
The Journal of Supercomputing, 7, 9-50 (1993)
© 1993 Kluwer Academic Publishers, Bo>~on. Manufactured in The Netherlands.

Instruction-Level Parallel Processing:
History, Overview, and Perspective

B. RAMAKRISHNA RAU AND JOSEPH A. FISHER
Hew/eu-Paclwrd wborarories, 1501 Page Mill Road, Bldg. 3U, Palo A/co, C4 94304

(October 20, 1992)

Abstract. lnstruclion-level parallelism (QP) is a family of processor and compiler design techniques that speed
up execution by causing individual machine operations to execute in parallel. Although ILP has appeared in the
highest performance uniprocessors fOr the past 30 years, the 1980s saw it become a much more significant force
in computer design , Several systems were built and sold commercially, which pushed ILP far beyond where it
had been before, both in terms of the amount of ILP offered and in the central role JLP played in the design
of the system By the end of the d<ead~. advanced microprocessor design at all major CPU manufacturers had
incorporated ILP, and new techniques for fLP had become a popular topic at academic conferences. This article
provides an overview and historical perspective of the field of ILP and its development over the past three decades.

Keywords. lnstru<'.:ion-level parallelism, YLIW processors, superscalar processors, pipelining, multiple operation
issue, speculative execution, scheduling, regLster alldtal ion ,

I. Introduction

Instruction-level parallelism (ILP) is a family of processor and compiler design techniques
that speed up execution by causing individual machine operations, such as memory loads
and stores, integer additions, and floating point multiplications, to execute in parallel. The
operations involved are normal RISC-style operations, and the system is handed a single
program written with a sequential processor in mind. Thus an important feature of these
techniques is that like circuit speed improvements, but unlike traditional multiprocessor
parallelism and massive parallel processing, they are largely transparent to users. VLIWs
and superscalars are examples of processors that derive their benefit from instruction-level
parallelism, and software pipelining and trace scheduling are example software techniques
that expose the parallelism that these processors can use_

Although small amounts of ILP have been present in the highest performance uniproc­
essors of the past 30 years, the 1980s saw it become a much more significant force in com­
puter design. Several systems were built and sold commercially, which pushed ILP far beyond
where it had been before, both in tenns of the amount of ILP offered and in the central
role ILP played in the design of the system. By the early 1990s, advanced microprocessor
design at all major CPU manufacturers incorporated ILP, and new techniques fur ILP became
a popular topic at academic conferences. With all of this activity we felt that, in contrast
to a report on suggested future techniques, there would be great value in gathering, in an
archival reference, reports on experience with real ILP systems and reports on the measured
potentia\ of lLP_ Thus this special issue of The Journal of Supercomputing.

J.]_ JLP Execution

A typical ILP processor has the same type of execution hardware as a nonnal RJSC machine.
The differences between a machine with ILP and one without is that there may be more
of that hardware, for example, several integer adders instead of just one, and that the con­
trol will allow, and possibly arrdnge, simultaneous access to whatever execution hardware
is present_

Consider the execution hardware of a simplified ILP processor consisting of four func­
tional units and a branch unit connected to a common register file (Table 1). Typically
ILP execution hardware allows multiple-cycle operations to be pipelined, so we may assume
that a total of four operations can be initiated each cycle. If in each cycle the longest latency
operation is issued, this hardware could have ten operations "in flight" at once, which
would give it a maximum possible speedup of a factor of ten over a sequential processor
wilh similar execution hardware. As the papers in this issue show, this execution hardware
resembles that of several VLIW processors that have been built and used commercially,
though it is more limited in its amount of ILP. Several superscalar processors now being
built also offer a similar amount of ILP_

There is a large amount of parallel ism available even in this simple processor. The chal­
lenge is to make good use of it-we will see that with the technology available today, an
ILP processor is unlikely to achieve nearly as much as a factor of ten on many classes
of programs, though scientific programs and others can yield far more than that on a proc­
essor that has more functional units. The first question that comes to mind is whether enough
ILP exists in programs to make this possible. Then, if this is so, what must the compiler
and hardware do to successfully exploit it? In reality, as we shall see in Section 4, the
two questions have to be reversed; in the absence of techniques to find and exploit ILP,
it remains hidden, and we are left with a pessimistic answer.

Figure Ia shows a very large expression taken from the inner loop of a compute-intensive
program. It is presented cycle by cycle as it might execute on a processor with functional
units similar to those shown in Table I, but capable of having only one operation in flight

Table /. Execution hardware for a simplified ILP processor,

Functional Unit

Integer unit f

Integer unit 2/branch unit

Floating point unit I
Floating point unit 2

Operations Performed

Integer AL U opcr•toons
Integer multiplication
Loads

Stores

Integer ALU operations
Integer multiplicalion
Loads

Stores

Test-and-branch

Floating point operations

Latency

I
2
2

l

f
2
2

3

"' 3

Blue Coat Systems - Exhibit 1034 Page 1

CYCLE &s..CS: • s•__, • 1 !09
CYCI.! .D(i"'
CYCLE nop
CYCLE ~·eedl • yaee<l • 1 .}01
CYCLE nop
cvcu: • """
C'tCl.£ 1 XSw«dl • JUi41¥dl • 1)849
CYC: I £ i yllleedl • yaeedJ • 1 llt9
CYCli: llilllc-«d • x••Nl .. ~ ·~t;,)I\
CYC'l..£ 4 Y"'•Cd .. ys.eedl •• 6~5lS
CYCLE ll tsn<il - tsee<l • UC7
CYCl.£ 12 ncp
CY\.:L£ ! l n o lo'
CY("U: 1 t v•e-e-<:1':.. - vaeecl • llOi
CYCL£ l~ nGI?
C'I'Ct..E \' n..;:;p
CYCU 17 tu•dl - tst<Odl • 1)149
CYCLE 16 v.e•dl - vo-eedl • lliH
CYCLE 19 tu"<l • ta-ee<!J U 6SS .B
C'W('Lt lG '4/iiOCd • VS.C'~2 -.a. ·~~)~
CYCLE 21 .Jiaq x &eed • xs•6fd
CYCt.(21 nop
CYCt.[2) n -1p
CYCI.I:: l4 y"q • yc:oed • y1utod
CYCtE l; r.op
CYCLE 26 nop '
CYCLE l7 xy~uO>oq • xoq , VOQ
C'I'C'LE ;: a taq • taeed • tt••d
CYCLE U nop
CVCLt lO nop •
CYCL.£ ll veq .. v•••d • vae.d
CYCLE l4 no!)
CYCLE lJ n~
CYCLE l4 :v•u~Mq • tsq • vaq
CYCLt l~ pl~ • plc • 1
C"YCLi: J6 tp • tP • ;
C 'rCl.i: J7 ~r zyaua.q > r•d.J.u• goto t.y - no-htt

.,
lOfT ALU lNT Al.U FLOAT A;JJ n..oAT ALU

CYCL£ 1 lp-tp•l plc•plc•1 v~eoe-d,!.,..v~eed•!lD' '-••••:tl•t:ileed•t.\01
CYCLE l y•Hdl =J15e.d"ll08 n"<'l•neltd•l)Q9
CYCL£ l nop
CYCLE' 4 ve•e-<U . vsaedlt!)B49 t:•..-d2•t.e•edl-.IlBt9
CVCL£ 5 ya.edl•yaeltdl•lliU u .. dl• .. •ll<ll•ll849
CYCLE 6 yao<td•yaotedUh~5l~ xa"d·VI-d2•0655J5
CCYY~LI.~ "I \lae.-d•\l'&cted26.&.4SS:3!a tae•d· t.•e•dllr,i!a~l$)lllqc:ya;:eed•yae.ed xaq.•aeed•x••ed

Ill. I vaq .. vseed•va~ l8(J•C.t>ead•L•"ed
CYClF. 9 nop
CYCI.[0 "'fOUN<JoUQ•Y•Q
C'JClt: 11 tV&uUq-C:sq•vsq 1 f X'(autuq;,.r~,j::.~s. goto ixy-no-h.lt

b l

F;,_ I (a I An c:aAmplc ollllc ~IIIIAI ouord ol-.:ucioft fOe a loop. (b) T'hol: iDStn..:t~on·ICYel par.lleii'IIConl

o1 csoc;utlCift ror 111c - loop.

at a time. Figun: lb shows the same program fragment as it might be ellecuted on the hard·
ware indicated in Table I.

Note that several of the cycles in Figun: Ia contain no-ops. This is because the sequential
processor must await the completion of the three-cycle latency multiply issued in cycle I
before issuing the next operation. (These no-ops would not appear in the text of a program.
but are shown here as the actual record of what is executed each cycle.) Most instruction­
level parallel processors cliJI issue operations during these no-op I.)'Cies, when previous
operations an: still in Oighl, and ll'lllny can issue more than one operation in a given cycle.

In our ILP record of execution (Figure !b), both effects an: evident: In cycle 1, four opera­
tions an: issued; in cycle 2, two mon: operations are issu~d even though neither mulciply

in cycle I has yet completed execution .
This special issue of The Journal of Supercomputing concerns itSelf with the technology

of syslems that try to ana in the kind of record of c:xecution in Figure lb. given a prog111m

written with the record of eJU:Cution in Figure Ia in mind

1.2. Early History of lnstructiOII-Wel PuruiiC'iiJm

In small ways, instruction-level parallelism factored into the thinking of machine designers
in the 1940s and 1950s. Parallelism that would today be called horiwntal microcode ap­
peared in lUring's 1946 design of the Pilot ACE £Carpenter and Doran 1986] and was care­
fully described by Wilkes [1951]. Indeed, in 1953 Wilkes and Stringer wrole, "In some
cases it may be possible for two or more micro-operations to take place at the same tim~"
[Wilkes and Stringer 1953}.

The 1960s saw the appearance of transistorized computers. One ~ffect of this revolution
was that it bec:ame practical to build reliable machines with far mon: gates than was necessary
to build a general-purpose CPU. This led to commercia111y succeSl>fu.l machinCli that used
this available tuirdware to provide instruction-Je·~el parallelism at the machine-language
level. In 1963 Control Data Corporation stancd delivering its CDC 6600 [Thornton 1964,
1~1. which had ten functional units-in~tger add, shift, incn:mcfll (2), multiply (2),1ogical
branch, floating poinl add and divide. Any on~ of these could sran executing in a given
cycle whether or not others were still processing daua-indcpendcnt earlier operations. In
this machine the hardwan: decided, as the program eliCCUted. which operation 10 1ssuc in
a given cycle; its model of execution was well along the way toward what we would today
call supcncalar. Indeed, in many ways it strongly resembled its direct descendant, lhe scalar
ponion of the CRAY-1. 11\e CDC 6600 was the scientific supercomputer of its day.

Also durin& the 1960s, WM introduced, and in 196'1-68 delivered, the 360191 [mM 1967].
This machine, based partly on IBM's instruction· level parallel ellpcrimenla.l Stretch proc­
essor, offered less instruction-level parallelism than the CDC 6600. having only a single
in~eger adder. a floating poim adder, and a Ooating point multipl)ldivide. But it was f.u
more 11111bitious than !be CDC 6600 in its auempt 10 reanliJige the inslrucuon strum 10

bep ttae functional units busy-a key technology in IOday's 5Uperscalar desigN. For wrious
nontechnical reasons the 360/91 was not as commercially successful u u might have been,
with only about20 machines delfven:d (Bell n.nd N~ll 197 11 . But its CPU arcbitccrun: w.s
the stan of a long line of succ-essful high-pcrfonnance processurs. As with the CDC 6600,
this lLP p1onccr s111ncd o chain of supersc.a lur a r huecturc::. tluu has I sted into the 1990s.

In the 1960s. research into "parallel processing" often wa concerned with the ILP found
in these proccsson~ . By the mid-1!170s the term was used more often for multiple processor
parallelism and for regular array and vector parallelism. In pan, this was due to some very
pessimiJiic results about the availability of ILP in ordinary programs, wb1ch we discuss

below.

Blue Coat Systems - Exhibit 1034 Page 2

1.3. Modem lnstruction-Level Parallelism

In the late 1970s the beginnings of a new style of ILP, caJled very long instruction word

(VUW), emerged on several different fronts. In many ways VLIWs were a natural outgrowth
of horizontal microcode, the first ILP technology, and they were triggered, in the 1980s,
by the same changes in semiconductor technology that had such a profound impact upon
the entire computer industry.

For sequential processors, as the speed gap between WTiteable and read-only memory
narrowed, the advantages of a small, dedicated, read-only control store began to disappear.
One natural effect of this was to diminish the advantage of microcode; it no longer made
as much sense to define a complex language as a compiler target and then interpret this
in very fast read-only microcode. Instead, the vertical microcode interface was presented
as a clean, simple compiler target. This concept was called RJSC [Hennessy, Jouppi, Baskett
et al. 1982 ; Patterson and Sequin 1981; Radin 1982] . In the 1980s the general movement
of microprocessor products was towards the RISC concept, and instruction-level parallel
techniques fell out of favor. In the minisupercomputer price-bracket though, one innovative
superscalar product, the ZS-1, which could issue up to two instructions each cycle, was
built and marketed by Astronautics rsmith et al. 1987].

The same changes in memory technology were having a somewhat different effect upon
horizontally microcoded processors. During the 1970s a large market had grown in special­
ired signal processing computers. Not aimed at general-purpose use, these CPUs hard­
wired FFfs and other important algorithms directly into the horizontal (;ontrol store, gaining
tremendous advantages from the instruction-level parallelism available there. When fast,
writeable memory became available, some of these manufacturers, most notably Floating
Point Systems (Charlesworth 1981], replaced the read-only control store with writeable mem­
ory, giving users access to instruction-level parallelism in far greater amounts than the early
superscalar processors had. These machines were extremely fast, the fastest processors
by far in their price ranges, for important classes of scientific applications. However, despite
attempts on the part of several manufacturers to market their products for more general,
everyday use, they were almost always restricted to a narrow class of applications. This
was caused by the lack of good system software, which in turn was caused by the idiosyn­
cratic architecture of processors built for a single application, and by the lack at that time
of good code generation algorithms for ILP machines with that much parallelism.

As with RISC, the crucial step was to present a simple, clean interface to the compiler.
However, in this case the clean interface was horizontal, not vertical, so as to afford greater
ILP [Fisher 1983; Rau, Glaeser, and Greenaw.Ut 1982]. This style of architecture was dubbed
VLIW (Fisher 1983] . Code generation techniques, some of which had been developed for
generating horizontal microcode, were extended to these general-purpose VUW machines
so that the compiler could specify the parallelism directly [Fisher 1981; Rau and Glaeser
1981] .

In the 1980s VLIW CPUs were offered commercially in the form of capable, general­
purpose machines. Three computer start-ups-Culler, Multiflow, and Cydrome-built
VLIWs with varying degrees of parallelism (Colwell et aL 1988; Rau et aL 1989]. As a
group thc:se companies were able to demonstrate that it was possible to build practical ma­
chines that achieved large amounts of ILP on scientific and engineering codes. Although,

for various reasons, none was a lasting business success, several major computer manufac­
turers acquired access to the techne io!;ies developed at these start-ups and there are several
active VLIW design efforts underway. Furthermore, many of the compiler techniques devel­
oped with VLIWs in mind, and reported upon in this issue, have been used to compile
for superscalar machines as well.

1.3.1. JLP in the 1990s. Just as had happened 30 years ago when the transistor became
available, CPU designers in the 1990s now have offered to them more silicon space on
a single chip than a RISC processor requires. Vinually all designers have begun to add
some degree of superscalar capability, and some are investigating VLIWs as welL It is a
safe bet that by 1995 virtually all new CPUs will embody some degree of ILP.

Partly as a result of this commercial resurgence of interest in ILP, research into that area
has become a dominant feature of architecture and systems conferences of the 1990s. Unfor­
tunately, those researchers who found themselves designing slate-of-the-art products at com­
puter start-ups did not have the time to document the progress that was made and the large
amount that was learned. Virtually everything that was done by these groups was relevant
to what designers wrestle with today.

l. ILP Architectures

The end result of instruction-level parallel execution is that multiple operations are simul­
taneously in execution, either as a result of having been issued simultaneously or because
the time to execute an operation is greater than the interval between the issuance of succes­
sive operations. How exactly are the necessary decisions made as to when an operation
should be e11ecuted and whether an operation should be speculatively eKecuted? The alter­
natives can be broken down depending on the extent to which these decisions are made
by the compiler rather than by the hardware and on the manner in which information regard­
ing parallelism is communicated by the compiler to the hardware via the program.

A computer architecture is a contract between the class of programs that are written for
the architecture and the set of processor implementations of that architecture. Usually this
contract is concerned with the instruction format and the interpretation of the bits that con­
stitute an instruction, but in the case of ILP architectures it extends to information embedded
in the program pertaining to the available parallelism between the instructions or operations
in the program. With this in mind, JLP architectures can be classified as follows.

• Sequential architectures: architectures for which the program is not expected to convey
any explicit information regarding parallelism. Superscalar processors are representative
of ILP processor implementations for sequential architectures [Anderson et at. 1967;
Apollo Computer 1988; Bahr et al. 1991; Blanck and Krueger 1992; DeLano et al. 1992;
Diefendorff and Allen 1992; IBM 1990; Intel 1989b; Keller et at. 1975; Popescu et al.
1991; Smith et aL 1987; Thompson 1964].

• Dep~ndence architectures: architectures for which the program explicitly indicates the
dependences that exist between operations. Dataflow processors [Arvind and Gostelow
1982; Arvind and Kathail 1981; Gurd et aL 1985) are representative of this class.

n
::::r

"' "S.
<D -.

Blue Coat Systems - Exhibit 1034 Page 3

• lndt?pendence architectures: architectures for which the program provides infonnation
as to which operations are independent of one another. Very long instruction word (VLIW)
processors [Charlesworth 1981; Colwell et al. 1988; Rau et al. 1989] are examples of
the class of independence architectures.

