et al., 2000a). In our study, we found the cradle that comes with the Palm to be too unstable for use in this manner, so we instead put the PDA flat on the table and used a cable, such as provided with some PDAs like the Palm m100 and Tungsten E.

#### 4.2. Remote control of appliances

Increasingly, home and office appliances, including televisions, VCRs, stereo equipment, ovens, thermostats, light switches, telephones, and factory equipment, are designed with many complex functions, and often come with remote controls. However, the trend has been that as appliances get more computerized with more features, their user interfaces become harder to use (Brouwer-Janse et al., 1992). Our approach to address this problem is to move the user interface onto a handheld, where increased processing power and better input-output capabilities can be used to improve the usability. Since it will be a *personal* device, consistency can be provided, so that whenever the user needs to perform a function, such as setting the time, it will always be done the same way.

We call this approach the 'Personal Universal Controller' (PUC). We are now developing *automatic* user interface generators that will take a high-level, abstract specification of the functions of an appliance, and create a high-quality user interface for it (Fig. 3). We have created generators that will automatically produce graphical user interface control panels for PDAs, for desktop computers, and also for Smartphones that do not have touch screens (Nichols et al., 2002). Another generator uses the same specification, and automatically creates speech interfaces using the *Universal Speech Interface* framework (Rosenfeld et al., 2001). Multiple PUCs can be communicating with the same or different appliances at the same time, which enables multi-modal control of appliances, where the user can speak some commands and use a PDA for others.

We have created remote control interfaces for a variety of real and simulated appliances to demonstrate the range of the PUC approach. Real appliances, such as the Lutron Home Lighting System, the Axis Pan and Tilt Camera, and a Sony Camcorder, can be addressed through standard and proprietary protocols, including UPnP, AV/C and X10. Simulated devices help show the range of our specification language beyond the appliances that we can currently control. We have simulated interfaces for an elevator, and the navigation, heating, and driver information center of a GMC Denali sport utility vehicle (SUV).

An important issue will be whether users will accept this form of remote control. In a preliminary study, we designed interfaces by hand for a PDA to remote control an AT&T Telephone/Answering machine, and an AIWA shelf stereo. We found that users were twice as fast and made half as many errors when using our prototype interfaces as compared to the manufacturers' interfaces (Nichols and Myers, 2003). We also observed remote control use in homes, and observed that a few physical buttons seem to be often used without looking (e.g. volume and channel), so it may be useful to provide these as physical buttons on the PDA, while the rest of the controls are on the screen. Fortunately, all PDAs and mobile phones have a few physical buttons that could be used for these purposes.

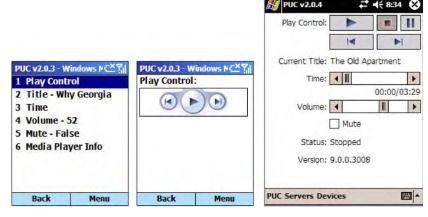



Fig. 3. User interfaces which were automatically generated by PUC for controlling Windows Media Player. On the left, two screens from a Smartphone interface. On the right, a screen from a PocketPC interface (Nichols et al., 2004).

#### 261

#### 5. Related work

A few other projects have looked at the general issues with PDAs interacting with stationary devices, including the original Xerox PARCTab (Want et al., 1995), and SharedNotes implemented with GroupKit (Greenberg et al., 1999).

Rekimoto has developed many systems that explore connecting multiple devices, including the 'Pick-and-Drop' interaction technique for transferring information (Rekimoto, 1997), a multi-device drawing tool (Rekimoto, 1998), and 'HyperDragging' to move information from one device's display to another (Rekimoto and Saitoh, 1999). The Pebbles approach augments this research by providing a framework and architecture to support new applications and new devices that can interoperate.

A number of research groups are working on controlling appliances from handheld devices, but Pebbles is the only project that automatically creates high-quality interfaces without user intervention. Hodes proposed a 'universal interactor' that can adapt itself to control many devices (Hodes et al., 1997). Unlike the PUC, that research focuses on the system and infrastructure issues rather than how to create user interfaces. An IBM project (Eustice et al., 1999) describes a 'Universal Information Appliance' (UIA) that might be implemented on a PDA. The UIA uses an XML-based language called MoDAL from which it creates a user interface panel for accessing information. However, the MoDAL processor apparently only handles simple layouts, and its only type of input control is text strings. The Stanford ICrafter (Ponnekanti et al., 2001) is a framework for distributing appliance interfaces to many different controlling devices. While their framework supports the automatic generation of interfaces, their paper focuses on hand-generated interfaces and shows only one simple automatically generated interface. They also mention the difficulty of generating speech interfaces.

The XWeb project (Olsen et al., 2000) is working to separate the functionality of the appliance from the device upon which it is displayed. XWeb defines an XML language from which user interfaces can be created. Unlike the PUC specification language, XWeb's language uses only a tree for specifying structural information about an appliance. Their approach seems to work well for interfaces that have no modes, but it is unclear how well it would work for remote control interfaces, where modes are commonplace. XWeb also supports the construction of speech interfaces. Their approach to speech interface design, including emphasis on a fixed language and cross-application skill transference, is quite similar to ours, as it is derived from a joint philosophy (Rosenfeld et al., 2001). XWeb's language design allows users to directly traverse and manipulate tree structures by speech. They report, however, that this is a hard concept for users to grasp (Olsen et al., 2000). CMU's Universal Speech Interface design differs by trying to stay closer to the way people might talk about the task itself, and is somewhat closer to naturally generated speech.

The INCITS V2 standardization effort (Zimmermann et al., 2002) is developing the Alternative Interface Access Protocol (AIAP) to help disabled people use everyday appliances with an approach similar to the PUC. AIAP contains a description language for appliances that different interface generators use to create interfaces for both common devices, like the PocketPC, and specialized devices, such as an interactive Braille pad. We have begun collaborating with the V2 group and plan to continue to do so in the future.

262

One area we are not addressing is how the devices find each other, which is also called 'Device Discovery'. In Pebbles, we just select the desired device from a list or type in its address. BlueTooth has some device discovery capabilities, but they are slow and awkward. The early PARCTab explored 'proximate selection' where devices in the vicinity could be more easily selected (Schilit et al., 1994). With 'SyncTap', tapping on both devices simultaneously causes a connection (Rekimoto et al., 2003). Our approach of deferring the discovery process to lower-level protocols is common to many other research systems (Edwards et al., 2002).

#### 6. Conclusion

The research on the Pebbles project is on-going. This article has shown the context for current and future work, as well as our current status. The software we have developed as part of the Pebbles project is mostly available for free download from our web site, http://www.pebbles.hcii.cmu.edu/. One Pebbles application, the SlideShow Commander, was licensed for commercial sale (available from http://www.handango.com). In the future, we will be working on improving the interfaces to these applications with a particular focus on improving handheld usability for people with different kinds of disabilities. Other work will be directed at improving the remote control capabilities for appliances, especially for *collections* of appliances, so the user can, for example, control an entire entertainment system with a single command (such as Play DVD), instead of having to control each component separately.

One area we started to explore is public-private data sharing. In the 'Command Post of the Future' project, we used handhelds to 'drill down' and get details about publicly displayed information (Myers et al., 2002a). This area has been explored by others as well (Rekimoto, 1998; Greenberg et al., 1999), but much more work could be done.

As appliances and handhelds progress towards increased functionality and increased ability to communicate, people will expect these kinds of capabilities to be provided. By using the handheld as a remote control for other devices, all of the user's information and control can have a consistent user interface and an integrated information space. This should ease the total burden on users of having lots of appliances while at the same time providing increased functionality.

### Acknowledgements

The Pebbles research project has been made possible by the efforts of over 30 students. I especially want to thank Rob Miller, Jeff Nichols, and Jake Wobbrock. This work was funded in part by grants from DARPA, NSF, Microsoft, General Motors, NEC Foundation of America, and the Pittsburgh Digital Greenhouse, and equipment grants from Mitsubishi Electric Research Laboratories, VividLogic, Symbol Technologies, Hewlett-Packard, Palm, IBM, Smart Technologies, TDK, Lantronix, and Lucent. For help with this paper, I would like to thank Jeff Nichols, Jacob Wobbrock, Htet Htet Aung, and Andrew Faulring.

#### References

- Brouwer-Janse, M.D., Bennett, R.W., Endo, T., van Nes, F.L., Strubbe, H.J., Gentner, D.R., 1992. Interfaces for consumer products: 'how to camouflage the computer?'. CHI'1992: Human Factors in Computing Systems, Monterey, CA, May 3–7, pp. 287–290.
- Edwards, W.K., et al., 2002. Using speakeasy for ad hoc peer-to-peer collaboration. ACM Conference on Computer Supported Cooperative Work: CSCW'02, New Orleans, LA, pp. 256–265.
- European Cellular Network, 2003. Stats Snapshot 5/2003 June, http://www.cellular.co.za/stats/stats-main.htm.
- Eustice, K.F., Lehman, T.J., Morales, A., Munson, M.C., Edlund, S., Guillen, M., 1999. A universal information appliance. IBM Systems Journal 38(4), 575–601.http://www.research.ibm.com/journal/sj/384/eustice.html.
- Greenberg, S., Boyle, M., Laberg, J., 1999. PDAs and shared public displays: making personal information public, and public information personal. Personal Technologies 3(1), 54–64.
- Hodes, T.D., Katz, R.H., Servan-Schreiber, E., Rowe, L., 1997. Composable ad-hoc mobile services for universal interaction. Proceedings of the Third Annual ACM/IEEE International Conference on Mobile Computing and Networking (ACM Mobicom'97), Budapest Hungary, September 26–30, pp. 1–12.
- Myers, B.A., Stiel, H., Gargiulo, R., 1998. Collaboration using multiple PDAs connected to a PC. Proceedings CSCW'98: ACM Conference on Computer-Supported Cooperative Work, Seattle, WA, November 14–18, pp. 285–294, http://www.cs.cmu.edu/~pebbles.
- Myers, B.A., (Leo) Lie, K.P., (Jerry) Yang, B.-C., 2000a. Two-handed input using a PDA and a mouse. Human Factors in Computing Systems, Proceedings CHI'2000, The Hague, The Netherlands, April 1–6, pp. 41–48.
- Myers, B.A., Miller, R.C., Bostwick, B., Evankovich, C., 2000b. Extending the windows desktop interface with connected handheld computers. Fourth USENIX Windows Systems Symposium, Seattle, WA, August 3–4, pp. 79–88.
- Myers, B.A., 2001. Using hand-held devices and PCs together. Communications of the ACM 4(11), 34–41.http://www.cs.cmu.edu/~pebbles/papers/pebblescacm.pdf.
- Myers, B.A., et al., 2002a. Flexi-modal and multi-machine user interfaces. IEEE Fourth International Conference on Multimodal Interfaces, Pittsburgh, PA, October 14–16, pp. 343–348, http://www.cs.cmu.edu/~cpof/papers/cpoficmi02.pdf.
- Myers, B.A., Wobbrock, J.O., Yang, S., Yeung, B., Nichols, J., Miller, R., 2002b. Using handhelds to help people with motor impairments. Fifth International ACM SIGCAPH Conference on Assistive Technologies; ASSETS'02, Scotland, pp. 89–96.
- Nichols, J., Myers, B.A., 2003. Studying the use of handhelds to control smart appliances. International Workshop on Smart Appliances and Wearable Computers, Providence, Rhode Island, May 19–22, pp. 274–279, http://www.cs.cmu.edu/~effreyn/papers/iwsawc2003puc.pdf.
- Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K., Rosenfeld, R., Pignol, M., 2002. Generating remote control interfaces for complex appliances. CHI Letters: ACM Symposium on User Interface Software and Technology, UIST'02, Paris, France, October 2002, pp. 161–170, http://www.cs.cmu.edu/~pebbles/ papers/PebblesPUCuist.pdf.
- Nichols, J., Myers, B.A., Litwack, K., 2004. Improving Automatic Interface Generation with Smart Templates, IUI'04, Madeira, Funchal, Portugal, January 13–16, 286–288, http://www.cs.cmu.edu/~jeffreyn/papers/templatesIUI.pdf.
- Olsen, D.R. Jr., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P., 2000. Cross-modal Interaction using Xweb. Proceedings UIST'00: ACM SIGGRAPH Symposium on User Interface Software and Technology, San Diego, CA, pp. 191–200.
- Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., Winograd, T., 2001. ICrafter: A Service Framework for Ubiquitous Computing Environments, UBICOMP, Atlanta, Georgia, pp. 56–75.
- Rekimoto, J., 1997. Pick-and-drop: a direct manipulation technique for multiple computer environments. ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceedings UIST'97. Banff, Alberta, Canada, October 14–17, pp. 31–39.
- Rekimoto, J., 1998. A multiple device approach for supporting whiteboard-based interactions. Human Factors in Computing Systems, Proceedings SIGCHI'98, Los Angeles, CA, April, pp. 344–351.

- Rekimoto, J., Saitoh, M., 1999. Augmented surfaces: a spatially continuous work space for hybrid computing environments. Human Factors in Computing Systems, Proceedings SIGCHI'99, Pittsburgh, PA, May, pp. 378–385.
- Rekimoto, J., Ayatsuka, Y., Kohno, M., 2003. SyncTap: an interaction technique for mobile networking. Mobile HCI. Springer, Berlin, pp. 104–115.
- RIMRoad News, 2003. Smartphones to Overtake Handhelds This Year, http://www.rimroad.com/articles/2003/3/2003-3-27-Smartphones-to-Overtake.html.
- Rosenfeld, R., Olsen, D., Rudnicky, A., 2001. Universal speech interfaces. ACM Interactions VIII(6), 34–44. Schilit, B.N., Adams, N.I., Want, R., 1994. Context-aware computing applications. IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA. IEEE Computer Society, pp. 85–90.
- Shih, E., Bahl, P., Sinclair, M.J., 2002. Wake on wireless: an event driven energy saving strategy for battery operated devices. MOBICOM'02: Eighth Annual ACM International Conference on Mobile Computing and Networking, Atlanta, GA, pp. 160–171.
- Want, R., et al., 1995. An overview of the ParcTab ubiquitous computing experiment. IEEE Personal Communications, 28–43. Also appears as Xerox PARC Technical Report CSL-95-1, March, 1995.
- Weiser, M., 1993. Some computer science issues in ubiquitous computing. CACM 36(7), 74-83.
- Wobbrock, J.O., Myers, B.A., Kembel, J., 2003. EdgeWrite: a high-accuracy stylus text entry method. CHI Letters: ACM Symposium on User Interface Software and Technology, UIST'03, Vancouver, British Columbia, Canada, November 2–5, pp. 61–70, http://www.cs.cmu.edu/~jrock/pubs/uist-03.pdf.
- Zimmermann, G., Vanderheiden, G., Gilman, A., 2002. Prototype implementations for a universal remote console specification. CHI'2002, Minneapolis, MN, pp. 510–511.

Go

# Computing and Networking

Duniversity of Washington Pine Information Center

Directories Deference Tools Description

Search Pine Information Center

# **Getting Started With Email Using Pine**

http://www.washington.edu/pine/tutorial.4/

Pine® is an electronic messaging program created and maintained by the Computing & Communications group at the University of Washington. To help support Pine, a starter version of this document was created by C&C in 1998 for Pine 4.0.

# Contents

- About Pine
- **About This Document**
- Before You Start Pine
- Starting Pine
- Writing a Message in Pine
- <u>Listing, Viewing, Replying to, and Forwarding Messages</u>
- Pine Folders
- Saving a Message
- Deleting a Message
- Using the Address Book
- **Printing Messages**
- Pine Can Do More
- Guidelines for Using Email
- Quitting Pine and Logging Out

# **About Pine**

Pine is a sophisticated, easy-to-use electronic mail (email) program that was created at the University of Washington. Pine offers:

- On-screen menus that free you from memorizing commands available options are displayed across the bottom of
- On-screen messages that appear when you need a warning or information
- Online help within Pine

# About This Document

It's best to read this document at your computer while you use Pine. The text that follows does not document every Pine feature; it summarizes main options and basic guidelines. The best way to learn more about Pine is to explore it on your own. On-screen information and online help show you what to do. Try the different options and - most of all - have fun experimenting!

[Note: This document explains features found in **Pine version 4.** If you use a different version or if your system administrator has disabled certain features, some of the instructions will not work.]

# **Before You Start Pine**

Before you start Pine, you need to get an account on a computer and  $\log$  in. For details, see your local computer consultant. Page 1338 of 1414 https://web.archive.org/web/20000817011605/http://www.washington.edu/pine/tutorial.4/

# **Starting Pine**

To start: The details of how to start Pine vary considerably from site to site. (For example, you might select Pine from a menu of choices or type pine as a command at the Unix system prompt.) Consult your local support staff for further inf ormation. After starting Pine, the Main Menu screen appears. Each Pine screen has a similar layout: the top line tells you the screen name and additional useful information, below that is the work area (on the Main Menu screen, the work area is a menu of options), then the message/prompt line, and finally the menu of commands.

To quit: When you want to leave Pine, press Q (Quit). For details, see "Quitting Pine and Logging Out."

### The Main Menu

The Main Menu lists Pine's main options (see Figure 1). The key or keys you must type to enter your choice are to the left of each option or command name. You can usually type either uppercase or lowercase letters, and you do not need to press <Return>.

From the Main Menu you can choose to read online help, write (compose) and send a message, look at an index of your mail messages, open or maintain your mail folders, update your address book, configure Pine, and quit Pine. There are additional options listed at the bottom of the screen as well.

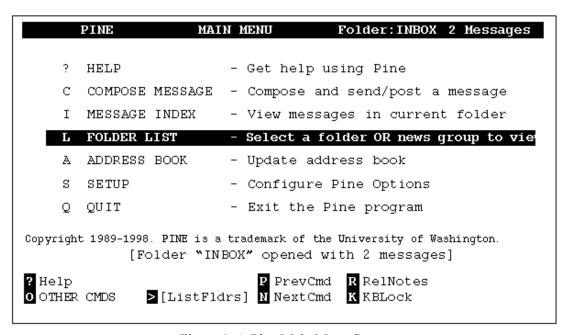



Figure 1. A Pine Main Menu Screen

Now that you know how to start Pine, you can explore on your own, or you can browse the rest of this document for a summary of Pine's main features.

# **Getting Help in Pine**

To read the online help, use the Help command at the bottom of each screen. For example, at the Main Menu screen, press? (Help). The help text is context- sensitive, meaning that you see only the help that relates to the Pine feature you are using. To exit the online help, press E (Exit Help).

# Writing a Message in Pine

To write a message, press C (Compose). You see the Compose Message screen.

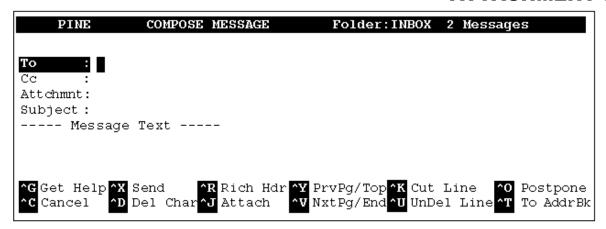



Figure 2. A Pine Compose Message Screen

In the command menu above, the ^ character is used to indicate the Control key. This character means you must hold down the Control key (written in this document as <Control> ) while you press the letter for each command.

Different commands are available to you when your cursor is in different fields on this screen. To see additional commands available when your cursor is in the Message Text field, type <Control>G (Get Help). For example, to move around, use the **arrow keys** or <Control>N (Next line) and <Control>P (Previous line); to correct typing errors, use <Backspace> or <Delete>.

You might start experimenting in Pine by sending yourself a message. The following section shows you how.

### Writing and Sending a Test Message to Yourself

To write and send a test message to yourself:

- 1. Press C (Compose). You see the Compose Message screen.
- 2. In the To field, type your email address and press < Return > .
- 3. In the Cc field, press < Return >.
- 4. In the Attachment field, press < Return>.
- 5. In the Subject field, type Test and press < Return > .
- 6. Below the Message Text line, type This is a test.

If Jean Hughes, whose userid is jhughes at site art.somewhere.edu, were to compose such a test message, the completed screen would look like the following example:

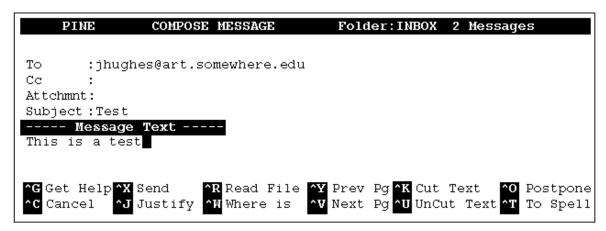



Figure 3. A Pine Compose Message Screen

7. To send your message, type <Control>X (Send).

You are asked:

Send message?

