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FOREWORD

This work is based substantially on a three-volume Confidential
Research Memorandum first issued by the National Advisory
Committee for Aeronautics in 1956 and declassified in 1958 for re-
lease to the general public. The material, which was of a funda-
mental character, has been updated for the present edition in the
light of subsequent developments in the field and-hrs been carefully
reexamined for current validity by members of the staff of the NASA
Lewis Research Center, Cleveland, Ohio. It is now published for
the first time in a single volume to meet continuing demand for the
information and to make it readily available in convenient form to
the engineering community both within and outside the National
Aeronautics and Space Administration,
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CHAPTER 1

OBJECTIVES AND

SCOPE

By Irvine A. JomnseN and RoserT O. BuLLock -

This first chapter of a report on the aerodynamic
design of axial-flow compressors presents the general
objectives and scope of the over-all report. The basic
problem of compressor design is outlined, and the
approach generally taken to accomplish its solution
is pointed out. The sixteen succeeding chapters in,
the report are summarized. \Am

INTRODUCTION @

Currently, the principal type of compressor
being used in aircraft gas-turbine powerplants is
the axial-flow compressor. Although some of the
early turbojet engines incorporated the centrifugal
compressor, the recent trend, particularly for high-
speed and long-range applications, has been to the
axial-flow type. This dominance is a result of
the ability of the axial-flow compressor to satisfy
the basic requirements of the aircraft gas turbine.

These basic requirements of compressors for
aircraft gas-turbine application are well-known.
In general, they include high efficiency, high air-
flow capacity per unit frontal area, and high
pressure ratio per stage. Because of the demand
for rapid engine acceleration and for operation
over a wide range of flight conditions, this high
level of aerodynamic performance must be main-
tained over a wide range of speeds and flows.
Physically, the compressor should have a minimum
length and weight. The mechanical design should
be simple, so0 as to reduce manufacturing time and
cost. The resulting structure should be mechani-
cally rugged and reliable.

It is the function of the compressor design
system to provide compressors that will meet
these requirements (in any given aircraft engine
application). This design system should be accu-
rate in order to minimize costly and time-consum-
ing development. However, it should also be as
straightforward and simple as possible, consistent
with completeness and accuracy.

In an effort to provide the basic data for such

691-564 O—65-2

a design system, and stimulated by the urgent need
for improving gas-turbine engines, research on
axial-flow compressors has been accelerated both

/\Nn this country and abroad. The results of this

research have been presented in numerous publi-
cations. In the majority of instances, each of
these reports presents only a fragmentary bit of
information which taken by itself may appear to
have inconsequential value. Taken altogether
and properly correlated, however, this information
represents significant advances in that science of
fluid mechanics which is pertinent to axial-flow
compressors. It was the opinion of the NACA
Subcommittee on Compressors and Turbines and
others in the field that it would be appropriate to
assimilate and correlate this information, and to
present the results in a single report. Such a
compilation should be of value to both neophytes
and experienced designers of axial-flow compres-
sors. Realizing the necessity and importance of
a publication of this type, the NACA Lewis
laboratory began reviewing and digesting existing
data. This report represents the current status
of this effort.

This chapter outlines the general objectives and
the scope of the design report and indicates the
chapters in which each specific phase of compressor
design information is discussed. The general com-
pressor design problem and the approach usually
taken to accomplish its solution are indicated.
The various aspects of compressor design to be
treated in the over-all compendium are outlined,
as well as the specific sequence in which they will
be presented.

Because axial-flow compressors are most ex-
tensively used in the field of aircraft propulsion,
and because this field requires the highest degree
of excellence in compressor design and perform-
ance, the attention in this over-all report  has
been focused primarily on the problems pertinent
to the axial-flow compressor of turbojet or turbo-

1
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2 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

prop engines. The results presented, however,
should be applicable to any class of axial-flow
COMPressors.

DESCRIPTION OF AXIAL.FLOW COMPRESSOR

The basic function of a compressor is to utilize
shaft work to increase the total or stagnation
pressure of the air. A schematic drawing of an
axial-flow compressor as installed in a turbojet
engine is shown in figure 1. In the general config-
uration, the first row of blades (inlet guide vanes)
imparts a rotation to the air to establish a specified
velocity distribution ahead of the first rotor. The
rotation of the air is then changed in the first rotor,
and energy is thereby added in accordance with
Euler's turbine equation. This energy is mani-
fested as increases in total temperature and total
pressure of air leaving the rotor. Usually ac-
companying these increases are increases in static
pressure and in absolute velocity of the air. A
part, or all, of the rotation is then removed in
the following stator, thus converting velocity
head to static pressure. This stator also sets
up the distribution of airflow for the subsequent
rotor. The air passes successively through rotors
and stators in this manner to increase the total
pressure of the air to the degree required in the
gas-turbine engine cycle. As the air is com-
pressed, the density of the air is increased and

r—~--Inlet guide vane

]
i r~— Rotor

—Stator

the annular flow area is reduced to correspond to
the decreasing volume. This change in area may
be accomplished by means of varying tip or hub
diameter or both.

In this compression process certain losses are
incurred that result in an increase in the entropy
of the air. Thus, in passing through a compressor,
the velocity, the pressure, the temperature, the
density, the entropy, and the radius of a given
particle of air are changed across each of the blade
rows. The compressor design system must pro-
vide an adequate description of this flow process.

HISTORICAL BACKGROUND

The basic concepts of multistage axial-flow-
compressor operation have been known for ap-
proximately 100 years, being presented to the
French Academie des Sciences in 1853 by Tour-
najre (ref. 1). One of the earliest experimental
axial-flow compressors (1884) was obtained by
C. A. Parsons by running & multistage reaction-
type turbine in reverse (ref. 2). Efficiencies for
this type of unit were very low, primarily because
the blading was not designed for the condition of
a pressure rise in the direction of flow. Beginning
at the turn of the century, a number of axial-flow
compressors were built, in some cases with the
blade design based on propeller theory. However,
the efficiency of these units was still low (50 to 60

Freure 1.—Axial-flow compressor in turbojet engine.
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OBJECTIVES AND SCOPE 3

percent). Further development of the axial-flow
compressor was retarded by the lack of knowledge
of the underlying principles of fluid mechanics.

The advances in aviation during the period of
World War I and the rapidly developing back-
ground in fluid mechanics and aerodynamics gave
new impetus to research on compressors. The
performance of axial-flow compressors was con-
siderably improved by the use of isolated-airfoil
theory. As long as moderate pressure ratios per
stage were desired, isolated-airfoil theory was quite
capable of producing compressors with high effi-
ciency (ref. 3, e.g.). Compressors of this class
were used in such machinery as ventilating fans,
air-conditioning units, and steam-generator fans.

Beginning in the middle 1930's, interest in the
axial-flow compressor was greatly increased as
the result of the quest for air superiority. Effi-
cient superchargers were necessary for recipro-
cating engines in order to increase engine power
output and obtain improved high-altitude aircraft
performance. With the development of efficient
compressor and turbine components, turbojet en-
gines for aircraft also began receiving attention.
In 1936 the Royal Aircraft Establishment in
England began the development of axial-flow com-
pressors for jet propulsion. A series of high-per-
formance compressions was developed, culminating
in the F.2 engine in 1941 (ref. 4). In Germany,
research such as that reported in reference 5 ulti-
mately resulted in the use of axial-flow compressors
in the Jumo 004 and the B.M.W. 003 turbojet en-
gines. In the United States, aerodynamic research
results were applied to obtain high-performance
axial-flow units such as that reported in reference
6. In the development of all these units, in-
creased stage pressure ratios were sought by
utilizing high blade cambers and closer blade
spacings. Under these conditions the flow pat-
terns about the blades began to affect each other,
and it became apparent that the isolated-airfoil
approach was inadequate. Aerodynamic theory
was therefore developed specifically for the case
of a lattice or cascade of airfoils. In addition to
theoretical studies, systematic experimental in-
vestigations of the performance of airfoils in cas-
cade were conducted to provide the required
design information.

By 1945, compressors of high efficiency could be
attained through the employment of certain
principles in design and development (refs. 2 and

7). Since that time, considerable research has
been directed at extending aerodynamic limits in
an attempt to maximize compressor and gas-
turbine performance. One of the major develop-
ments in this direction has been the successful
extension of allowable relative inlet Mach numbers
without accompanying sacrifices in - efficiency
(ref. 8). The subject of allowable blade loading,
or blade surface diffusion, has also been attacked
with a degree of success (ref. 9). Accompanying
improvements such as these have been an increas-
ing understanding of the physics of flow through
axial-flow compressor blading, and corresponding
improvements in techniques of aerodynamic
design. Therefore, in view of the rapid advances
in recent years, it appears appropriate to sum-
marize the present state of the art of compressor
design.

COMPRESSOR DESIGN APPROACH

The flow through the blading of an axial-flow
compressor is an extremely complicated three-
dimensional phenomenon. The flow in the com-
pressor has strong gradients in the three physical
dimensions {axial, radial, and circumferential),
as well as time. Viscosity effects in compressors
are significant and must be accounted for. In
general, the design control problem becomes
more critical as the level of compressor per-
formance is increesed. In order to provide
ease of application, the compressor design system
must reduce these complications and establish
rational and usable procedures.

Because of the complexity of the problem, no
complete solution is currently available for the
three-dimensional, time-unsteady, viscous flow
through an axial-flow compressor. In the main,
designers have resolved these difficulties by
making approximations that permit the use of
two-dimensional techniques. These approxima-
tions are usually based on the assumptions of (1)
blade-element flow and (2) axial symmetry.

The blade-element approach assumes that flow
in the blade-to-blade or circumferential plane
can be described by considering the flow about
blade profiles formed by the intersection of a
flow surface of revolution and the compressor
blading (fig. 2).

Axial symmetry assumes that an average value
can be utilized to represent the state of the air
in the blade-to-blade plane. Equations describing
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OBJECTIVES AND SCOPE 5

to satisfy the design-point velocity diagrams and
to obtain high efficiency. Basically, this selection
requires knowledge of loss and turning character-
istics of compressor blade elements. With the
compressor geometry established, the final step is
the estimation of the performance characteristics
of the compressor over a range of speeds and flows.
In view of the importance of off-design operation,
this procedure may be iterated so as to properly
compromise design-point operation and the range
requirements of the engine.

A more complete discussion of the compressor
design system adopted for this over-all report is
given in chapter III. The generalities of the
concepts involved have been given merely to
clarify the general approach to the problem.

OBJECTIVES OF DESIGN REPORT

The desire to provide a sound compressor design
system has formed the basis for most research on
axial-flow compressors. As a result, in this coun-
try and abroad, design concepts and design tech-
niques have been established that will provide
high-performance compressors. In general, these
various design systems, although they may differ
in the manner of handling details, utilize the same
basic approach to the problem. This over-all
report is therefore dedicated to summarizing and
consolidating this existing design information.
This effort may be considered to have three general
objectives:

(1) To provide a single source of compressor
design information, within which the major
(representative) contributions in the litera-
ture are summarized

(2) To correlate and generalize compressor
design data that are presently available
only in many different forms and in widely
scattered reports

(3) To indicate the most essential avenues
for future research, since, in a summariza-
tion of this type, the missing elements
(and their importance to the design system)
become readily apparent

In this compressor report, an effort is made to
present the data in a fundamental form. To
illustrate the use of these data, a representative
design procedure is utilized. However, since the
design information is reduced to basic concepts,
it can be fitted into any detailed design procedure

SCOPE OF DESIGN REPORT

Because of the complexity of the compressor de-
sign problem,® even the simplest design system
necessarily includes many different phases. In
order to summarize existing compressor infor-
mation as clearly and logically as possible, this
over-all compendium is divided into chapters, each
concerning a separate aspect of compressor de-
sign. The degree of completeness of these chap-
ters varies greatly. In some cases, rather com-
plete information is available and specific data are
given that can be fitted into detailed compressor
design procedures. In other cases, the informa-
tion is not yet usablein design. The chapters may
give only a qualitative picture of the problem, or
they may merely indicate the direction of future
research. Those aspects of the compressor prob-
lem which are considered pertinent are included,
however, regardless of the present applicability of
the information.

The following discussion provides an over-all
perspective of the material covered in this compres-
sor design compendium. KEach chapter is sum-
marized briefly, and the relation of each to the
over-all report is indicated.

In order to provide proper emphasis in the de-
sign summarization, it is desirable to establish and
evaluate the essential characteristics of compres-
sors. Chapter IT accomplishes this objective by
first evaluating engine requirements with respect
to airplane performance. These required engine
characteristics are then used to identify essential
requirements of the compressor. Characteristics
of the compressor that are directly related to en-
gine performance, such as compressor pressure
ratio, efficiency, airflow capacity, diameter, length,
and weight, are discussed. Other considerations
in compressor design, including off-design require-
ments and the relation of the compressor to the
inlet diffuser, combustor, turbine, and jet nozzle,
are discussed. Compressor design objectives,
based on these considerations, are summarized;
these objectives indicate the direction in which
compressor designs should proceed.

Chapter III provides a general description of the
compressor design system that has been adopted
for this report on the aerodynamic design of axial-
flow compressors. The basic thermodynamic
equations are given, and the simplifications com-
monly introduced to permit the solution of these
equations are summarized. Representative ex-
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6 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

perimental data are presented to justify these
simplifications. This chapter thus provides a
valid simplified model of the flow, which is the real
basis of a design system. The elements of the
resulting design system are then individually sum-
marized ; basic equations and techniques are given.
Finally, the limitations of this adopted system are
pointed out, and promising directions for future
research are indicated.

The literature on plane potential flow in cascades
is next reviewed (ch. IV). Many of the methods
are evaluated within the bounds of limited avail-
able information on actual use. Some of the
methods that have been used successfully are
presented in detail to illustrate the mathematical
techniques and to indicate the nature of the
actual computation. The potential-flow theories
discussed include both the design and analysis
problems and comsider both high-solidity and
low-solidity applications. Compressibility is con-
sidered, but effects of viscosity are ignored.

A necessary adjunct to this subject of two-
dimensional potential flow is the consideration
of two-dimensional viscous effects, presented in
chapter V. In this chapter, the problem of
boundary-layer growth in the calculation of
two-dimensional flow about compressor blade
profiles is reviewed. A qualitative picture of
boundary-layer behavior under various conditions
of pressure gradient, Reynolds number, and
turbulence normally encountered in two-
dimensional blade-element flow is presented.
Some typical methods for computing the growth
and separation of laminar and turbulent boundary
layers are presented. Analyses for determining
the total-pressure loss and the defect in circulation
are discussed.

Because of recognized limitations of theoretical
calculations such as those presented in chapters
IV and V, experimental blade-element data are
generally required by the designer. The available
experimental data obtained in two-dimensional
cascade are surveyed and evaluated in chapter
VI. These data (for conventional compressor
blade sections) are presented in terms of signifi-
cant parameters and are correlated at a reference
incidence angle in the region of minimum loss.
Variations of reference incidence angle, total-
pressure loss, and deviation angle with cascade
geometry, inlet Mach number, and Reynolds
number are investigated. From the analysis and

the correlations of the available data, rules and
relations are evolved for the prediction of blade-
profile performance. 'These relations are devel-
oped in simplified form readily applicable to
compressor design procedures.

Because of modifying effects (wall' boundary
layers, three-dimensional - flows,  etec.), blade-
element characteristics in an annular cascade
can be expected to differ from those obtained
in two-dimensional cascades. Chapter VII at-
tempts to correlate and summarize available
blade-element data as obtained from experimental
tests in three-dimensional annular cascades (pri-
marily rotors and stators of single-stage compres-
sors). Data correlations at minimum loss are
obtained for blade elements at various radial
positions along the blade span. The correlations
are compared with those obtained from two-
dimensional cascades (ch. VI). Design rules and
procedures are recommended, and sample calcula-
tion procedures are included to illustrate their
use.

As discussed in the preceding paragraphs,
chapters IV to VII deal with the two-dimensional
blade-element aspect of design. The design
problem in the meridional or hub-to-tip plane is
introduced and summarized in chapter VIII.
This meridional-plane solution presumes the
existence of the required blade-element data to
satisfy the velocity diagrams that are established.
The general flow equations are presented, together
with the simplifying assumptions used to deter-
mine the design velocity distribution and flow-
passage configuration. Techniques for accounting
for effects of viscosity (particularly for wall
boundary layers) are described. The application
of these design techniques is clarified by a sample
stage design calculation.

Since procedures for determining the design
velocity distribution and flow-passage configura-
tions in the meridional plane are usually iterative,
it is desirable to have approximate techniques
available to expedite this process of stage design.
The equations for radial equilibrium, continuity,
energy addition, efficiency, and diffusion factor,
as well as vector relations, are presented in chart
form in chapter IX. An example of the applica-
tion of the chart technique to stage design is
included.

In addition to the design-point problem, the
compressor designer is vitally concerned with
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OBJECTIVES AND SCOPE 7

the prediction of compressor performance over a
range of flow conditions and speeds. Three tech-
niques for estimating compressor off-design per-
formance are presented in chapter X. .The first
method establishes the blade-row and over-all
performance by means of the integration of blade-
element characteristics. The second method uti-
lizes generalized stage performance curves and a
stage-by-stage calculation. The third method,
which is based on the over-all performance
characteristics of existing compressors, may be
used to estimate the complete performance map
of a new compressor if the compressor design con-
ditions are specified. The advantages and limita-
tions of each of these three off-design analysis
techniques are discussed.

Chapter XI is the first of a group of three
concerning the unsteady compressor operation
that arises when compressor blade elements stall.
The field of compressor stall (rotating stall, indi-
vidual blade stall, and stall flutter) is reviewed.
The phenomenon of rotating stall is particularly
emphasized. Rotating-stall theories proposed in
the literature are reviewed. Experimental data
obtained in both single-stage and multistage com-
pressors are presented. The effects of this stalled
operation on both aerodynamic performance and
the associated problem of resonant blade vibra-
tions are considered. Methods that might be
used to alleviate the adverse blade vibrations due
to rotating stall are discussed.

Another unsteady-flow phenomenon resulting
from the stalling of compressor blade elements is
compressor surge. It may be distinguished from
the condition of rotating stall in that the net flow
through the compressor and the compressor
torque become time-unsteady. Some theoretical
aspects of compressor surge are reviewed in
chapter XII. A distinction is made between
surge due to abrupt stall and surge due to pro-
gressive stall. Experimental observations of surge
in compressor test facilities and in jet engines are
summarized.

The blade-element approach to the prediction
of off-design performance (as presented in ch. X)
is essentially limited to the unstalled range of
operation. Because of the complexity of the flow
phenomenon when elements stall, no quantitative
data are available to permit a precise and accurate
synthesis of over-all compressor performance in
this range. A prerequisite to the complete

solution of this off-design problem, however, is a
qualitative understanding of the phenomena in-
volved. An analysis of the part-speed operating

~ problem in high-pressure-ratio multistage axial-

flow compressors is: presented in chapter : XTIII.
The principal problems considered are poor low-
speed efficiency, -multiple-valued ' performance
characteristics at intermediate speeds, and poor
intermediate-speed surge or: stall-limit character-
istics, The effects of compromising: stage match-
ing to favor part-speed operation are studied.
Variable-geometry methods for improving part-
speed performance are discussed.

The design approach adopted for this series .of
reports is based essentially on two-dimensional
concepts, assuming axial symmetry and blade-
element flow. With the continuing trend toward
increasing requirements in compressors, however,
a condition may be reached where this simplified
approach may no longer be adequate. Therefore,
chapter XIV is devoted to a summarization of
those existing design methods and theories that
extend beyond the simplified-radial-equilibrium
axisymmetric design approach. Design proce-
dures that attempt to remove the two-dimensionaliz-
ing restrictions are presented. Various phases
of three-dimensional flow behavior that assume
importance in design -are discussed, including
radial flows, the over-all aspects of secondary
flows, and time-unsteady effects.

As pointed out in chapter X1V, secondary
flows represent one of the most critical aspects of
the three-dimensional design problems. In view
of the growing importance of this subject, exist-
ing literature on secondary flows and three-
dimensional boundary-layer behavior is summa-

rized in chapter XV. The material is discussed

from two aspects: (1) the principal results ob-
tained from experimental studies, and (2) the
theoretical treatment of the problem. The ex-
perimental phase is directed at providing a
qualitative insight into the origin and nature of
the observed secondary-flow phenomena. The
theoretical results include a summary and evalu-
ation of both the nonviscous #nd the boundary-
layer approaches.

Errors in blade-element design can seriously
affect over-all compressor performance, since these
errors not only cause deviations from desired
blade-row performance, but also alter the inlet
conditions to the next blade row. The effects of
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8 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

errors in the three basic blade-element design
parameters (turning angle, total-pressure loss, and
local speciic mass flow) on compressor perform-
ance are analyzed in chapter XVI. The results
are presented in the form of formulas and charts.
These charts may be used to indicate those design
types for which the design control problem is most
critical and to estimate the limits in performance
that can be anticipated for design data of a given
accuracy. Typical design cases are considered,
and significant trends are discussed. A second
phase of this chapter concerns accuracy of experi~
mental measurements. Proper interpretation and
analysis of experimental data require that meas-
urements be precise. This chapter presents a
systematic evaluation of the effect of measure-
ment errors on the measured compressor perform-
ance. These results, which are also presented in
chart form, can be used to estimate the required
accuracy of instrumentation.

One of the most important aspects of gas-
turbine engine design, particularly for applications
where high power output and wide operating
range are required, is that of compressor and tur-
bine matching. The existing literature on com-
pressor and turbine matching techniques, which
can be used to compromise properly the aero-
dynamic design of the compressor and turbine to
achieve the best over-all engine, is summarized
in chapter XVII. Both single-spool and two-
spool engines are considered. For equilibrium
operation, the basic matching technique, which
involves the superposition of compressor and
turbine maps, is presented, as well as a simplified

and more approximate method. In addition, a
simple technique for establishing an engine
operating line on a compressor map is reviewed.
An available technique for matching during
transient operation is also discussed. The use of
this method permits engine acceleration: charae-
teristics and acceleration time to be approximated
for either single-spool or two-spool engines.

CONCLUDING REMARKS

The subsequent chapters in this report sum-
marize available information on the aerodynamic
design of axial-flow compressors. It is recog-
nized that many techniques have been proposed
for describing the flow in an axial-flow compressor
and for accounting for the complex flow phenomena
that are encountered. Obviously, consideration
of all of these techniques is impossible. However,
the available literature in the field is reviewed
extensively, and the material presented is con-
sidered to be representative and pertinent. In
general, the attempt is made to present the in-
formation in its most basic form, so that it may
be fitted into any generalized design system.

Because of the many difficult and involved
problems associated with compressor design, very
few of these underlying problems are treated with
finality. In some cases, the problem is only
partly defined. Nevertheless, many successful
designs (by present standards, at least) have been
made with the use of this information. The voids
in the information clearly indicate the research
problems for the future.
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CHAPTER II
/ COMPRESSOR DESIGN REQUIREMENT®“
by

\&ﬂ'

The important requirements of azial-flow compres-
sors for aircraft gas-turbine engines and the reasons
Sor these requiremenis are reviewed. Attention is first
directed to the over-all requirements of the engines
themselves; then the desired properties of compressors
are examined.

Cycle analyses of the turbojet and turboprop engines
are presented to illustrate the effects of compressor
pressure ratio and efficiency on engine performance.
The significance of high flow capacity in compressors
18 indicated. The compromises in compressor design
dictated by aerodynamic design limifations in the
compressor itself as well as aerodynamic and struc-
tural design limitations in other components are in-
vestigated. The pertinent off-design problems resuli-
ing from the necessity of matching the compressor
with the inlet and with the turbine over a range of
flight conditions are enumerated, and some available
methods of coping with these problems are discussed.
From these studies, the basic objectives of a com
pressor design system. are evolved.

INTRODUCTION

The information presented in this report is pri-
marily concerned with the problems encountered
in designing axial-flow compressors for gas-turbine
engines used in aircraft propulsion. In order to
enumerate these problems, the important charac-
teristics required of such compressors should be
defined. Reviewing these requirements is the
object of this chapter. o

A compressor, being only one component of an
engine, must have characteristics consonant with
those required of the engine. The requirements
of an engine, in turn, are dictated by the demands
of the airplane. Before the desired properties of
a compressor can be given, therefore, the inter-
relations bétween an airplane and its engines must
be examined. Similarly, the important compres-
sor requirements are found from a study of the
interrelations between the engine and its com-

§.\}’/

By RoserT O. Burrock and Ernst 1. PrAssE

pressor. In the strictest sense, all these inter-
relations are obtained only after a detailed study
of many airplane-engine designs and flight paths.
Fortunately, however, broad design objectives
may be indicated by a more cursory analysis
such as that used in the present report.

What an airplane requires of its engine is
viewed from generalized flight situations to
obtain the broad objectives for engine design.
The important engine variables such as specific
weight, specific fuel consumption, and thrust per
unit of frontal area are thus defined. The rela-
tive importance of these engine performance
variables is then examined with regard to the
flight conditions to which the airplane will be
subjected.

Compressor characteristics having a direct bear-
ing on engine performance are then discussed.
Attention is given to compressor efficiency, pres-
sure ratio, and flow capacity and their quantita-
tive effects on specific fuel consumption, size and
airflow capacity of engine components downstream
of the compressor, and turbine aerodynamic limits.
Other important considerations in compressor
design are discussed, including the mutual prob-
lems of compressor, turbine, combustor, and inlet
diffuser, for both design and off-design conditions.
Exaet quantitative relations are developed when-
ever this can readily be done; otherwise, qualitative
results are presented and representative examples
are used to underline the trends.

Present compressor design objectives, based on
the requirements indicated by the analyses of this
report, are summarized. These objectives indicate
the direction in which compressor designs should
proceed.

SYMBOLS

The following symbols are used in this chapter:
A area, sq ft
B engine-weight parameter (eq. (7b))
9
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coefficient of skin friction

jet-nozzle velocity coefficient

coefficient of maneuver

specific heat at constant pressure, Btu/
(Ib)(°R)

diffusion factor (eq. (29))

diameter

drag, 1b

pressure-ratio parameter (eq. (20))

equivalent shaft power, hp

thrust, 1b

thrust specific fuel consumption, 1b/(hr)
(b)

fuel-air ratio

pressure-ratio parameter (eq. (16))

acceleration due to gravity, 32.17 ft/sec?

total or stagnation enthalpy, Btu/lb

fuel heating value, Btu/lb

mechanical equivalent of heat, 778.2
ft-1b/Btu

fraction of gross airplane weight taken
by structural weight and useful load,
(Wt W)W,

lift, 1b

length, ft

Mach number

rotational speed, rpm

total or stagnation pressure, lb/sq ft

static or stream pressure, 1b/sq ft

pressure-ratio parameter (eq. (13))

gas constant, 53.35 ft-1b/(Ab) (°R)

range of flight, ft

radius

power specific fuel consumption, Ib/hp-hr

total or stagnation temperature, °R

rotor speed, ft/sec

air velocity, ft/sec

weight

weight flow, 1b/sec

airplane acceleration in direction of flight,
ft/sec?

air angle, angle between air velocity and
z-axis, deg

turbine blade metal density, lb/cu ft or
Ib/cu in.

ratio of specific heats

ratio of total pressure to NASA standard
sea-level pressure of 2116 Ib/sq ft

angle between thrust axis and direction
of flight, deg

] efficiency

0 ratio of total temperature to NASA
standard sea-level temperature of
518.7° R

P density, lb/cu ft

oV air weight flow per unit flow area,
(Ib/sec)/sq ft

g solidity, ratio of chord to spacing

T turbine blade centrifugal stress, psf or psi

¥ turbine blade taper factor

w angular velocity of rotor, radians/sec

Subsecripts:

ad adiabatic

B combustor

C COIMpressor

d design value

e engine

eff effective

F frontal

f fuel

g gross

h hub

1 airplane takeoff condition or that after
refueling

J jet nozzle

M mechanical power

min minimum

n nacelle

n-fr nacelle-friction

PT power turbine

pr propulsive

ref reference

sl NASA standard sea-level conditions

st structure

T turbine

t tip

% useful

w wetted

z arbitrary engine station

z axial direction

Stations in engines (fig. 9):

DB WY ~O

free stream

compressor inlet

combustor inlet

turbine inlet

turbine discharge for turbojet engine
turbine discharge for turboprop engine
exhaust-nozzle exit
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12 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

the flight Mach number from 0.8 to 2.0 also in-
creases the density of the air in the engine because
of the effects of ram. In this example, the specific
weight is about halved for this increase in flight
Mach number.

The curve for the flight Mach number of 0.8 is
also more or less applicable to turboprop engines.
The sea-level static value of specific weight for
these engines, however, is usually much lower than
that for the jet engine; its value depends as much
on the selection of the propeller as on the engine
itself.

The term F/W,, which represents the thrust
required for a unit gross weight, is a function of a
number of variables. The trends may be con-
veniently studied by the following procedure: At
any point in flight, the thrust required of the en-
gines is determined by the relations

F cos e=d+W,§

L=C,W,—F'sin ¢

where ¢ is the angle between the thrust axis and
the direction of flight, d is the dissipative drag
force, Wya/g is the component of body force in the
direction of flight, and C,W,is the component of
body force perpendicular to the direction of flight.
These expressions may be combined to give

La
Cm+z?’ _F -
chos e+ sin ¢ W

where L/d is the ratio of the aerodynamic lifting
force to the drag force. When the airplane is in
level flight and moving with a constant velocity,
then C,=1 and a=0. Moreover, when the
thrust axis is along the direction of flight, then
¢=0. Under these conditions, equation (2)
becomes

s (28)

IS

For the sake of simplicity, the complete form of
equation (2) is expressed by analogy as

b
' @),

(2b)

Because (L/d).,,is a function of alarge number of
variables, its trends cannot be generally plotted
as a fuﬂctlon of altitude and flight Mach number
alone without leaving some misleading impressions.
The trends described in the following pa.ra,graphs
may be noted, however.

As the design altitude of the airplane increases,
the maximum attainable value of L/d tends to
increase. This trend resulis from increases in the
aspect ratio of the wings and from the fact that
the fuselage drag becomes a smaller portion of the
total drag. High values of L/d may be obtained
with subsonic airplanes during level flight. Values
in the neighborhood of 20 are not uncommon, and
values approaching 30 have been sought. Air-
planes designed for high values of L/d with
subsonic flight, however, would have very poor
values of L/d at supersonic flight. In airplanes
designed exclusively for supersonic flight, values
of L/d approaching 6 have been observed in some
model tests, and reasonably higher values might
be obtained in the future. Again, the value of
L/d may increase with altitude. In general, an
airplane designed exclusively for supersonic flight
would have undesirably low values of L/d at
subsonic speeds.

When reasonably good performance is desired
at both subsonic and supersonic speeds, the
attainable values of L/d must be compromised
for both regimes. For subsonic speeds, the value
of L/d may be expected to beslightly more than 10.
The corresponding value of L/d for supersonic
flight may be of the order of 3 or lower. The
possible increase in L/d with design altitude is
again noted for both regimes.

At takeoff conditions, the value of (L/d)., can
become very low for all types of airplanes. With
vertical takeoff, the thrust of the engine must
overcome the acceleration due to gravity; the value
of F/W,in equation (2b) must then be greater than
unity. The magnitude of (L/d)., is therefore less
than unity. Less stringent takeoff conditions
permit the value of (L/d)., to be somewhat im-
proved. For an ordinary takeoff, the value of
(L/d)ssr may be of the order of 4.

A high-maneuverability requirement also re-
duces the value of (L/d).;,. A 2gturn,for example,
makes the value of C, equal 2 in equation (2),
and (L/d).s could be reduced by more than 50
per«znt,
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COMPRESSOR DESIGN REQUIREMENTS 13

A study of the combined effects of specific
engine weight and (L/d).s,, on W,/W, may now be
made by combining equations (1) and (2b) to
give

W,

w,_ I (1a)
Q).

Since the gross weight at any instant equals the
initial weight minus the fuel expended (W,=W, ,—
AW,), equation (1a) may also be written as

AW] Wf; {
an i W" 4

(1b)

W,
w, F (1
"

d eff

The initial gross weight of the airplane is the
sum of the structural weight, useful weight or
payload, initial fuel weight, and engine weight:

Wg, =V s +Wu+WJ. 1+We (3)

Using this equation to eliminate W, , in the right
side of equation (1b) (setting W, +W,=kW, )
gives

W, AW,
w., F |!I"w, 00
W,. (L W,
’ (d )af! _AW, F @
~w,, (L)
d eff,

Some trends of this relation are shown in figure 5.
where W./W, . is plotted against (W,/F)/(L/d).,.
One of the curves of this figure applies to conditions
at or shortly after takeoff, where AW,/W, ,=~0
and W/W, ,=(W,/F)/(L/d).;. The other four
curves apply to the case where AW,/W, ,=—0.4;
that is, after 40 percent of the fuel weight has been
expended. These curves successively represent
the condition where k= (W, +W,)/W, =0.3,
0.4, 0.5, and 0.6.

For conditions at or shortly after takeoff, the
magnitude of W,/W, , is independent of k and
varies linearly with (W,/F)/(L/d).;,;,, 'When AW,/

=
o
w
z .4
wn
w
2
o o
Y4
=
% %
B -Y
e 5
.08
E g 06
o .
g 7
‘oab-LW, /W,
2 ./
o 1
S 0 k
5 .02 »O g
2 \\ ~~ 4
e 44 ~.3
.01 02 .04 .06.08 ) .2 4 6 8|
W./F
(L/d)eff

F1gurE 5.—Graphical representation of equation (4).

W, =0.4, the assumption that W,/W,, is pro-
portional to (W./F)/(L/d).,, is again a good
approximation as long as (W,/F)/(L/d).s is 0.2 or
smaller for £=0.6. Compared with the takeoff
value of W./W, , however, W.,/W, , is reduced
about 12 percent for £=0.6 and 30 percent for
k=0.3. For the same critical flight conditions (a
given value of (W./F)/(L/d).y), the required
engine weight decreases as AW,/W,,, is increased
and as k is decreased. Near the end of the flight,
equation (4) becomes

k
w.
7

@

For reasonably small values of (W,/F)/(L/d).y,
the required value of W,/W,, is then approxi-
mately &k times its required value at takeoff for
the same magnitude of (W,/F)/(L/d).s.

The value of W,/W, , required in an airplane is
determined by the values of W./F, (L/d).;, and
AW, /W, , at the critical flight condition. The
value of the right side of equation (4) here is the
maximum encountered for the flight. At all other
flight conditions for the aircraft, the value of W,/
W, . s, of course, the same, and the requirements

W,
W,

&lh,§|§

(

efs 1o~
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14 AERODYNAMIC DESIGN OF AXJAL-FLOW COMPRESSORS

of equation (4) are then satisfied either by reducing
F by throttling or by reducing (L/d),.,, below its
attainable value.

Since the attainable value of (L/d).,, s relatively
low at takeoff, the requirements at takeoff may
determine the value of W,/W, , For example, if
the takeoff value of (L/d),,,is 4.0 and the sea-level
static value of W, /F is 0.4, the value of W, /W, ,
is 0.10 (fig. 5). Suppose now that the value of
(L/d)esr becomes 20 shortly after takeoff. Since
W./W,,: is unchanged, the required value of W./F
is 2.0 (fig. 5). The value of F must be reduced
either by throttling the engine or by increasing
the flight altitude. The value of W,/F of 2.0
corresponds to a value of (W,/F)/(W,/F),.,of about
5.9 (fig. 4). For the flight Mach number of 0.8,
the ordinate of figure 4 is 5.9 at the altitude of
about 52,000 feet. As long as the flight is below
this altitude, the takeoff condition would govern
the selection of engine weight in this particular
example. Suppose, however, that the airplane
(with £=0.5) must achieve the altitude of 63,000
feet and the Mach number of 0.8 after 40 percent
of the fuel is expended. If the takeoff value of
W./F is still 0.4, the value of W,/F at the required
flight condition is now 3.4. Moreover, if the value
of (L/d).sy is still 20, the required value of W,/W, ;
is 0.145. Since W,/W, , only had to be 0.10 at
takeoff, the condition at 63,000 feet would now
determine the required engine weight. Notice
that W, /W, , would have to be reduced by 0.045
in order to compensate for the increased engine
weight if £ remains at 0.5. At the same time,
however, the takeoff requirements can be made
more stringent; (L/d)., can be reduced to 2.76 if
the structural strength of the airplane is adequate.

A requirement of supersonic flight may decide
the value of W,/W, , because the attainable value
of (L/d).s is comparatively low. Although super-
sonic flight itself tends to decrease W,/F (fig. 4),
this trend may be offset by the need for making
the engines operate at high flight altitudes.

(High altitudes may be desired to make (L/d),,

as high as possible, to obtain a reasonable level
of wing loading for takeoff and landing, and to
reduce aerodynamic heating.) The low value of
(L/d).s; combined with the high values of W,/F at
high altitudes results in high values of W,/W, ..

Consider the case where £=0.5 and (L/d).,=
4.0 for level flight at the Mach number of 2.0.
If the value of W,/F is again 0.4 at static sea-level

conditions, it would have the value of 1.2 at the
altitude of about 56,000 feet. . In order to meet
these conditions after 40 percent of the fuel is
exhausted, W,/W,, must be 0.27 (fig. 5). An
additional requirement of high maneuverability
(Ca>1) would have to be answered by an added
increase in engine weight. Even if the value of
Cn is only 1.25, then (L/d).;, becomes 3.2 and
We/W,, , is increased to 0.35. Only 15 percent of
the gross weight could then be allotted for fuel.

This brief sampling shows how engine weight
depends on the conditions of flight. Of particular
interest is the increase in W,/W,;, ; associated with
increases in flight altitude and Mach number.
It is under these conditions that reductions in
W./F are most appreciated. In the first of the pre-
ceding examples (subsonic flight at comparatively
low altitudes), the value of W./W, ; was 0.1 for
W./F=0.4 at sea-level static conditions. A 50-
percent reduction in specific engine weight would
reduce W./W, , by 0.05. This saving in weight
could be distributed among useful weight, fuel
weight, and structural weight. For the last ex-
ample, on the other hand, such a reduction in
specific engine weight would reduce W,/W, by
0.19. A much larger weight movement is available
to the other parts of the airplane. The fuel
weight, for example, could be more than doubled.
To- meet the requirements for high altitude or
supersonic flight, every effort should be made to
make W,/F as small as possible.

ENGINE EFFICIENCY

The previous discussion was centered about
the size of engines needed to meet certain thrust
requirements. Of equal importance is the weight
of fuel required to meet the various range require-
ments demanded of the airplane. The range
requirements may be examined with the aid of
the familiar Breguet range equation, which can
be written as

R==78,(3) i () @

where the bars denote average values over the
entire flight path.  This expression is modified
by using equation (3); it then becomes

L

T w— - W‘
JH, (7 wn,ln(k+%) (58)
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COMPRESSOR DESIGN REQUIREMENTS 15

Since W,/W,,, is determined from equation (4)
at the most critical flight condition, equation (5a)
may be written as

r g W - N
"F .
1—k—(—£—~
T _L_ - — ___‘_i_____
R JH,(;)Wq,ln {1 i >
F AW,
(L) W
. ery o J
(6)

It is immediately noted that the range of flight is
_proportional to the average efficiency of the engine
and the heating value of the fuel used. In other
words, the weight of fuel required for a given mis-
sion is inversely proportional to both the heating
value of the fuel and the engine efficiency. The
range is also proportional to the average value of
(L/d)esr over the entire flight path. Finally, the
range is proportional to thefunction in the brackets.

The trends of this function are illustrated in
figure 6. The abscissa of this figure is (W,/F)/
(L/d)esr at the most critical flight condition of the
airplane. The ordinate is the calculated range
divided by the range when (W,/F)/(L/d).;;,=0.1,

k=0.5, and AW,/W;,=0. The curves represent

conditions where £ is again 0.3, 0.4, 0.5, and 0.6,
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F1GURE 6.——Graphical representation of equation (6).

and where AW,/W,, is 0 and 0.4 at the critical
flight condition. These curves show that there
is always an incentive for making (W./F)/
(L/d) o, a3 low as possible, but the need for low spe-
cific engine weights becomes more imperative as
(W./F)[(L/d) 4y increases above 0.1, This state-
ment is particularly true for the higher values of &
and for situations where the critical flight condition
is reached before an appreciable amount of fuel is
used.

With respect to range, therefore, light engines
are required whenever high-altitude flight is
required; when stringent takeoff conditions are
imposed; when a high degree of maneuverability
is demanded ; or when high supersonic flight speeds
must be attained. Notice in this connection
that high design flight altitudes may permit the
attainment of relatively high values of (L/d)..
and range, and that low values of W./F are re-
quired for this accomplishment.

As previously noted, it frequently happens
that some of the design requirements for light
weight are incompatible with some of the require-
ments for high efficiency. As shown by equation
(6), the range is directly proportional to the aver-
age efficiency during flight. Decreases in engine
weight that unduly prejudice the efficiency are
therefore unwelcome. At point A of figure 6,
a decrease in specific engine weight of 10 percent
improves the range about 3 percent, if there is no
change in (L/d),;y or 3. If, however, the effi-
ciency also decreased 3 percent, there would be
no change in range. At this point, then, the
efficiency would not be upset in order to obtain
trifling improvements in engine weight. At
point B, on the other hand, a 10-percent reduc-
tion in specific engine weight increases the range
by about 23 percent. In this case a 23-percent
reduction in engine efficiency is equivalent to a
10-percent reduction in specific engine weight.
Significant reductions in efficiency could be tol-
erated here to obtain moderate reductions in en-
gine weight.

A comparison of the relative effects of a small
change in efficiency and a small change in specific
engine weight may be directly obtained by differ-
entiating equation (6) with respect to 3, and W./F.
The values of k& and (L/d),,, are assumed to be fixed,
along with the value of AW,/ W,,, since these
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16 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

are the values at the most critical flight condi-
tions, which determine W,./W,

o(R)
R =1 (7a)
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where

The implications of this equation are shown in
figure 7, where the ordinate is

o R) 9(n.)
R
(%) AP
W, W,
F F

and the abscissas and parameters are the same as
" those in figure 6.

For a long-range airplane, where (W,/F)/
(L/d)e;r may be of the order of 0.05, a l-percent
increase in efficiency increases the range 1 per-
cent (eq. (7a)); a 7-percent decrease in specific
engine weight is necessary to obtain the same range
increase if k=0.5 (fig. 7(a)). If high-altitude
requirements cause W,/F to be doubled, the 1-
percent increase in efficiency is about equivalent
to a 3-percent decrease in specific weight. For
supersonic flight, with: (W,/F)/(L/d).r=0.33, k
=0.5, and AW,/W,,,=0.4, a 1-percent increase in
efficiency is equivalent to a ¥%-percent decrease
in specific engine weight (fig. 7(b)). A maneuvera-
bility requirement of C,=1.25 increases (W,/F)

[(L/d)eyy to 0.413. Here, l-percent -change in
efficiency is equivalent to about 0.2-percent
change in specific engine weight. If the required
altitude is increased by 15,000 feet, however,
specific engine weight must be reduced, regardless
of the consequences, because the required engine
weight would be so large that there would be no
room for fuel. ;

When engine efficiency must be compromised
with specific engine weight, the design and in-
tended use of the airplane determine the direction
and the degree of the compromise. When range
is the main objective and (L/d)., and the required
weight of fuel are large, some liberties can be
taken with specific engine weight to favor effi-
ciency. There is the provision, of course, that the
loss in attainable altitude does not reduce the
value of (L/d).; by a significant amount. At the
other extreme, when the combination of high
flight speeds, high altitudes, and maneuverability
make (L/d).;, low and tend to make W,/F high,
the compromise must favor specific engine weight.

THRUST PER UNIT FRONTAL AREA

Part of the drag d of the airplane results from
the drag of the inlet supplying the engine with air
and from the drag of the nacelle or that part of
the fuselage housing the engine. If this drag is

-denoted by d,, then

d=dn+d0
Equation (2) could then be written as
L-a
L dn Wl

Z cos e—7 -4-8in e

The term on the left side is again denoted by

1/(L/d)eyr. For small values of ¢, the following
can be written:
La
Crtag_r (-%)-E (1= &
L W, F] W, Ar F
do Ap

When d./Ar is high, obtaining low values of
d./F requires high values of F/Ar. Since the
highest values of d./Ar are usually obtained at
supersonic flight conditions, large values of F/Ar
are particularly desired for supersonic flight.
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Figure 7.—Graphical representation of equation (7b).

The drag of the inlet mainly consists of an
“additive drag” (ref. 10), a drag resulting from
the pressure forces acting on the outer curved
portion of the inlet (fig. 8), and the drag resulting
from friction. In some cases, for supersonic
flight, it may be desirable to bypass some of the
air entering the inlet to the outside. In this case
a “bypass” drag is added. The “additive” and
“bypass” drags depend on the matching of the
inlet with the engine, which is discussed in more
detail in a later section.

The drag resulting from pressure forces depends
on the difference between the maximum frontal
area of the engine housing and the open area of the
inlet. It also depends on the slope and curvature
of the outer surface of the inlet. The open area
of the inlet depends on the mass-flow requirements

91-364 O-63-3

____

Obligue shocks N
N

AN
A

Ficure 8.—Representative supersonic inlet.

of the engine and the speed of flight; its order of
magnitude is given by

A=
(PoVo)mm

where (poVo)min 18 the minimum value of pVyp
anticipated for steady flight. The maximum .
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18 AERODYNAMIC DESIGN OF AXIJAL-FLOW COMPRESSORS

frontal area of the engine housing has usually been
determined by the frontal area of the engine with
its accessories. Small engine diameters, and in
particular small compressor diameters, are there-
fore desired to keep the drag resulting from
pressure forces from being greater than it has to be.

It should -be noted in passing that the inlet
design itself usually requires the frontal area to be
greater than the capture area for supersonic
flight. The illustration of figure 8 shows such a
design. This requirement follows from the neces-
sity of meeting certain area requirements within
the inlet and from the necessity of avoiding
abrupt changes in flow direction within the inlet.
Some requirements of variable inlet geometry
aggravate this trend.

Most of the rest of the drag associated with an
engine installation is due to friction. An estimate
of the magnitude of the friction drag is given by

the formula
dn-lr= Ofr(%’YPoM 3d.) (8

As shown in reference 11, a value of Cy, of 0.00168
is in agreement with available data. At a Mach
number of 1.0 at 35,000 feet, this formula then
becomes

dnrr=1.84 D1,

In the interest of keeping this drag low, both the
diameter /) and the length [ of the engine should
be small. In particular, small compressor lengths
and diameters are desired.

Another component of drag is that resulting from
the pressure forces at the rear end of the engine.
This drag is much more closely related to other
engine components than it is to the compressor,
however, and it is therefore dismissed from further
consideration.

OTHER ENGINE REQUIREMENTS

Besides affecting airplane drag, the length and
diameter of the engine may affect the structural
weight of the airplane. In particular, long engines
require a long and fairly rigid fuselage, which adds
weight to the airplane without noticeably im-
proving the lift-drag ratio.

Engine weight also affects the structural weight
and other properties of the airplane, because the
concentration of weight in the engine must be sup-
ported by the airplane. In fuselage installations,
for example, the design of the airplane can be
unfavorably compromised to keep the center of

gravity of the airplane and its load in the right
location. For nacelle or pod installation, the
wings must be strong enough to support the en-
gines forlanding shocks or other violent maneuvers.
Again, light engines tend to lessen structural
weight. .

The manner in which compressor design influ-
ences the length and diameter of the engine is
treated in subsequent sections of this chapter.
The relations between compressor diameter and
the diameters of the other components of the en-
gine are studied and some of the factors involved
in engine length are enumerated.

EFFECTS OF COMPRESSOR PRESSURE RATIO,
COMPRESSOR EFFICIENCY, AND FLIGHT CON-
DITIONS ON ENGINE PERFORMANCE

For a specified performance of its components,
the efficiency and specific thrust of an engine are
calculated by cycle analyses (refs. 12 and 13).
The analysis presented here is similar to that of
these references. Sketches of typical turbojet- and
turboprop-engine installations with numerical
stations are shown in figure 9. (Note that the con-
dition of the engine gases after the work needed
to drive the compressor has been extracted from
the turbine can be indicated at station 4 of the
turboprop engine, and that station 5 is at the
discharge of the final turbine. For the turbojet
engine, stations 4 and 5 coincide.)

The efficiency of each component is fixed in
this analysis. The effect of compressor pressure
ratio is examined for a range of flight conditions
and turbine-inlet temperatures. The gas charts
of reference 14 were used for determining gas
properties.

ASSUMPTIONS USED IN CYCLE ANALYSES

The following values were assumed for the sev-
eral variables involved in the cycle analyses of
both the turboprop and the turbojet engine:

Flight Mach
number, Mo

wN, o
ook
S8R

Compressor adiabatic efficiency, ad,0-ccveecmev-- 0. 88

Combustion efficiency, primary burner, 75 «..--
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F1cUure 9.—8ketches of turbojet- and turboprop-engine configurations showing stations used in analysis.

Heating value of fuel, H, Btu/lb_________._____ 18, 570
Hydrogen-carbon ratio of fuel.._ .. . _____._____ 0. 167
Temperature of fuel injected as a liquid, 7T, °R_ . 600
Total-pressure ratio across primary burners,

Py, oo 0.95
Turbine adiabatic efficiency, 744, Teweee oo oo 0. 90
Exhaust-nozzle velocity coefficient, Ci_._..______ 0. 98

No accounting was made for turbine cooling or
other cooling that might be necessary at the high
temperature levels. For the afterburning turbo-
jet engine, the combustion efficiency of the after-
burner was 0.95, the total-pressure ratio across the
afterburner was 0.95, and the afterburner-outlet
total temperature was 3500° R.

For the turboprop engine, the combined propel-
ler and gearbox efficiency was assumed to be
0.86. In addition, the division of power between
the propeller and jet was assumed to be such that
the pressure ratio P;/p, was 1.087 to obtain a
reasonable nozzle area for the sea-level static case.
For the other flight conditions considered, P;/p,

was assumed equal to P,/p,, a condition approxi-
mating that for maximum power.

The selected value of compressor efficiency
appears to be attainable up to at least a com-
pressor pressure ratio of 12. The efficiency of the
turbine is high compared with the values observed
in engine tests. It is comparable, however, to
experimental efficiencies observed with uniform
inlet conditions on cold-air turbines.

EFFECTS OF COMPRESSOR PRESSURE RATIO AND FLIGHT
CONDITIONS ON TURBOPROP-ENGINE PERFORMANCE

Cycle analysis of a turboprop engine yields
the power delivered to the propeller, the thrust
developed by the jet nozzle, and the fuel burned
per pound of engine air. To put the total devel-
oped power of the propeller-jet combination on a
common basis, it is necessary to use the propeller
propulsive efficiency 7,,. A power specific fuel
consumption sfc may then be determined.
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20 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

For level flight, thrust F'is related to developed
power by the equation

Fe (Propeller powTe}l;) -+ (Jet power) ©)

The propeller power is the power delivered to the
propeller multiplied by the efficiency of the pro-
peller and reduction gear. The jet power equals
the thrust developed by the jet multiplied by the
airplane flight speed V,. Hence, the thrust may
be related to quantities obtained directly from
cycle analysis by writing equation (9) as

F=’7m‘

><[(Power delivered to propeller)-}-(Jet power/n,,)]

0

(10)

The term in brackets is defined as the equivalent
shaft power eshp of the engine, which depends to
some extent on the combined propeller-gearbox
efficiency 7,,. Since the jet power is usually small
compared with the propeller power, the equivalent
shaft power is essentially unaffected by minor
changes in this efficiency; therefore, the results
are expressed in terms of equivalent shaft power.
Equation (9) is not applicable to the static sea-
level case, since Vy=0. For this condition, the
equivalent shaft power is simply the power deliv-
ered by the power turbine, and the value of the
thrust depends on the propeller selection.

Curves showing specific equivalent shaft power
eshp/w, against power specific fuel consumption
sfc and over-all engine efficiency 7,, with com-
pressor total-pressure ratio P/P, and turbine-
inlet total temperature T; as parameters, are pre-
sented in figure 10. Specific fuel consumption is
used as the main variable for the abscissas because
this term is more generally used than engine
efficiency. These two quantities are related by

the equation
_ (550) (3600)

1=’ J (sfo)

The efficiency is practically independent of the
heating value of the fuel, while the specific fuel
consumption is inversely proportional to the fuel
heating value. Figures 10 (a) and (b) represent
sea-level flight at Mach numbers of 0 and 0.8,
respectively, while figure 10(c) represents condi-
tions for a flight Mach number of 0.8 in the strat-

' osphere. In figure 11, the curves of figure 10 are

repeated, except that compressor pressure ratio is
replaced by enthalpy rise in the compressor AH,
as one parameter. This parameter is used because
the enthalpy rise in a compressor tends to be more
constant over a range of flight conditions than
pressure ratio when the mechanical speed of the
engine is fixed.

The general properties of the turboprop engine
can be noted from figures 10 and 11. The turbo-
prop engine is fundamentally capable of develop-
ing high shaft efficiency or low specific fuel con-
sumption. The net efficiency of the engine is the
product of the shaft efficiency and the efficiency
of the reduction gears and the propeller. The
shaft efficiency at a given turbine-inlet tempera-
ture increases with flight speed, because ram effi-
ciently increases the cycle pressure ratio. Shaft
efficiency also increases with altitude up to the
tropopause, because the inlet-air temperature is
reduced and the engine total-temperature ratio
T,/T; is increased. The specific power of the
engine follows similar trends.

The actual power developed by the engine at
various flying conditions is the product of specific
power and the mass flow of air through the engine.
The mass flow of air, in turn, depends on the
value of w46/ of the compressor and the total
pressure and temperature at the compressor inlet.
The way the value of w46/ changes with flight
conditions depends on the characteristics of the
compressor and the value of the equivalent speed
N/y/6. One observed variation of w+/6/s with N/y/8
is shown in figure 12. In this figure the ratio of
w+/8/8 to its design (sea-level) value is plotted
against the ratio of N/y/@ to its design value.
This curve represents the general trend, although
the specific values change from one compressor
design to another.

At a flight Mach number of 0.8 in the strato-
sphere, the value of 8 is about 0.92. For a
constant value of mechanical speed N, the value
of »\0/8 is of the order of 106 percent of its
sea-level value. At an altitude of 40,000 feet
and a flight Mach number of 0.8, the value of
5/y8 is 0.300. The weight flow through the
engine is thus about 32 percent of its sea-level
value (including the effects of the assumed diffuser
recoveries). For a compressor enthalpy rise of
110 Btu per pound and a turbine-inlet temperature
of 2000° R, the power developed by an engine
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(a) Altitude, sea level; flight Mach number, 0.

(b) Altitude, sea level; flight Mach number, 0.8.

(¢) Altitude, stratosphere; flight Mach number, 0.8.

F1eurE 10.—Thermodynamic performance of turboprop engines (compressor pressure ratio as a parameter).

under these conditions is about 55 percent of its
value at sea-level static conditions.

Because of the low power at high altitudes, the
specific weight of turboprop engines (including
the propeller) may vary between 1.5 and 3.0 at
40,000 feet. When flying at sea level, the cor-
responding specific weights are about half these
values. At takeoff, the specific weights depend
on propeller design as well as on engine design;

values of specific weights under 0.2 are practical,
however.

When the takeoff problem is secondary, one
of the principal design problems is exploiting the
inherently high efficiency of the engine. The
selection of the compressor enthalpy rise or
pressure ratio is then governed by the requirement
of high efficiency. The desired value of either
of these quantities depends on the turbine-inlet
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F1gURE 11.—Thermodynamic performance of turboprop engines (enthalpy rise in compressor as a parameter).

temperature, the flight speed, and the altitude.
However, flight speed and altitude do not greatly
affect the desirable value of enthalpy rise; and
an enthalpy rise AH, of 170 Btu per pound gives
approximately maximum efficiency for 2000° R
turbine-inlet temperature for the three flight
conditions considered. The corresponding com-
pressor pressure ratios are about 13 for a flight
Mach number of 0.8 at sea level, 16 for sea-level

static conditions, and 22 for a flight Mach Number
of 0.8 in the stratosphere.

Engine weight may be adversely affected by
these high compressor pressure ratios, but this
trend is at least partially overcome by increasing
the turbine-inlet temperatures. Although an
important fraction of the engine weight is fixed
by the weight of the gearbox and propeiler (which
depend on the maximum output required of the
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engine), attractive gains are offered by using high
turbine-inlet temperature together with the cor-
responding high pressure ratios. Employing tur-
bine cooling for this purpose may reduce the
indicated gains by a small amount but would not
alter the general trend of the curves.

On the basis of this discussion, compressor
design information must cover the problem of
designing compressors for pressure ratios of 16
or higher. Although compressor efficiency has
not yet been discussed, it is obvious that high
levels of efficiency are required to obtain the
highest levels of engine efficiency. While com-
pressor weight may be of relatively minor impor-
tance at low design pressure ratios, it can represent
a large portion of the engine weight when designs
are made for the higher pressure ratios. Mini-
mizing compressor weight for these conditions,
without hurting the engine efficiency, is therefore
an important design objective.

EFFECTS OF COMPRESSOR PRESSURE RATIO AND FLIGHT
CONDITIONS ON TURBOJET-ENGINE PERFORMANCE

Some results of the cycle analysis of the turbo-
jet engine are given in figures 13 to 15. Figure 13
presents specific thrust F/w, plotted against
thrust specific fuel consumption F(gfe) or over-all
engine efficiency #,, with compressor total-pres-
sure ratio P,/P, and turbine-inlet total tempera-

ture T, as parameters, for a nonafterburning en-
gine. Thrust specific fuel consumption instead of
over-all engine efficiency is again used as the main
abscissa because it is a more familiar term and
because the efficiency of a turbojet engine is always
zero for static conditions. The relation between
F(sfc) and 4, is given by

_ 3600V,
1= HJ X F(sfc)

The efficiency is again practically independent of
the heating value of the fuel, while F(sfc) is almost
inversely proportional to it. Figures 13 .(a) and
(b) represent sea-level altitude for flight Mach
numbers of 0 and 0.8, respectively. Figures 13 (c),
(d), and (e) represent conditions in the strato-
sphere for flight Mach numbers of 0.8, 2.0, and 3.0,
respectively. Figure 14 is identical with figure 13,
except that lines of constant compressor total-
pressure ratio are replaced by lines of constant
enthalpy rise in the compressor AH;. Figure 15,
finally, is a carpet plot depicting the same engine
variables as figure 13, for an afterburning turbojet
engine with an afterburner-outlet total tempera-
ture of 3500° R. The carpet plot is used to spread
the curves apart. The auxiliary curves show the
relation between thrust specific fuel consumption
and efficiency.

The thermodynamic efficiency of a turbojet
engine (over-all efficiency divided by propulsive
efficiency) is just as high as that of a turboprop.
It also follows the same trends. The propulsive
efficiency of the turbojet engine, which is approxi-
mately given by

" 2V, 1
VitV Fg( 1)
w 2Vo

cannot be independently controlled, however. At
subsonic flight speeds, the propulsive efficiency is of

1)

~ the order of 0.50 or less, and the over-all engine

efficiency is therefore low compared with that of the
turboprop. At supersonic flight speeds, the pro-
pulsive efficiency increases because of the lower
values of F/w and the higher values of V,. The
thermodynamic efficiency of the engine increases
at the same time because of the greater cycle
pressure ratios resulting from ram. The net re-
sult is an increase in the attainable over-all effi-
ciency with increasing flight Mach number.
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(a) Altitude, sea level; flight Mach number, 0.

(b) Altitude, sea level; flight Mach number, 0.8.
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(d) Altitude, stratosphere; flight Mach number, 2.0.

(e) Altitude, stratosphere; flight Mach number, 3.0.

F1aure 13.—Thermodynamic performance of nonafterburning turbojet engines (compressor pressure ratio as a parameter).

By the same token, the specific thrust of a
nonafterburning turbojet engine in a subsonic
airplane is inherently lower than that of a turbo-
prop. For two otherwise identical engines flying
at & given flight speed and altitude, the ratio of
the specific thrust of a turboprop engine to that
of a turbojet engine is directly proportional to the
ratio of their respective propulsive efficiencies.
The turbojet engine is unencumbered by a gearbox
and propeller, however, so that its specific weight
in level flight is about half that of the turboprop.

This comparison is considerably different at
takeoff, where the thrust and power coeflicients
of the propeller play a dominant role.

Subsonic flight.—As previously noted, the
weight flow through the engine at a flight Mach
number of 0.8 and an altitude of 40,000 feet may
be about 32 percent of the weight flow at sea-level
static conditions, for a constant-mechanical-
speed engine. The thrust produced by the non-
afterburning engine at this altitude flight condi-
tion is about 30 percent of its sea-level static
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(a) Altitude, sea level; flight Mach number, 0.

(b) Altitude, sea level; flight Mach number, 0.8.

(c) Altitude, stratosphere; flight Mach number, 0.8.

(d) Altitude, stratosphere; flight Mach number, 2.0.

(e) Altitude, stratosphere; flight Mach number, 3.0.

F1eure 14.—Thermodynamie performance of nonafterburning turbojet engines (enthalpy rise in compressor as a
parameter).

value for a turbine-inlet temperature of 2000° R
and a compressor enthalpy rise AH; of 110 Btu
per pound. A turbojet engine having a specific
weight of 0.4 at sea level thus has a specific weight
of about 1.3 at this altitude condition.

If a subsonic turbojet engine has about half
the efficiency and about half the specific weight
of a turboprop engine, it is profitably used when
the ordinate of figure 6 is more than doubled by
reducing (W,,/d),(L/F)/, by 50 percent. For ex-

ample, reducing (W,/F)/(L/d).; from 0.4 at point
B to 0.2 increases the ordinate from 0.44 to 1.0.
The same critical flight conditions are met, and
the net improvement in range is about 14 percent.
At point B, however, a 1-percent decrease in
specific engine weight is equivalent to a 2.2-
percent increase in efficiency (fig. 7(a)). At the
new point (for the turbojet engine) a 1-percent
decrease in specific weight is equivalent to only a
0.65-percent increase in efficiency. Even though

UTC-2019.043



26

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

1504 " . T 140 I l l T— T T

@ Compressor 1 3 A it 10 B
140 pressure ratio, || 1202 F(SfC), —-+ B .

