
Talari Networks Inc. - Exhibit 1007

>

U

9
CD

0

.Z
E
I‘|"1
C/3
|—'
m

-<

-0

E

O
‘:1
H1
Ln

Z‘

0
Z

>
r-

('3

0

Z
—U

C

i

Z

0

Cf)
|"l"l

E
m
C/3

Talari Networks Inc. - Exhibit 100

Talari Networks Inc. - Exhibit 1007

Internet

 Solaris 2.2

Cisco
router

SLIP (dialup)

BSD/386 1.0 BSD/3861.0 SunOS 4.1.3 .1.29

Portion of the class B network 140.252 used for all the examples in the text.

All the hosts are in the tuc . noao . edu domain.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

IP Header

0 15 16 31
4-b't 4-b't h d 8-b't f ' . .

versilon ‘ tyF1?O°S)servme 16-bit total length (in bytes)
16-bit identification

8-bit protocol

32-bit source IP address

13-bit fragment offset

8-bit time to live

(TIL) 16-bit header checksum 20 bytes

32-bit destination IP address

options (if any)
UDP Header

0 15 16 31

16-bit source port number 16-bit destination port number
8 bytes

16-bit UDP length 16-bit UDP checksum

data (if any)

TCP Header
0 15 16 31

16-bit source port number 16-bit destination port number

32-bit sequence number

*4

I-

32-bit acknowledgment number

U ‘ P R ' F _ _ _

16-bit window sizeG K H T N N

16-bit TCP checksum 16-bit urgent pointer

options (if any)

“1‘%‘I‘&'i*i’Networks Inc. - Exhibi

20 bytes

 4-bit header

length

 1007

Talari Networks Inc. - Exhibit 1007

TCP/lP|Ilustrated, Volume 1

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Ken Arnold /]ohn Peyton, A C User's Guide to ANSI C

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard

Template Library e

David R. Butenhof, Programming with POSIX® Threads

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker

David A. Curry, UNIX® System Security: A Guidefor Users and System Administrators

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of

Reusable Object—Oriented Software -

Erich Gamma/Richard Helm/Ralph Iohnson/John Vlissides, Design Patterns CD: Elements of

Reusable Object—Oriented Software

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software

Mark Harrison/Michael McLennan, Efiective Tcl/Tk Programming: Writing Better Programs with
Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++

Brian W. Kernighan and Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and

the Telephone Network

John Lakos, Large—Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Eflective C++: 35 New Ways to Improve Your Programs and Designs

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C++ Programming with the

Standard Template Library

Iohn K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

I. Stephen Pendergrast Ir, Desktop KornShell Graphical Programming

Radia Perlman, Interconnections, Second Edition: Bridges and Routers

David M. Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI

Stephen A. Rago, LINIX® System V Network Programming ‘

Curt Schimmel, l,lNIX® Systems for Modern Architectures: Symmetric Multiprocessing and

Cachingfor Kernel Programmers

W. Richard Stevens, Advanced Programming in the LINIX® Environment

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the
LINIX® Domain Protocols

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Please see our web site (http: / /www.awl.com/cseng/ ieo slégmfkign “(E titles.

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated, Volume 1

The Protocols

W. Richard Stevens

A
VV

ADDISON—WESLEY

An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts - Harlow, England - Menlo Park, California

Berkeley, California - Don Mills, Ontario - Sydney

Bonn - Amsterdam - Tokyo - Mexico City

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

UNIX is a technology trademark of X/Open Company, Ltd.

The publisher offers discounts on this book when ordered in quantity for special sales.

For more information please contact: '

Corporate & Professional Publishing Group

Addison-Wesley Publishing Company

One Jacob Way

Reading, Massachusetts 01867

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard

TCP/IP Illustrated: the protocols/W. Richard Stevens.

p. cm. ~ (Addison-Wesley professional computing series)

Includes bibliographical references and index.

ISBN 0-201-63346-9 (V. 1)

1.TCP/IP (Computer network protocol) I. Title. II. Series.
TK5105.55S74 1994

004.6’2—dc20

Copyright © 1994 Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Text printed on recycled and acid-free paper.
ISBN 0201633469

141516171819 MA 020100 99

14th Printing July 1999

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

"[0 Brian I<errzz'ghan and Iohn Wait,
for their encouragement, faith, and support

over the past 5 years.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Praise for TCP/IP Illustrated, Volume 1: The Protocols

“This is sure to be the bible for TCP/IP developers and users. Within minutes of picking up the text,

I encountered several scenarios which had tripped~up both my colleagues and myself in the past.

Stevens reveals many of the mysteries once held tightly by the ever—elusive networking gurus.

Having been involved in the implementation of TCP/IP for some years now, I consider this by far
the finest text to date.”

— Robert A. Ciampa, Network Engineer, Synernetics, division of 3COM

“While all of Stevens’ books are readable and technically excellent, this new opus is awesome.
Although many books describe the TCP/IP protocols, Stevens provides a level of depth and real-

world detail lacking from the competition. He puts the reader inside TCP/IP using a visual approach

and shows the protocols in action.”

—— Steven Baker, Networking Columnist, Umlr Review

“TCP/IP Illustrated, Volume 1 is an excellent reference for developers, network administrators, or

anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is comprehensive in its

coverage of TCP/IP topics, providing enough details to satisfy the experts while giving enough

background and commentary for the novice.”

— Bob Williams, VP. Marketing, NetManage, Inc.

“... the difference is that Stevens wants to show as well as tell about the protocols. His principal

teaching tools are straight—forward explanations, exercises at the ends of chapters, byte—by—byte

diagrams of headers and the like, and listings of actual traffic as examples.”

— Walter Zintz, UmL\‘World

“Much better than theory only W. Richard Stevens takes a multihost—based configuration and uses

it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illustrated, Volume I is based on

practical examples that reinforce the theory — distinguishing this book from others on the subject,

and making it both readable and informative.”

—-— Peter M. Haverlock, Consultant, IBM TCP/IP Development

“The diagrams he uses are excellent and his writing style is clear and readable. In sum," Stevens has
made a complex topic easy to understand. This book merits everyone’s attention. Please read it and '

keep it on your bookshelf.”

— Elizabeth Zinkann, Sys Admin

“W. Richard Stevens has produced a fine text and reference work. It is well organized and very

clearly written with, as the title suggests, many excellent illustrations exposing the intimate details

of the logic and operation of IP, TCP, and the supporting cast of protocols and applications.”

— Scott Bradner, Consultant, Harvard University OIT/NSD

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Contents

Preface xv

Chapter 1. Introduction 1

1.1 Introduction 1

1.2 Layering 1

1.3 TCP/IP Layering 6
1.4 Internet Addresses 7

1.5 The Domain Name System 9

1.6 Encapsulation 9

1.7 Demultiplexing 11
1.8 Client—Server Model 12

1.9 Port Numbers 12

1.10 Standardization Process 14

1.11 RFCs 14

1.12 Standard, Simple Services 15
1.13 The Internet 16

1.14 Implementations 16

1.15 Application Programming Interfaces 17
1.16 Test Network 18

1.17 Summary 19

Talari Networks Inc. - Exhibit 10"CIi7

Talari Networks Inc. - Exhibit 1007

viii TCP/IP Illustrated Contents

Chapter 2. Link Layer 21

2.1 Introduction 21

2.2 Ethernet and IEEE 802 Encapsulation

2.3 Trailer Encapsulation 23
2.4 SLIP: Serial Line IP 24

2.5 Compressed SLIP ‘ 25
2.6 PPP: Point—to-Point Protocol 26

2.7 Loopback Interface 28
2.8 MTU 29

2.9 Path MTU 30

2.10 Serial Line Throughput Calculations

2.11 Summary 31

Chapter 3. IP: Internet Protocol 33

3.1 Introduction 33

3.2 IP Header 34

3.3 IP Routing 37

3.4 Subnet Addressing 42
3.5 Subnet Mask 43

3.6 Special Case IP Addresses 45

3.7 A Subnet Example 46

3.8 ifconfig Command 47
3.9 net stat Command 49

3.10 IP Futures 49

3.11 Summary 50

Chapter 4. ARP: Address Resolution Protocol 53

4.1 Introduction 53

4.2 An Example 54
4.3 ARP Cache 56

4.4 ARP Packet Format 56

4.5 ARP Examples 57

4.6 Proxy ARP 60
4.7 Gratuitous ARP 62

4.8 arp Command 63

4.9 Summary 63

Chapter 5. RARP: Reverse Address Resolution Protocol 65

5.1 Introduction 65

5.2 RARP Packet Format 65

5.3 RARP Examples 66

5.4 RARP Server Design 67

5.5 Summary 68

Talari Networks Inc. - Exhibit 1007

I

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated Contents ix

Chapter 6.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Chapter 7.

7.1

7.2

7.3

7.4

7.5

Chapter 8.

8.1

8.2

8.3

8.4

8.5

8.6

Chapter 9.

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Chapter 10.

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

ICMP:1 Internet Control Message Protocol

Introduction 69

ICMP Message Types 70

ICMP Address Mask Request and Reply 72

ICIVIP Timestamp Request and Reply 74
ICMP Port Unreachable Error 77

4.4BSD Processing of ICMP Messages 81

Summary 83

Ping Program

Introduction 85

Ping Program 85

IP Record Route Option 91

IP Timestamp Option 95

Summary 96

Traceroute Program

Introduction 97

Traceroute Program Operation 97

LAN Output 99

WAN Output 102

IP Source Routing Option 104

Summary 109

IP Routing

Introduction 111

Routing Principles 112
ICMP Host and Network Unreachable Errors

To Forward or Not to Forward 119

ICMP Redirect Errors 119

ICMP Router Discovery Messages 123

Summary 125

Dynamic Routing Protocols

Introduction 127

Dynamic Routing 127

Unix Routing Daemons 128

RIP: Routing Information Protocol 129
RIP Version 2 136

OSPF: Open Shortest Path First 137

BGP: Border Gateway Protocol 138

CIDR: Classless lnterdomain Routing 140

Summary 141

69

85

97

111

117

127

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

x TCP/IP Illustrated Contents

Chapter 11. UDP: User Datagram Protocol 143

11.1 introduction 143

11.2 LIDP Header 144

11.3 UDP Checksum 144

11.4 A Simple Example 147

11.5 IP Fragmentation 148

11.6 ICMP Unreachable Error (Fragmentation Required) 151

11.7 Determining the Path MTU Using Traceroute 153

11.8 Path MTU Discovery with LIDP 155
11.9 Interaction Between UDP and ARP 157

11.10 Maximum LIDP Datagram Size 159
11.11 ICMP Source Quench Error 160

11.12 LIDP Server Design 162

11.13 Summary 167

Chapter 12. Broadcasting and Multicasting 169

12.1 Introduction 169

12.2 Broadcasting 171

12.3 Broadcasting Examples 172

12.4 Multicasting 175

12.5 Summary 178

Chapter 13. IGMP: Internet Group Management Protocol 179

13.1 introduction 179

13.2 IGMP Message 180
13.3 IGMP Protocol 180

13.4 An Example 183

13.5 Summary 186

Chapter 14. DNS: The Domain Name System 187

14.1 Introduction 187

14.2 DNS Basics 188

14.3 DNS Message Format 191

14.4 A Simple Example 194
14.5 Pointer Queries 198

14.6 Resource Records 201

14.7 Caching 203
14.8 UDP or TOP 206

14.9 Another Example 206

14.10 Summary 208

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated Contents xi

Chapter 15. TFTP: Trivial File Transfer Protocol 209

15.1 Introduction 209

15.2 Protocol 209

15.3 An Example 211

15.4 Security 213

15.5 Summary 213

Chapter 16. BOOTP: Bootstrap Protocol 215

16.1 Introduction 215

16.2 BOOTP Packet Format 215

16.3 An Example 218’

16.4 BOOTP Server Design 219

16.5 BOOTP Through a Router 220

16.6 Vendor~Specific Information 221

16.7 Summary 222

Chapter 17. TCP: Transmission Control Protocol 223

17.1 Introduction 223

17.2 TCP Services 223

17.3 TCP Header 225

17.4 Summary 227

Chapter 18. TCP Connection Establishment and Termination 229

18.1 Introduction 229 I

18.2 Connection Establishment and Termination 229

18.3 Timeout of Connection Establishment 235

18.4 Maximum Segment Size 236
18.5 TCP Half-Close 238

18.6 TCP State Transition Diagram 240

18.7 Reset Segments 246

18.8 Simultaneous Open 250
18.9 Simultaneous Close 252

18.10 TCP Options _ 253

18.11 TCP Server Design 254

18.12 Summary 260

Chapter 19. TCP Interactive Data Flow 263

19.1 Introduction 263

19.2 Interactive Input 263

19.3 Delayed Acknowledgments 265

19.4 Nagle Algorithm 267
19.5 Window Size Advertisements 274

19.6 Summary 274

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

xii TCP/IP Illustrated Contents

Chapter 20. TOP Bulk Data Flow 275

20.1 Introduction 275

20.2 Normal Data Flow 275

20.3 Sliding Windows 280
20.4 Window Size 282

20.5 PUSH Flag 284
20.6 Slow Start 285

20.7 Bulk Data Throughput 286

20.8 Urgent Mode 292

20.9 Summary 296

Chapter 21. TCP Timeout and Retransmission 297

21.1 introduction 297

21.2 Simple Timeout and Retransmission Example 298

21.3 Round-Trip Time Measurement 299

21.4 An RTT Example 301

21.5 Congestion Example 306

4 21.6 Congestion Avoidance Algorithm 310

21.7 Fast Retransmit and Fast Recovery Algorithms 312

21.8 Congestion Example (Continued) 313
21.9 Per-Route Metrics 316

21.10 ICMP Errors 317

21 .1 1 Repacketization 320

21.12 Summary 5 321

Chapter 22. TCP Persist Timer 323

22.1 Introduction 323

22.2 An Example 323

22.3 Silly Window Syndrome 325

22.4 Summary 330

Chapter 23. TCP Keepalive Timer 331

23.1 Introduction 331

23.2 Description 332

23.3 Keepalive Examples 333

23.4 Summary 337

Chapter 24. TCP Futures and Performance 339

24.1 Introduction 339

24.2 Path MTU Discovery 340

24.3 Long Fat Pipes 344

24.4 Window Scale Option 347

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated Contents xiii

24.5

24.6

24.7

24.8

24.9

Chapter 25.

25.1

25.2

25.3

25.4

25.5

25.6

25.7

25.8

25.9

25.10

25.11

25.12

25.13

Chapter 26.

26.1

26.2

26.3

26.4

26.5

26.6

Chapter 27.

27.1

27.2

27.3

27.4

Chapter 28.

28.1

28.2

28.3

28.4

28.5

Timestamp Option 349

PAWS: Protection Against Wrapped Sequence Numbers 351
Tfl'CP: A TOP Extension for Transactions 351

TCP Performance 354

Summary 356

SNMP: Simple Network Management Protocol 359

Introduction 359

Protocol 360

Structure of Management information 363

Object Identifiers ‘364

Introduction to the Management Information Base 365
Instance Identification 367

Simple Examples 370

Management Information Base (Continued) 372

Additional Examples 382

Traps 385
ASN.1 and BER 386

SNMP Version 2 387

Summary 388

Telnet and Rlogin: Remote Login 389

introduction 389

Rlogin Protocol 391

Rlogin Examples 396
Telnet Protocol 401

Telnet Examples 406

Summary 417

FTP: File Transfer Protocol 419

Introduction 419

FTP Protocol 419

FTP Examples 426

Summary 439

SMTP: Simple Mail Transfer Protocol 441

Introduction 441

SMTP Protocol 442

SMTP Examples 448
SMTP Futures 452

Summary 459

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

xiv TCP/IP Illustrated Contents

Chapter 29. NFS: Network File System 461

29.1 Introduction 461

29.2 Sun Remote Procedure Call 461

29.3 XDR: External Data Representation 465

29.4 Port Mapper 465
29.5 NFS Protocol 467

29.6 NFS Examples 474
29.7 l\lFS Version 3 479

29.8 Summary 480

Chapter 30. Other TCP/IP Applications 481

30.1 Introduction 481

30.2 Finger Protocol 481
30.3 Whois Protocol 483

30.4 Archie, WAIS, Gopher, Veronica, and WWW 484

30.5 X WindowtSystem 486

30.6 Summary 490

Appendix A. The tcpdump Program 491

A.1 BSD Packet Filter 491

A.2 SunOS Network Interface Tap 493
A.3 SVR4 Data Link Provider Interface 494

A.4 tcpdump Output 495

A.5 Security Considerations 496

A.6 Socket Debug Option 496

Appendix B. Computer Clocks 499

Appendix C. The sock Program 503

Appendix D. Solutions to Selected Exercises 507

Appendix E. Configurable Options 525

E.1 BSD/386 Version 1.0 526

E.2 SunOS 4.1.3 527

E.3 System V Release 4 529
E.4 Solaris 2.2 529

E.5 AIX 3.2.2 536

E.6 4.4BSD 537

Appendix F. Source Code Availability 539

Bibliography 543

Index 555

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than

other texts on TCP/IP. Instead of just describing the protocols and what they do, we'll

use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols

operate in Varying circumstances provides a greater understanding of how they work

and why certain design decisions were made. It also provides a look into the imple-

mentation of the protocols, without having to wade through thousands of lines of
source code.

When networking protocols were being developed in the 1960s through the 1980s,

expensive, dedicated hardware was required to see the packets going ”across the wire.”

Extreme familiarity with the protocols was also required to comprehend the packets dis-

played by the hardware. Functionality of the hardware analyzers was limited to that

built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation

to monitor a local area network [Mogul 1990].]ust attach a workstation to your net-

work, run some publicly available software (described in Appendix A), and watch what

goes by on the wire. While many people consider this a tool to be used for diagnosing

network problems, it is also a powerful tool for imdersttmding how the network proto-

cols operate, Which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP protocols

operate: programmers writing network applications, system administrators responsible

for maintaining computer systems and networks utilizing TCP/IP, and users who deal

with TCP/IP applications on a daily basis.

Talari Networks Inc. - Exhibit 105‘?

Talari Networks Inc. - Exhibit 1007

xvi TCP/IP Illustrated Preface

Organization of the Book

The following figure shows the various protocols and applications that are covered.

The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

Chap. 7 26 27 28 30 8 14 15 16 25 29

. Telnet & Trace- NFS

l Ping [Rlogin FTP SMTP l mute \ DN:H TFTP HBOOTI{H SNMP x.—:{RPC

17, 18,19, 20 11,12

TCP 21, 22, 23, 24 UDP i

5 ICMP 3’9' 10 IP —? IGMP 13[4 LT; v

4 2 Data 5

ARP Link RARP

media

(Numerous fine points are missing from this figure that will be discussed in the appro-

priate chapter. For example, both the DNS and RPC use TCP, which we don't show.)

We take a bottom—up approach to the TCP/IP protocol suite. After providing a

basic introduction to TCP/IP in Chapter 1, We will start at the link layer in Chapter 2

and work our way up the protocol stack. This provides the required background for

later chapters for readers who aren't familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-

top order. For example, Chapter 3 describes the IP layer and the IP header. But there

are numerous fields in the IP header that are best described in the context of an applica-

tion that uses or is affected by a particular field. Fragmentation, for example, is best

understood in terms of UDP (Chapter 11), the protocol often affected by’it. The time-to-

live field is fully described when we look at the Traceroute program in Chapter 8,

because this field is the basis for the operation of the program. Similarly, many features

of ICMP are described in the later chapters, in terms of how a particular ICMP message

is used by a protocol or an application.

We also don't want to save all the good stuff until the end, so we describe TCP/IP

applications as soon as we have the foundation to understand them. Ping and Trace-

route are described after IP and ICMP have been discussed. The applications built on

UDP (multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated Preface xvii

examined. The TCP applications, however, along with network management, must be

saved until the end, after we've thoroughly described TCP. This text focuses on how

these applications use the TCP/IP protocols. We do not provide all the details on run-

ning these applications.

Readers

This book is self—contained and assumes no specific knowledge of networking or

TCP/IP. Numerous references are provided for readers interested in additional details

on specific topics.

This book can be used in many ways. It can be used as a self-study reference and

covered from start to finish by someone interested in all the details on the TCP/IP

protocol suite. Readers with some TCP/IP background might want to skip ahead and

start with Chapter 7, and then focus on the specific chapters in which they’re interested.

Exercises are provided at the end of the chapters, and most solutions are in Appen-

dix D. This is to maximize the usefulness of the text as a self-study reference.

When used as part of a one- or two—semester course in computer networking, the

focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),

along with some of the application chapters.

Many forward and backward references are provided throughout the text, along

with a thorough index, to allow individual chapters to be studied by themselves. A list

of all the acronyms used throughout the text, along with the compound term for the

acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in

this book (Appendix F) and experiment on your own. Hands-on experimentation with

the protocols will provide the greatest knowledge (and make it more fun). '

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output

saved in a file-for inclusion in the text. Figure 1.11 (p. 18) shows a diagram of the differ-

ent hosts, routers, and networks that are used. (This figure is also duplicated on the

inside front cover for easy reference while reading the book.) This collection of net-

works is simple enough that the topology doesn't confuse the examples, and with four

systems acting as routers, we can see the error messages generated by routers.

Most of the systems have a name that indicates the type of software being used:

bsdi, svr4, sun, solaris, aix, slip, and so on. In this way we can identify the type

of software that we're dealing with by looking at the system name in the printed output.

A wide range of different operating systems and TCP/IP implementations are used:

- BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named

bsdi and slip. This system is derived from the BSD Networking Software,

Release 2.0. (We show the lineage of the various BSD releases in Figure 1.10 on

p. 17.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

xviii TCP/IP Illustrated Preface

0 Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host

named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

0 SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x

systems are probably the most widely used TCP/IP implementations. The
TCP/IP code is derived from 4.2BSD and 4.3BSD.

¢ Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x

systems have a different implementation of TCP/IP from the earlier SunOS 4.1.x

systems, and from SVR4. (This operating system is really SunOS 5.2, but is com-

monly called Solaris 2.2.)

0 AIX 3.2.2 from IBM on thelhost named aix. The TCP/IP implementation is
based on the 4.3BSD Reno release.

° 4.4BSD from the Computer Systems Research Group at the University of Califor-

nia at Berkeley, on the host vangogh . cs .berkeley . edu. This system has the

latest release of TCP/IP from Berkeley. (This system isn't shown in the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, and is

available on almost every popular non-Unix system. Most of this text also applies to

these non-Unix implementations, although some programs (such as Traceroute) may

not be provided on all systems.

Typographical Conventions

When we display interactive input and output we'll show our typed input in a bold
font, and the computer output like this. Comments are added in italics.

bsdi % telnet svr4 discard connect to the discard server

Trying 140.252.13.34. . . this line and next output by.Telnet client
Connected to svr4 .

Also, we always include the name of the system as part of the shell prompt (bsdi in

this example) to show on which host the command was run.

Throughout the text we'll use indented, parenthetical notes such as this to describe historical
points or implementation details. ‘

We sometimes refer to the complete description of a command in the Unix manual

as in ifconfig(8). This notation, the name of the command followed by a number in

parentheses, is the normal way of referring to Unix commands. The number in paren-

theses is the section number in the Unix manual of the "manual page” for the com-

mand, where additional information can be located. Unfortunately not all Unix systems

organize their manuals the same, with regard to the section numbers used for various

groupings of commands. We'll use the BSD-style section numbers (which is the same

for BSD—derived systems such as SunOS 4.1.3), but your manuals may be organized

differently.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

TCP/IP Illustrated Preface xix

Acknowledgments

Although the author's name is the only one to appear on the cover, the combined effort

of many people is required to produce a quality text book. First and foremost is the

author's family, who put up with the long and weird hours that go into writing a book.

Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the business. He

was the first one to read various drafts of the manuscript and mark it up with his infi-

nite supply of red pens. His attention to detail, his continual prodding for readable

prose, and his thorough reviews of the manuscript are an immense resource to a writer.

Technical reviewers provide a different point of View and keep the author honest by

catching technical mistakes. Their comments, suggestions, and (most importantly) criti-

cisms add greatly to the final product. My thanks to Steve Bellovin, Ion Crowcroft, Pete

Haverlock, and Doug Schmidt for comments on the entire manuscript. Equally valu-

able comments were provided on portions of the manuscript by Dave Borman, Tony
DeSimone, Bob Gilligan, Jeff Gitlin, Iohn Gulbenkian, Tom Herbert, Mukesh Kacker,

Barry Margolin, Paul Mockapetris, Burr Nelson, Steve Rago, James Risner, Chris

Walquist, Phil Winterbottom, and Gary Wright. A special thanks to Dave Borman for

his thorough review of all the TCP chapters, and to Bob Gilligan who should be listed as

a coauthor for Appendix E.

An author cannot work in isolation, so I would like to thank the following persons

for lots of small favors, especially by answering my numerous e-mail questions:]oe

Godsil, Jim Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas Skibo, and

Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which I

could find no quick, immediate answer. It was then that I realized that the easiest way

to obtain the answers was to run small tests, forcing certain conditions to occur, and just

watch what happens. I thank Pete Haverlock for asking the probing questions and Van

Iacobson for providing so much of the publicly available software that is used in this

book to answer the questions.

A book on networking needs a real network to work with along with access to the

Internet. My thanks to the National Optical Astronomy Observatories (NOAO), espe-

cially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their net-

works and hosts. A special thanks to Steve Grandi for answering lots of questions and

providing accounts on various hosts. My thanks also to Keith Bostic and Kirk McKu—

sick at the U.C. Berkeley CSRG for access to the latest 4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is

required to deliver the final product to the readers. This all revolves around the editor,

and]ohn Wait is simply the best there is. Working with John and the rest of the profes-

sionals at Addison-Wesley is a pleasure. Their professionalism and attention to detail
show in the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard, using

the Groff package written by]ames Clark. I welcome electronic mail from any readers

with comments, suggestions, or bug fixes.

Tucson, Arizona W. Richard Stevens
October 1993 rstevens @noao . edu

Talari tetvilb/r s’ ritazll-e§l)fhif)ii“5|e6f)7

Talari Networks Inc. - Exhibit 1007

1.1

1.2

Introduction

Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer

vendors, running totally different operating systems, to communicate with each other.

It is quite amazing because its use has far exceeded its original estimates. What started

in the late 1960s as a government-financed research project into packet switching net-

works has, in the 1990s, turned into the most widely used form of networking between

computers. It is truly an open system in that the definition of the protocol suite and

many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network

(WAN) of more than one million computers that literally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-

quate background for the remaining chapters. For a historical perspective on the early
development of TCP/IP see [Lynch 1993]. ‘

Layering

Networking protocols are normally developed in layers, with each layer responsible for a

different facet of the communications. A protocol suite, such as TCP/IP, is the combina-

tion of different protocols at various layers. TCP/IP is normally considered to be a

4-layer system, as shown in Figure 1.1.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

2
Introduction Chapter 1

Application Telnet, FTP, e—mail, etc.

Transport TCP, UDP

Network IP, ICMP, IGMP

Link device driver and interface card

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility.

1. The link layer, sometimes called the data—lz'nk layer or network interface layer, nor-

mally includes the device driver in the operating system and the corresponding

network interface card in the computer. Together they handle all the hardware

details of physically interfacing with the cable (or whatever type of media is

being used).

The network layer (sometimes called the internet layer) handles the movement of

packets around the network. Routing of packets, for example, takes place here.

IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP

(Internet Group Management Protocol) provide the network layer in the

TCP/IP protocol suite.

The transport layer provides a flow of data between two hosts, for the applica-

tion layer above. In the TCP/IP protocol suite there are two vastly different

transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-

gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with

things such as dividing the data passed to it from the application into appropri-

ately sized chunks for the network layer below, acknowledging received pack-

ets, setting timeouts to make certain the other end acknowledges packets that

are sent, and so on. Because this reliable flow of data is provided by the trans-

port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application

layer. It just sends packets of data called datngrmns from one host to the other,

but there is no guarantee that the datagrams reach the other end. Any desired

reliability must be added by the application layer.

There is a use for each type of transport protocol, which we'll see when we look

at the different applications that use TCP and UDP.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.2 Layering 3 _

4. The application layer handles the details of the particular application. There are

many common TCP/IP applications that almost every implementation pro-
Vides:

Telnet for remote login,
FTP, the File Transfer Protocol,

SMTP, the Simple Mail Transfer protocol, for electronic mail,

SNMP, the Simple Network Management Protocol,

and many more, some of which we cover in later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-

ning FTP, Figure 1.2 shows the protocols involved.

handles

. . FTP FTP protocol FTP “Set aPPh°§“°“
application Client ‘Q’ “ ‘ “ ' " ‘ ‘ — — — ‘ — *9’ Server Processes details

TCP protocol
transport TCP “ ‘ ‘ _ ‘ ‘ ‘ ‘ ‘ " ‘ ” ’ ”’ TCP kernel handles

communication

i i details
network IP 4- — — — I—P~p£o£OEO~1 — — — —> IP

. Ethernet Ethernet protocol Ethernetlmk . 4- — ~ — — — — ~ — — — — — —> .driver driver

Ethernet

Figure 1.2 Two hosts on a LAN running FTP.

We have labeled one application box the FTP client and the other the FTP server.

Most network applications are designed so that one end is the client and the other side

the server. The server provides some type of service to clients, in this case access to files

on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server's host.

Each layer has one or more protocols for communicating with its peer at the same

layer. One protocol, for example, allows the two TCP layers to communicate, and

another protocol lets the two IP layers communicate.

On the right side of Figure 1.2 we have noted that normally the application layer is

a user process while the lower three layers are usually implemented in the kernel (the

operating system). Although this isn't a requirement, it's typical and this is the way it’s
done under Unix.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

4 Introduction Chapter 1

There is another critical difference between the top layer in Figure 1.2 and the lower

three layers. The application layer is concerned with the details of the application and

not with the movement of data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FTP is an application

layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the

Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of

many protocols. Although the commonly used name for the entire protocol suite is

TCP/IP, TCP and IP are only two of the protocols. (An alternative name is the Internet

Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious—the former handles the details of the communication media (Ethernet, token

ring, etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on

first glance the difference between the network layer and the transport layer is some-

what hazy. Why is there a distinction between the two? To understand the reason, we

have to expand our perspective from a single network to a collection of networks.

One of the reasons for the phenomenal growth in networking during the 1980s was

the realization that an island consisting of a stand-alone computer made little sense. A

few stand-alone systems were collected together into a network. While this was

progress, during the 1990s we have come to realize that this new, bigger island consist-

ing of a single network doesn't make sense either. People are combining multiple net-

works together into an internetwork, or an internet. An internet is a collection of

networks that all use the same protocol suite.

The easiest way to build an internet is to connect two or more networks with a

router. This is often a special—purpose hardware box for connecting networks. The nice

thing about routers is that they provide connections to many different types of physical

networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxes are also called IP routers, but we'll use the term router.

Historically these boxes were called gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM's SNA) for one particular applica-
tion (often electronic mail or file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token

ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with

any host on the token ring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either

side) and an intermediate system (the router in the middle). The application layer and the

transport layer use end—to—end protocols. In our picture these two layers are needed only

on the end systems. The network layer, however, provides a h0p—by~hop protocol and is
used on the two end systems and every intermediate system.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.2 Layering 5

FTP FTP protocol FTP. <— — — — — —>
client server

TCP ‘_ _ _ TCP protocol _ _ _ _> TCP

1 I’ — ‘ “ “ " — — — — — — — * —
i router i

11) +11: 13r9t9C9 _ _;, i _ 4, no ¢ - _ _ - .11.’. 1:r9*9C9L, IPI
I .
I

I

Ethernet “_ _E_th_er_n§t_ I Ethernet token ring tol<e_n_rir1g token ring
driver protocol _iT driver driver 1* protocol 9 driverL i _ _, _ _ _ _ _ _ _ ,_ _ _ _

Ethernet

token ring

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.

That is, it does its best job of moving a packet from its source to its final destination, but

there are no guarantees. TCP, on the other hand, provides a reliable transport layer

using the unreliable service of IP. To provide this service, TCP performs timeout and

retransmission, sends and receives end-to—end acknowledgments, and so on. The trans-

port layer and the network layer have distinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects

two or more networks). Any system with multiple interfaces is called multihomed. A

host can also be multihorned but unless it specifically forwards packets from one inter-

face to another, it is not called a router. Also, routers need not be special hardware

boxes that only move packets around an internet. Most TCP/IP implementations allow

a multihomed host to act as a router also, but the host needs to be specifically config-

ured for this to happen. In this case we can call the system either a host (when an appli-

cation such as FTP or Telnet is being used) or a router (when it's forwarding packets

from one network to another). We'll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the

internet from the applications. Although this isn't obvious from our two—network inter-

net in Figure 1.3, the application layers can't care (and don't care) that one host is on an

Ethernet, the other on a token ring, with a router between. There could be 20 routers

between, with additional types of physical interconnections, and the applications would

run the same. This hiding of the details is what makes the concept of an internet so

powerful and useful.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Introduction Chapter 1

1.3

Another way to connect networks is with a bridge. These connect networks at the

link layer, while routers connect networks at the network layer. Bridges makes multiple

LANs appear to the upper layers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we'll focus on

routers. Chapter 12 of [Perlman 1992] compares routers and bridges.

TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the

additional protocols that we talk about in this text.

1
I

User User User User i 1. t.
Process Process Process Process : app ma Ion
_ _ A _ _ _ _ _ _ J

I" ‘ "I
I I
I I

: TCP UDP : transportI I
I I
I. _I

_ _|
I
I

ICMP IGMP : networkI
I

_ J

I — ‘l
I

I I

' ARP 4:» Hardware .:.. RARP ' link
: Interface :

I _ _ _ 4 _ J

1
media

Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as

the network layer.

TCP provides a reliable transport layer, even though the service it uses (IP) is unreli-

able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then

look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and

SMTP in Chapter 28. The applications are normally user processes.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.4 Internet Addresses 7

1.4

UDP sends and receives datagmms for applications. A datagram is a unit of infor-

mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.

There is no guarantee that the datagram ever gets to its final destination. Chapter 11

looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial

File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-

tions that use UDP. SNMP (the Simple Network Management Protocol) also uses UDP,

but since it deals with many of the other protocols, we save a discussion of it until

Chapter 25.

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every

piece of TCP and UDP data that gets transferred around an internet goes through the IP

layer at both end systems and at every intermediate router. In Figure 1.4 we also show

an application accessing IP directly. This is rare, but possible. (Some older routing pro-

tocols were implemented this way. Also, it is possible to experiment with new transport

layer protocols using this feature.) Chapter 3 looks at IP, but we save some of the details

for later chapters where their discussion makes more sense. Chapters 9 and 10 look at

how IP performs routing.

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and

other vital information with the IP layer in another host or router. Chapter 6 looks at

ICMP in more detail. Although ICMP is used primarily by IP, it is possible for an appli-

cation to also access it. Indeed we'll see that two popular diagnostic tools, Ping and

Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group Management Protocol. It is used with multicasting:

sending a UDP datagram to multiple hosts. We describe the general properties of

broadcasting (sending a UDP datagram to every host on a specified network) and

multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.
ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution

Protocol) are specialized protocols used only with certain types of network interfaces

(such as Ethernet and token ring) to convert between the addresses used by the IP layer

and the addresses used by the network interface. We examine these protocols in Chap-

ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1, 2, 3, and so on, there is a structure to Internet addresses. Figure 1.5 shows the five
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each

byte of the address. This is called d0tted—decimul notation. For example, the class B

address of the author's primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look

at the first number of a dotted—decimal address. Figure 1.6 shows the different classes,
with the first number in boldface.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

8 Introduction Chapter 1

7 bits 24 bits

Class A 0 netid hostid

14 bits 16 bits

Class B 1 O | netid hostid

21 bits , 8 bits
Class C 1 1 O netid hostid

28 bits

Class D 1 1 1 O multicast group ID

28 bits

Class E 1 1 1 1 (reserved for future use)

Figure 1.5 The five different classes of Internet addresses.

Class Range
A 0.0.0.0 to 127.255.255.255
B 128.0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 255.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per
interface.

Since every interface on an internet must have a unique IP address, there must be

one central authority for allocating these addresses for networks connected to the

worldwide Internet. That authority is the Internet Network Information Center, called the

InterNIC. The InterNIC assigns only network IDs. The assignment of host IDs is up to

the system administrator.

Registration services for the Internet (IP addresses and DNS domain names) used to be han-
dled by the NIC, at nic . ddn . mi 1. On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN). All other Internet users now
use the InterNIC registration services, at rs . internic .net:. .

There are actually three parts to the lnterNIC: registration services (rs . internic.net),
directory and database services (ds.internic.net), and information services
(is . internic . net). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast

(destined for all hosts on a given network), and multicast (destined for a set of hosts that

belong to a multicast group). Chapters 12 and 13 look at broadcasting and rnulticasting
in more detail.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.6 Encapsulation 9

In Section 3.4 we'll extend our description of IP addresses to include subnetting,

after describing IP routing. Figure 3.9 shows the special case IP addresses: host IDs and
network IDs of all zero bits or all one bits.

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by IP

addresses, humans work best using the name of a host. In the TCP/IP world the Domzzin

Name System (DNS) is a distributed database that provides the mapping between IP

addresses and hostnames. Chapter 14 looks into the DNS in detail.

For now we must be aware that any application can call a standard library function

to look up the IP address (or addresses) corresponding to a given hostname. Similarly a

function is provided to do the reverse lookup—given an IP address, look up the corre-

sponding hostname.

Most applications that take a hostname as an argument also take an IP address.

When we use the Telnet client in Chapter 4, for example, one time we specify a host-

name and another time we specify an IP address.

1.6 Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,

through each layer, until it is sent as a stream of bits across the network. Each layer

adds information to the data by prepending headers (and sometimes adding trailer

information) to the data that it receives. Figure 1.7 shows this process. The unit of data

that TCP sends to IP is called a TCP segment. The unit of data that IP sends to the net-

work interface is called an IP datagram. The stream of bits that flows across the Ethernet

is called a frame.

The numbers at the bottom of the headers and trailer of the Ethernet frame in Fig-

ure 1.7 are the typical sizes of the headers in bytes. We'll have more to say about each of
these headers in later" sections.

A physical property of an Ethernet frame is that the size of its data must be between

46 and 1500 bytes. We'll encounter this minimum in Section 4.5 and We cover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use of this cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we'll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragment of
an IP datagram. We discuss fragmentation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changes are that

the unit of information that UDP passes to IP is called a UDP datagram, and the size of

the UDP header is 8 bytes.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

10 Introduction Chapter 1

user data

I

; applicationV

hi:C11); user data lI I

; ; TCP
h::EiI;_ application data

VI

we TCP segment -——w+c H,
v i

hefiiel‘ hzacdir application data
7I

we IP datagram an» Ethernet
driver

v t

Ethernet IP TCP a licafion data Ethernet
header header header pp trailer Ethernet

14 20 20 4
asEthernet frameT»

4e46 to 1500 bytesT»

Figure 1.7 Encapsulation of data as it goes down the protocol stack.

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP

must add some type of identifier to the IP header that it generates, to indicate the layer

to which the data belongs. IP handles this by storing an 8-bit Value in its header called

the protocol field. A Value of 1 is for ICMP, 2 is for IGMP, 6 indicates TCP, and 17 is for
UDP.

Similarly, many different applications can be using TCP or UDP at any one time.

The transport layer protocols store an identifier in the headers they generate to identify

the application. Both TCP and UDP use 16-bit port numbers to identify applications.

TCP and UDP store the source port number and the destination port number in their

respective headers.
The network interface sends and receives frames on behalf of IP, ARP, and RARP.

There must be some form of identification in the Ethernet header indicating which net-

work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header. '

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.7
Demultiplexing 11

1.7 Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the proto-

col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next

upper layer receives the data. This is called demultiplexing. Figure 1.8 shows how this

takes place.

application application application application

demultiplexing based on
destination port number
in TCP or UDP header

UDP

demultiplexing based on
protocol value in IP header

demultiplexing based on
frame type in Ethernet header

Ethernet
driver

incoming frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled ”ICMP” and “IGMP” is always a challenge. In Fig-
ure 1.4 we showed them at the same layer as IP, because they really are adjuncts to IP. But here
we show them above IP, to reiterate that ICMP messages and IGMP messages are encapsulated
in IP datagrams.

We have a similar problem with the boxes ”ARP” and ”RARP.” Here we show them above the
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2.4 we'll show ARP as part of the Ethernet device driver, beneath IP,
because that's where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When we describe TCP in detail we'll see that it really demultiplexes incoming seg-

ments using the destination port number, the source IP address, and the source port
number.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

12 Introduction Chapter 1

1.8 C|ient—SerVer Model

Most networking applications are written assuming one side is the client and the other

the server. The purpose of the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative

server iterates through the following steps.

I1. Wait for a client request to arrive.

12. Process the client request.

I3. Send the response back to, the client that sent the request.

I4. Go back to step 11.

The problem with an iterative server is when step I2 takes a while. During this time no
other clients are serviced.

A concurrent server, on the other hand, performs the following steps.

C1. Wait for a client request to arrive.

C2. Start a new server to handle this client’s request. This may involve creating a

new process, task, or thread, depending on what the underlying operating sys-

tem supports. How this step is performed depends on the operating system.

This new server handles this client's entire request. When complete, this new
server terminates.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other servers to han-

dle the client requests. Each client has, in essence, its own server. Assuming the operat-

ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason We categorize servers, and not clients, is because a client normally can't

tell whether it’s talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but

there are a few exceptions. We'll look in detail at the impact of UDP on its servers in

Section 11.12, and the impact of TCP on its servers in Section 18.11.

1.9 Part Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are

these port numbers chosen?

Servers are normally known by their well—krzown port number. For example, every

TCP/IP implementation that provides an FTP server provides that service on TCP port

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.9 I Port Numbers 13

21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial

File Transfer Protocol) is on UDP port 69. Those services that can be provided by any

implementation of TCP/IP have well-known port numbers between 1 and 1023. The

well-known ports are managed by the Internet Assigned Numbers Authority (IANA).

Until 1992 the well—known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services—that is, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between 1 and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port number of 23 and can be imple-
mented on almost any operating-system. Rlogin, on the other hand, was originally designed
for Unix systems (although many non-Unix systems now provide it also) so its well—l<nown
port was chosen in the early 1980s as 513.

A client usually doesn't care what port number it uses on its end. All it needs to be

certain of is that whatever port number it uses be unique on its host. Client port num-

bers are called ephemeral ports (i.e., short lived). This is because a client typically exists

only as long as the user running the client needs its service, while servers typically run

as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and

5000. The port numbers above 5000 are intended for other servers (those that aren't

well known across the Internet). We'll see many examples of how ephemeral ports are

allocated in the examples throughout the text.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP’ start at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /etc/ services on most

Unix systems. To find the port numbers for the Telnet server and the Domain Name

System, We can executea
sun 5 grep telnet /etc/services
telnet 23/tcp says it uses TCP port 23

sun % grep domain /etc/services

domain 53 /udp says it uses UDP port 53
domain 5 3 / top and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-

leges can assign itself a reserved port.

These port numbers are in the range of 1 to 1023, and are used by some applications

(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

14 Introduction Chapter 1

1.10 Standardization Process

1.11

Who controls the TCP/IP protocol suite, approves new standards, and the like? There

are four groups responsible for Internet technology.

1. The Internet Society (ISOC) is a professional society to facilitate, support, and

promote the evolution and growth of the Internet as a global research communi-
cations infrastructure.

2. The Internet Architecture Board (IAB) is the technical oversight and coordination

body. It is composed of about 15 international volunteers from various disci-

plines and serves as the final editorial and technical review board for the quality
of Internet standards. The IAB falls under the ISOC.

3. The Internet Engineering Task Force (IETF) is the near—term, standards—oriented

group, divided into nine areas (applications, routing and addressing, security,

etc.). The IETF develops the specifications that become Internet standards. An

additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4. The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional

details on the standardization process within the Internet, as well as some of its early

history.

RFCs

All the official standards in the internet community are published as a Request for Com-

ment, or RFC. Additionally there are lots of RFCs that are not official standards, but are

published for informational purposes. The RFCs range in size from 1 page to almost

200 pages. Each is identified by a number, such as RFC 1122, with higher numbers for
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across

the Internet. Sending electronic mail as shown here:
To: rfc—info@ISI.EDU

Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.

The latest RFC index is always a starting point when looking for something. This

index specifies when a certain RFC has been replaced by a newer RFC, and if a newer

RFC updates some of the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that

are used in the Internet protocols. At the time of this writing the latest version

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.12 Standard, Simple Services 15

1.12

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet—wide well-

known ports are listed here.

When this RFC is updated (it is normally updated at least yearly) the index list-

ing for 1340 will indicate which RFC has replaced it.

2. The Internet Officiul Protocol Standards, currently RFC 1600 [Postel 1994]. This

RFC specifies the state of standardization of the various Internet protocols. Each

protocol has one of the following states of standardization: standard, draft stan-

dard, proposed standard, experimental, informational, or historic. Additionally

each protocol has a requirement level: required, recommended, elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure
you're reading the current copy.

3. The Host Requireinents RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122

handles the link layer, network layer, and transport layer, while RFC 1123 han-

dles the application layer. These two RFCs make numerous corrections and

interpretations of the important earlier RFCs, and are often the starting point

when looking at any of the finer details of a given protocol. They list the fea-

tures and implementation details of the protocols as either ”must,” ”should,”

”may,” ”should not,” or ”must not.”

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127

[Braden 1989c] provides an informal summary of the discussions and conclu-

sions of the working group that developed the Host Requirements RFCs.

4. The Router Requirements RFC. The official version of this is RFC 1009 [Braden

and Postel 1987], but a new Version is nearing completion [Almquist 1993]. This

is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.

We'll use some of these servers throughout the text, usually with the Telnet client. Fig-

ure 1.9 describes these services. We can see from this figure that when the same service

is provided using both TCP and UDP, both port numbers are normally chosen to be the
same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even—odd pair of port numbers was reserved for
each application. When TCP and UDP became the standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

16
Introduction Chapter 1

1.13

1.14

RFC

862
863
867

Name TCP port UDP port
echo 7 7
discard 9 9

daytime 13 13

Description
Server returns whatever the client sends.
Server discards whatever the client sends.
Server returns the time and date in a human-readable

format.

TCP server sends a continual stream of characters, until the

connection is terminated by the client. UDP server
sends a datagram containing a random number of
characters each time the client sends a datagram.

Server returns the time as a 32-bit binary number. This
number represents the number of seconds since
midnight Ianuary 1, 1900, UTC.

19 19 864chargen

37 37 868time

Figure 1.9 Standard, simple services provided by most implementations.

The Internet

In Figure 1.3 we showed an internet composed of two networks—an Ethernet and a

token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need

to allocate IP addresses centrally (the InterNIC) and the well—known port numbers (the

IANA). The word internet means different things depending on whether it's capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-

mon protocol suite. The uppercase Internet refers to the collection of hosts (over one

million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true. I

Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-

tems Research Group at the University of California at Berkeley. Historically this has

been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the

”BSD Networking Releases.” This source code has been the starting point for many

other implementations.

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-

tant TCP /IP features. The BSD Networking Releases shown on the left side are publicly

available source code releases containing all of the networking code: both the protocols

themselves and many of the applications and utilities (such as Telnet and FTP).

Throughout the text we'll use the term Berkeley—derz'ved implementation to refer to

vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally

developed from the Berkeley sources. These implementations have much in common,

often including the same bugs!

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 1.15 Application Programming Interfaces 17

1.15

4.2BSD (1983)
first widely available

release of TCP/IP

i
4.3BSD (1986)

TCP performance improvements

i
4.3BSD Tahoe (1988)

slow start,

congestion avoidance,
fast retransmitJ

BSD Networking Software £Release 1.0 (1989): Net/1

J
BSD Networking Software
Release 2.0 (1991): Net/2

‘J
4.4BSD-Lite (1994)

also referred to as Net/3

4.3BSD Reno (1990)

fast recovery,
TCP header prediction,

SLIP header compression,
routing table changes

4.4BSD (1993)

rnulticasting,
long fat pipe modifications

Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley

system—new congestion control algorithms (Section 21.7), multicasting (Section 12.4),

”long fat pipe” modifications (Section 24.3), and the like.

Application Programming Interfaces

Two popular application programming interfaces (APIS) for applications using the TCP/IP

protocols are called sockets and TLI (Transport Layer Interface). The former is some-

times called ”Berkeley sockets,” indicating where it was originally developed. The lat-

ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport

Interface), recognizing the work done by X/Open, an international group of computer

vendors that produce their own set of standards. XTI is effectively a superset of TLI.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

18
Introduction Chapter 1

1.16

This text is not a programming text, but occasional reference is made to features of

TCP/IP that we look at, and whether that feature is provided by the most popular API

(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

Test Network

Figure 1.11 shows the test network that is used for all the examples in the text. This fig-

ure is also duplicated on the inside front cover for easy reference while reading the
book. '

Internet

AIX 3.2.2 Solaris 2.2 SunOS 4.1.1 .104.1

, , _ . Cisco

a1x solarls gemmu. gateway router

.1.92 “.132 .1.4

“ hern 1'” ” it 0' ' 0‘ ”
Telebit

netb NetBlazer

modem

SLIP (dialup)

modem

BSD/386 1.0 BSD/386 1.0 SunOS 4.1.3 £1.29 SVR4
_ SLIP .

sl:.p bsd:L sun svr4
.1335 .13.33 .1334

Et ernet

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 140,252.

Most of the examples are run on the lower four systems in this figure (the author's sub-

net). All the IP addresses in this figure belong to the class B network ID 140.252. All the

hostnames belong to the .tuc . noao . edu domain. (noao stands for ”National Optical

Astronomy Observatories” and tuc stands for Tucson.) For example, the lower right

system has a complete hostname of svr4 .tuc . noao . edu and an IP address of

140.252.13.34. The notation at the top of each box is the operating system running on

that system. This collection of systems and networks provides hosts and routers run-

ning a variety of TCP/IP implementations.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 1 Exercises 19

It should be noted that there are many more networks and hosts in the r1oao.edu

domain than we show in Figure 1.11. All we show here are the systems that we'll

encounter throughout the text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-

tion 4.6 we'll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

1.17 Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many

of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protocol suite are the link layer, network layer, trans-

port layer, and application layer, and we mentioned the different responsibilities of

each. In TCP/IP the distinction between the network layer and the transport layer is

critical: the network layer (IP) provides a hop—by—hop service while the transport layers

(TCP and UDP) provide an end~to-end service. -

An internet is a collection of networks. The common building block for an internet

is a router that connects iglie networks at the IP layer. The capital-I Internet is an internet

that spans the globe and consists of more than 10,000 networks and more than one mil-

lion computers.

On an internet each interface is identified by a unique IP address, although users

tend to use hostnames instead of IP addresses. The Domain Name System provides a

dynamic mapping between hostnames and IP addresses. Port numbers are used to

identify the applications communicating with each other and we said that servers use

well—known ports while clients use ephemeral ports.

Exercises

1.1 Calculate the maximum number of class A, B, and C network IDs.

1.2 Fetch the file nsfnet/statistics/history.netcount using anonymous FTP (Sec-
tion 27.3) from the host nic .merit . edu. This file contains the number of domestic and

foreign networks announced to the NSFNET infrastructure. Plot these values with the year
on the x-axis and a logarithmic y—axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the Values to estimate when the current addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

1.3 Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP /IP protocol suite. What is the reference for
this principle?

1.4 Obtain a copy of the latest Assigned Numbers RFC. What is the well—known port for the
”quote of the day" protocol? Which RFC defines the protocol?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

20 Introduction Chapter 1

1.5 If you have an account on a host that is connected to a TCP/IP internet, what is its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

1.6 Obtain a copy of RFC 1000 to learn where the term RFC originated.

1.7 Contact the Internet Society, isoc@isoc . org or +1 703 648 9888, to find out about joining.

1.8 Fetch the file about~internic/information—about—the—internic using anony—
mous FTP from the host is . internic . net.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

2.1

2.2

Link Layer

Introduction

From Figure 1.4 (p. 6) we see that the purpose of the link layer in the TCP/IP protocol

suite is to send and receive (1) IP datagrams for the IP module, (2) ARP requests and

replies for the ARP module, and (3) RARP requests and replies for the RARP module.

TCP/IP supports many different link layers, depending on the type of networking

hardware being used: Ethernet, token ring, FDDI (Fiber Distributed Data Interface),
RS-232 serial lines, and the like.

In this chapter we'll look at some of the details involved in the Ethernet link layer,

two specialized link layers for serial interfaces (SLIP and PPP), and the loopback driver

that's part of most implementations. Ethernet and SLIP are the link layers used for

most of the examples in the book. We also talk about the MTU (Maximum Transmission

Unit), a characteristic of the link layer that we encounter numerous times in the remain-

ing chapters. We also show some calculations of how to Choose the MTU for a serial
line.

Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment

Corp., Intel Corp., and Xerox Corp. It is the predominant form of local area network

technology used with TCP/IP today. It uses an access method called CSMA/CD, which

stands for Carrier Sense, Multiple Access with Collision Detection. It operates at 10
Mbits/sec and uses 48-bit addresses.

A few years later the IEEE (Institute of Electrical and Electronics Engineers) 802

Committee published a sightly different set of standards. 802.3 covers an entire set of

Talari Networks Inc. - Exhibit 106’?

Talari Networks Inc. - Exhibit 1007

22 Link Layer Chapter 2

CSMA/CD networks, 802.4 covers token bus networks, and 802.5 covers token ring net-

works. Common to all three of these is the 802.2 standard that defines the logical link

control (LLC) common to many of the 802 networks. Unfortunately the combination of

802.2 and 802.3 defines a different frame format from true Ethernet. ([Stallings 1987]
covers all the details of these IEEE 802 standards.)

In the TCP/IP world, the encapsulation of IP datagrams -is defined in RFC 894

[Hornig 1984] for Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802

networks. The Host Requirements RFC requires that every Internet host connected to a
10 Mbits/sec Ethernet cable:

1. Must be able to send and receive packets using RFC 894 (Ethernet) encapsula-
tion.

2. Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894

packets.

3. May be able to send packets using RFC 1042 encapsulation. If the host can send

both types of packets, the type of packet sent must be configurable and the con-

figuration option must default to RFC 894 packets.

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different

forms of encapsulation. The number below each box in the figure is the size of that box

in bytes.

Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3
allows 16-bit addresses to be used, but 48-bit addresses are normal.) These are what we

call Imrdzuare addresses throughout the text. The ARP and RARP protocols (Chapters 4

and 5) map between the 32-bit IP addresses and the 48-bit hardware addresses.

The next 2 bytes are different in the two frame formats. The 802 length field says

how many bytes follow, up to but not including the CRC at the end. The Ethernet type

field identifies the type of data that follows. In the 802 frame the same type field occurs

later in the SNAP (Sub—network Access Protocol) header. Fortunately none of the valid

802 length Values is the same as the Ethernet type values, making the two frame formats

distinguishable. _

In the Ethernet frame the data immediately follows the type field, while in the 802

frame format 3 bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Desti~
nation Service Access Point) and SSAP (Source Service Access Point) are both set to

Oxaa. The ctrl field is set to 3. The next 3 bytes, the org code are all 0. Following this is

the same 2-byte type field that we had with the Ethernet frame format. -(Additional type

field values are given in RFC 1340 [Reynolds and Postel 1992].)

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the

rest of the frame. (This is also called the PCS or frame check sequence.)

There is a minimum size for 802.3 and Ethernet frames. This minimum requires

that the data portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle

this, pad bytes are inserted to assure that the frame is long enough. We’ll encounter this

minimum when we start watching packets on the wire.

In this text we'll display the Ethernet encapsulation when we need to, because this

is the most commonly used form of encapsulation.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 2.3 V Trailer Encapsulation 23

IEEE 802.2/802.3 Encapsulation (RFC 1042):

<j 802.3 MAC j><— 802.2 LLC —>i<— 802.2 SNAP ->i

destination source SA SSAP cntl org code
addr addr length AA? AA 03 00 type data CRC

6 6 2 I 1 1 1 3 2 38-1492 4I .

type
0 8 0 0 IP datagram

2 38-1492

e

38,1?) 6 ARP request/reply PAD
2 28 10

t e

8%}; 5 RARP request/1'eply PAD 5
2 28 10

Ethernet Encapsulation (RFC 894): '4 46 1500 bytes i
.1

destination source

addr addr type data CRC
6 6 2 46-1500 4

W199 .
0 8 O 0 IP datagiam

2 46-1500

t e

0213 6 ARP request/reply PAD
2 28 18

t e

83625 RARP request/reply PAD
2 28 18

Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (RFC 894).

2.3 Trailer Encapsulation

RFC 893 [Leffler and Karels 1984] describes another form of encapsulation used on

Ethernets, called trailer encapsulation. It was an experiment with early BSD systems on

DEC VAXes that improved performance by rearranging the order of the fields in the IP

datagram. The variable-length fields at the beginning of the data portion of the Ether-

net frame (the IP header and the TCP header) were moved to the end (right before the

CRC). This allows the data portion of the frame to be mapped to a hardware page,

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

24
Link Layer Chapter 2

2.4

saving a memory~to-memory copy when the data is copied in the kernel. TCP data that

is a multiple of 512 bytes in size can be moved by just manipulating the l<ernel’s page

tables. Two hosts negotiated the use of trailer encapsulation using an extension of ARP.

Different Ethernet frame type Values are defined for these frames.

Nowadays trailer encapsulation is deprecated, so we won't show any examples of
it. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for
additional details.

SLIP: Serial Line IP

SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on
serial lines, and is specified in RFC 1055 [Romkey 1988]. SLIP has become popular for

connecting home systems to the Internet, through the ubiquitous RS-232 serial port

found on almost every computer and high-speed modems.

The following rules specify the framing used by SLIP.

1. The IP datagram is terminated by the special character called END (0xcO).

Also, to prevent any line noise before this datagram from being interpreted as

part of this datagram, most implementations transmit an END character at the

beginning of the datagram too. (If there was some line noise, this END termi-

nates that erroneous datagram, allowing the current datagram to be transmitted.
That erroneous datagram will be thrown away by a higher layer when its con-

tents are detected to be garbage.)

2. If a byte of the IP datagram equals the END character, the 2-byte sequence

Oxdb, Oxdc is transmitted instead. This special character, Oxdb, is called the
SLIP ESC character, but its Value is different from the ASCII ESC character

(Ox1b).

3. If a byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence
Oxdb, Oxdd is transmitted instead.

Figure 2.2 shows an example of this framing, assuming that one END character and one

ESC character appear in the original IP datagram. In this example the number of bytes

transmitted across the serial line is the length of the IP datagram plus 4.

SLIP is a simple framing method. It has some deficiencies that are worth noting.

1. Each end must know the other’s IP address. There is no method for one end to

inform the other of its IP address.

2. There is no type field (similar to the frame type field in Ethernet frames). If a

serial line is used for SLIP, it can't be used for some other protocol at the same
time.

3. There is no checksum added by SLIP (similar to the CRC field in Ethernet

frames). If a noisy phone line corrupts a datagram being transferred by SLIP,

it's up to the higher layers to detect this. (Alternately, newer modems can detect

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 2.5 Compressed SLIP 25

2.5

< IP datagram

00 db

1 1 \ x1 \\ \\\ \

n \ \ \\ \\‘ \ \ \
END ESC ‘ ‘ ESC \ \ END

C0 db dc db ddw C0
1 1 1 1 1 1

Figure 2.2 SLIP encapsulation.

and correct corrupted frames.) This makes it essential that the upper layers pro-

vide some form of CRC. In Chapters 3 and 17 we'll see that there is always a
checksum for the IP header, and for the TCP header and the TCP data. But in

Chapter 11 we'll see that the checksum that covers the UDP header and UDP

data is optional.

Despite these shortcomings, SLIP is a popular protocol that is widely used.

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD. Despite
its self-description as a nonstandard, it is becoming more popular as the speed and reliability
of modems increase. Publicly available implementations abound, and many vendors support
it today.

Compressed SLIP

Since SLIP lines are often slow (19200 bits/ sec or below) and frequently used for inter-

active traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many

small TCP packets exchanged across a SLIP line. To carry 1 byte of data requires a

20-byte IP header and a 20-byte TCP header, an overhead of 40 bytes. (Section 19.2

shows the flow of these small packets when a simple command is typed during an

Rlogin session.)

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for

compressed SLIP), is specified in RFC 1144 []acobson 1990a]. CSLIP normally reduces

the 40-byte header to 3 or 5 bytes. It maintains the state of up to 16 TCP connections on
each end of the CSLIP link and knows that some of the fields in the two headers for a

given connection normally don’t change. Of the fields that do change, most change by a

small positive amount. These smaller headers greatly improve the interactive response
time.

Most SLIP implementations today support CSLIP. Both SLIP links on the author's subnet (see
inside front cover) are CSLIP links.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

26 Link Layer Chapter 2

2.6 PPP: Point-to-Point Protocol

PPP, the Point-to—P0int Protocol, corrects all the deficiencies in SLIP. PPP consists of

three components.

1. A way to encapsulate IP datagrams on a serial link. PPP supports either an

asynchronous link with 8 bits of data and no parity (i.e., the ubiquitous serial

interface found on most computers) or bit-oriented synchronous links.

2. A link control protocol (LCP) to establish, configure, and test the data-link connec-
tion. This allows each end to negotiate various options.

3. A family of network control protocols (NCPS) specific to different network layer

protocols. RFCs currently exist for II’, the OSI network layer, DECnet, and

AppleTalk. The IP NCP, for example, allows each end to specify if it can per-

form header compression, similar to CSLIP. (The acronym NCP was also used

for the predecessor to TCP.)

RFC 1548 [Simpson 1993] specifies the encapsulation method and the link control proto-

col. RFC 1332 [McGregor 1992] specifies the network control protocol for IP.
The format of the PPP frames was chosen to look like the ISO HDLC standard

(high~leVel data link control). Figure 2.3 shows the format of PPP frames.

glg aggr Coggrol protocol information CRC 2?
1 1 1 2 up to 1500 bytes 2 1

pgoot3:01 IP datagram

protocol .
C O 2 1 link control data

pgoot3:01 network control data

Figure 2.3 Format of PPP frames.

Each frame begins and ends with a flag byte whose Value is Ox7e. This is followed

by an address byte whose value is always Oxff, and then a control byte, with a Value of
0 X0 3.

Next comes the protocol field, similar in function to the Ethernet type field. A Value

of OxO021 means the z'nformatz'on field is an IP datagram, a value of OxcO21 means the

informtztion field is link control data, and a value of 0x8 02 1 is for network control data.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 2.6 PPP: Point-to~Point Protocol 27

The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to
detect errors in the frame.

Since the byte value Ox7e is the flag character, PPP needs to escape this byte when it

appears in the information field. On a synchronous link this is done by the hardware

using a technique called bit stuffing [Tanenbaum 1989]. On asynchronous links the spe-

cial byte Ox7d is used as an escape character. Whenever this escape character appears

in a PPP frame, the next character in the frame has had its sixth bit complemented, as
follows:

1. The byte Ox7e is transmitted as the 2-byte sequence Ox7d, Ox5e. This is the

escape of the flag byte.

2. The byte Ox7d is transmitted as the 2-byte sequence Ox7d, Ox5d. This is the

escape of the escape byte.

3. By default, a byte with a value less than OX2 O (i.e., an ASCII control character) is

also escaped. For example, the byte OXO1 is transmitted as the 2-byte sequence

Ox7d, OX2 1. (In this case the complement of the sixth bit turns the bit on,

whereas in the two previous examples the complement turned the bit off.)

The reason for doing this is to prevent these bytes from appearing as ASCII con-
trol characters to the serial driver on either host, or to the modems, which some-

times interpret these control characters specially. It is also possible to use the

link control protocol to specify which, if any, of these 32 values must be escaped.

By default, all 32 are escaped.

Since PPP, like SLIP, is often used across slow serial links, reducing the number of

bytes per frame reduces the latency for interactive applications. Using the lin1< control

protocol, most implementations negotiate to omit the constant address and control fields

and to reduce the size of the protocol field from 2 bytes to 1 byte. If we then compare the

framing overhead in a PPP frame, versus the 2-byte framing overhead in a SLIP frame

(Figure 2.2), we see that PPP adds three additional bytes: 1 byte for the protocol field,

and 2 bytes for the CRC. Additionally, using the IP network control protocol, most

implementations then negotiate to use Van Iacobson header compression (identical to

CSLIP compression) to reduce the size of the IP and TCP headers.

In summary, PPP provides the following advantages over SLIP: (1) support for mul-

tiple protocols on a single serial line, not just IP datagrams, (2) a cyclic redundancy

check on every frame, (3) dynamic negotiation of the IP address for each end (using the

IP network control protocol), (4) TCP and IP header compression similar to CSLIP, and
(5) a link control protocol for negotiating many data-link options. The price we pay for
all these features is 3 bytes of additional overhead per frame, a few frames of negotia-

tion when the link is established, and a more complex implementation.

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP
users. As implementations become more widely available, and as vendors start to support
PPP, it should (eventually) replace SLIP.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

28
Link Layer Chapter 2

2.7 Loopback Interface

Most implementations support a loopback interface that allows a client and server on the
same host to communicate with each other using TCP/IP. The class A network ID 127

is reserved for the loopback interface. By convention, most systems assign the IP

address of 127.0.0.1 to this interface and assign it the name localhost. An IP data-

gram sent to the loopback interface must not appear on any network.

Although we could imagine the transport layer detecting that the other end is the

loopback address, and short circuiting some of the transport layer logic and all of the

network layer logic, most implementations perform complete processing of the data in

the transport layer and network layer, and only loop the IP datagram back to itself
when the datagram leaves the bottom of the network layer.

Figure 2.4 shows a simplified diagram of how the loopback interface processes IP

datagrams.

IP output
function

IP input
function

es destination IP address

y equal broadcast address
or multicast address?

destination IP address

equal interface IP address ?

\ no, use RP to

get destination
Ethernet address

, IP

ARP ARP demultiplex based on
Ethernet frame type

send

place on IP
input queue

loopback driver

 1 Ethernet
| driver

receive I

 Et ernet

Figure 2.4 Processing of IP datagrams by loopback interface.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 2.8 MTU 29

2.8

The key points to note in this figure are as follows:

1. Everything sent to the loopback address (normally 127.0.0.1) appears as IP

input.

2. Datagrams sent to a broadcast address or a multicast address are copied to the

loopback interface and sent out on the Ethernet. This is because the definition

of broadcasting and multicasting (Chapter 12) includes the sending host.

3. Anything sent to one of the host's own IP addresses is sent to the loopback
interface.

While it may seem inefficient to perform all the transport layer and IP layer process-
ing of the loopback data, it simplifies the design because the loopback interface appears

as just another link layer to the network layer. The network layer passes a datagram to

the loopback interface like any other link layer, and it happens that the loopback inter-
face then puts the datagram back onto IP’s input queue.

Another implication of Figure 2.4 is that IP datagrams sent to the one of the host's

own IP addresses normally do not appear on the corresponding network. For example,

on an Ethernet, normally the packet is not transmitted and then read back. Comments

in some of the BSD Ethernet device drivers indicate that many Ethernet interface cards

are not capable of reading their own transmissions. Since a host must process IP data-

grams that it sends to itself, handling these packets as shown in Figure 2.4 is the sim-

plest way to accomplish this.

The 4.4BSD implementation defines the variable useloopback and initializes it to 1. If this
variable is set to 0, however, the Ethernet driver sends local packets onto the network instead
of sending them to the loopback driver. This may or may not work, depending on your Ether-
net interface card and device driver.

MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet

encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500

and 1492, respectively. This characteristic of the link layer is called the MTU, its maxi-

mum transmission unit. Most types of networks have an upper limit.

If IP has a datagram to send, and the datagram is larger than the link 1ayer’s MTU,

IP performs fragmentation, breaking the datagram up into smaller pieces (fragments), so

that each fragment is smaller than the MTU. We discuss IP fragmentation in Sec-
tion 11.5.

Figure 2.5 lists some typical MTU values, taken from RFC 1191. [Mogul and Deering
1990]. The listed MTU for a point—to—point link (e.g., SLIP or PPP) is not a physical char-

acteristic of the network media. Instead it is a logical limit to provide adequate

response time for interactive use. In the Section 2.10 we'll see where this limit comes
from.

In Section 3.9 we'll use the net stat command to print the MTU of an interface.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

30
Link Layer Chapter 2

2.9

2.10

Network MTU (bytes)
65535
17914
4464
4352

Hyperchannel
16 Mbits/ sec token ring (IBM)
4 Mbits/sec token ring (IEEE 802.5)
FDDI
Ethernet 1500

IEEE 802.3/802.2 1492
X.25 576

Point-to-point (low delay) 296

Figure 2.5 Typical maximum transmission units (MTUs).

Path MTU

When two hosts on the same network are communicating with each other, it is the MTU

of the network that is important. But when two hosts are communicating across multi-

ple networks, each link can have a different MTU. The important numbers are not the
MTUs of the two networks to which the two hosts connect, but rather the smallest MTU

of any data link that packets traverse between the two hosts. This is called the path
MTU.

The path MTU between any two hosts need not be constant. It depends on the

route being used at any time. Also, routing need not be symmetric (the route from A to

B may not be the reverse of the route from B to A), hence the path MTU need not be the
same in the two directions.

RFC 1191 [Mogul and Deering 1990] specifies the ”path MTU discovery mecha-
nism,” a way to determine the path MTU at any time. We'll see how this mechanism

operates after we've described ICMP and IP fragmentation. In Section 11.6 we'll exam-

ine the ICMP unreachable error that is used with this discovery mechanism and in Sec-

tion 11.7 we'll show a version of the traceroute program that uses this mechanism to

determine the path MTU to a destination. Sections 11.8 and 24.2 show how UDP and
TCP operate when the implementation supports path MTU discovery.

Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus 1 start bit and 1 stop bit, the

line speed is 960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms.

If we're using the SLIP link for an interactive application, along with an application

such as FTP that sends or receives 1024-byte packets, we have to wait, on the average,

half of this time (533 ms) to send our interactive packet.

This assumes that our interactive packet will be sent across the link before any fur-

ther "big” packets. Most SLIP implementations do provide this type—of-service queue-

ing, placing interactive traffic ahead of bulk data traffic. The interactive traffic is

normally Telnet, Rlogin, and the control portion (the user commands, not the data) of
FTP.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 2.11
Summary 31

2.11

This type of service queueing is imperfect. It cannot affect noninteractive traffic that is already
queued downstream (e.g., at the serial driver). Also newer modems have large buffers so non-
interactive traffic may already be buffered in the modem.

Waiting 533 ms is unacceptable for interactive response. Human factors studies

have found that an interactive response time longer than 100-200 ms is perceived as

bad []acobson 1990a]. This is the round—trip time for an interactive packet to be sent

and something to be returned (normally a character echo).

Reducing the MTU of the SLIP link to 256 means the maximum amount of time the

link can be busy with a single frame is 266 ms, and half of this (our average wait) is 133

ms. This is better, but still not perfect. The reason we choose this value (as compared to

64 or 128) is to provide good utilization of the line for bulk data transfers (such as large

file transfers). Assuming a 5-byte CSLIP header, 256 bytes of data in a 261-byte frame

gives 98.1% of the line to data and 1.9% to headers, which is good utilization. Reducing

the MTU below 256 reduces the maximum throughput that we can achieve for bulk
data transfers.

The MTU value listed in Figure 2.5, 296 for a point—to-point link, assumes 256 bytes

of data and the 40-byte TCP and IP headers. Since the MTU is a value that IP queries

the link layer for, the value must include the normal TCP and IP headers. This is how

IP makes its fragmentation decision. IP knows nothing about the header compression

that CSLIP performs.

Our average wait calculation (one-half the time required to transfer a maximum

sized frame) only applies when a SLIP link (or PPP link) is used for both interactive traf-

fic and bulk data transfer. When only interactive traffic is being exchanged, 1 byte of

data in each direction (assuming 5-byte compressed headers) takes around 12.5 ms for

the round trip at 9600 bits/ sec. This is well within the 100-200 ms range mentioned

earlier. Also notice that compressing the headers from 40 bytes to 5 bytes reduces the

round—trip time for the 1 byte of data from 85 to 12.5 ms.

Unfortunately these types of calculations are harder to make when newer error cor-

recting, compressing modems are being used. The compression employed by these

modems reduces the number of bytes sent across the wire, but the error correction may

increase the amount of time to transfer these bytes. Nevertheless, these calculations
give us a starting point to make reasonable decisions.

In later chapters we'll use these serial line calculations to verify some of the timings

that we see when watching packets go across a serial link.

Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer.

We looked at the difference between Ethernet and IEEE 802.2/802.3 encapsulation, and

the encapsulation used by SLIP and PPP. Since, both SLIP and PPP are often used on

slow links, both provide a way to compress the common fields that don't often change.

This provides better interactive response. .

The loopback interface is provided by most implementations. Access to this inter-

face is either through the special loopback address, normally 127.0.0.1, or by sending IP

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

32 Link Layer Chapter 2

datagrams to one of the host's own IP addresses. Loopback data has been completely

processed by the transport layer and by IP when it loops around to go up the protocol
stack.

We described an important feature of many link layers, the MTU, and the related

concept of a path MTU. Using the typical MTUS for serial lines, we calculated the

latency involved in SLIP and CSLIP links.

This chapter has covered only a few of the common data-link technologies used

with TCP/IP today. One reason for the success of TCP/IP is its ability to work on top of

almost any data—lin1< technology.

Exercises

2.1 If your system supports the net stat(1) command (see Section 3.9 also), use it to determine
the interfaces on your system and their MTUs.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

IP: Internet Protocol

3.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and

IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many

newcomers to TCP/IP, especially those from an X25 or SNA background, is that IP pro-

vides an unreliable, connectionless datagram delivery service.

By umeliable we mean there are no guarantees that an IP datagram successfully gets

to its destination. IP provides a best effort service. When something goes wrong, such

as a router temporarily running out of buffers, IP has a simple error handling algorithm:

throw away the datagram and try to send an ICMP message back to the source. Any

required reliability must be provided by the upper layers (e. g., TCP).

The term com1ectz'0_nless means that IP does not maintain any state information about

successive datagrams. Each datagram is handled independently from all other data-

grams. This also means that IP datagrams can get delivered out of order. If a source

sends two consecutive datagrams (first A, then B) to the same destination, each is

routed independently and can take different routes, with B arriving before A.

In this chapter we take a brief look at the fields in the IP header, describe IP routing,

and cover subnetting. We also look at two useful commands: ifconfig and net st at.
We leave a detailed discussion of some of the fields in the IP header for later when we

can see exactly how the fields are used. RFC 791 [Postel 1981a] is the official specifica-
tion of IP.

Talari Networks Inc. - Exhibit 100‘?

Talari Networks Inc. - Exhibit 1007

34 IP: Internet Protocol Chapter 3

32 IP Header

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20

bytes, unless options are present.
0 15 16 31

4-bit 4-bit header 8-bit t e of se‘ 1ce _ .

Version length yaos) IV 16-bit total length (in bytes)

16-bit identification 3-bit 13-bit fragment offset
flags

8-bit time to live 8-bit protocol 16-bit header checksum 20 bytes(TTL)

32-bit source IP address

32-bit destination IP address

Y

1 options (if any) X

Z data Z

Figure 3.1 IP datagram, showing the fields in the IP header.

We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-

nificant bit is numbered 0 at the left, and the least significant bit of a 32-bit value is num-

bered 31 on the right.

The 4 bytes in the 32-bit value are transmitted in the order: bits O-7 first, then bits

8-15, then 16-23, and bits 24-31 last. This is called big endian byte ordering, which is

the byte ordering required for all binary integers in the TCP/IP headers as they traverse

a network. This is called the network byte order. Machines that store binary integers in
other formats, such as the little endian format, must convert the header Values into the

network byte order before transmitting the data.

The current protocol version is 4, so IP is sometimes called IPV4. Section 3.10 dis-

cusses some proposals for a new version of IP.

The header length is the number of 32-bit words in the header, including any options.

Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we'll see that this

limitation makes some of the options, such as the record route option, useless today.

The normal Value of this field (when no options are present) is 5.

The type—0f~servz'ce field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOS bits are: mini-

mize delay, maximize throughput, maximize reliability, and minimize monetary cost.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.2 IP Header 35

Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.

RFC 1340 [Reynolds and Postel 1992] specifies how these bits should be set by all the

standard applications. RFC 1349 [Almquist 1992] contains some corrections to this RFC,

and a more detailed description of the TOS feature.

Figure 3.2 shows the recommended values of the TOS field for various applications.
In the final column we show the hexadecimal value, since that's what we'll see in the

tcpdump output later in the text.

Application Minimize Maximize Maximize Minimize Hex
delay throughput reliability monetary cost Value

Telnet/Rlogin 1 . O O 0 0x10
FTP

control 1 0 0 0 0x1 0
data 0 1 O 0 O X 0 8

any bulk data 0 1 O O OX0 8
TFTP 1 0 O 0 0x1 0
SMTP

command phase 1 O 0 0 0x1 0
data phase 0 1 0 0 0x0 8

DNS

UDP query 1 O O 0 0 x l 0
TCP query 0 0 O O 0 x O 0
zone transfer 0 1 0 0 0x0 8

ICMP
error 0 O 0 0 0x0 0

query 0 O 0 0 0x0 0
any IGP O 0 1 0 O x 0 4
SNMP 0 0 1 0 0 x D 4
BOOTP O O O 0 0x0 0
NNTP 0 O O 1 0 x 0 2

Figure 3.2 Recommended values for type—of—service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since

they're used interactively by a human for small amounts of data transfer. File transfer

by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-

fied for network management (SNMP) and the routing protocols. Usenet news (NNTP)

is the only one shown that wants to minimize monetary cost.

The TOS feature is not supported by most TCP/IP implementations today, though

newer systems starting with 4.3BSD Reno are setting it. Additionally, new routing pro-

tocols such as OSPF and IS—IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type—of—service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don't
use the TOS field, this queueing is done ad hoc by SLIP, with the driver looking at the protocol
field (to determine whether it's a TCP segment or not) and then checking the source and desti-
nation TCP port numbers to see if the port number corresponds to an interactive service. One
driver comments that this ”disgusting hack” is required since most implementations don't
allow the application to set the TOS field.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

86 IP: Internet Protocol Chapter?)

The total length field is the total length of the IP datagram in bytes. Using this field

and the header length field, we know where the data portion of the IP datagram starts,

and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535

bytes. (Recall from Figure 2.5 [p. 30] that a Hyperchannel has an MTU of 65535. This

means there really isn't an MTU——it uses the largest IP datagram possible.) This field

also changes when a datagram is fragmented, which we describe in Section 11.5.

Although it's possible to send a 65535~byte IP datagram, most link layers will frag-

ment this. Furthermore, a host is not required to receive a datagram larger than 576

bytes. TCP divides the user's data into pieces, so this limit normally doesn't affect TCP.

With UDP we’ll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,

the DNS, and SNMP) that lirnit themselves to 512 bytes of user data, to stay below this

576-byte limit. Realistically, however, most implementations today (especially those

that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since some data links (e.g., Ether-

net) pad small frames to be a minimum length. Even though the minimum Ethernet

frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length

field wasn't provided, the IP layer wouldn't know how much of a 46-byte Ethernet

frame was really an IP datagram.

The identzfication field uniquely identifies each datagram sent by a host. It normally

increments by one each time a datagram is sent. We return to this field when we look at

fragmentation and reassembly in Section 11.5. Similarly, we'll also look at the flags field

and thefragmentatz'0n oflset field when we talk about fragmentation.

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies that two consecutive IP datagrams, one gen-
erated by TCP and one generated by UDP, can have the same identification field. While this is
OK (the reassembly algorithm handles this), most Berkeley-derived implementations have the
IP layer increment a kernel variable each time an IP datagram is sent, regardless of which layer
passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-
day when the system is bootstrapped.

The time—t0—live field, or TTL, sets an upper limit on the number of routers through

which a datagram can pass. It limits the lifetime of the datagram. It is initialized by the

sender to some value (often 32 or 64) and decremented by one by every router that han-

dles the datagram. When this field reaches 0, the datagram is thrown away, and the

sender is notified with an ICMP message. This prevents packets from getting caught in

routing loops forever. We return to this field in Chapter 8 when we look at the Trace-

route program. .

We talked about the protocol field in Chapter 1 and showed how it is used by IP to

demultiplex incoming datagrams in Figure 1.8. It identifies which protocol gave the
data for IP to send.

The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram, the value of the checksum

field is first set to 0. Then the 16-bit one’s complement sum of the header is calculated

(i.e., ‘the entire header is considered a sequence of 16-bit words). The 16-bit one’s

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3 .3 IP Routing 37

complement of this sum is stored in the checksum field. When an IP datagram is

received, the 16-bit one’s complement sum of the header is calculated. Since the

receiver's calculated checksurn contains the checksum stored by the sender, the

receiver's checksum is all one bits if nothing in the header was modified. If the result is

not all one bits (a checksum error), IP discards the received datagram. No error mes-

sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include Various fields from the IP header, in addition to their own header and

data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-

niques for computing the Internet checksum. Since a router often changes only the TTL

field (decrementing it by 1), a router can incrementally update the checksum when it

forwards a received datagram, instead of calculating the checksum over the entire IP

header again. RFC 1141 [Mallory and Kullberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, does not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destiiiatiorz IP address.
These are the 32-bit values that we described in Section 1.4.

The final field, the options, is a variable—length list of optional information for the

datagram. The options currently defined are:

0 security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

0 record route (have each router record its IP address, Section 7.3),

0 timestamp (have each router record its IP address and time, Section 7.4),

° loose source routing (specifying a list of IP addresses that must be traversed by

the datagram, Section 8.5), and

0 strict source routing (similar to loose source 1'outing but here only the addresses
in the list can be traversed, Section 8.5).

These options are rarely used and not all host and routers support all the options.

The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are

added if necessary. This assures that the IP header is always a multipleof 32 bits (as

required for the header length field).

3.3 IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly

connected to the host (e.g., a point—to—point link) or on a shared network (e.g., Ethernet

or token ring), then the IP datagram is sent directly to the destination. Otherwise the

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

38 IP: Internet Protocol Chapter3

host sends the datagram to a default router, and lets the router deliver the datagram to

its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we'll look at the more general case where the IP

layer can be configured to act as a router in addition to acting as a host. Most multiuser

systems today, including almost every Unix system, can be configured to act as a router.

We can then specify a single routing algorithm that both hosts and routers can use. The

fundamental difference is that a host never forwards datagrams from one of its inter-

faces to another, while a router forwards datagrams. A host that contains embedded

router functionality should never forward a datagram unless it has been specifically

configured to do so. We say more about this configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP

(that is, a locally generated datagram) to send, or one that has been received from a net-

work interface (a datagram to forward). The IP layer has a routing table in memory that

it searches each time it receives a datagram to send. When a datagram is received from
a network interface, ll’ first checks if the destination IP address is one of its own IP

addresses or an ll’ broadcast address. If so, the datagram is delivered to the protocol

module specified by the protocol field in the IP header. If the datagram is not destined

for this IP layer, then (1) if the IP layer was configured to act as a router the packet is for-
warded (that is, handled as an outgoing datagram as described below), else (2) the data-

gram is silently discarded.

Each entry in the routing table contains the following information:

0 Destination IP address. This can be either a complete host address or a network

address, as specified by the flag field (described below) for this entry. A host

address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of O and identifies all the hosts on that

network (e.g., Ethernet, token ring).

0 IP address of a next—hop router, or the IP address of a directly connected network.

A next~hop router is one that is on a directly connected network to which we can

send datagrams for delivery. The next—hop router is not the final destination, but
it takes the datagrams we send it and forwards them to the final destination.

0 Flags. One flag specifies whether the destination IP address is the address of a

network or the address of a host. Another flag says whether the next—hop router

field is really a next—hop router or a directly connected interface. (We describe

each of these flags in Section 9.2.)

0 Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop—by~hop basis. As we can see from this routing table

information, IP does not know the complete route to any destination (except, of course,

those destinations that are directly connected to the sending host). All that IP routing

provides is the IP address of the next—hop router to which the datagram is sent. It is

assumed that the next—hop router is really ”closer” to the destination than the sending

host is, and that the next—hop router is directly connected to the sending host.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.3 IP Routing 39

IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP

address (matching network ID and host ID). If found, send the packet to the

indicated next-hop router or to the directly connected interface (depending on

the flags field). Point-to-point links are found here, for example, since the other

end of such a link is the other host's complete IP address.

2. Search the routing table for an entry that matches just the destination network

ID. If found, send the packet to the indicated next-hop router or to the directly

connected interface (depending on the flags field). All the hosts on the destina-

tion network can be handled with this single routing table entry. All the hosts

on a local Ethernet, for example, are handled with a routing table entry of this
type.

This check for a network match must take into account a possible subnet mask,
which we describe in the next section.

3. Search the routing table for an entry labeled ”default.” If found, send the packet

to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-

gram was generated on this host, a ”host unreachable” or ”network unreachable” error

is normally returned to the application that generated the datagram. ,

A complete matching host address is searched for before a matching network ID.

Only if both of these fail is a default route used. Default routes, along with the ICMP

redirect message sent by a next-hop router (if we chose the wrong default for a data-

gram), are powerful features of IP routing that we'll come back to in Chapter 9.

The ability to specify a route to a network, and not have to specify a route to every

host, is another fundamental feature of IP routing. Doing this allows the routers on the

Internet, for example, to have a routing table with thousands of entries, instead of a

routing table with more than one million entries.

Examples

First consider a simple example: our host bsdi has an IP datagram to send to our host

sun. Both hosts are on the same Ethernet (see inside front cover). Figure 3.3 shows the

delivery of the datagram.

When IP receives the datagram from one of the upper layers it searches its routing

table and finds that the destination IP address (140.252.13.33) is on a directly connected

network (the Ethernet 140.252.13.0). A matching network address is found in the rout-

ing table. (In the next section we'll see that because of subnetting the network address

of this Ethernet is really 140.252.13.32, but that doesn’t affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-

net frame (Figure 2.1). The destination address in the IP datagram is Sun's IP address

(140.252.13.33) and the destination address in the link—layer header is the 48-bit Ethernet

address of sun's Ethernet interface. This 48-bit Ethernet address is obtained using ARP,

as we describe in the next chapter.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

40 IP: Internet Protocol Chapter 3

destination network 2 b d,140.252.13.0 S l 4 3”“

.13.35I 1 .13.33I Q
‘ Ethernet, 140.252.13 'I I

i link IP '
_>hdr hdr ‘”"’

5 L-» dest 11> = 140.252.13.33
1-» dest Enet = Enet of 140.252.13.33

Figure 3.3 Delivery of IP datagram from bsdi to sun.

