
Under consideration for publication in J. Functional Programming 1

Highcr—Order Functions for Parsing>i<

Graham Hutton

Department of Computer Science, University of Utrecht,
PO Boar 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

In combinatar parsing, the text of parsers resembles BNF notation. We present the basic
method, and a number of extensions. We address the special problems presented by white-
space, and parsers with separate lexical and syntactic phases. In particular, a combining
form for handling the “offside rule” is given. Other extensions to the basic method include
an “into” combining form with many useful applications, and a simple means by which
combinator parsers can produce more informative error messages.

1 Introduction

Broadly speaking, a parser may be defined as a program which analyses text to

determine its logical structure. For example, the parsing phase in a compiler takes

a program text, and produces a parse tree which expounds the structure of the

program. Many programs can be improved by having their input parsed. The form of

input which is acceptable is usually defined by a context—free grammar, using BNF

notation. Parsers themselves may be built by hand, but are most often generated

automatically using tools like Lex and Yacc from Unix (Aho86).
Although there are many methods of building parsing, one in particular has

gained widespread acceptance for use in lazy functional languages. In this method,

parsers are modelled directly as functions; larger parsers are built piecewise from

smaller parsers using higher order functions. For example, we define higher order

functions for sequencing, alternation and repetition. In this way, the text of parsers

closely resembles BNF notation. Parsers in this style are quick to build, and simple

to understand and modify. In the sequel, we refer to the method as combinator

parsing, after the higher order functions used to combine parsers.

Combinator parsing is considerably more powerful than the commonly used meth-

ods, being able to handle ambiguous grammars, and providing full backtracking if

it is needed. In fact, we can do more than just parsing. Semantic actions can be

added to parsers, allowing their results to be manipulated in any way we please. For

example, in section 2.4 we convert a parser for arithmetic expressions to an eval-

uator simply by changing the semantic actions. More generally, we could imagine

generating some form of abstract machine code as programs are parsed.

* Appears in the Journal of Functional Programming 2(3):323—343, July 1992.

Blue Coat Systems - CORRECTED Exhibit 1058 Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Graham Hutton

Although the principles are widely known (due in most part to (Wadler85)),
little has been written on combinator parsing itself. In this article, we present the

basic method, and a number of extensions. The techniques may be used in any lazy

functional language with a higher—order/polymorphic style type system. All our

programming examples are given in Mirandal; features and standard functions are

explained as they are used. A library of parsing functions taken from this paper is
available by electronic mail from the author. Versions exist in both Miranda and

Lazy ML.

2 Parsing Using Combinators

We begin by defining a type of parsers. A parser may be viewed as a function from

a string of symbols to a result value. Since a parser might not consume the entire

string, part of this result will be a suflix of the input string. Sometimes a parser may

not be able to produce a result at all. For example, it may be expecting a letter, but

find a digit. Rather than defining a special type for the success or failure of a parser,

we choose to have parsers return a list of pairs as their result, with the empty list

[] denoting failure, and a singleton list [(v,xs)] indicating success, with value v

and unconsumed input xs. As we shall see in section 2.2, having parsers return a

list of results proves very useful. Since we want to specify the type of any parser,

regardless of the kind of symbols and results involved, these types are included as

extra parameters. In Miranda, type variables are denoted by sequences of stars.

parser * ** == [*1 -> [(**.[*])]

For example, a parser for arithmetic expressions might have type (parser char

expr), indicating that it takes a string of characters, and produces an expression

tree. Notice that parser not a new type as such, but an abbreviation (or syn-
onym); it’s only purpose is to make types involving parsers easier to understand.

2.1 Primitive parsers

The primitive parsers are the building blocks of combinator parsing. The first of

these corresponds to the 5 symbol in BNF notation, denoting the empty string.