In the context of this taxonomy, vector processors [Hintz and Tate Jg]2; Russell lm;
Watson 1972] are best thought of as processors for a sequential, CISC (compleK instruction
set computer) archi~i:ture. The complex instructions are the vector instructions that do
possess a stylized form of instruction-level parallelism internal to each vector instruction.
Attempting to execute multiple instructions in parallel, whether scalar or vector, incurs
all of the same problems that are faced by a superscalar processor. Because of their stylized
approach to parallelism, vector processors are less general in their ability to exploit all
forms of instruction-level parallelism. Nevertheless, vector processors have enjoyed great
commercial success over the past decade. Not being true ILP processors, vector processors
are outside the scope of this special issue. (Vector processors have received a great deal
of attention e I sew here over the past decade and have been treated extensively in many books
and articles, for instance, the survey by Dongarra [1986] and the book by Schneck [1987].)
Also, certain hybrid architectures [Danelutto and V,mneschi 1990; Franklin and Sohi 1992;

Wolfe and Shen 1991], which also combine some degree of multithreading with ILP, fall
outside of this taxonomy for uniprocessors.

If lLP is to be achieved, between the compiler and the run-time hardware, the following
functions must be performed:

I. The dependences between operations must be determined_
2. The operations that are independent of any operation that has not as yet completed must

he dctcnnincd.
3. These independent operations must be scheduled to execute at some particular time,

on some specific functional unit, and must be assigned a register into which the result
may be deposited.

Figure 2 shows the breakdown of these three tasks, between the compiler and run-time
hardware, for the three classes of architecture.

2.1. Sequential Archirectures and Superscolar Processors

The program fur a sequential architecture contains no e)(plicit information regarding the
dependences that exist between instructions. Consequently, the compiler need neither identify
parallelism nor make scheduling decisions since there is no explicit way to communicate
this information to the hardware. (It is true, nevertheless, that there is value in the com­
piler performing these functions and ordering the instructions so as to facilitate the hard­
ware's task of extracting parallelism.) In any event, if instruction-level parallelism is to
be employed, the dependences that exist between instructions must be determined by the
hardware. It is only necessary to determine dependences with sequentially preceding opera­
tions that are in night, that is, those that have been issued but have not yet completed.

(Frontend & Opthnlzar)

J ! l Sequential

(Superscalal)

' (Determine Dependences) (Determtn. Dependencn J
·T 1 O&pe.ndono:e

~ Architecturo • (Detennlne lndependances J {Dataflow)
(Determine Independence• J

1----- -- - .!.nd~~·'!!:!'- -1 · 1 l Al'chilecture

(Bind Rasoun:n) (Horizon) (Bind Rftources)
-r ln<fiiJIO/ldonce l

~ ~ Architec.ture

' (VUW)
(Eiecute)

r

Compllar Hardware

Figurt 2. Divi$ion of responsibilities between the compiler 11J1d the hardware for the three d•sses of architecture.

When the operation is independent of all other operations it may begin execution. At this
point the hardware must make the scheduling decision of when and where this operation
is to execute.

A superscalar processor' strives to issue an instruction every cycle so as to execute many
instructions in parallel, even though the hardware is handed a sequential program. The
problem is that a sequential program is constructed with the assumption only that it will
execute correctly when each instruction waits for the previous one to finish, and that is
the only order that the architecture guarantees to be correct. The first task, then, for a
superscalar processor is to understand, for each instruction, which other instructions it
actually is dependent upon. With every instruction that a superscalar processor issues, it
must check whether the instruction's operands (registers or memory locations that the in­
struction uses or modifies) interfere with the oper.mds of any other instruction in flight,
that is, one that is either

• already in execution or
• has been issued but is waiting for the completion of interfering instructions that would

have been executed ~rlier in a sequential execution of the program.

If either of these conditions is true, the instruction in question must be delayed until
the instructions on which it is dependent have completed execution. For each waiting opera­
tion, these dependences must be monitored to determine the point at which neither condi­
tion is true. When this happens, the instruction is independent of all other uncompleted
instructions and can be allowed to begin executing at any time thereafter. In the meantime
the processor may begin eJteeution of 5Ubsequenl instructions thai prove to be independent

r& -
Blue Coat Systems - Exhibit 1034 Page 4

of all sequentially preceding instructions in flight. Once an instruction is independent of
all other ones in flight, the hardware must also decide exactly when and on which available
functional unit to execute the in~truction. The Control Data CDC 6600 used a mechanism,
called the scoreboard, to perform these functions tThornton 1964]. The IBM System/360
Model 91, built in the early 1960s, used an even more sophisticated method known as
Tomasulo's algorithm to carry out these functions [Tomasulo 1967].

The further goal of a superscalar processor is to issue multiple instructions every cycle.
The most problematic aspect of doing so is determining the dependences between the opera­
tions that one wishes to issue simultaneously. Since the semantics of the program, and
in particular the essential dependences, are specified by the sequential ordering of the opem­
tions, the operations must be processed in this order to determine the essential dependences.
This constitutes an unacceptable performance bottleneck in a machine that is attempting
parallel execution. On the other hand, eliminating this bottleneck can be very expensive,
as is always the case when attempting to execute an inherently sequential task in parallel.
An excellent reference on superscalar processor design and its complexity is the book by
Johnson [1991].

A number of superscalar processors have been built during the past decade including
the Astronautics' ZS-1 decoupled access minisupercomputer [Smith 1989; Smith et al. 1987],
Apollo's DN10000 personal supercomputer"[Apollo 1988; Bahr eta!. 19911, and, most re­
cently, a number of microprocessors [Blanck and Krueger \992; DeLano et al. 1992;
Diefendorff and Allen 1992; IBM 1990; Intel \989b; Popescu et al. 1991].

Note that an ILP processor need not issue multiple operations per cycle in order to achieve
a certain level of performance. For instance, instead of a processor capable of issuing five
instructions pd cycle, the same performance could be achieved by pipe\ining the functional
units and instruction issue hardware five times as deeply, speeding up the clock rate by
a factor of five but is>~.Jing only one instruction per cycle. This strategy, which has been
termed superpipelining [Jouppi 1989], goes full circle back to the single-issue, superscalar
processing of the 1960s. Superpipelining may result in some parts of the processor (such
as the instruction unit and communications buses) being less expensive and better utilized
and other parts (such as the execution hardware) being more costly and less well used.

2.2. Dependence Architectures and Dataflow Processors

In the case of dependence architectures the compiler or the programmer identifies the paral­
lelism in the program and communicates it to the hardware by specifying, in the executable
program, the dependences between operations. The hardware must still determine, at run
time, when each operation is independent of all other operations and then perform the
scheduling. However, the inherently sequential task, of scanning the sequential program
in its original order to determine the dependences, has been eliminated.

The objective of a dataflow processor is to execute an instruction at the earliest possible
time subject only to the availability of the input operands and a functional unit upon which
to execute the instruction [Arvind and Gostelow 1982; Arvind and Kathail 1981]. To do
so, it counts on the program to provide information about the dependences between instruc­
tions. Typically, this is accomplished by including in each instruction a list of successor

instructions. (An instruction is a successor of another instruction if it uses as one of its
input operands the result of that other instruction.) Each time an instruction completes,
it creates a copy of its result for each of its successor instructions. As soon as all of the
input operands of an instruction are available, the hardware fetches the instruction, which
specifies the operation to be performed and the list of successor instructions. The instruc­
tion is then executed as soon as a functional unit of the requisite type is available. This
property, whereby the availability of the data triggers the fetching and execution of an in­
struction, is what gives rise to the name of this type of processor. Because of this property,
it is redundant for the instruction to specify its input operands. Rather, the input operands
specify the instruction! If there is always at least one instruction ready to execute on every
functional unit, the dataflow processor achieves peak performance.

Computation within a basic block typically does nO! provide adequate levels of pamllelism.
Superscalar and VLIW processors use control parallelism and speculative execution to keep
the hardware fully utilized. (This is discussed in greater detail in Sections 3 and 4.) Dataflow
processors have traditionally counted on using control parallelism alone to fully utilize the
functional units. A dataflow processor is more successful than the others at looking far
down the execution path to find abundant control parallelism. When successful, this is a
better strategy than speculative execution since every instruction executed is a useful one
and the processor does not have to deal with error conditions raised by speculative operations.

As far as the authors are aware, there have been no commercial products built based on
the dataflow architecture, except in a limited sense [Schmidt and Caesar 1991]. There have,
however, been a number of research prototypes built, for instance, the ones built at the
University of Manchester [Gurd et al. 1985] and at MIT [Papadopoulos and Culler 1990].

2.3. Independence Architectures and VLJW Processors

In order to execute operations in parallel, the system must determine that the operations
are independent of one another. Superscalar processors and dataflow processors represent
two ways of deriving this information at run time. In the case of the dataflow processor
the explicitly provided dependence information is used to determine when an instruction
may be executed so that it is independent of all other concurrently executing instructions.
The superscalar processor must do the same, but since programs for it lack any explicit
information, it must also first determine the dependences between instructions. In contrast,
for an independence architecture the compiler identifies the parallelism in the program
and conununicates it to the hardware by specifying which operations are independent of
one another. This information is of direct value to the hardware, since it knows with no
further checking which operations it can execute in the same cycle. Unfortunately, for any
given opemtion, the number of operations of which it is independent is far greater than
the number of operations on which it is dependent, so it is impractical to specify all inde­
pendences. Instead, for each operation, independences with only a subset of all independent
operations (those operations that the compiler thinks are the best candidates to execute
concurrently) are specified.

By listing operations that could be executed simultaneously, code for an independence
architecture may be very close to the record of eKecution produced by an implementation

:::>

~
c
~ c;·
:::>

' "' <
(1)

"'0

"' ~
"' co
c;;·
3

Blue Coat Systems - Exhibit 1034 Page 5

of that architecture. If the architecture additionally requires that programs specify where
(on which functional unit) and when (in which cycle) the operations are executed, then
the hardware makes no run time decisions at all and the code is virtually identical to the
desired record of execution. The VLIW processors that have been built to date are of this
type and represent the predominant examples of machines with independence architectures.
The program for a VLIW processor speci·fies exactly which functional unit each operation
should be executed on and exactly when each operation should be issued so as to be inde­
pendent of all operations that are being issued at the same time as well as of those that
are in execution. A particular processor implementation of a VLIW architecture could choose
to disregard the scheduling decisions embedded in the program, making them at run time
instead . In doing so, the processor would still benefit from the independence information
but would have to perform all of-the scheduling tasks of a superscalar processor. Further­
more, when attempting to execute concurrently two operations that the program did not
specify as being independent of each other, it must determine independence, just as a super­
scalar processor must .

With a VLIW processor it is important to distinguish between an instruction and an opera­
tion. An operation is a unit of computation, such as an addition, memory load, or branch,
which would be referred to as an instruction in the context of a sequential architecli.Jre.
A VLIW instruction is the set of operations that are intended to be issued simultaneously.
It is the task of tne compiler to decide which operations should go into each instruction .
This process is termed scheduling. Conceptually, the compiler schedules a program by
emulating at compile time what a dataflow processor, with the same execution hardware,
would do at run time. All operations that are supposed to begin at the same time are packaged
into a single VLIW instruction . The order of the operations within the instruction specifies
the functional unit on which each operation is to execute. A VLIW program is a translitera­
tion of a desired record of execution that is'feasible in the context of the given execution
hardware.

The compiler for a VLIW machine specifies that an operation be executed speculatively
merely by performing speculative code motion, that is, scheduling an operation before the
branch that determines that it should, in fdct, be executed . At run time, the VLIW proc­
essor blindly executes this operation exactly as specified by the program , just as it would
for a nonspeculative operation. Speculative execution is virtually transparent to the VUW
processor and requires little additional hardware. When the compiler decides to schedule
an operation for speculative execution, it can arrange to leave behind enough of the state
of the computation to assure correct results when the flow of the program requires that
the operation be ignored. The hardware required for the support of speculative code motion
consists of having some extra registers , of fetching some extra instructions, and of sup­
pressing the generation of spurious error conditions. The VLIW compiler must perform
many of the same functions that a superscalar processor performs at run time to support
speculative execution, but it does so at compile time.

The earliest~VLIW processors built were the so-called attached array processors [Charles­
worth 1981 ; F.loating Point Systems 1979; IBM 1976; Intel 1989a; Ruggiero and Coryell
1969] of which the best known were the Floating Point Systems products, the AP-l20B,
the FPS-164, and the"FPS-264 . The next generation of products were the minisupercom­
puters: Multitlow's Trace series of machines [Colwell et al. 1988; Colwell et al. 19901

and Cydrome's Cydra 5 [Becket al. 1993; Rau 1988; Rau et al. 1989] and the Culler machine
for which, as far as we are aware, there is no published description in the literature. Over
the last few years the VLIW architecture has begun to show up in microprocessors [Kahn
and Margulis 1989; Labrousse and Slavenburg 1988, 1990a, 1990b; Peterson et al. 1981].

Other types of processors with independence architectures have been built or proposed.
A superpipelined machine may issue only one operation per cycle, but if there is no super­
scalar hardware devoted to preserving the correct execution order of operations, the com­
piler will have to schedule them with full knowledge of dependences and latencies. From
the compiler's point of view these machines are virtually the same as VLIWs, though the
hardware design of such a processor offers some tradeoffs with respect to VLIWs. Another
proposed independence arcnitecture, dubbed Horizon [Thistle and Smith 1988], encodes
an integer H into each operation. The architecture guarantees that all of the next H opera­
tions in the instruction stream are data-independent of the current operation. All the hard­
ware has to do to release an operation, then, is to assure itself that no more than H subse­
quent operations are allowed to issue before this operation has completed. The hardware
does all of its own scheduling, unlike the VLIWs and deeply pipe lined machines that rely
on the compiler, but the hardware is relieved of the task of determining data dependence.
The key distinguishing features of these three ILP architectures are summarized in Table 2.

7Dble 2. A comparison of the instruction-level parallel architecture discussed in this paper.

Sequential
Architecture

Additional infonnation None
required in the program

Typical kind of ILP
processor

Analysis of dependences
between operations

Analysis of independent
operations

Final operation
scheduling

Role of compiler

Superscatar

Performed by hardware

Performed by hardware

Performed by hardware

Rearranges the code to
make the analysis and
scheduling hardware
more successful

Dependence
Archilecture

Complete specification
of dependences
between operutions

DataOow

Performed by the
compiler

Performed by hardware

Performed by hardw.lre

Replaces some analysis
hardware

Independence
Architecture

Minimally, a panial list of
independences. Typically,
a ~omplcte specificution of
when and where each

operation is to be executed

VLIW

Performed by the compiler

Performed by the compiler

Typically, performed by
the compiler

Replaces virtually all the
analysis and scheduling
hardware

~
?J
:lJ

"" c:
Q)

:>
c.

~
;t>
"T1 u;·

"" m,

Blue Coat Systems - Exhibit 1034 Page 6

3. Hardware and Software Techniques for ILP Execution

Regardless of which ILP architecture is considered, certain functions must be performed
if a sequential program is to be executed in an ILP fashion. The program must be analyzed
to determine the dependences; the point in time at which an operation is independent, of
all operations that are as yet not complete, must be determined; scheduling and register
allocation must be performed; often, operations must be executed speculatively, which in
turn requires that branch prediction be performed. All these functions must be performed.
The choice is, first, whether they are to be performed by the compiler or by run-time hard­
ware and, second, which specific technique is to be used. These alternatives are reviewed
in the rest of this section.

3.1. Hardware Features to Support ILP Execution

Instruction-level parallelism involves the existence of multiple operations in flight at any
one time, that is, operations that have begun, but not completed, executing. This implies
the presence of execution hardware that can simultaneously process multiple operations.
This has, historically, been achieved by two mechanisms: first, providing multiple, parallel
functional units and, second, pipelining the functional units. Although both are fairly similar
from a compiler's viewpoint-the compiler must find enough independent operations to
keep the functional units busy-they have their relative strengths and weaknesses from a
hardware viewpoint.

In principle, pipelining is the more cost-effective way of building ILP execution hardware.
For the relatively low cost of adding pipeline latches within each functional unit, the amount
of ILP can be doubled, tripled, or more. The limiting fuctors in increasing the performance
by this means are the data and clock skews and the latch setup and hold times. These issues
were studied during the 1960s and 1970s, and the upper limits on the extent of pipelining
were determined [Chen 1971; Cotten 1965, 1969; Fawcett 1975; Hallin and Flynn 1972].
However, the upper limit on pipelining is not necessarily the best from the viewpoint of
achieved performance. Pipelining adds delays to the execution time of individual operations
(even though multiples of them can be in flight on the same functional unit). Beyond a
certain point, especially on computations that have small amounts of parallelism, the in­
crease in the latency counterbalances the benefits of the increase in ILP, yielding lower
performance [Kunkel and Smith 1986]. Parallelism achieved by adding more functional
units does not suffer from this drawback, but has its own set of disadvantages. First, the
amount of functional unit hardware goes up in linear proportion to the parallelism. Worse,
the cost of the interconnection network and the register files goes up proportional to the
square of the number of functional units since, ideally, each functional unit's output bus
must communicate with every functional unit's input buses through the register file. Also,
as the number of loads on each bus increases, so must the cycle time or the extent of pipe­
lining, both of which degrade performance on computation with little parallelism.

The related techniques of pipelining and overlapped execution were employed as early
as in the late 1950s in computers such as ffiM1s STRETCH computer [Bloch 1959; Buchholz
1962]and UNIVAC's LA RC [Eckert et al. 1959]. Traditionally, overlapped execution refers

to the parallelism that results from multiple active instructions, each in a different one of
the phases of instruction fetch, decode, operand fetch, and execute, whereas pipelining
is used in the context of functional units such as multipliers and floating point adders (Chen
1975; Kogge 1981]. (A potential source of confusion is that, in the context of RISC proc­
essors, overlapped execution and pipelining, especially when the integer ALU is pipelined,
have been referred to as pipelining and superpipelining, respectively [Jouppi 1989].)