Now consider another example: bsdi has an IP datagram to send to the host

ftp.uu . net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data-

gram through the first three routers. First bsdi searches its routing table but doesn't

find a matching host entry or a matching network entry. It uses its default entry, which

tells it to send datagrams to sun, the next—hop router. When the datagram travels from
bsdi to sun the destination IP address is the final destination (192.48.96.9) but the link-

layer address is the 48-bit Ethernet address of sums Ethernet interface. Compare this

datagram with the one in Figure 3.3, where the destination IP address and the destina-

tion linl<-layer address specified the same host (sun).

When sun receives the datagram it realizes that the datagram’s destination IP

address is not one of its own, and sun is configured to act as a router, so it forwards the

datagram. Its routing table is searched and the default entry is used. The default entry

on sun tells it to send datagrams to the next-hop router netb, whose IP address is

140.252.1183. The datagram is sent across the point—to—point SLIP link, using the mini-

mal encapsulation we showed in Figure 2.2. We don't show a link-layer header, as we
do on the Ethernets, because there isn't one on a SLIP link.

When netb receives the datagram it goes through the same steps that sun just did:

the datagram is not destined for one of its own IP addresses, and netb is configured to

act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next—hop router gateway (140.252.1.4). ARP is used by

netb on the Ethernet 140.252.1 to obtain the 48~bit Ethernet address corresponding to

140.252.1.4, and that Ethernet address is the destination address in the link-layer header.

gateway goes through the same steps as the previous two routers and its default

routing table entry specifies 140.252.104.2 as the next—hop router. (We'll verify that this

is the next-hop router for gateway using Traceroute in Figure 8.4.)

A few key points come out in this example.

1. All the hosts and routers in this example used a default route. Indeed, most

hosts and some routers can use a default route for everything other than desti-
nations on local networks.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.3 IP Routing 41

Internet

A Ir--5 dest Enet = Enet of 140.252.1.4

4 5 ,~-» dest IP = 192.48.96.9I 1 ;

next hop = |‘_ 1jfik fp
140.252.1042 gateway “ _ _ _ _ _ hdr hdr " _ _ 1

(default) ‘
.1.4 I

Et ernet, 140.252.] ‘L183 5
next hop =

netb 140.252.1.4

(default)

I
modem

' IP

SLIP : hdrI I
| :

Flgdem L—-—> dest IP = 192.48.96.9
.1.29

next hop = S next hop =
140.252.13.33 bsdi sun 140.252.1183

(default) . (default)
.1335 I .13.33 1

Et ernet, 140252.13I
I

i link IP '’l:c1:hdr “"“vI

'L——> dest H’ = 192.48.96.9

Figure 3.4 Initial path of datagram from bsdi to ftp . uu . net (192.48.96.9).

2. The destination IP address in the datagram never changes. (In Section 8.5 we'll

see that this is not true only if source routing is used, which is rare.) All the

routing decisions are based on this destination address.

A different link-layer header can be used on each link, and the linl<—layer desti-
nation address (if present) always contains the linl<—layer address of the next

hop. In our example both Ethernets encapsulated a link-layer header containing

the next-hop’s Ethernet address, but the SLIP link did not. The Ethernet

addresses are normally obtained using ARP.

In Chapter 9 we'll look at IP routing again, after describing ICMP. We'll also look at

some sample routing tables and how they're used for routing decisions.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

42 IP: Internet Protocol Chapter 3

3.4 subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel

1985]). Instead of considering an IP address as just a network ID and host ID, the host

ID portion is divided into a subnet ID and a host ID.

This makes sense because class A and class B addresses have too many bits allo-

cated for the host ID: 224 — 2 and 216 — 2, respectively. People don't attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the format of the different classes of

IP addresses.) We subtract 2 in these expressions because host IDs of all zero bits or all
one bits are invalid.

After obtaining an IP network ID of a certain class from the lnterNIC, it is up to the

local system administrator whether to subnet or not, and if so, how many bits to allo-

cate to the subnet ID and host ID. For example, the internet used in this text has a

class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet ID

and 8 for the host ID. This is shown in Figure 3.5.

16 bits 8 bits 8 bits

netid = 140.252 subnetid hostid
Class B T

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.

Many administrators use the natural 8-bit boundary in the 16 bits of a class B host

ID as the subnet boundary. This makes it easier to determine the subnet ID from a dot-

ted—decimal number, but there is no requirement that the subnet boundary for a class A

or class B address be on a byte boundary.

Most examples of Subnetting describe it using a class B address. Subnetting is also

allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
shown with a class A address because there are so few class A addresses. (Most class A

addresses are, however, subnetted.)

Subnetting hides the details of internal network organization (within a company or

campus) to external routers. Using our example network, all IP addresses have the
class B network ID of 140.252. But there are more than 30 subnets and more than 400

hosts distributed over those subnets. A single router provides the connection to the

Internet, as shown in Figure 3.6.

In this figure we have labeled most of the routers as Rn, where n is the subnet num-

ber. We show the routers that connect these subnets, along with the nine systems from

the figure on the inside front cover. The Ethernets are shown as thicker lines, and the

point—to~point links as dashed lines. We do not show all the hosts on the various sub-

nets. For example, there are more than 50 hosts on the 140.2523 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30

class C addresses, is that subnetting reduces the size of the Internet’s routing tables.

The fact that the class B address 140.252 is subnetted is transparent to all Internet

routers other than the ones within the 140.252 subnet. To reach any host whose IP

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.5 Subnet Mask 43

.57.0

192.68.189.0 .82.0 R57

520 53.0 540 .55 58.0 .60.0

‘R192 R82‘
\ / R521 R53‘ R54 R55 R58 R60\ /

"" .s1.o kP“° .51.0_F‘

140.252.1041 gat:e- , sol-Internet <— — — ~ — — — — alx ,way arls

.1.4 lo |.1.92 [.152
.1.11 , 1183

R2 R3 9_e"‘,' R4 R6 R7‘ R8 R10 netblnl

.354 / '\ , \
.2.o "“"""'.3.o "“ ""—.4.o """".6.o .7.o .s.o .9.o '—".1o.o .11.o / \

41.29 \

slip~'1§'6—_i§‘é6—bsdi svr4 sun R12
.1335 .13.34 .1333

.13.0 .12.0

Figure 3.6 Arrangement of most of the noao . edu 140.252 subnets.

address begins with 140252, the external routers only need to know the path to the IP

address 140.252.1041. This means that only one routing table entry is needed for all the

140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,

therefore, reduces the size of routing tables. (In Section 10.8 we'll look at a new tech-

nique that helps reduce the size of routing tables even if Class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in

Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gateway needs to know that the subnet number is

57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the

datagram to R55, who then sends it to R57.

3.5 Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-

tion of the host’s IP address. Most systems have this stored in a disk file that's read at

bootstrap time, and we'll see in Chapter 5 how a diskless system can also find out its IP

address when it's bootstrapped.

Talalri Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

44 IP: Internet Protocol Chapter3

In addition to the IP address, a host also needs to know how many bits are to be

used for the subnet ID and how many bits are for the host ID. This is also specified at

bootstrap time using a subnet mask. This mask is a 32~bit value containing one bits for

the network ID and subnet ID, and zero bits for the host ID. Figure 3.7 shows the for-

mation of the subnet mask for two different partitions of a class B address. The top

example is the partitioning used at noao . edu, shown in Figure 3.5, where the subnet

ID and host ID are both 8 bits wide. The lower example shows a class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

16 bits 8 bits 8 bits

Class B netid subnetid hostid

Subnetmask:11111111 1111111111111111 0000000O=0xffffff00
= 255.255.2550

16 bits 10 bits 6 bits

Class B netid subnetid hostid

Subnetmask:11111111 1111111111111111 ll00O00O=0xffffffc0
= 255.255.255.192

Figure 3.7 Example subnet masks for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks

are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-

gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its

own network, or (3) a host on a different network. Knowing your own IP address tells

you whether you have a class A, B, or C address (from the high—order bits), which tells

you where the boundary is between the network ID and the subnet ID. The subnet

mask then tells you Where the boundary is between the subnet ID and the host ID.

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is

255.255.255.0 (8 bits for the subnet ID and 8 bits for the host ID).

0 If a destination IP address is 140.252.4.5, we know that the class B network IDs

are the same (140252), but the subnet IDs are different (1 and 4). Figure 3.8

shows how this comparison of two IP addresses is done, using the subnet mask.

0 If the destination IP address is 140.252.1.22, the class B network IDs are the same

(140252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent.

0 If the destination IP address is 192.43.235.6 (a class C address), the network IDs

are different. No further comparisons can be made against this address.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.6 Special Case IP Addresses 45

end of end of

class B specified
network ID subnet ID

16 bits l 8 bits l 8 bits

ClassB 140 252 1 1 l
Subnetmask: 11111111 11111111—‘11111111 oo0000o0=255.255.255.0

L‘ network IDs equal ‘ subnet IDs
not equal

ClassB 140 252 4 5 l

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisons like this all the time, given two IP addresses
and a subnet mask.

3.6 Special Case IP Addresses

Having described subnetting we now show the ‘seven special case IP addresses in Fig-

ure 3.9. In this figure, 0 means a field of all zero bits, -1 means a field of all one bits, and

netid, subnetid, and hostid mean the corresponding field that is neither all zero bits nor all
one bits. A blank subnet ID column means the address is not subnetted.

IP address Can appear as D . t_escr

net ID subnet ID host HT source? destination? IP Ion

0 0 OK never this host on this net (see restrictions below)

0 hostid OK never specified host on this net (see restrictions below)

127 anythingfi OK OK _. loopback address (Section 2.7)
-1 -1 never OK limited broadcast (never forwarded)

netid -1 never OK net—directed broadcast to netid

netid subnetid -1 never OK subnet-directed broadcast to netid, sulmetid
netid -1 -1 never OK all—subnets-directed broadcast to netid

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case

source addresses, the next one is the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network ID of 0, can only appear as the
source address as part of an initialization procedure when a host is determining its own

IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we'll examine the four types of broadcast addresses in more detail.l1

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

46 IP: Internet Protocol Chapter 3

3.7 A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks

are used. Figure 3.10 shows the arrangement.

Internet

I140.252.104.1
gateway

T4 Ethernet, subnet 140.252.1
* — — — — — — “ * ‘ ‘I

s140.252.1.29 II

slip 5Sifiiit 66 bsdi sun sVr4 :I

140.252.13.64 T35 T33 T34 I_ I
Ethernet, subnet 140.252.13.32 I_ _ _ _ _ _J

_ _ author’s subnet: 140.252.13

Figure 3.10 Arrangement of hosts and networks for author's subnet.

If you compare this figure with the one on the inside front cover, you'll notice that
we've omitted the detail that the connection from the router sun to the top Ethernet in

Figure 3.10 is really a dialup SLIP connection. This detail doesn't affect our description

of subnetting in this section. We'll return to this detail in Section 4.6 when we describe

proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet

and a point—to—point link (the hardwired SLIP link). (Point—to—point links always cause

problems since each end normally requires an IP address.) There could be more hosts

and networks in the future, but not enough hosts across the different networks to justify

using another subnet number. Our solution is to extend the subnet ID from 8 to 11 bits,

and decrease the host ID from 8 to 5 bits. This is called varz'nble—length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses

an 11-bit subnet mask.

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet

mask. The new Router Requirements RFC [Almquist 1993] requires support for this.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID. We'll see in Chapter 10 that RIP does not support Variable-length
subnets, while RIP Version 2 and OSPF do. We don't have a problem with our example, since
RIP isn't required on the author ’s subnet.

Figure 3.11 shows ‘the IP address structure used within the author's subnet. The

first 8 bits of the 11-bit subnet ID are always 13 within the author’s subnet. For the

remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.8 ifconfig Command 47

3.8

16 bits ‘T11 bits ""'—’ 5 bits

ClassB net ID=140.252 subnet ID I I 1 lhoyst ‘ID!
. -12864321684218 bits = 13

Subnetmask: 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 O 0 0 0 =0xffffffeO
= 255.255.255.224

Figure 3.11 Using Variable—Iength subnets.

the point—to~point SLIP link. This variable—length subnet mask does not cause a prob-

lem for other hosts and routers in the 140.252 network—as long as all datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in

Figure 3.10, and if sun knows about the 11-bit subnet ID for the hosts on its subnet 13,

everything is fine.
The subnet mask for all the interfaces on the 140252.13 subnet is 255.255.255.224, or

Oxf f f f f f e0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits
to the left are the network ID and subnet ID.

Figure 312 shows the allocation of IP addresses and subnet masks for the interfaces

shown in Figure 3.10.

Host IP address Subnet mask Net ID/Subnet ID Host ID Comment

sun 140.252.1.29 255.255.255.0 140.252.1 29 on subnet 1
140.252.13.33 255.255.255.224 140.252.13.32 1 on author ’s Ethernet

svr 4 140.252.13.34 255.255.255.224 140.252.13.32 2

bsdi 140.252.13.35 255.255.255.224 140.252.13.32 3 on Ethernet

140.252.13.66 255.255.255.224 140.252.13.64 2 point-to—point

s 1 ip 140.252.13.65 255.255.255.224 140.252.13.64 1 point-to-point
140.252.13.63 255.255.255.224 140.252.13.32 31 broadcast addr on Ethernet

Figure 3.12 IP addresses on author's subnet.

The first column is labeled ”Host,” but both sun and bsdi also act as routers, since

they are multihomed and route packets from one interface to another.
The final row in this table notes that the broadcast address for the bottom Ethernet

in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet

(140.252.13.32) and the low—order 5 bits in Figure 3.11 set to 1 (16+8+4+2+ 1 = 31).

(We’ll see in Chapter 12 that this address is called the subnet—directed broadcast
address.)

ifconfig Command

Now that we’ve described the link layer and the IP layer we can show the command

used to configure or query a network interface for use by TCP/IP. The ifconfig(8)
command is normally run at bootstrap time to configure each interface on a host.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

48 IP: Internet Protocol Chapter3

For dialup interfaces that may go up and down (such as SLIP links), ifconfig

must be run (somehow) each time the line is brought up or down. How this is done

each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output shows the values for the author's subnet. Compare these val-

ues with the values in Figure 3.12.

sun % /usr/etc/ifconfig —a SunOS —a option says reporton all inteifnces
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 140.252.13.33 netmask ffffffeo broadcast 140.252.13.63

sl0: flags=lO5l<UP,POINTOPOINT,RUNNING,LINKO>
inet 140.252.1.29 -—> 140.252.1.183 netmask ffffff00

lo0: f1ags=49<UP,LOOPBACK,RUNNING>
inet 127.0.0.l netmask ff000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
address is not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the

Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-

to-point link.

The flag LINKO for the SLIP interface is the configuration option that enables com-

pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables

CSLIP if a compressed packet is received from the other end, and LINK2, which causes

all outgoing ICMP packets to be thrown away. We'll look at the destination address of
this SLIP link in Section 4.6.

A comment in the installation instructions gives the reason for this last option: ”This shouldn't
have to be set, but some cretin pinging you can drive your throughput to zero.”

bsdi is the other router. Since the —a option is a SunOS feature, we have to execute

i fconfig multiple times, specifying the interface name as an argument:

bsdi % /sbin/ifconfig we0
we0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX>

inet 140.252.13.35 netmask ffffffeo broadcast 140.252.13.63

bsdi % /sbin/ifconfig S10
S10: f1ags=1011<UP,POINTOPOINT,LINKO>

inet 140.252.13.66 -—> 140.252.13.65 netmask ffffffe0

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag

specifies that the interface can't hear its own transmissions. It is set in BSD/386 for all
the Ethernet interfaces. When set, if the interface is sending a frame to the broadcast

address, a copy is made for the local host and sent to the loopback address. (We show

an example of this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the

output shown above on bsdi, with the exception that the IP addresses of the two ends

are swapped:

slip % /sbin/ifconfig s10
sl0: flags=101l<UP,POINTOPOINT,LINKO>

inet 140.252.13.65 -—> 140.252.13.66 netmask ffffffe0

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 3.10 IP Futures 49

3.9

3.10

The final interface is the Ethernet interface on the host svr4. It is similar to the

Ethernet output shown earlier, except that SVR4’s Version of ifconfig doesn't print

the RUNNING flag:

svr4 % /usr/sbin/ifconfig emd0
emdO: flags=23<UP,BROADCAST,NOTRAILERS>

inet 140.252.13.34 netmask ffffffeO broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than

TCP/IP) and has numerous additional options. Check your system's manual for these
details.

netstat Command

The netstat(1) command also provides information about the interfaces on a system.

The —i flag prints the interface information, and the —n flag prints IP addresses instead
of hostnames.

0
sun 6 netstat —in

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
leO 1500 140.252.13.32 140.252.13.33 67719 0 92133 O 1 0
s10 552 140.252.l.183 140.252.l.29 48035 0 54963 O O O
lo0 1536 127.0.0.0 127.0.0.1 15548 0 15548 0 O O

This command prints the MTU of each interface, the number of input packets, input

errors, output pac1<ets, output errors, collisions, and the current size of the output
queue.

We'll return to the net stat command in Chapter 9 when we use it to examine the

routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the

Internet over the past few years. (See Exercise 1.2 also.)

1. Over half of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995, if they continue to

be allocated as they have been in the past.

2. 32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

3. The current routing structure is not hierarchical, but flat, requiring one routing

table entry per network. As the number of networks grows, amplified by the

allocation of multiple class C addresses to a site with multiple networks, instead

of a single class B address, the size of the routing tables grows.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

50 IP: Internet Protocol Chapter 3

3.11

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will

extend the usefulness of the current version of IP (IP version 4) into the next century.
We discuss it in more detail in Section 10.8.

Four proposals have been made for a new version of IP, often called IPng, for the

next generation of IP. The May 1993 issue of IEEE Network (Vol. 7, no. 3) contains

overviews of the first three proposals, along with an article on CIDR. RFC 1454 [Dixon

1993] also compares the first three proposals.

1. SIP, the Simple Internet Protocol. It proposes a minimal set of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the

header still contain the version number, with a value other than 4.)

2. PIP. This proposal also uses larger, variable—length, hierarchical addresses with
a different header format.

3. TUBA, which stands for ”TCP and UDP with Bigger Addresses,” is based on the

OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It

provides much larger addresses: Variable length, up to 20 bytes. Since CLNP is

an existing protocol, whereas SIP and PIP are just proposals, documentation

already exists on CLNP. RFC 1347 [Callon 1992] provides details on TUBA.

Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many

routers already support CLNP, but few hosts do.

4. TP/ IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses

64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit

port number for both protocols, along with 64-bit sequence numbers, 64-bit

acknowledgment numbers, and 32-bit windows for TCP.

The first three proposals use basically the same versions of TCP and UDP as the trans-

port layers.

Since only one of these four proposals will be chosen as the successor to IPV4, and

since the decision may have been made by the time you read this, we won't say any

more about them. With the forthcoming implementation of CIDR to handle the short-

term problem, it will take many years to implement the successor to IPV4.

Summary

We started this chapter with a description of the IP header and briefly described all the

fields in this header. We also gave an introduction to IP routing, and saw that host rout-

ing can be simple: the destination is either on a directly connected network, in which

case the datagram is sent directly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used for all routing decisions. There

are three types of routes in the table: host specific, network specific, and optional default

routes. There is a priority to the entries in a routing table. A host route will be chosen

over a network router, and a default route is used only when no other route exists to the
destination.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 3 Exercises 51

IP routing is done on a hop—by-hop basis. The destination II’ address never changes

as the datagram proceeds through all the hops, but the encapsulation and destination

link—layer address can change on each hop. Most hosts and many routers use a default

next—hop router for all nonlocal traffic.

Class A and B addresses are normally subnetted. The number of bits used for the

subnet ID is specified by the subnet mask. We gave a detailed example of this, using the

author's subnet, and introduced variable—length subnets. The use of subnetting reduces

the size of the Internet routing tables, since many networks can often be accessed

through a single point. Information on the interfaces and networks is available through
the ifconfig and net stat commands. This includes the IP address of the interface,

its subnet mask, broadcast address, and MTU.

We finished the chapter with a discussion of potential changes to the Internet proto-

col suite—the next generation of IP.

Exercises

3.1 Must the loopback address be 127.0.0.1?

3.2 Identify the routers in Figure 3.6 with more than two network interfaces.
3.3 What's the difference in the subnet mask for a class A address with 16 bits for the subnet ID

and a class B address with 8 bits for the subnet ID?

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3.5 Is the subnet mask 255.255.0.255 valid for a class A address?

3.6 Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 1536?

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to

discover the three advantages the datagram network layer provides.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

4.1

ARP: Address Resolution

Protocol

Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to

the TCP/IP protocol suite. A data link such as an Ethernet or a token ring has its own

addressing scheme (often 48-bit addresses) to which any network layer using the data

link must conform. A network such as an Ethernet can be used by different network

layers at the same time. For example, a collection of hosts using TCP/IP and another

collection of hosts using some PC network software can share the same physical cable.
When an Ethernet frame is sent from one host on a LAN to another, it is the 48-bit

Ethernet address that determines for which interface the frame is destined. The device

driver software never looks at the destination IP address in the IP datagram.

Address resolution provides a mapping between the two different forms of

addresses: 32-bit IP addresses and whatever type of address the data link uses. RFC 826

[Plummer 1982] is the specification of ARP.

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP

(address resolution protocol) and RARP (reverse address resolution protocol).

32-bit Internet address

ARPl Tam»
48-bit Ethernet address

Figure 4.1 Address resolution protocols: ARP and RARP.

Talari Networks Inc. - Exhibit 1037

Talari Networks Inc. - Exhibit 1007

54 ARP: Address Resolution Protocol Chapter 4

4.2

ARP provides a dynamic mapping from an IP address to the corresponding hardware

address. We use the term rlynamic since it happens automatically and is normally not a

concern of either the application user or the system administrator.

RARP is used by systems without a disk drive (normally diskless workstations or X

terminals) but requires manual configuration by the system administrator. We describe

it in Chapter 5.

An Example

Whenever we type a command of the form
% ftp bsdi

the following steps take place. These numbered steps are shown in Figure 4.2.

1. The application, the FTP client, calls the function gethostbyname (3) to convert
the hostname (bsdi) into its 32-bit IP address. This function is called a resolver

in the DNS (Domain Name System), which we describe in Chapter 14. This con-

version is done using the DNS, or on smaller networks, a static hosts file
(/etc/hosts).

2. The FTP client asks its TCP to establish a connection with that IP address.

3. TCP sends a connection request segment to the remote host by sending an IP

datagram to its IP address. (We'll see the details of how this is done in Chap-
ter 18.)

4. If the destination host is on a locally attached network (e.g., Ethernet, token

ring, or the other end of a point—to—point link), the IP datagram can be sent

directly to that host. If the destination host is on a remote network, the IP rout-

ing function determines the Internet address of a locally attached next-hop

router to send the IP datagram to. In either case the IP datagram is sent to a

host or router on a locally attached network.

5. Assuming an Ethernet, the sending host must convert the 32-bit IP address into

a 48~bit Ethernet address. A translation is required from the logical Internet

address to its corresponding physical hardware address. This is the function of
ARP.

ARP is intended for broadcast networks where many hosts or routers are con~

nected to a single network.

6. ARP sends an Ethernet frame called an ARP request to every host on the net-

work. This is called a broadcast. We show the broadcast in Figure 4.2 with

dashed lines. The ARP request contains the IP address of the destination host

(whose name is bsdi) and is the request ”if you are the owner of this IP

address, please respond to me with your hardware address.”

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 4.2 An Example 55

hostname

jfiesegni FTPresolver (1)1?»
IP addr

(Dlestablish connectionwith IP address

TCP

(3) send IP datagramto IP address

IP

(4)

(6) I M8) (9)

I Ethernet
I driver

ARP request £Etherne§ broadcast) 1 _ _€-

W-D

Ethernet Ethernet

I’
I
I
I
I
I
I
I
I . .
, driver driverI I
I
I

(7)
ARP ARP IP

TCP

Figure 4.2 Operation of ARP when user types “ftp hostname”.

7. The destination host's ARP layer receives this broadcast, recognizes that the

sender is asking for its hardware address, and replies with an ARP reply. This

reply contains the IP address and the corresponding hardware address.

8. The ARP reply is received and the IP datagram that forced the ARP

request—reply to be exchanged can now be sent.

9. The IP datagram is sent to the destination host.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

56 ARP: Address Resolution Protocol Chapter4

4.3

4.4

The fundamental concept behind ARP is that the network interface has a hardware

address (a 48-bit value for an Ethernet or token ring interface). Frames exchanged at the

hardware level must be addressed to the correct interface. But TCP/IP works with its

own addresses: 32—bit IP addresses. Knowing a host’s IP address doesn't let the kernel
send a frame to that host. The kernel (i.e., the Ethernet driver) must know the destina-

tion’s hardware address to send it data. The function of ARP is to provide a dynamic

mapping between 32-bit IP addresses and the hardware addresses used by various net-

work technologies.

Point-to—point links don't use ARP. When these links are configured (normally at

bootstrap time) the kernel must be told of the IP address at each end of the link. Hard-
ware addresses such as Ethernet addresses are not involved.

ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each

host. This cache maintains the recent mappings from Internet addresses to hardware

addresses. The normal expiration time of an entry in the cache is 20 minutes from the

time the entry was created.

We can examine the ARP cache with the arp(8) command. The —a option displays
all entries in the cache:

bsdi % arp -a
sun (140.252.l3.33) at 8:O:20:3:f6:42
svr4 (l40.252.13.34) at 0:O:c0:c2:9b:26

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by
colons. We discuss additional features of the arp command in Section 4.8.

ARP Packet Format

Figure 4.3 shows the format of an ARP request and an ARP reply packet, when used on

an Ethernet to resolve an IP address. (ARP is general enough to be used on other net-

works and can resolve addresses other than IP addresses. The first four fields following

the frame type field specify the types and sizes of the final four fields.)

——b hard size

~—> prot size
Ethernet

destination addr
6 6

HT Ethernet header

Ethernet
fram hard prof sender sender target target

source addr
type type OP Ethernet addr IP addr Ethernet addr IF addr

2 2 2 1 1 2 6 4 6 4

28 byte ARP request/ reply44>‘

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet

addresses. The special Ethernet destination address of all one bits means the broadcast
address. All Ethernet interfaces on the cable receive these frames.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 4.5 ARP Examples 57

4.5

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP

request or an ARP reply, this field is OX0 8 O 6.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-

ets. For example, an ARP request asks for the hardware address (an Ethernet address in

this case) corresponding to a protocol address (an IP address in this case).

The hard type field specifies the type of hardware address. Its value is 1 for an Ether-

net. Prot type specifies the type of protocol address being mapped. Its Value is OxO8OO

for IP addresses. This is purposely the same Value as the type field of an Ethernet frame

containing an IP datagram. (See Figure 2.1 , p. 23.)

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the

hardware addresses and the protocol addresses. For an ARP request or reply for an IP

address on an Ethernet they are 6 and 4, respectively.

The op field specifies whether the operation is an ARP request (a Value of 1), ARP

reply (2), RARP request (3), or RARP reply (4). (We talk about RARP in Chapter 5.)

This field is required since the frame type field is the same for an ARP request and an

ARP reply.
The next four fields that follow are the sender's hardware address (an Ethernet

address in this example), the sender’s protocol address (an IP address), the target hard-

ware address, and the target protocol address. Notice there is some duplication of infor-
mation: the sender’s hardware address is available both in the Ethernet header and in

the ARP request.

For an ARP request all the fields are filled in except the target hardware address.

When a system receives an ARP request directed to it, it fills in its hardware address,

swaps the two sender addresses with the two target addresses, sets the op field to 2, and

sends the reply.

ARP Examples

In this section we’ll use the tcpdump command to see what really happens with ARP
when we execute normal TCP utilities such as Telnet. Appendix A contains additional

details on the tcpdump program.

Normal Example

To see the operation of ARP we'll execute the telnet command, connecting to the dis-
card server.

bsdi % arp -a
bsdi % telnet svr4 discard

Trying 140.252.13.34...
Connected to svr4.

Escape character is ’“]’.

“] type Control, right bracket to get Telnet client prompt
telnet> quit and terminate
Connection closed.

verify ARP cache is empty
connect to the discard server

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

ii 58 ARP: Address Resolution Protocol Chapter 4

While this is happening we run the tcpdump command on another system (sun) with

the —e option. This displays the hardware addresses (which in our examples are 48-bit

Ethernet addresses).

1 0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
arp who—has svr4 tell bsdi

2 0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:cO:6f:2d:40 arp 60:
arp reply svr4 is—at 0:0:cO:c2:9b:26

3 0.002831 (0.0007) 0:0:c0:6f:2d:40 0:O:c0:c2:9b:26 ip 60:
bsdi.103O > svr4.discard: S 59645952l:59645952l(0)
win 4096 <mss 1024> [tos 0x10]
O:O:cO:c2:9b:26 0:0:c0:6f:2d:4O ip 60:
svr4.discard > bsdi.l030: S 3562228225:3562228225(0)
ack 596459522 win 4096 <mss 1024>

0:0:c0:6f:2d:40 0:0:cO:c2:9b:26 ip 60:
bsdi.l030 > svr4.discard: . ack 1 win 4096 [tos 0X10]

4 0.007834 (0.0050)

5 0.009615 (0.00l8)

Figure 4.4 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from tcpdump used for Figure 4.4.

Since this is the first example of tcpdump output in the text, you should review that

appendix to see how we've beautified the output.

We have deleted the final four lines of the tcpdump output that correspond to the

termination of the connection (which we cover in Chapter 18), since they're not relevant
to the discussion here.

In line 1 the hardware address of the source (bsdi) is O : 0 : c0 : 6f:2d: 40. The
destination hardware address is f f : f f : f f : ff : f f : f f, which is the Ethernet broadcast

address. Every Ethernet interface on the cable will receive the frame and process it, as

shown in Figure 4.2.

The next output field on line 1, arp, means the frame type field is 0x0806, specify-

ing either an ARP request or an ARP reply.

The Value 60 printed after the words arp and ip on each of the five lines is the

length of the Ethernet frame. Since the size of an ARP request and ARP reply is 42 bytes

(28 bytes for the ARP message, 14 bytes for the Ethernet header), each frame has been

padded to the Ethernet minimum: 60 bytes.

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the

14-byte Ethernet header, but does not include the 4-byte Ethernet trailer. Some books

state the minimum as 64 bytes, which includes the Ethernet trailer. We purposely did

not include the 14-byte Ethernet header in the minimum of 46 bytes shown in Fig-

ure 1.7, since the corresponding maximum (1500 bytes) is what's referred to as the

MTU—maximum transmission unit (Figure 2.5). We use the MTU often, because it lim-

its the size of an IP datagram, but are normally not concerned with the minimum. Most

device drivers or interface cards automatically pad an Ethernet frame to the minimum

size. The IP datagrams on lines 3, 4, and 5 (containing the TCP segments) are all smaller

than the minimum, and have also been padded to 60 bytes.

The next field on line 1, arp who—has, identifies the frame as an ARP request with
the IP address of svr4 as the target IP address and the IP address of bsdi as the sender

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 4.5 ARP Examples 59

IP address. tcpdump prints the hostnames corresponding to the IP address by default.

(We'll use the —n option in Section 4.7 to see the actual IP addresses in an ARP request.)

From line 2 we see that while the ARP request is broadcast, the destination address

of the ARP reply is bsdi (O : O : c0 : 6f : 2d: 40). The ARP reply is sent directly to the

requesting host; it is not broadcast.

tcpdump prints arp reply for this frame, along with the hostname and hardware

address of the responder.

Line 3 is the first TCP segment requesting that a connection be established. Its des-
tination hardware address is the destination host (svr4). We'll cover the details of this

segment in Chapter 18.

The number printed after the line number on each line is the time (in seconds) when

the packet was received by tcpdump. Each line other than the first also contains the

time difference (in seconds) from the previous line, in parentheses. We can see in this

figure that the time between sending the ARP request and receiving the ARP reply is 2.2

ms. The first TCP segment is sent 0.7 ms after this. The overhead involved in using

ARP for dynamic address resolution in this example is less than 3 ms.

A final point from the tcpdump output is that we don't see an ARP request from

svr4 before it sends its first TCP segment (line 4). While it's possible that svr4 already

had an entry for bsdi in its ARP cache, normally when a system receives an ARP

request addressed to it, in addition to sending the ARP reply it also saves the

requestor’s hardware address and IP address in its own ARP cache. This is on the logi-

cal assumption that if the requestor is about to send it an IP datagram, the receiver of

the datagram will probably send a reply.

ARP Request to a Nonexistent Host

What happens if the host being queried for is down or nonexistent? To see this we spec-

ify a nonexistent Internet address——the network ID and subnet ID are that of the local

Ethernet, but there is no host with the specified host ID. From Figure 3.10 we see the

host IDs 36 through 62 are nonexistent (the host ID of 63 is the broadcast address). We'll

use the host ID 36 in this example.

telnet to an address this time, not a hostname
bsdi % date ; telnet 140.252.13.36 ; date
Sat Jan 30 06:46:33 MST 1993

Trying 140.252.13.36...
telnet: Unable to connect to remote host: Connection timed out

Sat Jan 30 06:47:49 MST 1993 76 seconds nfterprevious dateoznfput

bsdi % arp -a check the ARP cache
? (l40.252.l3.36) at (incomplete)

Figure 4.5 shows the tcpdump output.

1 0.0 arp who~has 140.252.13.36 tell bsdi
2 5.509069 (5.5091) arp who—has 140.252.13.36 tell bsdi
3 29.509745 (24.0007) arp who—has 140.252.13.36 tell bsdi

Figure 4.5 ARP requests to a nonexistent host.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

60 ARP: Address Resolution Protocol Chapter 4

This time we didn't specify the —e option since we already know that the ARP requests
are broadcast.

What's interesting here is to see the frequency of the ARP requests: 5.5 seconds after

the first request, then again 24 seconds later. (We examine TCP’s timeout and retrans-

mission algorithms in more detail in Chapter 21.) The total time shown in the tcpdump

output is 29.5 seconds. But the output from the date commands before and after the

telnet command shows that the connection request from the Telnet client appears to

have given up after about 75 seconds. Indeed, we'll see later that most BSD implemen-

tations set a limit of 75 seconds for a TCP connection request to complete.

In Chapter 18 when we see the sequence of TCP segments that is sent to establish

the connection, we'll see that these ARP requests correspond one-to-one with the initial

TCP SYN (synchronize) segment that TCP is trying to send.

Note that on the wire we never see the TCP segments. All we can see are the ARP

requests. Until an ARP reply comes back, the TCP segments can't be sent, since the des-

tination hardware address isn't known. If we ran tcpdump in a filtering mode, looking

only for TCP data, there would have been no output at all.

ARP Cache Timeout

4.6

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we'll see

that the arp command allows an entry to be placed into the cache by the administrator

that will never time out.) Berkeley—derived implementations normally have a timeout

of 20 minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an

incomplete entry in our previous example where we forced an ARP to a nonexistent

host on the Ethernet.) These implementations normally restart the 20-minute timeout

for an entry each time the entry is used.

The Host Requirements RFC says that this timeout should occur even if the entry is in use, but
most Berkeley—derived implementations do not do this—they restart the timeout each time the
entry is referenced.

Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on

another of its networks. This fools the sender of the ARP request into thinking that the
router is the destination host, when in fact the destination host is ”on the other side” of

the router. The router is acting as a proxy agent for the destination host, relaying pack-
ets to it from other hosts.

An example is the best way to describe proxy ARP. In Figure 3.10 we showed that

the system sun was connected to two Ethernets. But we also noted that this wasn't

really true, if you compare that figure with the one on the inside front cover. There is in

fact a router between sun and the subnet 140.2521, and this router performs proxy ARP

to make it appear as though sun is actually on the subnet 140.2521. Figure 4.6 shows

the arrangement, with a Telebit NetBlazer, named netb, between the subnet and the
host sun.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 4.6 Proxy ARP 61

gemini

‘ _ _ A i ARPreq1_1estfor 140.g5g.1.2_9_>
Ethernet, su5net140.252.1 I 140 252 1 183

ARP reply . .}ITelebit NetBlazer router configured to act as
proxy ARP agent for sun

SLIP (dialup)

modern

a140.252.1.29
_ SLIP ,

Sllp bsdl sun svr4

.35 ‘.33 .34

Et ernet 140252.13

Figure 4.6 Example of proxy ARP.

When some other host on the subnet 140.2521 (say, gemini) has an IP datagrarn to

send to sun at address 140.252.1.29, gemini compares the network ID (140252) and

subnet ID (1) and since they are equal, issues an ARP request on the top Ethernet in Fig-

ure 4.6 for IP address 140252.129. The router netb recognizes this IP address as one

belonging to one of its dialup hosts, and responds with the hardware address of its

Ethernet interface on the cable 140.252.1. The host gemini sends the IP datagram to

netb across the Ethernet, and netb forwards the datagram to sun across the dialup

SLIP link. This makes it transparent to all the hosts on the 140.2521 subnet that host

sun is really configured ”behind” the router netb.

If we execute the arp command on the host gemini, after communicating with the

host sun, we see that both IP addresses on the 140.2521 subnet, netb and sun, map to

the same hardware address. This is often a clue that proxy ARP is being used.

gemini % arp —a

many lines for other hosts on the 140.2521 subnet
netb (140.252.l.l83) at 0:80:ad:3:6a:8O
sun (140.252.l.29) at O:80:ad:3:6a:80

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP

address at the bottom of the router netb (the SLIP link). That is, Why don't both ends

of the dialup SLIP link have an IP address, as do both ends of the hardwired SLIP link
between bsdi and slip? We noted in Section 3.8 that the destination address of the

dialup SLIP link, as shown by the ifconfig command, was 140.252.1188. The Net-

Blazer doesn't require an IP address for its end of each dialup SLIP link. (Doing so

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

62 ARP: Address Resolution Protocol Chapter 4

4.7

would use up more IP addresses.) Instead, it determines which dialup host is sending it

packets by which serial interface the packet arrives on, so there's no need for each

dialup host to use a unique IP address for its link to the router. All the dialup hosts use
140.252.1.183 as the destination address for their SLIP link.

Proxy ARI’ handlersflthe delivery of datagrams to the router sun, but how are the
other hosts on the subnet 140.252.13 handled? Routing must be used to direct data-

grams to the other hosts. Specifically, routing table entries must be made somewhere on

the 140.252 network that point all datagrams destined to either the subnet 140252.13, or

the specific hosts on that subnet, to the router netb. This router then knows how to get

the datagrams to their final destination, by sending them through the router sun.

Proxy AW is also called promiscuous ARP or the ARP hack. These names are from

another use of proxy ARP: to hide two physical networks from each other, with a router

between the two. In this case both physical networks can use the same network ID as

long as the router in the middle is configured as a proxy ARP agent to respond to ARP

requests on one network for a host on the other network. This technique has been used

in the past to ”hide” a group of hosts with older implementations of TCP/IP on a sepa-

rate physical cable. Two common reasons for separating these older hosts are their

inability to handle subnetting and their use of the older broadcasting address (a host ID
of all zero bits, instead of the current standard of a host ID with all one bits).

Gratuitous ARP

Another feature of ARP that we can watch is called gmtuitous ARP. It occurs when a

host sends an ARP request looking for its own IP address. This is usually done when

the interface is configured at bootstrap time.

In our internet, if we bootstrap the host bsdi and run tcpdump on the host sun,

we see the packet shown in Figure 4.7.

1 0.0 0:O:c0:6f:2d:40 ffzffzffzffzffzff arp 60:
arp who—has 140.252.13.35 tell 140.252.13.35

Figure 4.7 Example of gratuitous ARP.

(We specified the —n flag for tcpdump to print numeric dotted—decimal addresses,

instead of hostnames.) In terms of the fields in the ARP request, the sender's protocol

address and the target's protocol address are identical: 140.252.13.35 for host bsdi.

Also, the source address in the Ethernet header, 0:0:c0 : 6f :2d: 40 as shown by

tcpdump, equals the sender's hardware address (from Figure 4.4).

Gratuitous ARP provides two features.

1. It lets a host determine if another host is already configured with the same IP

address. The host bsdi is not expecting a reply to this request. But if a reply is

received, the error message ”dup1icate IP address sent from Ethernet address:

a:b:c:d:e:f” is logged on the console. This is a warning to the system administra-

tor that one of the systems is misconfigured.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 4.9 Summary 63

4.8

4.9

2. If the host sending the gratuitous ARP has just changed its hardware address

(perhaps the host was shut down, the interface card replaced, and then the host

was rebooted), this packet causes any other host on the cable that has an entry

in its cache for the old hardware address to update its ARP cache entry accord-

ingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host

receives an ARP request from an IP address that is already in the receiver's

cache, then that cache entry is updated with the sender's hardware address

(e. g., Ethernet address) from the ARP request. This is done for any ARP request

received by the host. (Recall that ARP requests are broadcast, so this is done by

all hosts on the network each time an ARP request is sent.)

[Bhide, Elnozahy, and Morgan 1991] describe an application that can use this

feature of ARP to allow a backup file server to take over from a failed server by

issuing a gratuitous ARP request with the backups hardware address and the

failed server's IP address. This causes all packets destined for the failed server

to be sent to the backup instead, without the client applications being aware that

the original server has failed.

Unfortunately the authors then decided against this approach, since it depends on the
correct implementation of ARP on all types of clients. They obviously encountered client
implementations that did not implement ARP according to its specification.

Monitoring all the systems on the author's subnet shows that SunOS 4.1.3 and 4.4BSD
both issue gratuitous ARPS when bootstrapping, but SVR4 does not.

arp Command

We've used this command with the —a flag to display all the entries in the ARP cache.

Other options are provided.

The superuser can specify the —d option to delete an entry from the ARP cache.

(This was used before running a few of the examples, to let us see the ARP exchange.)

Entries can also be added using the —s option. It requires a hostname and an Ether-

net address: the IP address corresponding to the hostname, and the Ethernet address are

added to the cache. This entry is made permanent (i.e., it won't time out from the

cache) unless the keyword temp appears at the end of the command line.

The keyword pub at the end of a command line with the —s option causes the sys-

tem to act as an ARP agent for that host. The system will answer ARP requests for the

IP address corresponding to the hostname, replying with the specified Ethernet address.
If the advertised address is the system's own, then this system is acting as a proxy ARP

agent for the specified hostname.

Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally does its

work without the application or the system administrator being aware. The ARP cache

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

64 ARP: Address Resolution Protocol Chapter 4

is fundamental to its operation, and we've used the arp command to examine and

manipulate the cache. Each entry in the cache has a timer that is used to remove both

incomplete and completed entries. The arp command displays and modifies entries in
the ARP cache.

We followed through the normal operation of ARP along with specialized versions:

proxy ARP (when a router answers ARP requests for hosts accessible on another of the A

router’s interfaces) and gratuitous ARP (sending an ARP request for your own IP

address, normally when bootstrapping).

Exercises

4.1

4.2

4.3

4.4

In the commands we typed to generate the output shown in Figure 4.4 (p. 58), what would

happen if, after verifying that the local ARP cache was empty, we type the command

bsdi % rsh svr4 arp ~a

to verify that the ARP cache is also empty on the destination host? (This command causes
the arp —a command to be executed on the host svr4.)

Describe a test to determine if a given host handles a received gratuitous ARP request
correctly.

Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then
waits for the response. How do you think ARP handles multiple datagrams that arrive
from IP for the same destination address during this period?

At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-

derived implementations differ in their handling of the timeout of an active ARP entry.
What happens if we're on a Berkeley—derived client and keep trying to contact a server host
that's been taken down to replace its Ethernet board? Does this change if the server issues a
gratuitous ARP when it bootstraps?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

5.1

5.2

RARP: Reverse Address

Resolution Protocol

Introduction

When a system with a local disk is bootstrapped it normally obtains its IP address from

a configuration file that's read from a disk file. But a system without a disk, such as an

X terminal or a diskless workstation, needs some other way to obtain its IP address.

Each system on a network has a unique hardware address, assigned by the manu-

facturer of the network interface. The principle of RARP is for the diskless system to

read its unique hardware address from the interface card and send an RARP request (a

broadcast frame on the network) asking for someone to reply with the diskless system's

IP address (in an RARP reply).

While the concept is simple, the implementation is often harder than ARP for rea-

sons described later in this chapter. The official specification of RARP is RFC 903 [Fin-

layson et al. 1984].

RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3, p. 56).

The only differences are that the frame type is 0x803 5 for an RARP request or reply, and

the op field has a value of 3 for an RARP request and 4 for an RARP reply.

As with ARP, the RARP request is broadcast and the RARP reply is normally
unicast.

Talari Networks Inc. - Exhibit 16157

Talari Networks Inc. - Exhibit 1007

66 RARP: Reverse Address Resolution Protocol Chapter 5

5.3 RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its

local disk. If we run an RARP server and tcpdump on the host bsdi we get the output

shown in Figure 5.1. We use the —e flag to have tcpdump print the hardware addresses:

1 0.0 8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:0:20:3:f6:42 tell 8:0:20:3:f6:42

2 0.13 (0.13) 0:O:cO:6f:2d:40 8:0:20:3:f6:42 rarp 42:
rarp reply 8:0:20:3:f6:42 at sun

8:0:20:3:f6:42 O:0:c0:6f:2d:4O ip 65:
sun.2_6999 > bsdi.tftp: 23 RRQ "8CFCOD2l.SUN4C"

3 0.14 (0.01)

Figure 5.1 RARP request and reply.

The RARP request is broadcast (line 1) and the RARP reply on line 2 is unicast. The out-

put on line 2, at sun, means the RARP reply contains the IP address for the host sun
(140.252.13.s3). ‘

On line 3 we see that once sun receives its IP address, it issues a TFTP read—request
(RRQ) for the file 8CFCOD2l . SUN4C. (TFTP is the Trivial File Transfer Protocol. We

describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename

are the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP

address that was returned in the RARP reply. The remainder of the filename, SUN4C,

indicates the type of system being bootstrapped.

tcpdump says that line 3 is an IP datagram of length 65, and not a UDP datagram

(which it really is), because we are running tcpdump with the —e flag, to see the hard-

ware—level addresses. Another point to notice in Figure 5.1 is that the length of the

Ethernet frame on line 2 appears to be shorter than the minimum (which we said was 60

bytes in Section 4.5.) The reason is that we are running tcpdump on the system that is

sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD

Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply)

and this is what tcpdump receives a copy of. But the Ethernet device driver pads this

short frame to the minimum size for transmission (60). Had we been running tcpdump

on another system, the length would have been 60.

We can see in this example that when this diskless system receives its IP address in

an RARP reply, it issues a TFTP request to read a bootstrap image. At this point we

won't go into additional detail about how diskless systems bootstrap themselves.

(Chapter 16 describes the bootstrap sequence of a diskless X terminal using RARP,
BOOTP, and TFTP.) .

Figure 5.2 shows the resulting packets if there is no RARP server on the network.

The destination address of each packet is the Ethernet broadcast address. The Ethernet

address following who—is is the target hardware address, and the Ethernet address fol-

lowing tell is the sender’s hardware address.

Note the frequency of the retransmissions. The first retransmission occurs after 6.55

seconds and then increases to 42.80 seconds, then goes down to 5.34 seconds, then 6.55,

and then works its way back to 42.79 seconds. This continues indefinitely. If we

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 5.4 RARP Server Design 67

1 0.0 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

2 6.55 (6.55) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

3 15.52 (8.97) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

4 29.32 (13.80) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

5 52.78 (23.46) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

6 95.58 (42.80) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

7 100.92 (5.34) 8:0:20:3;f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

8 107.47 (6.55) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

9 116.44 (8.97) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

10 130.24 (13.80) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

11 153.70 (23.46) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

12 196.49 (42.79) 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who—is 8:O:20:3:f6:42 tell 8:O:20:3:f6:42

Figure 5.2 RARP requests with no RARP server on the network.

calculate the differences between each timeout interval we see a doubling effect: from
5.34 to 6.55 is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83

seconds, and so on. When the timeout interval reaches some limit (greater than 42.80
seconds) it's reset to 5.34 seconds.

Increasing the timeout value like this is a better approach than using the same value

each time. In Figure 6.8 we'll see one wrong way to perform timeout and retransmis—

sion, and in Chapter 21 we'll see TCP’s method.

5.4 RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system depen-

dent and complex. Conversely, providing an ARP server is simple, and is normally part
of the TCP/IP implementation in the kernel. Since the kernel knows its IP addresses
and hardware addresses, when it receives an ARP request for one of its IP addresses, it

just replies with the corresponding hardware address. ‘

RARP Servers as User Processes

The complication with an RARP server is that the server normally provides the map

ping from a hardware address to an IP address for many hosts (all the diskless systems

on the network). This mapping is contained in a disk file (normally /etc/ethers on

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

68 RARP: Reverse Address Resolution Protocol Chapter 5

Unix systems). Since kernels normally don't read and parse disk files, the function of an

RARP server is provided as a user process, not as part of the kernel’s TCP/IP

implementation.

To further complicate matters, RARP requests are transmitted as Ethernet frames

with a specific Ethernet frame type field (Ox8035 from Figure 2.1.) This means an

RARP server must have some way of sending and receiving Ethernet frames of this

type. In Appendix A we describe how the BSD Packet Filter, Sun's Network Interface

Tap, and the SVR4 Data Link Provider Interface can be used to receive these frames.

Since the sending and receiving of these frames is system dependent, the implementa-

tion of an RARP server is tied to the system.

Multiple RARP Servers per Network

5.5

Another complication is that RARP requests are sent as hardware-level broadcasts, as

shown in Figure 5.2. This means they are not forwarded by routers. To allow diskless

systems to bootstrap even when the RARP server host is down, multiple RARP servers

are normally provided on a single network (e. g., a single cable).

As the number of servers increases (to provide redundancy), the network traffic

increases, since every server sends an RARP reply for every RARP request. The diskless

system that sent the RARP request normally uses the first RARP reply that it receives.

(We never had this problem with ARP, because only a single host sends an ARP reply.)

Furthermore, there is a chance that each RARP server can try to respond at about the

same time, increasing the probability of collisions on an Ethernet.

Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped.

The RARP packet format is nearly identical to the ARP packet. An RARP request is

broadcast, identifying the sender's hardware address, asking for anyone to respond

with the sender's IP address. The reply is normally unicast.

Problems with RARP include its use of a link-layer broadcast, preventing most

routers from forwarding an RARP request, and the minimal information returned: just

the system's IP address. In Chapter 16 we'll see that BOOTP returns more information

for the diskless system that is bootstrapping: its IP address, the name of a host to boot-

strap from, and so on.

While the RARP concept is simple, the implementation of an RARP server is system

dependent. Hence not all TCP/IP implementations provide an RARP server.

Exercises '

5.1 Is a separatefmme type field required for RARP? Could the same value be used for ARP and
RARP OX0 8 0 6?

5.2 With multiple RARP servers on a network, how can they prevent their responses from col-
liding with each on the network?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

ICMP: Internet Control

Message Protocol

6.1 Introduction

ICMP is often considered part of the ll’ layer. It communicates error messages and

other conditions that require attention. ICMP messages are usually acted on by either

the IP layer or the higher layer protocol (TCP or UDP). Some ICMP messages cause

errors to be returned to user processes.

ICMP messages are transmitted within IP datagrams, as shown in Figure 6,1.

<—j—— IP datagram Ty‘
IP

header

20 bytes

' ICMP message

Figure 6.1 ICMP messages encapsulated within an IP datagram.

RFC 792 [Postel 1981b] contains the official specification of ICMP.

Figure 6.2 shows the format of an ICMP message. The first 4 bytes have the same

format for all messages, but the remainder differs from one message to the next. We'll

show the exact format of each message when we describe it.

There are 15 different Values for the type field, which identify the particular ICMP

message. Some types of ICMP messages then use different values of the code field to

further specify the condition.

The checksum field covers the entire ICMP message. The algorithm used is the same
as we described for the IP header checksum in Section 3.2. The ICMP checksum is

required.

Talari Networks Inc. - Exhibit 1097

Talari Networks Inc. - Exhibit 1007

70 ICMP: Internet Control Message Protocol Chapter 6

O 7 8 15 16 31

8-bit type 8-bit code 16-bit chec1<sum

Z (contents depends on type and code) [

Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address

mask request and reply, timestamp request and reply, and port unreachable. We discuss

the echo request and reply messages in detail with the Ping program in Chapter 7, and

we discuss the ICMP messages dealing with IP routing in Chapter 9.

6.2 ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and

code field in the ICMP message.

The final two columns in this figure specify whether the ICMP message is a query

message or an error message. We need to make this distinction because ICMP error

messages are sometimes handled specially. For example, an ICMP error message is

never generated in response to an ICMP error message. (If this were not the rule, we

could end up with scenarios where an error generates an error, which generates an

error, and so on, indefinitely.)

When an ICMP error message is sent, the message always contains the IP header

and the first 8 bytes of the IP datagram that caused the ICMP error to be generated.

This lets the receiving ICMP module associate the message with one particular protocol

(TCP or UDP from the protocol field in the IP header) and one particular user process

(from the TCP or UDP port numbers that are in the TCP or UDP header contained in the

first 8 bytes of the IP datagram). We'll show an example of this in Section 6.5.

An ICMP error message is never generated in response to

1. An ICMP error message. (An ICMP error message may, however, be generated

in response to an ICMP query message.)

2. A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast

address (a class D address, Figure 1.5).

3. A datagram sent as a link-layer broadcast.

4. A fragment other than the first. (We describe fragmentation in Section 11.5.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.2 ICMP Message Types 71

type code Description Query Error

_0 0
echo reply (Ping reply, Chapter 7) 0

3

©©®\"lO‘\U1>l>UJI\)>—|©
destination unreachable:

network unreachable (Section 9.3)
host unreachable (Section 9.3)
protocol unreachable
port unreachable (Section 6.5)
fragmentation needed but d0n’t-fragment bit set (Section 11.6)
source route failed (Section 8.5)
destination network unknown
destination host unknown

source host isolated (obsolete)
destination network administratively prohibited
destination host administratively prohibited
network unreachable for TOS (Section 9.3)
host unreachable for TOS (Section 9.3)
communication administratively prohibited by filtering
host precedence violation
precedence cutoff in effect

oooooooooooooooe
source quench (elementary flow control, Section 11.11)

redirect (Section 9.5):
redirect for network
redirect for host

redirect for type—of-service and network 0
redirect for type—of—service and host 0

echo request (Ping request, Chapter 7) °

10
GOOLDIQIAO router advertisement (Section 9.6) 0

router solicitation (Section 9.6) 0
11

)—\©

time exceeded:

time—to-live equals 0 during transit (Traceroute, Chapter 8) 0
time-to-live equals 0 during reassembly (Section 11.5) 0

12
parameter problem:

IP header bad (catchall error) 0
required option missing 0

13
14

timestamp request (Section 6.4) 0
timestamp reply (Section 6.4) 0

15
16

information request (obsolete) 0
information reply (obsolete) 0

17
18

©©©©CCD>—‘©
address mask request (Section 6.3) 0
address mask reply (Section 6.3) 0

Figure 6.3 ICMP message types.

5. A datagram whose source address does not define a single host. This means the

source address cannot be a zero address, a loopback address, a broadcast
address, or a multicast address.

These rules are meant to prevent the broadcast storms that have occurred in the past
when ICMP errors were sent in response to broadcast packets.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

72
ICMP: Internet Control Message Protocol Chapter 6

6.3 ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet

mask (Section 3.5) at bootstrap time. The requesting system broadcasts its ICMP

request. (This is similar to a diskless system using RARP to obtain its IP address at

bootstrap time.) An alternative method for a diskless system to obtain its subnet mask

is the BOOTP protocol, which we describe in Chapter 16. Figure 6.4 shows the format

of the ICMP address mask request and reply messages.
0 7 8 15 16 31

type (17 or 18) checksumcode (0)

identifier sequence number 12 bytes

32-bit subnet mask

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence number fields in the ICMP message can be set to anything

the sender chooses, and these Values are returned in the reply. This allows the sender to

match replies with requests.

We can write a simple program (named icmpaddrmask) that issues an ICMP

address mask request and prints all replies. Since normal usage is to send the request to
the broadcast address, that's what we'll do. The destination address (140.252.13.63) is

the broadcast address for the subnet 140.252.13.32 (Figure 3.12).

sun % icmpaddrmask 140.252.13.63
received mask ffffffeo, from 140.252.13.33
received mask ffffffeo, from 140.252.13.35
received mask ffff0O0O, from 140.252.13.34

from ourself
from b sdi
from svr4

IIIIII

The first thing we note in this output is that the returned value from svr4 is wrong. It

appears that SVR4 is returning the general class B address mask, assuming no subnets,

even though the interface on svr4 has been configured with the correct subnet mask:0
svr4 6 ifconfig emd0
emdO: flags=23<UP , BROADCAST, NOTRAILERS>

inet 140.252.13.34 netmask ffffffeo broadcast 140.252.13.63

There is a bug in the SVR4 handling of the ICMP address mask request.

We'll watch this exchange on the host bsdi using tcpdump. The output is shown

in Figure 6.5. We specify the -e option to see the hardware addresses.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.3 ICMP Address Mask Request and Reply 73

1 0.0 8:O:20:3:f6:42 ff:ff:ff:ff:ff:ff ip 60:
sun > 140.252.13.63: icmp: address mask request

2 0.00 (0.00) 0:0:cO:6f:2d:40 ff:ff:ff:ff:ff:ff ip 46:
bsdi > sun: icmp: address mask is 0xffffffe0

3 0.01 (0.01) 0:0:cO:c2:9b:26 8:0:20:3:f6:42 ip 60:
svr4 > sun: icmp: address mask is 0Xffff0000

Figure 6.5 ICMP address mask request sent to broadcast address.

Note that the sending host, sun, receives an ICMP reply (the output line with the com-

mentfrom ourself shown earlier), even though nothing is seen on the wire. This is a gen-

eral characteristic of broadcasting: the sending host receives a copy of the broadcast
packet through some internal loopback mechanism. Since by definition the term

”broadcast” means all the hosts on the local network, it should include the sending host.

(Referring to Figure 2.4 [p. 28] what is happening is that when the Ethernet driver rec-

ognizes that the destination address is the broadcast address, the packet is sent onto the

network and a copy is made and passed to the loopback interface.)

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor.

Normally the reply should be unicast unless the source IP address of the request is

0.0.0.0, which it isn't in this example. Therefore, sending the reply to the broadcast

address is a BSD/386 bug.

The Host Requirements RFC says that a system must not send an address mask reply unless it
is an authoritative agent for address masks. (To be an authoritative agent it must be specifi-
cally configured to send these replies. See Appendix E.) As we can see from this example,
however, most host implementations send a reply if they get a request. Some hosts even send
the wrong reply!

The final point is shown by the following example. We send an address rnask

request to our own IP address and to the loopback address:o
sun 6 icmpaddrmask sun
received mask = ffOO0000, from 140.252.13.33

sun % icmpaddrmask localhost
received mask = ff0O00O0, from 127.0.0.1

In both cases the returned address mask corresponds to the loopback address, the

class A address 127.0.0.1. Again, referring to Figure 2.4 we see that IP datagrams sent to

the host's own IP address (140.252.13.33 in this example) are actually sent to the loop

back interface. The ICMP address mask reply must correspond to the subnet mask of

the interface on which the request was received (since a multihomed host can have dif-

ferent subnet masks for each interface), and in both cases the request is received from

the loopback interface.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

74
ICMP: Internet Control Message Protocol Chapter 6

6.4 ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time.

The recommended value to be returned is the number of milliseconds since midnight,
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean

Time.) The nice feature of this ICMP message is that it provides millisecond resolution,

whereas some other methods for obtaining the time from another host (such as the

rdate command provided by some Unix systems) provide a resolution of seconds. The

drawback is that only the time since midnight is returned—the caller must know the
date from some other means.

Figure 6.6 shows the format of the ICMP timestamp request and reply messages.

0 7 8 15 16 31

type (13 or 14) code (0) checksum

identifier sequence number

32-bit originate timestamp 20 bytes

32-bit receive timestamp

32-bit transmit timestamp

Figure 6.6 ICMP timestamp request and reply messages.

The requestor fills in the 01'igi11ate timestamp and sends the request. The replying sys-

tem fills in the receive timestamp when it receives the request, and the transmit time-

stamp when it sends the reply. In actuality, however, most implementations set the

latter two fields to the same value. (The reason for providing the three fields is to let the

sender compute the time for the request to be sent, and separately compute the time for

the reply to be sent.)

Examples

We can write a simple program (named icmptime) that sends an ICMP timestamp

request to a host and prints the returned reply. We try it first on our small internet:0
sun 6 icmptime bsdi
orig = 83573336, recv
difference : -6 ms

11 H
83573330, xrnit 83573330, rtt : 2 ms

sun % icmptime bsdi
orig : 83577987, recv

difference‘: -7 ms

83577980, Xmit
ll

83577980, rtt = 2 ms

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.4 ICMP Timestamp Request and Reply 75

The program prints the three timestamps in the ICMP message: the originate (orig),

receive (recv), and transmit (xmit) timestamps. As we can see in this and the follow-

ing examples, all the hosts set the receive and transmit timestamps to the same Value.

We also calculate the round-trip time (rtt), which is the time the reply is received

minus the time the request was sent. The difference is the received timestamp

minus the originate timestamp. Figure 6.7 shows the relationship between these values.

originate received transmit

\| request b’) reply A

% _ RTT V ..l

Figure 6.7 Relationship between values printed by our icmpt ime program.

If we believe the RTT and assume that one-half of the RTT is for the request, and the

other half for the reply, then the sender's clock needs to be adjusted by difference

minus one—half the RTT, to have the same time as the host being queried. In the preced-

ing example, the clock on bsdi was 7 and 8 ms behind the clock on sun.

Since the timestamp values are the number of milliseconds past midnight, UTC,

they should always be less than 86,400,000 (24 X 60 X 60 X 1000). These examples were

run just before 4:00 PM. in a time zone that is 7 hours behind UTC, so the values being

greater than 82,800,000 (2300 hours) makes sense.

If we run this program several times to the host bsdi we see that the final digit in

the receive and transmit timestamp is always 0. This is because the software release

(Version 0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.)

If we run the program twice to the host svr4 We see that the low-order three digits

of the SVR4 timestamp are always 0:0
sun 6 icmptime svr4
orig = 83588210, recv
difference = -210 ms

it
83588000, xmit

H
83588000, rtt = 4 ms

5
sun 6 icmptime svr4
orig = 83591547, recv = 83591000, xmit
difference = -547 ms

83591000, rtt = 4 ms

For some reason SVR4 doesn't provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond adjust-
ments.

If we try two other hosts on the 140.252.1 subnet, the results show that one clock

differs from sun’s by 3.7 seconds, and the other by nearly 75 seconds:0
sun 6 icmptime gemini
orig = 83601883, recv = 83598140, xmit
difference = -3743 ms

83598140, rtt = 247 ms

0
sun 6 icmptime aix
orig = 83606768, recv = 83532183, xmit
difference = —74585 ms

ll
83532183, rtt = 253 ms

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

76 ICMP: Internet Control Message Protocol Chapter 6

Another interesting example is to the router gateway (a Cisco router). It shows

that when a system returns a nonstandard timestamp value (something other than mil-

liseconds past midnight, UTC), it is supposed to turn on the high—order bit of the 32-bit

timestamp. Our program detects this, and prints the receive and transmit timestamps

in angle brackets (after turning off the high—order bit). Also, we can't calculate the dif-

ference between the originate and receive timestamps, since they're not the same units.

sun % icmptime gateway
orig 83620811, recv = <4871036>, xmit

Ii
<4871036>, rtt

I! 220 ms
1|

0
sun 6 icmptime gateway
orig = 83641007, recv <489l232>, xmit = <4891232>, rtt = 213 ms

ii

If we run our program to this host a few times it becomes obvious that the values do

contain millisecond resolution and do count the number of milliseconds past some

starting point, but the starting point is not midnight, UTC. (It could be a counter that's

incremented every millisecond since the router was bootstrapped, for example.)

As a final example we'll compare sun's clock with a system whose clock is known

to be accurate——an NTP stratum 1 server. (We say more about NTP, the Network Time

Protocol, below.)0
sun 6 icmptime c1ock.l1n1.gov
orig = 83662791, recv 2 83662919, xmit : 83662919, rtt = 359 ms
difference = 128 ms

sun % icmptime c1ock.l1n1.gov
orig : 83670425, recv = 83670559, xmit = 83670559, rtt = 345 ms
difference : 134 ms

If we calculate the difference minus one-half the RTT, this output indicates that the clock
on sun is between 38.5 and 51.5 ms fast.

Alternatives

There are other ways to obtain the time and date.

1. We described the daytime service and time service in Section 1.12. The former
returns the current time and date in a human readable form, a line of ASCII

characters. We can test this service using the telnet command:

sun % telnet bsdi daytime
Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is '“] ' . first three lines outputare from the Telnet client
wed Feb 3 1 6 :3 8 :3 3 19 93 here's the daytime service output
Connection closed by foreign host. thkisakofivmthelehwtdknt

The time server, on the other hand, returns a 32-bit binary value with the num-

ber of seconds since midnight January 1, 1900, UTC. While this provides the
date, the time value is in units of a second. (The rdate command that we men-

tioned earlier uses the TCP time service.) '

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.5 ICMP Port Unreachable Error 77

2. Serious timekeepers use the Network Time Protocol (NTP) described in

RFC 1305 [Mills 1992]. This protocol uses sophisticated techniques to maintain

the clocks for a group of systems on a LAN or WAN to within millisecond accu-

racy. Anyone interested in precise timekeeping on computers should read this
RFC.

3. The Open Software Foundation's (OSF) Distributed Computing Environment
(DCE) defines a Distributed Time Service (DTS) that also provides clock syn-

chronization between computers. [Rosenberg, Kenney, and Fisher 1992] provide
additional details on this service.

4. Berkeley Unix systems provide the daemon timec1(8) to synchronize the clocks

of systems on a local area network. Unlike NTP and DTS, timed does not work
across wide area networks.

6.5 ICMP Port Unreachable Error

The last two sections looked at ICMP query messages——the address mask and time-

stamp queries and replies. We'll now examine an ICMP error message, the port

unreachable message, a subcode of the ICMP destination unreachable message, to see

the additional information returned in an ICMP error message. We'll watch this using

UDP (Chapter 11).

One rule of UDP is that if it receives a UDP datagram and the destination port does

not correspond to a port that some process has in use, UDP responds with an ICMP port

unreachable. We can force a port unreachable using the TFTP client. (We describe TFTP

in Chapter 15.)

The well—known UDP port for the TFTP server to be reading from is 69. But most

TFTP client programs allow us to specify a different port using the connect command.

We use this to specify a port of 8888:

bsdi % tftp

tftp> connect svr4 8888 specify thehostnmneand port number
tftp> get temp.foo trytofetchafile
Transfer timed out. about 25 seconds later

tftp> quit

The connect command saves the name of the host to contact and the port number on

that host, for when we later issue the get command. After typing the get command a

UDP datagram is sent to port 8888 on host svr4. Figure 6.8 shows the tcpdump output

for the exchange of packets that takes place.

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine

its hardware address (line 1). The ARP reply (line 2) is returned and then the UDP data-

gram is sent (line 3). (We have left the ARP request—reply in this tcpdump output to

remind us that this exchange may be required before the first IP datagram is sent from

one host to the other. In future output we'll delete this exchange if it's not relevant to

the topic being discussed.) ;

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

78
ICMP: Internet Control Message Protocol Chapter 6

.0 arp who—has svr4 tell bsdi

.OO205O (0.0020) arp reply svr4 is—at 0:0:c0:c2:9b:26

.0O2723 (0.0007) bsdi.2924 > svr4.8888: udp 20

.006399 (0.0037) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

.000776 (4.9944) bsdi.2924 > svr4.8888: udp 20

.OO4304 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

01CC)(36
10.000887 (4.9966) bsdi.2924 > svr4.8888: udp 20
10.004416 (0.0035) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

15.001014 (4.9966) bsdi.2924 > svr4.8888: udp 20
15.004574 (0.0036) svr4 > bsdi: icmp: svr4 udp port 8888 unreachable)~\

©KO0<J\10‘\U‘I>-kinl\)>~\ U’!

20.001177 (4.9966) bsdi.2924 > svr4.8888: udp 20
20.004759 (0.0036) svr4 > bsdi-. icmp: svr4 udp port 8888 unreachableP~l)s\ |\))<

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client

appears to ignore the ICMP message, sending another UDP datagram about 5 seconds

later (line 5). This continues three more times before the client gives up.

Notice that the ICMP messages are exchanged between hosts, without a port num-

ber designation, while each 20-byte UDP datagram is from a specific port (2924) and to
a specific port (8888).

The number 20 at the end of each UDP line is the length of the data in the UDP

datagram. In this example 20 is the sum of the TFTP’s 2-byte opcode, the 9-byte null

terminated name temp.foo, and the 9-byte null terminated string netascii. (See

Figure 15.1 for the details of the TFTP packet layout.)

If we run this same example using the —e option of tcpdump we see the exact

length of each ICMP port unreachable message that's returned to the sender. This

length is 70 bytes, and is allocated as shown in Figure 6.9.

l IP datagram '

4e ICMP message T»

<—— data portion of ICMP message —>

Ethernet IP ICMP IP header of datagram UDP
header header header that generated error header

14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 6.9 ICMP message returned for our ”UDP port unreachable” example.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.5 ICMP Port Unreachable Error 79

One rule of ICMP is that the ICMP error messages (see the final column of Fig-

ure 6.3, p. 71) must include the IP header (including any options) of the datagram that

generated the error along with at least the first 8 bytes that followed this IP header. In

our example, the first 8 bytes following the IP header contain the UDP header (Fig-
ure 11.2).

The important fact is that contained in the UDP header are the source and destina-

tion port numbers. It is this destination port number (8888) that caused the ICMP port

unreachable to be generated. The source port number (2924) can be used by the system

receiving the ICMP error to associate the error with a particular user process (the TFTP

client in this example).

One reason the IP header of the datagram that caused the error is sent back is

because in this IP header is the protocol field that lets ICMP know how to interpret the 8

bytes that follow (the UDP header in this example). When we look at the TCP header

(Figure 17.2) we’ll see that the source and destination port numbers are contained in the

first 8 bytes of the TCP header.

The general format of the ICMP unreachable messages is shown in Figure 6.10.

0 7 8 15 16 31

type (3) code (0~15) checksuin T
8 bytes

Unused (must be 0) i

/ IP header (including options) + first 8 bytes of original IP datagram data [

Figure 6.10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes 0

through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates

that the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery

mechanism (Section 2.9) allows a router to place the MTU of the outgoing interface in

the low-order 16 bits of this 32-bit value, when code equals 4 (”fragmentation needed

but the don't fragment bit is set”). We show an example of this error in Section 11.6.

Although the rules of ICMP allow a system to return more than the first 8 bytes of the data
portion of the IP datagram that caused the ICMP error, most Berkeley-derived implementa-
tions return exactly 8 bytes. The Solaris 2.2 ip_icmp_return_data_bytes option returns
the first 64 bytes of data by default (Section E.4).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

80
ICMP: Internet Control Message Protocol Chapter 6

tcpdump Time Line

0.0

0.002050 0.0020
0.002723 0.0007

0.006399 (0.0037)

5.000776 (4.9944)

5004304 (00035)

10.000887 (4.9966)

10.004416 (00035)

15.001014 (4.9966)

15.004574 (00036)

20.001177 (4.9966)

20.004759 (00036)

bsdi.2924

arp who—has svr4 ten bsdl.

arp reply SV

9 t

CMP V1‘4 udp P0“ 8888 “““°‘aC1 2 s

r4 is-at 0:0:c0:c2'.9b:26

sVr4.8888

8888 unreachabl A ‘

ICMP: sV1‘4 udp P0“4-:

Z Z

“dp 20 bytes
“M-§

. 3888 unreachable
1C1\/[P-. svr4 udp P0“¢

Z Z

udp 20 bytes
“E

. 3 reachable
ICMP. SW4 udp port 888 un41

Z Z

udp 20 bytes
9}

8888 unreachable
ICMP svr4 udP Portan

Figure 6.11 Time line of TFTP request to an invalid port.

Throughout the text we'll also display the tcpdump output in a time line diagram as

shown in Figure 6.11.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 6.6 4.4BSD Processing of ICMP Messages 81

6.6

Time increases down the page and the labels on the far left of the figure are the

same time values as in our tcpdump output (Figure 6.8). The labels at the top are the

hostnames and port numbers for each side of the time line. Be aware that the y—axis

down the page is not exactly proportional to the time value. When there is a significant

time lag, as between each 5—second retransmission in this example, we'll designate that

with a squiggle on both sides of the time line. When UDP or TCP data is being trans-

mitted, we show that packet with a thicker line.

Why does the TFTP client keep retransmitting its request when the ICMP messages

are being returned? An element of network programming is occurring in which BSD

systems don't notify user processes using UDP of ICMP messages that are received for

that socket unless the process has issued a connect on that socket. The standard BSD
TFTP client does not issue the connect, so it never receives the ICMP error notification.

Another point to notice here is the poor retransmission timeout algorithm used by

this TFTP client. It just assumes that 5 seconds is adequate and retransmits every 5 sec-

onds, for a total of 25 seconds. We'll see later that TCP has a much better algorithm.

This old—fashioned timeout and retransmission algorithm used by the TFTP client is forbidden
by the Host Requirements RFC. Nevertheless, all three systems on the author's subnet, and
Solaris 2.2 still use it. AIX 3.2.2 applies an exponential backoff to its timeout, sending packets
at 0, 5, 15, and 35 seconds, which is the recommended way. We talk much more about time-
outs in Chapter 21.

Finally note that the ICMP messages are returned about 3.5 ms after the UDP data-

gram is sent, which we'll see in Chapter 7 is similar to the round—trip times for Ping

replies.

4.4BSD Processing of ICMP Messages

Since ICMP covers such a wide range of conditions, from fatal errors to informational

messages, each ICMP message is handled differently, even within a given implementa-

tion. Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for

each of the possible ICMP messages.

If the final column specifies the kernel, that ICMP message is handled by the kernel.

If the final column specifies ”user process”, then that message is passed to all user pro-

cesses that have registered with the kernel to read received ICMP messages. If there are

none of these user processes, the message is silently discarded. (These user processes

also receive a copy of all the other ICMP messages, even those handled by the kernel,

but only after the kernel has processed the message.) Some messages ‘are completely

ignored. Finally, if the final column is a string in quotes, that is the Unix error message

corresponding to that condition. Some of these errors, such as TCP’s handling of a

source quench, we'll cover in later chapters.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

82
ICMP: Internet Control Message Protocol Chapter 6

type code Description Handled by

0 0 echo reply user process
3 destination unreachable:

0 network unreachable ”No route to host"
1 host unreachable "No route to host"

2 protocol unreachable ”Connection refused”
3 port unreachable ”Connection refused”
4 fragmentation needed but DF bit set ”Message too long”
5 source route failed ”No route to host”
6 destination network unknown ”No route to host”
7 destination host unknown ”No route to host”

8 source host isolated (obsolete) “No route to host”

9 dest. network administratively prohibited ”No route to host"
10 dest. host administratively prohibited ”No route to host"
11 network unreachable for TOS ”No route to host”
12 host unreachable for TOS ”No route to host”

13 communication administratively prohibited (ignored)
14 host precedence violation (ignored)
15 precedence cutoff in effect (ignored)

4 0 source quench kernel for TCR ignored by UDP
5 redirect:

0 redirect for network kernel updates routing table
1 redirect for host kernel updates routing table
2 redirect for type—of—service and network kernel updates routing table
3 redirect for type—of—service and host kernel updates routing table

8 0 echo request kernel generates reply

9 O router advertisement user process
10 O router solicitation user process
11 time exceeded:

0 TTL equals 0 during transit user process
1 TTL equals 0 during reassembly user process

12 parameter problem:
0 IP header bad (catchall error) ”Protocol not available"
1 required option missing ”Protocol not available”

13 0 timestamp request kernel generates reply
14 0 timestamp reply. user process

15 0 information request (obsolete) (ignored)
16 0 information reply (obsolete) user process

17 0 address mask request kernel generates reply
18 0 address mask reply user process

Figure 6.12 Handling of the ICMP message types by 4.4BSD.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 6 ‘Exercises 83

6.7 Summary

This chapter has been a look at the Internet Control Message Protocol, a required part of

every implementation. Figure 6.3 lists all the ICMP message types, most of which we'll
discuss later in the text.

We looked at the ICMP address mask request and reply and the timestamp request

and reply in detail. These are typical of the request—reply messages. Both have an iden-

tifier and sequence number in the ICMP message. The sending application stores a

unique value in the identifier field, to distinguish between replies for itself and replies

for other processes. The sequence number field lets the client match replies with

requests.

We also saw the ICMP port unreachable error, a common ICMP error. This let us

examine the information returned in an ICMP error: the IP header and the next 8 bytes

of the IP datagram that caused the error. This information is required by the receiver of
the ICMP error, to know more about the cause of the error. Both TCP and UDP store the

source and destination port numbers in the first 8 bytes of their headers for this reason.

Finally, we presented our first time line of tcpdump output, a presentation format

we’ll use in later chapters.

Exercises

6.1 At the end of Section 6.2 we listed five special conditions under which an ICMP error mes~
sage is not sent. What would happen if these five conditions weren't followed and we sent
a broadcast UDP datagram to an unlikely port on the local cable?

6.2 Read the Host Requirements RFC. [Braden 1989a] to see if the generation of an ICMP port
unreachable is a ”must,” ”should,” or ”may.” What section and page is this found on?

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type—of~service field (Figure 3.2) should
be set by ICMP. ~

6.4 If your system provides the netstat command, use it to see what types of ICMP messages
are received and sent.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

7.1

7.2

Ping Program

Introduction

The name ”ping” is taken from the sonar operation to locate objects. The Ping program

was written by Mike Muuss and it tests whether another host is reachable. The pro-

gram sends an ICMP echo request message to a host, expecting an ICMP echo reply to

be returned. (Figure 6.3 lists all the ICMP message types.)

Normally if you can't Ping a host, you won't be able to Telnet or FTP to that host.

Conversely, if you can't Telnet to a host, Ping is often the starting point to determine

what the problem is. Ping also measures the round-trip time to the host, giving us some

indication of how ”far away” that host is.

In this chapter we'll use Ping as a diagnostic tool and to further explore ICMP. Ping

also gives us an opportunity to examine the IP record route and timestamp options.

Chapter 11 of [Stevens 1990] provides the source code for the Ping program.

Years ago we could make the unqualified statement that if we can't Ping a host, we can't Telnet
or FTP to that host. With the increased awareness of security on the Internet, routers that pro-
vide access control lists, and firewall gateways, unqualified statements like this are no longer
true. Reachability of a given host may depend not only on reachability at the IP layer, but also
on what protocol is being used, and the port numbers involved. Ping may show a host as
being unreachable, yet we might be able to Telnet to port 25 (the mail server).

Ping Program

We call the ping program that sends the echo requests the client, and the host being

pinged the server. Most TCP/IP implementations support the Ping server directly in the

kernel——the server is not a user process. (The two ICMP query services that we

described in Chapter 6, the address mask and timestamp requests, are also handled

directly by the kernel.)

Talari Networks Inc. - Exhibit 100’?

Talari Networks Inc. - Exhibit 1007

86
Ping Program Chapter 7

Figure 7.1 shows the ICMP echo request and echo reply messages.

0 7 8 15 16 31

type (0 or 8) code (0) checksum T
8 bytes

identifier

sequence number i

Z optional data Z

Figure 7.1 Format of ICMP message for echo request and echo reply.

As with other ICMP query messages, the server must echo the identifier and sequence

number fields. Also, any optional data sent by the client must be echoed. These are pre-

sumably of interest to the client.

Unix implementations of ping set the identifier field in the ICMP message to the

process ID of the sending process. This allows ping to identify the returned responses

if there are multiple instances of ping running at the same time on the same host.

The sequence number starts at 0 and is incremented every time a new echo request is

sent. ping prints the sequence number of each returned packet, allowing us to see if

packets are missing, reordered, or duplicated. IP is a best effort datagram delivery ser-

vice, so any of these three conditions can occur.

Historically the ping program has operated in a mode where it sends an echo

request once a second, printing each echo reply that is returned. Newer implementa-

tions, however, require the —s option to operate this way. By default, these newer

implementations send only a single echo request and output ’’host is alive” if an echo

reply is received, or ”no answer” if no reply is received within 20 seconds.

LAN Output

ping output on a LAN normally looks like the following:
bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=O ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=l ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=3 ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=4 ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=5 ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=6 ttl=255 time=O ms
64 bytes from 140.252.13.34: icmp_seq=7 ttl=255 time=O ms
‘ ? type interrupt key to stop
——— svr4 ping statistics ———
8 packets transmitted, 8 packets received, 0% packet loss
round—trip min/avg/max = O/O/O ms

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 7.2 Ping Program 87

When the ICMP echo reply is returned, the sequence number is printed, followed by the
TTL, and the round—trip time is calculated. (TTL is the time-to—live field in the IP

header. The current BSD ping program prints the received TTL each time an echo

reply is received—some implementations don't do this. We examine the usage of the

TTL in Chapter 8 with the traceroute program.)

As we can see from the output above, the echo replies were returned in the order
sent (0, 1, 2, and so on).

ping is able to calculate the round—trip time by storing the time at which it sends

the echo request in the data portion of the ICMP message. When the reply is returned it

subtracts this value from the current time. Notice that on the sending system, bsdi, the

round-trip times are all Calculated as.0 Ins. This is because of the low—resolution timer

available to the program. The BSD/386 Version 0.9.4 system only provides a 10~ms

timer. (We talk more about this in Appendix B.) We’ll see later that when looking at the

tcpdump output from this ping example on a system with a finer resolution clock (the

Sun) the time difference between the ICMP echo request and its echo reply is just under
4 ms.

The first line of output contains the IP address of the destination host, even though

we specified its name (svr4). This implies that the name has been converted to the IP

address by a resolver. We examine resolvers and the DNS in Chapter 14. For now real-

ize that if we type a ping command, and a few seconds pass before the first line of out-

put with the IP address is printed, this is the time required for the DNS to determine the

IP address corresponding to the hostname.

Figure 7.2 shows the tcpdump output for this example.

1 0.0 bsdi > svr4: icmp: echo request
2 0.003733 (0.0037) svr4 > bsdi: icmp: echo reply

3 0.998045 (O.9943) bsdi > svr4: icmp: echo request
4 1.001747 (0.0037) svr4 > bsdi: icmp: echo reply

5 1.997818 (0.9961) bsdi > svr4: icmp: echo request
6 2.001542 (0.0037) svr4 > bsdi: icmp: echo rep_y

7 2.997610 (0.9961) bsdi > svr4: icmp: echo request
8 3.001311 (0.0037) svr4 > bsdi: icmp: echo repay

9 3.997390 (0.9961) bsdi > svr4: icmp: echo request
10 4.001115 (0.0037) svr4 > bsdi: icmp: echo rep;y

11 4.997201 (0.9961) bsdi > svr4: icmp: echo request
12 5.000904 (0.0037) svr4 > bsdi: icmp: echo reply

13 5.996977 (0.9961) bsdi > svr4: icmp: echo request
14 6.000708 (0.0037) svr4 > bsdi: icmp: echo reply

15 6.996764 (0.9961) bsdi > svr4: icmp: echo request
16 7.000479 (0.0037) svr4 > bsdi: icmp: echo rep_y

Figure 7.2 ping output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7

ms. We can also see that echo requests are sent approximately 1 second apart.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

88 Ping Program Chapter 7

Often the first round—trip time is larger than the rest. This occurs if the destination’s

hardware address isn't in the ARP cache of the sender. As we saw in Chapter 4, send~

ing an ARI’ request and getting the ARP reply can take a few milliseconds before the

first echo request can be sent. The following example shows this:

sum % arp —a make sure ARP cache is empty0
sun 6 ping svr4
PING svr4: 56 data bytes

64 bytes from svr4 (l40.252.13.34): icmp_seq=O. time=7. ms
64 bytes from svr4 (l40.252.13.34): icmp_seq=l. time=4. ms
64 bytes from svr4 (l40.252.13.34): icmp_seq=2. time=4. ms
64 bytes from svr4 (l40.252.13.34): icmp_seq=3. time=4. ms
“ ? ‘ type interrupt key to stop
————svr4 PING Statistics————

4 packets transmitted, 4 packets received, 0% packet loss
round—trip (ms) min/avg/max = 4/4/7

The additional 3 ms in the first RTT is probably for the ARP request and reply.

This example was run on the host sun, which provides a timer with microsecond

resolution, but the ping program prints the round—trip times with only millisecond res-

olution. The earlier example, run under BSD/386 Version 0.9.4, printed the round—trip

times as 0 ms, since the available timer provided only 10—ms accuracy. The following

output is from BSD/386 Version 1.0, which provides a timer with microsecond resolu-

tion and a version of ping that prints the higher resolution.

bsdi % ping svr4
PING svr4 (l40.252.13.34): 56 data bytes
64 bytes from 140.252.13.34: icmp_seq=0 ttl=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp_seq=1 ttl=255 time=6.089 ms
64 bytes from 140.252.13.34: icmp_seq=2 ttl=255 time=6.079 ms
64 bytes from 140.252.13.34: icmp_seq=3 ttl=255 time=6.096 ms
“ ? type interrupt key to stop
——— svr4 ping statistics ———
4 packets transmitted, 4 packets received, 0% packet loss
round—trip min/avg/max = 6.079/6.880/9.304 ms

WAN Output

On a wide area network the results can be quite different. The following example was

captured on a weekday afternoon, a time when the Internet is normally busy:

gemini % ping vangogh.cs.berkeley.edu
PING vangogh.cs.berkeley.edu: 56 data bytes
64 bytes from (128.32.130.2): icmp_seq=O. time=660. ms
64 bytes from (128.32.130.2): icmp_seq=5. time=1780. ms
64 bytes from (128.32.130.2): icmp_seq=7. time=380. ms
64 bytes from (128.32.130.2): icmp_seq=8. time=420. ms
64 bytes from (128.32.130.2): icmp_seq=9. time=390. ms
64 bytes from (128.32.130.2): icmp_seq=14. time=110. ms
64 bytes from (128.32.130.2): icmp_seq=15. time=170. ms
64 bytes from (128.32.130.2): icmp_seq=16. time=100. ms
“ ? type interrupt key to stop

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 7.2 Ping Program 89

————vangogh.CS.Berkeley.EDU PING Statistics———~
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, 11, 12,

and 13 were lost somewhere. Note also the large variance in the round-trip times. (This

high packet loss rate of 52% is an anomaly. This is not normal for the Internet, even on a

weekday afternoon.)

It is also possible across WANs to see packets duplicated (the same sequence num~

ber printed two or more times), and to see packets reordered (sequence number N + 1

printed before sequence number N).