\ D12 PorPy LTSRN L i bty ol | -
I65="L )\~ o \ ~ 6l e B
130 < 2 1120 — S
o 3 . —_— -8 ~ ; -L < 4 .
PORAVERAVAL VA a 4 o o=l 2 -
A BE SRS s N o 8 BN R I P = L8] |
| NN o e 1] 2 19 0 2 3
10 AV S V) o s 100 piX. 0. . FIsf), 1b/(hr)ib)
Nd = ~ N T 1 - iy T T T
- K N NN 9 ] NT~ ] or |
100 S e A - PO I B %0 INTe=eyNer 1] BT
5 90 ——|PA TR, LU Fiste), 80 ANENAN 5% [ 5500 1
g hY 22 L b /(hr)(ib) 2 X ISpe 2000 1
S N ™I, Mo a1 (c) 3500 T35S L
B BN 2.6 '/DZ//D| _ | I I | N S EEE T
70 BN o8 120025 - 10 ]
5:- Dk '_)\3'03 2 ez Itl)L/—f.;f)?l’b) 8 \ ]
< . = r 4
' 60 3500 Laese st tria || O BRI ], { ST _
B R 2500 L] et 19 4 AN i
£ £ | 2000 IOO—-S‘S-%:= e 2 [~ -
3 4ol : l ’ L1 90-1+—2 A 7 3]
2 13500]3000| X+ o | O ]
3 %%ED ] T R (TR 20008000 A, tovagn)
o ~ ¥ T T . -
n 120 K F(sfc), \ “T 90’P2/Pl 77T T T T T

& E%GJb/(hr)(lb) S e Fstoy, 10 ]

o, 1.7 o6 + 85Kt~ Ib/hn)(ib) al\ .
8&?"‘; ;». ll f & 4 h = 9 t - \

— 8 3 T 3 e . Y -
00| 2/ R Rl 2 v i 80———23500¥E§%\ & ‘2 N -
S RO ¢ 3 T 75500 e 2k =

NEUAN , Flsfc), ib/thn{ib) 7 R BN €5 15 25
3 =182 20 3 T | | Flsk, Ib/h(ib)
80 N 54 A
70 3505}7\_ )N 2'62 8 65 N
olB) 73, "R POOT2560" o ol® 20009

(a) Altitude, sea level; flight Mach number, 0.
(b) Altitude, sea level; flight Mach number, 0.8.

(e) Altitude, stratosphere; flight Mach number, 0.8.
(d) Altitude, stratosphere; flight Mach number, 2.0.
(e) Altitude, stratosphere; flight Mach number, 3.0.

FigurE 15.—~Thermodynamic performance of afterburning turbojet engines.

the lighter and less efficient turbojet engine is
more suitable for the flight than the turboprop
engine, improvements in its efficiency are now
somewhat more desirable than improvements in
specific weight. = Compressor pressure ratios
greater than that for maximum specific thrust
are thus desired. For the conditions of figure
13(c), pressure ratios of 16 or higher might be
indicated. The rate at which the compressor
weight increases with pressure ratio is the govern-
ing factor, however, in the selection of pressure
ratio. Design information permitting the de-
velopment of high pressure ratios with light-
weight compressors is thus necessary, just as it
was for the turboprop engine.

When the high thrust levels are required for
only a short timé or for a short distance, the use

of afterburning is advantageous. Comparison
of figure 15(c) with figure 13(c) shows that the
specific thrust can be increased 50 to 100 percent
by afterburning. At the same time, however,
the engine efficiency is reduced by the order of
50 percent. If the use of afterburning is limited
to a short period of time, the extra weight of
fuel expended is small and the average efficiency
is only slightly reduced. The reduction in the
critical value of W,/F is sufficient to more than
overcome this loss in efficiency, and an increase
in the range results. Referring to figures 6 and 7,
the value of (W,/F)/(L/d)., is now decided by the
afterburning condition. The mean efficiency,
however, is practically that at the nonafterburning
conditions. Because of the low value of engine
specific weight at the critical flight condition,
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further improvements should favor a small in-
crease in the average efficiency rather than a
further decrease in specific engine weight. There
is the provision, of course, that the critical con-
dition is the one desired and not compromised to
favor range to begin with.

Employing an afterburner may increase the
engine weight from 10 to 30 percent. The
specific engine weight is consequently not reduced
in proportion to the increase in specific thrust.
Because it offers resistance to the flow, the after-
burner also decreases engine efficiency even when
it is not burning fuel. Moreover, its added
length increases nacelle drag, moves the center
of gravity of the engine rearward, and increases
the structural weight of the airplane. The net
gains from its use are thus less than those in-
dicated by the simple calculations of specific
thrust.

Supersonic flight.—The turbojet engine, by it-
self, is capable of providing the thrust for takeoff,
climb, and acceleration to Mach numbers between
2 and 3. Tt is therefore being seriously considered
for this range of supersonic flight. At the flight
Mach number of 2.0 in the stratosphere, the value
of N/\/6 is 86 percent of its sea-level value
for a constant-speed engine. It is 69 percent of
its sea-level value at the flight Mach number of
3.0. The corresponding values of w+0/5 are
about 80 and 50 percent of their sea-level values
(fig. 12). With the previously assumed inlet
recoveries at an altitude of 55,000 feet, the
associated values of &/4/6 are about 0.5 and 1.4.
Under these conditions, the weight flow of air
at a flight Mach number of 2.0 is approximately
40 percent of that at sea level; at M,=3.0, it is
about 70 percent of its sea-level value.

The ratio of the developed thrust for these
flight conditions to that at sea level depends on
the enthalpy rise or pressure ratio of the com-
pressor as well as the turbine-inlet and after-
burner-exit temperatures. If the static sea-level
pressure ratio is 8, if the turbine-inlet temperature
is 2000° R, and if the afterburner-outlet tempera-
ture is 3500° R, then the specific thrust at a
flight Mach number of 2 is about the same as
that for sea-level static conditions for the after-
burning engine. At 55,000 feet and the Mach
number of 2, the total thrust would be about 40
percent of its sea-level value. If the specific
weight of the afterburning engine were 0.3 at sea

level, its specific weight at 55,000 feet and a
Mach number of 2 would be about 0.75. For
values of (L/d).,, of the order of 3, (W,/F)/(L/d) e
becomes 0.25. At 70,000 feet (W./F)/(L/d)ey is
increased to 0.50. The range of flight is thus
drastically curtailed by the combination of high
specific engine weights and low values of (L/d),
(fig. 6). With lighter engines, higher altitudes
are available and larger values of (L/d).,, might
be obtained. Even at the same value of (W, /F)/
(L/d) sy, 8 greater range would then be obtained
if (L/d),y is increased (eq. (6)). Emphasis is
thus placed on low engine weights for this type of
flight condition. As indicated in equation (7a),
however, engine efficiency is of equal importance
and must not be unduly prejudiced by efforts to
reduce specific engine weight.

In order to obtain low specific weights at
flight Mach numbers of the order of 2, the use of
afterburning engines is attractive. According to
figures 15 (d) and (e), high pressure ratios and
high turbine-inlet temperatures would be desired
for afterburning engines, since the highest specific
thrust and efficiency are thereby attained. This
desire is tempered, however, by the weight problems
at the high pressureratios and the problems associ-
ated with theuseof high turbine-inlet temperatures.
At lower turbine-inlet temperatures, there is a
maximum desirable pressure ratio. At higher or
lower pressure ratios, both the specific thrust and
efficiency decrease. At a flight Mach number of
2, the pressure ratio for the highest specific thrust
and efficiency is about 8 for a turbine-inlet
temperature between 2000° and 2500° R. The
corresponding pressure ratio at sea level for a
constant-mechanical-speed engine is about 14.

High turbine-inlet temperatures without after-
burning are also attractive at the flight Mach
number of 2 (fig. 13(d)). Although the specific
thrust is reduced from the afterburning case, the
engine efficiency is increased. Moreover, the
afterburning engine is penalized by the engine and
airframe weight penalties previously discussed.
These effects may more than counterbalance the
loss in specific thrust. The pressure ratios
desired for the nonafterburning engine are, of
course, higher than for the afterburning engine.

At the high flight Mach number of 3, the
required compressor pressure ratios are low.
With a turbine-inlet temperature of 2000° R, a
pressure ratio of the order of 2 is desired for
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either an afterburning or nonafterburning engine
(figs. 13(e) and 15(e)). This value corresponds
to a pressure ratio of about 4 at sea level. Since
the resulting subsonic performance is poor,
higher turbine-inlet temperatures must be used to
realize the advantages of the higher compressor
pressure ratios. At the turbine-inlet temperature
of 2500° R, the desirable pressure ratio lies
between a value of 3 and 4 at the high flight Mach
numbers. For constant-mechanical-speed engines,
the corresponding sea-level pressure ratios are
between 8 and 12. The necessity for lightweight
compressors developing this order of pressure
ratio at sea level is again apparent.

OTHER ENGINE CYCLES

There are many thermodynamic cycles sug-
gested for aircraft propulsion. The ducted-fan
or bypass engine, for instance, is an intermediate
engine between the turboprop and the turbojet
engines. The desired characteristics of the main
compressor and fan are thus expected to be
similar to the ones just outlined. The design
data required are consequently the same. Simi-
larly, the design data would be applicable to the
design of other low-pressure-ratio compressors
such as those used in the turborocket.

EFFECTS OF COMPRESSOR EFFICIENCY ON ENGINE
PERFORMANCE

The effect of a change in compressor efficiency
on the results of the preceding section can be
estimated by the following considerations. At a
given flight speed and altitude, the enthalpy rise
due to ram is fixed, as is the temperature 7}
(fig. 9). With a given inlet recovery, the ram
pressure ratio P,/p, is constant. For a given
enthalpy rise in the compressor, the combustor-
inlet temperature 7, is fixed. The compressor
total-pressure ratio P,/P, is then a function of
compressor efficiency only. The turbine-inlet
temperature T3 is given a fixed value as is the
combustor pressure ratio P;/P,. Since the work
done by the turbine approximatley equals the
enthalpy rise through the compressor, the turbine-
outlet temperature 7, is fixed. For a given
turbine efficiency, the turbine pressure ratio P,/P;
is also fixed. Since the output and efficiency of
the engine ultimately become functions of 7, and
P,/p,, the effect of compressor efficiency is
examined by noting its effect on P,/p,=P,/P,
times a constant.

Compressor efficiency is defined by the equation

ye—1
£
Nag, c=—ﬁc——" (12)

Rearranging this expression and differentiating
it, while holding the value of AH¢/Ti¢, constant,
yield the following result:

d(Z ’)
P 1 dﬂad.c
1
_Pig Nas,¢ (13a)
P,
where
c-—l
(Ez o —1
_ 'Yc
Q= — (13b)

OOk
The effect of a percent change in compressor total-

pressure ratio on the total pressure P, at any
point in the engine downstream of the com pressor

is thus P
d ('z'»;)_d
P,

D, P,

P—l) dﬂaa.
P, = Q £ _(14)

Nad,C

Turboprop engine.—For a turboprop engine,
neglecting the contribution of the jet, the me-
chanical energy AHy developed in a complete
expansion of the engine gases through the power
turbine is given by

271
AHM=11¢¢. PTT 4€p [1—(%) ” ] (15)

and
p_ 1
PP P,
p, P

For given values of compressor pressure ratio
P,/P, and engine temperature ratio T3/7), the
value of P,/P, may be found from figure 16. (In
this figure, the quantity P,/P, is plotted against
P,/P, with T3/T; as a parameter. These data
are a byproduct of the cycle calculations of the
previous section. For a constant value of specific
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Figure 16.—Chart for estimating total pressure behind
turbines driving compressors.

heat and v, these curves would be independent of
the flight condition. Actually, the variations in
these quantities cause these curves to vary about
=6 percent from the values shown over the entire
range of flight conditions considered. The im-
portant trends of the curves are not affected,
however.) Since the ram pressure ratio P,/p,
is also known, p,/P, may be determined.

Differentiating equation (15) and utilizing
equation (14) while holding (%e4 rrT4c,) constant
yield

d(AHM) =@ d"’laa,c

AHM YNad, C (168,)
where
(?_o)li;“—‘
g=1z=1 \P Q (16b) .

v r-l
T (%)
P,

Equation (16a) shows the general effect of a small
change in compressor efficiency on the power
output of a turboprop engine. Since this equa-
tion was derived with the assumption of a con-
stant heat input to the engine, the percent change
in power output is the same as the percent change
in engine efficiency or specific fuel consumption.

Figure 17 shows the quantity @ from equations
(16) plotted against compressor total-pressure
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Fieure 17.—Variation of parameters G and E with com-
pressor pressure ratio (egs. (16) and (20)).

ratio P,/P,, with the ratio p,/P, as a parameter.
In the calculation of this figure, values for v, and
vr of 1.4 and 1.3, respectively, were assumed.
Examination of figure 17 reveals that @ is large
when both P,/P; and p,/P, are large. For these
conditions, the power output and efficiency of a
turboprop engine are sensitive to small changes
in compressor efficiency (eq. (16)).

For a turboprop engine developing a pressure
ratio of 16 while flying at a Mach number of 0.8
in the stratosphere, a 1-percent decrease in com-
pressor efficiency reduces the power and engine
efficiency by a little less than 1 percent. The
results of figures 16 and 17 also show that the
effect of compressor efficiency diminishes slightly
as turbine-inlet temperature is increased. Since
compressor pressure ratio for a given enthalpy
rise decreases as the efficiency decreases, a drop
in compressor efficiency decreases the pressure
ratios for both maximum specific power and
maximum engine efficiency.

Turbojet engine.—In the case of a turbojet
engine, a small change in compressor efficiency
affects the total pressure Py in the jet nozzle,
which in turn affects the jet velocity and the
thrust. The magnitude of these effects may be
examined as follows. The jet velocity V; is
expressed in terms of the jet-nozzle pressure ratio
Do/Ps as

11 -
Vj=01 Jszcng [1—(%) T ] (17)

Differentiating this equation while holding the
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quantity C,y/2Tsc,gJ constant provides the rela-
tion
7e—1

22) Z
dV, ~vr—1 \Ps Qdﬂad.c
Vv, 2vr 1t
-
P

using equation (14). The specific thrust Fjw, is

related to the jet velocity V, by
F_(Q4+/)V,~V,

W g

(18)

Nat,C

(19)

Then d(F/w,)=(14-)dV,/g, assuming a constant
fuel-air ratio f, and hence

()
Wy E d%es,c
= : 2
_F_ 1— V, Nad, ¢ (20a)
w1 (1 +f) V!
where
Te—1
)"
—1 P
E=X Y@ (20b)

2vr
-(3) "
Py

using equations (18) and (19). The expression
for the parameter X is seen to be half the value of
G if the power-turbine pressure ratio p,/P, is
replaced by the jet-nozzle pressure ratio po/Ps.
Figure 17 may therefore be used to evaluate E for
given values of P,/P,; and p,/P; by taking E=@G/2.
The value of po/P5 is determined from figure 16
in the same way that p,/P, is found for the turbo-
prop engine.

Equation (20a) shows the effect of a percent
change in compressor efficiency on the specific
thrust of a turbojet engine. As in the case of the
turboprop engine, the percent change in specific
thrust may be taken as equal to the corresponding
percent change in engine efficiency or thrust
specific fuel consumption.

For the static case (V;=0), the effect of a per-
cent change in compressor efficiency on either spe-
cific thrust or efficiency can be determined directly
by evaluating E from figure 17. Equations (20)

and figure 17 show that for this case specific thrust

or engine efficiency is sensitive to small changes in
compressor efficiency when both P,/P; and p,/Ps
are large. This situation for the turbojet engine,

as for the turboprop engine, corresponds to high
compressor pressure ratios and low turbine-inlet
temperatures. Figure 13(a) shows that these con-
ditions are required for high values of engine effi-
ciency. When engine efficiency is highly impor-
tant at sea-level static conditions, therefore, high
compressor efficiencies are necessary.

When a reasonably high flight speed is involved,
the ratio V,/(14/)V, cannot be ignored. Notice,
however, that the denominator of the coefficient of
d%44, ¢/as,c in equation (20a) can be written as

If Fjw, is 80 pounds per pound per second at a
flight Mach number of 3, the value of this expres-
sion is about 0.5, and the coefficient of d#s4,¢/%a4,c
in equation (20a) approaches the value of 4. If
F/w, is 60 pounds per pound per second at a flight
Mach number of 0.8, this expression has the value
of about 0.7.

For the subsonic airplane, in which the com-
pressor pressure ratio is of the order of 16, a per-
cent decrease in compressor efficiency reduces the
specific thrust and engine efficiency by a little less
than 1 percent for constant enthalpy rise in the
compressor. Since the ratio T/ T} is low for super-
sonic flight, the value of P,/P; is low (fig. 16). On
the other hand, the value of P,/p, is high, and a
percent decrease in compressor efficiency reduces
the thrust and efficiency by the order of only 0.5
percent.

It is again noted that a reduction in compressor
pressure ratio accompanies a decrease in efficiency
for this analysis. The optimum pressure ratio for
either maximum specific thrust or minimum spe-
cific fuel consumption, therefore, decreases as com-
pressor efficiency decreases.

EFFECTS OF COMPRESSOR PRESSURE RATIO,
FLOW CAPACITY, AND EFFICIENCY ON FRONTAL
AREA OF OTHER ENGINE COMPONENTS

Compressor pressure ratio, flow capacity, and
efficiency play a prominent role in determining the
relative frontal areas of the engine components.
The frontal areas of these components are also in-
volved in engine weight. In this discussion, only
the internal frontal area is considered. This area
is defined by =r?, where r, is the radius to the
internal surface of the casing of the component
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under consideration. Of interest now is the ratio
of the internal frontal area of a component to that
of the compressor,

The flow area A of any component is determined
by stipulating the weight flow and either a maxi-
mum velocity V or a Mach number M at the en-
trance or exit of the component. These maximum
values may be either absolute or found from ex-
perience; in either case, undesirably high losses
result from attempting to exceed these limits.
The required flow area may be expressed in terms
of the velocity V by the equation

A wyRT —  (2la)
=1 V2 7=
2 vgRT,

-"m(

or in terms of the Mach number M by

o
21y

wyBT (1 +7— Me
MPy/rg

A= (21b)

When the values of w and M or V are given, the
annular area is determined by the total pressure
and temperature at the point considered. The
internal frontal area is related to the annular area
A by the equation

— (™Y

A=4,[1 (r)]
Since the weight flow through a conventional
engine is essentially constant, the ratio of the

frontal area of any component to the frontal area
of the compressor is given by

w._(&),
[ZEr ( )

The equivalent weight flow per unit frontal area
w+/0/Apd of the compressor or of any other engine
component may be expressed by substituting

a0

P=P”6
T———T,ﬂ

into equations (21a) and (21b). The results are

y—1 V2

T2 gRT

EOES
e 2 2

‘/ "M(1+” IM) e
[-C) 1%

Notice that, when V/\/'ngT or M is small, these
equations are approximated by :

\/R«/?EI?T

Oy
-V o

At a value of V/4/ygRT of 0.2, the error is
about 2 percent. For the same value of M, the
error is about 2.4 percent. A quantitative evalu-
ation of equations (22) may be obtained from

figures 18 and 19. In figure 18(a), w\/a/ApB is
plotted against V/4/ygRT, with the hub-tip radius
ratio 74/r; as a parameter and with y=1.4. Figure
18(b) is the same, except that y=1.3. In figure
19 the flow Mach number M replaces V/1/-ngT
a8 the abscissa.

When the given or allowable flow Mach number
is known, together with the ratio of the inner to
the outer radius, the value of M/Apa may be
determined from figure 19 The ratio of the
required frontal area of any component to that of
the compressor may be expressed as

(4r). (A,) (A:Q Py (23)
B e

The value of the last term in pa.rentheses in
equation (23) may be determined from figure 20
for the combustorinlet. For the turbine discharge
this term may be evaluated from figure 21. The
data for these figures were obtained as a byproduct
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of the cycle analyses previously presented. While
ﬁgure 20 exactly represents the condition for the
given assumptions, figure 21 is subject to the same
error discussed in connection with figure 16. The
value of (P,/P.)+/T./T; at other engine stations
can be calculated readily with the aid of these
curves. If the flow velocity rather than the flow
Mach number is of interest, the total-temperature
ratio across the component must be known in

order to determine V/1/'ngT, which is the abscissa
of figure 18. These total-temperature ratios may
also be evaluated from figure 20 for the combustor
inlet and from figures 16 and 21 for the turbine
outlet.

COMPARISON OF FRONTAL AREAS FOR SUBSONIC FLIGHT

Consider the situation for a flight Mach number
of 0.8 in the stratosphere with a compressor pres-
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sure ratio of 16. Assume wJB/Apa of 30 pounds
per second per square foot for the compressor
and a turbine-inlet temperature of 2000° R. Com-
ponent efficiencies are those used in the cycle
analyses previously presented.

Engine inlet—Although it is not affected by
compressor pressure ratio, the area of the inlet is
also of interest and will be considered first. For
reasonably high flight speeds, the internal frontal
area of the inlet is equal to or greater than that
of the free-stream tube passing the required mass
flow. Assuming the internal inlet area to be equal
to the free-stream area (the capture area), the
value of M/Apa for the inlet is given by figure
19(a) with M=free-stream Mach number and
ra/r=0. With a pressure recovery of 0.98, the

691-564 O-65—4

ratio of the inlet frontal area to compressor in-
ternal frontal area is 0.62. This ratio is directly
proportional to both the total-pressure recovery
of the inlet diffuser and the flow capacity of the
COINpressor.

Combustor.—In determining the size of the
combustor, the average velocity in the annulus
is frequently taken as a critical factor, although
Mach number is probably just as applicable.
The magnitude of the velocity influences com-
bustion efficiency as well as the pressure drop
through the combustor. For a limiting velocity
of 150 feet per second and r,/r, of 0.4, the internal
frontal area of the combustor is 43 percent of the
compressor .internal frontal area. : This number
is inversely proportional to the limiting velocity
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(egs. (22a’) and (23)). It increases as com-
pressor pressure ratio decreases; at a pressure
ratio of 8, the internal frontal area of the com-
bustor is 70 percent of that of the compressor,
other conditions being the same. This ratio is
again proportional to the flow capacity of the
compresaor.

Turbine.—For the turbine, the axial Mach num-
ber at the turbine outlet is decisive. This Mach
number should be less than about 0.7 to avoid
the limiting loading discussed in reference 15.
For a leaving Mach number of 0.6 and a hub-tip
radius ratio of 0.6, the ratio of the internal frontal
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area of the turbine to that of the compressor
is 0.54. With leaving Mach numbers of 0.5 and
0.4, the respective ratios are 0.61 and 0.72. De-
creasing the compressor pressure ratio increases
this number. At a compressor pressure ratio of
8 it is 0.70 instead of 0.54. Again, increasing
the turbine-inlet temperature to 2200° R (T3/T,=
5.0) decreases this number from 0.54 to 0.50.
For a fixed turbine-inlet temperature, a reduction
in compressor-inlet temperature increases T3/T)
with an attendant reduction in this internal-
frontal-area ratio.

The flow capacity of the turbine is controlled
by the stresses in the turbine blades and the
required work output of the turbine, as well as
the Mach number at the turbine exit. This
effect is outlined in reference 16 and given de-
tailed study in reference 17, Briefly, the per-
missible annular flow area A is proportional to
the allowable centrifugal stress = at the blade
root according to the equation

_2%rg
A_sz‘vI/

where ¢ is a taper factor defined as the ratio of the
actual root centrifugal stress to the centrifugal
stress in a blade having a constant spanwise
cross-sectional area. Combining this relation
with equation (21b) and noting that U,=rw
provide the result

r+1

'wU’I‘ oP g ‘Y_‘:_l_ . 2(v-1)
- ‘NT.\/%M(1+ > M) (24)

If reference values of compressor tip speed U,, 7,
and T' are assigned and attention is focused on
the turbine, equation (24) becomes

(y_\/_a) T 71 U,)
Ai'a Pra/ T Ut ref. e

_2P, /Tl vg ( y—1 2) D
vI/Pl M4 1+ M

pu Tres g
25
v Tz Prel Ut reJ. ( )

for a constant weight flow throughout the engine.
A quantitative study of equation (25) is obtained
from figure 22, in which a set of curves showing
the left side of this equation as a function of
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F1GURE 22.—Stress-limited airflow and tip speed for compressor or turbine (eq. (25)).

(P/P)+T/T, and M, is adjoined to the curves
of figure 21. The following values were assumed
in the calculations for this figure, with appro-
priate units where necessary: y=1.3, ¢=0.6,
U, :s=1000 feet per second, r,,~30,000 pounds
per square inch, and TI',,=~0.3 pound per cubic
inch.

When T, 7, and U, assume their reference
values, the left side of equation (25) is identically
'wl-\/o_l/Ap&,, the flow capacity of the compressor
as limited by turbine stress. For the reference
condition, the permissible values of w,Ja_l/A 1
are considerably higher than those assumed in
the previous study. The assumed hub-tip radius

ratios are thus well within those permitted by
the assumed stress limits and compressor flow
capacities. Higher compressor speeds or lower
turbine stress limits would, of course, reduce
the compressor flow capacity permitted.

The relation between the work output of the
turbine and the flow capacity of the compressor
may be examined in a similar gross way. As a
rule of thumb, the maximum output of a turbine
stage is determined by the quantity JAH/(wrs)?,
which is inversely proportional to the square
of the blade- to jet-speed ratio. An upper
limiting value (of about 2) may be assigned to
this quantity, and the permissible enthalpy drop
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in a stage is given when the speed of rotation
is known. Only a small enthalpy drop is obtained
with the low rotative speeds and at the hub of
turbines with low hub-tip radius ratios; accord-
ingly, small enthalpy drops are obtained for the
conditions of high flow capacity. High flow
capacity is thus associated with a relatively
large number of turbine stages. High rotative
speeds and large hub-tip ratios, on the other hand,
reduce the flow capacity but tend to decrease the
number of turbine stages.

Afterburner.—At the inlet to the afterburner,

a limiting velocity is again used for the same -

reasons that govern its use in the primary com-
bustor. For the present example the limiting
velocity is assumed to be 550 feet per second.
With this limit, the ratio of the internal frontal
area of the afterburner to that of the compressor
is 0.58, (r4/r;=0). Changing the cycle pressures
and temperature will vary this number in about
the same proportions as those given for the
turbine,

Nozzle.—The area of the jet nozzle depends on
the amount of afterburning, the amount of super-
sonic expansion in the nozzle, and whether or not
an ejector is employed. With sonic velocities at
the nozzle exit and no afterburning, the area
ratio is 0.29. Altering the cycle will change this
number somewhat in proportion to the corre-
sponding turbine areas.

It appears that a compressor having a flow
capacity of 30 pounds per square foot (= (’lD'\/O/
Agd)¢) could have the largest internal frontal
area of all the components in an engine for sub-
sonic flight. Since the area ratios are propor-
tional to compressor equivalent flow capacity,
there is a strong incentive to make the flow
capacity of the compressor as high as possible.
The maximum value of compressor flow capacity
is 49.4 pounds per second per square foot (fig.
18(a)), however, so that all the other components
could presumably have a smaller frontal area than
the compressor when the high pressure ratios re-
quired for good engine efficiency are used.

COMPARISON OF FRONTAL AREAS FOR SUPERSONIC FLIGHT

For a given mass flow, the free-stream-tube area
increases with Mach number in the supersonic
regime. The temperature at the compressor
inlet increases and that at the compressor outlet
thus also increases with flight Mach number.

Both the values of P,/P, and T3/T; are genérally
lower for supersonic flight than they are for sub-
sonic flight. As a result, the values of P,/P; and

(Py/Py)\ T/ T, are reduced (figs. 16 and 21). For
a given value of (W'\/_a/Apa)c, the value of (Az),/
(Ar)c therefore increases with flight Mach num-
ber (eq. (23)). As shown in figure 12, however,
the flow capacity of the compressor also decreases
with flight Mach number when the mechanical
speed of the engine is fixed (since @ increases with
flight Mach number). This behavior decreases
the value of (Ar)./(Ar)c.

In order to examine these trends, consider the
situation at flight Mach numbers of 2 and 3 in the
stratosphere. Let the respective values of P,/P,
be 8 and 4, and let the turbine-inlet temperature
be 2500° R for both cases. Assume, moreover,
that (w+/8/A4s0)c is 30 pounds per second per
square foot for the compressor at sea level.

At the flight Mach number of 2, the equivalent
flow capacity of the compressor may drop to 24
((b/sec)/sq ft) for constant engine speed. With
an inlet recovery of 0.90, the ratio (Ar.(/Ar)e
becomes 0.74. At the flight Mach number of 3
and a recovery of 0.6, the value of (w+/6/Azd)c is
15 pounds per second per square foot and (Ar)./
(Ar)e=0.77. Notice that this number applies
only to the internal capture area. As indicated
in figure 8, the actual frontal area of the inlet may
be substantially larger than this.

With a limiting average combustor velocity of
150 feet per second, the ratio of the internal
frontal area of the combustor to that of the
compressor is 0.70 at the flight Mach number of 2
(ra/r;=0.4). TItis 0.88 at the flight Mach number
of 3. This value is almost inversely proportional
to compressor pressure ratio for a given flight
condition.

If the hub-tip radius ratio of the turbine is 0.6
and the leaving Mach number is 0.6, the ratio of
the internal frontal area of the turbine to that of
the compressor is 0.62 at the flight Mach number
of 2 and 0.58 at the flight Mach number of 3.
Increasing either the compressor pressure ratio
or turbine-inlet temperature decreases this ratio
in inverse proportionality to the resulting change
in (P,/P,)+\T,/T, shown in figure 21. Notice that
the assumed flow capacity of the compressor is
low enough to satisfy the turbine stress require-
ments of figure 22 for the reference conditions.
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Agdin using an afterburner-inlet velocity of
550 feet per second, the ratio of the internal
frontal area of the afterburner to that of the
compressor is found to be 0.77 at the flight Mach
number of 2. At the flight Mach number of 3, it
is 0.71. These values are again almost inversely
proportional to (P./P,)4T,/T, and changes in
compressor pressure ratio and turbine-inlet tem-
perature will change this ratio following the
trends shown in figure 21.

The area of the nozzle again depends on the
factors previously mentioned. It is noted, how-
ever, that for complete expansion the outlet area
of the nozzle is 92 percent of the internal frontal
area of the compressor at the flight Mach number
of 2. At the flight Mach number of 3, the area
ratio for complete expansion is 1.14. When the
nozzle area equals the frontal area of the compres-
sor, the jet velocity V, is reduced about 2.5
percent, with a resulting loss of thrust of about
1.5 percent compared with the complete-expansion
case. Although the developed thrust is de-
creased slightly by limiting the expansion, the
actual thrust minus drag is probably increased.
Internal plugs onan ejector have been recom-
mended frequently when large nozzle pressure
ratios are developed. In these cases, the actual
flow area is effectively less than the internal
frontal area.

For the example chosen, the compressor has a
greater frontal area than either the primary com-
bustor or the turbine. The flow through the
compressor is much less than its natural capacity,
however; and a 20- to 100-percent increase in the
flow capacity of the compressor at supersonic
flight speeds could easily be obtained by some
means or another. Thus, engines could be de-
signed in which the compressor diameter is smaller
than that of any other component in the engine.
If the increase in flow capacity is obtained by
increasing the mechanical speed with flight Mach
number, so as to reduce the severity of the drop
in NJ/J6, then turbine stress problems arise
(eq. (25)). On the other hand, if the value of N
is sufficiently low to avoid this difficulty, the en-
thalpy drop per turbine stage is low, and a large
number of turbine stages is required. Therefore,
the selection of compressor flow capacity is fre-
quently based on a number of considerations
other than frontal area. Design information is
required, however, to permit designs as close as

possible to the natural limit of 49.4 pounds per
second per square foot of frontal area. This high
value could then be used when it is desired.
EFFECTS OF COMPRESSOR EFFICIENCY. ON SIZE
OF COMPONENTS DOWNSTREAM

Compressor efficiency also affects the size of
engine components downstream of the compressor.
The magnitude and interrelation of these effects
are estimated by the following technique. When
the weight flow w and the velocity or Mach number
are given, the annular flow area is seen by equa-
tions (21) to be determined by the total pressure
P and the total temperature 7' at the point
considered.

Presuppose a fixed enthalpy rise in the com-
pressor and a given fuel flow so as to make the
total temperature T at any point in the engine
independent of the compressor efficiency and
pressure ratio. Equation (14) then shows how
a small change in compressor efficiency affects the
total pressure at any point in the engine down-
stream of the compressor. Holding w, T, and V
or M constant and differentiating either equation
(21a) or (21b) with respect to 4 and P give

d4__ Hdtac

—;‘1—-—-—.. Q Nad, ¢ (26)

utilizing equation (14). A curve showing the
parameter @ as a function of Py/P, for yo=1.4is
shown in figure 23. This curve indicates that the
sensitivity of the flow area of the components
downstream of the compressor to small changes in
compressor efficiency is greatest when the com-
pressor total-pressure ratio P,/P, is high. Under
these conditions, the frontal area of the compo-
nents behind the compressor is usually low.
When the components behind the compressor
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Figure 23.—Variation of parameter ) with compressor
pressure ratio (egs. (13) and (26)); Te=1.4.
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decide the frontal area, however, low compres-
sor efficiency can be costly with respect to size
as well as engine efficiency and specific thrust.

FACTORS DETERMINING COMPRESSOR FLOW
CAPACITY AND WEIGHT

FLOW CAPACITY

The flow capacity selected for a compressor
represents a compromise among several factors
that also control engine weight. Some of these
factors are discussed in the next main section of
this chapter. For the moment it is sufficient to
note that, among other things, the flow capacity
depends on the rotational speed of the engine.
Two causes of this dependency, turbine blade stress
and turbine work, were outlined in the previous
section. A similar limit involving stress in the
compressor blades could also be deduced. The
stress in the turbine blades is frequently the
governing factor, however, because of the elevated
temperatures.

Another factor making the flow capacity depend
on the speed of rotation anses from aerodynamic
causes in the compressor itself. At the present
state of the design art, dictates of efficiency limit
the Mach number relative to the compressor
blades. This Mach number may be written as

Ml-—M] cOos ﬂ] J1+(V

The equivalent weight flow per unit of flow area
at any radius is, however,

W‘Jé \/ M1 cos 3, (1+:Y—;—1

—tan ﬁ,) 27

y+1

2) 2P P
) T
(28)

Because of other considerations, the value of 8,
is usually made as small as possible, and even
negative values of B, may be desired. With a
given value of 8, and a limiting value of M;, the
flow capacity is critically dependent on the wheel
speed U, decreasing as the wheel speed increases.

If, now, the wheel speed is independently deter-
mined, the maximum flow capacity of the com-
pressor is automatically stipulated either by the
limitations of blade stress or by the limitations of
compressor blade Mach number. At low com-
pressor pressure ratios and low ratios of turbine-
inlet to compressor-inlet temperature, turbine

blade stress tends to be the deciding factor. At
higher levels of these quantities, with cooled
turbines, compressor blade Mach number becomes
the critical item. In order to overcome this latter
limitation, considerable attention must be given
to the problem of efficiently coping with high
Mach numbers relative to the compressor blades.

The radial distribution of w+/8/A43, as well as
the hub-tip radius ratio, is required to determine
the net equivalent flow capacity of the compressor.
The radial-distribution problem is treated in chap-
ter VIII. It will not be discussed here except to
note that the flow capacity can be affected by the
distribution. The hub-tip radius ratio is affected
by two factors: (1) the problem of attaching the
blades to the disks, which is chiefly a mechanical
problem, and (2) the aerodynamic problem of
designing the blades near the hub. The gains in
flow capacity are small when the hub-tip radius
ratio is reduced below about 0.35 (see figs. 15 and
16), and it is at the lower values of hub-tip radius
ratio that the attachment and aerodynamic design
problems may become serious. Below some value
of hub-tip radius ratio, therefore, the possible
gains in weight flow per unit of frontal area could
be too small to justify the effort and expense
required to obtain them.

LAYOUT AND WEIGHT

Some of the problems associated with the size
and weight of a compressor are illustruted with
the aid of a schematic drawing of a representative
current compressor and its diffuser (fig. 24). The
pressure ratio, turbine-inlet temperature, and
weight flow of air of the engine associated with
this compressor are presumably determined from
preliminary design studies. The speed of rotation
is also assumed to have been selected from this
study. The flow capacity of the compressor is
then fairly well defined, either by stress or aero-
dynamic considerations.

Diffuser-

Ficure 24.—Typical current layout of axial-flow com-
pressor and exit diffuser.
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The number of stages required by the compressor
is determined by the pressure ratio or enthalpy
rise that each stage can produce. At the present
time, the permissible enthalpy rise per stage may
be approximately expressed by

1) (29)

2a'V1U

where D is a measure of the blade loading as pre-
sented in reference 9. The enthalpy rise in a
stage is thus directly proportional to the blade
speed and to the stage-inlet velocity relative to
the rotor. Obtaining high flow capacity by re-
ducing the blade speed increases the number of
stages required to obtain a given enthalpy rise.
This result is similar to that previously noted for
the turbine.

The enthalpy rise in a stage also depends on the
relative velocity ratio V;/V; across the stage.
If D has a limiting value of 0.4, changing V;/V;
from 1 to 0.9 reduces the enthalpy rise in the
stage by 25 percent. The limitations imposed by
this velocity ratio affect the layout and the number
of stages required by a compressor. In order to
meet the velocity requirements in the combustor,
the axial component of air velocity is sometimes re-
duced by a factor of 5 or more between the com-
pressor inlet and the combustor. Avoiding excessive
losses in the diffusing section behind the compres-
sor requires that a considerable part of this
deceleration be absorbed in the compressor. Since

Vi_V.scos B (

17{———” m— V. )Xa number less than 1.0

AH=

(0%

the ratio V}/V} must be appreciably less than
1.0 in the majority of the blade rows. The
enthalpy rise per stage is thus restricted, and the
number of stages is greater than that required if
V=2/Ve1 could be greater.

Continuously decreasing the axial velocity
through the compressor also causes V; to be con-
tinuously reduced. The enthalpy rise per stage
is consequently much less in the latter stages of
the compressor than it is in the early ones.
Obtaining a reasonable enthalpy rise in the latter
stages thus requires the use of fairly high blade
speeds, even if the inlet flow capacity of the
compressor is prejudiced. Moreover, the casing
diameter at the rear stages is usua,lly kept large
to obtain these high blade speeds. Continuity

requirements then dictate the use of small blade
heights to the detriment of efficiency.

The number of compressor stages and the com-
pressor layout shown in figure 24 were determined
by these principles. As a result of this particular
layout, an awkward flow passage is required to
conunect the compressor to the combustor. More-
over, the bulk and weight of the compressor are
large.

The length of each stage is decided by the axial
clearance required and the chord length of the
blades themselves. The spacing is usually set
by mechanical tolerances and the location of the
thrust bearing. The chord length of the blades
is frequently determined by arbitrarily limiting
the bending stress at the blade root. The bending
moment normally used to calculate the stress is
that caused by the steady aerodynamic forces on
the blade. Because of the dangers of blade
vibration, however, a large factor of safety is
used, and the calculated steady-state bending
force is well below the value that the blade can
withstand. The blade chords, and hence the
engine length, are thus greater than required by
aerodynamics for steady-state stresses. (At high
altitudes, however, large blade chords may be
required to avoid poor performance at low Reyn-
olds numbers. More information is required on
this subject before definitestatements can be made.)

Because of the large diameter and high internal
pressure at the outlet, the casing is heavy. TFor
the type of mechanical design shown in figure 24,
a considerable amount of weight is also associ-
ated with the rear disk, which has a large diameter.
If the metal in this solid disk had to resist only
the stresses created by centrifugal force, the thick-
ness could be considerably less than that actually
used. Its weight would then be relatively small.
It must, however, be stiff enough to be manufac-
tured readﬂy and handled without danger of
warping. The disk must also be stiff enough to
withstand the axial force resulting from the
pressures acting on the disk face. These forces
increase with the diameter of the disk and with
compressor pressure ratio.

For a given Mach number limit, increasing the
design weight flow through the compressor by
reducing the design rotative speed reduces the
diameter of the compressor and hence reduces the
weight of an individual disk and a unit length
of casing. On the other hand, the number of
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stages is increased. More disks and a longer
casing length are needed. It would appear that,
for a given limitation between flow capacity and
speed, there are optimum values of these quanti-
ties that yield the minimum compressor weight.
As previously noted, the same reasoning applies
to the turbine.

The size and length of the other engine compo-
nents are fairly independent of the actual design
of the compressor after the pressure ratio and flow
capacity are given. An exception to this state-
ment might be the diffuser between the compressor
and combustor, but this element should be con-
sidered to be part of the compressor itself.

Since the Mach number relative to the compres-
sor blades has an important bearing on the flow
capacity of the compressor and the number of
stages required, the highest permissible Mach
number level should be used in design. This
statement is particularly true of the inlet stages,
where the Mach numbers naturally tend to be the
highest. Important improvements of these stages
have been made in recent years (see refs. 8 and
18). As a result, higher airflow capacity can be
combined with high stage pressure ratios.

Identifying the true loading limit of a blade
has also been given attention. The coarser the
definition of the loading limit, the greater is the
aerodynamic factor of safety that must be em-
ployed. The design pressure ratio of a stage thus
suffers. While reference 9 and equation (29)
are definite advancements in this direction, there
is-still considerable room for improvement.

Although the number of stages is reduced
through the use of high Mach numbers and
accurately defined loading limits, the over-all
length tends to remain the same if the bending-
stress limits are unaltered. The higher pressure
ratios result partially from larger blade forces,
which in turn cause larger bending moments at
the blade roots. With a fixed allowable bending-
stress limit, the chord length of the blades increases
as the stage pressure ratio increases. Recent
observations have shown, however, that blade
vibrations are primarily the result of rotating
stall (ref. 19). Blade wakes and the pressure
fields of fixed obstacles may have contributory
effects, but these sources can be avoided or
otherwise treated by appropriate design. These
investigations have also shown that vibration
induced by rotating stall can be eliminated or

mitigated by such methods as interstage bleed
and variable stators. As indicated in reference
20, ramps at the inlet are also useful for evading
the blade-vibration problem. Through the use
of this type of equipment, the hazards of blade
vibration are relieved. The permissible bending
stresses can be raised, and marked reductions in
chord length are possible. Reducing the chord
length and the number of stages reduces com-
pressor length and offers significant reductions in
compressor weight.

The necessity of adding stages to a compressor
just to reduce the axial velocity is a problem that
needs more attention. It is possible that too
great a penalty is being paid for the lack of complete
information about the pressure loss in diffusers
and combustion chambers.

As indicated in reference 21, a basic combustor
parameter governing pressure loss may be the
velocity in the secondary-air passage. An im-
portant variable governing the efficiency of a
diffuser is the ratio of the maximum surface
velocity before deceleration to the minimum sur-
face velocity after deceleration. If the minimum
velocity were that in the secondary-air passage
of the combustor and the ratio of maximum to
minimum surface velocity were given, the velocity
entering the diffuser could not be greater than the
product of the allowable secondary-air velocity
and the allowable velocity ratio. If the diffuser
passage causes local velocity maximums and
minimums, however, the inlet velocity must be
less than the otherwise allowable value. Potential-
flow methods, such as those proposed in reference
21, afford a means of eliminating unnecessary
meximums and minimums in the surface velocities.

Figure 25, which is taken from reference 21
illustrates a diffuser designed along these lines.
An insert controls the flow area in the passage be-
tween the compressor outlet and the secondary-
air passage of the combustor. The rate of change
of this area has the major effect in controlling the
rate of diffusion. Gentle curvatures are used to
minimize the undesirable gradients due to curva-
ture. Deceleration of the primary air is efficiently
obtained by the stagnation of the air ahead of the
insert. Such a device should permit higher veloc-
ities at the compressor outlet and should tend to
shorten the diffuser length. These higher ve-
locities could be used to enable the rear compres-
sor stages to develop greater pressure ratios. On
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Fraure 25.—Streamlines and velocity distributions in
symmetric diffuser with continuous diffusion between
compressor and combustor (ref. 21).

the. other hand, the diameter of the casing (and
hence blade speed) could be reduced between the
inlet and outlet of the compressor without in-
creasing the number of stages over those presently
required. In the latter case, a lighter casing may
result and the diameter and weight of the disks
are reduced. The pressure forces on the disks
are also reduced, and the disks may be thinner.
Because of the greater radial length of the blades
in the rear stages, higher efficiencies may be
obtained.

A schematic drawing of a compressor in which
the compressor design incorporates the ideas sug-
gested is shown in figure 26. The pressure ratio
and weight flow are the same as for figure 24.
Higher rotative speeds and flow capacities result
from raising the permissible blade Mach number.
For this layout, the turbine stresses are higher
than those normally used, but it was assumed that
turbine cooling can be used to obtain the necessary
strength in the turbine bladés. The diameter of
the compressor and the number of compressor
stages are reduced. Interstage bleed and a ramp
are assumed to eliminate the vibrations caused by
rotating stall, and small blade chords are used.
The controlled diffusion without reacceleration in
the diffuser permits comparatively high velocities

Diffuser and
combustor—,

Il

I,—Compressor

F1eurE 26.—Possible layout of axial-low compressor and
exit diffuser.

at the compressor discharge. These high veloci-
ties, together with the high rotative speed, permit
the casing diameter to be reduced as shown with-
out any untoward effects on length.

This arrangement is in no sense a recommended
one. It merely serves to indicate how several
critical aerodynamic factors can greatly influence
the shape and weight of a compressor and the
weight of the associated engine. The optimum
arrangement depends, of course, on the mechani-
cal design and the materials used. Although
these factors are not given any other consideration
in this report, advances in mechanical design and
materials are as important as advances in aero-
dynamics. For example, obtaining the required
disk stiffness with lightweight disks is an impor-
tantmechanical problem. Improvingthestrength-
weight ratio of materials is obviously another.

COMPRESSOR REQUIREMENTS
DESIGN POINT

The preceding discussions have indicated many
of the over-all design-point requirements of
compressors. High efficiency is shown to be
important for several reasons. The thrust and
efficiency of the engine increase with compressor
efficiency, particularly with high compressor
pressure ratios or low ratios of turbine-inlet to
compressor-inlet temperature. The diameters of
the components downstream of the compressor
decrease as compressor efficiency increases.
Moreover, the number of compressor and turbine
stages required for a given compressor pressure
ratio decreases as compressor efficiency increases.

High airflow capacity is also an important
compressor attribute. When the maximum fron-
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tal area of the engine is controlled by compressor
diameter, high flow capacity is required to reduce
nacelle drag. High flow capacity is also a factor
in minimizing specific engine weight.

One of the most important requirements of
compressors concerns engine weight. The weight
of the compressor itself must be small, and its
design must not prejudice the weight of the other
components. For those flight conditions which
are critical to specific engine weight, this re-
quirement is obvious; it is also an important factor
when high engine efficiency appears to the critical
item. High engine efficiency is invariably asso-
ciated with high compressor pressure ratio,
particularly for subsonic flight. The full benefits
of this high pressure ratio cannot be realized,
however, when the increase in engine weight is
out of proportion to the increase in engine
efficiency.

Obtaining relatively lightweight engines and
compressors requires each element to be operated
near the limit of its aerodynamic and structural
capacity. The dead weight carried must be a
minimum. The compressor blades must tolerate
large relative Mach numbers so that high flow
capacity and high relative speeds can be realized.
Provisions must be made for eliminating the sources
of blade vibrations so that the thickness and
chord length of the blades can be small. The
diffuser at the compressor outlet must permit high
entering velocities in order to obtain the maximum
output from the rear stages of the compressor.

Another important factor in compressor design
concerns the mating of flow passages. Aerody-
namically clean passages are required for tran-
sitions between the inlet diffuser and the compres-
sor inlet, and between the compressor discharge
and the combustor. Abrupt increases in the
flow area or in the curvature of the passages
invite undesirable losses. These losses may im-
mediately result from separation of the flow. The
losses, on the other hand, may appear in the
downstream components as the result of the thick
boundary layers (or distortions) developed in
the transition passages. Notice that, by the
same token, thick boundary layers from any source
entering or leaving the compressor are objectiona-
ble because they represent potential sources of
loss.

These general requirements are -necessary
ingredients for efficient lightweight designs. The

best design within the limits of these quantities
results from a cut-and-try procedure in which
several tentative, equivalent aerodynamic designs
are made and their estimated weights compared.

OFF-DESIGN CONSIDERATIONS

The preceding general comments apply to any
operating condition, but they are particularly
directed at the design point of the engine and its
compressor. The design point refers to a particular
flight condition and engine operating condition
where the engine components and subcomponents
are deliberately matched to achieve certain desired
engine characteristics. Besides meeting its obliga-
tions at this point, however, the compressor must
be able to provide suitable performance at other
operating conditions imposed upon it. It must
permit the engine to be started readily and acceler-
ated rapidly to its design speed. It must also
provide satisfactory performance over a range of
engine speeds, pressure ratios, and weight flows
when varying flight conditions require them.

The exact nature of these off-design require-
ments depends on the type of engine and on the
design of the components themselves. The general
off-design problems are very similar for all engines,
however, and the general requirements of the
associated compressor can be obtained from the
study of the problems of a typical one-spool
turbojet engine. The particular problems of other
engine types, such as the two-spool turbojet engine
and the turboprop engine, are then indicated.

The study of the off-design conditions requires
an investigation of the matching of the compressor
to the other engine components. The techniques
for this investigation are discussed in chapter
XVII, and the following results were obtained
through the use of these procedures.

ONE-SPOOL TURBOJET ENGINE

The off-design requirements of a compressor
are conveniently shown on the compressor per-
formance map in figure 27(a). In the usual
representation, compressor pressure ratio is plotted
against equivalent weight flow w+//3. Lines of
constant equivalent speed N/y/6 and constant
efficiency are parameters. The stall-limit (or
surge) line represents the highest pressure ratio
attainable at a given equivalent weight flow.
The break in this line represents the region where
the stall-limit line is not well defined because of
multivalued characteristics of the compressors
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intersecting  stall-limit line at low flight speeds in

stratosphere.

(¢) Change in operating point resulting from increasing

engine speed and opening exhaust nozzle.

inlet flow distortions.
F1aure 27.—Compressor maps for various operating conditions

() Effect of
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(ch. XTIT). Theshaded area of the map represents
a region where one or more of the individual blade
rows are stalled; here rotating stall and the
attendant dangers of blade vibration may be
prevalent (ch. XT).

In the ensuing discussions of off-design per-
formance, the pressure ratio, equivalent speed,
and equivalent weight flow are expressed as per-
centages of their design-point values. Thus,
point A of figure 27(a), where the pressure ratio,
equivalent speed, and equivalent weight flow are
denoted by 100 percent, represents the design
point of this particular compressor.

For any operating condition of the engine, the
corresponding point on the compressor perform-
ance map is given when any two of the following
variables are stipulated: the equivalent com-
pressor weight flow, the equivalent compressor
speed, and the ratio of turbine-inlet to compressor-
inlet temperature. Frequently one of these vari-
ables is known directly and the others are functions
of the flight Mach number, the recovery of the
inlet diffuser, the amount of afterburning, and the
jet-nozzle area.

Engine acceleration.—With a fixed jet-nozzle
area, the compressor equilibrium operating points
may lie along the line BC of figure 27(a) for sea-
level static conditions. The principal off-design
problems here pertain to blade vibrations and
engine acceleration in the low-equivalent-speed
regions. Blade vibrations may occur anywhere
in the shaded region; and, for the time being at
least, this danger appears to be inevitable unless
some variable feature is incorporated into the
compressor design. Such devices as outlet or
interstage bleed, variable inlet guide vanes and
stators, or ramps have been used, or suggested,
to circumvent the vibration problem.

For the purpose of discussion, the problem of
engine acceleration may be conveniently measured
by the difference between the pressure ratio of the
stall-limit line and that of the equilibrium operat-
ing line at a given equivalent weight flow. This
difference is called the stall margin. When the
stall margin is large, the turbine-inlet tempera-
ture, and hence the torque of the turbine, can be
appreciably increased without encountering the
stall limit. Rapid accelerations are then possible.
When the stall margin is small, the acceleration
rate is also small unless such devices as an adjust-
able jet nozzle, interstage bleed (refs. 22 and 23),

or variable inlet guide vanes and stators are used.
When the operating line intersects the stall-limit
line (fig. 27(b)), the stall margin is negative, and
such devices are necessary if design-speed opera-
tion is to be reached. An alternative to using
these variable features is to relocate the design
point to A’ of figure 27(b). This procedure is
equivalent to making the compressor too big and
too heavy for the pressure ratio it is required to
produce (in particular, the rear stages are too
lightly loaded); it is thus an undesirable remedy.

The reason that some compressors have good
and others poor stall margins is not completely
understood. Irrational design practices have con-
tributed to the problem. Otherwise, the avail-
able stall margin usually becomes less as the
design pressure ratio increases. Compromising
the design so that the best compressor performance
is sought at, say, 90-percent speed (lower design
pressure ratio) has been suggested to help the
low-speed stall margin. The benefits obtained
by this procedure are usually small, however, and
this type of design tends to put the compressor in
jeopardy at higher speeds. Since some devices
are desired anyway to deal with blade vibrations,
it is reasonable to extend their use to increase the
stall margin and not compromise the design of the
compressor too much to combat the acceleration
problem.

Varying flight speeds.—As previously indicated,
the compressor operating point is a function of a
number of variables. The general trend of opera-
tion over a range of flight speeds, however, may
be indicated by line BC of figure 27(c). Along
this line, the mechanical speed of the engine is
constant. Point C thus corresponds to small
values of 4, (low inlet temperatures resulting from
low flight Mach numbers in the stratosphere).
On the other hand, point B corresponds to large
values of 6, (high flight Mach numbers). Speci-
fically, values of (N/y61)/(N/\6:1)a of 0.7, 0.8,
0.9, 1.0, 1.1, and 1.13 correspond, respectively, to
flight Mach numbers of 2.93, 2.30, 1.79, 1.28,
0.71, and 0.45 in the stratosphere for constant
mechanical speed.

At flight Mach numbers below 1:28 in the
stratosphere, the equivalent speed of the com-
pressor is above its design value. The Mach
number of the flow relative to the blades near the
compressor inlet is higher than that assumed in
design. Moreover, the matching of the com-
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pressor stages is upset. These effects combine to
reduce the efficiency of the compressor and to
reduce the slope of the stall-limit line at the higher
equivalent speeds. Besides reducing the efficiency
of the engine, this drop in compressor efficiency
moves the equilibrium operating line upwards.
If the design of the compressor is compromised
too much to favor low-speed engine acceleration,
the compressor efficiency and slope of the stall-
limit line may both drop so rapidly that the
operating line intersects the stall line at a slight
overspeed (fig. 27(d)). In this event, the rotative
speed of the engine may have to be reduced so
that the operation is at point D. Instead, the
area of the jet nozzle may be increased in order to
move the operating point to E. Either procedure
causes the performance to decrease, and the latter
procedure is ineffective when the turbine is at or
beyond the point of limiting loading.

Avoiding these efficiency and stall-llimit diffi-
culties requires that considerable attention be
given to the high-equivalent-speed operating con-
dition during design. Either the design should
be made for the assumed overspeed condition, or
the design should be reviewed at this condition.
Some approximate methods of making this review
are presented in chapter X.

With high flight Mach numbers (above 1.28),
the equivalent speed of the compressor is lower
than its design value. If the flight Mach number
is high enough, the compressor efficiency and stall-
limit problems plaguing low-equivalent-speed op-
eration reappear. Again, such devices as inter-
stage bleed and variable inlet guide vanes and
stators might be helpful, since they actually im-
prove compressor performance in this regime.
Variable inlet guide vanes and stators, however,
frequently tend to reduce compressor weight flow
at the high Mach numbers to the detriment of
thrust. Interstage bleed, however, might be use-
ful if the problems of handling the bleed air in
flight are not too complicated.

An alternative, however, is to increase the rota-
tive speed of the engine, at least to some extent,
as the flight Mach number increases. If the com-
pressor is normally required to operate at 70 per-
cent of its design speed, increasing the mechanical
speed 14 percent moves the operating point almost
to the 80-percent-speed line. If the area of the
jet nozzle is increased so that the turbine-inlet
temperature is constant, the operating point shifts

from B to B’ in figure 27(e). Not only is the
operating point removed from the stall-limit line,
but the compressor handles more weight flow and
the engine develops more thrust.

Because of the higher flow rate, the flow capacity
of the turbine must be higher for this kind of op-
eration. The higher required flow capacity in-
creases the stresses in the turbine for a given rota-
tive speed (fig. 22). For a given turbine stress
limit, therefore, the speed at the compressor design
point is lower than it would otherwise be. One or
more additional compressor stages may be re-
quired to attain the original design-point pressure
ratios if this is considered necessary. The specific
weight of the engine at the original design point
is then increased. Whether or not the greater
thrust at the high Mach numbers more than com-
pensates for the increase in engine weight depends
on the actual design and flight plan. However,
the potential benefits from this kind of operation
make it worthy of detailed consideration in the
initial design studies.

There may be good reasons, however, for ac-
tually reducing the pressure ratio required at de-
sign speed for this type of engine. Not only is the
number of stages reduced, but the internal pressure
forces are lowered and the specific thrust is in-
creased. A lighter engine is then obtained. In
this case, the reduced engine speed at the low
flight Mach numbers offers a saving in engine
weight at the expense of engine efficiency for this
flight condition. At the high flight Mach num-
bers, however, the higher thrust and lighter
weight combine to offer significant increases in
altitude and flight speed.

Reynolds number effects.—At high flight alti-
tudes and low flight speeds, the Reynolds number
of the flow through the inlet stages of a compressor
becomes so low that their performance is often
impaired. Two-dimensional-cascade data (ch. VI)
indicate that this is a universal trend. The per-
formance of such a cascade invariably deteriorates
when the Reynolds number, based on blade chord,
decreases below about 100,000. This behavior is
attributed to laminar separation (ch. V). Some
concurring evidence is also provided by investiga-
tions of multistage compressors, either by bench
tests or as part of an engine.

In spite of these over-all performance data, the
actual effect of Reynolds number on compressor
performance is not completely known. The re-
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sults of the two-dimensional-cascade data are not
directly valid, because the behavior of their
boundary layers is believed to be different from
that of a blade row (ch. XV). Over the greater
part of a blade row the boundary layer may be
expelled by centrifugal forces before it separates.
Moreover, a much higher level of turbulence is
expected in a compressor, which tends to alter
the influence of Reynolds number (ch. V). What
are the significant characteristic lengths and
velocities remains an unanswered question.

Compressor bench tests at low Reynolds num-
bers have not been completely conclusive, be-
cause the results are frequently contaminated by
uncontrolled leakage of air from the atmosphere
to the low-pressure regions in the compressor, and
by heat transfer. The difficulty of obtaining
accurate data at low pressures and small pressure
differences adds to the confugion. These diffi-
culties are also encountered in engine tests.
Moreover, the latter results naturally include the
effect of Reynolds number on the other engine
components, as well as the effects of changes in
the matching of the components.

In order to meet the Reynolds number problem
it may be necessary to use one engine, with a big
compressor, instead of two. Increasing only the
chord lengths of the early stages has been advo-
cated, but there is no guarantee that this remedy
will do anything but add weight to the engine.
As an alternative, a lower level of performance in
the early stages may be anticipated and the
matching of the rest of the stages modified ac-
cordingly. This procedure would prevent a small
decrease in performance of the early stages from
being amplified in the rest of the compressor.
There is an urgent need for reliable and applicable
data in the near future.

Inlet flow distortions.—Uniform flow at the
inlet is the usual assumption in compressor design,
and extreme precautions are taken to assure uni-
form flow at the inlet during bench tests of a
compressor. Severe inlet flow distortions, how-
ever, are encountered in flight. These distortions
may result from many sources. They may occur
when the airplane is flying at a high angle of
attack. They may result from disturbances
created by the engine inlet. Distortions may
also result from disturbances created by other
parts of the airplane or armament fire in the
vicinity of the inlet. At high supersonic speeds,

_current inlets invariably create disturbances

resulting from nonuniform shock waves and from
shock and boundery-layer interactions. Sharp
curvatures in the inlet ducting also contribute to
these distortions.

When distortions are present, the performance
of the compressor usually deteriorates.. As shown
in figure 27(f), the stall-limit line drops (dashed
line), and the shaded region (rotating stall) moves
to theright. Design speed, overspeed, and under-
speed performance suffer. In order to avoid
compressor-stall difficulties, the operating line
must be dropped.

Because of the penalties incurred by inlet flow
distortions, a large amount of effort is being
devoted to eliminating them. The eventual
result of this work is unknown. At the higher
equivalent speeds (low flight Mach numbers), the
compressor must be designed to produce a greater
pressure ratio than that available when distortions
are present. The engine is either heavier than it
otherwise needs to be, or else the efficiency is low.
At the lower equivalent speeds (high flight Mach
numbers) the compressor-stall and blade-vibratien
difficulties may be so severe that constant-
mechanical-speed operation is impossible. In-
creasing the mechanical speed of the engine with
flight Mach number, as discussed in connection
with figure 27(e), alleviates this problem.

Inlet matching problem,—The characteristics of
the inlet over the intended range of flight Mach
numbers must be recognized in designing the
compressor and selecting the type of engine
operation. The matching problem, discussed in
reference 24, is briefly reviewed here. At a given
supersonic flight Mach number, an ideal matching
of the engine and inlet is achieved when a flow
pattern similar to that shown in figure 28(a) is
produced. The flow ahead of the minimum inlet
area is decelerated by one or more oblique shocks.
It then passes through the minimum area with
reduced supersonic velocities. A normal shock
just behind the minimum area causes the Mach
numbers to be reduced to high subsonic values.
Thereafter, the flow is gradually decelerated to
the velocity required by the compressor. This is
the flow situation that occurs at critical inlet
operation. (Notice that a compressor designed
for high axial Mach numbers requires little sub-
sonic diffusion in the inlet.)
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is then supercritical. - The thrust and engine
P efficiency are reduced, and the flow ahead of the
7 compressor bacomes disturbed.

_ - // On the other hand, if the ideally delivered
sz value of w,+/6,/8; is too great for the compressor,
the value of w, must decrease. Either the Mach
(@) number immediately ahead of the minimum area,
or the total pressure of the flow ahead of the mini-
mum area, or both, must decrease. In this case,
the shocks ahead of the minimum area deflect part
of the flow around the inlet (fig. 28(c)). The
operation of the inlet is then subecritical. The
shocks also decelerate the inlet flow, usually with
comparatively high recoveries. The over-all re-
covery of the diffuser is consequently not impaired
too drastically. The deflection of the flow, how-
ever, does cause an additional drag (ref. 10), which
can appreciably reduce airplane performance.
This flow condition is also frequently accompanied
by an unsteady-flow phenomenon known as ‘“‘buzz.”

Over a range of flight Mach numbers, the inlet
flow capacity of a fixed-geometry inlet follows the
/ trend shown in figure 29. The equivalent weight
flows are those for critical operation. With a
! / fixed mechanical speed of the engine, the equiva-
/l lent weight flow demanded by the compressor is
s | also shown. To the left of the intersection of
/M\/\ these curves, the inlet wants to supply léss air
than the compressor requires. It is thus forced
(c) to operate supercritically, with the attendant loss
in total-pressure recovery. To the right of the
" . intersection, the inlet wants to supply more air
(a) Critical operation.

(b) Supereritical operation. than the compressor can use. It. then op.erates
(¢) Suberitical operation. subcritically, with the attendant increase in na-

celle drag.

{b)

Fraure 28.—Shock-wave configurations on engine inlets.