The succeed parser always succeeds, without actually consuming any of the input

string. Since the outcome of succeed does not depend upon its input, its result

value must be pre—deter1nined, so is included as an extra parameter:

succeed :: ** -> parser * **

succeed v inp = [(v,inp)]

This definition relies on partial application to work properly. The order of the argu-

ments means that if succeed is supplied only one argument, the result is a parser

(Le. a function) which always succeeds with this value. For example, (succeed 5)

1 Miranda is a trademark of Research Software Limited.

Blue Coat Systems - CORRECTED Exhibit 1058 Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Hz'gher«Order Functions for Parsing 3

is a parser which always returns the value 5. Furthermore, even though succeed

plainly has two arguments, its type would suggest it has only one. There is no

magic, the second argument is simply hidden inside the type of the result, as would

be clear upon expansion of the type according to the parser abbreviation.

While succeed never fails, fail always does, regardless of the input string:

fail :: parser * **

fail inp = []

The next function allows us to make parsers that recognise single symbols. Rather

than enumerating the acceptable symbols, we find it more convenient to provide the

set implicitly, via a predicate'which determines if an arbitrary symbol is a member.

Successful parses return the consumed symbol as their result value.

satisfy 2: (* —> bool) -> parser * *

satisfy p [] = fail []

satisfy 13 (x:xs) = succeed x xs , p X
= fail xs , otherwise

Notice how succeed and fail are used in this example. Although they are not

strictly necessary, their presence makes the parser easier to read. Note also that the

parser (satisfy p) returns failure if supplied with an empty input string.

Using satisfy we can define a parser for single syrribols:

literal :: * —> parser * *

literal x = satisfy (=x)

For example, applying the parser (literal ’3’) to the string "345" gives the
result [(’3’ ,"45")]. In the definition of literal, (=x) is a function which tests

its argument for equality with x. It is an example of operator sectioning, a useful

syntactic convention which allows us to partially apply infix operators.

2. 2 Combinators

Now that we have the basic building blocks, we consider how they should be put

together to form useful parsers. In BNF notation, larger grammars are built piece-

wise from smaller ones using | to denote alternation, and juxtaposition to indicate
sequencing. So that our parsers resemble BNF notation, we define higher order

functions which correspond directly to these operators. Since higher order func-

tions like these combine parsers to form other parsers, they are often referred to as

combining forms or combinators. We will use these terms from now on.

The alt combinator corresponds to alternation in BNF. The parser (pl $a1t

p2) recognises anything that either pl or p2 would. Normally we would interpret

either in a sequential (or exclusive) manner, returning the result of the first parser

to succeed, and failure if neither does. This approach is taken in (Fairbairn86).

Blue Coat Systems - CORRECTED Exhibit 1058 Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4 Graham Hutton

In combinator parsing however, we use inclusive either — it is acceptable for both

parsers to succeed, in which case we return both results. In general then, combinator

parsers may return an arbitrary number of results. This explains our decision earlier
to have parsers return a list of results.

With parsers returning a list, alt is implemented simply by appending (denoted
by ++ in Miranda) the result of applying both parsers to the input string. In keeping
with the BNF notation, we use the Miranda $ notation to convert alt to an infix

operator. Just as for sectioning, the infix notation is merely a syntactic convenience:

(x $f y) is equivalent to (f x y) in all contexts.

alt :: parser * ** -> parser * H -> parser * **

(pl $alt p2) inp = pl inp ++ p2 inp

Knowing that the empty—list [] is the identity element for ++, it is easy to verify

from this definition that failure is the identity element for alternation: (fail $alt

p) = (p $alt fail) : p. In practical terms this means that alt has the expected

behaviour if only one of the argument parsers succeeds. Similarly, alt inherits

associativity from ++: (p $alt q) $alt r : p $alt (q $alt r). This means we

do not not need to worry about bracketing repeated alternation correctly.