The organization of the register files becomes a major issue when there are multiple
functional units operating concurrently. For ease of scheduling, it is desirable that every
operation (except loads and stores) be register-register and that the register file be the hub
for communication between all the functional units. However, with each functional unit
performing two reads and one write per cycle from or to the register file, the implementa­
tion of the register file becomes problematic. The chip real estate of a multiported register
file is proportional to the product of the number of read ports and the number of write
ports. The loading of multiple read ports on each register cell slows down the access time.
For these reasons, highly parallel ILP hardware is structured as multiple clusters of func­
tional units, with all the functional units within a single cluster sharing the same multiported
register files [Colwell et al. 1988; Colwell et al. 1990; Fisher 1983; Fisher et al. 1984].
Communication between clusters is slower and occurs with lower bandwidth. This places
a burden upon the compiler to partition the computation intelligently across the clusters;
an inept partitioning can result in worse performance than if just a single cluster were used,
leaving the rest of them idle.

The presence of multiple, pipelined function units places increased demands upon the
instruction issue unit. In a fully sequential processor, each instruction is issued after the
previous one has completed. Of course, this totally defeats the benefits of parallel execution
hardware. However, if the instruction unit attempts to issue an instruction every cycle, care
must be taken not to do so if an instruction, upon which this one is dependent, is still
not complete. The scoreboard in the CDC 6600 [Thornton 1964] was capable of issuing
an instruction every cycle until an output dependence was discovered. In the process, in­
structions following one that was waiting on a flow dependence could begin execution.
This was the first implementation of an out-of-order execution scheme. Stalling instruction
issue is unnecessary on encountering an output dependence if register renaming is per­
formed. The Tomasulo algorithm [Tomasulo 1967], which was implemented in the IBM
System/360 Model 91 [Anderson et at. 1967], is the classical scheme for register renaming
and has served as the model for subsequent variations [Hwu and Patt 1986, 1987; Oehler
and Blasgen 1991; Popescu et al. 1991; Weiss and Smith 1984]. A different, programmatically
controlled register renaming scheme is obtained by providing rotating register files, that
is, base-displacement indexing into the register file using an instruction-provided displace­
ment off a dedicated base register [Advanced Micro Devices 1989; Charlesworth 1981; Rau
1988; Rau et al. 1989]. Although applicable only for renaming registers across multiple
iterations of a loop, rotating registers have the ad vantage of being considerably less expen-
sive in their implementation than are other renaming schemes. .

The first co~sideration given to the possibility of issuing multiple instructions per cycle
from a sequential program was by Tjaden and Flynn [1970]. This line of investigation into
the logic needed to perform multiple-issue was continued by various researchers [Acosta
et al. 1986; Dwyer and Thmg 1992; Hwu and Pan 1986, 1987; Tjaden and Flynn 1973;

Blue Coat Systems - Exhibit 1034 Page 7

Uht 1986; Wedig 1982). This idea. of multiple: instruction issue: of sequential programs,
was probably first referred to as SUJ!Crscalar execution by Agerwala and Cocke (1987]. A
careful as~Qlim.:nt of the complexity of the control logic illliOivcd in supersc;.lar processors

is prov1dc:d by Jolmson [1991]. An interesting variation on muhiple-issue, which made use
of architecturally visible queues to simplify the. out-of-order execution logic, was the decou­
pled accessleKccute architecture proposed by Smith (1982] and subsequently developed as
a commercial product [Smith 1989; Smith et al. 1987].

A completely different approach to achieving mulliple insttuction issue, which grew out

ofhonzonlal mtcroprogramm10g, wu represented by attached-processor products sLK:h as
the Floating Poinr Systems AP-1208 rFioating Point Systems 1979), the Polycyclic project
at F.SL (Rau and Glaeser 1981; Rau. Glx!ICr, and Grcenv.alt 1982; !Uu, Glaeser, and Picard

198~1. the SWlford Universil}' MIPS project (Hennessy. Jooppi, Pnybbli et al 1982) and
lhe EU project aJ Y.lle (Phhc:r 1983; F1~her et al. 1984]. The conapc is 10 hiave the compiler
dectdc whtch opcr<~tions should be tssued 10 parallel and to group them 10 a)ingle, long
instruction. This style of architecture, which was dubbed a very long instn~clion word
(VUW) architecture [Fisher 1983]. has the advantage that the instruction issue logic is trivial
in comparison to that for a supersca lar machine, but suffers the disadvantuge that the set
of operations that are to be issued simullaneuusly is th:c:d once and for all11t compile time.
One of the implications of issuing multiple: operations per instruction is that one needs
the ability to issue (and process) multiple branches per second. Various types of mulliway
branches, each corresponding to a different delailcd model of execution or comptlation,
hl.vc bun suggested [Colwell et al. 1988; Ebctoglu 1988; Fisher 1980; Ntcolau 1985a].

The fim obsuclc: thai one cncounten when attempting ILP computation 11 the generally
sm~ll size of buic blocks. In hgbr of the pipeline latencies and the interoperation depend­
tCDCes, linlc: instruction-level parallelimt is 10 be found. It is important that opentions from
multiple basic: blocks be executed concurrently if a parallel machine is 10 be fully utilized.
Since the branch condition, which determines which block is to be executed next, is often
resolved only at the end of a basic bloc II:, it is necessary to reson to speculative execution,
that is, continuing execution along one or more paths before it is known which way the
branch will go. Dynamic schemes for speculative execution (Hwu and Patt 1986, 1987;
Smith and Pleszkun 1988; Soni and VaJapayem 1987] must provide ways to

• ler111i ... te unnecessary speculative computstion once the branch has been resolved.
• undo the effects of the speculatively executed operations that should not been executed,
• ensure that no CIICqllions are reponed uool1t JS kDown 11w !he. w:cpting operatton mould,

in fact, have bceD executed, and

• preserve enough execution state at each speculative branch point to enable execution to
resume down the correct path if the speculative execution happened to proceed down
the wrong one.

All this can be expensive in hardware. Tne alternative is to perfonn speculative code
motion at compile time, that is, move operations from subsequent blocks up past bmnch
operations into preceding blocks. These opcnttlons will end up being executed before the
branch that they ·:,; -~ t:Jpposc:d to follow; hence, they are eliCCIIted speculatively. Such
rode mocion is fuft'blmenllllto global scheduling schemes such JJS trace scheduliOJ [Ellis

1985; Fisher 1979, 1981(. The hardware suppon needed ts much less demanding; fir~t. a
mechanism to ensure that excep«ions caused by spc:.;uillu,·cly scheduled operations arc
reponed tf and only if the flow of control is such thai they V.'Ould have been eliCCUied in
the nonspeculative version of the code (Mahlke, Chen et al. 1992] and, second, additional
architecturally visible registers to hold the speculative execution slate. A limited form of
speculative code motion is provided by the "boosttng" scheme [Smith et al. 1992; Smith
et al. 1990).

Since all speculative computation is wasted if the: wrong path is followed. it i~ imporwnt
that accurate branch prediction be used to guide speculative execution. Vanous dynamtc
schemes of vary111g levels of sophistication and practicality have been suggested tNt aather
execution statistin of one: fonn or another while the program is running [Lee and Sm•th

1984: McFarling and Henne~ 1986; Smtth 1981; Yeh and Pan 1992). The alcemauve ts
to use profiltng runs to gather the appropriate statistics and to embed the predtction, at
compile lime. into the program. Trace scheduling and supcrblocli: scheduling (Hwu et at.
1989; Hwu el a!. 1993) use this approach to rcurder the control flow graph to reflect the
expected branch behavior. Hwu and others claim better performance than with dynamic
br<lnch prediction [Hwu et al. 1989]. Fisher and Freudenbcrgcr [1992) have eumined rhe
extent to which branch statistics gathered using one set of data are applicable to subsequent
runs with different dats. Although sl.lltic prediction can be useful for guidtng both static
IIJld dynamic speculation, it is not apparent how dymamic prediction can assist slatic spcc­
uilltivc code motion.
~ execution is an architeclural feature that permits the execution of individual

opentions to be determined by an additional. Boolean inpuL It has been used ID selectively
squash operations that have been moved up from successor blocks into the delay slots of
1 branch operacion (Ebcioglu 1988; Hsu and Davidson 19861. In its more gcnen1l fonn
(Beck ct al. 1993; Rau 1988; Rau ct al. 19891 it is used to eliminate branc~ in their en­
tirety over an acyclic region of a control now graph (Dehnert and Towle 1993; Dehnen
et al. 1989; Mlhlke, Lin et al. 1992] that has been IF-converted [Allen et al. 1983].

.12. ILP Compilo.tlon

.l2.L Sclteduliltr. Scheduling algorithms can be classified based on rwo broad critc:ria.
The tint one is the nature of the control now graph tluat can be scheduled by the algorithm.
The control now graph can be described by the followmg tWO propenies:

• whether it consim of 11 single basic block or multiple basic blocks, and
• whether 11 is an acyclic or cyclic control flow graph.

Algorithms that can only schedule single acyclic basic blocks arc known as local schedul­
ing algorithms. Algoritnms that jointly Khedule multiple basic blocks (even if rhesc: are
multiple iterations of 1 single static basic block) arc termed global scheduling algorithms.
Acyclic alobalschc:duling algorithms deal either with control flow graphs that conlllin no
cycles or, more typically, cyclic graphs for which a self-imposed scheduling barrier e11ists

Blue Coat Systems - Exhibit 1034 Page 8

at each back edge in the control flow graph. As a consequence of these scheduling barriers,
back edges present no opportunity to the scheduler and are therefore irrelevant to it. Acyclic
schedulers can yield better performance on cyclic graphs by unrolling the loop, a transfor­
mation which though easier to visualize for cyclic graphs with a single back edge, can be
generalized to arbitrary cyclic graphs. The benefit of this transformation is that the acyclic
scheduler now has multiple iterations' worth of computation to work with and overlap.
The penalty of the scheduling barrier is amortized over more computation. Cyclic global
scheduling algorithms attempt to directly optimize the schedule across back edges as well.
Each class of scheduling algorithms is more general than the previous one and, as we shall
see, attempts to build on the intuition and heuristics of the simpler, less general algorithm.
As might be expected, the more general algoi;ithms experience greater difficulty in achiev·
ing near-optimality or of even aniculating intuitively appealing heuristics.

The second classifying criterion is the type of machine for which scheduling is being
performed, which in turn is described by the following assume<! properties of the machine:

• finite versus unbounded resources
• unit latency versus multiple cycle latency execution, and
• simple resource usage patterns for every operation (i.e., each operation uses just one

resource for a single cycle, typically during the first cycle of the operation's execution)
versus more complex resource usage patterns for some or all of the operations.

Needless to say, real machines have finite resources, generally have at least a few opera­
tions that have latencies greater than one cycle, and often have at least a few operations

with complex usage panems. We believe that the value of a scheduling algorithm is pro­
portional to the degree of realism of the assumed machine modeL

Finally, the scheduling algorithm can also be categorized by the nature of the process
involved in gererating the schedule. At one extreme are one-pass algorithms that schedule
each operation once and for aiL At the other extreme are algorithms that perform an exhaus­
tive, branch-and-bound style of search for the schedule. In between is a spectrum of possi­
bilities such as iterali~c but nonexhaustive search algorithms or incremental algorithms
that make a succession of elementary perturbations to an existing legal schedule to nudge
it toward the final solution. This aspect of the scheduling algorithm is immensely important
in practice. The further one diverges from a one-pass algorithm, the slower the scheduler
gets until, eventually, it is unacceptable in a real-world setting.

3.2./.1. Local Scheduling. Scheduling, as a pan of the code generation process, was first
studied extensively in the context of microprogramming. Local scheduling is concerned
with generating as short a schedule as possible for the operations within a single basic
block; in effect a schenuling barrier is assumed to exist between adjacent basic blocks in
the control flow graph. Although it was typically referred to as local code compacrion,2

the similarity to the job of scheduling tasks on processors was soon understood [Adam
et al. 1974; Baker 1974; Coffman 1976; Coffman and Graham 1972; Fernandez and Busse!
1973; Gonzalez l'f77; Hu 1961; Kasahara and Narita 1984; Kohler 1975; Ramamoorthy eta!.
1972], and a number of notions and algorithms from scheduling theory were borrowed by
the microprogramming community. Attempts at automating this task have been made since

at least the late 1960s [Agerwala 1976; Davidson et al. 1981; DeWitt 1975; Fisher 1979;
1981; Kleir and Ramamoorthy IWI; Landskov et al. 1989; Ramamoorthy and Gonzalez
1969; Tokoro et al. 1977; Tsuchiya and Gonzalez JW4, 1976; 'Wood 1978]. Since scheduling is
known to be NP-complete (Coffman 1976], the initial focus was on defining adequate heu­
ristics [Dasgupta and Tartar IW6; Fisher 1979; Gonzalez 1977; Mallett 1978; Ramamoorthy
and Gonzalez 19_69; Ramarmoonhy and Tsuchiya 1974[. The consensus was that list schenul­
ing using the highest-level-first priority scheme [Adam ct al. 1974; Fisher 1979] is relatively
inexpensive computationally (a one-pass algorithm) and near-optimal most of the time.
Furthermore, this algorithm has no difficully in.dealing with non unit execution latencies.

The other dimension in which local scheduling matured was in the degree of realism of
the machine model. From an initial model in which each operation use<! a single resource
for a single cycle (the simple resource usage model) and had unit latency, algorithms for
local scheduling were gradually generalized to cope with complex resource usage and arbi­
trary latencies [Dasgupta and Tartar l'f76; DeWitt 1975; Kleir 1974; Mallett 1978; Ramamoor­
thy and Tsuchiyd 1974; Tsuchiya and Gonzalez 1974; Yau et al. 1974] culminating in the
fully general resource usage "microtemplate" model proposed in [Tokoro et at. 1981). and
which was known in the hardware pipeline design field as a reservation table [Davidson
IWI]. In one form or another, this is now the commonly used machine model in serious
instruction schedulers. This machine model is quite compatible with the highest-level-first
list scheduling algorithm and does not compromise the near-optimality of this algorithm
[Fisher 1981).

3. 2.1. 2. Global Acyclic Scheduling. A number of studies have established that basic blocks
are quite short-l)lpically about 5-20 instructions on the average-so whereas local schedul­
ing can generate a near-optimal schedule, data dependences and ellecution latencies con­
spire to make the optimal schedule itself rather disappointing in terms of its speedup over
the original sequential code. Further improvements require overlapping the execution of
successive basic blocks, which is achieved by global scheduling.

Early strategies for global schcduling attempted to automate and emulate the ad hoc tech­
niques that hand coders practiced of first performing local scheduling of each basic block
and then attempting to move operations from one block to an empty slot in a neighboring
block [Tokoro et al. 1981; Tokoro et al. 1978]. The shortcoming of such an approach is
that, during local compaction, too many arbitrary decisions have already been made that
failed to take into account the needs of and opponunities in the neighboring blocks. Many
of these decisions might need to be undone before the global schooule can be improved.

In one very important way the mind set inherited from microprogramming was an obstacle
to progress in global scheduling. Traditionally, code compaction was focused on the objec­
tive of reducing the size of the microprogram so as to allow it to fit in the microprogram
memory. In the case of individual basic blocks the objectives of local compaction and local
scheduling are aligned. This alignment of objectives is absent in the global case. Whereas
global code compaction wishes to minimize the sum of the code sizes for the individual
basic blocks, global scheduling must attempt to minimize the total execution time of all
the basic blocks. In other words, global scheduling must minimize the sum of the code
sizes of the individual basic blocks weighted by rhe number of times each basic block is
aecuted. Thus, effective global scheduling might actually increase the size of the program

Blue Coat Systems - Exhibit 1034 Page 9

by greatly lengthening an infrequently visited basic block in order to slightly reduce the
length of a high-frequency basic block. This difference between global compaction and
global scheduling, which was captured neither by the early ad hoc techniques nor by the
syntactically-driven hierarchical reduction approach proposed by Wood [1979], was noted
by Fisher [1979, 1981].

Furthermore, the focus of Fisher's work was on reducing the length of those sequences
of basic blocks that are frequently executed by the program. These concepts were captured
by Fisher in the global scheduling algorithm known as trace scheduling [Fisher 1979, 1981).
Central to this procedure is the concept of a trace, which is an acyclic sequence of basic
blocks embedded in the control flow graph, that is, a path through the program that could
conceivably be taken for some set of input data. Traces are selected and scheduled in order
of their frequency of execution. The next trace to be scheduled is defined by selecting the
highest frequency basic block that has not yet been scheduled as the seed of the trace. The
trace is extended forward along the highest frequency edge out of the last block of the trace
as long as that edge is also the most frequent edge into the successor block and as long
as the successor block is not already part of the trace. Likewise, the trace is extended back­
wards, as well, from the seed block. The selected trace is then scheduled as if it were
a single block; that is, there is no special consideration given to branches, except that they
are constrained to remain in their original order. Implicit in the resulting schedule is inter­
block code motion along the trace in either the upward or downward direction. Matching
off-trace code motions must be performed as prescribed by the rules of interblock code
motion specified by Fisher. This activity is termed bookkeeping. Therafter, the next trace
is selected and scheduled. This procedure is repeated until the entire program has been
scheduled. The key property of trace scheduling is that, unlike previous approaches to global
scheduling, the decisions as to whether to move an operation from one block to another,
where to schedule it, and which register to allocate to hold its result (see Section 3.2.2
below) are all made jointly rather than in distinct compiler phases.