If it happens that the value of w,+/8,/8, ideally

delivered to the compressor with this flow pattern N\ <rc<l)mpr¢lassorl reqc.luiremlent

is lower than that required by the compressor, the 35 N

value of & must decrease. (The weight flow - 3,

itself cannot increase, and 6, is determined only &3 N\

by the flight Mach number and altitude.) What 28 ™ Fine ' N

happens physically is that the normal shock T g characteristic N \\

moves downstream as shown in figure 28(b). The R N N

Mach number ahead of the shock is thus increased, EXS N

and the pressure loss through the shock is in- w X

creased. The shock automatically positions itself :

so that the loss in pressure through it is exactly -4 8 Flight Iiwzoch nur:{t?er M 2.0 24
that required to make w,+/6,/5, conform with that 9 $ o

required by the compressor. The inlet operation Figure 20.—Engine and inlet matching requirements.
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The unhappy alternatives of accepting either
large pressure losses or large drags at off-design
conditions has stimulated research on variable-
geometry inlets and on methods of bleeding air
from a point between the minimum area of the
inlet and the face of the compressor. While con-
siderable improvements in inlet and engine per-
formance have been demonstrated, much work
remains to be done to obtain an inlet that is both
mechanically and aerodynamically desirable.

In some instances, the severity of this problem
can be reduced by modifications in compressor
design and engine operation. In theory, the en-
gine curve of figure 29 can be made to coincide
with any desired inlet curve by appropriately
adjusting compressor equivalent speed with the
flight Mach number. Essentially constant equiv-
alent speed is required over the flight Mach number
range where the inlet curve is flat. Beyond the
break in the curve, the equivalent speed would
decrease with Mach number. The change in
equivalent speed with Mach number depends on
the characteristics of the inlet and compressor.
(In this connection, it is noted that the rate of
change in compressor airflow with speed appears
to decrease as the inlet axial Mach number in-
creases.) This type of engine operation is not
inconsistent with that described in connection with
figure 27 (e).

The degree to which compressor design and
engine operation can accommodate the inlet de-
pends on the attendant changes in specific engine
weights, engine efficiency, and engine frontal area
that can be tolerated. Again, the decision must
be based on the intended design and use of the
airplane. The engine and airplane must be an
integrated unit rather than separate entities.

TWO-SPOOL TURBOJET ENGINE

In the two-spool turbojet engine, the pressure
ratio is developed in two separate and independ-
ently driven compressors. The upstream com-
pressor is called the outer compressor; the down-
stream compressor, the inner compressor. Since
the design pressure ratio of each compressor is less
than that of the equivalent one-spool compressor,
fewer difficulties might be expected with the slope
and the discontinuities of the stall-limit line.

Because of the higher pressure of the air enter-
ing the inner-spool compressor, the value of
w4/8/5 there is less than that at the outer com-

pressor; the diameter of the inner-spool compres-
sor may thus be decreased. The higher air
temperature permits the use of higher blade speeds
for a given limit in the relative blade Mach number.
Notice that the value of P//T downstream of the
inner turbine is higher than that for the other
turbine. According to equation (24), the tip
speed of the inner turbine, or compressor, can be
increased if the other design factors are fixed.
The higher compressor blade speeds thus are also
consistent with the turbine blade stress limitations.
With uncooled blades, the allowable stress limits
are lower for the inner turbine because of the
higher temperature; less marked increases in wheel
speed are then offered. The smaller diameters
and higher blade speeds of the inner spools in any
event offer possible reductions in engine size and
weight,

Because of the complicated interrelations be-
tween the two compressors, the two turbines, and
the other engine components, the trends of the
operating lines are not as readily exposed as they
are for one-spool engines. The important trends
are indicated, however, in references 25 to 27, and
the following discussion and the associated figures
are taken from these reports.

Representative performance maps and operating
lines for the outer and inner compressors, respec-
tively, are shown in figures 30 (a) and (b). In
this example, the ratio of the design pressure
ratio of the outer compressor to that of the inner
compressor is 0.75. The trends described, how-
ever, are fairly independent of this ratio. The
operating line represents the conditions where the
inner-turbine-inlet temperature is constant, the
mechanical speed of the outer-spool compressor
is constant (at its design value), and the flight
Mach number is varying. At any flight Mach
number, therefore, the equivalent speed of the
outer compressor and the engine temperature
ratio (ratio of inner-turbine-inlet to outer-com-
pressor-inlet temperature) are defined. These
two variables are sufficient to define the operating
point of each component of the over-all compressor-
turbine unit completely, as for the one-spool engine.
The points A, B, and C on the map, respectively,
represent the conditions for sea-level takeoff and
for flight Mach numbers of 0.9 and 2.8 in the
stratosphere.

Outer compressor.—The performance map and
operating line of the outer compressor are shown
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Figure 30.—Off-design compressor performance in two-
spool turbojet engine (ref. 26).
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Fieure 30.—Concluded. Off-design compressor perform-
ance in two-spool turbojet engine (ref. 26).

in figure 30(a). At low flight Mach numbers or
high engine temperature ratios, a large stall

691-564 O-65—3

‘margin appears. The operating line tends to

move towards the stall-limit line at low engine
speeds. For the example illustrated, the slope
of the stall-limit line increases with the equivalent
speed. With a more critical compressor design,
however, this trend may be reversed.’ ‘At the
high flight Mach numbers or low engine tempera-
ture ratios; the operating line approaches the
stall-limit line. This behavior is similar to that
of one-spool compressors. The equilibrium op-
erating line at sea-level static conditions describes
a similar trend.

With the possible exception of the overspeed
problems, the outer spool experiences the same
sort of difficulties that a one-spool engine encoun-
ters under off-design conditions. This statement
includes the difficulties associated with Reynolds
number and inlet distortions. The possible rem-
edies are also similar, except that bleeding air
between the two compressors might be substituted
for interstage bleed. These remedies could, how-
ever, result in a greater reduction in thrust for
the two-spool engine than they do for a single-
spool engine.

Inner compressor.—The operating line of the
inner compressor differs from that of the outer
compressor in two respects: The slope of the
operating line is greater, and the change in equiva-
lent speed for a given change in flight conditions
is less. For equilibrium operation, the principal
stall-limit problem arises at the high equivalent
speeds of the inner spool (low flight Mach numbers
or high engine temperature ratios). This prob-
lem responds to the same treatment indicated for
the similar problem of the one-spool compressor,
but, again, the thrust penalties may make the
solution an undesirable one.

An important point to note is that higher-than-
equilibrium engine temperature ratios momen-
tarily move the operating point of the inner com-
pressor towards the stall-limit line, even though
the surge margin is increased when equilibrium is
finally attained. This higher-than-equilibrium
temperature is required for engine acceleration.
Bleeding air between the two compressors to assist
the outer spool may also narrow the stall margin
of the inner spool. For transient -conditions,
therefore, the benign indications of the equilibrium
operating line may be deceiving.

As the inner compressor is started from rest,
its front stages are inevitably stalled. The at-
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tendant rotating stall may induce vibrations in
the blades. Similarly, rotating stalls developed
by the outer compressor may induce vibrations
in the inner compressor. In addition, the rotat-
ing stalls originating in the outer compressor may
impair the performance of the inner compressor
and lower the stall-limit line.
data are too meager to settle this point definitely,
but the apparent wide stall margin of the inner
compressor may disappear during engine accelera-
tion as a result of these phenomena.

The inner compressor itself may not be subject
to any Reynolds number problems, as both the
density and the turbulence are relatively high.
It can, however, amplify any deterioration in
performance encountered by the outer com-
pressor. The solution of this problem is again
subject to speculation, but it should yield to the
same treatments that may be found for the
one-spool compressor.

Inlet distortions may affect the performance of
the inner compressor because the inner com-
pressor amplifies changes in the performance of
the outer spool. A wide margin between the
operating line and the stall-limit line is therefore
desired. This requirement may be particularly
needed at the high equivalent speeds where the
stall margin is the smallest.

TURBOPROP ENGINE

In general, the design and off-design require-
ments of compressors for turboprop engines are
similar to those of the turbojet engine. Since
high compressor pressure ratios are desired for
the turboprop engine, the stall margin and vibra-
tion problems at low speeds cannot be overlooked.
Variable stator blades, interstage bleed, or some
similar device may be absolutely necessary to
obtain satisfactory engine acceleration at the low
speeds and still use the pressure-ratio capacity of
the compressor at high speeds.

At the design point, the efficiency of the engine
should be the maximum obtainable for continuous
operation. Practically speaking, this point then
represents the maximum power that the engine
can develop -under continuous operation. Higher
power can be obtained for brief periods by in-
creasing the pressure ratio and speed of the
compressor. When the compressor is coupled to
the propeller, the compressor speed can be con-
trolled independently by adjusting the pitch of

The published .

" the propeller blades. When the propeller is inde-

pendently driven by its own turbine, the speed of
the compressor depends on the turbine-inlet tem-
perature and the power delivered to the propeller.
The best location of the compressor operating
point at the high power condition depends on the
characteristics of the propeller, the stress margin
of the engine components, and the characteristics
of the airplane. The stall margin required at de-
sign or higher speeds thus depends on individual
studies of the engine and its intended service.
As a rule, however, the required margin is no
greater than that required of subsonic jet-engine
compressors (see ref. 28).

Except for starting and acceleration, operating
the compressor below the design pressure ratio
has been thought to be undesirable because of
the incurred loss in engine efficiency. An excep-
tion to this principle has been made for takeoff
and low-altitude flight. The pressures and power
developed are so high that engine weight is
decided by the low-altitude operating conditions.
While high sea-level power is desired for rapid
takeoff and climb, the sea-level output and com-
pressor pressure ratio of a turboprop engine can
be kept considerably below their maximum values
without seriously hurting airplane performance.
The resulting decrease in specific engine weight
at altitude improves the altitude performance
and range of the airplane. Although compressor
speed is reduced at sea level for this type of opera-
tion, the reduction in most cases is small enough
to avoid the stall and blade-vibration difficulties
associated with low-speed operation.

Because of its high specific power, the airflow
required by the engine is small. The diameter
and blade chords of the compressor are also small.
The compressor is therefore more susceptible to
Reynolds number problems at high flight altitudes.
As before, this problem can only be pointed out.
Its definition and cure require much research.

CONCLUDING REMARKS AND SUMMARY OF
COMPRESSOR DESIGN OBJECTIVES

The final specifications for a compressor grad-
ually emerge from a detailed study of a number of
engine and airplane layouts. The design-point
pressure ratio, flow capacity, and rotative speed
of the compressor represent a compromise that

-is established only after extensive preliminary

studies have been made of various engine and

UTC-2019.068



COMPRESSOR DESIGN REQUIREMENTE 51

airplane designs for a given mission or missions.
These tentative values may be subsequently
modified for selecting the best method of meeting
the various off-design conditions encountered.
The weight, complexity, and efficiency or drag
penalties associated with the available techniques
for varying the geometry or performance of com-
ponents are involved in this decision.

Regardless of the final specifications, the com-
pressor should produce the required pressure
ratio with high efliciency. It should, moreover,
be subjected to the highest aerodynamic loading
and Mach number allowed by available knowledge.

The resulting design should not require ex-
tensive development. The performance esti-
mates at the design and off-design points must
therefore be reasonably accurate. Moreover,
mechanical problems arising from aerodynamic

sources, such as blade vibrations, must be antic-
ipated and the design made so that these prob-
lems can be either overcome or successfully
evaded. Finally, with respect to manufacturing,
the component parts should be as few in number
as possible and their shape should be simple.

The material presented in the subsequent
chapters is the result of research specifically aimed
at realizing the objectives set forth in the previous
paragraphs. Because of the importance of light
and compact designs for aircraft, attention is
paid to many problems that may not be so impor-
tant in other fields of application. This point of
view does not limit the usefulness of the informa-
tion. Many successful designs, by present
standards at least, have been made in a wide
variety of commercial fields with this information.
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CHAPTER II1
COMPRESSOR DESIGN SYSTEM

By RoserT O. BuLLock and Irving A. JOHNSEN

A general description is presented for the com-~
pressor design system that has been adopted for this
report on the aerodynamic design of axial-flow
compressors. The basic thermodynamic equations
are given, and the simplifications commonly intro-
duced to permit the solution of these equations are
summarized. Representative experimental data are
presented to justify these simplifications. Thus, a
valid simplified flow model (which is the real basis
of a design system) is provided. The individual
elements of the design system and the basic calcula-
tions required to execute the aerodynamic design of
a compressor are summarized. The improvements
in knowledge required to make compressor design a

Vi

INTRODUCTION @

truer science and promasing directions of futur
research are indicated. M

The problem of designing axial-flow compressors
ultimately becomes the problem of accurately
" calculating the flow through compressor blade
rows. In order to be accurate and have the
greatest range of applicability, these calculations
should be based on the fundamental laws of
motion as much as possible. At the same time,
they should be of such a nature that they can be
made readily with available computing techniques
and equipment.

To be strictly accurate, the fundamental theory
should account for the fact that the motion of the
air has components in the three physical dimen-
sions. It must also account for the effects of
viscosity as well as time-unsteady motion. By
assessing each particle of air with these require-
ments, the differential equations of motion may
be derived. The Navier-Stokes equations are,
for example, obtained from this procedure.
Although they are of great theoretical interest,
these equations themselves are of little use in
compressor design. They cannot yet be solved
to express the flow through the complicated flow

- Preceding page hlank

passages formed by the blades, the hub, and
the casing.

In order to obtain more tractable methods of
analysis, various techniques have been devised
that combine simplified theories with empirical
data. The simplifications made to the equations
of motion are essentially the same as the simplifi-
cations that have been developed for airfoil anal-
yses. The foundations of the simplified theories
are thus the time-steady equations of the motion
of an inviscid gas. In this attack, it is tacitly as-
sumed that any important effects of viscosity and
time-unsteady flow can be treated as correction
factors and that the effects of viscosity are con-
fined to thin boundary layers. The important
flow properties not directly given by the simplified
equations of motion must be obtained empirically.

The simplified equations, together with the

empirical data required to calculate the flow with

a reasonable degree of accuracy, constitute a
framework for analysis or a design system. The
techniques presented in references 29 to 33 are
representative of such a system. It is the purpose
of the present series of reports to derive an up-to-
date design framework and to review the extensive
published analytical and experimental results that
are the building blocks for this framework. The
function of this particular chapter is to coordinate
the subsequent chapters by summarizing the im-
portant ideas presented in them. Therefore, the
following are reviewed: (1) the important ideas
underlying the design system, (2) some experi-
mental investigations directed at examining these
ideas, (3) the design system and the basic calcula-
tions required to execute the aerodynamic design
of a compressor, and (4) the improvements in
knowledge required to make compressor design a
truer science. _
The basic thermodynamic equations are first
presented, and the general goals of aerodynamic
flow analyses are outlined. The equations of
53
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motion for an inviscid time-steady flow are intro-
duced. The problem of solving these equations is
then discussed. Some of the commonly used
simplifications are presented, and the experimental
data necessary to justify these simplifications are
noted. Some rather obvious ways of treating the
important viscous effects are indicated, and the
experiments required both to evaluate these meth-
ods and to supply the necessary empirical data
are enumerated. Some causes of time-unsteady
flows and the approach used to account for them
are then presented.

Representative experiments that answer the
questions raised in the foregoing analyses are then
reviewed. These results provide a valid simplified
model of the flow, which is the real basis of a de-
sign system. In developing this model, the results
of experiments with the simplest conceivable flows
are first considered. The effects of complicating
flows are then discussed one by one whenever pos-
sible. The scope of the investigations is the
range over which data are available.

The elements of the resulting design system are
then individually summarized. The basic equa-
tions and techniques are given. The interrelations
among the various elements are pointed out, but
no attempt is made to prescribe an actual sequence
for their use. In this manner, the structure of a
compressor design system 1is provided, within
which the individual designer may work with
considerable freedom.

Finally, the shortcomings of the previously
outlined approaches are enumerated, and the
direction of future research is discussed. Some
promising though unproved techniques of analysis
are mentioned.

SYMBOLS

The following symbols are used in this chapter:

Qy stagnation velocity of sound

C curvature of meridional streamline, see
fig. 64

¢ chord length, see fig. 32 v

D diffusion factor, defined by eq. (54)

Fe centrifugal force due to curvature of
meridional streamline, see fig. 64

f 5r radial component of frictional force

I r centrifugal force due to rotation of air
about axis of compressor

g
H

I

Kbk

R A RS

R W e b
E§ 9™ g

™

8

o I

T DI ey

acceleration due to gravity, 32.17 ft/sec?

total or stagnation enthalpy per unit
mass

modified total enthalpy, H—w(rVs), see
egs. (39) and (48b)

incidence angle, angle between inlet-air
direction and tangent to blade mean
camber line at leading edge (see fig.
32), deg

mechanical equivalent of heat,
ft-1b/Btu

weight-flow blockage factor, implicitly
defined in eq. (53a)

Mach number

total or stagnation pressure

static or stream pressure

gas constant, 53.35 ft-1b/(Ab)(°R)

radius

entropy per unit mass

entropy increase in stream tube between
inlet and outlet of a blade row

blade spacing, see fig. 32

total or stagnation temperature

static or stream temperature

air velocity

weight flow

distance along compressor axis

angle of attack, angle between inlet-air
direction and blade chord (a=g8,—7v°,
see fig. 32), deg

air angle, angle between air velocity and

axial direction (see fig. 32), deg

turning angle, 8.—pB; (see fig. 32), deg

circulation, Ve

ratio of specific heats

blade-chord angle, angle between blade
chord and axial direction (see fig. 32),
deg

boundary-layer thickness, see fig. 42

deviation angle, angle between outlet-air
direction and tangent to blade mean
camber line at trailing edge (see fig.
32), deg

angle between tangent to streamline
projected on meridional plane and axial
direction (fig. 64), deg

vorticity

efficiency

angular distance

viscosity

778.2
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p mass density
¢ solidity, ratio of chord to spacing
v blade camber angle, difference between

angles of tangents to mean camber line
at leading and trailing edges (see fig.

32), deg

w angular velocity of rotor

Watr angular velocity of air for solid-body
rotation

@ total-pressure-loss coeflicient, see eq. (58)

Subscripts:

ad adiabatic

3 hub

1 initial or reference position

d ideal

m arithmetic mean

P polytropic

r radial direction

¢ tip

2 axial direction

0 tangential direction

1 station at inlet to blade row

2 station at blade-row exit

Superscript:

relative to rotor

FUNDAMENTAL CONCEPTS UNDERLYING
DESIGN SYSTEM

EQUATIONS OF THERMODYNAMICS

The design or analysis problem may be stated
as the problem of determining how the shape of
a blade row alters the thermodynamic flow prop-
erties and velocities of each particle of gas flowing
through it. The changes in the total (or stagna-
tion) state as well as the changes in the static
state of the gas are of interest.

In order to avoid unnecessary complications
in the thermodynamic equations, it has usually
been the custom to assume that the entire flow
may be subdivided into individual tubes of flow

that maintain their identity. Another assump- -

tion is that there are no important effects of heat
transfer into or out of these tubes of flow. (In
the discussion of experimental data, it will be
shown that these assumptions usually do not
cause serious errors.) By virtue of these as-
sumptions, the change in the total enthalpy or

total temperature in the stream tube of the gas is
equated to the mechanical energy transferred to
it by the compressor rotors. ' The changes in
both the total and static states of a gas can then
be expressed in terms of the component velocities.

Flow through stators.—Since no energy is added
to the flow by the stators, the total enthalpy and
total temperature of a stream tube of the flow
through stators are constant:

Hy=—13 gRT\=-"5 gRT:=H,  (30)

From the definition of total and static statés, this
equation may be written as

1 1 1
Hi=—15 gRt+3 Vi Vit Vi

R 1y 1y Ly
_,y__l gRt2+2 Vr.2+2 Vz.2+2 0.2_H2(
31)

This equation relates the change in static tempera-
ture to the changes in the individual components
of velocity.

If there is an increase in entropy through a
stream tube (e.g., from friction or an interchange
of heat within the stream tube itself), the total
pressure changes according to the equation

P, ——R{ As

P (32)
When the change in entropy, or total pressure, is
known, the changes in static pressure and density
corresponding to the changes in static temperature
may be determined. Static pressures are related
by the equation

hd
n_(ta\—1 D,
m \1 P, (33)

The densities are then related to the pressures
and temperatures by the gas law

p=pgRt (39)
or .
pi Ml (35)

Equations (34) and (35) may, of course, also be
used to relate the total conditions of state.
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If the changes in the velocity components and
the entropy in a stream tube are known, the
resulting changes in static temperature, total and
static pressure, and total and static density can be
determined.

Flow through rotors.—Since the rotors do work
on the gas, the enthalpy of a tube of flow changes
through the rotor according to Euler’s turbine
equation:

Hz—'le-w(TzVo, 2—7’11‘70, 1) (36)
or

1 1 1
‘-Y%T gRtl+§ V3.1+§ V§,1+-2— Vii—wrVe

=L Rt Vs Vi Via—onVe.
37)

Notice that the changes in V; due to casing
friction are ignored in these equations.

Since a stationary observer could not observe
continuous tubes of flow through a rotor, recourse
is frequently made to relative flow conditions,
where the observations are theoretically made from
the rotor its.::. Continuous stream tubes can
then be distinguished. The relative velocities
are related to the absolute velocities by the

equations
V.=V,

V.=V, (38)
Vi=Vi—owr
(V5 is usually negative in the compressor case in the

sense that «r is positive.) Equation (36) then
becomes

Ii=H1—}wr’=H —3w?ri=1I, (39)
where

r___ . { 1
H' =25 gRT' =5 gRt+3 (V)"
5 (VO 7 (40)

When only the flow ahead of and behind the
rotor is of interest, the use of relative quantities
is not necessary; in this case equation (37) may also
be applied to relate the changes in total and
static temperatures with the changes in the
individual components of velocity.

The corresponding changes in total pressure are
given by

X o X
P, (T 2)7—1 —RA8 (T 2)7—1 p
e L e —f =2
Pl . Tl Tl
T ¥
=[1+(—1{-—1) naa]”l (41)

P T A
2 [ 12\r—1 —p48
E(z) @

(The magnitude of AS for absolute quantities is the
same as for relative quantities.) The resulting
change in static pressure is given by

P, P
k4 o Y 7
P tz)::: P tz)r—i Py
£2 - 2 y =| v
Ly b Ly

T, T

(43)

The corresponding density changes may be de-
termined by equations (34) and (35).

With these relations, the changes in total and
static states of a gas can be determined when the
changes in the velocity components, the entropy,
and the radius of the stream tube (measured from

‘the axis) can be estimated. The concepts dis-

cussed in the rest of this section were developed
with the idea of making these estimates.

ANALYSIS OF TIME-STEADY AND INVISCID FLOW

As will be shown in chapter XIV, the three-
dimensional equations of motion of even time-
steady and inviscid flow are much too complicated
for general use at the present time. Coping with
all the three-dimensional gradients in the motion
and properties of the gas is too big a problem for
routine analysis. An inviting simplification ap-
pears, however, when the radial components of
velocity in a blade row are small enough to be
ignored.

Equations ignoring radial velocity.—Stationary
blade row: Ignoring the radial components of
velocity is tantamount to assuming that a stream-
line of the flow lies on the surface of a right circular
cylinder (fig. 31). If this surface and its stream-
lines are developed into a plane, the streamlines
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58 AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

Besides these relations, equation (378b) (ch.
XIV) must also be satisfied. This equation may
be written as, neglecting any radial forces exerted
by the blades, ,

%TEI-.t Pa—*§=vo:,—v,ra. (48)

If radial flows are neglected, this equation becomes

BVeoV) 1y, e (480)

°H 038 _V,
o o 7 or

When {, and {s are zero, then the right side of this
equation must be zero. The left side of this equa-
tion must also be zero—a condition which is
realized when there are no radial gradients in
enthalpy or entropy.

It may be noted that equation (48) is also ap-
plicable when the axial and tangential components
of vorticity are not zero. For the condition of no
radial flow, one component of vorticity (say {.)
may be stipulated by the radial variation of V,
(eq. (46)). If the radial variations in enthalpy
and entropy are also given, then the radial varia-
tions in V, are determined by equations (47) and
(48).

Rotating blade rows: In order to utilize steady-
flow equations in rotors, the flow in rotors is re-
ferred to a coordinate system that rotates at rotor
speed. The velocities in the rotating coordinate
system (the relative velocities) are related to the
absolute velocities by equations (38), which are
rewritten here as

V.=V,
V.=V; (38)
Vi=Votor

Again V,=0; the relative velocities are then di-

rectly substituted for the absolute velocities in
equation (44), and

o(pV5) , 3(pV2)
e Y

0 (444a)

The corresponding equations for the radial, axial,
and tangential components of vorticity are

ov: v,

8y —Sr=% (458)

o(rVy) oV,

1 130V WV, . .
ror —of S r or —of =%
(46a)
ov, d, .,
Y- U (47a)

If the radial flows and absolute vorticity are
again assumed to be zero, equations (44a) and
(45a) become the equations of a two-dimensional
cascade. This simplification of flow equations is
thus applicable to rotors as well as stators.

Equation (46a) may then be integrated along a
radial line to become

;‘V;= r—wri=r(Vy—or)

In order to meet the requirements of no tangential
gradients in the radial flow through a rotor, the
absolute flow along a radial line must be defined by

rVy=T

This is the same requirement previously derived
for stators. The tangential velocity distributions
for rotors and stators are thus compatible. Simi-
larly, the integration of equation (47a) shows the
compatibility of axial velocity, namely,

V.=constant

As shown in chapter XIV (eq. (378c)), the
equation analogous to equation (48a) is

of 28 V,;0(rVy)

p oV,
or "or r Or

or

+v,

(48b)

where, according to equation (39),

I=H'—}0*r*=H—wrVy= H—uw*r*—wrV,

If H and 7V, are constant along a radial line,
then I is also constant along a radial line. If the
entropy is also constant along a radial line, equa-
tion (48Db) is satisfied for free-vortex flows. Equa-
tion (48b), like equation (48), may be used when
the vorticity components are not zero. The pro-
cedure involved is similar to that previously
outlined.

When radial flows do not have important effects,
the analysis of flow in a blade row is relatively
simple. The three-dimensional problem for both
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stators and rotors is broken down into the two-
dimensional-cascade problem and the separate
problem of determmmg the radial distribution of
the flow. It is, of course, practically impossible
te eliminate ra.dia.l flows completely. Because of
the simplification offered by this type of approach,
however, it has been deemed advisable to seek
and study those designs in which the radial flows
are small. - -Attention is therefore directed to the
study of the causes of radial flows in a blade row.
The question concerning admissible radial flows is
temporarily deferréd to the review of experimental
data.

Causes of ra.dlal flows.—Changes in radial
density gradients: One cause of radial flows is the
change in the radial density gradient between the
inlet and the outlet. If the radial velocities are
zero, the hydrodynamic equation of equilibrium
(eq. (877), ch. XIV) becomes

199 V3
por

If Vo=T/r and there are no radial gradients in
entropy (i.e., p=Cp"), this equation may be solved
to read

Y r—1__ _F_z_)
pomasy | Co constant o

A change in T through a blade row therefore
makes the radial distribution of density behind
the blade row different from that in front of it.
Figure 33 shows a representative change in the
radial distribution of density for a blade row
through which T is increased from 150 to 300 feet

squared per second. Also shown in this figure is

the change in rpV..
Continuity of mass flow requires the following
equation to be satisfied in a stream tube:

f "lpr‘ o dr=f "2p2V¢, ordr (49)
T f"z

1,1

where the subscripts 1 and 2 refer to conditions
far enough upstream and downstream of the
blade row that V, is practically zero and any
circumferential gradients have disappeared; and
r, and r, refer to the radius of a given streamline
and that of the tip (or casing), respectively, (see
fig. 34). Notice, however, that equation (49) is
valid even when V, is finite.

In the vicinity of the tip, 7oV, has a greater
value behind the blade row than in front of it
(fig. 33). The distance (r,—r,) between two ad-
jacent streamlines near the tip is therefore ex-
pected to decrease as rpV, increases if 7, is constant,
As shown by streamline A of figure 34, this trend
does occur and the streamline moves radially
outward. (This drawing actually represents the
projection of the flow on a plane through the
axis. This representation is conventionally called
the flow lines in the meridional plane.) A radial
component of velocity, as indicated by the slope
of the dashed streamline, must therefore exist
within the blade row. Near the hub, on the other
hand, the value of rpV, decreases through the
blade row, and the distance between streamline B
and the hub is greater behind the blade row than
in front of it. In this case, the motion of the
streamline is again radially outward, and radial
components of velocity must again exist within
the blade row.

Even for ideal conditions, therefore, where the
tangential and axial components of velocity up-
stream and downstream of the blade row satisfy
the requirements for no radial velocities, some
radial flow must take place within the bla.de TOW.
The ma,gmtudes of the radial flows increase with
the change in I' through the blade row and with
the corresponding change in 7pV,.

Blade thickness distribution: Another source of
radial flow is the radial distribution of blade
thickness. Some aspects of this problem are
discussed in reference 34. Ahead of the blade
row, a cross section of the stream surface in a
plane normal to the axis would look like that
shown in figure 35(a). A streamline of the flow
between two adjacent blades lies within the area
of the sector bounded by A-A and B-B. Because
of blade thickness, these lateral boundaries are
changed to C-C and D-D within the blade row
(figs. 35 (b) and (¢)). If C—C and D-D are also
radial lines (fig. 35(b)), the area of each of the
original stream tubes is reduced uniformly along
the radius. The radial position of the streamlines
then tends to remain unchanged. In the more
usual case, the lines C—-C and D-D are not radial
lines; then, as indicated in figure 35(c), the flow
would be deflected outwards with respect to that
of figure 35(a). The areas of the original stream
tubes are not uniformly reduced, and some radial
adjustment of the streamlines is required to
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Ficure 33.—Changes in distributions of p and 7pV . due
to change in I' through blade row.

compensate for this. Some notion of the resulting
flows is given in reference 34. This reference
indicates that radial flow starts ahead of the blade
row, as shown in figure 36. A maximum radial
displacement occurs within the blade row, and
thereafter a radially inward flow begins and con-
tinues downstream of the blade row.

Radial component of blade force: Still another
source of radial flow is the radial component of
blade force. This concept is reviewed in chapter
XIV. The turning of the air at any point in a
blade row is the result of tangential forces originat~
ing on the surface of a blade. The direction of
these forces, however, must be perpendicular to
the corresponding blade surfaces. If the surfaces
are inclined to the radius, a radial component of
force is imposed on the flow, and radial flows may
thereby be induced. Since the forces on the high-~
pressure surface of the blade are dominant, the
radial movements of the flow depend on the angle

2

.

h

FiGure 34.—Radial shift of streamlines due to change
in radial density gradient through a blade row.

between this surface and a radial line. Depending
upon how the blade elements are radially alined,
inward or outward radial velocities could be
generated. In the blade of figure 37(a), the pre-
dominant force is radially outward; so is the radial
component of the flow. For figure 37(b), in
which the shape of the individual cascade elements
at each radius is the same as that of figure 37(a),
the flow would be first inward, then outward.
Non-free-vortex flow: In order to alleviate some
problems arising from Mach number limits, such

‘as those described in reference 35, tangential

velocity distributions differing from the free-
vortex type are frequently used. One type of
tangential velocity distribution that tends to
overcome these difficulties is given by the equation

V0= watrr+£" (50)

where both w,;, and T are constant. Other dis-
tributions could also be used, but this type permits
a simple discussion of nonvortex distributions.
Suppose now that uniform flow entered a row of
blades designed to produce this distribution at
the outlet. Since the flow is originally without
vorticity, equation (46) becomes

20)'“’__2‘_/_’:

rof

and tangential variations in radial velocity are
thus :ntroduced.
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Freure 35.—Effect of blade thickness on radial location of stream surfaces.

The resulting flows can be visualized by dividing
Vs into three parts,

V0= Vo,a+ Vo,rl-Vo,c

where
l b(rVO. a) =0
rooor
1 o(rV,
; (raro, b) =2wair

r or rof

Figure 36.—Radial shift of streamlines due to blade
thickness.

The velocity Vj, , is that required for free-vortex
flow. The circumferential-plane streamlines for
the condition of no through flow are shown in
figure 38(a). The velocity V,, represents the
rotation of a solid body, and the corresponding
streamlines are shown in figure 38(b). The flow
determined by V5, ; is more complex. No general
solution to this flow has been found, but solutions
for several particular conditions are presented in
reference 36. The streamlines for two of these
solutions are shown in figure 38(c). In general,
both Vi, and V, must vary in the tangential
direction. This trend is suggested by figure 38(c).
It is evident that the velocity defined by equation
(50) really cannot exist at every circumferential
position. Equation (50), however, is approxi-
mated at every circumferential position when the
blades are close enough together that the actual
circumferential changes in Vs and V, are very
small. The velocity Vs, . might then be ignored.
The change in V, along the circumference could
also be ignored. In this event, one could write

V0= VO, a+ VO, S watrr+_:£"

The resulting streamlines are those of fizure 38(a)
combined with figure 38(b).

The vorticity represented by this flow, however,
i8 2wg. This result means that vorticity must
be added to the flow by the blade row. Such a
thing cannot be done in an ideal fluid, because the
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{a) (b)

(a) Radial line through leading edge.
through center of gravity.

(b) Radial line

Figure 37.—Various radial alinements of compressor
blade elements having the same radial distribution of
cascade elements.

vortex lines would extend downstream of the
blades and they would be confined to infinitesi-
mally thin sheets. Between them, the flow would
be irrotational. Since these vortex sheets actually
enclose the wakes in a real fluid, they eventually
do permeate the entire flow field by the mixing of
the wakes with the rest of the flow. Accordingly,
for a reasonably close spacing between the blades,

the entire flow could be assumed to have an axial.

component of vorticity of 2w,;, downstream of a
blade row, even though the upstream vorticity is
zero. (For a further discussion of this point, see
ref. 5.)

In this event, equation (46) may be used, and

1 9(rV5)
r or

=2"’atr=§-:

Equation (48) can then be written as

%“‘t %5—20)5"‘70 ;"0

Stream surface

{b)

e —

(c)
Rotation

Rotutuon

(a) Free-vortex rotation. (b) Solid-body rotation.
(c) Eddy flow (ref. 36).

Figure 38.—Circumferential-plane streamlines for no
through-flow.

With uniform enthalpy and entropy, equation
(48c) is written

Vzg- 0=2"’airV0
By using equation (47), this equation becomes

2i Vot V, o=V, e
Here again, radial flows are required, since dV,/0z
cannot, in general, be zero. In many designs,
these radial flows are far from negligible within a
blade row and may be considerably more severe
than those previously discussed. Far enough
downstream of the blade row, the radial low must
disappear. Some studies of these flows are re-
viewed in chapter XIV.
For other radial distributions of tangential
components of velocity, other equations must be
used to describe the flow. The important point to
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F1aure 39.—Radial shift of streamlines due to hub and casing curvature.

note, however, is that additional radial flows tend
to be introduced whenever the distribution is not
that of a free vortex. These radial flows not only
exist within the blade row but also may be found
upstream and downstream of it.

Shape of hub and casing: Some radial flows
must exist in the vicinity of the hub and casing
when the slope is not zero (fig. 39). Such con-
figurations usually cannot be avoided because of
the exigencies of other considerations (blade sur-
face velocity diffusion, attainable total-pressure
ratio, etc.), which are discussed later in this
chapter. The magnitude of the radial flows within
and without the blade rows naturally increases as
the slope of the boundaries increases.

Effect of radial flows on stream surface con-
figuration.—As previously shown, the simplifying
assumption of no radial low presumes the stream-
lines of the flow to lie on the surfaces of right
circular cylinders (fig. 31). The radial flows re-
sulting from the changes in radial density gradi-
ents, the blade thickness distribution, and the
radial component of blade force make these stream-
line surfaces undulate and twist as shown by
comparing the upper surface of figure 40(a) with
the lower surface. The additional disturbances
encountered when rV, is not constant along a
radial line and when annulus walls converge are

indicated in fizure 40(b). The increased twisting
of the surfaces results from the flows shown in
figure 38(c) (left side).

Experimental data required.—Although the
magnitudes of these radial flows can sometimes be
estimated by mathematical analyses, their actual
effects on the performance of a blade row must
eventually be measured by experiment. The
deflections of the air at a given radius of a blade
row and those of a two-dimensional cascade having
identical geometry and inlet conditions may be
compared; the agreement between the two sets of
results is a measure of the usefulness of the simple
concepts obtained by ignoring radial flows.
Similarly, a comparison of the measured radial
distributions of flow with those given by equations
(46) to (48) (with V,=0) provides another test of
these concepts. The representative experimental
data subsequently presented are examined from
these points of view to show that, in many cases,
the ‘simple equations just derived provide an
accurate estimate of the main flow.

ANALYSIS OF VISCOSITY PROBLEM

Two-dimensional-cascade elements.—Follow-
ing the procedures used in other fields of aerody-
namics, compressor design and analysis techniques
assume that the important effects of viscosity are
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Surface of
right
circular
cylinder

{a) Free-vortex design.
{b) Non-free-vortex design with converging annulus area.

FIGURE 40.—~Warping of stream surfaces through a blade
row.

confined to thin boundary layers and to blade
wakes. For the cascade elements (defined in fig.
32), the boundary layers are indicated by the
shaded areas immediately in contact with the
blades in figure 41(a). Beyond the trailing edge
of the blade, the boundary layers are shed as
wakes, Within the shaded areas of the figure,

the retarded flow of the wakes is mixed with the
rest of the flow. The shaded areas, therefore,
become wider in the direction of the flow. Far
enough downstream, complete mixing would occur
and the flow would be homogeneous.

A representative example of the velocity varia-
tion within a boundary layer is shown in figure
41(b), which presents the velocity distribution
along a line A-A in figure 41(a). Between points
a and b of figure 41(b), the effects of viscosity are
small, because the velocity gradients are relatively
small, Between the blade surfaces and points
a or b, however, the velocity gradients are severe
and viscous effects are dominant. Besides the
indicated change in velocity, the total pressure,
the entropy, and even the total temperature also
vary. The static pressure, however, is likely to
be approximately constant through the boundary
layer.

One of the most important effects of viscosity
is that it retards the relative flow in the boundary
layers. (In making this statement, it is implied
that the flow is viewed from the coordinate
system attached to the blades. For stators, such
a coordinate system is stationary, as previously
noted; for rotors, it moves at blade speed.)
Because of the low relative flow, the boundary
layer may be almost replaced by a region of no
flow for inviscid-flow analyses. Effectively, then,
the boundary layer changes the aerodynamic shape
of the blades, a phenomenon which must be
recognized in interpreting inviscid-flow analyses.
Although some methods of partially correcting
inviscid-flow analyses for these changes in bound-
ary conditions have been developed, it has usually
been more practicable to use experimental results
as a source of two-dimensional-cascade data (ch.
VI). Two-dimensional-cascade inviscid-flow
theory (ch. IV) may then be used to correlate
these data.

Important data derived from two-dimensional-
cascade experiments are the deflections or turning
angles as functions of blade shape and inlet flow
conditions. The turning angles are given by

AB=(B,—B2)=]| tan™! %"—!—tan V”z:l
z1

z,

When the turning angle is known, the change in ‘
Vo is a function of the change in V,. Also of
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indicated by total pressure behind a two-dimen-
sional cascade thus varies in two dimensions.
Along the line B-B of figure 41(a), the distribution
of total pressure resembles that shown in figure
41(c). Farther downstream, along C-C, the total-
pressure distribution is more uniform (fig. 41(d)).
Rigorously coping with the loss distributions is
not practical at the present time. An average
flow condition behind the blade row is therefore
sought. Such an average is also required when
unsteady flows are prevalent, as discussed in the
later section on Treatment of Time-Unsteady
Flows.

The best way of averaging the flow conditions
behind a two-dimensional cascade is not estab-
lished at the present time. Discussions on this
point in reference 37 indicate that one method of
averaging is probably as good as another as long
as the trailing-edge boundary layers are thin and
the flow Mach numbers are subsonic. Since these
conditions are satisfied at the design point of
many compressors, no case has yet been made for
a particular method of averaging.

Hub and casing boundary layers in compressor
blade rows.—The hub and casing boundary layers
are indicated by the shaded areas of figure 42(a).
The corresponding radial distributions of the
circumferentially averaged total pressure ahead of
and behind a blade row are shown in figure 42(b).
Between a; and b; of this figure the total pressure
at the inlet is practically constant. Beyond these
lines, it drops rapidly. The distance from the
hub to a, (fig. 42(b)) is-indicative of the boundary-
layer thickness at the hub of the inlet. The
distance from the casing to b, (fig. 42(b)) indicates
the boundary-layer thickness at the casing. Simi-
larly, the lines a; and b; represent the extent of
‘the boundary layer at the outlet. The boundary
layer is also indicated by the distribution of cir-
cumferentially averaged axial velocity at the inlet
and outlet of a row of blades (fig. 42(c)).

Reference to figure 42(b) shows that the cir-
cumferentially averaged losses between a,—b; and
ag—bs can be small. (The difference between inlet
and outlet total pressure is a measure of the loss.)
Within this area the flow properties might be
considered to be a function of the two-dimensional
cascade, where the circumferentially averaged
losses are usually quite small. In these cases,
little error in the state of this main flow is intro-

duced even by assuming the flow to be isentropic.
Beyond these lines, at the blade ends, the cir-
cumferentially averaged losses are more severe.
Since the flows causing these end losses have no
counterpart in a truly two-dimensional cascade,
loss data and flow-angle data from such cascades
are expected to be useless in the vicinity of the
hub and casing. Therefore, pertinent data must
preferably come from the blade row itself.

This retarded flow in the hub and casing bound-
ary layers poses an important problem in design.
The nature of this problem may be studied from
the following considerations.-

The requirements of continuity may be ex-
pressed by the following equations:

w=2"rfr“ ARG dr1=2"'fn' " ooV, aradrs (51)
a1 T, 2

where

_P /. 4=1VHVHVIS
P=ET (1 % kT ) ©P

This expression is derived from equations (31),
(33), and (34). The various flow quantities here
must be the circumferentially averaged values
ahead of and behind a blade row. For the flow
behind a blade row, equations (51) and (52) may
be combined to read

_ "2 PyV,
w—21rj:“ 9RT:

(1 1=1 V2t V2at V3,
2y gRT;

2
) rodrs (53)

If the circumferentially averaged flow properties
were known as a function of radius between the
hub and casing, it would be a simple matter to use
equation (53) to relate the hub and tip radii to
the mass flow. Unfortunately, computing the
extent of the boundary layer and the distribution
of flow within it remains an unsolved problem
except for extremely simple flow situations.
Therefore, methods of making reasonable allow-
ances for it have been sought.

When the circumferentially averaged flow
between a-a and b-b of figure 42 is known,
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FigurEe 42.—Boundary layers at hub and casing.
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equation (53) may be written as

(re, 2=84,2) P,V
'w=27rf 2 &2
(rh,2t0,0) GRT,

1
(1 _'Y;yl V22+gVR?12’j_W 2)7_1 7y dre

—I—U(m’ a2 PV, ,
Th2 gRTz

1
(1 Y= 1 Vz 2+g‘;21?'j_V§- 2)1-1 T2 d7'2

Tt 2 PV, .,
+~£’¢,2"5z, 2) gRT, .

_— 2 =1
(1 Y 1V§.2+9Vé,13j‘V3,2)7 Ty drz]

The first integral is readily evaluated from data.
The last two integrals, within the brackets,
represent the relatively small mass flow through
the space-consuming boundary layers. For lack
of a better way of coping with these two integrals,
they have usually been assumed to be adequately
handled by the factor K, in the equation

2 P2Vz 2
.—_—.2 2
w ‘H'Kokﬁh \ gRT2

(1 v—1 V2 2+V, 2+V3 2
2y gRT,

1
) " T2 dr, (53&)

where the blockage factor K, is a function of the
design of the blade row, the inlet flow, and the
position of the blade row in the compressor.
The quantities Py, V.2, V, 3 and V,, are taken
as those in the main flow. However, an estimated
average value of total pressure over the entire
flow passage (including the boundary layer) might
also be used; in this case a different value of K,
would be necessary.

As long as the boundary layers are really thin,
one technique is probably as good as another.
If the boundary-layer correction itself amounts to
1 or 2 percent, a 20-percent error in the correction
amounts to only 0.2 or 0.4 percent in the estimate
for a single blade row. Notice, however, that
the compounding effects in a multistage COMPTESSOT
might make even this error excessive. When
the boundary layers become thick, greater
accuracy is needed. When the flow resembles

fully developed pipe flow, this method of
accounting for viscous effects may leave something
to be desired. It should also be noted, moreover,
that, when the boundary layers are relatively
thick, a consistent system of handling the
boundary layers is especially imperative. Serious
errors can result, for example, if one system is
used to estimate P, and another to select the
correction factor K,;.

In addition to complicating the continuity
relation, the existence of wall boundary layers
could make the determination of average total
pressure and total temperature difficult. It may
be noted that the total pressures and total
temperatures of the boundary layers may
appreciably differ from those in the main stream.
The problem of correctly averaging the total
pressure and total temperature thus arises. A
technique similar to that just discussed for
continuity suggests itself. Correction factors,
when they are required, could be applied to the
main flow to estimate the mass-averaged quanti-
ties. These correction factors are again functions
of the blade design, the inlet flow, and the posi-
tion of the blade row in the compressor.

Loading limits.—Any flow device using a diffu-
sion process will have a limiting diffusion at which
the flow breaks down. This flow breakdown, or
separation, can be directly attributed to the
boundary layers; they do mnot have enough
momentum to overcome the adverse static-pressure
gradient accompanying the diffusion. In the
usual compressor design, the velocity diffusion
required on the blade surface increases as the
ideal turning in a blade row increases. The
intensity of this diffusion is frequently taken as a
measure of the blade loading. The condition at
which serious flow separation begins to occur is
therefore called the loading limit.

The. details determining the loading limit are
still imperfectly understood. This statement is
true even for relatively simple flow devices, and
this situation is therefore not uniquely familiar to
compressors. One of the important variables
involved seems to be the ratio of the required
static-pressure rise to an appropriate velocity
pressure (refs. 9 and 38). The shape of the blades,
the inlet flow conditions, and the required down-
stream flow conditions are thus expected to be
involved in the loading limit. It should be noted
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that the previously discussed radial shifts in the
streamlines also influence the diffusion; this effect
is particularly noteworthy for non-free-vortex
distributions and at Mach numbers in the neigh-
borhood of 1.00, where slight changes in stream-
tube distribution can cause large changes in
velocity distribution. Some important differences
between the loading limits of blade rows and those
of corresponding two-dimensional cascades may
therefore be anticipated. Since the demands of
aircraft encourage the use of compressors with
highly loaded blades (ch. IT), at least some loading-
limit information is a vital necessity. Experi-
ments on actual blade rows are again the only
positive source of data.

Experimental dats required.—There are a num-
ber of questions relating to viscosity that can only
be answered by experiment. The losses and load-
ing limits of two-dimensional cascades over a
range of blade shapes and inlet flow conditions
are of interest. Data for various blade rows and
inlet flow conditions in the actual compressor are
required to evaluate the usefulness of the loss and
loading-limit data obtained from two-dimensional
cascades. Data are also required to establish the
effect of staging on the losses suffered and the
loading limits.

Data are required for the performance of the
hub and tip sections of the blades as well as for
those in the main flow regions. Because of the
increased viscous effects in the wall regions, the
turning-angle data, loss data, and loading-limit
data can be quite different from those obtained
under ideal two-dimensional-flow conditions.

Some examples of the studies required are given
in the section of this chapter devoted to experi-
mental data. Representative turning-angle, loss,
and loading-limit data are first presented for two-
dimensional cascades. The trends of these vari-
ables in various compressor blade rows and under
various conditions are then noted. The relative
thicknesses of the hub and tip boundary layers
are discussed.

TREATMENT OF TIME-UNSTEADY FLOWS

Time-unsteady flows must exist in a compressor,
because both stationary and rotating blade rows
are used. Even for ideal flow conditions, as pre-
viously noted, the flow in a stator can be steady
only when the motion is referred to a coordinate

system that is also stationary. Similarly, a co-
ordinate system moving at rotor speed must be
used for the rotor. From a purely theoretical
point of view, the flow through a rotor is there-
fore always unsteady with respect to uniform flow
in a stator, and vice versa.

Moreover, time-steady circumferential varia-
tions in the flow ahead of or behind a rotor cause
the flow in the preceding or following stator to be
time-unsteady irrespective of the coordinate sys-
tem used. Similarly, time-steady circumferential
variations with respect to the rotor induce inevita-
ble time-unsteady flows in the preceding and
succeeding stators. It may also be noted that
time-unsteady flows are also inevitable when either
rotating stall (ch. XI) or surge (ch. XII) occurs.

Circumferential variations in the flow behind a
blade row, and thus unsteady flows in the following
blade row, are encountered even when the flow is
completely inviscid. Some circumferential gra-
dients in the flow persist for some distance up-
stream and downstream of even an ideal two-
dimensional cascade. Similar circumferential
gradients are associated with the types of flow
presented in figure 38(c).

Additional circumferéntial gradients are brought
about by the blade wakes (fig. 41). These gra-
dients are made even more complicated by the
fact that a fluctuating pressure field ahead of a
blade row periodically changes the character of
the wakes leaving the previous blade row. As a
result of all these phenomena, both the rotor and
stator are beset by complex unsteady flows.
Notice that any two adjacent blade rows, one
rotating and the other stationary, experience the
same sort of disturbances.

Because of these time-unsteady components of
the flow, average values of flow properties leaving
one blade row have been used to represent the
inlet flow to the next blade row. In this way, the
unsteady-flow problem is rather arbitrarily re-
duced to a steady-flow problem. As discussed in
chapter XIV, some theoretical considerations
indicate that additional time-unsteady effects may
be of importance. How vital these effects are
must eventually be determined by experimental
data.

The validity of this treatment of unsteady flow
can also be judged by experimental data. Com-
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paring the performance of isolated blade rows with
those subjected to unsteady flows provides the
basis for this evaluation. This problem is con-
sidered in the discussion of experimental data
presented in the following section.

REPRESENTATIVE EXPERIMENTAL DATA
SUPPORTING DESIGN CONCEPTS

Many of the questions that have been raised
about the simplified flow concepts in the previous
section have been answered by the published
results of a large number of experiments and
analyses. Some representative examples of these
experiments and the indicated conclusions are
presented in this section. Through this review, a
qualitative picture of the flow is established that
becomes the basis of a design system. Moreover,
the results presented indicate the classes of as-
sumptions and calculation techniques that may be
used with a reasonable degree of confidence. The
areas where design information must be tempered
by intuition and judgment are also spotlighted.

Before presenting the data on actual compres-
sor blade rows, attention is first focused on the
aerodynamic properties of the two-dimensional
cascade, since this type of reference data is the
basis for many of the developed procedures.
Typical data from inlet guide vanes are then re-
viewed. For inlet guide vanes with free-vortex
flow distribution, the assumption of no radial
flow is examined under conditions where the radial
flows and viscous effects may be reduced as much
as possible and the unsteady-flow effects are com-
pletely eliminated. The effects of changes in
radial density gradients, of blade thickness dis-
tribution, of blade force, and of the hub slopes are
noted. Radial flows resulting from non-free-
vortex flow distributions are then examined.

Representative data obtained from rotating
blades are also reviewed. The effects of blade
rotation, over and above the effects considered for
inlet guide vanes, are thus evaluated. Some
effects of unsteady flows and the mixing of wakes
are noted from theresults of tests of bothstationary
and rotating blades.

Several significant results obtained from ex-
periments on multistage compressors are next
reviewed. These data indicate the validity of the
simplified flow concepts under adverse, but
typical, conditions. They also provide a basis

for indicating important missing gaps in available
knowledge.

For each experiment, the turning-angle data are
presented and the loss or efficiency data are noted.
Flow conditions in the main flow are discussed.
The influence of the hub and tip boundary layers
are also noted. Comments are made about the
indicated effects of radial flows and unsteady
flows. The significant knowledge derived from
these classes of experiments is then summarized
by outlining a model of the flow that can be used
for design.

TWO-DIMENSIONAL CASCADES

Aerodynamic behavior.—Five quantities deter-
mine the aerodynamic behavior of a cascade with
ideal flow. One of these is the shape of the blades,
which is usually expressed in terms of the distri-
bution of thickness and camber. Another quan-
tity is the orientation of the blades with respect to
the cascade axis; this orientation may be defined
by the blade-chord angle ¥° (fig. 32). The third
quantity is the solidity (o=c/s), although the
pitch-chord ratio, the reciprocal of this number, is
sometimes used. With these three quantities,
the geometry of the cascade of blades is defined.
The fourth quantity identifies the direction of the
flow ahead of the cascade. The relative inlet-air
angle B is frequently used for this purpose.
Finally, the relative Mach number of the flow at
some point must be known. This quantity is
also usually referred to the relative inlet flow.
Theoretically speaking, all details of the flow of an
ideal inviscid fluid can be determined from these
data.

For real flows, the factors involving friction are
also pertinent. The Reynolds number of the rela-
tive flow thus becomes an important item. The
Reynolds number is usually based on the properties
of the inlet flow, using the chord length as the
characteristic dimension. The factors involved
are the turbulence of the incoming flow and the
condition of the airfoil surfaces (see chs. Vand VI).
Because of the complicating effects of friction, the
most reliable cascade data are derived from experi-
ment rather than analysis. :

Types of experimental data observed.—One of
the most important pieces of cascade data required
is the deflection of the flow (8,— 8s), since deflecting
the flow is the main purpose of the cascade. Al-
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though analytical techniques have been developed
and are occasionally used for determining this
deflection (ch. IV), the greatest amount of data is
obtained by experiment. A typical sample of the
experimental data is shown in figure 43, which was
obtained from reference 39. These data were ob-
tained for fixed values of blade shape, solidity, and
‘inlet-air angle. The blade angle was varied, the
magnitude of the variation being described by the
angle of attack a=g,—+v°. The deflection, or turn-
ing angle, is measured by the angle Ag=g8,—8,.

The losses incurred by the cascade may be de-
scribed in a variety of ways. In reference 39 the
loss is measured by a drag coefficient; an average
total-pressure loss or an average entropy increase
could also have been used. (Notice that the drag
coefficient is independent of the position of the
downstream measurement and that no averaging
techniques are required. The total-pressure loss
and the increase in entropy, however, depend on
the axial position of the measurements, the Mach
number of the flow, and the method of averaging.)
Of particular importance are the regions where the
loss rises rapidly; the rapid rise in loss and ‘the
accompanying droop in the turning-angle curve
indicate the point of flow separation or the loading
limit of the cascade. For the particular family of
blade shapes discussed in reference 39, it has been
possible to correlate the loading limit by the follow-
ing equation, developed in reference 9:

AV,
20V,

—(1-Y2
D=(1-F)+ (54)
All the blades reached their loading limit at a value
of D of approximately 0.6. This equation is simply
an empirical means of estimating

.08

.07

Lo

o
(%)

o

[¢))
//
‘_.—"——“*—0-

o
Fy
e

_Drag_coefficient,

(@]
w
[—

(@]
N
/

°

N
@

N
»H
&

A-

N
o

o

N

Turning angle, AB, deg

®
N

4

B

Q4 0 4 8 12 6 20 24 28

Angle of attack, a, deg

Figure 43.—Drag and turning-angle distribution for
cascade combination. Blade section, NACA 65-(12)10;
inlet-air angle, 45°; solidity, 1.0 (ref. 39).

Downstream static pressure—Minimum static pressure on blade surfaces (55)

Mazximum velocity pressure on blade surface

Since it was derived for one family of blades, it is
not expected to be univerally applicable. It
does, nevertheless, provide an indication of the
loading limit as good as or better than many other
recommended empirical rules. A more funda-
mental approach would utilize equation (55) with
the actual velocity and pressure data (see ref. 38).

Other details of the low within a blade row may
also be partially examined by studying the velocity
distribution about a cascade element. The results

of a typical experimental measurement in a two-
dimensional cascade are shown in figure 44. The
velocity distribution presented corresponds to the
operating condition indicated by point A in figure
43. These data are valuable for interpreting
over-all results, since comparing these data with
similar measurements in a compressor blade row
provides a means of comparing the internal flows.
The data described thus far were obtained at
low inlet Mach numbers, the operating condition

UTC-2019.089



N |
o

14 ,
X0 Convex
N surface
EXP S S e
5 ' A
) 1\
>
: | w
@
4‘: ]
=] 8 J~—n\“\\t \
T Concave
= surface \
8 L/
@
> o
©
Q
o
J

40

0} 20 40 60 80 100

Percent chord

Figure 44.—Blade surface wvelocity distribution for
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for most published cascade data. Increasing the
inlet Mach number in two-dimensional-cascade
rigs has the effect shown in figure 45, which was
obtained from data of reference 40. As the Mach
number increases, the range of angle of attack
decreases. When the Mach number becomes high
enough, the cascade is choked and the flow deterio-
rates to such an extent that the cascade is com-
pletely ineffective. The behavior of the flow at
high Mach numbers is shown by the schlieren
photographs of figure 46, which is taken from
reference 41. The strong shocks that have
developed cause the boundary layer to separate
at all angles of attack. This type of data indicates
an interrelation betweéen loading limit and flow
Mach number.

These results represent the principal knowledge
obtained from numerous tests of two-dimensional
cascades. As previously noted, the turning-angle
data obtained are of primary interest. When the
observed turning angle in an actual blade row
agrees with that observed in two-dimensional
cascades, credence may be given to the simple
equations obtained by ignoring radial flows in that
type of blade row. The relatively inexpensive

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

two-dimensional cascade can then be used as an
important source of design turning-angle data.

INLET GUIDE VANES

Tests of inlet guide vanes alone have been
invaluable for studying and developing flow con-
cepts and theory. In the laboratory setup, the
flow ahead of inlet guide vanes has no tangential
component of velocity,so that the inlet guide vanes
have the function of creating a preconceived dis-
tribution of tangential velocity. When tested
alone, the inlet guide vanes are exposed to essen-
tially time-steady flow; therefore, time-unsteady-
flow effects are eliminated. Moreover, the flow
velocity behind the guide vanes is usunally greater
than that in front; thus, many adverse effects of
viscosity arising from unfavorable pressure gradi-
ents are avoided. Inlet guide vanes, therefore,
provide an excellent vehicle for studying the effects
of radial flows brought about by the changes in
radial density gradients through a blade row, by
the radial distributions of blade thickness, by the
radial components of blade force, by the slope of
the hub or casing, and by nonvortex distributions
of tangential velocity. ‘

A typical setup used to conduct flow investiga-
tions is schematically shown in figure 47. Meas-
urements are made ahead of and behind the blade
row to determine the velocities and state properties
of the air at these two stations. Sufficient data are
taken behind the blade row to determine the
radial gradients of the circumferentially averaged
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Fieure 45.—Effect of inlet Mach number on loss charae-
teristics of cascade blade sections (ref. 40).
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FicUuRe 47.-—Schematic diagram of an inlet-guide-vane
test rig.

figure 48, which was obtained from reference 42.
(The experimental setup was essentially the same
as that shown in fig. 47.) In figure 48, the ob-
served turning angle of the cascade elements of
the blade row is compared with the turning angle
that the same cascade elements would have in a
two-dimensional cascade. As indicated in this
figure, the observed turning was substantially
the same as that of the corresponding two-
dimensional cascade. The order of magnitude of
the radial flows in this blade row is just about the
same as that in many conventional compressors
having free-vortex subsonic blade rows, There
are strong indications, therefore, that the radial
flows themselves have relatively minor effects, if
any, on the turning angle at subsonic Mach
numbers. Some discrepancies are noted in the
vicinity of the blade ends. Those differences
within the boundary layers are not unexpected,
but the observed boundary layers were thin enough
for these variations to be disregarded. The cir-
culation gradients, or vorticity, within the bound-
ary layer do, however, induce some deviations in
the main flow. As shown in reference 43, these
deviations are sometimes significant; however,
they can be accurately treated by the technique
reported therein.

The radial distribution of circumferentially
averaged flow was also studied in reference 42.
In general, the flow was fairly accurately described
by equation (48a). An important point to note,
however, is that the flow Mach numbers were not
very close to 1.0, and the values of the local Mach

numbers were therefore not extremely sensitive
to small changes in the area of the stream tubes.
At Mach numbers nearer 1.0, a small change in
stream-tube area accompanying radial flows may
give different results.

The loss data reported in reference 42 show
that the average losses in total pressure were small.
This trend agrees with two-dimensional-cascade
data. In the hub and casing boundary layers,
the losses increase; and eventually, of course, all
the dynamic pressure is lost at the hub and casing
surfaces. The main thing to notice with respect
to losses is that radial flows themselves do not
necessarily create large additional losses. The
important losses, when the blades. are operated
within their loading limits, appear near the hub
or casing. Probably the most important effect of
these losses is the fact that they occupy space
without transporting much mass. The correction
K, in equation (53a) is thus an important quantity
that depends on loss data. Therefore, two-
dimensionsal-cascade loss data do not tell the whole
story; data from actual blade rows are required to
complete the loss picture.

Non-free-vortex flow.—Several investigations
have been made with inlet guide vanes designed to
establish the type of flow described by equation
(50). Except for the type of velocity distribution
created, these blade rows are physically similar to
many of the free-vortex blades that have been
tested. Studies of the non-free-vortex blade rows,
therefore, provide a means of studying the effects
of radial flows resulting from the radial gradients
in circulation.

In figure 49 are shown representative data from

50
g R
o \U o S
T [¢]
3 40 o 1
) ™~.° ¢
5 M ;
0 &
£30 T
= Design, based on two-dimensional-
e - cascade data
o Measured
i L 1 1 1 1 1 |
205 6 7 8 9 10

Radius, in.

F1GURE 48.—Comparison of measured and design turning
angles for free-vortex guide vanes (ref. 42).
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a test of inlet guide vanes designed for wheel-type
rotation (I'=0in eq. (50)). These data are taken
from reference 44. The average flow angles at the
exit of the inlet guide vanes agree fairly well with
those obtained from two-dimensional-cascade con-
siderations. The effect of radial flows themselves
is again quite small, if there is any effect at all.
The other effect of circulation gradients, as re-
ported in reference 43, cannot be completely
ignored, however; and the correction techniques
developed in this reference are frequently neces-
sary for refining the analysis. But, when the
radial gradient of tangential velocity is correctly
established, the radial distribution of through flow
usually agrees with the distribution expressed by
equation (49a) (with radial flows ignored). The
finite values of both ¢, and ¢ required for axisym-
metric flow are apparently suitable; the compli-
cating flows shown in figure 38(c) seem to have
little effect on the radial distribution of the
circumferentially averaged flow.

The loss data available are similar to those
obtained with free-vortex blade rows. Almost
negligibly small losses are impressed on the main
flow. The important losses again appear at the
blade ends. Even here, the losses themselves are
not as serious as their blockage effects are. The
important loss information to be obtained is that
required to evaluate K, in equation (53a) (or
some similar function).