Hardwired SLIP Links

Let's look at the round-trip times encountered over SLIP links, since they often run at

slow asynchronous speeds, such as 9600 bits/ sec or less. Recall our serial line through-

put calculations in Section 2.10. For this example well set the speed of the hardwired
SLIP link between hosts bsdi and slip to 1200 bits / sec.

We can estimate the round-trip time as follows. First, notice from the example Ping

output shown earlier that by default it sends 56 bytes of data in the ICMP message.

With a 20-byte IP header and an 8-byte ICMP header this gives a total IP datagram size

of 84 bytes. (We can verify this by running tcpdump —e and seeing the Ethernet frame

sizes.) Also, from Section 2.4 we know that at least two additional bytes are added: the

END byte at the beginning and end of the datagram. It's also possible for additional

bytes to be added by the SLIP framing, but that depends on the value of each byte in the

datagram. At 1200 bits/sec with 8 bits per byte, 1 start bit, and 1 stop bit, the rate is 120

bytes per second, or 8.33 ms per byte. Our estimate is then (86 X 8. 33 X 2), or 1433 ms.

(The multiplier of 2 is because we are calculating the round-trip time.)

The following output verifies our calculation:

svr4 % ping -s slip
PING slip: 56 data bytes
64 bytes from slip (l40.252.l3.65 : icmp_seq=O. time=l480. ms
64 bytes from slip (l40.252.l3.65 : icmp_seq=l. time=1480. ms
64 bytes from slip (l40.252.l3.65 : icmp_seq=2. time:l480. ms
64 bytes from slip (l40.252.13.65 : icmp_seq=3. time=1480. ms"9

-~——s1ip PING Statistics————
5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480

(The —s option is required for SVR4 to send one request every second.) The round-trip

time is almost 1.5 seconds but the program is still sending out each ICMP echo request

at 1—second intervals. This means there are two outstanding echo requests (sent at time

0 and time 1) before the first reply comes back (at time 1.480). That's also why the sum-

mary line says one packet has been lost. It really hasn’t been lost, it's probably still on

its way back.

We'll return to this slow SLIP link in Chapter 8 when we examine the traceroute
program.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

90 Ping Program Chapter 7

Dialup SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end

of the link. The modems being used between the systems sun and netb provide what
is called V.32 modulation (9600 bits/ sec), V42 error control (also called LAP-M), and

V.42bis data compression. This means that our simple calculations, which were fairly

accurate for a hardwired link where we knew all the parameters, become less accurate.

Numerous factors are at work. The modems introduce some latency. The size of

the packets may decrease with the data compression, but the size may then increase to a

multiple of the packet size used by the error control protocol. Also the receiving

modem can't release received data bytes until the cyclic redundancy character (the

checksum) has been verified. Finally, we’re dealing with a computer's asynchronous

serial interface on each end, and many operating systems read these interfaces only at
fixed intervals, or when a certain number of characters have been received.

As an example, we ping the host gemini from the host sun:
sun % ping gemini
PING gemini: 56 data bytes
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
64 bytes from gemini (140.252.
————gemini PING Statistics————
12 packets transmitted, 12 packets received, 0% packet loss
round—trip (ms) min/avg/max = 280/314/373

.ll): icmp_seq=O. time=373. ms

.ll): icmp_seq=l. time=360. ms

.ll): icmp_seq=2. time=340. ms

.ll): icmp_seq=3. time=320. ms

.ll): icmp_seq=4. time=330. ms

.ll): icmp_seq=5. time=310. ms

.ll): icmp_seq=6. time=290. ms

.ll): icmp_seq=7. time=300. ms

.ll): icmp_seq=8. time=280. ms

.ll): icmp_seq=9. time=290. ms

.ll): icmp_seq=10. time=300. ms

.ll): icmp_seq=1l. time=280. ms

I‘-‘P-'I—‘l-‘DJ!-‘I—'|-‘I-'P—‘|—‘|—‘
Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this

numerous times, we see this property every time. (This is not caused by the resolution

of the clock on the host sun, because we know that its clock provides millisecond reso-

lution from the tests we run in Appendix B.)

Also note that the first RTT is larger than the next, and they keep decreasing, and

then they range between 280 and 300 ms. If we let it run for a minute or two, the RTTs

stay in this range, never going below 260 ms. If we calculate the expected RTT at

9600 bits/ sec (Exercise 7.2) we get 180 ms, so our observed values are about 1.5 times

the expected value.

If we run ping for 60 seconds and look at the average RTT it calculates, we find that

with V.42 and V.42bis our average is 277 ms. (This is better than the average printed for

our preceding example, because we ran it longer to amortize the longer RTTs at the

beginning.) If we turn off just the V.42bis data compression our average is 330 ms. If

we turn off the V42 error control (which also turns off the V.42bis data compression) our

average is 300 ms. These modem parameters do affect the RTTs, and using the error

control and data compression appears to be the best.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 7.3
IP Record Route Option 91

7.3 IP Record Route Option

The ping program gives us an opportunity to look at the IP record route (RR) option.

Most versions of ping provide the —R option that enables the record route feature. It

causes ping to set the 11’ RR option in the outgoing IP datagram (which contains the

ICMP echo request message). This causes every router that handles the datagram to

add its IP address to a list in the options field. When the datagram reaches the final des-

tination, the list of IP addresses should be copied into the outgoing ICMP echo reply,

and all the routers on the return path also add their IP addresses to the list. When ping

receives the echo reply it prints the list of IP addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the

source host, processing of the RR option by the intermediate routers, and reflection of
the incoming RR list in an ICMP echo request into the outgoing ICMP echo reply are all

optional features. Fortunately, most systems today do support these optional features,

but some systems don't reflect the IP list.

The biggest problem, however, is the limited room in the IP header for the list of IP

addresses. We saw in Figure 3.1 (p. 34) that the header length in the IP header is a 4-bit

field, limiting the entire IP header to 15 32-bit words (60 bytes). Since the fixed size of

the IP header is 20 bytes, and the RR option uses 3 bytes for overhead (which We

describe below), this leaves 37 bytes (60—20—3) for the list, allowing up to nine IP

addresses. In the early days of the ARPANET, nine IP addresses seemed like a lot, but

since this is a round~trip list (in the case of the —R option for ping), it's of limited use

today. (In Chapter 8 we'll look at the Traceroute tool for determining the route followed

by a datagram.) Despite these shortcomings, the record route option works and pro-

vides an opportunity to look in detail at the handling of IP options.

Figure 7.3 shows the general format of the RR option in the IP datagram.

< 39 bytes >

code len ptr IP addr #1 IP addr #2 IP addr #3 IP addr #9

1 1 1 A 4 bytes A 4 bytes A 4 bytes A 4 bytes +
ptr = 4 pt: = 8 ptr = 12 ptr = 36 ptr = 40

Figure 7.3 General format of record route option in IP header.

Code is a 1-byte field specifying the type of IP option. For the RR option its value is 7.

Len is the total number of bytes of the RR option, which in this case is 39. (Although it's

possible to specify an RR option with less than the maximum size, ping always pro-

vides a 39-byte option field, to record up to nine IP addresses. Given the limited room

in the IP header for options, it doesn't make sense to specify a size less than the maxi-
mum.)

Ptr is called the pointer field. It is a 1-based index into the 39-byte option of where

to store the next IP address. Its minimum value is 4, which is the pointer to the first IP

address. As each IP address is recorded into the list, the value of ptr becomes 8, 12, 16,

up to 36. After the ninth address is recorded ptr becomes 40, indicating the list is full.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

92 Ping Program Chapter 7

When a router (which by definition is multihomed) records its IP address in the list,

which IP address is recorded? It could be the address of the incoming interface or the

outgoing interface. RFC 791 [Postel 1981a] specifies that the router records the outgoing

IP address. We'll see that when the originating host (the host running ping) receives

the ICMP echo reply with the RR option enabled, it also records its incoming IP address
in the list.

Normal Example

Let’s run an example of the RR option with the ping program. We'll run ping on the

host svr4 to the host Slip. One intermediate router (bsdi) will handle the datagram.

The following output is from svr4:

svr4 % ping —R slip
PING slip (140.252.13.

252.64 bytes from 140.
RR: bsdi (140.

slip (140.
bsdi (140.
svr4 (140.

64 bytes from 140.
64 bytes from 140.
”?

252
252

252

65)
13.

.13.

.13.
252.
252.

13.
13.

.13.
252. 13.

———- slip ping statistics
3 packets transmitted, 3
round—trip min/avg/max

: 56 data bytes

65: icmp_seq=O ttl=254 time=Z80 ms
66)
65)
35)
34)

65: icrnp__seq=l ttl=254 time=28O ms (same route)
65: icmp_seq=2 ttl=254 time=27O ms (same route)

packets received, 0% packet loss
270/276/280 ms

Figure 7.4 shows the four hops that the packets take (two in each direction), and which

hop adds which IP address to the RR list.

S lip V SLIP.65 .66

1st = 140.252.13.66

bsdiW sun svr4

§

 >
2nd = 140.252.13.65

Figure 7.4 ping with record route option.

.35

Et ernet

empty list1-

3rd = 140.252.13.35

.34 T4th — 140.252.13.34

The router bsdi adds a different IP address to the list in each direction. It always adds

the IP address of the outgoing interface. We can also see that when the ICMP echo reply

reaches the originating system (svr4) it adds the IP address of the incoming interface to
the list.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 7.3 IP Record Route Option 93

We can also watch this exchange of packets from the host sun, running tcpdump

with its —v option (to see the IP options). Figure 7.5 shows the output.

1 0.0 svr4 > slip: icmp: echo request (ttl 32, id 35835,
optlen=40 RR{39}= RR{#0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/ 0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0} EOL)

2 0.267746 (0.2677) slip > svr4: icmp: echo reply (ttl 254, id 1976,
optlen=4O RR{39)= RR{l40.252.13.66/140.252.l3.65/
140.252.13.35/#0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0) EOL)

Figure 7.5 tcpdump output of record route option.

The output optlen=40 indicates there are 40 bytes of option space in the IP header.

(Recall that the length of the IP header must be a multiple of 4 bytes.) RR{ 39} means

the record route option is present, and its length field is 39. The list of nine IP addresses

is then shown, with a pound sign (1%) indicating which IP address is pointed to by the ptr

field in the RR option header. Since we are watching these packets on the host sun (see

Figure 7.4) We only see the ICMP echo request with the empty list, and the ICMP echo

reply with three addresses in the list. We have deleted the remaining lines in the

tcpdump output, since they are nearly identical to what we show in Figure 7.5.

The notation EOL at the end of the record route information indicates the IP option

”end of list” value appeared. The EOL option has a value of 0. What's happening is

that 39 bytes of RR data are in the 40 bytes of option space in the IP header. Since the

option space is set to 0 before the datagram is sent, this final byte of 0 that follows the 39

bytes of RR data is interpreted as an EOL. That is what we want to have happen. If

there are multiple options in the option field of the IP header, and pad bytes are needed

before the next option starts, the other special character NOP (”no operation”), with a
value of 1, can be used.

In Figure 7.5, SVR4 sets the TTL field of the echo request to 32, and BSD/386 sets it to 255. (It
prints as 254 since the router bsdi has already decremented it by one.) Newer systems are set-
ting the TTL of ICMP messages to the maximum (255).

It turns out that of the three TCP/IP implementations used by the author, both BSD/386 and
SVR4 support the record route option. That is, they correctly update the RR list when forward-
ing a datagram, and they correctly reflect the RR list from an incoming ICMP echo request to
the outgoing ICMP echo reply. SunOS 4.1.3, however, updates the RR list when forwarding a
datagram, but does not reflect the RR list. Solaris 2.x corrects this problem.

Abnormal Output

The following example was seen by the author and provides a starting point for our

description of the ICMP redirect message in Chapter 9. We ping the host aix on the

140.252.1 subnet (accessible through the dialup SLIP connection on the host sun) with

the record route option. We get the following output, when run on the host slip:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

94 Ping Program Chapter 7

slip % ping -R aix
PING aix (140.252.l.92): 56 data bytes

64 bytes from 140.252.1.92: icmp_seq=O ttl=25l time=65O ms
RR: bsdi (l40.252.l3.35)

sun (l40.25Z.l.29)
netb (l40.252.l.183)
aix (140.252.l.92)
gateway (140.252.1.4)
netb (l40.252.l.183)
sun (l40.252.l3.33)
bsdi (140.252.13.66)
slip (l40.252.l3.65)

64 bytes from aix: icmp_seq=l,ttl=251 time=610 ms (same route)
64 bytes from aix: icmp_seq=2 ttl=25l time=60O ms (same route)
”?

why is this router used?

——— aix ping statistics ———
4 packets transmitted, 3 packets received, 25% packet loss
round—-trip min/avg/max = 600/620/650 ms

We could have run this example from the host bsdi. We chose to run it from slip to
see all nine IP addresses in the RR list used.

The puzzle in this output is why the outgoing datagrarn (the ICMP echo request)

went directly from netb to aix, but the return (the ICMP echo reply) went from aix,

through the router gateway, before going to netb. What we're seeing here is a feature

of IP routing that we describe below. Figure 7.6 shows the path of the datagrams.

Internet

.1.4
p ing destination

4th = 140252.1924- ~ — — — — — — —

.1.92

Ethernet

.1.183 / 3rd = 140.252.1183

SLIP
I2nd = 140.252.1.29

.1.29 :

6th = 140.252.1.183lI

8th = 140.252.13.66 7th = 140.252.13.33 1
ping client “ ‘ * ” ‘ " ‘ “ ‘ ‘" ’ ‘ ” “ ’ “ ‘ ‘

4 sup ,

.13.65 .13.66 bsdl 3”“
$13.35 1.13.33

Ethernet

is?=‘1ioT2§2.‘1sfss*

Figure 7.6 ping with record route, showing IP routing feature.

The problem is that aix does not know to send IP datagrams destined for the subnet

140252.13 to netb. Instead, aix has a default entry in its routing table that tells it to

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 7.4 IP Timestamp Option 95

send all datagrams to the router gateway if it doesn’t have a particular route for the

destination. The router gateway has more routing knowledge than any of the hosts on
the 140.2521 subnet. (There are more than 150 hosts on this Ethernet and instead of

running a routing daemon on every one, each has a ”default” entry that points to the
router gateway.)

An unanswered question here is why doesn't gateway send an ICMP redirect (Sec-

tion 9.5) to aix to update its routing table? For some reason (perhaps that the datagram

generating the redirect is an ICMP echo request message) the redirect is not generated.

But if we use Telnet and connect to the daytime server on aix, the ICMP redirect is gen-

erated, and the routing table on aix is updated. If we then execute ping with the

record route option enabled, the route shows that the datagrams go from netb to aix

and back to netb, without the extraihop to the router gateway. We'll look at these
ICMP redirects in more detail in Section 9.5.

7.4 IP Timestamp Option

The IP timestamp option is similar to the record route option. Figure 7.7 shows the for-

mat of the IP timestamp option (compare with Figure 7.3).

< 40 bytes >

code len ptr OF FL timestamp #1 timestamp #2 timestamp #3 . . . timestamp #9

1 1 'l 4 bytes 4 bytes 4 bytes 4 bytes

Figure 7.7 General format of timestamp option in IP header.

The code field is 0x4 4 for the timestamp option. The two fields Zen and ptr are the same

as for the record route option: the total length of the option (normally 36 or 40) and a

pointer to the next available entry (5, 9, 13, etc.).

The next two fields are 4-bit values: OP is the overflow field and FL is a flags field.

The operation of the timestamp option is driven by the flags field, as shown in Fig-
ure 7.8.

flags Description

0 Record only timestamps. This is what we show in Figure 7.7. ,
1 Each router records its IP address and its timestamp. There is room for only four of these

pairs in the options list.
3 The sender initializes the options list with up to four pairs of IP addresses and a 0

timestamp. A router records its timestamp only if the next IP address in the list
matches the router ’s.

Figure 7.8 Meaning of the flags value for timestamp option.

If a router can't add a timestamp because there's no room left, it just increments the

overflow field.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

96
Ping Program Chapter 7

7.5

The preferred value for the timestamps is the number of milliseconds past mid-

night, UTC, similar to the ICMP timestamp request and reply (Section 6.4). If this for-

mat is not available to a router, it can insert whatever time representation that it uses,

but must then turn on the high-order bit of the timestamp to indicate the nonstandard
value.

Given the limitations that we encountered with the record route option, things get

worse with the timestamp option. If we record both IP addresses and timestamps (a

flags of 1), we can store only four of these pairs. Recording only timestamps is next to

useless because we have no indication regarding which timestamp corresponds to

which router (unless we have a fixed topology that never changes). A flags of 3 is better,

as we can then select which routers insert their timestamp. A more fundamental prob-

lem is that you probably have no control over how accurate the timestamp is at any

given router. This makes it fruitless to try to measure hop times between routers using

this IP option. We'll see that the traceroute program (Chapter 8) provides a better way

of measuring hop times between routers.

Summary

The ping program is the basic connectivity test between two systems running TCP/IP.

It uses the ICMP echo request and echo reply messages and does not use a transport

layer (TCP or UDP). The Ping server is normally part of the kernel’s ICMP implementa-
tion.

We looked at the normal ping output for a LAN, WAN, and SLIP links (dialup and

hardwired), and performed some serial line throughput calculations for a dedicated

SLIP link. ping also let us examine and use the IP record route option. We used this IP

option to see how default routes are often used, and will return to this topic in Chap-

ter 9. We also looked at the IP timestamp option, but it is of limited practical use.

Exercises

7.1 Draw a time line for the ping output for the SLIP link in Section 7.2.

7.2 Calculate the RTT if the SLIP link between bsdi and slip is set to 9600 bits/sec. Assume

the default of 56 bytes of data.

7.3 The current BSD ping program allows us to specify a pattern for the data portion of the
ICMP message. (The first 8 bytes of the data portion are not filled with the pattern, since
the time at which the packet is sent is stored here.) If we specify a pattern of 0xc0, recalcu-
late the answer to the previous exercise. (Hint: Reread Section 2.4.)

7.4 Does the use of compressed SLIP (CSLIP, Section 2.5) affect the ping times that we
observed in Section 7.2?

7.5 Examine Figure 2.4 (p. 28). Do you expect any difference between a ping of the loopback
address, versus a ping of the host's Ethernet address?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

8.1

8.2

Troceroure Program

Introduction

The Traceroute program, written by Van Jacobson, is a handy debugging tool that

allows us to further explore the TCP/IP protocols. Although there are no guarantees

that two consecutive IP datagrams from the same source to the same destination follow

the same route, most of the time they do. Traceroute lets us see the route that IP data-

grams follow from one host to another. Traceroute also lets us use the IP source route

option.

The manual page states: ”Implemen’ted by Van Jacobson from a suggestion by Steve Deering.
Debugged by a cast of thousands with particularly cogent suggestions or fixes from C. Philip
Wood, Tim Seaver, and Ken Adelman.”

Traceroute Program Operation

In Section 7.3 we described the IP record route option (RR). Why wasn't this used

instead of developing a new application? There are three reasons. First, historically not

all routers have supported the record route option, making it unusable on certain paths.

(Traceroute doesn't require any special or optional features at any intermediate routers.)

Second, record route is normally a one—way option. The sender enables the option
and the receiver has to fetch all the values from the received IP header and somehow

return them to the sender. In Section 7.3 we saw that most implementations of the Ping

server (the ICMP echo reply function within the kernel) reflect an incoming RR list, but

this doubles the number of IP addresses recorded (the outgoing path and the return

path), which runs into the limit described in the next paragraph. (Traceroute requires

only a working UDP module at the destination—no special server application is

required.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

98 Traceroute Program ' Chapter 8

The third and major reason is that the room allocated for options in the IP header

isn't large enough today to handle most routes. There is room for only nine IP

addresses in the IP header options field. In the old days of the ARPANET this was ade-

quate, but it is far too small nowadays.
Traceroute uses ICMP and the TTL field in the IP header. The TTL field (time-to-

live) is an 8-bit field that the sender initializes to some value. The recommended initial

value is specified in the Assigned Numbers RFC and is currently 64. Older systems

would often initialize it to 15 or 32. We saw in some of the Ping examples in Chapter 7

that ICMP echo replies are often sent with the TTL set to its maximum Value of 255.

Each router that handles the datagram is required to decrement the TTL by either

one or the number of seconds that the router holds onto the datagram. Since most

routers hold a datagram for less than a second, the TTL field has effectively become a

hop counter, decremented by one by each router.

RFC 1009 [Braden and Postel 1987] required a router that held a datagram for more than 1 sec-
ond to decrement the TTL by the number of seconds. Few routers implemented this require-
ment. The new Router Requirements RFC [Almquist 1993] makes this optional, allowing a
router to treat the TTL as just a hop count.

The purpose of the TTL field is to prevent datagrams from ending up in infinite

loops, which can occur during routing transients. For example, when a router crashes

or when the connection between two routers is lost, it can take the routing protocols
some time (from seconds to a few minutes) to detect the lost route and work around it.

During this time period it is possible for the datagram to end up in routing loops. The

TTL field puts an upper limit on these looping datagrams.

When a router gets an IP datagrarn whose TTL is either 0 or 1 it must not forward

the datagram. (A destination host that receives a datagrarn like this can deliver it to the

application, since the datagram does not have to be routed. Normally, however, no sys-

tem should receive a datagrarn with a TTL of 0.) Instead the router throws away the

datagram and sends back to the originating host an ICMP ”time exceeded” message.

The key to Traceroute is that the H’ datagrarn containing this ICMP message has the
router's IP address as the source address.

We can now guess the operation of Traceroute. It sends an IP datagrarn with a TTL

of 1 to the destination host. The first router to handle the datagram decrements the

TTL, discards the datagram, and sends back the ICMP time exceeded. This identifies

the first router in the path. Traceroute then sends a datagrarn with a TTL of 2, and we

find the IP address of the second router. This continues until the datagram reaches the

destination host. But even though the arriving IP datagrarn has a TTL- of 1, the destina-

tion host won't throw it away and generate the ICMP time exceeded, since the data-

gram has reached its final destination. How can we determine when we've reached the
destination?

Traceroute sends UDP datagrams to the destination host, but it chooses the destina-

tion UDP port number to be an unlikely value (larger than 30,000), making it improba-

ble that an application at the destination is using that port. This causes the destination

host’s UDP module to generate an ICMP ”port unreachable” error (Section 6.5) when
the datagram arrives. All Traceroute needs to do is differentiate between the received

ICMP messages—time exceeded versus port unreachable—to know when it's done.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.3 LAN Output 99

The Traceroute program must be able to set the TTL field in the outgoing datagram. Not all
programming interfaces to TCP/IP support this, and not all implementations support the
capability, but most current systems do, and are able to run Traceroute. This programming
interface normally requires the user to have superuser privilege, meaning it may take special
privilege to run it on your host.

8.3 LAN Output

We're now ready to run traceroute and see the output. We'll use our simple internet

(see the figure on the inside front cover) going from svr4 to slip, through the router
bsdi. The hardwired SLIP link between bsdi and slip is 9600 bits/sec.o

svr4 6 traceroute slip
traceroute to slip (140.252.l3.65), 30 hops max, 40 byte packets

1 bsdi (140.252.l3.35) 20 ms 10 ms 10 ms
2 slip (140.252.l3.65) 120 ms 120 ms 120 ms

The first unnumbered line of output gives the name and IP address of the destination

and indicates that traceroute won't increase the TTL beyond 30. The datagram size

of 40 bytes allows for the 20-byte IP header, the 8-byte UDP header, and 12 bytes of user

data. (The 12 bytes of user data contain a sequence number that is incremented each

time a datagram is sent, a copy of the outgoing TTL, and the time at which the data~

gram was sent.)

The next two lines in the output begin with the TTL, followed by the name of the

host or router, and its IP address. For each TTL value three datagrams are sent. For

each returned ICMP message the round—trip time is calculated and printed. If no

response is received within 5 seconds for any of the three datagrams, an asterisk is

printed instead and the next datagram is sent. In this output the first three datagrams

had a TTL of 1 and the ICMP messages were returned in 20, 10, and 10 ms. The next

three datagrams were sent with a TTL of 2 and the ICMP messages were returned 120

ms later. Since the TTL of 2 reached the final destination, the program then stopped.

The round—trip times are calculated by the traceroute program on the sending

host. They are the total RTTs from the traceroute program to that router. If we're

interested in the per-hop time we have to subtract the Value printed for TTL N from the

Value printed for TTL N + 1.

Figure 8.1 shows the tcpdump output for this run. As we might have guessed, the

reason that the first probe packet to bsdi had an RTT of 20 ms and the next two had an

RTT of 10 ms was because of an ARP exchange. tcpdump shows this is indeed the case.

The destination UDP port starts at 33435 and is incremented by one each time a

datagram is sent. This starting port number can be changed with a command-line

option. The UDP datagram contains 12 bytes of user data, which we calculated earlier

when traceroute output that it was sending 40-byte datagrams.

Next, tcpdump prints the comment [ttl 1] when the IP datagram has a TTL of 1.

It prints a message like this when the TTL is O or 1, to warn us that something looks

funny in the datagram. Here we expect to see the TTL of 1, but with some other appli-

cation it could be a warning that the datagram might not get to its final destination. We

should never see a datagram passing by with a TTL of 0, unless the router that put it on
the wire is broken.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

100 Traceroute Program Chapter 8

1 0.0 arp who—has bsdi tell svr4
2 0.000586 (0.0006) arp reply bsdi is-at 0:0:c0:6f:2d:40

3 0.003067 (0.0025) svr4.42804 > s1ip.33435: udp 12 [ttl 1]
4 0.004325 (0.0013) bsdi > svr4: icmp: time exceeded in—transit

5 0.069810 (0.0655) svr4.42804 > slip.33436: udp 12 [ttl 1]
6 0.071149 (0.00l3) bsdi > svr4: icmp: time exceeded in—transit

7 0.085162 (0.0140) svr4.42804 > slip.33437: udp 12 [ttl 1]
8 0.086375 (0.00l2) bsdi > svr4: icmp: time exceeded in—transit

9 0.118608 (0.0322) svr4.42804 > s1ip.33438: udp 12
10 0.226464 (0.l079) slip > svr4: icmp: slip udp port 33438 unreachable

11 0.287296 (0.0608) svr4.42804 > slip.33439: udp 12
12 0.395230 (0.1079) slip > svr4: icmp: slip udp port 33439 unreachable

13 0.409504 (0.0143) svr4.42804 > slip.33440: udp 12
14 0.517430 (0.l079) slip > svr4: icmp: slip udp port 33440 unreachable

Figure 8.1 tcpdump output for traceroute example from svr4 to slip.

The ICMP message ”time exceeded in transit” is what we expect to see from the

router bsdi, since it will decrement the TTL to O. The ICMP message comes from the

router even though the IP datagram that was thrown away was going to slip.

There are two different ICMP ”time exceeded” messages (Figure 6.3, p. 71), each

with a different code field in the ICMP message. Figure 8.2 shows the format of this

ICMP error message.

0 7 8 I 15 16 31

type(1D code(0or1) checkmun T
8 bytes

[huwed(numtbeO) i

Z IP header (including options) + first 8 bytes of original IP datagram data /

Figure 8.2 ICMP time exceeded message.

The one we've been describing is generated when the TTL reaches 0, and is specified by
a code of 0.

It's also possible for a host to send an ICMP ”time exceeded during reassembly”

when it times out during the reassembly of a fragmented datagram. (We talk about

fragmentation and reassembly in Section 11.5.) This error is specified by a code of 1.

Lines 9-14 in Figure 8.1 correspond to the three datagrams sent with a TTL of 2.

These reach the final destination and generate an ICMP port unreachable message.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.3 LAN Output 101

It is worthwhile to calculate what the round~trip times should be for the SLIP link,

similar to what we did in Section 7.2 when we set the link to 1200 bits/ sec for the Ping

example. The outgoing UDP datagram contains 12 bytes of data, 8 bytes of UDP

header, 20 bytes of IP header, and 2 bytes (at least) of SLIP framing (Section 2.4) for a

total of 42 bytes. Unlike Ping, however, the size of the return datagrams changes.

Recall from Figure 6.9 (p. 78) that the returned ICMP message contains the IP header of

the datagram that caused the error and the first 8 bytes of data that followed that IP

header (which is a UDP header in the case of traceroute). This gives us a total of

20 +8 + 20 + 8 +2, or 58 bytes. With a data rate of 960 bytes/ sec the expected RTT is

(42 + 58) /960 or 104 ms. This corresponds to the 1l0—ms value measured on svr4.

The source port number in Figure 8.1 (42804) seems high. traceroute sets the

source port number of the UDP datagrams that it sends to the logical-OR of its Unix

process ID with 32768. In case traceroute is being run multiple times on the same

host, each process looks at the source port number in the UDP header that’s returned by

ICMP, and only handles those messages that are replies to probes that it sent.

There are several points to note with traceroute. First, there is no guarantee that

the route today will be in use tomorrow, or even that two consecutive IP datagrams fol-

low the same route. If a route changes while the program is running you'll see it occur

because traceroute prints the new IP address for the given TTL if it changes.

Second, there is no guarantee that the path taken by the returned ICMP message

retraces the path of the UDP datagram sent by traceroute. This implies that the

round-trip times printed may not be a true indication of the outgoing and returning

datagram times. (If it takes 1 second for the UDP datagram to travel from the source to

a router, but 3 seconds for the ICMP message to travel a different path back to the

source, the printed round-trip time is 4 seconds.)

Third, the source IP address in the returned ICMP message is the IP address of the

interface on the router on which the UDP datagram arrived. This differs from the IP
record route option (Section 7.3), where the IP address recorded was the outgoing inter-

face’s address. Since every router by definition has two or more interfaces, running

traceroute from host A to host B can generate different output than from host B to

host A. Indeed, if we run traceroute from host slip to sVr4 the output becomes:
a

slip 6 traceroute svr4
traceroute to svr4 (140.252.l3.34), 30 hops max, 40 byte packets

1 bsdi (140.252.l3.66) 110 ms 110 ms 110 ms
2 svr4 (140.252.l3.34) 110 ms 120 ms 110 ms

This time the IP address printed for host bsdi is 140.252.13.66, the SLIP interface, while

previously it was 140.252.13.35, the Ethernet interface. Since traceroute also tries to

print the name associated with an IP address, the names can change. (In our example
both interfaces on bsdi have the same name.)

Consider Figure 8.3. It shows two local area networks with a router connected to

each LAN. The two routers are connected with a point-to—point link. If we run

traceroute from a host on the left LAN to a host on the right LAN, the IP addresses

found for the routers will be and 1f3. But going the other way will print the IP

addresses zf4 and The two interfaces and zf3 share the same network ID, while
the other two interfaces have different network IDs.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

102
Traceroute Program Chapter 8

8.4

network 1 W 0,4

router 1 router2

Figure 8.3 Identification of interfaces printed by traceroute.

network 3

Finally, across wide area networks the traceroute output is much easier to com-

prehend if the IP addresses are printed as readable domain names, instead of as IP

addresses. But since the only piece of information traceroute has when it receives

the ICMP message is an IP address, it does a ”reVerse name lookup” to find the name,

given the IP address. This requires the administrator responsible for that router or host

to configure their reverse name lookup function correctly (which isn't always the case).

We describe how an IP address is converted to a name using the DNS in Section 14.5.

WAN Output

The output shown earlier for our small internet is adequate for examining the protocols

in action, but more a realistic use of traceroute involves larger internets such as the
worldwide Internet.

Figure 8.4 is from the host sun to the Network Information Center, the NIC.0
sun 6 traceroute nic.ddn.mil

traceroute to nic.ddn.mil (l92.l12.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (l40.252.l.183) 218 ms 227 ms 233 ms
2 gateway.tuc.noao.edu (l40.252.1.4) 233 ms 229 ms 204 ms

3 butch.telcom.arizona.edu (140.252.l04.2) 204 ms 228 ms 234 ms
4 Gabby.Telcom.Arizona.EDU (128.l96.l28.1) 234 ms 228 ms 204 ms
5 Nslgate.Telcom.Arizona.EDU (192.80.43.3) 233 ms 228 ms 234 ms

6 JPLl.NSN.NASA.GOV (128.161.88.2) 234 ms 590 ms 262 ms
7 JPL3.NSN.NASA.GOV (192.l00.l5.3) 238 ms 223 ms 234 ms
8 GSFC3.NSN.NASA.GOV (l28.161.3.33) 293 ms 318 ms 324 ms
9 GSFC8.NSN.NASA.GOV (192.100.l3.8) 294 ms 318 ms 294 ms

10 SURA2.NSN.NASA.GOV (128.161.166.2) 323 ms 319 ms 294 ms
11 nsn—FIX—pe.sura.net (l92.80.2l4.253) 294 ms 318 ms 294 ms
12 GSI.NSN.NASA.GOV (l28.16l.252.2) 293 ms 318 ms 324 ms

13 NIC.DDN.MIL (l92.l12.36.5) 324 ms 321 ms 324 ms

Figure 8.4 traceroute from host sun to nic . ddn .mil.

Since running this example for inclusion m the text, the NIC for non—DDN sites (i.e., non-
military) has moved from nic . ddn . mil to rs . internic . net, the new ”InterNIC.”

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.4 WAN Output 103

Once the datagrams leave the tuc . noao . edu network they enter the

telcom . arizona . edu network. They then enter the NASA Science Internet,

nsn.nasa . gov. The routers for TTLs 6 and 7 are at the Jet Propulsion Laboratory

(JPL). The network sura . net in the output for TTL 11 is the Southeastern Universities

Research Association Network. The name GSI at TTL 12 is Government Systems, Inc.,

the operator of the NIC.
The second RTT for the TTL of 6 (590) is more than double the other two RTTs (234

and 262). This illustrates the dynamics of IP routing. Something happened somewhere

between the sending host and this router that slowed down this datagram. Also, we

can't tell if it was the outbound datagram that got held up or the return ICMP error.

The RTT for the first probe with a TTL of 3 (204) is less than the RTT for the first

probe with a TTL of 2 (233). Since each printed RTT is the total time from the sending

host to that router, this can (and does) happen.

The example in Figure 8.5 is from the host sun to the author’s publisher.
sun % traceroute aw.com

traceroute to aw.com (192.207.117.2), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 227 ms 227 ms 234 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

3 butch.te1com.arizona.edu (140.252.104.2) 233 ms 229 ms 234 ms
Gabby.Te1com.Arizona.EDU (128.196.128.1) 264 ms 228 ms 234 ms

5 Westgate.Telcom.Arizona.EDU (192.80.43.2) 234 ms 228 ms 234 ms

»$>

6 uu—ua.AZ.westnet.net (192.31.39.233) 263 ms 258 ms 264 ms
7 enss142.UT.westnet.net (192.31.39.21) 263 ms 258 ms 264 ms

8 t3—2.Denver—cnss97.t3.ans.net (140.222.97.3) 293 ms 288 ms 275 ms
9 t3—3.Denver—cnss96.t3.ans.net (140.222.96.4) 283 ms 263 ms 261 ms

10 t3—1.St—Louis—cnss80.t3.ans.net (140.222.80.2) 282 ms 288 ms 294 ms
11 t3—1.Chicago—cnss24.t3.ans.net (140.222.24.2) 293 ms 288 ms 294 ms
12 t3—2.Cleve1and—cnss40.t3.ans.net (140.222.40.3) 294 ms 288 ms 294 ms
13 t3—1.New—York—cnss32.t3.ans.net (l40.222.32.2) 323 ms 318 ms 324 ms
14 t3—1.washington—DC~cnss56.t3.ans.net (140.222.56.2) 323 ms 318 ms 324 ms
15 t3~0.Washington—DC~cnss58.t3.ans.net (140.222.58.l) 324 ms 318 ms 324 ms
16 t3—O.enss136.t3.ans.net (140.222.136.1) 323 ms 318 ms 324 ms

17 Washington.DC.ALTER.NET (l92.41.177.248) 323 ms 377 ms 324 ms
18 Boston.MA.ALTER.NET (l37.39.12.2) 324 ms 347 ms 324 ms
19 AW—gw.ALTER.NET (137.39.62.2) 353 ms 378 ms 354 ms

20 aw.com (192.207.117.2) 354 ms 349 ms 354 ms

IHgure85 traceroutehvnlhostsun.tuc.noao.edutoaw.com

This time the datagrams enter the regional network westnet . net (TTLs 6 and 7) after

leaving the telcom . arizona . edu network. They then enter the NSFNET backbone,

t3 . ans .net, which is run by Advanced Network 8: Services. (T3 is the common

abbreviation for the 45 Mbits/sec phone lines used by the backbone.) The final network

is alter .net, the connection point to the Internet for aw . com.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

104
Traceroute Program Chapter 8

8.5 IP Source Routing Option

Normally IP routing is dynamic with each router making a decision about which next-

hop router to send the datagram to. Applications have no control of this, and are nor-

mally not concerned with it. It takes tools such as Traceroute to figure out what the

route really is.

The idea behind source routing is that the sender specifies the route. Two forms are

provided:

° Strict source routing. The sender specifies the exact path that the IP datagrarn

must follow. If a router encounters a next hop in the source route that isn't on a

directly connected network, an ICMP ”source route failed" error is returned.

6 Loose source routing. The sender specifies a list of IP address that the datagram

must traverse, but the datagram can also pass through other routers between

any two addresses in the list.

Traceroute provides a way to look at source routing, as we can specify an option allow—

ing us to force a source route, and see what happens.

Some of the publicly available Traceroute source code packages contain patches to specify
loose source routing. But the standard versions normally don’t include this option. A com-
ment in the patches is that ”Van]acobson’s original traceroute (spring 1988) supported this fea~
ture, but he removed it due to pressure from people with broken gateways.” For the examples
shown in this section, the author installed these patches and modified them to allow both loose
and strict source routing.

Figure 8.6 shows the format of the source route option.

4 39 bytes >-

code len ptr IP addr #1 IP addr #2 IP addr #3 IP addr #9

1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 8.6 General format of the source route option in the IP header.

This format is nearly identical to the format of the record route option that we showed

in Figure 7.3. But with source routing we have to fill in the list of IP addresses before

sending the IP datagram, while with the record route option we allocate room and zero

out the list of IP addresses, letting the routers fill in the next entry in the list. Also, with
source routing we only allocate room for and initialize the number of IP addresses

required, normally fewer than nine. With the record route option we allocated as much

room as we could, for up to nine addresses.

The Code is 0x83 for loose source routing, and 0x89 for strict source routing. The

Zen and ptr fields are identical to what we described in Section 7.3.

The source route options are actually called ”source and record route” (LSRR and

SSRR, for loose and strict) since the list of IP addresses is updated as the datagram

passes along the path. What happens is as follows:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.5 IP Source Routing Option 105

0 The sending host takes the source route list from the application, removes the

first entry (it becomes the destination address of the datagram), moves all the

remaining entries left by one entry (where left is as in Figure 8.6), and places the

original destination address as the final entry in the list. The pointer still points

to the first entry in the list (e.g., the value of the pointer is 4).

0 Each router that handles the datagram checks whether it is the destination

address of the datagram. If not, the datagram is forwarded as normal. (In this

Case loose source routing must have been specified, or we wouldn’t have

received the datagram.)

0 If the router is the destination, and the pointer is not greater than the length,

then (1) the next address in the list (where ptr points) becomes the destination

address of the datagram, (2) the IP address corresponding to the outgoing inter-

face replaces the source address just used, and (3) the pointer is incremented

by 4.

This is best explained with an example. In Figure 8.7 we assume that the sending appli-
cation on host S sends a datagram to D, specifying a source route of R1, R2, and R3.

dest = D

{#121, R2, R3 }

dest = R1 dest = R2 dest = R3 dest = D

5 [#R2, R3, D 1”’ R1 {R1, #123, D 1” R2 [R1, R2, #13 F R3 [R1, R2, R3# E

Figure 8.7 Example of IP source routing.

In this figure the pound Sign (#) denotes the pointer field, which assumes the Values of

4, 8, 12, and 16. The length field will always be 15 (three IP addresses plus 3 bytes of

overhead). Notice how the destination address of the IP datagram changes on every

hop.

When an application receives data that was source routed, it should fetch the value

of the received route and supply a reversed route for sending replies.

The Host Requirements RFC specifies that a TCP client must be able to specify a source route,
and that a TCP server must be able to receive a source route, and use the reverse route for all

segments on that TCP connection. If the TCP server later receives a different source route, that
newer source route overrides the earlier one.

traceroute Examples with Loose Source Routing

The —g option to traceroute lets us specify intermediate routers to be used with loose

source routing. This option can be specified up to eight times. (The reason this is eight

and not nine is that the programming interface being used requires that the final entry
be the destination.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

106 Traceroute Program Chapter 8

Recall from Figure 8.4 that the route to the NIC, nic . ddn.mil, was through the
NASA Science Internet. In Figure 8.8 we force the datagrams to pass through the

NSFNET instead by specifying the router enssl42 . UT . westnet . net (192.31.39.21) as
an intermediate router:

sun % traceroute —g 192.31.39.21 nic.ddn.mil
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.l.183) 259 ms 256 ms 235 ms

butch.telcom.arizona.edu (140.252.104.2) 234 ms 228 ms 234 ms
Gabby.Telcom.Arizona.EDU (128.196.128.1) 234 ms 257 ms 233 ms

enss142.UT.westnet.net (192.31.39.21) 294 ms 288 ms 295 ms

t3—2.Denver—cnss97.t3.ans.net (l40.222.97.3) 294 ms 286 ms 293 ms
t3—3.Denver—cnss96.t3.ans.net (140.222.96.4) 293 ms 288 ms 294 ms
t3—1.St—Louis—cnss80.t3.ans.net (l40.222.80.2) 294 ms 318 ms 294 ms
* t3—1.Chicago—cnss24.t3.ans.net (l40.222.24.2) 318 ms 295 ms

9 t3—2.Cleve1and—cnss40.t3.ans.net (140.222.40.3) 319 ms 318 ms 324 ms
10 t3—1.New—York~cnss32.t3.ans.net (l40.222.32.2) 324 ms 318 ms 324 ms
11 t3-1.Washington—DC—cnss56.t3.ans.net (140.222.56.2) 353 ms 348 ms 325 ms
12 t3—O.Washington—DC—cnss58.t3.ans.net (140.222.58.1) 348 ms 347 ms 325 ms
13 t3—0.enss145.t3.ans.net (1403222.145.1) 353 ms 348 ms 325 ms

<I>\lO'\U'1»J>(;)l\)
14 nsn—FIX—pe.sura.net (192.80.214.253) 353 ms 348 ms 325 ms
15 GSI.NSN.NASA.GOV (l28.16l.252.2) 353 ms 348 ms 354 ms
16 NIC.DDN.MIL (192.112.36.5) 354 ms 347 ms 354 ms

Figure 8.8 traceroute to nic . ddn .mil with a loose source route through the NSFNET.

This time there appear to be 16 hops with an average RTT of around 350 ms, while the

normal route shown in Figure 8.4 had only 13 hops and an average RTT of around 322

ms. The default route appears better. (There are also other decisions made when routes

are established. Some are made on the basis of the organizational and political bound— 1
aries of the networks involved.)

But we said there appear to be 16 hops, because a comparison of this output with our

previous example through the NSFNET (Figure 8.5) shows three missing routers in this

example using loose source routing. (These are probably caused by bugs in the router's

generation of ICMP time exceeded errors in response to source routed datagrams.) The

router gateway. tuc .noao . edu is missing between netb and butch, and the routers

Westgate . Telcom.Arizona . edu and uu—ua . AZ . westnet .net are also missing

between Gabby and enssl42 .UT . we stnet . net. There is probably a software prob-

lem in these missing routers related to incoming datagrams with the .loose source rout-

ing option. There are really 19 hops between the source and the NIC, when using the

NSFNET. Exercise 8.5 continues the discussion of these missing routers.

This example also illustrates another problem. On the command line we have to

specify the dotted—decimal IP address of the router enssl42 .UT . we stnet . net

instead of itsname. This is because the reverse name lookup (return the name, given
the IP address, Section 14.5), associates the name with the IP address, but the forward

lookup (given the name, return the IP address) fails. The forward mapping and reverse

mapping are two separate files in the DNS (Domain Name System) and not all

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.5 IP Source Routing Option 107

administrators keep the two synchronized with each other. It's not uncommon to have
one direction work and the other direction fail.

Something that we haven't seen before is the asterisk (*) printed for the first RTT for

the TTL of 8. This indicates that a timeout occurred and no response was received

within 5 seconds for this probe.

Another point that we can infer from a comparison of this figure and Figure 8.4 is
that the router nsn—E‘IX—pe . sura.net is connected to both the NSFNET and the
NASA Science Internet.

traceroute Examples with Strict Source Routing

The —G option in the author's version of traceroute is identical to the —g option
described earlier, but the source route is strict instead of loose. We can use this to see

what happens when an invalid strict source route is specified. Recall from Figure 8.5

that the normal sequence of routers for datagrams from the author's subnet to the

NSFNET is through netb, gateway, butch, and gabby. (We've omitted the domain

suffixes, .tuc.noao.edu and .telcom.arizona.edu, in all the output below to

make it easier to read.) We specify a strict source route that omits butch, trying to go

directly from gateway to gabby. We expect this to fail, as shown in Figure 8.9.0
sun fi traceroute —G netb —G gateway -G gabby westgate
traceroute to westgate (192.80.43.2) , 30 hops max, 40 byte packets

1 netb (140.252.1.l83) 272 ms 257 ms 261 ms
2 gateway (140.252.1.4) 263 ms 259 ms 234 ms
3 gateway (l40.252.1.4) 263 ms !S * 235 ms !S

Figure 8.9 traceroute with a strict source route that fails.

The key here is the notation ! S following the RTTs for the TTL of 3. This indicates that

traceroute received an ICMP ”source route failed” error message: a type of 3 and a

code of 5 from Figure 6.3. The asterisk for the second RTT for the TTL of 3 indicates no

response was received for that probe. This is what we expect, since it's impossible for

gateway to send the datagram directly to gabby, because they're not directly con-
nected.

The reason that both TTLs 2 and 3 are from gateway is that the values for the TTL

of 2 are from gateway when it receives the datagram with an incoming TTL of 1. It dis-

covers that the TTL has expired before it looks at the (invalid) strict source route, and

sends back the ICMP time exceeded. The line with a TTL of 3 is received by gateway

with an incoming TTL of 2, so it looks at the strict source route, discovers that it's
invalid, and sends back the ICMP source route failed error.

Figure 8.10 shows the tcpdump output corresponding to this example. This output

was collected on the SLIP link between sun and netb. We had to specify the —v option

for tcpdump to display the source route information. This produces other output that

we don't need, such as the datagram ID, which we've deleted. Also, the notation SSRR
stands for ”strict source and record route.”

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

108
Traceroute Program Chapter 8

sun.33593 > netb.33435: udp 12 [ttl 1}
(opt1en:16 SSRR{#gateway gabby westgate} E02)
netb > sun: icmp: time exceeded in—transit

sun.33593 > netb.33436: udp 12 [ttl 1]
(opt1en=16 SSRR{#gateway gabby westgate} E03)
netb > sun: icmp: time exceeded in—transit

sun.33593 > netb.33437: udp 12 [ttl 1]
(opt1en=16 SSRR{#gateway gabby westgate}
netb > sun: icmp: time exceeded in—transi

2 0.270278 (0.2703)

3 0.284784 (0.0145)

4 0.540338 (0.2556)

5 0.550062 (0.0097)

ilLU
QL

6 0.810310 (0.2602)

7 0.818030 (0.0077) sun.33593 > netb.33438: udp 12 (ttl 2,
opt1en=16 SSRR{#gateway gabby westgate} E02)
gateway > sun: icmp: time exceeded in—transit8 1.080337 (0.2623)

9 1.092564 (0.0l22) sunf33593 > netb.33439: udp 12 (ttl 2,
opt1en:16 SSRR{#gateway gabby westgate} E02)

10 1.350322 (0.2578) gateway > sun: icmp: time exceeded in—transit

11 1.357382 (0.0071) sun.33593 > netb.33440: udp 12 (ttl 2,
opt1en=16 SSRR(#gateway gabby westgate} 304)

12 1.590586 (O.2332) gateway > sun: icmp: time exceeded in~transit

13 1.598926 (0.0083) sun.33593 > netb.33441: udp 12 (ttl 3,
opt1en:16 SSRR(#gateway gabby westgate} E05)
gateway > sun:
icmp: gateway unreachable ~ source route failed

sun.33593 > netb.33442: udp 12 (ttl 3,
optlen:16 SSRR(#gateway gabby westgate} 302)

sun.33593 > netb.33443: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} E05)
gateway > sun:
icmp: gateway unreachable — source route failed

14 1.860341 (O.2614)

15 1.875230 (0.0149)

16 6.876579 (5.0013)

17 7.110518 (0.2339)

Figure 8.10 tcpdump output of traceroute with failed strict source route.

First note that each UDP datagram sent by sun has a destination of netb, not the

destination host (westgate). We described this with the example shown in Figure 8.7.

Similarly, the other two routers specified with the —G option (gateway and gabby) and

the final destination (westgate) become the SSRR option list on the first hop.

We can also see from this output that the timeout used by traceroute (the time
difference between lines 15 and 16) is 5 seconds.

traceroute Round Trips with Loose Source Routing

Earlier we said that there is no guarantee that the route from A to B is the same as the

route from B to A. Other than having a login on both systems and running

traceroute on each end, it's hard to find out if there is a difference in the two paths.

Using loose source routing, however, we can determine the route in both directions.

The trick is to specify loose source routing with the destination as the loose route,

and the sending host as the final destination. For example, on the host sun we can find

the paths to and from the host bruno . cs . colorado . edu (Figure 8.11) . '

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 8.6 Summary 109

0
sun 6 traceroute —g bruno.cs.co1orado.edu sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 230 ms 227 ms 233 ms

gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

butch.te1com.arizona.edu (140.252.104.2) 234 ms 229 ms 234 ms
Gabby.Te1com.Arizona.EDU (128.196.128.1) 233 ms 231 ms 234 ms
Nslgate.Telcom.Arizona.EDU (192.80.43.3) 294 ms 258 ms 234 ms

JPL1.NSN.NASA.GOV (l28.161.88.2) 264 ms 258 ms 264 ms
JPL2.NSN.NASA.GOV (192.100.l5.2) 264 ms 258 ms 264 ms
NCAR.NSN.NASA.GOV (128.161.97.2) 324 ms * 295 ms

Q3\lO\U'I»J>u)k)
9 cu—gw.ucar.edu (192.43.244.4) 294 ms 318 ms 294 ms

10 engr—gw.Colorado.EDU (128.138.1.3) 294 ms 288 ms 294 ms
11 bruno.cs.co1orado.edu (128.138.243.151) 293 ms 317 ms 294 ms
12 engr—gw—ot.cs.colorado.edu (128.138.204.1) 323 ms 317 ms 384 ms
13 cu—gw.Co1orado.EDU (128.138.1.1) 294 ms 318 ms 294 ms

14 enss.ucar.edu (192.43.244.10) 323 ms 318 ms 294 ms

15 t3—1.Denver—cnss97.t3.ans.net (140.222.97.2) 294 ms 288 ms 384 ms
16 t3—0.enss142.t3.ans.net (140.222.142.1) 293 ms 288 ms 294 ms

17 Gabby.Te1com.Arizona.EDU (192.80.43.1) 294 ms 288 ms 294 ms
18 Butch.Telcom.Arizona.EDU (128.196.128.88) 293 ms 317 ms 294 ms

19 gateway.tuc.noao.edu (140.Z52.104.1) 294 ms 289 ms 294 ms
20 netb.tuc.noao.edu (140.252.1.183) 324 ms 321 ms 294 ms
21 sun.tuc.noao.edu (140.252.13.33) 534 ms 529 ms 564 ms

Figure 8.11 traceroute example showing unsymmetrical routing path.

The outbound path (TTLS 1-11) differs from the return path (TTLs 11-21), a good illus-

tration that Internet routing need not be symmetrical.

This output also illustrates the point we discussed with Figure 8.8. Compare the

output for TTLs 2 and 19: both are for the router gateway.tuc.noao . edu, but the

two IP addresses are different. Since traceroute identifies the incoming interface,

and since we're passing through the router in two different directions, once on the out-

bound path (TTL 2) and then on the return path (TTL 19), we expect this. We see the

same effect comparing TTLs 3 and 18, and TTLS 4 and 17.

8.6 Summary

Traceroute is an indispensable tool when working with a TCP/IP network. Its opera-

tion is simple: send UDP datagrams starting with a TTL of 1, increasing the TTL by 1, to

locate each router in the path. An ICMP time exceeded is returned by each router when

it discards the UDP datagram, and an ICMP port unreachable is generated by the final
destination.

We ran examples of traceroute on both LANs and WANS, and used it to examine

IP source routing. We used loose source routing to see if the route to a destination is the
same as the return route from that destination.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

110
Traceroute Program Chapter 8

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

What can happen if an IP implementation decrements the incoming TTL and then tests for
equal to 0?

How does traceroute calculate the RTT? Compare this to the RTT calculation done by
ping.

(This exercise and the next one are based on actual problems determined when
traceroute was being developed, and are from comments in the traceroute source
code.) Assume there are three routers (R1, R2, and R3) between the source and destination

and that the middle router (R2) decrements the TTL but incorrectly forwards the II’ data-

gram when the incoming TTL was 1. Describe what happens. How can you see this occur
when running traceroute?

Again assume there are three routers between the source and destination. This time the

destination host has a bug whereby it always uses the incoming TTL as the outgoing TTL of
an ICMP message. Describe what happens and how you would see this.

We can run tcpdump on the SLIP link between sun and netb when running the example
from Figure 8.8. If we specify the —v option we can see the TTL Value of the returned ICMP
messages. Doing this shows the incoming TTL from netb to be 255, from butch it's 253,
from Gabby it's 252, and from enssl42 . UT .westnet.net it's 249. Does this give any

additional information about whether there really are some missing routers?

Both SunOS and SVR4 provide a Version of ping with a -1 option that provides a loose
source route. The manual pages state that it's intended to be used with the —R option

(which specifies the record route option). If you have access to either of these systems, try
these two options together. What's happening? If you can watch the datagrams with
tcpdump, describe what's going on.

Compare the ways ping and traceroute handle multiple instances of the client on the
same host.

Compare the ways ping and traceroute measure the round-trip time.

We said traceroute picks the starting UDP destination port number at 33435 and incre-

ments this by one for each packet sent. In Section 1.9 we said ephemeral port numbers are
normally between 1024 and 5000, making it unlikely that Traceroute’s destination port is in
use on the destination host. Is this still true under Solaris 2.2? (Hint: Read Section E.4.)

Read RFC 1393 [Malkin 1993b] for a proposed alternative way of determining the path to a
destination. What are its advantages and disadvantages?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

IP Routing

9.1 Introduction

Routing is one of the most important functions of IP. Figure 9.1 shows a simplified View

of the processing done at the IP layer. Datagrams to be routed can be generated either

on the local host or on some other host. In the latter case this host must be configured to

act as a router, or datagrams received through the network interfaces that are not ours

are dropped (i.e., silently discarded).

In Figure 9.1 we also show a routing daemon, which is normally a user process.

The most common daemons used on Unix systems are the programs routed and

gated. (The term daemon means the process is running ”in the background,” carrying

out operations on behalf of the whole system. Daemons are normally started when the

system is bootstrapped and run as long as the system is up.) The topics of which rout-

ing protocol to use on a given host, how to exchange routing information with adjacent

routers, and how the routing protocols work are complex and can fill an entire book of

their own. (Interested readers are referred to [Perlman 1992] for many of the details.)
We’ll look briefly at dynamic routing and the Routing Information Protocol (RIP) in

Chapter 10. Our main interest in the current chapter is how a single IP layer makes its

routing decisions.

The routing table that we show in Figure 9.1 is accessed frequently by IP (on a busy

host this could mean hundreds of times a second) but is updated much less frequently

by a routing daemon (possibly about once every 30 seconds). The routing table can also

be updated when ICMP ”redirect” messages are received, something we'll look at in

Section 9.5, and by the route command. This command is often executed when the

system is bootstrapped, to install some initial routes. We'll also use the net stat com-

mand in this chapter to display the routing table. ’

Talari Networks Inc. - Exhibit 1667

Talari Networks Inc. - Exhibit 1007

112 IP Routing Chapter 9

routing route netstat
daemon command command

\ I

routing table ‘\ I’ , fl
updates from\ I / /

adjacent routers \\ /’ / UDP TCP

yes

our packet (one of
ta (610 our IP addresses or

, X H, out ut_ EOYW Ydmg enab 9 broadcast addrs) ?
/‘Outing \ 1 1 t P fh C1‘ EON”
i\ table 2:» ca cu a e nex op 5
\ / router (if necessary) ‘Source Ioutin\ _ / g

process IP options

A

IP input queue

_IP layer

network interfaces

Figure 9.1 Processing done at the IP layer.

9.2 Routing Principles

The place to start our discussion of IP routing is to understand what is maintained by

the kernel in its routing table. The information contained in the routing table drives all

the routing decisions made by IP.

In Section 3.3 we listed the steps that IP performs when it searches its routing table.

Search for a matching host address.

Search for a matching network address.

Search for a default entry. (The default entry is normally specified in the routing

table as a network entry, with a network ID of 0.)

A matching host address is always used before a matching network address.

The routing done by IP, when it searches the routing table and decides which inter-

face to send a packet out, is a routing mechrmism. This differs from a routing policy, which

is a set of rules that decides which routes go into the routing table. IP performs the

routing mechanism while a routing daemon normally provides the routing policy.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.2 Routing Principles 113

Simple Routing Table

Let's start by looking at some typical host routing tables. On the host svr4 we execute

the net st at command with the —r option to list the routing table and the —n option,

which prints IP addresses in numeric format, rather than as names. (We do this because

some of the entries in the routing table are for networks, not hosts. Without the —n

option, the net stat command searches the file /etc/networks for the network

names. This confuses the discussion by adding another set of names—network names
in addition to hostnames.)o

svr4 3 netstat -rn

Routing tables
Destination Gateway ' Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 O emd0
127.0.0.1 127.0.0.1 UH 1 0 lo0
default 140.252.13.33 UG O O emdO
140.252.13.32 140.252.13.34 U 4 25043 emd0

The first line says for destination 140.252.13.65 (host slip) the gateway (router) to send

the packet to is 140.252.13.35 (bsdi). This is what we expect, since the host slip is con-
nected to bsdi with a SLIP link, and bsdi is on the same Ethernet as this host.

There are five different flags that can be printed for a given route.

U The route is up.

G The route is to a gateway (router). If this flag is not set, the destination is

directly connected.

H The route is to a host, that is, the destination is a complete host address. If this

flag is not set, the route is to a network, and the destination is a network
address: a net ID, or a combination of a net ID and a subnet ID.

D The route was created by a redirect (Section 9.5).

M The route was modified by a redirect (Section 9.5).)

The G flag is important because it differentiates between an indirect route and a direct

route. (The G flag is not set for a direct route.) The difference is that a packet going out a

direct route has both the IP address and the linl<—layer address specifying the destina-

tion (Figure 3.3, p. 40). When a packet is sent out an indirect route, the IP address speci-

fies the final destination but the link-layer address specifies the gateway (that is, the

next—hop router). We saw an example of this in Figure 3.4 (p. 41). In this routing table
example we have an indirect route (the G flag is set) so the IP address of a packet using

this route is the final destination (140.252.13.65), but the link-layer address must corre-

spond to the router 140.252.13.35.

It's important to understand the difference between the G and H flags. The G flag

differentiates between a direct and an indirect route, as described above. The H flag,

however, specifies that the destination address (the first column of net stat output) is

a complete host address. The absence of the H flag means the destination address is a

network address (the host ID portion will be 0). When the routing table is searched for

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

114 IP Routing Chapter 9

a route to a destination IP address, a host address entry must match the destination

address completely, while a network address only needs to match the network ID and

any subnet ID of the destination address. Also, some versions of the nets tat com-

mand print all the host entries first, followed by the network entries.

The reference count column gives the number of active uses for each route. A con-

nection—oriented protocol such as TCP holds on to a route while the connection is estab-
lished. If we established a Telnet connection between the two hosts svr4 and slip, we

would see the reference count go to 1. With another Telnet connection the reference

count would go to 2, and so on.

The next column (”use”) displays the number of packets sent through that route. If

weare the only users of the route and we run the ping program to send 5 packets, the

count goes up by 5. The final column, the interface, is the name of the local interface.

The second line of output is for the loopbacl< interface (Section 2.7), always named

100. The G flag is not set, since the route is not to a gateway. The H flag indicates that
the destination address (127.0.0.1) is a host address, and not a network address. When

the G field is not set, indicating a direct route, the gateway column gives the IP address

of the outgoing interface.

The third line of output is for the default route. Every host can have one or more

default routes. This entry says to send packets to the router 140.252.13.33 (sun) if a

more specific route can't be found. This means the current host (svr4) can access other

systems across the Internet through the router sun (and its SLIP link), using this single

routing table entry. Being able to establish a default route is a powerful concept. The

flags for this route (UG) indicate that it’s a route to a gateway, as we expect.

Here we purposely call sun a router and not a host because when it's used as a default router,
its IP forwarding function is being used, not its host functionality.

The Host Requirements RFC specifically states that the IP layer must support multiple default
routes. Many implementations, however, don’t support this. When multiple default routes
exist, a common technique is to round robin among them. This is what Solaris 2.2 does, for
example.

The final line of output is for the attached Ethernet. The H flag is not set, indicating

that the destination address (140.252.13.32) is a network address with the host portion

set to 0. Indeed, the low—order 5 bits are 0 (Figure 3.11, p. 47). Since this is a direct route

(the G flag is not set) the gateway column specifies the IP address of the outgoing
interface.

Implied in this final entry, but not shown by the netstat output, is the mask asso-

ciated with this destination address (140.252.l3.32). If this destination is being com-

pared against the IP address 140.252.13.33, the address is first logically ANDed with the
mask associated with the destination (the subnet mask of the interface, Oxffffffe 0,

from Section 3.7) before the comparison. For a network route to a directly connected

network, the routing table mask defaults to the subnet mask of the interface. But in

general the routing table mask can assume any 32-bit value. A value other than the

default can be specified as an option to the route command.

The complexity of a host's routing table depends on the topology of the networks to
which the host has access.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.2 ' Routing Principles 115

1. The simplest (but least interesting) case is a host that is not connected to any

networks at all. The TCP/IP protocols can still be used on the host, but only to

communicate with itself! The routing table in this case consists of a single entry

for the loopback interface.

2. Next is a host connected to a single LAN, only able to access hosts on that LAN.

The routing table consists of two entries: one for the loopback interface and one
for the LAN (such as an Ethernet).

3. The next step occurs when other networks (such as the Internet) are reachable

through a single router. This is normally handled with a default entry pointing
to that router.

4. The final step is when other host—specific or network~specific routes are added.

In our example the route to the host slip, through the router bsdi, is an exam-

ple of this.

Let's follow through the steps IP performs when using this routing table to route

some example packets on the host sVr4.

1. Assume the destination address is the host sun, 140.252.13.33. A search is first

made for a matching host entry. The two host entries in the table (slip and

localhost) don’t match, so a search is made through the routing table again

for a matching network address. A match is found with the entry 140.252.13.32
(the network IDs and subnet IDS match), so the emdo interface is used. This is a

direct route, so the link—layer address will be the destination address.

2. Assume the destination address is the host slip, 140.252.13.65. The first search

through the table, for a matching host address, finds a match. This is an indirect

route so the destination IP address remains 140.252.13.65, but the link—layer

address must be the link-layer address of the gateway 140.252.13.35, and the
interface is emdo.

3. This time we're sending a datagram across the Internet to the host aw.com

(192.207.117.2). The first search of the routing table for a matching host address

fails, as does the second search for a matching network address. The final step

is a search for a default entry, and this succeeds. The route is an indirect route

through the gateway 140.252.13.33 using the interface emdO.

4. In our final example we send a datagram to our own host. Therehare four ways
to do this, using either the hostname, the host IP address, the loopback name, or

the loopback IP address:

ftp sVr4
ftp 140.252.13.34

ftp localhost
ftp l27.0.0.1

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

116 IP Routing Chapter 9

In the first two cases, the second search of the routing table yields a network

match with 140.252.13.32, and the packet is sent down to the Ethernet driver. As

we showed in Figure 2.4 (p. 28) it will be seen that this packet is destined for the

host's own IP address, and the packet is sent to the loopback driver, which

sends it to the IP input queue.

In the latter two cases, specifying the name of the loopback interface or its IP

address, the first search of the routing table finds the matching host address

entry, and the packet is sent to the loopback driver, which sends it to the IP

input queue.

In all four cases the packet is sent to the loopback driver, but two different rout-

ing decisions are made. '

Initializing a Routing Table

We never said how these routing table entries are created. Whenever an interface is ini-

tialized (normally when the interface’s address is set by the ifconfig command) a

direct route is automatically created for that interface. For point—to—point links and the

loopback interface, the route is to a host (i.e., the H flag is set). For broadcast interfaces
such as an Ethernet, the route is to that network.

Routes to hosts or networks that are not directly connected must be entered into the

routing table somehow. One common way is to execute the route command explicitly

from the initialization files when the system is bootstrapped. On the host svr4 the fol-

lowing two commands were executed to add the entries that we showed earlier:
route add default sun 1

route add slip bsdi 1

The third arguments (default and slip) are the destinations, the fourth argument is

the gateway (router), and the final argument is a routing metric. All that the route

command does with this metric is install the route with the G flag set if the metric is

greater than 0, or without the G flag if the metric is 0.

Unfortunately, few systems agree on which start—up file contains the route commands.
Under 4.4BSD and BSD/386 it is /etc/netstart, under SVR4 it is /etc/inet/rc. inet,
under Solaris 2.x it is /etc/rc2 . d/S69inet, SunOS 4.1.x uses /etc/rc . local, and AIX
3.2.2 uses /etc/rc . net.

Some systems allow a default router to be specified in ‘a file such as
/ etc/de faultrouter, and this default is added to the routing table on every reboot.

Other ways to initialize a routing table are to run a routing daemon (Chapter 10) or

to use the newer router discovery protocol (Section 9.6).

A More Complex Routing Table

The host sun is the default router for all the hosts on our subnet, since it has the dialup

SLIP link that connects to the Internet (see the figure on the inside front cover).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.3 ICMP Host and Network Unreachable Errors 117

0
sun 6 netstat —rn

Routing tables
Destination Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 171 leO
127.0.0.l l27.0.0.1 UH 1 766 lo0
140.252.1.183 140.252.l.29 UH O 0 s10
default 140.252.1.183 UG 1 2955 s10
140.252.13.32 140.252.13.33 U 8 99551 leO

The first two entries are identical to the first two for the host svr4: a host—specific route

to slip through the router bsdi, and the loopback route.

The third line is new. It is a direct route (the G flag is not set) to a host (the H flag is

set) and corresponds to our point—t0-point link, the SLIP interface. If we compare it to

the output from the i fcon fig command,

sun % ifconfig s10
s10: flags=lO51<UP,POINTOPOINT,RUNNING>

inet 140.252.1.29 ——> 140.252.1.183 netmask ffffff00

we see that the destination address in the routing table is the other end of the point-to-

point link (the router netb) and the gateway address is really the local IP address of the

outgoing interface (140.252.1.29). (We said earlier that the gateway address printed by
netstat for a direct route is the local IP address of the interface to use.)

The default entry is an indirect route (G flag) to a network (no H flag), as we expect.

The gateway address is the address of the router (140.252.1.183, the other end of the

SLIP link) and not the local IP address of the SLIP link (140.252.1.29). Again, this is
because it is an indirect route, not a direct route.

We should also note that the third and fourth lines output by net stat (the ones

with an interface of s10) are created by the SLIP software being used when the SLIP

line is brought up, and deleted when the SLIP link is brought down.

No Route to Destination

9.3

All our examples so far have assumed that the search of the routing table finds a match,
even if the match is the default route. What if there is no default route, and a match

isn't found for a given destination?

The answer depends on whether the IP datagram being routed was generated on

the host or is being forwarded (e.g., were acting as a router). If the datagram was gen-

erated on this host, an error is returned to the application that sent the datagram, either

”host unreachable” or ’’network unreachable.” If the datagram was being forwarded,

an ICMP host unreachable error is sent back to original sender. We examine this error in

the following section.

ICNIP Host and Network Unreachable Errors

The ICMP ”host unreachable” error message is sent by a router when it receives an IP

datagram that it cannot deliver or forward. (Figure 6.10 shows the format of the ICMP

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

118 IP Routing Chapter 9

unreachable messages.) We can see this easily on our network by taking down the

dialup SLIP link on the router sun, and trying to send a packet through the SLIP link

from any of the other hosts that specify sun as the default router.

Older implementations of the BSD TCP/IP software generated either a host unreachable, or a
network unreachable, depending on whether the destination was on a local subnet or not.
4.4BSD generates only the host unreachable.

Recall from the net stat output for the router sun shown in the previous section

that the routing table entries that use the SLIP link are added when the SLIP link is

brought up, and deleted when the SLIP link is brought down. This means that when

the SLIP link is down, there is no default route on sun. But we don't try to change all

the other host's routing tables on our small network, having them also remove their

default route. Instead we count on the ICMP host unreachable generated by sun for

any packets that it gets that it cannot forward.

We can see this by running ping on svr4, for a host on the other side of the dialup
SLIP link (which is down):

svr4 % ping gemini
ICMP Host Unreachable from gateway sun (140.252.13.33)
ICMP Host Unreachable from gateway sun (l40.252.l3.33)

“ ? type interrupt key to stop

Figure 9.2 shows the tcpdump output for this example, run on the host bsdi.

1 0.0 svr4 > gemini: icmp: echo request
2 0.00 (0.00) sun > svr4: icmp: host gemini unreachable

3 0.99 (0.99) svr4 > gemini: icmp: echo request
4 0.99 (0.00) sun > svr4: icmp: host gemini unreachable

Figure 9.2 ICMP host unreachable in response to ping.

When the router sun finds no route to the host gemini, it responds to the echo request
with a host unreachable.

If we bring the SLIP link to the Internet up, and try to ping an IP address that is not

connected to the Internet, we expect an error. What is interesting is to see how far the

packet gets into the Internet, before the error is returned:

sun % ping 192.82.148.1 this IP address is not connected to the Internet
PING 192.82.148.12 56 data bytes
ICMP Host Unreachable from gateway enssl42.UT.westnet.net (192.3l.39.21)
for icmp from sun (140.252.1.29) to l92.82.148.1 ‘

Looking at Figure 8.5 (p. 103) we see that the packet made it through six routers before

detecting that the IP address was invalid. Only when it got to the border of the

NSFNET backbone was the error detected. This implies that the six routers that for-

warded the packet were doing so because of default entries, and only when it reached

the NSFNET backbone did a router have complete knowledge of every network con-

nected to the Internet. This illustrates that many routers can operate with just partial

knowledge of the big picture.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.5 ICMP Redirect Errors 119

9.4

9.5

[Ford, Rekhter, and Braun 1993] define a top—level routing domain as one that main-

tains routing information to most Internet sites and does not use default routes. They

note that five of these top—leVel routing domains exist on the Internet: the NSFNET

backbone, the Commercial Internet Exchange (CIX), the NASA Science Internet (NSI),

SprintLink, and the European IP Backbone (EBONE).

To Forward or Not to Forward

We've mentioned a few times that hosts are not supposed to forward IP datagrams

unless they have been specifically configured as a router. How is this configuration
done?

Most Berkeley-derived implementations have a kernel variable named

ipforwarding, or some similar name. (See Appendix E.) Some systems (BSD/386

and SVR4, for example) only forward datagrams if this Variable is nonzero. SunOS 4.1.x

allows three values for the variable: —1 means never forward and never change the

value of the variable, 0 means don't forward by default but set this Variable to 1 when

two or more interfaces are up, and 1 means always forward. Solaris 2.x changes the

three values to be 0 (never forward), 1 (always forward), and 2 (only forward when two

or more interfaces are up).

Older 4.2BSD hosts forwarded datagrams by default, which caused lots of problems

for systems configured improperly. That’s why this kernel option must always default

to ”never forward” unless the system administrator specifically enables forwarding.

ICMP Redirect Errors

The ICMP redirect error is sent by a router to the sender of an IP datagram when the

datagram should have been sent to a different router. The concept is simple, as we

show in the three steps in Figure 9.3. The only time we'll see an ICMP redirect is when

the host has a choice of routers to send the packet to. (Recall the earlier example of this

we saw in Figure 7.6, p. 94.)

1. We assume that the host sends an IP datagram to R1. This routing decision is
often made because R1 is the default router for the host.

2. R1 receives the datagram and performs a lookup in its routing table and deter-

mines that R2 is the correct next—hop router to send the datagram to. When it

sends the datagram to R2, R1 detects that it is sending it out the same interface

on which the datagram arrived (the LAN to which the host and the two routers

are attached). This is the clue to a router that a redirect can be sent to the origi—
nal sender.

3. R1 sends an ICMP redirect to the host, telling it to send future datagrams to that
destination to R2, instead of R1.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

120 IP Routing Chapter 9

host

,+ _ _<1>£P_d3fag:a:n_ _ _ 1 f

(2) IP datagram ” _ _>:r

R1 l R2I

V i lI

final destination

Figure 9.3 Example of an ICMP redirect.

A common use for redirects is to let a host with minimal routing knowledge build up a

better routing table over time. The host can start with only a default route (either R1 or

R2 from our example in Figure 9.3) and anytime this default turns out to be wrong, it’ll

be informed by that default router with a redirect, allowing the host to update its rout-

ing table accordingly. ICMP redirects allow TCP/IP hosts to be dumb when it comes to

routing, with all the intelligence in the routers. Obviously R1 and R2 in our example

have to know more about the topology of the attached networks, but all the hosts

attached to the LAN can start with a default route and learn more as they receive
redirects.

An Example

We can see ICMP redirects in action on our network (inside front cover). Although we

show only three hosts (aix, solaris, and gemini) and two routers (gateway and

netb) on the top network, there are more than 150 hosts and 10 other routers on this

network. Most of the hosts specify gateway as the default router, since it provides
access to the Internet.

How is the author's subnet (the bottom four hosts in the figure) accessed from the

hosts on the 140.2521 subnet? First recall that if only a single host is at the end of the

SLIP link, proxy ARP is used (Section 4.6). This means nothing special is required for

hosts on the top network (140.2521) to access the host sun (14D.252.1.29). The proxy
ARP software in netb handles this. 1

When a network is at the other end of the SLIP link, however, routing becomes

involved. One solution is for every host and router to know that the router netb is the

gateway for the network 140252.13. This could be done by either a static route in each

host’s routing table, or by running a routing daemon in each host. A simpler way (and

the method actually used) is to utilize ICMP redirects.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.5 ICMP Redirect Errors 121

Let’s run the ping program from the host solaris on the top network to the host

bsdi (140.252.13.35) on the bottom network. Since the subnet IDs are different, proxy

ARP can't be used. Assuming a static route has not been installed, the first packet sent

will use the default route to the router gateway. Here is the routing table before we
run ping:

o
solaris 6 netstat —rn

Routing Table:
Destination Gateway Flags Ref Use Interface

127.0.0.l 127.0.0.l UH 0 848 lo0
140.252.l.0 l40.252.l.32 U 3 15042 le0

224.0.0.0 l40.252.l.32 _ U 3 0 le0
default 140.252.1.4 UG O 5747

(The entry for 224.0.0.0 is for IP multicasting. We describe it in Chapter 12.) If we spec-

ify the —v option to ping, We’ll see any ICMP messages received by the host. We need

to specify this to see the redirect message that's sent.0
solaris 6 ping —sv bsdi
PING bsdi: 56 data bytes
ICMP Host redirect from gateway gateway (140.252.1.4)
to netb (l40.252.l.183) for bsdi (140.252.13.35)

64 bytes from bsdi (140.252.l3.35): icmp_seq=0. time=383. ms
64 bytes from bsdi (140.252.13.35): icmp_seq=l. time=364. ms
64 bytes from bsdi (l40.252.l3.35): icmp_seq=2. time=353. ms
“ ? type interrupt key to stop
———-bsdi PING Statistics——--

4 packets transmitted, 3 packets received, 25% packet loss
round—trip (ms) min/avg/max = 353/366/383

Before we receive the first ping response, the host receives an ICMP redirect from the

default router gateway. If we then look at the routing table, We'll see that the new

route to the host bsdi has been inserted. (This new entry is shown in a bolder font.)a
solaris 6 netstat —rn

Routing Table:
Destination Gateway Flags Ref Use Interface

l27.0.0.1 127.0.0.l UH O 848 100
140.252.13.35 140.252.1.1B3 UGHD 0 2
140.252.l.0 l40.252.l.32 U 3 15045 le0
224.0.0.0 l40.252.l.32 U 3 0 le0
default l40.252.l.4 UG 0 5749

This is the first time we've seen the D flag, which means the route was installed by an

ICMP redirect. The G flag means it’s an indirect route to a gateway (netb), and the H

flag means it's a host route (as we expect), not a network route.

Since this is a host route, added by a host redirect, it handles only the host bsdi. If

we then access the host svr4, another redirect is generated, creating another host route.

Similarly, accessing the host slip creates another host route. The point here is that

each redirect is for a single host, causing a host route to be added. All three hosts on the

author’s subnet (bsdi, svr4, and slip) could also be handled by a single network

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

122 IP Routing Chapter 9

route pointing to the router sun. But ICMP redirects create host routes, not network

routes, because the router generating the redirect in this example (gateway) has no

knowledge of the subnet structure on the 140252.13 network.

More Details

Figure 9.4 shows the format of the ICMP redirect message.

0 7 8 15 16 31

type (5) code (0-3) checksum T
8 bytes

router IP address that should be used ¢

Z IP header (including options) + first 8 bytes of original IP datagram data

Figure 9.4 ICMP redirect message.

There are four different redirect messages, with different code Values, as shown in Fig-
ure 9.5.

code Description
0 redirect for network
1 redirect for host

2 redirect for type-of-service and network
3 redirect for type-of-service and host

Figure 9.5 Different code values for ICMP redirect.

There are three IP addresses that the receiver of an ICMP redirect must look at: (1)

the IP address that caused the redirect (which is in the IP header returned as the data

portion of the ICMP redirect), (2) the IP address of the router that sent the redirect

(which is the source IP address of the IP datagram containing the redirect), and (3) the

IP address of the router that should be used (which is in bytes 4-7 of the ICMP

message).

There are numerous rules about ICMP redirects. First, redirects are generated only

by routers, not by hosts. Also, redirects are intended to be used by hosts, not routers. It

is assumed that routers participate in a routing protocol with other routers, and the

routing protocol should obviate the need for redirects. (This means that in Figure 9.1

the routing table should be updated by either a routing daemon or redirects, but not by
both.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.6 ICMP Router Discovery Messages 123

9.6

4.4BSD, when acting as a router, performs the following checks, all of which must

be true before an ICMP redirect is generated.

The outgoing interface must equal the incoming interface.

2. The route being used for the outgoing datagram must not have been created or

modified by an ICMP redirect, and must not be the router's default route.

3. The datagram must not be source routed.

4. The kernel must be configured to send redirects.

The kernel variable is named ip_sendredirects, or something similar. (See Appen-

dix E.) Most current systems (4.4BSD, SunOS 4.1.x, Solaris 2.x, and AIX 3.2.2, for exam-
ple) enable this variable by default. Other systems such as SVR4 disable it by default.

Additionally, a 4.4BSD host that receives an ICMP redirect performs some checks before

modifying its routing table. These are to prevent a misbehaving router or host, or a

malicious user, from incorrectly modifying a system’s routing table.

The new router must be on a directly connected network.

The redirect must be from the current router for that destination.

The redirect cannot tell the host to use itself as the router.r'>.°°!‘-’t"
The route that's being modified must be an indirect route.

Our final point about redirects is that routers should send only host redirects (codes

1 or 3 from Figure 9.5) and not network redirects. Subnetting makes it hard to specify

exactly when a network redirect can be sent instead of a host redirect. Some hosts treat

a received network redirect as a host redirect, in case a router sends the wrong type.

ICMP Router Discovery Messages

We mentioned earlier in this chapter that one way to initialize a routing table is with

static routes specified in configuration files. This is often used to set a default entry. A

newer way is to use the ICMP router advertisement and solicitation messages.

The general concept is that after bootstrapping, a host broadcasts or multicasts a

router solicitation message. One or more routers respond with a router advertisement

message. Additionally, the routers periodically broadcast or multicast their router

advertisements, allowing any hosts that are listening to update their routing table

accordingly.

RFC 1256 [Deering 1991] specifies the format of these two ICMP messages. Fig-

ure 9.6 shows the format of the ICMP router solicitation message. Figure 9.7 shows the

format of the ICMP router advertisement message sent by routers.

Multiple addresses can be advertised by a router in a single message. Number of

addresses is the number. Address entry size is the number of 32-bit words for each router

address, and is always 2. Lifetime is the number of seconds that the advertised
addresses can be considered Valid.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

124 IP Routing Chapter 9

0 7 8 15 l6 31

type (10) code (0) checksum T
8 bytes

Unused (sent as 0) l

Figure 9.6 Format of ICMP router solicitation message.

0 7 8 15 16 31

type (9) code(0) . checksum T
8 bytes

number of address hf til
addresses entry size (2) e ne l

router address [1]

preference level [1]

router address [2] ‘

preference level [2]

Figure 9.7 Format of ICMP router advertisement message.

One or more pairs of an IP address and a preference then follow. The IP address

must be one of the sending router's IP addresses. The preference level is a signed 32-bit

integer indicating the preference of this address as a default router address, relative to

other router addresses on the same subnet. Larger values imply ‘more preferable

addresses. The preference level 0x80000000 means the corresponding address,

although advertised, is not to be used by the receiver as a default router address. The

default Value of the preference is normally 0.

Router Operation

When a router starts up it transmits periodic advertisements on all interfaces capable of

broadcasting or rnulticasting. These advertisements are not exactly periodic, but are

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 9.7
Summary 125

randomized, to reduce the probability of synchronization with other routers on the
same subnet. The normal time interval between advertisements is between 450 and 600

seconds. The default lifetime for a given advertisement is 30 minutes.
Another use of the lifetime field occurs when an interface on a router is disabled. In

that case the router can transmit a final advertisement on the interface with the lifetime

set to 0.

In addition to the periodic, unsolicited advertisements, a router also listens for solic-

itations from hosts. It responds to these solicitations with a router advertisement.

If there are multiple routers on a given subnet, it is up to the system administrator

to configure the preference level for each router as appropriate. For example, the pri-

mary default router would have a higher preference than a backup.

Host Operation

Upon bootstrap a host normally transmits three router solicitations, 3 seconds apart. As

soon as a valid advertisement is received, the solicitations stop.

A host also listens for advertisements from adjacent routers. These advertisements

can cause the host's default router to change. Also, if an advertisement is not received
for the current default, that default can time out.

As long as the normal default router stays up, that router will send advertisements

every 10 minutes, with a lifetime of 30 minutes. This means the host's default entry
won't time out, even if one or two advertisements are lost. A

Implementation

9.7

The router discovery messages are normally generated by and processed by a user pro-

cess (a daemon). This adds yet another program updating the routing table in Fig-

ure 9.1, although it would only add or delete a default entry. The daemon would have

to be configured to act as a router or a host.

These two ICMP messages are new and not supported by all systems. Solaris 2.x is the only
system in our network that supports these messages (the in. rdisc daemon). Although the
RFC recommends using IP multicasting whenever possible, router discovery can work using
broadcast messages also.

Summary

The operation of IP routing is fundamental to a system running TCP/IP, be it a host or

router. The routing table entries are simple: up to 5 flag bits, a destination IP address

(host, network, or default), a next—hop router IP address (for an indirect route) or a local

interface IP address (for a direct route), and a pointer to a local interface to use. Host

entries have priority over network entries, which have priority over default entries.

A search of this routing table is made for every IP datagram that the system gener-

ates or forwards, and can be updated by either a routing daemon or ICMP redirects. By

default a system should never forward a datagram unless it has specifically been

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

126
IP Routing Chapter 9

configured to do so. Static routes can be entered using the route command, and the

newer ICMP router discovery messages can be used to initialize and dynamically

update default entries. Hosts can start with a simple routing table that is updated

dynamically by ICMP redirects from its default router.

Our discussion in this chapter has focused on how a single system uses its routing

table. In the next chapter We examine how routers exchange routing information with
each other.

Exercises

9.1

9.2

9.3

9.4

9.5

Why do you think both types of ICMP redirects—network and host——exist?

In the routing table for svr4 shown at the beginning of Section 9.2, is a specific route to the

host slip (140.252.13.65) necessary? What would change if this entry were removed from
the routing table?
Consider a cable with both 4.2BSD hosts and 4.3BSD hosts. Assume the network ID is

140.1. The 4.2BSD hosts only recognize a host ID of all zero bits as the broadcast address

(140.1.0.0), while the 4.3BSD hosts normally send a broadcast using a host ID of all one bits

(140.1.255.255). Also, the 4.2BSD‘ hosts by default will try to forward incoming datagrams,
even if they have only a single interface.

Describe the events that happen when the 4.2BSD hosts receive an IP datagram with the
destination address of 140.1.255.255.

Continue the previous exercise, assuming someone corrects this problem by adding an
entry to the ARP cache on one system on the 140.1 subnet (using the arp command) saying
that the IP address 140.1.255.255 has a corresponding Ethernet address of all one bits (the
Ethernet broadcast). Describe What happens now.

Examine your system's routing table and describe each entry.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

10.1

10.2

70

Dynamic Routing Protocols

Introduction

Our discussion in the previous chapter dealt with static routing. The routing table

entries were created by default when an interface was configured (for directly con-

nected interfaces), added by the route command (normally from a system bootstrap

file), or created by an ICMP redirect (usually when the wrong default was used).

This is fine if the network is small, there is a single connection point to other net-

works, and there are no redundant routes (where a backup route can be used if a pri-

mary route fails). If any of these three conditions is false, dynamic routing is normally
used.

This chapter looks at the dynamic routing protocols used by routers to communi-

cate with each other. We concentrate on RIP, the Routing Information Protocol, a widely

used protocol that is provided with almost every TCP/IP implementation. We then

look at two newer routing protocols, OSPF and BGP. The chapter finishes with an

examination of a new routing technique, called classless interdomain routing, that is

starting to be implemented across the Internet to conserve class B network numbers.

Dynamic Routing

Dynamic routing occurs when routers talk to adjacent routers, informing each other of

what networks each router is currently connected to. The routers must communicate

using a routing protocol, of which there are many to choose from. The process on the

router that is running the routing protocol, communicating with its neighbor routers, is

usually called a routing daemon. As shown in Figure 9.1, the routing daemon updates

the l<ernel’s routing table with information it receives from neighbor routers.