Fisher and his coworkers at Yale went on to implement trace scheduling in the Bulldog
compiler as part of the ELI project [Fisher 1983; Fisher et al. 1986]. This trace scheduling
implementation and other aspects of the Bulldog compiler have been extensively documented
by Ellis [1986). The motion of code downwards across branches and upwards across merges
results in code replication. Although this is generally acceptable as the price to be paid
for better global schedules, Fisher recognized the possibility that the greediness of highest­
level-first list scheduling could sometimes cause more code motion and, hence, replication
then is needed to achieve a particular schedule length [Fisher 1981]. Su and his colleagues
have recommended certain heuristics for the list scheduling of traces to address this problem
[Grishman and Su 1983; Su and. Ding 1985; Suet al. 1984]. Experiments over a limited
set of test cases indicate that these heuristics appear to have the desired effect.

The research performed in the ELI project formed the basis of the production-quality
compiler that was built at Multiflow. One of the enhancements to trace scheduling imple­
mented in the Multi flow compiler was the elil'ninatinn of redundant \:Opies of operutions
caused by bookkeeping. When an off-trace path, emanating from a branch on the trace,
rejoins the trace lower down, an operation that is moved above the rejoin and all the way
to a point above the branch can make the off-trace copy redundant under the appropriate
circumstances. The original version of trace scheduling, oblivious to such situations, retains

two copies of the operation. Gross and Ward [1990] describe an algorithm to avoid such
redundancies. Freudenberger and Ruttenberg [1992] discuss the integrated scheduling and
register allocation in the Multi flow compiler. Lowney and others provide a comprehensive
description of the Multiflow compiler [1993].

Hwu and his colleagues on the IMPACT project have developed a variant of trace schedul­
ing that they term superblock scheduling [Chang, Mahlke et al. 1991; Hwu and Chang 1988].
In an attempt to facilitate the task of incorporating profile-driven global scheduling into
more conventional compilers, they separate the trace selection and code replication from
the actual scheduling and bookkeeping. To do this, they limit themselves to only moving
operations up above branches, never down, and never up pust merges. To make this possi­
ble, they outlaw control flow into the interior of a trace by means of tail duplication, that
is, creating a copy of the trace below the entry point and redirecting the incoming control
flow path to that copy. Once this is done for each incoming path, the resulting trace con­
sists of a sequence of basic blocks with branches out of the trace but no incoming branches
except to the top of the trace. This constitutes a superblock, also known as an extended
basic block in the compiler literature. Chang and Hwu [1988] have studied different trace
selection strategies and have measured their relative effectiveness. A comprehensive discus­
sion of the results and insights from the IMPACT project are provided in this special issue
[Hwu et al. 1993).

Although the global scheduling of linear sequences of basic blocks represents a major
step forward, it has been criticized for its total focus on the current trace and neglect of
the rest of the program. For instance, if there are two equally frequent paths through the
program that have basic blocks in common, it is unclear as part of which trace these blocks
should be scheduled. One solution is to replicate the code as is done for superblock sched­
uling. The other is to generalize trace scheduling to deal with more general control flow
graphs. Linn (1988] and Hsu and Davidson (1986(proposed profile-driven algorithms for
scheduling trees of basic blocks in which all but the root basic block have a single incom­
ing path. Nicolau [1985a, 1985b] attempted to extend global scheduling to arbitrary, acyclic
control flow graphs using percolation scheduling. However, since percolation scheduling
assumes unbounded resources, it cannot realistically be viewed as a scheduling algorithm.
Percolation scheduling was then extended to non unit execution latencies (but still with un­
bounded resources) [Nicolau and Potasman 1990].

The development of practical algorithms for the global scheduling of arbitrary, acyclic
control flow graphs is an area of active research. Preliminary algorithms, assuming finite
resources have been defined by Ebcioglu [Ebcioglu and Nicolau 1989; Moon and Ebcioglu
1992] and by Fisher [1992]. These are both generalizations of trace scheduling. However,
there are numerous difficulties in the engineering of a robust and efficient scheduler of
this sort. The challenges in this area of research revolve around finding pragmatic engineering
solutions to these problems.

A rather different approach to global acyclic scheduling has been pursued in the IMPACT
project [Mahlke, Lin et al. 1992]. An arbitrary, acyclic control flow graph, having a single
entry can be handled by this technique. The control flow graph is IF-converted [Allen et
al. 1983; Park and Schlansker 1991) so as to eliminate all branches internal to the flow
graph. The resulting code, which is similar to a superblock in that it can only be entered
at the top but has multiple exits, is termed a hyperblock. This is scheduled in much the

Blue Coat Systems - Exhibit 1034 Page 10

same manner as a superblock except that two operations with disjoint predicates (i.e., opera­
tions that cannot both be encountered on any single path through the original flow graph)
may be scheduled to use the same resources at the same time. After scheduling, reverse
IF-conversion is performed to regenerate the control flow graph. Portions of the schedule
in which m predicates are active yield 2m versions of the code.

3.2.1.3. Cyclic Scheduling. As with acyclic flow graphs, instruction-level parallelism in
loops is obtained by overlapping the execution of multiple basic blocks. With loops, however,
the multiple basic blocks are the multiple iterations of the same piece of code. The most
natural extension of the previous global scheduling ideas to loops is to unroll the body
of the loop some number of times and to then perform trace scheduling, or some other
form of global scheduling, over the unrolled loop body. This approach was suggested by

Fisher [Fisher et al. 1981]. A drawback of this approach is that no overlap is sustained
across the back edge of the unrolled loop. Fisher and others went on to propose a solution
to this problem, which is to continue unrolling and scheduling successive iterations until
a repeating pattern is detected in the schedule. The repeating pattern can be rerolled to
yield a loop whose body is the repeating schedule. As we shall see, this approach was
subsequently pursued by various researchers. In the meantime, loop scheduling moved off
in a different direction, which, as is true of most VLIW scheduling work, had its roots
in hardware design.

Researchers concerned with the design of pipelined functional units, most notably David­
son and coworkers, had developed the theory of and algorithms for the design of hardware
controllers for pipelines to maximize the rate at which functions could be evaluated [Davidson
1971, 1974; Davidson eta!. 1975; Patel 1976; Patel and Davidson 1976; Thomas and Davidson
1974]. The issues considered here were quite similar to those faced by individuals program­
ming the innermost loops of signal processing algorithms [Cohen 1978; Kogge 1973, 1974.
1977a, 1977b; Kogge and Stone 1973] on the early peripheral array processors [Floating
Point Systems 1979; IBM 1976; Ruggiero and Coryell 1969]. In both cases the objective
was to sustain the initiation of successive function evaluations (loop iterations) before prior
ones had completed. Since this style of computation is termed pipelining in the hardware
context, it was dubbed software pipelining in the programming domain [Charlesworth 1981].

Early work in software pipelining consisted of ad hoc hand-coding techniques [Charles­
worth 1981; Cohen 1978]. Both the quality of the schedules and the attempts at automating
the generation of software pipelined schedules were hampered by the architecture of the
early array processors. Nevertheless, Floating Point Systems developed, for the FPS-164
array processor, a compiler that could software pipeline a loop consisting of a single basic
block [Touzeau 1984]. Weiss and Smith [1987] note that a limited form of software pipelin­
ing was present both in certain hand-coded libraries for the CDC 6600 and also as a capabil­
ity in the Fortran compiler for the CDC 6600.

The general formulation of the software pipelining process for single basic block loops
was stated by Rau and others [Rau and Glaeser 1981; Rau, Glaeser, and Picard 1982] draw­
ing upon and generalizing the theory developed by Davidson and his coworkers on the
design of hardware pipelines. This work identified the attributes of a VLIW architecture
that make it amenable to software pipelining, most importantly, the availability of conflict­
free access to register storage between the output of a functional unit producing a result

and the functional unit that uses that result. This provides freedom in scheduling each opera­
tion and is in contrast to the situation in array processors where, due to limited register
file bandwidth, achieving peak performance required that a majority of the operations be
scheduled to start at the same instant that their predecessor operations completed so that
they could pluck their operands right off the result buses.

Rau and others also presented a condition that has to be mel by any legal software pipe­
lined schedule-the modulo constraint-and derived lower bounds on the rate at which
successive iterations of the loop can be staned, that is, the iniriation interval (II). (II is
also the length of the software pipelined loop, measured in VLIW instructions, when no
loop unrolling is employed.) This lower bound on II , the minimum initiation interval (MII),
is the maximum of the lower bound due to tlie resource usage constraints (ResMII) and the
lower bound due to the cyclic data dependence constraints caused by recurrences (RecMII) .
This lower bound is applicable both to vectorizable loops as well as those with arbitrary
recurrences and for operation latencies of arbitrary length . A simple, deterministic soft­
ware pipelining algorithm based on list scheduling, the modulo scheduling algorithm, was
shown to achieve the Mil, thereby yielding an asymptotically optimal schedule. This algo­
rithm was restricted to DO loops whose body is a single basic block being scheduled on
a machine in which each operation has a simple pattern of resource usage, viz., the resource
usage of each operation can be abstracted to the use of a single resource for a single cycle
(even though the latency of the operation is not restricted to a single cycle). The task of
generating an optimal, resource-constrained schedule for loops with arbitrary recurrences
is known to be NP-complete [Hsu 1986; Lam 19871 and any practical algorithm must utilize
heuristics to guide a generally near-optimal process. These heuristics were only broadly
outlined in this work.

Three independent sets of activity took this work and extended it in various directions.
The first one was the direct continuation at Cydrome, over the period 1984-88, of the work
done by Rau and others [Dehnert eta!. 1989; Dehnert and Towle 1993]. In addition to
enhancing the modulo scheduling algorithm to handle loops with recurrences and arbitrary
acyclic control flow in the loop body, attention was paid to coping with the very complex
resource usage patterns that were the result of compromises forced by pragmatic implemen­
tation considerations. Complex recurrences and resource usage patterns make it unlikely
that a one-pass scheduling algorithm, such as list scheduling, will be able to succeed in
finding a near-optimal modulo schedule, even when one exists, and performing an exhaustive
search was deemed impractical. Instead, an iterative scheduling algorithm was used that
could unschedule and reschedule operations. This iterative algorithm is guided by heuristics
based on dynamic slack-based priorities. The initial attempt is to schedule the loop with
the II equal to the MIL If unsuccessful, the II is incremented until a modulo schedule is
achieved .

Loops with arbitrary acyclic control flow in the loop body are dealt with by performing
IF-conversion (Allen et al. 1983] to replace all branching by predicated (guarded) opera­
tions. This transformation, which assumes the hardware capability of predicated execution
[Rau 1988; Rau et al. 1989], yields a loop with a single basic block that is then amenable
to the modulo scheduling algorithm [Dehnert et al. 1989]. A disadvantage of predicated
modulo scheduling is that the ResMII must be computed as if all the operations in the
body of the loop are executed each iteration, whereas, in reality, only those along one of

Blue Coat Systems - Exhibit 1034 Page 11

the control flow paths are actually executed. As a result, during execution, some fraction
of the operations in an instruction are wasted. Likewise, the RecMII is determined by the
worst-case dependence chain across all paths through the loop body. Both contribute to
a degree of suboptimality that depends on the structure of the loop.

Assuming the existence of hardware to support both predicated execution and speculative
execution [Mahlke, Chen et at. 1992], Cydrome's modulo scheduling algorithm has been
further extended to handle WHILE loops and loops with conditional exits [Tirumalai et al.
1990]. The problem that such loops pose is that it is not known until late in one iteration
whether the next one should be started _ This eliminates much of the overlap between suc­
cessive iterations. The solution is to start iterations speculatively, in effect, by moving opera­
tions from one iteration into a prior one. The hardware support makes it possible to avoid
observing exceptions from operations that should not have been executed, without overlook­
ing exceptions from nonspeculative operations.

Independently of the Cydrome work, Hsu [1986] proposed a modulo scheduling algorithm
for single basic block loops with general recurrences that recognizes each strongly con­
nected class (SCC) of nodes in the cyclic dependence graph as a distinct entity. Once the
nodes in all the SCCs have been jointly scheduled at the smallest possible 11 using a com­
binatorial search, the nodes in a given SCC may only be rescheduled as a unit and at a
time that is displayed by a multiple of II. This rescheduling is performed to enable the
remaining nodes that are not part of any SCC to be inserted into the schedule. Hsu also
described an II extension technique that can be used to take a legal modulo schedule for
one iteration and trivially convert it into a legal modulo schedule for a larger II without
performing any scheduling. This works with simple resource usage patterns. With com­
plex patterns a certain amount of rescheduling would be required, but less than starting
from scratch.

Lam's algorithm, too, utilizes the SCC structure but list schedules each SCC separately,
ignoring the inter-iteration dependences [Lam 1987, 1988]. Thereafter, an SCC is treated
as a single pseudo-operation with a complex resource usage pallern, employing the tech­
nique of hierarchical reduction proposed by Wood [1979]. After this hierarchical reduction
has been performed, the dependence graph of the computation is acyclic and can be scheduled
using modulo scheduling. With an initial value e<:JUal to the Mil, the II is iteratively increased
until a legal modulo schedule is obtained. By determining and fixing the schedule of each
SCC in isolation, Lam's algorithm can result in SCCs that cannot be s~heduled together
at the minimum achievable II.

On the other hand, the application of hierarchical reduction enables Lam's algorithm
to cope with loop bodies containing structured control flow graphs without any special
hardware support such as predicated execution. Just as with the SCCs, structured construct~
such as IF-THEN-ELSE arc list scheduled and treated as atomic objects. Each leg of the
IF-THEN-ELSE is list scheduled separately and the union of the resource usages represents
that of the reduced IF-THEN-ELSE construct. This permits loops with structured flow
of control to be modulo scheduled. After modulo scheduling, the hierarchically reduced
IF-THEN-ELSE pseudo-operations must be expanded. Each portion of the schedule in which
m IF-THEN-ELSE pseudo-operations are active must be expanded into 2m control flow
paths with the appropriate branching and merging between the paths.

Since Lam takes the union of the resource usages in a conditional construct while predi­
cated modulo scheduling takes the sum of the usages, the former approach should yield
the smaller Mil. However, since Lam separately list schedules each leg of the conditional
creating pseudo-operations with complex resource usage patterns, the II that she actually
achieves should deviate from the Mil to a greater extent. Waner and others have implemented
both techniques and have observed that, on the average, Lam's approach results in smaller
Mils but larger lis [Warier et al. 1992]. This effect increases for processors with higher
issue rates. Warter and 01hers go on to combine the best of both approaches in their enhanced
modulo scheduling algorithm. They derive the modulo schedule as if predicated execution
were available, except that two operations from the same iteration arc allowed to be scheduled
on the same resource at the same time if their predicates are mutually exclusive, that is,
they cannot both be true. This is equivalent to taking the union of the resource usages.
Furthermore, it is applicable to arbitrary, possibly unstructured, ac:yclic flow graphs in
the loop body. After modulo scheduling, the control flow graph is regenerated much as
in Lam's approach. Enhanced modulo scheduling results in Mils that are as small as for
hierarchical reduction, but as with predicated modulo scheduling, the achieved II is rarely
more than the Mil.

Yet another independent stream of activity has been the work of Su and his colleagues
[Suet al. 1984; Su et al. 1986]. When limited to loops with a single basic block, Su's
URPR algorithm is an ad hoc approximation to modulo scheduling and is susceptible to
significant suboptimality when confronted by nonunit latencies and complex resource usage
patterns. The essence of the URPR algorithm is to unroll and schedule successive iterations
until the first iteration has completed. Next the smallest contiguous set of instructions,
which contain at least one instance of each operation in the original loop, is identified.
After deleting multiple instances of all operations, this constitutes the software pipelined
~>ehedule. This deletion process introduced "holes" in the schedule and the attendant subop­
timality. Also, for nonunit latencies, there is no guarantee that the schedule, as constructed,
can loop back on itself without padding the schedule out with no-op cycles. This introduces
further degradation.

Subsequently, Su extended URPR to the GURPR* algorithm for software pipelining loops
containing control flow [Suet al. 1987; Su and Wang 199la, 1991b]. GURPR* consists of
first performing global scheduling on the body of the loop and then using a URPR-like
procedure, as if each iteration was IF-converted, to derive the repeating pattern. Finally,
as with enhanced modulo scheduling, a control flow graph is regenerated. The shortcom­
ings ofURPR are inherited bY GURPR*. Warter and others, who have implemented GURPR*
within the IMPACf compiler, have found that GURPR* performs significantly worse than
hierarchical reduction, predicated modulo scheduling, or enhanced module scheduling
[Warter et al. 1992].

The idea proposed by Fisher and others of incrementally unrolling and scheduling a loop
until the pallern repeaLS [Fisher et al. 1981] was pursued by Nicolau and his coworkers,
assuming unbounded resources, initially for single basic hlock loops !Aiken and Nicolau
198!lbJ and then, under the title of perfect pipclining, for multiple basic block loops [Aiken
and Nicolau 1988a; Nicolau and Potasman 1990]. The latter was subsequently extended
tc yield a more realistic algorithm assuming finite resources [Aiken and Nicolau 1991].
For single basic block loops the incremental unrolling yields a growing linear trace, the

Blue Coat Systems - Exhibit 1034 Page 12

expansion of which is terminated once a repeating pattern is observed. In practice there
are complications since the various SCCs might proceed at different rates, never yielding
a repeating pattern. For multiple basic block loops, the unrolling yields a growing tree
of schedules, each leaf of which spawns two further leaves when a conditional branch is
scheduled. A new leaf is not spawned if the (infinite) tree, of which it would be the root,
is identical to another (infinite) tree (of which it might be the leaf) whose root has already
been generated.