ROTORS AND SINGLE-STAGE COMPRESSORS

A large number of investigations have been
made with rotors alone, rotors with inlet guide
vanes, and complete stages formed from inlet
guide vanes, rotors, and downstream stators.
Tests of rotors alone have many of the same aims

as the tests of inlet guide vanes—1io study the net
effects of radial flows. In addition, the effects of
rotation that &re not accounted for in simplified
theories are investigated. Tests of inlet guide
vanes and rotors examine the effects of unsteady
flow and other phenomena for interferences be-
tween rotating and stationary blade rows that are
otherwise neglected. Tests of a complete stage
add the effects of another blade row.

A representative schematic layout for testing a
complete stage is shown in figure 50. As with the
inlet-guide-vane investigations, care is exercised to
have thin hub and casing boundary layers at the
inlet. Circumferentially uniform flow without dis-
tortion at the inlet of the first blade row is also
sought. Enough measurements are taken up-
stream and downstream of each blade row to ob-
tain an accurate picture of the behavior of the
cascade elements at several radii. These data also
enable the radial distribution of flow to be com-
pared with that indicated by simple theory.

Free-vortex rotor blade rows.—A representative
investigation of a free-vortex rotor with axial in-
flow is presented in reference 45. The observed
turning-angle data are compared with those of the
corresponding two-dimensional cascades in figure
51 for three radial positions: (a) near the tip,
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Ficure 50.—Schematic layout of compressor stage,
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Fieure 51.—Compressor rotor and cascade turning angles (ref. 45).

(b) at the center of the span, and (c) near the hub.
As shown in figure 51(a), 1the observed turning at
the tip is slightly higher than that of the corre-
sponding two-dimensional cascade. The rate of
change of turning with angle of attack is about the
same for both, however. At midspan (fig. 51(b)),
the agreement in turning angle is good at low
angles of attack. With high angles of attack, the
turning through the rotor is greater than that
indicated by two-dimensional-cascade data. The
faired turning-angle curve for the data at the
rotor hub (fig. 51(c)) has a steeper slope than the
corresponding cascade curve. In this respect,
the flow about the blade near the hub is compa-
rable to ideal two-dimensional flow. Apparently
this section can operate at much higher angles
of attack than cascade data would indicate.
In the vicinity of the design angle of attack of the
cascade, the difference in turning is small.

In this particular investigation, the pressure
distribution about the blades was also measured at
the same time. These data are compared with
those of the corresponding cascade in figure 52.
At the hub and midspan, the agreement is excel-

lent, except for some irregularity of the cascade
curves between the 40- and 80-percent-chord
points on the upper surface. The irregularities,
however, are attributed to laminar separation
(see ch. V), which may have occurred during the
cascade tests but which did not occur during the
rotor blade tests. The agreement near the tip is
not quite so good, but there apparently are no
pronounced effects of radial flows in the main
stream. '

These and other similar data indicate that the
flow around the blade elements of a rotating row
is reasonably the same as that in the two-dimen-
sional-cascade counterpart. except at the blade
ends. In the main flow, t.- anticipated enthalpy
rise is realized as long as flow separation is avoided.

In the boundary layer at the tip, however, the
energy added by the rotor is usually higher than
that anticipated from two-dimensional-cascade
data. The total-temperature distribution indi-
cated in figure 53 is fairly representative. There
is always some scattering in the rotor data, which
might be attributed to radial and time-unsteady
flows as well as to instrument errors. The higher
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energy addition at the blade ends may be ex-

pressed in terms of a higher turning angle; how-
ever, a gross correction for the higher temperature
rise is probably just as good as any other at the i

present time.

As was the case with inlet guide vanes, the
rotor loss or efficiency is not always comparable
with that of the corresponding two-dimensional
cascade. A typical radial distribution of com-
pressor rotor blade-element efficiency is shown in
figure 53. Losses increase rapidly near the casing,
and the loading limit frequently appears at lower
values of D (eq. (54)) than suggested by two-

dimensional-cascade data. It must be empha-
sized, however, that the changes in the absolute
total pressure do not follow a simple trend. They i
depend on the relative magnitudes of the tem-
perature rise as well as the loss in relative total
pressure (see eqs. (41) and (42)).
The problem of accurately correlating the net : \
effects of the flows in the hub and casing boundary
layers is still somewhat confused. As proposed
in the previous section on Analysis of Viscosity '

Problem, the space-consuming properties of the
boundary layer can frequently be correlated by Root Tip
factor K, in equation (53a). In using this factor, Rodius

a fictitious mass flow for ideal flow conditions is  Figure 53.—Radial distribution of total temperature and
computed or assumed and the result is multiplied efficiency through compressor rotor.

Total temperature, 7

Efficiency, 757
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Figure 54.—8chematic layout for tests of inlet guide vanes and rotor (ref. 44).

by K, to obtain the true mass flow. Similarly,
the ideal temperature rise and total pressure could
be estimated by analyzing the ideal flow and
then multiplying the result by an empirical cor-
rection factor. Satisfactory answers to these
problems are still to be found. Except for their
effects on blockage, the variations in total tem-
perature and pressure at the blade tips are usually
either ignored or are treated together as part of
the over-all efficiency.

Investigations of the type just described have
been extended to rotors with inlet guide vanes and
to complete single stages. The results of these
investigations are comparable with those indicated
previously. As far as could be determined, the
unsteady flows introduced by the alternate sta-
tionary and rotating blade rows had little effect
on the turning angle of the blade row; the turning
over a large part of the annulus was primarily
decided by the corresponding two-dimensional-
cascade variables. Moreover, the losses were
not drastically increased by unsteady flows in
the normal operating conditions.

Non-free-vortex blade rows.—An investigation
was conducted on a setup consisting of inlet guide
vanes and a rotor to study the effect of circulation
gradients on the performance of a rotor and stator.
The inlet guide vanes, the performance of which
is presented in reference 44 and in figure 49, were
designed to established a solid-body type of rota-
tion (we,70, I'=0 in eq. (50)). No change in
watr Was then required of the rotor; instead, the
value of I' was increased through the rotor. The

arrangement of the inlet guide vanes and rotor
reported in reference 44 is shown in figure 54.
The large pitch of the inlet guide vanes suggests
that the warping of the flow surfaces (fig. 40(b))
must be more than negligible. Notice also that
the gap between the inlet guide vanes and the
rotor is small. It is doubtful whether complete
readjustment of the flow (that ideally occurring
at an infinite distance downstream of the vanes)
could have taken place at the rotor inlet. The
radial distribution of flow at the rotor inlet might
be in question, and severe time-unsteady flows
might be anticipated.

As previously noted, the average flow angle at
the exit of the inlet guide vanes alone agreed fairly
well with that anticipated from two-dimensional
blade-element considerations (fig. 55). The pres-
ence of the rotor may have had some additional
influence on the flow angle, and some of this
discrepancy might be attributed to time-unsteady
flow. The major cause of the differences, how-
ever, is believed to be minor changes in the average
radial distribution of flow due to the presence
of the rotor. Even this effect is not excessive,
however. Therefore, it has generally been ignored
in practice, and equation (48a), obtained by
ignoring radial flows, is usually quite accurate for
this type of design. '

The average turning through the rotor (fig. 56)
was observed at the five radial positions indicated
in figure 54. At radial position a, the observed
turning was slightly higher than that of the
corresponding two-dimensional cascade. At the
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Ficure 55.—Radial variation of flow angle leaving inlet
guide vanes with and without rotor (ref. 44).

low angles of attack, the trends of the two curves
are similar. The flow at the tip section of the
blade apparently separated at a slightly lower
angle of attack than cascade data would indicate.

In this particular type of flow distribution, the
static-pressure rise near the casing is higher than
that for the corresponding two-dimensional cas-
cade. If equation (55) is a criterion for the loading
limit, this premature separation is expected. The
rise in turning following the dip in the curve is not
related at all to normal two-dimensional-cascade
performance.

At the other radial positions, the agreement is
surprisingly good. Moreover, the trends observed
are the same as those observed with free-vortex
flow. The hub regions appear to be capable of
operating at much higher angles of attack than
the corresponding two-dimensional cascades. At
those angles of attack where the data may be
compared, the turning of the rotor is somewhat
lower than that of the two-dimensional cascade.
The similarity of these trends to those of rotors
alone suggests that the effect of unsteady flows is
relatively trivial,

The loss problem appears not to differ from that
of the free-vortex designs. Only small losses are
imposed on the active flow. The problem intro-
duced by the boundary layers is principally that
of boundary-layer blockage, although the different
total temperatures and pressures in the boundary
layers introduce complications that confuse the
theory if not the flow. Losses cannot be predicted

from two-dimensional-cascade data with sufficient
accuracy to correlate actual blade-row data.

Transonic blade rows.—Recent investigations
on free-vortex rotors (see refs. 8 and 18, e.g.)
demonstrate the feasibility of obtaining high
efficiency from rotors in which the Mach numbers
at the tips are as high as 1.35. The turning angle
of the blade elements at these higher Mach num-
bers cannot be compared with similar two-
dimensional-cascade data, because usable two-
dimensional cascades for transonic flows are yet
to be developed. The compressor blade-element
data that have been obtained, however, seem to
lend themselves to the same correlation techniques
that have been developed for two-dimensional-
cascade data (ch. VI). It may be inferred from
these data, for the time being at least, that radial
flows themselves do not seriously affect the turn-
ing angle in the main-flow regions of the blade
row.

Studies of the radial distribution of the cir-
cumferentially averaged flow properties indicate
that equation (48a) or (48b) is not entirely
adequate for the types of blade rows investigated.
Reliable solutions to this problem have not yet
been found, but the treatment discussed in the
last section of this chapter offers some promise.

The loss picture is not different from that in
subsonic blade rows, except that low losses are
obtained only over a very narrow range of inlet
flow angles at high Mach numbers. The viscous-
flow regions near the hub and tip frequently have
different total-pressure and total-temperature
changes from those of the main flow. Their
principal effect is again that of blocking part of
the flow area. Whether the flow is subsonic or
transonic is immaterial with regard to the factor
K,; in equation (53a), if the loading limits are not
exceeded. The loading limit of the blade row,
as indicated by the value of D, is about the same
as that for conventional subsonic blade rows.
The allowable values of D near the casing of the
rotor appear to be lower than those elsewhere on
the blade row.

MULTISTAGE COMPRESSORS

A representative example of the performance of
the blade rows of a multistage compressor is shown
in references 46 to 48. A schematic layout of this
unit is shown in figure 57. "This compressor was
designed (see ref. 46) for finite values of both ws,
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Fraure 56.—Variation of turning angle across rotor blades with angle of attack at design speed (ref. 44).

and T (eq. (50)). Strong radial flows and time-
unsteady flows are thus expected to be prevalent,
particularly in the latter stages.

In reference 48 data for the performance of the
first, fifth, and tenth stages are presented. Only
the fifth and tenth stages are discussed here, how-
ever, since the flow entering the first stage is

similar to that in single stages, and the results are
similar to those previously presented.
Performance of fifth stage.—In spite of the fact
that the hub and casing boundary layers seem to
have ample opportunity to thicken, the flow dis-
tribution entering the fifth rotor at design speed
(see fig. 58) was almost that expected for ideal
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distribution was found. If the entropy gradients
were ignored, however, the correlation was not
only poor but misleading. This experience shows
the importance of recognizing entropy gradients
when the boundary layers are thick. This point
is elaborated in reference 49,

Performance of tenth rotor.—In contrast to the
flow conditions at the entrance to the fifth rotor,
the flow ahead of the tenth rotor was quite differ-
ent from design (fig. 62). The axial velocity is
lower than the design value at all radii. Instead
of being fairly uniform, as designed, the velocity
distribution is parabolic. The boundary layers
at the hub and casing resemble those of fully de-
veloped pipe flow. The design values of absolute
flow angles B, are realized near the center of the
passages; at the hub and casing they tend to be
high. The resulting relative angles of attack on
the rotor blades are higher than the design values
at all radii, the greatest angles occurring at the
hub.

In spite of the difference between the design
and observed inlet conditions, the observed turn-
ing angle at a given angle of attack (fig. 63) is
surprisingly similar to the corresponding turning
angle of the two-dimensional cascade. The trend
is the same as that observed in investigations of
single blade rows and single stages, This result
is consistent over a wide range of compressor tip
speeds and operating points at a given speed.
These and similar tests indicate that the turning
angle of a cascade element in a blade row is just
about completely determined by the correspond-
ing~ two-dimensional-flow conditions. The one
important qualification is that the cascade element
must not be stalled. Two-dimensional-cascade
data are not always a reliable source of stalling
data, however,

The poor flow distribution at the rotor inlet
caused the over-all losses to be rather high. How
this flow can be estimated properly in design re-
mains an unanswered problem. Both intuition
and judgment are still required to estimate the
appropriate values of K,, and P in equation (53a).

The radial distribution of the flow is adequately
described by equation (48a). All the terms must
be used in this equation, because the enthalpy and
entropy gradients permeate the entire flow in-
stead of being confined to thin boundary layers.
Accurate estimates of the radial gradients in
enthalpy and entropy would thus be necessary to
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FicUure 58.—Radial distribution of tiow properties entering
fifth rotor row of 10-stage compressor (ref. 48).

make accurate designs, if this type of flow cannot
otherwise be avoided.

SIGNIFICANCE OF RESULTS

The results of experiments like those presented
show that many features of the flow can be corre-
lated with the aid of a few simple concepts. . As
long as the loading limits are not exceeded, the
flow through a blade row may be divided into two
regions. One of these regions is the main flow,
where the viscous effects are comparatively small.
In the other region, the velocity gradients are steep
and the viscous effects are large.

Main-flow region.—In the main-flow region, the
deflection of the flow at a given radius obeys about
the same laws that govern the deflection in a two-
dimensional cascade having the same geometry
and inlet flow conditions. Two consistent dif-
ferences are noted, however: (1) At a given angle
of attack the turning angle is usually slightly
higher near the casing of a rotor than that of the
corresponding two-dimensional cascade. (2) Near
the hub of a rotor the rate of change of turning
with angle of attack is greater than that of the
two-dimensional cascade.
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In the previous discussion, the governing flow
has been assumed to be parallel to the axis of the
blade row. These and other data may also be
used to show that no accuracy is sacrificed when
the cascade element and the governing flow are
assumed to lie along a conical surface (fig. 64).
This device is frequently useful when there is a
pronounced radial shift in the streamlines through
a blade row.

The radial distribution of flow ahead of and
behind subsonic blade rows is quite accurately
described by equation (49a), the form obtained by
neglecting radial flows. As long as the boundary
layers are rather thin, the entropy-gradient term
is ignored. When thicker boundary layers are
encountered, the entropy gradients must be rec-
ognized. For some transonic blade rows, this
technique leaves something to be desired. In
these cases, it is believed that techniques similar
to those used in turbines and mixed-flow com-
pressors may be useful. In these more erudite
analyses, only axial symmetry is assumed, and the
radial-distribution problem is treated as part of
a two-dimensional-flow problem involving axial
and radial gradients. This point is discussed in
more detail in the last section of this chapter.

To a first approximation, the losses encountered
by the main flow may be ignored if the design is
not too critical. Recognition of the losses in the
main flow, however, may be made by using two-
dimensional-cascade loss data. In order to obtain
greater accuracy, the losses measured from similar
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Fi1eure 62.—Radial distribution of flow properties entering
tenth rotor row of 10-stage compressor (ref. 48).

blade rows in similar flow environments should be
used. The losses would then also be a function
of the radial positions of the cascade element.

Of vital importance is the question of loading
limits and Mach number limits. Although the
diffusion factor of equation (54) is far from the
perfect criterion of blade loading, it does offer
some guide for selecting the deflection required of
a blade row. When the static-pressure rise near
the casing of a rotor is of the order of that of the
corresponding two-dimensional cascade, the limit-
ing value of D for the rotor tip seems to be about
0.35. When the static-pressure rise is higher than
that for the corresponding two-dimensional flow,
lower values of D seem to be necessary. The
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Ficure 63.—Variation of tenth-rotor turning angle with
angle of attack at three radial positions (ref. 48).

selection, for the time being, must be left to the
judgment of the designer. If development time is
to be minimized, low values of D are to be favored,
even though the number of blade rows may be
increased. '

Up to Mach numbers at least as high as 1.35
there appears to be no fundamental reason for
prescribing a Mach number limit. As the design
Mach number is increased, however, more and
more attention must be paid to the details of the
flow. Defining and accounting for the important

<~ Meridional e
~sfreamline -- Projection of

conical surface

Ficure 64.—Sketch showing typical projection of stream-
lines on meridional plane. '

details is not yet a science, however; there have
been too few successful designs above the Mach
number of 1.2 to clarify the problem. Up to the
Mach number of 1.2, however, the design problem
does not appear to be much more complicated
than. the problem of executing a subsonic design.

For design, then, the main flow at the inlet of a
blade row may be known or assumed. The main
flow downstream of the blade row may be stipu-
lated, if it can be prescribed within known loading
limits, and if the distribution meets the require-
ments of equation (48) or its equivalent. Two-
dimensional-cascade data or the equivalent may
then be used to select blades to obtain the required
deflection of the main flow.

Viscous-flow region.—Between the main flow
and the hub and between the main flow and the
casing is the second flow region, where viscous
forces dominate the motion. The laws governing
the movement of flow in this region are very
imperfectly understood. Since the actual mass
flow in these regions is often small, the areas
usually contribute little to the mass-averaged
enthalpy. Therefore, this effect is usually either
ignored or given partial recognition by the use of
gross correction factors. By the same token, the
losses at the blade ends offer only a small con-
tribution to the local mass-averaged loss. Signifi-
cant additional losses may result from subsequent
mixing, however. One important factor that can-
not be ignored is the space-consuming property of
these viscous-flow regions. This problem is dis-
cusse’ in the section on Analysis of Viscosity
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Problem, where the use of the correction factor
K, is suggested. Methods of accurately estimat-
ing K,; have not yet been developed, however,
and frequently an educated guess is the best
technique available. It is the lack of information
on this problem that has led to serious errors in
estimating the flow in the latter stages of many
compressors. This point is developed more fully
in the following paragraphs.

Accuracy of estimate of state of air.—Many of
the difficulties encountered in development have
resulted from the fact that the flow towards the
rear of the compressor is different from that antiei-
pated in design. A common experience has al-
ready been mentioned in connection with figure
62. In this particular instance, the magnitude of
the velocity is lower than the design value at all
radii., In other compressors, however, the oppo-
site behavior has been observed, the average veloc-
ity being higher than its design value. The high
angles of attack shown in figure 62 increase the
turning through the rotor; the enthalpy rise
through the rotor is then increased, and the per-
formance of the following rotor blade row deterio-
rates. The difference between the design and ob-
served values of the average axial velocity is one
of the principal reasons for this result. The error
in turning angle owing to different radial gradients
in flow properties may have contributed to the
problem, but these effects are usually small (fig.
63) and in any event are masked by differences in
the average velocity.

Errors in estimating the axial velocity can fre-
quently be attributed to small errors in estimating
the various terms in equation (53a). Suppose, for
example, that the effective thicknesses of the hub
and casing boundary layers after the first stage of

8 compressor are smaller than those anticipated;

that is, K, is actually greater than the value used
in design. If the estimated increase in enthalpy
and total pressure in the main flow are otherwise
accurately predicted, the axial velocity actually
obtained after the stage is lower than that antici-
pated (eq. (53a)). (Notice that the.same result
would occur if K, were correctly predicted but the
efficiency of the blade row or the turning angle of
the cascade elements were underestimated in
design.)

The angle of attack on the blade elements of the
next rotor row-is too high as a result of the low
axial velocity. The turning angle is increased,

and the energy addition is higher than its design
value. (This trend of eénérgy addition with turn-
ing angle is required by the relations expressed in
egs. (39) to (40)). If the efficiency and the value
of K, for this stage were correctly estimated, the
total pressure of the leaving flow would be too high
and the axial velocity further reduced from its
design value. Repeating this trend of error from
stage to stage eventually causes an important error
in the estimated axial velocity to result from only
a small error in estimating the blockage effects of
the hub and casing boundary layers. Of course,
the same kind of result is obtained if the efficiency
happens to be higher than the design value.

A qualitative indication of these trends is shown
in figure 65. The dashed lines of figure 65(a) rep-
resent a design distribution of axial velocity and
efficiency through the blade rows. A typical trend
of the observed values of these quantities is shown
by the solid lines. Because of the lower-than-
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Ficure 65.—Axihl distribution of efficiency and axial
velocity in multi-stage axial-flow compressors.
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estimated boundary-layer thicknesses or the
higher-than-estimated efficiencies obtained in the
front stages of the compressor, the annular area
for these stages is greater than it should have been.
If the flow ahead of the compressor were that de-~
signed, the axial velocity leaving the front stages
would be too low. Towards the middle of the
compressor, the observed axial velocity would be
80 much less than its design value that the angle
of attack on the blade rows would cause the stage
efficiency to suffer and the boundary-layer block-
age to increase. Flow separation might even
occur. The axial velocity thereafter would not
decrease as rapidly as before. It might still stay
lower than the design value, however; and in any
event the efficiency of the compressor slways be-
comes low enough or the flow distribution dis-
torted enough for the air to fill the passage made
for it.

The opposite trend in axial velocity distribu-
tion occurs when the efficiency is lower or the
boundary-layer thickness is greater than the de-
sign value. As indicated in figure 65(b), if the
design mass flow were obtained, the axial velocity
leaving the first stage would then be too high.
The subsequent energy rise and pressure ratio
would be too low, and the axial velocity would in-
crease with respect to its design value. The axial
velocity would eventually become so high that the
angle of attack on the blade rows would be too low
for efficient performance, and the efficiency would
drop still further. In the extreme case, the veloc-
ity would become so high that the rear stages would
be choked. In this case the mass flow is limited,
so that the axial velocity in the front stages may
be reduced below that shown.

As a matter of fact, experience indicates that,
while the trends of figure 65 are observed, the flow
usually adjusts itself so that the middle stages
operate at about the optimum angles of attack; the
front stages deviate in one direction about as far
as the rear stages do in the other. In this way the
excessive losses due to high angles of attack at one
end of the compressor are about equal to those re-
sulting from low angles of attack at the other end.

It should be noted that an overestimated value
of K, in equation (53a) is just as bad as an under-
estimated value. The same thing may be said
of the estimated blade-row turning and the total-
pressure loss or efficiency.

The inability to estimate Kp: correctly is the
principal reason that most successful compressors
have required at least some development. There
is an urgent need for better design information on
these problems. The present difficulty is not due
to the fact that the problems have not been recog-
nized. Instead, the difficulty lies in obtaining the
required data. Multistage data are required be-
cause efficiency and boundary-layer thickness are,
among other things, functions of the axial posi-
tion, which, in turn, partially determines the dis-
tribution of flow ahead of a blade row. Actual
measurement of the blockage in numerous com-
pressors is of little value, since the blockage ad-
justs itself to the design anyway. The blockage
that is required for maximum efficiency, which is
really the blockage desired, remains undetermined.
Systematic readjustments in the annular area or
the blade setting of a number of compressors will
probably be required before correct estimates of
the minimum required blockage area (that for
highest blade-row efficiency) can be made. In
the meantime, some development effort must be
expended to exploit the merits of a given design
fully.

SYSTEM ADOPTED FOR DESIGN
AND RESEARCH

The preceding discussions have presented the
techniques that have been useful for describing
the important features of the three-dimensional
time-unsteady motion of the viscous fluid through
an axial-flow compressor. They have also indi-
cated the general approaches that have been uti-
lized in compressor design. These design proce-
dures simplify the three-dimensional aspect of the
problem by considering the main flow to be de-
scribed essentially by two-dimensional solutions
in two principal planes, thus making the problem
mathematically tractable.

First, the blade-element approach is used. That
is, the flow in the blade-to-blade or circumferential
plane is treated by considering flow about the
developed blade profiles formed by the intersection
of flow surfaces of revolution and the compressor
blading (fig. 32). The performance of such a
blade element in the main flow is then described
by a circumferentially averaged value of (1) turn-
ing and (2) loss; these data are obtained experi-
mentally, preferably under conditions similar to
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those existing in the compressor.. Thus, effects
such as those arising from viscosity, time-unsteady
flow, and blade-row interactions are accounted for
in a gross manner. Losses may be treated as
functions of cascade geometry of the blade ele-
ment, inlet Mach number, diffusion factor, radial
position of the blade element, and axial position
of the blade row. Turning may be treated as a
function of cascade geometry, loss, Mach number,
and radial position of the blade element. On the
basis of available experimental data, limits are
suggested for certain critical design parameters
such as Mach number and blade loading.

Secondly, under the assumption of axial sym-
metry, the average quantities in the blade-to-blade
plane are used to describe the distribution of the
flow in the hub-to-casing or meridional plane (fig.
64). Equations representing the radial variation
of this average state of the air are written for
continuity, energy addition, and radial equilib-
rium. In this system, certain difficulties are cre-
ated by the hub and casing boundary layers. It
is eventually hoped that reliable estimates of the
state of the air can be made at all radial positions,
even within the wall boundary layers. For the
present, however, the meridional-plane analysis is
based on the main-flow region (A,-B; of fig. 42),
and the effects of wall boundary layers are ac-
counted for by applying gross corrections.

In essence, then, a combination of two-dimen-
sional solutions in the two principal planes (cir-
cumferential and meridional) is used to approxi-
mate the complete three-dimensional flow.
Comparatively excellent compressors have been
and can be designed by this approach, if the
essence of the derived technique is used in its
entirety and if the data are not extrapolated too
far. .

It is recognized that this quasi-three-dimen-
sional design procedure can be an oversimplifica-
tion of the problem, particularly as performance
is extended to higher levels. However, this
simplified flow model has been adopted for this
series of reports on the basis that (1) it correlates
experimental data as well as the more complicated
systems that have been tested; (2) it provides
adequate compressor designs, at least up to cur-
rent levels of performance; (3) it has received
general acceptance in the field; and (4) no practi-

cal and tested three-dimensional design procedure
is yet available. ;

In practice, the design system can be considered
to consist of three principal phases:

(1) Design-point solution in the meridional
plane: As previously indicated, this phase of the
problem is based on the assumption of axial
symmetry. The problem is reduced to a two-
dimensional system, in which only radial and
axial variations are considered, by assuming cir-
cumferential averages to represent the flow at all
points along the meridional-plane streamline. In
many cases, the problem may be further reduced
by ignoring the axial gradients as well. Equa-
tions describing radial variations of these average
values are written to account for equilibrium,
continuity, and energy addition. For a given
flow distribution ahead of a blade row, a quantity
like the radial distribution of tangential velocity
may be selected. Another quantity such as the
axial velocity at the casing (required for a certain
loading limit) may also be selected. The radial
distribution of the axial component of velocity
may then be calculated. Velocity diagrams (fig.
66) may be then constructed at each of several
radii to depict the air velocities and flow angles at
the entrance and discharge of each blade row.
The functions of the blade elements are thus
given. ‘

(2) Blade selection: This phase of the problem
is based currently on the concept of blade-element
flow, with the flow limited to the surfaces of a

%,z
AVe wr

Fioure 66.—Typical rotor velocity diagram for a cascade.
element.
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cone that approximates the surface of revolution
generated by rotating the meridional-plane stream-
line (for the circumferentially averaged flow)
about the axis (fig. 64). Blade elements must
then be selected that are consistent with the aver-
age conditions established in the meridional-plane
analysis. This requires a knowledge of loss and
turning characteristics of compressor blade ele-
ments. This information is usually provided by
correlated empirical data, which are obtained
from both two-dimensional cascades and from
actual blade rows,

(3) Off-design performance: With the compres-
sor blading and geometry established, the final
phase of design is the estimation of the performance
characteristics of the compressor over a range of
speeds and flows. A rigorous solution to this
“analysis’” problem involves the use of the rela-
tions previously established in the meridional and
blade-to-blade planes.

As might be inferred from the preceding brief
description, such a design system is not directin
the sense that a single step-by-step procedure will
result. in the desired compressor. For example,
becausec of the large number of factors involved in
design (including matching with other engine
components), the optimum compressor for any
application is obtained only after a series of com-
promises among these various factors. Obtaining
the required off-design characteristics usually
necessitates a trial-and-error screening of a num-
ber of alternative designs. Therefore, this chapter
does not attempt to outline a complete systematic
step-by-step design procedure. Instead, the vari-
ous elements entering into the design system that
must be considered in the design process are sum-
marized and interrelations are pointed out. The
actual sequence in which these elements are then
utilized is left to the individual designer. In the
following discussion, the design concepts are
grouped under the three principal phases previ-
ously listed.

DESIGN-POINT SOLUTION IN MERIDIONAL PLANE

Over-all specifications.—As indicated in chapter
II, the specifications for an axial-flow compressor
in an aircraft gas-turbine engine cannot be stipu-
lated in an arbitrary fashion. Preliminary design
studies and combined engine and airplane analyses
are usually needed before the requirements are
sufficiently explicit to define the design. Based on

these preliminary studies, the following data may
be given:
(1) Design weight flow
(2) Design over-all pressure ratio
(3) Design equivalent speed
(4) Desired level of efficiency
(5) Range of operation for which a high level
of efficiency must be obtained
(6) Inlet and outlet diameters
(7) Maximum velocity of air at compressor
outlet
(8) Desired length and weight
(9) Some idea of velocity distortions likely to
be encountered at inlet
In the process of design, adjustments in some of
these initial specifications are necessary when they
are not completely compatible.

Velocity diagrams.—Initially, the meridional-
plane solution is directed at determining the
velocity diagrams throughout the compressor for
the design operating conditions. In the past,
analyses have been made in the attempt to estab-
lish the most desirable radial distribution of
velocity diagrams for aircraft gas-turbine applica-
tion. For example, reference 35 showed that, for
given Mach number and lift-coefficient limitations,
the use of a symmetrical velocity diagram at all
radii would produce higher mass-flow and pressure
ratios than the free-vortex type of diagram. With
the use of blade-element theory based on incom-
pressible airfoil concepts and with the assumption
of constant axial velocity across the blade row, it
was also shown that the symmetrical velocity
diagram at all radii was also optimum with respect
to profile efficiency.

With advances in the field, such as the raising
of Mach number limits (ref. 41) and the establish -
ment of more significant parameters for blade
loading (ref. 90), specific velocity-diagram types
begin to lose their significance. Research results
have shown that satisfactory performance can be
achieved for a wide range of velocity diagrams.
Although specific velocity-diagram types may still
be used because of the resulting convenience in
design calculations, the present trend in compres-
sor design is toward a greater freedom in their
choice. '

For example, raising the Mach number limita-
tions has made free-vortex velocity diagrams
attractive because of their simplicity. The design
can be further simplified by specifying zero inlet
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and exit whirl in each compressor stage. With
constant work input from hub to tip, as is fre-
quently specified in compressor designs, calculat-
ing the radial distribution of the velocity diagram
becomes a rather simple process. High-perform-
ance compressors have been obtained through the
use of this design approach (refs. 50 and 51).

Design equations.—In order to satisfy the aero-
dynamic and thermodynamic requirements for the
circumferentially averaged flow in the meridional
plane, a number of the previously given equations
are used. The enthalpy change brought about by
a blade row in a tube of flow is given by the energy
equation:

Hg—Hl= Y
y—

or

1 gR(TT"'Tl) =w(7'2V9,2"'7'1V0, l) (36)

T -1
Tl___l + (v aa Zwrl T2 V Vs l) (368)

If the inlet flow conditions are known, for example,
and the outlet tangential velocity is assumed, the
temperature ratio 73/7; may be computed. An
assumed radial distribution of tangential velocity
at the outlet thus determines the outlet radial
distribution of enthalpy. The associated radial
distribution of axial velocity between blade rows
must satisfy equation (49), which is frequently
called the equilibrium equation since it may be
derived from the consideration of the radial equi-
librium of forces:

A B vyt (49
where
1 b(TVe) oV,
=r or 108 (46)
and
_dV, v,
fo= 2. or (47)

For axial symmetry with no radial flows, equation
(48) assumes the following form:

‘fi—If—t %g- Ye d(’V°)+V (488)
By integration, this equation becomes
Vi—Vi=2(H—H)—V3i-V3,)
-2f Ly 2f Bar (s0)

The velocity V., at any radius is then expressed in
terms of V, , the velocity at any reference point
(e.g., the hub). By interchanging the limits of
integration, the casing radius could be used as a
reference point.

Another relation between V, and Vj is given by
the continuity equation:

" PV, (=1 Vi+Vi4V3 =

'w=21er,f RT 2 gRT r dr
(53b)
Notice that Vi4+V?i=V2sec? e (fig. 64). With a

known value of ¢, the value of V, may now be
determined at any radius. For example: A value
of V., ;may be tentatively assumed; equation (56)
then enables the corresponding values of V, to be
found at various radii; substituting the known
values of V5 and the tentative values of V, into
equation (53b) determines the resulting mass flow
w as a function of r, and r,. If r;is given, r, is
then found. If the values of r, and r, are inde-
pendently given, the mass flow calculated may dif-
fer from the known value; another trial value of
V,is then assumed, and the procedure is repeated.
In making this calculation, a value of K,; must be
selected. For this and other details in these
calculations, see chapter VIII.

The static temperature at various radii at the
outlet may now be determined by

5 gRt=— gRH- V2+ V2+ Vi (37a)

'y—l
If V., is known, V, may be estimated to be V, tan
¢ (see fig. 64).
The change in the total pressure of a stream tube
through a blade row may be estimated by one or
another form of the following equation:

P L2 1—12)1_1 E As-— T, 7_1 71"
y ¢ T,)

P, \T; .
[T

Estimates may be made of 5, or 5,4 to determine
P,/P,. Or, the change in the relative total pres-
sure may be estimated and the entropy change
determined from

‘ ’ "1—1 J
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where

Y P 1 1 1
b gRT 71 gRt+§ V’i+§ V3+§ (Vi—wr)?
(40a)

Notice that V, may frequently be used in the
thermodynamic equations even though it is effec-
tively ignored in other correlations and equations.
By using the entropy change in equation (41), the
change in total pressure of a stream tube through
a blade row is estimated. Notice that different
efficiencies and entropy rises are required when the
average change in total pressure over the entire
blade row is desired.

The change in the static pressure of each stream
tube may now be determined by the equation

2 B
P\ P
P t_.) 2 43)
Tz r=1
T

The total pressures in this equation must be those
in the given stream tube ahead of and behind the
blade row. The associated change in density is
finally given by

p=pgRt (34)
or

P2 P2t

Pty (35)

Average values of energyaddition for entire blade
row.—In order to determine mass-flow-averaged
values of pressure and temperature (or efficiency)
at the discharge of a compressor blade row, the
contributions of the boundary layer must be
accounted for. As previously discussed, a precise
integration from wall to wall is not possible,
because of a lack of knowledge of the conditions
within the boundary layer. In the main-flow
region, however, all the conditions of state may be
presumed to be known. A possible technique for
accounting for the effects of wall boundary layers
is to write the equations as if the main-flow condi-
tions prevailed across the entire annular height,
and to utilize modifying coefficients (based on the
experimental data) to correct for the defects in the
boundary layer. As previously noted, this tech-
nique is similar to that used for satisfying conti-
nuity. A detailed discussion of techniques avail-
able for establishing mass-averaged values of

ance.

pressure, temperature, or efficiency is given in
chapter VIIL.

Blade loading.—In the preceding sections, rela-
tions have been presented that permit the designer
to determine velocity diagrams. In general, de-
signers establish these velocity diagrams on the
basis of optimizing such performance character-
istics as specific mass flow, stage pressure ratio,
and efficiency. Unfortunately, the conditions for
obtaining maximum values of all three factors are
not usually compatible. Therefore, the designer
must consider the selected values of the design
parameters on the basis of their effect on each of
the several factors describing compressor perform-
Blade loading is one of the primary aero-
dynamic factors influencing this performance that
must be selected in the process of determining
compressor velocity diagrams. It is apparent
that large values of AV, are desirable with respect
to obtaining a large pressure ratio per stage (egs.
(36) and (41)). In the past, the concept of maxi-
mum lift coefficient as used in isolated-airfoil
design has been also applied to compression to
estimate the maximum blade turning angle, or
loading limit, for which high efficiency may be
obtained (e.g., the Cro limit of ref. 35). It has
been recognized, however, that the lift coefficient
is not completely adequate as a measure of loss
variation and of loading limits in a compressor.

An improved approach to the problem is one
previously outlined. It considers the pressure
distribution about a two-dimensional blade ele-
ment in cascade and its influence on boundary-
layer growth and separation. References 9 and
38 show that loading parameters based on the
diffusion on the suction surface provide improved
criteria for loss and for limiting loading. The dif-
fusion factor as proposed in reference 9 is given for
the case of a rotor with no radius change as

- __Ké) AV,
D~(1-3 77 (54)

A discussion of diffusion limits, as well as empirical
loss correlations based on available experimental
data, is given in chapters VI and VII. Notice
that, for a given value of AV} and a given value
of D, the corresponding value of V, is auto-
matically determined. This value could be used
as a guide for selecting V., in equation (56), or,
instead, V., could be independently scheduled
and Vg determined.
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Relative Mach number.—Another important
aerodynamic factor that has been discussed
previously is the Mach number relative to rotor
blade elements. As a result of the demand for
high stage pressure ratios and high mass-flow
capacity, the trend in compressor design has been
toward higher compressor relative Mach numbers.
The earliest attempts (ref. 52) to utilize these
high relative Mach numbers led to large sacrifices
in efficiency. However, with an improved un-
derstanding of the physics of flow over compressor
blading (ref. 41), the gains associated with high
Mach numbers have been achieved without cor-
responding reductions in efficiency. High per-
formance has been demonstrated in multistage
axial-flow compressors utilizing local relative
entrance Mach numbers above 1.0 (refs. 51 and
53). Mach numbers up to 1.35 have been suc-
cessfully utilized in single-stage units (ref. 18).
It it generally accepted that this high level of
relative Mach number can be maintained in com-
pressors if proper consideration is given to the
accompanying value of diffusion factor and to
the form and thickness of the blade profiles. For
routine design purposes, Mach numbers up to 1.2

may be contemplated. For higher Mach num--

bers, more refined techniques must be used.
Reynolds number.—Compared with the effects
of loading and Mach number, the effect of Reyn-
olds number on compressor performance is of
secondary importance for the current types of
aircraft. Reynolds number in a compressor is
usually expressed in terms of blade chord pVe/u,
and the effect of a reduction in Reynolds number
is to reduce the pressure ratio, weight flow, and
efficiency of the compressor. This reduction in
performance depends basically on the develop-
ment of the boundary layer over the airfoil
surfaces, the magnitude of the effect depending
on the magnitude of Reynolds number, the tur-
bulence level, and the pressure gradients in the
flow. Discussions of Reynolds number effects are
included in chapters V, VI, and VII. Although
Reynolds number has been largely ignored in the

past, it may play an important role in establish-

ing the size of the compressors in high-altitude
aircraft.

Axial velocity.—In a multistage axial-flow com-
pressor, the axial velocity at the inlet is usually
fixed by the mass flow per unit frontal area and
the compressor hub-tip ratio. The axial velocity

at the compressor exit is usually fixed by the
diffuser and combustor requirements. The exact
scheduling of axial velocity between these points
is largely a function of blade-row design. Large
reductions of axial velocity across any one blade
element should be avoided whenever possible,
since, for a given value of AV#’, the diffusion factor
is thereby increased.

Hub and tip contours.—In a multistage axial-
flow compressor, configurations are possible in
which the tip diameter, the hub diameter, or
both, vary from stage to stage through the com-
pressor. As pointed out in reference 35, a pro-
gressive increase in tip diameter is desirable with
regard to maintaining high pressure ratios per
stage and keeping the relative Mach number below
a given value. However, the weight flow per
unit frontal ares is reduced. Furthermore, an
increase in tip diameter results in reduced annular
heights (for a given flow area) and reduced aspect
ratios (for a given blade chord). Consequently,
tip-clearance and annulus losses are probably
larger for the increased tip diameter than for a
comparable constant-tip-diameter design. More-
over, the high relative Mach numbers that may
now be used tend to reduce many of the advan-
tages cited in reference 36.

Constant-hub- or constant-tip-diameter designs
offer some advantage with respect to fabrication
and therefore are frequently used. However,
there is increasing evidence that a configuration
with a decreasing tip diameter may provide the
best compressor layout, even though it may
require one or two more stages for a given over-all
pressure ratio. With respect to aerodynamics,

‘the increased annular heights near the exit may

also offer higher efficiencies.

Thus, the final selection of the configuration in
the meridional plane is seen to depend to a large
degree on the application being considered.
Again, this is a phase of design in which the
designer has considerable freedom ; at least, several
designs should be evaluated to establish an
optimum for a given application.

BLADE SELECTION

The basic principle of compressor blade selec-
tion is that, if the blade element turns the air

‘through the required angle with the predicted

loss, the desired blade-row velocity diagrams will
be closely achieved. The selection of blade
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94 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

sections and settings for a given turning may be
obtained from two-dimensional-cascade testing
(ch. VI and refs. 39 and 54) or from blade-element
measurements made in rotating or stationary
annular cascades (ch. VII). Loss data are usually
based on measurements made in the actual com-
pressor environment (ch. VII). By using data
such as these, elements are selected to obtain the
desired turning with a minimum loss and to
provide a maximum range of operation. The
complete blade is built up from the blade-element
profiles determined at several selected stations
along the radial height of the passage.

Blade profile.—Basic blade shapes for com-
pressor application are usually obtained by (1)
establishing a mean line and (2) imposing a thick-
ness distribution on this mean line. This method
of designation is a carryover from isolated-airfoil
experiences. It should be noted that the mean
line and thickness distribution do not have the
same significance in cascades as they did in
isolated airfoils. Mean lines may be based on
geometric shapes (e.g., circular- or parabolic-arc)
or on prescribed loading distributions (NACA A,).
The mean-line shape is then scaled to give any
desired camber. Thickness distributions are simi-
larly determined; two popular thickness distribu-
tions are the NACA 65-series and the British
C.4. Variations in absolute blade thicknesses are
obtained by proportionally scaling the basic
thickness distribution.

In the past, only a limited number of basic blade
shapes have been used in compressor design, pri-
marily because of the lack of adequate cascade
data. In the United States, the NACA 65-series
blade section has found the greatest application.
In England, the blades with circular and parabolic
mean lines have been used extensively. With the
recent trend toward high Mach number applica-
tions, however, blade sections such as the double
circular arc (ref. 55) and the modified 65-series
blades (ref. 54) have received the most attention.
All these common denominators for developing
blade families are rather synthetic. The aero-
dynamic significance of geometric blade shapes
changes so much with solidity and blade angle
that some implied correlations are misleading.

Blade-element data.—The basic parameters se-
lected in this report for the description of flow
about compressor blade elements are

(1) Incidence angle ¢ (angle between inlet
airflow direction and tangent to mean line
at leading edge, fig. 32)

(2) Deviation angle 5° (angle between outlet
airflow direction and tangent to mean line
at trailing edge, fig. 32)

(3) Total-pressure-loss coefficient &’
Incidence angle has been selected as the basic di-
rectional approach parameter rather than angle
of attack, since incidence angle is independent of
blade camber and therefore provides a more sig-
nificant description of flow around the blade lead-
ing edge. Deviation angle is selected as & measure
of the blade guidance capacity; turning angle can
then be determined by the relation

AB=¢-+1—8° (67)

The loss coefficient is defined as

[ P; b
P
I—E)_
;r=(P;)td_P;= E_;) < P; 1d >
Pi—p P/ 1 1 :,Z—l
[1+’2;1 (M;)Z]

\ P

(58)

where (P3/P1)w is

D QT @

Blade-element characteristics are presented in
terms of these turning and loss parameters in
chapters VI and VII. In chapter VI, the data
are correlated for blades in a two-dimensional
low-speed cascade; in chapter VIL, the data are
given for blade elements of single-stage rotors and
stators.

In the latter case, data are presented as func-
tions of the radial position of the element.
Through the use of this type of experimental
data, obtained in the actual compressor environ-
ment, it is hoped that the important effects of
three-dimensional flows will be accounted for.
This concept is probably valid if the design under
consideration does not deviate too greatly from
the conditions under which the data were obtained.
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Chord length and number of blades.—The aero-
dynamic design normally establishes the desired
value of the cascade solidity. The actual selec-
tion of the chord length and number of blades
then involves a consideration of a large number of
factors, including blade-chord Reynolds number,
weight, available length, blade root choking,
blade root fastening, steady-state stresses, vibra-
tory stresses, and manufacturing problems. Over
and above many of these factors is the fact that
the curvature of the hub and casing changes with
chord length. This factor is discussed in the
section REQUIRED IMPROVEMENTS IN ANALYSES.

OFF-DESIGN ANALYSIS

With the compressor flow channel and the
blading established, the final phase of compressor
design is the estimation of the performance of the
compressor over a range of speeds and flows.
Basically, the same relations and data are re-
quired for a thorough treatment of this problem.
This blade-element type of solution, however,
necessitates a rather complete knowledge of the
blade-element flow, radial equilibrium, boundary-
layer growth, blade-row interactions, radial mix-
ing, and so forth. Unfortunately, this type of
information is limited, and the prediction of com-
pressor performance on the basis of the integration
of blade-element characteristics is probably limited
to operating points close to design. In particular,
this technique always breaks down when a stalled
condition occurs in the blade rows and may break
down sooner owing to the lack of appropriate
data concerning the behavior of K, and loading
limits in the latter stages of a compressor.

Other simpler and more approximate approaches
to the prediction of off-design performance have
been developed. In particular, a stacking tech-
nique that utilizes certain generalized stage per-
formance curves has been used effectively in the
qualitative study of off-design operating prob-
lems. A discussion of those techniques which are
available for prediction of off-design performance
of multistage compressors is given in chapter X.

REQUIRED IMPROVEMENTS IN ANALYSES

As previously noted, there are three areas in
which a better understanding of the flow is re-
quired in order to improve design techniques.
One area encompasses the problem of estimating

the radial distribution of flow in compressors of
advanced design. The second area concerns the
problem of treating the boundary layers at the
hub and casing. The third area deals with the
problem of estimating loading limits. Some of
the work that has been done to clarify these
problems is discussed in this section. While none
of the work is far enough advanced to be included
in a recommended design system, some phases can
be useful for refining the design calculations. In
other cases, the work has progressed omly far
enough to partially identify the real underlying
problems.

RADIAL DISTRIBUTION OF FLOW

The problem of accurately estimating the radial
distribution of the flow in compressors of advanced
design may be appreciated from the following
considerations. In order to obtain high flow
capacity and short length, the first rotor of ad-
vanced multistage compressors may look more
like those shown in figures 67 (a) and (b) than
that shown in figure 67(c), which represents
current practice. The higher pressure ratios in
the new designs require a greater change in the
annular area through the blade row, and the
chord length will be as small as possible. In
order to obtain high airflow capacity, the new
designs will have lower hub-tip ratios and higher
axial velocities.

Because of these differences in geometry, the
curvature of the streamlines of figure 64 will be
greater for the new designs. In flowing through

e \\

A

-(a) (-b) (—C)

(a) Advanced design. (b) Advanced design.
(c) ijrent design.

Figure 67.—Schematic drawing of several compressor-
inlet stages.
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96 AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

the stream tubes, the air exerts a centrifugal

force:
F=CV:

The large curvatures and high axial velocities
make ¢f, have the same order of magnitude as

which is the centrifugal force resulting from the
rotation of the air about the compressor axis.
(Egs. (48a) and (48b) are essentially based on
the premise that ¢f . is low enough in comparison
with &z to be ignored.) Since &(R has been
found to be quite important (it is a dominant
term in eq. (48a)), it follows that &, must also
be taken into account in the new designs.

An indication of the problems encountered by
neglecting curvature is obtained from reference
57. An investigation was made of a single-stage
compressor with an inlet hub-tip ratio of 0.4 and
an inlet axial velocity that was intended to be
constant along the radius. Tests showed, however,
that the inlet axial velocity actually had the
variation shown in figure 68. The ordinate in
this figure is the ratio of the measured axial
velocity to that at the mean radius. While the
difference between the design and observed
velocities did not seriously affect the average
performance of this particular rotor, it did upset
the flow in the neighborhood of the casing. Both
the angle of attack and the blade loading can
be critically upset by this order of error, and the
multistaging effects become undesirable.

Some methods of including the effects of stream-
line curvature in the flow analysis have been
developed for mixed-flow compressors (ref. 58).
These methods are similar to those attributed to
Fliigel in reference 59 (vol. I). Substantial im-
provements in the design performance of these
compressors inmediately resulted from the use of
this technique (refs. 60 and 61). It enabled the
designer to eliminate adverse or impossible flow
situations that would otherwise be unknown.
The method has also been extended to turbines
(ref. 62). As shown in references 63 to 65,
techniques such as this had to be used when the
curvature of the hub and the axial velocities
were high. Otherwise, the measured velocity
distribution differed so much from that designed
that poor performance was inevitable. In other
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Figure 68.—Inlet axial velocity distribution for compres-
sor of reference 57.

instances, premature choking within the blade
row could be recognized and avoided in design
only by using such an analysis.

The extent to which these methods can beused in
axial-flow compressors is unknown. The small
chord length compared with the blade spacing
and the span makes some of the necessary assump-
tions rather tenuous. Perhaps some of the
techniques reviewed in chapter XIV may have
to be used. One critical problem is that of
estimating the circumferentially averaged flow
distribution through the blade row for flows at
high Mach numbers. Some hope is offered by the
approximate methods of reference 18. In partic-

“ular, the method used for designing the Mach 1.35

rotor in reference 18 may be of value, crude
though it is. More work along these lines is
necessary.

HUB AND CASING BOUNDARY LAYERS

One of the greatest limitations of current design
techniques is the fact that the flows in the hub and
casing boundary layers cannot be correlated
against anything definite. The importance of
this problem has been the impetus for a con-
siderable amount of research, both in the field of
compressors and in the allied field of turbines.
The results of preliminary studies suggest that
the key to the problem may be an understanding
of secondary flows. Some noteworthy advances in
this understanding are described in the following
paragraphs.

Secondary flows of blade boundary layer and
wakes.—Detailed studies of the flow distribution
in annular stators (ch. XV) reveal that some of the
losses at the blade ends may be created or trans-
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ported there by secondary flows. One type of
secondary flow arises from the requirement of
radial equilibrium (eq. (377), ch. XIV):

ov, V3

1% ., oV, oV,
5 Vo TV gtV 35— Frmr

Within the boundary layers and ‘wakes of a blade
row, the pressures and pressure gradients are
approximately the same as those in the adjacent
potential-flow streams. In the type of stators
normally used, the value of V. is small in the main
stream, and the values of Vs and V, are lower in
the boundary layer and wakes than they are in
the main stream. Unless & ., is also large, the
derivatives of V, must increase (in the absolute
sense), and V, may thus assume moderately
high values. When the boundary layers are thin,
the value of &f ,, throughout the entire boundary
layer may be high enough to prevent large radial
movements of the flow. When the boundary
layers are thick, however, the frictional forces are
relatively low. The boundary layer on the stator
blades then flows from a region of high pressure
to one of low pressure—that is, toward the hub.
Since the value of & ,,,, is small in the wakes, the
fluid in the wakes also moves toward the hub.
Physical evidence of this flow is presented in
chapter XV.

In rotors, on the other hand, the boundary
layers and wakes travel radially outward. Since
the tangential velocity of the blades is greater than
that of the main stream, the value of Vs in the
boundary layer exceeds that of the main stream.
The sign of the derivatives of V, is thus reversed.

Existing evidence, such as that reviewed in
chapter XV, suggests that a considerable portion
of the losses near the casing of a rotor and near
the hub of a stator may be attributed to losses
created at some other point of the blade and trans-
ported to these regions. Besides just being there,
the boundary layers at the blade ends may disturb
the flow enough to induce flow separation and
thereby create additional losses.
the movement of boundary layers away from the
rotor hubs and stator tips may permit these
regions to operate at conditions that would be
impossible for their two-dimensional counterparts.
This reasoning could partially explain why the
cascade elements of rotor hubs and stator tips
can sometimes operate at higher angles of attack
than their two-dimensional counterparts.

.691-564 O-65-8

Conversely,

Cross-channel flows and passage vortex forma-
tion.—Secondary flow also describes a movement
of the boundary layer on the hub or casing.
The flow is from the high-pressure side of one
blade to the low-pressure side of the adjacent
blade (fig. 69(a)). The phenomenon is fundamen-
tally the same as that for the radial flows just
described. The transverse pressure gradients in
the main flow are again greater than those which
the slowly moving boundary layers can support.
Part of these gradients are resisted by friction
and the rest tend to accelerate the flow to the
low-pressure region. The experiments reviewed
in chapter XV show that the boundary layers
move across the passage and then roll up into a
vortex (fig. 69(b)). It is conceivable that this
movement of boundary layer may cause the flow
near the suction surface of the blade ends to be
more easily separated than the corresponding flow
in ideal two-dimensional cascades.

Flow in blade end regions with clearance.—
Other secondary flows result from the clearance
between the blades and the adjacent wall. If the
blades and the wall are stationary, air flows
through the clearance space from the high- to the
low-pressure side. It then rolls up as a vortex
(fig. 70(a)). If the wall is moving with respect to
the blades (such as an unshrouded rotor tip or
stator hub), the blades may also scrape the bound-
ary layer from the walls: a vortex similar to that
of figure 70(b) is then formed near the pressure
side of the blades.

Mixing of hub and casing boundary layers with
main flow.—After the boundary-layer distribu-
tions are established behind a blade row (e.g., a
rotor), the following blade row (in this case a
stator) tends to mix them with the main flow.
This behavior is clearly shown in reference 66.
Figure 71(a), taken from this reference, shows the
measuring stations and radial positions of meas-
urements taken to determine the radial distribu-
tion of the efficiency of the rotor and the corre-
sponding radial distribution of efficiency of rotor
and stator. An example of the efficiency distri-
bution is shown in figure 71(b). Because the
rotor was severely loaded (large D), the rotor
efficiency dropped rapidly in the vicinity of the
outer radius. Measurements after the stator,
however, indicated that the over-all efficiency at
the outer radius was higher than that measured
after the rotor. At the inner radii, the efficiency
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100 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

CONCLUDING REMARKS

A general picture of the flow characteristics of
axial-low compressors has been developed, indi-
cating those features that must be considered in
the design process. On the basis of this qualita-
tive description of flow, the structure of a design
system is outlined. The individual elements of
the design system, including basic techniques and

equations, are summarized. Also noted are some
of the important gaps in knowledge, where art
must be substituted for science. This informa-
tion provides a design system and suminarizes
much of the work presented in the succeeding
chapters. This general treatment is expanded in
these chapters to provide specific design data that
describe the techniques of application in detail.
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CHAPTER IV ‘
POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES

By WirnLiam H. RoupeBush

The complerity of the flow of a fluid through @  one of the very difficult practical engineering
rotating blade row makes a direct theoretical attack  problems.

on the general problem very difficult. However, the Since a complete solution is not currently ob-
Slow through axial-flow compressors, at least mear  tainable, another approach must be used. His-
the mean radius, is often sufficiently close to a mathe-  torically, a problem of this nature is treated by
matically two-dimensional flow that valuable results  making simplifying assumptions. Chapter III
can be achieved by using two-dimensional theory. indicates that flow through an axial-flow com-

An extensive review is presented of the literature  pressor can be represented in many important
concerning plane potential flow in cascades. No  instances by a combination of essentially two-
method of determining the flow is preferable under  dimensional solutions. Generally speaking, one
all conditions. The nature of the individual prob-  of these solutions is from hub to shroud and the
lem and the compuling equipment available will  other is from blade to blade.
dictate the method to be used. Some of the available
techniques for solving the two basic problems, de-
sign and analysis, are evaluated: and several of the
methods that have been wused satisfactorily are
presented in considerable detail.

The potential-flow cascade theories to be discussed
are indicated by author in the chart on page 102,
which is arranged with regard to general regions of
applicability. The divisions are not absolute and
can serve only as a general guide. The asterisks
denote those authors whose methods are presented @
detail in this chapter.

Within the limitations discussed in chapter 111,
the change in radius of a particle passing through
a compressor blade row can be assumed small,
and the two-dimensional blade-to-blade flow sur-
face is taken as cylindrical. This cylindrical
surface can be developed into an infinite plane
cascade. The theoretical determination of the po-
tential flow about such a cascade is treated in the
present paper. Some of the methods considered -
are not restricted to plane flows, as will be indi-
cated in the discussion.

The exact theoretical treatment of two-dimen-
INTRODUCTION E\( sional-cascade flow is not a simple problem, and

past investigators have relied heavily on experi-

Compressor design techniques should always  mental cascades to obtain basic flow information.
reflect the current basic knowledge of airflow.  Early experimental cascades, however, did not
Time limitations may prevent a designer from  successfully achieve two-dimensional flow. The
using refined theoretical methods in individual de-  data obtained in different cascades exhibited a
sign problems, but the simplifying assumptions  ¢onsiderable lack of uniformity, primarily as a
made should be based on a sound theory. Unfor-  peqyt of using blades of small aspect ratio in differ-
tunately, the flow through a .rotatl.ng blade row 18 ent tunnel geometries without adequate boundary-
very compl.ex. The three.—dunenm‘onal po ten?ml— layer bleed. It was difficult to separate the essen-
flow equations, representing a highly idealized tial characteristics of the two-dimensional flow

flow and a substantial simplification of the true . .
problem, still cannot be solved satisfactorily. The about a given blade system from the characteris-

added difficulties of boundary-layer buildup and tics introduced into the flow by the individuality
displacement, separation, tip-clearance effects, ©f the particular cascade operation. As a l'es}llt.
compressibility effects, unsteady flow, and local = comparison of early experimental and theoretical
regions of supersonic flow make compressor design  results was not always practicable.
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E. Pistolesi V. Lieblein
V. Lieblein H. Woolard
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N. Scholz
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S. Katzoff |*
R. Finn
C. Laurence
L. Garrick
W. Mutterperl
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[
i
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i
M. Huppert } * J. Ackeret M. Huppert }* S. Alpert
C. MacGregor S. Alpert C. MacGregor J. Stanitz }*
C. Wu } * dJ. Stanitz }* C. Wu }* L. Sheldrake
C. Brown L. Sheldrake C. Brown C. Wu
dJ. Stanitz J. Stanitz * J. Stanitz C. Brown
V. Prian C. Wu V. Prian
C. Brown
1
[ Incompressible |
1 A
] Direct I Inverse Inverse
l W. Traupﬂ A. Goldstein I G. Costello
M. Jerison C. Lin
M. Lighthill F. Clauser
F. Weinig
A. Goldstein *
A. Hansen
P. Yohner

*Methods presented in detall 1n this chapter.
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This situation has been corrected in recent
cascades by the development of syceessful bound-
ary-layer controls. A close approximation of two-
dimensionality has been obtained, and accurate
data are now available (see ch. VI). Therefore,
it has become possible -and highly desirable to
interpret experimental cascade results in the light
of theoretical analyses. In the future develop-
ment of axial-flow compressors, more accurate
predictions of turning angles and loss character-
istics will probably be required over a wider range
of operating conditions. A careful coordination of
theory and experimental data may make possible
accurate extrapolation of present data and should
also provide a guide to future experimentation.
Research on the off-design problems, in particular,
can profitably employ this coordinated approach.

The flow of a viscous fluid through a cascade
cannot yet be determined in its general form.
However, since the effects of the viscosity are
concentrated, in many cases, at the blade surfaces,
the problem can be treated by boundary-layer
theory. In this event the flow outside a narrow
region at the boundaries is practically irrotational.
Potential-flow calculations often provide reason-
able pressure distributions, although they com-
pletely ignore viscosity. At times when thick
boundary layers or separation exists or when
knowledge of loss is desired, the potential-flow
solution does not alone suffice. Even then, how-
ever, the pressure distribution obtained from the
potential-flow calculation is indispensable for
boundary-layer computation by existing methods.
For these reasons the two-dimensional potential-
flow solutions provide what is probably the most
important single theoretical tool for analyzing the
flow through an axial-flow compressor. ,

A survey of the large body of existing plane
potential-flow theory may help to increase its
present application. Although the theory has
attained a high degree of completeness, the time
involved in obtaining exact solutions is consider-
able. A reduction in time may be anticipated if
the methods are used and understood and if
attempts are made to adapt them to modern
computing equipment in the most practical man-
ner. There are also simplified approximate solu-
tions that save time and may be quite worthwhile.
Often the range of application of such methods is
quite restricted; and accurate results in certain
regions, such as the leading edge, are sometimes

unobtainable. Subsequent éxamination may re-
veal, however, that some of these approximations
are substantially valid in the region of interest to
designers of axial-flow compressors.

An extensive review of the literature on the poten-
tial flow about cascades is presented herein. Many
of the methods are evaluated within the bounds
of limited available information on actual use.
No method is universally applicable. - The indi-
vidual nature of a particular problem and the
computing equipment available are large factors
in determining the method of solution to be used.
Some of the methods that have been used success-
fully are presented in detail to illustrate the
mathematical techniques -and to  indicate the
nature of the actual computation.

SYMBOLS

The following symbols are used in this chapter:

a speed of sound

b dimensionless blade thickness

C curvature

¢ chord length

¢y specific heat at constant pressure

c* characteristic length of thin blade for
small-perturbation theory

D height of water surface

E electric-field strength

+eX locations of singularities in circle plane

g acceleration due to gravity, 32.17 ft/sec?

h mapping function defined by eqs. (72) to
(75)

h real part of A

he imaginary part of A

h* mapping function corrected to satisfy
closure conditions

I electric-current density

l distance along streamline

L. leading-edge stagnation point

liep trailing edge approached from pressure
surface

lis trailing edge approached from suction
surface

* function relating corrected distance about

blade perimeter to circle central angle
M Mach number
m plate thickness
P total or stagnation pressure
P static or stream pressure
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AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

velocity in compressible medium

vector velocity in compressible medium

disturbance velocity in small-perturba-
tion theory ‘

electrical resistance

radius

blade spacing

dimensionless blade spacing

total or stagnation temperature

static or stream temperature

velocity in incompressible medium

vector velocity in incompressible medium

velocity in cascade plane expressed as
function of circle plane coordinates

velocity in cascade plane expressed as
function of circle plane coordinates
corrected for closure condition

disturbance velocity in small-perturba-
tion theory

complex potential function

complex velocity

rate of mass flow

complex velocity in cascade plane ex-
pressed as function of -circle-plane
coordinates

abscissa in cascade plane

axial length of region of validity of
solutions by ref. 136

dimensionless distance along z-axis

ordinate in cascade plane

dimensionless distance along y-axis

complex variable in cascade plane

_angle between air velocity and 2-axis

circulation

ratio of specific heats

blade-chord angle, angle between blade
chord and z-axis (fig. 72)

increment in z-direction

increment in y-direction

complex variable in plane of mapping
circle

imaginary part of ¢ _

constant in affine transformation (117)

angle made by tangent to blade profile
and z-axis

thickness ratio, b/3

real part of ¢

density

solidity, ratio of chord to spacing

potential function

é electric potential function

& disturbance potential function

@ central angle in mapping circle plane

P angle corresponding to leading-edge stag-
nation point .