8. Press y (yes) or press < Return>.

The message is sent and a copy is saved to your sent-mail folder. (If you press n (no) the message is not sent, and you can continue to work on it.)

You have just sent a basic message. There are, of course, other options you can use as you compose a message. A few are summarized in the next section, and complete information about options for the Compose Message screen is available in Pine's online help. As you compose a message, you can type <Control>G (Get Help) at any time to see details about your current task.

# **Hints for Writing a Message**

To:

In this field, type the email addresses of your recipients. Separate the addresses with commas. When you are finished, press <Return> . Always check the addresses in both the To and the Cc fields for accuracy and completeness before you send a message.

**Finding and Formatting Addresses.** The best way to get a person's email address is to ask him or her for it. For more information on finding and formatting email addresses on local and remote computers, type <Control>G (Get Help) while your cursor is in the To field.

**Using the Pine Address Book.** In both the To and the Cc fields, you can enter a person's email address as shown above, or you can use an entry from your <u>Pine address book</u>.

Cc:

In this field, type the email addresses of the persons to whom you want to send copies. Separate their addresses with commas. When you are finished, or if you do not want to send any copies, press <Return> .

### Attchmnt:

This is an advanced Pine feature that allows you to attach files, including word processing documents, spreadsheets, or images that exist on the same computer where you are running Pine. If you do not want to attach a file to your message, press <Return> . For more information, place your cursor in the Attchmnt field, then type <Control>G (Get Help).

### Subject:

In this field, enter a one-line description of your message. Recipients appreciate a short, pertinent description, since this is what they see when they scan their index of messages. When finished, press <Return>.

### Message Text:

Type your message. To move around, use the **arrow keys**. To delete a character, press <Backspace> or <Delete>. To delete a line, type <Control>K . To justify text, type <Control>J . (To immediately undelete a line or to unjustify text, type <Control>U ). To check the spelling, type <Control>T . To see other editing commands, type <Control>G (Get Help).

# Hints for Sending a Message

### Sending a Message.

After your message is composed, type <Control>X , and then press y or press <Return> . Your message is sent and a copy is saved to the sent-mail folder. If a message cannot be delivered, it eventually is returned to you. If you want to re-send a message, you can use the F (Forward) command.

### **Changing Your Mind.**

If you change your mind after typing <Control>X to send a message, press n instead of y to continue to work on your message. While you are writing your message, you can type <Control>O (Postpone) to hold your message so you can

work on it later, or you can type <Control>C (Cancel) to delete your message entirely. You are asked to confirm whether or not you want to cancel a message.

# Listing, Viewing, Replying to, and Forwarding Messages

Pine stores messages that are sent to you in your INBOX folder. Messages remain in your INBOX until you delete them or save them in other folders. (You will learn more about the INBOX and other folders in "Pine Folders".)

### **Listing Messages**

To see a list of the messages you have received in your INBOX folder:

At the Pine Main Menu, press I (Message Index). The selected message is highlighted, as shown in the following example:

If you have any messages, they are listed as shown in the following example for the user named "jhughes."

If you want to list the messages in a folder other than your INBOX, see "Moving Between Folders".

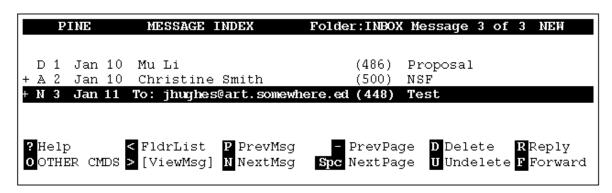



Figure 4. A Pine Message Index Screen

# Viewing a Message

To view a message:

- 1. At the Message Index screen, use the **arrow keys** to highlight the message you want to view.
- 2. Press V (ViewMsg) or press < Return> to read a selected message.

To see the next message, press N (NextMsg).

To see the previous message, press P (PrevMsg)

To return from your message to the Message Index, press I (Index).

# Replying to a Message

To reply to a message that you have selected at the Message Index screen or that you are viewing:

Press R (Reply).

You are asked whether you want to include the original message in your reply. Also, if the original message was sent to more than one person, you are asked if you want to reply to all recipients. Think carefully before you answer - it may be that you want your reply to be sent only to the author of the message. Warning: It is always a good idea to check the list of addresses in the To and Cc fields before you send a message to see who will receive it.

# Forwarding a Message

To forward a message that you have selected at the Message Index screen or that you are viewing:

- 1. Press F (Forward). A copy of the message opens and the To field is highlighted.
- 2. Enter the address of your recipient and send the message as usual. Note that you can modify the original message if

you wish, for example, to forward only a portion of it or to add a message or notes of your own.

# **About Your Message Index Screen**

The selected message is highlighted. The first column on the left is blank, or shows a "+" if the message was sent directly to you (i.e., it is not a copy or from a list). The second column may be blank, or it may contain:

"N" if the message is new (unread),

"A" if you have answered the message (using the Reply command),

"D" if you have marked the message for deletion. [Note: If you answer a message as well as mark it deleted (in either order), you only see the "D".]

The rest of the columns in the message line show you the message number, date sent, sender, size, and subject. For details, press? (Help).

Most of the commands you need to handle your messages are visible at the bottom of the screen, and you can press O (OTHER CMDS) to see additional commands that are available. You do not need to see these "other commands" on the screen to use them. That is, you never need to press O as a prefix for any other command.

### **Pine Folders**

Messages can quickly accumulate in your INBOX folder. If you use email often, you soon could have hundreds. You need to delete messages you do not want, and you can use folders to organize messages you wish to save. A folder is a collection of one or more messages that are stored (just like the messages in your INBOX) so you can access and manage them.

# **Organizing Messages With Folders**

You can organize your email messages into different folders by topic, correspondent, date, or any other category that is meaningful to you. You can create your own folders, and Pine automatically provides three:

- The INBOX folder messages sent to you are listed in this folder. When you first start Pine and go to the Message Index screen, you are looking at the list of messages in your INBOX folder. Every incoming message remains in your INBOX until you delete it or save it in another folder.
- The saved-messages folder copies of messages you save are stored in this folder unless you save them to other folders you create yourself. See "Saving a Message".
- The sent-mail folder copies of messages you send are stored in this folder. This is convenient if you cannot remember whether you actually sent a message and want to check, or if you want to send a message again.

# **Keeping Folders Clean**

Messages - whether they are in your INBOX or your other Pine folders - occupy storage space, and your storage space is limited.

- Check your email frequently to see if you have new messages. Do not keep too many messages in your INBOX folder. A large INBOX reduces performance: it takes longer to display large lists of messages when you start Pine, and it requires more time to move between messages. Delete your incoming messages right away if you do not want them, or save them to other folders if you do. See "Saving a Message".
- Routinely delete obsolete messages from all of your Pine folders.
- You will get a message via Pine at the end of each month asking you about your sent-mail folders. First it asks you if you want to rename (and thus save) your current sent-mail folder. Then it asks if you want to delete any sent-mail folders (and all the messages they contain) from previous months and the current month. To conserve space, it is a good idea to delete any sent-mail folders you do not want.

# Moving Between Folders

From almost anywhere in Pine, you can press L to see a collection list of your folders. Of course, the folder you are most often interested in is your INBOX folder, the folder that contains your new email messages. When you start Pine and press I (Index) at the Main Menu, you see a list of messages in your INBOX folder. If you want to see the messages in another

folder, you need to go to that folder. The following text shows you two ways to go to another folder from nearly anywhere in Pine. To access your folders and the messages that are stored in them:

1. Press L (ListFldrs). You see the Collection List screen with collections of folders. Typically each collection is shown in a way similar to the example below.

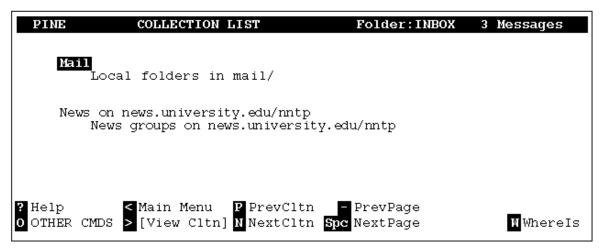



Figure 5. A Pine Collection List Screen

2. If it is not already highlighted, use the **arrow keys** to highlight the Mail line and press <Return>. You see an expanded list of folders, similar to the following, in which your current folder is highlighted.

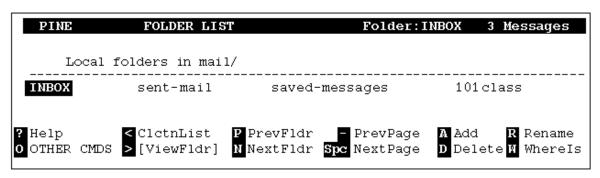



Figure 6. A Pine Folder List Screen

- 3. Use the **arrow keys** or P and N to highlight another folder.
- 4. To see an index of the messages in that folder, press > (you do not need to use your shift key lower case works fine) or press < Return > .

[Note: This method of accessing folders uses the Folder List screen, which has a menu of commands that enable you to add, delete, rename folders, etc. If you simply want to move to and list the messages in another folder, try the method below.]

### To move most quickly to the index of another folder:

- 1. From almost anywhere in Pine, press G (GotoFldr).
  - You are prompted for the name of a folder.
  - [Note: If you have more than one folder collection defined, observe the prompt to make sure it is set for the desired collection (shown in brackets in the prompt). If the prompt is not set for the desired collection, type <Control>N (Next Collection) or <Control>P (Prev Collection) to select the desired collection.]
- 2. Type the folder name and press <Return>, or simply press <Return> to choose the default folder shown in brackets in the prompt. If you are a beginner with Pine, you probably have not created additional folders yet. You will learn how in "Saving a Message to a Folder You Specify."
- 3. You see the list of messages in that folder.

# Adding a Folder

- 1. Press L. You see the Collection List screen. Highlight the collection you want and press <Return>. You see a list of folders.
- 2. To add a folder, press A. You are prompted for the name of a folder.
- 3. Type the folder name and press <Return> . Your folder name appears. You might want to add a couple of test folders so you can practice deleting folders.

# Deleting a Folder

To delete a folder and all of the messages it contains:

- 1. Press L (ListFldrs). You see the Collection List screen.
- 2. Highlight the collection you want and press <Return>. You see an expanded list of your folders in which your current folder is highlighted. (When you start Pine, the current folder is your INBOX.)
- 3. Use the **arrow keys** or P and N to highlight the folder you wish to delete.
- 4. To delete the entire folder of messages, press D (Delete). You are asked:

```
Delete "folder"?
```

5. Press y (yes) if you want to delete the folder and all of its messages. The folder disappears.

[Warning: There is no way in Pine to undelete a deleted folder.]

# Saving a Message

When you save a message to another folder, you are given a choice: you can store it in the saved-messages folder, or you can specify another folder. Once you save a message, the copy in your INBOX folder automatically is marked for deletion so that you only will have one copy. When you quit Pine, you are asked to confirm whether or not you want to expunge the copy from the INBOX folder. To conserve space, it is a good idea to do this.

# Saving a Message to the Saved-Messages Folder

To save a message to your saved-messages folder:

1. At the Message Index screen, use the arrow keys to highlight the message you want to save, or, at the Message Text screen as you view a message, press S (Save). You are asked if you want to save the message to the saved-messages folder or to another folder:

```
SAVE to folder in <Mail...> [saved-messages]:
```

2. Press <Return> to choose the default folder: [saved-messages]. Pine saves your message, and you see the following:

```
[Message # copied to "saved-messages" in <Mail...> and deleted]
```

# Saving a Message to a Folder You Specify

You will find it useful to create additional folders for storing messages on particular subjects. To save a message to a folder you specify:

1. At the Message Index screen, use the arrow keys to highlight the message you want to save, or, at the Message Text screen as you view a message, press S (Save) to save a message. You are asked if you want to save it to the savedmessages folder or to another folder:

```
SAVE to folder in <Mail...> [saved-messages]:
```

2. Type a foldername and press <Return>. For example, to save a message to a folder named "papers" type papers and press < Return > . If this is the first time you have named this folder, you see the message:

```
Folder "papers" in <Mail...> doesn't exist. Create?
```

Press y or press <Return> to create the folder. Once you have created the folder, or whenever you type the name of a

folder that already exists, you see a message like this one:

[Message # copied to "papers" in <Mail...> and deleted]

# **Deleting a Message**

You keep your Pine folders clean by routinely deleting messages you do not want. There are two steps to deleting a message: marking it for deletion and then expunging it. To mark a message you do not want for deletion:

- 1. Select and open the folder that contains the message you wish to mark for deletion. If you are a Pine beginner, this message is probably in your INBOX folder. If the message you want to mark for deletion is in a folder other than your INBOX, see "Moving Between Folders".
- 2. At the Message Index screen, select the message you want to mark for deletion, or simply view the message.
- 3. Press D (Delete).

If you are looking at the Message Index screen when you mark a message for deletion, a "D" appears in the left column of the message line, and the next message, if there is one, is selected. If you are looking at the Message Text screen when you mark a message for deletion, a "DEL" briefly appears in the upper right corner of your screen, you get an on-screen message that the message has been deleted, and the next message, if there is one, appears.

Repeat this process to mark additional messages for deletion.

# Undeleting a Message

If you change your mind about a message you have marked for deletion, use the U (Undelete) command to remove the deletion mark any time before you expunge a message. Remember: After you expunge a message, Pine cannot get it back.

# Expunging a Message

A message that is marked for deletion remains in Pine until you expunge it. You can expunge a message that is marked for deletion at any time, or you can wait until you guit Pine. Once you have a few messages marked for deletion, you may want to expunge them before you continue to work, because it is easier to look through an index that contains fewer messages. To expunge a message:

[Warning: Once you expunge a message, it is gone. Pine cannot get it back.]

1. At the Message Index screen, press X (eXpunge). You are asked:

```
Expunge # message(s) from "foldername"?
```

2. Press y (yes) or press < Return > . Messages marked for deletion disappear.

[Note: You will be asked whether you want to expunge messages that are marked for deletion whenever you leave a folder (other than the INBOX) that contains messages marked for deletion, or when you quit your Pine session]

# **Using the Address Book**

As you use email, you can build a list of your regular email correspondents in your Pine address book. At the Pine Main Menu, press A. You see the Address Book List screen. Your personal address book, .addressbook, will be highlighted. Press < Return > . You can use the address book to store email addresses for individuals or groups, to create easily remembered "nicknames" for these addresses, and to quickly retrieve an email address when you are composing a message. Here is a sample page from an address book:

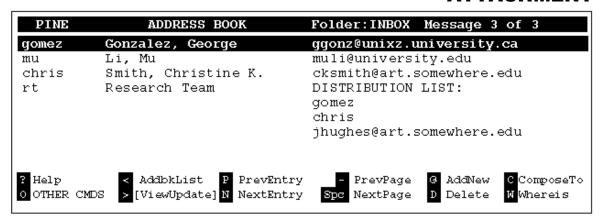



Figure 7. A Pine Address Book Screen

There are two ways to add addresses to your address book: you can add them manually or take them from messages. With either method, you specify nicknames for your correspondents. A single address book entry (or nickname) can point to just one email address, or, it can point to more than one. When it points to more than one, it is called a distribution list. Each distribution list has a nickname, a full name, and a list of addresses. These addresses may be actual addresses, other nicknames in your address book, or other distribution lists.

# Adding Single Addresses or Distribution Lists Manually

To add single addresses or distribution lists manually:

- 1. Have ready the address or addresses you want to add.
- 2. At the Pine Main Menu, press A (AddrBook). You see the Address Book List screen, with .addressbook highlighted.
- 3. Press < Return > .
  - [Note: If you need general information about using the Pine address book, this is the best place to get it. Press? (Help).]
- 4. Press @ (AddNew) and follow the instructions. (Type <Control>G if you need help adding a new address.)

# Taking Single Addresses

To take a single address from a message you are viewing or have selected in the index:

1. At the Message Text or the Message Index screen, press T (TakeAddr).

[Note: The T command is not visible on your screen unless you press O (OTHER CMDS), but you need not see this command to use it.]

You see the Take Address screen. If there is more than one address to take, you see this message:

```
[Single mode: Use "P" or "N" to select desired address]
```

Use P (Prev), N (Next), or the up and down **arrow keys** to select the address you want, and press T (Take). At this point, or, if there is only one address to take, you see this message:

Enter new or existing nickname (one word and easy to remember):

- 2. Enter a nickname for your correspondent and press < Return > .
- 3. Follow the instructions. (Type <Control>G if you need help.)

# Taking Multiple Addresses to Build a Distribution List

To take multiple addresses from a message you are viewing or have selected in the index:

1. Press T (TakeAddr).

[Note: The T command is not visible on your screen unless you press O (OTHER CMDS), but you need not see this command to use it.]

[Single mode: Use "P" or "N" to select desired address]

- 2. Press L (ListMode).
- 3. For each address you want to take, use P (Prev), N (Next), or the up and down arrow keys to select it, and then press X (Set/Unset) in the box to its left.
- 4. Press T (Take). You see the following message:

Enter new or existing nickname (one word and easy to remember):

- 5. Enter a nickname for your list of correspondents and press < Return>.
- 6. Follow the instructions. (Type <Control>G if you need help.)

# **Changing a Single Address or a Distribution List**

To change a single address or a distribution list:

- 1. At the Pine Main Menu, press A (Address Book) and then press <Return> . You see your personal Address Book screen.
- 2. Use the **arrow keys** to select the single address or distribution list you want to change.
- 3. Press > (View/Update).
- 4. Press U (Update), then use arrow keys to get to the field where you want to make a change. Follow the instructions. (Type <Control>G if you need help.)

# **Using Address Book Entries When Composing Email**

When composing a message, at the To or the Cc (Carbon Copy) fields you can enter an email address in any of the following ways:

- Type the entire email address.
- Type a nickname you have set up in the address book.

For example, if your address book looked like the one in <u>Figure 7</u>, you could type the following nickname in the To field:

mu

After you pressed <Return>, Pine would provide the full address for Mu from the address book as follows:

To: Mu Li <muli@university.edu>

• Select a name (or names) from the address book as you compose a message.

To send a message to one person:

- 1. Place your cursor in the To or Cc field and then type <Control>T (To AddrBk).
- 2. Use the **arrow keys** to highlight the name you want.
- 3. Press S (Select) or press < Return > .

To send a message to several people:

- 1. Place your cursor in the To or Cc field and then type **Control>** T (To AddrBk).
- 2. Type L (List Mode).
- 3. Using the arrow keys, place an x before each name you want.
- 4. Press S (Select) or press < Return>.

# **Printing Messages**

Pine provides three options for printing (the one you use depends on the computer and printer you are using), which are explained later in this section. First, see if you can print a message using the following method. If your message prints, you may not need to read about Pine's other printing options.

### Printing an Email Message

To print a message:

- 1. From either the Message Index screen or the Message Text screen, press % (Print). You are asked to confirm your
- 2. Follow the instructions. Type <Control>G if you still need help.

If your message prints, fine. If your message does not print, you need to learn about Pine's three options for printing. The following text and Pine's online help may be all you need to print your messages. If you have any questions or need help setting the Pine printing option, contact your local computer consultant.

# **Pine's Printing Options**

Pine has three printing options, which are available under S (Setup), P (Printer) on Pine's Main Menu screen. Here is a brief description of each.

- 1. Printing Using a Printer Attached to PC or Macintosh By default, Pine assumes you have a desktop computer attached to a printer. If you do, you should be able to print messages using this method. See your local computer consultant if you need help.
- 2. Printing Using a Standard Unix Print Command If you are using a Unix workstation, select this option as your printing method for Pine. Using this option may require setting your "PRINTER" or "LPDEST" environment variable using the standard Unix utilities. See your local computer consultant if you need help.
- 3. Printing Using a Personally Selected Print Command See your local computer consultant if you need help.

