

Exhibit 1018

Exhibit 101 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Routing Lookups in Hardware at Memory Access Speeds
Pankaj Gupta, Steven Lin, and Nick McKeown

Computer Systems Laboratory, Stanford University
Stanford, CA 94305-9030

{pankaj, sclin, nickm}@stanford.edu

Abstract

Increased bandwidth in the Internet puts great demands on net-
work routers; for example, to route minimum sized Gigabit
Ethernet packets, an IP router must process about
packets per second per port. Using the “rule-of-thumb” that it
takes roughly 1000 packets per second for every 106 bits per sec-
ond of line rate, an OC-192 line requires routing look-
ups per second; well above current router capabilities. One
limitation of router performance is the route lookup mechanism.
IP routing requires that a router perform a longest-prefix-match
address lookup for each incoming datagram in order to determine
the datagram’s next hop. In this paper, we present a route lookup
mechanism that when implemented in a pipelined fashion in
hardware, can achieve one route lookup every memory access.
With current 50ns DRAM, this corresponds to approximately

 packets per second; much faster than current commer-
cially available routing lookup schemes. We also present novel
schemes for performing quick updates to the forwarding table in
hardware. We demonstrate using real routing update patterns that
the routing tables can be updated with negligible overhead to the
central processor.

1 Introduction

This paper presents a mechanism to perform fast longest-match-
ing-prefix route lookups in hardware in an IP router. Since the
advent of CIDR in 1993 [1], IP routes have been identified by a
<route prefix, prefix length> pair, where the prefix length is
between 0 and 32 bits, inclusive. For every incoming packet, a
search must be performed in the router’s forwarding table to
determine which next hop the packet is destined for. With CIDR,
the search may be decomposed into two steps. First, we find the
set of routes with prefixes that match the beginning of the incom-
ing IP destination address. Then, among this set of routes, we
select the one with the longest prefix. This is the route that we use
to identify the next hop.

Our work is motivated by the need for faster route lookups;
in particular, we are interested in fast, hardware-implementable
lookup algorithms. We desire a lookup mechanism that achieves
the following goals:

1) The lookup procedure should be easily implementable in
hardware using simple logic.

2) Ideally, the route lookup procedure should take exactly one

1.5 106×

10 106×

20 106×

memory access time.
3) If it takes more than one memory access, then (a) the number

of accesses should be small, (b) the number of accesses
should be bounded by a small value in all cases, and (c) the
memory accesses should occur in different physical memo-
ries, enabling pipelined implementations (and hence help us
achieve goal 2).

4) Practical considerations involved in a real implementation,
such as cost, are an important concern.

5) The overhead to update the forwarding table should be
small.

The technique that we present here is based on the following
assumptions:

1) Memory is cheap. A very quick survey at the time of writing

indicates that bytes of 60ns DRAM is avail-
able for about $50. The cost per byte is approximately halv-
ing each year.

2) The route lookup mechanism will be used in routers where
speed is a premium; for example those routers that need to
process at least 10 million packets per second.

3) On backbone routers there are very few routes with prefixes
longer than 24-bits. This is verified by an examination of the
MAE-EAST backbone routing tables [2]. A plot of prefix
length distribution is shown in Figure 1; note the logarithmic
scale on the y-axis. In this example, 99.93% of the prefixes
are 24-bits or less.

4) IPv6 is still some way off– IPv4 is here to stay for the time

16MB 224=

Figure 1: Prefix length distributions.

1 8 16 24 32
 1

 10

 100

 1000

 10000

100000

Prefix Length

N
u

m
b

e
r

o
f

R
o

u
te

s

MAE−EAST, 01/02/98

This work was funded by the Center for Integrated Systems at
Stanford University. Steven Lin is funded by an NSF Graduate
Research Fellowship. Nick McKeown is funded by the
Alfred P. Sloan Foundation, Sumitomo Electric Industries and a
Robert N. Noyce Faculty Fellowship.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

being. Thus, a hardware scheme optimized for IPv4
routing lookups is useful today.

5) There is a single general-purpose processor participat-
ing in routing table exchange protocols and constructing
a full routing table (including protocol-specific informa-
tion such as route lifetime, etc. for each route entry).
The next hop entries from this routing table are down-
loaded by the general purpose processor into each for-
warding table, which are used to make per-packet
forwarding decisions.