This approach addresses a shortcoming of all the previously mentioned approaches to
software pipelining multiple basic block loops. In general, both RecMII and ResMII are
dependent upon the specifit: control flow path followed in each iteration. Whereas the pre­
vious approaches had to use a single, constant, conservative value for each one of these
lower bounds, the unrolling approach is able to take advantage of the branch history of
previous iterations in deriving the schedule for the current one. However, there are some
drawbacks as well. One handicap that such unrolling schemes have is a lack of control
over the greediness of the process of initiating 'iterations. Starting successive iterations as
soon as possible, rather than at a measured rate that is in balance with the completion
rate, cannot reduce the average initiation interval but can increase the time to enter the
repeating pattern and the length of the repeating pattern. Both contribute to longer com­
pilation times and larger code size. A second problem with unrolling schemes lies in their
implementation; recognizing that one has arrived at a previously visited state, to which
one can wrap back instead of further expanding the search tree, is quite complicated, espe­
cially in the context of finite reso\!rces, nonunit latencies, and complex resource usage
patterns.

The cyclic scheduling algorithm developed by the IBM VLIW research project [Ebcioglu
and Nakatani 1989; Gasperoni 1989; Moon and Ebcioglu 1992; Nakatani and Ebcioglu
19901 might represent a good compromise between the ideal and the practical. Stripped
to the essentials, this algorithm applies a cut set, termed a fence, to the cyclic graph, which
yields an acyclic graph . This reduces the problem to that of scheduling a general, acyclic
graph-a simpler problem. Once this is done the fence is moved and the acyclic scheduling
is repeated. As ~his process is repeated, all the cycles in the control flow graph acquire
increasingly tight schedules. The acyclic scheduling algorithm used by Ebcioglu and others
is a resource-constrained version of percolation scheduling [Ebcioglu and Nicolau 1989;
Moon and Ebcioglu 1992].

Software pipelining was also implemented in the compiler for the product line marketed
by another minisupercomputer company, Culler Scientiftc. Unfortunately, we do not believe
that any publication describing their implementation of software pipelining exists. Quite
recently, software pipelining has been implemented in the compilers for HP's PA-RISC
line of computers [Ramakrishnan 1992] .

3.2.1.4. Scheduling for R/SC and Superscalar Processors. Seemingly conventional scalar
processors can sometimes benefit from scheduling techniques. This is due to smull amounts
of ILP in the torm of, tor instance, branch delay slots and shallow pipelines. St:heduling
for such processors, whether RlSC or CISC, has generally been less ambitious and more
ad hoc than that for VLIW processors [Auslander and Hopkins 1982; Gross and Hennessy
1982; Hennessy and Gross 1983; Hsu 191P; McFarling and Hennessy 1986]. This was a

direct consequence of the lack of parallelism in those machines and the corresponding lack
of opportunity for the scheduler to make a big difference. Furthermore, the limited number
of registers in those architectures made the use of aggressive scheduling rather unattractive.
As a result, scheduling was viewed as rather peripheral to the compilation process, in con­
trast to the central position it occupied for VLIW processors and, to a lesser extent, for
more highly pipelined processors (Rymarczyk 1982; Sites 1978; Weiss and Smith l91P].
Now, with superscalar processors growing in popularity, the importance of scheduling,
as a core part of the compiler, is better appreciated and a good deal of activity has begun
in this area [Bernstein and Rodeh 1991; Bernstein et al. 1991; Golumbic and Rainish 1990·
Jain 1991; Smotherman eta!. 1991], unfortunately, sometimes unaware of the large bod;
of literature that already exists.

3.2.2. Register Allocation. In conventional, sequential processors, instruction scheduling
is not an issue. The program's execution time is barely affected by the order of the instruc­
tion, only by the number of instructions. Accordingly, the emphasis of the code generator
is on generating the minimum number of instructions and using as few registers as possible
[Aho and Johnson 1976; Aho et al. 1977a, 1977b; Bruno and Sethi I976; Sethi 1975; Sethi
and Ullman 1970) . However, in the context ofpipelined or multiple-issue processors, where
instruction scheduling is important, the issue of the phase-ordering between it and register
allocation has been a topic of much debate. There are advocates both for performing register
allocation before scheduling [Gibbons and Muchnick 1986; Hennessy and Gross 1983; Jain
1991] as well as for performing it after scheduling [Auslander and Hopkins 1982; Chang,
Lavery, and Hwu 1991; Goodman and Hsu 1988; Warren 1990). Each phase-ordering has
its advantages and neither one is completely satisfactory.

The most important argument in favor of performing register allocation first is that whereas
a better schedule may be desirable, code that requires more registers than are available
is just unacceptable. Clearly, achieving a successful register allocation must supersede the
objective of constructing a better schedule. The drawback of performing scheduling first,
oblivious of the register allocation, is that shorter schedules tend to yield greater register
pressure. If a viable allocation cannot be found, spill code must be inserted. At this point,
in the case of a statically scheduled processor, the schedule just constructed may no longer
be correct. Even if it is, it may be far from the best one possible, for either a VLIW or
superscalar machine, since the schedule was built without the spill code in mind. In machines
whose load latency is far greater than that of the other operations, the time penalty of the
spill code may far exceed the benefits of the better schedule obtained by performing sched­
uling first.

Historically, the merit of perfonning register allocation first was that processors had little
instruction-level parallelism and few registers, so whereas there was much to be lost by
a poor register allocation, there was little to be gained by good scheduling. It was customary,
therefore, to perfonn register allocation first, for instance using graph coloring [Chaitin
1982; Chow and Hennessy 1984, 1990] followed by a postpass scheduling step that con­
sidered individual basic blocks [Gibbons and Muchnick 1986; Hennessy and Gross 1983] .

From the viewpoint of instruction-level parallel machines, the major problem with per­
forming register allocation first is that it introduces antidependences and output dependences
that can constrain parallelism and the ability to construct a good schedule. To some extent

...
8

!!. c;;·
3
=

Blue Coat Systems - Exhibit 1034 Page 13

this is inevitable; the theoretically optimal combination of schedule and allocation might
contain additional arcs due to the allocation. The real concern is that, when allocation
is done first, an excessive number of ill-advised and unnecessary arcs might be introduced
due to the insensitivity of the register allocator to the scheduling task. On pipelined machines,
whose cache access time is as short as or shorter than the functional unit latencies, the
benefits of a schedule unconstrained by register allocation may outweigh the penalties of
the resulting spill code.

Scheduling prior to register allocation, known as prepass scheduling, was used in the
PL8 compiler [Auslander and Hopkins 1982]. In evolving this compiler to become the
compiler for the superscalar IBM RISC System/6000, the suboptimality of inserting spill
code after the creation of the schedule became clear and a second, postpass scheduling
step was added after the register allocation [Warren 1990]. During the postpass the scheduler
honors all the dependences caused by the register allocation, which in turn was aware of
the preferred instruction schedule provided by the prepass scheduler. The IMPACT project
at the University of Illinois has demonstrated the effectiveness of this strategy for multiple­
issue processors [Chang, Lavery, and Hwu 1991]. Instead of employing the graph coloring
paradigm, Hendren and others make use of the richer information present in interval graphs,
which are a direct temporal representation of the span of the lifetimes [Hendren et al. 1992].
This assumes that the schedule or, at least, the instruction order has already been deter­
mined and that a postpass scheduling step will follow.

Irrespective of which one goes first, a shortcoming of all strategies discussed so far is
that the first phase makes its decisions with no consideration of their impact on the subse­
quent phase. Goodman and Hsu [1988) have addressed this problem by developing two
algorithms-one, a scheduler that attempts to keep the register pressure below a limit pro­
vided to it, and the second, a register allocation algorithm that is sensitive to its effect
on the critical path length of the DAG and thus to the effect on the eventual schedule.

For any piece of code on a given processor, there is some optimal schedule for which
register allocation is possible. Scheduling twice, once before and then after register alloca­
tion, is an approximation of achieving this ideaL Simultaneous scheduling and register alloca­
tion is another strategy for attempting to find a near-optimal schedule and register allocation.
Simultaneous scheduling and register allocatjon is currently understood only in the context
of acyclic code, specifically, a single basic block or a linear trace of basic blocks. The
essence of the idea is that each time an operation is scheduled, an available register is allo­
cated to hold the result. Also, if this operation constitutes the last use of the contents of
one of the source registers, that register is made available once again for subsequent alloca­
tion. When no register is available to receive the result of the operation being scheduled,
a register must be spilled. The register holding the datum whose use is furthest away in
the future is spilled. This approach was used in the FPS-164 compiler at the level of indi­
vidual basic blocks [Touzeau 1984] as well as across entire traces [Ellis 1985; Freudenberger
and Ruttenberg 1992; Lowney et al. 1993]. An important concept developed by the ELI
project at Yule und by Multi now was that of performing hierarchical, profile-driven, in­
tegrated global scheduling and register allocation. Traces are picked in decreasing order
of frequency and integrated scheduling and allocation are performed on each. The scheduling
and allocation decisions made for traces that have been processed form constraints on the
corresponding decisions for the remaining code. This is a far more systematic approach

than other ad hoc, priority-based schemes with the same objective. A syntax-based hierarchi­
cal approach to global register allocation has been suggested by Callahan and Koblenz [1991].

If a loop is unrolled some number of times and then treated as a linear trace of basic
blocks [Fisher et at. 1981], simultaneous trase scheduling and register allocation can be
accomplished, but with some loss of performance due to the emptying of pipelines across
the back edge. In the case of modulo scheduling, which avoids this performance penalty,
no approach has yet been advanced for simultaneous register allocation. Since doing register
allocation in advance is unacceptably constraining on the schedule, it must be performed
following modulo scheduling. A unique situation encountered with modulo scheduled loops
is that the lifetimes are often much longer than the initiation interval. Normally, this would
result in a value being overwritten before its last use has occurred. One solution is to unroll
the kernel of a modulo scheduled loop a sufficient number of times to ensure that no lifetime
is longer than the length of the replicated kemel[Lam 1987, 1988]. This is known as modulo
variable expansion. In addition to techniques such as graph coloring, the heuristics pro­
posed by Hendren and others [1992) and by Rau and others [1992] may be applied after
modulo variable expansion. The other solution for register allocation is to assume the
dynamic register renaming provided by the rotating register capability of the Cydra 5. The
entity that the register allocator works with are vector lifetimes, that is, the entire sequence
of (scalar) lifetimes defined by a particular operation over the execution of the loop [Dehnert
and Towle 1993; Dehnert et al. 1989; Rau et al. 1992]. Lower bounds on the number of
registers needed for a modulo scheduled loop have been developed by Mangione-Smith
and others [1992]. The strategy for recovering from a situation, in which no allocation
can be found for the softw<~re pipelined loop, is not well understood. Some options have
been outlined [Rau et al. 1992], but their detailed implementation, effectiveness, and relative
merits have as yet to be investigated.

3.2.3. Other ILP Compiler Topics. Although scheduling and register allocation are at the
hean of ILP compilation, a number of other analyses, optimizations, and transformations
are crucial to the generation of high-quality code. Currently, schedulers treat a procedure
call as a barrier to code motion. Thus, in-lining of intrinsics and user procedures is very
important in the high frequency portions of the program [Dehnert and Towle 1993; Linn
1988; Lowney et al. 1993].

Certain loop-oriented analyses and optimizations are specific to modulo scheduling. IF­
conversion and the appropriate placement of predicate-setting operations are needed to
modulo schedule loops with control flow [Allen et al. 1983; Dehnert and Towle 1993;
Dehnert et al. 1989; Park and Schlansker 1991]. The elimination of subscripted loads and
stores that are redundant across multiple iterations of a loop can have a significant effect
upon both the ResMII and the RecMII [Callahan et al. 1990; Dehnert and Towle 1993;
Rau 1992]. This is important for trace scheduling unrolled loops as well (Lowney et al.
1993]. Recurrence back-substitution, and other transformations that reduce the RecMII
have a major effect on the performance of all software pipelined loops [Dehnert and Towle
1993). Most of these transformations and analyses are facilitated by the dynamic single­
assignment representation for inner loops [Dehnen and Towle 1993; Rau 1992].

On machines with multiple, identical clusters, such as the Multiflow Trace machines, it
is necessary to decide which part of the computation will go on each cluster. This is a

~

?='
:0

"' c:

"' ::::>
c.
c... .,. .,
iii"
::r
"'

Blue Coat Systems - Exhibit 1034 Page 14

nontrivial task; whereas increased parallelism argues in favor of spreading the computation
over the clusters, this also introduces intercluster move operations into the computation,
whose latency can degrade performance if the partitioning of the computation across clusters
is not done carefully. An algorithm for performing this partitioning was developed by Ellis
[1986] and was incorporated into the Multitlow compiler [Lowney et al. 1993].

An issue of central importance to all ILP compilation is the disambiguation of memory
references, that is, deciding whether two memory references definitely are to the same mem­
ory location or definitely are not. Known as dependence analysis, this has become a very
well developed topic in the area of vector computing over the past twenty years [Zima and
Chapman 19901. For vector computers the compiler is attempting to prove that two references
in different iterations are not to the same location. No benefit is derived if it is determined
that they are to the same location since such loops cannot be vectorized. Consequently,
the nature of the analysis, especially in the context of loops containing conditional branch­
ing, has been approximate. This is a shortcoming from the point of view of ILP processors
that can benefit both if the two references are or are not to the same location. A more
precise analysis than dependence analysis, involving data flow analysis, is required. Also,
with ILP processors, memory disambiguation is important outside of loops as well as within
them. Memory disambiguation within traces was studied in the ELI project [Ellis 1985;
Nicolau 1984] and was implemented in the Multiflow compiler [Lowney et al. 1993] . Mem­
ory disambiguation, in the context of innermost loops, was implemented in the Cydra 5
compiler [Dehnert and Towle 1993; Rau 1992] and was studied by Callahan and Koblenz
[1991].

4. Available ILP

4.1. limit Studies and Their Shortcomings

Many experimenters have attempted to measure the maximum parallelism available in pro­
grams. The goal of such limit studies is to

throw away all considerations of hardware and compiler practicaliry and measure the
greatest possible amount of ILP inherent in a program.

Limit studies are simple enough to describe: Take an execution trr;ce of the program, and
build a data precedence graph on the operations, eliminating false antidependences caused
by the write-after-read usage of a register or other piece of hardware storage. The length
in cycles of the serial execution of the trace gives the serial execution time on hardware
with the given latencies. The length in cycles of the critical path though the data dependence
graph gives the shortest possible execution time. The quotient of these two is the available
speedup. (In practice, an execution trace is not always gathered. Instead, the executed stream
is processed as the code runs, greatly reducing the computation or storage required, or both .)

These are indeed maximum parallelism measures in some sense, but they have a critical
shortcoming that causes them to miss accomplishing their stated goal; they do not consider
transformations that a compiler might make to enhance ILP. Although we mostly mean

transformations of a yet-unknown nature that researchers may develop in the future, even
current state-of-the-art transformations are rarely reflected in limit studies. Thus we have
had, in recent years, the anomalies of researchers stating an "upper limit" on available
parallelism in programs that is lower than what has already been accomplished with those
same programs, or of new results that show the maximum available parallelism to be sig­
nificantly higher than it was a few yea1s ago, before a new set or code transformations
was considered .

There is a somewhat fatuous argument that demonstrates just how imprecise limit studies
must be; recalling that infinite hardware is available, we can replace computations in the
code with table lookups. In each case we will replace a longer-perhaps very long-com­
putation with one that takes a single step. While this is obviously impractical for most com­
putations with operands that span the (finite, but large) range of integers or floating point
numbers representable on a system, it is only impractical in the very sense in which prac­
ticality is to be discarded in limit studies. And even on pr~cticality grounds, one cannot
dismiss this argument completely; in a sense it really does capture what is wrong with
these experiments. There are many instances of transformations, some done by hand, others
automatically, that reduce to this concept. Arithmetic and transcendental functions are often
sped up significantly by the carefully selected use of table lookups at critical parts of the
computation. Modern compilers can often replace a nested set of IF-THEN tests with a
single lookup in which hardware does an indirect jump through a lookup table. Limit studies
have no way of capturing these transformations, the effect of which could be a large improve­
ment in available ILP.

Even in current practice the effect of ignoring sophisticated compiling is extreme. Trans­
formations such as tree height reduction, loop conditioning, loop exchange, and so forth
can have a huge effect on the parallelism available in code. A greater unknown is the research
future of data structure selection to improve ILP. A simple example can show this effect.
The following code finds the maximum element of a linked list of data:

this-ptr = head-ptr:
max-so-far =most-neg-number:
while this - ptr (

if this-ptr data> max-so-far
then max-so-far = this-ptr . data :

this-ptr = this-ptr.next)

From simple observation the list of elements chained from head - pt r cannot be circular.
If the compiler had judged it worthwhile, it could have stored these elements in an array
and done the comparisons pairwise, in parallel, without having to chase the pointers linearly.
This example is not as farfetched as it might seem. Vectorization took 20 years to go from
the ability to recognize the simplest loop to the sophisticated vectorizers we have today.
There has been virtually no work done on compiler transformations to enhance ILP.

Limit studies, then, are in some sense finding the maximum parallelism av~ilable, but
in other ways are finding the minimum. In these senses they find the maximum parallelism:

Blue Coat Systems - Exhibit 1034 Page 15

• Disambiguation can be done perfectly, well beyond what is plllctical.
• There are infmitely many functional units available.
• There are infinitely many registers available.

• Rejoins can be completeJy unowoond.

In other senses, they represent a minimum, or an existence proof that at least a cenain
amount of parallelism exists, sine~ potentially imponant processes have been left out:

• Compiler transformations lo enhance ILP have not been done.
• Intermediate code generation techniques !hal boost ILP have not been done.

Perhaps it is more acculllte 10 say that a limit study shows that the maximum palllllelism
available, in the absence of plllcticality considerations, is ac least the amount measured.