Talari Networks Inc. - Exhibit 101617

Talari Networks Inc. - Exhibit 1007

128
Dynamic Routing Protocols Chapter 10

10.3

The use of dynamic routing does not change the way the kernel performs routing at

the IP layer, as we described in Section 9.2. We called this the routing meclianism. The

kernel still searches its routing table in the same way, looking for host routes, network

routes, and default routes. What changes is the information placed into the routing

table—instead of coming from route commands in bootstrap files, the routes are

added and deleted dynamically by a routing daemon, as routes change over time.

As we mentioned earlier, the routing daemon adds a routing policy to the system,

choosing which routes to place into the l<ernel’s routing table. If the daemon finds mul-

tiple routes to a destination, the daemon chooses (somehow) which route is best, and

which one to insert into the kernel’s table. If the daemon finds that a link has gone

down (perhaps a router crashed or a phone line is out of order), it can delete the affected

routes or add alternate routes that bypass the problem.

In a system such as the Internet, many different routing protocols are currently

used. The Internet is organized into a collection of autonomous systems (ASS), each of

which is normally administered by a single entity. A corporation or university campus

often defines an autonomous system. The NSFNET backbone of the Internet forms an

autonomous system, because all the routers in the backbone are under a single adminis-
trative control.

Each autonomous system can select its own routing protocol to communicate

between the routers in that autonomous system. This is called an interior gateway proto-

col (IGP) or intradomain routing protocol. The most popular IGP has been the Routing

Information Protocol (RIP). A newer IGP is the Open Shortest Path First protocol (OSPF).

It is intended as a replacement for RIP. An older IGP that has fallen out of use is

HELLO—the IGP used on the original NSFNET backbone in 1986.

The new Router Requirements RFC [Almquist 1993] states that a router that implements any
dynamic routing protocol must support both OSPF and RIP, and may support other IGPs.

Separate routing protocols called exterior gateway protocols (EGPs) or interdomain

routing protocols are used between the routers in different autonomous systems. Histori-

cally (and confusingly) the predominant EGP has been a protocol of the same name:

EGP. A newer EGP is the Border Gateway Protocol (BGP) that is currently used

between the NSFNET backbone and some of the regional networks that attach to the

backbone. BGP is intended to replace EGP.

Unix Routing Daemons

Unix systems often run the routing daemon named routed. It is provided with almost

every implementation of TCP/IP. This program communicates using only RIP, which
we describe in the next section. It is intended for small to medium—size networks.

An alternative program is gated. It supports both IGPs and EGPS. [Fedor 1988]

describes the early development of gated. Figure 10.1 compares the Various routing

protocols supported by routed and two different versions of gated. Most systems

that run a routing daemon run routed, unless they need support for the other proto-

cols supported by gated. ‘

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.4 MP: Routing Information Protocol 129

10.4

Daemon Interior Gateway Protocol Exterior Gateway ProtocolHELLO RIP OSPF EGP BGP

routed V1

gated, Version 2 0 V1 0 V1
gated, Version 3 0 V1, V2 V2 0 V2, V3

Figure 10.1 Routing protocols supported by routed and gated.

We describe RIP Version 1 in the next section, the differences with RIP Version 2 in

Section 10.5, OSPF in Section 10.6, and BGP in Section 10.7.

RIP: Routing Information Protocol

This section provides an overview of RIP, because it is the most widely used (and most

often maligned) routing protocol. The official specification for RIP is RFC 1058 [Hedrick

1988a], but this RFC was written years after the protocol was widely implemented.

Message Format

RIP messages are carried in UDP datagrams, as shown in Figure 10.2. (We talk more

about UDP in Chapter 11.)

qej IP datagram
ea

-4-—-— UDP datagram eb

IP UDP

header header RIP message

20 bytes 8 bytes

Figure 10.2 RIP message encapsulated within a UDP datagram.

Figure 10.3 shows the format of the RIP message, when used with IP addresses.

A command of 1 is a request, and 2 is a reply. There are two other obsolete com-

mands (3 and 4), and two undocumented ones: poll (5) and poll~entry (6). A request

asks the other system to send all or part of its routing table. A reply contains all or part

of the sender's routing table.

The version is normally 1, although RIP Version 2 (Section 10.5) sets this to 2.

The next 20 bytes specify the address family (which is always 2 for IP addresses), an
IP address, and an associated metric. We’ll see later in this section that RIP metrics are

hop counts.

Up to 25 routes can be advertised in a RIP message using this 20-byte format. The

limit of 25 is to keep the total size of the RIP message, 20 X 25 +4 = 504, less than 512

bytes. With this limit of 25 routes per message, multiple messages are often required to

send an entire routing table.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

130 Dynamic Routing Protocols Chapter 10

0 7 8 15 16 31

command (1-6) Version (1) (must be zero)

address family (2) (must be zero)

32-bit IP address

(must be zero) 20 bytes

' (must be zero)

metric (1-16)

Z (up to 24 more routes, with same format as previous 20 bytes) /

Figure 10.3 Format of a RIP message.

Normal Operation

Let's look at the normal operation of routed, using RIP. The well-known port number

for RIP is UDP port 520.

Initialization. When the daemon starts it determines all the interfaces that are

up and sends a request packet out each interface, asking for the other router’s

complete routing table. On a point-to—point link this request is sent to the other

end. The request is broadcast if the network supports it. The destination UDP

port is 520 (the routing daemon on the other router).

This request packet has a command of 1 but the address family is set to 0 and the

metric is set to 16. This is a special request that asks for a complete routing table
from the other end. ‘

Request received. If the request is the special case we just mentioned, then the

entire routing table is sent to the requestor. Otherwise each entry in the request

is processed: if we have a route to the specified address, set the metric to our

Value, else set the metric to 16. (A metric of 16 is a special value called ”infinity”

and means we don't have a route to that destination.) The response is returned.

Response received. The response is validated and may update the routing table.

New entries can be added, existing entries can be modified, or existing entries
can be deleted.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.4 RIP: Routing Information Protocol 131

0 Regular routing updates. Every 30 seconds, all or part of the router's entire

routing table is sent to every neighbor router. The routing table is either broad-

cast (e.g., on an Ethernet) or sent to the other end of a point—to—point link.

0 Triggered updates. These occur whenever the metric for a route changes. The

entire routing table need not be sent—only those entries that have changed
must be transmitted.

Each route has a timeout associated with it. If a system running RIP finds a route that

has not been updated for 3 minutes, that route’s metric is set to infinity (16) and marked

for deletion. This means we have missed six of the 30-second updates from the router

that advertised that route. The deletion of the route from the local routing table is

delayed for another 60 seconds to ensure the invalidation is propagated.

Metrics

The metrics used by RIP are hop counts. The hop count for all directly connected inter-

faces is 1. Consider the routers and networks shown in Figure 10.4. The four dashed

lines we show are broadcast RIP messages.

N2 = 1 hop<— — — —- — — —>
. N1

ends up with a route to N3 R1
through R2 with hop count of 2

N3 = 1 hop<—- — — — — —>
mI— N2

NT='1i15p’
R2 ends up with a route to N1

through R1 with hop count of 2

TATN3

“xii ; 1_hT)p—>

Figure 10.4 Example routers and networks.

Router R1 advertises a route to N2 with a hop count of 1 by sending a broadcast on N1.
(It makes no sense to advertise a route to N1 in the broadcast sent on N1.) It also adver-

tises a route to N1 with a hop count of 1 by sending a broadcast on N2. Similarly, R2
advertises a route to N2 with a metric of 1, and a route to N3 with a metric of 1.

If an adjacent router advertises a route to another network with a hop count of 1,

then our metric for that network is 2, since we have to send a packet to that router to get

to the network. In our example, the metric to N1 for R2 is 2, as is the metric to NS for
R1.

As each router sends its routing tables to its neighbors, a route can be determined to

each network within the AS. If there are multiple paths within the AS from a router to a

network, the router selects the path with the smallest hop count and ignores the other

paths.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

132 Dynamic Routing Protocols Chapter 10

The hop count is limited to 15, meaning RIP can be used only within an AS where

the maximum number of hops between hosts is 15. The special metric of 16 indicates
that no route exists to the IP address.

Problems

As simple as this sounds, there are pitfalls. First, RIP has no knowledge of subnet

addressing. If the normal 16-bit host ID of a class B address is nonzero, for example,

RIP can’t tell if the nonzero portion is a subnet ID or if the IP address is a complete host

address. Some implementations use the subnet mask of the interface through which the

RIP information arrived, which isn't always correct.

Next, RIP takes a long time tostabilize after the failure of a router or a link. The

time is usually measured in minutes. During this settling time routing loops can occur.

There are many subtle details in the implementation of RIP that must be followed to

help prevent routing loops and to speed convergence. RFC 1058 [Hedrick 1988a] con-

tains many details on how RIP should be implemented.

The use of the hop count as the routing metric omits other Variables that should be
taken into consideration. Also, a maximum of 15 for the metric limits the sizes of net-
works on which RIP can be used.

Example

We'll use the program ripquery, which is available from the gated distribution, to

query some routers for their routing table. ripquery tries to send one of the undocu-

mented requests (named ”poll,” a command of 5 from Figure 10.3) to the router, asking

for its entire routing table. If no response is received in 5 seconds, the standard RIP

request is issued (command of 1). (Earlier we said a request with the family set to 0 and

the metric set to 16 asks the other router for its entire routing table.)

Figure 10.5 shows the two routers that we'll query for their routing table from the

host sun. If we execute ripquery from sun, fetching the routing information from its

next—hop router, netb, we get the following:0
sun 6 ripquery —n netb

504 bytes from netb (14 0.2 52.1.1 83) : first message contains 504 bytes
lots ofother lines deleted

1 4 0.2 52.1.0 , metric 1 the top Ethernet in Figure 10.5
1 4 0.2 52 . 13 .0 , metric 1 the bottom Ethernet in Figure 10.5

24 4 bytes from netb (14 0.252 . 1 . 183) : second message with renmining 244 bytes
lots ofother lines deleted

As we expect, the metric for our subnet that is announced by netb is 1. Additionally,

the top Ethernet that netb is also attached to (140.252.1.0) has a metric of 1. (The —n

flag says to print the IP addresses numerically instead of trying to look up the names.)

In this example netb has been configured to consider all the hosts on the subnet

140,252.13 as directly connected to it—that is, netb knows nothing about which hosts

are actually on the 140252.13 subnet. Since there is only one connection point to the

140252.13 subnet, advertising different metrics for each host makes little practical sense.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.4 RIP: Routing Information Protocol 133

gateway

140.252.1

netb

sun

140252.13

Figure 10.5 Two routers netb and gateway that we’ll query for their routing tables.

Figure 10.6 shows the packet exchange using tcpdump. We specify the SLIP inter-

face with the —i slO option.a
sun 6 tcpdump -s600 —i 510

1 0.0 sun.2879 > netb.route: rip—poll 24
2 5.014702 (5.0147) sun.2879 > netb.route: rip-req 24
3 5.560427 (0.5457) netb.route > sun.2879: rip—resp 25:
4 5.710251 (0.14%) netb.route > sun.2879: rip—resp 12:

Figure 10.6 tcpdump output while running ripquery program.

The first request issued is the RIP poll command (line 1). This times out after 5 seconds

and a normal RIP request is issued (line 2). The number 24 at the end of lines 1 and 2 is

the size of the request packets in bytes: the 4~byte RIP header (with the command and

Version) followed by a single 20-byte address and metric. .

Line 3 is the first reply message. The number 25 at the end indicates that 25 address

and metric pairs are in the message, which we calculated earlier to be 504 bytes. This is

what ripquery printed above. We specified the -s 600 option to tcpdump telling it to

read 600 bytes from the network. This allows it to receive the entire UDP datagram

(instead of just the first portion of it) and it then prints the contents of the RIP response.

We've omitted that output.

Line 4 is the second response message from the router, with the next 12 address and

metric pairs. We can calculate the size of this message to be 12 X 20 + 4 = 244, which is

what ripquery printed earlier.

If we go one router beyond netb, to gateway, we expect the metric to our subnet

(140.252.13.0) to be 2. We can check this by executing:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

134
Dynamic Routing Protocols Chapter 10

o
sun 6 ripquery —n gateway
504 bytes from gateway (140 .252 . 1.4):

lots of other lines deleted
the top Ethernet in Figure 10.5
the bottom Ethernet in Figure 10.5

l40.252.l.O, metric 1
140.252.l3.0, metric 2

Here the metric for the top Ethernet in Figure 10.5 (140.252.1.0) stays at 1, since that

Ethernet is directly connected to both gateway and netb. Our subnet 140.252.13.0,

however, now has the expected metric of 2.

Another Example

Well now watch all the unsolicited RIP updates on an Ethernet and see just what RIP
sends on a regular basis to its neighbors. Figure 10.7 shows the arrangement of many of

the noao . edu networks. We have named the routers Rn for simplicity, where n is the

subnet number, except for the ones we use elsewhere in the text. We show the point—to—

point links with dashed lines and the IP address at each end of these links.
.57.0

192.68.189.0 .82.0 R57

R192 R82

105-2 \ 7-1062 R52 R53 R54 R55 R58 R60
105.1\ 4106.1

.81.0 kp“° .51.0
'.1o1.3

.1014

Internet <— ~ ~'19A%«'1—gate_way

.1.o

bl .1.183
8°?‘ R2 R3 R4 R6 R7 R8 R10 netbarls

\- l / \
.2.o -_.3.o .4.o .e.o .7.o .3.o .9.o .1o.o .11.o 41-202‘-1-29

R12 sun

'."2‘." .13.0

Figure 10.7 Many of the noao . edu 140.252 networks.

We'll run the Solaris 2.x program snoop, which is similar to tcpdump, on the host

solaris. We can run this program Without superuser privileges, but only to capture

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.4 RIP: Routing Information Protocol 135

broadcast packets, multicast packets, or packets sent to the host. Figure 10.8 shows the

packets captured during a 60-second period. We have replaced most of the official host-
names with our notation R11.

0
solaris fi snoop —P —tr udp port 520

0.00000 R6.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
4.49708 R4.tuc.noao.edu —> l40.252.1.255 RLP R (1 destinations)
6.30506 R2.tuc.noao.edu —> l40.252.1.255 RZP R (1 destinations)

11.68317 R7.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
16.19790 R8.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
16.87131 R3.tuc.noao.edu —> 140 252 1 255 R‘P R (1 destinations)
17.02187 gateway.tuc.noao.edu —> 140. 52.1.255 RIP R (15 destinations)
20.68009 R10.tuc.noao.edu —> BROADCAST R.P R (4 destinations)

29.87848 R6.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
34.50209 R4.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
36.32385 R2.tuc.noao.edu ~> l40.252.1.255 RIP R (1 destinations)
41.34565 R7.tuc.noao.edu —> l40.252.1.255 RIP R (1 destinations)
46.19257 R8.tuc.noao.edu —> l40.252.1.255 RLP R (1 destinations)
46.52199 R3.tuc.noao.edu —> 140 252 1 255 RIP R (1 destinations)

47.01870 gateway.tuc.noao.edu —> 140. 52.1.255 RIP R (15 destinations)
50.66453 R10.tuc.noao.edu —> BROADCAST RZP R (4 destinations)

Figure 10.8 RIP broadcasts captured at solaris over a 60—second period.

The —P flag captures packets in nonpromiscuous mode, —tr prints the relative time-

stamps, and udp port 520 captures only UDP datagrams with a source or destination

port of 520.

The first six packets, from R6, R4, R2, R7, R8, and R3, each advertise just one net-

work. If we looked at the packets we would see that R6 advertises a route to 140.252.6.0

with a hop count of 1, R4 advertises a route to 140.252.4.0 with a hop count of 1, and so
on.

The router gateway, however, advertises 15 routes. We can run snoop with the —v

flag and see the entire contents of the RIP message. (This flag outputs the entire con-

tents of the entire packet: the Ethernet header, the IP header, the UDP header, and the

RIP message. We've deleted everything except the RIP information.) Figure 10.9 shows

the output.

Compare these advertised hop counts on the 140.2521 network with the topology

shown in Figure 10.7.

A puzzle in the output in Figure 10.8 is why R10 is advertising four networks when

Figure 10.7 shows only three. If we look at the RIP packet with snoop we see the fol-

lowing advertised routes:

RIP: Address Metric

RIP: 140.251.0.0 16 (not reachable)
RIP: 140.252.9.0 1
RIP: l40.252.10.0 1
RIP: l40.252.1l.0 1

The route to the class B network 140.251 is bogus and should not be advertised. (It

belongs to another institution, not noao . edu.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

136 Dynamic Routing Protocols Chapter 10

solaris % snoop —P —v —tr udp port 520 host gateway

many lines deleted
RIP: Opcode = 2 (route response)
RIP: Version = 1

RIP: Address Metric

RIP: 140.252.101.0 1
RIP: l40.252.104.0 1

RIP: l40.252.51.0 2
RIP: 140.252.81.0 2
RIP: l40.252.l05.0 2
RIP: 140.252.106.0 2

RIP: 140.252.52.0 3
RIP: 140.252.53.0 3
RIP: 140.252.54.0 3
RIP: 140.252.55.0 3
RIP: 140.252.58.0 3
RIP: 140.252.60.0 3
RIP: 140.252.82.0 3
RIP: 192.68.189.0 3

RIP: 140.252.57.0 4

Figure 10.9 RIP response from gateway.

The notation ”BROADCAST” output by snoop in Figure 10.8 for the RIP packet

sent by R10 means the destination IP address is the limited broadcast address
255.255.255.255 (Section 12.2), instead of the subnet—directed broadcast address

(140.252.1.255) that the other routers use.

10.5 RIP Version 2

RFC 1388 [Malkin 1993a] defines newer extensions to RIP, and the result is normally

called RIP-2. These extensions don't change the protocol, but pass additional informa-

tion in the fields labeled ”must be zero” in Figure 10.3. RIP and RIP-2 can interoperate

if RIP ignores the fields that must be zero.

Figure 10.10 is a redo of that figure, as defined by RIP-2. The version is 2 for RIP-2.

The routing domain is an identifier of the routing daemon to which this packet

belongs. In a Unix implementation this could be the daemon’s process ID. This field

allows an administrator to run multiple instances of RIP on a single router, each operat-

ing within one routing domain.

The route tag exists to support exterior gateway protocols. It carries an autonomous

system number for EGP and BGP.

The subnet mask for each entry applies to the corresponding IP address. The next—hop

IP address is where packets to the corresponding destination IP address should be sent.

A value of 0 in this field means packets to the destination should be sent to the system

sending the RIP message.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.6 OSPF: Open Shortest Path First 137

O 7 8 15 16 31

command (1 -6) version (2) routing domain

address family (2) route tag

32-bit IP address

32-bit subnet mask 20 bytes

32-bit next—hop II’ address

metric (1-16)

Z (up to 24 more routes, with same format as previous 20 bytes) Z

10.6

Figure 10.10 Format of a RIP-2 message.

A simple authentication scheme is provided with RIP-2. The first 20-byte entry in a

RIP message can specify an address family of Oxf ff f, with a route tag Value of 2. The

remaining 16 bytes of the entry contain a cleartext password.

Finally, RIP-2 supports multicasting in addition to broadcasting (Chapter 12). This

can reduce the load on hosts that are not listening for RIP~2 messages.

OSPF: Open Shortest Path First

OSPF is a newer alternative to RIP as an interior gateway protocol. It overcomes all the

limitations of RIP. OSPF Version 2 is described in RFC 1247 [Moy 1991].

OSPF is a link—state protocol, as opposed to RIP, which is a dz'stm1ce—v'ector protocol.

The term distance-vector means the messages sent by RIP contain a vector of distances

(hop counts). Each router updates its routing table based on the vector of these dis-

tances that it receives from its neighbors.

In a linl<—state protocol a router does not exchange distances with its neighbors.

Instead each router actively tests the status of its link to each of its neighbors, sends this

information to its other neighbors, which then propagate it throughout the autonomous

system. Each router takes this link-state information and builds a complete routing
table.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

138 Dynamic Routing Protocols Chapter 10

From a practical perspective, the important difference is that a link—state protocol

will always converge faster than a distance-vector protocol. By converge we mean stabi-

lizing after something changes, such as a router going down or a link going down. Sec-

tion 9.3 of [Perlman 1992] compares other issues between the two types of routing

protocols.

OSPF is different from RIP (and many other routing protocols) in that OSPF uses IP

directly. That is, it does not use UDP or TCP. OSPF has its own value for the protocol

field in the II’ header (Figure 3.1).

Besides being a link—state protocol instead of a distance-vector protocol, OSPF has

many other features that make it superior to RIP.

1. OSPF can calculate a separate set of routes for each IP type—of—service (Fig-

ure 3.2). This means that for any destination there can be multiple routing table

entries, one for each IP type-of—service.

2. Each interface is assigned a dimensionless cost. This can be assigned based on

throughput, round—trip time, reliability, or whatever. A separate cost can be

assigned for each IP type—of—service.

3. When several equal—cost routes to a destination exist, OSPF distributes traffic

equally among the routes. This is called load balancing.

4. OSPF supports subnets: a subnet mask is associated with each advertised route.

This allows a single IP address of any class to be broken into multiple subnets of

various sizes. (We showed an example of this in Section 3.7 and called it

varz'al7Ie—length subnets.) Routes to a host are advertised with a subnet mask of all
one bits. A default route is advertised as an IP address of 0.0.0.0 with a mask of

all zero bits.

5. Point-to—point links between routers do not need an IP address at each end.
These are called unnumbered networks. This can save IP addresses—a scarce

resource these days!

6. A simple authentication scheme can be used. A cleartext password can be spec-
ified, similar to the RIP-2 scheme (Section 10.5).

7. OSPF uses multicasting (Chapter 12), instead of broadcasting, to reduce the load

on systems not participating in OSPF.

With most router vendors supporting OSPF, it will start replacing RIP in many net-
works. ~

10.7 BGP: Border Gateway Protocol

BGP is an exterior gateway protocol for communication between routers in different

autonomous systems. BGP is a replacement for the older EGP that was used on the

ARPANET. BGP Version 3 is defined in RFC 1267 [Lougheed and Rekhter 1991].

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 10.7 BGP: Border Gateway Protocol 139

RFC 1268 [Rekhter and Gross 1991] describes the use of BGP in the Internet. Much

of the following description comes from these two RFCs. Also, during 1993 BGP

Version 4 was under development (see RFC 1467 [Topolcic 1993]) to support CIDR,
which we describe in Section 10.8.

A BGP system exchanges network reachability information with other BGP systems.

This information includes the full path of autonomous systems that traffic must transit

to reach these networks. This information is adequate to construct a graph of AS con-

nectivity. Routing loops can then be pruned from this graph and routing policy deci-
sions can be enforced.

We first categorize an IP datagram in an AS as either local trz1fi‘ic or trzmsit trtzfific.

Local traffic in an AS either originates or terminates in that AS. That is, either the

source IP address or the destination IP address identifies a host in that AS. Anything

else is called transit traffic. A major goal of BGP usage in the Internet is to reduce tran-
sit traffic.

An AS can be categorized as one of the following:

1. A stub AS has only a single connection to one other AS. A stub AS carries only
local traffic.

2. A multihomed AS has connections to more than one other AS, but refuses to carry
transit traffic.

3. A transit AS has ‘connections to more than one other AS and is designed, under

certain policy restrictions, to carry both local and transit traffic.

The overall topology of the Internet is then viewed as an arbitrary interconnection of

transit, multihomed, and stub ASs. Stub and multihomed ASS need not use BGP—they

can run EGP to exchange reachability information with transit ASs.

BGP allows for p0Iz'cy—lmsed routing. Policies are determined by the AS administrator

and specified to BGP in configuration files. Policy decisions are not part of the protocol,

but policy specifications allow a BGP implementation to choose between paths when

multiple alternatives exist and to control the redistribution of information. Routing

policies are related to political, security, or economic considerations.

BGP is different from RIP and OSPF in that BGP uses TCP as its transport protocol.

Two systems running BGP establish a TCP connection between themselves and then

exchange the entire BGP routing table. From that point on, incremental updates are sent

as the routing table changes.

BGP is a distance Vector protocol, but unlike RIP (which announces hops to a desti~

nation), BGP enumerates the route to each destination (the sequence of AS numbers to

the destination). This removes some of the problems associated with distance—vector

protocols. An AS is identified by a 16-bit number.
BGP detects the failure of either the link or the host on the other end of the TCP con-

nection by sending a keepalive message to its neighbor on a regular basis. The recom-

mended time between these messages is 30 seconds. This application—level keepalive

message is independent of the TCP keepalive option (Chapter 23).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

140 Dynamic Routing Protocols Chapter 10

10.8 CIDR: Classless lnterdomain Routing

In Chapter 3 we said there is a shortage of Class B addresses, requiring sites with multi-

ple networks to now obtain multiple class C network IDs, instead of a single class B net-

work ID. Although the allocation of these class C addresses solves one problem

(running out of class B addresses) it introduces another problem: every class C network

requires a routing table entry. Classless Ii’lt6I‘L‘l0171£7i11 Routing (CIDR) is a way to prevent
this explosion in the size of the Internet routing tables. It is also called supernetting and
is described in RFC 1518 [Rekhter and Li 1993] and RFC 1519 [Fuller et al. 1993], with a

overview in [Ford, Rekhter, and Braun 1993]. CIDR has the Internet Architecture

Board's blessing [Huitema 1993]. RFC 1467 [Topolcic 1993] summarizes the state of

deployment of CIDR in the Internet.

The basic concept in CIDR is to allocate multiple IP addresses in a way that allows

smnmarz'zat1'on into a smaller number of routing table entries. For example, if a single

site is allocated 16 class C addresses, and those 16 are allocated so that they can be sum-

marized, then all 16 can be referenced through a single routing table entry on the Inter-

net. Also, if eight different sites are connected to the same Internet service provider

through the same connection point into the Internet, and if the eight sites are allocated

eight different IP addresses that can be summarized, then only a single routing table

entry need be used on the Internet for all eight sites.

Three features are needed to allow this summarization to take place.

1. Multiple IP addresses to be summarized together for routing must share the

same high-order bits of their addresses.

2. The routing tables and routing algorithms must be extended to base their rout-

ing decisions on a 32-bit IP address and a 32-bit mask.

3. The routing protocols being used must be extended to carry the 32-bit mask in

addition to the 32-bit address. OSPF (Section 10.6) and RIP-2 (Section 10.5) are V
both capable of carrying the 32-bit mask, as is the proposed BGP Version 4.

As an example, RFC 1466 [Gerich 1993] recommends that new class C addresses in

Europe be in the range 194.0.0.0 through 195.255.255.255. In hexadecimal these

addresses are from Oxc2 0 O O O 0 0 through Oxc 3 f f f f f f. This represents 131,072 differ-

ent class C network IDs, but they all share the same high-order 7 bits. In countries other

than Europe a single routing table entry with an IP address of 0xc2 O O O O O O and a 32-bit

mask of QxfeOOOOO0 (254.0.0.0) could be used to route all of these 65536 class C net-
work IDs to a single point. Subsequent bits of the class C address (that is, the bits fol-

lowing 194 or 195) can also be allocated hierarchically, perhaps by country or by service

provider, to allow additional summarization within the European routers using addi-

tional bits beyond the 7 high-order bits of the 32~bit mask.

CIDR also uses a technique whereby the best match is always the one with the

longest match: the one with the greatest number of one bits iii the 32-bit mask. Continu-

ing the example from the previous paragraph, perhaps one service provider in Europe

needs to use a different entry point router than the rest of Europe. If that provider has

been allocated the block of addresses 194.0.16.0 through 194.0.31.255 (16 class C network

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 10 Exercises 141

10.9

IDs), routing table entries for just those networks would have an IP address of 194.0.16.0

and a mask of 255.255.2400 (Oxf f f f fO0O). A datagram being routed to the address

194.0.22.1 would match both this routing table entry and the one for the rest of the Euro-

pean class C networks. But since the mask 255255.240 is ”longer” than the mask

254.000, the routing table entry with the longer mask is used.

The term ”classless” is because routing decisions are now made based on masking

operations of the entire 32-bit IP address. Whether the IP address is class A, B, or C
makes no difference.

The initial deployment of CIDR is proposed for new class C addresses. Making just

this change will slow down the growth of the Internet routing tables, but does nothing

for all the existing routes. This is the short-term solution. As a long—term solution, if

CIDR were applied to all IP addresses, and if existing IP addresses were reallocated

(and all existing hosts renumbered!) according to continental boundaries and service

providers, [Ford, Rekhter, and Braun 1993] claim that the current routing table consist-

ing of 10,000 network entries could be reduced to 200 entries.

Summary

There are two basic types of routing protocols: interior gateway protocols (IGPS), for

routers within an autonomous system, and exterior gateway protocols (EGPS), for

routers to communicate with routers in other autonomous systems.

The most popular IGP is the Routing Information Protocol (RIP) with OSPF being a

newer IGP that is gaining widespread use. A new and popular EGP is the Border Gate-

way Protocol (BGP). In this chapter we looked at RIP and the types of messages that it

exchanges. RIP Version 2 is a recent enhancement that supports subnetting and other

minor improvements. We also described OSPF, BGP, and classless interdomain routing

(CIDR), a newer technique being deployed to reduce the size of the Internet routing
tables.

There are a two other OSI routing protocols that you may encounter. Interdomain

Routing Protocol (IDRP) started out as a Version of BGP modified for use with OSI

addresses instead of IP. Intermediate System to Intermediate System Protocol (IS—IS) is the

OSI standard IGP. It is used for routing CLNP (Connectionless Network Protocol), an

OSI protocol similar to IP. IS—IS and OSPF are similar.

Dynamic routing is still a fertile area of internetworking research. The choice of

which routing protocol to use, and which routing daemon to run, is complex. [Perlman

1992] provides many of the details.

Exercises

10.1

10.2
In Figure 10.9 which of the routes came to gateway from the router kpno?

Assume a router has 30 routes to advertise using RIP, requiring one datagram with 25
routes and another with the remaining 5. What happens if once an hour the first datagram
with 25 routes is lost? °

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

142
Dynamic Routing Protocols Chapter 10

10.3

10.4

10.5

10.6

The OSPF packet format has a checksum field, but the RIP packet does not. Why?

What effect does load balancing, as done by OSPF, have on a transport layer?

Read RFC 1058 for additional details on the implementation of RIP. In Figure 10.8 each
router advertises only the routes that it provides, and none of the other routes that it
learned about through the other router's broadcasts on the 140.252.1 network. What is this
technique called?
In Section 3.4 We said there are more than 100 hosts on the 140.2521 subnet in addition to

the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight broad-
casts that arrive every 30 seconds (Figure 10.8)?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

11.1

77

UDP: User Dafagram Protocol

Introduction

UDP is a simple, datagram—oriented, transport layer protocol: each output operation by

a process produces exactly one UDP datagram, which causes one IP datagram to be

sent. This is different from a stream—oriented protocol such as TCP where the amount of

data written by an application may have little relationship to what actually gets sent in

a single IP datagram.

Figure 11.1 shows the encapsulation of a UDP datagrarn as an IP clatagram.

T IP datagram
asp

de UDP clatagram —e—>

IP UDP

header header UDP data

20 bytes 8 bytes

Figure 11.1 UDP encapsulation.

RFC 768 [Postel 1980] is the official specification of UDP.

UDP provides no reliability: it sends the datagrarns that the application writes to

the IP layer, but there is no guarantee that they ever reach their destination. Given this

lack of reliability, we are tempted to think we should avoid UDP and always use a reli-

able protocol such as TCP. After we describe TCP in Chapter 17 we'll return to this

topic and see what types of applications can utilize UDP.

Talari Networks Inc. - Exhibit 10113]

Talari Networks Inc. - Exhibit 1007

144
UDP: User Datagram Protocol Chapter 11

11.2

11.3

The application needs to worry about the size of the resulting IP datagram. If it

exceeds the network's MTU (Section 2.8), the IP datagram is fragmented. This applies

to each network that the datagram traverses from the source to the destination, not just

the first network connected to the sending host. (We defined this as the path MTU in

Section 2.9.) We examine IP fragmentation in Section 11.5.

UDP Header

Figure 11.2 shows the fields in the UDP header.

0 15 16 ‘ 31

16-bit destination port number T
8 bytes

16-bit UDP checksum L

16-bit source port number

16-bit UDP length

/ data (if any) Z

Figure 11.2 UDP header.

The port numlmrs identify the sending process and the receiving process. In Figure 1.8

we showed that TCP and UDP use the destination port number to demultiplex incom-

ing data from IP. Since IP has already demultiplexed the incoming IP datagram to

either TCP or UDP (based on the protocol value in the IP header), this means the TCP

port numbers are looked at by TCP, and the UDP port numbers by UDP. The TCP port

numbers are independent of the UDP port numbers.

Despite this independence, if a well—known service is provided by both TCP and UDP, the port
number is normally chosen to be the same for both transport layers. This is purely for conve-
nience and is not required by the protocols.

The UDP length field is the length of the UDP header and the UDP data in bytes.

The minimum value for this field is 8 bytes. (Sending a UDP datagram with 0 bytes of

data is OK.) This UDP length is redundant. The IP datagram contains-its total length in

bytes (Figure 3.1), so the length of the UDP datagram is this total length minus the

length of the IP header (which is specified by the header length field in Figure 3.1).

UDP Checksum

The LIDP checksmn covers the UDP header and the UDP data. Recall that the checksum

in the IP header only covers the IP header—it does not cover any data in the IP

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.3 UDP Checksum 145

datagram. Both UDP and TCP have checksums in their headers to cover their header

and their data. With UDP the checksum is optional, while with TCP it is mandatory.

Although the basics for calculating the UDP checksum are similar to what we

described in Section 3.2 for the IP header checksum (the ones complement sum of 16-bit
words), there are differences. First, the length of the UDP datagram can be an odd num-

ber of bytes, while the checksum algorithm adds 16-bit words. The solution is to

append a pad byte of 0 to the end, if necessary, just for the checksum computation.

(That is, this possible pad byte is not transmitted.)

Next, both UDP and TCP include a 12-byte pseudo—header with the UDP datagram

(or TCP segment) just for the checksum computation. This pseudo—header includes cer-

tain fields from the IP header. The purpose is to let UDP double-check that the data has

arrived at the correct destination (i.e-., that IP has not accepted a datagram that is not

addressed to this host, and that IP has not given UDP a datagram that is for another

upper layer). Figure 11.3 shows the pseudo—header along with a UDP datagram.

0 15 16 31 \

32-bit source IP address

UDP

32-bit destination IP address pseudo
header

zero 8-bit protocol (17) 16-bit UDP length

1

16-bit source port number 16-bit destination port number
UDP
header

16-bit UDP length 16-bit UDP checksum
J

/" data [

pad byte (0)

Figure 11.3 Fields used for computation of UDP checksum.

In this figure we explicitly show a datagram with an odd length, requiring a pad byte

for the checksum computation. Notice that the length of the UDP datagram appears

twice in the checksum computation.

If the calculated checksum is 0, it is stored as all one bits (65535), which is equiva-

lent in ones—complement arithmetic. If the transmitted checksum is 0, it indicates that

the sender did not compute the checksum.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

146 UDP: User Datagram Protocol Chapter 11

If the sender did compute a checksum and the receiver detects a checksum error, the

UDP datagram is silently discarded. No error message is generated. (This is what hap-

pens if an IP header checksum error is detected by IP.)

This UDP checksum is an end-to—end checksum. It is calculated by the sender, and

then verified by the receiver. It is designed to catch any modification of the UDP header

or data anywhere between the sender and receiver.

Despite UDP checksums being optional, they should always be enabled. During the

1980s some computer vendors turned off UDP checksums by default, to speed up their

implementation of Sun's Network File System (NFS), which uses UDP. While this might

be acceptable on a single LAN, where the cyclic redundancy check on the data~link

frame (e.g., Ethernet or token ring frame) can detect most corruption of the frame, when

the datagrams pass through routers, all bets are off. Believe it or not, there have been

routers with software and hardware bugs that have modified bits in the datagrams

being routed. These errors are undetectable in a UDP datagram if the end-to—end UDP

checksum is disabled. Also realize that some data~link protocols (e.g., SLIP) don't have

any form of data—link checksum.

The Host Requirements RFC requires that UDP checksums be enabled by default. It also states
that an implementation must verify a received checksum if the sender calculated one (i.e., the
received checksum is nonzero). Many implementations violate this, however, and only verify
a received checksum if outgoing checksums are enabled.

tcpdump Output

It ishard to detect whether a particular system has UDP checksums enabled. It is nor~

mally impossible for an application to obtain the chec1<sum field in a received UDP

header. To get around this, the author added another option to the tcpdump program

that prints the received UDP checksum. If this printed value is 0, it means the sending
host did not calculate the checksum.

Figure 11.4 shows the output to and from three different systems on our test net-

work (see the figure on the inside front cover). We ran our sock program (Appen-

dix C), sending a single UDP datagram with 9 bytes of data to the standard echo server.

0.0 sun.1900 > gemini.echo: udp 9 (UDP cksum=6e90)
0.303755 (0.3038) gemini.echo > sun.1900: udp 9 (UDP cksum=O)

17.392480 (l7.0887) sun.1904 > aix.echo: udp 9 (UDP cksum=6e3b)
17.614371 (0.2219) aix.echo > sun.1904: udp 9 (UDP cksum=6e3b)

32.092454 (l4.4781) sun.1907 > solaris.echo: udp 9 (UDP cksum=6e74)
32.314378 (0.2219) solaris.echo > sun.1907: udp 9 (UDP cksum=6e74)

ONU1FRU2I\)t<
Figure 11.4 tcpdump output to see whether other hosts enable UDP checksum.

We can see from this that two of the three systems have UDP checksums enabled.

Also notice that for this simple example the outgoing datagram has the same check-

sum as the incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see

that the two IP addresses are swapped, as are the two port numbers. The other fields in

the pseudo—header and the UDP header are the same, as is the data being echoed. This

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.4 A Simple Example 147

reiterates that the UDP checksums (indeed, all the checksums in the TCP/IP protocol

suite) are simple 16-bit sums. They cannot detect an error that swaps two of the 16-bit
Values.

The author also directed a DNS query at each of the eight root name servers described in Sec-
tion 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums
enabled!

Some Statistics

11.4

[Mogul 1992] provides counts of Various checksum errors on a busy NFS (Network File

System) server that had been up for 40‘ days. Figure 11.5 summarizes these numbers.

Layer Number of Approximate total
checksum errors number of packets

Ethernet 446 170,000,000
ll’ 14 170,000,000
UDP 5 140,000,000
TCP 350 30,000,000

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final column is only the approximate total for each row, since other protocols are in

use at the Ethernet and IP layers. For example, not all the Ethernet frames are IP data-

grams, since minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP
or TCP, since ICMP also uses IP.

Note the much higher percentage of TCP checl<sum errors compared to UDP check-

sum errors. This is probably because the TCP connections on this system tended to be

”long distance” (traversing many routers, bridges, etc.) While the UDP traffic was local.

The bottom line is not to trust the data—linl< (e.g., Ethernet, token ring, etc.) CRC

completely. You should enable the end-to-end checksums all the time. Also, if your

data is valuable, you might not want to trust either the UDP or the TCP checksum com-

pletely, since these are simple checl<sums and were not meant to catch all possible
errors.

A Simple Example

We'll use our sock program to generate some UDP datagrams that we can watch with
tcpdump:

—n4 svr4 discard
13.35.1108 to 140.252.13.34.9

bsdi % sock —v —u —i
connected on 140.252.

—n4 —wO svr4 discard
13.35.1110 to 140.252.13.34.9

bsdi % sock —V —-u -i
connected on 140.252.

The first time we execute the program we specify the verbose mode (—v) to see the

ephemeral port numbers, specify UDP (—u) instead of the default TCP,‘ and use the

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

148
UDP: User Datagram Protocol Chapter 11

11.5

source mode (-5.) to send data instead of trying to read and write standard input and

output. The —n—_. option says to output 4 datagrams (instead of the default 1024) and the I
destination host is svr4. We described the discard service in Section 1.12. We use the

default output size of 1024 bytes per write.

The second time we run the program we specify —w0, causing 0-length datagrams

to be written. Figure 11.6 shows the tcpdump output for both commands.
.0 bsdi.

.002424 (.0024) bsdi.

.006210 (.0038) bsdi.
0.010276 (.0041) bsdi.

.720114 (4
(
(
(

1108
1108
1108
1108

1024
1024
1024
1024

svr4.discard:
svr4.discard:
svr4.discard:
svr4.discard:

udp
udp
udp
udp

GOO VVVV
bsdi.
bsdi.
bsdi.
bsdi.

.7098 1110
1110
1110
1110

.discard:

.discard:
discard:
discard:

svr4
svr4
svr4.
svr4.

udp 0
udp 0
udp 0
udp O

41.721072
41.722094
41.723070

Do\lO\U‘IH>CAJl\)i—~\ Lb i—‘ ©©CDi~‘QGCD VVVV
Figure 11.6 tcpdump output when UDP datagrams are sent in one direction.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-

grams. Each datagram followed the previous by a few milliseconds. (It took 41 seconds

to type in the second command.)
There is no communication between the sender and receiver before the first data-

gram is sent. (We'll see in Chapter 17 that TCP must establish a connection with the

other end before the first byte of data can be sent.) Also, there are no acknowledgments

by the receiver when the data is received. The sender, in this example, has no idea

Whether the other end receives the datagrams.

Finally note that the source UDP port number changes each time the program is

run. First it is 1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral

port numbers used by clients are typically in the range 1024 through 5000, as we see
here.

IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper

limit on the size of the frame that can be transmitted. Whenever the IP layer receives an

IP datagram to send, it determines which local interface the datagram is being sent on

(routing), and queries that interface to obtain its MTU. IP compares the MTU with the

datagram size and performs fragmentation, if necessary. Fragmentation can take place

either at the original sending host or at an intermediate router.

When an IP datagram is fragmented,'it is not reassembled until it reaches its final

destination. (This handling of reassembly differs from some other networking protocols

that require reassembly to take place at the next hop, not at the final destination.) The

IP layer at the destination performs the reassembly. The goal is to make fragmentation

and reassembly transparent to the transport layer (TCP and UDP), which it is, except for

possible performance degradation. It is also possible for the fragment of a datagram to

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.5 IP Fragmentation 149

again be fragmented (possibly more than once). The information maintained in the IP

header for fragmentation and reassembly provides enough information to do this.

Recalling the IP header (Figure 3.1, p. 34), the following fields are used in fragmen-

tation. The 1'dentzficatz'0n field contains a unique value for each IP datagram that the

sender transmits. This number is copied into each fragment of a particular datagram.

(We now see the use for this field.) The flags field uses one bit as the ”more fragments”

bit. This bit is turned on for each fragment comprising a datagram except the final frag-

ment. The fmgment oflset field contains the offset (in 8-byte units) of this fragment from

the beginning of the original datagram. Also, when a datagram is fragmented the total

length field of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the ”don’t fragment” bit. If this is

turned on, IP will not fragment the datagram. Instead the datagram is thrown away

and an ICMP error (”fragmentation needed but don't fragment bit set,” Figure 6.3) is

sent to the originator. We’ll see an example of this error in the next section.

When an IP datagram is fragmented, each fragment becomes its own packet, with

its own IP header, and is routed independently of any other packets. This makes it pos-
sible for the fragments of a datagram to arrive at the final destination out of order, but

there is enough information in the IP header to allow the receiver to reassemble the

fragments correctly. '

Although IP fragmentation looks transparent, there is one feature that makes it less

than desirable: if one fragment is lost the entire datagram must be retransmitted. To

understand why this happens, realize that IP itself has no timeout and

retransmission—that is the responsibility of the higher layers. (TCP performs timeout

and retransmission, UDP doesn't. Some UDP applications perform timeout and

retransmission themselves.) When a fragment is lost that came from a TCP segment,

TCP will time out and retransmit the entire TCP segment, which corresponds to an IP

datagram. There is no way to resend only one fragment of a datagram. Indeed, if the

fragmentation was done by an intermediate router, and not the originating system,

there is no way for the originating system to know how the datagram was fragmented.

For this reason alone, fragmentation is often avoided. [Kent and Mogul 1987] provide

arguments for avoiding fragmentation.

Using UDP it is easy to generate IP fragmentation. (We'll see later that TCP tries to
avoid fragmentation and that it is nearly impossible for an application to force TCP to

send segments large enough to require fragmentation.) We can use our sock program

and increase the size of the datagram until fragmentation occurs. On an Ethernet the

maximum amount of data in a frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes

for our data, assuming 20 bytes for the IP header and 8 bytes for the UDP header. We’ll

run our sock program, with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect

the last two to cause fragmentation:
bsdi % sock -u -i -n1 -w1471 svré discard
bsdi % sock -u —i -n1 -w1472 svr4 discard
bsdi % sock -u —i —n1 —w1473 svr4 discard
bsdi % sock —u -i -n1 —w1474 svr4 discard

Figure 11.7 shows the corresponding tcpdump output.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

150
UDP: User Datagram Protocol Chapter 11

0.0 bsdi.ll12 > svr4.discard: udp 1471

21.008303 (2l.0O83)

50.449704 (29.4414)
50.450040 (0.0003)

75.328650 (24.8786)
75.328982 (0.0003)

bsdi.1114 > svr4.discard: udp 1472

bsdi.l116 > svr4.discard: udp 1473 (frag 26304:l480@O+)
bsdi > svr4: (frag 26304:1@l480)

bsdi.l118 > svr4.discard: udp 1474 (frag 263l3:l480@0+)
bsdi > svr4: (frag 26313:2@l480)

9.0‘!H5-O»)I\))~\
Figure 11.7 Watching fragmentation of UDP datagrams.

The first two UDP datagrams (lines 1 and 2) fit into Ethernet frames, and are not frag-

mented. But the length of the IP datagram corresponding to the write of 1473 bytes is

1501, which must be fragmented (lines 3 and 4). Similarly the datagram generated by

the write of 1474 bytes is 1502, and is also fragmented (lines 5 and 6).

When the IP datagram is fragmented, tcpdump prints additional information.

First, the output frag 2 6304 (lines 3 and 4) and frag 2 631 3 (lines 5 and 6) specify the
value of the identification field in the IP header.

The next number in the fragmentation information, the 1480 between the colon and

the at sign in line 3, is the size, excluding the IP header. The first fragment of both data-

grams contains 1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user

data. (The 20-byte IP header makes the packet exactly 1500 bytes.) The second frag-

ment of the first datagram (line 4) contains 1 byte of data—the remaining byte of user

data. The second fragment of the second datagram (line 6) contains the remaining 2

bytes of user data.

Fragmentation requires that the data portion of the generated fragments (that is,

everything excluding the IP header) be a multiple of 8 bytes for all fragments other than

the final one. In this example, 1480 is a multiple of 8.

The number following the at sign is the offset of the data in the fragment, from the

start of the datagram. The first fragment of both datagrams starts at 0 (lines 3 and 5)

and the second fragment of both datagrams starts at byte offset 1480 (lines 4 and 6). The

plus sign following this offset that is printed for the first fragment of both datagrams

means there are more fragments comprising this datagram. This plus sign corresponds

to the ”more fragments” bit in the 3-bit flags in the IP header. The purpose of this bit is

to let the receiver know when it has completed the reassembly of all the fragments for a

datagram.

Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol

(UDP) and the source and destination ports. The protocol could be printed, since it’s in

the IP header that's copied into the fragments. The port numbers, however, are in the

UDP header, which only occurs in the first fragment.

Figure 11.8 shows what's happening with the third datagram that is sent (with 1473

bytes of user data). It reiterates that any transport layer header appears only in the first

fragment.

Also note the terminology: an IP datagram is the unit of end-to—end transmission at

the IP layer (before fragmentation and after reassembly), and a packet is the unit of data

passed between the IP layer and the link layer. A packet can be a complete IP datagram

or a fragment of an IP datagram.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.6 ICMP Unreachable Error (Fragmentation Required) 151

4a IP datagram T»

IP UDP

header header UDP data (1473 bytes)

/ x 20 bytes / / 8 bytes / / / \ \

/// /// /// /// \\ \\/ / / / \ \/ / / / \ \
/ / / / / / / / \ \/ / / / \ \

IP UDP IP
header header header

20 bytes 8 bytes ' 1472 bytes 20 bytes 1 byte

i packet > «jpacket {%

Figure 11.8 Example of UDP fragmentation.

11.6 ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a data~

gram that requires fragmentation, but the don't fragment (DF) flag is turned on in the IP

header. This error can be used by a program that needs to determine the smallest MTU

in the path to a destination—ca11ed the path MTU discovery mechanism (Section 2.9).

Figure 11.9 shows the format of the ICMP unreachable error for this case. This dif-

fers from Figure 6.10 because bits 16-31 of the second 32-bit word can provide the MTU

of the next hop, instead of being 0.
O 7 8 15 16 31

type (3) code (4) checksum T
8 bytes

Unused (must be 0) MTU of next-hop network i

Z IP header (including options) + first 8 bytes of original IP datagram data . Z

Figure 11.9 ICMP unreachable error when fragmentation required but don't fragment bit set.

If a router doesn't provide this newer format ICMP error, the next-hop MTU is set to 0.

The new Router Requirements RFC [Almquist 1993] states that a router must generate this
newer form when originating this ICMP unreachable error.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

152 UDP: User Datagram Protocol Chapter 11

Example

A problem encountered by the author involving fragmentation and this ICMP error is

trying to determine the MTU on the dialup SLIP link from the router netb to the host

sun. We know the MTU of this link from sun to netb: it's part of the SLIP configura-

tion process when SLIP was installed in the host sun, plus We saw it with the netstat

command in Section 3.9. We want to determine the MTU in the other direction also. (In

Chapter 25 we'll see how to determine this using SNMP.) On a point—to—point link, it is

not required that the MTU be the same in both directions.

The technique used was to run ping on the host solaris, to the host bsdi,

increasing the size of the data packets until fragmentation was seen on the incoming

packets. This is shown in Figure 11.10.

MTU=1500 MTU=1500 MTU=1500 MTU=150O

, SLIP _bsdi sun eye; netb solaris

MTU=552 MTU=?

‘ICMP echo in
«_ _f§a§nler_‘t_ _ _ request p g

fragment4- ~ — — — — w - —

T
watch with fragmentation
t cpdump

Figure 11.10 Systems being used to determine MTU of SLIP link from netb to sun.

tcpdump was run on the host sun, watching the SLIP link, to see when fragmentation

occurred. No fragmentation was observed and everything was fine until the size of the

data portion of the ping packet was increased from 500 to 600 bytes. The incoming

echo requests were seen (there was still no fragmentation), but the echo replies disap-

peared.

To track this down, tcpdump was also run on bsdi, to see what it was receiving

and sending. Figure 11.11 shows the output.

1 0.0 solaris > bsdi: icmp: echo request (DF)
2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF)
3 0.000000 (0.0000) sun > bsdi: icmp: solaris unreachable —

need to frag, mtu = 0 (DF)

4 0.738400 (0.7384) solaris > bsdi: icmp: echo request (DF)
5 0.748800 (0.0l04) bsdi > solaris: icmp: echo reply (DF)
6 0.748800 (0.0000) sun > bsdi: icmp: solaris unreachable —

need to frag, mtu = 0 (DF)

Figure 11.11 tcpdump output for ping of bsdi from solaris with 600-byte IP datagram.

First, the notation (DF) in each line means the don't fragment bit is turned on in the

IP header. It turns out that Solaris 2.2 normally turns this bit on, as part of its imple-

mentation of the path MTU discovery mechanism.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.7
Determining the Path MTU Using Traceroute 153

11.7

Line 1 shows that the echo request got through the router netb to sun without

being fragmented, and with the DF bit set, so we know that the SLIP MTU of netb has

not been reached yet.

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what

causes the problem. The echo reply is the same size as the echo request (just over 600

bytes), but the MTU on sun's outgoing SLIP interface is 552. The echo reply needs to be

fragmented, but the DF flag is set. This causes sun to generate the ICMP unreachable

error back to bsdi (where it's discarded).

This is why we never saw any echo replies on solaris. The replies never got past

sun. Figure 11.12 shows the path of the packets.

M'I'U=1500 MTU=1500

bsdi

frag?n_entation required
and DF set

Figure 11.12 Packets exchanged in example.

Finally, the notation mtu=O in lines 3 and 6 of Figure 11.11 indicates that sun does

not return the MTU of the outgoing interface in the ICMP unreachable message, as

shown in Figure 11.9. (In Section 25.9 we return to this problem and use SNMP to deter-

mine that the MTU of the SLIP interface on netb is 1500.)

Determining the Path MTU Using Traceroute

Although most systems don’t support the path MTU discovery feature, we can easily

modify a version of traceroute (Chapter 8) to let us determine the path MTU. What

we'll do is send packets with the ”don’t fragment” bit set. The size of the first packet

we send will equal the MTU of the outgoing interface, and whenever we receive an

ICMP ”can’t fragment" error (which We described in the previous section) we’ll reduce

the size of the packet. If the router sending the ICMP error sends the newer version that

includes the MTU of the outgoing interface, we'll use that value; otherwise we'll try the

next smallest MTU. As RFC 1191 [Mogul and Deering 1990] states, there are a limited

number of MTUs, so our program has a table of the likely values and moves to the next
smallest value.

Let's first try it from our host sun to the host Slip, knowing that the SLIP link has
an MTU of 296:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

154 UDP: User Datagram Protocol Chapter 11

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500

1 bsdi (140.252.13.35) 15 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, trying new MTU = 1492
fragmentation required and DF set, trying new MTU = 1006
fragmentation required and DF set, trying new MTU = 576
fragmentation required and DF set, trying new MTU = 552
fragmentation required and DF set, trying new MTU = 544
fragmentation required and DF set, trying new MTU = 512
fragmentation required and DF set, trying new MTU = 508
fragmentation required and DF set, trying new MTU = 296

2 slip (14o.252.13.65) 377mg 377 ms 377 ms

In this example the router bsdi does not return the MTU of the outgoing interface in

the ICMP error, so we step through the likely Values for the MTU. The first line of out-

put for a TTL of 2 prints a hostname of bsdi, but that's because it's the router returning

the ICMP error. The final line of output for a TTL of 2 is what we're looking for.

It's not hard to modify the ICMP code on bsdi to return the MTU of the outgoing

interface, and if we do that and rerun our program, we get the following output:

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU = 1500

1 bsdi (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35)‘ 6 ms

fragmentation required and DF set, next hop MTU = 296
2 slip (140.252.13.65) 377 ms 378 ms 377 ms

Here we don't have to try eight different values for the MTU before finding the right
one—the router returns the correct value.

The Worldwide Internet

As an experiment, this modified Version of traceroute was run numerous times to

various hosts around the world. Fifteen countries (including Antarctica) were reached

and various transatlantic and transpacific links were used. Before doing this, however,

the MTU of the dialup SLIP link between the author's subnet and the router netb (Fig-
ure 11.12) was increased to 1500, the same as an Ethernet.

Out of 18 runs, only 2 had a path MTU of less than 1500. One of the transatlantic

links had an MTU of 572 (a value not even listed as a likely value in RFC 1191) and the
router did return the newer format ICMP error. Another link, between two routers in

Iapan, wouldn't handle a 1500-byte frame, and the router did not return the newer for-

mat ICMP error. Setting the MTU down to 1006 did work.

The conclusion we can make from this experiment is that many, but not all, WANS

today can handle packets larger than 512 bytes. Using the path MTU discovery feature

will allow applications to take advantage of these larger MTUs.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.8 Path MTU Discovery with UDP 155

11.8 Path MTU Discovery with UDP

Let's examine the interaction between an application using UDP and the path MTU dis-

covery mechanism. We want to see what happens when the application writes data-

grams that are too big for some intermediate link.

Example

Since the only system that we've been using that supports the path MTU discovery

mechanism is Solaris 2.x, we'll use it as the source host to send 650-byte datagrams to

slip. Since our host s].ip sits behind a SLIP link with an MTU of 296, any UDP data—

gram greater than 268 bytes (296 — 20 — 8) with the ”don’t fragment” bit set should cause

the router bsdi to generate the ICMP ”can’t fragment” error. Figure 11.13 shows the

topology and the MTUS.

run

t cpdurnp
here

V MTU=1500

SLIP

SLIP
slip 0+0 bsdi netb

MTU=296 MTU=296 MTU=552 MTU=1500

650-byte UDP datagram with D_F bit set

‘ICMP can’t fragment error

Figure 11.13 Systems used for path MTU discovery using UDP.

The following command generates ten 650-byte UDP datagrams, with a 5—second pause

between each datagram:

solaris % sock —u —i —nl0 —w650 —p5 slip discard

Figure 11.14 shows the tcpdump output. When this example was run, the router bsdi

was set to not return the next-hop MTU as part of the ICMP ”can’t fragment” error.

The first datagram is sent with the DF bit set (line 1) and generates the expected

error from the router bsdi (line 2). What's puzzling is that the next datagram is also

sent with the DF bit set (line 3) and generates the same ICMP error (line 4). We would

expect this datagram to be sent with the DF bit off.

On line 5 it appears IP has finally learned that datagrams to this destination should

not be sent with the DF bit set, so IP goes ahead and fragments the datagrams at the

source host. This is different from earlier examples where IP sends the datagram that is

passed to it by UDP and allows the router with the smaller MTU (bsdi in this case) to

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

156 UDP: User Datagram Protocol Chapter 11

1 0.0 solaris.38196 > slip.discard: udp 650 (DF)
2 0.004218 (0.0042) bsdi > solaris: icmp:

slip unreachable — need to frag, mtu = 0 (DF)

.980528 (4.9763)
4.984503 (0.0040)

solaris.38196 > s1ip.discard: udp 650 (DF)
bsdi > solaris: icmp:

slip unreachable — need to frag, mtu = 0 (DF)
HAD.)

31>

9.870407 (4.8859)
.960056 (0.0896)

14.940338 (4.9803)
14.944466 (0.0041)

solaris.38196 > slip.discard: udp 650 (frag 47942:552@0+)
solaris > slip: (frag 47942:106@552)

solaris.38196 > slip.discard: udp 650 (DF)
bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = O (DF)

O0\I9.0‘!
KO

9 19.890015 (4.9455)
10 19.950463 (0.0604)

11 24.870401 (4.9199)
12 24.960038 (0.0896)

so1aris.38196 > slip.discard: udp 650 (frag 47944:552@0+)
solaris > slip: (frag 47944:106@552)

solaris.38196 > slip.discard: udp 650 (frag 47945:552@0+)
solaris > slip: (frag 47945:106@552)

13 29.880182 (4.9201)
14 29.940498 (0.0603)

15 34.860607 (4.9201)
16 34.950051 (0.0894)

17 39.870216 (4.9202)
18 39.930443 (0.0602)

19 44.940485 (5.o1o0)
20 44.944432 (o.o039)

solaris.38196 > slip.discard: udp 650 (frag 47946:552@0+)
solaris > slip: (frag 47946:106@552)

solaris.38196 > slip.discard: udp 650 (frag 47947:552@0+)
solaris > slip: (frag 47947:l06@552)

solaris.38196 > slip.discard: udp 650 (frag 47948:552@0+)
solaris > slip: (frag 47948:106@552)

solaris.38196 > slip.discard: udp 650 (DF)
bsdi > solaris: icmp:

slip unreachable — need to frag, mtu = O (DF)

Figure 11.14 Path MTU discovery using UDP.

do the fragmentation. Since the ICMP ”can’t fragment” message didn't specify the

next-hop MTU, it appears that IP guesses that an MTU of 576 is OK. The first fragment

(line 5) contains 544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP

header, for a total IP datagram size of 572 bytes. The second fragment (line 6) contains

the remaining 106 bytes of UDP data and a 20-byte IP header.

Unfortunately the next datagram, line 7, has its DF bit set, so it's discarded by bsdi

andtheIChfl?enorrehuned.VVhathashappenedluHeisthatanIPthnerhasexpued

telling IP to see if the path MTU has increased by setting the DF bit again. We see this

happen again on lines 19 and 20. Comparing the times on lines 7 and 19 it appears that

IP turns on the DF bit, to see if the path MTU has increased, every 30 seconds.

This 30—second timer value is way too small. RFC 1191 recommends a value of 10 minutes. It
can be changed by modifying the parameter ip_ire_pathmtu_interval (Section E.4).
Also there is no way in Solaris 2.2 to turn off this path MTU discovery for a single UDP appli-
cation or for all UDP applications. It can only be enabled or disabled on a systemwide basis by
changing the parameter ip_path_mtu_discoVery. As we can see from this example,
enabling path MTU discovery when UDP applications write datagrams that will probably be
fragmented can cause clatagrams to be discarded.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.9 Interaction Between UDP and ARP 157

11.9

The maximum datagram size assumed by the IP layer on solaris (576 bytes) is

not right. In Figure 11.13 We see that the real MTU is 296 bytes. This means the frag-

ments generated by solaris will be fragmented again by bsdi. Figure 11.15 shows

the tcpdump output collected on the destination host (slip) for the first datagram that

arrives (lines 5 and 6 from Figure 11.14).
1 0.0

2 0.304513 (O.3045)
3 0.334651 (0.0301)
4 0.466642 (0.1320)

solaris.38l96 > slip.discard: udp 650 (frag 47942:272@0+)
solaris > Slip: (frag 47942:272@272+)
solaris > slip: (frag 47942:8@544+)
solaris > slip: (frag 47942:106@552)

Figure 11.15 First datagram arriving at host slip from solaris.

In this example the host solaris should not fragment the outgoing datagrams but
should turn off the DF bit and let the router with the smaller MTU do the fragmenta~
tion.

Now we'll run the same example but modify the router bsdi to return the next—hop

MTU in the ICMP ”can’t fragment” error. Figure 11.16 shows the first six lines of the

tcpdump output.

1 0.0 solaris.37974 > slip.discard: udp 650 (DF)
2 0.004199 (0.0042) bsdi > solaris: icmp:

slip unreachable — need to frag, mtu = 296 (DF)

3 4.950193 (4.9460) solaris.37974 > slip.discard: udp 650 (DF)
4 4.954325 (0.0041) bsdi > solaris: icmp:

slip unreachable — need to frag, mtu = 296 (DF)

5 9.779855 (4.8255)
.930018 (O.1502)
.990170 (0.0602)

solaris.37974 > slip.discard: udp 650 (frag 35278:272@0+)
solaris > slip: (frag 35278:272@272+)
solaris > slip: (frag 35278:114@544)

®\ LO

Figure 11.16 Path MTU discovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP

error. The ICMP error now specifies the next—hop MTU of 296.

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Fig-

ure 1114. But knowing the next—hop MTU, only three fragments are generated, com-

pared to the four fragments generated by the router bsdi in Figure 11.15.

Interaction Between UDP and ARP

Using UDP we can see an interesting (and often unmentioned) interaction with UDP

and typical implementations of ARP.

We use our sock program to generate a single UDP datagram with 8192 bytes of

data. We expect this to generate six fragments on an Ethernet (see Exercise 11.3). We

also assure that the ARI’ cache is empty before running the program, so that an ARP

request and reply must be exchanged before the first fragment is sent.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

158 UDP: User Datagram Protocol Chapter 11

bsdi % arp ——a verz'fyARP cache is empty
bsdi % sock —u —i ——n1 -w8192 svr4 discard

We expect the first fragment to cause an ARP request to be sent. Five more fragments

are generated by IP and this presents two timing questions that we’ll need to use

tcpdump to answer: are the remaining fragments ready to be sent before the ARP reply

is received, and if so, what does ARP do with multiple packets to a given destination

when it's waiting for an ARP reply? Figure 11.17 shows the tcpdump output.

1 0.0 arp who-has svr4 tell bsdi
2 0.001234 (0.0012) arp who—has svr4 tell bsdi
3 0.001941 (0.0007) arp who—has svr4 tell bsdi
4 0.002775 (0.0008) arp who—has svr4 tell bsdi
5 0.003495 (0.0007) arp who—has svr4 tell bsdi
6 0.004319 (0.0008) arp who—has svr4 tell bsdi
7 0.008772 (0.0045) arp reply svr4 is—at O:0:c0:c2:9b:26
8 0.009911 (0.001l) arp reply svr4 is-at O:0:c0:c2:9b:26
9 0.011127 (0.00l2) bsdi > svr4: (frag 10863:800@7400)

10 0.011255 (0.0001) arp reply svr4 is—at O:0:c0:c2:9b:26
11 0.012562 (0.0013) arp reply svr4 is—at O:0:c0:c2:9b:26
12 0.013458 (0.0009) arp reply svr4 is—at O:0:c0:c2:9b:26
13 0.014526 (0.001l) arp reply svr4 is—at O:0:c0:c2:9b:26
14 0.015583 (0.0011) arp reply svr4 is—at O:0:c0:c2:9b:26

Figure 11.17 Packet exchange when an 8192-byte UDP datagram is sent on an Ethernet.

There are a few surprises in this output. First, six ARP requests are generated

before the first ARP reply is returned. What we guess is happening is that IP generates

the six fragments rapidly, and each one causes an ARP request.

Next, when the first ARP reply is received (line 7) only the last fragment is sent (line

9)! It appears that the first five fragments have been discarded. Indeed, this is the nor-

mal operation of ARP. Most implementations keep only the last packet sent to a given

destination while waiting for an ARP reply.

The Host Requirements RFC requires an implementation to prevent this type of ARP flooding
(repeatedly sending an ARP request for the same IP address at a high rate). The recommended
maximum rate is one per second. Here we see six ARP requests in 4.3 ms.

The Host Requirements RFC states that ARP should save at least one packet, and this should
be the latest packet. That's what we see here.

Another unexplained anomaly in this output is that svr4 sends back seven ARP

replies, not six. 5

The final point worth mentioning is that tcpdump was left to run for 5 minutes

after the final ARP reply was returned, waiting to see if svr4 sent back an ICMP ”time
exceeded during reassembly” error. The ICMP error was never sent. (We showed the

format of this message in Figure 8.2. A code of 1 indicates that the time was exceeded

during the reassembly of a datagram.)

The IP layer must start a timer when the first fragment of a datagram appears. Here

”first” means the first arrival of any fragment for a given datagram, not the first frag-

ment (with a fragment offset of 0). A normal timeout value is 30 or 60 seconds. If all the

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.10 Maximum UDP Datagram Size 159

11.10

fragments for this datagram have not arrived when the timer expires, all these frag-
ments are discarded. If this were not done, fragments that never arrive (as we see in

this example) could eventually cause the receiver to run out of buffers.

There are two reasons we don't see the ICMP message here. First, most Berkeley-

derived implementations never generate this error! These implementations do set a

timer, and do discard all fragments when the timer expires, but the ICMP error is never

generated. Second, the first fragment——the one with an offset of 0 containing the UDP

header—was never received. (It was the first of the five packets discarded by ARP.) An

implementation is not required to generate the ICMP error unless this first fragment has
been received. The reason is that the receiver of the ICMP error couldn't tell which user

process sent the datagram that was discarded, because the transport layer header is not

available. It's assumed that the upper layer (either TCP or the application using UDP)

will eventually time out and retransmit.

In this section we’ve used IP fragmentation to see this interaction between UDP and

ARP. We can also see this interaction if the sender quickly transmits multiple UDP data-

grams. We chose to use fragmentation because the packets get generated quickly by IP,

faster than multiple datagrams can be generated by a user process.

As unlikely as this example might seem, it occurs regularly. NFS sends UDP data-

grams whose length just exceeds 8192 bytes. On an Ethernet these are fragmented as

we’ve indicated, and if the appropriate ARP cache entry times out, you can see what

we’ve shown here. NFS will time out and retransmit, but the first IP datagram can still

be discarded because of ARP’s limited queue.

Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit

total length field in the IP header (Figure 3.1). With an IP header of 20 bytes and a UDP

header of 8 bytes, this leaves a maximum of 65507 bytes of user data in a UDP data-

gram. Most implementations, however, provide less than this maximum.

There are two limits we can encounter. First the application program may be lim-

ited by its programming interface. The sockets API (Section 1.15) provides a function

that the application can call to set the size of the receive buffer and the send buffer. For

a UDP socket, this size is directly related to the maximum size UDP datagram the appli-

cation can read or Write. Most systems today provide a default of just over 8192 bytes

for the maximum size of a UDP datagram that can be read or written. (This default is

because 8192 is the amount of user data that NFS reads and writes by default.)

The next limitation comes from the kernel’s implementation of TCP/IP. There may

be implementation features (or bugs) that limit the size of an IP datagram to less than

65535 bytes.

The author experimented with various UDP datagram sizes, using the sock program. Using
the loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes.
All higher values failed. But going across an Ethernet from BSD/386 to SunOS 4.1.3, the maxi-
mum size IP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data).
Using the loopback interface under Solaris 2.2, the maximum 65535-byte ll’ datagram could be
sent and received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could
be transferred. Obviously this limit depends on the source and destination implementations.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

160
UDP: User Datagram Protocol Chapter 11

We mentioned in Section 3.2 that a host is required to receive at least a 576-byte IP

datagram. Many UDP applications are designed to restrict their application data to 512

bytes or less, to stay below this limit. We saw this in Section 10.4, for example, where

the Routing Information Protocol always sent less than 512 bytes of data per datagram.

We'll encounter this same limit with other UDP applications: the DNS (Chapter 14),

TFTP (Chapter 15), BOOTP (Chapter 16), and SNMP (Chapter 25).

Datagram Truncation

11.11

Iust because IP is capable of sending and receiving a datagram of a given size doesn't

mean the receiving application is prepared to read that size. UDP programming inter-

faces allow the application to specify the maximum number of bytes to return each
time. What happens if the received datagram exceeds the size the application is pre-

pared to deal with?

Unfortunately the answer depends on the programming interface and the imple-
mentation.

The traditional Berkeley version of the sockets API truncates the datagram, discarding any
excess data. Whether the application is notified depends on the version. (4.3BSD Reno and
later can notify the application that the datagram was truncated.)

The sockets API under SVR4 (including Solaris 2.x) does not truncate the datagram. Any
excess data is returned in subsequent reads. The application is not notified that multiple reads
are being fulfilled from a single UDP datagram.

The TLI API does not discard the data. Instead a flag is returned indicating that more data is
available, and subsequent reads by the application return the rest of the datagram.

When we discuss TCP we'll see that it provides a continuous stream of bytes to the

application, without any message boundaries. TCP passes the data to the application in

whatever size reads the application asks for———there is never any data loss across this
interface.

ICMP Source Quench Error

Using UDP we are also able to generate the ICMP ”source quench” error. This is an

error that may be generated by a system (router or host) when it receives datagrams at a

rate that is too fast to be processed. Note the qualifier ”may.” A system is not required

to send a source quench, even if it runs out of buffers and throws datagrams away.

Figure 11.18 shows the format of the ICMP source quench error. We have a perfect

scenario with our test network for generating this error. We can send datagrams from

bsdi to the router sun across the Ethernet that must be routed across the dialup SLIP

link. Since the SLIP link is about 1000 times slower than the Ethernet, we should easily

be able to overrun its buffer space. The following command sends 100 1024-byte data-

grams from the host bsdi through the router sun to solaris. We send the datagrams

to the standard discard service, where they’ll be ignored:
bsdi % sock —-u —i —w1024 —n100 solaris discard

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.11 ICMP Source Quench Error 161

O 7 8 15 16 31

type (4) code (0) checksum T
8 bytes

Unused (must be 0) L

/ IP header (including options) + first 8 bytes of original IP datagram data Z

Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tcpdump output corresponding to this command.

1 0.0 bsdi.1403 > solaris.discard: udp 1024
26 lines that we don '1‘ show

27 0.10 (0.00) bsdi.1403 > solaris.discard: udp 1024
28 0.11 (0.01) sun > bsdi: icmp: source quench

29 0.11 (0.00) bsdi.1403 > solaris.discard: udp 1024
30 0.11 (0.00) sun > bsdi: icmp: source quench

142 lines that we don't show

173 0.71 (0.06) bsdi.1403 > solaris.discard: udp 1024
174 0.71 (0.00) sun > bsdi: icmp: source quench

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 data-

grams are received without an error; we show the output only for the first. Starting

with our 27th datagram, however, every time we send a datagram, we receive a source

quench in return. There are a total of 26 + (74 X 2) = 174 lines of output.

From our serial line throughput calculations in Section 2.10, it takes just over 1 sec-

ond to transfer a 1024-byte datagram at 9600 bits/ sec. (In our example it should take

longer than this since the 20 + 8 + 1024 byte datagram will be fragmented because the

MTU of the SLIP link from sun to netb is 552 bytes.) But we can see from the timing in

Figure 11.19 that the router sun receives all 100 datagrams in less than 1 second, before

the first one is through the SLIP link. It's not surprising that we used up many of its
buffers.

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches
when it runs out of buffers, the new Router Requirements RFC [Almquist 1993] changes this
and says that a router must not originate source quench errors. The current feeling is to depre-
cate the source quench error, since it consumes network bandwidth and is an ineffective and
unfair fix for congestion.

Another point to make regarding this example is that our sock program either

never received a notification that the source quenches were being received, or if it did, it

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

162
UDP: User Datagram Protocol Chapter 11

11.12

Client

appears to have ignored them. It turns out that BSD implementations normally ignore

received source quenches if the protocol is UDP. (TCP is notified, and slows down the

data transfer on the connection that generated the source quench, as we discuss in Sec-

tion 21.10.) Part of the problem is that the process that generated the data that caused

the source quench may have already terminated when the source quench is received.

Indeed, if we use the Unix time program to measure how long our sock program takes

to run, it only executes for about 0.5 seconds. But from Figure 11.19 we see that some of

the source quenches are received 0.71 seconds after the first datagram was sent, after the

process has terminated. What is happening is that our program writes 100 datagrams

and terminates. But not all 100 datagrams have been sent—some are queued for

output.

This example reiterates that UDP is an unreliable protocol and illustrates the value

of end—to—end flow control. Even though our sock program successfully wrote 100

datagrams to its network, only 26 were really sent to the destination. The other 74 were

probably discarded by the intermediate router. Unless we build some form of acknowl-

edgment into the application, the sender has no idea whether the receiver really got the
data.

UDP Server Design

There are some implications in using UDP that affect the design and implementation of

a server. The design and implementation of clients is usually easier than that of servers,

which is why we talk about server design and not client design. Servers typically inter-

act with the operating system and most servers need a way to handle multiple clients at
the same time.

Normally a client starts, immediately communicates with a single server, and is

done. Servers, on the other hand, start and then go to sleep, waiting for a client's

request to arrive. In the case of UDP, the server wakes up when a client’s datagram

arrives, probably containing a request message of some form from the client.

Our interest here is not in the programming aspects of clients and servers ([Stevens

1990] covers all those details), but in the protocol features of UDP that affect the design

and implementation of a server using UDP. (We examine the details of TCP server

design in Section 18.11.) Although some of the features we describe depend on the

implementation of UDP being used, the features are common to most implementations.

IP Address and Port Number

What arrives from the client is a UDP datagram. The IP header contains the source and
destination IP addresses, and the UDP header contains the source and destination UDP

port numbers. When an application receives a UDP datagram, it must be told by the

operating system who sent the message——the source IP address and port number.

This feature allows an iterative UDP server to handle multiple clients. Each reply is

sent back to the client that sent the request.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.12 UDP Server Design 163

Destination IP Address

Some applications need to know who the datagram was sent to, that is, the destination

IP address. For example, the Host Requirements RFC states that a TFTP server should

ignore received datagrams that are sent to a broadcast address. (We describe broadcast-

ing in Chapter 12 and TFTP in Chapter 15.)

This requires the operating system to pass the destination IP address from the

received UDP datagram to the application. Unfortunately, not all implementations pro-

vide this capability.

The sockets API provides this capability with the IP_RECVDsTADDR socket option. Of the sys-
tems used in the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, SunOS
4.x, and Solaris 2.x don't support it.

UDP Input Queue

We said in Section 1.8 that most UDP servers are iterative servers. This means a single

server process handles all the client requests on a single UDP port (the server's well-

l<nown port).

Normally there is a limited size input queue associated with each UDP port that an

application is using. This means that requests that arrive at about the same time from

different clients are automatically queued by UDP. The received UDP datagrams are

passed to the application (when it asks for the next one) in the order they were received.

It is possible, however, for this queue to overflow, causing the kernel’s UDP module

to discard incoming datagrarns. We can see this with the following experiment. We

start our sock program on the host bsdi running as a UDP server:
bsdi % sock —s -u -V -13 —R256 -r256 -P30 6666

from 140.252.13.33, to 140.252.13.63: 1111111111 from sun, tobrondcastaddress
from 140.252.13.34, to 140.252.13.35: 4444444444444 from svr4,t01mictzstaddress

We specify the following flags: —s to run as a server, —u for UDP, ~v to print the client's

IP address, and -3 to print the destination IP address (which is supported by this sys-

tem). Additionally we set the UDP receive buffer for this port to 256 bytes (—R), along

with the size of each application read (—r). The flag —P3 0 tells it to pause for 30 seconds

after creating the UDP port, before reading the first datagram. This gives us time to

start the clients on two other hosts, send some datagrarns, and see how the receive

queueing works.

Once the server is started, and is in its 30—second pause, we start one client on the

host sun and send three datagrams:
sun % sock —u ~v 140.252 .13 .63 6666 to Ethernetbroadcnstaddress
Connected on 140 .252 .13 .33 .1252 to 140 . 252 . 13 . 63 .6666

1111111111 11 bytes ofdatzz (with newline)
222222222 10 bytes ofdatzz (with newline)
33333333333 12 bytes ofdatn (with newline)

The destination address is the broadcast address (140.252.13.63). We also start a second

client on the host svr4 and send another three datagrams:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

164
UDP: User Datagram Protocol Chapter 11

svr4 % sock -u -v bsdi 6666
connected on 0.0.0.0.1042 to 140.252.13.35.6666

4444 44444 444 4 14 bytes ofdr1tn(wiHz newline)
555555555555555 16 bytes ofdata (with newline)
66666666 9 bytes ofdata (with newline)

The first thing we notice in the interactive output shown earlier on bsdi is that only

two datagrams were received by the application: the first one from sun with all 1s, and

the first one from svr4 with all 4s. The other four datagrams appear to have been

thrown away.

The tcpdump output in Figure 11.20 shows that all six datagrams were delivered to

the destination host. The datagrams were typed on the two clients in alternating order:
first from sun, then from svr4, and so on. We can also see that all six were delivered in

about 12 seconds, within the 30—second period while the server was sleeping.

I 0.0 sun.l252 > l40.252.l3.63.6666: udp 11
2 2.499184 (2.4992) svr4.1042 > bsdi.6666: udp 14
3 4.959166 (2.4600) sun.1252 > 140.252.l3.63.6666: udp 10
4 7.607149 (2.6480) svr4.1042 > bsdi.6666: udp 16
5 10.079059 (2.4719) sun.l252 > 140.252.l3.63.6666: udp 12
6 12.415943 (2.3369) svr4.1042 > bsdi.6666: udp 9

Figure 11.20 tcpdump for UDP datagrams sent by two clients.

We can also see the server's —E option lets it know the destination IP address of

each datagram. If it wanted to, it could choose what to do with the first datagrain it
receives, which was sent to a broadcast address.

We can see several points in this example. First, the application is not told when its

input queue overflows. The excess datagrams are just discarded by UDP. Also, from

the tcpdump output we see that nothing is sent back to the client to tell it that its data-

gram was discarded. There is nothing like an ICMP source quench sent back to the

sender. Finally, it appears that the UDP input queue is FIFO (first—in, first—out), whereas

we saw that the ARP input queue in Section 11.9 was LIFO (last—in, first—out).

Restricting Local IP Address

Most UDP servers wildcard their local IP address when they create a UDP end point.

This means that an incoming UDP datagram destined for the server's port will be

accepted on any local interface. For example, we can start a UDP server on port 7777:a
sun 6 sock -u —s 7777

We then use the net stat command to see the state of the end point:0
sun 6 netstat —a —n —f inet

Active Internet connections (including servers)
Proto Recv—Q Send—Q Local Address Foreign Address
udp 0 0 *.7777 *.*

(state)

We have deleted many lines of output other than the one in which we're interested. The

—a flag reports on all network end points. The —n flag prints IP addresses as dotted-

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.12 UDP Server Design 165

decimal numbers, instead of trying to use the DNS to convert the address to a name,

and prints numeric port numbers instead of service names. The —f inet option reports

only TCP and UDP end points. A

The local address is printed as *.7777 where the asterisk means the local IP

address has been wildcarded.

VVhen the server creates its end point it can specify one of the host's local IP

addresses, including one of its broadcast addresses, as the local IP address for the end

point. Incoming UDP datagrams will then be passed to this end point only if the desti-

nation IP address matches the specified local address. With our sock program, if we

specify an IP address before the port number, that IP address becomes the local IP

address for the end point. For example,
sun % sock —u —s 140.252.1.29 7777

restricts the server to datagrams arriving on the SLIP interface (140.252.1.29). The

net stat output shows this:

Proto Recv—Q Send—Q Local’ Address Foreign Address (state)
udp 0 0 140.252.1.29.7777 *.*

If we try to send this server a datagram from a host on the Ethernet, bsdi at address

140.252.13.35, an ICMP port unreachable is returned. The server never sees the data-

gram. Figure 11.21 shows this scenario.

1 0.0 bsdi.l723 > sun.7777: udp 13
2 0.000822 (0.0008) sun > bsdi: icmp: sun udp port 7777 unreachable

Figure 11.21 Rejection of UDP datagram caused by server's local address binding.

It is possible to start different servers at the same port, each with a different local IP

address. Normally, however, the system must be told by the application that it is OK to

reuse the same port number.

With the sockets API the sO__REUSEADDR socket option must be specified. This is done by our
sock program by specifying the —A option.

On our host sun we can start five different servers on the same UDP port (8888):

sun % sock —u —s 140.252.1.29 8888 f0I'SLIPIiI1k
sun % sock —u —s —A 140.252.13.33 8888 forEthernet
sun % sock —-u —-s —A 127.0.0.1 8888 forloopbackinteiface
sun % sock —u —s —A 140.252.13.63 8888 forEtI1ernet broadcasts
sun % sock —u -s —A 8888 everytlzingelse(wildcard IP address)

All except the first of the servers must be started with the —A flag, telling the system that

it's OK to reuse the same port number. The net stat output shows the five servers:

Proto Recv—Q Send—Q Local Address Foreign Address (state)
udp 0 0 *.8888 *.*
udp O 0 l40.252.13.63.8888 *.*
udp O O l27.0.0.1.8888 *.*
udp O O l40.252.13.33.8888 *.*
udp 0 O l40.252.1.29.8888 *.*

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

166
UDP: User Datagram Protocol Chapter 11

In this scenario, the only datagrams that will go to the server with the wildcarded local
IP address are those destined to 140.252.1.255, because the other four servers cover all

other possibilities.

There is a priority implied when an end point with a wildcard address exists. An

end point with a specific IP address that matches the destination IP address is always

chosen over a wildcard. The wildcard end point is used only when a specific match is
not found.

Restricting Foreign IP Address

In all the net st at output that we showed earlier, the foreign IP address and foreign

port number are shown as * . * meaning the end point will accept an incoming UDP

datagram from any IP address and any port number. Most implementations allow a

UDP end point to restrict the foreign address.

This means the end point will only receive UDP datagrams from that specific IP

address and port number. Our sock program uses the —f option to specify the foreign

IP address and port number:
sun % sock -u -s -f 140.252.13.35.4444 5555

This sets the foreign IP address to 140.252.13.35 (our host bsdi) and the foreign port

number to 4444. The server's well~l<nown port is 5555. If we run net st at we see that

the local IP address has also been set, even though we didn't specify it:
Proto Recv—Q Send—Q Local Address
udp O O l40.252.l3.33.5555

Foreign Address (state)
140.252.13.35.4444

This is a side effect of specifying the foreign IP address and foreign port on Berkeley-

derived systems: if the local address has not been chosen when the foreign address is

specified, the local address is chosen automatically. Its value becomes the IP address of

the interface chosen by IP routing to reach the specified foreign IP address. Indeed, in

this example the IP address on sun for the Ethernet that is connected to the foreign
address is 140.252.13.33.

Figure 11.22 summarizes the three types of address bindings that a UDP server can
establish for itself.

Local Address Foreign Address Description

I0calIP. lport fo1'ez'gnIP.fiJort restricted to one client
locz1IIP.lp0rf *.* restricted to datagrams arriving on one local interface: IocnIIP

*.lpo1't *.* receives all datagrams sent to lport

Figure 11.22 Specification of local and foreign IP addresses and port number for UDP server.

In all cases, lport is the server's well—l<nown port and l0cnlIP must be the IP address of a

local interface. The ordering of the three rows in the table is the order that the UDP

module applies when trying to determine which local end point receives an incoming

datagram. The most specific binding (the first row) is tried first, and the least specific
(the last row with both IP addresses wildcarded) is tried last.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 11.13 Summary 167

Multiple Recipients per Port

Although it's not specified in the RFCs, most implementations allow only one applica-

tion end point at a time to be associated with any one local IP address and UDP port

number. When a UDP datagram arrives at a host destined for that IP address and port

number, one copy is delivered to that single end point. The IP address of the end point
can be the wildcard, as shown earlier.

For example, under SunOS 4.1.3 we start one server on port 9999 with a wildcarded
local IP address:

0
sun 7: sock —u —s 9999

If we then try to start another server with the same wildcarded local address and the

same port, it doesn't work, even if we specify the —A option:

sun % sock —u -s 9999 weexpect this tofail
can't bind local address: Address already in use

sun % sock —u ~s ~A 9999 so we try~Aflng this time
can't bind local address: Address already in use

On systems that support multicasting (Chapter 12), this changes. Multiple end

points can use the same local IP address and UDP port number, although the applica-

tion normally must tell the API that this is OK (i.e., our —A flag to specify the

SO_REUSEADDR socket option).

4.4BSD, which supports multicasting, requires the application to set a different socket option
(SO_REUSEPORT) to allow multiple end points to share the same port. Furthermore each end
point must specify this option, including the first one to use the port.

When a UDP datagram arrives whose destination IP address is a broadcast or

multicast address, and there are multiple end points at the destination IP address and

port number, one copy of the incoming datagram is passed to each end point. (The end

point’s local IP address can be the wildcard, which matches any destination IP address.)

But if a UDP datagram arrives whose destination IP address is a unicast address, only a

single copy of the datagram is delivered to one of the end points. Which end point gets

the unicast datagram is implementation dependent.

11.13 Summary

UDP is a simple protocol. Its official specification, RFC 768 [Postel 1980], requires only

three pages. The services it provides to a user process, above and beyond IP, are port

numbers and an optional checksum. We used UDP to examine this checksum and to

see how fragmentation is performed.

We then examined the ICMP unreachable error that is part of the new path MTU

discovery feature (Section 2.9). We watched path MTU discovery using Traceroute and

UDP. We also looked at the interaction between UDP and ARP whereby most ARP

implementations only retain the most recently transmitted datagram to a given destina-

tion, while waiting for an ARP reply.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

168 UDP: User Datagram Protocol Chapter 11

The ICMP source quench error can be sent by a system that is receiving IP data-

grams faster than they can be processed. It is easy to generate these ICMP errors using
UDP.