In the remainder of the paper we discuss the construction and
usage of the forwarding tables, and the process of efficiently
updating the tables using the general-purpose processor.

2 Previous Work

The current techniques for performing longest matching pre-
fix lookups, for example CAMs [3] and Tries [4], do not
seem to be able to meet the goals set forth above. CAMs are
generally small (1K x 64 bits is a typical size), expensive,
and dissipate a lot of power when compared to DRAM.
Tries, in general, have a worst case searching time of 32
memory accesses (for a 32-bit IP address), leading to a
wasteful 32-stage pipeline if we desire one lookup per mem-
ory access time. Furthermore, if we wish to fully pipeline the
design, each layer of the trie needs to be implemented in a
different physical memory. This leads to problems because
the memory cannot be shared among layers; it could happen
that a single layer of the trie exhausts its memory while other
layers have free space.

Label swapping techniques, including IP Switching [5]
and Multiprotocol Label Swapping (MPLS) [6] have been
proposed, to replace the longest-prefix match with a simple
direct-lookup based on a fixed-length field. While these con-
cepts show some promise, they also require the adoption of
new protocols to work effectively. In addition, they do not
completely take away the need for routing lookups.

Recently, several groups have proposed novel data
structures to reduce the complexity of longest-prefix match-
ing lookups [7][8]. These data structures and their accompa-
nying algorithms are designed primarily for implementation
in software, and cannot guarantee that a lookups will com-
plete in one memory-access-time.

We take a different, more pragmatic approach that is
designed for implementation in dedicated hardware. As
mentioned in assumption (1), we believe that DRAM is so
cheap (and continues to get cheaper), that using large
amounts of DRAM inefficiently is advantageous if it leads to
a faster, simpler, and cheaper solution. With this assumption
in mind, the technique that follows is so simple that it is
almost obvious. Our technique allows for an inexpensive,
easily pipelined route lookup mechanism that can process
one packet every memory-access time when pipelined.

Since the time of writing this paper, we have learned
that the lookup technique outlined here is a special case of an
algorithm proposed by V. Srinivasan and G. Varghese,
described in [9]. However, we take a more hardware-ori-

ented approach with a view to providing more direct benefit
to the designers and implementors of routing lookup
engines. In particular, we propose a novel technique for per-
forming routing updates in hardware.

The paper is organized as follows. Section 3 describes
the basic route lookup technique. Section 4 discusses some
variations to the technique which make more efficient use of
memory. Section 5 investigates how route entries can be
quickly inserted and removed from the forwarding tables,
and Section 6 provides a conclusion.

3 Proposed Scheme

We call the basic schemeDIR-24-8-BASIC — it makes use
of the two tables shown in Figure 2, both stored in DRAM.
The first table (calledTBL24) stores all possible route pre-
fixes that are up to, and including, 24-bits long. This table
has 224 entries, addressed from 0.0.0 to 255.255.255. Each
entry inTBL24 has the format shown in Figure 3. The sec-
ond table (TBLlong) stores all route prefixes in the routing
table that are longer than 24-bits.

Assume for example that we wish to store a prefix,X, in
an otherwise empty routing table. IfX is less than or equal to
24 bits long, it need only be stored inTBL24: the first bit of
the entry is set to zero to indicate that the remaining 15 bits
designate the next-hop. If, on the other hand, the prefixX is
longer than 24 bits, then we use the entry inTBL24
addressed by the first 24 bits ofX. We set the first bit of the
entry to one to indicate that the remaining 15-bits contain a
pointer to a set of entries inTBLlong.

In effect, route prefixes shorter than 24-bits are

Figure 2: ProposedDIR-24-8-BASIC architecture. The next
hop result comes from eitherTBL24 or TBLlong.

TBL24

TBLlong

0

23

31

Dstn
Addr.

24

8

Next
Hop224

entries

1 bit 15 bits
0 Next Hop

1 Index into 2nd table

If longest route with this 24-bit prefix is < 25 bits long:

If longest route with this 24 bits prefix is > 24 bits long:

15 bits1 bit

Figure 3: TBL24 entry format

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

expanded; e.g. the route prefix 128.23/16† will have
entries associated with it inTBL24, ranging

from the memory address 128.23.0 through 128.23.255. All
256 entries will have exactly the same contents (the next hop
corresponding to the routing prefix 128.23/16). By using
memory inefficiently, we can find the next hop information
within one memory access.