# Pine Can Do More

Pine has other useful features that have not been covered in this introductory document. Although originally designed for novice email users. Pine has evolved to support many advanced features. It has become an easy-to-use program for sending, receiving, and filing Internet electronic mail messages and bulletin board (USENET) messages including multimedia attachments. There is also a PC version of Pine (see <a href="http://www.washington.edu/pine/pc-pine/">http://www.washington.edu/pine/pc-pine/</a>). Both Pine and PC-Pine are designed for use with IMAP mail servers (see <a href="http://www.imap.org/">http://www.imap.org/</a>). If you would like to learn more about Pine:

- Try all of the commands at the bottom of each Pine screen, including the ones that appear when you press O (OTHER CMDS).
- Read Pine's online help. It contains tips to help you at every stage of learning Pine. Read about different functions, even those you do not use yet.
- Explore Pine's other options. To see them, at the Pine Main Menu, press S (Setup). You see a message asking you to choose one of the following tasks:
  - P (Printer) to select a printer,
  - N (Newpassword) to change your account password,
  - C (Config) to allow advanced users to set different Pine configurations. (There are many Pine commands that are not available by default and have to be enabled before you can use them.)
  - S (Signature) to create an email signature,
  - A (AddressBooks) to work with your Address Books,
  - L (collectionList) to work with your Collection List, or
  - D (Directory) to set up the LDAP directory server.
- For advanced information, see the online Unix Manual entries for Pine and Pico. In addition, at the Pine Main Menu, press R (RelNotes) to see Pine's release notes.
- Visit the Pine Information Center on the Web at http://www.washington.edu/pine/

ever-growing set of configuration and personal-preference options. Thus, your local system managers are a good source of information about additional Pine features.

# **Guidelines for Using Email**

Electronic mail is a unique medium of communication. Messages can be replied to or forwarded with speed and ease, and email has the potential to reach a wide audience. These features can also be misused. There are a few basic guidelines for the responsible use of email that can help you avoid common mistakes while you enjoy the full benefits of this technology.

The privacy of an email message cannot be guaranteed. An email message may be forwarded, printed, or permanently stored by any recipient. Email can be misdirected, even when you are careful. Do not put something in an email message that you would not want read by everybody. And if you receive a message intended for someone else, let the sender know.

Email does not show the subtleties of voice or body language. Avoid attempts at irony or sarcasm. The most effective email is short, clear, and relevant. If you receive a message that makes you upset, do not respond immediately, and in any case, avoid "flaming," that is, sending an angry or rude message.

### **Email Tips**

As you use email, keep the following tips in mind:

- Email is easily forwarded to someone else. Although this is convenient, it is not always appropriate. If you are unsure, ask the sender before you forward a message.
- Email replies may go to more people than you realize. When replying to a message be sure to look at the list of
  recipients, especially addresses of mailing lists, which may redistribute your message to dozens or hundreds of
  individuals.
- Email can be junk mail, so avoid unnecessary proliferation of messages.
- Email takes up computer space, so delete messages you no longer need.
- The integrity of an email message cannot be guaranteed. If a received message seems out of character for the sender, double-check before taking it seriously.
- Email is meant for informal correspondence as well as scholarly and scientific communications. You should not use email for official record purposes where a memo would be required (e.g., personnel actions, organization changes, contracts, and policy statements).
- Email should not be considered private. Confidential information should not be sent by email.

# **Quitting Pine and Logging Out**

To quit Pine:

1. At almost any place in Pine, press Q (Quit). You are asked:

Really quit pine?

2. Press y (yes) or press < Return > to quit.

It is a good idea to log off your computer whenever you are through with it or when you must leave it unattended.

© Copyright 1998 University of Washington. All Rights Reserved. Pine® is a registered trademark of the University of Washington. Permission to use this document for non-commercial purposes, in original or modified form, is granted, provided that the original source of the document is acknowledged as **University of Washington Computing &** Communications and that this footnote, as well as the notice at the top of this page, are retained on the title page of any documentation based on this text.

Pine Information Center

Search Pine Information Center





# Understanding Bluetooth™

January 2002

# **Executive Summary**

Bluetooth<sup>TM</sup> wireless technology is finally here. Originally conceived as a low-power short-range radio technology designed to replace cables for interconnecting devices such as printers, keyboards, and mice, its perceived potential has evolved into far more sophisticated usage models. The requirement to do this in a totally automated, seamless, and user-friendly fashion, without adding appreciable cost, weight, or power drain to the associated host is an enormous engineering challenge.

Bluetooth devices can form piconets of up to seven slaves and one master, enabling discovery of services and subsequent implementation of many varied usage models including wireless headsets, Internet bridges, and wireless operations such as file exchange, data synchronization, and printing.

Despite talk of Bluetooth competing with wireless LANs, Bluetooth products work over shorter distances and are designed to solve different problems.

The Bluetooth SIG publishes the Bluetooth specification. The IEEE has formed the 802.15 working group to define standards for wireless PANs. The 802.15.1 standard for WPAN<sup>TM</sup>s will be modeled after the Bluetooth specification from the Bluetooth SIG. Microsoft® has announced support for Bluetooth in the next release of Windows® XP.

The waters of Bluetooth security have yet to be tested. However, the Bluetooth specification has a robust key management scheme built in, as well as upper layers of security. Bluetooth uses the national standard AES algorithm for encryption and the general consensus is that the options for Bluetooth security are strong and robust.

### The Promise of Bluetooth – What it can do

The promise of Bluetooth is extremely ambitious. If Bluetooth lives up to its potential, it will revolutionize the way people interact with information technology. Originally conceived as a low-power short-range radio technology designed to replace cables for interconnecting devices such as printers, keyboards, and mice, its perceived potential has evolved into much more.

It has given rise to the concept of the Personal Area Network (PAN), a technology of convenience where everything within the Personal Operating Space (POS) of an individual that is related to communicating information (both voice and data) is automatically tied into a seamless peer-to-peer network that self-configures to make information easily accessible. Scenarios for its usage are many and diverse and are only limited by the imaginations of the companies that create the products.

### Compared with wireless LANs

There is even talk of Bluetooth competing with WLANs, but Bluetooth products work over shorter distances and are designed to solve different problems. While the functionality of a WLAN device stands alone as a network component, the functionality of a Bluetooth component requires a host. The host can be any number of Bluetooth -enabled devices such as cell phones, headsets, keyboards, PDAs, vending machines, cameras, and bar code readers.

### Usage model examples

Following are examples of some usage models for Bluetooth devices.

### Wireless headset

The leading adoption of Bluetooth will initially be in the arena of mobile phones. Nearly every major mobile phone manufacturer has already released Bluetooth-enabled models of their popular phones. The driver for this adoption is the ability to use a wireless headset with the phone. The impact of mobile phone radiation on health has been under scrutiny for some time, especially since the phone is usually held near the head. The radio frequency energy emitted by a Bluetooth wireless headset is a fraction of that emitted by a mobile phone. Additionally, the convenience of being cordless means the phone can be used even if it is in a briefcase or the trunk.

### Internet bridge

Bluetooth wireless technology can be used to allow a mobile phone or cordless modem to provide Dial-Up Networking (DUN) capabilities for a PC, allowing it to connect to the Internet without a physical phone line. This enables a laptop to automatically utilize the user's nearby cell phone to dial and connect to a dial-up service. The user doesn't need to touch the phone, which might be in a briefcase or coat pocket.

### File exchange

The ability to perform peer-to-peer file exchange without the presence of a network infrastructure has many advantages. For example, a salesperson may choose to share the contents of an electronic slide presentation (as well as datasheets, business cards, and other electronic collateral) with the audience. Bluetooth enables the automatic detection of any Bluetooth devices in the room, enabling the transfer (with the receiver's permission) of all selected files. (This could also be done with a wireless LAN, but all parties involved would have to configure their clients to use compatible network settings. This is not required for Bluetooth.)

### **Synchronization**

Bluetooth allows for data synchronization between devices. For example, a desktop computer that is Bluetooth enabled can wirelessly synchronize its contact list, task information, calendar, etc., to a user's phone, PDA, or notebook. Several Bluetooth-based synchronization models already exist for both Pocket PC and Palm-based PDAs.

### **Printing**

HP is making printers and notebooks with embedded Bluetooth technology. Bluetooth-enabled devices can automatically detect Bluetooth-enabled printers in their area and wirelessly send documents to the printer without going through lengthy network and printing setup processes. Mobile users who frequently visit remote offices will find Bluetooth printing a significant improvement in convenience to their current experience.

### An engineering challenge

The demands of creating Bluetooth-enabled products are very challenging. Consider the following:

- Bluetooth must have a very flexible application topology. For example, you might want your PDA to be able to communicate with any nearby printer, but do you want your cell phone to send its audio to any nearby hands-free headset?
- Bluetooth must be automatically configurable. If a Bluetooth product can't figure out whom it should and shouldn't talk to and how, the marketplace will consider it too complicated to use.
- Bluetooth must have quality of service (QoS) features to support voice.
- No one wants cell phones with shorter battery life, so the power required to support Bluetooth capability must be very low.
- No one wants PDAs that are larger, so adding Bluetooth capability to a device should not noticeably increase its size.
- In order to replace cables, Bluetooth cannot cost more than cables. This means that Bluetooth technology cannot add more than \$5 to the cost of the host device.

The phrase "Wireless connections made easy," which is printed on the cover page of the more than 1,500 pages of engineering specifications that define Bluetooth, means easy for

the user, but hard for the engineers designing the products. For the reasons outlined above, Bluetooth presents some of the most demanding engineering challenges in the telecommunications arena, and products are only just now beginning to appear on the market.

### Bluetooth™ Product Certification

The Bluetooth Special Interest Group<sup>1</sup> (SIG) is a group of companies that cooperate to define Bluetooth standards and qualify Bluetooth products. A product that has passed certain testing criteria can be stamped with the Bluetooth logo, assuring a certain level of interoperability.

### Bluetooth Basics - How it works

### Network Topology

Any Bluetooth device can be a *master* or a *slave*, depending on the application scenario. Bluetooth employs frequency hopping spread spectrum (FHSS) to communicate. So in order for multiple Bluetooth devices to communicate, they must all synchronize to the same hopping sequence. The master sets the hopping sequence, and the slaves synchronize to the Master.

A *piconet* is formed by a master and up to seven active slaves. The slaves in a piconet only communicate with the master.

A *scatter net* can be formed by linking two or more piconets. When a device is present in more than one piconet, it must time-share and synchronize to the master of the piconet with which it is currently communicating.

While the topology and hierarchical structure of WLAN networks are relatively simple, Bluetooth networks are far more diverse and dynamic. They are constantly being formed, modified, and dissolved, as Bluetooth devices move in and out of range of one another. And because different Bluetooth devices can represent many different usage profiles, there are many different ways in which Bluetooth devices can interact.

### Service Discovery

The concept of *service discovery* is utilized to determine what kind of Bluetooth devices are present and what services they desire or offer. When a Bluetooth device requires a service, it begins a discovery process by sending out a query for other Bluetooth devices and the information needed to establish a connection with them. Once other Bluetooth devices are found and communication is established, the Service Discovery Protocol (SDP) is utilized to determine what services are supported and what kinds of connections should be made.

In order for the above to happen, devices willing to connect must be located. Some devices may be set up so that they are invisible. In this case, they can scan for other Bluetooth devices, but will not respond if they are likewise queried. Applications determine whether a device is connectable or discoverable, and thus applications determine the topologies of networks and their internal hierarchies.

### ACL and SCO Links

Once a connection has been established between two devices an Asynchronous Connection-Less (ACL) link is formed between them. An ACL link provides packet-switched communication and is the most common link used to handle data traffic. A master has the option to change an ACL link to a Synchronous Connection Oriented (SCO) link. An SCO link provides a QoS feature by reserving time slots for transmission of time-critical information such as voice. A piconet can have up to three full-duplex voice links.

### Standard profiles to enable usage models

The number and variety of different Bluetooth usage models mean that Bluetooth devices must call from a large collection of different protocols and functions to implement a specific usage model. In order to ensure that all usage models will work among devices from many different manufacturers, this collection of protocols and functions must be standardized.

Bluetooth profiles are standardized definitions of protocols and functions required for specific kinds of tasks. The current Bluetooth Standard 1.1 contains 13 profiles, with more being continually added. One or more of these profiles are utilized when implementing various usage models. Some profiles are dependent upon others. Some of the most basic are:

### General Access Profile (GAP)

This profile is required by all usage models and defines how Bluetooth devices discover and connect to one another, as well as defines security protocols. All Bluetooth devices must conform to at least the GAP to ensure basic interoperability between devices.

### Service Discovery Application Profile (SDAP)

The SDAP uses parts of the GAP to define the discovery of services for Bluetooth devices.

### Serial Port Profile

This profile defines how to set up and connect virtual serial ports between two devices. This serial cable emulation can then be used for tasks such as data transfer and printing.

### Generic Object Exchange Profile (GOEP)

GOEP is dependent on the Serial Port Profile and is used by applications to handle object exchanges. This capability is then used, in turn, by other profiles to perform such functions as Object Push, File Transfer, and Synchronization (see below).

### Object Push

This profile is used for the exchange of small objects, such as electronic calling cards.

### File Transfer

This profile is used to transfer files between two Bluetooth devices.

### Synchronization

This profile is used to synchronize calendars and address information between devices.

New profiles not yet part of the standard include the following: a *Basic Printing Profile* to facilitate printing of text emails, short messages, and formatted documents; a *Hands Free Profile* to enable a mobile phone to be used with a hands-free device in a car; a *Basic Imaging Profile* enabling Bluetooth devices to negotiate the size and encoding of exchanged images; and a *Hardcopy Cable Replacement Profile*, used by devices such as laptops and desktop computers that utilize printer drivers.

### Power Levels and Range

Most Bluetooth devices, dependent on batteries for power, are designated as class 3 devices and are designed to operate at a power level of 0 dBm (1 mW), which provides a range of up to 10 m. Class 2 devices can utilize as much as 4 dBm (2.5 mW) output power, and class 1 devices can utilize up to 20 dBm (100 mW) of output power. Class 1 devices can have a range up to 100 m.

Bluetooth class 2 and 3 devices can optionally implement adaptive power control. Required for class 1 devices, this mechanism allows a Bluetooth radio to reduce power to the minimum level required to maintain its link, thus saving power and reducing the potential for interfering with other nearby networks.

# The Evolving Bluetooth™ Standard

### The Bluetooth SIG

Since the original Bluetooth specification was published in 1999, more than 2000 additional companies have signed on as associate members, able to participate in development of future standards and extensions by contributing efforts to various working groups.

### The Current Specification

The current specification, Ver. 1.1<sup>2</sup>, defines a radio which operates in the unregulated Industrial, Scientific, and Medical (ISM) band as follows:

2.4 GHz, FHSS w/1600 hops/s over 79 channels: 1 Mbps

The fundamental elements of a Bluetooth product are defined in the two lowest protocol layers, the *radio layer* and the *baseband layer*. Included in these layers are hardware tasks such as frequency hopping control and clock synchronization, as well as packet assembly with associated FEC (Forward Error Correction) and ARQ (Automatic Repeat Request).

The *link manager layer* is responsible for searching for other Bluetooth devices, creating and tearing down piconets, as well as authentication and encryption.

Higher layer definitions include the Bluetooth profiles.

### Enhancing the Specification

The Bluetooth SIG is currently working on a new specification, due for publication sometime in 2002. In the interest of maintaining backwards compatibility, most of this work is confined to describing new profiles.

One of the most intriguing is a car profile that describes the use of personal devices like pagers, cell phones, and laptops in an automotive environment. Envisioned usages include the automatic adjustment of various settings in an automobile, such as seat and mirror positions and radio tuning, based on personal preferences stored in a Bluetooth device. Another profile would link a cell phone, car radio, and text-to-speech software on a laptop, to allow email to be spoken audibly over the car radio.

In addition to developing new profiles, other working groups are developing extensions to enhance Bluetooth operations. The radio working group is developing optional extensions to the current Bluetooth standard that include higher data rates and handoff capability to support roaming, and the coexistence working group is collaborating with the IEEE 802.11 and 802.15 working groups to address interference concerns and ensure that Bluetooth can coexist in the same environment with WLANs.

### The IEEE

The Bluetooth and PAN concept has now been embraced by the IEEE (which has trademarked WPAN<sup>TM</sup>) in the work of the 802.15 group. However, the IEEE 802.15 group is confined to developing standards only for the lower two protocol layers of the OSI Reference Model<sup>3</sup>.

Task Group 1 (802.15 task groups are differentiated by number) is working on the IEEE version of the Bluetooth standard, which will define Media Access Control (MAC) and Physical (PHY) layers for fixed, portable, and moving devices within or entering a POS (in this case 10 m) of a person who is either stationary or moving. The 802.15.1 standard is being developed to ensure coexistence with 802.11.

Task Group 2 is investigating and recommending practices to facilitate the coexistence of WPANs and WLANs. 802.15.2 is also addressing concerns of interference between Bluetooth and WLANs by developing a model to quantify their mutual interference.

Though strictly not operating modes defined by the current Bluetooth standard, other task groups are investigating high-rate and low-rate WPANs. Task Group 3 is defining a high-rate MAC and PHY that will allow data rates of at least 20 Mbps for multimedia applications. Task Group 4 is defining a low-rate (200 Kb/s and lower) MAC and PHY for devices such as toys, remote controls, smart tags, and badges.

### Bluetooth and Windows XP

Microsoft® has announced support for Bluetooth in the next release of Windows® XP as follows:

Microsoft is creating native support in the Microsoft® Windows® operating system for Bluetooth wireless technology. This support is entirely new and is not based on existing software from other companies. The specific delivery vehicles are to be determined.

Microsoft supports the Bluetooth technology as a wireless bus, complementing USB and IEEE 1394. The goal for Microsoft software support is to Windows work with

several types of devices that implement Bluetooth wireless technology, such as PC peripherals, PC companions, and devices bridged to network resources through a PC.

Support for Bluetooth wireless technology is not in the first release of Windows XP, because there is not a sufficient array of production-quality devices that conform to the Bluetooth specification for Microsoft to test. However, Microsoft is actively developing support for Bluetooth technology and will ship this support in a future release. Quality, reliability and compatibility are principal ship goals for Windows XP, and Microsoft will not compromise on the customer experience.<sup>4</sup>

# Bluetooth™ Security

Bluetooth security, when compared with WLAN security, is both more complex and simpler. It is more complex in the sense that there are many different options for security based on different application scenarios. It is simpler in the sense that, for the most part, they are transparent to the user.

With WLANs it is up to the network administrator to add security at higher levels. With Bluetooth, since the Bluetooth spec includes all levels, higher-level security features are already built into the devices when appropriate.

Bluetooth security includes both authentication and confidentiality, and is based around the SAFER+ encryption algorithm. SAFER+ is a block cipher, but in this application is implemented as a stream cipher. SAFER+ was thoroughly analyzed and tested during the NIST's search for a national encryption standard. Although some versions were found to have very minor weaknesses, the 128-bit version as used in Bluetooth is considered very strong.

### Link layer security – keys and more keys

The Bluetooth Baseband (link layer) specification defines methods for both authentication and encryption that are subsequently utilized by higher layers.

These methods utilize a number of keys generated by a process that begins with three basic device entities: a public 48-bit device address, a random number generator, and a secret PIN which is either built into the unit by the manufacturer or programmed by the user. A typical PIN may consist of just four decimal digits. However, for applications requiring more security a PIN code up to 128-bits long can be entered.

The first of many keys is created the first time the Bluetooth device is installed on the host and is typically never changed. This is referred to as the *unit key*.

### Authentication

When a Bluetooth *session* (defined as the time interval for which the device is part of a piconet) is initiated, a series of additional keys is generated. One of these keys, referred to as the *link key* or *authentication key*, is a one-time 128-bit secret key that is used only during that session. The process of authentication employs the encryption of a random number by each device to verify that each is sharing the same secret link key.

### Encryption

If encryption is required by the application, an encryption key is further derived from the link key, a ciphering offset number, and a random number. While the authentication key is always 128-bits, the encryption key may be shorter to accommodate government restrictions on encryption, which vary from country to country. A new encryption key is generated each time the device enters encryption mode. The authentication key, however, is used during the entire session.

### Application layer security

The Bluetooth General Access Profile defines three security modes:

*Mode 1* is non-secure. Authentication is optional.

*Mode 2* gives service-level enforced security. The service provided by the application decides whether or not authentication or encryption is required. The Bluetooth SIG has published the Bluetooth Security Architecture white paper<sup>5</sup> that defines a suitable architecture for implementing service-level enforced security on Bluetooth devices.

The white paper splits devices into different categories and trust levels, as well as suggesting three security levels for services. The utilization of a database is suggested for enabling the user to authorize devices to utilize only particular services. Because the implementation of security at this level does not affect interoperability, this white paper is advisory only, and is not part of the Bluetooth specification.

*Mode 3* is link-level enforced security. Both devices must implement security procedures in order for a connection to be established.