Exercises

11.1 In Section 11.5 we caused fragmentation on an Ethernet by writing a UDP datagram with
1473 bytes of user data. What is the smallest amount of user data that causes fragmenta-
tion on an Ethernet if IEEE 802 encapsulation (Section 2.2) is used instead?

11.2 Read RFC 791 [Postel 1981a] to determine why all fragments other than the last must have
a length that is a multiple of 8 bytes.

11.3 Assume an Ethernet and a UDP datagram with 8192 bytes of user data. How many frag-
ments are transmitted and what is the offset and length of each fragment?

11.4 Continue the previous exercise, assuming these fragments then traverse a SLIP link with
an MTU of 552. You also need to remember that the amount of data in each fragment (i.e.,

everything other than the IP header) must be a multiple of 8 bytes. How many fragments
are transmitted and what is the offset and length of each fragment?

11.5 An application using UDP sends a datagram that gets fragmented into four pieces.
Assume that fragments 1 and 2 make it to the destination, with fragments 3 and 4 being
lost. The application then times out and retransmits the UDP datagram 10 seconds later
and this datagram is fragmented identically to the first transmission (i.e., same offsets and
lengths). Assume that this time fragments 1 and 2 are lost but fragments 3 and 4 make it to
the destination. Also assume that the reassembly timer on the receiving host is 60 seconds,
so when fragments 3 and 4 of the retransmission make it to the destination, fragments 1
and 2 from the first transmission have not been discarded. Can the receiver reassemble the

IP datagram from the four fragments it now has?

11.6 How do you know that the fragments in Figure 11.15 really correspond to lines 5 and 6 in
Figure 11.14?

11.7 After the host gemini had been up for 33 days, the netstat program showed that 129 IP
datagrams out of 48 million had been dropped because of a bad header checksum, and 20
TCP segments out of 30 million had been dropped because of a bad TCP checksum. Not a
single UDP datagram was dropped, however, because of a UDP checksum error, out of the
approximately 18 million UDP datagrams. Give two reasons why. (Hint: See Figure 11.4.)

11.8 In our discussion of fragmentation we never said what happens to IP options in the IP

header—are they copied as part of the IP header in each fragment, or left in the first frag-
ment only? We've described the following IP options: record route (Section 7.3), time-
stamp (Section 7.4), strict and loose source routing (Section 8.5). How would you expect

fragmentation to handle these options? Check your answer with RFC 791.

11.9 In Figure 1.8 (p. 11) we said that incoming UDP datagrams are demultiplexed based on the
destination UDP port number. Is that correct?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

12.1

72

Broadcasting and Mulficasfing

Introduction

We mentioned in Chapter 1 that there are three kinds of IP addresses: unicast, broadcast,

and multicast. In this chapter we discuss broadcasting and multicasting in more detail.

Broadcasting and multicasting only apply to UDP, where it makes sense for an

application to send a single message to multiple recipients. TCP is a connection-

oriented protocol that implies a connection between two hosts (specified by IP

addresses) and one process on each host (specified by port numbers).
Consider a set of hosts on a shared network such as an Ethernet. Each Ethernet

frame contains the source and destination Ethernet addresses (48-bit values). Normally

each Ethernet frame is destined for a single host. The destination address specifies a

single interface——called a zmicast. In this way communication between any two hosts

doesn't bother any of the remaining hosts on the cable (except for possible contention
for the shared media).

There are times, however, when a host Wants to send a frame to every other host on

the cable—called a broadcast. We saw this with ARI’ and RARP. Multicasting fits

between unicasting and broadcasting: the frame should be delivered to a set of hosts

that belong to a multicast group. ~

To understand broadcasting and multicasting we need to understand that filtering

takes place on each host, each time a frame passes by on the cable. Figure 12.1 shows a

picture of this.

First, the interface card sees every frame that passes by on the cable and makes a

decision whether to receive the frame and deliver it to the device driver. Normally the

interface card receives only those frames whose destination address is either the hard-

ware address of the interface or the broadcast address. Additionally, most interfaces

can be placed into a promiscuous mode whereby they receive a copy of every frame.

This mode is used by tcpdump, for example.

Talari Networks Inc. - Exhibit 1016?

Talari Networks Inc. - Exhibit 1007

170
Broadcasting and Multicasting Chapter 12

Tdeliver
UDP —> discard

A
deliver

IP —> discard

A
deliver

device
driver

A
deliver

interface
card

T

Figure 12.1 Filtering that takes place up the protocol stack when a frame is received.

—> discard

4» discard

Today most interfaces can also be configured to receive frames whose destination
address is a multicast address, or some subset of multicast addresses. On an Ethernet, a

multicast address has the low—order bit of the high—order byte turned on. In hexadeci-
mal this bit looks like 01 : O0 : 00 : 00 : 00 : 00. (We can consider the Ethernet broadcast

address, f f : f f : ff : f f : f f : f f as a special case of the Ethernet multicast address.)

If the interface card receives the frame, it is passed to the device driver. (One reason

the interface card might discard the frame is if the Ethernet checksum is incorrect.)

Additional filtering is performed by the device driver. First, the frame type must spec-

ify a protocol that is supported (IP, ARP, etc.). Second, additional multicast filtering

may be performed, to check whether the host belongs to the addressed multicast group.

The device driver then passes the frame to the next layer, such as IP, if the frame

type specifies an IP datagram. IP performs more filtering, based on the source and des-

tination IP addresses, and passes the datagram up to the next layer (such as TCP or
UDP) if all is well.

Each time UDP receives a datagram from IP, it performs filtering based on the desti-

nation port number, and sometimes the source port number too. If no process is cur-

rently using the destination port number, the datagram is discarded and an ICMP port

unreachable message is normally generated. (TCP performs similar filtering based on

its port numbers.) If the UDP datagram has a checksum error, UDP silently discards it.

The problem with broadcasting is the processing load that it places on hosts that

aren't interested in the broadcasts. Consider an application that is designed to use UDP

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 12.2 Broadcasting 171

12.2

broadcasts. If there are 50 hosts on the cable, but only 20 are participating in the appli-

cation, every time one of the 20 sends a UDP broadcast, the other 30 hosts have to pro-

cess the broadcast, all the way up through the UDP layer, before the UDP datagram is

discarded. The UDP datagram is discarded by these 30 hosts because the destination

port number is not in use.

The intent of multicasting is to reduce this load on hosts with no interest in the

application. With multicasting a host specifically joins one or more multicast groups. If

possible, the interface card is told which multicast groups the host belongs to, and only
those multicast frames are received.

Broadcasting

In Figure 3.9 we showed four different forms of IP broadcast addresses. We now
describe them in more detail.

Limited Broadcast

The limited broadcast address is 255.255.255.255. This can be used as the destination

address of an IP datagram during the host configuration process, when the host might
not know its subnet mask or even its IP address.

A datagram destined for the limited broadcast address is never forwarded by a

router under any circumstance. It only appears on the local cable.

An unanswered question is: if a host is multihomed and a process sends a datagram

to the limited broadcast address, should the datagram be sent out each connected inter-

face that supports broadcasting? If not, an application that wants to broadcast out all

interfaces must determine all the interfaces on the host that support broadcasting, and

send a copy out each interface.

Most BSD systems treat 255.255.255.255 as an alias for the broadcast address of the

first interface that was configured, and don’t provide any way to send a datagram out

all attached, broadcast—capable interfaces. Indeed, two applications that send UDP

datagrams out every interface are routed (Section 10.3) and rwhod (the server for the

BSD rwho client). Both of these applications go through a similar start-up procedure to

determine all the interfaces on the host, and which ones are capable of broadcasting.

The net—directed broadcast address corresponding to that interface is then used as the

destination address for datagrams sent out the interface.

The Host Requirements RFC takes no stand on the issue of whether a multihomed host should
send a limited broadcast out all its interfaces.

Net-directed Broadcast

The net—directed broadcast address has a host ID of all one bits. A class A net—directed

broadcast address is netid.255.255.255, where netid is the class A network ID.

A router must forward a net—directed broadcast by default, but it must also have an

option to disable this forwarding.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

172 Broadcasting and Multicasting Chapter 12

Subnet-directed Broadcast

The Subnet-directed broadcast address has a host ID of all one bits but a specific subnet ID.

Classification of an IP address as a Subnet-directed broadcast address requires knowl-

edge of the subnet mask. For example, if a router receives a datagram destined for
128.1.2.255, this is a subnet—directed broadcast if the class B network 128.1 has a subnet

mask of 255.255.2550, but it is not a broadcast if the subnet mask is 255.255.2540

(OXfffffeOO)

All-subnets-directed Broadcast

An all—sulmets—dz'rected broadcast address also requires knowledge of the destination net-
works subnet mask, to differentiate this broadcast address from a net-directed broad-

cast address. Both the subnet ID and the host ID are all one bits. For example, if the
destination’s subnet mask is 255.255.2550, then the class B IP address 128.1.255.255 is an

all~subnets—directed broadcast. But if the network is not subnetted, then this is a net-
directed broadcast.

Current feeling [Alrnquist 1993] is that this type of broadcast is obsolete. It is better

to use rnulticasting than an all~subnets—directed broadcast.

[Almquist 1993] notes that RFC 922 requires that an all-subnets—directed broadcast be sent to
all subnets, but no current routers do so. This is fortunate since a host that has been misconfig—
ured without its subnet mask sends all its ”local” broadcasts to all subnets. For example, if the
host with IP address 128.1.2.3 doesn't set a subnet mask, then its broadcast address normally
defaults to 128.1.255.255. But if the subnet mask should have been set to 255.255.255.0, then

broadcasts from this misconfigured host appear directed to all subnets.

The first widespread implementation of TCP/IP, the 4.2BSD system in 1983, used a host ID of
all zero bits for the broadcast address. One of the earliest references to the broadcast II’

address is IEN 212 [Gurwitz and Hinden 1982], and it proposed to define the IP broadcast
address as a host ID of one bits. (IENs are the Internet Experiment Notes, basically predecessors
to the RFCs.) RFC 894 [Hornig 1984] commented that 4.2BSD used a nonstandard broadcast
address, but RFC 906 [Finlayson 1984] noted that there was no Internet standa1'd for the broad-
cast address. The RFC editor added a footnote to RFC 906 acknowledging the lack of a stan~
dard broadcast address, but strongly recommended that a host ID of all one bits be used as the
broadcast address. Although Berkeley adopted the use of all one bits for the broadcast address
with 4.3BSD in 1986, some operating systems (notably SunOS 4.x) continued to use the non-
standard broadcast address through the early 19905.

12.3 Broadcasting Examples

How are broadcasts sent and what do routers and hosts do with broadcasts? Unfortu-

nately this is a hard question to answer because it depends on the type of broadcast

address, the application, the TCP/IP implementation, and possible configuration
switches.

First, the application must support broadcasting. If we execute

sun 95 ping 255.255.255.255
/usr/etc/ping: unknown host 255.255.255.255

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 12.3 Broadcasting Examples 173

intending to send a broadcast on the local cable, it doesn't work. But the problem here

is a programming problem in the application (ping). Most applications that accept

either a dotted-decirnal IP address or a hostname call the function inet_addr(3) to

convert the dotted—decima1 character string to its 32-bit binary IP address, and if this

fails, assume the character string is a hostname. Unfortunately this library function

returns -1 to indicate an error (such as a character other than a digit or decimal point in

the string), but the limited broadcast address (255.255.255.255) also converts into‘ -1.

Most programs then assume that the character string is a hostname, look it up using the

DNS (Chapter 14), and end up printing an error such as ”unknown host.”

If we fix this programming shortfall in the ping program, however, the results are

often not what we expect. On six different systems tested by the author, only one han-

dled this as expected and generated a broadcast packet on the local cable. Most looked

up the IP address 255.255.255.255 in the routing table, applied the default route, and

sent a unicast packet to the default router. Eventually the packet was thrown away.

A subnet—directed broadcast is what we should be using. Indeed, in Section 6.3 we

sent datagrams to the IP address 140.252.13.63 for the bottom Ethernet in our test net-

work (inside front cover), and got replies from all the hosts on the Ethernet. The sub-
net—directed broadcast address associated with each interface is the value used with the

ifconfig command (Section 3.8). If we ping that address, the result is what we

expect:

sun % arp -a ARP cache is empty

sun % ping 140.252.13.63
PING 140.252.13.63: 56 data bytes

64 bytes from sun (l40.252.l3.33): icmp_seq=0. time=4. ms
64 bytes from bsdi (l40.252.l3.35): icmp_seq=0. time=172. ms
64 bytes from svr4 (140.252.l3.34): icmp_seq=0. time=l92. ms

64 bytes from sun (l40.252.l3.33): icmp_seq=1. time=1. ms
64 bytes from bsdi (l40.252.l3.35): icmp_seq=1. time=52. ms
64 bytes from svr4 (l40.252.13.34): icmp_seq=l. time=90. ms

" ? type interrupt key to stop
————l40.252.l3.63 PING Statistics————

2 packets transmitted, 6 packets received, -200% packet loss
round—trip (ms) min/avg/max = 1/85/192

sun % arp —a check/1RP cache again
svr4 (l40.252.l3.34) at 0:0:cO:c2:9b:26
bsdi (l40.252.13.35) at 0:0:c0:6f:2d:40

IP looks at the destination address (140.252.13.63), determines that it is the subnet-

directed broadcast address, and sends the datagram to the link-layer broadcast address.

We mentioned in Section 6.3 that this type of broadcast means all the hosts on the

local network, including the sender. We see here that we do get a reply from the send-

ing host (sun) in addition to the other hosts on the cable.

In this example we've also shown the ARP cache before and after the ping of the

broadcast address. This is to show the interaction between broadcasting and ARP. The

ARP cache is empty before we execute ping, but full afterward. (That is, there is one

entry for every other host on the cable that responded to the echo request.) How did

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

174 Broadcasting and Multicasting Chapter 12

this happen when we said that the Ethernet frame is sent to the link-layer broadcast

address (0xffff f f f f)? The sending of these frames by sun does not require ARP.

If we watch ping using tcpdump, we see that it is the recipients of the broadcast

frames that generate an ARP request to sun, before they can send their reply. This is

because the reply is unicast. We said in Section 4.5 that the receiver of an ARP request

(sun in this example) normally adds the requestor’s IP address and hardware address

to its ARP cache, in addition to sending an ARP reply. This is on the assumption that if

the requestor is about to send us a packet, we'll probably want to send something back.

Our use of ping is somewhat special because the type of programming interface

that it uses (called ”raw sockets” on most Unix implementations) always allows a data-

gram to be sent to the broadcast address. What if we use an application that was not

designed to support broadcasting, such as TFTP? (We cover TFTP in more detail in

Chapter 15.)

bsdi % tftp start the client

tftp> connect 140 '. 252 . 13. 63 specify the IP address of the server
tftp> get temp. foe and try to fetch a filefrom the server
tftp: sendto: Permission denied
tftp> quit termimite the client

Here we get an error immediately, and nothing is sent on the cable. What’s happening

here is that the sockets API doesn't allow a process to send a UDP datagram to the

broadcast address unless the process specifically states that it plans to broadcast. This is

intended to prevent users from mistakenly specifying a broadcast address (as we did

here) when the application was never intended to broadcast.

With the sockets API the application must set the sO__BROADCAST socket option before send-
ing a UDP datagram to a broadcast address.

Not all systems enforce this restriction. Some implementations allow any process to broadcast
UDP datagrams, without requiring the process to say so. Others are more restrictive and
require a process to have superuser privileges to broadcast.

The next question is whether directed broadcasts are forwarded or not. Some ker-

nels and routers have an option to enable or disable this feature. (See Appendix E.)
If we enable this feature on our router bsdi and run ping from the host slip, we

can see if the subnet—directed broadcasts are forwarded by bsdi. Forwarding a directed

broadcast means the router takes the incoming unicast datagram, determines that the
destination address is the directed broadcast for one of its interfaces, and then forwards

the datagram onto the appropriate network using a link—layer broadcast.

slip % ping 140.252.13.63
PING 140.252.13.63 (140.252.l3.63): 56 data bytes
64 bytes from 140.252.13.35: icmp_seq=0 ttl=255 time-£190 ms
64 bytes from 140.252.13.33: icmp_seq=O ttl=254 time=280 ms (DUP!)
64 bytes from 140.252.13.34: icmp_seq=O ttl=254 time=36O ms (DUP!)

64 bytes from 140.252.13.35: icmp_seq=1 ttl=255 time=180 ms
64 bytes from 140.252.13.33: icmp_seq=1 ttl=254 time=27O ms (DUP!)
64 bytes from 140.252.13.34: icmp_seq=1 ttl=254 time=360 ms (DUP!)

‘ ? type interrupt key to stop

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 12.4 Multicasting 175

12.4

--- 140.252.13.63 ping statistics ---
3 packets transmitted, 2 packets received, +4 duplicates,
round—trip min/avg/max = 180/273/360 ms

33% packet loss

We see that this does indeed work. We also see that the BSD ping program checks for

duplicate sequence numbers and prints DUP! when this occurs. It normally means a

packet was duplicated somewhere, but here we expect to see this, since we sent the

requests to a broadcast address.

We can also run this test from a host much farther away from the network to which
the broadcast is directed. If we run ping from the host vangogh . cs .berkeley . edu

(14 hops away from our network), it still works if the router sun is configured to for-

ward directed broadcasts. In this case the IP datagrams (carrying the ICMP echo

requests) are forwarded by every router in the path as a normal datagram. None of

them knows that it's really a directed broadcast. The next to last router, netb, thinks
it’s for the host with an ID of 63, and forwards it to sun. It is the router sun that detects

that the destination IP address is really the broadcast address of an attached interface,

and turns the datagram into a link-layer broadcast on that network.

Broadcasting is a feature that should be used with great care. In many cases IP

multicasting will prove to be a better solution.

Multicasting

IP multicasting provides two services for an application.

1. Delivery to multiple destinations. There are many applications that deliver

information to multiple recipients: interactive conferencing and dissemination

of mail or news to multiple recipients, for example. Without multicasting these

types of services tend to use TCP today (delivering a separate copy to each des-

tination). Even with multicasting, some of these applications might continue to

use TCP for its reliability.

2. Solicitation of servers by clients. A diskless workstation, for example, needs to

locate a bootstrap server. Today this is provided using a broadcast (as we'll see

with BOOTP in Chapter 16), but a multicast solution would impose less over-

head on the hosts that don't provide the service.

In this section we'll take a look at multicast addresses, and the next chapter looks at the

protocol used by multicasting hosts and routers (IGMP).

Multicast Group Addresses

Figure 12.2 shows the format of a class D IP address.
28 bits

multicast group IDClassD 1 1 l 0

Figure 12.2 Format of a class DIP address.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

176 Broadcasting and Multicasting Chapter 12

Unlike the other three classes of IP addresses (A, B, and C), which we showed in Fig-

ure 1.5, the 28 bits allocated for the multicast group ID have no further structure.

A multiczzst group address is the combination of the high—order 4 bits of 1110 and the

multicast group ID. These are normally written as dotted-decimal numbers and are in

the range 224.0.0.0 through 239.255.255.255.

The set of hosts listening to a particular IP multicast address is called a host group.

A host group can span multiple networks. Membership in a host group is

dynarnic—hosts may join and leave host groups at will. There is no restriction on the

number of hosts in a group, and a host does not have to belong to a group to send a

message to that group.

Some multicast group addresses are assigned as well—l<nown addresses by the

IANA (Internet Assigned Numbers Authority). These are called permanent host groups.

This is similar to the well—l<nown TCP and UDP port numbers. Similarly, these well~

known multicast addresses are listed in the latest Assigned Numbers RFC. Notice that

it is the multicast address of the group that is permanent, not the membership of the
group.

For example, 224.0.0.1 means ’’all systems on this subnet,” and 224.0.0.2 means ”all
routers on this subnet.” The multicast address 224.0.1.1 is for NTP, the Network Time

Protocol, 224.0.0.9 is for RIP-2 (Section 10.5), and 224.0.1.2 is for SGI’s (Silicon Graphics)

dogfight application.

Converting Multicast Group Addresses to Ethernet Addresses

The IANA owns an Ethernet address block, which in hexadecimal is O 0 : O0 : 5e. This is

the high—order 24 bits of the Ethernet address, meaning that this block includes

addresses in the range 00 :O0:5e: 00:00: 00 through 00 : 00 : 5e : ff: ff:ff. The

IANA allocates half of this block for multicast addresses. Given that the first byte of

any Ethernet address must be 01 to specify a multicast address, this means the Ethernet

addresses corresponding to IP multicasting are in the range 01 : 00 : 5e : O0 : 00 : 00

through 01 : 00 : 5e : 7f: ff: ff.

Our notation here uses the Internet standard bit order, for a CSMA/CD or token bus network,

as the bits appear in memory. This is what most programmers and system administrators deal
with. The IEEE documentation uses the transmission order of the bits. The Assigned Num-
bers RFC gives additional details on the differences between these representations.

This allocation allows for 23 bits in the Ethernet address to correspond to the IP

multicast group ID. The mapping places the low—order 23 bits of the multicast group ID
into these 23 bits of the Ethernet address. This is shown in Figure 12.3,

Since the upper 5 bits of the multicast group ID are ignored in this mapping, it is

not unique. Thirty—two different multicast group IDs map to each Ethernet address.

For example, the multicast addresses 224.128.64.32 (hex e0 . 80 . 40 . 20) and 2240.64.32

(hex e0 . O0 . 40 . 20) both map into the Ethernet address 01 : O0 : 5e: 00 : 40 :20.

Since the mapping is not unique, it implies that the device driver or the IP module

in Figure 12.1 must perform filtering, since the interface card may receive multicast

frames in which the host is really not interested. Also, if the interface card doesn't

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 12.4 Multicasting 177

these 5 bits in the multicast group ID are
not used to form the Ethernet address

—>

)<::>|
I

o n 7 8: 15 16 23 24 31
' I

I I
ClassD IP address: 1 1 1 0

lilinaiuuuluuunuuliniIll

>

V

low-order 23 bits of multicast

group ID copied to Ethernet address

000000O10000|00O0Ol011ll00lllllllI||Il|lll|l llllllllllllllllll
48-bit Ethernet address

Figure 12.3 Mapping of a class D IP address into Ethernet multicast address.

provide adequate filtering of multicast frames, the device driver may have to receive all

multicast frames, and perform the filtering itself.

LAN interface cards tend to come in two varieties. One type performs multicast filtering
based on the hash value of the multicast hardware address, which means some unwanted

frames can always get through. The other type has a small, fixed number of multicast
addresses to listen for, meaning that when the host needs to receive more multicast addresses
than are supported, the interface must be put into a ”multicast promiscuous” mode. Hence,
both types of interfaces still require that the device driver perform checking that the received
frame is really wanted.

Even if the interface performs perfect multicast filtering (based on the 48-bit hardware
address), since the mapping from a class D IP address to a 48-bit hardware address is not one-
to—one, filtering is still required.

Despite this imperfect address mapping and hardware filtering, multicasting is still better than
broadcasting.

Multicasting on a single physical network is simple. The sending process specifies a
destination IP address that is a multicast address, the device driver converts this to the

corresponding Ethernet address, and sends it. The receiving processes must notify their

IP layers that they want to receive datagrams destined for a given multicast address,

and the device driver must somehow enable reception of these multicast frames. This is

called ”joining a multicast group.” (The reason we use the plural ”receiving processes”

is because there are normally multiple receivers for a given multicast message, either on

the same host or on multiple hosts, which is why we're using multicasting in the first

place.) When a multicast datagram is received by a host, it must deliver a copy to all
the processes that belong to that multicast group. This is different from UDP where a

single process receives an incoming unicast UDP datagram. With multicasting it is pos-

sible for multiple processes on a given host to belong to the same multicast group.

But complications arise when we extend multicasting beyond a single physical net-

work and pass multicast packets through routers. A protocol is needed for multicast

routers to know if any hosts on a given physical network belong to a given multicast

group. This protocol is called the Internet Group Mamzgement Protocol (IGMP) and is the

topic of the next chapter.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

178
Broadcasting and Multicasting Chapter 12

Multicasting on FDDI and Token Ring Networks

12.5

FDDI networks use the same mapping between the class D IP address and the 48-bit

FDDI address [Katz 1990]. Token ring networks normally use a different mapping,

because of limitations in most token ring controllers [Pusateri 1993].

Summary

Broadcasting is sending a packet to all hosts on a network (usually a locally attached

network) and multicasting is sending a packet to a set of hosts on a network. Basic to

these two concepts is an understanding of the different types of filtering that occur

when a received frame passes up a protocol stack. Each layer can discard a received

packet for different reasons.

There are four types of broadcast addresses: limited, net—directed, subnet-directed,
and all-subnets-directed. The most common is subnet—directed. The limited broadcast

address is normally seen only when a system is bootstrapping.

Problems occur when trying to broadcast through routers, often because the router

may not know the subnet mask of the destination network. The results depend on

many factors: which type of broadcast address, configuration parameters, and so on.

A class D IP address is called a multicast group address. It is converted to an Ether-

net address by placing its lower 23 bits into a fixed Ethernet address. The mapping is

not unique, requiring additional filtering by one of the protocol modules.

Exercises

12.1 Does broadcasting increase the amount of network traffic?

12.2 Consider 50 hosts on an Ethernet: 20 running TCP/IP and 30 running some other protocol
suite. How are broadcasts from one protocol suite handled by hosts running the other
protocol suite?

12.3 You login to a Unix system that you've never used before and want to find the subnet-
directed broadcast address for all attached interfaces that support broadcasting. How can
you do this?

12.4 If we ping the broadcast address with a large packet size, as in

sun % ping 140.252.13.63 1472
PING 140.252.13.63: 1472 data bytes

1480 bytes from sun (140 . 252 . 13 . 33): icmp_seq=O. time=6. ms
1480 bytes from svr4 (140 . 252 . 13 . 34) : icmp__seq=O . time=84. ms
1480 bytes from bsdi (140 . 252 . 13 . 35): icmp__seq=O . time=l28. ms

it works, but increasing the packet size by 1 byte gives us the following error:

‘ sun % ping 140.252.13.63 1473
PING 140.252 . 13. 63: 1473 data bytes
sendto: Message too long

What's going on?

12.5 Redo Exercise 10.6 assuming the eight RIP messages are multicast instead of broadcast

(assume RIP Version 2 is being used). What changes?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

13.1

73

IGMP: Internet Group

Management Protocol

Introduction

Section 12.4 provided an overview of IP multicasting and described how class D IP

addresses are mapped into Ethernet addresses. We briefly mentioned how multicasting

occurs on a single physical network, but said complications occur when multiple net-

works are involved and the multicast datagrams must pass through routers.

In this Chapter we'll look at the Internet Group Management Protocol (IGMP), which is

used by hosts and routers that support multicasting. It lets all the systems on a physical

network know which hosts currently belong to which multicast groups. This informa-

tion is required by the multicast routers, so they know which multicast datagrams to

forward onto which interfaces. IGMP is defined in RFC 1112 [Deering 1989].

Like ICMP, IGMP is considered part of the IP layer. Also like ICMP, IGMP mes-

sages are transmitted in IP datagrams. Unlike other protocols that we've seen, IGMP

has a fixed—size message, with no optional data. Figure 13.1 shows the encapsulation of

an IGMP message within an IP datagram.

-4% IP datagram eh

IP IGMP

header message

20 bytes 8 bytes

Figure 13.1 Encapsulation of an IGMP message within an IP datagram.

IGMP messages are specified in the IP datagram with a protocol value of 2.

Talari Networks Inc. - Exhibit 105%

Talari Networks Inc. - Exhibit 1007

180 IGMP: Internet Group Management Protocol Chapter 13

13.2 IGMP Message

Figure 13.2 shows the format of the 8-byte IGMP message.

0 3 4 7 8 15 16 31
4-bit 4-bit

IGMP IGMP (unused) 16-bit checksuln

version (1) type (1-2) sbytes

32-bit group address (class DIP address) L

Figure 13.2 Format of fields in IGMP message.

The IGMP version is 1. An IGMP type of 1 is a query sent by a multicast router, and 2 is a

response sent by a host. The checksum is calculated in the same manner as the ICMP
checksum.

The group address is a class D IP address. In a query the group address is set to 0,

and in a report it contains the group address being reported. We'll say more about it in

the next section when we see how IGMP operates.

13.3 IGMP Protocol

Joining a Multicast Group

Fundamental to multicasting is the concept of a process joining a multicast group on a

given interface on a host. (We use the term process to mean a program being executed

by the operating system.) Membership in a multicast group on a given interface is

dynamic——it changes over time as processes join and leave the group.

We imply here that a process must have a way of joining a multicast group on a

given interface. A process can also leave a multicast group that it previously joined.

These are required parts of any API on a host that supports multicasting. We use the

qualifier ”interface” because membership in a group is associated with an interface. A

process can join the same group on multiple interfaces.

The release of IP multicasting for Berkeley Unix from Stanford University. details these changes
for the sockets API. These changes are also provided in Solaris 2.x and documented in the
ip(7) manual pages.

Implied here is that a host identifies a group by the group address and the interface.

A host must keep a table of all the groups that at least one process belongs to, and a ref-

erence count of the number of processes belonging to the group.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 13.3 ' IGMP Protocol 181

IGMP Reports and Queries

IGMP messages are used by multicast routers to keep track of group membership on

each of the router’s physically attached networks. The following rules apply.

1. A host sends an IGMP report when the first process joins a group. If multiple

processes on a given host join the same group, only one report is sent, the first

time a process joins that group. This report is sent out the same interface on

which the process joined the group.

2. A host does not send a report when processes leave a group, even when the last
process leaves a group. Thehhost knows that there are no members in a given

group, so when it receives the next query (next step), it won't report the group.

3. A multicast router sends an IGMP query at regular intervals to see if any hosts

still have processes belonging to any groups. The router must send one query

out each interface. The group address in the query is 0 since the router expects

one response from a host for every group that contains one or more members on
that host.

4. A host responds to an IGMP query by sending one IGMP report for each group

that still contains at least one process.

Using these queries and reports, a multicast router keeps a table of which of its inter-

faces have one or more hosts in a multicast group. When the router receives a multicast

datagram to forward, it forwards the datagram (using the corresponding 1nulticastlink—

layer address) only out the interfaces that still have hosts with processes belonging to

that group.

Figure 13.3 shows these two IGMP messages, reports sent by hosts, and queries sent

by routers. The router is asking each host to identify each group on that interface.

IGMP report, TTL = 1, IGMP query, TTL = 1,
IGMP group addr = group address - IGMP group addr = 0

dest IP addr = group address dest IP addr = 224.0.0.1
src IP addr = host's IP addr src IP addr = router ’s IP addr

4- — ‘ — — — — — ~ ~ ~ — — — — — — — —> <— — — — — — ~ ~ — — ~ ~ ~ ~ — — -4 — —>»

I 1

host multicastrouter

Figure 13.3 IGMP reports and queries.

We talk about the TTL field later in this section.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

182 IGMP: Internet Group Management Protocol Chapter 13

Implementation Details

There are many implementation details in this protocol that improve its efficiency. First,

when a host sends an initial IGMP report (when the first process joins a group), there's

no guarantee that the report is delivered (since IP is used as the delivery service).

Another report is sent at a later time. This later time is chosen by the host to be a ran-
dom value between 0 and 10 seconds.

Next, when a host receives a query from a router it doesn't respond immediately,

but schedules the responses for later times. (We use the plural ”responses” because the

host must send one report for each group that contains one or more members.) Since

multiple hosts can be sending a report for the same group, each schedules its response

using random delays. Also realize that all the hosts on a physical network receive all

the reports from other hosts in the same group, because the destination address of the

report in Figure 13.3 is the group’s address. This means that, if a host is scheduled to
send a report, but receives a copy of the same report from another host, the response

can be canceled. This is because a multicast router doesn't care how many hosts belong

to the group—only whether at least one host belongs to the group. Indeed, a multicast

router doesn't even care which host belongs to a group. It only needs to know that at

least one host belongs to a group on a given interface.

On a single physical network without any multicast routers, the only IGMP traffic is

the reports issued by the hosts that support IP multicasting, when the host joins a new
gI‘OU.p.

Time-to-Live Field

In Figure 13.3 we noted that the TTL field of the reports and queries is set to 1. This
refers to the normal TTL field in the IP header. A multicast datagram with an initial
TTL of O is restricted to the same host. By default, multicast datagrams are sent with a

TTL of 1. This restricts the datagram to the same subnet. Higher TTLs can be for~

warded by multicast routers.

Recall from Section 6.2 that an ICMP error is never generated in response to a data-

gram destined to a multicast address. Multicast routers do not generate ICMP ”time
exceeded” errors when the TTL reaches 0.

Normally user processes aren't concerned with the outgoing TTL. One exception, however, is
the Traceroute program (Chapter 8), which is based on setting the TTL field. Since multicast-
ing applications must be able to set the outgoing TTL field, this implies that the programming
interface must provide this capability to user processes. I

By increasing the TTL an application can perform an expanding ring Search for a par-

ticular server. The first multicast datagram is sent with a TTL of 1. If no response is

received, a TTL of 2 is tried, then 3, and so on. In this way the application locates the

closest server, in terms of hops.

The special range of addresses 224.0.0.0 through 224.0.0.255 is intended for applica-

tions that never need to multicast further than one hop. A multicast router should

never forward a datagram with one of these addresses as the destination, regardless of
the TTL.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 13.4 An Example 183

All-Hosts Group

13.4

In Figure 13.3 we also indicated that the router's IGMP query is sent to the destination

IP address of 224,001. This is called the all-hosts group address. It refers to all the

multicast—capable hosts and routers on a physical network. Each host automatically

joins this multicast group on all multicast—capable interfaces, when the interface is ini-

tialized. Membership in this group is never reported.

An Example

Now that we've gone through some-of the details of IP multicasting, let's take a look at

the messages involved. We've added IP multicasting support to the host sun and will

use some test programs provided with the multicasting software to see what happens.

First we'll use a modified version of the net stat command that reports multicast

group membership for each interface. (We showed the standard net stat —ni output

for this host in Section 3.9.) In the following output we show the lines corresponding to

multicast groups in a bold font:
sun % netstat -nia
Name Mtu Network
1e0 1500 140.252.13.

Address
140.252.13.33
224.0.0.1
O8:O0:20:O3:f6:42
O1:00:5e:00:OO:0l
140.252.l.29
224.0.0.1
127.0.0.1

224.0.0.1_

Ipkts Ierrs
4370 0

Opkts Oerrs C011
4924 0 0

s10 552 140.252.1 13587 0 15615 0 0

100 1536 127 1351 O 1351 O 0

The —n option prints IP addresses in numeric format (instead of trying to print them as

names), —i prints the interface statistics, and —a reports on all configured interfaces.

The second line of output for 1e0 (the Ethernet) shows that this interface belongs to

the multicast group 224.0.0.1 (”all hosts”), and two lines later the corresponding Ether-

net address is shown: 01 : O0 : 5e: 00 : O0 : 01. This is what we expect for the Ethernet

address, given the mapping we described in Section 12.4. We also see that the other two

interfaces that support multicasting, the SLIP link slO and the loopback interface 100,

also belong to the all-hosts group.

We must also show the IP routing table, as the normal routing table is used for

multicast datagrams. The bold entry shows that all datagrams for 224..0.0.0 are sent to
the Ethernet:

a
sun 6 netstat —rn

Routing tables
Destination Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH O 32 1e0
127.0.0.1 127.0.0.1 UH 1 381 100
140.252.1.183 140.252.1.29 UH 0 6 s10
default 140.252.1.183 UG 0 328 s10
224.0.0.0 140.252.13.33 U 0 66 1e0
140.252.13.32 140.252.13.33 U 8 5581 le0

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

184 IGMP: Internet Group Management Protocol Chapter 13

If you compare this routing table to the one shown in Section 9.2 for the router sun,

you'll see that the multicast entry is the only change.

We now run a test program that lets us join a multicast group on an interface. (We

don't show any output for our use of this test program.) We join the group 224.1.2.3 on
the Ethernet interface (140.252.13.33). Executing netstat shows that the kernel has

joined the group, and again the Ethernet address is what we expect. We show the

changes from the previous netstat output in a bold font:0
sun 6 netstat —nia

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
le0 1500 l40.252.l3. 140.252.13.33 4374 O 4929 0 0

224.1,2.3
224.0.0.1
O8:O0:20:03:f6:42
0l:00:5e:01:02:03
01:O0:5e:0O:0O:01

S10 S52 140.252.1 140.252.l.29 13862 0 15943 0 0
224.0.0.1

lo0 1536 127 127.0.0.1 1360 0 1360 0 0
224.0.0.1

We have shown the output again for the other two interfaces, slO and 100, to reiterate

that the multicast group is joined only on one interface.

Figure 13.4 shows the tcpdump output corresponding to the process joining the

multicast group.

1 0.0 8:O:20:3:f6:42 1:O:5e:1:2:3 ip 60:
sun > 224.1.2.3: igmp report 224.l.2.3 [ttl 1]

2 6.94 (6.94) 8:O:20:3:f6:42 1:0:5e:1:2:3 ip 60:
sun > 224.1.2.3: igmp report 224.1.2.3 [ttl 1]

Figure 13.4 tcpdump output when a host joins a multicast group.

Line 1 occurs when the host joins the group. The next line is the delayed report that we

said is sent at some random time up to 10 seconds afterward.

We have shown the hardware addresses in these two lines, to verify that the Ether-
net destination address is the correct multicast address. We can also see that the source

IP address is the one corresponding to sun, and the destination IP address is the multi-

cast group address. We can also see that the reported address is that same multicast

group address. -

Finally, we note that the TTL is 1, as specified. tcpdump prints the TTL in square

brackets when its value is 0 or 1. This is because the TTL is normally greater than this.

With multicasting, however, we expect to see lots of IP datagrams with a TTL of 1.

Implied in this output is that a multicast router must receive all rnulticast datagrams

on all its interfaces. The router has no idea which multicast groups the hosts might join.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 13.4 An Example 185

Multicast Router Example

Let's continue the previous example, but we'll also start a multicast routing daemon on

the host sun. Our interest here is not the details of multicast routing protocols, but to

see the IGMP queries and reports that are exchanged. Even though the multicast rout-

ing daemon is running on the only host that supports multicasting (sun), all the queries

and reports are multicast on the Ethernet, so we can see them on any other system on
the Ethernet.

Before starting the routing daemon we joined another multicast group: 224.9.9.9.

Figure 13.5 shows the output.

1 0.0 sun 2 224.0.0.4: igmp report 224.0.0.4

2 0.00 (0.00) sun > 224.0.0.1: igmp query
3 5.10 (5.10) sun > 224.9.9.9: igmp report 224.9.9.9

4 5.22 (0.12) sun > 224.0.0.1: igmp query
5 7.90 (2.68) sun > 224.1.2.3: igmp report 224.1.2.3
6 8.50 (0.60) sun > 224.0.0.4: igmp report 224.0.0.4
7 11.70 (3.20) sun > 224.9.9.9: igmp report 224.9.9.9

8 125.51 (113.81) sun > 224.0.0.1: igmp query
9 125.70 (0.19) sun > 224.9.9.9: igmp report 224.9.9.9

10 128.50 (2.80) sun > 224.1.2.3: igmp report 224.l.2.3
11 129.10 (0.60) sun > 224.0.0.4: igmp report 224.0.0.4

12 247.82 (118.72) sun > 224.0.0.1: igmp query
13 248.09 (0.27) sun > 224.1.2.3: igmp report 224.1.2.3
14 248.69 (0.60) sun > 224.0.0.4: igmp report 224.0.0.4
15 255.29 (6.60) sun > 224.9.9.9: igmp report 224.9.9.9

Figure 13.5 tcpdump output while multicast routing daemon is running.

We have not included the Ethernet addresses in this output, because we've already veri-

fied that they are what we expect. We've also deleted the notation that the TTL equals

1, because again that's what we expect.

Line 1 is output when the routing daemon starts. It sends a report that it has joined

the group 224.0.0.4. Multicast address 224.0.0.4 is a well-known address used by

DVMRP (Distance Vector Multicast Routing Protocol), the protocol currently used for

multicast routing. (DVMRP is defined in RFC 1075 [Waitzman, Partridge, and Deering
1988].)

When the daemon starts it also sends out a query (line 2). The destination IP

address of the query is 224.0.0.1 (all-hosts), as shown in Figure 13.3. i
The first report (line 3) is received about 5 seconds later, for group 224.9.9.9. This is

the only report received before another query is sent (line 4). These two queries (lines 2

and 4) occur rapidly when the daemon starts up, as it tries to build its multicast routing
table.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

186
IGMP: Internet Group Management Protocol Chapter 13

13.5

Lines 5, 6, and 7 are what we expect: one report from the host sun for each group to

which it belongs. Notice that the group 224.0.0.4 is reported, in addition to the two

groups that we explicitly joined, because as long as the routing daemon is running, it

belongs to this group.

The next query on line 8 occurs about 2 minutes after the previous query. Again it

elicits the three reports we expect (lines 9, 10, and 11). The reports are in a different

order this time, as expected, since the time between receiving the query and sending the

report should be randomized.

The final query that we show occurs about 2 minutes after the previous query, and

again we have the expected responses.

Summary

Multicasting is a way to send a message to multiple recipients. In many applications it

is better than broadcasting, since multicasting imposes less overhead on hosts that are

not participating in the communication. The simple host membership reporting proto-

col (IGMP) is the basic building block for multicasting.

Multicasting on a LAN or across closely connected LANs uses the techniques we've

described in this chapter. Since broadcasting is often restricted to a single LAN, multi-

casting could be used instead of broadcasting for many applications that use broadcast-

ing today. M
A problem that has not been completely solved, however, is multicasting across

wide area networks. [Deering and Cheriton 1990] propose extensions to common rout-

ing protocols to support multicasting. Section 9.13 of [Perlrnan 1992] discusses some of
the problems with multicasting across WANs.

[Casner and Deering 1992] describe the delivery of audio for an IETF meeting across

the Internet using multicasting and a virtual network called the MBONE (multicasting
backbone).

Exercises

13.1 We said that hosts schedule IGMP reports with random delays. How can the hosts on a

LAN try to ensure that no two hosts generate the same random delay?

In [Casner and Deering 1992] they mention that UDP lacks two features needed for send-

ing audio samples across the MBONE: detection of packet reordering and detection of
duplicate packets. How could you add these capabilities above UDP?

13.2

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

141

74

DNS: The Domain Name

System

Introduction

The Domain Name System, or DNS, is a distributed database that is used by TCP/IP

applications to map between hostnames and IP addresses, and to provide electronic

mail routing information. We use the term distributed because no single site on the Inter-

net knows all the information. Each site (university department, campus, company, or

department within a company, for example) maintains its own database of information

and runs a server program that other systems across the Internet (clients) can query.

The DNS provides the protocol that allows clients and servers to communicate with
each other.

From an application’s point of view, access to the DNS is through a resolver. On

Unix hosts the resolver is accessed primarily through two library functions,

gethostbyname(3) and gethost;byaddr(3), which are linked with the application

when the application is built. The first takes a hostname and returns an IP address, and

the second takes an IP address and looks up a hostname. The resolver contacts one or

more name servers to do the mapping.

In Figure 4.2 (p. 55) we showed that the resolver is normally part of the application.

It is not part of the operating system kernel as are the TCP/IP protocols. Another fun-

damental point from this figure is that an application must convert a hostname to an IP

address before it can ask TCP to open a connection or send a datagram using UDP. The

TCP/IP protocols within the kernel know nothing about the DNS.

In this chapter we’ll take a look at how resolvers communicate with name servers

using the TCP/IP protocols (mainly UDP). We do not cover all the administrative

details of running a name server or all the options available with resolvers and servers.

These details can fill an entire book. (See [Albitz and Liu 1992] for all the details on the

care and feeding of the standard Unix resolver and name server.)

Talari Networks Inc. - Exhibit 10697

Talari Networks Inc. - Exhibit 1007

188 DNS: The Domain Name System ~ Chapter 14

RFC 1034 [Mockapetris 1987a] specifies the concepts and facilities provided by the

DNS, and RFC 1035 [Mockapetris 1987b] details the implementation and specification.

The most commonly used implementation of the DNS, both resolver and name server, is

called BlND———the Berkeley Internet Name Domain server. The server is called named.

An analysis of the wide-area network traffic generated by the DNS is given in [Danzig,
Obraczka, and Kumar 1992].

14.2 DNS Basics

The DNS name space is hierarchical, similar to the Unix filesystem. Figure 14.1 shows

this hierarchical organization.

unnamed root4w O

top level
domains arpa . . . us . . .

{ United Arab Zimbabwesecond level Emirates
In-addr 110210 Va

domains

140 tuc restog

252 sun cnri
V‘ sun.tuc.noao.edu. cnri.reston.va.us. Z7

13

Q F generic domains country domains >1
33

V\ 33.13.252.140.in-addnarpa.

Figure 14.1 Hierarchical organization of the DNS.

Every node (circles in Figure 14.1) has a label of up to 63 characters. The root of the

tree is a special node with a null label. Any comparison of labels considers uppercase

and lowercase characters the same. The domain name of any node in the tree is the list of

labels, starting at that node, working up to the root, using a period (”dot”) to separate

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.2 DNS Basics 189

the labels. (Note that this is different from the Unix filesystem, which forms a pathname

by starting at the top and going down the tree.) Every node in the tree must have a

unique domain name, but the same label can be used at different points in the tree.

A domain name that ends with a period is called an absolute domain name or a fully

qualified domain name (FQDN). An example is sun.tuc.noao.edu.. If the domain

name does not end with a period, it is assumed that the name needs to be completed.

How the name is completed depends on the DNS software being used. If the uncom-

pleted name consists of two or more labels, it might be considered to be complete; oth-

erwise a local addition might be added to the right of the name. For example, the name

sun might be completed by adding the local suffix .tuc . noao . edu . .

The top~leve1 domains are divided into three areas:

1. arpa is a special domain used for address—to-name mappings. (We describe this
in Section 14.5.)

2. The seven 3~character domains are called the generic domains. Some texts call

these the organizational domains.

3. All the 2-character domains are based on the country codes found in ISO 3166.

These are called the country domains, or the geographical domains.

Figure 14.2 lists the normal classification of the seven generic domains.

Domain Description

com commercial organizations
edu educational institutions

gov other U.S. governmental organizations
int international organizations
mi 1 U.S. military
net networks

0 rg other organizations

Figure 14.2 The 3—character generic domains.

DNS folklore says that the 3—character generic domains are only for U.S. organiza-

tions, and the 2—character country domains for everyone else, but this is false. There are

many non—U.S. organizations in the generic domains, and many US. organizations in

the .us country domain. (RFC 1480 [Cooper and Postel 1993] describes the .us

domain _in more detail.) The only generic domains that are restricted to the United
States are .gov and .mil. ‘

Many countries form second-level domains beneath their 2-character country code

similar to the generic domains: . ac . uk, for example, is for academic institutions in the

United Kingdom and . co . uk is for commercial organizations in the United Kingdom.

One important feature of the DNS that isn't shown in figures such as Figure 14.1 is

the delegation of responsibility within the DNS. No single entity manages every label

in the tree. Instead, one entity (the NIC) maintains a portion of the tree (the top—level

domains) and delegates responsibility to others for specific zones.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

190 DNS: The Domain Name System Chapter 14

A zone is a subtree of the DNS tree that is administered separately. A common zone

is a second-level domain, noao.edu, for example. Many second-level domains then

divide their zone into smaller zones. For example, a university might divide itself into

zones based on departments, and a company might divide itself into zones based on
branch offices or internal divisions.

If you are familiar with the Unix filesystem, notice that the division of the DNS tree into zones
is similar to the division of a logical Unix filesystem into physical disk partitions. Just as we
can't tell from Figure 14.1 where the zones of authority lie, we can’t tell from a similar picture
of a Unix filesystem which directories are on which disk partitions.

Once the authority for a zone is delegated, it is up to the person responsible for the

zone to provide multiple name servers for that zone. Whenever a new system is installed
in a zone, the DNS administrator for the zone allocates a name and an IP address for the

new system and enters these into the name server's database. This is where the need

for delegation becomes obvious. At a small university, for example, one person could

do this each time a new system was added, but in a large university the responsibility

would have to be delegated (probably by departments), since one person couldn’t keep

up with the work.

A name server is said to have authority for one zone or multiple zones. The person

responsible for a zone must provide a prz'mar_1/ name server for that zone and one or more

secondary name servers. The primary and secondaries must be independent and redun-

dant servers so that availability of name service for the zone isn’t affected by a single

point of failure.

The main difference between a primary and secondary is that the primary loads all
the information for the zone from disk files, while the secondaries obtain all the infor-

mation from the primary. When a secondary obtains the information from its primary

we call this a zone transfer.

When a new host is added to a zone, the administrator adds the appropriate infor-

mation (name and IP address minimally) to a disk file on the system running the pri-

mary. The primary name server is then notified to reread its configuration files. The

secondaries query the primary on a regular basis (normally every 3 hours) and if the

primary contains newer data, the secondary obtains the new data using a zone transfer.

What does a name server do when it doesn't contain the information requested? It

must contact another name server. (This is the distributed nature of the DNS.) Not every

name server, however, knows how to contact every other name server. Instead every

name server must know how to contact the root name servers. As of April 1993 there

were eight root servers and all the primary servers must know the IP_ address of each

root server. (These IP addresses are contained in the primary’s configuration files. The

primary servers must know the IP addresses of the root servers, not their DNS names.)
The root servers then know the name and location (i.e., the IP address) of each authori-

tative name server for all the second-level domains. This implies an iterative process:

the requesting name server must contact a root server. The root server tells the request-

ing server to contact another server, and so on. We'll look into this procedure with

some examples later in this chapter.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.3 DNS Message Format 191

You can fetch the current list of root servers using anonymous FTP. Obtain the file
netinfo/root—servers . txt from either ftp . rs . internic . net or nic . ddn.mil.

A fundamental property of the DNS is caching. That is, when a name server

receives information about a mapping (say, the IP address of a hostname) it caches that

information so that a later query for the same mapping can use the cached result and

not result in additional queries to other servers. Section 14.7 shows an example of

caching.

14.3 DNS Message Format

There is one DNS message defined for both queries and responses. Figure 14.3 shows

the overall format of the message.

0 t 15 16 31

identification flags

number of questions number of answer RRs 12 bytes

number of authority RRS number of additional RRS

Z questions Z

Z answers Z(Variable number of resource records)

Z authority Z(variable number of resource records)

Z additional information Z(Variable number of resource records)

Figure 14.3 General format of DNS queries and responses.

The message has a fixed 12-byte header followed by four Variable—length fields.

The 1'demfz'ficatz'on is set by the client and returned by the server. It lets the client

match responses to requests.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

192
DNS: The Domain Name System Chapter 14

The 16-bitflags field is divided into numerous pieces, as shown in Figure 14.4.

QR opcode AA TC RD RA (zero) rcode
1 4 1 1 1 1 3 4

Figure 14.4 flags field in the DNS header.

We'll start at the leftmost bit and describe each field.

QR is a 1-bit field: 0 means the message is a query, 1 means it's a response.

opcode is a 4-bit field. The normal value is 0 (a standard query). Other values are

1 (an inverse query) and 2 (server status request).

AA is a 1-bit flag that means ”authoritative answer.” The name server is author-

itative for the domain in the question section.

TC is a 1-bit field that means ”trunc_ated.” With UDP this means the total size of

the reply exceeded 512 bytes, and only the first 512 bytes of the reply was
returned.

RD is a 1-bit field that means ”recursion desired.” This bit can be set in a query

and is then returned in the response. This flag tells the name server to handle

the query itself, called a recursive query. If the bit is not set, and the requested

name server doesn't have an authoritative answer, the requested name server
returns a list of other name servers to Contact for the answer. This is called an

itemtive query. We’ll see examples of both types of queries in later examples.

RA is a 1-bit field that means ”recursion available.” This bit is set to 1 in the

response if the server supports recursion. We'll see in our examples that most

name servers provide recursion, except for some root servers.

There is a 3-bit field that must be 0.

rcode is a 4-bit field with the return code. The common values are 0 (no error)

and 3 (name error). A name error is returned only from an authoritative name

server and means the domain name specified in the query does not exist.

The next four 16-bit fields specify the number of entries in the four variable—length

fields that complete the record. For a query, the number of questions is normally 1 and

the other three counts are 0. Similarly, for a reply the number of answers is at least 1, and

the remaining two counts can be 0 or nonzero.

Question Portion of DNS Query Message

The format of each question in the question section is shown in Figure 14.5. There is nor-

mally just one question.

The query name is the name being looked up. It is a sequence of one or more labels.

Each label begins with a 1-byte count that specifies the number of bytes that follow. The

name is terminated with a byte of 0, which is a label with a length of 0, which is the

label of the root. Each count byte must be in the range of 0 to 63, since labels are limited

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.3 DNS Message Format 193

O 15 16 31

/ query name Z

query type query class

Figure 14.5 Format of question portion of DNS query message.

to 63 bytes. (We’ll see later in this section that a count byte with the two high-order bits

turned on, Values 192 to 255, is used with a compression scheme.) Unlike many other

message formats that we've encountered, this field is allowed to end on a boundary

other than a 32-bit boundary. No padding is used.

Figure 14.6 shows how the domain name gemini . tuc . noao . edu is stored.

6gemini3tuc4noao3edu0

T T T T T
count count count count count

Figure 14.6 Representation of the domain name gemini .tuc . noao . edu.

Each question has a query type and each response (called a resource record, which

we talk about below) has a type. There are about 20 different Values, some of which are

now obsolete. Figure 14.7 shows some of these Values. The query type is a superset of

the type: two of the Values we show can be used only in questions.

Numeric . _ query
Name Value Description type? type?

A 1 IP address 0 0
NS 2 name server 0 0
CNAME 5 canonical name 0 0

PTR 12 pointer record 0 0
HINFO 13 host info - 0

MX 15 mail exchange record - 0

AXFR 252 request for zone transfer 0
* or ANY 255 request for all records 0

Figure 14.7 type and query type values for DNS questions and responses.

The most common query type is an A type, which means an IP address is desired

for the query name. A PTR query requests the names corresponding to an IP address.

This is a pointer query that we describe in Section 14.5. We describe the other query

types in Section 14.6.

The query class is normally 1, meaning Internet address. (Some other non—IP values

are also supported at some locations.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

194
DNS: The Domain Name System Chapter 14

Resource Record Portion of DNS Response Message

14.4

The final three fields in the DNS message, the answers, authority, and additional informa-

tion fields, share a common format called a resource record or RR. Figure 14.8 shows the
format of a resource record. '

0 15 16 31

Z domain name Z

type class

time—to-live

resource data length

Z resource data /-v

Figure 14.8 Format of DNS resource record.

The domain name is the name to which the following resource data corresponds. It is

in the same format as we described earlier for the query name field (Figure 14.6).

The type specifies one of the RR type codes. These are the same as the query type Val-

ues that we described earlier. The class is normally 1 for Internet data.

The time—to—live field is the number of seconds that the R can be cached by the

client. RRS often have a TTL of 2 days.

The resource data length specifies the amount of resource data. The format of this data

depends on the type. For a type of 1 (an A record) the resource data is a 4-byte IP
address.

Now that we’ve described the basic format of the DNS queries and responses, we'll

see what is passed in the packets by watching some exchanges using tcpdump.

A Simple Example

Let's start with a simple example to see the communication between a resolver and a

name server. We'll run the Telnet client on the host sun to the host gemini, connecting

to the daytime server:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.4 A Simple Example 195

sun % telnet gemini daytime

Trying 140 . 252. 1 . 11 . . . first three lines ofoutput arefrom Telnet client
Connected to gemini . tuc . noao.edu .
Escape character is ’ “] ’ .

Wed Mar 24 10 : 44 : 17 1993 this is the output from the daytime server
Connection closed by foreign host. and this isfrom the Telnet client

For this example we direct the resolver on the host sun (where the Telnet client is run)

to use the name server on the host noao . edu (140.252.l.54). Figure 14.9 shows the

arrangement of the three systems.

name . , daytimenoao . edu geminiserver server

.l.54 \ .1.ll {\ /
\ /
\ /

l40.252.l

Figure 14.9 Systems being used for simple DNS example.

As we've mentioned before, the resolver is part of the client, and the resolver contacts a
name server to obtain the IP address before the TCP connection can be established

between Telnet and the daytime server.

In this figure we've omitted the detail that the connection between sun and the

140.2521 Ethernet is really a SLIP link (see the figure on the inside front cover) because
that doesn't affect the discussion. We will, however, run tcpdump on the SLIP link to

see the packets exchanged between the resolver and name server.
The file /etc / resolv . conf on the host sun tells the resolver what to do:

a
sun 6 cat /etc/resolv.conf
nameserver l40.252.1.54
domain tuc.noao.edu

The first line gives the IP address of the name server—the host noao . edu. Up to three

nameserver lines can be specified, to provide backup in case one is down or unreach-

able. The domain line specifies the default domain. If the name being looked up is not

a fully qualified domain name (it doesn't end with a period) then the default domain

.tuc . noao . edu is appended to the name. This is why we can type telnet gemini
instead of telnet gemini . tuc . noao . edu.

Figure 14.10 shows the packet exchange between the resolver and name server.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

196
DNS: The Domain Name System Chapter 14

140.252.1.29.1447 > 140.252.l.54.53: 1+ A?

gemini.tuc.noao.edu. (37)

2 0.290820 (O.2908) 140.252.1.54.53 > 140.252.1.29.1447: 1* 2/0/0 A
140.252.1.11 (69)

Figure 14.10 tcpdump output for name server query of the hostname gemini .tuc . noao . edu.

We've instructed tcpdump not to print domain names for the source and destination IP

addresses of each IP datagram. Instead it prints 140.252.1.29 for the client (the resolver)

and 140252.154 for the name server. Port 1447 is the ephemeral port used by the client

and 53 is the well—l<nown port for the name server. If tcpdump had tried to print names

instead of IP addresses, then it would have been contacting the same name server

(doing pointer queries), confusing the output.

Starting with line 1, the field after the colon (l+) means the identification field is 1,

and the plus sign means the RD flag (recursion desired) is set. We see that by default,
the resolver asks for recursion.

The next field, A?, means the query type is A (we want an IP address), and the

question mark indicates it’s a query (not a response). The query name is printed next:

gemini .tuc .noao .edu.. The resolver added the final period to the query name,

indicating that it's an absolute domain name.

The length of user data in the UDP datagram is shown as 37 bytes: 12 bytes are the

fixed-size header (Figure 14.3); 21 bytes for the query name (Figure 14.6), and 4 bytes for

the query type and query class. The odd-length UDP datagram reiterates that there is

no padding in the DNS messages.

Line 2 in the tcpdump output is the response from the name server and 1* is the

identification field with the asterisk meaning the AA flag (authoritative answer) is set.

(We expect this server, the primary server for the noao . edu domain, to be authoritative
for names within its domain.)

The output 2 / 0 / 0 shows the number of resource records in the final three Variable-

length fields in the response: 2 answer Rs, 0 authority RRs, and 0 additional RRs.

tcpdump only prints the first answer, which in this case has a type of A (IP address)
with a value of 140.252.1.11.

Why do we get two answers to our query? Because the host gemini is multi-
homed. Two IP addresses are returned. Indeed, another useful tool with the DNS is a

publicly available program named host. It lets us issue queries to a name server and

see what comes back. If we run this program we'll see the two IP addresses for this
host:

c
Sun 6 host gemini
gemini.tuc.noao.edu A
gemini .tuc . noao . edu A

140.252.1.1l
140.252.3.54

The first answer in Figure 14.10 and the first line of output from the host command are

the IP address that shares the same subnet (140.2521) as the requesting host. This is not

an accident. If the name server and the host issuing the query are on the same network

(or subnet), then BIND sorts the results so that addresses on common networks appear
first.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.4 A Simple Example 197

We can still access the host gemini using the other address, but it might be less efficient.
Using traceroute in this instance shows that the normal route from subnet 140.2521 to
140.2523 is not through the host gemini, but through another router that's connected to both
networks. So in this case if we accessed gemini through the other IP address (140.252.3.54) all
the pac1<ets would require an additional hop. We return to this example and explore the rea-
son for the alternative route in Section 25.9, when we can use SNMP to look at a router ’s rout—

ing table.

There are other programs that provide easy interactive access to the DNS. nslookup is sup-
plied with most implementations of the DNS. Chapter 10 of [Albitz and Liu 1992] provides a
detailed description of how to use this program. The dig program (”Domain Internet
Groper”) is another publicly available tool that queries DNS servers. doc ("Domain Obscenity
Control”) is a shell script that uses dig and diagnoses misbehaving domains by sending
queries to the appropriate DNS name servers, and performing simple analysis of the
responses. See Appendix F for details on how to obtain these programs.

The final detail to account for in this example is the size of the UDP data in the

reply: 69 bytes. We need to know two points to account for these bytes.

1. The question is returned in the reply.

2. There can be many repetitions of domain names in a reply, so a compression

scheme is used. Indeed, in our example, there are three occurrences of the
domain name gemini . tuc . noao . edu.

The compression scheme is simple. Anywhere the label portion of a domain

name can occur, the single count byte (which is between 0 and 63) has its two

high—order bits turned on instead. This means it is a 16-bit pointer and not an

8-bit count byte. The 14 bits that follow in the pointer specify an offset in the

DNS message of a label to continue with. (The offset of the first byte in the iden-

tification field is 0.) We purposely said that this pointer can occur wherever a

label can occur, not just where a complete domain name can-occur, since it's pos-

sible for a pointer to form either a complete domain name or just the ending

portion of a name. (This is because the ending labels in the names from a given
domain tend to be identical.)

Figure 14.11 shows the format of the DNS reply, line 2 from Figure 14.10. We also show

the IP and UDP headers to reiterate that DNS messages are normally encapsulated in

UDP datagrams. We explicitly show the count bytes in the labels of the domain name in

the question. The two answers returned are the same, except for the different IP

addresses returned in each answer. In this example the pointer in each answer would

have a value of 12, the offset from the start of the DNS header of the complete domain
name.

The final point to note from this example is from the second line of output from the

Telnet command, which we repeat here:

sun % telnet gemini daytime we only type gemini
Trying l40.252.1.1l ...

Connected to gernini.tuc.noao.edu. but the Telnet clientoutputs FQDN

We typed just the hostname (gemini), not the FQDN, but the Telnet client output the

FQDN. What’s happening is that the Telnet client looks up the name we type by calling

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

198
DNS: The Domain Name System Chapter 14

14.5

>4 IP datagram

< UDP datagram >(

4-4 DNS message 4%
IP UDP DNS

header header header

20 bytes 8 bytes 12bytes

answer #1 (RR)
(Figure 14.8)

,/ 16 bytes

answer #2 (RR)

(Figure 14.8)’

\ \16 bytes

question
(Figure 14.5)

25 bytes

domain name qtype qclass type class TTL length
(6gemin;i_3tuc4noao3edu0) (1) (1) (12) (1) (1) (4)

21 bytes 2 2 2 2 2 4 2 4

IP addr
Figure 14.11 Format of DNS reply corresponding to line 2 of Figure 14.10.

the resolver (gethostbyname), which returns the IP addresses and the FQDN. Telnet

then prints the IP address that it's trying to establish a TCP connection with, and when

the connection is established, it outputs the FQDN.

If there is a significant pause between typing the Telnet command and printing the

IP address, this delay is caused by the resolver contacting a name server to resolve the

name into an IP address. A pause between printing Trying and Connected to, how-

ever, is a delay caused by the establishment of the TCP connection between the client
and server, not the DNS.

Pointer Queries

A perpetual stumbling block in understanding the DNS is how pointer queries are

handled—given an IP address, return the name (or names) corresponding to that
address.

First return to Figure 14.1 (p. 188) and examine the arpa top—level domain, and the

in—addr domain beneath it. When an organization joins the Internet and obtains

authority for a portion of the DNS name space, such as noao.edu,.they also obtain

authority for a portion of the in—addr.arpa name space corresponding to their IP
address on the Internet. In the case of noao . edu it is the class B network ID 140.252.

The level of the DNS tree beneath in—addr.arpa must be the first byte of the IP

address (140 in this example), the next level is the next byte of the IP address (252), and

so on. But remember that names are written starting at the bottom of the DNS tree,

working upward. This means the DNS name for the host sun, with an IP address of
140.252.13.33, is 33 . 13 . 252 . 140 . in—addr . arpa.

We have to write the 4 bytes of the IP address backward because authority is dele~

gated based on network IDS: the first byte of a class A address, the first and second

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.5 Pointer Queries 199

bytes of a class B address, and the first, second, and third bytes of a class C address. The

first byte of the IP address must be immediately below the in—addr label, but FQDNS

are written from the bottom of the tree up. If FQDNS were written from the top down,
then the DNS name for the IP address would be arpa . in—addr . 1 4 0.252 . 13.33, but

the FQDN for the host would be edu . noao . tuc . sun.

If there was not a separate branch of the DNS tree for handling this address—to—

name translation, there would be no way to do the reverse translation other than start-

ing at the root of the tree and trying every top~leVel domain. This could literally take

days or weeks, given the current size of the Internet. The in—addr . arpa solution is a

clever one, although the reversed bytes of the IP address and the special domain are

confusing.

Having to worry about the in—addr . arpa domain and reversing the bytes of the

IP address affects us only if we're dealing directly with the DNS, using a program such

as host, or watching the packets with tcpdump. From an application's point of View,
the normal resolver function (gethostbyaddr) takes an IP address and returns infor-

mation about the host. The reversal of the bytes and appending the domain

in—addr . arpa are done automatically by this resolver function.

Example

Let's use the host program to do a pointer lookup and watch the packets with

tcpdump. We'll use the same setup as in Figure 14.9, running the host program on the

host sun, and the name server on the host noao . edu. We specify the IP address of our
host svr4:

sun % host 140.252.13.34
Name: svr4 . tuc . noao . edu
Address: 140.252.13.34

Since the only command-line argument is an IP address, the host program automati-

cally generates the pointer query. Figure 14.12 shows the tcpdump output.
1 0.0 140.252.1.29.l6l0 > 140.252.1.54.53: 1+ PTR?

34.l3.252.140.in—addr.arpa. (44)

2 0.332288 (O.3323) 140.252.1.54.53 > l40.252.1.29.1610: 1* 1/O/0 PTR
svr4.tuc.noao.edu. (75)

Figure 14.12 tcpdump output for a pointer query.

Line 1 shows that the identifier is 1, the recursion—desired flag is set (the plus sign), and

the query type is PTR. (Recall that the question mark means this is a query and not a

response.) The data size of 44 bytes is from the 12-byte DNS header, 28 bytes for the 7
labels in the domain name, and 4 bytes for the query type and query class.

The reply has the authoritative-answer bit set (the asterisk) and contains one

answer R. The RR type is PTR and the resource data contains the domain name.

What is passed from the resolver to the name server for a pointer query is not a
32-bit IP address, but the domain name 34.13.252.14 0 . ir1-addr . arpa.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

200 DNS: The Domain Name System Chapter 14

Hostname Spoofing Check

When an IP datagram arrives at a host for a server, be it a UDP datagram or a TCP con-

nection request segment, all that's available to the server process is the client's IP

address and port number (UDP or TCP). Some servers require the client's IP address to

have a pointer record in the DNS. We'll see an example of this, using anonymous FTP
from an unknown IP address, in Section 27.3.

Other servers, such as the Rlogin server (Chapter 26), not only require that the

client's IP address have a pointer record, but then ask the DNS for the IP addresses cor-

responding to the name returned in the PTR response, and require that one of the

returned addresses match the source IP address in the received datagram. This check is
because entries in the .rhosts file (Section 26.2) contain the hostname, not an IP

address, so the server wants to verify that the hostname really corresponds to the

incoming IP address.

Some vendors automatically put this check into their resolver routines, specifically

the function gethostbyaddr. This makes the check available to any program using

the resolver, instead of manually placing the check in each application.

We can see an example of this using the SunOS 4.1.3 resolver library. We have writ-

ten a simple program that performs a pointer query by calling the function
gethostbyaddr. We have also set our /etc/reso1v.conf file to use the name

server on the host noao . edu, which is across the SLIP link from the host sun. Fig-

ure 14.13 shows the tcpdump output collected on the SLIP link when the function

gethostbyaddr is called to fetch the name corresponding to the IP address

140252.129 (our host sun).

1 0.0 sun.l8l2 > noao.edu.domain: 1+ PTR?

29.1.252.140.in—addr.arpa. (43)
2 0.339091 (O.339l) noao.edu.domain > sun.l8l2: 1* 1/O/O PTR

sun.tuc.noao.edu. (73)

3 0.344348 (0.0053) sun.l8l3 > noao.edu.domain: 2+ A?
sun.tuc.noao.edu. (33)

4 0.669022 (0.3247) noao.edu.domain > sun.l8l3: 2* 2/0/O A
l40.252.l.29 (69)

Figure 14.13 Calling resolver function to perform pointer query.

Line 1 is the expected pointer query, and line 2 is the expected response. But the
resolver function automatically sends an IP address query in line 3 for the name

returned in line 2. The response in line 4 contains two answer records, since the host

sun has two IP addresses. If one of the addresses does not match the argument to

gethostbyaddr, a message is sent to the system logging facility, and the function

returns an error to the application.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.6 Resource Records 201

14.6 Resource Records

We've seen a few different types of resource records (RRS) so far: an IP address has a

type of A, and PTR means a pointer query. We've also seen that RRS are what a name

server returns: answer RRs, authority RRS, and additional information RRs. There are

about 20 different types of resource records, some of which we'll now describe. Also,

more RR types are being added over time.

A

PTR

CNAME

HINFO

MX

An A record defines an IP address. It is stored as a 32-bit binary value.

This is the pointer record used for pointer queries. The H’ address is rep-

resented as a domain name (a sequence of labels) in the in—addr . arpa
domain. '

This stands for ”canonica1 name.” It is represented as a domain name (a

sequence of labels). The domain name that has a canonical name is often

called an alias. These are used by some FTP sites to provide an easy to

remember alias for some other system.

For example, the gated server (mentioned in Section 10.3) is available

through anonymous FTP from the server gated. cornell.edu. But

there is no system named gated, this is an alias for some other system.

That other system is the canonical name for gated. cornell . edu:

sun % host -t cname gated.cornell.edu
gated.cornell.edu CNAME COMET.CIT.CORNELL.EDU

Here we use the —t option to specify one particular query type.

Host information: two arbitrary character strings specifying the CPU and

operating system. Not all sites provide HINFO records for all their sys—

tems, and the information provided may not be up to date.
sun % host ~t hinfo sun

sun.tuc.noao.edu HINFO Sun—4/25 Sun4.l.3

Mail exchange records, which are used in the following scenarios: (1) A

site that is not connected to the Internet can get an Internet-connected

site to be its mail exchanger. The two sites then work out an alternative

Way to exchange any mail that arrives, often using the UUCP protocol.

(2) MX records provide a way to deliver mail to an alternative host when

the destination host is not available. (3) MX records allow organizations

to provide virtual hosts that one can send mail to, such as
cs .university . edu, even if a host with that name doesn’t exist. (4)

Organizations with firewall gateways can use MX records to limit con~

nectivity to internal systems.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

202 DNS: The Domain Name System Chapter 14

NS

Many sites that are not connected to the Internet have a UUCP link with

an Internet connected site such as UUNET. MX records are then pro-

vided so that electronic mail can be sent to the site using the standard

user@host notation. For example, a fictitious domain foo . com might

have the following MX records:
sun % host -t mx foo.com
foo.com MX
foo.com MX

relay1.UU.NET
relay2.UU.NET

MX records are used by mailers on hosts connected to the Internet. In

this example the other mailers are told ”if you have mail to send to

user@ foo . com, send the mail to relayl.uu.net or

relay2 .uu . net.”

MX records have 16-bit integers assigned to them, called preference values.

If multiple MX records exist for a destination, they're used in order, start-

ing with the smallest preference Value.

Another example of MX records handles the case when a host is down or

unavailable. In that case the mailer uses the MX records only if it can't

connect to the destination using TCP. In the case of the author's primary

system, which is connected to the Internet by a SLIP connection, which is
down most of the time, we have:

sun % host —tv mx sun

Query about sun for record types MX
Trying sun within tuc.noao.edu ...
Query done, 2 answers, authoritative status: no error
sun.tuc.noao.edu 86400 IN MX O sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX 10 noao.edu

We also specified the —v option, to see the preference Values. (This

option also causes other fields to be output.) The second field, 86400, is

the time—to—live value in seconds. This TTL is 24 hours (24 X 60 X 60). The

third column, IN, is the class (Internet). We see that direct delivery to the

host itself, the first MX record, has the lowest preference value of 0. If

that doesn't work (i.e., the SLIP link is down), the next higher preference

is used (10) and delivery is attempted to the host noao.edu. If that

doesn't work, the sender will time out and retry at a later time.

In Section 28.3 we show examples of SMTP mail delivery using MX
records.

Name server record. These specify the authoritative name server for a

domain. They are represented as domain names (a sequence of labels).

We'll see examples of these records in the next section.

These are the common types of Rs. We'll encounter many of them in later examples.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.7
Caching 203

14.7 Caching

To reduce the DNS traffic on the Internet, all name servers employ a cache. With the

standard Unix implementation, the cache is maintained in the server, not the resolver.

Since the resolver is part of each application, and applications come and go, putting the

cache into the program that lives the entire time the system is up (the name server)

makes sense. This makes the cache available to any applications that use the server.

Any other hosts at the site that use this name server also share the serVer’s cache.

In the scenario that we've used for our examples so far (Figure 14.9), we've run the

clients on the host sun accessing the name server across the SLIP link on the host

noao . edu. We'll change that now and run the name server on the host sun. In this

way if we monitor the DNS traffic on the SLIP link using tcpdump, we'll only see

queries that can't be handled by the server out of its cache.

By default, the resolver looks for a name server on the local host (UDP port 53 or

TCP port 53). We delete the nameserver directive from our resolver file, leaving only
the domain directive:

0
sun 6 cat /etc/resolv.conf
domain tuc.noao.edu

The absence of a nameserver directive in this file causes the resolver to use the name

server on the local host.

We then use the host command to execute the following query:

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

Figure 14.14 shows the tcpdump output for this query
1 0.0 sun.tuc.noao.edu.domain > NS.NIC.DDN.MIL.domain:

2 A? ftp.uu.net. (28)
NS.NIC.DDN.MIL.domain > sun.tuc.noao.edu.domain:

2- O/5/5 (229)
2 0.559285 (0.5593)

sun .tuc . noao .edu . domain > ns .UU .NET .domain-.

3+ A? ftp.uu.net. (28)
ns.UU.NET.domain > sun.tuc.noao.edu.domain:

3* 1/0/O A ftp.UU.NET (44)

3 0.564449 (0.0052)

4 1.009476 (0.4450)

Figure 14.14 tcpdump output for: host ftp . uu . net.

This time we've used a new option for tcpdump. We collected all the data to or from UDP or
TCP ports 53 with the —w option. This saves the raw output in a file for later processing. This
prevents tcpdump from trying to call the resolver itself, to print all the names corresponding
to the IP addresses. After we ran our queries, we terminated tcpdump and reran it with the
-3: option. This causes it to read the raw output file and generate its normal printed output
(which we show in Figure 14.14). This takes a few seconds, since tcpdump calls the resolver
itself.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

204 DNS: The Domain Name System Chapter 14

The first thing to notice in our tcpdump output is that the identifiers are small inte~

gers (2 and 3). This is because we terminated the name server, and then restarted it, to

force the cache to be empty. When the name server starts up, it initializes the identifier
to 1.

When we type our query, looking for the IP address of the host ftp . uu . net, the

name server contacts one of the eight root servers, ns .nic .ddn.mi1 (line 1). This is

the normal A type query that we've seen before, but notice that the recursion—desired

flag is not specified. (A plus sign would have been printed after the identifier 2 if the

flag was set.) In our earlier examples we always saw the resolver set the recursion-

desired flag, but here we see that our name server doesn't set the flag when it's contact-

ing one of the root servers. This is because the root servers shouldn't be asked to recur-

sively answer queries—they should be used only to find the addresses of other,
authoritative servers.

Line 2 shows that the response comes back with no answer RRS, five authority RRS,

and five additional information RRs. The minus sign following the identifier 2 means

the recursion—available (RA) flag was not set——this root server wouldn’t answer a recur-

sive query even if we asked it to.

Although tcpdump doesn't print the 10 RRs that are returned, we can execute the
host command to see what's in the cache:

sun % host —v ftp.uu.net
Query about ftp.uu.net for record types A
Trying ftp.uu.net ...
Query done, 1 answer, status: no error
The following answer is not authoritative:
ftp.uu.net 19109 IN A 192.48.96.9
Authoritative nameservers:
UU.NET 170308 IN NS NS.UU.NET
UU.NET 170308 IN NS UUNET.UU.NET
UU.NET 170308 IN NS UUCP—GW—l.PA.DEC.COM
UU.NET 170308 IN NS UUCP-GW-2.PA.DEC.COM
UU.NET 170308 IN NS NS.EU.NET
Additional information:
NS.UU.NET 170347 IN A 137.39.1.3
UUNET.UU.NET 170347 IN A 192.48.96.2
UUCP—GW—1.PA.DEC.COM 170347 IN A l6.l.0.18
UUCP—GW-2.PA.DEC.COM 170347 IN A l6.l.O.19
NS.EU.NET 170347 IN A 192.16.202.11

This time we specified the —v option to see more than just the A record. This shows that
there are five authoritative name servers for the domain uu . net. The five RRs with

additional information that are returned by the root server contain the IP addresses of

these five name servers. This saves us from having to contact the root server again, to

look up the address of one of the servers. This is another implementation optimization
in the DNS.

The host command states that the answer is not authoritative. This is because the

answer was obtained from our name server's cache, not by contacting an authoritative
server.

Returning to line 3 of Figure 14.14, our name server contacts the first of the authori-

tative servers (ns . uu . net) with the same question: What is the IP address of

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.7 Caching 205

ftp . uu . net? This time our server sets the recursion-desired flag. The answer is

returned on line 4 as a response with one answer R.

We then execute the host command again, asking for the same name:o
sun a host ftp.uu.net
ftp.uu.net A 192.48.96.9

This time there is no tcpdump output. This is what we expect, since the answer output

by host is returned from the server's cache.

We execute the host command again, looking for the address of
ftp . ee . lbl . gov:

sun % host ftp.ee.lbl.gov
ftp.ee.lbl.gov CNAME ' ee.lbl.gov
ee.lb1.gov A l28.3.1l2.2O

Figure 14.15 shows the tcpdump output.

1 18.664971 (17.6555) sun.tuc.noao.edu.domain > c.nyser.net.domain:
4 A? ftp.ee.lbl.gov. (32)

2 19.429412 (0.7644) c.nyser.net.domain > sun.tuc.noao.edu.domain:
4 0/4/4 (188)

3 19.432271 (0.0029) sun.tuc.noao.edu.domain > nsl.lbl.gov.domain:
5+ A? ftp.ee.lbl.gov. (32)

4 19.909242 (0.4770) ns1.lbl.gov.domain > sun.tuc.noao.edu.domain:
5* 2/0/0 CNAME ee.lbl.gov. (72)

Figure 14.15 tcpdump output for: host ftp . ee . lbl . gov.

Line 1 shows that this time our server contacts another of the root servers (c . nyser . met). A
name server normally cycles through the various servers for a zone until round—trip estimates
are accumulated. The server with the smallest round—trip time is then used.

Since our server is contacting a root server, the recursion-desired flag is not set.

This root server does not clear the recursion—available flag, as We saw in line 2 in Fig-

ure 14.14. (Even so, a name server still should not ask a root server for a recursive

query.)

In line 2 the response comes back with no answers, but four authority RRs and four

additional information RRs. As we can guess, the four authority RRs are the names of
the name servers for ftp . ee . lbl . gov, and the four other RRS contain the IP
addresses of these four servers.

Line 3 is the query of the name server nsl . lbl . gov (the first of‘ the four name

servers returned in line 2). The recursion-desired flag is set.

The response in line 4 is different from previous responses. Two answer Rs are

returned and tcpdump says that the first one is a CNAME RR. The canonical name of
ftp . ee . lbl . gov is ee . lbl . gov.

This is a common usage of CNAME records. The FTP site for LBL always has a name begin-
ning with ftp, but it may move from one host to another over time. Users need only know
the name ftp . ee . lbl . gov and the DNS will replace this with its canonical name when refer-
enced.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

206
DNS: The Domain Name System Chapter 14

14.8

14.9

Remember that when we ran host, it printed both the CNAME and the IP address

of the canonical name. This is because the response (line 4 in Figure 14.15) contained
two answer RRs. The first one is the CNAME and the second is the A record. If the A

record had not been returned with the CNAME, our server would have issued another

query, asking for the IP address of ee . lbl . gov. This is another implementation

optimization—both the CNAME and the A record of the canonical name are returned

in one response.

UDP or TCP

We've mentioned that the well—l<nown port numbers for DNS name servers are UDP

port 53 and TCP port 53. This implies that the DNS supports both UDP and TCP. But

all the examples that we've watched with tcpdump have used UDP. When is each

protocol used and why?

When the resolver issues a query and the response comes back with the TC bit set

(”truncated”) it means the size of the response exceeded 512 bytes, so only the first 512

bytes were returned by the server. The resolver normally issues the request again, using

TCP. This allows more than 512 bytes to be returned. (Recall our discussion of the max-

imum UDP datagram size in Section 11.10.) Since TCP breaks up a stream of user data

into what it calls segments, it can transfer any amount of user data, using multiple

segments.

Also, when a secondary name server for a domain starts up it performs a zone

transfer from the primary name server for the domain. We also said that the secondary

queries the primary on a regular basis (often every 3 hours) to see if the primary has

had its tables updated, and if so, a zone transfer is performed. Zone transfers are done

using TCP, since there is much more data to transfer than a single query or response.

Since the DNS primarily uses UDP, both the resolver and the name server must per-

form their own timeout and retransmission. Also, unlike many other Internet applica-

tions that use UDP (TFTP, BOOTP, and SNMP), which operate mostly on local area

networks, DNS queries and responses often traverse wide area networks. The packet

loss rate and variability in round-trip times are normally higher on a WAN than a LAN,

increasing the importance of a good retransmission and timeout algorithm for DNS
clients.

Another Example

Let's look at another example that ties together many of the DNS features that we’ve

described. We start an Rlogin client, connecting to an Rlogin server in some other

domain. Figure 14.16 shows the exchange of packets that takes place. The following 11

steps take place, assuming none of the information is already cached by the client or
server:

1. The client starts and calls its resolver function to convert the hostname that we

typed into an IP address. A query of type A is sent to a root server.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 14.9 Another Example 207

10.

11.

server ’s

q name server
Rloginserver

root

name server

root
name server _<5l=_TF1’2°:m_e9‘~i9n.

name SQFVEI‘

Figure 14.16 Summary of packets exchanged to start up Rlogin client and server.

The root server's response contains the name servers for the server's domain.

The client's resolver reissues the query of type A to the server's name server.

This query normally has the recursion—desired flag set.

The response comes back with the IP address of the server host.

The Rlogin client establishes a TCP connection with the Rlogin server. (Chap-

ter 18 provides all the details of this step.) Three packets are exchanged
between the client and server TCP modules.

The Rlogin server receives the connection from the client and calls its resolver

to obtain the name of the client host, given the IP address that the server

receives from its TCP. This is a PTR query issued to a root name server. This

root server can be different from the root server used by the client in step 1.

The root server's response contains the name servers for the client's
in—addr . arpa domain.

The server's resolver reissues the PTR query to the client's name server.

The PTR response contains the FQDN of the client host.

The server's resolver issues a query of type A to the client's name server, ask-

ing for the IP addresses corresponding to the name returnedain the previous

step. This may be done automatically by the server's gethostbyaddr func-

tion, as we described in Section 14.5, otherwise the Rlogin server does this step

explicitly. Also, the client's name server is often the same as the client's

in~addr . arpa name server, but this isn't required.

The response from the client's name server contains the A records for the client

host. The Rlogin server compares the A records with the IP address from the

client’s TCP connection request.

Caching can reduce the number of packets exchanged in this figure.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

208 DNS: The Domain Name System Chapter 14

14.10 Summary

The DNS is an essential part of any host connected to the Internet, and widely used in

private internets also. The basic organization is a hierarchical tree that forms the DNS
name space.

Applications contact resolvers to Convert a hostname to an IP address, and vice

versa. Resolvers then contact a local name server, and this server may contact one of the

root servers or other servers to fulfill the request.

All DNS queries and responses have the same message format. This message con-

tains questions and possibly answer resource records (RRS), authority RRs, and addi-

tional RRS. We saw numerous examples, showing the resolver configuration file and

some of the DNS optimizations: pointers to domain names (to reduce the size of mes-

sages), caching, the in—addr . arpa domain (to look up a name given an IP address),

and returning additional RRs (to save the requestor from issuing another query).

Exercises

14.1 Classify a DNS resolver and a DNS name server as either client, server, or both.

14.2 Account for all 75 bytes in the response in Figure 14.12.

14.3 In Section 12.3 we said that an application that accepts either a dotted—decimal IP address
or a hostname should assume the former, and if that fails, then assume a hostname. What

happens if the order of the tests is reversed?

14.4 Every UDP datagram has an associated length. A process that receives a UDP datagram is

told what its length is. When a resolver issues a query using TCP instead of UDP, since
TCP is a stream of bytes without any record markers, how does the application know how

much data is returned? Notice that there is no length field in the DNS header (Figure 14.3).
(Hint: Look at RFC 1035.)

14.5 We said that a name server must know the IP addresses of the root servers and that this

information is available via anonymous FTP. Unfortunately not all system administrators
update their DNS files whenever changes are made to the list of root servers. (Changes do
occur to the list of root servers, but not frequently.) How do you think the DNS handles
this?

14.6 Fetch the file specified in Exercise 1.8 and determine who is responsible for maintaining
theroot name servers. How frequently are the root servers updated?

14.7 What is a problem with maintaining the cache in the name server, and having a stateless
resolver?

14.8 In the discussion of Figure 14.10 we said that the name server sorts the A records so that
addresses on common networks appear first. Who should sort the A records, the name
server or the resolver?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

15.1

15.2

75

TFTP: Trivial File Transfer

Protocol

Introduction

TFTP is the Trivial File Transfer Protocol. It is intended to be used when bootstrapping

diskless systems (normally workstations or X terminals). Unlike the File Transfer Proto-

col (FTP), which we describe in Chapter 27 and which uses TCP, TFTP was designed to

use UDP, to make it simple and small. Implementations of TFTP (and its required UDP,

IP, and a device driver) can fit in read-only memory.