4.1.1. Early Exp~rimtnts. The very first ILP limit studies demonsttated the effect we wrote
of above: The ~_;>erimenters' view of the techniques by which one could find parallelism
was limited to the current slate of the an, and the experimenters missed a technique that
is now known to provids most of the available ILP, the motion of operations between basic
blocks of code. Experiments done by Tjaden and Flynn [lm] and by Foster and Riseman
[1972] (and, anecdo!ally, elsewhere) found that there was only a small amount (about a
factor of two to three) of improvement due 10 ILP available in real programs. This was
dubbed the Flynn bortlentck. By all accounts, these pessimistic and, in a sense, erroneous
experiments had a tremendous dampening effect on the progress of ILP research. The ex­
perimenl!i were only erroneous in the sense o{ missing improvements; cer1ainly they did
correctly what they said they did.

lnten.-stingly, one of the research teams doing these experiments saw that under the hy­
poth&:Sis of free and infinite hardwure, one would not necessarily have to stop finding ILP
at basic block boundaries. ln a companion paper 10 the one mentioned above, Riseman
and Foster (1972) put forward a hudware-intensive solution 10 the problem of doing opera­
tions speculatively: They measured what would happen if one used duplicate hardware
at conditional jumps, and disregarded the one that went in the wrong direction. They found
a far larger amount of parallelism: Indeed, they found more than an order of magnitude
more than they could when branches were a barrier. Some of the programs they measured
could achieve arbitrarily large amounts of parallelism, depending only on data set siu:.
But in an otherwise insightful and visionary piece of work, the researchers lost sight of
the fact that they were doing a limit study, and in their tone and abstract emphasized how
impractical it would be to implement the hardware scheme they had suggested. (They found
that to get a factor-of-ten ILP speedup, one had to be prepared to cope with 16 unresolved
branches at the worst point of a typical program. Their scheme would require, then, 2'6

sets of hardware to do so. Today, as described in most of the papers in this issue, we try
to get much of the benefit of the same parallelism without the hardware cost by doing code
motion~ that move opcrutions between blocks and having the code generator make surll
that the correct compullluon is ultimately done: once the branches settle.)

4.1.2. Contemporary Experimtnts. We know of no other ILP limit studies published be­
tween then and the 1980s. In 1981 Nicolau and Fisher [1981, 1984] used some of the

apparatuses being developed for the Yale Bulldog compiler to repeat lhe experiment done
by Riseman and Foster, and found virtually the same results.

In the late 1980s archileCIS began 10 look at superscalar microprocessors and again started

a series of limit studies. Interestingly, the most notorious of these [Jouppi and Wall 1989]
again ncglecled the possibiliry of code motions between blocks. Unsurprisingly, the Flynn
bouleneck appeared again, and only lhe factor of 2-3 parallelism found earlier was found.
1Wo years later Wall [1991] did the most thorough limit study to dale and accounted for
speculative execution, memory disambiguation, and other factors. He built an elaborate
model and published available ILP speedup under a great milny scenarios, yielding a wealth
of valuable data but no simple answers. The various scenarios allow one 10 try 10 bracket
what real.Jy might toe practical in the near future, but arc subject to quite a bit of interpreta·
lion. In examining !he various scenarios presented, we find that settings that a sophisticaled
compiler might approach during lhe coming decade could yield speedups ranging from
710 60 on the sample programs, which are taken from the SPEC suite and other standard
benchmarks. (It is worth noting that Wall himself is much more pessimistic. In the same
results he sees an average ceiling of about 5, and the near impossibility of attaining even
thai much.) Lam and Wilson [1992] did an experiment to measure the effects of different
methods of eliminating control flow barriers to parallelism. When their model agreed with
Wall's, their results were similar. Butler and Patt (Butler et al. 1991) considered models
with a large variety of numbers of functional units and found that with good branch predic­
tion schemes and speculative execution, a wide range of speedup was available.

4.2. ExperimDilS That Measure .An.ai~ Paro/lelism

In contrul to the limit studies, some people have built real or simulated [LP systems and
hiM measured tbeir speedup against rcaJ or simulaled nonparallel sySians. When simulated
sysrems have been involved, they have been relatively realistic systems, or systems that
lhe researchers have argued would abstract the essence of realistic systems in such a way
!hat the system realities should not l~r lhe attained paralleli~m. Thus the experiments
represent 10mething closer to true: l~r bounds on available parallelism.

Ellis [1986] used the Bulldog compiler 10 generate code fur a hypothetical machine. His
model was unrealis1ic in several aspects, most notably the memory system, but realistic
implementations should have little difficuJry exploiting the parallelism he found. Ellis meas­
ured the speedups obtained on 12 small scientific programs for both a "realistic" machine
(corresponding 10 one under design at Yale) and an "ideal" machine, with limitless hard­
ware and single-cycle functional units. He found speedups ranging from no speedup to
7.6 times speedup for the real model, and a range of 2.7 to 48.3 for the ideal model.

In this issue there are three papers that add to our understanding of the performance
of ILP systems. The paper by Hwu and others [1993] considers the effect of a realistic
compiler that uses superblock scheduling. Lowney and others IJ9931 and Schuette and Shc:n
(1993) compare 1he performance of the Multiflow TRACE 14/300 with current microproc­
esiOrs from MIPs and IBM, respectively.

Fewer studies have been done to measure the attained performance of software pipelining.
Waner and others [1992] consider a set of 30 doall loops with branches found in the Perfect

Blue Coat Systems - Exhibit 1034 Page 16

and SPEC benchmark sets. Relative to a single-issue machine without modulo scheduling,
they find a 6-time speedup on a hypothetical 4-issue machine and a 10-time speedup on
a hypothetical 8-issue machine. Lee and others [1993] combined superblock scheduling
and software pipelining for a machine capable of issuing up to seven operations per cycle.
On a mix of loop-intensive (e.g., UNPACK) and "scalar" (e.g., Spice) codes, they found
an average of one to four operations issued per cycle, with two to seven operations in flight.

5. An Introduction to This Special Issue

In this special issue of The Journal of Supercomputing we have attempted to capture the
most significant work that took place during the 1980s in the area of instruction-level parallel
processing. The intent is to document both the theory and the practice of ILP computing.
Consequently, our emphasis is on projects that resulted in implementations of serious scope,
since it is this reduction to practice that exposes the true merit and the reaL problems of
ideas that sound good on paper.

During the 1980s the bulk of the advances. in ILP occurred in the form of VLIW proc­
essing, and this special issue reflects it with papers on Multiflow's Trace family and on
Cydrome's Cydra 5. The paper by Lowney and others [1993] provides an overview of the
Trace hardware and an in-depth discussion of the compiler. The papeT by Schuette and
Shen [1993] reports on an evaluation performed by the authors of the TRACE 14/300 and
a comparison of it to the superscalar IBM RS/6000. The Cydra 5 effort is documented
by two papers: one by Beck, Yen, and Anderson [1993] on the Cydra 5 architecture and
hardware implementation, and the other by Dehoen and Towle [1993] on the Cydra 5 com­
piler. (While reading the descriptions of these large and bulky mioisupercomputers, it is
worthwhile to bear in mind that they could easily fit on a single chip in the near future!)
The only important superscalar product of the 1980s was Astronautics' ZS-1 minisuper­
computer. Although we wanted to include a paper on it in this special issue, that did not
come to pass. The paper by Hwu and others [1993] reports on IMPACT, the most thorough
implementation of an ILP compiler that has occurred in academia.

Notes

I. The firs! machines of this type that were buill in the 1960s were referred to as look-ahocul processors. Subse­
quently, machines that performed out-of-order execution, while issuing multiple oper.~tions per cycle, came

10 be termed supersca/ar Crocessors. Since look-ahead processors are only quantitatively diffe~nt from super.;calar

processors, we shall drop the distinction and refer lD them, too, as superscalar processors.

2. We shall consistently refer lD this code generation activity as •cheduling.

References

Acosta, R.D. , KjelstNp, J., and Thrng, H .C. 1986. An instruction issuing approach to enhancing performance
in muhiple function unit processors. IEEE Tran.r. Comps., C-35, 9 (Sep1.): 815-828.

Adam, T.L., Chandy, K.M., and Dickson, J.R. Jg)4. A comparison of list schedules ror panillel processing systems.
CACM, 17, 12 (Doc.): 685-690.

Advanced Micro Devices. 1989. Am2~ U•ers Manual. Pub. no. 10620B, Advan~ Micro Devices, Surmyvale,

Calif.

Agerwala, T. Jg)6. Microprogram optimization : A survey. IEEE Trans. Comps. , C-25, 10 (Oct.): 962-973.
Agerwala, T., and Cocke, J. 1987. High performance reduced instruction set processors. Tech. rept. RCI2434

(#55845), IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.
Aho, A V., and Johnson, S.C. 1976. Optimal code generation for expression rrees JACM, 23 3 (July): 488-501.
Aha, A.V., Johnson, S.C.. and Ullman, J.D. Jg)7a. Code generation for expressions wi th common suhexpressions.

JACM, 24, I (Jan .): 146-160.

Aho, A.V., Johnson, S.C., and Ullman, J.D. J977b. Code generation for machines with multi register operations.
In Proc .. Fourth ACM Symp. on Principles of Programming wnguages, pp. 21-28.

Aiken, A_, and Nicolau, A. t988a. Optimal loop paralleliution. In Proc., SIGPLAN'88 Conf on Programming

wnguag< Daign and Implementation (Atlanla, June). pp. 308-317.
Aileen, A., ard Nioolau, A. 1988b Perfect pipelining: A new loop par.~llelization technique. In Proc., 1988 EJJropean

S}mp. on Programming, Springer Verlag, New York, pp. 221-235.
Aiken, A., and Nicolau, A. 1991. A realistic resource-constrained software pipelining algorithm. In Advances

in wnguages aN! Compilers for Parallel Processing (A. Nicolau, D. Gelernter, T. Gross, and D. Padua, eds.),

Pitman/MIT Pre~s. London, pp. 274-290.
Allen, JR .. Kennedy, K. , Porterfield, C., and W..rren, J. 1983. Conversion of control dependence to data dependence.

In Proc., Tenth Annual ACM Symp. on Principles of Progromming wnguages (Jan .): pp. 177-189.
Anderson D.W., Sparacio, F.J. , and Tomasulo, R.M. 1%7. The System/360 Model 91: Machine philosophy and

in><ruction handling. IBM J. Res. and Dtll., II, I (Jan.) : S-24 .

Apollo Computer. 1988. The Series }()()()()Personal Supercomputer: Inside a New Architocrur<. Publication no.
002402-007 2-88, Apollo Computer, Inc., Chelmsford, Mass.

Arvind and Goslelow, K. 1982. The U-interpreter. Computer, Jj, 2 (Feb.): 12-49.

Arvind and Kathail, V. 1981. A multiple processor dalaOow machine that supports generalised procedures. In
Proc., Eighrh AnnWII Symp. on Compulu Architecrure (Moy) : pp. 291-302.

Auslander, M .• and Hopkins, M. 1982. An overview of the PL8 compiler. In Proc .. ACM S/GPLAN Symp. on

Compiler Con.strucrion (Boston, June), pp. 22-31 .
Bahr, R., Ciavaglia , S., Flahive, B. , Kline, M . • Mageau, P., and Nickel , D. 1991. The DNlOOOOTX : A new

high-perrormance PRISM processor. In Pro c .. COMPCON '91, pp. 90-95

Baker, K.R. 1974. /ntroducrion to Sequencing and Scheduling . John Wiley. New York.
Beck, G.R., Yen, D.W.L. , and Anderron T.L. 1993. The Cydnt 5 minisupercomputer: Architecture and implemen­

tation. The J Supercomputing, 7, 112: 143-180.
Bell , C.G., and Newell, A. 1971. Computer Structurts: Reculings and Examples. McGraw-Hill , New York.
Berns1ein, D. , and Rodeh , M. 1991. Global instruction scheduling for superscalar machines. In Proc. , STGPLAN

'91 Corif. on Programming Language Dosign and lmplementarion (June), pp. 241-255.
Bernstein, D .. Cohen, D. , and Krawczyk, H. 1991. Code duplication: An assist for global instruction scheduling.

In Proc., 14rh Annuallnremat. Symp. on Microarchitee<ure (Albuquerque, N.Mex.), pp. 103-113.
Blanck, G., and Krueger, S. 1992 . The SuperSPARC" microprocessor. In Proc., COMPCON '92, pp. 136-141.
Bloch, E . 1959. The engineering design of the STRETCH computer. In Proc., Eastern Joint Computer Conf,

pp. 48-59.
Bruno, J.L., and Sethi, R. 1976. Code generation for a one-register machine. JACM, 23, 3 (July): 502-510.
Buchholz, W. , ed . 1962. Plafllting a Computer System: Project Srrerch. McGr.~w-Hill , New Yorll:.
Buller, M . , Yeh, T., Patt., Y., Alsup, M., Scales, H ., and Shebanow, M . 1991. Single instruction stream parallelism

is grealer than 1\\0. In Proc .• Eighleemh Annual/merna/. S)f11P. on Computer ArcJrjrecruJY (Toronto), pp. 276-286.

Callahan, D., and Koblenz, B. 1991. Regisler allocation via hierarchical graph coloring. In Proc., SIGPLAN '91
Conf on Progromming wnguo.ge Design ond Tmplemenrarion (Toronto, June), pp. 192- 203.

Callahan, D., Carr, S., and Kennedy, K. 1990. Improving register allocation for subscripted variables. In Proc.,
ACM S/GPUN '90 Conf on Programming wnguage Design and Implementation, (White Plains, NX , June),

pp. 53-65.
Carpenter, B. E. , and Doran, R.W., edo. 1986. A.M. 'TUring's ACE Reporr of 1946 and OrMr Papers. MIT Pres&,

Cambridse, M aso.
Chaitin, G.J. 1982. Register allocation and spilling via graph coloring. In Proc. , ACM SIGPLAN Symp. on Com­

piler Co1Lfi1Vction (Boston, June), pp. 98-105.
Chang, P.P., and Hwu, W.W. 1988. Trace selection for compiling large C application programs to microcode.

In Proc., 1/st AnnU<Illlbrkshop on Microprogramming and Microarchitecturn (San Diego, Nov.), pp. 21-29.

Blue Coat Systems - Exhibit 1034 Page 17

Chang, P. P .. and Hwu, W.W. 1992. Profile-guided automatic inline expansion for C programs. Software-Practice
and Experience, 22, 5 (May): 349-376.

Chang, P.P., Lavery, D.M., and Hwu, W.W. 1991. The importance of prepass code scheduling for superscalar
and superpipelined processors. Tech. Rept. no. CRHC-91-18, Center far Reliable and High-Performance Com­
puting, Univ. of Ill, Urbana-Champaign, Ill.

Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J. , and Hwu, W.W. 1991. IMPACT: An architectural frame'Mlrk
for multiple-instruction-i.suc processors. In Pro c., J81h Annual/nietniJl. Symp. on Computer Archite<'tu"' (ToroniD,
May), pp. 266-Z75.

Charleswonh, A E, 1981. An approach to scientific array processing: The architectural design of the AP-120BI
FPS-164 family. Computer, 14, 9: 18-Z7.

Chen, T.C. 1971. Parallelism, pipelining, and computer efficiency, Computer Design, 10, 1 (Jan .): 69-74.
Chen, T.C. 1975. Overlap and pipeline processing. In Introduction to Computer Architecture (H .S. Stone, ed.),

Sc1ence Research Associates, Chicago, pp. 375-431.
Chow, F., and Hennessy, J. 1984. Register allocation by priority-based coloring. In Proc., ACM SIGPLAN Symp.

on Compila Construction (Montreal, June), pp 222-232.
Chow, F.C. , and Hennessy, J. L. 1990, The pnority-based coloring approach to register allocation. ACM Trans.

Programming Languages and Systems, 12 (Oct.) : 501-536,
Coffman, J R., ed 1976. Computer and Job-Shop Scheduling Theory. John Wiley, New York .
Coffman, E.G. , and Graham, R. L. 1972. Optimal scheduling for two processor systems. Acta JnfomuJtica, J,

3: 200-213.
Cohen, D. 1978. A methodology for programming a pipeline array processor. In Proc., 1 /th A1111ual Microprogram­

ming Workshop (Asilomar, Calif., Nov.), pp. 82-89.
Colwell, R.P., Nix, R.P .. O'Donnell, J.J., Pap'Mlrth, D.B., and Rodman, P.K. 19&8. A VLIW architecture fur

a trace scheduling compiler. IEEE Trans. Camps .• C-37, 8 (Aug.): 967-979.
Colwell, R.P., Hall, W.E., Joshi, C.S., Papworth, D. B., Rodman, P.K, and Tomes, J.E. 1990. Architecture and

implementation of a VLIW supercomputer. In Proc .. Supercomputing '90 (Nov.), pp 910-919.
Cotten, L.W. 1965. Circuit implementation ofhtgh-spced pipeline systems. In Proc., AF/PS Fall Joint Cornpwing

Conf, pp. 489-504.
Cotten, L.W. 1969. Maximum-rate pipeline systems. In Proc., AFIPS Spring Joint Computing Conf, 581-586.
Danclutto, M. , •nd Vanncschi, M. 1990. VLIW in-the-lorge: A model fnr fine gn~in p•rullelism exploitation

of distributed memory multiprocessors. In Pro c. , :Z3nJ A1111ual Kt>rk.l·hup on Microprogramming and Microarr:loi­
teC/ure (Nov.), pp. 7-16.

Dasgupta , S., and Tartar, l 1976. The identification of maximal parallelism in straight-line microprograms. IEEE
Trans. Comps. , C-25, 10 (Oct ,): 986-991.

Davidson , E S. 1971. The design and control of pipelined function generators. In Proc., /WI Jntemat. IEEE Conf
on Systems, Networks, and Computers (Oaxtepec, Mexico, Jan,), pp. 19-21.

Davidson, E.S. 1974. Scheduling for pipelined processors. In Proc., lrh Ha11<1ii Conf on Systtms Sciences, pp. 58~.

Davidson, S, Landskov, D. , Shriver, B D., and Malleu, P.W. 1981. Sume experiments in local microcode com­
paction for horizontal machines. IEEE Trans. Comps., C-30, 7: 460-477.