@te.p angle corresponding to trailing edge ap-
proached from pressure surface

o8 angle corresponding to trailing edge ap-
proached from suction surface

v stream function

v electric-current function

¥ pressure coefficient

Q specific resistance

Subscripts:

a stagnation conditions

add additional

add, additional due to sources

add, additional due to vortices

av arithmetic average of values at suction
and pressure surfaces

C compressible

C curvature

c compensating

cs compensating due to sources

€, compensating due to vortices

cr critical

d disturbance

d, disturbance due to sources

d, disturbance due to vortices

ne incompressible

l arbitrary position along potential line

le leading edge

m mean of upstream and downstream condi-
tions

max maximum

0 isolated airfoil

P pressure surface

r radial direction

s suction surface

te trailing edge

z direction of z-axis

Y direction of y-axis

2 in cascade plane

r circulatory

¢ in mapping circle plane

] tangential direction

z total

1 upstream at infinity

2 downstream at infinity
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POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES 105

GENERAL CONSIDERATIONS

Potential-flow theory, as it pertains to two-
dimensional cascades of blades, is concerned with
two basic problems, referred to as “direct” and
“inverse.” In the direct (or analysis) problem,
the geometry of a cascade and a characteristic
velocity (usually 9, the velocity vector far up-
stream, or 7, the mean free-stream velocity vector;
see fig. 72) are given. A solution yields the velocity
distribution in the region of the cascade. For the
inverse (or design) problem, the velocity distribu-
tion on the surface of a cascade blade is given
along with the vector velocities far upstream and
far downstream. A solution, if one exists, gives
the geometry (blade shape, chord angle, spacing)
of the cascade.

In solving either the direct or inverse problem,
an important distinction exists in the underlying
approach. From figure 72 it can be seen that the
flow about the cascade is given from a knowledge
of the flow between streamlines bb and dd as a
result of the periodicity of the flow pattern in the

1))

4
| \ d
\ c
Chord S
fine
b

/
7
e

B BpBa

Ficure 72.—Two-dimensional cascade.

direction of the y-axis. Similarly, a knowledge of
the flow field between streamlines aa and cc con-
stitutes a complete solution. When the cascade
flow field is considered to be made up of sections
of the type bbdd, the cascade is pictured as an
infinite array of isolated bodies. On the other
hand, when sections of the type aacc are consid-
ered, the cascade appears as an infinite array of
adjacent channels.

As a result of these two basic points of view,
different mathematical techniques are employed
in the two cases. Either point of view is theoreti-
cally applicable for a given cascade. However,
the mathematical techniques employed in the
“isolated-body’’ approach become clumsy and
tedious as the effects of the neighboring blades on
each other become large. Similarly, the “channel-
flow” approach works well only when the neigh-
boring cascade blades exert an appreciable guid-
ance on the fluid. Hence, the cascade solidity «
(ratio of chord length to spacing) determines the
point of view that should be adopted for a given
cascade. The solutions considered are divided
into ‘“low-solidity”” and “high-solidity’’ methods,
where each of these distinctions is subdivided into
its relation to the direct and inverse problems.
It must be noted that the classification by solidity
is not rigid, but may depend on such factors as
cascade stagger angle, experience with the tech-
nique, and the computational equipment available.

Although few of the methods of solution have
been widely used, in most instances some solutions
have been obtained by the author of the method.
In some cases, experimental cascades have been
investigated and compared with the theoretical
results. Some authors have compared their solu-
tions with other theoretically obtained solutions.

While the ultimate objective of any theoretical
method is to design or analyze an actual cascade,
there exists a practical difficulty in appraising a
theoretical method by comparison with an actual
cascade. Such an evaluation is indecisive, since
the fluid has been divested of at least some of its
natural properties by the mathematician. There-
fore, the most reasonable test of a given theoretical
method is comparison with an exact known
theoretical solution. Such exact solutions do exist
comparable to the Joukowski airfoils of isolated-
airfoil theory. If this comparison is good, the
new method is satisfying its function by predicting
the flow of an idealized fluid. Determining the
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flow relations that actually exist about the experi-
mental counterpart of a theoretically determined
cascade is an entirely different problem, which has
not been adequately investigated.

In this chapter an attempt is made to discuss
and, to some extent, to evaluate many of the
theoretical methods available to the designer.
Experimental data are not used for purposes of
evaluation for the reasons given in the preceding
paragraph. Three design methods (two for high
solidity and one for low solidity) and three analysis
methods (two for high and one for low solidity)
are presented in detail.

LOW-SOLIDITY CASCADES

Almost all the available work on low-solidity
cascades has been done on incompressible flow
because of the intractability of the nonlinear
equations involved in the compressible-flow prob-
lem. The assumption of constant density is
justifiable for a considerable range of low Mach
number flows. When sonic speeds are approached
in regions of the flow field, the effects of density
variation are, of course, pronounced. If shock
waves occur, qualitative as well as quantitative
errors may be introduced. Therefore, some
methods of treating compressible flows and cor-
recting incompressible-flow solutions for the effects
of compressibility are discussed following the sec-
tions concerning the direct and inverse problems.

THE DIRECT PROBLEM

The pattern for solution of the direct problem
has developed along two distinct lines. The first
approach is to find a conformal mapping of the
cascade onto a simple geometric shape, such as a
straight line or a circle. The flow about the
simple shape is readily determined, and the
mapping function is applied to yield the desired
flow about the original body. This method of
solution has been of comsiderable mathematical
interest for many years.

The second approach to the problem is based on
the following fact: The effect of a solid body on the
fluid surrounding it can be closely approximated
by replacing the body with a carefully chosen
system of flow singularities (sources, sinks, vor-
tices). The characteristics of these singularities
are well-known, and their effect on the uniform
flow can be obtained.

By way of introduction to the cascade problem,

- about the exact circle.

the history of the application of these two ap-
proaches to the isolated-airfoil problem is dis-
cussed briefly in the following section.

Isolated airfoils.——Early significant results con-
cerning the flow of fluid about an isolated airfoil
were achieved by Kutta and Joukowski. The
theory was extended and improved by von
Karméan, Trefftz, von Mises, and many others
(see ref. 67). This is an exact theory of special
airfoil shapes that are obtained from a circle by
simple conformal transformations. The airfoils
thus obtained are not superior aerodynamically
to many others, and a method to analyze the flow
about arbitrary wing profiles was considered
necessary.

A significant contribution to the problem was
made by Munk (ref. 68), who presented a tech-
nique for determining the over-all characteristics
of the flow about a thin, slightly cambered airfoil
of otherwise arbitrary shape. The mapping
z={¢-+1/¢ is used to transform the thin airfoil
(actually the camber line) into a near-circle in the
¢-plane. The near-circle is transformed into an
exact circle resulting in a simple integral equation
for determining the stagnation point of the flow
When the location of the
stagnation point is known, the circulation (and
consequently the lift) can be determined about the
circle and hence about the airfoil. The technique
is improved and utilized by Glauert in reference
69, where several comparisons are made with
experimental data.

In 1923, Birnbaum (ref. 70) applied a method of
singularities to the same problem. The thin air-
foil is replaced by a continuous distribution of
vortices along the mean camber line. This method,
which is applicable to the inverse as well as the
direct problem, is set forth in detail by Glauert in
his text on airfoil theory (ref. 71). Glauert uses
the trigonometric series

2v [ Ap cot -g—}—i) A, sin nﬂ)

a=1

for the distribution of vorticity. The abscissa z of
the airfoil is related to ¢ by

¢
=5 (1—cos 6)

The constants A, are determined by the shape of
the camber line. The first term of the expression
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for the vorticity distribution represents the dis- '

tribution on a straight-line airfoil, and the sine
terms compensate for the curvature of the thin
airfoil. This expression has been used in cascade
work as well as in isolated-airfoil theory.

In later work along these lines, source and sink
distributions were added by Allen (ref. 72) to
approximate the effect of airfoil thickness. How-
ever, since the solution still applied only to thin
airfoils of small camber, a more general solution
was desired. ,

In 1931, Theodorsen (ref. 73) and Theodorsen
and Garrick (ref. 74) produced an exact solution
to the direct problem of two-dimensional, incom-
pressible flow about an airfoil of arbitrary shape.
A Joukowski transformation is used to map the
airfoil into a near-circle. The mapping of the
near-circle into an exact circle then leads to an
integral equation, solved by an iteration process.
(The numerical evaluation of the cotangent inte-
gral in the Theodorsen method is considered in
refs. 75 and 76.) This general solution had con-
siderable significance both in the impetus it gave
to the work on the airfoil problem and in its
direct application to later work on cascades of
airfoils. A consideration of conditions sufficient
t0 assure convergence of the iteration process of
Theodorsen appears in reference 77.

Cascades.—The development of the theory of
flow about cascades of blades is similar to the
development of the isolated-airfoil theory. Par-
ticular cascades, corresponding to the so-called
““theoretical airfoils” of the isolated-airfoil theory,
were developed (refs. 78 and 79). Solutions were
also found for cascades of thin, slightly cambered,
but otherwise arbitrary, blades. Finally, solu-
tions for general blade shapes were obtained of a
more or less exact nature.

In 1935, a comprehensive text on the theory of
turbomachines was presented by Weinig (ref. 80),
in which was introduced and demonstrated the
concept that every cascade has a corresponding
straight-line cascade that is equivalent insofar as
it produces the same turning and has the same
circulation. Methods for approximately deter-
mining the equivalent-line cascade are given, and
the foundations are laid for exact solutions to the
general cascade problem. The theory of equiva-
lent-line cascades will not be discussed herein,
since it does not give information about local
conditions on the blade surfaces. The more gen-

eral theory will be mentioned later 1n its connection
with other methods that have been developed
from it.

In 1937, Pistolesi (ref. 81) extended the work
of Birnbaum and Glauert to cascades of thin
blades. This work is significant theoretically, but
the complexity in the case of a staggered cascade
makes computation difficult. In addition, the
inherent limitation to thin, lightly loaded blades
is an undesirable restriction in present-day design.
This technique has been extended by V. Lieblein
(ref. 82) to include the effect of thickness distri-
bution. The approximations made in this analysis
become 1ncreasingly inexact with higner camber
and greater thickness. A closer examination of
such approximate methods may indicate that they
are reasonably valid in the ordinary range of
compressor blede shapes. If this should be the
case, such methods will become important because
of the savings in time realized over the more exact
methods,

An approximate theory of practical interest has
been developed by Erwin and Yacobi (ref. 83),
utilizing the principle of superposition common in
isolated-airfoil theories. The local velocity on the
cascade blade surface is taken to be the sum of the
average velocity in the passage and incremental
velocities due to thickness, camber, and angle of
attack. The average velocity is determined from
area change through the cascade, and the incre-
mental velocities are related to corresponding
incremental velocities on an isolated airfoil of the
same shape. The relation is determined em-
pirically in the report, but could probably be
determined theoretically as well. This method
provides solutions to the direct cascade problem
quite rapidly when the characteristics of the
corresponding isolated airfoil are known.

Other approximate methods, using a technique
employing singularities, have been presented by
Woolard (ref. 84) and Scholz (ref. 85). Results
obtained in reference 84 show fair agreement with
results obtained by the more exact method of
reference 86 for NACA 4412 airfoils in a cascade of
nearly unit solidity over a range of angle of
attack.

In 1941, Howell (ref. 87) produced an exact
solution to the general problem, employing the
method of conformal mapping. A cascade, lo-
cated in the z-plane, is transformed into a dis-
torted airfoil n the z-plane by the equation
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zy=tanh 2z, The distorted airfoil is then trans-
formed into a near-circle by two successive
Joukowski transformations. Finally, the near-
circle is transformed into an exact circle by using
conjugate Fourier series. Since four transforma-
tions are involved, the work is necessarily lengthy.
However, a detailed computational layout and
some suggestions for decreasing the labor involved
are available in reference 88, and a number of
theoretical solutions are obtained for a cascade
with a solidity slightly greater than 1.0. In
reference 87 theoretical results are compared with
experimental data for a cascade with a solidity
of 0.85.

Howell’s method appears to give reasonable and
consistent results for solidities as high as 1.0.
Higher solidities could be used, but the shape
obtained in the first transformation would be
distorted and the amount of labor would be in-
creased. It is estimated in reference 88 that a
complete solution for several angles of attack can
be made in 3 weeks. If only the deviation angle
is required, the time is reduced. Some further
simplifications of the method are given "in
reference 89.

In 1944, Garrick (ref. 90) presented a solution
using the well-known mapping (refs. 91 and 92) of
a straight-line cascade into a circle. By means of
this transformation, a cascade is mapped into a
near-circle, and finally the near-circle is mapped
into an exact circle. A computational procedure
is given, and an example is worked out. As in the
case of Howell’s solution, the computations are
lengthy.

A different approach was presented by Traupel
(ref. 93), who mapped the flow field of the cascade
onto the interior of an internally concave closed
curve. A minimum of four transformations is
generally required, and the computer must exer-
cise & certain amount of skill and judgment in the
selection of some of the transformations. Using
Green’s second formula, the author arrived at an
integral equation that he solved by an iterative
procedure. No comparison with other results is
made in the report, although an example is com-
puted. The method is mentioned also in con-
nection with an experimental investigation on
internal-combustion prime movers in reference 94.

Mutterperl (refs. 95 and 96) mapped the
arbitrary cascade directly onto a straight-line
cascade. Although the method does reduce com-

putational time, some difficulty has been en-
countered at the Lewis laboratory in obtaining
accurate numerical results. It is difficult to de-
termine when the results have converged to a
valid solution. This method was used in an in-
vestigation by Resnick and Green (ref. 97), but the
validity of the pressure distributions obtained
cannot be determined.

An exact solution, using a continuous distribu-
tion of vortices on the perimeter of a cascade of
blades, was developed by Katzoff, Finn, and
Laurence (ref. 86). With the velocity distribution
of an arbitrary isolated blade known, the velocity
distribution about the blade in cascade can be
accurately determined with reasonably little com-
putation, and can be approximated in even less
time. Experience enables the user to compare the
greater accuracy obtainable at any step of the
solution with the attendant cost in computational
time. Comparison of a solution by this method
with one for a cascade about which the ideal flow is
known exactly shows good agreement (fig. 73).

. © © o
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Figure 73.—Comparison of velocity distribution for blade

“shown, computed by methods of reference 86, with exact

solution known from actual conformal-mapping func-
tion.

In reference 98 a comparison is made of experi-
mental results and theoretical results obtained by
the Katzoff, Finn, and Laurence method. As an
example of the magnitude of agreement between
experiment and theory when good two-dimen-
sional-cascade data are available, a typical figure
from reference 98 is presented (see fig. 74). The
disagreement is due largely to the use of the Kutta
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Ficure 74.-—Comparison of experimental and theoretical
velocity distribution on airfoil in cascade. Airfoil,
NACA 65-(12)10;inlet-air angle, 60°; blade-chord angle,
45.9°; solidity, 1.0 (ref. 98).

condition for establishing the branch point of the
flow, as indicated in the figure by the results ob-
tained when the experimental lift coefficient is
used instead to determine circulation. Finally,
very good agreement is obtained by reducing the
angle of attack slightly. Although this reduction
in angle was made arbitrarily to obtain good
agreement, it can be justified qualitatively on the
basis of boundary-layer formation on the blade
surface.

The ‘method of Katzoff, Finn, and Laurence
(ref. 86) is developed in the following section in
greater detail as an. illustration of an adequate
method for solving the direct problem for a low-
or medium-solidity cascade. (Solutions are pre-
sented in the literature for solidities up to 1.5.)
The mathematics involved is not complicated.
This method is advantageous in that it can be
used as an approximate method with any desired
degree of accuracy.

Solution of low-solidity direct problem.—In the
direct problem, the geometry of the cascade (blade
shape, cascade chord angle 4° and solidity
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o=c/s) and the mean free-stream velocity v,, (i.e.,
vector average of the veldcities far upstream and
far downstream of the cascade) are given (see
fig. 72). The problem is to find a flow with -mean
free-stream velocity 7,; having the blade profiles
as partial streamlines and leaving the blades at a
fixed point. In the case of a sharp trailing edge,
the Kutta condition places this point at the trailing
edge. If the trailing edge is rounded, the position
of the trailing-edge stagnation point must be
prescribed from an empirical knowledge of this
type of flow.

The cascade will be considered to consist of a
central blade (the one containing the origin) and a
lattice of external, or interference, blades. The
solution obtained will be a superposition of flows,
derived by first treating the central blade as an
isolated body in the mean free stream of the cas-
cade and then finding the interference flow due to
the presence of the external blades. Such a super-
position of solutions is possible because of the
linear and homogeneous character of the equations
governing a two-dimensional, irrotational, and in-
compressible flow.

The total complex potential function Wy==%;

+ %2 will be composed of the following parts:

(1) The function W,=®,+-71¥, of the flow about
the isolated central blade oriented as in the cascade
with respect to the mean free-stream velocity.
Since the blade profile forms part of a streamline,
¥, will be zero on the blade.

(2) The interference flow function W,=®,+1¥,
representing & distribution of isolated singularities
along the mean camber lines (or a continuous
distribution of vortices along the profiles) of the
infinitely many external blades. The central-
blade profile will not be a streamline in this flow.

(3) The function W,=®,+7¥, of the compen-
sating flow necessary to make the central-blade
profile a streamline in the disturbance flow;
¥,—=—V, on the blade. This flow function is
analytic exterior to the central blade.

(4) The function Wy=&p+i¥r of the circula-
tory flow, which causes the compensating flow to
leave the blade at the trailing edge. Since the
blade profile forms part of a streamline, ¥r=0 on
the blade in this flow.

The problem of finding the flow about an iso-
lated profile in a free stream is well-known and
will be considered as already having been solved
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for this application. An extensive treatment can
be found in references 73 and 74. The potential
distribution, as well as the mapping function of
the central blade onto a circle (derived from the
isolated-profile computation), is assumed in. what
follows. The presentation given herein of the cas-
cade solution is concerned. only with. finding the
disturbance effects of the external blades on the
central blade.

For purposes of demonstrating the technique,
the assumption is made that the final velocity
distribution about the cascade is already known,
The applicability of an iteration process will be
indicated later. Using the known velocity dis-
tribution and blade shape, the first step is to
represent the external blades by singularities ar-
ranged on the mean camber lines at intervals
measured along the chords. A good approxima-
tion can usually be obtained with two sources,
three sinks, and five vortices. A guide to the
location of these singularities is given later. To
evaluate the effect on the central blade of these
infinite rows of singularities, the chart (first ap-
pearing in ref. 99) shown in figure 75 is used.
This chart represents an infinite row of vortices
(or sources) of unit strength placed a unit distance
apart with the central vortex omitted. A drawing
of the cascade blade is now prepared, with chord
length chosen to give the proper solidity when
used with the graph. To find the effect on the
central blade of an infinite row of vortices, located
at a point z on each exterior blade, the drawing
of the central blade is placed with the point = on
the origin of the graph and with the blade properly
oriented with respect to the y-axis. The values
of the stream function and potential function can
be read from the graph at selected points on the
central-blade profile. The values indicated on the
graph must be multiplied by the vortex strength
at the position being considered. If the singu-
larity involved is a source, the lines marked ¥
become —& and those marked ® become ¥. A
sink is regarded as a negative source. In this
manner, the effect of each infinite row of singu-
larities is found at certain prescribed points on
the central blade. Adding all these contributions
gives &, and ¥,.

Although the use of isolated singularities dis-
tributed along the mean camber line is clearly an
approximation, the results obtained in this manner
are usually so accurate that no other technique is

required. In instances where some doubt may
exist concerning the accuracy of results thus ob-
tained, a somewhat different approach is available
for finding the disturbance flow. It has been
shown (ref. 100) that a cascade of blades in a uni-
form stream can be represented exactly by a con-
tinuous distribution of vortices on the perimeter
of each blade, where the vortex strength per unit
length at each point is'equal to the velocity of the
flow about the blade at that point. With this
result in view, the blade model is placed with a
point of its contour on the origin, and the effects
are computed as in the preceding discussion, At
each point the vortex strength is » dl, where dl
is an increment of the airfoil arc length. The
velocity is taken as positive on the suction surface
and negative on the pressure surface; that is, the
velocity is taken as positive in the positively
oriented arc-length direction (see fig. 76).

The disturbance flow function is then given at a
point z==x,+17y, on the central blade by

@d(zo)=g5 ®.(2) dl
(60)
W4(20) =§ ¥.o(z)dl

where & and ¥ are the values read at z, from the
chart (note that these values are for vortices of
unit strength and unit spacing) when the origin
is at 2 on the central. blade. The integration is
performed over the blade profile. It is convenient
to rewrite equations (60) as

Bs (20) =g5 & dds(2) o
61

wa(z.])=g5 ¥ d#s(2)

From equations (61), ®, and ¥, are readily evalu-
ated by plotting ® and ¥ against ®; and integrat-
ing numerically or with a planimeter.

A disturbance flow has now been calculated
yielding & ¥, and &, distribution on the central-
blade profile. To make this profile a streamline
in the disturbance flow, a compensating flow W, is
now added such that ¥ .= —¥, on the blade profile.
It is necessary to compute the potential distribu-
tion ®, of which ¥, is the harmonic conjugate.
This problem is greatly simplified, since the map-
ping of the central blade onto a circle is known
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Fieune 75.—Velocity potential and stream function for row of vortices of unit strength spaced at unit distance along
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Fiaure 76.—Velocity distribution prescribed as function
of arc length, with velocity taken as positive when
velocity vector is in direction of increasing arc length.

from the initial computation of the flow about the
isolated profile. The actual procedure is given in
detail in reference 76 and will not be considered
herein.

The flow W.=®&.+1¥, thus generated will
have, in general, a value of d®.d¢ unequal to
zero at the trailing edge (¢ is the central angle in
the circle plane). In order to satisfy the Kutta
condition, a vortex is added at the center of the
circle with a strength

I‘au= —27 d@,/dqp

The corresponding contribution to the potential
function is ®p= (Tzas/27)¢. .

The complete potential function &5 is now ob-
tained by summing the contributions &,, &, ®.,
and &r obtained in the various stages of the
solution. The final velocity distribution is ob-
tained by differentiating ®; with respect to arc
length on the blade profile.

The foregoing discussion was advanced on the
assumption that the final velocity distribution was
known initially. In the actual case, the velocity
distribution about the isolated central blade may
be taken as a convenient starting value. Adding
the disturbance velocities calculated from this
initial velocity distribution yields a distribution

nearer the correct one. The disturbance effects
are then recalculated on the basis of the corrected
velocity, and so on. The rapidity of convergence
will depend on the accuracy of the initial approxi-
mation. It is clear that for high-solidity cascades
the initial approximation will be poor and slower
convergence can be expected.

In the course of actual application, the authors
of the method developed a technique for the itera-
tion process that results in much faster conver-
gence. As the iteration process is carried out,
each change in the exterior singularities necessi-
tates a change in the singularities within the cen-
tral airfoil, that is, a change in W,.. In turn, this
results in a change in Wr and 2 change in total
circulation. In this sense, the change in circula-
tion about the central blade can be attributed to
changes made in the location and strength of the
exterior sources and vortices, Then, if Tz is the
total circulation and T, the circulation about the
isolated blade, the following equation is obtained:

Fz=T,+ Faaa, + Tada, (62)

where Ty and Tagy, are the additional circula-
tions about the central blade attributable to the
presence of the exterior sources and vortices,
respectively. In actual practice, the value of
Caaa, changes very little from one iteration to the
next, and Ty, is nearly proportional to the total
circulation. Therefore, the following equation
may be written instead of equation (62):

Fz=~T,+ rada, + (I‘z/I‘,,) Teaa,

or
r,+r
zz_ﬁ__"“‘: (63a)
1 este
T,

Values of I's calculated from equation (63a) have
proven to be considerably closer to the final
correct value than those calculated from equation
(62). Correspondingly, the potential function
can be written
Iz

¢2=q>a+¢¢ddx+'r_ Do, (63b)

where ®; is now considered as the sum of &, and

®,44, Where
'badd='§d+'§c+'br
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The second iteration can be similarly adjusted:

rz2=F_zil%f& (63¢)
1
Ts,

where the subscripts 1 and 2 refer to the first and
second approximations, respectively. This modi-
fication is highly effective in obtaining rapid con-~
vergence. The additional complication of sepa-
rating the effects of the vortices and soureces is
not great.

When an arrangement of isolated singularities
is used (this is recommended by the author of the
method almost without reservation), the proper
number and location are largely a matter of ex-
perience. For solidities near 1.0, five vortices
spaced at 0.1, 0.3, 0.5, 0.7, and 0.9 of chord
length will probably give an adequate representa-
tion of the velocity distribution effects. The
vortex strength at a given chord position is
determined from the difference in potential on the
upper and lower surfaces. For example, the
difference in these potentials at 0.2 chord is ap-
proximately the vortex strength from the leading
edge to the 0.2-chord position. This vorticity is
assumed to be concentrated at the 0.1-chord
position. The sum of the isolated vortex strengths
must equal the total circulation about the blade.

In the example of reference 86, a source was
placed at 0.025 chord and another midway be-
tween the leading edge and the position of maxi-
mum thickness. Sinks were placed at 0.5, 0.7,
and 0.9 of the chord length. To determine the
source strength, the average velocity v,, is defined
as (2,4-vp)/2, where v, and vp are the local veloci-
ties on the suction and pressure surfaces, respec-
tively. The internal flow at each axial position
is defined to be the product of the blade thickness
at that position and the corresponding average
velocity. The strength of a source or sink is then
taken as the difference between the internal flow
at a station midway between the location of the
source in question and the preceding source and
at a station midway between the location of the
source in question and the following source. The
total source strength must equal the total sink
strength. The optimum arrangement of these

singularities will differ with blade shapes, but

& suitable arrangement should be evident.

691-564 O-65—9

The velocity distributions at other angles of
incidence can be easily obtained by the method of
conformal mapping. No knowledge of the actual
mapping function is required; therefore, the off-
design conditions can be readily obtained from the
exact solution. The procedure for this computa-
tion is given in appendix A of this.chapter and is
applicable in any case of plane incompressible
irrotational flow where a solution at one angle of
attack is available. This characteristic of the
incompressible-flow solution offers an advantage
over the compressible-flow solutions for the same
problem.

An outline of the general procedure to be used
in applying the Katzoff, Finn, and Laurence
method follows:

(1) Solve the problem of the isolated geometri-
cally similar blade profile, oriented properly with
respect to the mean free-stream velocity. The
method of reference 74 or some related method
yielding the blade mapping on a circle is used.

(2) Determine the location and strength of the
singularities from considerations of cascade geom-
etry and the isolated-blade solution, respectively.

(3) Determine &a,, Vs, ®4,, and V4, from the
chart in figure 75.

(4) Let ¥ey=— W4, and ¥e,=—¥q, on the blade
surface. Then determine &, and &, by the
method of reference 76.

(5) Find Tas, and Taw, from the trailing-edge
criterion. Find I's from equation (63a) and &z
from equation (63b).

(6) Compute the final velocity distribution as
the derivative of ®z with respect to arc length.

(7) Reevaluate the strength of the singularities
in step (2) on the basis of the new velocity and
potential distribution.

(8) Carry through all steps of the process again.
If there exists a doubt concerning the accuracy of
results obtained by using isolated singularities,
replace these singularities by a continuous distri-
bution in step (2) and carry out the remainder of
the procedure.

(9) Continue the iteration until convergence is
obtained. A second or third trial should be

sufficient.
THE INVERSE PROBLEM

In the inverse problem for low solidities, as in
the direct problem, the methods of conformal
mapping and representation by singularities are
used. Contrary to the direct problem, however,
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the solidity often is not significant in the methods
for solving the inverse problem. In particular,
the method presented in detail in this section can
be used for any solidity. This generality, where
it exists, is indicated in the table contained in the
SUMMARY.

Either the direct or the inverse problem can
generally be solved by the method of singularities
applied to thin blades, either isolated or in cascade.
Therefore, the techniques developed by Birnbaum,
Glauert, and Allen, mentioned previously in con-
nection with the direct problem for isolated air-
foils, and the solutions of the cascade problem by
Pistolesi, Lieblein, and Woolard are applicable to
the inverse problem as well.

The current use of higher cambered blades in
compressors somewhat restricts the value of the
approximate methods. Hence, this section is con-
cerned chiefly with the more exact solutions, which
have achieved a complete and convenient form in
recent years.

Isolated airfoils.—In 1935, Betz (ref. 101) pre-
sented an approximate method for modifying the
shape of an existing isolated airfoil to assure a
predetermined change in the velocity distribution.
Theodorsen also presented a method of modifica-
tion based on his exact solution of the direct prob-
lem (ref. 102). More general methods have been
given by Gebelein (ref. 103) and Peebles (ref. 104)
using conformal mapping and by Goldstein and
Jerison (ref. 100) using singularities. Other solu-
tions of the isolated-airfoil design problem exist,
but the foregoing illustrate the essential character-
istics of a solution to the problem.

Cascades.—An approach to an exact solution of
the cascade problem was given by Weinig (ref.
80). A complete solution by conformal mapping
was developed and presented in a series of unpub-
lished lectures by Arthur Goldstein. The com-
putational procedure was given in considerable
detail by Hansen and Yohner (ref. 105), and a
theoretical solution was obtained. This method,
considered to represent an accurate and reasonably
fast solution to the problem, will be outlined later
in some detail. There is no restriction on solidity.

A similar approach was given in 1945 by Light-
hill (ref. 106), in which the velocities are not
prescribed directly as a function of airfoil arc
length but rather as a function of the central angle
of the mapping circle. Hence, a certain amount of

experience is required to obtain a desired velocity
distribution on the cascade itself.

The method of Mutterperl (ref. 96), mentioned
in connection with the direct problem, is applicable
also to the inverse problem. As mentioned
before, some results have indicated that the numer-
ical answers might not always be reliable. If the
accuracy can be improved, the method may
find practical application.

All the inverae cascade methods considered so
far have made nse of conformal-mapping theory.
A method of singularities was developed by
Goldstein and Jerison (ref. 100), but they en-
countered some practical difficulty in the applica-
tion of their technique in regions where the
curvature of the blade surface is large, particu-
larly in the leading-edge region of a thick blade.
However, the solidity is not an important factor,
and the method is considered to be quite useful
for the design of thin blades.

Of the methods discussed, the conformal-
mapping method of Goldstein has been selected
for a detailed presentation. A report (ref. 105)
is available on the computational procedure.

Solution of low-solidity inverse problem.—The
low-solidity inverse problem is twofold: (1) to
determine the flow about a unit circle that will
have the desired characteristics when mapped
into the cascade plane, and (2) to determine the
mapping function and hence the blade coordinates.
The problem is simpler than the corresponding
direct problem in that no iteration is required.
Furthermore, the solution is known to be exact,
since no convergence is involved. A difficulty
is introduced, however, by the fact that an arbi-
trarily selected velocity distribution may fail
to result in a closed profile. In this event, the
method to be described indicates the necessary
change in the prescribed velocity distribution
that will yield a closed profile. The suction-
surface velocity distribution, usually the most
critical, can be maintained as originally specified.

The following information must be given to
obtain a solution: (1) the vector velocities in-
finitely far upstream and downstream of the
cascade, and (2) the velocity distribution as a
function of arc length on the contour of a blade.
Velocities are considered positive in the positively
oriented arc-length direction (fig. 76). Note
that the arc length is increasing (dI>>0) as the
blade is traversed in a counterclockwise direction.
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The following information is obtained in the
solution: (1) the blade profile, and (2) the blade-
chord angle v° and solidity o.

In the following discussion the complex plane
containing the cascade will be referred to as the
z=z+1y plane (or cascade plane). The complex
plane containing the circle (fig. 77) will be referred
to as the f==£-1iy plane (or circle plane).

n
Streamline from
trailing edgey
’l r=|
1
£
. 'eK' \.(Pfes f e
image of ' le image of
Z=—D z =+®
Yi
£ Streamiine from
leading edge

F1auRrE 77.—Image of cascade in circle plane.

The most convenient mapping for this problem
is one that takes the cascade into a unit circle
with center at the origin. The points at 4+« on
a line normal to the y-axis are transformed into
points +eX, symmetrically located about the
origin on the real axis (fig. 77). Such a mapping
is discussed in considerable detail in references 80
and 91. Under a mapping of this kind, the com-
plex potential function in the circle plane can be

written (see ref. 80)
r—-e‘>
t+ef

)

I - )
+m log, (g;—_—eéz—:‘)+constant (64)

h0)=32 | e log,

+e"%m loge

This equation is quite general and holds for an
arbitrary cascade in the z-plane. The quantities
Um, Bm, 8, T, and K are functions of the particular
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cascade to be mapped into the circle. When these
quantities have been chosen properly for a given
cascade, the flow about the circle will map back
into the desired flow about the cascade.- The
symbols v,,, B, &, and T' are the mean free-stream
velocity, mean free-stream velocity angle, spacing,
and circulation of the cascade, réspectively; K is a
measure of the location +¢* of the singularities in
the flow about the circle. All five of these quan-
tities can be determined from the prescribed con-
ditions in the inverse problem.

From the velocity diagram (fig. 72) it can be
seen that

4o w1 (tan fi+tan B, _m T
Bm—tan 1( 2 )1 2<Bm<2
(65)
and
_mcosfy
The circulation is given by
r= "o &l 67)

lte, P

where v(l) is the signed velocity on the cascade
blade prescribed as a function of arclength (fig. 76).
The blade spacing is given by

r
§=— -
9 8In B;—; 810 B,

(68)

Determination of the constant K is somewhat
more difficult and depends upon certain considera-
tions of the potential functions. The range of the
velocity potential (the difference between maxi-
mum and minimum values of the potential) on a
cascade blade must equal the corresponding poten-
tial range on the circle. On the blade this range
is computed as

Aq);=q>z(lte. :)—q)z(lla) (69)

where I, , and [;, are identified in figure 76. From
the simple relation connecting the potential dis-
tribution to the velocity distribution, ®, can be
calculated as

(1) = f; el dl

The velocity potential on the circle is given by
@r=Real Wi (e'")] (70)
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where Real designates the real part, and ¢ is the
central angle of the circle. Then,

Adyp =y (e'Pree) —Br(e'¥) (71)

where ¢,, . and ¢, are the values of ¢ (as yet un-
known) corresponding to the trailing-edge and
leading-edge stagnation points on the circle (see
fig. 77). By the process of trial and error outlined
in appendix A (described in detail in ref. 105), ¢, s,
@1, and K can be determined so that Ad;=A®,.
In this manner, the flow in the circle plane is
determined uniquely for a prescribed set of condi-
tions in the plane of the cascade (step (1) in the
solution of the inverse problem). The function
that conformally maps the cascade into the circle
must yet be determined from the knowledge of
velocities about the circle and about the cascade.
In appendix B of this chapter the following
form of a general mapping function is developed:

d ag)
_&%:ﬁf;_ F(g.) FQ (72)
where
2K__ ,—2K
F )= ey oo (73)
and
h(£)=h:(§, n)+iha(, 1) (74)

The function A(¢) is regular outside the unit circle,
and

}_lfn ch()=0 (75)

The function z=2(¢), defined by equations (72)
to (75), will map an arbitrary cascade into the
unit circle so that the points far upstream and far
downstream of the cascade are transformed into
the points +-¢X in the circle plane. The function
h(¢) will determine the shape of the cascade. The
problem is to determine A(¢),. and hence the blade
shape, from the available information.

Let W; and W, represent the complex potential
functions in the circle plane and cascade plane,
respectively. Then, if z=2z(¢) is the desired map-
ping between the two planes,

Wlz)=W(2(£)=W:(s) (76)

Differentiating equation (76) gives a relation
between the complex velocity conjugates w, and
‘wy as follows:

n

If only the unit circle is considered, then {=e'?,
and it can be determined from equation (73) that
F(e*®) is real. As a matter of convenience, all
functions of ¢* are written simply as functions of ¢
in the following expressions. Combining equa-
tions (72) and (77) gives

by (@) iy ()
wi(p) (dz

w, (l)— EE elv__ F((p)e Flo) (78)

where w,(l) indicates that w, has now been ex-
pressed as a function of distance along the blade
perimeter.

The value of the potential at any point on the
blade is given by

l v(l) dl (79)

‘u,P

q’z(l)=

The values of ®;(¢) are known to an additive
constant from the real part of equation (64).
The additive constant should now be chosen so
that ®,(;, p)=®;(¢wp). Then, equating the
values of potential in the two planes gives a
functional relation of I with ¢, say I=I(p).

Now, by means of the function I=I(y), w,(l) can
be written as a function of the central circle angle
¢ as follows:

w,(O)=w.( () =1b.(e) (80)

where % denotes the velocity in the cascade plane
expressed as a function of the circle-plane coordi-
nates. Then the ratio of the velocities in the
two planes can be written

wi(p) _ vp(p)e et
,(p) D(p)e™

(81)

where #; and v, are signed velocities, and g is the
angle made by a tangent to the blade profile and
the z-axis. Substituting equation (81) into equa-
tion (78) and taking the logarithms of both sides
yield:

log, [ “")]+z(u—¢—7r/z) =log. [ 2= F (o) |

.(p)
hi ()

hz(‘P)

i T T
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Since F(e) is real, equating real and imaginary
parts of equation (82) gives

m=F@ log.| Frs8] @

h(e)=F(e)(n—o—T) (84)

Equations (83) and (84) are the essential relations
of the inverse solution. If &, and A, are deter-
mined, then % is known and the complete mapping
of the cascade profile into the circle is known.
Equation (83) gives h; as a function of the circle
central angle ¢. Since h=h,+1hk,, it follows that
s is the harmonic conjugate of k. Therefore, k;
can be found by one of the methods of harmonic
synthesis, such as the one given in reference 76.
When A, has been found as a function of ¢, then u
is known as a function of ¢ from equation (84),
and hence as a function of I

Since dz/dl=cos x and dy/dl=sin u on the
perimeter of the blade,

cos p dl
lu.P

1l
y—yu,p=f sin u dl
lte.P

L—Lse, P~

(85a)

or, more conveniently,

¢ MCOS#d‘p

L=y, p e, P ?)z( ) ( )
= (" 85b
¢ _& ¢) sin u de

VY Jor o)

Equation (85a) or (85b) gives the coordinates of
the cascade blade and completes the solution,
except for the case in which the cascade blades
fail to close.

Equation (75) leads to the following conditions,
necessary and sufficient for closure of the blades:

L%: hy(o) d¢=fm " hi(p) sin ¢ do

te, Pie, P

= [ hute) cos o dp=0 (86)

Pie, P

For an arbitrary velocity distribution this condi-
tion will not, in general, be satisfied. Suppose

f " h(e) dp=C,

Pte, P

g

17 o) cos e do=0 87)

Pte, P

f " (o) sin @ dp=Cj
P o

Pie,

Form a function £ (¢) such that
Pto,e

[ po) do=—0x
Pte, P

" fg) cos p dp=—C,

Pte, P

J‘m"/ (¢) sin ¢ dp=—0C4
Pte, P o

Y

(88)

From equations (87) and (88), it is seen that
R (o)=h (o) -+ f (¢) will satisfy the closure con-
ditions. It should be noted that the conditions
on / (¢) are not severe and that the designer has
considerable freedom in the selection. In particu-
lar, the velocity distribution on the suction surface
can generally be maintained by a proper choice of
().

f The changes caused by a change in k, (¢) require
some consideration. From equation (83) it is
seen that a change in h (p) causes a change in
$.(¢). That is, when considered as a function
of the central circle angle, the cascade velocity
has changed from %.(¢) to some function 3.*(¢).
The function §,*(¢) is given by equation (83) as
follows:

(o) =F(p) log, [E%% ;’E E::; (89)

Subtracting equation (89) from equation (83)
and solving for f¢) give

) =bulp)e I @ (90)

In the case of the blades that failed to close, I(¢)
is & function of ¢ such that

2.()=0.(1())=2:(¢) (91)

Similarly, a new relation I*(¢) must be found
such that
v, (1*) =2 (1*(e)) =1ile) (92)

Combining equations (91) and (92) and substi-
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tuting from equation (90) yield

(D) 9.00)_ £ e
i ®3)

It follows from equation (77) that
de
0.()=nnle) (94)

Therefore, [*(¢) must be a function that satisfies
the relation

- d
21 =trle) 375 (95)
if the flow in the circle plane is to remain unaltered.

Combining equations (94) and (95) and sub-
stituting from equation (93) give

v,(l) dl dl
=i g domel 0 5 de
or
y di '
=1t p= 'P:'P 8/(’)/”“" a";dsﬂ (96)

These equations show the changes arising in the
cascade velocity distribution as a result of changing
hy (o) to satisfy closure.

An outline for the general procedure to be used
in applying the method follows:

(1) Prescribe a velocity distribution as a func-
tion of arc length about a cascade blade.

(2) Prescribe v, 5, 8, and 6.

(3) Determine #,, 8., s, T, and K from equa-
tions (65) to (71) and appendix A.

(4) Determine &,(l) from equation (79).

(5) Determine ®;(¢) as the real part of equa-
tion (64) plus an additive constant.

(6) Choose the arbitrary conmstant in equation
(64) such that ®,(l,,r)=%®;(¢s,r), and equate the
potential functions yielding a relation [=1I(y).

(7) Find o,(p) and, with »;(p), solve equation
(83) for Ay(¢). Check for closure and make the
necessary changes.

(8) By the method of reference 76, or some
related method, find A;(¢) as the harmonic con-
jugate of A, (o). .

(9) Solve equation (84) for u as a function of ¢.

(10) Find the blade coordinates from equa-
tion (85b).

Appendix A can be used to analyze the resulting
blade shape at all angles of incidence. A pre-

scribed velocity distribution, the velocity dis-
tribution corrected to ensure closure, and the
resulting blade shape are shown in figure 78 (from
ref. 105).

COMPRESSIBILITY CONSIDERATIONS

Both the direct and inverse problems for low-
solidity cascades have been discussed only for an
incompressible fluid. The equations governing an
incompressible two-dimensional flow are simple
in form and, as has been shown, can be solved
by complex-function theory. When the fluid
density is permitted to vary, the ordinary formu-
lations of the flow equations become nonlinear
and very much more difficult to solve.

In high-solidity cascades, where a channel
treatment is possible, the finite-difference tech-
niques can be used. The relaxation method of
Southwell (refs. 107 to 109) has been used to
solve many difficult differential equations. Since
the advent of high-speed digital computing
machinery, the direct solution of a large number of
simultaneous linear equations in a reasonable
period of time has become feasible. Thus, a
complicated differential equation can be repre-
sented over the flow domain by a set of linear
finite-difference equations, which can be solved
either by the relaxation method (usually done on a
desk computing machine) or by a direct matrix
solution on high-speed computing equipment.

In high-solidity cascades the physical boundaries
of the flow favor a solution of the compressible-
flow equations by finite-difference techniques.
1n the low-solidity cascades, however, the guid-
ance exerted by the blades is less pronounced, and
the proper satisfaction of boundary conditions is
more difficult. Hence, for low-solidity cascades
the problem of obtaining compressible-flow solu-
tions still exists, at least for the direct problem. (A
solution for compressible flow with a linear pres-
sure-volume relation has been obtained for the
inverse problem and is discussed later in this
section.) In general engineering practice, two
methods of attacking this problem are currently
being used, the hodograph method and the small-
perturbation method. These two important theo-
ries will be discussed in this section, where the
following notation is used: » is the magnitude of
velocity in an incompressible-flow field, and ¢ is
the magnitude of velocity in a compressible-flow
field.
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(a) Prescribed velocity distribution.

(b) Modified velocity distribution to ensure closure.
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(c) Resulting blade shape-.

F1GURE 78.—Prescribed velocity distribution used in blade design with velocity distribution modified for closure and
resulting blade shape (obtained in ref. 105).

Hodograph method.—Although the equations
relating the stream and potential functions of a
two-dimensional compressible flow of an ideal
fluid are, in general, nonlinear, they can be re-
written in terms of a new set of independent
variables such that the equations become ‘linear.
This result was discussed extensively by Chaplygin
(ref. 110) in 1902. For many years thereafter
very little was done in this direction, probably
because of the adequacy of the incompressible-
flow solutions for interpreting low-speed flows.
However, in more recent years it has become
necessary to consider the effects of density varia-
tion. in many applications. Under this impetus,
the hodograph theory (investigation of flow in the
velocity plane) has been advanced considerably
and is still expanding. The essential advantage
of the hodograph method is the linearization of
the equations relating the stream and potential
functions by a proper choice of independent
variables. An important disadvantage is the

difficulty in establishing boundary conditions in
the hodograph plane to represent a given problem
in the physical plane. In spite of this major
handicap, however, important use has been made
of the theory.
For incompressible flow, the following relations
hold: "
o8_dv
or oy
(97a)

Equations (97a) can be rewritten with » and 8

" replacing z and y as the independent variables (see

e.g., ref. 111), where g8 is the inclination of the
velocity vector to the z-axis:

or_ ov

98 o

or__19¥

o 908

(98a)
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For compressible flow the relations correspond-
ing to equations (97a) can be written

aﬁ Pa ov
dr p Oy
(97b)
92__ Pa ov
oy p Oz

As in the incompressible case, equations (97b) can
be written in terms of the independent variables
g and B8, with M as the local Mach number:

92__ Pa o
8 013

(98b)
od 1—M2 0¥

d%¢ » ¢ OB

Introducing the variables V and @, defined by

av=2
(99)
dQ=\/1——M2%g
into (98a) and (98b), respectively, yields
P 0¥
MW oV
(100)
o2 _ oY
oV o8
and
% _p, 3 O
B p"! MzaQ
(101)

O pe 775 0¥
20 VM 5

Equations (101) can be simplified by the fol-
lowing considerations:

L
B;m=(1 Tkl Mz)‘ﬁ:ﬁz

For y=—1, (pa/p)y/I—M?=1. Although y=—1
does not correspond to any actual fluid, this value
causes the adiabatic pressure-volume relation
p(1/p)*=constant to become linear in p and 1/p.
When a general linear relation between pressure

and volume is assumed initially, the theory shows

that (pa/p)'\/ 1—M?=1 in this case, also. Thus, a
straight line can be taken to represent the pressure-
volume relation instead of the usual curve. Early
workers in this field (e.g., ref. 112) allowed the
approximating line to be tangent to the adiabatic
curve at a point corresponding to the stagnation
condition p=p,. This is a poor choice for high-
speed flows. Von Karmén and Tsien (refs. 113
and 114) took the point of tangency to correspond
to free-stream conditions, which better approx-
imated the true curve in the region of greatest

interest. With this apprommatlon equations
(101) become
ob_ oV
R YY)
(102)
op oY
20 o8

Comparing equations (102) with equations (100)
shows that a solution of the incompressible-flow
equations (100) will be a solution of the quasi-
compressible-flow equations (102) when the veloc-
ities are related (from eq. (99)) by

_=m%§

This relation integrates (with the help of the
linear pressure-volume relation) to

(103)

4a2
= (104)
The density ratio becomes
a 4-a'a2 vz
o (105)

The pressure coefficient for the incompressible
flow is given by

—D o
VYine }Zzpmfm2=1 ”mz (106)
For compressible flow,

The pressure coeﬂiclent{s are related by the
following equation (called the Karman-Tsien
relation):

'P 'plm: (108)

___ -Z‘Jrn2 'le:
M T 2
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Hence, equations (104), (105), and (108) provide
a compressible-flow solution when an incompres-
sible-flow solution is known. It is evident,
however, that the two solutions will not satisfy
the same boundary conditions. Applying equa-
tions (104) and (105) will yield a solution for
compressible flow about a cascade of somewhat

different geometry The correlation of the two‘

flow fields is only approximately valid.

The relations presented herein as a simple
means of approximating the effects of compres-
sibility on a known incompressible-flow field are
a byproduct of the hodograph theory. The aim
of the theory in its complete form, to put the
direct and inverse compressible-flow problems on
a substantial theoretical foundation, has been
realized to a certain extent. The inverse problem
for cascades has been solved in its general form
with the assumption of a linear pressure-volume
relation by Costello (ref. 115); Costello, Cum-
mings, and Sinnette (ref. 116); Clauser (ref.
117); and Lin (ref. 118). These theories are
based upon earlier work by von Kéarmén (ref.
113), Tsien (ref. 114), and Lin (ref. 119). Refer-
ence 116 offers a detailed computational procedure
for the use of Costello’s method.

The direct problem has not reached the same
state of development. Even in the case of an
incompressible fluid flow, an iteration process
is necessary. In the case of a compressible fluid
flow, a trial-and-error iteration is possible. How-
ever, no systematic process for converging to a
solution in the case of compressible flow about a
body of arbitrary shape has been given.

The method of appendix A for finding velocity
distributions at angles of incidence other than the
one of the original solution does not hold in the
compressible-flow case. This fact makes the
incompressible-flow solution more valuable for
some investigations. For this reason, and because

of the difficulty in presenting the material con-

cisely, the compressible-flow solution for the
inverse problem is not presented in detail in this
chapter. The reader is referred again to refer-
ences 115 and 116.

Small-perturbation method.  The equations
governing the flow of a compressible fluid about
2 body can be linearized in the physical plane
instead of the hodograph plane by making
certain assumptions about the nature of the
flow. These assumptions cause the equations

only to approximate the actual flow. For slender
bodies the approximation is generally good and the
theory has proven to be useful.

Flows that differ only very little from the mean
free-stream flow will be considered. The relations
among the various velocity components can be

seen in the fo]lowmg sketch The a,ssumptlon' . .

is made that second and higher powers of g
(disturbance velocity) or its components can be
neglected and that derivatives of the disturbance-
velocity components are approximately equal to
the component over a characteristic length of the
object in the flow field. These conditions are
expressed

"=, =0 for n>2 (109)
0F; 0 G
&

o oy ¢ (110)
0%y 0%y 3
or oy c*

where ¢* is a characteristic length.
The actual velocities are related to the disturb-
ance velocities by

qz:qm+§z
=9
Euler’s equations of motion for a two-dimen-

sional compressible steady flow with no external
forces can be written

(111)

qwzlqaqz _laP _zap

Foar 'O oz p O

g v ° (112)
og, [/ _lop _d*dp

%2z T W py sy

Combining equations (112), with the help of the
continuity equation
A(pg:) | A(pg) _
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gives
2 0¢x bq, ogy a‘lv _b__q, ogy
q: az-l_ zQu ay az + y +?a"y—
(113)

By using the relations (111) and the hypotheses
(109) and (110), equation (113) reduces to

In 0g; , 97,
(1 L+ 30

Reference 120 shows that, within the hypotheses
of this theory, equation (114) can be written as

(114)

(-3 S+ 5o

or, introducing the disturbance velocity potential,

(115)

A—MD) 3 3 22;_0

Now consider the transformation

(116)

T=Z, yt=y\/1—Mm2, &;i:A& (117)
Applying transformation (117) to equation (116)

gives

2
oo, o g;* (118)
the Laplace equation for the disturbance potential
in an incompressible flow. At affinely corre-
sponding points (under transformation (117)) in
the two planes, the following expressions relate the
velocity vectors and their angles:

- bd’, bd’
w2 e Ak
- b@, bd’ by A -
=214 —_—— - (119)
WOy, Oy Oy Vi_M.P
B~tan e AT A 3

I V1—M,? In JI—M ?

From equations (119) it can be seen that, at
affinely corresponding points of the flow fields,
the ratio of 8, to B is constant and equal to

A/V1—M,2 Hence, for flow about geometrically

similar boundaries, A=+1—M,? and

. 1 -
Qz=m v, (120)

It can be shown under the hypotheses of the
small-perturbation theory that the pressure co-
efficient can be written

9=
% - 3
Ve it
i (121)
)
Yine= -2 ’éz—":
Using equations (120) and (121) gives
P (122)
(4 -Jr:M—m—z ine

Equation (122) is referred to as the Glauert-
Prandtl compressibility correction and corre-
sponds to equation (108) in the hodograph theory.
When these equations are applied to cascades of
blades, the corresponding cascades in the two
flow fields will have the same blade shape but
different chord angles and solidities. The relations
between the cascades are given by Woolard in
reference 121. Pressures predicted from equa-
tions (108) and (122) are compared with actual
experimental data in reference 122.

The compressibility corrections of either the
Glauert-Prandtl or Karmén-Tsien methods are
quite simple in application and have yielded
satisfactory results for cascades by using the local
Mach number at points in the blade passage
instead of the mean free-stream Mach number
(ref. 123). The local Mach number is derived
from a one-dimensional analysis.

HIGH-SOLIDITY CASCADES

In general, the mathematical techniques applied
successfully to low-solidity-cascade problems be-
come increasingly tedious to apply as solidities
rise above 1.0. Although the methods are not out
of the question for solidities greater than 1.0,
difficulties may be expected for the range of
solidity from 1.0 to 1.5, and above 1.5 these
difficulties are liable to be excessive. The lines of
demarcation are not clear but vary with individual
methods and prescribed conditions other than
solidity.
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POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES

equations (139) become

—k2) [
J=ﬂ£(_———_—;— exp(k?) dk
\/_A e'n/p kp
2

R— exp(—3k2) (V3

> (143)
exp(3k?) dv3k

o
1
The values of k, and %, are fixed by the channe

geometry, and fz ezp(z*) dxis available in standard
0
tables.

It is clear at this point that the velocities at
each location on & potential line are known when
a reference velocity ¢, is known (see eq. (126)).
The value of g, is conveniently taken at the point
of average streamline curvature so that X— X, in

5

,4 /

/

125

the binomial expansion previously used is small.
In equation (140) the quantities g, J, and K are
known from the mass-flow requirements and
passage geometry, and f and g are functions of X,
alone for fixed values of v. As shown in figure 79,
f can be plotted against 4/ X, and hence against g.
In order to satisfy equation (141), f and g satisfy
a straight-line relation with slope K/J and an f
intercept of p/J. This line is shown in figure 79.
The intercept of this straight line with the curve
for f against g yields the proper value of X,, and
hence ¢q;. All other velocities are now obtainable
from equation (126).

An outline for the procedure to be used follows:

(1) Given a cascade as shown in figure 80, with
upstream velocity prescribed, draw in upstream
and downstream streamlines, continuing the blade
channel. Draw in an orthogonal net of approxi-
mate streamlines and potential lines.

|t

i
*Supersonic
solution
/]
/ e
74
- K
\;10” 7 /
1
\

V4 Subsonic

VX

)

\ /{ solutian
L)
1)

~—
<fxy

g

Ficure 79.—Chart for determining average velocity in blade channel.

UTC-2019.143



126 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

Fiaure 80.—High-solidity cascade showing streamlines
and potential lines.

(2) Compute velocities at each node of the flow
net. Since the streamlines AA’, B’B, CC’, and
D’D are only approximate, good accuracy can be
expected only in the region MNPQ of figure 80.

(3) Obtain the potential distribution along each
streamline as a function of arc length I by inte-
grating the velocity with respect to arc length.
These values will be used in drawing new potential
lines.

(4) New values of stream function are obtained
by integrating pq along the potential lines. These
values are used in drawing new streamlines.

(5) An adjusted grid of potential lines and
streamlines is drawn and new velocities are com-
puted. The iteration is continued until conver-
gence is obtained.

A solution obtained by this method in reference
124 for a turbine cascade is illustrated in figure 81.
The solidity is 1.4 in the computed example. It
must be noted, however, that solidity is not the
only consideration for determining the applica-
bility of the method. Blade thickness and stagger
angle combine with solidity to determine the effec-
tive channel formed by adjacent blades. To apply
the method successfully, it is necessary that a
significant portion of the blade surface form part
of the effective channel. In compressor designs
this is often not the case, and care must be used
in determining the applicability of the method.

Techniques are available to increase the region
of validity of the stream-filament results, A
solution can be obtained for two adjacent channels
formed by three blades. The stagnation stream-

olsr.2 T
S 8 ]
g R
2 4 /"E‘
% 0 Pressure [side iction side
7
o
4 -
£ A o Calculated |_|
g 8 o Experimental ||
i=)
£ 12 NEEN
77 2520 15 10 5 0 5 10 15 20 25

Blade surface length, Z,in.

Ficure 81.—Blade surface velocities at design conditions
(ref. 124).

line attached to the center blade must be con-
gruent to the other stagnation streamlines in the
final result. This serves as a check on the assumed
stagnation streamlines outside the blade region.
An alternative check can be made on the validity
of these assumed streamlines by integrating the
velocity about a closed path in the region exterior
to the blades and setting it equal to zero. Either
of these techniques might require more accuracy
than is obtainable by assuming a linear variation
of curvature. If the actual measured curvatures
are used, the additional work involved may be
prohibitive.

Relaxation and matrix solutions.—The tech-
nique presented herein is from reference 127. The
basic differential equation is developed briefly,
and the method of solving it is discussed in some
detail.

The equation of continuity for a two-dimensional
steady compressible flow is written

d(pgz) | 0(pgy) _
T+'—5y—_0 (144)

Equation (144) will be satisfied if a stream function
exists such that

or__
P
(145)

u_
by T

The equation arising from the condition of
irrotational motion is given by

9¢:_0%y_

- (146)
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Using equations (145) in equation (146) gives

b"’\Il ¥ 1 /0p 0¥ bp D\Il —0

W o \or or (147)
Then, letting
——1 Op O¥ bp b\Il
o bx (148)
equation (147) becomes
oM oMW
25+ oy TB=0 (149)
Equation (149) is a nonlinear equation. If B

were a known function of z and ¥, the equation
would be linear. In the process of solution to be
described herein, B will be treated as a known
function of z and ¥ in the first approximation.
Then B will be adjusted from the results of the
first approximate solution and will be held fixed
while a second approximate solution is obtained,
and so forth. That is, if a ¥-distribution is
known, B can be computed at each point in the
field from this distribution. Then B will be held
fixed at this set of values while new values of ¥
are computed from equation (149). Then B will
be recalculated on the basis of the new ¥ values.
Equation (149) is the basic equation of the
present analysis. There are two steps to the
solution of this equation: (1) to replace the dif-
ferential equation with a finite-difference equation,
and (2) to solve the finite-difference equation at a
representative set of points in the flow field.
Suppose a function y=f(z) is known at n--1
values of z: x, o, . . . 2,. It is assumed that
y=f(x) can be represented closely by a polynomial
of degree n passing through the known points

(%0, Yo), (@1, ¥1), . . . (Xn,¥s). Such a polynomial
P is given by (see ref. 128)

_ (z—z)(x—2x)) ... (x—3,)
Pﬂ(z)_(xo—zll)(xo—xz) oo (Bo—1n) o
(z—zo)(z—23) . . . (z—2,)
) @i—2) - - Gz VT
(—z0)(z—21) . . . (T—Tp_1)
@n—20) @a—21) - - - @n—Tnr) (150)

It is easily verified that this polynomial does pass
through the required points. Furthermore, it is
the only one that does, since n--1 points define an

n® degree polynomial uniquely. The polynomial
P,(z) can be differentiated successively, the m*®
derivative being written

P,"(x) =Aoyo+A1y1+ .

where the coefficients A,, . . . A, are seen to be
functions of the order of the derivative, the degree
of the polynomial representing the function, and
the point at which the derivative is evaluated.
Equations (150) and (151) are considerably
simplified when the derivative is evaluated at one
of the points z, z;, . . . ,. They are further
simplified when the intervals z,—z, , are equal for
=1, . n. The coefficients A* are available in
a table in reference 129 for derivatives up to the
fourth order and for spacings such that the last
interval on either end differs in length from the
other intervals. (The tables for unequal intervals
are very useful for writing the difference equations
at curved boundaries where such unequal spacings
do occur.) Polynomial representations up to the
fourth degree are included, and an error term is
given.

If it is assumed that the function ¥ can be
represented by a polynomial over a small interval,
equation (149) can be replaced by a finite-differ-
ence equation. In the nomenclature of reference
129, equation (149) can be written

.- +Ay, (151)

SLIBS B B0 (152)

where B is a coeflicient of ¥ corresponding to the
coefficients 4, in equation (151). The presuper-
script 2 of B represents the order of the deriva-
tive; the presubscript n is the degree of the poly-
nomial representing ¥. The postsuperseript <
denotes the point at which the equation is being
applied; the postsubscripts j and % indicate that
the values of ¥ are taken along the z- and y-direc-
tions, respectively. To clarify this notion, a set
of grid points is drawn in figure 82 in the neighbor-
hood of a point P somewhere in the flow field.
Suppose, for simplicity, that a second-degree
polynomial is adequate to represent ¥ in the
neighborhood of the point P. Then n=2 and,
following the notation of figure 82, equation (152)
can be written

2 Bigy =04 92 Bhy#=k=1_ 2 BLyi=2
IBO+1BIH I Bl=0 (153)
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J= - /=0 k= Jj=2 Jj=3
oV o\ po\I/ oy o\
k=0
. . o\ ® .
k=-1
. ' oV . °

F16uRE 82.—A portion of grid used for finite-difference
solution.

In this case the form of the coefficients B} and
3Bi is quite simple over most of the flow region.
At any point in the region that is surrounded
by equally spaced points, equation (153) becomes

‘I’”o+\If"2+\II“‘°+\If"'2~—-4\Iﬂ="=1+B‘=O

Only at the boundaries of the region where unequal
spacing of the flow net occurs do the coefficients
of equation (153) take different values.

Higher-degree polynomial representations could
be used, resulting in more terms in equation (153).
For example, a fourth-degree polynomial repre-
sentation would involve additional terms contain-
ing ¥*-1 ¥*3 ¥/=-1 and ¥/-3 (fig. 82). In
general, higher-degree polynomials substantially
improve the approximation in regions of rapidly
changing conditions. Increased accuracy can also
be attained by decreasing the net size and hence
increasing the number of points in the flow field
at which a solution is found. Near the bound-
aries where unequally spaced grid points occur
(e.g., where ¥=¥*=3 in fig. 82), the accuracy of
the approximation often becomes critical, and
higher-degree approximations or closer spacings
are needed to achieve an accuracy comparable
with that in other portions of the flow field.
Additional points can be added in the course of
solution if the accuracy of the results appears
questionable.

Suppose the entire closed boundary ABFGCDHEA
in figure 83 is fixed and the values of ¥ are known

along this boundary. A network of equidistant
points is placed on the flow field. The mesh size
is taken sufficiently small that values of ¥ found at
each point of the net will suffice to give a clear pic-
ture of the entire flow field. With the net size
chosen, equation (153), or more generally equa-
tion (152), is used with the coefficients from refer-
ence 129 to determine a linear equation in the un-
known values of ¥ at each nonboundary point of
the net. Tt is clear that there will be N unknown
values of ¥ if the net has NV inner points (i.e., points
which are not on the boundary). At each of these |
points a linear equation can be written involving
some of the unknown values of ¥. Thus, thereis a
system of N equations in N unknowns for deter-
mining the values of ¥ at each point.