This chapter provides an overview of TFTP because we’ll encounter it in the next

chapter with the Bootstrap Protocol. We also encountered TFTP in Figure 5.1 when we

bootstrapped the host sun from the network. It issued a TFTP request after obtaining

its IP address using RARP.

‘ RFC 1350 [Sollins 1992] is the official specification of Version 2 of TFTP. Chapter 12

of [Stevens 1990] provides a complete source code implementation of a TFTP client and

server, and describes some of the programming techniques used with TFTP.

Protocol

Each exchange between a client and server starts with the client asking the server to
either read a file for the client or write a file for the client. In the normal case of boot-

strapping a diskless system, the first request is a read request (RRQ). Figure 15.1 shows

the format of the five TFTP messages. (Opcodes 1 and 2 share the same format.)

The first 2 bytes of the TFTP message are an opcode. For a read request (RRQ) and

write request (WRQ) the filename specifies the file on the server that the client wants to

read from or write to. We specifically show that this filename is terminated by a byte of

0 in Figure 15.1. The mode is one of the ASCII strings netascii or octet (in any

Talari Networks Inc. - Exhibit 10699

Talari Networks Inc. - Exhibit 1007

210 TFTP: Trivial File Transfer Protocol Chapter 15

>4 IP datagram pi

Fax UDP datagram Tap‘

as TFTP message [pl
opcode

l helailer l hggiir (1=RRQ) filename 0 mode 0(2=WRQ)
20 bytes 8 bytes 2 bytes N bytes 1 N bytes 1

opcode block
(3=data) number data

2 bytes 2 bytes 0*512 bytes

opcode block
(4=ACI<) number

2 bytes 2 bytes

Opcode error error message 0(5=error) number

2 bytes 2 bytes N bytes 1

Figure 15.1 Format of the five TFTP messages.

combination of uppercase or lowercase), again terminated by a byte of 0. netascii

means the data are lines of ASCII text with each line terminated by the 2-character

sequence of a carriage return followed by a linefeed (called CR/LF). Both ends must
convert between this format and whatever the local host uses as a line delimiter. An

octet transfer treats the data as 8-bit bytes with no interpretation.

Each data packet contains a block number that is later used in an acknowledgment

packet. As an example, when reading a file the client sends a read request (RRQ) speci-

fying the filename and mode. If the file can be read by the client, the server responds

with a data packet with a block number of 1. The Client sends an ACK ‘of block number
1. The server responds with the next data packet, with a block number of 2. The client
sends an ACK of block number 2. This continues until the file is transferred. Each data

packet contains 512 bytes of data, except for the final packet, which contains 0-511

bytes of data. When the client receives a data packet with less than 512 bytes of data, it

knows it has received the final packet.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 15.3 An Example 211

15.3

In the case of a Write request (WRQ), the client sends the WRQ specifying the file-

name and mode. If the file can be written by the client, the server responds with an

ACK of block number 0. The client then sends the first 512 bytes of file with a block

number of 1. The server responds with an ACK of block number 1.

This type of data transmission is called a st0p—m1d—zm1z't protocol. It is found only in

simple protocols such as TFTP. We'll see in Section 20.3 that TCP provides a different

form of acknowledgment, which can provide higher throughput. TFTP is designed for

simplicity of implementation, not high throughput.

The final TFTP message type is the error message, with an opcode of 5. This is what

the server responds with if a read request or Write request can't be processed. Read and

write errors during file transmission also cause this message to be sent, and transmis-

sion is then terminated. The error number gives a numeric error code, followed by an

ASCII error message that might contain additional, operating system specific informa-
tion.

Since TFTP uses the unreliable UDP, it is up to TFTP to handle lost and duplicated

packets. Lost packets are detected with a timeout and retransmission implemented by

the sender. (Be aware of a potential problem called the ”sorcerer’s apprentice syn-
drome” that can occur if both sides time out and retransmit. Section 12.2 of [Stevens

1990] shows how the problem can occur.) As with most UDP applications, there is no

checksum in the TFTP messages, which assumes any corruption of the data will be

caught by the UDP checksum (Section 11.3).

An Example

Let's examine TFTP by watching the protocol in action. We'll run the TFTP client on the
host bsdi and fetch a text file from the host svr4:

start the TFTP client

fetch a filefrom the server

bsdi % tftp svr4
tftp> get test1.c
Received 962 bytes in 0.3 seconds

tftp> quit and terminate

bsdi % ls -1 test1.c
—rw—r——r—— 1 rstevens

how many bytes in the file wefetched?
staff 914 Mar 20 11:41 test1.c

bsdi % wc -1 test1.c
48 test1.c

and how many lines?

The first point that catches our eye is that the file contains 914 bytes under Unix, but

TFTP transfers 962 bytes. Using the wc program we see that there are 48 lines in the file,

so the 48 Unix newline characters are expanded into 48 CR/LF pairs, since the TFTP
default is a netascii transfer.

Figure 15.2 shows the packet exchange that takes place.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

212
TFTP: Trivial File Transfer Protocol Chapter 15

1 0.0 bsdi.1l06 > svr4.tftp: 19 RRQ "test1.c"

2 0.287080 (0.287l) sVr4.l077 > bsdi.l106: udp 516
3 0.291178 (0.0041) bsdi.1l06 > svr4.l077: udp 4

4 0.299446 (0.0083) SVr4.107'7 > bsdi.1106: udp 454
5 0.312320 (0.0129) bsdi.1l06 > svr4.l077: udp 4

Figure 15.2 Packet exchange for TFTP of a file.

Line 1 shows the read request from the client to the server. Since the destination UDP

port is the TFTP well—l<nown port (69), tcpdump interprets the TFTP packet and prints

RRQ and the name of the file. The length of the UDP data is printed as 19 bytes and is

accounted for as follows: 2 bytes for the opcode, 7 bytes for the filename, 1 byte of 0, 8

bytes for netascii, and another byte of 0.

The next packet is from the server (line 2) and contains 516 bytes: 2 bytes for the
opcode, 2 bytes for the block number, and 512 bytes of data. Line 3 is the acl<nowledg~

ment for this data: 2 bytes for the opcode and 2 bytes for the block number.

The final data packet (line 4) contains 450 bytes of data. The 512 bytes of data in

line 2 and this 450 bytes of data account for the 962 bytes of data output by the client.

Note that tcpdump doesn't output any additional TFTP protocol information for

lines 2—5, whereas it interpreted the TFTP message in line 1. This is because the

server's port number changes between lines 1 and 2. The TFTP protocol requires that

the client send the first packet (the RRQ or WRQ) to the server's well—known UDP port

(69). The server then allocates some other unused ephemeral port on the server's host

(1077 in Figure 15.2), which is then used by the server for all further packet exchange

between this client and server. The client's port number (1106 in this example) doesn't

change. tcpdump has no idea that port 1077 on host svr4 is really a TFTP server.

The reason the server's port number changes is so the server doesn't tie up the well-

known port for the amount of time required to transfer the file (which could be many

seconds or even minutes). Instead, the Well-known port is left available for other TFTP

clients to send their requests to, while the current transfer is under way.

Recall from Figure 10.6 (p. 133) that when the RIP server had more than 512 bytes to

send to the client, both UDP datagrams came from the server's well-known port. In

that example, even though the server had to write multiple datagrams to send all the

data back, the server did one write, followed by the next, both from its well-known

port. Here, with TFTP, the protocol is different since there is a longer term relationship
between the client and server (which We said could be seconds or minutes). If one

server process used the well-known port for the duration of the file transfer, it would

either have to refuse any further requests that arrived from other clients, or that one

server process would have to multiplex file transfers with multiple clients at the same

time, on the same port (69). The simplest solution is to have the server obtain a new

port after it receives the RQ or WRQ. Naturally the client must detect this new port

when it receives the first data packet (line 2 in Figure 15.2) and then send all further

acknowledgments (lines 3 and 5) to that new port.

In Section 16.3 we'll see TFTP used when an X terminal is bootstrapped.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 15
Exercises 213

15.4

15.5

Security

Notice in the TFTP packets (Figure 15.1) that there is no provision for a username or

password. This is a feature (i.e., ”security hole”) of TFTP. Since TFTP was designed for

use during the bootstrap process it could be impossible to provide a username and

password.

This feature of TFTP was used by many crackers to obtain copies of a Unix pass-

word file and then try to guess passwords. To prevent this type of access, most TFTP

servers nowadays provide an option whereby only files in a specific directory (often

/t ftpboot on Unix systems) can be accessed. This directory then contains only the

bootstrap files required by the diskless systems.

For additional security, the TFTP server on a Unix system normally sets its user ID

and group ID to values that should not be assigned to any real user. This allows access

only to files that have world-read or world—write permissions.

Summary

TFTP is a simple protocol designed to fit into read-only memory and be used only dur-

ing the bootstrap process of diskless systems. It uses only a few message formats and a

stop-and-wait protocol.

To allow multiple clients to bootstrap at the same time, a TFTP server needs to pro-

vide some form of concurrency. Because UDP does not provide a unique connection

between a client and server (as does TCP), the TFTP server provides concurrency by cre-

ating a new UDP port for each client. This allows different client input datagrams to be

demultiplexed by the server’s UDP module, based on destination port numbers, instead

of doing this in the server itself.

The TFTP protocol provides no security features. Most implementations count on

the system administrator of the TFTP server to restrict any client's access to the files nec-

essary for bootstrapping only.

Chapter 27 covers the File Transfer Protocol (FTP), which is designed for general

purpose, high-throughput file transfer. A

Exercises

15.1 Read the Host Requirements RFC to see what a TFTP server should.do if it receives a
request and the destination IP address of the request is a broadcast address.

15.2 What do you think happens when the TFTP block number wraps around from 65535 to 0?
Does RFC 1350 say anything about this?

15.3 We said that the TFTP sender performs the timeout and retransmission to handle lost pack-
ets. How does this affect the use of TFTP when it's being used as part of the bootstrap
process?

15.4 What is the limiting factor in the time required to transfer a file using TFTP?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

16.1

16.2

76

BOOTP: Bootstrap Protocol

Introduction

In Chapter 5 we described how a diskless system, with no knowledge of its IP address,

can determine its IP address using RARP when it is bootstrapped. There are two prob-

lems with RARP: (1) the only thing returned is the IP address, and (2) since RARP uses a

linl<—layer broadcast, RARP requests are not forwarded by routers (necessitating an

RARP server on every physical network). This chapter describes an alternative method

for a diskless system to bootstrap itself, called the Bootstrap Protocol, or BOOTP.

BOOTP uses UDP and normally works in conjunction with TFTP (Chapter 15).

RFC 951 [Croft and Gilmore 1985] is the official specification for BOOTP with clarifica-

tions given in RFC 1542 [Wimer 1993].

BOOTP Packet Format

BOOTP requests and replies are encapsulated in UDP datagrams, as shown in Fig-
ure 16.1.

<e IP datagram T»

(T UDP datagram ——:—————-——>-

IP UDP

header header BOOTP request/ reply

20 bytes 8 bytes 300 bytes

Figure 16.1 Encapsulation of BOOTP requests and replies within a UDP datagram.

Talari Networks Inc. - Exhibit 10095

Talari Networks Inc. - Exhibit 1007

216 BOOTP: Bootstrap Protocol Chapter 16

Figure 16.2 shows the format of the 300-byte BOOTP request and reply.

0 7 8 15 16 23 24 31

Opcode hardware type hardware address h Count A
(1=request, 2=reply) (1 = Ethernet) length (6 for Ethernet) Op

transaction ID

number of seconds (unused)

client IP address

your IP address

server IP address

gateway IP address

300 bytes

Z client hardware address (16 bytes) Z

Z server hostname (64 bytes) Z

—v

Z boot filenarne (128 bytes) Z

Z vendor—specific information (64 bytes) Z

Y

Figure 16.2 Format of BOOTP request and reply.

Opcodé is 1 for a request and 2 for a reply. The hzzrdware type field is 1 for a 10
Mbits/sec Ethernet, the same value that is in the field of the same name in an ARP

request or reply (Figure 4.3). Similarly, the hardware address length is 6 bytes for an
Ethernet.

The hop count is set to 0 by the client, but can be used by a proxy server (described
in Section 16.5).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 16.2 BOOTP Packet Format 217

The transaction ID is a 32-bit integer set by the client and returned by the server.

This lets the client match a response with a request. The client should set this to a ran-

dom number for each request.

Number of seconds can be set by the client to the time since it started trying to boot-

strap. The servers can look at this value, and perhaps a secondary server for a client

won’t respond until the number of seconds has exceeded some value, implying that the

client’s primary server is down.

If the client already knows its IP address, it fills in the client IP address. Otherwise,

the client sets this to 0. In the latter case the server fills in your IP address with the

client's IP address. The server IP address is filled in by the server. If a proxy server is

used (Section 16.5), that proxy server fills in its gateway IP address.

The client must set its client hardware address. Although this is the same value as in

the Ethernet header, by placing the field in the UDP datagram also, it is easily available

to any user process (e.g., a BOOTP server) that receives the datagram. It is normally

much harder (or impossible) for a process reading UDP datagrams to determine the

fields in the Ethernet header that carried the UDP datagram.

The server hostname is a null terminated string that is optionally filled in by the

server. The server can also fill in the boot filename with the fully qualified, null termi-

nated pathname of a file to bootstrap from.

The vead0r—speczfic area is used for various extensions to BOOTP. Section 16.6
describes some of these extensions.

When a client is bootstrapping using BOOTP (an opcode of 1) the request is nor-

mally a link—layer broadcast and the destination IP address in the IP header is normally
255.255.255.255 (the limited broadcast, Section 12.2). The source IP address is often

0.0.0.0 since the client does not know its own IP address yet. Recall from Figure 3.9 that

0.0.0.0 is a valid source IP address when a system is bootstrapping itself.

Port Numbers

There are two well—known ports for BOOTP: 67 for the server and 68 for the client. This

means the client does not choose an unused ephemeral port, but uses 68 instead. The

reason two port numbers were chosen, instead of just one for the server, is that a

server's reply can be (but normally isn't) broadcast.

If the server's reply were broadcast, and if the client were to choose an ephemeral

port number, these broadcasts would also be received by other applications on other

hosts that happen to be using the same ephemeral port number. Hence, it is considered

bad form to broadcast to a random (i.e., ephemeral) port number. _
If the client also used the server's well—known port (67) as its port, then all servers

on the network are awakened to look at each broadcast reply. (If all the servers were

awakened, they would examine the opcode, see that it's a reply and not a request, and

go back to sleep.) Therefore the choice was made to have all clients use a single well-

known port that differs from the server's well-known port.

If multiple clients are bootstrapping at the same time, and if the server broadcasts

the replies, each client sees the replies intended for the other clients. The clients can use

the transaction ID field in the BOOTP header to match replies with requests, or the
client can examine the returned client hardware address.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

218 BOOTP: Bootstrap Protocol Chapter 16

16.3 An Example

Let's look at an example of BOOTP when an X terminal is bootstrapped. Figure 16.3

shows the tcpdump output. (The client's name is proteus and the server's name is

mercury. This tcpdump output was obtained on a different network from the one

we've been using for all the other examples in the text.)

1 0.0 0.0.0.0.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c

2 0.355446 (0.3554) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

3 0.355447 (0.0000) arp who—has proteus tell 0.0.0.0
4 0.851508 (0.4961) arp who—has proteus tell 0.0.0.0
5 1.371070 (0.5196) arp who—has proteus tell proteus

6 1.863226 (0.4922) proteus.68 > 255.255.255.255.bootp:
secs:100 ether O:0:a7:0:62:7c

7 1.871038 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury Gzmercury ether O:0:a7:O:62:7c
file "/local/var/bootfiles/Xncdl9r"

8 3.871038 (2.0000) proteus.68 > 255.255.255.255.bootp:
secs:100 ether O:0:a7:0:62:7c

9 3.878850 (0.0078) mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncd19r"

10 5.925786 (2.0469) arp who—has mercury tell proteus
11 5.929692 (0.0039) arp reply mercury is~at 8:O:2b:28:eb:1d

12 5.929694 (0.0000) proteus.tftp > mercury.tftp: 37 RRQ
"/local/var/bootfiles/Xncd19r"

13 5.996094 (0.0664) mercury.2352 > proteus.tftp: 516 DATA block 1
14 6.000000 (0.0039) proteus.tftp > mercury.2352: 4 ACK

many lines deleted here

15 14.980472 (8.9805) mercury.2352 > proteus.tftp: 516 DATA block 2463
16 14.984376 (0.0039) proteus.tftp > mercury.2352: 4 ACK
17 14.984377 (0.0000) mercury.2352 > proteus.tftp: 228 DATA block 2464
18 14.984378 (0.0000) proteus.tftp > mercury.2352: 4 ACK

Figure 16.3 Example of BOOTP being used to bootstrap an X terminal.

In line 1 we see the client's request from 0.0.0.0.68, destined for 255.255.255.255.67.

The only fields the client has filled in are the number of seconds and its Ethernet

address. We'll see that this client always sets the number of seconds to 100. The hop

count and transaction ID are both 0 since they are not output by tcpdump. (A transac-

tion ID of 0 means the client ignores the field, since it would set this field to a random

number if it was going to verify the returned value in the response.)

Line 2 is the reply from the server. The fields filled in by the server are the client's

IP address (which tcpdump prints as the name proteus), the server's IP address

(printed as the name mercury), the IP address of a gateway (printed as the name
mercury), and the name of a boot file.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 16.4 BOOTP Server Design 219

16.4

After receiving the BOOTP reply, the client immediately issues an ARP request to

see if anyone else on the network has its IP address. The name proteus following

who—has corresponds to the target IP address (Figure 4.3), and the sender's IP address

is set to 0.0.0.0. It sends another identical ARP request 0.5 second later, and another one

0.5 second after that. In the third ARP request (line 5) it changes the sender's IP address

to be its own IP address. This is a gratuitous ARP request (Section 4.7).
Line 6 shows that the client waits another 0.5 second and broadcasts another

BOOTP request. The only difference between this request and line 1 is that now the

client puts its own IP address in the IP header. It receives the same reply from the same

server (line 7). The client waits another 2 seconds and broadcasts yet another BOOTP

request (line 8) and receives the same reply from the same server.

The client then waits another 2 seconds and sends an ARP request for its server

mercury (line 10). The ARP reply is received and the client immediately issues a TFTP
read request for its boot file (line 12). What follows are 2464 TFTP data packets and

acknowledgments. The amount of data transferred is 512 X 2463 + 224 = 1, 261, 280

bytes. This loads the operating system into the X terminal. We have deleted most of the

TFTP lines from Figure 16.3.

One thing to notice, when comparing this TFTP exchange with Figure 15.2, is that

here the client uses the TFTP well~known port (69) for the entire transfer. Since one of

the two partners is using port 69, tcpdump knows that the packets are TFTP messages,

so it is able to interpret each packet using the TFTP protocol. This is why Figure 16.3

indicates which packets contain data, which contain acknowledgments, and what the

block number is for each packet. We didn't get this additional information in Fig-

ure 15.2 because neither end was using TFTP’s well-known port for the data transfer.

Normally the TFTP client cannot use TFTP’s well—l<nown port, since that port is used by

the server on a multiuser system. But here the system is being bootstrapped, so a TFTP

server is not provided, allowing the client to use the port for the duration of the transfer.

This also implies that the TFTP server on mercury doesn't care what the client’s port

number is—it sends the data to the client's port, whatever that happens to be.

From Figure 16.3 we see that 1,261,280 bytes are transferred in 9 seconds. This is a

rate of about 140,000 bytes per second. While this is slower than most FTP file transfers

across an Ethernet, it is not that bad for a simple stop—and—wait protocol such as TFTP.

What follows as this X terminal is bootstrapped are additional TFTP transfers of the

terrnina1’s font files, some DNS name server queries, and then the initialization of the X

protocol. The total time in Figure 16.3 was almost 15 seconds, and another 6 seconds is

taken for the remaining steps. This gives a total of 21 seconds to bootstrap the diskless
X terminal.

BOOTP Server Design

The BOOTP client is normally provided in read-only memory on the diskless system. It

is interesting to see how the server is normally implemented.

First, the server reads UDP datagrams from its well~known port (67). Nothing spe-

cial is required. This differs from an RARP server (Section 5.4), which we said had to

read Ethernet frames with a type field of ”RARP request.” The BOOTP protocol also

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

220
BOOTP: Bootstrap Protocol Chapter 16

16.5

made it easy for the server to obtain the client's hardware address, by placing it into the

BOOTP packet (Figure 16.2).

An interesting problem arises: how can the server send a response directly back to

the client? The response is a UDP datagram, and the server knows the client's IP

address (probably read from a configuration file on the server). But if the BOOTP server

sends a UDP datagram to that IP address (the normal way UDP output is handled), the

server's host will probably issue an ARP request for that IP address. But the client can't

respond to the ARP request since it doesn't know its IP address yet! (This is called the

”chicken and egg” issue in RFC 951.)

There are two solutions. The first, commonly used by Unix servers, is for the server

to issue an ioctl(2) request to the kernel, to place an entry into the ARP cache for this
client. (This is what the arp —s command does, Section 4.8.) The server can do this
since it knows the client’s hardware address and IP address. This means that when the

server sends the UDP datagram (the BOOTP reply), the server’s ARP module will find
the client's I]? address in the ARP cache.

An alternative solution is for the server to broadcast the BOOTP reply, instead of

sending it directly to the client. Since reducing the number of broadcasts on a network

is always desirable, this solution should be used only if the server cannot make an entry

into its ARP cache. Normally it requires superuser permission to make an entry into the V

ARP cache, requiring a broadcast reply if the server is nonprivileged.

BOOTP Through a Router

We said in Section 5.4 that one of the drawbacks of RARP is that it uses a link—layer

broadcast, which is normally not forwarded by a router. This required an RARP server

on each physical network. BOOTP can be used through a router, if supported by the

router. (Most major router vendors do support this feature.)

This is mainly intended for diskless routers, because if a multiuser system with a

disk is used as a router, it can probably run a BOOTP server itself. Alternatively, the

common Unix BOOTP server (Appendix F) supports this relay mode, but again, if you

can run a BOOTP server on the physical network, there's normally no need to forward

the requests to yet another server on another network.

What happens is that the router (also called the ”.BOOTP relay agent”) listens for

BOOTP requests on the server's well—known port (67). When a request is received, the

relay agent places its IP address into the gatewtzy IP address field in the BOOTP request,

and sends the request to the real BOOTP server. (The address placed by the relay agent

into the gateway field is the IP address of the interface on which the request was

received.) The relay agent also increments the hops field by one. (This is to prevent

infinite loops in case the request is reforwarded. RFC 951 mentions that the request

should probably be thrown away if the hop count reaches 3.) Since the outgoing

request is a unicast datagram (as opposed to the original client request that was broad-

cast), it can follow any route to the real BOOTP server, passing through other routers.
The real server gets the request, forms the BOOTP reply, and sends it back to the relay

agent, not the client. The real server knows that the request has been forwarded, since

the gateway field in the request is nonzero. The relay agent receives the reply and sends
it to the client.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 16.6 Vendor—Specific Information 221

16.6 Vendor-Specific Information

In Figure 16.2 we showed a 64-byte vendor—specific area. RFC 1533 [Alexander and

Droms 1993] defines the format of this area. This area contains optional information for
the server to return to the client.

If information is provided, the first 4 bytes of this area are set to the IP address

99.130.83.99. This is called the magic cookie and means there is information in the area.

The rest of this area is a list of items. Each item begins with a 1-byte tag field. Two

of the items consist of just the tag field: a tag of 0 is a pad byte (to force following items

to preferred byte boundaries), and a tag of 255 marks the end of the items. Any bytes

remaining in this area after the first end byte should be set to pad bytes (0).

Other than these two 1-byte items, the remaining items consist of a single length

byte, followed by the information. Figure 16.4 shows the format of some of the items in

the Vendor—specific area.

Pad: tag=0

1 byte

Subnet mask: tagzl len:4 subnet mask

1 byte 1 byte 4 bytes

Time offset: tag=2 len=4 time

1 byte 1 byte 4 bytes

. '\

Gateway: tag:3 1en:N of preIfPe1:‘(:(clr§::eway ' ' ' (I)1fjgaait(ei:::::7
L 1 byte B 1 byte 4 bytes \‘ 4 bytes

asN bytes as

14 other items with tags 4-17

End: tag=255

1 byte

Figure 16.4 Format of some of the items in the vendor—specific area.

The subnet mask and time Value are really fixed-length items because their Values

always occupy 4 bytes. The time offset is the number of seconds since midnight Ian-

uary 1, 1900, UTC.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

222
BOOTP: Bootstrap Protocol Chapter 16

16.7

The gateway item is an example of a variable—length item. The length is always a

multiple of 4, and the Values are the 32-bit IP addresses of one or more gateways

(routers) for the client to use. The first one returned must be the preferred gateway.

There are 14 other items defined in RFC 1533. Probably the most important is the IP
address of a DNS name server, with a tag value of 6. Other items return the IP address

of a printer server, the IP address of a time server, and so on. Refer to the RFC for all the
details.

Returning to our example in Figure 16.3, we never saw an ICMP address mask

request (Section 6.3) that would have been broadcast by the client to find its subnet

mask. Although it wasn't output by tcpdump, we can probably assume that the client's

subnet mask was returned in the vendor~specific area of the BOOTP reply.

The Host Requirements RFC recommends that a system using BOOTP obtain its subnet mask
using BOOTP, not ICMP.

The size of the Vendor-specific area is limited to 64 bytes. This is a constraint for

some applications. A new protocol named DHCP (Dynamic Host Configuration

Protocol) is built on, but replaces, BOOTP. DHCP extends this area to 312 bytes and is
defined in RFC 1541 [Droms 1993].

Summary

BOOTP uses UDP and is intended as an alternative to RARP for bootstrapping a disk-

less system to find its IP address. BOOTP can also return additional information, such
as the IP address of a router, the client's subnet mask, and the IP address of a name
server.

Since BOOTP is used in the bootstrap process, a diskless system needs the following

protocols implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device
driver for the local network.

The implementation of a BOOTP server is easier than an RARP server, since BOOTP

requests and replies are in UDP datagrams, not special link—layer frames. A router can

also serve as a proxy agent for a real BOOTP server, forwarding client requests to the
real server on a different network.

Exercises

16.1 We've said that one advantage of BOOTP over RARP is that BOOTP can work through

routers, whereas RARP, which is a link~layer broadcast, cannot. Yet in Section 16.5 we had
to define special ways for BOOTP to work through a router. What would happen if a capa-
bility were added to routers allowing them to forward RARP requests?

16.2 We said that a BOOTP client must use the transaction ID to match responses with requests,

in case there are multiple clients bootstrapping at the same time from a server that broad-
casts replies. But in Figure 16.3 the transaction ID is 0, implying that this client ignores the
transaction ID. How do you think this client matches the responses with its requests?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

17.1

17.2

77

TCP: Transmission Control

Protocol

Introduction

In this chapter we provide a description of the services provided by TCP for the applica-

tion layer. We also look at the fields in the TCP header. In the chapters that follow we

examine all of these header fields in more detail, as we see how TCP operates.

Our description of TCP starts in this chapter and continues in the next seven chap-

ters. Chapter 18 describes how a TCP connection is established and terminated, and

Chapters 19 and 20 look at the normal transfer of data, both for interactive use (remote

login) and bulk data (file transfer). Chapter 21 provides the details of TCP’s timeout

and retransmission, followed by two other TCP timers in Chapters 22 and 23. Finally

Chapter 24 takes a look at newer TCP features and TCP performance.

The original specification for TCP is RFC 793 [Postel 1981c], although some errors in

that RFC are corrected in the Host Requirements RFC.

TCP Services

Even though TCP and UDP use the same network layer (IP), TCP provides a totally dif-

ferent service to the application layer than UDP does. TCP provides a connection~

oriented, reliable, byte stream service.

The term c0imectz'on—oriented means the two applications using TCP (normally con-
sidered a client and a server) must establish a TCP connection with each other before

they can exchange data. The typical analogy is dialing a telephone number, waiting for

the other party to answer the phone and say ”hello,” and then saying who's calling. In

Chapter 18 we look at how a connection is established, and disconnected some time
later when either end is done.

Talari Networks Inc. - Exhibit 106’?

Talari Networks Inc. - Exhibit 1007

224 TCP: Transmission Control Protocol Chapter 17

There are exactly two end points communicating with each other on a TCP connec-

tion. Concepts that we talked about in Chapter 12, broadcasting and multicasting,

aren’t applicable to TCP.

TCP provides reliability by doing the following:

The application data is broken into what TCP considers the best sized chunks to

send. This is totally different from UDP, where each. write by the application

generates a UDP datagram of that size. The unit of information passed by TCP

to IP is called a segment. (See Figure 1.7, p. 10.) In Section 18.4 we'll see how

TCP decides what this segment size is.

When TCP sends a segment it maintains a timer, waiting for the other end to

acknowledge reception of the segment. If an acknowledgment isn't received in
time, the segment is retransmitted. In Chapter 21 we’ll look at TCP’s adaptive

timeout and retransmission strategy. '

When TCP receives data from the other end of the connection, it sends an

acknowledgment. This acknowledgment is not sent immediately, but normally

delayed a fraction of a second, as we discuss in Section 19.3.

TCP maintains a checksum on its header and data. This is an end-to-end check~

sum whose purpose is to detect any modification of the data in transit. If a seg-
ment arrives with an invalid checksum, TCP discards it and doesn’t

acknowledge receiving it. (It expects the sender to time out and retransmit.)

Since TCP segments are transmitted as IP datagrams, and since IP datagrams

can arrive out of order, TCP segments can arrive out of order. A receiving TCP

resequences the data if necessary, passing the received data in the correct order

to the application.

Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

TCP also provides flow control. Each end of a TCP connection has a finite

amount of buffer space. A receiving TCP only allows the other end to send as

much data as the receiver has buffers for. This prevents a fast host from taking
all the buffers on a slower host.

A stream of 8-bit bytes is exchanged across the TCP connection between the two

applications. There are no record markers automatically inserted by TCP. This is what

we called a byte stream service. If the application on one end writes 10 bytes, followed by

a write of 20 bytes, followed by a write of 50 bytes, the application at the other end of

the connection cannot tell what size the individual writes were. The other end may

read the 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into

TCP and the same, identical stream of bytes appears at the other end.

Also, TCP does not interpret the contents of the bytes at all. TCP has no idea if the

data bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or

whatever. The interpretation of this byte stream is up to the applications on each end of
the connection.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 17.3 TCP Header 225

This treatment of the byte stream by TCP is similar to the treatment of a file by the Unix oper~
ating system. The Unix kernel does no interpretation whatsoever of the bytes that an applica-
tion reads or write—that is up to the applications. There is no distinction to the Unix kernel
between a binary file or a file containing lines of text.

17.3 TCP Header

Recall that TCP data is encapsulated in an IP datagrarn, as shown in Figure 17.1.

TIP datagramT

qe TCP segment ab»

hefilder hrcfacdrer TCP data
20 bytes 20 bytes

Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless

options are present.

0 15 16 31
A

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgment number 20 bytes

. _ U A P R S F

4“’1“h°t‘;lde‘ rE’6Sfi‘t’:)d R C s s Y I 16-bit window size‘”‘g G K H T N N

16-bit TCP checksum 16-bit urgent pointer
V

Z options (if any) Z

Z data (if any) Z

Figure 17.2 TCP header.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

226 TCP: Transmission Control Protocol Chapter 17

Each TCP segment contains the source and destination port number to identify the

sending and receiving application. These two values, along with the source and desti-

nation IP addresses in the IP header, uniquely identify each connection.

The combination of an IP address and a port number is sometimes called a socket.

This term appeared in the original TCP specification (RFC 793), and later it also became

used as the name of the Berl<eley—derived programming interface (Section 1.15). It is the

socket pair (the 4-tuple consisting of the client IP address, client port number, server IP

address, and server port number) that specifies the two end points that uniquely identi-
fies each TCP connection in an internet.

The sequence number identifies the byte in the stream of data from the sending TCP

to the receiving TCP that the first byte of data in this segment represents. If we consider

the stream of bytes flowing in one direction between two applications, TCP numbers

each byte with a sequence number. This sequence number is a 32-bit unsigned number

that wraps back around to 0 after reaching 232 — 1.
When a new connection is being established, the SYN flag is turned on. The

sequence nuznberfield contains the initial sequence number (ISN) chosen by this host for this

connection. The sequence number of the first byte of data sent by this host will be the

ISN plus one because the SYN flag consumes a sequence number. (We describe addi-

tional details on exactly how a connection is established and terminated in the next

chapter where we'll see that the FIN flag consumes a sequence number also.)

Since every byte that is exchanged is numbered, the acknowledgment number contains

the next sequence number that the sender of the acknowledgment expects to receive.

This is therefore the sequence number plus 1 of the last successfully received byte of

data. This field is valid only if the ACK flag (described below) is on.

Sending an ACK costs nothing because the 32-bit acknowledgment number field is

always part of the header, as is the ACK flag. Therefore we'll see that once a connection

is established, this field is always set and the ACK flag is always on.

TCP provides a full—dupIex service to the application layer. This means that data can

be flowing in each direction, independent of the other direction. Therefore, each end of

a connection must maintain a sequence number of the data flowing in each direction.

TCP can be described as a sliding—window protocol without selective or negative

acknowledgments. (The sliding window protocol used for data transmission is

described in Section 20.3.) We say that TCP lacks selective acknowledgments because

the acknowledgment number in the TCP header means that the sender has successfully

received up through but not including that byte. There is currently no way to acknowl-

edge selected pieces of the data stream. For example, if bytes 1-1024 are received OK,

and the next segment contains bytes 2049-3072, the receiver cannot acknowledge this

new segment. All it can send is an ACK with 1025 as the acknowledgment number.

There is no means for negatively acknowledging a segment. For example, if the seg-

ment with bytes 1025-2048 did arrive, but had a checksum error, all the receiving TCP

can send is an ACK with 1025 as the acknowledgment number. In Section 21.7 we'll see

how duplicate acknowledgments can help determine that packets have been lost.

The header length gives the length of the header in 32~bit words. This is required

because the length of the options field is variable. With a 4-bit field, TCP is limited to a

60-byte header. Without options, however, the normal size is 20 bytes.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 17.4 Summary 227

17.4

There are six flag bits in the TCP header. One or more of them can be turned on at

the same time. We briefly mention their use here and discuss each flag in more detail in

later chapters.

URG The urgent pointer is valid (Section 20.8).

ACK The acknowledgment number is valid.

PSH The receiver should pass this data to the application as soon as possible (Sec-
tion 20.5).

RST Reset the connection (Section 18.7).

SYN Synchronize sequence numbers to initiate a connection. This flag and the
next are described in Chapter 18.

FIN The sender is finished sending data.

TCP’s flow control is provided by each end advertising a window size. This is the

number of bytes, starting with the one specified by the acknowledgment number field,

that the receiver is willing to accept. This is a 16~bit field, limiting the window to 65535

bytes. In Section 24.4 we'll look at the new window scale option that allows this value

to be scaled, providing larger windows.

The checksum covers the TCP segment: the TCP header and the TCP data. This is a

mandatory field that must be calculated and stored by the sender, and then verified by

the receiver. The TCP checksum is calculated similar to the UDP checksum, using a

pseudo—header as described in Section 11.3.

The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset

that must be added to the sequence number field of the segment to yield the sequence

number of the last byte of urgent data. TCP’s urgent mode is a way for the sender to

transmit emergency data to the other end. We'll look at this feature in Section 20.8.

The most common option field is the maximum segment size option, called the M88.

Each end of a connection normally specifies this option on the first segment exchanged

(the one with the SYN flag set to establish the connection). It specifies the maximum

sized segment that the sender wants to receive. We describe the MSS option in more

detail in Section 18.4, and some of the other TCP options in Chapter 24.

In Figure 17.2 we note that the data portion of the TCP segment is optional. We'll

see in Chapter 18 that when a connection is established, and when a connection is termi-

nated, segments are exchanged that contain only the TCP header with possible options.

A header without any data is also used to acknowledge received data, if there is no data
to be transmitted in that direction. There are also some cases dealing with timeouts

when a segment can be sent without any data.

Summary

TCP provides a reliable, connection—oriented, byte stream, transport layer service. We

looked briefly at all the fields in the TCP header and will examine them in detail in the

following chapters.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

228 TCP: Transmission Control Protocol Chapter 17

TCP packetizes the user data into segments, sets a timeout any time it sends data,

acknowledges data received by the other end, reorders out—of—order data, discards

duplicate data, provides end~to—end flow control, and calculates and verifies a manda—

tory end—to-end checksum.

TCP is used by many of the popular applications, such as Telnet, Rlogin, FTP, and
electronic mail (SMTP).

Exercises

17.1

17.2

17.3

17.4

17.5

We've covered the following packet formats, each of which has a checksum in its corre-
sponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe what portion of
an IP datagram the checksum covers and whether the checksum is mandatory or optional.

Why do all the Internet protocols that we’Ve discussed (IP, ICMP, IGMP, UDP, TCP) quietly
discard a packet that arrives with a checksum error?

TCP provides a byte-stream service where record boundaries are not maintained between
the sender and receiver. How can applications provide their own record markers?

Why are the source and destination port numbers at the beginning of the TCP header?

Why does the TCP header have a header length field while the UDP header (Figure 11.2,
p. 144) does not?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

18.1

18.2

78

TCP Connection Establishment

and Termination

Introduction

TCP is a coimectioworiented protocol. Before either end can send data to the other, a

Connection must be established between them. In this chapter we take a detailed look at
how a TCP connection is established and later terminated.

This establishment of a connection between the two ends differs from a

connectionless protocol such as UDP. We saw in Chapter 11 that with UDP one end just

sends a datagram to the other end, without any preliminary handshaking.

Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we

type the following command on the system svr4:
svr4 % telnet bsdi discard

Trying 140.252.13.35 ...
Connected to bsdi.

Escape character is ’“]’.

“] type Control, right bracket to talk to the Telnet client
telnet> quit terminate the connection
Connection closed.

The telnet command establishes a TCP connection with the host bsdi on the port

corresponding to the discard service (Section 1.12). This is exactly the type of service we

need to see what happens when a connection is established and terminated, without

having the server initiate any data exchange.

Talari Networks Inc. - Exhibit 106’?

Talari Networks Inc. - Exhibit 1007

230 TCP Connection Establishment and Termination Chapter 18

tcpdump Output

Figure 18.1 shows the tcpdump output for the segments generated by this command.

1 0.0

2 0.002402

3 0.007224

4 4.155441

5 4.156747

6 4.158144

7 4.180662

(0.

(0.

(0

.1482)

.0013)

.0014)

.0225)

svr4.1037 > bsdi.discard: S 1415531521:l415531521(0)

0024)

0048) svr4 .1037 > bsdi . discard:

bsdi . discard > svr4 . 1037:

svr4 . 1037 > bsdi . discard:

bsdi.discard > svr4.1037: S

svr4.1037 > bsdi.discard: F

bsdi.discard > svr4.1037: F

win 4096 <mss 1024>

1823083521:1823083521(0)
ack 1415531522 win 4096
<mss 1024>

. ack 1823083522 win 4096

1415531522:l415531522(O)
ack 1823083522 win 4096

. ack 1415531523 win 4096

1823083522:1823083522(0)
ack 1415531523 win 4096

. ack 1823083523 win 4096

Figure 18.1 tcpdump output for TCP connection establishment and termination.

These seven TCP segments contain TCP headers only. No data is exchanged.

For TCP segments, each output line begins with

source > destimztion: flags

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Fig-

ure 18.2 shows the five different characters that can appear in theflags output.

flag ai]::1:‘fi:Ctti::1 Description
S SYN synchronize sequence numbers
F FIN sender is finished sending data
R RST reset connection

P PSH push data to receiving process as soon as possible
none of above four flags is on

Figure 18.2 flag characters output by tcpdump for flag bits in TCP header.

In this example we see the S, F, and period. We’ll see the other two flags (R and 1?) later.

The other two TCP header flag bits—ACK and URG—are printed specially by
t cpdump.

It's possible for more than one of the four flag bits in Figure 18.2 to be on in a single

segment, but we normally see only one on at a time.

RFC 1025 [Postel 1987], the TCP and IP Bake Off, calls a segment with the maximum combina-
tion of allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a
Kamikaze packet. It's also known as a nastygram, Christmas tree packet, and lamp test
segment.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.2 Connection Establishment and Termination 231

In line 1, the field 1415531521 : 1415531521 (0) means the sequence number of

the packet was 1415531521 and the number of data bytes in the segment was 0.

tcpdump displays this by printing the starting sequence number, a colon, the implied

ending sequence number, and the number of data bytes in parentheses. The advantage

of displaying both the sequence number and the implied ending sequence number is to

see what the implied ending sequence number is, when the number of bytes is greater

than 0. This field is output only if (1) the segment contains one or more bytes of data or

(2) the SYN, FIN, or RST flag was on. Lines 1, 2, 4, and 6 in Figure 18.1 display this field

because of the flag bits—we never exchange any data in this example.

In line 2 the field ack 1415531522 shows the acknowledgment number. This is

printed only if the ACK flag in the header is on.

The field win 4 0 9 6 in every line of output shows the window size being advertised
by the sender. In these examples, where we are not exchanging any data, the window

size never changes from its default of 4096. (We examine TCP's window size in Sec-

tion 20.4.)

The final field that is output in Figure 18.1, <mss 1024> shows the maximum seg-

ment size (MSS) option specified by the sender. The sender does not want to receive TCP

segments larger than this value. This is normally to avoid fragmentation (Section 11.5).

We discuss the maximum segment size in Section 18.4, and show the format of the vari-

ous TCP options in Section 18.10.

Time Line

Figure 18.3 shows the time line for this sequence of packets. (We described some gen-

eral features of these time lines when we showed the first one in Figure 6.11, p. 80.) This

figure shows which end is sending packets. We also expand some of the tcpdump out-

put (e.g., printing SYN instead of S). In this time line we have also removed the win-

dow size values, since they add nothing to the discussion.

Connection Establishment Protocol

Now let's return to the details of the TCP protocol that are shown in Figure 18.3. To
establish a TCP connection:

1. The requesting end (normally called the client) sends a SYN segment specifying

the port number of the server that the client wants to connect to, and the client's

initial sequence nmnber (ISN, 1415531521 in this example). This is segment 1.

2. The server responds with its own SYN segment containing the server's initial

sequence number (segment 2). The server also acknowledges the client's SYN

by ACKing the client’s ISN plus one. A SYN consumes one sequence number.

3. The client must acknowledge this SYN from the server by ACKing the server's

ISN plus one (segment 3).

These three segments complete the connection establishment. This is often called the

three—way hrmdshake.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

232 TCP Connection Establishment and Termination Chapter 18

svr4.1037 bsdi.discard

0.0 segmentl SYN 1415531521.-1415531521(0
' <mSS 1024>) 5

SYN 1823083521~.18230835:1:0) segment2
0.002402 (0.0024) .4 ack 1415531522, <mSS 10

0.007224 (0.0048) segment 3 acl< 1823083522
>

} 2’

4.155441 (4.1482) segment 4 PIN 1415531522;14155315-22(0) M182308352
3.

ack 1415531523 segment 5
4.156747 (00013) ¢

FIN 1823083522~.1823083522(0) W1415531523 segmenté
4.158144 (0.0014) 4

4.180662 (0.0225) segment 7 ack 1823083523
>

Figure 18.3 Time line of connection establishment and connection termination.

The side that sends the first SYN is said to perform an active open. The other side,

which receives this SYN and sends the next SYN, performs a passive open. (In Sec-

tion 18.8 we describe a simultaneous open where both sides can do an active open.)
When each end sends its SYN to establish the connection, it chooses an initial

sequence number for that connection. The ISN should change over time, so that each

connection has a different ISN. RFC 793 [Postel 1981c] specifies that the ISN should be

viewed as a 32-bit counter that increments by one every 4 microseconds. The purpose

in these sequence numbers is to prevent packets that get delayed in the network from

being delivered later and then misinterpreted as part of an existing connection.

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley—derived implementa-
tions) when the system is initialized the initial send sequence number is initialized to 1. This
practice violates the Host Requirements RFC. (A comment in the code acknowledges that this
is wrong.) This variable is then incremented by 64,000 every half—second, and will cycle back
to 0 about every 9.5 hours. (This corresponds to a counter that is incremented every 8

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.2 Connection Establishment and Termination 233

microseconds, not every 4 microseconds.) Additionally, each time a connection is established,
this variable is incremented by 64,000.

The 4.1-second gap between segments 3 and 4 is the time between establishing the

connection and typing the quit command to telnet to terminate the connection.

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a con~

nection. This is caused by TCP’s half—close. Since a TCP connection is full-duplex (that

is, data can be flowing in each direction independently of the other direction), each

direction must be shut down independently. The rule is that either end can send a FIN

when it is done sending data. When a TCP receives a FIN, it must notify the application

that the other end has terminated that direction of data flow. The sending of a FIN is

normally the result of the application issuing a close.

The receipt of a FIN only means there will be no more data flowing in that direction.

A TCP can still send data after receiving a FIN. While it’s possible for an application to

take advantage of this half—close, in practice few TCP applications use it. The normal

scenario is what we show in Figure 18.3. We describe the half—close in more detail in
Section 18.5.

We say that the end that first issues the close (e. g., sends the first FIN) performs the

active close and the other end (that receives this FIN) performs the passive close. Nor-

mally one end does the active close and the other does the passive close, but we'll see in
Section 18.9 how both ends can do an active close. 1

Segment 4 in Figure 18.3 initiates the termination of the connection and is sent when

the Telnet client closes its connection. This happens when we type quit. This causes

the client TCP to send a PIN, closing the flow of data from the client to the server.

When the server receives the FIN it sends back an ACK of the received sequence

number plus one (segment 5). A FIN consumes a sequence number, just like a SYN. At

this point the server's TCP also delivers an end—of—file to the application (the discard

server). The server then closes its connection, causing its TCP to send a FIN (segment

6), which the client TCP must ACK by incrementing the received sequence number by

one (segment 7).

Figure 18.4 shows the typical sequence of segments that we've described for the ter-

mination of a connection. We omit the sequence numbers. In this figure sending the

FINs is caused by the applications closing their end of the connection, whereas the

ACKS of these FINS are automatically generated by the TCP software. ,

Connections are normally initiated by the client, with the first SYN going from the

client to the server. Either end can actively close the connection (i.e., send the first FIN).
Often, however, it is the client that determines when the connection should be termi-

nated, since client processes are often driven by an interactive user, who enters some-

thing like ”quit” to terminate. In Figure 18.4 we can switch the labels at the top, calling

the left side the server and the right side the client, and everything still works fine as

shown. (The first example in Section 14.4, for example, shows the daytime server clos-

ing the connection.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

234 TCP Connection Establishment and Termination Chapter 18

apphcafionclose >

client SEYVEI

FIN

> > deliver EOF to application

ack Of

pm < application close

lack Oflfllfl
a»

Figure 18.4 Normal exchange of segments during connection termination.

Normal tcpdump Output

Having to sort through all the huge sequence numbers is cumbersome, so the default

tcpdump output shows the complete sequence numbers only on the SYN segments,

and shows all following sequence numbers as relative offsets from the original sequence

numbers. (To generate the output for Figure. 18.1 we had to specify the —S option.) The

normal tcpdump output corresponding to Figure 18.1 is shown in Figure 18.5.
1

\l01U1H\L.u

0.

ybub-5:53

0

.O02402

.O07224

.155441

.156747

.158144

.180662

(0.

(0.

(4.

(0.

(0.

(0.

0024)

0048)

1482)

0013)

0014)

0225)

svr4.

bsdi

svr4.

svr4.

bsdi.

bsdi.

svr4

.discard > svr4.1037: S

.1037 > bsdi.discard:

1037 > bsdi.discard: S l415531521:1415531521(0)
win 4096 <mss l024>

1823083521:1823083521(O)
ack 1415531522
win 4096 <mss l024>

. ack 1 win 4096

1037 > bsdi.discard: F

1037 > bsdi.discard:

121(0) ack 1 win 4096

discard > svr4.1037: . ack 2 win 4096

discard > svr4.1037: F 1:1(o) ack.2 win 4096

. ack 2 win 4096

Figure 18.5 Normal tcpdump output for connection establishment and termination.

Unless we need to show the complete sequence numbers, we'll use this form of output

in all following examples.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.3 Timeout of Connection Establishment 235

18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example
the server host is down. To simulate this scenario we issue our telnet command after

disconnecting the Ethernet cable from the server's host. Figure 18.6 shows the

tcpdump output.

1 0.0 bsdi.lO24 > svr4.discard: S 29lOO8001:29lO08001(0)
win 4096 <mss l024>
[tos 0x10]

2 5.814797 (5.8148) bsdi.l024 > svr4.discard: S 29lO08001:29100800l(O)
win 4096 <mss l024>

_ [tos 0X10]
3 29.815436 (24.0006) bsdi.l024 > svr4.discard: S 29100800l:29l0O8001(0)

win 4096 <mss 1024>

[tos 0X10]

Figure 18.6 tcpdump output for connection establishment that times out.

The interesting point in this output is how frequently the client's TCP sends a SYN

to try to establish the connection. The second segment is sent 5.8 seconds after the first,
and the third is sent 24 seconds after the second.

As a side note, this example was run about 38 minutes after the client was rebooted. This cor-
responds with the initial sequence number of 291,008,001 (approximately 38 X 60 X 64000 X 2).
Recall earlier in this chapter we said that typical Berkeley—deriVed systems initialize the initial
sequence number to 1 and then increment it by 64,000 every half—second.

Also, this is the first TCP connection since the system was bootstrapped, which is why the
client’s port number is 1024.

What isn't shown in Figure 18.6 is how long the Client's TCP keeps retransmitting

before giving up. To see this we have to time the telnet command:

bsdi % date ; telnet svr4 discard ; date
Thu Sep 24 16:24:11 MST 1992
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection timed out

Thu Sep 24 16:25:27 MS" 1992

The time difference is 76 seconds. Most Berkeley-derived systems set a time limit of 75
seconds on the establishment of a new connection. We’ll see in Section 21.4 that the

third packet sent by the client would have timed out around 16:25:29, 48 seconds after it

was sent, had the client not given up after 75 seconds.

First Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6

seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

236
TCP Connection Establishment and Termination Chapter 18

of these tests were run and the first timeout period took on various values between 5.59

seconds and 5.93 seconds. The second timeout period, however, was always 24.00 (to

two decimal places).

What’s happening here is that BSD implementations of TCP run a timer that goes

off every 500 ms. This 500—ms timer is used for various TCP timeouts, all of which we

cover in later chapters. When we type in the telnet command, an initial 6—second

timer is established (12 clock ticks), but it may expire anywhere between 5.5 and 6 sec-

onds in the future. Figure 18.7 shows what's happening.

11 clock ticks X 500 ms/ tick = 5.5 seconds<

11 10 9 8 7 6
i .

somewhere in here E l
application causes TCP per TCP feschedulestimeout for 24 sec.

in the future
to set timeout for 6 sec.

(12 ticks) in the future

Figure 18.7 TCP 500—ms timer.

Although the timer is initialized to 12 ticks, the first decrement of the timer can occur

between 0 and 500 ms after it is set. From that point on the timer is decremented about

every 500 ms, but the first period can be variable. (We use the qualifier ”about” because

the time when TCP gets control every 500 ms can be preempted by other interrupts

being handled by the kernel.)

When that 6—second timer expires at the tick labeled 0 in Figure 18.7, the timer is

reset for 24 seconds (48 ticks) in the future. This next timer will be close to 24 seconds,

since it was set at a time when the TCP’s 500—ms timer handler was called by the kernel.

Type-of-Service Field

18.4

In Figure 18.6, the notation [tos 0x10] appears. This is the type~of—serVice (TOS) field

in the IP datagram (Figure 3.2). The BSD/386 Telnet client sets the field for minimurn

delay.

Maximum Segment Size

The maximum segment size (MSS) is the largest ’’chunk’’ of data that TCP will send to
the other end. When a connection is established, each end can announce its MSS. The

Values we've seen have all been 1024. The resulting IP datagram is normally 40 bytes

larger: 20 bytes for the TCP header and 20 bytes for the II’ header.

Some texts refer to this as a ”negotiated” option. It is not negotiated in any way.

When a connection is established, each end has the option of announcing the MSS it

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.4 Maximum Segment Size 237

expects to receive. (An MSS option can only appear in a SYN segment.) If one end does

not receive an MSS option from the other end, a default of 536 bytes is assumed. (This

default allows for a 20-byte IP header and a 20-byte TCP header to fit into a 576-byte IP

datagram.)

In general, the larger the MSS the better, until fragmentation occurs. (This may not

always be true. See Figures 24.3 and 24.4 for a counterexample.) A larger segment size

allows more data to be sent in each segment, amortizing the cost of the IP and TCP

headers. When TCP sends a SYN segment, either because a local application wants to

initiate a connection, or when a connection request is received from another host, it can

send an M88 value up to the outgoing interface’s MTU, minus the size of the fixed TCP

and IP headers. For an Ethernet this implies an MSS of up to 1460 bytes. Using IEEE

802.3 encapsulation (Section 2.2), the ‘MSS could go up to 1452 bytes.

The values of 1024 that we've seen in this chapter, for connections involving

BSD/386 and SVR4, are because many BSD implementations require the MSS to be a

multiple of 512. Other systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all
announce an MSS of 1460 when both ends are on a local Ethernet. Measurements in

[Mogul 1993] show how an MSS of 1460 provides better performance on an Ethernet
than an MSS of 1024.

If the destination IP address is ”nonlocal,” the MSS normally defaults to 536. While

it's easy to say that a destination whose IP address has the same network ID and the

same subnet ID as ours is local, and a destination whose IP address has a totally differ-
ent network ID from ours is nonlocal, a destination with the same network ID but a dif-

ferent subnet ID could be either local or nonlocal. Most implementations provide a

configuration option (Appendix E and Figure E.1) that lets the system administrator

specify whether different subnets are local or nonlocal. The setting of this option deter-

mines whether the announced MSS is as large as possible (up to the outgoing interface’s

MTU) or the default of 536.

The MSS lets a host limit the size of datagrams that the other end sends it. When

combined with the fact that a host can also limit the size of the datagrams that it sends,

this lets a host avoid fragmentation when the host is connected to a network with a
small MTU.

Consider our host slip, which has a SLIP link with an MTU of 296 to the router

bsdi. Figure 18.8 shows these systems and the host sun.

MTU:1500 MTU=1500

slip o bsdi sun ‘
MTU:296 MTU=296

SYl\. <mss 1460>4

SYN <mss 256> >

Figure 18.8 TCP connection from sun to slip showing MSS values.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

238
TCP Connection Establishment and Termination Chapter 18

18.5

We initiate a TCP connection from sun to slip and watch the segments using

tcpdump. Figure 18.9 shows only the connection establishment (with the Window size

advertisements removed).

1 0.0 sun.l093 > slip.discard: S 517312000:5173l2000(O)
<mss 1460>

S 509556225:509556225(O)
ack 517312001 <mss 256>

2 0.10 (0.00) slip.discard > sun.1093:

3 0.10 (0.00) sun.1093 > slip.discard: . ack 1

Figure 18.9 tcpdump output for connection establishment from sun to slip.

The important fact here is that sun cannot send a segment with more than 256 bytes of
data, since it received an MSS option of 256 (line 2). Furthermore, since slip knows

that the outgoing interface’s MTU is 296, even though sun announced an M88 of 1460,

it will never send more than 256 bytes of data, to avoid fragmentation. It's OK for a sys-

tem to send less than the MSS announced by the other end.

This avoidance of fragmentation works only if either host is directly connected to a
network with an MTU of less than 576. If both hosts are connected to Ethernets, and

both announce an MSS of 536, but an intermediate network has an MTU of 296, frag-

mentation will occur. The only way around this is to use the path MTU discovery
mechanism (Section 24.2).

TCP Half-Close

TCP provides the ability for one end of a connection to terminate its output, while still

receiving data from the other end. This is called a half-close. Few applications take

advantage of this capability, as we mentioned earlier.

To use this feature the programming interface must provide a way for the applica-

tion to say ”I am done sending data, so send an end—of-file (FIN) to the other end, but I
still want to receive data from the other end, until it sends me an end—of-file (FIN).”

The sockets API supports the half-close, if the application calls shutdown with a second argu-
ment of 1, instead of calling close. Most applications, however, terminate both directions of
the connection by calling close.

Figure 18.10 shows a typical scenario for a half-close. We show the client on the left

side initiating the half-close, but either end can do this. The first two segments are the

same: a FIN by the initiator, followed by an ACK of the FIN by the recipient. But it then

changes from Figure 18.4, because the side that receives the half-close can still send

data. We show only one data segment, followed by an ACK, but any number of data

segments can be sent. (We talk more about the exchange of data segments and

acknowledgments in Chapter 19.) When the end that received the half-close is done

sending data, it closes its end of the connection, causing a FIN to be sent, and this deliv-

ers an end—of~file to the application that initiated the half-close. When this second FIN

is acknowledged, the connection is completely closed.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.5 TCP Half—Close 239

client server

application shut down > FIN

1» > deliver EOF to application

ack Of

data 9 application write

application read <—d

 »

FIN <— application close

deliver EOF to application 6

 z.

Figure 18.10 Example of TCP’s half~close.

Why is there a half—close? One example is the Unix rsh(1) command, which exe-

cutes a command on another system. The command
sun % rsh bsdi sort < datafile

executes the sort command on the host bsdi with standard input for the rsh com-

mand being read from the file named datafile. A TCP connection is created by rsh

between itself and the program being executed on the other host. The operation of rsh

is then simple: it copies standard input (datafile) to the connection, and copies from

the connection to standard output (our terminal). Figure 18.11 shows the setup.

(Remember that a TCP connection is full—duplex.)

host sun host bsdi

datafile Stfldgtrd \
P gg;> sort

terminal standard » ’
output

Figure 18.11 The c0mmand:rsh bsdi sort < datafile.

On the remote host bsdi the rshd server executes the sort program so that its stan-

dard input and standard output are both the TCP connection. Chapter 14 of [Stevens
1990] details the Unix process structure involved, but what concerns us here is the use

of the TCP connection and the required use of TCP’s ha1f—close.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

24D
TCP Connection Establishment and Termination Chapter 18

18.6

The sort program cannot generate any output until all of its input has been read.
All the initial data across the connection is from the rsh client to the sort server, send-

ing the file to be sorted. When the end—of—file is reached on the input (datafile), the

rsh client performs a half—close on the TCP connection. The sort server then receives

an end-of—file on its standard input (the TCP connection), sorts the file, and writes the

result to its standard output (the TCP connection). The rsh client continues reading its

end of the TCP connection, copying the sorted file to its standard output.

Without a half—close, some other technique is needed to let the client tell the server

that the client is finished sending data, but still let the client receive data from the

server. Two connections could be used as an alternative, but a single connection with a
half-close is better.

TCP State Transition Diagram

We've described numerous rules regarding the initiation and termination of a TCP con-

nection. These rules can be summarized in a state transition diagram, which we show

in Figure 18.12.

The first thing to note in this diagram is that a subset of the state transitions is ”typi—
cal.” We've marked the normal client transitions with a darker solid arrow, and the nor-
mal server transitions with a darker dashed arrow.

Next, the two transitions leading to the ESTABLISHED state correspond to opening

a connection, and the two transitions leading from the ESTABLISHED state are for the
termination of a connection. The ESTABLISHED state is where data transfer can occur

between the two ends in both directions. Later chapters describe what happens in this
state.

We've collected the four boxes in the lower left of this diagram within a dashed box

and labeled it ”active close.” Two other boxes (CLOSE_WAIT and LAST_ACK) are col-

lected in a dashed box with the label ”passive close.”

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure were

purposely chosen to be identical to the states output by the netstat command. The

netstat names, in turn, are almost identical to the names originally described in

RFC 793. The state CLOSED is not really a state, but is the imaginary starting point and

ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal but is not supported in

Berkeley-derived implementations. ,

The transition from SYN_RCVD back to LISTEN is valid only if the SYN_RCVD
state was entered from the LISTEN state (the normal scenario), not from the SYN_SENT

state (a simultaneous open). This means if we perform a passive open (enter LISTEN),
receive a SYN, send a SYN with an ACK (enter SYN_RCVD), and then receive a reset

instead of an ACK, the end point returns to the LISTEN state and waits for another con-

nection request to arrive.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.6 TCP State Transition Diagram 241

smrmzg point

CLOSED — A
I
I

appl: passive open :
send: <nothing> '

' 2»)
I K?/'

«v '9

LISTEN 03%». Q‘£
0% ’ . 00

$, 3’? " passzve open .7’, ~06,
esC°\kr’/ C3042 ¢

%‘’’9/’ ‘K “b 3&9
I 1’ 93) !?<?’- 09'

lgkzz god XS), ‘?.'9’,
‘</QIc4"/ '§ 4/‘ '9’ ,

recv: SYN EIPPI: close I

SYN‘RCVD send: SYN, ACK SY:\‘LSENT or timeout
\ sI'IIIIIImI1e0IIs open «e "C We 0,11?“

£923?‘ Ibo!» é
°’5;-‘(f 9 ' 95‘

Q6.,‘\ ‘Q of’A \ I- ~ ~ — - - - - ~ 1

*‘PP1‘ “me i T ESTABLISHED — -. §".3.V-‘Elli —: » —— CLOSE WAIT :
send: FIN d t f t t send: ACK : ‘ :a n trans er s I? e

I ' I
I?» I ' I

x06" ‘I
VP Qgé : app1.;c]ose :

Q 5. send:|FIN
'23 9 I ' Ie

« _ 9_ fl _ fl _ I I I

: I FIN simztltaneous close : : ACK
' FIN_wAIT_I rec“ CLOSING ‘ LASTNACK ' - ‘_"‘iY'.. _ ,. _p
|| : isendz <noth1ng>|_ _ _ _ _ L L _ _ _J

: passive close
' recv: ACK recv: ACK

: send: <nothing> send: <nothing>I
I

: FIN AIT 2 “em FIN ~ TIME WAIT as-

‘L ZMSL tmleom‘
_ ‘ rtctive close H _ _

——=—-p indicate nomml traIIsitioIIsfoI' client
--——-> mdzcatenorzrzal trtmsztzons or server
app}:recv:
send:

1'ndic/zfe sfzzfe frm1s1'I‘i0ns fa en when /Ipplicnfim issues operation
Indicate state trmzsztlons taken when seg1IIeIIfreceIved
Indtcafe what Is sentfor tlzzs trrmsztzon

Figure 18.12 TCP state transition diagram.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

242 TCP Connection Establishment and Termination Chapter 18

Figure 18.13 shows the normal TCP connection establishment and termination,

detailing the different states through which the client and server pass. It is a redo of

Figure 18.3 showing only the states.

client server

LISTEN (passive open)

(active open) SYN_SENT syN/—
\SYN_RCVD

1 SYN K, afik H1
ESTABLISHED 8

 .. ESTABLISHED

Z Z

(active close) FIN_WAIT_1 FIN M

 bCLOSE_WAIT (passive close)

ack M+1
FIN_WAlT_2 <— '

EN N LAST ACK
TIME_WAlT 4-

 > CLOSED

Figure 18.13 TCP states corresponding to normal connection establishment and termination.

We assume in Figure 18.13 that the client on the left side does an active open, and the

server on the right side does a passive open. Although we show the client doing the
active close, as we mentioned earlier, either side can do the active close.

You should follow through the state changes in Figure 18.13 using‘ the state transi-

tion diagram in Figure 18.12, making certain you understand why each state change

takes place.

2MSL Wait State

The TIME_WAIT state is also called the ZMSL wait state. Every implementation must

choose a value for the 1mzxz'mm11 segment lifetime (MSL). It is the maximum amount of

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.6 TCP State Transition Diagram 243

time any segment can exist in the network before being discarded. We know this time

limit is bounded, since TCP segments are transmitted as IP datagrams, and the IP data-

gram has the TTL field that limits its lifetime.

RFC 793 [Postel 1981c] specifies the MSL as 2 minutes. Common implementation values, how-
ever, are 30 seconds, 1 minute, or 2 minutes.

Recall from Chapter 8 that the real-world limit on the lifetime of the IP datagram is

based on the number of hops, not a timer.

Given the MSL value for an implementation, the rule is: when TCP performs an

active close, and sends the final ACK, that connection must stay in the TIME_WAIT
state for twice the MSL. This lets TCP resend the final ACK in case this ACK is lost (in

which case the other end will time out and retransmit its final FIN).
Another effect of this ZMSL wait is that While the TCP connection is in the ZMSL

wait, the socket pair defining that connection (client IP address, client port number,

server IP address, and server port number) cannot be reused. That connection can only
be reused when the ZMSL wait is over.

Unfortunately most implementations (i.e., the Berl<eley~derived ones) impose a

more stringent constraint. By default a local port number cannot be reused while that

port number is the local port number of a socket pair that is in the ZMSL wait. We'll see

examples of this common constraint below.

Some implementations and APIs provide a way to bypass this restriction. With the sockets
API, the SO#REUSEADDR socket option can be specified. It lets the caller assign itself a local
port number that's in the ZMSL wait, but we’ll see that the rules of TCP still prevent this port
number from being part of a connection that is in the ZMSL wait.

Any delayed segments that arrive for a connection while it is in the ZMSL wait are

discarded. Since the connection defined by the socket pair in the ZMSL wait cannot be

reused during this time period, when we do establish a valid connection we know that

delayed segments from an earlier incarnation of this connection cannot be misinter-

preted as being part of the new connection. (A connection is defined by a socket pair.
New instances of a connection are called incarmztions of that connection.)

As we said with Figure 18.13, it is normally the client that does the active close and

enters the TIME_WAlT state. The server usually does the passive close, and does not go

through the TIME_WAlT state. The implication is that if we terminate a client, and

restart the same client immediately, that new client cannot reuse the same local port

number. This isn't a problem, since clients normally use ephemeral ports, and don't

care what the local ephemeral port number is.

With servers, however, this changes, since servers use well—known ports. If we ter-

minate a server that has a connection established, and immediately try to restart the

server, the server cannot assign its well—known port number to its end point, since that

port number is part of a connection that is in a ZMSL wait. It may take from 1 to 4 min-
utes before the server can be restarted.

We can see this scenario using our sock program. We start the server, connect to it
from a client, and then terminate the server:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

244
TCP Connection Establishment and Termination Chapter 18

sun % sock -v —s 6666 start as server, h'stenz'ng on port 6666
(execute client on bsdi that connects to this port)

connection on 140.252.l3.33.6666 from 140.252.13.35.108l

‘ ? then type interrupt key to terminate server

sun % sock —s 6666 and inmiediately try to restartserveron sameport
can't bind local address: Address already in use

sun % netstat Iet’s check the state of tlze connection
Active Internet connections

Proto Recv—Q Send—Q Local Address

top 0 0 sun.6666
Foreign Address (state)

bsdi.lO81 TIME_WAIT
many more lines that are deleted

When we try to restart the server, the program outputs an error message indicating it

cannot bind its well~l<nown port number, because it's already in use (i.e., it's in a 2MSL
wait).

We then immediately execute net stat to see the state of the connection, and verify
that it is indeed in the TlME_WAlT state.

If we continually try to restart the server, and measure the time until it succeeds, we can mea~
sure the ZMSL Value. On SunOS 4.1.3, SVR4, BSD/386, and AIX 3.2.2, it takes 1 minute to

restart the server, meaning the MSL is 30 seconds. Under Solaris 2.2 it takes 4 minutes to
restart the server, implying an MSL of 2 minutes.

We can see the same error from a client, if the client tries to allocate a port that is

part of a connection in the ZMSL wait (something clients normally don't do):

sun % sock —v bsdi echo start as client, connect to echo server
connected on 140.252.13.33.1l62 to 140.252.13.35.7

hello there type this line
hello there and it's echoed by the server
‘D ’ type end~of—fiIe character to termz'nate client

sun % sock —b1162 bsdi echo
can't bind local address: Address already in use

The first time we execute the client we specify the -v option to see what the local port

number is (1162). The second time we execute the client we specify the —b option,

telling the client to assign itself 1162 as its local port number. As we expect, the client

can't do this, since that port number is part of a connection that is in a ZMSL wait.

We need to reemphasize one effect of the 2MSL wait because we'll encounter it in

Chapter 27 with FTP, the File Transfer Protocol. As we said earlier, it is a socket pair

(that is, the 4-tuple consisting of a local IP address, local port, remote IP address and

remote port) that remains in the ZMSL wait. Although many implementations allow a

process to reuse a port number that is part of a connection that is in the 2MSL wait (nor-

mally with an option named SO_REUSEADDR), TCP cannot allow a new connection to be

created with the same socket pair. We can see this with the following experiment:

sun % sock —v —s 6666 start as server, listening on port 6666
(execute client on bsdi that connects to this port)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.6 TCP State Transition Diagram 245

connection on 140.252.13.33.6666 from l40.252.l3.35.l098

‘ ? then type interrupt key to ternzinnte server

sun % sock —b6666 bsdi 1098 try to startns clientzuitlz localport 6666
can't bind local address: Address already in use

sun % sock -1-\ —b6666 bsdi 1098 try again, this time with A option
active open error: Address already in use

The first time we run our sock program, we run it as a server on port 6666 and connect

to it from a client on the host bsdi. The client's ephemeral port number is 1098. We

terminate the server so it does the active close. This causes the 4-tuple of 140.252.13.33

(local IP address), 6666 (local port number), 140.252.13.35 (foreign ll’ address), and 1098

(foreign port number) to enter the 2MSL wait on the server host.

The second time we run the program, we run it as a client and try to specify the

local port number as 6666 and connect to host bsdi on port 1098. But the program gets

an error when it tries to assign itself the local port number of 6666, because that port

number is part of the 4—tuple that is in the ZMSL wait state.

To try and get around this error we run the program again, specifying the -2-\

option, which enables the SO__REUSEADDR option that we mentioned. This lets the pro-

gram assign itself the port number 6666, but we then get an error when it tries to issue

the active open. Even though it can assign itself the port number 6666, it cannot create a

connection to port 1098 on the host bsdi, because the socket pair defining that connec-
tion is in the 2MSL wait state.

What if we try to establish the connection from the other host? First we must restart

the server on sun with the —A flag, since the local port it needs (6666) is part of a con-
nection that is in the 2MSL wait:

sun % sock —A —s 6666 starfas server, listeningon port 6666

Then, before the ZMSL wait is over on sun, We start the client on bsdi:

bsdi % sock —b1098 sun 6666
connected on l40.252.13.35.lO98 to l40.252.l3.33.6666

Unfortunately it works! This is a violation of the TCP specification, but is supported by

most Berl<eley—derived implementations. These implementations allow a new connec-

tion request to arrive for a connection that is in the TIME_WAlT state, if the new

sequence number is greater than the final sequence number from the previous incarna-
tion of this connection. In this case the ISN for the new incarnation is set to the final

sequence number from the previous incarnation plus 128,000. The appendix of

RFC 1185 []acobson, Braden, and Zhang 1990] shows the pitfalls still possible with this

technique.

This implementation feature lets a client and server continually reuse the same port

number at each end for successive incarnations of the same connection, but only if the

server does the active close. We’ll see another example of this 2MSL wait condition in

Figure 27.8, with FTP. See Exercise 18.5 also.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

2416
TCP Connection Establishment and Termination Chapter 18

Quiet Time Concept

The ZMSL wait provides protection against delayed segments from an earlier incarna-

tion of a connection from being interpreted as part of a new connection that uses the

same local and foreign IP addresses and port numbers. But this works only if a host
with connections in the 2MSL wait does not crash.

What if a host with ports in the ZMSL wait crashes, reboots within MSL seconds,

and immediately establishes new connections using the same local and foreign IP

addresses and port numbers corresponding to the local ports that were in the ZMSL

wait before the crash? In this scenario, delayed segments from the connections that

existed before the crash can be misinterpreted as belonging to the new connections cre-

ated after the reboot. This can happen regardless of how the initial sequence number is
chosen after the reboot.

To protect against this scenario, RFC 793 states that TCP should not create any con-

nections for MSL seconds after rebooting. This is Called the quiet time.

Few implementations abide by this since most hosts take longer than MSL seconds to reboot
after a crash.

Fl N__WA|T_2 State

18.7

In the FlN_WAIT_2 state we have sent our PIN and the other end has acknowledged it.

Unless we have done a half—close, we are waiting for the application on the other end to

recognize that it has received an end-of-file notification and close its end of the connec-

tion, which sends us a PIN. Only when the process at the other end does this close will
our end move from the FIN_WAIT_2 to the TIME_WAIT state.

This means our end of the connection can remain in this state forever. The other

end is still in the CLOSE_WAIT state, and can remain there forever, until the application
decides to issue its close.

Many Berkeley-derived implementations prevent this infinite wait in the FlN_WAIT_2 state as
follows. If the application that does the active close does a complete close, not a half-close
indicating that it expects to receive data, then a timer is set. If the connection is idle for 10 min-
utes plus 75 seconds, TCP moves the connection into the CLOSED state. A comment in the
code acknowledges that this implementation feature violates the protocol specification.

Reset Segments

We've mentioned a bit in the TCP header named RST for ”reset." In general, a reset is

sent by TCP whenever a segment arrives that doesn't appear correct for the referenced

connection. (We use the term ”referenced connection” to mean the connection specified

by the destination IP address and port number, and the source IP address and port
number. This is what RFC 793 calls a socket.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.7 Reset Segments 247

Connection Request to Nonexistent Port

A common case for generating a reset is when a connection request arrives and no pro-

cess is listening on the destination port. In the case of UDP, we saw in Section 6.5 that

an ICMP port unreachable was generated when a datagram arrived for a destination

port that was not in use. TCP uses a reset instead.

This example is trivial to generate—we use the Telnet client and specify a port
number that's not in use on the destination:

bsdi % telnet svr4 20000 port 20000 should not be in use
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection refused

This error message is output by the Telnet client immediately. Figure 18.14 shows the

packet exchange corresponding to this command.

1 0.0 bsdi.l087 > svr4.20000: S 297416193:297416l93(0)
win 4096 <mss lO24>

[tos 0x10]

2 0.003771 (0.0038) svr4.20000 > bsdi.l087: R 0:O(0) ack 297416194 win 0

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

The values we need to examine in this figure are the sequence number field and
acknowledgment number field in the reset. Because the ACK bit was not on in the

arriving segment, the sequence number of the reset is set to 0 and the acknowledgment

number is set to the incoming ISN plus the number of data bytes in the segment.

Although there is no real data in the arriving segment, the SYN bit logically occupies 1

byte of sequence number space; therefore, in this example the acknowledgment number

in the reset is set to the ISN, plus the data length (0), plus one for the SYN bit.

Aborting a Connection

We saw in Section 18.2 that the normal way to terminate a connection is for one side to

send a PIN. This is sometimes called an orderly release since the FIN is sent after all pre-

viously queued data has been sent, and there is normally no loss of data. But it's also

possible to abort a connection by sending a reset instead of a FIN. This is sometimes
called an abortive release.

Aborting a connection provides two features to the application: (1) any queued data
is thrown away and the reset is sent immediately, and (2) the receiver of the RST can tell

that the other end did an abort instead of a normal close. The API being used by the

application must provide a way to generate the abort instead of a normal close.

We can watch this abort sequence happen using our sock program. The sockets

API provides this capability by using the ”linger on close” socket option (sO_LINGER).

We specify the —L option with a linger time of 0. This causes the abort to be sent when
the connection is closed, instead of the normal FIN. We’ll connect to a server version of

our sock program on svr4 and type one line of input:

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

248
TCP Connection Establishment and Termination Chapter 18

bsdi % sock —L0 svr4 8888 this is the client; server shown later

hello , world type one line of input that's sent to other end
‘D type end—0f~f1'Ie clmracter to termimzte client

Figure 18.15 shows the tcpdump output for this example. (We have deleted all the win-

dow advertisements in this figure, since they add nothing to the discussion.)

1 0.0 bsdi.lO99 > svr4.8888: s 671112193 671112193(0)
<mss 1024>

2 0.004975 (0 0050) svr4.8888 > bsdi.l099: S 3224959489:3224959489(0)
ack 671112194 <mss 1024>

3 0.006656 (0 0017) bsdi.1099 > svr4.8888: . ack 1

4 4.833073 (4.8264) bsdi.1099 > svr4.8888: P 1:14(13) ack 1
5 5.026224 (0.1932) svr4.8888 > bsdi.1099: . ack 14

6 9.527634 (4.5014) bsdi.1099 > svr4.8888: R 14:14(0) ack 1

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.

Lines 1~3 show the normal connection establishment. Line 4 sends the data line

that we typed (12 characters plus the Unix newline character), and line 5 is the acknowl-

edgment of the received data.

Line 6 corresponds to our typing the end~of-file character (Control-D) to terminate

the client. Since we specified an abort instead of a normal close (the —L0 command-line

option), the TCP on bsdi sends an RST instead of the normal FIN. The RST segment

contains a sequence number and acknowledgment number. Also notice that the RST

segment elicits no response from the other end——it is not acknowledged at all. The

receiver of the reset aborts the connection and advises the application that the connec-
tion was reset.

We get the following error on the server for this exchange:
svr4 % sock —s 8888

hello, world
read error: Connection reset by peer

l‘lH1 as server, listen on port 8888
this is what the client sent over

This server reads from the network and copies whatever it receives to standard output.

It normally ends by receiving an end-of-file notification from its TCP, but here we see

that it receives an error when the RST arrives. The error is what we expect: the connec-

tion was reset by the peer.

Detecting Half-Open Connections

A TCP connection is said to be half—open if one end has closed or aborted the connection

without the knowledge of the other end. This can happen any time one of the two hosts

crashes. As long as there is no attempt to transfer data across a half—open connection,

the end that's still up won’t detect that the other end has crashed.

Another common cause of a half~open connection is when a client host is powered

off, instead of terminating the client application and then shutting down the client host.

This happens when PCs are being used to run Telnet clients, for example, and the users

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.7 Reset Segments 249

power off the PC at the end of the day. If there was no data transfer going on when the

PC was powered off, the server will never know that the client disappeared. When the

user comes in the next morning, powers on the PC, and starts a new Telnet client, a new

occurrence of the server is started on the server host. This can lead to many half-open

TCP connections on the server host. (In Chapter 23 we'll see a way for one end of a TCP

connection to discover that the other end has disappeared using TCP’s keepalive

option.)

We can easily create a half-open connection. We'll execute the Telnet client on

bsdi, connecting to the discard server on svr4. We type one line of input, and watch it

go across with tcpdump, and then disconnect the Ethernet cable on the server's host,

and reboot the server host. This simulates the server host crashing. (We disconnect the

Ethernet cable before rebooting the server to prevent it from sending a PIN out the open

connections, which some TCPs do when they are shut down.) After the server has

rebooted, we reconnect the cable, and try to send another line from the client to the

server. Since the serVer’s TCP has rebooted, and lost all memory of the connections that

existed before it was rebooted, it knows nothing about the connection that the data seg-

ment references. The rule of TCP is that the receiver responds with a reset.
bsdi % telnet svr4 discard start the client

Trying 140.252.13.34...
Connected to svr4.

Escape character is "]’.
hi there this line is sent OK

here is where we reboot the server host
another line and this one elicits a reset

Connection closed by foreign host.

Figure 18.16 shows the tcpdump output for this example. (We have removed from this

output the window advertisements, the type—of—service information, and the MSS

announcements, since they add nothing to the discussion.)

1 0.0 bsdi.1102 > svr4.discard: S 1591752193:1591752193(0)
2 0.004811 .0048) svr4.discard > bsdi.llO2: S 26368001:26368001(0)

ack 1591752194
0

3 0.006516 (0.0017) bsdi.1102 > svr4.discard: . ack 1

4 5.167679 (5.1612) bsdi.1102 > svr4.discard: P 1:11(10) ack 1
5 5.201662 (0.0340) svr4.discard > bsdi.1102: . ack 11

6 194.909929 (189.7083) bsdi.1102 > svr4.discard: P 11:25(14) ack 1
7 194.914957 (0.0050) arp who—has bsdi tell svr4

8 194.915678 (0.0007) arp reply bsdi is—at 0:0:c0:6f:2d:40 _
9 194.918225 (0.0025) svr4.discard > bsdi.1102: R 26368002:26368002(0)

Figure 18.16 Reset in response to data segment on a half-open connection.

Lines 1-3 are the normal connection establishment. Line 4 sends the line ”hi there”

to the discard server, and line 5 is the acknowledgment.

At this point we disconnect the Ethernet cable from svr4, reboot it, and reconnect

the cable. This takes almost 190 seconds. We then type the next line of input to the

client (”another line”) and when we type the return key the line is sent to the server

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

TCP Connection Establishment and Termination250 Chapter 18

(line 6 in Figure 18.16). This elicits a response from the server, but note that since the

server was rebooted, its ARP cache is empty, so an ARP request and reply are required

(lines 7 and 8). Then the reset is sent in line 9. The client receives the reset and outputs

that the connection was terminated by the foreign host. (The final message output by
the Telnet client is not as informative as it could be,)

18.8 Simultaneous Open

It is possible, although improbable, for two applications to both perform an active open

to each other at the same time. Each end must transmit a SYN, and the SYNs must pass

each other on the network. It also requires each end to have a local port number that is

well known to the other end. This is called a simttltmeous open.

For example, one application on host A could have a local port of 7777 and perform

an active open to port 8888 on host B. The application on host B would have a local port

of 8888 and perform an active open to port 7777 on host A.

This is not the same as connecting a Telnet client on host A to the Telnet server on

host B, at the same time that a Telnet client on host B is connecting to the Telnet server

on host A. In this Telnet scenario, both Telnet servers perform passive opens, not active

opens, and the Telnet clients assign themselves an ephemeral port number, not a port
number that is well known to the other Telnet server.

TCP was purposely designed to handle simultaneous opens and the rule is that

only one connection results from this, not two connections. (Other protocol suites,

notably the OSI transport layer, create two connections in this scenario, not one.)

When a simultaneous open occurs the state transitions differ from those shown in

Figure 18.13. Both ends send a SYN at about the same time, entering the SYN_SENT

state. When each end receives the SYN, the state changes to SYN_RCVD (Figure 18.12),

and each end resends the SYN and acknowledges the received SYN. When each end

receives the SYN plus the ACK, the state changes to ESTABLISHED. These state

changes are summarized in Figure 18.17.

(active open) SYN_SENT
SYN_SENT (active open)

~ — SYN_RCVD
SYN_RCVD

ESTABLISHED — -
ESTABLISHED

Figure 18.17 Segments exchanged during simultaneous open.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.8 1 Simultaneous Open 251

A simultaneous open requires the exchange of four segments, one more than the

normal three—way handshake. Also notice that we don't call either end a client or a
server, because both ends act as client and server.

An Example

It is possible, though hard, to generate a simultaneous open. The two ends must be

started at about the same time, so that the SYNS cross each other. Having a long round’

trip time between the two ends helps, to let the SYNs cross. To do this we'll execute one
end on our host bsdi, and the other end on the host vangogh.cs .berkeley.edu.

Since there is a dialup SLIP link between them, the round—trip time should be long

enough (a few hundred milliseconds) to let the SYNs cross.

One end (bsdi) assigns itself a local port of 8888 (the —b command-line option) and

performs an active open to port 7777 on the other host:

bsdi % sock —v —b8888 vangogh.cs.berkeley.edu 7777connected on l40.252.13.35.8888 to l28.32.l30.2.7777

TCP_MAXSEG = 512
hello, world wetypethisline
and hi there this line was typed on other end
connection closed by peer this is output when FIN received

The other end is started at about the same time, assigns itself a local port of 7777, and

performs an active open to port 8888:o
vangogh 6 sock —v -—b7777 bsdi.tuc.noao.edu 8888
connected on l28.32.130.2.7777 to l40.252.13.35.8888

TCP_MAXSEG = 512
hello, world this is typed on the other end
and hi there we type this line
“D and then type our EOF character

We specify the —v flag to our sock program to verify the IP address and port numbers

on each end of the connection. This flag also prints the MSS used by each end of the

connection. We also type in one line on each end, which is sent to the other end and

printed, to Verify that both ends are indeed talking to each other.

Figure 18.18 shows the exchange of segments across the connection. (We have

deleted some new TCP options that appear in the original SYN from vangogh, a

4.4BSD system. We describe these newer options in Section 18.10.) Notice the two

SYNs (lines 1 and 2) followed by the two SYNs with ACKS (lines 3 and 4). These per-
form the simultaneous open. -

Line 5 shows the input line ”hello, world” going from bsdi to vangogh, with the

acknowledgment in line 6. Lines 7 and 8 correspond to the line ”and hi there” going in
the other direction. Lines 9-12 show the normal connection termination.

Many Berkeley—derived implementations do not support the simultaneous open correctly. On
these systems, if you can get the SYNS to cross, you end up with an infinite exchange of seg-
ments, each with a SYN and an ACK, in each direction. The transition from the SYNHSENT

state to the SYN_RCVD state in Figure 18.12 is not always tested in many implementations.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

252 TCP Connection Establishment and Termination Chapter 18

1 0.0 bsdi.8888 > vangogh.7777: S 9190400l:91904001(0)
win 4096 <mss 512>

2 0.213782 (O.2138) vangogh.7777 > bsdi.8888: S 105819904l:1058199041(0)
win 8192 <mss 512>

3 0.215399 (0.0016) bsdi.8888 > Vangogh.7777: S 91904001:91904001(0)
ack 1058199042 win 4096
<mss 512>

4 0.340405 (0.1250) vangogh.7777 > bsdi.8888: S 105819904l:l05819904l(0)
ack 91904002 win 8192
<mss 512>

5 5.633142 (5.2927) bsdi.8888 > Vangogh.'777'7: P 1:14(13) ack 1 win 4096
6 6.100366 (0.4672) vangogh.7777 > bsdi.8888: . ack 14 win 8192

7 9.640214 (3.5398) vangogh.7777 > bsdi.8888: P 1:14(13) ack 14 win 8192
8 9.796417 (0.1562) bsdi.8888 > vangogh.7777: . ack 14 win 4096

9 13.060395 (3.2640) vangogh.7777 > bsdi.8888: E‘ 14:14(0) ack 14 win 8192
10 13.061828 (0.0014) bsdi.8888 > vangogh.7777: . ack 15 win 4096
11 13.079769 (0.0179) bsdi.8888 > vangogh.7777: F 14:14(0) ack 15 win 4096
12 13.299940 (O.2202) vangogh.7777 > bsdi.8888: . ack 15 win 8192

Figure 18.18 Exchange of segments during simultaneous open.

18.9 Simultaneous Close

We said earlier that one side (often, but not always, the client) performs the active close,

causing the first FIN to be sent. It's also possible for both sides to perform an active

close, and the TCP protocol allows for this simultaneous close.