Davidson, E.S., Shar, L.E., Thomas, A.T., and Patel, J.H. 1975. Effective control fur pipelined computers. In
Proc .. COMPCON '90 (San Francisco, Feb.), pp. 181-184.

Oehnert, J.C., and Towle, R.A . 1993. Compiling for the Cydra 5. The J. Supercomputing, 7, 112: J81-2Z7.
I.Jehnen, J.C., Hsu, P.Y.-T., and Bran, J.P. 1989 Overlapped loop suppon in the Cydra 5 In Proc . • Third lnumar.

Conf on Architecturol Support for Programming Languages and Operating Syslems (Boston, Apr.), pp. 26-38.
DeLano, E .. Walker, W., Yetter, J. , and Forsyth, M. 1992. A high speed superscalar PA-RJSC processor. In Proc ..

COMPCON '92 (Feb.), pp. 1 16-12l.
DeWitt, D.J. 1975. A control word model for detecting conflicts between microprograms In Proc., 8th Annual

llf>rk.shop on Microprogramming (Chicago, Sept.), pp. 6-12.
Dicfcndurff, K .. ami Allen , M. 1992. Organization of the Motorola 88110 super.;cal~r RISC microprocessor

IEEE Micro, 12, 2 (Apr.): 40-63.
Dongarra, J.J. 1986, A survey of high performance computers. In Proc., COMPCON '86 (Mar.), pp. 8-11.
Dwyer, H. , and Torng, H.C. 1992. An out-of-order superscalar processor with speculative execution and fast

precise onterrupts. In Proc., :Z5th Annuallnremar. S)fnp. on Microarchireaure (Portland, Ore., Dec.), pp. 272-281:

Ebcioglu, K. 1988. Some design ideas for a VLIW architecture for sequential-natured software. In Parallel Proc­
essing (Proc., IFIP 1m Ja3 Kt>rlring Conf on Parallel Processmg. Pisa. Jraly) (M. Cosnard, M.H. Banon,
and M. Vanneschi, eds.), North-Holland , pp. 3-21.

Ebcioglu, K., and Nakatani, T. 1989. A new compilation technique for parallclizing loops with unpredictable
branches on a VLIW architectun: In Languages and Compilers for Fbrallel Computing (D. Gelemter, A. Nicolau,
and D. Padua, eds.), Pitman/MIT Press, London, pp. 213 - 229

Ebcioglu, K., and Nicolau, A. 1989. A global resource-constrained parallelization technique. In Proc. , Jrd ln­
tunut. Conj on Supucomputing (Cre~ . Greece, June), pp. 154-163.

Ecken, J.P., Chu, J.C., Tontk, A.B. , and Schmlll , W.F. 1959. Destgn of UNIVAC· LARC System: I. In Proc.,
East<rn Joint Computer Conf, pp. 59-65.

Ellis, J R. 1986. Bulldug: A Compilu for VL/W Archittclures. MIT Press, Cambridge, Mass.
Fawcett, B.K. 1975. Maximal clocking ra~s for pipclined digiwl systems. M.S. thcsos, Univ. of Ill., Urbana­

Champaign, Ill
Fernandez, E.B., and Busse], 8. 1973. Bounds on the number of processors and time for multiprocessor optimal

scheduk. IEEE Trans. Camps. , C-22, 8 (Aug.): 745-751.
Fisher, J.A. 1979. The optimization of horizontal microcode within and beyond ba>ic blocks : An application of

processor scheduling with resources, Ph .D. thesos, New York Univ. , New York ,
Fisher, J,A. 1980 zN-way jump microinstruction hardware and an effective instruction binding melhod. In !'roc.,

13th Annual Workshop on Microprogramming (Colorado Springs, Colo, Nov.). pp. 64-75.
Fisher, J.A. 1981 Trace scheduling: A technique for global microcode compaction. IEEE Trans. Cornps., C-30,

7 (July): 478-490.
Fisher, J.A. 1983. Very long instruction word architectures and the ELI-512. In Proc., 'hnth Annuallnrernot.

Symp. on Computer Archi1.c1ure (Stoclcholm, June), pp. 140-150.
Fisher, J.A. 1992. Tr•ce Scheduling-2, an extension of trace scheduling. Tech. rept., Hewlen-Packanl Laborarories.
Fisher, J.A., and Freudenberger, S. M. 1992. Predicting conditional jump directions from previous runs of a pro­

gram. In Proc .. Fifth lnte171l1t. Conf on Archilecturol Supponfor l'rol{rwnming Languagej· and Operallng Sy>tt!IT1S
(Boston, Oct.), pp. 85-95,

Fisher, J.A., Landskov, D., and Shriver, B. D. 1981. Microcode compaction: Looking backward and looking for­
wan!. In Proc . • 1981 Nat. Computu Conf. pp. 95-102 .

Fisher, J.A., Ellis, J. R., Ruttenberg, J.C., and Nicolau, A. 1984. 1'-•rallcl processing : A smart compiler and a
dumb machine. In Prvc., ACM SIGPUN '84 Symp. on Cumpil<r Con.,·lrur-tiun (Montreal, June), pp. 37-47,

Floating Point Systems. 1979. FPS A.P-1208 Processor Handbook. Floating Point Systems, Inc., Beaverton, Ore.
Foster, C.C., and Riseman, EM. 1972. Percolation of code to enhance parallel dispau:hing and execution. IEEE

Troru. Comps., C-21, 12 (Dec,): 1411-1415.
Franklin, M ., and Sohi, G S. 1992. The expandable split window paradigm for exploiting fine-grain parallelism.

In Proc. 19th Annual Intemational Symp. on Computer Architecture (Gold Coast, Australia, May), pp. 58-67.
Freudenberger, SM. , and Runenberg. JC. 1992. Phase ordering of register allocation and instruction scheduling.

In Code Genera/ion-Concepts. Tools, Techniques: Proc., Internal. Uf>rkshop on Code Generation, May 1991
(R , Giegerich, and S.L. Graham, eds.), Springer-Verlag, London, pp 146-172.

Gasperom, F. 1989. Compilation techniques for VLJW architectures. Tech. rept. RC 14915, IBM Research Div.,
T J. Watson Research Center, Yorktown Heights, N.Y.

Gibbons, P.B., and Muchnick, S.S. 1986. Efficient instruction scheduling for a pipelined architecture. In Proc.,
ACM SIGPUN '86 Symp. on Compiler Construction (Palo Alto, Calif., July), pp. 11-16.

Golumbic, M.C., and Rainish, V. 1990. Instruction schedulig beyond basic blocks. IBM J. Res. and Dno., 34,
I (Jan.): 93-97

Gonzalez, M.J. 1977. Deterministic processor scheduling. A.CM Compu1er Surveys, 9, 3 (Sept.): 173-204.
Goodman, J.R., and Hsu, W -C. 1988. Code scheduling and register allocation in large basic blocks. In Proc.,

1988 lntmUJt. Conf on Supercompu.ting (St. Malo, France, July). pp. 442-452.
Grishman, R., and Su, B. 1983. A preliminary evaluation of trace scheduling for global microcode compaction.

IEEE TrunJ. CompJ. , C-32, 12 (Dec.) : 1191-1194.
Gross, T.R., and Hennessy, 1. L. 1982. Optim.i2ing delayed branches. In Proc., 15th Annual Kt>rkshop on Micro­

progfTl111Tning (Oct.), pp. 114-120.

Blue Coat Systems - Exhibit 1034 Page 18

Gross, T. , and Ward, M 1990. The suppression of compensation code. In Advances in LangiUlges and Compilers
for Parallel Coml:.tting (A. Nicolau, D. Gelernter, T. Gross, and D. Padua, eds.), Pitman/MIT Press, London,
pp. 260-273.

Gurd, J., Kirkham, C.C., and Watson, I, 1985. The Manchester prototype dataflow computer. CACM, 28, I(Jan .):
34-52. •

Hallin, T.G., and Aynn, MJ. 1972. Pipelining ofarilhmetic functions IEEE Trons. Cumps. , C-21, 8 (Aug.): 88(}...886.
Hendren, LJ., Gao, G .R .. Altman, E.R , and Mukerji, C. 1992. Register allocation using cyclic interval graphs:

A new approach to an old problem ACAPS Tech. Memo 33, Advanced Computer Architecture and Program
Structures Group, McGill Univ , Montreal .

Hennessy, J. L., and Gross, T. 1983 Post-pass code optimization of pipelined constraints. ACM Trans. Program­
mins Languases and Systems, 5, 3 (July): 422-448.

Hennessy, J, Jouppi, N., Baskell, F., Gro.s, T., and Gill, J. 1982. Hardworelsoflw•re tradeoffs for iocreased
performance. In Proc .• Symp. on Architectural Support for Programming LangiUlges and Operating Syswns
(Palo Alto. Calif., Mar.) pp. 2-11.

Hennessy, J. Jouppi, N., Przybylski, S., Rowen, C., Gross, T., Baskett, F., and Gill, J. 1982. MIPS: A microproc­

essor architecture. In Proc., 15th Annual Workshop on Microprogromming (Palo Alto, Calif., Ocl.), pp 17-22.
Hintz, R G. , and l'•te, D.P. 1972. Control Data STAR-100 processor design. In Proc. , COMPCON '72 (Sept.),

pp. 1-4.

Hsu, P.YT. 1986. Highly concurrent scalar processing. Ph.D. thesis, Univ. of IlL, Urbana-Champaign, Ill.
Hsu, P.Y.T., and Davidson, E.S. 1986 Highly concurrent scalar proet!ssing. In Proc., Thineenth AnniUlllntemat.

Symp. on Computer Architecwre, pp. 386-395.

Hsu, W.-C. \987. Register allocation and code scheduling for load/store architectures. Comp. Sci. Tech. Rept.

no. 722, Univ. of Wise., Madison.
Hu, T.C. 1961. Parallel soquencing and assembly line problems. Operations Research, 9, 6: 841-848.
Hwu, WW., and Chang, P. P. 1988. Exploiting parallel microprocessor microarchitectures with a compiler code

generator. In Proc. , 15th Annual Internal. Symp. on Computer Architecture (Honolulu, May), pp 45-53.
Hwu, WW, and Patt, Y. N. 1986. HPSm, a high performance restricted data now architecture having minimal

functionality. In Proc., 13th AnnWll lntemat. Symp. on Computer Architecture (Tokyo, June), pp. 297-306.

Hwu, WW., and Pau, Y.N. 1987. Checkpoint repair for out-of-order execution machines. IEEE Trans. Comps.,
C-36, 12 (Dec.): 1496-1514.

Hwu, WW., Conte, T.M .. und Chong, P.P. 1989. Comparing software and hardware schemes for reducing the
cost of branches. In Proc., 16th Annual Internal. Symp. on Computer Architecture [May), pp. 224-233.

Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann, R.A., Ouellette, R.G., Hank,
R .E., Kiyohara, T., Haab, G E., Holm, l.G., and Lavery, D.M. 1993. The superblock: An effective technique
for VLIW and superscalar compilation. The 1. Supercomputing, 7, 112: 229-248.

IBM. 1967 IBM J. Res. and Dev., II, I (Jan .). Special issue on the System1360 Model 91.
IBM. 1976. IBM 3838 Array Processor Functional Characteristics. Pub. no. 6A24-3639-0, file no. S370-08, IBM

Corp., Endicott, N.Y.
IBM . 1990. IBM 1. Res. and Df?V., 34, I (Jan.) Special issue on the IBM RISC System/6000 processor.

Intel. l989a. i860 64-Bit Microprocessor Programmer's Reference Manual. Pub, no. 240329·001, Intel Corp.,

Santa Clara, Calif.
Intel. 1989b. 80960CA User's Manual. Pub. no. 2707\0-001, Intel Corp., Santa Clara, Calif.
Jain, S. J99L Circular scheduling: A new technique to perform soFtware pipelining. In Proc., ACM S/GPLAN

'91 Conf on Programming Language Design and /mplementanon (June), pp. 219-228.
Johnson, M. 1991. Supersca/ar Microprocessor Design. Prentice·Hall, Englewood Cliffs, N.J.
Jouppi, N.P. 1989. The nonuniform distribution of instruction-level and machine parallelism and its effect on

performance. IEEE Trans_ Comps, C-38, 12 (Dec.): 1645-1658.
Jouppi, N.P., and Wall, D. 1989. Available instruction level parallelism ror superscalar and superpipelined machines.

ln Proc., Third Internal. Conf on Architectural Suf'porr for Programming Languages and Operating Systems
(Boston, Apr.), pp. ZTl-282.

Kasahara, H., and Narita, S. 1984. Practical multiprocessor scheduling algorithms for efficient parallel processing.
IEEE Trons. Comps., C-33, II (NQ\1.): 1023-1029.

Keller, R. M. 1975. Look-ahead processors. Computing Surveys 7, 4 (Dec.): 177-196.

Kleir, R. L. 1974 . A representation for lhe analysis of microprogram operation In Proc .• 7th Annual Workshop
on Microprogramming (Sept.), pp. 107-118

Kleir, R.L., and Ramamoorthy, C.V. 1971 . Optimization strategies for microprograms. IEEE Trans. Comps , C-20,
7 (July): 783-794.

Kogge, P.M. 1973, Maximal rate pipelined solutions to recurrence programs. In Proc., First AnniUll Symp. on
Computer Architecture (Univ. of Fla., Gainesville, Dec.), PP- 71-76.

Kogge. P.M. 1974. Parallel solution of recurrence problems. IBM 1. Res. and Dev .• 18, 2 (Mar.): 138-148.
Kogge, P.M. 1977a. Algorithm development for pipelined processors. In Proc .• 1'177 lnttmat. Conf on Parallel

Processing (Aug.), p. 217.

Kogge. P.M. 1977b. The microprogramming of pipelined processors. In Proc .. 4th Annual Symp. on Computer
Architecture (Mar.), pp. 63-69.

Kogge, P.M. 1981 , The Architecturt of Pipelined Computers. McGraw-Hill, New York.
Kogge, P.M., and Stone, H S. 1973. A parallel algorithm for the efficient solution of a general class of recurrence

equations. IEEE Tran;. Comps., C-22, 8 (Aug.): 786-793.

Kohler, W.H. 1975. A preliminary evaluation of the critical path method for scheduling tasks on multiprocessor
systems. IEEE Trons. Comps., C-24, l2 (Dec.): 1235-1238.

Kohn, L., and Margulis, N. 1989. Introducing lhe Intel i860 64-bit microprocessor. IEEE Micro, 9, 4 (Aug.): 15-30.
Kunkel, S.R., and Smith, J.E. 1986. Optimal pipelining in supercomputers. In Proc., 13th Annual/ntemat. Symp.

on Computer Architecture (Tokyo, June), pp. 404-411

Labrousse, J., and Slavenburg, G.A. 1988. CREATE-LIFE: A design system for high performance VLSl circuits.
In Proc .• Internal. Conf on Circuits and Devices, pp. 365-360.

La brousse, l., and Slavenburg, G. A. 1990a. A 50 MHz microprocessor with a VL!W architecture. In Proc.,
ISSCC "90 (San Francisco), pp. 44-45.

Labrousse, J., and Slavenburg, G .A . 1990b. CREATE-LIFE: A modular design approach for high performance
ASlCs. In Proc, , COMPCON '90 (San Francisco), pp. 427-433.

Lam, M.S.-L. 19S7. A systolic array optimizing compiler. Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh.
Lam. M. 1988. Software pipelining: An effective scheduling technique ror VLIW machines. In Proc., ACM SIGPUN

'88 Conf. on Programming Language Design and Implementation (Atlanta, June), pp. 318-327.
Lam, M.S., and Wilson, R.P. 1992. Limits of control flow on parallelism. In Proc .• Nineteenth Internal. Symp.

on Computer Architecture (Gold Coast, Australia, May), pp. 46-57.
Landskuv, D., Davidson, S., Shriver, B. , and Mallett, P.W. 1980. Local microcode compaction techniques. ACM

Computer Surveys, 12, 3 (Sept.): 261-294.

Lee, l .K.F., and Smith, A.l 1984. Branch prediction strategies and branch target buffer design. Computer, 17,
1 (Jan.): 6-22.

Lee, M., Tirumalai, P.P., and Ngai, T.-F. 1993 Software pipelining and superblock scheduling: Compilation
techniques for VLIW machines. In Proc., 26th Anntutl Hawaii Internal. Conf. on System S<·iences (Hawaii,
Jan.). vol . I, pp. 202-213.

Linn, l.L. 1988. Horirontal microcode compaction . In Microprogramming and Firmware Enginuring Methods
(S. Habib, ed .), Van Nostrand Reinhold, New York, pp. 381-431.

Lowney, P.G., Freudenbe~J~er, S.M., Karzes, TJ., Lichtenstein, W,D., Ni<, R.P., O'Donnell, J.S. , and Ruttenburg,
J.C. 1993. The Multiflow trace scheduling compiler. The J. Supercomputing, 7, l/2; 51-142.

Mahlke, S.A., Chen, W.Y., Hwu, W.W., Rau, B.R., and Schlansker, M.S. 1992. Sentinel scheduling for VLIW
and superscalar processors. In Proc., Fifth Internal. Conf on Architecrura/ Support for Programming Languages
and Operoting Systems (Boston, Oct.), pp. 238-247.

Mahlke, S.A . , Lin, D.C., Chen, W.Y., Hank, R.E., and Bringmann, R.A. 1992. Effective compiler support for
predicated eu:cution using the hyperbloclc. In Proc .• 25th Annual lntemat. Symp. on Microarchitecture (Dec.),
pp. 45-54.

Mallett, P.W. !978. Methods of compacting microprogr.tms. Ph.D. lhesis, Univ. of Soulhwestem La., Lalilyette, La.
Mangione-Smith, W., Abraham, S.G., and Davidson, E.S. 1992. Register requirements ofpipelined processors.