Unfortunately, conditions along the entire
boundary ABFGCDHEA in figure 83 are not
known at the outset for a given cascade of blades
and a given upstream vector velocity. The
boundaries AB and CD, parallel to the y-axis, are
located far enough upstream and downstream, re-
spectively, that uniform flow across these bound-
aries can be reasonably expected. If it is dis-
covered subsequently that uniform flow does not
exist at these stations, they must be adjusted to
positions farther removed from the blades. Two
to three chord lengths from the blade edges is usu-
ally a sufficient distance. The lines AE and BF
are drawn parallel to the upstream velocity vector;
the lines GC and HD are drawn parallel to the
downstream velocity vector. Satisfaction of the
trailing-edge condition (Kutta condition in the
case of a sharp trailing edge) cannot be achieved
at the outset of the problem. Initially, the down-
stream velocity vector is assumed. After a solu-
tion has been obtained, the downstream flow angle
can be adjusted to satisfy the trailing-edge condi-
tion and a second solution can be obtained. ,

With the geometry of the boundaries now fixed,
the values of ¥ along these boundaries are consid-
ered. The stream function ¥ is constant along the
blade surfaces, since these boundaries are stream-
lines in the flow. The value on the suction sur-
face can be taken as zero, and the value on the
pressure surface can be found from the required
mass flow

v
‘I’p'—‘I’,= v P

ov v
o dyzfv.” pg: dy=mass flow

Qutside the blade channel the boundaries are not
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Fiaure 83.—Cascade channel showing grid points and boundary of solution.

streamlines, and the values of ¥ on these bound-
aries are neither constant nor known. However,
since the flow is periodic in the direction of the
y-axis (with period equal to the spacing of the
blades), the values of ¥ need not be known. For
example, consider the point at which ¥==¥, in
figure 83. Normally the boundary value ¥,
would enter into the finite-difference expression
about ¥,, but in this case ¥} is not known. Instead,
the finite-difference expression about ¥, is written
in terms of ¥, Furthermore, ¥.=V¥;+ (¥p—V¥,)
because of the periodic nature of the flow: In this
way the finite-difference expression about ¥, con-
tains only values of ¥ at inner points. Thus, ¥
values have been determined everywhere except
on the vertical boundaries.

To write the finite-difference expression about
the point where ¥=¥, in figure 83, the value of ¥,
would normally be used. However, this value

does not need to be known explicitly, since the

following relation results from the linearity of ¥:

691-564 O-65—10

26,~—96; tan B, ¥, +6, tan 8, ¥,
26,

Y=¥= 2
t']

Since ¥, and ¥, are unknown values of ¥ at two
inner points of the field, the finite-difference ex-
pression involving them is satisfactory for this
solution. The same type of relation can be used
at the downstream boundary.

A second method to satisfy these vertical
boundary conditions is presented in reference 127.
Although the second method is not as simple and
accurate as the first, it has the advantage of not
directly involving the inlet angle in the expressions
for the boundary conditions. This characteristic
is useful if the problem is being solved by matrices,
for in that case other angles of inflow can be in-
vestigated with much less effort. This method
will not be discussed further but can be found in
detail in reference 127.

Suppose now that there are N inner grid points
in the grid selected for the problem. Applying
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eqﬁation (149) to each point yields N simultaneous
linear equations in N unknowns. (The B* are nét
known and must be given an assumed value.)

Now the problem is one of solving this set of simul-
taneous equations, by either a relaxation process’

(indirect) or & matrix process (direct). The latter

process is too lengthy for hand computation when
a reasonable number of grid points is used. Both:-

methods are discussed in detail in references 129
and 130 and are indicated briefly in appendixes
C and D of this chapter, respectively.

When the values of ¥ have been obtained at
each interior point by some process, the nonlinear
term B in equation (149) must be recalculated on
the basis of these ¥ values. A second solution
is then carried .out. With the relaxation tech-
nique, it may be advantageous to recalculate the
Bt in the middle of a cycle if the changes in ¥
have been large. This is, of course, not possible
in a matrix solution. In either case, the initial ¥
values estimated for relaxation and the B! values
estimated for matrices should be as close as pos-
sible to the final answer to obtain rapid conver-
gence, The question of convergence has not
been considered mathematically. In most ex-
amples that have been carried out so far, conver-
gence has occurred.

Some difficulty has been encountered at the
Lewis laboratory in obtaining convergence at high
subsonic Mach numbers when equation (147) is
used. From equation (148) it is seen that B
contains first derivatives of p and hence second
derivatives of ¥. More rapid convergence could
be expected if all second-derivative terms in
equation (149) were to be included in the operative
part of the equation rather than in the field func-
tion B. As in reference 120, equation (147) can
be rewritten as

[ -(a ) o -G )]

+2 (%) oy oz oy (Y

where (p/pa)? is a function of ¢ and hence of

(0¥/0z)*+ (0¥/dy)?. Equation (154) is linearized
by writing
o ok 4
-4 9=
ba:’+B o -I-C' by ==() (155)
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R a‘I, 2
A=1—(2 22
pa Oy
B=1— ("" o¥y*

s B (e

The coefficients A, B, and C are field functions
(corresponding to B in eq. (149)) containing only
first derivatives of ¥. A complication is thus
introduced into the coefficients of the finite-dif-
ference expressions, but convergence is expected
to be more rapid.

The results of an example computed in reference
127 by the relaxation process and equation (148)
for a turbine cascade are reproduced in figure 84.
The method is easily adapted to a general surface
of revolution (see ref. 127).

THE INVERSE PROBLEM

Since the physical boundaries of the flow channel
(i.e., the blade surfaces) are not known for the
inverse problem, the relaxation and matrix solu-
tions have not been used in the physical plane. A
method has been developed, however, by Stanitz
(ref. 131) and by Stanitz and Sheldrake (ref. 132)
to solve the equations governing the fluid motion
when the stream and potential functions replace
the Cartesian coordinates as independent varia-

2.0r

-1.2 1 1 1 1 1 1 1 1 Jd
) -8 .-4 0.4 8 12 16 20 24
x
Figure 84.—Variation of magnitude of resultant velocity
across channel for compressible-flow solution. Inlet

Mach number, 0.42 (ref. 127).
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bles. Relaxation and matrix techniques can be
employed in this ®¥-plane.

Some simpler approximate techniques are avail-
able. Ackeret (ref. 133) replaced the cascade of
closely spaced blades by a continuous distribution
of vortices and sources, periodic in the direction
of the y-axis. This infinite strip of singularities
vields an approximate velocity distribution and
approximate thickness. A blade shape is then
computed. The method is iterative in nature but
does not require as much time as the exact solu-
tions. Sawyer employed this method to design
a cascade (ref. 134) for testing purposes. The
time required for the complete theoretical solution
was approximately 40 hours.

In reference 135, Alpert developed a method for
designing a channel when the shape of one wall is
known and a velocity distribution is prescribed on
that wall, Although this appears to overprescribe
the -problem, the author necessarily uses only
a finite number of points in actually obtaining
a solution. A solution progresses from one
streamline to the next, away from the known wall.
The method is easily and rapidly carried out with
the aid of tables the author has prepared. An
example is worked by this method, but no com-
parison with an exact theoretical solution is made.

The method of expansion by power series is
presented by Wu and Brown in reference 126 for
the inverse problem as well as the direct problem.
The same limitations to the method apply as those
discussed previously for the direct problem.

A rapid approximate method is presented by
Stanitz in reference 136. The assumptions made
in the method are realized to a sufficient degree
in a closely spaced cascade, but the nose and tail
sections cannot be included in the design. A com-
parison of the results obtained by the author with
stream-filament solutions showed good agreement.
It should be pointed out, however, that the method
is essentially limited to angles of incidence such
that the mean streamlines enter the blade channel
with curvatures close to the mean blade curvature.
This approximate design method, which enables
a practical and rapid solution, is presented in
some detail in the following section. The exact
solution by relaxation in the ®¥-plane (refs. 131
and 132) is also presented.

Approximate method.—The design method to
be presented (ref. 136) is not applicable in the
immediate regions of the leading and trailing

edges of the cascade blade, where the small radii
of curvature of the blade sections invalidate the
assumptions made in the method. When a pres-
sure distribution is prescribed on the channel
surfaces as a function of dimensionless distance
% along the z-axis,? along with the upstream and
downstream vector velocities,  the ‘solution “will
yield the channel shape in the region of validity.

Two important assumptions are made underly-
ing the use of the method. At a given value of
%, it is assumed that (1) the mass-weight average
flow direction is the same as the direction of the
blade-element camber line, and (2) the mass-
weight average velocity is equal to one-half the
sum of the velocities prescribed on the suction
and pressure surfaces.

The solidity ¢ can be defined as

1

O == ( 156)
&
Then the thickness ratio » is defined as
$=§ (157)
&

The blade-element profile is determined from o«
and from 7 and B as functions of 2. The method
of this section is concerned with a determination
of these quantities.

Consider an elemental strip of axial depth dZ.
The tangential force on the strip of fluid can be
equated to the rate of change in momentum in
the tangential direction as follows:

Z(pr—p,) dZ=0w dg, (158)

where Aw is the rate of mass flow in the channel
formed by the two adjacent blades. Equation
(158) can be written as

A afA
(pr—p,) dz=35 (_—Qf’) dgy (159)
z8
where Aw/z8 is the average rate of mass flow per

unit area of the cascade channel. Then, from
equations (156) and (159), it follows that

A
=] A
A w
T J‘. (pr—p,) == (¢r— )
z=0 xs
2 All linear quantities are considered to be made dimensionless by division
by z, whers 1 is the axial length of the assumed region of validity of the
solution.
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Ficure 85.—Prescribed velocity distribution and resulting
blade shape obtained by method of reference 136.

At each point in the channel, the velocity has a
magnitude ¢ and a direction § with the positive
z-axis.

From the condition of continuity, a stream
funetion ¥ can be defined such that

d¥=pq dn (168)
Similarly, from the condition of irrotationality, a
potential function ® can be defined such that

de=q d! (169)
where d/ is an increment taken along a streamline
and dn is an increment in a direction normal to
the streamline. It is clear from equations (168)
and (169) that ¥ is constant along a streamline
and & is constant along a line normal to the
streamlines (potential line). The channel bound-
aries in the physical plane (zy-plane) are stream-

“"become an infinite strip in the ®¥-plane).
¢ - thermore, the distribution of velocity as a function
of ® along the boundaries is known, since the
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lines in the flow. Hence, these lines will become
gonstant values of ¥ in the transformed ®¥-plane
#i.e., the curved channel in the zy-plane will
Fur-

velocity

=40 (170)
is prescribed as a function of arc length in the
physical plane; therefore, equation (169) integrates
to give ‘

&=3(]) (171)
From equations (170) and (171),
q=f(®) (172)

Thus, the boundary conditions in the trans-
formed plane are known, and only the equations
governing the flow in the transformed plane are
needed to complete the setup of the problem.

The continuity and irrotationality equations in
the ®¥-plane are developed in reference 131 and
are, respectively,

1/dlogp, dlog ¢\, OB

p\ 0% > JTou " (173)
0 log q o8
ST b<I>_0 (174)

Differentiating equations (173) and (174) with
respect to ® and ¥, respectively, and combining to
eliminate 0%3/0®0VY yield

o*log p, log g dlogop blogp+blogq

092 | B2 od 2 2
dlog g dlog p d'logg
Ty v TP w0 (79

This equation, together with the relation (166)
between velocity and density, determines the dis-
tribution of log ¢ in the ®¥-plane. Equation
(175) can be solved by relaxation methods (appen-
dix C) or matrix methods (appendix D). When
the distribution of log ¢ has been found throughout
the channel for a given distribution of ¢ along the
boundaries, the distribution of 8 can be found
along each streamline (constant ¥) by integrating

UTC-2019.151



134 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

equation (174):
—( p,2leq
B "L Py 42

The distribution of 8 can be found along each
potential line from equation (173):

_(1/0logp blogq
”(———M + >d~1r a77)

At each point in the zy-plane,

dz=d! cos B8

dy=d! sin 8 (178)

Using equations (178) with equations (168) and
(169) gives

- (179)

=J‘ cosﬁd‘l,
¢ pq J

Equations (179) give the relation between a
point (z, y) in the physical plane and a point
(®, ¥) in the transformed plane. In this fashion,
the shape of the physical channel that produces
the prescribed velocity distribution is found.

This method is adapted in reference 131 to a
flow governed by a linear pressure-volume rela-
tion. Solutions of two problems, having the
same prescribed boundary conditions, are com-
pared for a compressible flow and a linearized
compressible flow. The resulting channels are
quite similar. Under the assumption of a linear-
ized compressible flow, the following equiation for
the turning angle is given:

q

® blog,( )

AB=— 1 14++v1+4-¢2
AY (P P

¥

Sy
I DA VERY erd I
%

(180)

(176)

 where the subscripts A¥ and 0 refer to the channel

boundaries. In the cascade design problem,
equation (180) enables the designer to prescribe
a velocity distribution that is consistent with the
prescribed turning angle.

In figure 86 a cascade is shown with the stagna-
tion streamline drawn in. The cascade can be
formed by the “islands” between adjacent chan-
nels. The cascade design problem then becomes a
problem in channel design. The channel design
method considered in the preceding paragraphs
does not -allow zero velocities on the channel sur-
faces. This results in cusps on the leading and
trailing edges of the islands, which must be
rounded off to form a blade.

Stagnation
sireamline &,

Stagnation
streamline

1)
Biade trailing edge

|
Blade leading edge

Ficure 86.—Related potentials on cascade.

In applying the channel design method to a
cascade design, it is necessary to determine the
position of the leading and trailing edges on both
suction and pressure surfaces in the ®W¥-plane.
From figure 86 it is seen that

P —Pp=Pp—>s
from which

@D—QC#Q’B—‘PA (181)
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POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES 135

But conditions are uniform far upstream, so that

_ AV tan 8,
P1

dp—B4 ®p—be (182)

where AY¥ is the change in ¥ from one channel
surface to the other. Similarly (see fig. 86),

_A¥ tan B,

Bp—e=— —— =B —dg (183)
2

Equations (182) and (183) determine the rela-
tive positions on the boundaries in the ®¥-plane
that correspond to the leading and trailing edges
of the blade, respectively.

The design procedure for a cascade of blades
can now be formulated. A linear pressure-
volume relation is assumed so that equation
(180) can be used:

(1) Prescribe a cascade turning angle.

(2) Prescribe a velocity distribution.

(3) Adjust the velocity distribution so that
equations (180), (182), and (183) are satisfied.

(4) Solve the resulting channel problem by the
technique described in the preceding paragraphs.

An impulse cascade with 90° turning is investi-
gated in reference 132. The prescribed velocity
distribution on the suction surface and the final
cascade obtained are presented in figure 87.

ANALOG TECHNIQUES

For many years attempts have been made to
establish relations between the flow of compressi-
ble fluids and other physical problems that can
be solved by nonanalytic techniques. Two physi-
cal problems have no mathematical individuality
if the governing equations are the same (i.e., the
same except for a possible change in nomencla-
ture). This fact is utilized in the analogs con-
sidered in the present section.

As a result of the importance of experimental
technique in most analog methods, such methods
cannot be satisfactorily evaluated on the basis of
theoretical correctness. In fact, the theory is
generally of quite a simple nature, and the real
problems involved are problems of operational
technique. Because of this and because of the
tremendous extent of the literature in this field,
no atternpt is made herein to evaluate individual
contributions, some of which are discussed in
references 137 to 148.

This section is concerned only with compressible
flow. The incompressible-flow problem, resulting
as it does in a Laplace equation, is the simpler to
solve directly and to analogiZe. The basic theory
is developed for several important types of analog
that have been used successfully.

HYDRAULIC ANALOG

Consider the irrotational flow of water with a
free surface over a horizontal plane. Bernoulli’s
equstion for a stream filament of this flow can be
written

p+§ v*+pgz= po+§ v’ pg2o (184)

The subscript 0 refers to conditions at a given
point through which the filament passes, g is the
acceleration due to gravity, and z is the coordinate
in the vertical direction. If the flow emanates
from a tank of sufficiently large volume, the veloc-
ity in the tank can be considered zero. Then, if

the reference point is taken in the tank, equation
(184) becomes

p+E *+pgz=P+-pg2,
or

v2=% (P—p)+2g(20—2) (185)

A simplifying assumption is now made that the
acceleration in the vertical direction at any point
is negligible when compared with the acceleration
due to gravity. This assumption (not always

sufficiently realized, see ref. 137) leads to the
relations

P=pg(Dy—2)

p=rg(D—2) (186)

where D is the height of the water surface. Using
equations (186) in equation (185) yields
v*=2¢(Dy—D) (187a)

The maximum attainable velocity is given by

Oras=29Ds (1882)

Combining equstions (187a) and (188a) yields
v 2=DD_D

Vmaz. Do

(189a)
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Figure 87.—Prescribed suction-surface velocity with resulting blade shape for impulse cascade with 90° turning (obtained

by method of ref. 132).
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POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES 137

The continuity equation for this flow is
o(Dv:) |, o(Dv,)

o8
The irrotationality condition is utilized as follows:

From equation (187a), since the flow is essentialiy
two-dimensional,

0 (190a)

W__Lom) 1, o, )
or 29 oz - v

(191)
2D 1 2(?) __1( o, 09&)
w2 oy g\Tw Moy

Equation (190a) is rewritten as
+2) 40040, =0 (92)

Then, substituting equation (191) into (192) yields

(- (-5)-3(G+5)=

(193)
If the flow is irrotational, 22—
oy oz
velocity potential ®(z,y) exists such that
2, =2
=
(194)
oP
V=

Using equations (194) in equation (193) yields

- 9)el- 5]

o’® bzay
ozoy gD

—2 =0 (195a)

These are the fundamental equations governing
the flow of water under the conditions specified.
They will now be compared with the fundamental
equations governing the two-dimensional irrote-
tional flow of a compressible fluid. The energy
equation for the fluid flow can be written as

¢*=2gc,(T—1) (187b)

The maximum local velocity is given by

mar=V2g¢, T (188b)
Then,
z T
EL =TTt (189b)

Therefore, if the velocity ratio of the gas flow is
equated to the velocity ratio of the water flow,
equations (189a) and (189b) yield

or
= (196)

The continuity equation for the gas flow is
written

Aegz) | 2(eq) _

oz oy

Comparing equations (190a) and (190b) yields the
further condition for the analogy that

p D

D,

(190b)

(197)

For adiabatic isentropic flow, the temperature
and density of the gas are related by

1
\7-1
~(z)
An examination of equations (196) and (197)

indicates that p/p=1/T in the analogy, so thaty=2.
Pressures are obtained from ‘

-3
P Pa Pa DD

This value of v is not valid for any real gas.
However, since many relations are not significantly
affected by using a value of v slightly different

from the true value, it should be possible to obtain
at least qualitatively correct results.

(198)

(199)

The potential-flow equation for the gas is

o5l

=0 (195b)
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POTENTIAL FLOW IN TWO-DIMENSIONAL CASCADES 143

where E, and E, are the electric-field components,
and I, and I, are now the electric-current com-
ponents per unit thickness. The derivatives in
equations (219) are now replaced by difference

quotients of values of & and ¥ at the nodes of a
square lattice net with square mesh size 8. These
difference equations then become the circuit
equations for a network of resistances. The
resistance R of each segment of the net is given by

B BT
R, 2 \FE,

The field strength E is given by

e=(}) Vit oy

where A, and A, denote differences in the z- and
y-directions, respectively. The network has the
same geometrical boundaries as the flow field to be
investigated.

As a first approximation in the solution of a
compressible-flow problem, the resistances in the
net are all taken equal. The voltages are then
read at all the lattice points, and E is found from
equation (221). The resistances are determined

(220)

(221)

from equation (220) and incorporated into the
network. New readings are then taken and a
second set of resistances calculated. These re-
sistances are incorporated into the system, and
so forth. If the method converges, the result will
be a finite-difference approximation to the flow of
a compressible fluid.

CONCLUDING REMARKS

A survey of the literature on plane potential
flow about cascades has been presented. The
theories are classified according to their applica-
tion to high-solidity or low-solidity cascades and
according to whether the method solves the direct
or the inverse problem. Several methods have
been presented in considerable detail to illustrate
acceptable solutions for the problems in the
various classifications. These methods are con-
sidered to offer practical solutions, since they
combine a reasonable amount of computing time
with acceptable accuracy. The authors of these
methods are Katzoff, Finn, and Laurence (ref.
86); Goldstein (unpublished lectures); Huppert
and MacGregor (ref. 124) ; Wu and Brown (ref. 127);
Stanitz (ref. 136); and Stanitz and Sheldrake
(ref. 132).
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APPENDIX A
VELOCITY DISTRIBUTION AT ARBITRARY ANGLE OF INCIDENCE

It is possible to map conformally an infinite
cascade in the z-plane into a circle of radius 1
with center at the origin in the ¢-plane. The
mapping ‘can be chosen so that the points +o
in the z-plane map into the real points +¢X in
the circle plane (e.g., ref. 90). The complex po-
tential function of the flow about the circle,
which will have the desired singularities when
mapped into the cascade plane, is given by

)]

+zx)+ constant (64)

— pK
W:(6) =g—"7’f [e"‘"'IOge (———? +ez)+ e~*mlog,

+— logc §2
The constants vm, 8, s, T, and K are determined
from the cascade being investigated. Suppose
now that a solution is known for the cascade at
some angle of incidence. Then v, 8., s, and T'
are known quantities. If K can also be found,
equation (64) will give the flow in the circle plane
that corresponds to the flow in the cascade plane.
Then, a conformal mapping is determined between
points of the z-plane and points of the ¢-plane by
equating values of the respective potential func-
tions. Actually, the value of K can be deter-
mined by requiring that the two flow fields be
related conformally and utilizing the condition
of correspondence of potential values. Note
that, on the circle, {=e's, and equation (64)
becomes

. —cosh
W;=‘I’r=g—,f [cos Bn log, (% t

_1’_ -1 { tan ¢
+v,,,s tan (t anh K)]

(A1)

] _1{ sin g
2 sin 8, tan (——sinh )7¢

Let A®; denote the change in potential from the
leading-edge stagnation point ¢, to the trailing-
edge stagnation point ¢, along the upper
portion of the circle (see fig. 77):

144

_Um$ €08 ¢y, s—cosh K
Ai:;-— {cos Bn log, (cos @1, s+cosh K

cos ¢;,+cosh K) [ - (sm Pie, s
+2 sin B8, | tan WK

¢08 ¢;,~—cosh K
tan Pte, s

—tan! (sm Fre ):l-{—vms [ b B
tan™! (tt:nhqo;{)]} (A2)

where
T sin Pte. s T
g<ten” ( mh K)<
T s1n Ple
2<ta (smhK <
and tan—! tan o, and tan~! (tan i ) are in
tanh K tanh K

the same quadrant as ¢,, , and ¢, respectively.

The stagnation points are found by differentiat-
ing (Al) and equating to zero. This results in
the following equation for ¢: , and ¢, which
can be interpreted as a quadratic equation in
sin ¢

sin ¢ cos B,-+cos ¢ sin B, tanh K+§5I:—§ sinh K=0
(A3)

Since the two flow fields are to be related con-
formally, the potential difference A%, measured
from the leading-edge stagnation point to the
trailing edge of a cascade blade must equal the
corresponding potential difference (as given by
eq. (A2)) in the circle plane. The procedure for
finding K is as follows:

(1) Assume several values of K.

(2) For each value of K, compute ¢, and ¢,
from equation (A3).

(3) Compute A®; from equation (A2) for each
value of K,

(4) Plot A®; against K, and select the value of
K for which A®;=A®,,
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_With this value of K, the flow function (64) is
completely determined and velocity distributions
at angles of incidence other than the one for the
original solution can be considered.

If Wy and W, denote the complex potential
functions in the circle plane and the cascade
plane, respectively, and z=z(¢) is the desired
mapping function, the following relations hold:

AW;_dw, dz
q —dz df (A4)
or
dr

where w, and w; denote the complex velocity
conjugates in the cascade and circle planes,
respectively. If only the blade perimeters and
the unit circle are considered, equation (A4)
becomes

W.(2)=W.(2(£))=W;(¢) (76)
po— dﬂ' d@;
= dz boundary d‘P

In order to satisfy the Kutta condition for a
new value of 3, (corresponding to & new value of
incidence angle), the flow must continue to leave

v,,,s [cos B cosh K(sin p—sin ¢,, ,)+sin 8, sinh K(cos p—cos ¢,,. ,)'-'l

cosh? K—cos? ¢ (A5)

cos B cosh K(sin ¢—sin ¢,, ,)+sin 82 sinh K(cos ¢—cos ¢, )

the cascade blades at a point corresponding to
©=@ ;. Since the mapping function is un-
altered,  the velocity distribution for an arbitrary
value of 8, (say B%) is given by

(AS6)

(v)sx=(v.)s,,

After K and ¢,,, have once been found for a
given cascade, equation (A6) can be used to

691-564 O-65—11

cos f8,, cosh K(sin ¢—sin ¢,, ,)+sin B, sinh K(cos ¢—cos ¢, ;)

determine velocity distributions at any angles of
incidence,
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APPENDIX B
CASCADE MAPPING FUNCTION

The development of the cascade mapping
function as presented herein is taken from un-
published lectures by A. Goldstein.

Consider an infinite cascade of blades in the
z=z-1y plane, oriented as in figure 72. If s is
the blade spacing, the cascade can be mapped
into a single closed curve by the function

21=¢ (B1)
By the mapping theorem of Riemann, the ex-
terior of this closed curve can be mapped con-
formally onto the exterior of a unit circle in the
z-plane in such a way that

lim z/(z;)=o (B2s)
lz—).
and
. day_
lim Gor=a (B2)

where A is a real constant. Since the derivative
of the function has no zeros outside the circle, the
mapping function can be written

dz,
d22

with conditions (B2a) and (B2b) satisfied.
The observation is now made that

=g/flz9

(B3)

When z——w, then z—0 and z,—> some pointa (B4)

(B5)

The unit circle in the z-plane can be mapped
uniquely by a linear fractional transformation onto
a unit circle in the ¢-plane with center at the origin
and such that +« and a in the z-plane map into

When z—+ o, then z;—+® and z;»>+

e® and —eX, respectively (see ref. 149). This
mapping can be written
K
Z—a=a S{—‘_*—:},i tanh K (B6)

If 2 is considered as a function ¢, certain con-
ditions on 2, (¢) must be fulfiled. From relations
146

(B6) and (B5), z,(¢) has a pole of order 1 at {=eX
From relations (B6) and (B4), z(¢) has a zero
at {=—eX of order 1. It is clear that the desired
function has the form

=% 1) (B7)
where ¢(f) is regular for [¢|>1. Furthermore,

g(¢)#0 for [¢|>1, because, if g(p)=0 for some p
such that |p|>1, then z,=0 would correspond to
two points, {=—eX and {=p. But this is not
possible, since z, is a regular one-to-one function
of {. Hence, equation (B7) can be rewritten

g-._*_ e /m

21'—' (B8)
where f (¢) is regular for |¢[>1. Then
%z—; (;/ o (=D f () —2¢5]  (B9)
From equations (B3) and (B6),
dz,_dz dz,_ —2¢ G aeFtanh K
& dadt . G- (B10)
Equating (B9) and (B10) yields
(£2—e=) f'(§) —2eF=—eY~ f'2a¢" tanh K
=—2¢%¢?®  (B11)
where @ is defined by the relation
¢9P=a tanh Ke¥~ f’
Then,
4 2 K 1—"80(:‘ (B12)
e )

But f(¢), and hence f/(¢), is regular for [¢[>1,
80 1—e%P must have zeros at {==¢% and *=—e~.
It follows that G(¢) has zeros at {=¢* and | = —e*.
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Then fron equations (B1), (B9), and (B11),

dz dz dz; s —2e%eef®
d¢ dz, d¢ 2mz (t—eX) 2
—geE %0
T G—Gren BP)

with the condition that G(¢) is regular for [f|>1,
and G(+¢X)=0. Equation (B13) can be put into
a more convenient form. Consider the function

1-£
MO=F(®) [G(r)+ log, (r:e:>:| (B14)

where
$2(e*"—e7™)

F—pe—em (P

F(§)=(

Therefore, h(¢) is regular for |¢|>1 and has a
zero of order two at {—o. Substituting equation
(B14) into equation (B13) gives

dz_se™X o
- ——F()er® (72)

and the condition on A(¢) can be expressed as

P_I,E ¢h($)=0 (75)

In a case where the cascade blade has a sharp
trailing edge, the function A(¢) will not be regular
at the corresponding point on the mapping circle.
As a result, the determination of /i, from k, (where
h="h,+1h,) is unduly complicated in the preceding
form. The singularity can be factored out, how-
ever, and the computations simplified. The
general mapping function (eq. (72)) then takes
the following form:

() (o
F()eFD ex [ (5; )

where ¢ is the included trailing-edge angle and
¢« is the point corresponding to the trailing edge.
The function A(f) appearing in equation (B15) is
regular on and outgide the unit circle. For details
of this computation, see reference 105.

K
log foi] (B15)
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APPENDIX C
RELAXATION CONSIDERATIONS

Consider the set of five grid points 0, 1, 2, 3, and
4 shown in figure 83. The number 0 denotes the
central point at which the finite-difference equa-
tion, under consideration in this discussion, is
written. The subsecripts 0, 1, 2, 3, and 4 refer to
the five points 0, 1, 2, 3, and 4. The finite-
difference equation is written at 0 as

Ao‘I’0+A1‘I’1+Az‘1’z+Aa‘I’a+A4‘I’4+Ko=O (Cl)

The coefficients A; are known, and the nonlinear

contribution X is fixed from a previous approxi-

mate solution or from an assumed solution.
Equation (C1) is rewritten '

Aglo+ A Y+ AV, + A+ A Y+ Ko=R, (C2)

where R, is called the residual at 0. When the
correct values of ¥, are inserted in equation (C2),
Ry will be zero, If incorrect values of ¥, are used,
R, will, in general, have a value different from
zero,

When equation (C1) is applied to each of N
points in the flow field, N simultaneous equations
in N unknowns (¥,) result. When values of
¥, (:=0,1, ... N) are assumed, equation (C2)
yields N residual values B, (=0, 1, ... N). The
purpose of the relaxation process is to reduce
these residuals to small values. From equation
(C2) it is seen that R, can be reduced to zero by
a new choice of ¥,, say ¥,, such that

148 :

(C3)

This choice of a new ¥, has an influence on
other residuals. In this case, the residuals at
points 1, 2, 3, and 4 in figure 83 are immediately
affected. The finite-difference equations written
at these four points each contain ¥, multiplied by
a coefficient that has been determined at the out-
set. Thus, it is seen that R,, for example, is a
function of ¥, and subsequently of ¥,. A change
in ¥, then must cause a corresponding change in
R,.

A simple way to carry out this process is to list
the initial values of ¥, and R, at each point on
an oversized drawing of the flow field. Then a
change in ¥, of AV, is recorded under ¥, at the
point in question. Resulting changes AR, are
recorded at the respective points affected.

In this illustration, second-order polynomial
representation (resulting in five values appearing
in each difference equation) was used. The
principle is the same for higher-order representa-
tions where more points are involved in each
equation. Unequal spacing of peints near the
boundaries does not affect the general procedure.
Residuals are systematically reduced over the
entire flow field, usually beginning with the larger
ones. As there is considerable interaction of
effects, the residual at a given point may undergo
many changes in the course of a solution.

There are many devices for obtaining rapid
convergence that can be used to great advantage
when employing relaxation methods (see ref. 109).
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APPENDIX D
MATRIX CONSIDERATIONS

Applying equation (149) to each grid point in
the flow field results in a collection of N linear
equations in N unknowns. In a flow problem
of this nature, so many points are required in the
solution that matrices can be used to solve the
equations only if high-speed computing equipment
is available. Various matrix techniques are avail-
able in the literature. A brief outline of a method
that has been used successfully in references 129
and 130 is presented herein.

The finite-difference equations are written in
matrix form as follows:

[Al{v}={J} (D1)

where

[4] square matrix of order NV
{¥}, {J} column matrices having N elements

The square matrix [A] can be written as

[4]=[1(d]{u] (D2)

where

[1 lower triangular matrix with unity on the

diagonal

[u] upper triangular matrix with unity on the
diagonal

{d] diagonal matrix

The matrices [{] and [d] can be combined into a
lower triangular matrix [L], and (D2) is then
written

[A]=IL][v]

If i denotes row and j denotes column, the elements
of [L] and [¢] can be written

(D3)

. -1
L§=A§-k21 Ly iz] (D4)
Li=A}

Al ;{'\: Li k

1Ty (D5)
uj —'52—— >t
uf=1

1
wl==1

It is seen from equations (D4) and (D5) that
L} can be found first from a knowledge of Af.
Then %) can be found from (D5), since u}=%;--

- 1
Next, the second column of [L] can be found and
then the second row of [u]. In this manner, all
elements of both matrices are known.

Now define a column matrix {Q} such that

[L{Q}={J} (Deé)
It can be shown that
i1
L
J?
o4
Hence, [] can be found by finding @', ¢, . . . in
successive order.
From (D3) and (D1),
[(L)[u){¥}={J} (D8)
From (D6) and (D8),
[wl{¥}={Q} (D9)

Since [u] is a known upper diagonal matrix and
{Q} is a known column matrix, { ¥} can be deter-
mined from ¥, ¥,., ... in successive order.
In general,

i1
P=Qim S g
k=n

Tr=Q" (D10)
In this manner, the ¥* are found and the problem
is solved. Suggestions for a computational lay-
out designed for minimum time expenditures are
made in reference 130.

149
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CHAPTER V
VISCOUS FLOW IN TWO-DIMENSIONAL CASCADES

By Wmriam H. RoupEBUsE and SEYMOUR LIEBLEIN

Boundary-layer behavior on two-dimenstonal com-
pressor blade sections is described, based on a review
of available theory and experiment. The material
18 divided into two main sections, one presenting a
qualitative discussion of boundary-layer behavior,
and the other treating the quantitative aspects of

boundary-layer theory as applied to cascade blades.

In the qualitative analysis, the general character-
istics of laminar and turbulent boundary layers are
reviewed. Instability and transition and their
influence on boundary-layer behavior are discussed.
An attempt is then made to construct a qualitative
picture of blade losses determined over a wide
range of Reynolds number, surface pressure gradi-
ent, and free-stream turbulence.

The section on quantitative boundary-layer theory
discusses some approximate methods for computing
the growth and separation of laminar and turbulent
boundary layers. The loss in total pressure and

defect in circulation resulting from blade boundary?

layer growth are also considered.
INTRODUCTION

Considerable effort in the past several decades
has been devoted to the determination of the two-
dimensional potential or inviscid flow about
airfoil and cascade sections. Comprehensive
surveys of the state of potential-flow theory for
two-dimensional cascades are presented in chapter
IV and reference 150. These surveys indicate
that the theory available for analysis of ideal
two-dimensional flow, although not simple, is
usable and has provided a firm understanding
of the ideal flow on and around two-dimensional-
cascade blade sections. A real fluid, however, is
viscous, and it is well-known that the presence of
viscosity exerts a considerable influence on the
behavior of the flow.

The determination of the viscous flow about
two-dimensional-cascade sections is considered
important in the development of compressor flow

theory for two reasons. First, it will aid in
obtaining a basic understanding of the general
nature of viscous-flow effects. Second, it will
provide a background for the interpretation and
correlation of experimental and theoretical cascade
data. This is essential for the successful applica-
tion of blade-element theory to compressor design
(ch. ITT).

In fluid-flow theory, a complete representation
of the two-dimensional viscous flow is given by the
Navier-Stokes equations (ref. 151, pt. I). General
exact solutions of these equations have not as yet
appeared. The principal advances in viscous-
flow solutions have come as a result of various
approximations to the basic relations. The vis-
cous-flow literature is covered extensively in
reference 152, published in 1938. More recent
literature is reviewed in reference 153. Com-
ressible boundary-layer flow is surveyed in
reference 154.

Concurrently with the development of bound-
ary-layer theory, considerable experimental re-
search on boundary-layer . behavior has been
conducted. These experiments not only provide
empirical data necessary for obtaining approxi-
mate solutions to the boundary-layer equations,
but also contribute to the establishment of a
valuable qualitative picture of the behavior of
boundary layers.

This chapter reviews the problem of deter-
mining viscous effects on the two-dimensional
incompressible flow about compressor blade pro-
files in cascade. The material is divided into
two major parts, entitled QUALITATIVE
Bounpary-LayEr  TuaEory and QUAN-
TITATIVE BoUNDARY-LAYER THEORY.
In the first part, some of the more important
terminology is presented, and general trends to be
anticipated in real fluid flows are indicated.
Laminar and turbulent boundary layers, instabil-
ity, transition, and separation are discussed.
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The general effects of Reynolds number on total-
pressure loss for several levels of blade loading are
evaluated qualitatively. In the second part,
selected methods are presented for actually cal-
culating laminar- and turbulent-boundary-layer
growth and predicting separation. In addition,
some consideration is given to the computation of
the defect in circulation and the total-pressure
loss caused by the growth of the blade surface
boundary layers. The analysis indicates the
extent to which current viscous-flow theory can
predict the important phenomena involved in the
flow of a real fluid about a two-dimensional
cascade.

SYMBOLS

The following symbols are used in this chapter:

drag coefficient
local friction coefficient
lift coefficient
chord length
boundary-layer form factor, 5*/6*
turbulence intensity
incidence angle, angle between inlet-air
direction and tangent to blade mean
camber line at leading edge, deg
scale of turbulence
characteristic length
coordinate normal to blade surface
P total or stagnation pressure
AP  mass-averaged loss in total pressure
P static or stream pressure
q arbitrary constant
Re  Reynolds number, V,I*/»
Re, Reynolds number based on chord length,
Vll:/ 14
Rey  Reynolds number based on boundary-layer
thickness, Vyb/v
Rey  Reynolds number based on boundary-layer
momentum thickness, Vy0*/v
s coordinate along direction of blade surface
distance along blade surface from leading
to trailing edge
s-component of velocity in boundary layer
14 air velocity
V, characteristic velocity

s.hma SSS

8 ¥~

v n-component of velocity in boundary layer
x abscissa in cascade plane (fig. 94)

Cy ordinate in cascade plane (fig. 94)
a angle of attack, angle between inlet-air

direction and blade chord, deg

AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

B air angle, angle between air velocity and
z-axis, deg ’

turbulent-boundary-layer parameter, (©/V,)
(dVo/ds)

boundary-layer thickness

boundary-layer displacement thickness

turbulent-boundary-layer parameter, (C,,/
2)Rey

turbulent-boundary-layer parameter, 8*Rey?

boundary-layer momentum thickness

Pohlhausen parameter, (8%/v)(dVy/ds)

viscosity

kinematic viscosity

density

solidity, ratio of chord to spacing

time

shear stress

shear stress at wall

total-pressure-loss coefficient

o

> 3> « XD O O
Elg» w3 A TR 9

Subscripts:

or critical

f.p. flat plate

m mean of upstream and downstream condi-
tions

n n-direction

ref  reference

s s-direction

te trailing edge

tr transition

0 outer edge of boundary layer

1 upstream at infinity

2 downstream at infinity

QUALITATIVE BOUNDARY-LAYER THEORY

GENERAL CONSIDERATIONS

For an ideal fluid, the velocity tangent to a
fixed surface is generally nonzero at the surface
and (for small surface curvature) is nearly equal
to the velocity at points near the surface, as shown
in figure 93(a). A viscous fluid, however, adheres
to the surface over which it is flowing, so that the
velocity tangent to the surface is zero at the sur-
face. The velocity near the surface rapidly in-
creases and attains the value of the free-stream
velocity at a short distance from the surface, as
shown in figure 93(b). The region of flow in which
the local velocity is retarded is referred to as the
boundary layer. The static pressure across the
boundary layer is nearly constant.
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(a) Nonviscous flow.
(b) Viscous flow.

Fiaure 93.—Velocity profiles near a fixed boundary.

In two-dimensional-cascade flow, boundary lay-
ers develop on both the suction and pressure
surfaces of the blade. These surface boundary
layers then come together at the blade trailing
edge and form the blade wake, as shown in figure
94. As the wake moves downstream, a mixing
takes place between the wake and free stream and,
through viscous action, the flow becomes uniform
at some distance behind the blade trailing edge.

Although, in many practical problems, the blade
surface boundary layer constitutes a small portion
of the flow field, it plays a decisive part in the
determination of the actual flow characteristics of
the cascade. The effect of blade boundary-layer
development on cascade losses is obvious, since
the resulting wake formation contains a defect in
total pressure. The surface boundary layers can
also exert a strong influence on the surface pres-
sure distribution and outlet-angle characteristics
of the blade. If the boundary layer is very thin,
the pressure distribution obtained from potential-
flow calculations over the original body will be a
good approximsation to the actual distribution.
As the boundary layer thickens, however, the
actual pressure distribution will depart from the
potential-flow determination. Under certain con-
ditions, the boundary layer actually separates

153

from the surface of the blade somewhere in ad-
vance of the trailing edge. In this event, the
entire flow pattern about the cascade is altered
by the displacement of fluid accompanying such
separation, and the potential-flow solution about
the original profile loses its significance almost
completely.

It is evident, therefore, that a knowledge of
general boundary-layer behavior is vital to the
accurate prediction and interpretation of cascade
flow characteristics. In the present section, the
discussion is presented in the following order:

(1) Preliminary boundary-layer definitions
and concepts

(2) Description of laminar boundary layer in
some detail with particular emphasis on
effects of Reynolds number

(3) Description of turbulent boundary layer
and comparison with laminar layer

(4) Discussion of instability and transition
with regard to their importance in cascade
operation and date interpretation

(5) Combination of considerations (1) to (4)
to form a qualitative picture of the loss
spectrum as influenced by pressure gradient
and Reynolds number variation

BOUNDARY-LAYER CONCEPTS

Types of boundary layers.—The two general
types of boundary layer occurring on blade surfaces
are designated laminar and turbulent. The bound-
ary layer is initially laminar and usually becomes

rAxial
Suction- 1 velgcity
surface
boundary

layer--—, Wake

i
i
Pressure- |
surface |
boundary !
layer —=——~

/

Y
X
F1GURE 94.—Boundary layers and blade wake in two-
dimensional-cascade flow.
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Figure 95.—Typical velocity profiles for laminar and
turbulent boundary layers.

turbulent somewhere along the blade surface.
The boundary layer is said to be in a laminar state
if the flow, at any instant, can be represented as
a sequence of layers, each layer tracing a path
essentially tangent to the surface of the cascade
blade. In this case, the velocity varies uniformly
through the boundary layer from a value of zero
at the blade surface to a value almost equal to the
free-stream velocity at a short distance from the
surface. The boundary layer in a turbulent state
is characterized by a rapid random fluctuation
with time of the velocity at any point and a large
interchange of momentum. The velocity is again
zero at the blade surface, and the mean velocity
averaged with respect to time varies continuously
through the boundary layer and attains a value
approaching the freestream velocity a short
distance from the surface.

Typical velocity - distributions through the
boundary layer for the laminar and turbulent
cases are illustrated in figure 95. The turbulent-
flow velocities remain higher closer to the boundary
because of the turbulent infiltration of high-
energy particles into the boundary layer. In the
laminar flow, the interchange of momentum is
due only to the shear stress exerted between two
neighboring layers of fluid. This difference be-
tween the two types is manifest when an adverse
pressure gradient is impressed on the boundary

AERODYNAMIC DESIGN OF AXJAL-FLOW COMPRESSORS

layer by a deceleration of the main stream. A
turbulent boundary layer often receives sufficient
momentum influx to advance some distance
against an adverse pressure gradient before sepa-
ration occurs. The laminar boundary layer, on
the other hand, with very little momentum
influx, is unable to advance far into the face
of a rising pressure. Eventually, in either case,
the particles near the wall are slowed down to a
stop and finally actually reverse their direction
and begin to flow upstream (fig. 96). This results
in separation of the through-flow from the blade
surface.

In therange of Reynolds number and turbulence
of conventional cascades and compressors, the
boundary layer is laminar over the forward portion
and turbulent over the rearward portion of the
blade. Since the loss characteristics of these two
boundary-layer regions are markedly different,
the location and nature of the transition between
the regions are significant in determining the
magnitude of the resulting wake.

Boundary-layer parameters.—A definition of
certain basic terms is prerequisite to any further
discussion of boundary layers. The more im-
portant of these terms are defined in this section.

There are several boundary-layer thickness pa.
rameters that occur throughout the literature. The
actual full physical thickness & is taken to be the
distance normal! to a fixed surface wherein th¢
velocity in the boundary layer attains some fixer
percentage, say 99 percent, of the free-stream
velocity. The boundary-layer velocity theoret;-
cally equals the free-stream velocity only at an
infinite distance normal to the surface. However,
for practical considerations, the two can usually
be considered equal at a short distance é from the
surface (fig. 93(b)).

rOuter edge of

! boundary ioyer

Velocity-
1

il

AN AN 4

AROAORTIIRARRIDITIRIIRRRRRRRERSRSSRSSS

FiauRE 96.—Boundary-layer flow reversal in presence of
adverse pressure gradient.
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VISCOUS FLOW IN TWO-DIMENSIONAL CASCADES

Since the velocity in the boundary layer goes to
zero at the wall, the weight flow in the boundary-
layer region is decreased. This decrease in weight
flow can be expressed in terms of a length 5*, called
the displacement thickness, obtained by dividing
the integrated defect in weight flow within the
boundary layer by the free-stream velocity V,,, at
the outer edge of the layer. For incompressible
flow, this gives

b U
"*=ﬁ (I“Vo,,) dn

in which the coordinate n is taken in a direction
normal to the surface (similarly, the coordinate s
represents distance in the direction of the surface,
fig. 93(a)); u is the local velocity in the s-direction
within the boundary layer; and V, , is the velocity
in the s-direction at the outer edge of the boundary
layer.

In a similar manner, & momentum thickness §*
is obtained to represent the corresponding de-
crease in momentum in the boundary layer. The
momentum thickness is obtained by dividing the
integrated defect in momentum by V2, to give

' u
* e
b J; VO,: (1 VO. .v) d’ﬂ

The momentum thickness in the wake is directly
related (as shown in a later section) to the loss in
total pressure across a cascade.

Another parameter frequently encountered is
the boundary-layer form factor H, defined as the
ratio of displacement thickness to momentum
thickness:

o¥
H=0—*

The form factor appears as a parameter in approx-
imate boundary-layer theory in the determination
of the magnitude of the momentum thickness. It
also gives a rough indication of the state of the
boundary layer with regard to possible separation.

One of the most significant parameters charac-
terizing boundary-layer behavior is the Reynolds
number, a dimensionless parameter proportional
to the ratio of inertial force to viscous force, given
by

v

155

where V, is a characteristic velocity of the flow,
I* is a characteristic length, and » is the kinematic
viscosity. In particular, V; can be taken as the
upstream velocity V, and I* as the blade chord ¢
to give what is called the body Reynolds number,
or blade-chord Reynolds number, Re.=Vic/v. In
another formulation, the velocity can be taken. to
be the velocity V, at the outer edge of the bound-
ary layer and the characteristic length as the
momentum thickness 6* to give the boundary-
layer Reynolds number Rey=Vy0*/v, where Res is
a function of the particular location at which V,
and #* are computed. As will be indicated later,
Reynolds number exercises a considerable influence
on the boundary-layer growth, instability, and
transition.

Loss parameters.—In the flow about airfoil
sections, friction exerts a tangential force that
opposes the forward motion of the airfoil. The
retarding . component arising from the friction
force is called the friction drag. In addition to
friction, a retarding force component is also ob-
tained from the normal pressure forces of the real
flow. This force component is called the form
drag. The total drag of the section, which is the
sum of the friction and form drags, is called the
profile drag. Ordinarily, the profile drag force is
expressed as a drag coefficient Cp, defined as the
drag force per unit span divided by a reference
kinetic head and the chord length.

For the isolated airfoil, at a distance sufficiently
far downstream that static pressure is uniform-
normal to the flow direction, the drag coefficient
can be related to the momentum-thickness ratio
6*/c by the following equation (ref. 155):

o (%)

The downstream wake momentum thickness ap-
pearing in this relation is directly related to the
momentum thickness of the surface boundary
layers at the blade trailing edge. An analogous
approximate equation

Gom2 (%), e[ 141 () 2]

exists between the drag coefficient based on dy-
namic pressure in the free stream at the trailing
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156 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

edge and on the trailing-edge wake momentum-
thickness ratio of the cascade airfoil. Thus, the
drag coefficient can be considered as a measure
of the momentum-thickness ratio of the surface
boundary layers for both isolated and cascade
airfoils.

In compressor design and analysis, it has been
found convenient to use a loss parameter based
on the defect in total pressure across a blade
element. A general compressor total-pressure-loss
coefficient & has been defined (ref. 156) as

- AP
w=1
5 pW,,

where AP represents the mass-averaged decrease
in relative total pressure across the blade element,

and% pV?2, represents the dynamic pressure at

some reference location. It is desirable, therefore,
in the discussion of real cascade flow, to consider
the effects of viscosity on the defect in total
pressure. Since & depends on AP, the value
changes with distance downstream of the trailing
edge (because of turbulent mixing) and therefore
depends, to some extent, on the location of the
measuring station. The complete loss in total
pressure is obtained at a station sufficiently far
downstream that the flow has become uniform

This is contrary to the case of drag coeflicient
which is theoretically the same at any axial loca-
tion downstream of the blade trailing edge.

For the two-dimensional cascade with incom-
pressible flow, reference 156 shows that, if the
static pressure is uniform across the blade spacing
at the trailing edge, the total-pressure-loss coeffi-

cient for complete mixing (based on %pV& ,e) is
given approximately by

w2 ('oc: e co: B:e [ (o.)u cos ﬁu]

Thus, the trailing-edge momentum thickness
should be an indication of the complete loss in
total pressure.

In view of the preceding discussion, the bound-
ary-layer momentum thickness at the blade trail-
ing edge is considered herein as the basic parameter

reflecting qualitatively the total-pressure loss or
the profile drag for an airfoil section.

LAMINAR BOUNDARY LAYER

A laminar boundary layer is always present on
the forward portion of a cascade blade.* The
growth of the laminar layer (expressed as bound-
ary-layer thickness &) in the absence of a longi-
tudinal pressure gradient (flat-plate flow) proceeds
essentially according to the proportionality relation

v8
. (222)
where v is kinematic viscosity, s is distance along
the surface, and V, is the velocity far upstream.
In the presence of a negative pressure gradient
the boundary-layer thickness is somewhat less,
and for a positive pressure gradient it is somewhat
greater, than for the constant-pressure case of
equation (222).

To relate equation (222) to a body in the flow
field, let Re. be the Reynolds number based on
blade chord length (the length of the plate in the
case of & flat plate). Then, equation (222) can be

rewritten as
i
¢_S c

o<
¢ ERe,

(223)

where Re.=V,c/v. Therefore, é§/c varies inversely
with the square root of the body Reynolds number
for a given value of s/e.

The drag due to friction in the laminar flow
depends on the integral of the local surface shear
stress 7, and therefore on the velocity gradient

at the wall (i.e., ?w=u(9—l-b ,,,o)- For flat-

plate flow, the drag coefficient varies with the body
Reynolds number as

1

vEe,

For accelerating flow the friction coefficient is
greater (larger du/on at wall, see fig. 97), and for
decelerating flow the friction coefficient is smaller
(smaller du/dn), than for the flat plate; but in all
cases a decreasing trend with body Reynolds
number is observed.

(224)

Opx
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Fieure 97.—Laminar-boundary-layer veloeity distribu-
tions for different surface pressure gradients.

In the presence of a positive pressure gradient,
the boundary-layer momentum is often insuffi-
cient to overcome the increase in pressure, and
separation will occur. Specifically, separation
occurs when the surface shear stress is zero (i.e.,
when (Qu/On,-o=0). According to simplified
theory, the separation condition depends on the
value of a flow parameter of the form

_&dv,
v ds (225)
as in the Pohlhausen theory (ref. 157), or
_—0*22dV,
T v ds (226)

as in the Thwaites theory (to be discussed later).
According to the Pohlhausen theory, separation
occurs when A=—12. As will be seen later, this
is not entirely reliable, since the theory is least
applicable in regions of rising pregssure. Thwaites
gives a value of m=-0.082 for separation to occur.
This criterion appears to be more valid than that
of Pohlhausen. In any event, the location of the
point of laminar separation is primarily charac-
terized by a boundary-layer thickness and the
local gradient of free-stream velocity. The loca-
tion is unaffected by charges in blade-chord
Reynolds number.

Now consider the laminar flow over a blade
section at fixed angle of attack (fig. 98). The
velocity distributions on the pressure and suction

surfaces are indicated in the lower part of the figure.
The laminar boundary layer grows along the
surface until some point after the maximum veloc-
ity is reached. The laminar boundary layer then
separates if a sufficiently severe pressure gradient
occurs. The location of the separation point
behind the point of peak velocity varies with the
magnitude of the positive pressure gradient and is
independent of the body Reynolds number (if the
Reynolds number is low enough that transition
to turbulent flow does not occur). With a separa-
tion of the laminar boundary layer, the free-stream
velocity distribution is altered as indicated by the
dashed line in figure 98, and an increase in form
drag results. The magnitude of the form drag
depends on the thickness of the profile at the point
of separation and the camber of the airfoil. For
a cascade airfoil, the variation of the free-stream
velocity after the separation may be slightly
different from that for the isolated airfoil because
of the channel effect of adjacent blades.

The pronounced effect of the surface velocity
gradient on the calculated location of the point of
laminar separation is illustrated in figure 99
(obtained from ref. 151, pt. I) for a Joukowski
profile. As the pressure gradient increases, the
point of separation moves closer to the point of
peak velocity. The different velocity gradients
in the figure were achieved by varying the angle
of attack of the airfoil.

TURBULENT BOUNDARY LAYER

In the range of turbulence and Reynolds
number usually encountered in cascade blade
rows, the laminar boundary layer generally be-
comes turbulent somewhere along the blade
surface. It is chiefly because of this transition
that practical compressors are realizable. The
turbulent interchange of momentum between
the free stream and the turbulent boundary layer
increases the energy level in the boundary layer
so that it can advance farther, without separating,
in the face of a pressure rise than could a laminar
boundary layer.

The turbulent-boundary-layer thickness de-
velops (e.g., ref. 152), in the absence of a pressure

gradient, as
Boc‘/ or—ocV

(227)
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Fraure 98.—Effect of separation on velocity distribution
about an airfoil.

The turbulent & is generally larger than the
laminar & for the same Re,.. . This increased
thickness contributes to a slightly larger form
drag for the turbulent boundary layer than for
an equivalent unseparated laminar layer (at the
same Reynolds number).

In a laminar boundary layer the local shear
stress is given throughout by 7=p@Qu/on). This
simple equation does not hold for the turbulent
boundary layer because of the turbulent shear
stresses present. The wall shear stress is given by
7w=n1(QUfON) s in both cases, since a very thin
laminar boundary layer, called a laminar sublayer,
is always present between the turbulent layer
and the wall. However, not enough is known of
the velocity distribution in the laminar sublayer
to enable the utilization of this expression to
compute wall shear stress for the turbulent layer.
As a result, the problem must be approached
empirically. '

From velocity profiles observed in pipe flow,
the drag coefficient for a flat plate is found to
vary inversely with the fifth root of Re.:

1

VRe,

Cpex (228)

Experience shows that many factors such as
boundary-layer form factor, Reynolds number,
and pressure gradient (ref. 158) influence the
magnitude of the shear stress. To date, many
empirical relations have been established between
local shearing stress and boundary-layer character-
istics. One of the most recent is due to Lud-
wieg and Tillmann (ref. 159):

P
1
5 Vi

=0.246¢~1- 3017 B g,~0-268

(229)

where Reynolds number Rey=V8*/v, and H
is the form factor. The empirical skin-friction
formulas lead to the general conclusion that the

" turbulent skin-friction coefficient is greater than

the laminar skin-friction coefficient for the same
Reynolds number.

The condition that 7,=0 defines the point of
separation in both laminar- and turbulent-
boundary-layer-flows. In the case of the turbu-
lent-boundary-layer, the point at which 7,=0 is
determined from an empirical equation such as
equation (229). In reference 160 this equation
is used in conjunction with experimentally de-
termined values of H and Res to predict separa-
tion. It is clear that 7., in equation (229), never
actually becomes zero. However, the decreasing
trend is sufficiently pronounced as the separation
point is approached that extrapolation to 7,=0

2.0 T T T T
Suction surface
ICLO — — — Pressure surface
: o Separation point
1.5 \\\5‘\
Vo o / }5— §~\>\
7; ’ /7110 ) = e RS
/!
! 7/
5 H-+
[/
I /
/
4] 25 50 75 100

Percent chard

FiourE 99.—Potential-theoretical velocity distribution
showing calculated point of laminar separation for Jou-
kowski profile J 015 for lift coefficients of 0, 0.5, and 1.0
(vef. 151, pt. I).
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is possible. Figure 100 shows the results of such_

a calculation from reference 160.

For conventional two-dimensional compressor
sections, several gross parameters have been
developed to indicate whether separation is likely
in certain areas of blade design (refs. 9 and 38).
These parameters, based on the diffusion in
velocity on the blade suction surface, involve
consideration of only the peak and outlet suction-
surface velocities or approximations to these
velocities in terms of over-all (inlet and outlet)
velocities and flow angles. Implicit in the work
is the consideration that the boundary-layer
history at the start of the diffusion and the velocity
distributions along the surface are generally the
same for conventional blade sections. Location
of the point of separation, however, cannot be
determined from these parameters.

TRANSITION

For conventional airfoil shapes, the initial
laminar boundary layer, if it remains laminar,
will separate at some point downstream of the
pressure minimum. Depending on certain flow
characteristics to be considered in this section, a
transition to turbulent flow may occur at a point
prior to the laminar separation point. In this
event, the turbulent flow will remain attached
for some distance farther along the blade surface.
Such a transition will normally occur under
ordinary cascade flow conditions. The region in
which the transition to turbulent flow takes place
is small and is conveniently thought of as a point,
called the transition point.

The exact location and conditions under which
the transition from a laminar to a turbulent
boundary layer will occur are not currently pre-
dictable, and the question of transition constitutes
a major problem in present-day boundary-layer
research. Transition can result either from dis-
turbances of finite magnitude such as free-stream
turbulence, or from an instability of the laminar
steady flow in which infinitesimal disturbances,
under proper conditions, grow exponentially with
respect to time. The length of travel or time
before transition occurs depends on the rate of
amplification of the disturbances and therefore
on the particular flow conditions in and about the
boundary layer.

159
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Ficure 100.—Comparison of experimentally observed sep-
aration points with those obtained by extrapolating
values of Cy, obtained from Ludwieg-Tillmann formula
using experimental data of reference 174 for NACA air-
foil section 65(216)-222 (approx.) (ref. 160).

Experiment shows (ref. 161) that transition
occurs because of infinitesimal disturbance in-
stability when the free-stream turbulence inten-
sity is less than about 0.2 percent and when no
other external disturbances are present. For
free-stream turbulence greater than about 0.2
percent, which is generally the situation in cascade
and compressor flow, the characteristics of the
free-stream turbulence (scale and intensity) play
a decisive role in effecting the transition. In any
event, the transition phenomena can generally be
related in terms of the Reynolds number and
another parameter or parameters describing the

characteristics of the disturbance f(i.e., free-
stream turbulence, surface roughness, etc.).
Infinitesimal-disturbance theory.—The first

significant theoretical work on transition was
concerned with the instability of the laminar
boundary layer with respect to infinitesimal
oscillations within the layer (e.g., ref. 151, pt. II).
In a stable laminar boundary layer the disturb-
ances are damped, while in an unstable boundary
layer the disturbances are amplified. The point
of division, called the neutral or instability point,
depends on the origin of the disturbance. The
existence of instability in a laminar boundary
layer indicates that transition is possible but not
necessarily present after the neutral point. The
actual transition to a fully developed turbulent
motion will occur some distance downstream of
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the instability point, since a finite time is required
for the oscillations to build to full strength and
permeate the boundary-layer region.

According to this theory, an instability of the
laminar boundary layer (i.e., an amplification of
oscillations) results from (1) the presence of
viscosity and (2) an inflection in the boundary-
layer velocity profile normal to the surface. The
theory further indicates that the instability point
is a function of the boundary-layer Reynolds
number; that is, below some value of Reynolds
number infinitesimal oscillations are damped,
while above this value oscillations are amplified.
The instability value of the boundary-layer
Reynolds number depends largely on the form of
the velocity profile of the basic boundary-layer
flow. This profile is determined primarily by the
longitudinal pressure gradient of the flow. The
greater the positive pressure gradient, the lower
the boundary-layer Reynolds number at instabil-
ity. In translating these results into terms of the
blade-chord Reynolds number, the boundary-
layer Reynolds number Re; can be expressed as

RezJ’;"‘s Ve *=Re. (‘5) (230)

Thus, in general, the closer the point in question
to the blade leading edge (the smaller the value of
é/c), the larger the blade-chord Reynolds number
necessary for the attainment of the instability
value of the boundary-layer Reynolds number at
that point. That is, the higher the blade-chord
Reynolds number, the sooner will the instability
condition occur. These considerations are illus-
trated graphically in figure 101, which shows the
results of the calculation of the instability point
for various blade-chord Reynolds numbers on the
suction surface of a Joukowski airfoil at several
angles of attack (from ref. 162). The effect of
the increased surface pressure gradient and
Reynolds number on the location of the instability
point as angle of attack is increased is clearly
indicated.

Finite-disturbance theory.—In a second general
theory of transition (ref. 163), disturbances of
finite magnitude are considered to be imposed on
the laminar boundary layer from outside sources.
In this case, the transition of the laminar boundary
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Ficure 101.—Theoretical velocity distributions for J 025
airfoil at various values of lift coefficient (obtained by
varying angle of attack) with instability and separation
points calculated for various values of blade-chord Rey-
nolds number (ref. 162).

layer depends on the characteristics of the im-
posed disturbance. The principal source of ex-
ternal disturbance is a function of the intensity
and scale of free-stream turbulence according to
the parameter J (I*/L)', where { is the intensity
of the turbulence, L is the scale of the turbulence,
and [* is some characteristic dimension of the body
such as chord length or diameter. The greater
thef reestream turbulence parameter, the lower
the magnitude of the critical Reynolds number.
Intensity of turbulence is defined as the ratio of
the root mean square of the disturbance velocity
to the mean flow velocity. Scale of turbulence is
a measure of the effective size of the turbulent
eddies and has an inverse effect on the turbulence
parameter. Experimental confirmation of this
theory has been obtained by several investigators
(refs. 164 and 165) in the study of the drag charac-
teristics of spheres.

Flow about spheres.—In the development of
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the boundary layer on cascade blade sections, a
primary consideration is whether the transition
occurs before or after the point of laminar separa-
tion. The effect of transition location on the loss
characteristics of submerged bodies is graphically
illustrated by the well-known flow around a
sphere at a fixed turbulence level as represented in
figures 102 and 103. At low Reynolds numbers,
when no transition occurs, the laminar boundary
layer separates and high profile drag results.
When transition occurs before the point of laminar
separation at high Reynolds numbers, the result-
ing turbulent boundary layer can tolerate a
greater pressure gradient; separation of the
turbulent layer is delayed, and a lower profile drag
is observed. The Reynolds number at which the
rather sudden change of drag characteristic occurs,
called the critical Reynolds number of the sphere,
corresponds to the point where the transition and
separation coincide.