In terms of Figure 18.12, both ends go from ESTABLISHED to FIN_WAlT_1 when

the application issues the close. This causes both FINs to be sent, and they probably

pass each other somewhere in the network. When the PIN is received, each end transi-
tions from FlN_WAIT_1 to the CLOSING state, and each state sends its final ACK.

When each end receives the final ACK, the state changes to TIME_WAIT. Figure 18.19

summarizes these state changes.

(active close) FIN_WAIT_1
FIN]

CLOSING

TIME_WAIT l I

FIN_WAlT_1 (active close)

nN1< I
V CLOSIN_G

TIME_WAIT

Figure 18.19 Segments exchanged during simultaneous close.

With a simultaneous close the same number of segments are exchanged as in the
normal close.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.10 TCP Options 253

18.10 TCP Options

The TCP header can contain options (Figure 17.2). The only options defined in the orig-

inal TCP specification are the end of option list, no operation, and the maximum seg-

ment size option. We have seen the MSS option in almost every SYN segment in our

examples.

Newer RFCs, specifically RFC 1323 []acobson, Braden, and Borman 1992], define

additional TCP options, most of which are found only in the latest implementations.

(We describe these new options in Chapter 24.) Figure 18.20 shows the format of the

current TCP options——those from RFC 793 and RFC 1323.

End of option list: l<ind=0

1 byte

No operation: l<ind=1

1 byte

maximum

Maximum segment size: l<ind=2 len=4 segment
size (MSS)

1 byte 1 byte 2 bytes

shift
Window scale factor: kind:3 1en=3 count

1 byte 1 byte 1 byte

Timestamp: l<ind=8 1en=1O timestamp value timestamp echo reply

1 byte 1 byte 4 bytes 4 bytes

Figure 18.20 TCP options.

Every option begins with a 1-byte kind that specifies the type of option. The options
with a kind of O and 1 occupy a single byte. The other options have a Zen byte that fol-

lows the kind byte. The length is the total length, including the kind and Zen bytes.

The reason for the no operation (NOP) option is to allow the sender to pad fields to

a multiple of 4 bytes. If we initiate a TCP connection from a 4.4BSD system, the follow-

ing TCP options are output by tcpdump on the initial SYN segment:

<mss 512,nop,wscale 0,nop,nop,timestamp 146647 0>

The MSS option is set to 512, followed by a NOP, followed by the window scale option.

The reason for the first NOP is to pad the 3-byte window scale option to a 4-byte

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

254
TCP Connection Establishment and Termination Chapter 18

18.11

boundary. Similarly, the 10-byte timestamp option is preceded by two NOPS, to occupy

12 bytes, placing the two 4-byte timestamps onto 4-byte boundaries.

Four other options have been proposed, with kinds of 4, 5, 6, and 7 called the selective-ACK
and echo options. We don't show them in Figure 1820 because the echo options have been
replaced with the timestamp option, and selective ACKS, as currently defined, are still under
discussion and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions
(Section 24.7) specifies three options with kinds of 11, 12, and 13.

TCP Server Design

We said in Section 1.8 that most TCP servers are concurrent. When a new connection

request arrives at a server, the server accepts the connection and invokes a new process

to handle the new client. Depending on the operating system, various techniques are

used to invoke the new server. Under Unix the common technique is to create a new

process using the fork function. Lightweight processes (threads) can also be used, if

supported.
What we're interested in is the interaction of TCP with concurrent servers. We need

to answer the following questions: how are the port numbers handled when a server

accepts a new connection request from a client, and what happens if multiple connec-

tion requests arrive at about the same time?

TCP Server Port Numbers

We can see how TCP handles the port numbers by watching any TCP server. We'll

watch the Telnet server using the net stat command. The following output is on a

system with no active Telnet connections. (We have deleted all the lines except the one

showing the Telnet server.)
sun % netstat —a —n —f inet

Active Internet connections (including servers)
Proto Recv—Q Send—Q Local Address Foreign Address
tcp 0 O *.23 *.*

(state)
LISTEN

The ~a flag reports on all network end points, not just those that are ESTABLISHED.

The —n flag prints IP addresses as dotted—decimal numbers, instead of trying to use the

DNS to convert the address to a name, and prints numeric port numbers (e.g., 23)

instead of service names (e.g., Telnet). The —f inet option reports only TCP and UDP

end points.

The local address is output as * .23, where the asterisk is normally called the
wildcrzrd character. This means that an incoming connection request (i.e., a SYN) will be

accepted on any local interface. If the host were multihomed, we could specify a single

IP address for the local IP address (one of the host's IP addresses), and only connections

received on that interface would be accepted. (We'll see an example of this later in this

section.) The local port is 23, the well—known port number for Telnet.

The foreign address is output as * . *, which means the foreign IP address and for-

eign port number are not known yet, because the end point is in the LISTEN state, wait-

ing for a connection to arrive.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.11 TCP Server Design 255

We now start a Telnet client on the host slip (140.252.13.65) that connects to this

server. Here are the relevant lines from the net st at output:

Proto Recv—Q Send—Q Local Address Foreign Address (state)
top 0 0 140.252.l3.33.23 140.252.13.65.1029 ESTABLISHED
top 0 0 *.23 *.* LISTEN

The first line for port 23 is the ESTABLISHED connection. All four elements of the local

and foreign address are filled in for this connection: the local IP address and port num§
ber, and the foreign IP address and port number. The local IP address corresponds to

the interface on which the connection request arrived (the Ethernet interface,
140.252.13.33).

The end point in the LISTEN state is left alone. This is the end point that the con-

current server uses to accept future connection requests. It is the TCP module in the

kernel that creates the new end point in the ESTABLISHED state, when the incoming

connection request arrives and is accepted. Also notice that the port number for the

ESTABLISHED connection doesn’t change: it’s 23, the same as the LISTEN end point.
We now initiate another Telnet client from the same client (slip) to this server.

Here is the relevant net stat output:

Proto Recv—Q Send—Q Local Address Foreign Address (state)
tcp O 0 l40.252.l3.33.23 140.252.13.65.1030 ESTABLISHED
tcp O 0 l40.252.l3.33.23 140.252.13.65.l029 ESTABLISHED
tcp 0 0 *.23 *.* LISTEN

We now have two ESTABLISHED connections from the same host to the same server.

Both have a local port number of 23. This is not a problem for TCP since the foreign

port numbers are different. They must be different because each of the Telnet clients

uses an ephemeral port, and the definition of an ephemeral port is one that is not cur-

rently in use on that host (slip).

This example reiterates that TCP demultiplexes incoming segments using all four

values that comprise the local and foreign addresses: destination IP address, destination

port number, source IP address, and source port number. TCP cannot determine which

process gets an incoming segment by looking at the destination port number only. Also,

the only one of the three end points at port 23 that will receive incoming connection

requests is the one in the LISTEN state. The end points in the ESTABLISHED state can-

not receive SYN segments, and the end point in the LISTEN state cannot receive data

segments.
Next we initiate a third Telnet client, from the host solaris that is across the SLIP

link from sun, and not on its Ethernet.

Proto Recv—Q Send—Q Local Address Foreign Address (state)
top 0 0 140.252.1.29.23 l40.252.1.32.34603 ESTABLISHED
top 0 0 l40.252.13.33.23 140.252.l3.65.103O ESTABLISHED
top 0 0 l40.252.l3.33.23 l40.252.13.65.l029 ESTABLISHED
top 0 O *.23 *.* LISTEN

The local IP address of the first ESTABLISHED connection now corresponds to the inter-
face address of SLIP link on the multihomed host sun (140.252.1.29).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

256 TCP Connection Establishment and Termination Chapter 18

Restricting Local IP Address

We can see what happens when the server does not wildcard its local IP address, setting

it to one particular local interface address instead. If we specify an IP address (or host-

name) to our sock program when we invoke it as a server, that IP address becomes the

local IP address of the listening end point. For example
sun % sock —s 140.252.1.29 8888

restricts this server to connections arriving on the SLIP interface (140.252.1.29). The

net stat output reflects this:

Proto Recv—Q Send~Q nocal Address Foreign Address (state)
top 0 0 L40.252.1.29.8888 *.* LISTEN

If we connect to this server across the SLIP link, from the host solaris, it works.

Proto Recv~Q Send—Q uocal Address Foreign Address (state)
top 0 O ..40.252.l.29.8888 l40.252.l.32.346l4 ESTABLISHED
tcp O 0 _ 40.252.l.29.8888 *.* LISTEN

But if we try to connect to this server from a host on the Ethernet (140.252.13), the con-

nection request is not accepted by the TCP module. If we watch it with tcpdump the

SYN is responded to with an RST, as we Show in Figure 18.21.

1 0.0 bsdi.l026 > sun.8888: S 3657920001:3657920001(0)
win 4096 <mss l024>

2 0.000859 (0.0009) sun.8888 > bsdi.l026: R O:0(0) ack 3657920002 win 0

Figure 18.21 Rejection of a connection request based on local IP address of server.

The server application never sees the connection request—the rejection is done by the

kernel’s TCP module, based on the local IP address specified by the application.

Restricting Foreign IP Address

In Section 11.12 we saw that a UDP server can normally specify the foreign IP address

and foreign port, in addition to specifying the local IP address and local port. The inter-

face functions shown in RFC 793 allow a server doing a passive open to have either a

fully specified foreign socket (to wait for a particular client to issue an active open) or a

unspecified foreign socket (to wait for any client).

Unfortunately, most APIS don't provide a way to do this. The server must leave the

foreign socket unspecified, wait for the connection to arrive, and then examine the H’

address and port number of the client.

Figure 18.22 summarizes the three types of address bindings that a TCP server can

establish for itself. In all cases, lport is the server's well-known port and l0calIP must be

the IP address of a local interface. The ordering of the three rows in the table is the

order that the TCP module applies when trying to determine which local end point

receives an incoming connection request. The most specific binding (the first row, if

supported) is tried first, and the least specific (the last row with both IP addresses wild-
carded) is tried last.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.11 TCP Server Design 257

Local Address Foreign Address Description 1

locaIIP. [port f0rez'gnIP.fport restricted to one client (normally not supported)
l0caIIP. [port *.* restricted to connections arriving on one local interface: loc(zlIP

*. lport *.* receives all connections sent to Iport

Figure 18.22 Specification of local and foreign IP addresses and port number for TCP server.

Incoming Connection Request Queue

A concurrent server invokes a new process to handle each client, so the listening server

should always be ready to handle the next incoming connection request. That's the

underlying reason for using concurrent servers. But there is still a chance that multiple

connection requests arrive while the listening server is creating a new process, or while

the operating system is busy running other higher priority processes. How does TCP

handle these incoming connection requests while the listening application is busy?

In Berkeley—derived implementations the following rules apply.

1.
Each listening end point has a fixed length queue of connections that have been

accepted by TCP (i.e., the three—way handshake is complete), but not yet

accepted by the application.

Be careful to differentiate between TCP accepting a connection and placing it on

this queue, and the application taking the accepted connection off this queue.

The application specifies a limit to this queue, commonly called the backlog.

This backlog must be between 0 and 5, inclusive. (Most applications specify the
maximum value of 5.)

When a connection request arrives (i.e., the SYN segment), an algorithm is

applied by TCP to the current number of connections already queued for this

listening end point, to see whether to accept the connection or not. We would

expect the backlog Value specified by the application to be the maximum num-

ber of queued connections allowed for this end point, but it's not that simple.

Figure 18.23 shows the relationship between the backlog value and the real max-

imum number of queued connections allowed by traditional Berkeley systems
and Solaris 2.2.

Backlog Value Max # of queued connectionsTraditional BSD Solaris 2.2

O 1 0
1 2 1
2 4 2
3 5 3
4 7 4
5 8 5

Figure 18.23 Maximum number of accepted connections allowed for listening end point.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

258 TCP Connection Establishment and Termination Chapter 18

Keep in mind that this backlog Value specifies only the maximum number of

queued connections for one listening end point, all of which have already been

accepted by TCP and are waiting to be accepted by the application. This back-

log has no effect whatsoever on the maximum number of established connec-

tions allowed by the system, or on the number of clients that a concurrent server

can handle concurrently.

The Solaris values in this figure are what we expect. The traditional BSD Values are (for
some unknown reason) the backlog value times 3, divided by 2, plus 1.

4. If there is room on this listening end point’s queue for this new connection

(based on Figure 18.23), the. TCP module ACKS the SYN and completes the con-

nection. The server application with the listening end point won't see this new

connection until the third segment of the three~way handshake is received.

Also, the client may think the server is ready to receive data when the client's

active open completes successfully, before the server application has been noti-

fied of the new connection. (If this happens, the server’s TCP just queues the

incoming data.)

5. If there is not room on the queue for the new connection, TCP just ignores the

received SYN. Nothing is sent back (i.e., no RST segment). If the listening

server doesn't get around to accepting some of the already accepted connections

that have filled its queue to the limit, the client’s active open will eventually
time out.

We can see this scenario take place with our sock program. We invoke it with a

new option (-0) that tells it to pause after creating the listening end point, before

accepting any connection requests. If we then invoke multiple clients during this pause

period, it should cause the server's queue of accepted connections to fill, and we can see

what happens with tcpdump.

bsdi % sock -5 -v —q1 -030 7777

The —ql option sets the backlog of the listening end point to 1, which for this traditional

BSD system should allow two pending connection requests (Figure 1823). The -030

option causes the program to sleep for 30 seconds before accepting any client connec-

tions. This gives us 30 seconds to start some clients, to fill the queue. We'll start four
clients on the host sun.

Figure 18.24 shows the tcpdump output, starting with the first SYN from the first
client. (We have removed the window size advertisements and M88 announcements.

We have also marked the client port numbers in bold when the TCP connection is

established—the three—way handshake.)

The first client's connection request from port 1090 is accepted by TCP (segments

1-3). The second client's connection request from port 1091 is also accepted by TCP

(segments 4-6). The server application is still asleep, and has not accepted either con»

nection yet. Everything has been done by the TCP module in the kernel. Also, the two

clients have returned successfully from their active opens, since the three-way hand—

shakes are complete.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 18.11 TCP Server Design 259

1 0.0 sun.1090 > bsdi.7777: S 1617152000:1617152000(0)
2 0.002310 (0.0023) bsdi.7777 > sun.1090: S 4164096001:4164096001(0)

ack 1617152001

3 0.003098 (0.0008) sun.1090 > bsdi.7777: . ack 1

.29l0O7 (4.2879) sun.1091 > bsdi.7777: S 1617“/92000:1617792000(O)

.293349 (bsdi.7777 > sun.1091: S 416467200l:4164672001(0)
ack 1617792001

01»): »J>sJ> O O G N L»)

6 4.294167 (0.0008) sun.1091 > bsdi.7777: . ack 1

7 7.131981 (2.8378) sun.1092 > bsdi.7777: S 1618176000:1618176000(0)
8 10.556787 (3.4248) sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
9 12.695916 (2.1391) sun.1092 > bsdi.7777: S 1618176000:1618176000(0)

10 16.195772 (3.4999) sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
11 24.695571 (8.4998) sun.1092 > bsdi.7777: S 1618176000:1618176000(0)

12 28.195454 (3.4999) sun.1093 > bsdi.7777: S 1618688000:1618688000(0)
13 28.197810 (0.0024) bsdi.7777 > sun.1093: S 4167808001:4167808001(0)

ack 1618688001

14 28.198639 (0.0008) sun.1093 > bsdi.7777: . ack 1

15 48.694931 (20.4963) sun.1092 > bsdi.7777: 1618176000:1618176000(0)
16 48.697292 (0.0024) bSdi.7777 > sun.1092: S 4170496001:4170496001(0)

ack 1618176001

17 48.698145 (0.0009) sun.1092 > bsdi.7777: . ack 1

U1

Figure 18.24 tcpdump output for backlog example.

We try to start a third client in segment 7 (port 1092), and a fourth in segment 8

(port 1093). TCP ignores both SYNS since the queue for this listening end point is full.

Both clients retransmit their SYNS in segments 9, 10, 11, 12, and 15. The fourth client's

third retransmission is accepted (segments 12-14) because the server's 30—second pause

is over, causing the server to remove the two connections that were accepted, emptying

its queue. (The reason it appears this connection was accepted by the server at the time

28.19, and not at a time greater than 30, is because it took a few seconds to start the first

client [segment 1, the starting time point in the output] after starting the server.) The

third cli.ent’s fourth retransmission is then accepted (segments 15—17). The fourth client

connection (port 1093) is accepted by the server before the third client connection (port

1092) because of the timing interactions between the server's 30~second pause and the
client's retransmissions.

We would expect the queue of accepted connections to be passed to the application in FIFO
(first-in, first-out) order. That is, after TCP accepts the connections on ports 1090 and 1091, we
expect the application to receive the connection on port 1090 first, and then the connection on
port 1091. But a bug has existed for years in many Berl<eley-derived implementations causing
them to be returned in a LIFO (last—in, first-out) order instead. Vendors have recently started
fixing this bug, but it still exists in systems such as SunOS 4.1.3.

TCP ignores the incoming SYN when the queue is full, and doesn't respond with an

RST, because this is a soft error, not a hard error. Normally the queue is full because the

application or the operating system is busy, preventing the application from servicing

incoming connections. This condition could change in a short while. But if the server's

TCP responded with a reset, the client's active open would abort (which is what we saw

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

260
TCP Connection Establishment and Termination Chapter 18

18.12

happen if the server wasn't started). By ignoring the SYN, the server forces the client

TCP to retransmit the SYN later, hoping that the queue will then have room for the new
connection.

A subtle point in this example, which is found in most TCP/IP implementations, is

that TCP accepts an incoming connection request (i.e., a SYN) if there is room on the lis~

tener's queue, without giving the application a chance to see who it's from (the source

IP address and source port number). This is not required by TCP, it's just the common

implementation technique (i.e., the way the Berkeley sources have always done it). If an

API such as TLI (Section 1.15) gives the application a way to learn when a connection

request arrives, and then allows the application to choose whether to accept the connec-

tion or not, be aware that with TCP, when the application is supposedly told that the

connection has just arrived, TCP's three—way handshake is over! Other transport layers

may be implemented to provide this separation to the application between arrival and

acceptance (i.e., the OSI transport layer) but not TCP.

Solaris 2.2 provides an option that prevents TCP from accepting an incoming connection
request until the application says so (tcp_eager_listeners in Section E.4).

This behavior also means that a TCP server has no way to cause a client's active

open to fail. When a new client connection is passed to the server application, TCP's

three—way handshake is over, and the client's active open has completed successfully. If

the server then looks at the client's IP address and port number, and decides it doesn't

want to service this client, all the server can do is either close the connection (causing a

FIN to be sent) or reset the connection (causing an RST to be sent). In either case the

client thought everything was OK when its active open completed, and may have

already sent a request to the server.

Summary

Before two processes can exchange data using TCP, they must establish a connection

between themselves. When they're done they terminate the connection. This chapter

has provided a detailed look at how Connections are established using a three—way

handshake, and terminated using four segments.
We used tcpdump to show all the fields in the TCP header. We've also seen how a

connection establishment can time out, how resets are sent, what happens with a half-

open connection, and how TCP provides a half-close, simultaneous opens, and simulta~
neous closes. _

Fundamental to understanding the operation of TCP is its state transition diagram.

We've followed through the steps involved in connection establishment and termina-

tion, and the state transitions that take place. We also looked at the implications of

TCP's connection establishment on the design of concurrent TCP servers.

A TCP connection is uniquely defined by a 4—tuple: the local IP address, local port

number, foreign IP address, and foreign port number. Whenever a connection is termi-

nated, one end must maintain knowledge of the connection, and we saw that the
TIME_WAIT state handles this. The rule is that the end that does the active close enters

this state for twice the implementation's MSL.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 18 Exercises 261

Exercises

18.1 In Section 18.2 we said that the initial sequence number (ISN) normally starts at 1 and is
incremented by 64,000 every half-second and every time an active open is performed. This

would imply that the low-order three digits of the ISN would always be 001. But in Fig-
ure 18.3 these low-order three digits are 521 in each direction. What’s going on?

18.2 In Figure 18.15 we typed 12 characters and saw 13 bytes sent by TCP. In Figure 18,16 we

typed eight characters but TCP sent 10 bytes. Why was 1 byte added in the first case, but 2
bytes in the second case?

18.3 What’s the difference between a half-open connection and a half—closed connection?

18.4 If we start our sock program as a server, and then terminate it (without having a client
connect to it), we can immediately restart the server. This implies that it doesn't go
through the ZMSL wait state. Explain this in terms of the state transition diagram.

18.5 In Section 18.6 we showed that a client cannot reuse the same local port number while that

port is part of a connection in the 2MSL wait. But if we run our sock program twice in a

row as a client, connecting to the daytime server, we can reuse the same local port number.
Additionally, we're able to create a new incarnation of a connection that should be in the
2MSL wait. What's going on?a

sun 6 sock —v bsdi daytime
connected on 140.252.l3.33.1163 to 140.252.13.35.13
Wed Jul 7 07:54:51 1993

connection closed by peer

sun % sock —v —b1163 bsdi. daytime reuse srzmeloralportnumber
connected on 140.252.l3.33.1163 to 140.252.13.35.13
Wed Jul 7 07:55:01 1993

connection closed by peer

18.6 At the end of Section 18.6 when describing the FIN_WAIT_2 state, we mentioned that
many implementations move a connection from this state into the CLOSED state if the
application did a complete close (not a half-close) after just over 11 minutes. If the other
end (in the CLOSE_WAIT state) waited 12 minutes before issuing its close (i.e., sending its
FIN), what would its TCP get in response to the FIN?

18.7 Which end of a telephone conversation does the active open, and which does the passive
open? Are simultaneous opens allowed? Are simultaneous closes allowed?

18.8 In Figure 18.6 we don’t see an ARP request or an ARP reply. Obviously the hardware

address for host svr4 must be in the ARP cache on bsdi. What would change in this fig-
ure if this ARP cache entry was not present?

18.9 Explain the following tcpdump output. Compare it with Figure 18.13.
1 030 solaris.32990 > bsdi.discard: S 40140288:40140288(O)

win 8760 <mss 1460>

2 0.003295 (0.0033) bsdi.discard > solaris.32990: S 4208081409:4208081409(0)
ack 40140289 win 4096
<mss 1024>

0.419991 (0.4167) solaris.32990 > bsdi.discard: P l:257(256) ack 1 win 9216
0.449852 (0.0299) solaris.32990 > bsdi.discard: F 257:257(O) ack 1 win 9216
0.451965 (0.0021) bsdi.discard > so1aris.32990: . ack 258 win 3840
0.464569 (0.0126) bsdi.discard > solaris.32990: F 1:1(O) ack 258 win 4096
0.720031 (0.2555) solaris.32990 > bsdi.discard: . ack 2 win 9216

\lO\U‘Il-h-CA.)
Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

262 TCP Connection Establishment and Termination Chapter 18

18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

Why doesn't the server in Figure 18.4 combine the ACK of the client’s FIN with its own
FIN, reducing the number of segments to three?

In Figure 18.16 why is the sequence number of the RST 26368002?

Does TCP’s querying the link layer for the MTU violate the spirit of layering?

Assume in Figure 14.16 that each DNS query is issued using TCP instead of UDP. How
many packets are exchanged?

With an MSL of 120 seconds, what is the maximum at which a system can initiate new con-
nections and then do an active close?

Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state

receives a duplicate of the FIN that placed it into this state.

Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state
receives an RST.

Read the Host Requirements RFC to obtain the definition of a Imlf—duplex TCP close.

In Figure 1.8 (p. 11) we said that incoming TCP segments? are demultiplexed based on the
destination TCP port number. Is that correct?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

79

Flow TCP Interactive at

19.1 Introduction

The previous chapter dealt with the establishment and termination of TCP connections.

We now examine the transfer of data using TCP.

Studies of TCP traffic, such as [Caceres et al. 1991], usually find that on a packet-

count basis about half of all TCP segments contain bulk data (FTP, electronic mail,

Usenet news) and the other half contain interactive data (Telnet and Rlogin, for exa1n—

ple). On a byte—count basis the ratio is around 90% bulk data and 10% interactive, since

bulk data segments tend to be full sized (normally 512 bytes of user data), while interac-

tive data tends to be much smaller. (The above—mentioned study found that 90% of Tel~

net and Rlogin packets carry less than 10 bytes of user data.)

TCP obviously handles both types of data, but different algorithms come into play

for each. In this chapter we’ll look at interactive data transfer, using the Rlogin applica-

tion. We’ll see how delayed acknowledgments work and how the Nagle algorithm

reduces the number of small packets across wide area networks. The same algoritluns

apply to Telnet. In the next chapter we'll look at bulk data transfer.

19.2 Interactive Input

Let's look at the flow of data when we type an interactive command on an Rlogin con-

nection. Many newcomers to TCP/IP are surprised to find that each interactive key-

stroke normally generates a data packet. That is, the keystrokes are sent from the client

to the server 1 byte at a’ time (not one line at a time). Furthermore, Rlogin has the

Talari Networks Inc. - Exhibit 16667

Talari Networks Inc. - Exhibit 1007

264 TCP Interactive Data Flow Chapter 19

remote system (the server) echo the characters that we (the client) type. This could gen-

erate four segments: (1) the interactive keystroke from the client, (2) an acknowledg-

ment of the keystroke from the server, (3) the echo of the keystroke from the server, and

(4) an acknowledgment of the echo from the client. Figure 19.1 shows this flow of data.

client server

keystroke D» data byte
‘D > server

ack of data byte
4

echo of data byte d— echo
display « %‘

ack of echoed byte

Figure 19.1 One possible way to do remote echo of interactive keystroke.

Normally, however, segments 2 and 3 are combined——the acknowledgment of the key-

stroke is sent along with the echo. We describe the technique that combines these

(called delayed acknowledgments) in the next section.

We purposely use Rlogin for the examples in this chapter because it always sends

one character at a time from the client to the server. When we describe Telnet in Chap-

ter 26, we'll see that it has an option that allows lines of input to be sent from the client
to the server, which reduces the network load.

Figure 19.2 shows the flow of data when we type the five characters date\n. (We

do not show the connection establishment and we have removed all the type—of—service

output. BSD/386 sets the TOS for an Rlogin connection for minimum delay.) Line 1

sends the character 01 from the client to the server. Line 2 is the acknowledgment of this

character and its echo. (This is combining the middle two segments in Figure 19.1.)

Line 3 isthe acknowledgment of the echoed character. Lines 4-6 correspond to the
character a, lines 7-9 to the character t, and lines 10-12 to the character e. The frac~

tional second delays between lines 3-4, 6-7, 9—10, and 12-13 are the human delays

between typing each character.

Notice that lines 13-15 are slightly different. One character is sent from the client to

the server (the Unix newline character, from our typing the RETURN key) but two char-

acters are echoed. These two characters are a carriage return and linefeed (CR/LF), to

move the cursor back to the left and space down one line.

Line 16 is the output of the date command from the server. The 30 bytes are com-

posed of the following 28 characters
Sat Feb 6 07:52:17 MST 1993

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 19.3 Delayed Acknowledgments 265

.0 bsdi.lO23 > svr4._ogin: O:l(1) ack 1 win 4096

.016497 (0.0165) svr4.login > bsdi.lO23: P 1:2(1) ack 1 win 4096

.l39955 (0.l235) bsdi.lO23 > svr4._ogin: . ack 2 win 4096

"U

.458037 (0.318l) bsdi.lO23 > svr4.login: P 1:2(1) ack 2 win 4096

.474386 (0.0163) svr4.login > bsdi.lO23: P 2:3(l) ack 2 win 4096

.539943 (0.0656) bsdi.lO23 > svr4.iogin: . ack 3 win 4096

*0.814582 (O.2746) bsdi.lO23 > svr4."ogin: 2:3(l) ack 3 win 4096
.83l108 (0.0165) svr4.login > bsdi.lO23: P 3:4(1) ack 3 win 4096
.940l12 (O.1090) bsdi.lO23 > svr4.“ogin: . ack 4 win 4096

P4

®©0O\I0\CJ‘II-CkD.2l\J>~\ l\Jl-‘|—‘|—‘|—'l—‘i-‘|—‘|—‘|-—‘CD39©CD(DOCDO .19l287 (O.2512) bsdi.lO23 > Svr4.lOgin: P 314(1) ack 4 win 4096
11 .20770l (0.0164) svr4.login > bsdi.lO23: P 4:5(1) ack 4 win 4096

12 .339994 (O.l323) bsdi.lO23 > svr4._ogin: . ack 5 win 4096

13 .680646 (O.3407) bsdi.lO23 > svr4.u0gin: P 4:5(l) ack 5 win 4096
14 .697977 (0.0l73) Svr4.login > bsdi.lO23: P 5:7(2) ack 5 win 4096
15 .739974 (0.0420) bsdi.lO23 > svr4.,ogin: . ack 7 win 4096

16 .799841 (0.0599) svr4fllogin > bsdi.lO23: P 7:37(30) ack 5 win 4096
17 .940176 (0.1403) bsdi.lO23 > svr4.i0gin: . ack 37 win 4096
18 .944338 (0.0042) svr4.login > bsdi.lO23: P 37:44(7) ack 5 win 4096
19 .140l10 (O.l958) bsdi.lO23 > svr4.login: . ack 44 win 4096

Figure 19.2 TCP segments when da :e typed on Rlogin connection.

plus a CR/LF pair at the end. The next 7 bytes sent from the server to the client (line 18)

are the client's prompt on the server host: svr4 % . Line 19 acknowledges these 7

bytes.

Notice how the TCP acknowledgments operate. Line 1 sends the data byte with the

sequence number 0. Line 2 ACKS this by setting the acknowledgment sequence number

to 1, the sequence number of the last successfully received byte plus one. (This is also

called the sequence number of the next expected byte.) Line 2 also sends the data byte

with a sequence number of 1 from the server to the client. This is ACKed by the client

in line 3 by setting the acknowledged sequence number to 2.

19.3 Delayed Acknowledgments

There are some subtle points in Figure 19.2 dealing with timing that we’ll cover in this

section. Figure 19.3 shows the time line for the exchange in Figure 19.2. (We have
deleted all the window advertisements from this time line, and have added a notation

indicating what data is being transferred.) -

We have labeled the seven ACKS sent from bsdi to svr4 as delayed ACKS. Nor-

mally TCP does not send an ACK the instant it receives data. Instead, it delays the

ACK, hoping to have data going in the same direction as the ACK, so the ACK can be

sent along with the data. (This is sometimes called having the ACK pz'gg_1/back with the

data.) Most implementations use a 200~ms delay—that is, TCP will delay an ACK up to
200 ms to see if there is data to send with the ACK.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

266 TCP Interactive Data Flow Chapter 19

bsdi.1023 svr4.1ogin

0.0 1 PSH 051(1)acl< 1 (61)

PSH 1:2(1)ao1< 1 (echo of o) 2
0.016497 (0.0165) <—=

delayed ACK{
* 0.139955 (0.1235) 3 ack2 D

0.458037 (0.3181) 4 PSH 1:2(1)ac1<2 (a)

PSH 2:3(1) ack 2 (echo of a) "95
0.474386 (0.0163) «:4

delayed ACK{
* 0.539943 (0.0656) 6 ack3 §

0.814582 (0.2746) 7 PSH 253(1)acl<3 (t)

PSH 3:4(1)ac1<3 (echo of t) "fig
0.831108 (0.0165) at-~

delayed ACK{
* 0.940112 (0.1090) 9 acl<4 D»

1.191287 (0.2512) 10— PSH 3:4(1)ac1<4 (e)

PSH 4:5(1) acl<4 (echo of e) $11
1.207701 (00164) 14

delayed ACI<{
* 1.339994 (0.1323) 12 acl<5 I-

1.680646 (0.3407) 13 PSH 4=5(1) ac1<5 (newline)

PSH 5:7(2) ac1<5 (CR,LF> 14
1.697977 (0.0173) 4-

delayed ACK{
* 1.739974 (0.0420) 15 ack 7 B-

PSH 7:37(30) acl<5 (Sat Feb 6 07:52:17 MST 1993) 16
1.799841 (00599) 4»

delayed ACK{
* 1.940176 (0.1403) 17 ack 37

PSH 37:44(7)ao1<5 (SW4 %) >18
1.944338 (00042) 44»

delayed ACI({
* 2.140110 (0.1958) 19 ack 44 >-

Figure 19.3 Time line of data flow for date command typed on an rlogin connection.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 19.4 Nagle Algorithm 267

19.4

If we look at the time differences between bsdi receiving the data and sending the

ACK, they appear to be random: 123.5, 65.6, 109.0, 132.3, 42.0, 140.3, and 195.8 ms. Look

instead at the actual times (starting from 0) when the ACKS are sent: 139.9, 539.9, 940.1,
1339.9, 1739.9, 1940.1, and 2140.1 ms. (We have marked these with an asterisk to the left

of the time in Figure 19.3.) There is a multiple of 200 ms between these times. What is

happening here is that TCP has a timer that goes off every 200 ms, but it goes off at fixed

points in time—every 200 ms relative to when the kernel was bootstrapped. Since the

data being acknowledged arrives randomly (at times 16.4, 474.3, 831.1, etc.), TCP asks to

be notified the next time the kernel’s 200-ms timer expires. This can be anywhere from
1 to 200 ms in the future.

If we look at how long it takes svr4 to generate the echo of each character it
receives, the times are 16.5, 16.3, 16.5,‘16.4, and 17.3 ms. Since this time is less than 200

ms, we never see a delayed ACK on that side. There is always data ready to be sent

before the delayed ACK timer expires. (We could still see a delayed ACK if the wait

period, about 16 ms, crosses one of the kernel’s 200—ms clock tick boundaries. We just

don't see any of these in this example.)

We saw this same scenario in Figure 18.7 with the 500—ms TCP timer used when

detecting a timeout. Both TCP timers, the 200- and 500-ms timers, go off at times rela-

tive to when the kernel was bootstrapped. Whenever TCP sets a timer, it can go off any-
where between 1-200 or 1-500 ms in the future.

The Host Requirements RFC states that TCP should implement a delayed ACK but the delay
must be less than 500 ms.

Nagle Algorithm

We saw in the previous section that 1 byte at a time normally flows from the client to the

server across an Rlogin connection. This generates 41-byte packets: 20 bytes for the IP

header, 20 bytes for the TCP header, and 1 byte of data. These small packets (called

tinygrtzms) are normally not a problem on LANs, since most LANS are not congested,

but these tinygrams can add to congestion on wide area networks. A simple and ele-

gant solution was proposed in RFC 896 [Nagle 1984], called the Nagle algorithm.

This algorithm says that when a TCP connection has outstanding data that has not

yet been acknowledged, small segments cannot be sent until the outstanding data is

acknowledged. Instead, small amounts of data are collected by TCP and sent in a single

segment when the acknowledgment arrives. The beauty of this algorithm is that it is
self-clocking: the faster the ACKs come back, the faster the data is sent. But on a slow

WAN, where it is desired to reduce the number of tinygrams, fewer segments are sent.

(We'll see in Section 22.3 that the definition of ”small” is less than the segment size.)

We saw in Figure 19.3 that the round-trip time on an Ethernet for a single byte to be

sent, acknowledged, and echoed averaged around 16 ms. To generate data faster than

this we would have to be typing more than 60 characters per second. This means we

rarely encounter this algorithm when sending data between two hosts on a LAN.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

268 TCP Interactive Data Flow Chapter 19

Things change, however, when the round—trip time (RTT) increases, typically across

a WAN. Let's look at an Rlogin connection between our host slip and the host

vangogh . cs .berkeley . edu. To get out of our network (see inside front cover), two

SLIP links must be traversed, and then the Internet is used. We expect much longer

round—trip times. Figure 19.4 shows the tirne line of some data flow While characters

were being typed quickly on the client (similar to a fast typist). (We have removed the

type—of—service information, but have left in the window size advertisements.)

0.0

0.197694 (0.1977)

0.232457 (0.0348)

0.437593 (0.2051)

0.464257 (0.0267)

0.677658 (02134)

0.707709 (0.0301)

0.917762 (0.2101)

0.945862 (0.0281)

1.157640 (O.2118)

1.187501 (0.0299)

1.427852 (0.2404)

1.428025 (0.0002)

1.457191 (0.0292)

1.478429 (0.0212)

1.727608 (0.2492)

1.762913 (0.0353)

1.997900 (02350)

Figure 19.4 Data flow using rlogin between slip and vangogh. cs

Talari Networks Inc.

slip.1023 vangoghlogin

1 PSH 5:6(1) ack 47, win 4096 =D

PSH 47:48(1) ack 6, win 8192 2fin“

3 PSH 6:7(1) ack 48, win 4096 “fir

PSH 48:49(1) ack 7, win 8192 4Q-

5 PSH 79(2) ack 49, win 4095 “flb

PSH 49:51(2) ack 9, win 8192 6<—-

7 PSH 9:10(1) ack 51, win 4094 flit

PSH 51:52(1) ack 10, win 8192 8-GM”

9 PSH 10:12(2) ack 52, win 4095 ->

PSH 5254(2) ack 12, win 8192 10
¢ .

11 PSH 12:14(2) ack 54, win 4094 -=>

ack 14, win 8190 124 .

PSH 54:56(2) ack 14, wm 8192 134

1,1 PSH 14:17(3) ack 54, win 4096

15 PSH 17:18(1) ack 56, win 4096 U}~«»->

PSH 56:59(3) ack 18, win 8191 16G

17 PSH 18:21(3) ack 59, win 4093 MD

PSH 59:60(1) ack 21, win 8189 18<~—~—-M

.berkeley . edu.

- Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 19.4 Nagle Algorithm 269

The first thing we notice, comparing Figure 19.4 with Figure 19.3, is the lack of

delayed ACKS from slip to vangogh. This is because there is always data ready to

send before the delayed ACK timer expires.

Next, notice the various amounts of data being sent from the left to the right: 1, 1, 2,

1, 2, 2, 3, 1, and 3 bytes. This is because the client is collecting the data to send, but

doesn’t send it until the previously sent data has been acknowledged. By using the

Nagle algorithm only nine segments were used to send 16 bytes, instead of 16 segments.

Segments 14 and 15 appear to contradict the Nagle algorithm, but we need to look

at the sequence numbers to see what’s really happening. Segment 14 is in response to

the ACK received in segment 12, since the acknowledged sequence number is 54. But

before this data segment is sent by the client, segment 13 arrives from the server. Seg-

ment 15 contains the ACK of segment 13, sequence number 56. So the client is obeying

the Nagle algorithm, even though we see two back—to—back data segments from the
client to the server.

Also notice in Figure 19.4 that one delayed ACK is present, but it's from the server

to the client (segment 12). We are assuming this is a delayed ACK since it contains no

data. The server must have been busy at this time, so that the Rlogin server was not

able to echo the character before the server's delayed ACK timer expired.

Finally, look at the amounts of data and the sequence numbers in the final two seg-

ments. The client sends 3 bytes of data (numbered 18, 19, and 20), then the server

acknowledges these 3 bytes (the ACK of 21 in the final segment) but sends back only 1

byte (numbered 59). What's happening here is that the server's TCP is acknowledging

the 3 bytes of data once it has received them correctly, but it won't have the echo of

these 3 bytes ready to send back until the Rlogin server sends them. This shows that

TCP can acknowledge received data before the application has read and processed that

data. The TCP acknowledgment just means TCP has correctly received the data. We

also have an indication that the server process has not read these 3 bytes of data because

the advertised window in the final segment is 8189, not 8192.

Disabling the Nagle Algorithm

There are times when the Nagle algorithm needs to be turned off. The classic example

is the X Window System server (Section 30.5): small messages (mouse movements) must

be delivered without delay to provide real—time feedback for interactive users doing cer-

tain operations.

Here we'll show another example that’s easier to demonstrate——typing one of the

terminal’s special function keys during an interactive login. The function keys normally

generate multiple bytes of data, often beginning with the ASCII escape character. If

TCP gets the data 1 byte at a time, it's possible for it to send the first byte (the ASCII

ESC) and then hold the remaining bytes of the sequence waiting for the ACK of this

byte. But when the server receives this" first byte it doesn't generate an echo until the

remaining bytes are received. This often triggers the delayed ACK algorithm on the

server, meaning that the remaining bytes aren't sent for up to 200 ms. This can lead to

noticeable delays to the interactive user.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

270 TCP Interactive Data Flow Chapter 19

The sockets API uses the TCP_NODELAY socket option to disable the Nagle algorithm.

The Host Requirements RFC states that TCP should implement the Nagle algorithm but there
must be a way for an application to disable it on an individual connection.

An Example

We can see this interaction between the Nagle algorithm and keystrokes that generate

multiple bytes. We establish an Rlogin connection from our host slip to the host

vangogh.cs .berkeley.edu. We then type the F1 function key, which generates 3

bytes: an escape, a left bracket, and an M. We then type the F2 function key, which gen-

erates another 3 bytes. Figure 19.5 shows the tcpdump output. (We have removed the

type-of—service information and the window advertisements.)

typeF1key
1 0.0 slip.1023 > vangogh.login: P l:2(l) ack 2
2 0.250520 (0.2505) vangogh.login > slip.1023: P 2:4(2) ack 2

3 0.251709 (0.0012) I slip.1023 > vangogh.login: P 2:4(2) ack 4
4 0.490344 (0.2386) vangogh.login > slip.1023: P 4:6(2) ack 4
5 0.588694 (0.0984) slip.1023 > vangogh.login: . ack 6

typeF2key
6 2.836830 (2.248l) slip.1023 > vangogh.login: P 4:5(l) ack 6
7 3.132388 (0.2956) vangogh.login > slip.1023: P 6:8(2) ack 5
8 3.133573 (0.0012) slip.1023 > vangogh.login: P 5:7(2) ack 8
9 3.370346 (0.2368) vangogh.login > slip.1023: P 8:l0(2) ack 7

10 3.388692 (0.0183) slip.1023 > vangogh.login: . ack 10

Figure 19.5 Watching the Nagle algorithm when typing characters that generate multiple bytes of data.

Figure 19.6 shows the time line for this exchange. At the bottom of this figure we

show the 6 bytes going from the client to the server with their sequence numbers, and

the 8 bytes of echo being returned.

When the first byte of input is read by the rlogin client and Written to TCP, it is

sent by itself as segment 1. This is the first of the 3 bytes generated by the F1 key. Its
echo is returned in segment 2, and only then are the next 2 bytes sent (segment 3). The

echo of the second 2 bytes is received in segment 4 and acknowledged in segment 5.

The reason the echo of the first byte occupies 2 bytes (segment 2) is because the

ASCII escape character is echoed as 2 bytes: a caret and a left bracket. The next 2 bytes

of input, a left bracket and an M, are echoed as themselves.

The same exchange occurs when the next special function key is typed (segments

6-10). As we expect, the time difference between segments 5 and 10 (slip sending the

acknowledgment of the echo) is a multiple of 200 ms, since both ACKS are delayed.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 19.4 Nagle Algorithm 271

slip.1023 vangogh.login

0.0 type F1 >1 pm PSH 1:2(1) ack 2 =>

PSH 2:412) ack 2 m—-—« 2

0.250520 20.2505) -<————--—’”0.251709 0.0012 32... PSH 2:4(2) ack 4
“H

PSH 426(2) ack 4 4
0.490344 (0.2386) -use

0.588694 (0.0984) 5 ' ack 6 E-

6] PS Z2.836830 (2.2481) type F2 > H 4:5(1) ack 5
&

PSH 628(2) ack 5 2.1 7

3.132388 (0.2956) as-—-—~3.133573 0.0012 8r. PSH 5:7(2) ack 8

PSH 8-.10(2)ac1< 7]9
3.370346 (0.2368) ¢-

3.388692 (0.0183) 10 ack 10
>-

F2 key F1 key<~——> 41+

l N [IESCLM [iE5C *" F1 echo F2 echo
seq#: 6 5 4 3 2 1

11541
Figure 19.6 Time line for Figure 19.5 (watching the Nagle algorithm).

—<—
 [[
234

We now repeat this same example using a version of rlogin that has been modi-

fied to turn off the Nagle algorithm. Figure 19.7 shows the tcpdump output. (Again,

we have deleted the type—of—serVice information and the window advertisements.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

272 TCP Interactive Data Flow Chapter 19

type F1 key
1 0.0 slip.1023 > vangogh.login: P 1:2(1) ack 2
2 0.002163 (0.0022) slip.1023 > vangogh.login: P 2:3(1) ack 2
3 0.004218 (0.0021) slip.1023 > vangogh.login: P 3:4(1) ack 2
4 O.280621’(0.2764) vangogh.1ogin > slip.lO23: P 5:6(1) ack 4
5 0.281738 (0.0011) slip.1023 > vangogh.login: . ack 2
6 2.477561 (2.1958) vangogh.login > s1ip.1023: P 2:6(4) ack 4
7 2.478735 (0.0012) slip.1023 > vangogh.login: ack 6

type F2 key
8 3.217023 (O.7383) s1ip.1023 > vangogh.1ogin: P 4.5(1) ack 6
9 3.219165 (0.0021) slip.1023 > vangogh.login: P 526(1) ack 6

10 3.221688 (0.0025) slip.1023 > vangogh.1ogin: P 6.7(1) ack 6
11 3.460626 (0.2389) vangogh.login > s1ip.1023: P 6:8(2) ack 5
12 3.489414 (0.0288) vangogh.1ogin > slip.1023: P 8:10(2) ack 7
13 3.640356 (O.1509) s1ip.1023 > vangogh.login: . ack 10

Figure 19.7 Disabling the Nagle algorithm during an Rlogin session.

It is instructive and more enlightening to take this output and construct the time

line, knowing that some of the segments are crossing in the network. Also, this example

requires careful examination of the sequence numbers, to follow the data flow. We

show this in Figure 19.8. We have numbered the segments to correspond with the num~

bering in the tcpdump output in Figure 19.7.

The first change we notice is that all 3 bytes are sent when they’re ready (segments

1, 2, and 3). There is no delay—the Nagle algorithm has been disabled.

The next packet we see in the tcpdump output (segment 4) contains byte 5 from the

server with an ACK 4. This is wrong. The client immediately responds with an ACK 2

(it is not delayed), not an ACK 6, since it wasn't expecting byte 5 to arrive. It appears a

data segment was lost. We show this with a dashed line in Figure 19.8.

How do we know this lost segment contained bytes 2, 3, and 4, along with an ACK

3? The next byte were expecting is byte number 2, as announced by segment 5.

(Whenever TCP receives out—of—order data beyond the next expected sequence number,

it normally responds with an acknowledgment specifying the sequence number of the

next byte it expects to receive.) Also, since the missing segment contained bytes 2, 3,

and 4, it means the server must have received segment 2, so the missing segment must

have specified an ACK 3 (the sequence number of the next byte the server is expecting

to receive.) Finally, notice that the retransmission, segment 6, contains data from the

missing segment and segment 4. This is called repacketizntion, and we'll discuss it more
in Section 21.11. ‘

Returning to our discussion of disabling the Nagle algorithm, we can see the 3 bytes

of the next special function key that we type is sent as three individual segments (8, 9,

and 10). This time the server echoes the byte in segment 8 first (segment 11), and then

echoes the bytes in segments 9 and 10 (segment 12).

What we've seen in this example is that the default use of the Nagle algorithm can

cause additional delays when multibyte keystrokes are entered while running an inter-

active application across a WAN. (See Exercise 19.3.)

We return to the topic of timeout and retransmission in Chapter 21.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 19.4 Nagle Algorithm 273

s1ip.1023 vangoghlogin

0.0 type F1 —> 1

0.002163 (0.0022)

0.004218 (0.0021)

0.280621 £02764?0.281738 0.0011

(timeout and
i‘et1‘ar\smissi0n)

2.477561 2.1958
2.478735 0.0012

ack 5

3217023 (0.7383)

3.219165 (00021)

3.221688 (0.0025)

3.460626 (0.2389)
3.489414 (0.0288)

3.640356 (0.1509) 13

F2 key F1 key<——> <;—>

‘N [lESCl M [lESCl*> F1 echo F2echo
seq#:6 5 4 3 2 1 ‘“L""j’

<1? " [[M " [[N
2 3 4 5 6 7 8 9

Figure 19.8 Time line for Figure 19.7 (Nagle algorithm disabled).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

274
TCP Interactive Data Flow Chapter 19

19.5

19.6

Window Size Advertisements

In Figure 19.4 (p. 268) we see that slip advertises a window of 4096 bytes and

vangogh advertises a window of 8192 bytes. Most segments in this figure contain one
of these two values.

Segment 5, however, advertises a window of 4095 bytes. This means there is still 1

byte in the TCP buffer for the application (the Rlogin client) to read. Similarly, the next

segment from the client advertises a window of 4094 bytes, meaning there are 2 bytes
still to be read.

The server normally advertises a window of 8192 bytes, because the server's TCP

has nothing to send until the Rlogin server reads the received data and echoes it. The

data from the server is sent after the Rlogin server has read its input from the client.
The client TCP, on the other hand, often has data to send when the ACK arrives,

since it's buffering the received characters just waiting for the ACK. When the client

TCP sends the buffered data, the Rlogin client has not had a chance to read the data
received from the server, so the client's advertised window is less than 4096.

Summary

Interactive data is normally transmitted in segments smaller than the maximum seg-

ment size. With Rlogin a single byte of data is normally sent from the client to the

server. Telnet allows for the input to be sent one line at a time, but most implementa-

tions today still send single characters of input.

Delayed acknowledgments are used by the receiver of these small segments to see if

the acknowledgment can be piggybacked along with data going back to the sender.

This often reduces the number of segments, especially for an Rlogin session, where the

server is echoing the characters typed at the client.

On slower WANs the Nagle algorithm is often used to reduce the number of these

small segments. This algorithm limits the sender to a single small packet of unacknowl-

edged data at any time. But there are times when the Nagle algorithm needs to be dis-

abled, and we showed an example of this.

Exercises

19.1 Consider a TCP client application that writes a small application header (8 bytes) followed
by a small request (12 bytes). It then waits for a reply from the server. What happens if the
request is sent using two writes (8 bytes, then 12 bytes) Versus a single write of 20 bytes?

19.2 In Figure 19.4 we are running tcpdump on the router sun. This means the data in the

arrows from the right to the left still have to go through bsdi, and the data in the arrows
from the left to the right have already come through bsdi. When we see a segment going
to slip, followed by a segment coming from slip, the time differences between the two
are: 34.8, 26.7, 30.1, 28.1, 29.9, and 35.3 ms. Given that there are two links between sun and

slip (an Ethernet and a 9600 bits /sec CSLIP link), do these time differences make sense?
(Hint: Reread Section 2.10.)

Compare the time required to send a special function key and have it acknowledged using
the Nagle algorithm (Figure 19.6) and with the algorithm disabled (Figure 19.8).

19.3

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

20.1

20.2

20

TCP Bulk Data Flow

Introduction

In Chapter 15 we saw that TFTP uses a stop-and—wait protocol. The sender of a data

block required an acknowledgment for that block before the next block was sent. In this

chapter we’ll see that TCP uses a different form of flow control called a sliding window

protocol. It allows the sender to transmit multiple packets before it stops and waits for

an acknowledgment. This leads to faster data transfer, since the sender doesn't have to

stop and wait for an acknowledgment each time a packet is sent.

We also look at TCP’s PUSH flag, something we've seen in many of the previous

examples. We also look at slow start, the technique used by TCP for getting the flow of

data established on a connection, and then we examine bulk data throughput.

Normal Data Flow

Let’s start with a one—way transfer of 8192 bytes from the host svr4 to the host bsdi.

We run our sock program on bsdi as the server:
bsdi % sock —i —s 7777

The —i and —s flags tell the program to run as a ”sink” server (read from the network

and discard the data), and the server's port number is specified as 7777. The corre-

sponding client is then run as:
svr4 % sock -i —n8 bsdi 7777

This causes the client to perform eight 1024~byte writes to the network. Figure 20.1

shows the time line for this exchange. We have left the first three segments in the out-

put to show the MSS Values for each end.

Talari Networks Inc. - Exhibit 1037?

Talari Networks Inc. - Exhibit 1007

276 TCP Bulk Data Flow Chapter 20

svr4.1056 bsdi.7777

0_0 1 _ SYN 1305814529:1305814529(0)win 4096, <mss 1024> H

SYN 136'7249409:1367249409(0) 2
0002185 (0-0°22) “" ack 1305814530, win 4096, <mSs 1024>
0.007295 (00051) 3 ack 1, win 4096

§

0017800 (00100) 1 PSH 1:1025(1024) ack 1, win 4096
0.022609 (000,10) 5 PSH 1025:2049(1024) ack 1, win 4096
0027650 (010050) 6 PSH 2049:3073(1024)ac1< 1, win 4096 MD

ack 2049, win 4096 7

0.027799 0.0001 .() 0 ack 3073, WlI\ 3072 8

0.031881 (0.0041) «~——--*fi

0031700 (00070) 9 PSH 3073:4097(1024) ack 1, win 4096
ack 4097, Win 4096 10

0.039276 (0.0045) 4 f
0_0,1,1018 (00050) 11 PSH 4097:5121(1024) ack 1, win 4096
0050070 (00057) 12 0 PSH 5121:6145(1024) ack 1, win 4096 1»
0055280 (00000) 13 PSH 6145:7169(1024) ask 1, win 4096 Mm»

ack 6145, Win 4096 14

0.055441 (0.0002) 4

0061747 (00000) 15 PSH 7169:8193(1024) ack 1, win 4096 1.
ack 8193, win 4096 16

0.066206 (0.0045) 4

0.066850 (0.0006) 17 FIN 3193=8193(0) ack 1, Win 4096 >

ack 8194, win 4096 18

0.068216 0.0014 1+ .() FIN 1:1(0) ack 8194, wm 4096 19

0.069358 (0.0011) ¢ .

0.075414 (0.0061) 20 L ack 2, win 4096 N

Figure 20.1 Transfer of 8192 bytes from svr4 to bsdi.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.2 Normal Data Flow 277

The sender transmits three data segments (4-6) first. The next segment (7)

acknowledges the first two data segments only. We know this because the acknowl-

edged sequence number is 2049, not 3073.

Segment 7 specifies an ACK of 2049 and not 3073 for the following reason. When a

packet arrives it is initially processed by the device driver's interrupt service routine

and then placed onto IP’s input queue. The three segments 4, 5, and 6 arrive one after

the other and are placed onto IP’s input queue in the received order. IP will pass them

to TCP in the same order. When TCP processes segment 4, the connection is marked to

generate a delayed ACK. TCP processes the next segment (5) and since TCP now has

two outstanding segments to ACK, the ACK of 2049 is generated (segment 7), and the

delayed ACK flag for this connection is turned off. TCP processes the next input seg-

ment (6) and the connection is again marked for a delayed ACK. Before segment 9
arrives, however, it appears the delayed ACK timer goes off, and the ACK of 3073 (seg-

ment 8) is generated. Segment 8 advertises a window of 3072 bytes, implying that there

are still 1024 bytes of data in the TCP receive buffer that the application has not read.

Segments 11-16 show the ”ACK every other segment” strategy that is common.

Segments 11, 12, and 13 arrive and are placed on IP’s input queue. When segment 11 is

processed by TCP the connection is marked for a delayed ACK. When segment 12 is

processed, an ACK is generated (segment 14) for segments 11 and 12, and the delayed

ACK flag for this connection is turned off. Segment 13 causes the connection to be

marked again for a delayed ACK but before the timer goes off, segment 15 is processed,

causing the ACK (segment 16) to be sent immediately.

It is important to notice that the ACK in segments 7, 14, and 16 acknowledge two

received segments. With TCP’s sliding—window protocol the receiver does not have to

acknowledge every received packet. With TCP, the ACKS are cumulative——they

acknowledge that the receiver has correctly received all bytes up through the acknowl-

edged sequence number minus one. In this example three of the ACKS acknowledge

2048 bytes of data and two acknowledge 1024 bytes of data. (This ignores the ACKs in
the connection establishment and termination.)

What we are watching with tcpdump are the dynamics of TCP in action. The

ordering of the packets that we see on the wire depends on many factors, most of which

we have no control over: the sending TCP implementation, the receiving TCP imple-

mentation, the reading of data by the receiving process (which depends on the process

scheduling by the operating system), and the dynamics of the network (i.e., Ethernet

collisions and backoffs). There is no single correct way for two TCPs to exchange a

given amount of data.

To show how things canchange, Figure 20.2 shows another time line for the same

exchange of data between the same two hosts, captured a few minutes after the one in

Figure 20.1.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

278 TCP Bulk Data Flow Chapter 20

svr4.1057 bsdi.8888

0'0 1 SYN 1332182529:1332182529(0)
win 4096, <mss 1024> ”

SYN 1394129409:1394129409(O) 2
0-002159 (Q0022) ack 1332182530, win 4096, <mss 1024>

0.007097 (0.0049) 3 ack 1, win 4096 D»

Z Z

0017558 (00105) 4 PSH 1:1025(1024) ack 1, win 4095 4»

0022519 (000050) 5 PSH 1025:2049(1024) ack 1, win 4095 =m

0027455 (00040) 6 PSH 2049:3073(1024) ack 1, win 4095 ~u

ack 2049, win 4096 7
0.027595 (0.0001) M

0035231 (050076) 8 PSH 3073:4097(1024) ack 1, win 4096 »

05040258 (000050) 9 PSH 4097:5121(1024) ack 1, win 4095 4».

ack 4097, win 4096 10
0.040402 (0.0001) 4

»~>

ack 5121, win 4096 12
0.046930 (00001) 4

0055455 (00085) 15 PSH 6145:7169(1024) ack 1, win 4095 -5-

0060522 (00051) 14 PSH 7169:8193(1024) ack 1, win 4095 «>

ack 7169, win 4096 15
0.060662 (0.0001) .4

D-

(ack 8194, win 4096 170.067878 0.0014) 4 .
FIN 1;1(0) ack 8194, wm 4096 10

0.068994 (0.0011) 4

0.087556 (0.0186) 19 ack 2, win 4096 D

Figure 20.2 Another transfer of 8192 bytes from svr4 to bsdi.

A few things have changed. This time the receiver does not send an ACK of 3073;

instead it waits and sends the ACK of 4097. The receiver sends only four ACI<s (seg-

ments 7, 10, 12, and 15): three of these are for 2048 bytes and one for 1024 bytes. The

ACK of the final 1024 bytes of data appears in segment 17, along with the ACK of the

PIN. (Compare segment 17 in this figure with segments 16 and 18 in Figure 20.1.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.2 Normal Data Flow 279

Fast Sender, Slow Receiver

Figure 20.3 shows another time line, this time from a fast sender (a Spare) to a slow

receiver (an 80386 with a slow Ethernet card). The dynamics are different again.

sun.1181 bsdi.discard

0.0 1 SYN 69056000O:690560000(O)
Win 4096, <mss 1460> ”

SYN 2566353409:2566353409(O) 72
0002238 (0-0°22) ‘ , ack 690560001, Win 4096, <mss 1024>
0.003020 (0.0008) 3 ack 1, win 4096 D»

“-9

0000008 (00020) 5 ‘W PSH 1025:2049(1024) ack 1, win 4095. Mb

00010490 (00017) 6 PSH 2049.-307s(1024) acl< 1, win 4096

0012057 (00010) 7 PSH 3073:4097(1O24)acI<1,w1'n 4095 -—=——u=

ack 4097, win 0 7 8

0.038562 (0.0265) ,« @4097, M14096 9
0.055994 (0.0174) 4

0.057815 (0.0018) 10 40975121(1024) ack 1, win 4096 M->

.___. I

‘'5

0.062992 (o.0016) 13 FINTSH 7169=8193(1024) ack 1, Win 4096 J.
ack 8194, win 0 14

0071915 (Q0089) ‘ ack 8194, win 4096 .15

0074313 (00024) H FIN 1;1(0) ack 8194, win 4096 10
0.075746 (0.0014) <

0.076439 (0.o007) 17 ack 2, win 4096 >

Figure 20.3 Sending 8192 bytes from a fast sender to a slow receiver. _

The sender transmits four bacl<—to—bacl< data segments (4—7) to fill the receiver's

window. The sender then stops and waits for an ACK. The receiver sends the ACK

(segment 8) but the advertised window is 0. This means the receiver has all the data,

but it's all in the receiver's TCP buffers, because the application hasn't had a chance to

read the data. Another ACK (called a window update) is sent 17.4 ms later, announcing

that the receiver can now receive another 4096 bytes. Although this looks like an ACK,

it is called a window update because it does not acknowledge any new data, it just

advances the right edge of the window.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

280 TCP Bulk Data Flow Chapter 20

The sender transmits its final four segments (10-13), again filling the receiver's win-

dow. Notice that segment 13 contains two flag bits: PUSH and FIN. This is followed by

another two ACKS from the receiver. Both of these acknowledge the final 4096 bytes of

data (bytes 4097 through 8192) and the FIN (numbered 8193).

20.3 Sliding Windows

The sliding window protocol that we observed in the previous section can be visualized

as shown in Figure 20.4.
_ offered window

T‘ (advertised by receiver) D

usable window

1 2 3 4 5 6 7 8 9 10 11

can”: send until

Sent and sent, not ACKed window moves
acknowledged can send ASAP

Figure 20.4 Visualization of TCP sliding window.

In this figure we have numbered the bytes 1 through 11. The window advertised by the

receiver is called the oflered window and covers bytes 4 through 9, meaning that the

receiver has acknowledged all bytes up through and including number 3, and has

advertised a window size of 6. Recall from Chapter 17 that the window size is relative

to the acknowledged sequence number. The sender computes its usable window, which

is how much data it can send immediately.

Over time this sliding window moves to the right, as the receiver acknowledges
data. The relative motion of the two ends of the window increases or decreases the size

of the window. Three terms are used to describe the movement of the right and left

edges of the window.

1. The window closes as the left edge advances to the right. This happens when

data is sent and acknowledged.

2. The window opens when the right edge moves to the right, allowing more data

to be sent. This happens when the receiving process on the other end reads

acknowledged data, freeing up space in its TCP receive buffer. ‘

3. The window shrinks when the right edge moves to the left. The Host Require-

ments RFC strongly discourages this, but TCP must be able to cope with a peer

that does this. Section 22.3 shows an example when one side would like to

shrink the window by moving the right edge to the left, but cannot.

Figure 20.5 shows these three terms. The left edge of the window cannot move to

the left, because this edge is controlled by the acknowledgment number received from

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.3 Sliding Windows 281

closes Shrinks opens

window

Figure 20.5 Movement of window edges.

the other end. If an ACK were received that implied moving the left edge to the left, it

is a duplicate ACK, and discarded.

If the left edge reaches the right edge, it is called a zero window. This stops the

sender from transmitting any data. ‘

An Example

Figure 20.6 shows the dynamics of TCP’s sliding window protocol for the data transfer

in Figure 20.1.

1 1024 1025 2048 2049 3072 3073 4096 4097 5120 5121 6144 6145 7168 7169 8192

F "“"““‘ “‘”‘”7

: window advertised by segment 2L. _ _ _ _ _ _ _ 1 _i

F data sent in ‘.4segments 4, 5, 6
F — ‘ ” ‘ ” — “ “ 1

4- — — 14915631PX — — —>1 window advertised by segment 7
segment 7 L

ACKed by _‘_ 7 7 ' _
«r — — — —>-I window advertised by segment 8

segment 8 g _ _ _,
data sent in

segment 9

ACKed by V _‘ 7 _ 7
4- — ~ ~ «>1 window advertised by segment 10
segment 10 ,_ _ _ _ _ _ _

data sent in

segments 11,12, 13 .

¢ _ _ isglsedby _ _Mr gwindowadvertised — — _
segment 14 _ L by segment 14

data sent in

segment 15

+ _ _ :’*S31SeE‘PY. _ _ ,,
segment 16

Figure 20.6 Sliding window protocol for Figure 20.1.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

282
TCP Bulk Data Flow Chapter 20

20.4

There are numerous points that we can summarize using this figure as an example.

1. The sender does not have to transmit a full Window’s worth of data.

2. One segment from the receiver acknowledges data and slides the window to the

right. This is because the window size is relative to the acknowledged sequence
number.

3. The size of the window can decrease, as shown by the change from segment 7 to

segment 8, but the right edge of the window must not move leftward.

4. The receiver does not have to wait for the window to fill before sending an

ACK. We saw earlier that many implementations send an ACK for every two

segments that are received. '

We'll see more examples of the dynamics of the sliding window protocol in later

examples.

Window Size

The size of the window offered by the receiver can usually be controlled by the receiv~

ing process. This can affect the TCP performance.

4.2BSD defaulted the send buffer and receive buffer to 2048 bytes each. With 4.3BSD both were
increased to 4096 bytes. As we can see from all the examples so far in this text, SunOS 4.1.3,
BSD/386, and SVR4 still use this 4096-byte default. Other systems, such as Solaris 2.2, 4.4BSD,
and AIX 3.2, use larger default buffer sizes, such as 8192 or 16384 bytes.

The sockets API allows a process to set the sizes of the send buffer and the receive buffer. The
size of the receive buffer is the maximum size of the advertised window for that connection.

Some applications change the socket buffer sizes to increase performance.

[Mogul 1993] shows some results for file transfer between two workstations on an

Ethernet, with varying sizes for the transmit buffer and receive buffer. (For a one—way

flow of data such as file transfer, it is the size of the transmit buffer on the sending side

and the size of the receive buffer on the receiving side that matters.) The common

default of 4096 bytes for both is not optimal for an Ethernet. An approximate 40%

increase in throughput is seen by just increasing both buffers to 16384 bytes. Similar

results are shown in [Papadopoulos and Parulkar 1993]. ‘
In Section 20.7 we'll see how to calculate the minimum buffer size, given the band-

width of the communication media and the round-trip time between the two ends.

An Example

We can control the sizes of these buffers with our sock program. We invoke the server
as:

bsdi % sock —i -s —R6144 5555

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.4 Window Size 283

which sets the size of the receive buffer (—R option) to 6144 bytes. We then start the

client on the host sun and have it perform one write of 8192 bytes:
sun % sock -i ——n1 —w8192 bsdi 5555

Figure 20.7 shows the results.

0.0

0.002282 (0.0023)

0.003067 (0.0008)

0.022170 (0.0191)

0.024136 (0.0020)

0.026084 (0.0019)

0.027711 (0.0016)

0.029334 (0.0016)

0.030910 (0.0016)

0.044570 (00137)

0.046510 (00019)

0.048234 (00017)

0050074 (0.0018)

0.054250 (0.0042)

0.056215 (00020)

0.058233 (00020)

0.059518 (00013)

0.060167 (00006)

Figure 20.7 Data transfer with receiver offering a window size of 6144 bytes.

sun.1126 bsdi.5555

1 SYN 1227520000:1227520000(0)
win 4096, <mss 1460> *

SYN 2363371521:2363371521(0) 2
< ack 1227520001, win 6144, <mss 1024>

3 ack 1, win 4096 a»

Z Z

4 1:1025(1024) ack 1, win 4096 D

5 1025:2049(1024) ack 1, Win 4096 "'75

6 2049:3073(1024) ack 1, Win 4096 "Di

7 PSH 3073:4097(1024) ack 1, win 4096 %

8 4097:5121(1024) ack 1, Win 4096 “Mb

9 5121:6145(1024) ack 1, Win 4096 *7"->=

ack 6145, Win 2048 10
1‘

11 6145:7169(1024) ack 1, Win 4096 “~§

12 FIN,PSH 7169:8193(1024) ack 1, Win 4096 “D4

ack 6145, win 4096 13

‘ ack 3194, win 2048 14

ack 8194, win 4096 15

ack 8194, win 6144 164 .

FIN 1;1(0) ack 8194, wm 6144 17<

18 ack 2, win 4096 >

First notice that the receiver's window size is offered as 6144 bytes in segment 2.

Because of this larger window, the client sends six segments immediately (segments

4-9), and then stops. Segment 10 acknowledges all the data (bytes 1 through 6144) but

offers a window of only 2048, probably because the receiving application hasn’t had a

chance to read more than 2048 bytes. Segments 11 and 12 complete the data transfer

from the client, and this final data segment also carries the FIN flag.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

284
TCP Bulk Data Flow Chapter 20

20.5

Segment 13 contains the same acknowledgment sequence number as segment 10,

but advertises a larger window. Segment 14 acknowledges the final 2048 bytes of data

and the PIN, and segments 15 and 16 just advertise a larger window. Segments 17 and

18 complete the normal close.

PUSH Flag

We've seen the PUSH flag in every one of our TCP examples, but we've never described

its use. It's a notification from the sender to the receiver for the receiver to pass all the

data that it has to the receiving process. This data would consist of whatever is in the

segment with the PUSH flag, along with any other data the receiving TCP has collected

for the receiving process.

In the original TCP specification, it was assumed that the programming interface

would allow the sending process to tell its TCP when to set the PUSH flag. In an inter-

active application, for example, when the client sent a command to the server, the client

would set the PUSH flag and wait for the server's response. (In Exercise 19.1 we could

imagine the client setting the PUSH flag when the 12-byte request is written.) By allow-

ing the client application to tell its TCP to set the flag, it was a notification to the client’s

TCP that the client process didn't want the data to hang around in the TCP buffer, wait-

ing for additional data, before sending a segment to the server. Similarly, when the

server's TCP received the segment with the PUSH flag, it was a notification to pass the

data to the server process and not wait to see if any additional data arrives.

Today, however, most APIs don't provide a way for the application to tell its TCP to

set the PUSH flag. Indeed, many implementors feel the need for the PUSH flag is out-

dated, and a good TCP implementation can determine when to set the flag by itself.

Most Berl<eley~derived implementations automatically set the PUSH flag if the data

in the segment being sent empties the send buffer. This means we normally see the

PUSH flag set for each application write, because data is usually sent when it's written.

A comment in the code indicates this algorithm is to please those implementations that only
pass received data to the application when a buffer fills or a segment is received with the
PUSH flag.

It is not possible using the sockets API to tell TCP to turn on the PUSH flag or to tell whether
the PUSH flag was set in received data.

Berl<eley~derived implementations ignore a received PUSH flag because they nor-

mally never delay the delivery of received data to the application. ‘

Examples

In Figure 20.1 (p. 276) we see the PUSH flag turned on for all eight data segments (4—6,

9, 11-13, and 15). This is because the client did eight writes of 1024 bytes, and each

write emptied the send buffer.

Look again at Figure 20.7 (p. 283). We expect the PUSH flag to be set on segment 12,

since that is the final data segment. Why was the PUSH flag set on segment 7, when the

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.6 Slow Start 285

20.6

sender knew there were still more bytes to send? The reason is that the size of the

sender’s send buffer is 4096 bytes, even though we specified a single write of 8192

bytes.

Another point to note in Figure 20.7 concerns the three consecutive ACKS, segments

14, 15, and 16. We saw two consecutive ACKS in Figure 20.3, but that was because the

receiver had advertised a window of 0 (stopping the sender) so when the window

opened up, another ACK was required, with the nonzero window, to restart the sender.

In Figure 20.7, however, the window never reaches 0. Nevertheless, when the size of

the window increases by 2048 bytes, another ACK is sent (segments 15 and 16) to pro-

vide this window update to the other end. (These two window updates in segments 15

and 16 are not needed, since the FIN has been received from the other end, meaning it

will not send any more data.) Many implementations send this window update if the

window increases by either two maximum sized segments (2048 bytes in this example,

with an MSS of 1024) or 50% of the maximum possible window (3072 bytes in this

example, with a maximum window of 6144). We'll see this again in Section 22.3 when

we examine the silly window syndrome in detail.
As another example of the PUSH flag, look again at Figure 20.3 (p. 279). The reason

we see the flag on for the first four data segments (4~7) is because each one caused a

segment to be generated by TCP and passed to the IP layer. But then TCP had to stop,

waiting for an ACK to move the 4096-byte window. While waiting for the ACK, TCP

takes the final 4096 bytes of data from the application. When the window opens up

(segment 9) the sending TCP knows it has four segments that it can send immediately,

so it only turns on the PUSH flag for the final segment (13).

Slow Start

In all the examples we've seen so far in this chapter, the sender starts off by injecting

multiple segments into the network, up to the window size advertised by the receiver.
While this is OK when the two hosts are on the same LAN, if there are routers and

slower links between the sender and the receiver, problems can arise. Some intermedi-

ate router must queue the packets, and it's possible for that router to run out of space.

[lacobson 1988] shows how this naive approach can reduce the throughput of a TCP

connection drastically.

TCP is now required to support an algorithm called slow start. It operates by

observing that the rate at which new packets should be injected into the network is the

rate at which the acknowledgments are returned by the other end.

Slow start adds another window to the sender's TCP: the congestion window, called
cwmi. When a new connection is established with a host on another network, the con-

gestion window is initialized to one segment (i.e., the segment size announced by the

other end). Each time an ACK is received, the congestion window is increased by one

segment. (czund is maintained in bytes, but slow start always increments it by the seg-

ment size.) The sender can transmit up to the minimum of the congestion window and

the advertised window. The congestion window is flow control imposed by the sender,

while the advertised window is flow control imposed by the receiver.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

A 286 TCP Bulk Data Flow Chapter 20

The sender starts by transmitting one segment and waiting for its ACK. When that

ACK is received, the congestion window is incremented from one to two, and two seg-

ments can be sent. When each of those two segments is acknowledged, the congestion

window is increased to four. This provides an exponential increase.

At some point the capacity of the internet can be reached, and an intermediate

router will start discarding packets. This tells the sender that its congestion window

has gotten too large. When we talk about TCP’s timeout and retransmission algorithms

in the next chapter, we'll see how this is handled, and what happens to the congestion
window. For now, let's watch slow start in action.

An Example

20.7

Figure 20.8 shows data being sent from the host sun to the host
vangogh.cs .berkeley.edu. The data traverses a slow SLIP link, which should be

the bottleneck. (We have removed the connection establishment from this time line.)

We see the sender transmit one segment with 512 bytes of data and then wait for its

ACK. The ACK is received 716 ms later, which is an indicator of the round—trip time.

The congestion window is then increased to two segments, and two segments are sent.

When the ACK in segment 5 is received, the congestion window is increased to three

segments. Two more segments are sent (not three) because the ACK for segment 4 is

still outstanding. When the ACK in segment 8 is received, the congestion window is

increased to 4 but only two more segments are sent, because the ACKS for segments 6

and 7 are still outstanding.

We'll return to slow start in Section 21.6 and see how it's normally implemented

with another technique called congestion avoidance.

Bulk Data Throughput

Let’s look at the interaction of the window size, the windowed flow control, and slow

start on the throughput of a TCP connection carrying bulk data.

Figure 20.9 shows the steps over time of a connection between a sender on the left

and a receiver on the right. Sixteen units of time are shown. We show only discrete

units of time in this figure, for simplicity. We show segments carrying data going from

the left to right in the top half of each picture, numbered 1, 2, 3, and so on. The ACKS

go in the other direction in the bottom half of each picture. We draw the ACI<s smaller,

and show the segment number being acknowledged. ‘

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.7 Bulk Data Throughput 287

sun.1118 vangogh.discard

0.0 cwnd : 1 1 (22 1513612) ack 1, win 4096
«->

ack 513, win 8192 20.716330 (07163) cwnd ~ 2 4

0.716967 (0.0006) . 3 513¢1025(512) ack 1, Win 4096
0717640 (010007) 4 1025:1537(512) ack 1, win 4096

*-ID

4660 6 (0 484) d 3 ack 1025, Win 8192 51. 8 .7 cum 2 «:4

1.466778 (0.0007) 6 153713049612) ack I, win 4096
=-—&

1.467425 (0.0006) 7 2049=2561<512) ask 1, win 4096
«-w

1 4 O 5(7) d 4 ack 1537,win 8192 8.9 6 6 0.4 86 cum - «—

1946709 (00006) 9 2561:3073(512)ac1< 1, Win 4096
«w

1.947350(0.0006) 10 .

57 084 62 7 d 5 La: ack 2049'Win 8192 112. 6 0. 8 — .2 76294 (0 0002)) CW4 6 ack 2561'Wm8192 12.5 . cwn = -«er

 2.576841<o.0oo5) 13 MN/PH=7ac » 14096

06 1 3 9 ack 3073, Win 8192 142.9 0 4 0. 2 2 .3 5 7 (1 0) ‘ aC1<3585/ W18192 15
.08 9 8 0. 80 .5 2 275((2403) ‘I aCk4098'Wm 7680 16
.3 6 0. m .561 (0 298)) FIN 1:1(0) ack 4098, wm 8192 173.3 06 .0 4

3.356543 (0.0004) 18 ack 2, win 4096

Figure 20.8 Example of slow start.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

288 TCP Bulk Data Flow Chapter 20

time 0: 1

sender —> i» A _

time 1: 1

time 2: 1

time 3: 1

time 4:

time 5:

time 6:

time 7:

sender 4—

ackl

ack 1

ack

ack l

‘ —w receiver

4- receiver

time 8: 2

sender —> f

time 9: 3 2

sender —» ,5:

time 10: 3 2

time 11:

time 12:

time 13:

time 14:

time 15:

sender <—

ack 2

ack 2 ack 3

2 ack 3

ack 2 ack 3

Figure 20.9 Times 0-15 for bulk data throughput example.

A ——» receiver

— 3‘: —mreceiver

m— receiver

<— receiver

At time 0 the sender transmits one segment. Since the sender is in slow start (its

congestion window is one segment), it must wait for the acknowledgment of this seg-

ment before continuing.

At times 1, 2, and 3 the segment moves one unit of time to the right. At time 4 the

receiver reads the segment and generates the acknowledgment. At times 5, 6, and 7 the

ACK moves to the left one unit, back to the sender. We have a round-trip time (RTT) of
8 units of time.

We have purposely drawn the ACK segment smaller than the data segment, since
it's normally just an IP header and a TCP header. We're showing only a unidirectional

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.7 Bulk Data Throughput 289

flow of data here. Also, we assume that the ACK moves at the same speed as the data

segment, which isn't always true.

In general the time to send a packet depends on two factors: a propagation delay (caused by
the finite speed of light, latencies in transmission equipment, etc.) and a transmission delay
that depends on the speed of the media (how many hits per second the media can transmit).
For a given path between two nodes the propagation delay is fixed while the transmission
delay depends on the packet size. At lower speeds the transmission delay dominates (e.g.,
Exercise 7.2 where we didn't even consider the propagation delay), whereas at gigabit speeds
the propagation delay dominates (e.g., Figure 24.6).

When the sender receives the ACK it can transmit two more segments (which we've

numbered 2 and 3), at times 8 and_ 9. Its congestion window is now two segments.

These two segments move right toward the receiver, where the ACKS are generated at

times 12 and 13. The spacing of the ACKS returned to the sender is identical to the spac-

ing of the data segments. This is called the self—cl0ckz'ng behavior of TCP. Since the

receiver can only generate ACI<s when the data arrives, the spacing of the ACKS at the

sender identifies the arrival rate of the data at the receiver. (In actuality, however,

queueing on the return path can change the arrival rate of the ACKS.)

Figure 20.10 shows the next 16 time units. The arrival of the two ACKS increases

the congestion window from two to four segments, and these four segments are sent at
times 16-19. The first of the ACKS returns at time 23. The four ACKs increase the con-

gestion window from four to eight segments, and these eight segments are transmitted
at times 24~31.

At time 31, and at all successive times, the pipe between the sender and receiver is

full. It cannot hold any more data, regardless of the congestion window or the window

advertised by the receiver. Each unit of time a segment is removed from the network by

the receiver, and another is placed into the network by the sender. However many data

segments fill the pipe, there are an equal number of ACKS making the return trip. This

is the ideal steady state of the connection.

Bandwidth-Delay Product

We can now answer the question: how big should the window be? In our example, the

sender needs to have eight segments outstanding and unacknowledged at any time, for

maximum throughput. The receiver's advertised window must be that large, since that
limits how much the sender can transmit.

We can calculate the capacity of the pipe as

capacity (bits) = bm1dw1'dtI1(bits/sec) >< r0zmd—trz'p time (sec)

This is normally called the bandwz'dth—delay product. This value can vary widely, depend-

ing on the network speed and the RTT between the two ends. For example, a T1 tele~

phone line (1,544,000 bits/ sec) across the United States (about a 60-ms RTT) gives a

bandwidth—delay product of 11,580 bytes. This is reasonable in terms of the buffer sizes

we talked about in Section 20.4, but a T3 telephone line (45,000,000 bits/ sec) across the

United States gives a bandWidth—delay product of 337,500 bytes, which is bigger than

the maximum allowable TCP window advertisement (65535 bytes). We describe the

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

290 TCP Bulk Data Flow Chapter 20

time 16: 4

sender—> 1,

sender «-

ack 3 ack 6 ack 7

time 17: 5 4 time 25

sender —> sender —»

sender <—

aclc 6 acl< 7
time 18: 6 5 4 time 26 10 9 8

sender —u-— sender —>
sender <1-

ach 7
time 19: 7 6 5 4 time 27. 11 10 9 8

sender —» 0 —» receiver sender —» - —w receiver

time 20: 7 6 5 time 28. 12 11 10 9

it —-> receiver sender —a> ——w receiver

2; 4- receiver ~=a— receiver
ack 4

time 21: 7 6 time 29 13 12 11 10

—> receiver sender —> —> receiver

_ g , <~— receiver <« receiver
ad; 4 5

time 22: time 30 14 13 12 11

—> receiver sender —> —> receiver

V , <~— receiver <— receiver
ack 4 ack 5 6

time 23: time 31 15 14 13 12

sender —> —> receiver

sender <\ ff, :1 <— receiver sender <— <— receiver
acl< 4 ack 5 ack 6 ack 7 8 ach 9 ack 10 ac 11

Figure 20.10 Times 16-31 for bulk data throughput example.

new TCP window scale option in Section 24.4 that gets around this current limitation of
TCP.

The value 1,544,000 bits/sec for a T1 phone line is the raw bit rate. The data rate is actually
1,536,000 bits/ sec, since 1 bit in 193 is used for framing. The raw bit rate of a T3 phone line is
actually 44,736,000 bits/sec, and the data rate can reach 44,210,000 bits/ sec. For our discussion
we'll use 1.544 Mbits/ sec and 45 Mbits/ sec.

Either the bandwidth or the delay can affect the capacity of the pipe between the

sender and receiver. In Figure 20.11 we show graphically how a doubling of the RTT

doubles the capacity of the pipe.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.7 Bulk Data Throughput 291

FT RTT en»

t 1 2 3 4

l 1 2 3 4 5 l 6 7 8 l

is double the RTT and

Figure 20.11 Doubling the RTT doubles the capacity of the pipe.

In the lower illustration of Figure 20.11, with the longer RTT, the pipe can hold eight

segments, instead of four.

Similarly, Figure 20.12 shows that doubling the bandwidth also doubles the capacity

of the pipe.

1 4
Figure 20.12 Doubling the bandwidth doubles the capacity of the pipe.

In the lower illustration of Figure 20.12, we assume that the network speed has doubled,

allowing us to send four segments in half the time as in the top picture. Again, the

capacity of the pipe has doubled. (We assume that the segments in the top half of this

figure have the same area, that is the same number of bits, as the segments in the bot-
tom half.)

Congesfion

Congestion can occur when data arrives on a big pipe (a fast LAN) and gets sent out a

smaller pipe (a slower WAN). Congestion can also occur when multiple input streams

arrive at a router whose output capacity is less than the sum of the inputs.

Figure 20.13 shows a typical scenario with a big pipe feeding a smaller pipe. We say

this is typical because most hosts are connected to LANs, with an attached router that is

connected to a slower WAN. (Again, we are assuming the areas of all the data segments

(9-20) in the top half of the figure are the same, and the areas of all the acknowledg-

ments in the bottom half are all the same.)

In this figure we have labeled the router R1 as the ”bottleneck,” because it is the

congestion point. It can receive packets from the LAN on its left faster than they can be

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

292
TCP Bulk Data Flow Chapter 20

20.8

20 19 1817 16 15

’_ aottleneck) 14 13 12 11router
R1

router

sender —> R2
—> receiver

router
R4

router
R3sender 4- _ «<~— receiver

3 5 ack 6ack 4

ack 1 ack 2 ack 7 ack 8

Figure 20.13 Congestion caused by a bigger pipe feeding a smaller pipe.

sent out the WAN on its right. (Commonly R1 and R3 are the same router, as are R2 and

R4, but that's not required; asymmetrical paths can occur.) When router R2 puts the

received packets onto the LAN on its right, they maintain the same spacing as they did

on the WAN on its left, even though the bandwidth of the LAN is higher. Similarly, the

spacing of the ACKS on their way back is the same as the spacing of the slowest link in

the path.

In Figure 20.13 we have assumed that the sender did not use slow start, and sent the

segments we've numbered 1-20 as fast as the LAN could take them. (This assumes the

receiving host advertised a window of at least 20 segments.) The spacing of the ACKS

will correspond to the bandwidth of the slowest link, as we show. We are assuming the

bottleneck router has adequate buffering for all 20 segments. This is not guaranteed,

and can lead to that router discarding packets. We’ll see how to avoid this when we

talk about congestion avoidance in Section 21.6.

Urgent Mode

TCP provides what it calls urgent mode, allowing one end to tell the other end that

”urgent data” of some form has been placed into the normal stream of data. The other

end is notified that this urgent data has been placed into the data stream, and it's up to

the receiving end to decide what to do. ‘

The notification from one end to the other that urgent data exists in the data stream

is done by setting two fields in the TCP header (Figure 17.2, p. 225). The URG bit is

turned on and the 16-bit urgent pointer is set to a positive offset that must be added to

the sequence number field in the TCP header to obtain the sequence number of the last

byte of urgent data.

There is continuing debate about whether the urgent pointer points to the last byte of urgent
data, or to the byte following the last byte of urgent data. The original TCP specification gave

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.8 Urgent Mode 293

both interpretations but the Host Requirements RFC identifies which is correct: the urgent
pointer points to the last byte of urgent data.

The problem, however, is that most implementations (i.e., the Berkeley-derived implementa-
tions) continue to use the wrong interpretation. An implementation that follows the specifica-
tion in the Host Requirements RFC might be compliant, but might not communicate correctly
with most other hosts.

TCP must inform the receiving process when an urgent pointer is received and one

was not already pending on the connection, or if the urgent pointer advances in the data

stream. The receiving application can then read the data stream and must be able to tell

when the urgent pointer is encountered. As long as data exists from the receiver’s cur-

rent read position until the urgent pointer, the application is considered to be in an

”urgent mode.” After the urgent pointer is passed, the application returns to its normal
mode.

TCP itself says little more about urgent data. There is no way to specify where the

urgent data starts in the data stream. The only information sent across the connection

by TCP is that urgent mode has begun (the URG bit in the TCP header) and the pointer

to the last byte of urgent data. Everything else is left to the application.

Unfortunately many implementations incorrectly call TCP’s urgent mode

out—of—lJand data. If an application really wants a separate out~of—band channel, a second

TCP connection is the easiest way to accomplish this. (Some transport layers do pro-

vide what most people consider true out—of—band data: a logically separate data path

using the same connection as the normal data path. This is not what TCP provides.)