In addition to the above modes, a device can be configured to not respond to paging, so that other devices cannot connect to it. Or it can be configured so that only devices that already know its address can connect to it.

Such numerous and complex levels of security are necessary to accommodate the large variety of different usage scenarios. It falls on the designers of Bluetooth products to ensure that the complexity of Bluetooth is hidden from the user, while still providing the user with necessary security options.

# **Appendix**

# **Acronyms**

ACL - Asynchronous Connection-Less

AES - Advanced Encryption Standard

ARQ – Automatic Repeat Request

FCC -Federal Communications Commission

FEC - Forward Error Correction

FHSS - Frequency Hopping Spread Spectrum

IEEE - Institute of Electrical & Electronic Engineers

ISM - Industrial, Scientific, Medical

LAN - Local Area Network

MAC - Media Access Control

Mbps - Megabits per second

NIST - National Institute of Standards and Technology

OSI - Open Systems Interconnection

PAN - Personal Area Network

PDA - Personal Digital Assistant

PHY - Physical (Layer)

PIN – Personal Identification Number

POS - Personal Operating Space

QoS - Quality of Service

SAFER – Secure And Fast Encryption Routine

SCO - Synchronous Connection Oriented

SDP - Service Discovery Protocol

SIG - Special Interest Group

USB - Universal Serial Bus

WLAN - Wireless LAN

### References on the Web

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito\_doc/introint.htm#xtocid130454

http://www.bluetooth.com/developer/whitepaper.asp

Bluetooth<sup>TM</sup> is a trademark owned by Bluetooth SIG, Inc.

WPAN<sup>TM</sup> is a trademark of the IEEE.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation.

Bluetooth SIG, <a href="http://www.bluetooth.com">http://www.bluetooth.com</a>
 Bluetooth specifications, <a href="http://www.bluetooth.com/developer/specification/specification.asp">http://www.bluetooth.com/developer/specification/specification.asp</a>
 A good explanation of the seven-layer OSI Reference Model,

Bluetooth support in Windows XP, http://www.microsoft.com/hwdev/tech/network/bluetooth/

<sup>&</sup>lt;sup>5</sup> Bluetooth Security Architecture white paper,

# The attached DRAFT document (provided here for HISTORICAL purposes) has been superseded by the following publication:

Publication Number: Special Publication 800-121 Revision 1

Title: Guide to Bluetooth Security

Publication Date: 06/12/2012

• Final Publication:

http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121 rev1.pdf

 Related Information on CSRC: http://csrc.nist.gov/publications/PubsSPs.html#800-121

• Information on other NIST Computer Security Division publications and programs can be found at: <a href="http://csrc.nist.gov/">http://csrc.nist.gov/</a>

The following information was posted with the attached DRAFT document:

# NIST Released Special Publication 800-121 Revision 1, Guide to Bluetooth Security

June 12, 2012

NIST announces the final release of Special Publication (SP) 800-121 Revision 1, Guide to Bluetooth Security. It describes the security capabilities of technologies based on Bluetooth, which is an open standard for short-range radio frequency communication. The document gives recommendations to organizations employing Bluetooth technologies on securing them effectively. Significant changes from the original SP 800-121 include adding the latest vulnerability mitigation information for Secure Simple Pairing, and introducing and discussing Bluetooth v3.0 + High Speed and Bluetooth v4.0 (Low Energy) security mechanisms and recommendations.





# Guide to Bluetooth Security (Draft)

# Recommendations of the National Institute of Standards and Technology

John Padgette Karen Scarfone NIST Special Publication 800-121 Revision 1 (Draft) Guide to Bluetooth Security (Draft)

Recommendations of the National Institute of Standards and Technology

John Padgette Karen Scarfone

# COMPUTER SECURITY

Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930

September 2011



### **U.S. Department of Commerce**

Rebecca M. Blank, Acting Secretary

### National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary for Standards and Technology and Director

### **Reports on Computer Systems Technology**

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL's responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication (SP) 800-series reports on ITL's research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations.

National Institute of Standards and Technology Special Publication 800-121 Revision 1 (Draft) Natl. Inst. Stand. Technol. Spec. Publ. 800-121 Revision 1, 49 pages (Sep. 2011)

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

# **Acknowledgments for Revision 1**

The authors John Padgette of Accenture and Karen Scarfone of Scarfone Cybersecurity wish to thank their colleagues Lily Chen, Murugiah Souppaya, and Meltem Turan who reviewed drafts of this first revision of this document and contributed to its technical content. The authors greatly appreciate the feedback provided by Matthew Sexton of pureIntegration and Kaisa Nyberg of Nokia. The authors would also like to thank Joe Jamaldinian of Booz Allen Hamilton for providing the new graphics.

# **Acknowledgments for Original Version**

The authors, Karen Scarfone of the National Institute of Standards and Technology (NIST) and John Padgette of Booz Allen Hamilton, wish to thank their colleagues who reviewed drafts of the original version of this document and contributed to its technical content. The authors would like to acknowledge Sheila Frankel, Tim Grance, and Tom Karygiannis of NIST, and Derrick Dicoi, Matthew Sexton, and Michael Bang of Booz Allen Hamilton, for their keen and insightful assistance throughout the development of the document. The authors also greatly appreciate the feedback provided by representatives from the Department of State, Gerry Barsczewski (Social Security Administration), Alex Froede (Defense Information Systems Agency [DISA]), and Dave Wallace and Mark Nichols (Spanalytics).

#### **Note to Readers**

This document is the first revision to NIST SP 800-121, Guide to Bluetooth Security. Updates in this revision include the latest vulnerability mitigation information for Secure Simple Pairing, introduced in Bluetooth v2.1 + Enhanced Data Rate (EDR), as well as an introduction to and discussion of Bluetooth v3.0 + High Speed and Bluetooth v4.0 Low Energy security mechanisms and recommendations.

# **Table of Contents**

| Exe | cutive                   | Summary                                                                                                                                                                                                                                                                                                                                                                              | 1                                         |
|-----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1.  | Intro                    | duction                                                                                                                                                                                                                                                                                                                                                                              | 1-1                                       |
|     | 1.1<br>1.2<br>1.3<br>1.4 | Authority Purpose and Scope Audience and Assumptions Document Organization                                                                                                                                                                                                                                                                                                           | 1-1<br>1-1                                |
| 2.  | Over                     | view of Bluetooth Technology                                                                                                                                                                                                                                                                                                                                                         | 2-1                                       |
|     | 2.1                      | Bluetooth Technology Characteristics  2.1.1 Basic, Enhanced and High Speed Data Rates  2.1.2 Low Energy  2.1.3 Dual Mode Devices (Concurrent LE & BR/EDR/HS Support)  Bluetooth Architecture                                                                                                                                                                                         | 2-3<br>2-3<br>2-4                         |
| 3.  | Blue                     | tooth Security Features                                                                                                                                                                                                                                                                                                                                                              | 3-1                                       |
|     | 3.1                      | Security Features of Bluetooth BR/EDR/HS  3.1.1 Pairing and Link Key Generation  3.1.2 Authentication  3.1.3 Confidentiality  3.1.4 Trust Levels, Service Levels, and Authorization  Security Features of Bluetooth LE  3.2.1 LE Security Modes and Levels  3.2.2 LE Pairing Methods  3.2.3 LE Key Generation and Distribution  3.2.4 Confidentiality, Authentication, and Integrity | 3-2<br>3-3<br>3-8<br>3-11<br>3-12<br>3-12 |
| 4.  | Blue                     | tooth Vulnerabilities, Threats, and Countermeasures                                                                                                                                                                                                                                                                                                                                  | 4-1                                       |
|     | 4.1<br>4.2<br>4.3<br>4.4 | Bluetooth Vulnerabilities  Bluetooth Threats  Risk Mitigation and Countermeasures  Bluetooth Security Checklists                                                                                                                                                                                                                                                                     | 4-3<br>4-4                                |
|     |                          | List of Appendices                                                                                                                                                                                                                                                                                                                                                                   |                                           |
| App | endix                    | x A— Glossary of Terms                                                                                                                                                                                                                                                                                                                                                               | A-1                                       |
| App | endix                    | B— Acronyms and Abbreviations                                                                                                                                                                                                                                                                                                                                                        | B-1                                       |
|     |                          | C— References                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| • • |                          | D— Online Resources                                                                                                                                                                                                                                                                                                                                                                  |                                           |

# **List of Figures**

| Figure 2-1. Bluetooth v4.0 Device Architecture               | 2-5  |
|--------------------------------------------------------------|------|
| Figure 2-2. Bluetooth Ad Hoc Topology                        | 2-6  |
| Figure 2-3. Bluetooth Networks (Multiple Scatternets)        | 2-7  |
| Figure 3-1. Bluetooth Air-Interface Security                 | 3-1  |
| Figure 3-2. Link Key Generation from PIN                     | 3-4  |
| Figure 3-3. Link Key Establishment for Secure Simple Pairing | 3-6  |
| Figure 3-4. AMP Link Key Derivation                          | 3-7  |
| Figure 3-5. Bluetooth Authentication                         | 3-7  |
| Figure 3-6. Bluetooth Encryption Procedure                   | 3-10 |
| Figure 3-7. Bluetooth Low Energy Pairing                     | 3-13 |
| List of Tables                                               |      |
| Table 2-1. Bluetooth Device Classes of Power Management      | 2-2  |
| Table 2-2. Key Differences Between Bluetooth BR/EDR and LE   | 2-4  |
| Table 4-1. Key Problems with Native Bluetooth Security       | 4-1  |
| Table 4-2. Bluetooth Piconet Security Checklist              | 4-6  |

# **Executive Summary**

Bluetooth is an open standard for short-range radio frequency (RF) communication. Bluetooth technology is used primarily to establish wireless personal area networks (WPAN), commonly referred to as ad hoc or peer-to-peer (P2P) networks. Bluetooth technology has been integrated into many types of business and consumer devices, including cell phones, laptops, automobiles, printers, keyboards, mice, and headsets. This allows users to form ad hoc networks between a wide variety of devices to transfer voice and data. This document provides an overview of Bluetooth technology and discusses related security concerns.

Several Bluetooth versions are currently in use in commercial devices. At the time of writing, Bluetooth 1.2 (adopted November 2003) and 2.0 + Enhanced Data Rate (EDR, adopted November 2004) are the most prevalent. Bluetooth 2.1 + EDR (adopted July 2007), which is quickly becoming the standard, provides significant security improvements for cryptographic key establishment in the form of Secure Simple Pairing (SSP). The most recent versions include Bluetooth 3.0 + High Speed (HS, adopted April 2009), which provides significant data rate improvements, and Bluetooth 4.0 Low Energy (LE, adopted June 2010), which supports smaller, resource-constrained devices and associated applications. This publication addresses the security of all these versions of Bluetooth.

Bluetooth technology and associated devices are susceptible to general wireless networking threats, such as denial of service (DoS) attacks, eavesdropping, man-in-the-middle (MITM) attacks, message modification, and resource misappropriation. They are also threatened by more specific Bluetooth-related attacks that target known vulnerabilities in Bluetooth implementations and specifications. Attacks against improperly secured Bluetooth implementations can provide attackers with unauthorized access to sensitive information and unauthorized use of Bluetooth devices and other systems or networks to which the devices are connected.

To improve the security of Bluetooth implementations, organizations should implement the following recommendations:

# Organizations should use the strongest Bluetooth security mode available for their Bluetooth devices.

The Bluetooth specifications define several security modes, and each version of Bluetooth supports some, but not all, of these modes. The modes differ primarily by the point at which the device initiates security; hence, these modes define how well they protect Bluetooth communications and devices from potential attack.

For Bluetooth Basic Rate (BR), EDR, and HS, Security Mode 3 is the strongest mode because it requires establishment of authentication and encryption before the Bluetooth physical link is completely established. Security Modes 2 and 4 can also use authentication and encryption, but do not initiate them until after the Bluetooth physical link has already been fully established and logical channels partially established. Security Mode 1 devices never initiate security and therefore should never be used.

For Bluetooth LE (introduced in Version 4.0), Security Mode 1 Level 3 is considered the strongest mode because it requires authenticated pairing and encryption. Other security modes/levels allow unauthenticated pairing (meaning no man-in-the-middle protection is provided during cryptographic key establishment), and some do not require any security at all.

The available modes vary based on the Bluetooth specification version supported by the device, so organizations should choose the most secure mode available for each case.

# Organizations should address Bluetooth technology it in their security policies and change default settings of Bluetooth devices to reflect the policies.

A security policy that defines requirements for Bluetooth security is the foundation for all other Bluetooth-related countermeasures. The policy should include a list of approved uses for Bluetooth, a list of the types of information that may be transferred over Bluetooth networks, and requirements for selecting and using Bluetooth personal identification numbers (PINs), where applicable. After establishing a Bluetooth security policy, organizations should ensure that Bluetooth devices' default settings are reviewed and changed as needed so that they comply with the security policy requirements. For example, a typical requirement is to disable unneeded Bluetooth profiles and services to reduce the number of vulnerabilities that attackers could attempt to exploit. When available, a centralized security policy management approach should be used to ensure device configurations are compliant.

# Organizations should ensure that their Bluetooth users are made aware of their security-related responsibilities regarding Bluetooth use.

A security awareness program helps educate and train users to follow security practices that protect the assets of an organization and prevent security incidents. For example, users should be provided with a list of precautionary measures they should take to better protect handheld Bluetooth devices from theft. Users should also be made aware of other actions to take regarding Bluetooth device security, such as ensuring that Bluetooth devices are turned off when they are not needed to minimize exposure to malicious activities, and performing Bluetooth device pairing as infrequently as possible and ideally in a physically secure area where attackers cannot observe passkey entry and eavesdrop on Bluetooth pairing-related communications.

#### 1. Introduction

# 1.1 Authority

The National Institute of Standards and Technology (NIST) developed this document in furtherance of its statutory responsibilities under the Federal Information Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum requirements, for providing adequate information security for all agency operations and assets; however, such standards and guidelines shall not apply to national security systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b (3), "Securing Agency Information Systems," as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in A-130, Appendix III.

This guideline has been prepared for use by Federal agencies. It may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright, although attribution is requested.

Nothing in this document should be taken to contradict standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.

#### 1.2 Purpose and Scope

The purpose of this document is to provide information to organizations on the security capabilities of Bluetooth and provide recommendations to organizations employing Bluetooth technologies on securing them effectively. The Bluetooth versions within the scope of this publication are versions 1.1, 1.2, 2.0 + Enhanced Data Rate (EDR), 2.1 + EDR, 3.0 + High Speed (HS), and 4.0 Low Energy (LE).

#### 1.3 Audience and Assumptions

This document discusses Bluetooth technologies and security capabilities in technical detail. This document assumes that the readers have at least some operating system, wireless networking, and security knowledge. Because of the constantly changing nature of the wireless security industry and the threats and vulnerabilities to the technologies, readers are strongly encouraged to take advantage of other resources (including those listed in this document) for more current and detailed information.

The following list highlights people with differing roles and responsibilities that might use this document:

- Government managers (e.g., chief information officers and senior managers) who oversee the use and security of Bluetooth technologies within their organizations
- Systems engineers and architects who design and implement Bluetooth technologies
- Auditors, security consultants, and others who perform security assessments of wireless environments
- Researchers and analysts who are trying to understand the underlying wireless technologies.

# 1.4 Document Organization

The remainder of this document is composed of the following sections and appendices:

- Section 2 provides an overview of Bluetooth technology, including its benefits, technical characteristics, and architecture.
- Section 3 discusses the security features defined in the Bluetooth specifications and highlights their limitations.
- Section 4 examines common vulnerabilities and threats involving Bluetooth technologies and makes recommendations for countermeasures to improve Bluetooth security.
- Appendix A provides a glossary of terms.
- Appendix B provides a list of acronyms and abbreviations used in this document.
- Appendix C lists Bluetooth references.
- Appendix D lists Bluetooth online resources.

# 2. Overview of Bluetooth Technology

Bluetooth is an open standard for short-range radio frequency (RF) communication. Bluetooth technology is used primarily to establish wireless personal area networks (WPAN), commonly referred to as ad hoc or peer-to-peer (P2P) networks. Bluetooth technology has been integrated into many types of business and consumer devices, including cell phones, laptops, automobiles, printers, keyboards, mice, and headsets. This allows users to form ad hoc networks between a wide variety of devices to transfer voice and data. Bluetooth is a low-cost, low-power technology that provides a mechanism for creating small wireless networks on an ad hoc basis, known as *piconets*. A piconet is composed of two or more Bluetooth devices in close physical proximity that operate on the same channel using the same frequency hopping sequence. An example of a piconet is a Bluetooth-based connection between a cell phone and a headset.

Bluetooth piconets are often established on a temporary and changing basis, which offers communications flexibility and scalability between mobile devices. Some key benefits of Bluetooth technology are—

- Cable replacement. Bluetooth technology replaces a variety of cables, such as those traditionally used for peripheral devices (e.g., mouse and keyboard connections), printers, and wireless headsets and earbuds that interface with desktops, laptops, cell phones, etc.
- Ease of file sharing. A Bluetooth-enabled device can form a piconet to support file sharing capabilities with other Bluetooth devices, such as laptops.
- Wireless synchronization. Bluetooth provides automatic synchronization between Bluetoothenabled devices. For example, Bluetooth allows synchronization of contact information contained in electronic address books and calendars.
- Internet connectivity. A Bluetooth device with Internet connectivity can share that access with other Bluetooth devices. For example, a laptop can use a Bluetooth connection to direct a cell phone to establish a dial-up connection so that the laptop can access the Internet through the phone.

Bluetooth technology was originally conceived by Ericsson in 1994. Ericsson, IBM, Intel, Nokia, and Toshiba formed the Bluetooth Special Interest Group (SIG), a not-for-profit trade association developed to drive development of Bluetooth products and serve as the governing body for Bluetooth specifications. Bluetooth is standardized within the IEEE 802.15 Working Group for Wireless Personal Area Networks that formed in early 1999 as IEEE 802.15.1-2002.

This section provides an overview of Bluetooth technology, including frequency and data rates, range, and architecture.

# 2.1 Bluetooth Technology Characteristics

Bluetooth operates in the unlicensed 2.4000 gigahertz (GHz) to 2.4835 GHz Industrial, Scientific, and Medical (ISM) frequency band. Numerous technologies operate in this band, including the IEEE 802.11b/g wireless local area network (WLAN) standard, making it somewhat crowded from the standpoint of the volume of wireless transmissions. Bluetooth employs frequency hopping spread spectrum (FHSS) technology for all transmissions. FHSS reduces interference and transmission errors and provides a limited level of transmission security. With FHSS technology, communications between

As discussed in Section 2.2, the term "piconet" applies to both ad hoc and infrastructure Bluetooth networks.

<sup>&</sup>lt;sup>2</sup> The Bluetooth SIG website (<a href="http://www.bluetooth.com/">http://www.bluetooth.com/</a>) is a resource for Bluetooth-related information and provides numerous links to other sources of information.

For more information, see the IEEE website at <a href="http://grouper.ieee.org/groups/802/15/">http://grouper.ieee.org/groups/802/15/</a>.

Bluetooth BR/EDR devices use 79 different 1 megahertz (MHz) radio channels by hopping (i.e., changing) frequencies about 1,600 times per second for data/voice links and 3,200 times per second during page and inquiry scanning. A channel is used for a very short period (e.g., 625 microseconds for data/voice links), followed by a hop to another channel designated by a pre-determined pseudo-random sequence; this process is repeated continuously in the frequency hopping sequence.

Bluetooth also provides for radio link power control, which allows devices to negotiate and adjust their radio power according to signal strength measurements. Each device in a Bluetooth network can determine its received signal strength indication (RSSI) and request that the other network device adjust its relative radio power level (i.e., incrementally increase or decrease the transmission power). This is performed to conserve power and/or to keep the received signal characteristics within a preferred range.

If the Bluetooth power control feature is used appropriately, any potential adversary is forced to be in relatively close proximity to pose a threat to a Bluetooth piconet, especially if the Bluetooth devices are very close to each other.