The drag characteristics of spheres have pro-
vided a means for evaluating the effects of free-
stream turbulence on transition. As previously
discussed, theory indicates that the critical
Reynolds number will be a function of the turbul-
ence parameter J ({*/L)'%. Experimental verifi-
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F1GUrE 103.—Subcritical and supercritical flow around
sphere (schematic, after ref. 151, pt. IT).

cation of this effect (ref. 164) is represented by
figure 104, which illustrates the earlier transition
associated with increasing free-stream turbulence.
The turbulence correlation of figure 104 provides a
means for identifying the free-stream turbulence
level from the measured drag characteristics of
spheres. The turbulence in a cascade tunnel is
frequently expressed in terms of a turbulence
factor, defined as the ratio of the critical Reynolds
number at zero turbulence to the measured
critical Reynolds number of the sphere (ref. 165).

The effective Reynolds number for a blade
section, defined as blade-chord Reynolds number
times turbulence factor of the tunnel, has been
used to represent a transition parameter that
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Fraure 104.—Experimental varintion .of critical Reynolds
number of spheres with turbulence factor; extrapolated
to zero turbulence (data of ref. 164). = Value of Re., for
zero turbulence indicated to be between 3.85% 105 (ref.
182) and 4.11X108 (ref. 165).
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includes the effects of free-stream turbulence.
Blade sections at the same effective Reynolds
number, although of different blade-chord Rey-
nolds numbers and turbulence levels, are expected
to exhibit approximately the same transition (and
therefore the same drag) characteristics. . The
subject of turbulence-level measurements is treated
more fully in references 164 and 165.

Boundary-layer reattachment.—Under certain
conditions it is possible for a laminar boundary
layer that has separated to reattach to the blade
surface. In most instances the reattached layer
is turbulent, transition having occurred in the
separated region. In these turbulent reattach-
ments the location of the transition point is the
principal determinant.

Generally speaking, the boundary-layer behav-
ior is fairly well understood as long as the transi-
tion occurs either before the separation point or
at a large distance downstream of the separation.
In the former case a thickening of the boundary
layer occurs in the region of transition as the flow
passes to the turbulent state. In the latter case,
the laminar boundary layer remains separated,
and the flow breakaway and high form drag are
observed. When transition occurs close behind
the point of laminar separation, however, under
certain conditions, the separated laminar bound-
ary layer may reattach to the surface as a turbu-
lent layer, forming a sort of bubble of locally
separated flow. The reattached turbulent bound-
ary layer is considerably thicker than if transition
had occurred at that point without a previous
laminar separation. The turbulent reattachment
has been observed for both isolated and cascade
airfoil sections. Detailed discussions of the nature
of the separation bubble and the various factors
influencing its characteristics are presented in
references 39, 166, and 167 (pt. II). Various
experimental methods of determining the extent
and location of the laminar separation are dis-
cussed in references 166, 167 (pt. IT), and 168.

Experimental variations of the boundary-layer
momentum thickness, boundary-layer form factor,
and pressure distribution observed in the region
of the laminar bubble for an isolated-airfoil section
(ref. 166) are illustrated in figure 105. A similar
illustration of the pressure distribution on the
suction surface of a cascade section with laminar
separation bubble (ref. 39) is shown in figure
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F1curE 105.—Pressure distribution on NACA 665,-018 air-
foil at zero angle of attack and blade-chord Reynolds
number of 2.4X10¢, and -variation of momentum-thick-
ness ratio and form factor in region of reattachment of
locally separated flow (ref. 166).

106(a). The most detrimental effect of the
laminar separation bubble is the rather sharp
increase in momentum thickness associated with
the turbulent reattachment. The effect of a
suction-surface laminar separation bubble on the
loss characteristics of a blade section is illustrated
in figure 106(b), which presents the variation of
drag coefficient Cp with angle of attack a for a
typical cascade blade section (from ref. 39).
The solid line represents the measured drag
coeficient, and the dashed line is a hypothetical
variation for the case of no laminar separation.
A noticeable increase in the drag coefficient occurs
in the low-ldss range of operation.
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NACA 65-(12)10 airfoil in cascade. Inlet-air angle,
45°; solidity, 1.5.

Obviously, the occurrence of laminar separation
bubbles will make the correlation of cascade data
difficult. The effects of turbulence level and
Reynolds number further increase the problem.
Although the theory governing these effects is
not complete, some qualitative ideas can be
drawn from the foregoing descriptive material.

COMPOSITE LOSS VARIATIONS

The preceding sections have presented a quali-
tative picture of the characteristics of the three
general regimes of boundary-layer development—
the laminar region, the fully turbulent region,
and the transition region. On the basis of avail-
able theory and experimental evidence, the manner
in which each type of flow influences the resulting
thickness of the boundary layer was indicated.
On conventional cascade blade surfaces, all three
boundary-layer regimes are known to exist.
The momentum thickness of the boundary layer

at the blade trailing edge depends on the extent
of each flow regime. The momentum thickness
at the blade trailing edge is a principal factor in
the determination of the loss in total pressure
of the cascade system. The prediction of the
loss characteristics of a given cascade geometry
thus involves an analysis of the composite effects
of the boundary-layer regimes.

From the previous discussions, it is known that
the principal factors affecting the boundary
layer are the local surface pressure distribution,
the blade-chord Reynolds number, and the free-
stream turbulence level. It is desirable to con-
struct a qualitative picture of the anticipated
variation of boundary-layer momentum thickness
on a blade surface over a wide range of Reynolds
number, pressure distribution, and turbulence
level. Such a composite plot will not only con-
stitute an effective summary of the preceding
theory as applied to blade sections, but may also
be of interest in identifying desirable or unde-
sirable areas of cascade operation.

The comparative variation of trailing-edge
boundary-layer momentum thickness (actually
the ratio 6*/c) with blade-chord Reynolds number
is presented qualitatively for several levels of
pressure gradient in figure 107. Pressure dis-
tributions are considered ranging from zero
pressure rise (no blade loading) to a severe
pressure gradient (very high loading) resulting
in a separation of the turbulent layer. The
analysis is made for the flow along the convex
(suction) surface of conventional compressor
blade sections. The pressure distributions con-
sidered, therefore, contain a decreasing pressure
over the forward portion of the blade and a rising
pressure over the rearward portion.

The variation of trailing-edge momentum-
thickness ratio is presented in figure 107 for a
fixed low turbulence level (as normally encoun-
tered in low-turbulence cascade tunnels). It
must be emphasized that the trends established
are only qualitative and that no sufficient substan-
tiating data are available. The values of Rey-
nolds number at which the transition phenomena
are indicated in figure 107 are not to be interpreted
as accurate definitions of these regions. These
values are largely unpredictable at this time.

Zero loading.—The limiting case of no blade
surface pressure gradient can be represented by
the boundary-layer flow along a flat plate. For
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Ficure 107.-——Qualitative variation of trailing-edge momentum-thickness ratio with blade-chord Reynolds number for

several levels of blade loading on conventional airfoils in cascade.

flat-plate flow, no separation occurs, and the two
regimes of laminar and turbulent flow are de-
scribed by the drag variations of equations (224)
and (228), respectively. Curve a-a in figure 107
represents the momentum-thickness variation for
laminar flow, and curve a’-a’ represents the
variation for turbulent flow for the flat plate.

At low values of Re, the boundary layer is
entirely laminar, and 6*/¢ decreases with increas-
ing Re. as shown by curve a-a. At some value
of Re,, indicated by A in the figure, Re, becomes
sufficiently large that transition from a laminar
to a turbulent layer occurs at the trailing edge.
This Reynolds number appears to yield the mini-
mum boundary-layer thickness. With a further
increase in Re,, the transition moves forward from
the trailing edge, and the boundary-layer thick-
ness falls somewhere between the laminar and,
turbulent curves (dashed portion). Finally, as
the transition point approaches the leading edge
the boundary layer will essentially assume the

(Not to be considered quantitatively correct.)

characteristics of the fully turbulent flow. [Strict-
ly speaking, since the boundary-layer transition
point actually arrives at the leading edge only
at an infinite Reynolds number (in the absence
of outside disturbance), the dashed transition
curve will asymptotically approach the turbulent
curve as Re, approaches infinity.]

Increased turbulence will cause the boundary-
layer transition phenomena to occur at lower
values of Reynolds number and will therefore
have the effect of shifting point A farther to the
left on curve a-a. For zero pressure gradient,
therefore, increased turbulence may increase the
minimum boundary-layer momentum thickness.

Low loading.—The curve b-b in figure 107
represents the case of a very lightly loaded blade
whose surface pressure gradient is such that
laminar separation will not occur. In this case,
the picture is much the same as for the flat plate,
except that the boundary-layer thicknesses will
generally be somewhat greater. It is also quite
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possible that both the presence of a pressure
gradient and the location of the minimum pres-
sure will have some influence on the location of
point A. However, it is not believed that these
effects will be marked for the lightly loaded
surface.

Moderate loading.—The boundary-layer thick-
ness variations for a moderately loaded blade
surface are illustrated by curve c-¢ in figure 107.
The moderately loaded blade probably represents
the major portion of current design experience.
The blade loading in this case can be achieved by
a blade with moderate camber operated at its
best (minimum-loss) angle of attack, or by a
section of smaller camber operated at a relatively
high angle of attack.

At low Reynolds number, the adverse pressure
gradient is sufficient to cause a separation of
the laminar bondary layer somewhere down-
stream of the point of minimum pressure. A
marked rise in the momentum loss compared
with the low-loading case will therefore be ob-
tained in the low Reynolds number range. The
precise magnitude of the separated boundary-
layer thickness depends on the shape and angle
of attack of the blade. A separation point close
to the leading edge would tend to produce a
relatively large separated wake (form drag).
Since the point of laminar separation is inde-
pendent of Reynolds number, the laminar layer
remains separated, and the high values of 6*/c
continue as Reynolds number is increased to
point A. A slight decrease in #*/c in this high-
loss region is to be expected, however, because of
the thinning of the boundary layer upstream of
the point of geparation.

At a Reynolds number corresponding to the
point A, the transition to turbulent flow would
take place at the trailing edge if the laminar
layer were still attached. Since the laminar layer
has separated, there is no transition and the
thickness continues high from A to C. With
increasing Re., the transition point moves closer
to the point of laminar breakaway. When the
two points are sufficiently close together, the
separated laminar layer may be infused with
sufficient turbulence to reattach itself a short
distance beyond the point of separation, resulting
in a separation bubble. After reattachment
starts at point C, the 6*/c curve drops rather
sharply with Reynolds number increase in the
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F1Gure 108.—Variation of total-pressure-loss coefficient
with blade-chord Reynolds number for parabolic-arc
blade 10C4/40 P40. Inlet-air angle, 28° to 40°; solidity,
1.333 (ref. 183).

region from C to D as the extent of the separation
bubble decreases. Finally, the transition occurs
right at the point of separation indicated by
point D. Thereafter, the curve of */c tends to
approach the variation of the fully turbulent
flow (curve c’-c’). The rate at which the fully
turbulent curve is approached will probably
depend to a large extent on the chordwise location
of the point of minimum pressure. (Since the
blade is moderately loaded, the separation point
is probably not far beyond the minimum-pressure
point, and any further movement of the transi-
tion point will be slow.) An experimental illus-
tration of the type of loss against Reynolds
number curve represented by curve c-c in figure
107 is shown in figure 108 for a conventional
cascade blade section at several angles of incidence.

In view of the many factors influencing the for-
mation and extent of the separation bubble, it
would appear possible to obtain a wide range of
possible transition paths between laminar break-
away (below point C, fig. 107) and turbulent
attachment (beyond point D). Also, if for some
reason a separation bubble does not occur and
attachment does not take place until the tran-
sition point and the laminar separation point
essentially coincide (as in the case of the flow about
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a sphere or cylinder), then the laminar breakaway
region will extend farther out along the line A-C
and a very sharp drop in boundary-layer thickness
will be observed to D (as in the case of the sphere).
Furthermore, the chordwise location of the mini-
mum-pressure point will probably affect the
location of the transition region. For example,
if the minimum-pressure point occurs far back
on the blade, the reattachment of the laminar
layer will. probably begin very shortly after the
transition point first occurs on the blade. This
would tend to reduce the flat portion of the curve
between A and C, and probably also give a steeper
drop in 6*/c. (The magnitude of the loss of the
separated laminar boundary layer would not,
however, be as large as in the case of a forward
pressure minimum.)

The preceding picture will be further compli-
cated by considerations of varying turbulence
levels. In general, however, it is probable that
increased free-stream turbulence will cause an
earlier boundary-layer transition and therefore
tend to move the transition region of the curve
to lower values of Reynolds number (c-D’-c).
An experimental illustration of such an effect is
presented in figure 109 in terms of the loss para-
meter w. A further extension of the turbulent
layer into the lower range of Reynolds number
(extension along curve c¢’—c) may also be obtained
by employing artificial means for tripping the
boundary layer at the leading edge. Such meas-
ures, however, although extending the range of
low loss to lower Reynolds numbers, probably
result in an increase in the magnitude of the loss
at higher Reynolds numbers.

High loading.—Curve d-d in figure 107 repre-
sents a highly loaded blade. As in the previous
case, the laminar boundary layer separates at
low values of Reynolds number. As Re, increases,
the transition point moves forward (starting at

" A) until it approaches the separation point. The
laminar layer may then reattach (point C) and
proceed as a turbulent layer. The momentum-
thickness ratio then decreases as the extent of
the laminar separation is reduced, as indicated by
the dashed curve after point C. (The establish-
ment of turbulent flow.in the high-loading case
may require actual coincidence of the transition
and separation points, in which case the drop in
6*/c after point C will be much steeper.)
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Fraure 109.—Effect of blade-chord Reynolds number and
free-stream turbulence on minimum-loss coefficient of
cascade blade section in two-dimensional tunnel.

Inlet-air

The surface pressure distribution is such, how-
ever, that the established turbulent layer will now
separate at some point downstream of the transi-
tion. The resulting momentum-thickness ratio
when the local laminar separation has disappeared
(transition moves forward of the laminar separa-
tion) will then be greater, as indicated by point
D, than for the corresponding condition in the
moderately loaded blade. Then, as Reynolds
number is increased and the boundary-layer
characteristics upstream of the separation are
improved, the turbulent boundary layer will be
able to proceed farther into the adverse pressure
gradient. Thus, with a resulting downstream
movement of the turbulent separation, the trailing-
edge boundary-layer thickness will decrease with
increasing Reynolds number from point D on.

The actual magnitude of the loss in the presence
of turbulent separation depends to a-large extent
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on the chordwise location of the point of turbulent
separation. For separation close to the blade
trailing edge, as represented by curve d-d, the
increase of boundary-layer thickness will not be
very great (level of curve D-d). If the separation
occurs forward on the blade close behind the
transition, as represented by curve e-e, the in-
crease in thickness will be much greater (level of
curve D-e).

Summary.—The previous considerations indi-
cate that a considerable range of trailing-edge
boundary-layer momentum thickness can be ob-
tained from blade sections, depending on the
surface pressure distribution, Reynolds number,
and turbulence level. In two-dimensional-cascade
research, therefore, it appears highly desirable to
identify the range of operation of the blade sections
in the general loss against Reynolds number
spectrum. Actually, some effective Reynolds
number should be considered so that turbulence
level can also be included. Such identification
can aid in determining the best regions of cascade
operation and also be of use in correlating data
from different tunnels. Furthermore, in view of
the possible pronounced effect of the laminar
breakaway at low Reynolds number, the question
of Reynolds number effects might be a significant
consideration in compressor design. Reduced
Reynolds number in compressor design may arise
for small-scale units and for operation at high
altitude.

It must be repeated that the curves presented
in figure 107 are only qualitative. The magnitude
of loss and the values of Reynolds number indi-
cated for the ranges of different loss characteristics
are not to be interpreted as quantitatively correct.
The precise wake momentum-thickness variations
of a specific cascade geometry can currently be
determined only by experiment.

QUANTITATIVE BOUNDARY-LAYER THEORY
GENERAL CONSIDERATIONS

Unfortunately, current ability to determine
cascade boundary-layer behavior quantitatively
falls below the ability to establish a qualitative
picture. The principal difficulty in this respect
lies in obtaining satisfactory solutions of the
viscous-flow equations.

The complete viscous flow about cascade sections
is generally considered to be described by the

167

equations of Navier-Stokes and the continuity
equation. For two-dimensional incompressible
flow, neglecting body forces, these equations are
written as follows (ref. 151, pt. I):
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The last equation represents the condition of
continuity. The Euler equations for nonviscous
fluids can be obtained by setting the kinematic
viscosity » equal to zero. As long as the viscosity
term is retained, however, no matter how small »
is taken to be, equations (231) remain of the
second-order and are fundamentally different
from the first-order equations governing the
ideal fluid. This difference is reflected in the
boundary conditions allowable in the two prob-
lems. For viscous flow, the resultant velocity
is required to be zero at solid boundaries in the
flow field. For nonviscous flow, only the com-
ponent normal to the boundary is required to
be zero.

The solution of equations (231) has not been
found in any but the simple cases of laminar flow.
A solution for the flow through an arbitrary
cascade is not feasible at the present time. How-
ever, when the predominant viscous effects are
confined to the boundary region, & simplifying
approximation is possible. By considering the
relative magnitudes (within the boundary layer)
of the terms appearing in equations (231), that
system of equations can be reduced (ref. 151, pt. I
to the following:

ou, ou, du__10p, o
E"’“&"'”Bﬁ“ pbs+”bn2

(232)
w
ds 'om

where ¢ is the coordinate along the blade surface,
and 7 is the coordinate normal to the surface.
The boundary layer is assumed sufficiently thin
and the curvature of the surface sufficiently
small that the pressure gradient normal to the
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surface is negligible within the boundary layer;
dp/0s can then be determined from the potential
flow outside the boundary layer. Equations (232)
represent a significant simplification of equations
(231) and have proved reliable in many flow
problems. Unfortunately, these equations, also,
are very difficult to solve in most cases of practical
interest.

A decisive simplification in approach was made
by von Karmén (ref. 169), who integrated the
first of equations (232) with respect to n and thus
replaced the boundary-layer equation with an
integral condition that can be written in the follow-
ing form:

b _do*, o* dV,
;7,6~—E+7; (2+H) =y (233)
where V, is the velocity at the outer edge of the
boundary layer and %, is the surface shear stress.
In this manner, the boundary-layer equations are
required to be satisfied only in the mean instead
of at each point along a normal to the surface in
the boundary-layer region. Equation (233) has
provided the basic equation for most of the general
boundary-layer investigations.

Many theories have been developed from equa-
tion (233) for approximately solving the boundary-
layer problem with pressure gradient for both
laminar and turbulent flows. These theories,
although not completely successful, provide some
orderly means of attacking the problem for either
the laminar or the turbulent boundary layer.
The question of transition, however, remains
relatively unanswered and constitutes a serious
defect in current quantitative theory.

The present approach to the viscous-flow
cascade problem requires that the potential flow
about the cascade be determined first. The
surface pressure distributions thus obtained are
used to determine the boundary-layer character-
istics from equation (233). The defect in total
pressure resulting from the formation of the bound-
ary layer can then be established. Potential-
flow pressure distributions can serve as an initial
basis for the boundary-layer calculation, since, as
indicated previously, the viscous effects are
generally restricted to the boundary layer and
exert a negligible influence on the potential
flow outside the layer. Under certain conditions,
however (as in the case of a very thick boundary

layer), the original blade potential flow may need
to be adjusted for the effects of the boundary-layer
development.

The subject of potential-flow calculation is
covered in chapter IV. The present analysis is
concerned with the computation of the boundary-
layer characteristics. In the succeeding sections,
two simple approximate methods, one for the
computation of laminar boundary layers and the
other for turbulent layers, are presented. The
resulting defects in total pressure and circulation
are also considered.

LAMINAR BOUNDARY LAYER

The approximate methods of solution available
for laminar-boundary-layer flows sare generally
satisfactory for engineering use. The more recent
methods (e.g., refs. 170 and 171) are so simple and
accurate that little further work is being done on
the problem. The technique presented here in
some detail is due to Thwaites (ref. 171). It
was developed from a comprehensive analysis of
previously obtained solutions of laminar-boundary-
layer flows. From the method, the distributions
of 0* and H can be accurately obtained and the
point of laminar separation located.

The methods of Thwaites (ref. 171) and Loitsi-
anskii (vef. 170) are both based initially on the
simplified system of equations given by equation
(232). For steady incompressible flow, since the
static pressure is constant through the boundary
layer, the first of equations (232) can be put in the
form
du, Oy

,  OMu
o8 +v —=V,Vo+» 302

u on

(234)
where V{=dV,/ds denotes the derivative with
respect to s of the velocity V, at the outer edge of
the boundary layer. With the help of the conti-

nuity equation (second of egs. (232)), equation
(234) can be written

D [uVomt) 1+ [0V o—) 1+ Vi (Va—u)

0*(Vo—u)
—y =0 (235)

The developments in the two methods then differ

in the subsequent handling of equation (235).
Thwaites’ method.—In the method of reference

171, equation (235) is integrated through the
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boundary layer from the wall (n=0) to the outer
edge (n=>23) to give ultimately

do*  Veo* ou
THoE et—p(Z) | @0
Equation (236) is the same as (233) with #,=
w(0u/On) —o. Equation (236) is used by Thwaites
in conjunction with the equation obtained from
(234) by setting n equal to zero, namely

0=V Vit a’“)

The quantities (O%/dn)p=0, (0%4/ON%) gm0, and H
appearing in equations (236) and (237) charac-
terize the velocity distribution in the boundary
layer. The first two terms indicate the behavior
of the velocity in the significant region of the
boundary layer at the wall, and H=45*/6* indi-
cates the over-all form of the distribution. The
term (0%u/0n?),.o is given explicitly by equation
(237) as equal to —V,V;/v and hence as a known
function of s. If the relation between (du/0n),.q
and (Q%/On?)a-o for a given flow is known, then
(01/dn) nao is also known as a function of s through
—VoVi/v. 1f, furthermore, the relation between
H and (0%u/0n?) 4o is known for the given flow, H
is also known as a function of s. Then, the mo-
mentum equation (236) can be integrated to ob-
tain the distribution of #*. Such relations among
(0u/On) o, (0*4/ON%)na0, and H are obtained now
by examining velocity distributions from known
solutions.

The quantities [ and m are defined as follows:

=7, (50)...

o= P_’_’é)
m—Vo b’nF =m0

(237)

(238)

The definitions are constructed in this way to
eliminate the effect of 6* and V, on the partial
derivatives. This allows [ and m to depend only
on the form of the velocity distribution. Ac-
cording to this preliminary analysis, the terms !
and H are regarded as functions of m and are
plotted as such for all theoretical laminar-bound-
ary-layer velocity distributions available to
Thwaites at the time of his work.
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Ficure 110.—Variation of I(m) with m for theoretical
velocity distributions (ref. 171).

The solutions used are identified in figures 110
and 111, where the derived functional relations
are plotted. The values of [, H, and m are com-
puted from the actual velocity distributions
obtained in these solutions. The figures are
divided into positive and negative values of m,
corresponding respectively to decelerating and
accelerating flow (m=—V{0**/v from eqgs. (237)
and (238)). Figures 110(a) and 111(a) reveal a
remarkable similarity for m<C0 (accelerating flow)
in the I(m) and H(m) curves for the variety of
velocity distributions appearing in the wide range
of solutions used.

On the other hand, figures 110(b) and 111(b)
show that the agreement for m=0 (decelerating
flow) is not nearly as good. The curve corre-
sponding to the solution of the problem

f"'+-;- ff’=0 is dismissed on the grounds that

the problem it defines in this region is of no
interest (i.e., blowing out through the boundary
layer). The three exact solutions, Schubauer’s
ellipse (Hartree), V,=A—Bs (Howarth), and
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F1GURE 111.—Variation of° H(m) with m for theoretical
velocity distributions (ref. 171).

Vo=Vi(s/c)*, are in reasonable agreement.
Pohlhausen’s approximate method gives values
of I{(m), and, hence, values of skin friction, that
are far too large. This explains the failure of
the Pohlhausen method in regions of rising
pressure.

As previously pointed out, the momentum
equation can be integrated if the relations I(m)
and H(m) are known for the problem at hand.
The present method uses figures 110 and 111 to
obtain universal curves that best fit the whole
family of particular solutions. The curves thus
obtained are tabulated in table I. Note that
separation is taken to occur at m=0.082. This
value is chosen arbitrarily to agree with the value
for the ellipse, since the flow about an ellipse is
similar to the flow about conventional airfoils.

With - these functions tabulated, the analysis
can proceed as follows. Substituting equations
(238) into (236) and (237) gives

do* — Vo 0* vl(m)
&= EHFD) oty

(239)

TABLE L—FUNCTIONS FOR THWAITES SOLU-
TION OF LAMINAR BOUNDARY LAYER (REF.
171)

m 1(m) g | L m
0.082 [} 3.70 0.938
0818 011 3.69 953
0816 .016 3.66 9566
0812 024 3.63 962
0808 .030 3.61 967
0804 035 3.5 960
080 039 3.58 971
079 049 3.52 970
078 085 3.47 963
076 067 3.38 552
074 076 3.30 .936
072 083 3.23 919
070 .089 3.17 902
.0688 094 3.13 886
064 .104 3.05 854
060 113 2.99 825
056 J22 2.94 797
.052 130 2.9 70
48 .138 2.87 744
040 153 2.81 691
032 168 2.75 640
024 182 2.71 590
.016 195 2.67 539
008 208 2,64 490
0 220 2.61 »440
- .016 244 2.55 342
- 032 .268 2.49 249
— 048 .201 2.4 156
—.064 313 2.39 084
~ 080 333 2334 — 028
-.10 359 2.28 -.138
-.12 382 2.23 - .251
-.14 404 2,18 - 362
-.20 .463 2.07 - 702
~-~.25 500 2.00 —1.000

0= Vo Vn + VVom

(240)
Substituting (240) into (239) gives
1Yo dP e mib(m)+21+im)  (241)
Then, defining [ (m) to be |
Lm)=2(mHm)+21+Um)}  (242)

and substituting equation (242) into equation
(241) give

V,de®
S g =L m)

14

(243)

The function [ (m) is tabulated in table I.

The solution proceeds now by a direct integra-
tion of equation (243) to obtain the distribution
of 6*. Thereafter, the other properties of the
boundary layer are obtained by using I(m) and
H(m).

A very simple solution can also be obtained in
a slightly different manner. The function o[ (m)
is plotted against m in figure 112. It is found
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Fieure 112.—Variation of % (m) with m for theoretical
velocity distributions (ref. 171).
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that [ (m) can be approximated by a linear
function of the form

L (m)=0.45+6m (244)

Equation (244) is then substituted into equation
(243), which is integrated to give

e 045”fV‘d

Therefore, with the potential-flow velocity dis-
tribution known, 6*2 can be obtained directly from
equation (245). The distribution of m, and hence
of {(m) and H(m), follows from #*2. In this way,
all the significant boundary-layer parameters are
obtained with very little effort.

To demonstrate the accuracy of the simple
solution, Thwaites solved by the approximate
method the flow given by V,;=A4-—Bs and com-
pared the results with the exact solution as given
by Howarth. The results of these comparative

(245)

calculations are given in figure 113. The param-
eters of principal interest; 5%, 0%, and (0u/On) a0,
are presented in a nondimensional form. The
agreement between the approximate and exact
solutions is satisfactory for all parameters. A
similar comparison is made in reference 171 for
the problem of Schubauer’s ellipse. Both com-
parisons are discussed extensively in that reference.

Comparisons between experimental and calcu-
lated predictions of the point of laminar separation
based on Thwaites’ method are demonstrated for
the isolated airfoil and cascade airfoil, respectively,
in references 172 and 173. The fact that close
agreement was obtained in the references between
calculated and experimentally observed locations
of the separation point indicates that the method
may be satisfactory for prediction of the other
boundary-layer characteristics.

Loitsianskii’s method.—In reference 170 Loitsi-
anskii presents a final equation similar to equation
(245) but developed from a quite different ap-
proach. Equation (235) is multiplied by »* and
integrated through the boundary layer. The
second and third integrals (i.e., k=1 and k=2)
are also used. The three equations are solved
simultaneously for three parameters characterizing
the boundary-layer velocity distribution. In
order to do this, a simple assumed velocity form
in the boundary layer is used to evaluate certain
of the integrals involved in the three equations.
The final equations are (in the terminology of

Thwaites)
OV?: f Vet ds

{(m)=0.22—1.85m —7.55m?
H(m)=2.591+7.55m

These equations show that the method in applica-
tion differs very little from that of Thwaites.
Analytical expressions for I(m) and H(m) are
used instead of the tabulated values used by
Thwaites. In general, the values of Thwaites
correspond more nearly to the values of I{(m) and
H(m) obtained from exact solutions. The dif-
ferences, however, may not be significant.

‘TURBULENT BOUNDARY LAYER

The turbulent boundary layer is more difficult
to treat theoretically than the laminar layer.
The use of characteristic velocity forms, as in
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Fiovure 113.—Comparison of solutions obtained by approximate method of Thwaites with exact solutions (ref. 171).
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many approximate methods for the laminar layer,
has not proved satisfactory in the turbulent case.
Furthermore, the shear stress is not given as a
simple function x(du/on) of the velocity distribu-
tion, except in the laminar sublayer. An ad-
ditional difficulty is the determination of the
proper value of H or §* at the point of transition.
As a result of these difficulties, the best methods
available for calculating the characteristics of a
turbulent boundary layer are more tedious and
less accurate than the method given for the lami-
nar problem. '

Since the turbulent boundary layer is preceded,
on a blade, by a laminar layer, it is necessary first
to determine the values of 6* and H immediately
after transition. These values, as well as the
location of the transition point, are determined
with the help of the computation of the preceding
laminar boundary layer. Once these values are
known, certain differential equations for 6* and H
can be solved to obtain the entire distribution.

In the technique of Maskell (ref. 160) presented
here, the momentum thickness can be obtained
simply and with acceptable accuracy. The deter-
mination of the distribution of the form factor H
is more difficult. When 6* and H have been
obtained, the point of turbulent separation can be
obtained accurately by the use of a skin-friction
formula for turbulent flow given by Ludwieg and
Tillmann (ref. 159).

Approach.—From the conservation of momen-
tum in the boundary layer, the momentum equa-
tion can be developed for the turbulent case as

de*_Cy, &* dVo

PR (H+ 2) (246)
where
Tw
Crr= m (247)

and %, is the friction stress for a turbulent bound-
ary layer. It has always been observed that the
distribution of 6* calculated from equation (246)
is not greatly affected by the way H varies with s.
In fact, H can be taken as constant and reasonably
accurate values of 6* obtained in some cases.
For this reason, Maskell proposes a simplification
of equation (246) (based on the insensitivity to H)
that enables that equation to be directly integrated
for 6*. Then, he uses the derived values of #*,
in conjunction with an empirical differential equa-

173

tion in H, for obtaining values of H accurately.
This approach is simpler than the well-known
method of von Doenhoff and Tetervin (ref. 174),
in which an empirical differential equation in H
is constructed and solved simultaneously with
equation (246). The results obtained for 6* and
H in the two methods are comparable. The
method of Maskell recommends itself not only
because of its simplicity but also because of its
ability to predict separation with acceptable
accuracy.

Momentum thickness.—The first part of the
boundary-layer problem is to determine the
momentum thickness, To do so, equation (246)
is first written in the following form:

—a+ )[r—(H+2+q r] (248)
where
O=0*Req
r—8 o
"V, ds (249)
&= L Reg“

and ¢ is an arbitrary constant that will be deter-
mined later. The friction coefficient Oy, is given
by the formula

Cpr=0.246¢= 11T B gy~ 2% (250)

which is developed in reference 159. This formula,
which Maskell adopts for his method, is probably
superior to previously used formulas for C,.

Equation (248) can be integrated directly if the
right side can be approximated in the linear form
A4-Br. For flat-plate flow, dV,/ds (and hence
') equals zero, and equation (248) becomes

(@), =o+or=a

Therefore, an approximation of equation (248)
in the form A+ BT requires that (14¢)¢ be
constant if the approximation is to agree in the
simple case of flat-plate flow. The value of ¢
required to make the ¢ term constant in equation
(251) is determined as indicated in the following
paragraph.

The experimental variation of H with log Re,
for a flat plate is illustrated in figure 114, along

(251)

UTC-2019.191



174 AERODYNAMIC: DESIGN OF AXTAL-FLOW COMPRESSORS

T T 1} T T T T T 1 T
o Ludwieg-Tillmann experiments

— H<1.754-0.149 log,, Re, +
- 0.01015 (log,, Re, )2
—=—=—H=1.630 - 0.0775 log,, Re,

iy

"~

N

\\

S

RN

Form factor, #
w
i
P

0 25 30 3.5 4.0 4.5 5.0
Ioglo /?ee

N

Fiaure 114.—Profile parameter H for flat-plate flow
(ref. 160).

with two simple analytic approximations to the
experimental data. The simplest approximation,

H=1.630—0.0775 log, Res (252)

is used in this part of the analysis. Substitution
of equations (252) and (250) in the definition of
¢ (eq. (249)) gives

¢==0,00965R¢s¢~0-2165 (253)

Therefore, taking ¢=0.2155 in equation (253)
gives a constant value of ¢ as desired. With this
value of g, equation (248) becomes

de

o — 12155 [t—(H+1.823)T]  (254)

The right side of equation (254) is now evalu-
ated from experimental data and plotted against
T' to see whether an approximation of the form
A+ BT will be satisfactory. These results, shown
in figure 115, indicate that such a linear approxi-
mation should be adequate. The best approxi-
mation to the data is given by 4=0.01173, B=
4.200; and equation (254) becomes

doe
& —~—=0.01173—4.200T

which can be written as (from eq. (249))

0 dV,_

+4 200 = V. ds

==0.01173 (255)

" The solution of (255) is then given by

(OVE™),—(BVE™), =0.01173 f ‘e s (256)

where s, is the starting point of the turbulent
boundary layer. Equation (256) thus requires a
simple integration for the calculation of the
momentum thickness once the initial value of
0* is known. _

Form factor.—With the momentum thickness
known, it becomes necessary to determine H
accurately in order to ascertain é* and C,. -In
order to determine H, Maskell develops an
empirical differential equation. :A considerable
amount of data is used in the development,
including zero and negative pressure-gradient
data. The resulting equation must be divided
into three parts to fit the available data accu-
rately. The division is made in terms of the

Re a, deg
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o} (approx) 092 8.
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Fraure 115.—Experimental values of function 1.2155
[F—(H+41.823)1]
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I range by I'=0 and I'=T, where I'; is itself a
function of H. The following relation is obtained
in reference 160: ’
H=1,754—0.149 log,, Re, h
+0.01015(log;, Res)? for I'>0

dg_ 1 l¢—T'(0.30H—0.32)]

ds 0% R o 025
for 0>TI'>Ty a (257)

dH 1
EET:W [——0.15(H—1.2)

—TI'(0.30H—0.15)] for r>r |

where
—0,15(H—1.2)—¢

T 0.17

(258)

and ¢ is given in figure 116. The portion of the
curve for H<14 is given by ¢=-—10"06%4
(0.01399H—0.01485); for H>1.6, by ¢=—0.054H
+-0.0796; and for 1.4<H<(1.6 the curve is faired.

Assuming the distribution of 6* is now known,
and also the value of H at transition, equations
(257) and (258) can be solved step-by-step for
the complete distribution of H. With H and
0* known, C;, can be found from equation (250).

The point of turbulent separation is determined
in the method from the variation of the friction
coefficient (C;,=0 at separation). It is clear from
its form that equation (250) cannot lead directly
to a value of C;,=0. However, the calculated
C;. curve falls off toward zero in such a way that
an extrapolation to zero is easily made. Ex-
amples of the separation-point extrapolation are
shown in figure 100.

Initial conditions.—The problem yet remaining
is the proper determination of H and 6* at the
onset of turbulent flow. The velocity profile
undergoes an abrupt change from laminar type
to turbulent type. The initial value of 6* is taken
from the value occurring in the laminar computa-
tion at the point of transition. This is equivalent
to assuming that the momentum thickness is
continuous through the point of transition. Re-
quiring continuity of the momentum thickness
results in a discontinuity (i.e., rapid change) in
displacement thickness and hence in H (ref. 175).
The experimental data now available do not
point clearly to a suitable means of determining

175
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Freure 116.—Definition of » as function of H (ref. 160).

the initial value of H. Maskell does recognize
some systematic trend and presents an analysis
leading to highly qualified relations for predicting
the value of H at transition. For details of his
development, see reference 160.

As an indication of the sensitivity of the cal-
culation to the initial value of H, Maskell tried
two widely different initial values and obtained
the results shown in figure 117. In spite of the
large difference in initial value, the computed
curves of H are in fair agreement. The computed
values of ), are in even better agreement. These
results, although not susceptible to the general
interpretation that the calculations are insensitive
to the value of H at transition, are encouraging.

Evaluation.—The accuracy of the method, given
the location of the transition point, is demon-
strated in several examples in reference 160.
Figure 118, taken from reference 160, illustrates
the computed boundary-layer characteristics for
an NACA airfoil and compares the results with
actual experimental data and with the results of
the method of von Doenhoff and Tetervin.
The agreement is generally satisfactory for the
entire range of 6* H, and C;. The agreement
of the calculated separation point with the ex-
perimentally obtained separation point is also
quite good.

TRANSITION

A major difficulty yet remaining in the compu-
tation of blade boundary layers is the successful
prediction of the location of the transition point.
This problem is in a very difficult realm of vis-
cous-flow theory because of the close relation
of the transition point to the Reymolds number
and free-stream turbulence of the flow. The
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Ficure 117.—Effect of initial value of H on calculated
values of form factor and skin-friction coefficient in
turbulent boundary layer on upper surface of airfoil
section RAE 101. Blade-chord Reynolds number,
1.7°X109%; lift coefficient, 0.4 (ref. 160).

problem has been discussed qualitatively in a pre-
vious section. An indication of the errors that
may result from mislocation of the transition
point in the calculation of the drag coefficient of
an isolated airfoil is given in figure 119. The
figure presents a plot of the variation of calculated
profile drag coefficient against distance of the
transition point from the leading edge.

Although reliable criteria for transition-point
location for general airfoil flow are not currently

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS
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Fieure 119.—Variation of profile drag with location of
transition point for 14-peree¢nt-thick wing at blade-chord
Reynolds number of 107 (ref. 155).

available, some work has been done along these
lines. A low-turbulence investigation of an
NACA 654;-114 airfoil in reference 176, for
example, revealed that, for blade-chord Reynolds
numbers ranging from 26X10° to 49X10% a
criterion for transition based on boundary-layer
Reynolds number can be satisfactorily established
as Re;=8000. (Re;=Vd/v, where 6 is the normal
distance from the airfoil surface to a point within
the boundary layer where the velocity is equal to
0.707 of the velocity at the outer edge of the
boundary layer.) These results were obtained
for values of Reynolds number that are con-
siderably higher than those encountered in con-
ventional low-speed-cascade practice.

Much more work will have to be done on this
problem before reliable criteria are determined
for very general conditions of Reynolds number,
turbulence, and pressure distribution. Until such
criteria are available, theoretical boundary-layer
calculations will probably have to concern them-
selves with a range of possible transition-point
locations.

CIRCULATION DEFECT

Potential-flow calculations provide a tool for
determining the surface velocity distribution and
hence the circulation and air outlet angle of cascade
blades. For a viscous fluid, the potential flow
is altered because of the development of the bound-
ary layer. For many practical blade shapes, the
error in the velocity distribution obtained from
potential-flow calculations about the original
blade may be large. Figure 120, taken from
reference 98, indicates the error in a typical cas-
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Fireure 120.—Comparison of experimental and theoretical
velocity distribution on airfoil in cascade. Airfoil,
NACA 65-(12)10; inlet-air angle, 60°; angle of attack,
14.1°; angle of attack of mean veetor velocity, 6.5°;
turning angle, 18.6°; solidity, 1.0 (ref. 98).

cade calculation. The theoretical potential-flow
circulation is always greater than the actual
circulation,

References 98 and 177 found that, if the actual
(real-flow) circulation of a given blade section
could be predicted, the use of this actual value of
circulation in the potential-flow calculation for the
section would yield theoretical velocity distribu-
tions that agreed much better with the measured
values. Two mechanisms of incorporating the
actual circulation in the velocity-distribution cal-
culation are discussed in reference 177. The first
method neglects the Kutta condition and directly
reduces the theoretical circulation to the actual
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178 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

value obtained from measurements. By neglect-
ing the Kutta condition an exact potential flow
about the original airfoil is obtained, wherein the
rear stagnation point occurs on the upper surface.
The second method is to distort the airfoil by
curving up the trailing edge until.the theoretical
lift, with the stagnation point at the trailing edge,
equals the experimental lift.

The investigation also found that a small reduc-
tion in the angle of attack of the section in the
theoretical calculation improved the agreement
between calculated and observed velocities. An
lustration of the eflectiveness of the reduced
circulation, with and without change in angle of
attack, in providing a close comparison between
theoretical and measured cascade velocity distri-
butions is shown in figure 121. These results are
interesting in that a simple procedure is estab-
lished for satisfactorily incorporating the circula-
tion decrement into the potential-flow velocity-
distribution calculation, once that decrement is
known,

The principal problem now is the determination
of the actual circulation in the presence of bound-
ary-layer growth. To date, no analytical or em-
pirical data have appeared to permit the general
estimation of actual circulation (or lift) for con-
ventional cascade sections. An investigation of an
analytical determination of the actual lift of iso-
lated airfoil sections is presented in reference 178.
A brief discussion of the method is included herein,
since the concepts and procedures involved should
be significant also for the cascade airfoil.

‘The analysis of reference 178 postulates that the
presence of surface boundary layers will affect
the potential flow about the airfoil in two principal
ways. First, since the boundary layers tend to
displace the main flow away from the surfaces of
the airfoil, the effective shape of the airfoil will be
altered according to the variation of the displace-
ment thicknesses of the surface boundary layers.
In general, with the boundary layer thicker on the
upper than on the lower surface, an effective reduc-
tion in blade camber will result. In addition, a
reduced angle of attack will result from altering the
effective camber line,

The altering of the effective angle of attack
possibly accounts for the general improvement
in velocity-distribution comparisons (as in fig.
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Fi1gUre 121.—Comparison of experimental velocity distri-
bution with theoretical velocity distribution corrected
for circulation and angle of attack on airfoil in cascade.
Airfoil, NACA 65-(12)10; inlet-air angle, 60°; angle of
attack, 14.1°; angle of attack of mean vector velocity,
6.5°; turning angle, 18.6°; solidity, 1.0 (ref. 98).

121) obtained when a slight reduction in angle
of attack is included in the theoretical calculation.

The second effect on circulation is the destrue-
tion of the Kutta condition at the trailing edge.
Reference 178 replaces the Kutta condition with

‘the theorem that, for steady motion, the rates

of discharge of positive and negative vorticity
into the wake at the trailing edge are equal.
Methods of computing the reduction in circulation
resulting from the change in profile shape and
trailing-edge condition are presented in the
reference. Results of calculations for two airfoil
shapes show that a considerable portion of the
difference between theoretical and actual lift
can be predicted on the basis of these considera-
tions. The results further show that the effective
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altering of the profile shape contributed most
to the lift defect.

The theoretical calculation of the lift defect
resulting from an effective profile change will
generally be more difficult for a cascade airfoil
than for the isolated airfoil. Accordingly, the
consideration of an empirical correlation between
actual lift ratio and some significant boundary-
layer thickness parameter may offer more imme-
diate promise for cascade sections,

In view of the preceding discussion, it appears
that an iteration process may prove necessary
for some boundary-layer computation on airfoils
in cascade. The procedure would be as follows:

(1) Compute potential velocity distribution.

(2) Compute boundary-layer development from
(1).

(3) Compute circulation defect from boundary-
layer characteristics (2)."

(4) Recompute potential velocity distribution
on the basis of corrected circulation (3).

(5) Continue iteration until process converges.

CALCULATION OF TOTAL-PRESSURE LOSS

In compressor design and performance analysis,
it is desirable to determine the loss in total
pressure incurred across a blade row. In the
present section, a method is discussed for relating
the total-pressure loss of a cascade section to the
boundary-layer characteristics at the blade trailing
edge. This makes possible, within the limits of
the assumptions involved, the complete theoretical
calculation of the cascade loss once the blade
boundary-layer conditions have been established.
The loss so determined represents the basic
two-dimensional profile loss of the section.

If separation has not occurred, the flow field
in the plane of the blade trailing edge will appear
essentially as a core of potential (or free-stream)
flow bounded by viscous layers adjoining the
blade surfaces. A considerable portion of the
complete loss in total pressure across a cascade
is already realized in the viscous layers at the blade
trailing edge. However, owing to. the lack of
uniformity of the velocity distribution in the
wake (and also in the free stream), a turbulent
mixing of the fluid takes place resulting in an
additional loss in total pressure downstream of
the blade trailing edge. The complete loss
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attributable to the cascade can only be measured
at an axial position sufficiently far downstream to
assure that uniformity has been achieved. Since
the rate of dissipation of the wake depends on
many factors, experimental loss data obtained
at a fixed location for various cascade configura-
tions will not be completely comparable unless
properly interpreted in relation to the complete
loss involved.

A notable achievement was made in the cal-
culation of the complete loss for isolated airfoils
by Squire and Young (ref. 155), who succeeded
in relating the total drag to the boundary-layer
state at the airfoil trailing edge. The cascade
case was treated by lLoitsianskii in references
179 and 180. With the assumption that con-
ditions are nearly uniform in the plane of coales-
cence of the wakes from neighboring blades,
the conditions far downstream are related to
conditions at the plane of coalescence. Then,
the conditions at the plane of coalescence, and
consequently at the far-downstream position,
are related to the trailing-edge boundary-layer
characteristics,

More recently, simplified analyses have been
presented in references 156 and 181. In these
theories, losses far downstream again are related
to the trailing-edge boundary-layer character-
istics. This relation is easily and directly es-
tablished by assuming free-stream conditions to
be uniform tangentially in the plane of the trail-
ing edge. Although this restriction is severe,
it is likely that the theory can provide a simple
guide to better understanding and estimating
cascade loss data.

The assumptions and results of reference 156
are now presented briefly. Only the incompres-
sible-flow case is considered. For purposes of
this analysis, the velocity distributions in the
tangential direction at various axial locations are
assumed to occur as shown in figure 122. Far
downstream of the blade row, the wake is ulti-
mately dissipated and the flow is completely uni-
form in the tangential direction. The mass-
averaged loss in total pressure is then (since
free-stream total pressure in the plane of the
trailing edge is taken equal to the inlet total
pressure)

AP=P 1'—P 2=P o, u—P 2 (259)
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Fiaure 122.—Cascade flow indicating velocity distribution
at trailing edge and after complete mixing has occurred
(a~a and b-b are streamlines for a full blade spacing).

where subscripts 1 and 2 denote positions far
upstream and far downstream of the blade row
(fig. 122), and P, . is the total pressure in the
potential-flow region at the trailing-edge position.

From consideration of the Bernoulli equation,
conservation of mass flow and of axial and tangen-
tial momentum over the control surface bounded
by the dashed streamlines in figure 122, and the
conventional definitions of displacement and mo-
mentum thickness, the loss coefficient is given by

w——%PVo e (0')., cos By, (1+ (0')., cos B,

()

where, if desired, V;, ;,, can be related to the inlet
velocity V, through the expression

T’I:Jf=99m%%‘?[ (0'),, cos ﬂu]

In this manner, the loss involved in the flow
from an upstream position to a position of complete
dissipation of the wake is related to the boundary-
layer characteristics at the trailing edge of the
blade and to the cascade geometry. For a more
detailed presantation of the development and some
calculated results, see reference 156.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

CONCLUDING REMARKS

It is apparent from the preceding analysis that
the boundary-layer theory currently available is
incapable of completely predicting the viscous
flow about a two-dimensional cascade. However,
the qualitative information provided by the theory
can serve as & useful guide in obtaining and
interpreting cascade data. Furthermore, some
quantitative results can be obtained from  the
theory in its present state for a limited range of
flow conditions and assumptions.

The principal conclusion reached from the quali-
tative evaluation of cascade boundary-layer be-
havior is the large sensitivity of the losses to
blade-chord Reynolds number and free-stream
turbulence. Apparently, a wide range of bound-
ary-layer loss can be obtained for a conventional
cascade geometry, depending upon Reynolds
number and turbulence. The importance of the
identification and evaluation of Reynolds number
effects in cascade operation and data analysis is
thereby indicated.

The primary shortcoming of quantitative evalua-
tions is the inability of theory to predict the
location and characteristics of the transition from
laminar to turbulent flow. The computation for
a completely laminar or completely turbulent
boundary layer is acceptably simple and accurate.
Widespread use of the quantitative calculations
will follow the ability to locate the transition point
successfully. This problem is so difficult theoreti-
cally that an attempt should be made to determine
an empirical correlation valid for the limited
variety of blade shapes currently in use.

The questlon of possible serious Reynolds num-
ber effects in compressor operatlon is raised in
view of the large increases in loss that may be
obtained at reduced Reynolds number because of
laminar separation in the cascade flow. Reduced
Reynolds numbers are encountered in compressors
for small-size units and high-altitude operations.
However, it is recognized that the viscous-flow
phenomena in the compressor configuration are
far more complex than in the cascade. First, the
development of the boundary layers along the
blade elements is complicated by the various
spanwise boundary-layer motions and three-dimen-
sional effects existing in compressor blade rows.
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VISCOUS FLOW IN TWO-DIMENSIONAL CASCADES 181

Secondly, the turbulence picture differs because
of blade wakes and inlet flow distortions. Finally,
there are other sources of Reynolds number effects
in the development of the casing boundary layers
and of the other three-dimensional effects. The
observed loss characteristics in the compressor

result from the various compressor viscous phe-
nomensa. Therefore, the extent to which cascade
viscous-flow churacteristics will be reflected in the
compressor is questionable. The answers to these
questions must be supplied by continued com-
parative research.
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CHAPTER VI
EXPERIMENTAL FLOW IN TWO-DIMENSIONAL CASCADES

¢

Available experimental two-dimensional-cascade
data for conventional compressor blade sections are
correlated. The two-dimensional cascade and some
of the principal aerodynamic factors involved in its
operation are first briefly described. Then the data
are analyzed by examining the variation of cascade
performance at a reference incidence angle in the
region of minimum loss. Variations of reference
incidence angle, total-pressure loss, and deviation
angle with cascade geomeiry, inlet Mach number,
and Reynolds number are investigated.

From the analysis and the correlations of the
available data, rules and relations are evolved for the
prediction of the magnitude of the reference total-
pressure loss and the reference deviation and inci-
dence angles for conventional blade profiles. These
relations are developed in simplified forms readily
applicable to compressor design procedures.

INTRODUCTION

Because of the complexity and three-dimensional
character of the flow in multistage axial-flow
compressors, various simplified approaches have
been adopted in the quest for accurate blade-
design data. The prevailing approach has been
to treat the flow across individual compressor
blade sections as a two-dimensional flow. The
use of two-dimensionally derived flow characteris-
tics in compressor design has generally been satis-
factory for conservative units (ch. ITI).

In view of the limitations involved in the
theoretical calculation of the flow about two-
dimensional blade sections (chs. IV and V),
experimental investigations of two-dimensional
cascades of blade sections were adopted as the
principal source of blade-design data. Early
experimental cascade results (e.g., refs. 184 to
186), however, were marked by a sensitivity to
individual tunnel design and operation. This was
largely a result of the failure to obtain true two-
dimensional flow. Under these circumstances,
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the correlation of isolated data was very difficult.
Some efforts were made, however, to correlate
limited experimental data for use in compressor
design (e.g., ref. 187). The British, in particular,
through the efforts primarily of Carter and Howell,
appear to have made effective use of their early
cascade investigations (refs. 31 (pt. I) and 188
to 190).

In recent years, the introduction of effective
tunnel-wall boundary-layer removal for the estab-
lishment of true two-dimensional flow gave a
substantial impetus to cascade analysis. In
particular, the porous-wall technique of boundary-
layer removal developed by the NACA (ref. 191)
was a notable contribution. The use of effective
tunnel boundary-layer control has resulted in more
consistent systematic test data (refs. 39, 54, 123,
and 192 (pt. II)) and in more significant two-
dimensional comparisons between theoretical and
experimental performance (refs. 98, 167 (pt. I),
and 193). With the availability of a considerable
amount of consistent data, it has become feasible
to investigate the existence of general relations
among the various cascade flow parameters.
Such relations curtail the amount of future
experimentsal data needed and also result in more
effective use of the data currently available.

Since the primary function of cascade informa-
tion is to aid in the design of compressors, the
present chapter expresses the existing cascade data
in terms of parameters applicable to compressor
design. Such expression not only facilitates the
design of moderate compressors but also makes
possible a rapid comparison of cascade data with
data obtained from advanced high-speed com-
pressor configurations. Since the bulk of the
available cascade data has been obtained at low
speed (Mach numbers of the order of 0.1), the
question of applicability to such high-speed units
is very significant. It is necessary to determine
which flow parameters can or cannot be applied,

183

Preceding page blank

UTC-2019.201



184 AERODYNAMIC DESIGN OF AXJIAL-FLOW COMPRESSORS

to what extent the low-speed data are directly
usable, and whether corrections can be developed
in those areas where the low-speed data cannot be
used directly.

In this chapter, the available cascade data
obtained from a large number of tunnels are
reworked in terms of what are believed to be
significant parameters and are correlated in
generalized forms wherever possible. The per-
formance parameters considered in the correlation
are the outlet-air deviation angle and the cascade
losses expressed in terms of blade-wake momentum
thickness. The correlations are based on the
variations of the performance parameters with
cascade geometry (blade profile shape, solidity,
chord angle) and inlet flow conditions. In view of
the difficulties involved in establishing correla-
tions over the complete range of operation of the
cascade at various Mach number levels, the
analysis is restricted to an examination of cascade
performance at a reference incidence-angle loca-
tion in the region of minimum loss.

The chapter is divided into four main sections:
(1) a brief description of the two-dimensional
cascade and of the parameters, concepts, and data
involved in the analysis; (2) an analysis of the
variation of the reference incidence angle with
cascade geometry and flow conditions; (3) an
analysis of the variation of total-pressure loss at
the reference incidence angle; and (4) an analysis
of the variation of deviation angle at the refer-
ence incidence angle.

SYMBOLS
The following symbols are used in this chapter:

A flow area

b exponent in deviation-angle relation

¢ chord length

D diffusion factor (based on over-all veloc-

ities)

local diffusion factor (based on local

velocities)

d exponent in wake velocity-distribution
relations

f/ function

H wake form factor, 5*/0*

7 incidence angle, angle between inlet-air
direction and tangent to blade mean
camber line at leading edge, deg

T incidence angle of uncambered blade
section, deg

K, compressibility correction factor in loss
equation

K, correction factor in incidence-angle rela-
tion

K; correction factor in deviation-angle rela-
tion

M Mach number

m,m, factors in deviation-angle relation

n slope factor in incidence-angle relation

P total or stagnation pressure

? static or stream pressure

Re, Reynolds number based on chord length

8 blade spacing

t blade maximum thickness

14 air velocity

y coordinate normal to axis

2 coordinate along axis

a angle of attack, angle between inlet-air
direction and blade chord, deg

B air angle, angle between air velocity and
axia] direction, deg

AB air-turning angle, 8,—8:, deg

¥° blade-chord angle, angle between blade
chord and axial direction, deg

) wake full thickness .

o* wake displacement thickness

8° deviation angle, angle between outlet-air
direction and tangent to blade mean
camber line at trailing edge, deg

8 deviation angle of uncambered blade
section, deg

0* wake momentum-defect thickness

K blade angle, angle between tangent to
blade mean camber line and axial
direction, deg

p density

g solidity, ratio of chord to spacing

@ blade camber angle, difference between
blade angles at leading and trailing
edges, x;—x;, deg

w total-pressure-loss coefficient

Subscripts:

av average

i.e. incompressible equation

me incompressible

l lower surface

mazx maximum

min minimum

ref reference
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FIGURE 123.———Layout of conventional low-speed cascade tunnel (ref. 168).

sh blade shape

t blade maximum thickness

u upper surface

z axial direction

0 tangential direction

0 free stream

1 station at cascade inlet

2 station at cascade exit (measuring station)
10 10 percent thick

PRELIMINARY CONSIDERATIONS
DESCRIPTION OF CASCADE

A schematic diagram of a low-speed two-
dimensional-cascade tunnel is shown in figure 123
to illustrate the general tunnel layout, The
principal components of the conventional tunnel
are a blower, a diffuser section, a large settling
chamber with honeycomb and screens to remove
any swirl and to ensure a uniform velocity dis-
tribution, a contracting section to accelerate the
flow, the cascade test section, and some form of
outlet-air guidance. The test section contains
a row or cascade of blades set in a mounting device
that can be altered to obtain a range of air inlet
angles (angle B, in figs. 123 and 124). Variations
in blade angle of attack are obtained either by
rotating the blades on their individual mounting
axes (ie., by varying the blade-chord angle ¥°)
while maintaining a fixed air angle or by keeping
the blade-chord angle fixed and varying the air
inlet angle by rotating the entire cascade. Outlet
flow measurements are obtsined from a traverse
along the cascade usually between % and 11
chord lengths behind the blade trailing edge at
the blade midspan. In the analysis, blade outlet
refers to the cascade measuring station.

In most cases, some form of wall boundary-
layer control in the cascade is provided by means

2

Q
—

1 Measuring
plane

Axial direction, 7

FiaurE 124.—Nomenclature for cascade blade.

of suction through slots or porous-wall surfaces.
Examples of different tunnel designs or detailed
information concerning design, construction, and
operation of the two-dimensional-cascade tunnel
can be obtained from references 39, 122, 168, 191,
and 194.

Nomenclature and symbols designating cascade
blade characteristics are given in figure 124. As
in isolated-airfoil practice, cascade blade shapes
are normally evolved by adding a basic thickness
distribution to a mean camber line. The mean
camber line (as indicated in fig. 124) represents
the basic curvature of the profile. Some frequent-
ly used curvatures are the NACA (A,) and
related mean lines (refs. 39 and 123), the circular-
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arc mean line (ref, 31, pt. I), and the parabolic-arc
mean line (ref. 192, pt. II). Two popular basic

thickness distributions are the NACA 65-series:
thickness distribution (ref. 39) and the British

C.4 thickness distribution (ref. 31, pt. I). A
high-speed profile has also been obtained from the
construction of -a circular-arc upper and lower
surface (ref. 40); this profile is referred to as the
double-circular-arc blade.

PERFORMANCE PARAMETERS

The performance of cascade blade sections has
generally been presented as plots of the variation
of air-turning angle, lift coefficient, and flow losses
against blade angle of attack (or incidence angle)
for a given cascade solidity and blade orientation.
Blade orientation is expressed in terms of either
fixed air inlet angle or fixed blade-chord angle.
Flow losses have been expressed in terms of co-
efficients of the drag force and the defects in
outlet total pressure or momentum. A recent in-
vestigation (ref. 156) demonstrates the significance
of presenting cascade losses in terms of the thick-
ness and form characteristics of the blade wakes.

In this analysis, the cascade loss parameters
considered are the wake momentum-thickness
ratio §*/c (ref. 156) and the total-pressure-loss
coeflicient w,, defined as the ratio of the average
loss in total pressure across the blade to the inlet
dynamic head. Cascade losses are considered in
terms of @,, since this parameter can be conven-
iently used for the determination of compressor
blade-row efficiency and entropy gradients. The
parameter 6*/c represents the basic wake develop-
ment of the blade profile and as such constitutes
a significant parameter for correlation purposes.
Values of 6*/c were computed from the cascade
loss data according to methods similar to those
presented in reference 156. The diffusion factor
D of reference 9 was used as a measure of the
blade loading in the region of minimum less.

In the present analysis, it was necessary to use
a uniform nomenclature and consistent correlation
technique for the various blade shapes considered.
It was believed that this could best be accom-
plished by considering the approach characteris-
tics of the blade in terms of air incidence angle %,
the camber characteristics in terms of the camber
angle ¢, and the air-turning characteristics in
terms of the deviation angle §° (fig. 124). As in-

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

‘dicated in figure 124, these angles are based on

the tangents to the blade mean camber line at the

. leading and trailing edges. The use of the devia-~

tion angle, rather than the turning angle, as a
measure of the air outlet direction has the advan-
tage, for correlation purposes, of a generally small
variation with incidence angle. Air-turning angle
is related to the camber, incidence, and deviation
angles by

Ap=p+i—05° (57)

Incidence angle is considered positive when it
tends to increase the air-turning angle, and devia-
tion angle is considered positive when it tends to
decrease the air-turning angle (fig. 124).

The use of incidence and deviation angles re-
quires a unique and reasonable definition of the
blade mean-line angle at the leading and trailing
edges, which may not be possible for some blade
shapes. The principal difficulty in this respect is
in the 65-(A,,)-series blades (ref. 39), whose mean-
line slope is theoretically infinite at the leading
and trailing edges. However, it is still possible to
render these sections usable in the analysiz by
arbitrarily establishing an equivalent circular-arc
mean camber line. As shown in figure 125, the
equivalent circular-arc mean line is obtained by
drawing a circular arc through the leading- and
trailing-edge points and the point of maximum
camber at the midchord position. Equivalent
incidence, deviation, and camber angles can then
be established from the equivalent circular-arc
mean line as indicated in the figure. The rela-
tion between equivalent camber angle and isolated-
airfoil lift coefficient of the NACA 65-(A,)-series
mean line is shown in figure 126.

A typical plot of the cascade performance pa-
rameters used in the analysis is shown in figure
127 for a conventional blade section at fixed
solidity and air inlet angle.

DATA SELECTION

In selecting data sources for use in the cascade
performance correlations, it is necessary to con-
sider the degree of two-dimensionality obtained
in the tunnel and the magnitude of the test
Reynolds number and turbulence level.

Two-dimensionality.—As indicated previously,
test results for a given cascade geometry obtained
from different tunnels may vary because of a fail-
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Figure 125.—Equivalent circular-arc mean line for
NACA 65-(Ay0)-series blades.

ure to achieve true two-dimensional flow across
the cascade. Distortions of the true two-dimen-
sional flow are caused by the tunnel-wall bound-
ary-layer growth and by nonuniform inlet and
outlet flow distributions (refs. 191 and 168). In
modern cascade practice, good flow two-dimen-
sionality is obtained by the use of wall-boundary-
layer control or large tunnel size in conjunction
with a large number of blades, or both. Ex-
amples of cascade tunnels with good two-dimen-
sionality are given by references 39 and 194.