In Proc .• Internal. Conf on Supercomputing (Washington, DC., July).
McFarling, S., and Hennessy, 1. 1986. Reducing the cost of branches. In Proc .• Thirtunth lntunat. Symp. on

Computer Architecture (Tokyo, June), pp. 396-403.
Moon, S.-M., Ebcioglu, K. 1992. An efficient resource-ronstrained global scheduling technique for superscalar

and VLIW processors. In Proc .• 25th Annuallnte1711Jt. Symp. on Microarchirecture (Portland, Ore., Dec.),
PP- 55-71.

Blue Coat Systems - Exhibit 1034 Page 19

Nakatani, T., and E.bcioglu, K. 1990. Using a loolcahcad window In a compaction-based parallelizing compiler.
In Proc.. 23rd An1U111l I!Orlcs/lop on Microprogromming and Mlaoorchilecture (Orlando, Fla., Nov.), pp. 57-68.

Nicolau, A. 1984 . Poralleltsm, memory anti-aliasing ~nd correctness for trace scheduling compilers. Ph.D. thesis,
Yale Univ., New Havcn1 Conn.

Nicolau, A. 1985a. Percolation scheduling: A parallel compilation technique. Tech. Rept. TR 85-678, Dept. of
Comp. Sci., Cornell, Ithaca, N.Y.

Nicolau. A. 1985b. Uniform parallelism exploitation in ordinary programs. In Proc., Internal. Conf on Parallel
Processing (Aug.), pp. 614-618.

Nicolau, A .. and Fisher, J.A. 1981. Using an oracle to measure parallelism in single instruction stn:a.m programs

In Proc., rouneenth Annual Microprogramming Hbrkshop (Oct.), pp. 171-182.
Nicolau, A., and Fisher, J.A. 1984. Measuring the parallelism ovailable for very long instruction word architec­

tures. 1££/i. Trans. Comps., C-33. II (Nov.): 968-976.

Nicolau, A., and Potasman, R. 1990. Realistic scheduling: Compaction fur pipelined architectures. In Proc ..
23rd Annual Hbrlcshop on Microprogramming and Microarchitecture (Orlando, Fla., Nov.), pp. 69-79.

Oehler, R.R., and Blasge11, M.W. 1991. IBM RISC System/6000: Architecture and performance. IEEE Micro.
11, 3 (June): 14.

Popadopoulos, G. M., and Culler, D. E. \990. Monsoon: An explicit token store architecture. In Proc., Sewntetnth
Internal Symp. on Computer Architecture (Seallle, May), pp. 82-91.

Park, J.C.H., and Schlansker, M .S. 1991. On predicated execution. Tech. Rept. HPL-91-58, Hewlett Packard
Laboratories.

Patel. J,H, 1976. Improving the throughput of pipelines with delays and buffers. Ph .D. thesis, Univ. of Ill., Urbana­
Champaign, 111

Patel, J.H .. and J)avidson, E.S. 1976. Improving the throughput of a pipeline by insertion of delays. In Proc.,
3rd Annual Symp. on Computer Architecture (Jan.), pp. 159-164.

Patterson, D A., and Sequin, C. H. 1981. RISC 1: A reduced instruction set VLSI computer. In Proc., 8th Annual
Symp. on Computer Al'l·hitecture (Minneapolis, May), pp. 443-450.

Peterson, C., Sutton, J., and Wiley. P., 1991. iWarp: A 100-MOPS, LIW microprocessor fur multicomputers
IEEE Micro, l I, 3 (June): 26.

Popescu, V. , Schultz, M., Spracklen, J., Gibson, G., Lightner, B., and lsaman, D. 1991. The Metaflow archi­
tecture IEEE Miau, II, 3 (June): 10.

Radin, G. 1982. The 801 minicomputer. In Proc., Symp. on Architectural Support for Progromming Languas<'>
and Operating Systems (Palo Alto, Calif., Mar.), pp. 39-47.

Ramakrishnan, S. 1992. Software pipclining in PA·RISC compilers H~lm-Packard J. (July): 39-45.
Ramamoonhy, C.V. , and Gonzalez, M.J. 1969. A survey of techniques for recognizing parallel processable streams

in computer prog111ms. In Proc. , AFIPS roll Joinl Computing Conf, pp. 1-15.
Ramamoonhy, C.V. , and Tsuchiya, M. 1974. A high level language for horizontal microprogramming./£££ Trons.

Comps., C-23: 791-802.
Ramamoonhy, C.V, Chandy, K.M., and Gonzalez. M.J. 1972. Optimal scheduling strategies in a multiprocessor

system. !EEE Trans. Comps .• C-21, 2 (Feb.): 137-146.

Rau, B.R. 1988. Cydra 5 Directed Dataflow architecture. In Proc., COMPCON '88 (San Francisco, Mar.), pp.
106-113.

Rau, B.R . 1992. Data flow and dependence analysis for instruction level parallelism. In rounh fntemat. llbrkshop
on Languages iJJUi Compilers for Parallel Computing (U. Banerjee, D. Gelcrnter, A. Nicolau, and D. Padua,
eds.), Springer-Verlag, pp. 236-250.

Rau, B.R., and Glaeser, C. D. 1981. Some scheduling techniques and an easily schedulable horizontal architecture

for high performance scientific computing. In Proc., fuuneenth Annual Hbrkshop on Microprogramming (Oct.).

pp. 183-198.
Rau, B.R., Glaeser, C.D., and Greenawalt, E.M. 1982. Archilectural support for the efficient generation of code

for honwntal architectures. In Pmc., S}mp. on Arr:hi/ecturol Support for Progrotrvlling Languages and Operotiug
Systems (Palo Alto, Calif. , Mar). pp 96-99,

Rau, B.R • Glaeser, C. D., and Picard , R L. 1982. Efficient code generotion for horirontalarchitecturc<: Compiler
techniques and archite<:tural support. In Proc., Ninth Annuallnternat. Symp. on Computa Architecture (Apr.).
pp. 131-139

Rau, B. R., Lee, M., Tirumalai. P., and Schlansker, M.S. 1992. Register allocation for software pipelined loops.

In Proc., SIGPUN '92 Conf on Programming Language Design and lmplementacion (San Francisco, June
17- 19), pp. 283-299.

Rau, B R., Yen, D.W.L., Yen. W., and Towle, R.A. 1989. The Cydra 5 departmental supercomputer: Design
philosophies, decisions and trade-offs. Computer, 22, 1 (Jan .): 12-34.

Riseman, E.M., and Foster, C.C. 1972. The inhibition of potential parallelism by conditional jump<. IEEE Trons.
Comps., C-21. U (Dec): 1405-1411.

Ruggiero, J.l', and Coryell, D. A. \969. An au~iliary processing system for array calculations. IBM Systems J.,
8, 2: 118-\35 .

Russell, R M. 1978. The CRAY-1 computer system. CACM, 21: 63-72.
Rymarczyk, J. 1982. Coding guidelines for pipelined processors. In Proc .. Symp. on Architectural Support for

Pm}!rumming LangUUJiel' and Opuotmg Systtms (P'.AIO Alto, c. lit .• Mar. I, pp, 12-19.
Schmidt, U., and Caesar, K. 1991. Datawave: A single-chip multiprocessor for video applications. IEEE Micro,

II, 3 (June): 22.
Schneck, P .B. 1987. Supercomputer Architecture. K.luwer Academic, Norwell, Mass.
Schuette, M.A., and Shen, J .P. 1993. Instruction-level e•perimental evaluation of the Multi flow TRACE 14/300

VLIW comruter. The J. Supercomputing, 1, 112: 249-271.
Sethi, R. 1975. Complete register allocation problems. SIAM J. Computing, 4,): 226- 248.
Sethi, R., and Ullman, J.D. 1970. The generation of optimal code for arithmetic expressions, JACM, 17, 4

(Oct,): 715-728 .
Sites, R,L. 1978. Instruction ordering for the CRA Y·l computer. Tech. rept. 78-CS-023. Univ. of Calif., San

Diego.
Smith. J. E. 1981. A study of branch prediction strategies. In Proc., Eighth Annualintemat. Symp. on Computer

Architecture (May), pp. 135-148.
Smith. J.E. 1982. Decoupled access/execute architectures. In Proc., Ninth A.rvtuallntemat. Symp. on Computer

Architecture (Apr.), pp. I 12-119.
Smith, J.E. 1989. Dynamic instruction scheduling and the Astronautics ZS·I. Cumpwer, 22, I (Jan .): 21-35
Smith, J.E., and Plcszkun, A.R. 1988. Implementing precise interrupts in papelined proccs<ors. IEEE Trans.

Comps. , C-37, 5 (May): 562-57.3.
Smith, J E., Dermer, G. E., Vanderwarn, B.D .. Klinger, S.D. , Roszcwski, C.M . , Fowler, D.L, Scidmore, K.R.,

onu.l Laudon, J.P. 19K7. The ZS-J cenlnll processor. In Proc:., St'comJ Jr~tc:rnm. Cmif. on Archiuc:rurul Suppon
fur Pmgrumming wnguag.s and Operuting Systems (Polo Alto. Calif., Oct.), pp 199-204.

Smith, M.D., Horowitz, M., and Lam, M. 1992. Efficient superscalar performance through boosting. In Proc.,
Fifth lntemat. Conf on Architectural Support for Programming Languages and Operating Systems (Boston,

Oct.), pp. 248-259.
Smith, M D. , Lam, M.S., and Horowitz, M .A. 1990. Boosting beyond static scheduling in a supcrscalar proc·

essor. ln Proc .• Seventeenth Internal, Symp. on Computer Architecture (June), pp. 344-354
Smotherman, M ., Krishnamurthy, S , Aravind, P.S., and Hunnicutt, D. 1991. Efficient DAG construction and

heuristic calculation for instruction scheduling . In Proc.. 24th Aranuallntemat. Hbrkshop on Microarchitecture

(Albuquerque, N.M., Nov.), pp. 93-102.
Sohi, G.S. , and Vajapayem, S. 1987. Instruction issue logic for high-performance, interruptable pipelined proc­

essors. ln Proc., 14th Annual Symp. on Computer Architecture (Pinsburgh. June), pp. 27- 36.
Su, B, and Ding, S. 1985. Some experiments in global microcode compaction In Proc., !81h Annual Hbri<>·hop

on Microprogramming (Asilomar, Calif., Nov.), pp. 175-180
Su, B., and Wang, J. \991a. GURPR•: A new global software pipclining algorithm. In Proc .. 24th Annuallnternat.

Symp. on Microarclaitectur< (Albuquerque, N .M, Nov.), pp 212-216

Su, B. and Wang, J 1991b Loop-carried dependence and the general URPR software pipelining approach . In

Proc., 24th Annual Hawaii lnternat. Conf on System S<·iences (Hawaii, Jan.).
Su, B .. Ding, S., and Jin. L , 19~4 . An improvement of trace scheduling lc>r gloh"l microcode compaclion. In

Prm·,, 17th Annual '*1rkshop on MicmproJ~rumminx (New Orkan~. O~o:l J. pp 7H-MS
Su. ll . . Oin~;. S . and Xia, J. l9M6. URPR-An extension of URCR fur software pipclining. In Proc. , 19th Annual

Hbrkshop on Microprogramming (Now York, Oct.), pp. 104-108.
Su, B., Ding, S. , Wang, J., and Xia, J. 1987 GURPR-A method for global software pipelining. In Proc .. 20th

Annual Hbrkshop on Microprogramming (Colorado Springs, Colo . Dec.), pp, HS-96

Blue Coat Systems - Exhibit 1034 Page 20

Thistle, M.R., and Smith, B.J. 1988. A processor architecture for Horizon. In Proc., Superwmpuring '88, (Orlando,
Fla. , Nov.), PP• 35-41.

Thomas, A.T., and Davidson, E.S. 1974. Scheduling ofmulticonfigurable pipelines. In Proc., 12th AMual Allerwn
Conf. on Circuits and Systems Theory (Allerton, Ill), pp. 658-669.

Thornton, J.E. 1964. Parallel operation in the Control Data 6600. In Proc., AFIPS Fall Joint Computer Conf,
pp. 33-40.

Thornton, J.E. 1970. Design of a Computer-The Control Data 6600. Scoll, Foresman, Glenview, Ill.
Tirumalai, P., Lee, M., and Schlanslcer, M.S. 1990. Parallelization of loops with exus on pipelined architectures.

In Proc •• Supercomputing '90 (Nov.), pp. 200-212.

Tjaden, G.S. , and Flynn, M.J. J'lXl. Detection and parallel execution of parallel instructions. IEEE Trans. Camps. ,
C-19, 10 (Oct .); 889-895.

Tjaden, G.S., and Flynn, M.J. 197.3. Representation of concurrency with ordering matrices. IEEE 1l-ans. Camps.,
C-22, 8 (Aug.); 752-761.

Tokoro, M., Tamura, E., and Takizuka, T. 1981. Optimization of microprograms. IEEE Trans. Camps., C-30,
7 (July): 491-504.

Tokoro, M., Thkizuka, T., Thmura, E., and Yamaura, I. 1978 A technique of global optimization of microprograms
In Proc .. I lth Annual Workshop on Microprogramming (Asilomar, Calif., Nov.), pp 41-50.

Tokoro, M., Tamura, E . , Takase. K .. and Tamaru, K. 1977. An approach to microprogram optimization consider·

ing resource occupancy and instruction fOrmats. In Proc. , JOrh Annual I#Jrkshop on Microprogramming (Niagara
Falls, NY., Nov.), pp. 92-108.

Toma>ulo, R. M. 1967. An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res. and Dev.,
ll, I (Jan.): 25-33.

Touzeau, R .F. 1984. A FOKI'RAN compiler for the FPS-164 scientific computer. In Proc .• ACM SIGPLAN '84
Symp. on Compiler Consrrucrion (Montreal), pp. 48-57.

Tsuchiya, M ., and Gonzalez, M.J. 1974. An approach to optimization of horizontal microprograms. In Proc.,
Se<•enth Annual IJ!>rk.fhop on Microwogrammir~x (l'lllo Alto, Calif,), pp. 85-90.

Tsuchiya, M .. and Gonzalez, M ,J. 1976. Tuward optimization of horiwntal microprograms, IEEE Trum' Comps. ,
C-25, 10 (Oct.): 992-999.

Uht, A .K. 1986. An efficient hardware algorithm to extract concurrency from general-purpose code. In Proc ..
Nill('lc·cnth Annual !luwaii Cmif. on Sy.\·tem Sciem·~s (Jun.), pp. 41-50.

Wall, D.W. 1991. Limits of instruction-level parullclism. In Prvc., F/Jurth Jmernat. Conf. on Arr:hirectural Support
for Programming umguages and Operating Systems (Sant.a Clara, Calif., Apr), pp. 176-188

Warren, H.S. 1990. Instruction scheduling for the IBM RISC System/6000 processor. IBM J. Res. a~~d Dev.,
34, l (Jan.): 85-92.

Waner, N.J.. Bockhaus, J.W., Haab, G E., and Subramanian, K. 1992 Enhanced modulo scheduling for loops
with conditional branches. In Proc., 25ch Annual lmernac. Symp. on Microarchitecture (Ponland, Ore., Dec).
pp. 170-179

Watson, W.J. 1972. The Tl ASC-A highly modular and flexible super computer architecture. In Proc., AFIPS
Fall Joint Computer Conf., pp. 221-228.

Wedig, R G. 1982. Detection of concurrency in di=Uy executed language instruction streams. Ph D. thesis, Stanford
Univ., Stanford, Calif.

Weiss, S., and Smith, J.E, 1984. Instruction issue logic for pipelined supercomputers. In Proc., 1/rh Annual
Jntemat. Symp. on Computer Architecture, pp. 110-118.

Weiss, S., and Smith, J.E. 1987. A study of scalar compilation techniques for pipelined supercomputers. In Proc ..
Second Jnrernat. Conf on Archirectural Suppon for Programming Languages and Operacing Systems (P'Jio

Alto, Calif, Oc{.), pp. 105-109.
Wilkes, M .V. 1951. The best way to design an automatic calculating machine, In Proc. , Manchester Univ. Comp.

Inaugural Conf (Manchester, England, July), pp. 16-18.
Wilkes, M.V, and Slringcr,.J.B. 1953. Micmprogramming and the design of 1he conlrol circuits in an clc~:lnmi~.:

lli~i1UI t.:o111puh.:1. In Pruc, The Cmrrbritlge PhiiCJ.l'opJrica/ Socit:ly, Purl 2 (Apr.), pp. 230-23K
Wolfe, A., and Shen, J, P. 1991. A variable instruction stream extension to the VLIW architecture. In Proc .• Founh

Internal. Conf on Architectural Suppon for Programming Languages and Operating Systems (Santa Clara,

Calif, Apr.), pp. 2-14.

Wood, G. 1978. On the packing of micrtH>perations into micro-instruction words. In Proc., II th Annual I#Jrkshop
on Microprogromming (Asilomar, Calif. , Nov.), pp. 5!-55.

Wood, G. 1979. Global optimization of microprograms through modular control constructs. In Proc, , 12th Annual
Workshop on Microprogrammin8 (Hershey, Penn .), pp. 1-6.

Yau, S.S., Schowe, A .C. and Tsuchiya, M . 1974. On storage optimization of horizontal microprograms. In Proc.,
Seventh Annual Kbrkslwp on Microprogromming (Palo Alto, Calif). pp 98-106.

Yeh, TY, and Pan, Y.N. 1992. Alternative implementations of two-level adaptive branch prediction. In Proc.,
Nineteenrh Jntemat. Symp. on Comp. Architecture (Gold Coast, Australia, May). pp. 124-134.

Zima, H., and Chapman, B. 1990. Supercompilersfor Parallel and Vector Compucers. Addison-Wesley, Reading,

Mass

Blue Coat Systems - Exhibit 1034 Page 21

	1606_001
	1606_020