The combination of a frequency hopping scheme and radio link power control provides Bluetooth with some additional, albeit limited, protection from eavesdropping and malicious access. The frequency-hopping scheme, primarily a technique to avoid interference, makes it slightly more difficult for an adversary to locate and capture Bluetooth transmissions than to capture transmissions from fixed-frequency technologies, like those used in IEEE 802.11b/g. Research published in 2007 has shown that the Bluetooth frequency hopping sequence for an active piconet can be determined using relatively inexpensive hardware and free open source software.<sup>4</sup>

The range of Bluetooth BR/EDR devices is characterized by three classes that define power management. Table 2-1 summarizes the classes, including their power levels in milliwatts (mW) and decibels referenced to one milliwatt (dBm), and their operating ranges in meters (m). Most small, battery-powered devices are Class 2, while Class 1 devices are typically universal serial bus (USB) adapters for desktops and laptops, as well as access points and other mains powered devices.

| Type    | Power  | Max Power Level | Designed Operating Range    | Sample Devices                                         |
|---------|--------|-----------------|-----------------------------|--------------------------------------------------------|
| Class 1 | High   | 100 mW (20 dBm) | Up to 100 meters (328 feet) | USB adapters, access points                            |
| Class 2 | Medium | 2.5 mW (4 dBm)  | Up to 10 meters (33 feet)   | Mobile devices, Bluetooth adapters, smart card readers |
| Class 3 | Low    | 1 mW (0 dBm)    | Up to 1 meter (3 feet)      | Bluetooth adapters                                     |

Table 2-1. Bluetooth Device Classes of Power Management

To allow Bluetooth devices to find and establish communication with each other, discoverable and connectable modes are specified. A device in *discoverable mode* periodically monitors an inquiry scan physical channel (based on a specific set of frequencies) and responds to an inquiry on that channel with its device address, local clock, and other characteristics needed to page and subsequently connect to it. A device in *connectable mode* periodically monitors its page scan physical channel and responds to a page on that channel to initiate a network connection. The frequencies associated with the page scan physical

<sup>&</sup>lt;sup>4</sup> For more information, see Dominic Spill and Andrea Bittau's 2007 research paper: http://www.usenix.org/event/woot07/tech/full\_papers/spill/spill.pdf

The ranges listed in Table 2-1 are the designed operating ranges. Attackers may be able to intercept communications at significantly larger distances, especially if they use high-gain antennas and high-sensitivity receivers.

channel for a device are based on its Bluetooth device address. Therefore, knowing a device's address and local clock<sup>6</sup> is important for paging and subsequently connecting to the device.

The following sections cover Bluetooth BR/EDR/HS data rates, LE technology, and dual-mode devices.

# 2.1.1 Basic, Enhanced and High Speed Data Rates

Bluetooth devices can support multiple data rates using native Bluetooth and alternate Medium Access Controls (MAC) and Physical Layers (PHY). Because Bluetooth specifications are designed to be backward-compatible, a later specification device that supports higher data rates also supports the lower data rates supported by earlier specification devices (e.g., an EDR device also supports rates specified for BR devices). The following sections provide an overview for Bluetooth and alternate MAC/PHYs, as well as associated data rates and modulation schemes.

#### 2.1.1.1 Basic Rate/Enhanced Data Rate

Bluetooth versions 1.1 and 1.2 only support transmission speeds of up to 1 megabit per second (Mbps), which is known as Basic Rate (BR), and can achieve throughput of approximately 720 kilobits per second (kbps). Introduced in Bluetooth version 2.0, Enhanced Data Rate (EDR) specifies data rates up to 3 Mbps and throughput of approximately 2.1 Mbps.

BR uses Gaussian Frequency-Shift Keying (GFSK) modulation to achieve a 1 Mbps data rate. EDR uses  $\pi/4$  rotated Differential Quaternary Phase Shift Keying (DQPSK) modulation to achieve a 2 Mbps data rate, and 8 phase Differential Phase Shift Keying (8DPSK) to achieve a 3 Mbps data rate.

Note that EDR support is not required for devices compliant with the Bluetooth 2.0 specification or later. Therefore, there are devices on the market that are "Bluetooth 2.0 compliant" versus "Bluetooth 2.0 + EDR compliant." The former are devices that support required version 2.0 features but only provide the BR data rate.

## 2.1.1.2 High Speed with Alternate MAC/PHY

Introduced in the Bluetooth 3.0 + HS specification, devices can support faster data rates by using Alternate MAC/PHYs (AMP). This is known as Bluetooth High Speed (HS).

In the Bluetooth 3.0 + HS specification, IEEE 802.11-2007 was introduced as the first supported AMP. IEEE 802.11-2007 is a rollup of the amendments IEEE 802.11a through 802.11j. For the 802.11 AMP, IEEE 802.11g PHY support is mandatory, while IEEE 802.11a PHY support is optional. The 802.11 AMP is designed to provide data rates up to 24 Mbps using Orthogonal Frequency-Division Multiplexing (OFDM) modulation.

Note that this AMP is IEEE 802.11 compliant but not Wi-Fi compliant. Therefore, Wi-Fi Alliance specification compliance is not required for Bluetooth 3.0 + HS devices.

# 2.1.2 Low Energy

\_

Bluetooth LE was introduced in the Bluetooth 4.0 specification. Formerly known as "Wibree" and "Ultra Low Power Bluetooth," LE is primarily designed to bring Bluetooth technology to coin cell battery-powered devices such as medical devices and other sensors. The key technology goals of Bluetooth LE

<sup>&</sup>lt;sup>6</sup> Having a remote device's clock information is not needed to make a connection, but it will speed up the connection process.

(compared with Bluetooth BR/EDR) include lower power consumption, reduced memory requirements, efficient discovery and connection procedures, short packet lengths, and simple protocols and services.

Table 2-2 provides the key technical differences between BR/EDR and LE.

Table 2-2. Key Differences Between Bluetooth BR/EDR and LE

| Characteristic           | Bluetooth BR/EDR                       | Bluetooth LE                           |
|--------------------------|----------------------------------------|----------------------------------------|
| RF Physical Channels     | 79 channels with 1 MHz channel spacing | 40 channels with 2 MHz channel spacing |
| Discovery/Connect        | Inquiry/Paging                         | Advertising                            |
| Number of Piconet Slaves | 7 (active)/255 (total)                 | Unlimited                              |
| Device Address Privacy   | None                                   | Private device addressing available    |
| Max Data Rate            | 1–3 Mbps                               | 1 Mbps via GFSK modulation             |
| Encryption Algorithm     | E0/SAFER+                              | AES-CCM                                |
| Typical Range            | 30 meters                              | 50 meters                              |
| Max Output Power         | 100 mW (20 dBm)                        | 10 mW (10 dBm)                         |

# 2.1.3 Dual Mode Devices (Concurrent LE & BR/EDR/HS Support)

A Bluetooth v4.0 device may support both BR/EDR/HS and LE as a "dual mode" Bluetooth device. An example is a cell phone that uses an EDR link to a Bluetooth headset and a concurrent LE link to a sensor that unlocks and starts the user's automobile. Figure 2-1 shows the device architecture for Bluetooth v4.0 devices, and includes BR/EDR, HS and LE technologies. New terms included in the figure related to security are discussed in subsequent sections.

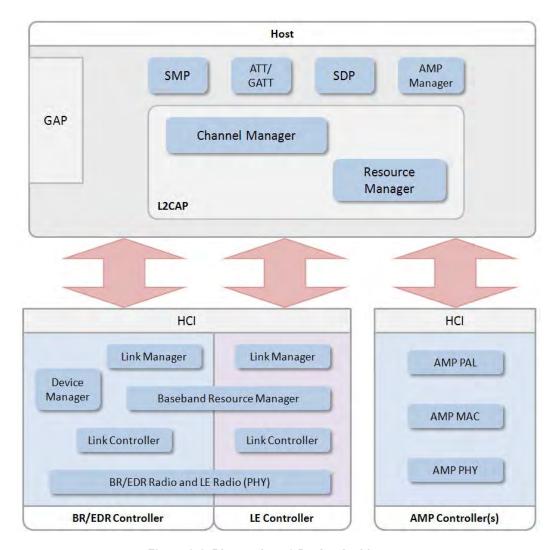



Figure 2-1. Bluetooth v4.0 Device Architecture

#### 2.2 Bluetooth Architecture

Bluetooth permits devices to establish ad hoc networks. Ad hoc networks allow easy connection establishment between devices in the same physical area (e.g., the same room) without the use of any infrastructure devices. A Bluetooth client is simply a device with a Bluetooth radio and software incorporating the Bluetooth protocol stack and interfaces.

The Bluetooth specification provides separation of duties for performing stack functions between a host and a controller. The host is responsible for the higher layer protocols, such as Logical Link Control and Adaptation Protocol (L2CAP) and Service Discovery Protocol (SDP). The host functions are performed by a computing device like a laptop or smartphone. The controller is responsible for the lower layers, including the Radio, Baseband, and Link Control/Management. The controller functions are performed by an integrated or external (e.g., USB) Bluetooth adapter. The host and controller send information to each other using standardized communications over the Host Controller Interface (HCI). This standardized HCI allows hosts and controllers from different product vendors to interoperate. In some cases, the host and controller functions are integrated into a single device; Bluetooth headsets are a prime example.

Figure 2-2 depicts the basic Bluetooth network topology. In a piconet one device serves as the master, with all other devices in the piconet acting as slaves. BR/EDR piconets can scale to include up to 7 active slave devices and up to 255 inactive slave devices. The new Bluetooth LE technology (see Section 2.1.2) allows an unlimited number of slaves.



Figure 2-2. Bluetooth Ad Hoc Topology

The master device controls and establishes the network, including defining the network's frequency hopping scheme. Although only one device can serve as the master for each piconet, time division multiplexing (TDM) allows a slave in one piconet to act as the master for another piconet simultaneously, thus creating a chain of networks.<sup>7</sup> This chain, called a *scatternet*, allows networking of several devices over an extended distance in a dynamic topology that can change during any given session. As a device moves toward or away from the master device the topology may change, along with the relationships of the devices in the immediate network. Figure 2-3 depicts a scatternet that involves three piconets.

.

Note that a particular device can only be the master of one piconet at any given time.

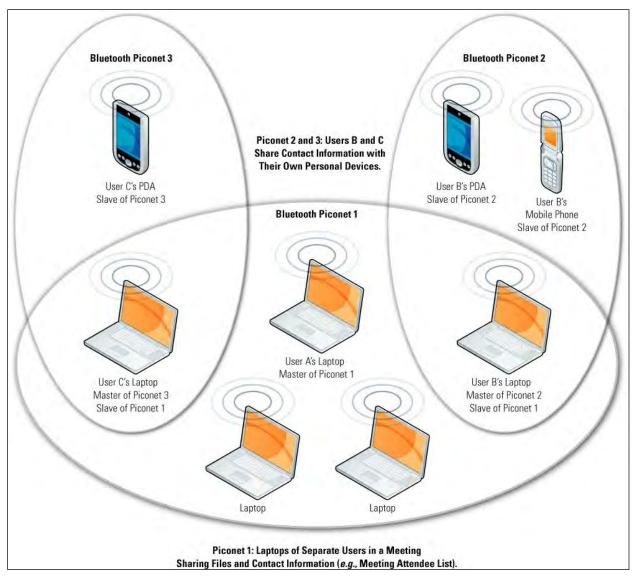



Figure 2-3. Bluetooth Networks (Multiple Scatternets)

The Bluetooth core protocols provide no multi-hop network routing capabilities for devices involved in scatternets. For example in Figure 2-3, User C's PDA in Piconet 3 cannot communicate with User B's PDA or Mobile Phone in Piconet 2 without establishing an additional piconet between them.

Scatternets are only available to BR/EDR devices, because Bluetooth LE technology does not support that feature.

# 3. Bluetooth Security Features

This section provides an overview of the security mechanisms included in the Bluetooth specifications to illustrate their limitations and provide a foundation for the security recommendations in Section 4. A high-level example of the scope of the security for the Bluetooth radio path is depicted in Figure 3-1. In this example, Bluetooth security is provided between the phone and the laptop, while IEEE 802.11 security protects the WLAN link between the laptop and the IEEE 802.11 AP. Communications on the wired network are not protected by Bluetooth or IEEE 802.11 security capabilities. Therefore, end-to-end security is not possible without using higher-layer security solutions atop the security features included in Bluetooth and IEEE 802.11.

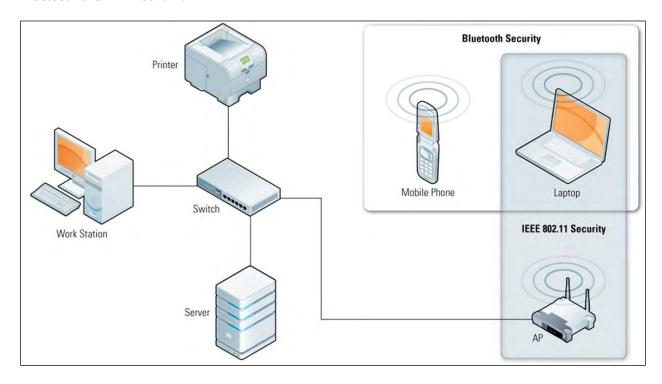



Figure 3-1. Bluetooth Air-Interface Security

Three basic security services are specified in the Bluetooth standard:

- **Authentication:** verifying the identity of communicating devices based on their Bluetooth device address. Bluetooth does not provide native user authentication.
- Confidentiality: preventing information compromise caused by eavesdropping by ensuring that only authorized devices can access and view transmitted data.
- **Authorization:** allowing the control of resources by ensuring that a device is authorized to use a service before permitting it to do so.

The three security services offered by Bluetooth and details about the modes of security are described below. Bluetooth does not address other security services such as audit and non-repudiation; if such services are needed, they should be provided through additional means.

# 3.1 Security Features of Bluetooth BR/EDR/HS

Cumulatively, the family of Bluetooth BR/EDR/HS specifications defines four security modes. Each Bluetooth device must operate in one of these modes, called Security Modes 1 through 4. These modes dictate when a Bluetooth device initiates security, not whether it supports security features.

Security Mode 1 devices are considered non-secure. Security functionality (authentication and encryption) is never initiated, leaving the device and connections susceptible to attackers. In effect, Bluetooth devices in this mode are "indiscriminate" and do not employ any mechanisms to prevent other Bluetooth-enabled devices from establishing connections. However, if a remote device initiates security—such as a pairing, authentication, or encryption request—a Security Mode 1 device will participate. Per their respective Bluetooth specification versions, all v2.0 and earlier devices can support Security Mode 1, and v2.1 and later devices can use Security Mode 1 for backward compatibility with older devices. However, NIST recommends never using Security Mode 1.

In Security Mode 2, a service level-enforced security mode, security procedures may be initiated after link establishment but before logical channel establishment. For this security mode, a local security manager (as specified in the Bluetooth architecture) controls access to specific services. The centralized security manager maintains policies for access control and interfaces with other protocols and device users. Varying security policies and trust levels to restrict access can be defined for applications with different security requirements operating in parallel. It is possible to grant access to some services without providing access to other services. In this mode, the notion of authorization—the process of deciding whether a specific device is allowed to have access to a specific service—is introduced. It is important to note that the authentication and encryption mechanisms used for Security Mode 2 are implemented in the controller, as with Security Mode 3 described below. All v2.0 and earlier devices can support Security Mode 2, but v2.1 and later devices can only support it for backward compatibility with v2.0 or earlier devices.

Security Mode 3 is the link level-enforced security mode, in which a Bluetooth device initiates security procedures before the physical link is fully established. Bluetooth devices operating in Security Mode 3 mandate authentication and encryption for all connections to and from the device. All v2.0 and earlier devices can support Security Mode 3, but v2.1 devices can only support it for backward compatibility purposes.

Similar to Security Mode 2, Security Mode 4 (introduced in Bluetooth v2.1 + EDR) is a service-level-enforced security mode in which security procedures are initiated after physical and logical link setup. Security Mode 4 uses Secure Simple Pairing (SSP), in which Elliptic Curve Diffie-Hellman (ECDH) replaces legacy key agreement for link key generation (see Section 3.1.1). However, the device authentication and encryption algorithms are identical to the algorithms in Bluetooth v2.0 + EDR and earlier versions. Security requirements for services protected by Security Mode 4 must be classified as one of the following:

- Authenticated link key required
- Unauthenticated link key required
- No security required.

Whether or not a link key is authenticated depends on the SSP association model used (see Section 3.1.1.2). Security Mode 4 requires encryption for all services (except Service Discovery) and is mandatory for communication between v2.1 and later BR/EDR devices. However, for backward

compatibility, a Security Mode 4 device can fall back to any of the other three Security Modes when communicating with Bluetooth v2.0 and earlier devices that do not support Security Mode 4. In this case, NIST recommends using Security Mode 3.

The remainder of this section discusses specific Bluetooth security components in more detail—pairing and link key generation, authentication, confidentiality, and other Bluetooth security features.

## 3.1.1 Pairing and Link Key Generation

Essential to the authentication and encryption mechanisms provided by Bluetooth is the generation of a secret symmetric key, called the "link key." As mentioned in Section 3.1, Bluetooth BR/EDR performs pairing (i.e., link key generation) in one of two ways. Security Modes 2 and 3 initiate link key establishment via a method called Personal Identification Number (PIN) Pairing (i.e., Legacy or Classic Pairing), while Security Mode 4 uses SSP. Both methods are described below.

# 3.1.1.1 PIN Pairing

For PIN pairing, two Bluetooth devices simultaneously derive link keys when the user(s) enter an identical secret PIN into one or both devices, depending on the configuration and device type. The PIN entry and key derivation are depicted conceptually in Figure 3-2. Note that if the PIN is less than 16 bytes, the initiating device's address (BD\_ADDR) supplements the PIN value to generate the initialization key. The  $E_x$  boxes represent encryption algorithms that are used during the Bluetooth link key derivation processes. More details on the Bluetooth authentication and encryption procedures are outlined in Sections 3.1.2 and 3.1.3, respectively.

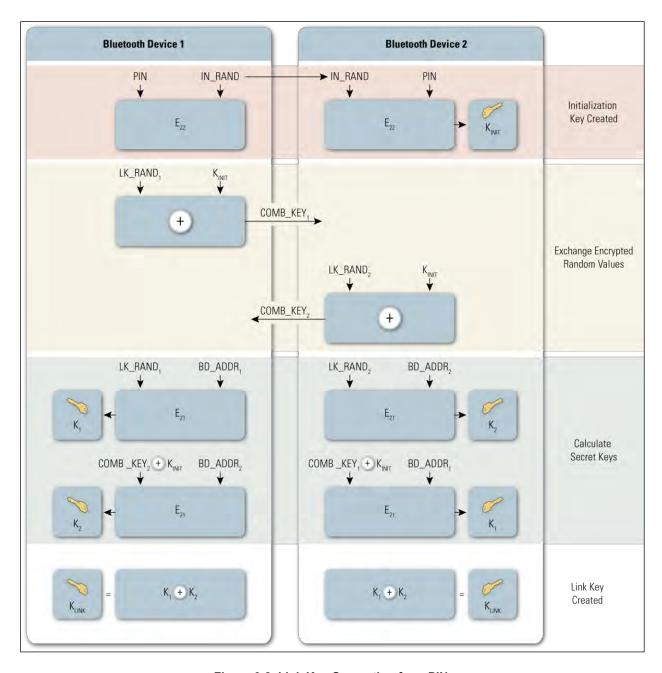



Figure 3-2. Link Key Generation from PIN

After link key generation is complete, the devices complete pairing by mutually authenticating each other to verify they have the same link key. The PIN code used in Bluetooth pairing can vary between 1 and 16 bytes or alphanumeric characters. The typical four-digit PIN may be sufficient for low-risk situations; a longer PIN (e.g., 8-character alphanumeric) should be used for devices that require a higher level of security.<sup>8</sup>

The Bluetooth Security White Paper from the Bluetooth Special Interest Group is available at <a href="http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth">http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth</a> 24Security Paper.pdf.

-

# 3.1.1.2 Secure Simple Pairing

SSP was introduced in Bluetooth v2.1 + EDR for use with Security Mode 4. SSP simplifies the pairing process by providing a number of association models that are flexible in terms of device input/output capability. SSP also improves security through the addition of ECDH public key cryptography for protection against passive eavesdropping and man-in-the-middle attacks (MITM) during pairing.