TBLlong contains all route prefixes that are longer than
24 bits. Each 24-bit prefix that has at least one route longer
than 24 bits is allocated 28=256 entries inTBLlong. Each
entry in TBLlong corresponds to one of the 256 possible
longer prefixes that share the single 24-bit prefix inTBL24.
Note that because we are simply storing the next-hop in each
entry of the second table, it need be only 1 byte wide (if we
assume that there are fewer than 255 next-hop routers– this
assumption could be relaxed if the memory was wider than 1
byte).

When a destination address is presented to the route
lookup mechanism, the following steps are taken:

1) Using the first 24-bits of the address as an index into the
first tableTBL24, we perform a single memory read,
yielding 2 bytes.

2) If the first bit equals zero, then the remaining 15 bits
describe the next hop.

3) Otherwise (if the first bit equals one), we multiply the
remaining 15 bits by 256, add the product to the last 8
bits of the original destination address (achieved by
shifting and concatenation), and use this value as a
direct index intoTBLlong, which contains the next-hop.

3.1 Examples

Consider the following examples of how route lookups are
performed on the table in Figure 4. Assume that the follow-
ing routes are already in the table: 10.54/16, 10.54.34/24,
10.54.34.192/26. The first route requires entries inTBL24
that correspond to the 24-bit prefixes 10.54.0 through
10.54.255 (except for 10.54.34). The 2nd and 3rd routes
require that the second table be used (because both of them
have the same first 24-bits and one of them is more than 24-
bits long). So, inTBL24, we insert a one followed by an
index (in the example, the index equals 123) into the entry
corresponding to the 10.54.34 prefix. In the second table, we
allocate 256 entries starting with memory location

. Most of these locations are filled in with the next
hop corresponding to the 10.54.34 route, but 64 of them
(those from to) are
filled in with the next hop corresponding to the 10.54.34.192
route.

Now assume that a packet arrives with the destination
address 10.54.22.147. The first 24 bits are used as an index
into TBL24, and will return an entry with the correct next

† Throughout this paper, when we refer to specific examples, a
route entry will be written as dotted-decimal-prefix/prefix-
length. For example, 10.34.153/24 refers to a 24-bit long route
with prefix (in dotted decimal) of 10.34.153.

224 16– 256=

123 256×

123 256×() 192+ 123 256×() 255+

hop (A). If a second packet arrives with the destination
address 10.54.34.23, the first 24 bits are used as an index
into the first table, which indicates that the second table must
be consulted. The lower 15 bits of the entry (123 in this
example) are combined with the lower 8 bits of the destina-
tion address, and used as an index into the second table.
After two memory accesses, the table returns the next hop
(B). Finally, let’s assume that a packet arrives with the desti-
nation address 10.54.34.194. Again,TBL24 indicates that
TBLlong must be consulted, and the lower 15 bits of the
entry are combined with the lower 8 bits of the address to
form an index into the second table. This time the index an
entry associated with the 10.54.34.192/26 prefix (C).

We recommend that the second memory be about
1MByte in size. This is inexpensive and has enough space
for 4096 routes longer than 24 bits. (To be precise, we can
store 4096 routes longer than 24 bits with distinct 24-bit pre-
fixes.) We see from Figure 1 that the number of routes with
length above 24 is much smaller than 4096 (only 28 for this
router). Because we use 15 bits to index into the second
table, we can, with enough memory, support 32K distinct 24-
bit-prefixed long routes with prefixes longer than 24 bits.

As a summary, let’s review some of the pros and cons
associated with the basicDIR-24-8-BASICscheme.

Pros:

1) Although (in general) two memory accesses are

Figure 4: Example of two tables containing three routes.

Entry

10.54.0

10.54.34

10.55.0

10.53.255

10.54.1

10.54.33

10.54.35

10.54.255

0

1

0

0

0

0

A

123

A

A

A

A

TBL24:

123*256

123*256+1

123*256+2

123*256+191

123*256+192

123*256+193

123*256+255

124*256

B

C

B

C

C

B

C

B

TBLlong:
Entry

256 entries
allocated to

10.54.34

Number: Contents: Number: Contents:

Key to table entries:
A = 10.54/16
B = 10.54.34/24
C = 10.54.34.192./26

prefix

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

required, these accesses are in separate memories,
allowing the scheme to be pipelined.