Allowing parsers to produce more than one result allows us to handle ambiguous

grammars, with all possible parses being produced for an ambiguous string. The

feature has proved particularly useful in natural language processing (Frost88). An

example ambiguous string from (Frost88) is “Who discovered a moon that orbits

Mars or Jupiter 7” Most often however, we are only interested in the single longest

parse of a string (i.e. that which consumes the most symbols). For this reason, it is

normal in combinator parsing to arrange for the parses to be returned in descending

order of length. All that is required is a little care in the ordering of the argument

parsers to alt. See for example the many combinator in the next section.

The then combinator corresponds to sequencing in BNF. The parser (pl $then

p2) recognises anything that p1 and p2 would if placed in succession. Since the first

parser may succeed with many results, each with an input stream suffix, the second

parser must be applied to each of these in turn. In this manner, two results are

produced for each successful parse, one from each parser. They are combined (by
pairing) to form a single result for the compound parser.

then :: parser * ** -> parser * **»< —> parser * (**,***)

(pl $then p2) inp = [((v1,v2),out2) I (v1,out1) <— pl inp;

(v2,out2) <— p2 out1]

For example, applying the parser (literal ’a’ $then literal ’b’) to the input
"abcd" gives the result [((’a’ , ’b’) , "cd“)] . The then combinator is an excellent

example of list compre/tension notation, analogous to set comprehension in math-

ematics (eg. {:52 l 00 E IN /\ at < 10} defines the first ten squares), except that lists
replace sets, and elements are drawn in a determined order. Much of the elegance
of the then combinator would be lost if this notation were not available.

Blue Coat Systems - CORRECTED Exhibit 1058 Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Hig/ter—O7“de7" Functions for Parsing 5

Unlike alternation, sequencing is not associative, due to the tupling of results from

the component parsers. In Miranda, all infix operators made using the $ notation

are assumed to associate to the right. Thus, when we write (p $then q $then r)

it is interpreted as (p $then (q $then

2.3 Manipulating values

Part of the result from a parser is a value. The using combinator allows us to

manipulate these results, building a parse tree being the most common application.

The parser (p Susing f) has the same behaviour as the parser p, except that the
function f is applied to each of its result values:

using :: parser * ** -> (** -> ***) —> parser * ***

(p $using ;f) inp = [(f v,out) I (v,out) <— p inp]

Although using has no counterpart in pure BNF notation, it does have much in

common with the - operator in Yacc (Aho86). In fact, the using combinator
does not restrict us to building parse trees. Arbitrary semantic actions can be

used. For example, in section 2.4 we convert a parser for arithmetic expressions

to an evaluator simply by changing the actions. There is a clear connection here

with attribute grammars. A recent and relevant article on attribute grammars is

(Johnsson87). A combinator parser may be viewed as the implementation in a lazy

functional language of an attribute grammar in which every node has one inherited

attribute (the input string), and two synthesised attributes (the result value of the

parse and the unconsumed part of the input string.) In the remainder of this section

we define some useful new parsers and combinators in terms of our primitives.

In BNF notation, repetition occurs often enough to merit its own abbreviation.

When zero or more repetitions of a phrase p are admissible, we simply write p*. For-

mally, this notation is defined by the equation p* : p p* | 5. The many combinator

corresponds directly to this operator, and is defined in much the same way:

many :: parser >o< ** —> parser * [**]

many p = ((p $then many p) $using cons) $a1t (succeed [D

The action cons is the uncurried version of the list constructor “ : ”, and is defined by

cons (x,xs) = x:xs. Since combinator parsers return all possible parses according

to a grammar, if failure occurs on the nth application of (many p), it results will be
returned, one for each of the O to n—1 successful applications. Following convention,

the results are returned in descending order of length. For example, applying the

parser many (literal ’a’) to the string "aaab" gives the list

[:(IIaaaII , nbu) , (naan ’ nabu) ’ (Ivan) uaabu) ’ (nu , naaab1I)]

Not surprisingly, the next parser corresponds to the other common iterative form

in BNF, defined by pl” = p p‘. The parser (some p) has the same behaviour as
(many p), except that it accepts one or more repetitions of p, rather of zero or
more:

Blue Coat Systems - CORRECTED Exhibit 1058 Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