The four association models offered in SSP are as follows:<sup>9</sup>

- Numeric Comparison was designed for the situation where both Bluetooth devices are capable of displaying a six-digit number and allowing a user to enter a "yes" or "no" response. During pairing, a user is shown a six-digit number on each display and provides a "yes" response on each device if the numbers match. Otherwise, the user responds "no" and pairing fails. A key difference between this operation and the use of PINs in legacy pairing is that the displayed number is not used as input for link key generation. Therefore, an eavesdropper who is able to view (or otherwise capture) the displayed value could not use it to determine the resulting link or encryption key.
- Passkey Entry was designed for the situation where one Bluetooth device has input capability (e.g., keyboard), while the other device has a display but no input capability. In this model, the device with only a display shows a six-digit number that the user then enters on the device with input capability. As with the Numeric Comparison model, the six-digit number used in this transaction is not incorporated into link key generation and is of no use to an eavesdropper.
- Just Works was designed for the situation where at least one of the pairing devices has neither a display nor a keyboard for entering digits (e.g., headset). It performs Authentication Stage 1 (see Figure 3-3) in the same manner as the Numeric Comparison model, except that a display is not available. The user is required to accept a connection without verifying the calculated value on both devices, so Just Works provides no MITM protection.
- Out of Band (OOB) was designed for devices that support a common additional wireless/wired technology (e.g., Near Field Communication or NFC) for the purposes of device discovery and cryptographic value exchange. In the case of NFC, the OOB model allows devices to pair by simply "tapping" one device against the other, followed by the user accepting the pairing via a single button push. It is important to note that to keep the pairing process as secure as possible, the OOB technology should be designed and configured to mitigate eavesdropping and MITM attacks.

Security Mode 4 requires Bluetooth services to mandate an authenticated link key, an unauthenticated link key, or no security at all. Of the association models described above, all but the Just Works model provide authenticated link keys.

Figure 3-3 shows how the link key is established for SSP. Note how this technique uses ECDH public/private key pairs rather than generating a symmetric key via a PIN.

-

This information is derived from the Bluetooth 2.1 specification, which is available at <a href="https://www.bluetooth.org/Technical/Specifications/adopted.htm">https://www.bluetooth.org/Technical/Specifications/adopted.htm</a>.

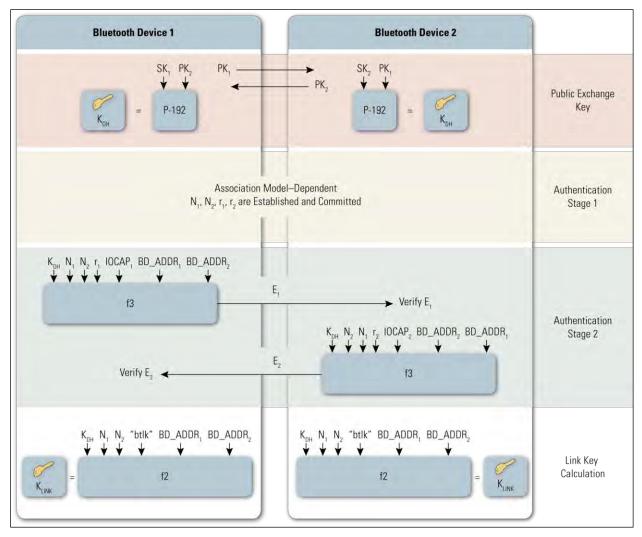



Figure 3-3. Link Key Establishment for Secure Simple Pairing

#### 3.1.1.3 AMP Link Key Derivation from Bluetooth Link Key

For AMP link security (e.g., IEEE 802.11, as introduced in Bluetooth v3.0), an AMP link key is derived from the Bluetooth link key. A Generic AMP Link Key (GAMP\_LK) is generated by the AMP Manager in the host stack whenever a Bluetooth link key is created or changed. As shown in Figure 3-4, the GAMP\_LK is generated using the Bluetooth link key (concatenated with itself) and an extended ASCII key identifier (keyID) of "gamp" as inputs to a HMAC-SHA-256 function. Subsequently, a Dedicated AMP Link Key (for a specific AMP and Trusted Device combination) is derived from the Generic AMP Link Key and keyID. For the 802.11 AMP Link Key, the keyID is "802b".

For IEEE 802.11 AMPs, the Dedicated AMP Link Key is used as the 802.11 Pairwise Master Key. See NIST Special Publication 800-97, *Establishing Wireless Robust Security Networks: A Guide to IEEE* 802.11i<sup>10</sup>, for more information about IEEE 802.11 security.

Download a copy of NIST SP 800-97 here: <a href="http://csrc.nist.gov/publications/nistpubs/800-97/SP800-97.pdf">http://csrc.nist.gov/publications/nistpubs/800-97/SP800-97.pdf</a>

\_

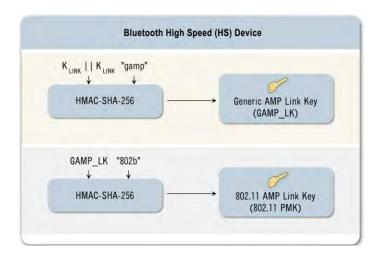



Figure 3-4. AMP Link Key Derivation

#### 3.1.2 Authentication

The Bluetooth device authentication procedure is in the form of a challenge–response scheme. Each device interacting in an authentication procedure is referred to as either the claimant or the verifier. The *claimant* is the device attempting to prove its identity, and the *verifier* is the device validating the identity of the claimant. The challenge–response protocol validates devices by verifying the knowledge of a secret key—the Bluetooth link key. Figure 3-5 conceptually depicts the challenge–response verification scheme.

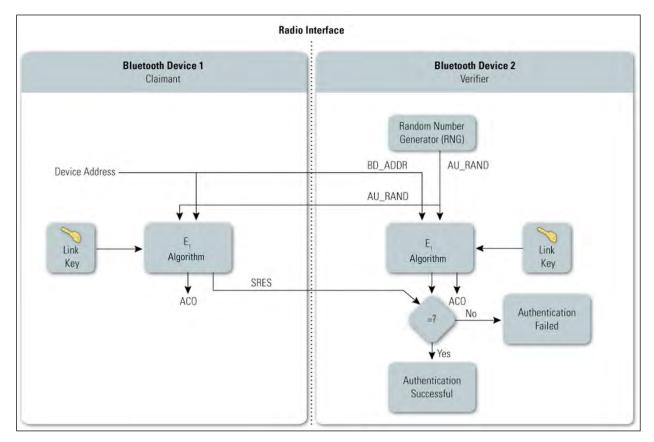



Figure 3-5. Bluetooth Authentication

The steps in the authentication process are as follows:

- Step 1. The verifier transmits a 128-bit random challenge (AU RAND) to the claimant.
- Step 2. The claimant uses the E<sub>1</sub> algorithm<sup>11</sup> to compute an authentication response using his or her unique 48-bit Bluetooth device address (BD\_ADDR), the link key, and AU\_RAND as inputs. The verifier performs the same computation. Only the 32 most significant bits of the E<sub>1</sub> output are used for authentication purposes. The remaining 96 bits of the 128-bit output are known as the Authenticated Ciphering Offset (ACO) value, which will be used later as input to create the Bluetooth encryption key.
- **Step 3.** The claimant returns the most significant 32 bits of the  $E_1$  output as the computed response, the Signed Response (SRES), to the verifier.
- Step 4. The verifier compares the SRES from the claimant with the value that it computed.
- **Step 5.** If the two 32-bit values are equal, the authentication is considered successful. If the two 32-bit values are not equal, the authentication fails.

Performing these steps once accomplishes one-way authentication. The Bluetooth standard allows both one-way and mutual authentication to be performed. For mutual authentication, the above process is repeated with the verifier and claimant switching roles.

If authentication fails, a Bluetooth device waits an interval of time before making a new attempt. This time interval increases exponentially to prevent an adversary from attempting to gain access by defeating the authentication scheme through trial-and-error with different link keys. It is important to note that this technique does not provide security against offline attacks to determine the link key using eavesdropped pairing frames and exhaustively guessing PINs.

Note that the security associated with authentication is solely based on the secrecy of the link key. While the Bluetooth device addresses and random challenge value are considered public parameters, the link key is not. The link key is derived during pairing and should never be disclosed outside the Bluetooth device or transmitted over wireless links. However, the link key is passed in the clear from the host to the controller (e.g., PC to USB adapter) and the reverse when the host is used for key storage. The challenge value, which is a public parameter associated with the authentication process, must be random and unique for every transaction. The challenge value is derived from a pseudo-random generator within the Bluetooth silicon.

#### 3.1.3 Confidentiality

In addition to the Security Modes for pairing and authentication, Bluetooth provides a separate confidentiality service to thwart attempts to eavesdrop on the payloads of the packets exchanged between Bluetooth devices. Bluetooth has three Encryption Modes, but only two of them actually provide confidentiality. The modes are as follows:

- **Encryption Mode 1**—No encryption is performed on any traffic.
- Encryption Mode 2—Individually addressed traffic is encrypted using encryption keys based on individual link keys; broadcast traffic is not encrypted.

The E<sub>1</sub> authentication function is based on the SAFER+ algorithm. SAFER stands for Secure And Fast Encryption Routine. The SAFER algorithms are iterated block ciphers (IBCs). In an IBC, the same cryptographic function is applied for a specified number of rounds.

■ Encryption Mode 3—All traffic is encrypted using an encryption key based on the master link key.

Encryption Modes 2 and 3 use the same encryption mechanism.

Security Mode 4 introduced in Bluetooth 2.1 + EDR requires that encryption be used for all data traffic, except for service discovery.

As shown in Figure 3-6, the encryption key provided to the encryption algorithm is produced using an internal key generator (KG). The KG produces stream cipher keys based on the 128-bit link key, which is a secret that is held in the Bluetooth devices; a 128-bit random number (EN\_RAND); and the 96-bit ACO value. The ACO is produced during the authentication procedure, as shown in Figure 3-4.

The Bluetooth encryption procedure is based on a stream cipher, E<sub>0</sub>. A key stream output is *exclusive-OR-ed* with the payload bits and sent to the receiving device. This key stream is produced using a cryptographic algorithm based on linear feedback shift registers (LFSRs).<sup>12</sup> The encryption function takes the following as inputs: the master device address (BD\_ADDR), the 128-bit random number (EN\_RAND), a slot number based on the piconet clock, and an encryption key, which when combined initialize the LFSRs before the transmission of each packet, if encryption is enabled. The slot number used in the stream cipher changes with each packet; the ciphering engine is also reinitialized with each packet while the other variables remain static.

\_

<sup>&</sup>lt;sup>2</sup> LFSRs are used in coding (error control coding) theory and cryptography. LFSR-based key stream generators (KSG), composed of exclusive-OR gates and shift registers, are common in stream ciphers and are very fast in hardware.

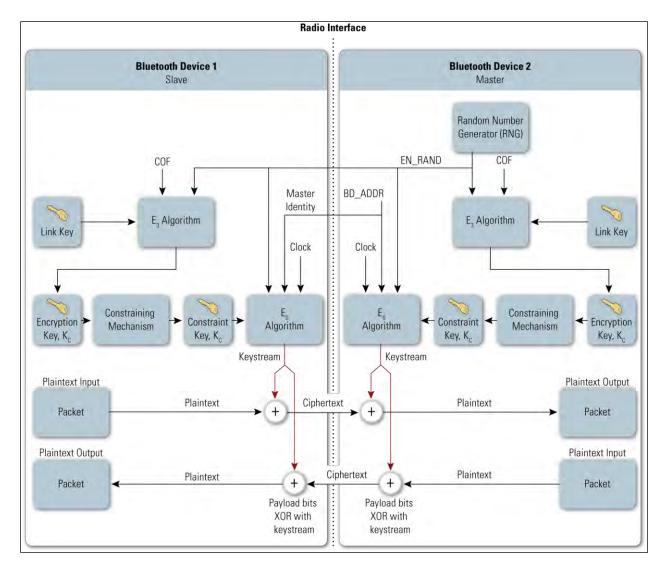



Figure 3-6. Bluetooth Encryption Procedure

The encryption key  $(K_C)$  is derived from the current link key and may vary in single byte increments from 1 byte to 16 bytes in length, as set during a negotiation process that occurs between the master and slave devices. During this negotiation, a master device makes a key size suggestion for the slave. The initial key size suggested by the master is programmed into the controller by the manufacturer and is not always 16 bytes. In product implementations, a "minimum acceptable" key size parameter can be set to prevent a malicious user from driving the key size down to the minimum of 1 byte, which would make the link less secure.

It is important to note that  $E_0$  is not a Federal Information Processing Standards (FIPS) approved algorithm and has come under scrutiny in terms of algorithmic strength. A published theoretical known-plaintext attack can recover the encryption key in  $2^{38}$  computations, compared with a brute force attack, which would require testing  $2^{128}$  possible keys. If communications require FIPS-approved cryptographic

.

Y. Lu, W. Meier, and S. Vaudenay. "The Conditional Correlation Attack: A Practical Attack on Bluetooth Encryption." <a href="http://lasecwww.epfl.ch/pub/lasec/doc/LMV05.pdf">http://lasecwww.epfl.ch/pub/lasec/doc/LMV05.pdf</a>

protection (e.g., to protect sensitive information transmitted by Federal agencies), this protection can be achieved by layering application-level FIPS-approved encryption over the native Bluetooth encryption.

# 3.1.4 Trust Levels, Service Levels, and Authorization

In addition to the four security modes, Bluetooth allows two levels of trust and three levels of service security. The two Bluetooth levels of trust are trusted and untrusted. A *trusted device* has a fixed relationship with another device and has full access to all services. An *untrusted device* does not have an established relationship with another Bluetooth device, which results in the untrusted device receiving restricted access to services.

The Bluetooth specification specifies three levels of security for Bluetooth services. These levels allow independent configuration and alteration of the requirements for authorization, authentication, and encryption. The service security levels are as follows:

- **Service Level 1**—Requires authorization and authentication. Automatic access is granted only to trusted devices; untrusted devices need manual authorization.
- Service Level 2—Requires authentication only; authorization is not necessary. Access to an application is allowed only after an authentication procedure.
- **Service Level 3**—Open to all devices, with no authentication required. Access is granted automatically.

The Bluetooth architecture allows for defining security policies that can set trust relationships in such a way that even trusted devices could gain access only to specific services. Although Bluetooth core protocols can only authenticate devices and not users, user-based authentication is still possible. The Bluetooth security architecture (through the security manager) allows applications to enforce more granular security policies. The link layer which Bluetooth-specific security controls operate at is transparent to the security controls imposed by the application layers. Thus, user-based authentication and fine-grained access control within the Bluetooth security framework are possible through the application layers, although doing so is beyond the scope of the Bluetooth specification.

#### 3.2 Security Features of Bluetooth LE

Because of the intent for Bluetooth LE to support computationally and storage-constrained devices, LE security is different from Bluetooth BR/EDR/HS. One difference is that LE pairing results in the generation of a Long-Term Key (LTK) rather than a Link Key. While fundamentally performing the same secret key function as the Link Key, the LTK is established in a different manner. The LTK is generated using a key transport protocol rather than key agreement as with BR/EDR. That is, one device determines the LTK and sends it over to the other device during pairing—instead of both devices generating the same key individually.

LE introduces the use of Advanced Encryption Standard–Counter with CBC-MAC (AES-CCM) encryption for the first time in a Bluetooth specification. In addition to providing strong, standards-based encryption, the inclusion of AES-CCM paves the way for native FIPS-140 validation of Bluetooth LE devices in the future.

LE also introduces features such as private device addresses and data signing. New cryptographic keys called the Identity Resolving Key (IRK) and Connection Signature Resolving Key (CSRK) support these features, respectively. The IRK is used to resolve public to private device address mapping. This allows a trusted device to determine another device's private device address from a public (random) device

address. This new security feature provides privacy for a particular device. Previously, a device would be assigned a static address that would be made available during discovery. If that device remained discoverable, its location could be tracked by an adversary. The CSRK is used to verify cryptographically signed data frames from a particular device. This allows a Bluetooth connection to use data signing (providing integrity and authentication) to protect the connection instead of data encryption (which, in the case of AES-CCM, provides confidentiality, integrity, and authentication).

All of these cryptographic keys (i.e., LTK, IRK, CSRK) are generated and securely distributed during LE pairing. See Section 3.2.2 for details.

## 3.2.1 LE Security Modes and Levels

LE security modes are similar to BR/EDR service-level security modes (i.e., Security Modes 2 and 4) in that each service can have its own security requirements. However, Bluetooth LE also specifies that each service requirements can have its own security requirements as well. A device enforces the service-related security requirements by following the appropriate security mode and level.

LE Security Mode 1 has multiple levels associated with encryption. Level 1 specifies no security, meaning no authentication and no encryption will be initiated. Level 2 requires unauthenticated pairing with encryption. Level 3 requires authenticated pairing with encryption.

LE Security Mode 2 has multiple levels associated with data signing. Data signing provides strong data integrity but not confidentiality. Level 1 requires unauthenticated pairing with data signing. Level 2 requires authenticated pairing with data signing.

If a particular service request and the associated service have different security modes and/or levels, the stronger security requirements prevail. For example, if either requires Security Mode 1 Level 3, then the requirements for Security Mode 1 Level 3 are enforced.

Because Security Mode 1 Level 3 requires authenticated pairing and encryption, NIST considers this the most secure of these modes/levels and strongly recommends its use for all connections. Security Mode 1 Level 1 is the least secure and should never be used. Also, because Security Mode 2 does not provide encryption, Security Mode 1 Level 3 is strongly preferred over Security Mode 2.

## 3.2.2 LE Pairing Methods

Although LE uses similar pairing method names to BR/EDR SSP, LE pairing does not use ECDH-based cryptography and provides no eavesdropping protection. Therefore, if an attacker can capture the LE pairing frames, he/she may be able to determine the resulting LTK.

Because key transport is used rather than key agreement for LE pairing, a key distribution step is required during LE pairing. As shown in Figure 3-7, LE pairing begins with the two devices agreeing on a Temporary Key (TK), whose value depends on the pairing method being used. The devices then exchange random values and generate a Short Term Key (STK) based on these values and the TK. The link is then encrypted using the STK, which allows secure key distribution of the LTK, IRK, and CSRK.

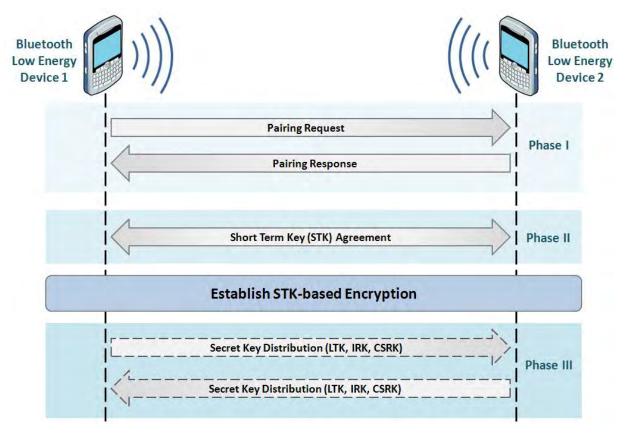



Figure 3-7. Bluetooth Low Energy Pairing

The following subsections describe the LE pairing association models. As with BR/EDR SSP, the association model that is used for a particular connection is based on the input/output capabilities of both devices. It is important to note that the LE pairing association model names are similar to those from BR/EDR SSP association models, but the security the models provide are very different.

#### 3.2.2.1 Out of Band

If both devices support a common OOB technology, such as NFC or tethering, they will use the OOB method to pair. In this model, the TK is passed over the OOB technology from one device to the other.

The TK should be unique, random, and equivalent to six decimal digits (i.e., in the hexadecimal range 0x0–0xF423F) at a minimum. NIST strongly recommends use of a full 128-bit random value when practical.

Because OOB pairing results in an authenticated LTK, it should provide at least one-in-a-million protection against MITM attacks—based on the premise that an attacker would have to successfully guess the six-digit TK value. However, the actual protection provided by OOB pairing depends on the MITM protection provided by the OOB technology itself because a successful OOB eavesdropper would know the TK value instead of having to guess it.

## 3.2.2.2 Passkey Entry

If the devices do not support a common OOB technology, the pairing method to be used is determined based on the input/output capabilities of both devices.

If, at a minimum, one device supports keyboard input and the other a display output (or keyboard input as well), then the Passkey Entry pairing method is used to pair. In this model, the TK is generated from the passkey generated and/or entered in each device. The specification requires the passkey size to be 6 numeric digits; therefore, a maximum of 20 bits of entropy can be provided.

Passkey Entry pairing also results in an authenticated LTK. Because a six-digit passkey is used, an attacker would have a one-in-a-million chance of guessing the correct passkey to perform a MITM attack. NIST recommends using a unique, random passkey for each pairing to provide this level of protection across multiple pairings.

#### **3.2.2.3 Just Works**

If neither OOB nor Passkey Entry association models are possible because of device input/output limitations, then the Just Works pairing method is used.

As with SSP in BR/EDR/HS, the Just Works pairing method for LE is the weakest of the pairing options from a security perspective. In this model, the TK is set to all zeros (0x00). Therefore, an eavesdropper or MITM attacker does not need to guess the TK to generate the STK.