2) Except for the limit on the number of distinct 24-bit-pre-
fixed routes with length greater than 24 bits, this infra-
structure will support an unlimited number of routes.

3) The total cost of memory in this scheme is the cost of
33 MB of DRAM. No exotic memory architectures are
required.

4) The design is well-suited to hardware implementation.

5) When pipelined, packets per second can be
processed with currently available 50ns DRAM. The
lookup time is equal to one memory access time.

Cons:

1) Memory is used inefficiently.
2) Insertion and deletion of routes from this table may

require many memory accesses. This will be discussed
in detail in Section 5.

4 Variations on the theme

There are a number of refinements that can be made to the
basic technique. In this section, we discuss two variations
that decrease the memory size while adding one or more
pipeline stages.

Adding an intermediate “length” table: Observe that, of
those routes longer than 24 bits, very few are a full 32 bits.
In the basic scheme, we allocated an entire block of 256
entries for each routing prefix longer than 24 bits. For exam-
ple, if we insert a 26-bit prefix into the table, 256 entries in
TBLlong are used although only four are required.

We can improve the efficiency ofTBLlong using a
scheme calledDIR-24-8-INT. In addition to the two tables
TBL24 andTBLlong, DIR-24-8-INT maintains an additional
“intermediate” table,TBLint. Basically, by using one addi-
tional level of indirectionTBLint allows us to use a smaller
number of entries inTBLlong. To do this, we store an i-bit
long index (where) value inTBL24, instead of the 15-
bit value used in the basic scheme. The new index points to
an intermediate table (TBLint) with entries as shown in
Figure 5; for example, if , TBLint contains 4096
entries. Each entry inTBLint is pointed to by exactly one
entry inTBL24, and therefore corresponds to a unique 24-bit
prefix. TBLint entries contain a 20-bit index into the final
table (TBLlong), as well as a length field. The index is the
absolute memory address inTBLlong at which the set of
entries associated with this 24-bit prefix begins. The length
field indicates the longest route with this particular 24-bit
prefix (encoded in three bits since it must be in the range 25-
32). The length field also indicates how many entries in
TBLlong are allocated to this 24-bit prefix. For example, if
the longest route with this prefix is a 30-bit route, then the
length field will indicate 6 (30-24), andTBLlong will have

20 106×

i 15<

2i

i 12=

 entries allocated to this 24-bit prefix.
To clarify, consider the example in Figure 6. Assume

that the routes 10.78.45.128/26 and 10.78.45.132/30 are
stored in the table. The first table’s entry corresponding to
10.78.45 will contain an index to an entry inTBLint (in the
example, the index equals 567). Entry 567 inTBLint indi-
cates a length of 5, and an index intoTBLlong (in the exam-
ple, the index equals 325) pointing to 64 entries. One of
these entries, the 33rd, contains the next hop for the
10.78.45.132/30 route. Entry 32 and entries 34 through 47
will contain the next hop for the 10.78.45.128/26 route. The
others will contain the next-hop value designated to mean
“no entry”.

The modification requires an additional memory access,
extending the pipeline to three stages, but saves some space
in the final table by not expanding every “long” route to 256
entries.

Multiple table scheme: Another modification can be made
to reduce memory usage, with the addition of a constraint.
For simplicity, we present this scheme as an extension of the
two table scheme (DIR-24-8-BASIC) presented earlier. In
this scheme, calledDIR-n-m, we extend the original scheme

26 64=

index into 2nd table max length
3 bits20 bits

Figure 5: TBLint Entry Format

10.78.451 567

567 6 325

Len
Entry

Entry #

325

325+1

325+32

325+33

325+34

325+31

325+47

325+48

325+63

B

A

A

A

Figure 6: “Intermediate Table” scheme

TBL24 TBLlong

TBLint

64
 e

nt
rie

s
al

lo
ca

te
d

to
 1

0.
78

.4
5

pr
efi

x

Entry #Contents Contents

Cont

Key to table entries:
A = 10.78.45.128/26
B = 10.78.45.132/30

 #

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