The confusion between TCP’s urgent mode and out—of-band data is also because the predomi-
nant programming interface, the sockets API, maps TCP’s urgent mode into what sockets calls
out-of-band data.

What is urgent mode used for? The two most commonly used applications are Tel-

net and Rlogin, when the interactive user types the interrupt key, and we show exam~

ples of this use of urgent mode in Chapter 26. Another is FTP, when the interactive user

aborts a file transfer, and we show an example of this in Chapter 27.

Telnet and Rlogin use urgent mode from the server to the client because it's possible

for this direction of data flow to be stopped by the client TCP (i.e., it advertises a win-

dow of 0). But if the server process enters urgent mode, the server TCP immediately

sends the urgent pointer and the URG flag, even though it can't send any data. When

the client TCP receives this notification, it in turn notifies the client process, so the client

can read its input from the server, to open the window, and let the data flow.

What happens if the sender enters urgent mode multiple times before the receiver

processes all the data up through the first urgent pointer? The urgent pointer just

advances in the data stream, and its previous position at the receiver is lost. There is

only one urgent pointer at the receiver and its value is overwritten when a new value

for the urgent pointer arrives from the other end. This means if the contents of the data

stream that are written by the sender when it enters urgent mode are important to the

receiver, these data bytes must be specially marked (somehow) by the sender. We'll see

that Telnet marks all of its command bytes in the data stream by prefixing them with a

byte of 255.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

294 TCP Bulk Data Flow Chapter 20

An Example

Let's watch how TCP sends urgent data, even when the receiver's window is closed.

We'll start our sock program on the host bsdi and have it pause for 10 seconds after

the connection is established (the —P option), before it reads from the network. This lets
the other end fill the send window.

bsdi % sock -i -5 -P10 5555

We then start the client on the host sun telling it to use a send buffer of 8192 bytes (—S

option) and perform six 1024-byte writes to the network (—n option). We also specify

—U5 telling it to write 1 byte of data and enter urgent mode before writing the fifth buff~

er to the network. We specify the Verbose flag to see the order of the writes:

sun % sock -v -i -n6 -S8192 -U5 bsdi 5555
connected on 140.252.13.33.1305 to 140.252.13.35.5555

SO_SNDBUF = 8192
TCP_M.AXSEG = 1024
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes
wrote 1024 bytes

We set the send buffer size to 8192 bytes, to let the sending application immediately

write all of its data. Figure 20.14 shows the tcpdump output for this exchange. (We

have removed the connection establishment.) Lines 1-5 show the sender filling the

receiver’s window with four 1024-byte segments. The sender is then stopped because

the receiVer’s window is full. (The ACK on line 4 acknowledges data, but does not

move the right edge of the window.)

After the fourth application write of normal data, the application writes 1 byte of

data and enters urgent mode. Line 6 is the result of this application write. The urgent

pointer is set to 4098. The urgent pointer is sent with the URG flag even though the

sender cannot send any data.
Five of these ACKS are sent in about 18 ms (lines 6-10). The first is sent when the

application writes 1 byte and enters urgent mode. The next two are sent when the

application does the final two writes of 1024 bytes. (Even though TCP can't send these

2048 bytes of data, each time the application performs a write, the TCP output function

is called, and when it sees that urgent mode has been entered, sends another urgent

notification.) The fourth of these ACKS occurs when the application closes its end of the

connection. (The TCP output function is again called.) The sending application termi~

nates milliseconds after it starts—before the receiving application has issued its first

read. TCP queues all the data and sends it when it can. (This is why we specified a
send buffer size of 8192——so all the data can fit in the buffer.) The fifth of these ACI(s is

probably generated by the reception of the ACK on line 4. The sending TCP has proba-

bly already queued its fourth segment for output (line 5) before this ACK arrives. The

receipt of this ACK from the other end also causes the TCP output routine to be called.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 20.8 Urgent Mode 295

1 0.0 sun.1305 > bsdi.5555: P 1:1025(1024) ack 1 win 4096
2 0.073743 (0.0737) sun.1305 > bsdi.5555: P 1025:2049(1024) ack 1 win 4096
3 0.096969 (0.0232) sun.1305 > bsdi.5555: P 2049:3073(1024) ack 1 win 4096
4 0.157514 (0.0605) bsdi.5555 > sun.1305: . ack 3073 win 1024
5 0.164267 (0.0068) sun.1305 > bsdi.5555: P 3073:4097(1024) ack 1 win 4096

6 0.167961 (0.0037) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
7 0.171969 (0.0040) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
8 0.176196 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098
9 0.180373 (0.0042) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

10 0.180768 (0.0004) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

11 0.367533 (0.1868) bsdi.5555 > sun.1305: . ack 4097 win 0
12 0.368478 (0.0009) sun.1305 > bsdi.5555: . ack 1 win 4096 urg 4098

13 9.829712 (9.4612) bsdi.5555 > sun.1305: . ack 4097 win 2048
14 9.831578 (0.0019) sun.1305 > bsdi.5555: . 4097:5121(1024) ack 1 win 4096

urg 4098
15 9.833303 (0.00l7) sun.1305 > bsdi.5555: . 5121:6145(1024) ack 1 win 4096

16 9.835089 (0.0018) bsdi.5555 > sun.1305: . ack 4097 win 4096
17 9.835913 (0.0008) sun.1305 > bsdi.5555: FP 6145:6146(1) ack 1 win 4096
18 9.840264 (0.0044) bsdi.5555 > sun.1305: . ack 6147 win 2048
19 9.842386 (0.0021) bsdi.5555 > sun.1305: . ack 6147 win 4096
20 9.843622 (0.00l2) bsdi.5555 > sun.1305: F 121(0) ack 6147 win 4096
21 9.844320 (0.0007) sun.1305 > bsdi.5555: . ack 2 win 4096

Figure 20.14 tcpdump output for TCP urgent mode.

The receiver then acknowledges the final 1024 bytes of data (line 11§)\but also adver-
tises a window of 0. The sender responds with another segment containing the urgent
notification. * V

The receiver advertises a window of 2048 bytes in line 13, when the application
wakes up and reads some of the data from the receive buffer. The next two 1024-byte

segments are sent (lines 14 and 15). The first segment has the urgent notification set, '\

since the urgent pointer is within this segment. The second segment has turned the

urgent notification off.

When the receiver opens the window again (line 16) the sender transmits the final

byte of data (numbered 6145) and also initiates the normal connection termination.

Figure 20.15 shows the sequence numbers of the 6145 bytes of data that are sent.

We see that the sequence number of the byte written when urgent mode was entered is

4097, but the Value of the urgent pointer in Figure 20.14 is 4098. This confirms that this

implementation (SunOS 4.1.3) sets the urgent pointer to 1 byte beyond ‘the last byte of
urgent data.

write write write write urg write write< >4 —>

3073 4096 409i 4098 5121 5122 61452049 3072 sec1# 1 1024 1025 2048

+ d. .4 »). +)+ _ .+- +t¢ -_ _segment segment segment segment segment segment

Figure 20.15 Application writes and TCP segments for urgent mode example.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

296
TCP Bulk Data Flow Chapter 20

20.9

This figure also lets us see how TCP repacl<etizes the data that the application

wrote. The single byte that was output when urgent mode was entered is sent along

with the next 1023 bytes of data in the buffer. The next segment also contains 1024 bytes

of data, and the final segment contains 1 byte of data.

Summary

As we said early in the chapter, there is no single way to exchange bulk data using TCP.

It is a dynamic process that depends on many factors, some of which we can control

(e.g., send and receive buffer sizes) and some of which we have no control over (e.g.,

network congestion, implementation features). In this chapter we've examined many
TCP transfers, explaining all the characteristics and algorithms that we could see.

Fundamental to the efficient transfer of bulk data is TCP’s sliding window protocol.

We then looked at what it takes for TCP to get the fastest transfer possible by keeping

the pipe between the sender and receiver full. We measured the capacity of this pipe as

the bandwidth-delay product, and saw the relationship between this and the window

size. We return to this concept in Section 24.8 when we look at TCP performance.

We also looked at TCP’s PUSH flag, since we'll always see it in trace output, but we

have no control over its setting. The final topic was TCP’s urgent data, which is often

mistakenly called ”out—of~band data.” TCP’s urgent mode is just a notification from the

sender to the receiver that urgent data has been sent, along with the sequence number

of the final byte of urgent data. The programming interface for the application to use

with urgent data is often less than optimal, which leads to much confusion.

Exercises

20.1 In Figure 20.6 (p. 281) we could have shown a byte numbered 0 and a byte numbered 8193.
What do these 2 bytes designate?

Look ahead to Figure 22.1 (p. 324) and explain the setting of the PUSH flag by the host
bsdi

202

20.3 In a Usenet posting someone complained about a throughput of 120,000 bits/sec on a
256,000 bits /sec link with a 128-ms delay between the United States and Iapan (47% utili-

zation), and a throughput of 33,000 bits /sec when the link was routed over a satellite (13%
utilization). What does the window size appear to be for both cases?- (Assume a 500-ms

delay for the satellite link.) How big should the window be for the satellite link?

If the API provided a way for a sending application to tell its TCP to turn on the PUSH
flag, and a way for the receiver to tell if the PUSH flag was on in a received segment, could
the flag then be used as a record marker?

20.4

20.5

20.6
In Figure 20.3 why aren't segments 15 and 16 combined?

In Figure 20.13 we assume that the ACI<s come back nicely spaced, corresponding to the

spacing of the data segments. What happens if the ACKS are queued somewhere on the
return path, causing a bunch of them to arrive at the same time at the sender?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

21.1

27

TCP Timeout and Retransmission

Introduction

TCP provides a reliable transport layer. One of the ways it provides reliability is for

each end to acknowledge the data it receives from the other end. But data segments

and acknowledgments can get lost. TCP handles this by setting a timeout when it sends

data, and if the data isn't acknowledged when the timeout expires, it retransrnits the

data. A critical element of any implementation is the timeout and retransmission strat-

egy. How is the timeout interval determined, and how frequently does a retransmission
occur? ,

We've already seen two examples of timeout and retransmission: (1) In the ICMP

port unreachable example in Section 6.5 we saw the TFTP client using UDP employing a

simple (and poor) timeout and retransmission strategy: it assumed 5 seconds was an

adequate timeout period and retransmitted every 5 seconds. (2) In the ARP example to
a nonexistent host (Section 4.5), we saw that when TCP tried to establish the connection

it retransmitted its SYN using a longer delay between each retransmission.

TCP manages four different timers for each connection.

1. A retrm1smz'ssz'0n timer is used when expecting an acknowledgment from the

other end. This chapter looks at this timer in detail, along with related issues

such as congestion avoidance.

2. A persist timer keeps window size information flowing even if the other end

closes its receive window. Chapter 22 describes this timer.

3. A keepnlive timer detects when the other end on an otherwise idle connection

crashes or reboots. Chapter 23 describes this timer.

4. A ZMSL timer measures the time a connection has been in the TIME_WAIT
state. We described this state in Section 18.6.

Talari Networks Inc. - Exhibit 16677

Talari Networks Inc. - Exhibit 1007

298 TCP Timeout and Retransmission Chapter 21

21.2

In this chapter we start with a simple example of TCP’s timeout and retransmission

and then move to a larger example that lets us look at all the details involved in TCP’s

timer management. We look at how typical implementations measure the round—trip

time of TCP segments and how TCP uses these measurements to estimate the retrans~

mission timeout of the next segment it transmits. We then look at TCP’s congestion

aVoidance—what TCP does when packets are lost—and follow through an actual

example where packets are lost. We also look at the newer fast retransmit and fast

recovery algorithms, and see how they let TCP detect lost packets faster than waiting

for a timer to expire.

Simple Timeout and Retransmission Example

Let's first look at the retransmission strategy used by TCP. We'll establish a connection,

send some data to verify that everything is OK, disconnect the cable, send some more
data, and watch what TCP does:

bsdi % telnet svr4 discard

Trying 140.252.13.34...
Connected to svr4.

Escape character is
hello, world
and hi

Connection closed by foreign host.

1"]/.

send this line normally
disconnect cable before sending this line
output when TCP gives up after 9 minutes

Figure 21.1 shows the tcpdump output. (We have removed all the type-of~serVice infor-

mation that is set by bsdi.)

1 0.0 bsdi.1029 > sVr4.discard: S 1747921409:1747921409(O)
win 4096 <mss l024>

2 0.004811 (0.0048) svr4.disCard > bsdi.1029: S 3416685569:3416685569(0)
ack 1747921410
win 4096 <mss l024>

3 0.006441 (0.0016) bsdi.1029 > sVr1.diScard: ack 1 win 4096

4 6.102290 (6.0958) bsdi.1O29 > svr1.discard: P 1:15(14) ack 1 win 4096
5 6.259410 (0.1571) svr4.discard > bsdi.1029: ack 15 win 4096

6 24.180158 (18.2207) bsdi.1029 > svr1.discard: P 15:23(8) ack 1 win 4096
7 25.193733 (1.0136) bsdi.1029 > SVr1.discard: P 15:23(8) ack 1 win 4096
8 28.193795 (3.0001) bsdi.1029 > sVr1.discard: P 15:23(8) ack 1 win 4096
9 34.193971 (6.0002) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096

10 46.184427 (1l.9905) bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
11 70.185105 (24.0007) bsdi.1029 > svr1.discard: P 15:23(8) ack 1 win 4096
12 118.186408 (48.0013) bsdi.1029 > svr1.disCard: P 15:23(8) ack 1 win 4096
13 182.188164 (64.0018) bsdi.1029 > svr1.discard: P 15:23(8) ack 1 win 4096
14 246.18992l (64.0018) bsdi.1O29 > svr1.discard: P 15:23(8) ack 1 win 4096
15 31O.191678 (64.0018) bsdi.1029 > svr4.disCard: P 15:23(8) ack 1 win 4096
16 374.193431 (64.0018) bsdi.1029 > sVr4.disCard: P 15:23(8) ack 1 win 4096
17 438.195196 (64.0018) bsdi.1O29 > svr1.disCard: P 15:23(8) ack 1 win 4096
18 502.186941 (63.9917) bsdi.1029 > svr4.disCard: P 15:23(8) ack 1 win 4096
19 566.188478 (64.00l5) bsdi.1029 > svr4.disCard: R 23:23(O) ack 1 win 4096

Figure 21.1 Simple example of TCP’s timeout and retransmission.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.3 Round~Trip Time Measurement 299

21.3

Lines 1, 2, and 3 correspond to the normal TCP connection establishment. Line 4 is

the transmission of ”hello, world” (12 characters plus the carriage return and linefeed),

and line 5 is its acknowledgment. We then disconnect the Ethernet cable from svr4.

Line 6 shows ”and hi” being sent. Lines 7-18 are 12 retransmissions of that seg-

ment, and line 19 is when the sending TCP finally gives up and sends a reset.

Examine the time difference between successive retransmissions: with rounding

they occur 1, 3, 6, 12, 24, 48, and then 64 seconds apart. We'll see later in this chapter

that the first timeout is actually set for 1.5 seconds after the first transmission. (The rea-

son it occurs 1.0136 seconds after the first transmission, and not exactly 15 seconds, was

explained in Figure 18.7.) After this the timeout value is doubled for each retransmis-

sion, with an upper limit of 64 seconds.

This doubling is called an exponential backofl. Compare this to the TFTP example in

Section 6.5, where every retransmission occurred 5 seconds after the previous.

The time difference between the first transmission of the packet (line 6 at time

24.480) and the reset (line 19 at time 566.488) is about 9 minutes. Modern TCP’s are per-

sistent When trying to send data!

On most implementations this total timeout value is not tunable. Solaris 2.2 allows the admin-
istrator to change this (the tcp_ip_abort_interval variable in Section B4) and its default
is only 2 minutes, not the more common 9 minutes.

Round-Trip Time Measurement

Fundamental to TCP’s timeout and retransmission is the measurement of the round-trip

time (RTT) experienced on a given connection. We expect this can change over time, as

routes might change and as network traffic changes, and TCP should track these

changes and modify its timeout accordingly.

First TCP must measure the RTT between sending a byte with a particular sequence

number and receiving an acknowledgment that covers that sequence number. Recall

from the previous chapter that normally there is not a one-to-one correspondence

between data segments and ACKs. In Figure 20.1 (p. 276) this means that one RTT that

can be measured by the sender is the time between the transmission of segment 4 (data

bytes 1-1024) and the reception of segment 7 (the ACK of bytes 1~2048), even though

this ACK is for an additional 1024 bytes. We'll use M to denote the measured RTT.

The original TCP specification had TCP update a smoothed RTT estimator (called

K) using the low-pass filter

R<—ocR+(1—ot)M

where a is a smoothing factor with a recommended value of 0.9. This smoothed RTT is

updated every time a new measurement is made. Ninety percent of each new estimate

is from the previous estimate and 10% is from the new measurement.

Given this smoothed estimator, which changes as the RTT changes, RFC 793 recom-
mended the retransmission timeout value (RTO) be set to

RTO=R,B

where ,8 is a delay variance factor with a recommended value of 2.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

300 TCP Timeout and Retransmission Chapter 21

[]acobson 1988] details the problems with this approach, basically that it Can't keep

up with wide fluctuations in the RTT, causing unnecessary retransmissions. As

Iacobson notes, unnecessary retransmissions add to the network load, when the net-

work is already loaded. It is the network equivalent of pouring gasoline on a fire.

What’s needed is to keep track of the variance in the RTT measurements, in addi-

tion to the smoothed RTT estimator. Calculating the RTO based on both the mean and

variance provides much better response to wide fluctuations in the round—trip times,

than just calculating the RTO as a constant multiple of the mean. Figures 5 and 6 in

[]acobson 1988] show a comparison of the RFC 793 RTO values for some actual round-

trip times, versus the RTO calculations we show below, which take into account the

variance of the round—trip times.

As described by Iacobson, the mean deviation is a good approximation to the stan-

dard deviation, but easier to compute. (Calculating the standard deviation requires a

square root.) This leads to the following equations that are applied to each RTT mea-
surement M.

Err=M—A

Ae—A+gErr

D<—D+h(lErrl —D)

RTO=A+4D

where A is the smoothed RTT (an estimator of the average) and D is the smoothed

mean deviation. Err is the difference between the measured value just obtained and the
current RTT estimator. Both A and D are used to calculate the next retransmission time-

out (RTO). The gain g is for the average and is set to 1/8 (0.125). The gain for the devi-

ation is I1 and is set to 0.25. The larger gain for the deviation makes the RTO go up

faster when the RTT changes.

{Jacobson 1988] specified 2D in the calculation of RTO, but after further research, [Jacobson
1990c] changed the value to 4D, which is what appeared in the BSD Net/ 1 implementation.

Iacobson specifies a way to do all these calculations using integer arithmetic, and

this is the implementation typically used. (That’s one reason g, 11, and the multiplier 4

are all powers of 2, so the operations can be done using shifts instead of multiplies and
divides.)

Comparing the original method with]acobson’s, we see that the calculations of the

smoothed average are similar (0; is one minus the gain g) but a different gain is used.

Also,]acobson’s calculation of the RTO depends on both the smoothed RTT and the

smoothed mean deviation, whereas the original method used a multiple of the
smoothed RTT.

We'll see how these estimators are initialized in the next section, when we go

through an example.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.4
An RTT Example 301

Karn’s Algorithm

21.4

A problem occurs when a packet is retransmitted. Say a packet is transmitted, a time-

out occurs, the RTO is backed off as shown in Section 21.2, the packet is retransmitted

with the longer RTO, and an acknowledgment is received. Is the ACK for the first

transmission or the second? This is called the retransmission ambiguity problem.

[Karn and Partridge 1987] specify that when a timeout and retransmission occur, we

cannot update the RTT estimators when the acknowledgment for the retransmitted data

finally arrives. This is because we don't know to which transmission the ACK corre-

sponds. (Perhaps the first transmission was delayed and not thrown away, or perhaps

the ACK of the first transmission was delayed).

Also, since the data was retransmitted, and the exponential backoff has been

applied to the RTO, we reuse this backed off RTO for the next transmission. Don't cal-

culate a new RTO until an acknowledgment is received for a segment that was not
retransmitted.

An RTT Example

We'll use the following example throughout this chapter to examine various imple-

mentation details of TCP’s timeout and retransmission, slow start, and congestion
avoidance.

Using our sock program, 32768 bytes of data are sent from our host slip to the

discard service on the host Vangogh . cs .berkeley. edu using the command:

slip % sock -D —:i. -n32 vangogl-L.cs.berke1ey.edu discard

From the figure on the inside front cover, slip is connected to the 140.2521 Ethernet by
two SLIP links, and from there across the Internet to the destination. With two

9600 bits/ sec SLIP links, we expect some measurable delays.

This command performs 32 1024-byte writes, and since the MTU between s lip and

bsdi is 296, this becomes 128 segments, each with 256 bytes of user data. The total time
for the transfer is about 45 seconds and we see one timeout and three retransmissions.

While this transfer was running we ran tcpdump on the host slip and captured all

the segments sent and received. Additionally we specified the —D option to turn on

socket debugging (Section A.6). We were then able to run a modified version of the

trpt(8) program to print numerous variables in the connection control block relating to

the round-trip timing, slow start, and congestion avoidance.

Given the volume of trace output, we can't show it all. Instead we'll look at pieces

as we proceed through the chapter. Figure 21.2 shows the transfer of data and acknowl-

edgments for the first 5 seconds. We have modified this output slightly from our previ-

ous display of tcpdump output. Although we only measure the times that the packet is

sent or received on the host running tcpdump, in this figure we want to show that the

packets are crossing in the network (which they are, since this WAN connection is not

like a shared Ethernet), and show when the receiving host is probably generating the

ACI<s. (We have also removed all the window advertisements from this figure. slip

always advertised a window of 4096, and vangogh always advertised a window of
8192.)

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

302 TCP Timeout and Retransmission Chapter 21

0.0

1.063093 0.0019
1.061206 1.0612

1.065502 0.0024

1.872966 0.0019
1.871101 0.8056

1.875377 0.0024

2.137876 0.2625
2.140096 0.0022

2887534 (07474)
2.947597 (0.0601)

slip.1024 vang0gh.discard

RTT #1

(1.061 sec)

RTT #2

(0.808 sec)

RTT #3

(1.015 see)

Figure 21.2 Packet exchange and RTT measurement.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.4 An RTT Example 303

Also note in this figure that we have numbered the segments 1-13 and 15, in the order

in which they were sent or received on the host slip. This correlates with the

tcpdump output that was collected on this host.

Round-Trip Time Measurements

Three curly braces have been placed on the left side of the time line indicating which

segments were timed for RTT calculations. Not all data segments are timed.

Most Berkeley-derived implementations of TCP measure only one RTT value per

connection at any time. If the timer for a given connection is already in use when a data

segment is transmitted, that segment is not timed.

The timing is done by incrementing a counter every time the 500~ms TCP timer rou-

tine is invoked. This means that a segment whose acknowledgment arrives 550 ms after

the segment was sent could end up with either a 1 tick RTT (implying 500 ms) or a 2 tick

RTT (implying 1000 ms).

In addition to this tick counter for each connection, the starting sequence number of

the data in the segment is also remembered. When an acknowledgment that includes

this sequence number is received, the timer is turned off. If the data was not retransmit-
ted when the ACK arrives, the smoothed RTT and smoothed mean deviation are

updated based on this new measurement.

The timer for the connection in Figure 21.2 is started when segment 1 is transmitted,

and turned off when its acknowledgment (segment 2) arrives. Although its RTT is 1.061

seconds (from the tcpdump output), examining the socket debug information shows

that three of TCP’s clock ticks occurred during this period, implying an RTT of 1500 ms.

The next segment timed is number 3. When segment 4 is transmitted 2.4 ms later, it

cannot be timed, since the timer for this connection is already in use. When segment 5

arrives, acknowledging the data that was being timed, its RTT is calculated to be 1 tick

(500 ms), even though we see that its RTT is 0.808 seconds from the tcpdump output.

The timer is started again when segment 6 is transmitted, and turned off When its

acknowledgment (segment 10) is received 1.015 seconds later. The measured RTT is 2

clock ticks. Segments 7 and 9 cannot be timed, since the timer is already being used.

Also, when segment 8 is received (the ACK of 769), nothing is updated since the

acknowledgment was not for bytes being timed.

Figure 21.3 shows the relationship in this example between the actual RTTS that we

can determine from the tcpdump output, and the counted clock ticks.

0.03 0.53 1.03 1.53 2.03 2.53 I 3.03l l i I I

it : : 2 :»»
0.0 1.061 1.063 1.871 1.872 2.887

f A AV V Von off on off on off

‘ 1.061 sec, 3 ticks > ‘ 0.808 sec, 1 tick .’ ‘ 1.015 sec, 2 ticks

Figure 21.3 RTT measurements and clock ticks.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

304 TCP Timeout and Retransmission Chapter 21

On the top we show the clock ticks, every 500 ms. On the bottom we show the times

output by tcpdump, and when the timer for the connection is turned on and off. We

know that 3 ticks occur between sending segment 1 and receiving segment 2, 1.061 sec-

onds later, so we assume the first tick occurs at time 0.03. (The first tick must be

between 0.00 and 0.061.) The figure then shows how the second measured RTT was
counted as 1 tick, and the third as 2 ticks.

In this complete example, 128 segments were transmitted, and 18 RTT samples were

collected. Figure 21.4 shows the measured RTT (taken from the tcpdump output) along

with the RTO used by TCP for the timeout (taken from the socket debug output). The

x—axis starts at time 0 in Figure 21.2, when the first data segment is transmitted, not
when the first SYN is transmitted.

6n

5-

4 TCP’s calculated RTO

RTT/RTO 3‘
(seconds)

2-
measuredRTT

1_

OIllIlIIIIill||||l||||Fii||||l|||||i
0 5 10 15 20 25 30 35

time (seconds)

Figure 21.4 Measured RTT and TCP’s calculated RTO for example.

The first three data points for the measured RTT correspond to the 3 RTTs that we

show in Figure 21.2. The gaps in the RTT samples around times 10, 14, and 21 are

caused by retransmissions that took place there (which we’ll show later in this chapter).

I<arn’s algorithm prevents us from updating our estimators until another segment is

transmitted and acknowledged. Also note that for this implementation, TCP’s calcu-

lated RTO is always a multiple of 500 ms.

RTT Estimator Calculations

Let's see how the RTT estimators (the smoothed RTT and the smoothed mean deviation)

are initialized and updated, and how each retransmission timeout is calculated.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.4 An RTT Example 305

The Variables A and D are initialized to 0 and 3 seconds, respectively. The initial

retransmission timeout is calculated using the formula

RTO=A+2D=0+2><3=6seconds

(The factor 2D is used only for this initial calculation. After this 4D is added to A to cal-
culate RTO, as shown earlier.) This is the RTO for the transmission of the initial SYN.

It turns out that this initial SYN is lost, and we time out and retransmit. Figure 21.5

shows the first four lines from the tcpdump output file.

1 0.0 slip.l024 > vangogh.discard: S 35648001:35648001(0)
win 4096 <mss 256>

2 5.802377 (5.8024) slip.l024 > vangogh.discard: S 35648001:3564800l(O)
win 4096 <mss 256>

3 6.269395 (O.4670) Vangogh.discard > slip.l024: S 13655l2705:1365512705(0)
ack 35648002
win 8192 <mss 512>

4 6.270796 (0.0014) slip.l024 > vangogh.discard: . ack 1 win 4096

Figure 21.5 Timeout and retransmission of initial SYN.

When the timeout occurs after 5.802 seconds, the current RTO is calculated as

RTO=A+4D=0+4><3=12 seconds

The exponential backoff is then applied to the RTO of 12. Since this is the first timeout

we use a multiplier of 2, giving the next timeout value as 24 seconds. The next timeout

is calculated using a multiplier of 4, giving a Value of 48 seconds: 12 X 4. (These initial
RTOS for the first SYN on a connection, 6 seconds and then 24 seconds, are what we

saw in Figure 4.5.)
The ACK arrives 467 ms after the retransmission. The values of A and D are not

updated, because of Karn’s algorithm dealing with the retransmission ambiguity. The

next segment sent is the ACK on line 4, but it is not timed since it is only an ACK.

(Only segments containing data are timed.)

V\7hen the first data segment is sent (segment 1 in Figure 21.2) the RTO is not

changed, again owing to Karn’s algorithm. The current value of 24 seconds is reused

until an RTT measurement is made. This means the RTO for time 0 in Figure 21.4 is

really 24, but we didn't plot that point.

When the ACK for the first data segment arrives (segment 2 in Figure 21.2), three
clock ticks were counted and our estimators are initialized as “

A=M+0.5=1.5+0.5=2

D=A/2=1

(The value 1.5 for M is for 3 clock ticks.) The previous initialization of A and D to 0 and
3 was for the initial RTO calculation. This initialization is for the first calculation of the

estimators using the first RTT measurement M. The RTO is calculated as

RTO=A+4D=2+4><1=6seconds

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

306 TCP Timeout and Retransmission Chapter 21

When the ACK for the second data segment arrives (segment 5 in Figure 21.2), 1 clock
tick is counted (0.5 seconds) and our estimators are updated as

Err=M—A=0.5—2=—1.5

A=A+gErr=2—O.125><1.5=1.8125

D=D+h(|Err| —D)=1+0.25><(1.5—1)=1.125

RTO=A+4D=1.8125+4><1.125=6.3125

There are some subtleties in the fixed—point representations of Err, A, and D, and the

fixed-point calculations that are actually used (which we've shown in floating—point for

simplicity). These differences yieldan RTO of 6 seconds (not 6.3125), which is what we

plot in Figure 21.4 for time 1.871.

Slow Start

21.5

We described the slow start algorithm in Section 20.6. We can see it in action again in

Figure 21.2 (p. 302).

Only one segment is initially transmitted on the connection, and its acknowledg-

ment must be received before another segment is transmitted. When segment 2 is

received, two more segments are transmitted.

Congestion Example

Now let's look at the transmission of the data segments. Figure 21.6 is a plot of the

starting sequence number in a segment versus the time that the segment was sent. This

provides a nice way to visualize the data transmission. Normally the data points

should move up and to the right, with the slope of the points being the transfer rate.

Retransmissions will appear as motion down and to the right.

At the beginning of Section 21.4 we said the total time for the transfer was about 45

seconds, but we show only 35 seconds in this figure. These 35 seconds account for

sending the data segments only. The first data segment was not transmitted until 63

seconds after the first SYN was sent, because the first SYN appears to have been lost

and was retransmitted (Figure 21.5). Also, after the final data segment and the FIN

were sent (at time 34.1 in Figure 21.6) it took another 4.0 seconds to receive the final 14
ACKS from the receiver, before the receiver's FIN was received.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.5 Congestion Example 307

32 — -32

30; :30

28: :28

26; ;26

24: :24

22: :22

20: :20

18: :18
sequence _ _
number 16 — ' - 16

(Kbytw 14: :14

12! :12

10: >10

8: :8

6; :6

4: :4

2: :2

0: I i 0
0 5 10 15 20 25 30 35

send time (seconds)

Figure 21.6 Sending of 32768 bytes of data from slip to vangogh.

We can immediately see the three retransmissions around times 10, 14, and 21 in

Figure 21.6. At each of these three points we can also see that only one segment is

retransmitted, because only one dot dips below the upward slope.

Let’s examine the first of these dips in detail (around the 10—second mark). From

the tcpdump output we can put together Figure 21.7.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

308 TCP Timeout and Retransmission Chapter 21

slip.1024 vangogh.discard

7.149042 43 51

7.419087 0.0023 537.420653 0.0016 5

N 6

7.688778 (0.0022) y 56
7.778708 (0.0023)

. , 256 bytes
8.226522 0.4478 ' . ’ 58 t 1 "'
8.228772 (00023) . 9 2 ° app

8.496522 0.2677 ~ HOLE8.498925 0.0024 60 (“V6 2&5 bytes)
8.500346 0.0014

8.766436 0.2661
8.768662 0.0022 61 (save 256 bytes)

62 (save 256 bytes)
9.156176 0.3875 '
9.158419 0.0022 «

64 (save 256 bytes)

9.489518 (0.3311)

0 65 (save 256 bytes)

66 (save 256 bytes)
9.879355 0.3898

() 68 (save 256 bytes)10.029321 0.1500
10.031239 0.0019

10.239456 (0.2082) 70 (save 256 bytes)

10.479344 (02399)

10.779073 0.2997

10.780960 0.0019 2304bytes
to appl

11.049394 0.2684
11.051328 0.0019

11.438824 0.3875
11.440718 0.0019

11.618798 (0.1781)

Figure 21.7 Packet exchange for retransmission around the 10-second mark.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.5 Congestion Example 309

We have removed all the window advertisements from this figure, except for seg-

ment 72, which we discuss below. Slip always advertised a window of 4096, and

vangogh advertised a window of 8192. The segments are numbered in this figure as a

continuation of Figure 21.2, where the first data segment across the connection was

numbered 1. As in Figure 21.2, the segments are numbered according to their send or

receive order on the host slip, where tcpdump was being run. We have also removed

a few segments that have no relevance to the discussion (44, 47, and 49, all ACKS from
vangogh)

It appears that segment 45 got lost or arrived damaged—we can't tell from this out-

put. What we see on the host slip is the acknowledgment for everything up through

but not including byte 6657 (segment 58), followed by eight more ACI<s of this same
sequence number. It is the reception of segment 62, the third of the duplicate ACKS,
that forces the retransmission of the data starting at sequence number 6657 (segment

63). Indeed, Berkeley-derived implementations count the number of duplicate ACKS

received, and when the third one is received, assume that a segment has been lost and

retransmit only one segment, starting with that sequence number. This is Iacobson’s fast
retrmismit algorithm, which is followed by his fast recovery algorithm. We discuss both

algorithms in Section 21.7.

Notice that after the retransmission (segment 63), the sender continues normal data

transmission (segments 67, 69, and 71). TCP does not wait for the other end to acknowl-

edge the retransmission. .

Let's examine what happens at the receiver. When normal data is received in

sequence (segment 43), the receiving TCP passes the 256 bytes of data to the user pro-

cess. But the next segment received (segment 46) is out of order: the starting sequence

number of the data (6913) is not the next expected sequence number (6657). TCP saves

the 256 bytes of data and responds with an ACK of the highest sequence number suc-

cessfully received, plus one (6657). The next seven segments received by vangogh (48,

50, 52, 54, 55, 57, and 59) are also out of order. The data is saved by the receiving TCP,
and duplicate ACKS are generated. 1

Currently there is no way for TCP to tell the other end that a segment is missing.

Also, TCP cannot acknowledge out-of—order data. All vangogh can do at this point is

continue sending the ACKs of 6657.

When the missing data arrives (segment 63), the receiving TCP now has data bytes

6657*8960 in its buffer, and passes these 2304 bytes to the user process. All 2304 bytes

are acknowledged in segment 72. Also notice that this ACK advertises a window of

5888 (8192 — 2304), since the user process hasn't had a chance to read the 2304 bytes that

are ready for it. ‘

If we look in detail at the tcpdump output for the clips around times 14 and 21 in

Figure 21.6, we see that they too were caused by the receipt of three duplicate ACKS,

indicating that a packet had been lost. In each of these cases only a single packet was
retransmitted.

We'll continue this example in Section 21.8, after describing more about the conges-

tion avoidance algorithms.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

310
TCP Timeout and Retransmission Chapter 21

21.6 Congestion Avoidance Algorithm

Slow start, which we described in Section 20.6, is the way to initiate data flow across a

connection. But at some point we'll reach the limit of an intervening router, and packets

can be dropped. Congestion avoidance is a way to deal with lost packets. It is
described in []acobson 1988].

The assumption of the algorithm is that packet loss caused by damage is very small

(much less than 1%), therefore the loss of a packet signals congestion somewhere in the

network between the source and destination. There are two indications of packet loss: a

timeout occurring and the receipt of duplicate ACKS. (We saw the latter in Section 21.5.

If we are using a timeout as an indication of congestion, we can see the need for a good

RTT algorithm, such as that described in Section 21.3.)

Congestion avoidance and slow start are independent algorithms with different

objectives. But when congestion occurs we want to slow down the transmission rate of

packets into the network, and then invoke slow start to get things going again. In prac-

tice they are implemented together.

Congestion avoidance and slow start require that two variables be maintained for

each connection: a congestion window, cwnd, and a slow start threshold size, ssthresh.

The combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to

65535 bytes.

2. The TCP output routine never sends more than the minimum of cwnd and the
receiver's advertised Window.

Congestion avoidance is flow control imposed by the sender, while the adver-

tised window is flow control imposed by the receiver. The former is based on

the sender's assessment of perceived network congestion; the latter is related to

the amount of available buffer space at the receiver for this connection.

3. When congestion occurs (indicated by a timeout or the reception of duplicate
ACKS), one~half of the current window size (the minimum of cwmi and the

receiver's advertised window, but at least two segments) is saved in ssthresh.

Additionally, if the congestion is indicated by a timeout, cwnd is set to one seg-
ment (i.e., slow start).

4. When new data is acknowledged by the other end, we increase cwnd, but the

way it increases depends on whether we're performing slow start or congestion
avoidance.

If cwmi is less than or equal to ssthresh, we're doing slow start; otherwise we're

doing congestion avoidance. Slow start continues until we're halfway to where

we were when congestion occurred (since we recorded half of the window size

that got us into trouble in step 2), and then congestion avoidance takes over.

Slow start has czund start at one segment, and be incremented by one segment

every time an ACK is received. As mentioned in Section 20.6, this opens the

window exponentially: send one segment, then two, then four, and so on.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.6 ‘ Congestion Avoidance Algorithm 311

Congestion avoidance dictates that cwnd be incremented by 1/cwnd each time

an ACK is received. This is an additive increase, compared to slow start’s expo-

nential increase. We want to increaselcwnd by at most one segment each round-

trip time (regardless how many ACKS are received in that RTT), whereas slow

start will increment cwnd by the number of ACI<s received in a round—trip time.

All 4.3BSD releases and 4.4BSD incorrectly add a small fraction of the segment size (the seg-
ment size divided by 8) during congestion avoidance. This is wrong and should not be emu-
lated in future releases [Floyd 1994]. Nevertheless, we show this term in future calculations, to
arrive at the same answer as the (incorrect) implementation.

The 4.3BSD Tahoe release, described in [Leffler et al. 1989], performed slow start only if the
other end was on a different network. This was changed with the 4.3BSD Reno release so that
slow start is always performed.

Figure 21.8 is a Visual description of slow start and congestion avoidance. We show

cwnd and ssthresh in units of segments, but they're really maintained in bytes.

20;

18 —

16 — ssthresh

14 —

12 —
cwnd

(segments) 10 T

I I I I I I I
0 1 2 3 4 5 6 7

round-trip times

Figure 21.8 Visualization of slow start and congestion avoidance.

In this figure we assume that congestion occurred when cwnd had a value of 32 seg-

ments. ssthresh is then set to 16 segments and czund is set to 1 segment. One segment is

then sent at time 0 and assuming its ACK is returned at time 1, cwnd is incremented to 2

segments. Two segments are then sent and assuming their ACKS return by time 2, cwnd

is incremented to 4 segments (once for each ACK). This exponential increase continues

until cwnd equals ssthresh, after 8 ACKS are received between times 3 and 4. From this

point on the increase in cwnd is linear, with a maximum increase of one segment per

round—trip time.

As we can see in this figure, the term ”slow start” is not completely correct. It is a

slower transmission of packets than what caused the congestion, but the rate of increase

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

312 TCP Timeout and Retransmission Chapter 21

in the number of packets injected into the network increases during slow start. The rate

of increase doesn't slow down until ssthresh is reached, when congestion avoidance
takes over.

21.7 Fast Retransmit and Fast Recovery Algorithms

Modifications to the congestion avoidance algorithm were proposed in 1990 [Jacobson

1990b]. We've already seen these modifications in action in our congestion example
(Section 21.5).

Before describing the change, realize that TCP is required to generate an immediate

acknowledgment (a duplicate ACK) when an out-of-order segment is received. This

duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the

other end know that a segment was received out of order, and to tell it what sequence

number is expected.

Since we don't know whether a duplicate ACK is caused by a lost segment or just a

reordering of segments, we wait for a small number of duplicate ACKS to be received.

It is assumed that if there is just a reordering of the segments, there will be only one or

two duplicate ACKS before the reordered segment is processed, which will then gener-

ate a new ACK. If three or more duplicate ACI<s are received in a row, it is a strong

indication that a segment has been lost. (We saw this in Section 21.5.) We then perform

a retransmission of what appears to be the missing segment, without waiting for a

retransmission timer to expire. This is the fast retransmit algorithm. Next, congestion

avoidance, but not slow start is performed. This is the fast recovery algorithm.

In Figure 21.7 we saw that slow start was not performed after the three duplicate

ACKS were received. Instead the sender did the retransmission, followed by three more

segments with new data (segments 67, 69, and 71), before the acknowledgment of the

retransmission was received (segment 72).

The reason for not performing slow start in this case is that the receipt of the dupli-

cate ACKS tells us more than just a packet has been lost. Since the receiver can only

generate the duplicate ACK when another segment is received, that segment has left the

network and is in the receiver’s buffer. That is, there is still data flowing between the

two ends, and we don't want to reduce the flow abruptly by going into slow start.

This algorithms are usually implemented together as follows.

1. When the third duplicate ACK is received, set ssthresh to one-half of the mini-

mum of the current congestion window (cwnd) and the receiver’s advertised
window.

Retransmit the missing segment.

Set cwnd to ssthresh plus 3 times the segment size.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size

and transmit a packet (if allowed by the new value of cwnd).

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh

(the value set in step 1). This should be the ACK of the retransmission from step

1, one round-trip time after the retransmission. Additionally, this ACK should

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.8 Congestion Example (Continued) 313

21.8

acknowledge all the intermediate segments sent between the lost packet and the

receipt of the third duplicate ACK. This step is congestion avoidance, since

we’re slowing down to one-half the rate we were at when the packet was lost.

We'll see what happens to the two variables cwnd and ssthresh in the calculations in the
next section.

The fast retransmit algorithm first appeared in the 4.3BSD Tahoe release, but it was incorrectly
followed by slow start. The fast recovery algorithm appeared in the 4.3BSD Reno release.

Congestion Example (Continued)

Watching a connection using tcpdump and the socket debug option (which We

described in Section 21.4) we can see the values of cwnd and ssthresh as each segment is

transmitted. If the MSS is 256 bytes, the initial values of cwnd and ssthresh are 256 and

65535, respectively. Each time an ACK is received we can see cwnd incremented by the

MSS, taking on the values 512, 768, 1024, 1280, and so on. Assuming congestion doesn't

occur, eventually the congestion window will exceed the receiver's advertised window,

meaning the advertised window will limit the data flow.

A more interesting example is to see what happens when congestion occurs. We'll

use the same example from Section 21.4. There were four occurrences of congestion

while this example was being run. There was a timeout on the transmission of the ini-

tial SYN to establish the connection (Figure 21.5), followed by three lost packets during

the data transfer (Figure 21.6).

Figure 21.9 shows the values of the two variables cwnd and ssthresh when the initial

SYN is retransmitted, followed by the first seven data segments. (We showed the

exchange of the initial data segments and their ACKs in Figure 21.2.) We show the data

bytes transmitted using the tcpdump notation: 1:257(256) means bytes 1 through 256.

When the timeout of the SYN occurs, ssthresh is set to its minimum value (512 bytes,

which is two segments for this example). cwnd is set to one segment (256 bytes, which it

was already at) to enter the slow start phase.

When the SYN and ACK are received, nothing happens to the two variables, since

new data is not being acknowledged.

When the ACK 257 arrives, we are still in slow start since cwnd is less than or equal

to ssthresh, so cwnd in incremented by 256. The same thing happens when the ACK 513
arrives.

When the ACK 769 arrives we are no longer in slow start, but ‘enter congestion
avoidance. The new value for cwnd is calculated as

segsize >< segsize + segsize
cwmi 8

This is the 1/ cwnd increase that we mentioned earlier, taking into account that cumd is

really maintained in bytes and not segments. For this example we calculate

256 X 256 256

768 ‘L?

cwnd <— czumi +

cwnd e 768 +

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

314 TCP Timeout and Retransmission Chapter 21

Segment# Action Variable

(Figure 21.2) Send Receive Comment cwnd ssthresh
initialize 256 65535

SYN
timeout 256 512

SYN retransmit

SYN, ACK
ACK

1 1:257(256)
2 ACK 257 slow start 512 512

3 257:513(256)
4 513:769(256) V
5 ACK 513 slow start 768 512

6 769:1025(256)
7 1025:1281(256)

8 ACK 769 Cong. avoid 885 512
9 1281:1537(256)

10 ACK 1025 Cong. avoid 991 512
11 ’ 1537:1793(256) A
12 ACK 1281 Cong. avoid 1089 512

Figure 21.9 Example of congestion avoidance.

which equals 885 (using integer arithmetic). When the next ACK 1025 arrives we
calculate

25 256 2

cwnd e 885 + —68§5: + %

which equals 991. (In these expressions We include the incorrect 256/8 term to match

the values calculated by the implementation, as we noted on p. 311.)
This additive increase in cwnd continues until the first retransmission, around the

10—second mark in Figure 21.6. Figure 21.10 is a plot of the same data as in Figure 21.6,
with the value of cwnd added.

The first six values for cwnd in this figure are the values we calculated for Fig-

ure 21.9. It is impossible in this figure to tell the difference visually between the expo-

nential increase during slow start and the additive increase during congestion

avoidance, because the slow start phase is so quick.

We need to explain what is happening at the three points where a retransmission
occurs. Recall that each of the retransmissions took place because three duplicate ACKS

were received, indicating a packet had been lost. This is the fast retransmit algorithm

from Section 21.7. ssthresh is immediately set to one-half the window size that was in

effect when the retransmission took place, but cwnd is allowed to keep increasing while

the duplicate ACKS are received, since each duplicate ACK means that a segment has

left the network (the receiving TCP has buffered it, waiting for the missing hole in the

data to arrive). This is the fast recovery algorithm.

Figure 21.11 is similar to Figure 21.9, showing the values of czund and ssthresh. The

segment numbers in the first column correspond to Figure 21.7.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.8 Congestion Example (Continued) 315

sequence
number

(Kbytes)
and

cwnd

(100 bytes)

Figure 21.10 Value of cwnd and send sequence number while data is being transmitted.

20

send time (seconds)

Segment# Action Variable

(Figure 21.7) Send Receive Comment cwnd ssthresh

58 ACK 6657 1 ACK of new data 2426 512
59 8705:8961 (256)

60 ACK 6657 duplicate ACK #1 2426 512
61 ACK 6657 duplicate ACK #2 2426 512
62 ACK 6657 duplicate ACK #3 1792 1024
63 6657:6913(256) retransmission
64 ACK 6657 duplicate ACK #4 2048 1024
65 ACK 6657 duplicate ACK #5 2304 1024
66 ACK 6657 duplicate ACK #6 2560 1024
67 8961:9217(256)
68 ACK 6657 duplicate ACK #7 2816 1024
69 921 7:9473(256)
70 ACK 6657 duplicate ACK #8 3072 1024
71 9473:9729(256)
72 ACK 8961 ACK of new data 1280 1024

Figure 21.11 Example of congestion avoidance (continued).

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

316
TCP Timeout and Retransmission Chapter 21

21.9

The values for cwnd have been increasing continually, from the final value in Fig-

ure 21.9 for segment 12 (1089), to the first value in Figure 21.11 for segment 58 (2426).
The value of ssthresh has remained the same (512), since there have been no retransmis-

sions in this period.

When the first two duplicate ACKS arrive (segments 60 and 61) they are counted,

and cwnd is left alone. (This is the flat portion of Figure 21.10 preceding the retransmis-
sion.) When the third one arrives, however, ssthresh is set to one—half cwnd (rounded

down to the next multiple of the segment size). cwnd is set to ssthresh plus the number

of duplicate ACKS times the segment size (i.e., 1024 plus 3 times 256). The retransmis-
sion is then sent.

Five more duplicate ACI<s arrive (segments 64-66, 68, and 70) and cwnd is incre-

mented by the segment size each time. Finally a new ACK arrives (segment 72) and

cwnd is set to ssthresh (1024) and the normal congestion avoidance takes over. Since

cwnd is less than or equal to ssthresh (they are equal), the segment size is added to cwnd,

giving a value of 1280. When the next new ACK is received (which isn't shown in Fig-

ure 21.11), cwnd is greater than tssthresh, so cwnd is set to 1363.

During the fast retransmit and fast recovery phase, we transmit new data after

receiving the duplicate ACKs in segments 66, 68, and 70, but not after receiving the

duplicate ACI<s in segments 64 and 65. The reason is the value of cwnd, versus the

number of unacknowledged bytes of data. When segment 64 is received, cwnd equals

2048, but we have 2304 unacknowledged bytes (nine segments: 46, 48, 50, 52, 54, 55, 57,

59, and 63). We can’t send anything. When segment 65 arrives, cwnd equals 2304, so we

still can't send anything. But when segment 66 arrives, cwnd equals 2560, so we can

send a new data segment. Similarly when segment 68 arrives, cwnd equals 2816, which

is greater than the 2560 bytes of unacknowledged data, so we can send another new

data segment. The same scenario happens when segment 70 is received.

When the next retransmission takes place at time 14.3 in Figure 21.10, it is also trig-

gered by the reception of three duplicate ACKS, so we see the same increase in cwnd as

one more duplicate ACK arrives, followed by a decrease to 1024.

The retransmission at time 21.1 in Figure 21.10 is also triggered by duplicate ACKS.

We receive three more duplicates after the retransmission, so we see three additional

increases in cwnd, followed by a decrease to 1280. For the remainder of the transfer

cwnd increases linearly to a final value of 3615.

Per-Route Metrics

Newer TCP implementations maintain many of the metrics that we've described in this

chapter in the routing table entry. When a TCP connection is closed, if enough data was

sent to obtain meaningful statistics, and if the routing table entry for the destination is

not a default route, the following information is saved in the routing table entry, for the

next use of the entry: the smoothed RTT, the smoothed mean deviation, and the slow

start threshold. The quantity ”enough data” is 16 windows of data. This gives 16 RTT

samples, which allows the smoothed RTT filter to converge within 5% of the correct
value.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.10 ICMP Errors 317

21.10

Additionally, the route(8) command can be used by the administrator to set the

metrics for a given route: the three Values mentioned in the preceding paragraph, along

with the MTU, the outbound bandwidth—delay product (Section 20.7), and the inbound

bandwidth—delay product.

When a new TCP connection is established, either actively or passively, if the rout-

ing table entry being used for the connection has values for these metrics, the corre-

sponding Variable is initialized from the metrics.

ICMP Errors

Let's see how TCP handles ICMP errors that are returned for a given connection. The

most common ICMP errors that TCP can encounter are source quench, host unreach~
able, and network unreachable.

Current Berkeley~based implementations handle these ICMP errors as follows:

0 A received source quench causes the congestion window, cwnd, to be set to one

segment to initiate slow start, but the slow start threshold, ssthresh, is not

changed, so the window will open until it's either open all the way (limited by

the window size and round—trip time) or until congestion occurs.

° A received host unreachable or network unreachable is effectively ignored, since
these two errors are considered transient. It could be that an intermediate router

has gone down and it can take the routing protocols a few minutes to stabilize

on an alternative route. During this period either of these two ICMP errors can

occur, but they must not abort the connection. Instead, TCP keeps trying to send

the data that caused the error, although it may eventually time out. (Recall in

Figure 21.1 that TCP did not give up for 9 minutes.)

Current Berkeley-based implementations record that the ICMP error occurred,
and if the connection times out, the ICMP error is translated into a more relevant
error code than ”connection timed out.”

Earlier BSD implementations incorrectly aborted a connection whenever an ICMP host
unreachable or network unreachable was received.

An Example

We can see how an ICMP host unreachable is handled by taking our dialup SLIP link

down during the middle of a connection. We establish a connection from the host slip

to the host aix. (From the figure on the inside front cover we see that this connection

goes through our dialup SLIP link.) After establishing the connection and transferring

some data, the dialup SLIP link between the routers sun and netb is taken down. This

causes the default routing table entry on sun (which we showed in Section 9.2) to be

removed. We expect sun to then respond to IP datagrams destined for the 140.2521
Ethernet with an ICMP host unreachable. We want to see how TCP handles these ICMP
errors.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

318 TCP Timeout and Retransmission Chapter 21

Here is the interactive session on the host slip:

slip % sock aix echo runoursockinvywm
test line type this line
test line and it's echoed

SLIP link is brought down here
another line then type this line and watch retrzmsmissions

SLIP link is reestablished here

another line and the line and its echo are exchzmged
line number 3
line number 3
the last line

SLIP link is brought down here, and not reestrzblished
read error: No route to host . TCPfihnHyghwsup

Figure 21.12 shows the corresponding tcpdump output, captured on the router bsdi.
(We have removed the connection establishment and all the Window advertisements.)

We connect to the echo server on the host aix and type ”test line” (line 1). It is echoed

(line 2) and the echo is acknowledged (line 3). We then take down the SLIP link.

We type ”another line” (line 3) and expect to see TCP time out and retransmit the

message. Indeed, this line is sent six times before a reply is received. Lines 4-13 show

the first transmission and the next four retransmissions, each of which generates an

ICMP host unreachable from the router sun. This is what we expect: the IP datagrams

go from slip to the router bsdi (which has a default route that points to sun), and
then to sun, where the broken link is detected.

While these retransmissions are taking place, the SLIP link is brought back up, and

the retransmission on line 14 gets delivered. Line 15 is the echo from aix, and line 16 is

the acknowledgment of the echo.

This shows that TCP ignores the ICMP host unreachable errors and keeps retrans-

mitting. We can also see the expected exponential backoff in each retransmission time-

out: the first appears to be 2.5 seconds, which is then multiplied by 2 (giving 5 seconds),
then 4 (10 seconds), then 8 (20 seconds), then 16 (40 seconds).

We then type the third line of input (”line number 3") and see it sent on line 17,

echoed on line 18, and the echo acknowledged on line 19.

We now want to see what happens when TCP retransmits and gives up, after

receiving the ICMP host unreachable, so we take down the SLIP link again. After tak-

ing it down we type ”the last line" and see it transmitted 13 times before TCP gives up.

(We have deleted lines 30-43 from the output. They are additional retransmissions.)

The thing we notice, however, is the error message printed by our sock program

when it finally gives up: ”No route to host.” This corresponds to the Unix error associ-

ated with the ICMP host unreachable error (Figure 6.12, p. 82). This shows that TCP

saves the ICMP error that it receives on the connection, and when it finally gives up, it

prints that error, instead of ”Connection timed out.”

Finally, notice the different retransmission intervals in lines 22-46, compared to

lines 6-14. It appears that TCP updated its estimators when the third line we typed

was sent and acknowledged without any retransmissions in lines 17—19. The initial

retransmission timeout is now 3 seconds, giving successive values of 6, 12, 24, 48, and

then the upper limit of 64.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 21.10 ICMP Errors 319

I\)

>~\)~\
“QQ00\l®rCnflb.

mm: r.uI\)

14
15
16

17
18
19

20
21

22
23

24
25

26
27

28
29

44
45

46
47

174.
.7590l7174

177.
.151271177

182.
.151189182

192.
192.

212
212

252.
252.
252.

261.
262.

.305086262

458.
458.

461.
461.

467

479.
479.

503.
503.

1000
1000

1064
1064

0.0
0.
0.310685

212271

758100

150439

150200

149671
150608

.148783

.149786

146774
439257
505331

977246
158758

155330
156163

136904
137826

.136461
467. 137385

135811
136647

134816
135740

.219573

.220503

.201281

.202182

(0.
(0.

2123)
0984)

(174.4474)
.0009)

.3914)

.0008)ON

.9989)

.0010)/\ LOO-15 .9985)

.0009)l\ C)

.9982)

.0010)

.9970)
0.2925)

.0661)

.4719)
0.1815)

.1463)

(195.8502)
.0008)

.9807)

.0009)

.9986)

.0009)
O01010O

(11.9984)
.0008)

.9982)

.0009)

(64.0959)
0.0009)

.9808)

.0009)

slip.1035 > aix.echo: P l:11(10) ack 1

aix.echo > slip.1035: P 1:l1(10) ack 11
slip.1035 > aix.echo:

SLIP link brought down here

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

aix.echo: P 11:

icmp: host aix

aix.echo: P 11

icmp: host aix

aix.echo: P 11

icmp: host aix

aix.echo: P 11

icmp: host aix

aix.echo: P 11

icmp: host aix

SLIP link brought up here

slip.1035 >
aix.echo > slip.1035: P

"U 11:
11:

aix.echo:

ack 11

24(13) ack 11
unreachable

:24(l3) ack 11
unreachable

:24(l3) ack 11
unreachable

:24(l3) ack ll
unreachable

:24(13) ack 11
unreachable

ack 11
ack 24

24(13)
24(13)

s_ip.1035 > aix.

slip.1035 > aix.
aix.echo > slip.
slip.1035 > aix.

echo:

echo:
1035:
echo:

. ack 24

'0 ack 24
ack 38

24:38(14)
24:38(14)
ack 38

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

SLIP link brozlglzt down here

aix.echo: P 38:

icmp: host aix

aix.echo: P 38:

icmp: host aix

aix.echo: P 38:

icmp: host aix

aix.echo: P 38:

icmp: host aix

aix.echo: P 38

icmp: host aix

14 lines ofoutput deleted here

slip.1035 >
sun > slip:

slip.1035 >
sun > slip:

aix.echo: P 38:

icmp: host aix

aix.echo: R 52:

icmp: host aix

:52(14)

52(14) ack 38
unreachable

52(14) ack 38
unreachable

52(14) ack 38
unreachable

52(14) ack 38
unreachable

ack 38
unreachable

52(14) ack 38
unreachable

52(0) ack 38
unreachable

Figure 21.12 TCP handling of received ICMP host unreachable error.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

320 TCP Timeout and Retransmission Chapter 21

21.11 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identical seg-

ment again. Instead, TCP is allowed to perform repacketization, sending a bigger seg-

ment, which can increase performance. (Naturally, this bigger segment cannot exceed

the MSS announced by the other receiver.) This is allowed in the protocol because TCP

identifies the data being sent and acknowledged by its byte number, not its segment
number.

We can easily see this in action. We use our sock program to connect to the discard

server and type one line. We then disconnect the Ethernet cable and type a second line.

While this second line is being retransmitted, we type a third line. We expect the next
retransmission to contain both the second and third lines.

bsdi % sock svrd. discard

hello there first line gets sent OK
then we disconnect the Ethernet cable

line number 2 this line gets retrmismitted
and 3 type this line before second line sent OK

then reconnect Ethernet cable

Figure 21.13 shows the tcpdump output. (We have removed the connection establish-
ment, the connection termination, and all the window advertisements.)

1 0.0 bsdi.1032 > svr4.discard: P 1:13(12) ack 1
2 0.140489 (0.1405) svr4.discard > bsdi.lO32: . ack 13

Ethernet cable disconnected here

3 26.407696 (26.2672) bsdi.1032 > svr4.discard: P 13:27(14) ack 1
4 27.639390 (1.2317) bsdi.1032 > svr4.discard: P 13:27(14) ack 1
5 30.639453 (3.0001) bsdi.1032 > sVr4.discard: P 13:27(14) ack 1

third line typed here

6 36.639653 (6.0002) bsdi.1032 > sVr4.disCard: P 13:33(20) ack 1
7 48.640131 (12.0005) bsdi.lO32 > svr4.discard: "U 13:33(20) ack 1

Ethernet cable reconnected here

8 72.640768 (24.0006) bsdi.1032 > svr4.discard: P 13:33(20) ack 1
9 72.719091 (0.0783) sVr4.disCard > bsdi.1032: . ack 33

Figure 21.13 Repacketization of data by TCP.

Lines 1 and 2 show the first line (”hello there”) being sent and its acknowledgment.

We then disconnect the Ethernet cable and type ”line number 2" (14 bytes, including the

newline). These bytes are transmitted on line 3, and then retransmitted on lines 4 and 5.

Before the retransmission on line 6 we type ”and 3" (6 bytes, including the newline)

and see this retransmission contain 20 bytes: both lines that we typed. When the

acknowledgment arrives on line 9, it is for all 20 bytes.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Chapter 21 Exercises 321

21.12 Summary

This chapter has provided a detailed look at TCP’s timeout and retransmission strategy.

Our first example was a lost SYN to establish a connection and we saw how an expo-

nential backoff is applied to successive retransmission timeout values.

TCP calculates the round—trip time and then uses these measurements to keep track
of a smoothed RTT estimator and a smoothed mean deviation estimator. These two

estimators are then used to calculate the next retransmission timeout value. Many

implementations only measure a single RTT per window. Karn's algorithm removes the

retransmission ambiguity problem by preventing us from measuring the RTT when a

packet is lost.

Our detailed example, which included three lost packets, let us see many of TCP’s
algorithms in action: slow start, congestion avoidance, fast retransmit, and fast recovery.

We were also able to hand calculate TCP RTT estimators along with the congestion win~

dow and slow—start threshold, and verify the Values with the actual Values from the

trace output.

We finished the chapter by looking at the effect various ICMP errors have on a TCP

connection and how TCP is allowed to repacketize its data. We saw how the ”soft”
ICMP errors don't cause a connection to be terminated, but are remembered so that if

the connection terminates abnormally, the soft error can be reported.

Exercises

21.1 In Figure 21.5 the first timeout was calculated as 6 seconds and the next as 24 seconds. If

the ACK for the initial SYN had not arrived after the 24-second timeout expired, when
would the next timeout occur?

21.2 In the discussion following Figure 21.5 we said that the timeout intervals are calculated as
6, 24, and then 48 seconds, as we saw in Figure 4.5. But if we watch a TCP connection to a
nonexistent host from an SVR4 system, the timeout intervals are 6, 12, 24, and 48 seconds.
What's going on?

21.3 Compare the performance of TCP’s sliding window versus TFTP’s stop-and-wait protocol

as follows. In this chapter we transferred 32768 bytes in about 35 seconds (Figure 21.6)
across a link with an RTT that averaged around 1.5 seconds (Figure 21.4). Calculate how
long TFTP would take for the same transfer.

21.4 In Section 21.7 we said that the receipt of a duplicate ACK is caused by a segment being
lost or reordered. In Section 21.5 we saw the generation of duplicate ACKS caused by a
lost segment. Draw a picture showing that a reordering of segments also generates dupli-
cate ACKS.

21.5 There is a noticeable blip in Figure 21.6 between times 28.8 and 29.8. Is this a retransmis-
sion?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

322 TCP Timeout and Retransmission Chapter 21

21.6

21.7

21.8

In Section 21.6 we said that the 4.3BSD Tahoe release only performed slow start if the desti-

nation was on a different network. How do you think ”different network” was deter~
mined? (Hint: Look at Appendix E.)

In Section 20.2 we said that TCP normally ACKS every other segment. But in Figure 21.2
we see the receiver ACK every segment. Why?

Are per-route metrics really useful, given the prevalence of default routes?

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

22.1

22.2

22

TCP Persist Timer

Introduction

We've seen that TCP has the receiver perform flow control by specifying the amount of

data it is willing to accept from the sender: the window size. What happens when the

window size goes to 0? This effectively stops the sender from transmitting data, until
the window becomes nonzero.

We saw this scenario in Figure 20.3 (p. 279). When the sender received segment 9,

opening the window that was shut down by segment 8, it immediately started sending

data. TCP must handle the case of this acknowledgment that opens the window (seg-

ment 9) being lost. Acknowledgments are not reliably transmitted——that is, TCP does

not ACK acknowledgments, it only ACKS segments containing data.

If an acknowledgment is lost, we could end up with both sides waiting for the

other: the receiver waiting to receive data (since it provided the sender with a nonzero

window) and the sender waiting to receive the window update allowing it to send. To

prevent this form of deadlock from occurring the sender uses a persist timer that causes

it to query the receiver periodically, to find out if the window has been increased. These

segments from the sender are called window probes. In this chapter we'll examine win-

dow probes and the persist timer. We'll also examine the silly window syndrome,

which is tied to the persist timer.

An Example

To see the persist timer in action we’ll start a receiver process that listens for a connec-

tion request from a client, accepts the connection request, and then goes to sleep for a

long time before reading from the network.

Talari Networks Inc. - Exhibit 109?

Talari Networks Inc. - Exhibit 1007

324 TCP Persist Timer Chapter 22

Our sock program lets us specify a pause option -1? that sleeps between the server

accepting the connection request and performing the first read. We'll invoke the server
as:

sVr4 % Sock -i -S —P1000OO 5555

This has the server sleep for 100,000 seconds (27.8 hours) before reading from the net-

work. The client is run on the host bsdi and performs 1024-byte writes to port 5555 on

the server. Figure 22.1 shows the tcpdump output. (We have removed the connection

establishment from the output.)
1 0.0 bsdi.1027 > svr4.5555: P 1:1025(1024) ack 1 win 4096
2 0.191961 (0.1920) svr4.5555 > bsdi.1027: . ack 1025 win 4096
3 0.196950 (0.0050) bsdi.1027 > sVr4.5555: . 1025:2049(1024) ack 1 win 4096

4 0.200340 (0.0034) bsdi.i027 > svr4.5555: . 2049:3073(1024) ack 1 win 4096
5 0.207506 (0.0072) sVr4.5555 > bsdi.1027: . ack 3073 win 4096
6 0.212676 (0.0052) bsdi.1027 > sVr4.5555: . 3073:4097(1024) ack 1 win 4096
7 0.216113 (0.0034) bsdi.“027 > sVr4.5555: P 4097:5121(1024) ack 1 win 4096
8 0.219997 (0.0039) bsdi."027 > svr4.5555: P 5121:61Z5(1024) ack 1 win 4096
9 0.227882 (0.0079) svr4.5555 > bsdi.1027: . ack 512” win 4096

10 0.233012 (0.0051) bsdi.i027 > svr4.5555: P 6145:7169(1024) ack 1 win 4096
11 0.237014 (0.0040) bsdi.1027 > sVr4.5555: P 7169:8193(1024) ack 1 win 4096
12 0.240961 (0.0039) bsdi.i027 > svr4.5555: P 8193:9217(1024) ack 1 win 4096
13 0.402143 (0.1612) svr4.5555 > bsdi.1027: . ack 9217 win 0

14 5.351561 (4.9494) bsdi.1027 > sVr4.5555: . 92i7:92"8(1) ac< 1 win 4096
15 5.355571 (0.0040) sVr4.5555 > bsdi.1027: . ack 9217 win 0

16 10.351714 (4.9961) bsdi._027 > svr4.5555: . 9217:9218(1) ac< 1 win 4096
17 10.355670 (0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

18 16.351881 (5.9962) bsdi.i027 > svr4.5555: . 92i7:92i8(1) ac< 1 win 4096
19 16.355849 (0.0040) sVr4.5555 > bsdi.1027: . ack 9217 win 0

20 28.352213 (11.9964) bsdi."027 > sVr4.5555: . 9217:9218(1) ac< 1 win 4096
21 28.356178 (0.0040) sVr4.5555 > bsdi.1027: . ack 9217 win 0

22 52.352874 (23.9967) bsdi.u027 > svr4.5555: . 92i7:92i8(1) ac< 1 win 4096
23 52.356839 (0.0040) svr4.5555 > bsdi.1027: . ack 9217 win 0

24 100.354224 (47.9974) bsdi.i027 > svr4.5555: . 92“7:92_8(1) ac< 1 win 4096
25 100.358207 (0.0040) sVr4.5555 > bsdi.1027: . ac< 9217 win 0

26 160.355914 (59.9977) bsdi."027 > sVr4.5555: . 92i7:92i8(1) aC< 1 win 4096
27 160.359835 (0.0039) svr4.5555 > bsdi.1027: . act 9217 win 0

28 220.357575 (59.9977) bsdi.i027 > sVr4.5555: . 9217:92_8(1) acc 1 win 4096
29 220.361668 (0.0041) svr4.5555 > bsdi.1027: . ac{ 9217 win 0

30 280.359254 (59.9976) bsdi.1027 > svr4.5555: . 9217:92i8(1) aC< 1 win 4096
31 280.363315 (0.0041) svr4.5555 > bSdi.1027: . ac< 9217 win 0

Figure 22.1 Example of persist timer probing a zero—sized window.

Segments 1-13 shows the normal data transfer from the client to the server, filling

up the window with 9216 bytes of data. The server advertises a window of 4096, and

has a default socket buffer size of 4096, but really accepts a total of 9216 bytes. This is

some form of interaction between the TCP/IP code and the streams subsystem in SVR4.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 22.3 Silly Window Syndrome 325

22.3

In segment 13 the server acknowledges the previous four data segments, but adver-

tises a window of O, stopping the client from transmitting any more data. This causes

the client to set its persist timer. If the client doesn't receive a window update when the

timer expires, it probes the empty window, to see if a window update has been lost.

Since our server process is asleep, the 9216 bytes of data are buffered by TCP, waiting

for the application to issue a read.

Notice the spacing of the window probes by the client. The first (segment 14) is

4.949 seconds after receiving the zero~sized window. The next (segment 16) is 4.996 sec-

onds later. The spacing is then about 6, 12, 24, 48, and 60 seconds after the previous.

Why are the spacings always a fraction of a second less than 5, 6, 12, 24, 48, and 60?

These probes are triggered by TCP’s 500—ms timer expiring. When the timer expires, the

window probe is sent, and a reply is received about 4 ms later. The receipt of the reply
causes the timer to be restarted, but the time until the next clock tick is about 500 minus
4 ms.

The normal TCP exponential backoff is used when calculating the persist timer. The

first timeout is calculated as 1.5 seconds for a typical LAN connection. This is multi-

plied by 2 for a second timeout value of 3 seconds. A multiplier of 4 gives the next

value of 6, a multiplier of 8 gives a value of 12, and so on. But the persist timer is

always bounded between 5 and 60 seconds, which accounts for the values we see in Fig-
ure 22.1.

The window probes contain 1 byte of data (sequence number 9217). TCP is always

allowed to send 1 byte of data beyond the end of a closed window. Notice, however,

that the acknowledgments returned with the window size of 0 do not ACK this byte.

(They ACK the receipt of all bytes through and including byte number 9216.) Therefore

this byte keeps being retransmitted.

The characteristic of the persist state that is different from the retransmission time-

out in Chapter 21 is that TCP never gives up sending window probes. These window

probes continue to be sent at 60—second intervals until the window opens up or either of
the applications using the connection is terminated.

Silly Window Syndrome

Window-based flow control schemes, such as the one used by TCP, can fall victim to a

condition known as the silly window syndrome (SW5). When it occurs, small amounts of
data are exchanged across the connection, instead of full—sized segments [Clark 1982].

It can be caused by either end: the receiver can advertise small windows (instead of

waiting until a larger window could be advertised) and the sender can transmit small

amounts of data (instead of waiting for additional data, to send a larger segment). Cor-

rect avoidance of the silly window syndrome is performed on both ends.

1. The receiver must not advertise small windows. The normal algorithm is for

the receiver not to advertise a larger window than it is currently advertising

(which can be 0) until the window can be increased by either one full—sized seg-

ment (i.e., the MSS being received) or by one-half the receiver's buffer space,
whichever is smaller.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

326 TCP Persist Timer Chapter 22

2. Sender avoidance of the silly window syndrome is done by not transmitting

unless one of the following conditions is true: (a) a full-sized segment can be

sent, (b) we can send at least one—half of the maximum sized window that the

other end has ever advertised, or (c) we can send everything we have and either

we are not expecting an ACK (i.e., we have no outstanding unacknowledged

data) or the Nagle algorithm is disabled for this connection (Section 19.4).

Condition (b) deals with hosts that always advertise tiny windows, perhaps

smaller than the segment size. Condition (c) prevents us from sending small

segments when we have unacknowledged data that is waiting to be ACKed and

the Nagle algorithm is enabled. If the application is doing small writes (e.g.,

smaller than the segment size), it is condition (c) that avoids the silly window

syndrome.

These three conditions also let us answer the question: if the Nagle algorithm

prevents us from sending small segments while there is outstanding unac-

knowledged data, how small is small? From condition (a) we see that ”small”

means the number of bytes is less than the segment size. Condition (b) only

comes into play with older, primitive hosts.

Condition (b) in step 2 requires that the sender keep track of the maximum window size

advertised by the other end. This is an attempt by the sender to guess the size of the

other end’s receive buffer. Although the size of the receiver buffer could decrease while

the connection is established, in practice this is rare.

An Example

We'll now go through a detailed example to see the silly window syndrome avoidance

in action, which also involves the persist timer. We'll use our sock program with the

sending host, sun, doing six 1024-byte writes to the network:
sun % sock -i —n6 bsdi 7777

But we'll put some pauses in the receiving process on the host bsdi, pausing 4 seconds d

before doing the first read, and then pausing 2 seconds between successive reads.

Additionally, the receiver issues 256-byte reads:

bsdi % sock -i -s -P4 —p2 —r256 7777

The reason for the initial pause is to let the receiver’s buffer fill, forcing it to stop the

transmitter. Since the receiver then performs small reads from the network, we expect

to see the receiver perform silly window syndrome avoidance.

Figure 22.2 is the time line for the transfer of the 6144 bytes of data. (We have
deleted the connection establishment.) .

We also need to track what happens with the application that's reading the data at

each point in time, along with the number of bytes currently in the receive buffer, and

the number of bytes of available space in the receive buffer. Figure 22.3 shows every-

thing that’s happening.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 22.3 Silly Window Syndrome 327

sun.1069 bsdi.7777

0.0

1 PSH 1.‘1025(l024) ack I, win 4096
0.002026 (0.0020) 2
0.003737 (0.0017) 3 PSH 2049:3073(1024) ack 1, win 4096 W.
0.005361(0.0016) 4

170306 (0 1649) w ack 4097' Wm 0 5
0. .

. Z Z
5.151768 (4.9815) 6x1) we

ack 4098, win 0 75.170308 (0.0185) 4

Z Z
10.151592 < 4.9813) 8
10 170299 (0 0187) ack 4099’ Wm O 9. . -‘fl

Z Z
15.151466 (4.9812) 10 9101 ,7)
15 170296 0 0188 ack 4100' Wm 1533 11

15' 172006 5 0.0017; 12 4 . 1124124) ck 1,n4
15 7030” 0 1983) ack 5124, win 509 13.3 . «t

Z Z
20.151782(4.7815) 14 5124:5633(509) ack 1, win 4096

ack 5633, win 0 1520.170297(0.0185) w

Z Z
25.151162 (4.9809) 16 5633=5634<1) ack 1, win 4096

210k 5634, win 1279 "'” 1725.170302 0.0191

25.171801 i 0.0015g 18 1 FIN/PSH 5634-‘6145(5I1) ack 1, win 4096
. 9

25 174401 (0 026) ack 6146' Wm 767 19
. .0

F 7
ack 6146, win 2816 - 2039.991658 (148173) 4

Z . 1
51 991775 12 0001 FIN 1:1(O) ack 6146, win 4096 21. . -<
51.992665 1 0.0009;

22 ack 2, win 4096

Figure 22.2 Time line showing receiver avoidance of silly window syndrome.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

328 TCP Persist Timer Chapter 22

Time Segrnent# Action Receiver buffer
(Figure 22.2) Send TCP Receive TCP Application data available

0.000 1 1:1025(1024) 1024 3072
0.002 2 1025:2049(1024) 2048 2048
0.003 3 2049:3073(1024) 3072 1024
0.005 4 3073:4097(1024) 4096 0
0.170 5 ACK 4097, win 0
3.99 read 256 3840 256

5.151 6 4097:4098(1) 3841 255
5.17 7 ACK 4098, win 0
5.99 1 read 256 3585 511
7.99 read 256 3329 767
9.99 read 256 3073 1023

10.151 8 4098:4099(1) 3074 1022
10.170 9 ACI(4099, win 0
11.99 read 256 2818 1278
13.99 read 256 2562 1534

15.151 10 4099:4100(1) 2563 1533
15.170 11 ACK 4100, win 1533
15.172 12 4100:5124(1024) 3587 509
15.370 13 ACK 5124, win 509
15.99 read 256 3331 765
17.99 read 256 3075 1021
19.99 read 256 2819 1277

20.151 14 5124:5633(509) 3328 768
20.170 15 ACK 5633, win 0
21.99 read 256 3072 1024
23.99 read 256 2816 1280

25.151 16 5633:5634(1) 2817 1279
25.170 17 ACK 5634, win 1279
25.171 18 5634:6145(511) 3328 768 V
25.174 19 ACK 6146, win 767
25.99 read 256 3072 1024
27.99 read 256 2816 1280
29.99 read 256 2560 1536
31.99 read 256 2304 1792
33.99 read 256 2048 2048
35.99 read 256 1792 2304
37.99 read 256 1536 2560
39.99 read 256 1280 2816

39.99 20 ACK 6146, win 2816
41.99 read 256 1024 3072

43.99 read 256 i 768 3328,
4599 read 256 512 3584
47.99 read 256 256 3840
49.99 read 256 0 4096

51.99 read 256 (EOF) 0 4096
51.991 21 ACK 6146, win 4096
51.992 22 ACK 2

Figure 22.3 Sequence of events for receiver avoidance of the silly window syndrome.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Section 22.3 Silly Window Syndrome 329

In Figure 22.3 the first column is the relative point in time for each action. Those

times with three digits to the right of the decimal point are taken from the tcpdump

output (Figure 22.2). Those times with 99 to the right of the decimal point are the

assumed times of the action on the receiving host. (Having these relative times on the

receiver contain 99 for the hundredths of a second correlates them with segments 20 and

22 in Figure 22.2, the only two events on the receiver that we can see with tcpdump that

are triggered by a timeout on the receiving host. All the other packets that we see from

bsdi are triggered by the reception of a segment from the sender. It also makes sense,

because this would place the initial 4—second pause just before time 0 when the sender

transmits the first data segment. This is about when the receiver would get control,

after receiving the ACK of its SYN in the connection establishment.)
The amount of data in the receiver's buffer increases when it receives data from the

sender, and decreases as the application reads data from the buffer. What we want to

follow are the window advertisements sent by the receiver to the sender, and what

those window advertisements are. This lets us see how the silly window syndrome is

avoided by the receiver. 4

The first four data segments and the corresponding ACK (segments 1—5) show the

sender filling the receiver's buffer. At that point the sender is stopped but it still has

more data to send. It sets its persist timer for its minimum value of 5 seconds.

When the persist timer expires, 1 byte of data is sent (segment 6). The receiving

application has read 256 bytes from the receive buffer (at time 3.99), so the byte is

accepted and acknowledged (segment 7). But the advertised window is still 0, since the

receiver does not have room for either one full—sized segment or one—half of its buffer.

This is silly window avoidance by the receiver.

The sender's persist timer is reset and goes off again 5 seconds later (at time 10.151).

One byte is again sent and acknowledged (segments 8 and 9). Again the amount of

room in the receiver's buffer (1022 bytes) forces it to advertise a window of 0.

When the sender’s persist timer expires next, at time 15.151, another byte is sent

and acknowledged (segments 10 and 11). This time the receiver has 1533 bytes available

in its buffer, so a nonzero window is advertised. The sender immediately takes advan-

tage of the window and sends 1024 bytes (segment 12). The acknowledgment of these

1024 bytes (segment 13) advertises a window of 509 bytes. This appears to contradict
what we've seen earlier with small window advertisements.

What's happening here is that segment 11 advertised a window of 1533 bytes but

the sender only transmitted 1024 bytes. If the acknowledgment in segment 13 adver-

tised a window of 0, it would violate the TCP principle that a window cannot shrink by

moving the right edge of the window to the left (Section 20.3). That's‘ why the small

window of 509 bytes must be advertised.

Next we see that the sender does not immediately transmit into this small window.

This is silly window avoidance by the sender. Instead it waits for another persist timer

to expire at time 20.151, when it sends 509 bytes. Even though it ends up sending this

small segment with 509 bytes of data, it waits 5 seconds before doing so, to see if an

ACK arrives that opens up the window more. These 509 bytes of data leave only 768

bytes of available space in the receive buffer, so the acknowledgment (segment 15)
advertises a window of 0.

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

330 TCP Persist Timer Chapter 22

22.4

The persist timer goes off again at time 25.151, and the sender transmits 1 byte. The

receive buffer then has 1279 bytes of space, which is the window advertised in segment
17.

The sender has only 511 additional bytes of data to transmit, which it sends imme-

diately upon receiving the window advertisement of 1279 (segment 18). This segment

also contains the FIN flag. The receiver acknowledges the data and the FIN, advertising
a window of 767. (See Exercise 22.2.)

Since the sending application issues a close after performing its six 1D24~byte writes,

the sender's end of the connection goes from the ESTABLISHED state to the

FIN_WAIT_1 state, to the FIN_WAlT_2 state (Figure 18.12). It sits in this state until

receiving a PIN from the other end. There is no timer in this state (recall our discussion

at the end of Section 18.6), since the FIN that it sent in segment 18 was acknowledged in

segment 19. This is why we see no further transmissions by the sender until it receives

the PIN (segment 21).

The receiving application continues reading 256 bytes of data every 2 seconds from

the receive buffer. Why is the ACK sent at time 39.99 (segment 20)? The amount of

room in the receive buffer has gone from its last advertised value of 767 (segment 19) to

2816 when the application reads at time 39.99. This equals 2049 bytes of additional

space in the receive buffer. Recalling the first rule at the start of this section, the receiver

now sends a window update because the amount of room has increased by one—half the

room in the receive buffer. This implies that the receiving TCP checks whether to send a

window update every time the application reads data from TCP’s receive buffer.

The final application read occurs at time 51.99 and the application receives an end

of-file notification, since the buffer is empty. This causes the final two segments (21 and

22), which complete the termination of the connection.

Summary

TCP’s persist timer is set by one end of a connection when it has data to send, but has

been stopped because the other end has advertised a zero—sized window. The sender

keeps probing the closed window using a retransmission interval similar to what we

saw in Chapter 21. This probing of the closed window continues indefinitely.

When we ran an example to see the persist timer we also encountered TCP’s avoid-

ance of the silly window syndrome. This is to prevent TCP from advertising small win~

dows or from sending small segments. In our example we saw avoidance of the silly

window syndrome by both the sender and the receiver.

Exercises

22.1 In Figure 22.3 notice the times of all the acknowledgments (segments 5, 7, 9, 11, 13, 15, and
17): 0.170, 5.170, 10.170, 15.170, 15.370, 20.170, and 25.170. Also notice the time differences

between sending the data and receiving the ACK: 164.9, 18.5, 18.7, 18.8, 198.3, 18.5, and
19.1 ms. Explain what's probably going on.

In Figure 22.3 at time 25.174 a window of 767 is advertised, but 768 bytes are available in
the receive buffer. Why the difference of 1 byte?

22.2

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

23.1

23

TCP Keepalive Timer

Introduction

Many newcomers to TCP/IP are surprised to learn that no data whatsoever flows across

an idle TCP connection. That is, if neither process at the ends of a TCP connection is

sending data to the other, nothing is exchanged between the two TCP modules. There is

no polling, for example, as you might find with other networking protocols. This

means we can start a client process that establishes a TCP connection with a server, and

walk away for hours, days, weeks or months, and the connection remains up. Interme-

diate routers can crash and reboot, phone lines may go down and back up, but as long
as neither host at the ends of the connection reboots, the connection remains estab-
lished.

This assumes that neither application——the client or server—has application—level

timers to detect inactivity, causing either application to terminate. Recall at the end of

Section 10.7 that BGP sends an application probe to the other end every 30 seconds.

This is an application timer that is independent of the TCP keepalive timer.
There are times, however, when a server wants to know if the client's host has either

crashed and is down, or crashed and rebooted. The keepalive timer, a feature of many

implementations, provides this capability. ‘

Keepalives are not part of the TCP specification. The Host Requirements RFC provides three
reasons not to use them: (1) they can cause perfectly good connections to be dropped during
transient failures, (2) they consume unnecessary bandwidth, and (3) they cost money on an
internet that charges by the packet. Nevertheless, many implementations provide the keep-
alive timer.

The keepalive timer is a controversial feature. Many feel that this polling of the

other end has no place in TCP and should be done by the application, if desired. This is

one of the religious issues, because of the fervor expressed by some on the topic.

Talari Networks Inc. - Exhibit 100??

Talari Networks Inc. - Exhibit 1007

332

TCP Keepalive Timer

232

The keepalive option can cause an otherwise good connection between two pro-
cesses to be terminated because of a temporary loss of connectivity in the network join-

ing the two end systems. For example, if the keepalive probes are sent during the time
that an intermediate router has crashed and is rebooting, TCP will think that the client's

host has crashed, which is not what has happened.

The keepalive feature is intended for server applications that might tie up resources
on behalf of a client, and want to know if the client host crashes. Many versions of the

Telnet server and Rlogin server enable the keepalive option by default.

A common example showing the need for the keepalive feature nowadays is when

personal computer users use TCP/IP to login to a host using Telnet. If they just power
off the computer at the end of the day, without logging off, they leave a half—open con-
nection. In Figure 18.16 we showed how sending data across a half—open connection
caused a reset to be returned, but that was from the client end, where the client was

sending the data. If the client disappears, leaving the half-open connection on the
server's end, and the server is waiting for some data from the client, the server will wait

forever. The keepalive feature is intended to detect these half—open connections from
the server side.

Description

In this description we'll call the end that enables the keepalive option the server, and the
other end the client. There is nothing to stop a client from setting this option, but nor-

mally it’s set by servers. It can also be set by both ends of a connection, if it’s important
for each end to know if the other end disappears. (In Chapter 29 we'll see that when

NFS uses TCP, both the client and server set this option. But in Chapter 26 with Rlogin

and Telnet, only the servers set the option, not the clients.)
If there is no activity on a given connection for 2 hours, the server sends a probe

segment to the client. (We'll see what the probe segment looks like in the examples that
follow.) The client host must be i_n one of four states.

1. The client host is still up and running and reachable from the server. The

client’s TCP responds normally and the server knows that the other end is still

up. The server's TCP will reset the keepalive timer for 2 hours in the future. If
there is application traffic across the connection before the next 2-hour timer

expires, the timer is reset for 2 hours in the future, following the exchange of
data.

2. The client's host has crashed and is either down or in the process of rebooting.

In either case, its TCP is not responding. The server will not receive a response

to its probe and it times out after 75 seconds. The server sends a total of 10 of
these probes, 75 seconds apart, and if it doesn’t receive a response, the server
considers the client's host as down and terminates the connection.

3. The client's host has crashed and rebooted. Here the server will receive a

response to its keepalive probe, but the response will be a reset, causing the
server to terminate the connection.

Talari Networks Inc. - Exhibit 1007

Chapter 23‘

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

Talari Networks Inc. - Exhibit 1007