The Just Works pairing method results in an unauthenticated LTK because no MITM protection is provided during pairing.

# 3.2.3 LE Key Generation and Distribution

Once the link is encrypted using the STK, the two devices distribute secret keys such as LTK, IRK, and CSRK. Two options are specified for key generation prior to distribution. A device may simply generate random 128-bit values and store them in a local database (called "Database Lookup" in the specification). The other option is to use a single 128-bit static but random value called Encryption Root (ER) along with a 16-bit Diversifier (DIV) unique to each trusted device to generate the keys. This option is called "Key Hierarchy" in the specification. For example, the keys can be derived from ER and DIV using the following formulas:

```
LTK = d1(ER, DIV, 0)
CSRK = d1(ER, DIV, 1)
IRK = d1(IR, 1, 0)
```

where d1 is a called a Diversifying Function and is based on AES-128 encryption. However, the specification allows the user of other key derivation functions (e.g., those discussed in NIST SP 800-108, *Recommendation for Key Derivation Using Pseudorandom Functions*<sup>14</sup>).

Using this Key Hierarchy method, the device does not need to store multiple 128-bit keys for each trusted device; rather, it only needs to store its ER and the unique DIVs for each device. During reconnection, the remote device sends its DIV. The local device can then regenerate the LTK and/or CSRK from its ER and the passed DIV. If data encryption or signing is set up successfully, it is verified that the remote device had the correct LTK or CSRK. If unsuccessful, the link is dropped.

Note in the above example that the IRK is static and device-specific and therefore could be generated prior to pairing (e.g., during manufacturing).

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

# 3.2.4 Confidentiality, Authentication, and Integrity

AES-CCM is used in Bluetooth LE to provide confidentiality as well as per-packet authentication and integrity. There is no separate authentication challenge/response step as with BR/EDR/HS to verify that they both have the same LTK or CSRK.

Because the LTK is used as input for the encryption key, successful encryption setup provides implicit authentication. Similarly, successful data signing provides implicit authentication that the remote device holds the correct CSRK—although confidentiality is not provided.

# 4. Bluetooth Vulnerabilities, Threats, and Countermeasures

This section describes vulnerabilities in Bluetooth technologies and threats against those vulnerabilities. Based on these identified common vulnerabilities and threats, as well as the Bluetooth security features described in Section 3, this section also recommends possible countermeasures that can be used to improve Bluetooth security.

Organizations that are planning countermeasures for Bluetooth technologies that use the Bluetooth LE v4.0 specification should carefully consider its security implications. The specification was released in mid-2010, and at the time of this writing, few products that support the specification are available for evaluation. As compliant products become available, additional vulnerabilities will likely be discovered, and additional recommendations will be needed for effectively securing Bluetooth LE devices. Organizations planning to deploy Bluetooth LE devices should carefully monitor developments involving new vulnerabilities, threats, and additional security control recommendations.

#### 4.1 Bluetooth Vulnerabilities

Table 4-1 provides an overview of a number of known security vulnerabilities associated with Bluetooth. The Bluetooth security checklist in Section 4.4 addresses these vulnerabilities.

Table 4-1. Key Problems with Native Bluetooth Security

|          | Security Issue or Vulnerability                                             | Remarks                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Versions | Versions Before Bluetooth v1.2                                              |                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1        | Link keys based on unit keys are static and reused for every pairing.       | A device that uses unit keys will use the same link key for every device with which it pairs. This is a serious cryptographic key management vulnerability.                                                                                                                                                                                                        |  |  |  |  |  |
| 2        | Use of link keys based on unit keys can lead to eavesdropping and spoofing. | Once a device's unit key is divulged (i.e., upon its first pairing), any other device that has the key can spoof that device or any other device with which it has paired. Further, it can eavesdrop on that device's connections whether they are encrypted or not.                                                                                               |  |  |  |  |  |
| Versions | Before Bluetooth v2.1                                                       |                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 3        | Security Mode 1 devices never initiate security mechanisms.                 | Devices that use Security Mode 1 are inherently insecure. For v2.0 and earlier devices, Security Mode 3 (link level security) is highly recommended.                                                                                                                                                                                                               |  |  |  |  |  |
| 4        | PINs can be too short.                                                      | Weak PINs, which are used to protect the generation of link keys during pairing, can be easily guessed. People have a tendency to select short PINs.                                                                                                                                                                                                               |  |  |  |  |  |
| 5        | PIN management is lacking.                                                  | Establishing use of adequate PINs in an enterprise setting with many users may be difficult. Scalability problems frequently yield security problems. The best alternative is for one of the devices being paired to generate the PIN using its random number generator.                                                                                           |  |  |  |  |  |
| 6        | The encryption keystream repeats after 23.3 hours of use.                   | As shown in Figure 3-5, the encryption keystream is dependent on the link key, EN_RAND, Master BD_ADDR, and Clock. Only the Master's clock will change during a particular encrypted connection. If a connection lasts more than 23.3 hours, the clock value will begin to repeat, hence generating an identical keystream to that used earlier in the connection. |  |  |  |  |  |

|             | Convite Innua on Vulnamehilite                                                                                                                                                               | Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Divista eth | Security Issue or Vulnerability                                                                                                                                                              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | v2.1 and v3.0                                                                                                                                                                                | Carleinhant against devices about a suite MITM                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7           | Just Works association model does not provide MITM protection during pairing, which results in an unauthenticated link key.                                                                  | For highest security, devices should require MITM protection during SSP and refuse to accept unauthenticated link keys generated using Just Works pairing.                                                                                                                                                                                                                                                                                                                                            |
| 8           | SSP ECDH keypairs may be static or otherwise weakly generated.                                                                                                                               | Weak ECDH keypairs minimize SSP eavesdropping protection, which may allow attackers to determine secret link keys. All devices should have unique, strongly-generated ECDH keypairs.                                                                                                                                                                                                                                                                                                                  |
| 9           | Static SSP passkeys facilitate MITM attacks.                                                                                                                                                 | Passkeys provide MITM protection during SSP. Devices should use random, unique passkeys for each pairing attempt.                                                                                                                                                                                                                                                                                                                                                                                     |
| 10          | Security Mode 4 devices (i.e., v2.1 or later) are allowed to fall back to any other security mode when connecting with devices that do not support Security Mode 4 (i.e., v2.0 and earlier). | The worst-case scenario would be a device falling back to Security Mode 1, which provides no security. NIST strongly recommends that a Security Mode 4 device fall back to Security Mode 3 in this scenario.                                                                                                                                                                                                                                                                                          |
| Versions    | Before Bluetooth v4.0 (Low Energy)                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11          | Attempts for authentication are repeatable.                                                                                                                                                  | A mechanism needs to be included in Bluetooth devices to prevent unlimited authentication requests. The Bluetooth specification requires an exponentially increasing waiting interval between successive authentication attempts. However, it does not require such a waiting interval for authentication challenge requests, so an attacker could collect large numbers of challenge responses (which are encrypted with the secret link key) that could leak information about the secret link key. |
| 12          | The master key used for broadcast encryption is shared among all piconet devices.                                                                                                            | Secret keys shared amongst more than two parties facilitate impersonation attacks.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13          | The E0 stream cipher algorithm used for Bluetooth BR/EDR encryption is weak.                                                                                                                 | FIPS-approved encryption can be achieved by layering application-level FIPS-approved encryption over the Bluetooth BR/EDR encryption. Note that Bluetooth LE uses AES-CCM.                                                                                                                                                                                                                                                                                                                            |
| 14          | Privacy may be compromised if the Bluetooth device address (BD_ADDR) is captured and associated with a particular user.                                                                      | Once the BD_ADDR is associated with a particular user, that user's activities and location could be tracked.                                                                                                                                                                                                                                                                                                                                                                                          |
| 15          | Device authentication is simple shared-key challenge-response.                                                                                                                               | One-way-only challenge–response authentication is subject to MITM attacks. Bluetooth provides for mutual authentication, which should be used to provide verification that devices and the network are legitimate.                                                                                                                                                                                                                                                                                    |
| Bluetooth   | v4.0 (Low Energy)                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16          | LE pairing provides no eavesdropping protection. Further, the Just Works pairing method provides no MITM protection.                                                                         | If successful, eavesdroppers can capture secret keys (i.e., LTK, CSRK, IRK) distributed during LE pairing. Further, MITM attackers can capture and manipulate data transmitted between trusted devices. LE devices should be paired in a secure environment to minimize the risk of eavesdropping and MITM attacks. Just Works pairing should not be used.                                                                                                                                            |

|             | Security Issue or Vulnerability                                                                              | Remarks                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 17          | LE Security Mode 1 Level 1 does not require any security mechanisms (i.e., no authentication or encryption). | Similar to BR/EDR Security Mode 1, this is inherently insecure. LE Security Mode 1 Level 3 (authenticated pairing and encryption) is highly recommended.                                                                                                           |  |  |  |  |
| All Version | All Versions                                                                                                 |                                                                                                                                                                                                                                                                    |  |  |  |  |
| 18          | Link keys are stored improperly.                                                                             | Link keys can be read or modified by an attacker if they are not securely stored and protected via access controls.                                                                                                                                                |  |  |  |  |
| 19          | Strengths of the pseudo-random number generators (PRNG) are not known.                                       | The Random Number Generator (RNG) may produce static or periodic numbers that may reduce the effectiveness of the security mechanisms. Bluetooth implementations should use strong PRNGs based on NIST standards.                                                  |  |  |  |  |
| 20          | Encryption key length is negotiable.                                                                         | The v3.0 and earlier specifications allow devices to negotiate encryption keys as small as one byte.  Bluetooth LE requires a minimum key size of seven bytes. NIST strongly recommends using the full 128-bit key strength for both BR/EDR (E0) and LE (AES-CCM). |  |  |  |  |
| 21          | No user authentication exists.                                                                               | Only device authentication is provided by the specification. Application-level security, including user authentication, can be added via overlay by the application developer.                                                                                     |  |  |  |  |
| 22          | End-to-end security is not performed.                                                                        | Only individual links are encrypted and authenticated. Data is decrypted at intermediate points. End-to-end security on top of the Bluetooth stack can be provided by use of additional security controls.                                                         |  |  |  |  |
| 23          | Security services are limited.                                                                               | Audit, non-repudiation, and other services are not part of the standard. If needed, these services can be incorporated in an overlay fashion by the application developer.                                                                                         |  |  |  |  |
| 24          | Discoverable and/or connectable devices are prone to attack.                                                 | Any device that must go into discoverable or connectable mode to pair or connect should only do so for a minimal amount of time. A device should not be in discoverable or connectable mode all the time.                                                          |  |  |  |  |

#### 4.2 **Bluetooth Threats**

Bluetooth offers several benefits and advantages, but the benefits are not provided without risk. Bluetooth technology and associated devices are susceptible to general wireless networking threats, such as denial of service attacks, eavesdropping, MITM attacks, message modification, and resource misappropriation, 15 and are also threatened by more specific Bluetooth-related attacks, such as the following:

**Bluesnarfing.** Bluesnarfing <sup>16</sup> enables attackers to gain access to a Bluetooth-enabled device by exploiting a firmware flaw in older devices. This attack forces a connection to a Bluetooth device, allowing access to data stored on the device including the device's international mobile equipment identity (IMEI). The IMEI is a unique identifier for each device that an attacker could potentially use to route all incoming calls from the user's device to the attacker's device.

http://trifinite.org/trifinite\_stuff\_bluesnarf.html

Additional information on general wireless security threats is available in Section 3 of NIST SP 800-48 Revision 1, Guide to Securing Legacy IEEE 802.11 Wireless Networks (http://csrc.nist.gov/publications/nistpubs/800-48-rev1/SP800-48r1.pdf).

- Bluejacking. Bluejacking is an attack conducted on Bluetooth-enabled mobile devices, such as cell phones. An attacker initiates bluejacking by sending unsolicited messages to the user of a Bluetooth-enabled device. The actual messages do not cause harm to the user's device, but they may entice the user to respond in some fashion or add the new contact to the device's address book. This message-sending attack resembles spam and phishing attacks conducted against e-mail users. Bluejacking can cause harm when a user initiates a response to a bluejacking message sent with a harmful intent.
- **Bluebugging.** Bluebugging<sup>17</sup> exploits a security flaw in the firmware of some older Bluetooth devices to gain access to the device and its commands. This attack uses the commands of the device without informing the user, allowing the attacker to access data, place phone calls, eavesdrop on phone calls, send messages, and exploit other services or features offered by the device.
- Car Whisperer. Car Whisperer<sup>18</sup> is a software tool developed by European security researchers that exploits a key implementation issue in hands-free Bluetooth car kits installed in automobiles. The Car Whisperer software allows an attacker to send to or receive audio from the car kit. An attacker could transmit audio to the car's speakers or receive audio (eavesdrop) from the microphone in the car.
- **Denial of Service.** Bluetooth is susceptible to DoS attacks. Impacts include making a device's Bluetooth interface unusable and draining the device's battery. These types of attacks are not significant and, because of the proximity required for Bluetooth use, can usually be easily averted by simply moving out of range.
- Fuzzing Attacks. Bluetooth fuzzing attacks consist of sending malformed or otherwise non-standard data to a device's Bluetooth radio and observing how the device reacts. If a device's response is slowed or stopped by these attacks, a serious vulnerability potentially exists in the protocol stack.
- Pairing Eavesdropping. PIN Pairing (Bluetooth 2.0 and earlier) and LE Pairing (Bluetooth 4.0) are susceptible to eavesdropping attacks. The successful eavesdropper who collects all pairing frames can determine the secret key(s), which allows trusted device impersonation and active/passive data decryption.
- Secure Simple Pairing Attacks. Noting that Just Works SSP provides no MITM protection, there are a number of techniques that can be used to force a remote device to use it (e.g., the attack device claims that it has no input/output capabilities). Further, fixed passkeys could allow an attacker to perform MITM attacks as well.

## 4.3 Risk Mitigation and Countermeasures

Organizations should mitigate risks to their Bluetooth implementations by applying countermeasures to address specific threats and vulnerabilities. Some of these countermeasures cannot be achieved through security features built into the Bluetooth specifications. The countermeasures recommended in the checklist in Section 4.4 do not guarantee a secure Bluetooth environment and cannot prevent all adversary penetrations. In addition, security comes at a cost—expenses related to security equipment, inconvenience, maintenance, and operation. Each organization should evaluate the acceptable level of risk based on numerous factors, which will affect the level of security implemented by that organization. To be effective, Bluetooth security should be incorporated throughout the entire lifecycle of Bluetooth solutions.<sup>19</sup>

http://trifinite.org/trifinite\_stuff\_carwhisperer.html

-

http://trifinite.org/trifinite\_stuff\_bluebug.html

For more information about technology lifecycles, see NIST SP 800-64, *Security Considerations in the Information System Development Life Cycle* (<a href="http://csrc.nist.gov/publications/PubsSPs.html">http://csrc.nist.gov/publications/PubsSPs.html</a>).

FIPS Publication (PUB) 199 establishes three security categories—low, moderate, and high—based on the potential impact of a security breach involving a particular system. NIST SP 800-53 provides recommendations for minimum management, operational, and technical security controls for information systems based on the FIPS PUB 199 impact categories. The recommendations in NIST SP 800-53 should be helpful to organizations in identifying the controls needed to protect Bluetooth implementations in general, which should be used in addition to the specific recommendations for Bluetooth implementations listed in this document.

The first line of defense is to provide an adequate level of knowledge and understanding for those who will deal with Bluetooth-enabled devices. Organizations using Bluetooth technology should establish and document security policies that address the use of Bluetooth-enabled devices and users' responsibilities. Organizations should include awareness-based education to support staff understanding and knowledge of Bluetooth. Policy documents should include a list of approved uses for Bluetooth and the type of information that may be transferred over Bluetooth networks. The security policy should also specify a proper password usage scheme. When feasible, a centralized security policy management approach should be used in coordination with an endpoint security product installed on the Bluetooth devices to ensure that the policy is locally and universally enforced.

The general nature and mobility of Bluetooth-enabled devices increases the difficulty of employing traditional security measures across the enterprise. Nevertheless, a number of countermeasures can be enacted to secure Bluetooth devices and communications, ranging from distance and power output to general operation practices. Several countermeasures that could be employed are provided in the checklist in Section 4.4.

# 4.4 Bluetooth Security Checklists

Table 4-2 provides a Bluetooth security checklist with guidelines and recommendations for creating and maintaining secure Bluetooth piconets.

For each recommendation or guideline in the checklist, a justification column lists areas of concern for Bluetooth devices, the security threats and vulnerabilities associated with those areas, risk mitigations for securing the devices from these threats, and vulnerabilities. In addition, for each recommendation three checklist columns are provided.

- The first column, the *Recommended Practice* column, if checked, means that this entry represents a recommendation for all organizations.
- The second column, the *Should Consider* column, if checked, means that the entry's recommendation should be considered carefully by an organization for one or more of the following reasons.
  - First, implementing the recommendation may provide a higher level of security for the wireless environment by offering some additional protection.
  - o Second, the recommendation supports a defense-in-depth strategy.

\_

FIPS PUB 199, Standards for Security Categorization of Federal Information and Information Systems, is available at <a href="http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf">http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf</a>. NIST SP 800-53 Revision 3, Recommended Security Controls for Federal Information Systems and Organizations, is available at <a href="http://csrc.nist.gov/publications/PubsSPs.html#800-53">http://csrc.nist.gov/publications/PubsSPs.html#800-53</a>.

- O Third, it may have significant performance, operational, or cost impacts. In summary, if the *Should Consider* column is checked, organizations should carefully consider the option and weigh the costs versus the benefits.
- The last column, *Status*, is intentionally left blank to allow organization representatives to use this table as a true checklist. For instance, an individual performing a wireless security audit in a Bluetooth environment can quickly check off each recommendation for the organization, asking, "Have I done this?"

**Table 4-2. Bluetooth Piconet Security Checklist** 

|      |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                              |                              | Should Consider Status |        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------|
|      | Security Recommendation                                                                                                                                    | Security Need, Requirement, or Justification                                                                                                                                                                                                                                                                                                                 | Recom-<br>mended<br>Practice |                        | Status |
| Mana | gement Recommendations                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |                              |                        |        |
| 1    | Develop an organizational wireless security policy that addresses Bluetooth technology.                                                                    | A security policy is the foundation for all other countermeasures.                                                                                                                                                                                                                                                                                           | ✓                            |                        |        |
| 2    | Ensure that Bluetooth users on the network are made aware of their security-related responsibilities regarding Bluetooth use.                              | A security awareness program helps users to follow practices that help prevent security incidents.                                                                                                                                                                                                                                                           | <b>√</b>                     |                        |        |
| 3    | Perform comprehensive security assessments at regular intervals to fully understand the organization's Bluetooth security posture.                         | Assessments help identify Bluetooth devices being used within the organization and help ensure the wireless security policy is being followed.                                                                                                                                                                                                               | <b>√</b>                     |                        |        |
| 4    | Ensure that wireless devices and networks involving Bluetooth technology are fully understood from an architecture perspective and documented accordingly. | Bluetooth-enabled devices can contain various networking technologies and interfaces, allowing connections to local and wide area networks. An organization should understand the overall connectivity of each device to identify possible risks and vulnerabilities. These risks and vulnerabilities can then be addressed in the wireless security policy. | ✓                            |                        |        |
| 5    | Provide users with a list of precautionary measures they should take to better protect handheld Bluetooth devices from theft.                              | The organization and its employees are responsible for its wireless technology components because theft of those components could lead to malicious activities against the organization's information system resources.                                                                                                                                      | <b>√</b>                     |                        |        |
| 6    | Maintain a complete inventory of all Bluetooth-enabled wireless devices and addresses (BD_ADDRs).                                                          | A complete inventory list of<br>Bluetooth-enabled wireless devices<br>can be referenced when conducting<br>an audit that searches for<br>unauthorized use of wireless<br>technologies.                                                                                                                                                                       |                              | <b>√</b>               |        |

|      |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                        |                              | Should Consider Status |        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------|
|      | Security Recommendation                                                                                                                                                   | Security Need, Requirement, or Justification                                                                                                                                                                                                                                                                                           | Recom-<br>mended<br>Practice |                        | Status |
| Tech | nical Recommendations                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                        |                              |                        |        |
| 7    | Change the default settings of the Bluetooth device to reflect the organization's security policy.                                                                        | Because default settings are generally not secure, a careful review of those settings should be performed to ensure that they comply with the organizational security policy.                                                                                                                                                          | ✓                            |                        |        |
| 8    | Set Bluetooth devices to the lowest necessary and sufficient power level so that transmissions remain within the secure perimeter of the organization.                    | Setting Bluetooth devices to the lowest necessary and sufficient power level ensures a secure range of access to authorized users. The use of Class 1 devices, as well as external amplifiers or high-gain antennas, should be avoided because of their extended range.                                                                | ✓                            |                        |        |
| 9    | Choose PIN codes that are sufficiently random, long and private. Avoid static and weak PINs, such as all zeroes.                                                          | PIN codes should be random so that malicious users cannot easily guess them. Longer PIN codes are more resistant to brute force attacks. For Bluetooth v2.0 (or earlier) devices, an eight-character alphanumeric PIN should be used, if possible. The use of a fixed PIN is not acceptable.                                           | ✓                            |                        |        |
| 10   | Ensure that link keys are based on combination keys rather than unit keys.                                                                                                | The use of shared unit keys can lead to successful spoofing, MITM, and eavesdropping attacks. The use of unit keys for security was deprecated in Bluetooth v1.2.                                                                                                                                                                      | <b>√</b>                     |                        |        |
| 11   | For v2.1 and later devices using SSP, avoid using the "Just Works" association model. The device must verify that an authenticated link key was generated during pairing. | The "Just Works" association model does not provide MITM protection. Devices that only support Just Works (e.g., devices that have no input/output capability) should not be procured if similarly qualified devices that support one of the other association models (i.e., Numeric Comparison, OOB, or Passkey Entry) are available. | ✓                            |                        |        |
| 12   | For v2.1 and later devices using SSP, random and unique passkeys must be used for each pairing based on the Passkey Entry association model.                              | If a static passkey is used for multiple pairings, the MITM protection provided by the Passkey Entry association model is reduced.                                                                                                                                                                                                     | <b>√</b>                     |                        |        |
| 13   | A Bluetooth v2.1 or later device using Security Mode 4 must fall back to Security Mode 3 for backward compatibility with v2.0 and earlier devices.                        | The Bluetooth specifications allow a v2.1 device to fall back to any Security Mode for backward compatibility. This allows the option of falling back to Security Modes 1-3. As discussed earlier, Security Mode 3 provides the best security.                                                                                         | <b>√</b>                     |                        |        |

|    |                                                                                                                                                                 |                                                                                                                                                                                                                                                       |                              | Checklist          |        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------|
|    | Security Recommendation                                                                                                                                         | Security Need, Requirement, or<br>Justification                                                                                                                                                                                                       | Recom-<br>mended<br>Practice | Should<br>Consider | Status |
| 14 | LE devices and services should use Security Mode 1 Level 3 whenever possible. LE Security Mode 1 Level 3 provides the highest security available for LE devices | Other LE security modes allow unauthenticated pairing and/or no encryption.                                                                                                                                                                           | <b>√</b>                     |                    |        |
| 15 | Service and profile lockdown of device Bluetooth stacks should be performed. <sup>21</sup>                                                                      | Many Bluetooth stacks are designed to support multiple profiles and associated services. The Bluetooth stack on a device should be locked down to ensure only approved profiles and services are available for use.                                   | <b>√</b>                     |                    |        |
| 16 | Bluetooth devices should be configured by default as, and remain, undiscoverable except as needed for pairing.                                                  | This prevents visibility to other Bluetooth devices except when discovery is specifically needed. In addition, the default self-identifying or discoverable names provided on Bluetooth devices should be changed to anonymous, unidentifiable names. | <b>√</b>                     |                    |        |
| 17 | Invoke link encryption for all Bluetooth connections.                                                                                                           | Link encryption should be used to secure all data transmissions during a Bluetooth connection; otherwise, transmitted data are vulnerable to eavesdropping.                                                                                           | <b>√</b>                     |                    |        |
| 18 | If multi-hop wireless communication is being used, ensure that encryption is enabled on every link in the communication chain.                                  | One unsecured link results in compromising the entire communication chain.                                                                                                                                                                            | <b>√</b>                     |                    |        |
| 19 | Ensure device mutual authentication is performed for all connections.                                                                                           | Mutual authentication is required to provide verification that all devices on the network are legitimate.                                                                                                                                             | <b>√</b>                     |                    |        |
| 20 | Enable encryption for all broadcast transmissions (Encryption Mode 3).                                                                                          | Broadcast transmissions secured by link encryption provide a layer of security that protects these transmissions from user interception for malicious purposes.                                                                                       | <b>√</b>                     |                    |        |
| 21 | Configure encryption key sizes to the maximum allowable (128-bit).                                                                                              | Using maximum allowable key sizes provides protection from brute force attacks.                                                                                                                                                                       | <b>√</b>                     |                    |        |

Derived from requirement 1.4 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available at <a href="http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf">http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf</a>

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Checklist                    |                    |        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------|
|      | Security Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Security Need, Requirement, or Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Recom-<br>mended<br>Practice | Should<br>Consider | Status |
| 23   | Use application-level (on top of the Bluetooth stack) authentication and encryption for sensitive data communication.                                                                                                                                                                                                                                                                                                                                                                                            | Bluetooth devices can access link keys from memory and automatically connect with previously paired devices. Incorporating application-level software that implements authentication and encryption will add an extra layer of security. Passwords and other authentication mechanisms, such as biometrics and smart cards, can be used to provide user authentication for Bluetooth devices. Employing higher layer encryption (particularly FIPS 140 validated) over the native encryption will further protect the data in transit. |                              | <b>✓</b>           |        |
| 24   | Deploy user authentication overlays such as biometrics, smart cards, two-factor authentication, or public key infrastructure (PKI).                                                                                                                                                                                                                                                                                                                                                                              | Implementing strong authentication mechanisms can minimize the vulnerabilities associated with passwords and PINs.                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | <b>√</b>           |        |
| Oper | ational Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                    |        |
| 25   | Ensure that Bluetooth capabilities are disabled when they are not in use.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bluetooth capabilities should be disabled on all Bluetooth devices, except when the user explicitly enables Bluetooth to establish a connection. This minimizes exposure to potential malicious activities. For devices that do not support disabling Bluetooth (e.g., headsets), the entire device should be shut off when not in use.                                                                                                                                                                                                | <b>✓</b>                     |                    |        |
| 26   | Perform pairing as infrequently as possible, ideally in a secure area where attackers cannot realistically observe the passkey entry and intercept Bluetooth pairing messages. (Note: A "secure area" is defined as a non-public area that is indoors away from windows in locations with physical access controls.) Users should not respond to any messages requesting a PIN, unless the user has initiated a pairing and is certain the PIN request is being sent by one of the user's devices. <sup>22</sup> | Pairing is a vital security function and requires that users maintain a security awareness of possible eavesdroppers. If an attacker can capture the transmitted frames associated with pairing, determining the link key is straightforward for pre-v2.1 and v4.0 devices (security is solely dependent on PIN entropy and length). This is also recommended for v2.1/3.0 devices, although similar eavesdropping attacks against SSP have not yet been documented.                                                                   | <b>√</b>                     |                    |        |

\_

Derived from requirement 4.1.5 in the DoD Bluetooth Peripheral Security Requirements (16 July 2010), available at <a href="http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf">http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf</a>

|    |                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                              | Checklist          |        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------|
|    | Security Recommendation                                                                                                                                                             | Security Need, Requirement, or Justification                                                                                                                                                                                                           | Recom-<br>mended<br>Practice | Should<br>Consider | Status |
| 27 | A BR/EDR service-level security mode (i.e., Security Mode 2 or 4) should only be used in a controlled and well-understood environment.                                              | Security Mode 3 provides link-level security prior to link establishment, while Security Modes 2 and 4 allow link-level connections before any authentication or encryption is established. It is highly recommended that devices use Security Mode 3. | <b>√</b>                     |                    |        |
| 28 | Ensure that portable devices with Bluetooth interfaces are configured with a password.                                                                                              | This helps prevent unauthorized access if the device is lost or stolen.                                                                                                                                                                                | <b>√</b>                     |                    |        |
| 29 | In the event a Bluetooth device is lost or stolen, users should immediately unpair the missing device from all other Bluetooth devices with which it was previously paired.         | This policy will prevent an attacker from using the lost or stolen device to access another Bluetooth device owned by the user(s).                                                                                                                     | <b>√</b>                     |                    |        |
| 30 | Install antivirus software on Bluetooth-enabled hosts that support such host-based security software.                                                                               | Antivirus software should be installed to ensure that known malware is not introduced to the Bluetooth network.                                                                                                                                        | <b>√</b>                     |                    |        |
| 31 | Fully test and regularly deploy<br>Bluetooth software and firmware<br>patches and upgrades.                                                                                         | Newly discovered security vulnerabilities of vendor products should be patched to prevent malicious and inadvertent exploits. Patches should be fully tested before implementation to ensure that they work.                                           | ✓                            |                    |        |
| 32 | Users should not accept transmissions of any kind from unknown or suspicious devices. These types of transmissions include messages, files, and images.                             | With the increase in the number of Bluetooth-enabled devices, it is important that users only establish connections with other trusted devices and only accept content from these trusted devices                                                      | <b>√</b>                     |                    |        |
| 33 | Fully understand the impacts of deploying any security feature or product prior to deployment.                                                                                      | To ensure a successful deployment, an organization should fully understand the technical, security, operational, and personnel requirements prior to implementation.                                                                                   | <b>√</b>                     |                    |        |
| 34 | Designate an individual to track the progress of Bluetooth security products and standards (perhaps via the Bluetooth SIG) and the threats and vulnerabilities with the technology. | An individual designated to track the latest technology enhancements, standards (perhaps via Bluetooth SIG), and risks will help to ensure the continued secure use of Bluetooth.                                                                      |                              | <b>√</b>           |        |

# **Appendix A—Glossary of Terms**

Selected terms used in the publication are defined below.

**Access Point (AP):** A device that logically connects wireless client devices operating in infrastructure to one another and provides access to a distribution system, if connected, which is typically an organization's enterprise wired network.

**Ad Hoc Network:** A wireless network that dynamically connects wireless client devices to each other without the use of an infrastructure device, such as an access point or a base station.

**Claimant:** The Bluetooth device attempting to prove its identity to the verifier during the Bluetooth connection process.

**Flooding:** An attack in which an attacker sends large numbers of wireless messages at a high rate to prevent the wireless network from processing legitimate traffic.

**Infrared (IR):** An invisible band of radiation at the lower end of the electromagnetic spectrum. It starts at the middle of the microwave spectrum and extends to the beginning of visible light. Infrared transmission requires an unobstructed line of sight between transmitter and receiver.

**Infrastructure Network:** A wireless network that requires the use of an infrastructure device, such as an access point or a base station, to facilitate communication between client devices.

**Jamming:** A device emitting electromagnetic energy on a wireless network's frequency to make it unusable.

**Media Access Control (MAC):** A unique 48-bit value that is assigned to a particular wireless network interface by the manufacturer.

**Piconet:** A small Bluetooth network created on an ad hoc basis that includes two or more devices.

**Range:** The maximum possible distance for communicating with a wireless network infrastructure or wireless client.

**Scatternet:** A chain of piconets created by allowing one or more Bluetooth devices to each be a slave in one piconet and act as the master for another piconet simultaneously. A scatternet allows several devices to be networked over an extended distance.

**Verifier:** The Bluetooth device that validates the identity of the claimant during the Bluetooth connection process.

**Wireless Bridge:** A device that links two wired networks, generally operating at two different physical locations, through wireless communications.

Wireless Local Area Network (WLAN): A group of wireless access points and associated infrastructure within a limited geographic area, such as an office building or building campus, that is capable of radio communications. WLANs are usually implemented as extensions of existing wired LANs to provide enhanced user mobility.

**Wireless Personal Area Network (WPAN):** A small-scale wireless network that requires little or no infrastructure and operates within a short range. A WPAN is typically used by a few devices in a single room instead of connecting the devices with cables.

# **Appendix B—Acronyms and Abbreviations**

Selected acronyms and abbreviations used in the publication are defined below.

**8DPSK** 8 phase Differential Phase Shift Keying

**AC** Alternating Current

**ACO** Authenticated Cipher Offset

**AES-CCM** Advanced Encryption Standard–Counter with CBC-MAC

**AFH** Adaptive Frequency Hopping

**AMP** Alternate MAC/PHY

AP Access Point ATT Attribute Protocol

**BR** Basic Rate

**CSRK** Connection Signature Resolving Key

CTIA Cellular Telecommunications and Internet Association

dBm Decibels referenced to one milliwattDISA Defense Information Systems Agency

**DIV** Diversifier

**DoD** Department of Defense**DoS** Denial of Service

**DQPSK** Differential Quaternary Phase Shift Keying

**ECDH** Elliptic Curve Diffie-Hellman

EDR Enhanced Data Rate Encryption Root

FHSS Frequency Hopping Spread Spectrum
FIPS Federal Information Processing Standard
FISMA Federal Information Security Management Act

GAP Generic Access Profile
GATT Generic Attribute Protocol
GFSK Gaussian Frequency-Shift Keying

**GHz** Gigahertz

**HCI** Host Controller Interface

**HS** High Speed

**IBC** Iterated Block Cipher

**IEEE** Institute of Electrical and Electronics Engineers

**IMEI** International Mobile Equipment Identity

IR Infrared

**IRK** Identity Resolving Key

ISM Industrial, Scientific, and Medical ITL Information Technology Laboratory

kbps Kilobits per secondKG Key GeneratorKSG Key Stream Generator

**L2CAP** Logical Link Control and Adaptation Protocol

**LAN** Local Area Network

**LE** Low Energy

**LFSR** Linear Feedback Shift Register

LTK Long-Term Key

m Meter

MAC Medium Access Control

Mbps Megabits per second

MHz Megahertz

MITM Man-in-the-Middle

**mW** Milliwatt

**NFC** Near Field Communication

**NIST** National Institute of Standards and Technology

**NVD** National Vulnerability Database

**OFDM** Orthogonal Frequency-Division Multiplexing

**OMB** Office of Management and Budget

OOB Out of Band P2P Peer-to-Peer

PAL Protocol Adaptation Layer

PC Personal Computer

**PDA** Personal Digital Assistant

**PHY** Physical Layer

PIN Personal Identification Number PKI Public Key Infrastructure

**PRNG** Pseudo-Random Number Generator

PUB Publication RF Radio Frequency

**RNG** Random Number Generator

RSSI Received Signal Strength Indication
SAFER Secure And Fast Encryption Routine

SDPService Discovery ProtocolSIGSpecial Interest GroupSMPSecurity Manager Protocol

SPSpecial PublicationSRESSigned ResponseSSPSecure Simple PairingSTKShort Term Key

**TDM** Time Division Multiplexing

TK Temporary Key
USB Universal Serial Bus
UWB Ultra Wideband

WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network

# **Appendix C—References**

The list below provides references for the publication.

Bluetooth Special Interest Group, Bluetooth specifications. <a href="https://www.bluetooth.org/Technical/Specifications/adopted.htm">https://www.bluetooth.org/Technical/Specifications/adopted.htm</a>

Bluetooth Special Interest Group, "Bluetooth Security White Paper", May 2002. <a href="http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth 24Security Paper.pdf">http://grouper.ieee.org/groups/1451/5/Comparison%20of%20PHY/Bluetooth 24Security Paper.pdf</a>

C. Gehrmann, J. Persson, and B. Smeets, *Bluetooth Security*, Artech House, 2004.

Defense Information Systems Agency, "DoD Bluetooth Peripheral Device Security Requirements", 16 July 2010. <a href="http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf">http://iase.disa.mil/stigs/downloads/pdf/dod\_bluetooth\_requirements\_spec\_20100716.pdf</a>

National Security Agency, "Bluetooth Security Factsheet", December 2007. http://www.nsa.gov/ia/ files/factsheets/I732-016R-07.pdf

Y. Lu, W. Meier, and S. Vaudenay, "The Conditional Correlation Attack: A Practical Attack on Bluetooth Encryption", In Advances of Cryptology, CRYPTO 2005 vol. 3621, pages 97–117, August 2005. http://lasecwww.epfl.ch/pub/lasec/doc/LMV05.pdf

Y. Shaked and A. Wool, "Cracking the Bluetooth PIN", In *Proc. 3rd USENIX/ACM Conf. Mobile Systems, Applications, and Services (MobiSys)*, pages 39–50, Seattle, WA, June 2005. http://www.usenix.org/event/mobisys05/tech/full papers/shaked/shaked.pdf

# Appendix D—Online Resources

The lists below provide examples of online resources related to Bluetooth technologies and wireless network security that may be helpful to readers.

# **Documents**

| Name                                                                                                                                                | URL                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Bluetooth SIG Specifications                                                                                                                        | https://www.bluetooth.org/Technical/Specifications/adopted.htm                                           |
| FIPS 140-2, Security Requirements for Cryptographic Modules                                                                                         | http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf                                            |
| FIPS 180-3, Secure Hash Standard (SHS)                                                                                                              | http://csrc.nist.gov/publications/fips/fips180-3/fips180-3 final.pdf                                     |
| FIPS 197, Advanced Encryption Standard                                                                                                              | http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf                                              |
| FIPS 199, Standards for Security Categorization of Federal Information and Information Systems                                                      | http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf                                    |
| GAO-05-383, Information Security: Federal<br>Agencies Need to Improve Controls over Wireless<br>Networks                                            | http://www.gao.gov/new.items/d05383.pdf                                                                  |
| GRS 24, Information Technology Operations and Management Records                                                                                    | http://www.archives.gov/records-mgmt/grs/grs24.html                                                      |
| NIST SP 800-32, Introduction to Public Key<br>Technology and the Federal PKI Infrastructure                                                         | http://csrc.nist.gov/publications/nistpubs/800-32/sp800-32.pdf                                           |
| NIST SP 800-37 Revision 1, Guide for Applying the<br>Risk Management Framework to Federal<br>Information Systems: A Security Life Cycle<br>Approach | http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-<br>37-rev1-final.pdf                       |
| NIST SP 800-48 Revision 1, Guide to Securing<br>Legacy IEEE 802.11 Wireless Networks                                                                | http://csrc.nist.gov/publications/nistpubs/800-48-rev1/SP800-48r1.pdf                                    |
| NIST SP 800-50, Building an Information<br>Technology Security Awareness and Training<br>Program                                                    | http://csrc.nist.gov/publications/nistpubs/800-50/NIST-SP800-50.pdf                                      |
| NIST SP 800-53 Revision 3, Recommended<br>Security Controls for Federal Information Systems<br>and Organizations                                    | http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-errata_05-01-2010.pdf |
| NIST SP 800-63 Version 1.0.2, <i>Electronic Authentication Guideline</i>                                                                            | http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf                                     |
| NIST SP 800-64 Revision 2, Security<br>Considerations in the Information System<br>Development Life Cycle                                           | http://csrc.nist.gov/publications/nistpubs/800-64-Rev2/SP800-64-Revision2.pdf                            |
| NIST SP 800-70 Revision 2, National Checklist<br>Program for IT Products—Guidelines for Checklists<br>Users and Developers                          | http://csrc.nist.gov/publications/nistpubs/800-70-rev2/SP800-70-rev2.pdf                                 |
| NIST SP 800-111, Guide to Storage Encryption<br>Technologies for End User Devices                                                                   | http://csrc.nist.gov/publications/nistpubs/800-111/SP800-111.pdf                                         |
| NIST SP 800-114, User's Guide to Securing External Devices for Telework and Remote Access                                                           | http://csrc.nist.gov/publications/nistpubs/800-114/SP800-114.pdf                                         |

# **Resource Sites**

| Name                                                          | URL                                        |
|---------------------------------------------------------------|--------------------------------------------|
| Bluetooth Special Interest Group                              | http://www.bluetooth.com/                  |
|                                                               | http://www.bluetooth.org/                  |
| Cellular Telecommunications and Internet Association (CTIA)   | http://www.ctia.org/                       |
| Federal Communications Commission                             | http://www.fcc.gov/                        |
| FIPS-Validated Cryptographic Modules                          | http://csrc.nist.gov/groups/STM/index.html |
| IEEE 802.15 Working Group for Wireless Personal Area Networks | http://www.ieee802.org/15/                 |
| NIST National Vulnerability Database (NVD)                    | http://nvd.nist.gov/                       |
| NIST's National Checklist Program                             | http://checklists.nist.gov/                |
| Trifinite Group (Bluetooth Security Research)                 | http://trifinite.org/                      |
| Wireless Vulnerabilities and Exploits                         | http://www.wve.org/                        |