The lack of good two-dimensionality in cascade
testing affects primarily the air-turning angles and
blade surface pressure distributions. Therefore,
deviation-angle data were rejected when the two-
dimensionality of the tunnel appeared questionable
(usually the older and smaller tunnels). Practi-
cally all the cascade loss data were usable, however,
since variations in the measured loss obtained from
a given cascade geometry in different tunnels will
generally be consistent with the measured diffusion
levels (unless the blade span is less than about 1
or 2 inches and there is no extensive boundary-
layer removal).

Reynolds number and turbulence.—For the
same conditions of two-dimensionality and test-
section Mach number, test results obtained from
cascades of the same geometry may vary because
of large differences in the magnitude of the
bladechord Reynolds number and the
free-stream turbulence. Examples of the effect
of Reynolds number and turbulence on the
losses obtained from a given blade section at
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fixed incidence angle are presented in figure 128.
Similar pronounced effects are observed on the
deviation angle. As discussed in chapter V, the
loss variation with Reynolds number is associated
primarily with a local or complete separation of
the laminar boundary layer on the blade surfaces.
The data used in the correlation are restricted to
values of blade-chord Reynolds number from about
2.0X10° to 2.5X10° in order to minimize the
effects of different Reynolds numbers. Free-
stream turbulence level was not generally deter-
mined in the various caseade tunnels.

In some cases (refs. 39 and 195, e.g.), in tunnels
with low turbulence levels, marked local laminar-
separation effects were observed in the range of
Reynolds number selected for the correlation.
Hlustrative plots of the variation of total-pressure-
loss coefficient with angle of attack for a cascade
with local laminar separation are shown in figure
129. In such instances, it was necessary to esti-
mate the probable variation of loss (and deviation
angle) in the absence of the local separation
(as indicated in the figure) and use values
obtained from the faired curves for the correla-
tions.

The specific sources of data used in the analysis
are indicated by the references listed for the vari-
ous performance correlations. Details of the tun-
nel construction and operation and other pertinent
information are given in the individual references.

APPROACH

In a correlation of two-dimensional-cascade data
that is intended ultimately for use in compressor
blade-element design, the variations of perform-
ance parameters should be established over a wide
range of incidence angles. Experience shows (fig.
130) that the variation of loss with incidence angle
for a given blade section changes markedly as the
inlet Mach number is increased. Consequently,
correlated low-speed blade performance at high
and low incidence angles is not applicable at high
Mach numbers. The low-speed-cascade perform-
ance is therefore considered at some reference
point on the general loss-against-incidence-angle
curve that exhibits the least variation in location
and in magnitude of performance parameters as
Mach number is increased.

The reference location herein is selected as the
point of minimum loss on the curve of total-
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Figure 127.—Illustration of basic performance parameters
for cascade analysis. Data obtained from conventional
blade geometry in low-speed two-dimensional tunnel.
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Fieure 128.—Effect of blade-chord Reynolds number and
free-stream turbulence on minimum-loss coefficient of
eascade blade section in two-dimensional tunnel.
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pressure loss against incidence angle. For con-
ventional low-speed-cascade sections, the region
of low-loss operation is generally flat, and it is
difficult to establish precisely the value of incidence
angle that corresponds to the minimum loss. For
practical purposes, therefore, since the curves of
loss coefficient against incidence angle are gener-
ally symmetrical, the reference minimum-loss loca-~
tion was established at the middle of the low-loss
range of operation. Specifically, as shown in figure
131, the reference location is selected as the inci-
dence angle at the midpoint of the range, where
range is defined as the change in incidence angle
corresponding to a rise in loss coefficient equal to
the minimum value. Thus, for conventional cas-
cade sections, the midrange reference location is
considered coincident with the point of minimum
loss. In addition to meeting the abovementioned
requirement of small variation with inlet Mach
number, the reference minimum-loss incidence
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(a) C.4 Circular-arc blade. Camber angle, 25°; maximum-
thickness ratio, 0.10; solidity, 1.333; blade-chord angle,
42.5° (ref. 40). (b) C.4 Parabolic-ard blade. Camber
angle, 25°; maximum-thickness ratio, 0.10; solidity,
1.333; blade-chord angle, 37.6° (ref. 40).

(¢) Double-circular-arc blade. Camber angle, 25°; maxi-
mum-thickness ratio, 0.105; solidity, 1.333; blade-chord
angle, 42.5° (ref.40). (d) Sharp-nose blade. Camber
angle, 27.5°; maximum-thickness ratio, 0.08; solidity,
1.15; blade-chord angle, 30° (ref. 205).

Figure 130.—Effect of inlet Mach number on loss characteristics of cascade blade sections.

angle (as compared with the optimum or nominal
incidence settings of ref. 196 or the design incidence
setting of ref. 39) requires the use of only the loss
variation and also permits the use of the diffusion
factor (applicable in region of minimum loss) as
a measure of the blade loading.

At this point, it should be kept in mind that
the reference minimum-loss incidence angle is
not necessarily to be considered as a recommended
design point for ‘gompressor application. The
selection of the best incidence angle for a par-
ticular blade element in a multistage-compressor
design is a function of many considerations, such
as the location of the blade row, the design Mach
number, and the type and application of the design.
In general, there is no one universal definition
of design or best incidence angle. The cascade
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F1GURE 131.—Definition of reference minimum-loss inci-
dence angle.

reference location is established primarily for
purposes of analysis.

Of the many blade shapes currently in use
in compressor design practice (i.e., NACA 65-
series, C-series circular arc, parabolic arc, double
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circular arc), data sufficient to permit a reasonably
complete and significant correlation have been
published only for the 65-(A,)-series blades of
reference 39. Therefore, a basic correlation of
the 65-(Aj)-series data had to be established
first and the results used as a guide or foundation
for determining the corresponding performance
trends for the other blade shapes for which only
limited data exist.

Since the ultimate objective of cascade tests
is to provide information for designing com-
pressors, it is desirable, of course, that the structure
of the data correlations represent the compressor
situation as closely as possible. Actually, a
blade element in a compressor represents a blade
section of fixed geometry (i.e., fixed profile form,
solidity, and chord angle) with varying inlet-air
angle. In two-dimensional-cascade practice, how-
ever, variations in incidence angle have been
obtained by varying either the inlet-air angle or
the blade-chord angle. The available systematic
data for the NACA 65-(A;o)-series blades (ref. 39)
have been obtained under conditions of fixed
inlet-air angle and varying blade-chord angle.
Since these data form the foundation of the
analysis, it was necessary to establish the cascade
performance correlations on the basis of fixed
inlet-air angle. Examination of limited unpub-
lished low-speed data indicate that, as illustrated
in figure 132, the loss curve for constant air inlet
angle generally falls somewhat to the right of
the constant-chord-angle curve for fixed values
of B, and ° in the low-loss region of the curve.

Values of minimum-loss incidence angle for fixed -

B: operation are indicated to be of the order of 1°
or 2° greater than for fixed ¥° operation. An
approximate allowance for this difference is made

@ e
o 5 Constant S,

13 AN /
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Fiaure 132.—Qualitative comparison of cascade range
characteristics at constant blade-chord angle and con-
stant inlet-air angle (for same value of B, in region of
minimum loss).

in the use of reference-incidence-angle data from
these two methods.

With the definition of reference incidence angle,
performance parameters, and analytical approach
established, the procedure is first to determine
how the value of the reference minimum-loss
incidence angle varies with cascade geometry and
flow conditions for the available blade profiles.
Then the variation of the performance parameters
is determined at the reference location (as indicated
in fig. 127) as geometry and flow are changed.
Thus, the various factors involved can be ap-
praised, and correlation curves and charts can
be established for the available data. The
analysis and correlation of cascade reference-point
characteristics are presented in the following
sections.

INCIDENCE-ANGLE ANALYSIS
PRELIMINARY ANALYSIS

In an effort to obtain a general empirical rule
for the location of the reference minimum-loss
incidence angle, it is first necessary to examine the
principal influencing factors.

It is generally recognized that the low-loss
region of incidence angle is identified with the
absence of large velocity peaks (and subsequent
decelerations) on either blade surface. For infi-
nitely thin sections, steep velocity gradients are
avoided when the front stagnation point is located
at the leading edge. This condition has fre-
quently been referred to as the condition of
“impact-free entry.” Weinig (ref. 80) used the
criterion of stagnation-point location to establish
the variation of impact-free-entry incidence angle
for infinitely thin circular-arc sections from
potential-flow theory. Results deduced from ref-
erence 80 are presented in figure 133(a). The
minimum-loss incidence angle is negative for
infinitely thin blades and decreases linearly with
camber for fixed solidity and blade-chord angle.

While there is no definite corresponding i-inc
dence-angle theory for thick-nose blades with
rounded leading edges, some equivalent results
have been obtained based on the criterion that the
location of the stagnation point in the leading-
edge region of a thick blade is the controlling
factor in the determination of the surface velocity
distributions. Carter, in reference 190, showed
semitheoretically on this basis that optimum
incidence angle (angle at maximum lift-drag ratio)
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angle, 20°.

Ficure 133.—Variation of reference incidence angle for circular-air-mean-line blades obtained from theoretical or semi-
theoretical investigations.

for a conventional 10-percent-thick circular-arc
. blade decreases with increasing camber angle.
The results of reference 190 were followed by
generalized plots of optimum incidence angle in
reference 196, which showed, as in figure 133(a),
that optimum incidence angle for a 10-percent-
thick C-series blade varies with camber angle,
solidity, and blade orientation. (In these ref-
erences, blade orientation was expressed in terms
of air outlet angle rather than blade-chord angle.)
The plot for an outlet-air angle of 20° is shown in
figure 133(b). Apparently, the greater the blade
circulation, the lower in magnitude the minimum-
loss incidence angle must be. It is reasonable to
expect, therefore, that the trends of variation of
minimum-loss incidence angle for conventional
blade sections will be similar to those established
by thin-airfoil theory.

A preliminary examination of experimental
cascade data showed that the minimum-loss
incidence angles of uncambered sections (¢p=0)
of conventional thicknesses were not zero, as
indicated by theory for infinitely thin blades (fig.
133(a)), but always positive in value. The
appearance of positive values of incidence angle
for thick blades is attributed to the existence of
velocity distributions at zero incidence angle that
are not symmetrical on the two surfaces. Typical
plots illustrating the high velocities generally
observed in the inlet region of the lower (pressure)
surface of thick uncambered blades at zero inci-
dence angle are shown in figure 134. Apparently,
an increase in incidence angle from the zero value
is necessary in order to reduce the lower-surface
velocity to a more equitable distribution that
results in a minimum of the over-all loss. This
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blade-chord angles between 0° and 90°, since, as
m indicated by the highly simplified one-dimensional
1.2 / T model of the blade passage flow in figure 135, the
velocity distributions at these limit angles are
/ﬂ \ﬁ'l symmetrical.
LOFA The effect of blade thickness blockage on
7/ impact-free-entry incidence angle for. straight
7 (o) (uncambered) blades of constant chordwise thick-
ness in incompressible two-dimensional flow is
| a . investigated in reference 34. The results of
; Surface reference 34 are plotted in terms of the parameters
o Upper used in this analysis in figure 136. It is reasonable
o Lower to expect that similar trends of variations of
— : zero-camber reference. minimum-loss incidence
> : angle will be obtained for compressor blade
L0 ;/ profiles.

On the basis of the preceding analysis, therefore,

it is expected that, for low-speed-cascade flow,
8 {b) reference minimum-loss incidence angle will gen-
"0 20 40 60 80 100 erally be positive at zero camber and decrease with

Percent chord . . . . 7e

increasing camber, depending on solidity and

(a) Inlet-air angle, 60°; solidity, 1.5. blade-chord angle. The available theory also

(b) Inlet-air angle, 30°; solidity, 1.0. indicates that the variation of reference incidence

Fieure 134.—Illustration of velocity distribution for angle with camber at fixed so]jdity and chord
uncambered blade of conventional thickness at zero

incidence angle. Data for 65—(0)10 blade of reference a,ng'le _mlght’ be essentlally ]_u'lear. If s0, the
39. variations could be expressed in terms of slope

1.4 ] l - zero-camber thickness effect will appear only for
=

Velocity ratio, l//l/|

(a) (b) (c)

(a) v°=0° (b) ¥y°=90°. (c) 0°<y°<90°.

Fieure 135.—Effect of blade thickness of surface velocity at zero incidence angle for uncambered airfoil section according
to simplified one-dimensional model.
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F1aURE 136.—Theoretical variation of “impact-free-entry”
incidence angle for constant-thickness uncambered
sections according to developments of reference 34.

and intercept values, where the intercept value
represents the magnitude of the incidence angle
for the uncambered section (function of blade
thickness, solidity, and blade-chord angle). Ref-
erence minimum-loss incidence angle may also
vary with inlet Mach number and possibly with
Reynolds number.

DATA CORRELATIONS

Form of correlation—Although preliminary
theory indicates that blade-chord angle is the
significant blade orientation parameter, it was
necessary to establish the data correlations in
terms of inlet-air angle, as mentioned previously.
The observed cascade data were found to be
represented satisfactorily by a linear variation
of reference incidence angle with camber angle
for fixed solidity and inlet-air angle. The varia-
tion of reference minimum-loss incidence angle
can then be described in equation form as

i=t,tne (261)

where 1, is the incidence angle for zero camber,
and 7 is the slope of the incidence-angle variation
with camber (1—1,)/e. :

Since the existence of a finite blade thickness
is apparently the cause of the positive values of
i, it is reasonable to assume that both the
magnitude of the maximum thickness and the
thickness distribution contribute to the effect.
Therefore, since the 10-percent-thick 65-series

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

“blades of reference 39 are to be used as the basis

for a generalized correlation of all conventional
blade shapes, it is proposed that the zero-camber
reference incidence angle be expressed in the
form
1o= (Kl) ] (Kl) l(io)lo (262)

where . (7,);0 represents the variation of zero-
camber incidence angle for the 10-percent-thick
65-series thickness distribution, (K;); represents
any correction necessary for maximum blade
thicknesses other than 10 percent, and (K).
represents any correction necessary for a blade
shape with a thickness distribution different from
that of the 65-series blades. . (For a 10-percent-
thick 65-geries blade, (K,),=1 and (K))a=1.)

The problem, therefore, is reduced to finding the
values of n and 7, (through eq. (262)) as functions
of the pertinent variables involved for the various
blade profiles considered.

NACA 65-(A,;)-series blades.—From the exten-
sive low-speed-cascade data for the 65-(A,,)-series
blades (ref. 39), when expressed in terms of
equivalent incidence and camber angles
(figs. 125 and 126), plots of 7, and » can be
deduced that adequately represent the minimum-
loss-incidence-angle variations of the data. The
deduced values of 1, and = as functions of solidity
and inlet-air angle are given for these blades in
figures 137 and 138, The subscript 10 in figure
137 indicates that the ¢, values are for 10-percent
maximum-thickness ratio. Values of intercept 7,
and slope n were obtained by fitting a straight line
to each data plot of reference incidence angle
against camber angle for a fixed solidity and air
inlet angle. The straight lines were selected so
that both a satisfactory representation of the
variation of the data points and a consistent
variation of the resulting n and ¢, values were
obtained.

The deduced rule values and the observed
data points compared in figure 139 indicate the
effectiveness of the deduced representation. In
several configurations, particularly for low cam-
bers, the range of equivalent incidence angle
covered in the tests was insufficient to permit
an accurate determination of a minimum-loss
value. Some of the scatter of the data may be
due to the effects of local laminar separation in
altering the range characteristics of the sections.
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Fraure 139.—Comparison of data values and deduced rule values of reference minimum-loss incidence angle for 65—(A;)10
blades as equivalent circular arc (ref. 39).

blade can be obtained from the 7, and n values of
the 65-series blade with (K,),=1.1.
Double-circular-arc blades.—The double-circu-
lar-arc blade is composed of circular-arc upper
and lower surfaces. The arc for each surface
is drawn between the point of maximum thick-
ness at midchord and the tangent to the circles
of the leading- and trailing-edge radii. The
chordwise thickness distribution for the double-
circular-arc profile with 1-percent leading- and
trailing-edge radius is shown in figure 140. Lack
of cascade data again prevents an accurate
determination of a reference-incidence-angle rule
for the double circular arc. Since the double-
circular-arc blade is thinner than the 65-series
blade in the inlet region, the zero-camber in-

cidence angles for the double-circular-arc blade
should be somewhat different from those of the
65-series section, with perhaps (K,),<1. It
can also be assumed, as before, that the slope-
term values of figure 138 are valid for the double-
circular-arc blade. From an examination of the
available cascade data for the double-circular-arc
blade (¢=25° ¢=1.333, ref. 40; and ¢=40° o=
1.064, ref. 197), it appears that the use of figures
137 and 138 with a value of (X,),;,=0.7 in equa-
tions (261) and (262) results in a satisfactory
comparison between predicted and observed values
of reference incidence angle.

Other blades.—Similar procedures can be ap-
plied to establish reference-incidence-angle cor-
relations for other blade shapes. Cascade data
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Figure 141.-—~Zero-camber minimum-loss incidence angle
angle for 10-percent-thick C.4 profile. Solidity, 1.0
(ref. 192, pt. I).

are also available for the C-series parabolic-arc
blades (refs. 40, 192, 200, and 201) and the
NACA 65-(Al)-series blade (ref. 123); but, in
view of the limited use of these forms in current
practice, no attempt was made at this time to
deduce corresponding incidence-angle rules for
these blades.

Effect of blade maximum thickness.—As indi-
cated previously, some correction (expressed
here in terms of (K,), eq. (262)) of the base
values of (3,);) obtained from the 10-percent-
thick 65-series blades in figure 137 should exist
for other values of blade maximum-thickness
- ratio. According to the theory of the zero-
camber effect, (K,), should be zero for zero
thickness and increase as maximum blade thick-
ness is increased, with a value of 1.0 for a thickness
ratio of 0.10. Although the very limited low-

angle have all been based on low-speed-cascade
data. It appears from limited high-speed data,
however, that minimum-loss incidence angle will
vary with increasing inlet Mach number for
certain blade shapes.

The variations of minimum-loss incidence angle
with inlet Mach number are plotted for several
blade shapes in figures 143 and 144. The extension
of the test data points to lower values of inlet Mach
number could not generally be made because of
reduced Reynolds numbers or insufficient points
to establish the reference location at the lower
Mach numbers. In some instances, however, it
was possible to obtain low-speed values of inci-
dence angle from other sources.

The blades of figure 143 show essentially no
variation of minimum-loss incidence angle with -
inlet Mach number, at least «:p to a Mach number
of about 0.8. The blades ot figure 144, however,
evidence a marked increase in incidence angle with
Mach number. The difference in the variation of
minimum-loss incidence angle with Mach number
in figures 143 and 144 is associated with the
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(a) C.4 Circular-arc blade. Camber angle, 25°; solidity
1.333; blade-chord angle, 42.5° (ref. 40).

(b) C.4 Parabolic-arc blade. Camber angle, 25°; solidity,
1.333; blade-chord angle, 37.5°; maximum camber at
40-percent chord (ref. 40).

(e) C.7 Parabolic-arc blade. Camber angle, 40°; solidity,
1.0; blade-chord angle, 24.6°; maximum camber at
45-percent chord (ref. 216).

FIGURE 143.—Variation of reference minimum-loss inci-
dence angle with inlet Mach number for thick-nose
gections. Maximum-thickness ratio, 0.10.

made for these blades because of evidence of strong
local laminar-separation effects.

Since the most obvious difference between the
blades in figures 143 and 144 is the comstruction
of the leading-edge region, the data suggest that
blades with thick-nose inlet regions tend to show,
for the range of inlet Mach number covered,
essentially no Mach number effect on minimums-
loss incidence angle, while blades with sharp lead-
ing edges will have a significant Mach number
effect. The available data, however, are too
limited to confirm this observation conclusively at
this time. Furthermore, for the blades that do
show a Mach number effect, the magnitude of
the variation of reference incidence angle with
Mach number is not currently predictable.

SUMMARY

The analysis of blade-section reference mini-
mum-loss incidence angle shows that the variation
of the reference incidence angle with cascade
geometry at low speed can be established satis-
factorily in terms of an intercept value 3, and a

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS
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(a) Double-circular-arc blade. Camber angle, 25; maxi-
mum-thickness ratio, 0.105; solidity, 1.333; blade-chord
angle, 42.5° (ref. 40).

(b) Blade section of reference 205. Camber angle, 27.5°;
maximum-thickness ratio, 0.08; solidity, 1.15; blade-
chord angle, 30°; maximum thickness and camber at
50-percent chord.

Ficure 144.—Variation of reference minimum-loss inci-
dence angle with inlet Mach number for sharp-nose
sections.

slope value n as given by equation (261). De-
duced values of 7, and n were obtained as a function
of B, and ¢ from the data for the 10-percent-thick
65-(A,0)-series blades of reference 39 as equivalent
circular-arc sections (figs. 137 and 138). It was
then shown that, as a first approach, the deduced
values of (Z,);0 and 7 in figures 137 and 138 could
also be used to predict the reference incidence
angles of the C-series and double-circular-arc
blades by means of a correction (K,),, to the (2,)50
values of figure 137 (eq. (262)).

The procedure involved in estimating the low-
speed reference minimum-loss incidence angle of
a blade section is as follows: From known values
of B, and ¢, (%,)10 and n are selected from figures
137 and 138. The value of (K,), for the blade
maximum-thickness ratio is obtained from figure
142, and the appropriate value of (K)),» is selected
for the type of thickness distribution. For NACA
65-series blades, (K,),,=1.0; and it is proposed
that (K,),, be taken as 1.1 for the C-series circular-
arc blade and as 0.7 for the double-circular-arc
blade. The value of %, is then computed from
equation (262); and finally ¢ is determined from
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conventional thickness in a plane normal to the
wake (i.e., normal to the outlet flow) at the meas-
uring station. Definitions of wake characteristics
and variations in velocity and pressure assumed
by the analysis are given in reference 156. The
analysis further indicates that the collection of
terms within the braces is essentially secondary
(since H, is generally < about 1.2 at the measuring
station), with a magnitude of nearly 1 for conven-
tional unstalled configurations, The principal
determinants of the loss in total pressure at the
cascade measuring station are, therefore, the cas-
cade geometry factors of solidity, air outlet and
air inlet angles, and the aerodynamic factor of
wake momentum-thickness ratio.

Since the wake is formed from a coalescing of
the pressure- and suction-surface boundary layers,
the wake momentum thickness naturally depends
on the development of the blade surface boundary
layers and also on the magnitude of the blade
trailing-edge thickness. The results of references
156, 202, and 204 indicate, however, that the
contribution of conventional blade trailing-edge
thickness to the total loss is not generally large
for compressor sections; the preliminary factor
in the wake development is the blade surface
boundary-layer growth. In general, it is known
(ch. V, e.g.) that the boundary-layer growth on
the surfaces of the blade is a function primarily
of the following factors: (1) the surface velocity
gradients (in both subsonic and supersonic flow),
(2) the blade-chord Reynolds number, and (3)
the free-stream turbulence level.

Experience has shown that blade surface velocity
distributions that result in large amounts of diffu-
sion in velocity tend to produce relatively thick
blade boundry layers. The magnitude of the
velocity diffusion in low-speed flow generally de-
pends on the geometry of the blade section and
its incidence angle. As Mach number is increased,
however, compressibility exerts a further influence
on the velocity diffusion of a given cascade
geometry and orientation. If local supersonic
velocities develop at high inlet Mach numbers,
the velocity diffusion is altered by the formation
of shock waves and the interaction of these shock
waves with the blade surface boundary layers.
The losses associated with local supersonic flow
in a cascade are generally greater than for subsonic
flow in the same cascade. The increases in loss
are frequently referred to as shock losses.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

Caseade-inlet Mach number also influences the
magnitude of the subsonic diffusion for a fixed
cascade. This Mach number effect is the con-
ventional effect of compressibility on the blade
velocity distributions in subsonic flow. Com-
pressibility causes the maximum local velocity on
the blade surface to increase at a faster rate than
the inlet and outlet velocities. Accordingly, the
magnitude of the surface diffusion from maximum
velocity to outlet velocity becomes greater as
inlet Mach number is increased. A further
secondary influence of Mach number on losses is
obtained because of an increase in losses associated
with the eventual mixing of the wake with the
surrounding free-stream flow (ref. 37).

On the basis of the foregoing considerations,
therefore, it is expected that the principal factors
upon which to base empirical cascade-wake-~
thickness correlations should be velocity diffusion,
inlet Mach number, blade-chord Reynolds number,
and, if possible, turbulence level.

DATA CORRELATIONS

Velocity diffusion based on local velocities.—
Recently, several investigations have been re-
ported on the establishment of simplified diffu-
sion parameters and the correlation of cascade
losses in terms of these parameters (refs. 9, 38, and
156). The general hypothesis of these diffusion
correlations states that the wake thickness, and
consequently the magnitude of the loss in total
pressure, is proportional to the diffusion in
velocity on the suction surface of the blade in
the region of the minimum loss. This hypothesis
is based on the consideration that the boundary
layer on the suction surface of conventional
compressor blade sections contributes the major
share of the wake in these regions, and therefore
the suction-surface velocity distribution becomes
the governing factor in the determination of the
loss. It was further established in these correla-
tions that, for conventional velocity distributions,
the diffusion in velocity can be expressed signifi-
cantly as a parameter involving the difference
between some function of the measured maximum
suctionsurface velocity V.. and the outlet
velocity V.

Reference 38 presents an analysis of blade-
loading limits for the 65-(A;,)10 blade section in
terms of drag coefficient and a diffusion parameter
given for incompressible flow by (V7.:—V3)/Via.-
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Results of an unpublished analysis of cascade
losses in terms of the momentum thickness of the
blade wake (as suggested in ref. 156) indicate
that a local diffusion parameter in the form given
previously or in the form (Vig,i— V2)/Vme: can
satisfactorily correlate experimental cascade loss
data.? The term ‘local diffusion parameter” is
used to indicate that a knowledge of the maximum
local surface velocity is required. The correla-
tion obtained between calculated wake momen-
tum-thickness ratio 6*/c and local diffusion
factor given by

Vmaz_Vz

D= Vv

(265)

obtained for the NACA 65-(A,;)-series cascade
sections of reference 39 at reference incidence
angle is shown in figure 146. Values of wake
momentum-thickness ratio for these data were
computed from the reported wake coefficient
values according to methods similar to those
discussed in reference 156. Unfortunately, blade
surface velocity-distribution data are not available
for the determination of the diffusion factor for
other conventional blade shapes.

.06

8" /¢

.02

0 A 2 3 4 5 6

Local diffusion factor., o
loc

Figure 146.—Variation of computed wake momentum-
thickness ratio with local diffusion factor at reference
incidence angle for low-speed-cascade data of NACA
65—(A10)10 blades (ref. 39).

The correlation of figure 146 indicates the
general validity of the basic diffusion hypothesis.
At high values of diffusion (greater than about
0.5), a separation of the suction-surface boundary
layer is suggested by the rapid rise in the momen-
tum thickness.. The indicated nonzero value of
momentum thickness at zero diffusion represents

2 A later analysis of cascade total-pressure losses is given in Analysis of
Experimental Low-8peed Loss end Stall Characteristics of Two-Dimensional
Compressor Blade Cascades by Beymour Liebeln, NACA RM E57A28, 1957.
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the basic friction loss (surface shear stress) of the
flow and also, to a smaller extent, the effect of
the finite trailing-edge thickness. The correla-
tion of figure 146 further indicates that wake
momentum-thickness ratio at reference incidence
angle can be estimated from the computed local
diffusion factor for a wide range of solidities,
cambers, and inlet-air angles. The loss relations
of equation (264) and reference 156 can then be
used to compute the resulting loss in the total
pressure.

Velocity diffusion based on over-all velocities.—
In order to include the cases of blade shapes for
which velocity-distribution data are not available,
a diffusion parameter has been established in
reference 9 that does not require a specific knowl-
edge of the peak local suction-surface velocity.
Although originally derived for use in compressor
design and analysis, the diffusion factor of refer-
ence 9 can also be applied in the analysis of cascade
losses. The diffusion factor of reference 9 at-
tempts, through several simplifying approxima-
tions, to express the local diffusion on the blade
suction surface in terms of over-all (inlet or outlet)
velocities or angles, quantities that are readily
determined. The basis for the development of
the over-all diffusion factor is presented in detail
in reference 9 and is indicated briefly in figure 147.
The diffusion factor is given by

(1Y), AV
D_(l V1)+2JV1 (54)

which, for incompressible two-dimensional-cascade
flow, becomes

D=(1—2—%:%)+°°Ti‘-’l (tan B,—tan B;) (266)

As in the case of the local diffusion factor, the
diffusion factor of equation (266) is restricted to
the region of minimum loss.

Cascade total-pressure losses at reference mini-
mum-loss incidence angle are presented in refer-
ence 9 as a function of diffusion factor for the
blades of reference 39. In a further unpublished
analysis, a composite plot of the variation of
computed wake momentum-thickness ratio with
D at reference minimum-loss incidence angle was
obtained from the available systematic cascade
data (refs. 39 and 192). as shown in figure 148.%
Blade maximum thickness ‘was 10 percent in all
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Ficure 147.—Basis of development of diffusion factor

for cascade flow from reference 9. Dz“—"’"i,iyj
av

Vma:“ V. . S
z——T,J—’; Voo =V +f (4;__1’0), thus, equations (54)
and (266).

cases. A separation of the suction-surface

boundary layer at high blade loading is indicated
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FicURE 148.—Variation of computed wake momentum-
thickness ratio with overall diffusion factor at reference
incidence angle for low-speed systematic cascade data
of references 39 and 192. Blade maximum-thickness
ratio, 0.10; Reynolds number, =~2.5% 10°,

by the increased rise in the wake momentum
thickness for values of diffusion factor greater
than about 0.6. A

For situations in which the determination of
a wake momentum-thickness ratio cannot be made,
a significant loss analysis may be obtained if a
simplified total-pressure-loss parameter is used
that closely approximates the wake thickness.
Since the terms within the braces of equation
(264) are generally secondary factors, a loss pa-
rameter of theform w, 008 By (008 By 52)2 should con-

20 \cos B

stitute a more fundamental expression of the basic
loss across a blade element than the loss coefficient
alone. The effectiveness of this substitute loss
parameter in correlating two-dimensional-cascade
losses is illustrated in figure 149(a) for all the data
for the NACA 65-(A,,)-series blades of reference
39. (Total-pressure-loss coefficients were com-
puted for the data from relations given in ref. 9.)
A generalized correlation can also be obtained in

co;f 2, as shown in figure 149(b), but

its effectiveness as a separation indicator does not
appear to be as good. Such generalized loss
parameters are most effective if the wake form
does not vary appreciably among the various
data considered.

Effect of blade maximum thickness.—Since an
increase in blade maximum-thickness ratio in-
creases the magnitude of the surface velocities
(and therefore the diffusion), higher values of
wake momentum-thickness ratio would be expected
for thicker blades. From an analysis of limited
available data on varying blade maximum-
thickness ratio (refs. 202 and 203), it appears that
the effect of blade thickness on wake momentum-
thickness ratio is not large for conventional

terms of w;
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cascade configurations. For example, for an in-
crease in blade maximum-thickness ratio from
0.05 to 0.10, an increase in 6*/c of about 0.003 at
D of about 0.55 and an increase of about 0.002 at
D of about 0.35 are indicated. The greater in-
crease in wake 0*/c at the higher diffusion level is
understandable, since the rate of change of 8*/c
with D, increases with increasing diffusion (see
fig. 146).

If blade surface velocity distributions can be
determined, then the thickness effect will auto-
matically be included in the evaluation of the
resulting local diffusion factor. When an over-
all diffusion factor such as equation (54) is used,
variations in blade thickness are not reflected in
the corresponding loss prediction. However, in
view of the small observed effect and the scatter
of the original 6*/c against D correlation of figure
148, it is believed that a thickness correction is
unwarranted for conventional thickness ranges.
However, the analysis does indicate that, for high
diffusion and high solidity levels, it may be ad-
visable to maintain blade thickness as small as
practicable in order to obtain the lowest loss at
the reference condition.

Thus, the plots of figures 146, 148, and 149
show that, when diffusion factor and wake
momentum-thickness ratio (or total-pressure-loss
parameter) are used as the basic blade-loading
and loss parameters, respectively, a generalized
correlation of two-dimensional-cascade loss data
is obtained. Although several assumptions and
restrictions are involved in the use and calculation
of these parameters, the basic diffusion approach
constitutes a useful tool in cascade loss analysis.
In particular, the diffusion analysis should be
investigated over the complete range of incidence
angle in an effort to determine generalized off-
design loss information. .

Effect of Reynolds number and turbulence,—
The effect of blade-chord Reynolds number and
turbulence leve] on the measured losses of cascade
sections is discussed in the section on Data Selec-
tion, in chapter V, and in references 39, 167
(pt. I), and 183. In all cases, the data reveal an
increasing trend of loss coefficient with decreasing
Reynolds number and turbulence. Examples of
the variation of the total-pressure-loss coefficient
with incidence angle for conventional com-
pressor blade sections at two different values
of Reynolds number are illustrated in figure
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F1aurE 149.—Variation of loss parameter with diffusion
factor at reference minimum-loss incidence angle
computed from low-speed-cascade data of NACA
65~(A40) 10 cascade blades (ref. 39).

150. Loss variations with Reynolds number
over a range of incidence angles for a given blade
shape are shown in figure 151. A composite plot
of the variation of total-pressure-loss coefficient
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(a) 65-Series blade 65-(12)10. Solidity, 1.5; inlet-air
angle, 45° (ref. 39).
(b) Circular-arc blade 10C4/25C50. Bolidity, 1.333; blade-
chord angle, 42.5° (ref. 40).

Fiaore 150.—Effect of Reynolds number on variation of
loss with incidence angle.
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Fi1gURE 151.—Variation of total-pressure-loss coeflicient
with blade-chord Reynolds number for parabolic-arc
blade 10C4/40 P40. Inlet-air angle, 28° to 40°;
solidity, 1.333 (ref. 183).

at minimum loss with blade-chord Reymolds
number for a large number of blade shapes is
shown in figure 152. Identification data for the
various blades included in the figure are given in
the references. For the blades whose loss data are
reported in terms of drag coefficient, conversion to
total-pressure-loss coefficient was accomplished
according to the cascade relations presented in
reference 9. The effect of change in tunnel
turbulence level through the introduction of
screens is indicated for some of the blades.

It is apparent from the curves in figure 152 that
it is currently impossible to establish any one value
of limiting Reynolds number that will hold for all
blade shapes. (The term limiting Reymnolds
number refers to the value of Reynolds number at
which a large rise in loss is obtained.) On the
basis of the available cascade data presented in
figure 152, however, it appears that serious trouble
in the minimum-loss region may be encountered
at Reynolds numbers below about 2.5X10°.
Carter in reference 190 places the limiting blade-
chord Reynolds number based on outlet velocity
at 1.5 to 2.0X10°% Considering that outlet
Reynolds number is less than inlet Reynolds
number for decelerating cascades, this quoted

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

value is in effective agreement with the value of
limiting Reynolds number deduced herein.

The desirability of conducting cascade investi-
gations in the essentially flat range of the curve of
loss coefficient against Reynolds number in order
to enhance the correlation of data from various
tunnels, as well as from the various configurations
of a given tunnel, is indicated. Cascade operation
in the flat range of Reynolds number may also
yield a more significant comparison between
observed and theoretically computed loss. Reyn-
olds number and turbulence level should always
be defined in cascade investigations. Furthermore,
the development of some effective Reynolds
number (ch. V) that attempts to combine the
effects of both blade-chord Reynolds number and
turbulence should be considered for use as the
independent variable.

Effect of inlet Mach number.—In the previous
correlations, attention was centered on the various
factors affecting the loss of cascade blades for

18
“1\ \ 'Blo'de " T Refer-
H . ence _|
! \ o (.4 Circular orc 167
1614 1 o C.4 Circular orc PT -
: 1 \ (turbulence added) ) P"
; : o 65-(12A0)10 .
1 | o 65-(124,0)10 39
14 0 i (turbulence odded) 1
_ . 1 © C4 Circular orc
13 t & C.4 Porabalic orc 40
o ! \ © Dauble circulor arc
g e ¥ 0  65-(12A5lg)I0 .
o 1 | ¥ 65-{(12801g,)I0 123 |
5 | | (turbulence_odded)
8 1ot t o C.4 Parobolic arc 183
g “ \\ '\‘l\ —-—RAF 27 205
n
1
:”5” 08
i
¢
° 06
©
04
02
4
0 5 6x10°

| 2 3 4
Blode-chord Reynalds number, Ae,
Fioure 152.—Composite plot of loss coefficient against

blade-chord Reynolds number in region of minimum loss
for two-dimensional-cascade blade sections at low speed.
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essentially incompressible or low Mach number
flow. Tests of cascade sections at higher Mach
number levels have been relatively few, primarily
because of the large power requirements and
operational difficulties of high-velocity tunnels.
As a consequence, it has not been: possible to
establish any empirical correlations that will permit
the estimation of Mach number effects for con-
ventional blade sections. The limited -available
data indicate, however, that a marked rise in loss
is eventually obtained as Mach number is in-
creased.

A typical example of the variation of total-
pressure-loss coefficient ‘with inlet Mach rumber
for a conventional cascade section at fixed inci-
dence angle in the region of minimum loss is
presented in figure 153(a). The inlet Mach
number at which the sharp rise in loss occurs is
referred to as the limiting Mach number. The
variation of the wake profile downstream of the
blade as Mach number is increased is shown in
figure 153(b) to illustrate the general deterioration
of the suction-surface flow. The flow deteriora-
tion is the result of a separation of the suction-
surface boundary layer induced by shock-wave
and boundary-layer interactions.

In view of the complex nature of the shock-
wave development and its interaction effects, the
estimation of the variation of minimum total-
pressure loss with inlet Mach number for a given
blade is currently impossible. At the moment,
this pursuit must be primarily an experimental
one. Schlieren photographs showing the forma-
tion of shocks in a cascade are presented in ref-
erences 41, 205, and 206, and detailed discussions
of shock formations and high-speed performance
of two-dimensional-cascade sections are treated
in references 41, 205, and 207 to 209. Cascade
experience (refs. 40 and 205) and theory (refs. 41,
88, and 209) indicate that a location of the point
of maximum thickness at about the 50-percent-
chord position and a thinning of the blade leading
and trailing edges are favorable for good high
Mach number performance. The avoidance of a
throat area within the blade passage is also
indicated in order to minimize the effects of flow
choking. Discussions of the choking problem
are presented in references 203 and 208, and blade
throat areas are given for several blade shapes in
references 123 and 210 to 212. The effects of
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Ficure 153.—Variation of cascade blade loss with inlet
Mach number for NACA 65—(12A,0) 10 blade in region of
minimum loss (ref. 122).

camber distribution on high Mach number per-
formance are discussed extensively in the litera-
ture (refs. 123, 200, and 201). Results indicate
that, for the range of blade shapes and Mach
numbers normally covered, camber distribution
does not have a large effect on maximum Mach
number performance as obtained in the two-
dimensional cascade.

SUMMARY

From the foregoing correlations and considera-
tions, the low-speed loss in total pressure of con-
ventional two-dimensional-cascade sections can
readily be estimated. If blade surface velocity
distributions are available, the suction-surface
local diffusion factor D,,, is determined according
to equation (265) and a value of 6*/c is then
selected from figure 146. In the absence of blade
surface velocity data, the diffusion factor D is
computed from over-all conditions by means of
equation (54) and 8*/c is selected from figure 148.
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With 6*/c determined, the total-pressure-loss
coefficient is computed according to equation (264)
from the cascade geometry and a pertinent value
of wake form factor H.

According to reference 156, for cascade meas-
uring stations located more than about ¥ chord
length downstream of the blade trailing edge, the
value of H will generally be less than about 1.2.
For practical purposes, it was indicated that a
constant value of H of about 1.1 can be used over
a wide range of cascade configurations and in-
cidence angles for measuring stations located be-
tween % and 1% chord lengths behind the trailing
edge. Loss coefficients based on inlet dynamic
head can then be determined, if desired, from
equation (266). The estimation of losses based on
the diffusion factor D can, for example, produce a
value of solidity that results in the least computed
loss coefficient for a given velocity diagram.

The accuracy of the results obtained from the
prediction procedure outlined is subject to the
limitations and approximations involved in the
diffusion analysis and wake momentum-thickness
correlations. Strictly speaking, the procedure
gives essentially a band of probable loss values at
the cascade measuring station about % to 1%
chord lengths downstream of the blade trailing
edge for the reference-incidence-angle setting and
Reynolds numbers of about 2.5X10% and greater
at low speed (up to about 0.3 inlet Mach number).
It should also be noted at this point that the loss
values obtained in this manner represent the low-
speed profile loss of the cascade section. Such
loss values are not generally representative of the
losses of the section in a compressor blade row or in
a high-speed cascade.

A corresponding loss-estimation technique for
high Mach number flow is currently unavailable
because of the unknown magnitude of the com-
pressibility effect on the wake momentum-thick-
ness ratio of & given cascade geometry. Further-
more, both the wake form factor H and the relation
between 6*/c and « (given for incompressible flow
by eq. (264)) vary with Mach number. For
example, if the velocity variation in each leg of the
wake is assumed to vary according to the power

relation
J.’__(y)"
Vo \&

where & is the thickness of the wake and d is some

(267)
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constant, then variations of H and #* and of the
relation between 8*/c and & with outlet free-stream
Mach number can be established analytically to
illustrate the nature of the compressibility effects.

Curves of the variation of the ratios of com-
pressible to incompressible form. factor H/H,,,
and momentum thickness ¢*/6},. with outlet
Mach number for various d values obtained from
numerical integration of the wake parameters
involved are shown in figures 154 dnd 155. Re-
cently, the increasing trend of H with M, was
substantiated experimentally at the NACA Lewis
laboratory in an investigation of the wake char-
acteristic of a turbine nozzle (unpublished data).
Curves of the ratio of the integrated value of
@ obtained from a given value of #*/¢c in a com-
pressible flow to the value of & computed from the
same value of 8*/c according to the incompressible
relation of equation (264) are shown in figure 156.
It should be noted that for compressible flow the
denominator in the loss-coefficient definition
(eq. (263)) is now given by P—p.

In summary, therefore, an accurate prediction
of the variation of reference total-pressure loss
with inlet Mach number for a given cascade
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Figure 154.—Ratio of compressible to incompressible
form factor for constant value of exponent in power
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Figure 156.—Correction factor Ko for calculation of
total-pressure-loss coefficient for compressible flow on
basis of incompressible equation (264) as determined
from model wake form with power velocity profite.

blade is currently impossible. At the moment,
this pursuit is primarily an experimental one. Fam-
ilies of curves of wake momentum thickness and
form factor against diffusion factor are required
(with appropriate definitions for subsonic or
supersonic flow) as in figure 146 or 148 for a wide
range of inlet Mach number. Analytically, a
simple compressible relation is needed between
0*/c and @ as a function of Mach number.

DEVIATION-ANGLE ANALYSIS
PRELIMINARY ANALYSIS

The correct determination of the outlet flow
direction of a cascade blade element presents a
problem, because the air is not discharged at the
angle of the blade mean line at the trailing edge,
but at some angle &° to it (fig. 124). Since the
flow deviation is an expression of the guidance
capacity of the passage formed by adjacent blades,
it is expected that the cascade geometry (camber,
thickness, solidity, and chord angle) will be the
principal influencing factor involved.

From cascade potential-flow theory (ref. 80,
e.g.), it is found that the deviation angle increases
with blade camber and chord angle and decreases
with solidity. Weinig in reference 80 shows that
the deviation angle varies linearly with camber for
a given value of solidity and chord angle for

691-564 O-65-15
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infinitesimally thin blades at zero incidence.
Furthermore, with deviation angle equal to zero
at zero camber angle in this theory, it:is possible
to express the deviation angle as a ratio of the
camber angle. Values of the ratio of deviation
angle to camber angle for an infinitely thin cir-
cular-arc blade of small camber deduced from the
theory of reference 80 are presented in figure 157
for a range of solidities and chord angles.” The
values in figure 157 are for the incidence angle for
“impact-free entry’’ previously mentioned, which
corresponds essentially to the condition of mini-
mum loss.

The results of figure 157 show that, for a blade
of zero thickness, the minimum-loss deviation
angle is zero at zero camber angle. However,
analysis indicates that this is not the case for
blades of conventional thicknesses. A recent
theoretical demonstration of the existence of a
positive value of zero-camber deviation angle ac-
cording to potential-flow calculations is given by
Schlichting in reference 193. The computed var-
iation of zero-camber deviation angle for a con-
ventional 10-percent-thick profile at zero incidence
angle as obtained in the reference is shown in
figure 158.

It will be recalled from the discussion of the
zero-camber minimum-loss incidence angle that,
for the conventional staggered cascade (0°<v°
<{90°) with finite blade thickness set at zero in-
cidence angle, a greater magnitude of velocity
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Figure 157.—Theoretical variation of deviation-angle
ratio for infinitely thin circular-arc sections at “impact-
free-entry”’ incidence angle according to potential
theory of reference 80.
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FieurEe 158.—Theoretical variation of deviation angle for
conventional uncambered 10-percent-thick blade seetion
at zero incidence angle as presented in reference 193.

occurs on the blade lower (concave) surface than
on the upper (convex) surface (fig. 134). Such
velocity distributions result in a negative blade
circulation and consequently (as indicated by the
solid vectors in fig. 159) in a positive deviation
angle. Furthermore, since the deviation angle
increases slightly with increasing incidence angle
(ds°/d: is positive in potential cascade flow),
positive values of deviation angle will likewise be
obtained at the condition of minimum-loss inci-
dence angle (as illustrated by the dashed vectors
in fig. 159). Since the zero-camber deviation
angle arises from essentially a thickness blockage
effect, the characteristics of the variation of
minimum-loss zero-camber deviation angle with
cascade geometry would be expected roughly to
parallel the variation of the minimum-loss zero-
camber incidence angle in figure 137. The low-
speed reference-deviation-angle correlations may,
therefore, involve intercept values as in the case
of the reference-incidence-angle correlations.

In addition to the cascade-geometry factors
mentioned, the low-speed deviation angles can
also be affected by Reynolds number, turbulence,
and Mach number. The thickened surface bound-
ary layers resulting from low levels of Reynolds
number and turbulence tend to increase the devia-
tion angle. Variations in inlet Mach number can
affect the deviation angle of a fixed two-dimen-
sional-cascade geometry because of the associated
changes in blade circulation, boundary-layer de-
velopment, and outlet to inlet axial velocity ratio
(compressibility effect on pV,).

DATA CORRELATIONS

Form of correlation.—Examination of deviation-
angle data at reference incidence angle reveals
that the observed data can be satisfactorily rep-
resented by a linear variation of reference deviation
angle with camber angle for fixed solidity and air

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

inlet angle. The variation of reference deviation

angle can then be expressed in equation form as
3°=80+me (268)

where & is the reference deviation angle for zero

camber, m is the slope of the. deviation-angle

variation with camber (8°—&))/p, and ¢ is the
camber angle. As in the case of the analogous
terms in the reference-incidence-angle relation
(eq. (261)), 8, and m are functions of inlet-air
angle and solidity.

The influence of solidity on the magnitude of
the slope term m could also be directly included
as a functional relation in equation (268), so that
equation (268) could be expressed as

o__s0 :
2 ¢'5°=———”:;‘ (269)

where m,., represents the value of m (i.e., (8°—
3.)/¢) at a solidity of 1, b is the solidity exponent
(variable with air inlet angle), and the other terms
are as before. It will be noted that equation
(269) is similar in form to the frequently used
deviation-angle rule for circular-arc blades origi-
nally established by Constant in reference 186
and later modified by Carter in reference 88.
Carter’s rule for the condition of nominal inci-
dence angle is given by

(270)

in which m, is a function of blade-chord angle.
Values of m. determined from theoretical con-
siderations for circular-arc and parabolic-arc mean
lines (ref. 88) are shown in figure 160. In the

Y
/ }///
y
/'o /\80
Zero - 0
——— Minimum-loss /
“

~Z -L - - Axis

Fiaure 159.—O0utlet flow direction for cascade of staggered
uncambered blades.
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Fi1GURE 160.—-Variation of factor m, in Carter’s deviation-
angle rule (ref. 88).

ensuing correlations, both forms of the deviation-
angle relation (eqs. (268) and (269)) are used,
since each has a particular advantage. Equation
(268), with m plotted as a function of 8, and o,
is easier to use for prediction, especially if the
calculation of a required camber angle is involved.
Equation (269) may be better for extrapolation
and for comparison with Carter’s rule.

As in the case for the zero-camber reference
minimum-loss incidence angle, the zero-camber
deviation angle can be represented as a function
of blade thickness as

oo= (Ks)m(Ka) +(82)10 (271)

where (85);, represents the basic variation for the
10-percent-thick 65-series thickness distribution,
(K3)ss represents any correction necessary for a
blade shape with a thickness distribution different
from that of the 65-series blade, and (Kj), repre-
sents any correction necessary for maximum blade
thicknesses other than 10 percent. (For a 10-
percent-thick 65-series blade, (K;), and (Kj),, are
equal to 1.) The problem, therefore, is reduced
to finding the values of m, b, and 5, (through eq.
(271)) as functions of the pertinent variables in-
volved for the various blade shapes considered.

NACA 65-(A,,)-series blades.—From an exam-
ination of the plots of equivalent deviation angle
against equivalent camber angle at reference
minimum-loss incidence angle obtained from the
cascade data, values of zero-camber deviation
angle can be determined by extrapolation. The
deduced plots of zero-camber deviation angle
(82)10 and slope term m as functions of solidity
and air-inlet angle are presented in figures 161 and
162 for these blades. The subscript 10 indicates
that the &, values are for 10-percent maximum-

thickness ratio. Values of the intercept term &
and the slope term m were obtained by fitting a
straight line to each data plot of reference equiva-
lent deviation angle against equivalent camber
angle for a fixed solidity and air inlet angle. The
straight lines were selected so that both a satis-
factory representation of the variation of the data
points and a consistent variation for the resulting
82 and m values were obtained. The extrap-
olation of the values of m to 8,=0 was guided
by the data for the 65-(12A,,)10 blade at solidities
of 1 and 1.5 reported in the cascade guide-vane
investigation of reference 213 (for an aspect ratio
of 1, as in ref. 39).

For the deviation-angle rule as given by equa-
tion (269), deduced values of m,.; and exponent
b as functions of inlet-air angle are presented in
figures 163 and 164. The deduced rule values
(eq. (268) or (269)) and the observed data points
are compared in figure 165 to indicate the effective-
ness of the deduced representations. The flagged

symbols in the high-camber range in the figure

represent blade configurations for which boundary-
layer separation is indicated (D greater than about
0.62). In view of the higher loss levels for this
condition, an increase in the magnitude of the
deviation angle is to be expected compared with
the values extrapolated from the smaller cambers
for which a lower loss level existed.

C-Series circular-arc blades.—In view of the
absence of systematic cascade data for the C-
series circular-arc blade, an accurate determination
of the rule constants cannot be made for this blade
shape. However, a preliminary relation can be
deduced on the basis of limited data. It appears
that, for the uncambered C.4 section (ref. 192), if
a value of (K3). equal to 1.1 (as for the determi-
nation of 4;) is used, a satisfactory comparison
between predicted and observed &; values is
obtained.

The characteristic number m,-, in the devia-
tion-angle design rule of equation (269) for a
given blade mean line corresponds to the value of
(60—02)/¢ at a solidity of unity. Cascade data
for a C.4 circular-arc profile obtained from tunnels
with good boundary-layer control are presented
in references 167 (pt. I) and 199 for a solidity of
1.0 for 8,=30° 42.5° 45° and 60°. Values of
(80—83)/¢ were computed for these blades accord-
ing to the & variations of figure 161. A value of
Me=y for B,;=0° was obtained from the per-
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Freure 165.—Comparison between data values and deduced rule values of reference minimum-loss deviation angle for
NACA 65-(Ay0) 10-series blades as equivalent circular arc (data from ref. 39).

as equivalent circular arcs in figure 164 essentially
confirms this trend. Actually, the deviation-angle
rule in the form of equation (269) constitutes a
modification of Carter’s rule.

In addition to the basic differences between the
rules in the magnitudes of the m, b, and &, values,
it is noted that Carter’s rule was originally devel-
oped for the condition of nominal incidence angle,
whereas the modified rule pertains to the reference
minimum-loss incidence angle. However, since
Carter’s rule has frequently been used over a wide
range of reference angle in its application, both
rules were evaluated, for simplicity, for the refer-
ence minimum-loss incidence angle.

An illustrative comparison of predicted reference
deviation angle as obtained from Carter’s rule and
the modified rule for a "10-percent-thick, thick-
nosed circular-arc blade is shown by the calculated
results in figure 169 for ranges of camber angle,
solidity, and inlet-air angle. Deviation angles in
figure 169 were restricted to cascade configurations
producing values of diffusion factor less than 0.6.

Blade-chord angle for Carter’s rule was computed
from the equation
P°=pi—i— (272)
Reference incidence angle was determined from
equations (261) and (262) and figures 137 and 138.
The plots of figure 169 show that, in practically
all cases, the deviation angles given by the modi-
fied rule are somewhat greater in magnitude than
those predicted by Carter’s rule for the 10-percent-
thick blade. This is particularly true for the high
inlet-air angles. Thus, greater camber angles are
required for a given turning angle according to
the modified rule. Differences are even less for
the double-circular, arc blade, as indicated in figure
170, since the 3; values are smaller for these blades.
However, it should be kept in mind that the
magnitude of the factors in the modified rule are
proposed values based on limited data. Further
research is required to establish the modified rule
on a firmer foundation.
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Fiaure 169.—Comparison of calculated reference devia-
tion angles according to Carter’s rule and deduced

modified rule for 10-percent-thick, thick-nose circular-arc
blades.

is currently available on the effect of losses, at-
tention is centered on deviation-angle variations
in the region of low loss, where the trend of
variation approaches that of the potential flow.
Examination of .potential-flow theory (Weinig,
ref. 80, e.g.) shows that a positive slope of devia-
tion angle against incidence angle exists (i.e.,
deviation angle increases with incidence angle).
Calculations based on the theory of Weinig reveal
that the magnitude of the slope varies with
solidity and blade-chord angle. The deviation-
angle slope approaches zero for infinite solidity
(deviation angle is essentially constant at high
solidity) and increases as solidity is reduced. At
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Fiaure 170.—Comparison of calculated reference devia-

tion angles according to Carter’s rule and deduced
modified rule for circular-arc blades of different thickness.
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Fieure 173.—Illustrative variations of reference deviation
angle with Reynolds number.
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Fiaurm 174.—Variation of deviation angle with Reynolds
number for 10C4/40 P40 blade. Solidity, 1.33 (ref.
183).

constant solidity, the slope of deviation angle
against incidence angle increases as the chord
angle is increased. These trends indicate physi-
cally that the greater the initial guidance effect

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS
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Fieure 175.—Variation of reference deviation angle with

inlet Mach number for circular-arc blades. Solidity,
1.333; blade-chord angle, 42.5° (ref. 40).
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Fieure 176.—Variation of air-turning angle with inlet
Mach number in region of minimum loss.

(high solidity and low blade angle), the less
sensitive the deviation angle is to changes in
incidence angle.

For analysis purposes, since the region of low
loss is generally small, the variation of deviation
angle with incidence angle for a given cascade
geometry in the region of minimum loss can be
represented as

=t i) (G (273)

ref

where (ds°/di),,, represents the slope of the
deviation-angle variation at the reference incidence
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For the 65-series blades, (K;).»=1.0, and it is
proposed that (Kj;),, be taken as 1.1 for the C-
series blades and as 0.7 for the double-circular-arc
blade. The value of 3 is then computed from
equation (271), and finally 8° is determined from
the blade camber angle according to equation
(268). As in the case of reference 1, values, the
use of the proposed values of (Kj),, is not critical
for good accuracy in the final determination of
5°. Reference deviation angle can also be com-
puted according to the rule in the form of equation
(269) in conjunction with figures 163, 164, and 166.

The camber angle required to produce a given
turning angle at the reference condition at low
speed can readily be calculated by means of the
preceding incidence-angle and deviation-angle
correlations when the inlet-air angle and blade
solidity are known. From equations (57), (261),
and (268), the camber angle as a function of the
turning, deviation, and incidence angle is

_AB—(1,—8)
=~ 1"m+n (274)
or, in terms of the thickness corrections (eqs.
(262) and (271)),

_ AB—[(K) () o{t0) 10— (K 3) s (£ ) £ (82) 10}
= 1—m-n (275)
For simplicity, since (K;)a=(Ks)mw=K,, equa-
tion (275) can be expressed in the form

¢=M—K, ; —:[l’s;biz_ (600)10] (276)

where K, represents some correction factor for
blade thickness, such that

K[ (i)10— ()] (K i(i)u— (Ko (810 (277)

Curves of the values of (3,),0— (6°)10 88 a function of
B and o are given in figure 178; curves of the values
of 1—m-n as a function of 8, and ¢ are given in
figure 179(a) for the 65—(A,,)-series mean line and
in figure 179(b) for the circular-arc mean line;
and values of K, are plotted as a function of

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

p and t/c in figure 180. The use of the chart

values of K, in equation (276) gives results within
about 0.1° of the exact values given by equation
(275). Required camber angle can thus be de-
termined readily by equation: (276) in conjunction
with figures 178 to 180.

CONCLUDING REMARKS

The foregoing analysis has presented a correla-
tion of available two-dimensional experimental
cascade data in terms of parameters significant in
compressor design. The work essentially presents
a summary of the state of experimental cascade
research with regard to cascade performance at
the reference incidence angle. Rules and pro-
cedures were evolved for the prediction of the
magnitude of the reference total-pressure loss
and the reference incidence and deviation angles in
satisfactory agreement with existing cascade data.
The rules may also be of help in reducing the
necessary experimental effort in the accumulation
of further cascade data.

However, the present analysis is incomplete.
Many areas, such as the deviation-angle rule for
the double-circular-arc blade, require further data
to substantiate the correlations. Furthermore,
additional information concerning the influence of
high Mach number and off-design incidence angles
of cascade performance is needed.

Finally, it is recognized that the performance of
a given blade geometry in the compressor con-
figuration will differ from the performance es-
tablished in the two-dimensional cascade. These
differences result from the effects of the various
three-dimensional phenomens that occur in com-
pressor blade rows. It is believed, however, that
a firm foundation in two-dimensional-cascade flow
constitutes an important step toward the complete
understanding of the compressor flow. The extent
to which cascade-flow performance can be suc-
cessfully utilized in compressor design can only be
established from further comparative evaluations.
Such comparisons between observed compressor
performance and predicted two-dimensional-cas-
cade performance on the basis of the rules derived
herein are presented in chapter VII.
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CHAPTER ViI

TLew

BLADE-ELEMENT FLOW IN ANNULAR CASCADES

By WiLLiam H. RoBBiNs, RoBERT J. JAcksoN, and SEYMOUR LiEBLEIN

A blade-element analysis 18 made of annular-
cascade data obtained primarily from single-stage-
compressor test installations. The paramelers that
describe blade-element flow (lotal-pressure loss,
ingidence angle, and deviation angle) are discussed
with reference to the many variables affecting these
paramelers. The blade-element data are correlated
over a fairly wide range of inlet Mach number and
cascade geometry. Two blade shapes are considered
in detail, the 65-(A,o)-series profile and the double-
circular-arc  airfoil. Compressor data at three
radial positions mear the tip, mean, and hub are
correlated at minimum-loss incidence angle. Curves
of loss, incidence angle, and deviation angle are
presented for rotor and stator blade elements. These
correlation curves are presented in such a manner
that they are directly related to the low-speed two-
dimensional-cascade results. As far as possible,
physical explanations of the flow phenomena are
presented. In addition, a calculation procedure
8 given to Wlustrate how the correlation curves could
be utilized in compressor design. ___

INTRODUCTION

Axial-flow-compressor research has generally been
directed toward the solution of either compressor
design or compressor analysis problems. In the
design problem, the compressor-inlet and -outlet
conditions are given, and the compressor geometry
must be determined to satisfy these conditions.
In contrast, for the analysis problem the inlet
conditions and compressor are specified, and the
outlet conditions are desired. (The analysis
problem is sometimes referred to as the ‘direct
compressor problem.”)

There are two phases of the axial-flow-com-
pressor design problem. In the first phase it is
necessary to prescribe desirable velocity distri-
butions at each radius of the compressor that will
ultimately fulfill the design requirements. A
discussion of the velocity-diagram phase of the

i

A

compressor design procedure is given in chapter
VIII. Secondly, proper blade sections are selected
at each radial position and stacked in proper
relation to each other to establish the design
velocity diagrams at each radius. In order to
satisfy the design requirements successfully, accu-
rate blade-row design data are needed. Success-
ful analysis of a compressor (the analysis problem)
also depends upon accurate blade-row data, not
only at the design point but also over a wide
range of flow conditions (ch. X).

In general, compressor designers have relied
primarily on three sources of blading information:
(1) theoretical (potential-flow) solutions of the
flow past airfoil cascades, (2) low-speed two-
dimensional-cascade data, and (3) three-dimen-
sional annular-cascade data. Potential-flow solu-
tions have been used to a limited extent. In
order to handle the complex mathematics in-
volved in the theoretical solutions, it is necessary
to make simplifying assumptions concerning the
flow field. Among the most important of these
is the assumption of a two-dimensional flow
field with no losses. Unfortunately, in some cases
these assumptions lead to invalid results unless
experimental correction factors are applied to
the computed results. These solutions are re-
viewed in chapter IV.

A considerable amount of blade design data
has been obtained from low Mach number
experimental two-dimensional cascades. A rather

‘complete study of the cascade work that has

been done to date is presented in chapter VI,
which correlates cascade data at minimum-loss
incidence angle for a wide range of inlet conditions
and blade loadings. Low-speed two-dimensional-
cascade data have been applied successfully in
many compressor designs. However, with the
design trends toward higher Mach numbers
and higher blade loadings, these cascade results
have not always been completely adequate for
227
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describing the compressor flow conditions, par-
ticularly in regions of the compressor where
three-dimensional-flow effects predominate.

Because of such effects, it becomes essential
that blade-element data be obtained in a three-
dimensional-compressor  environment. These
three-dimensional-cascade data (obtained pri-
marily from single-stage compressors) may then
be used to supplement and correct the theoretical
solutions and the two-dimensional-cascade in-
formation. Some success has been obtained in
correlating annular-cascade data with the theory
and the two-dimensional-cascade results (refs.
32, 214, and 218 to 220); however, the range
of variables covered in these investigations is
not nearly complete.

The purpose of this chapter is to correlate and
summarize the available compressor data on a
blade-element basis for comparison with the
two-dimensional-cascade data of chapter VI. An
attempt is made to indicate the regions of a
compressor where low-speed two-dimensional-
cascade data can be applied to compressors and
also to indicate the regions where cascade results
must be modified for successful application to
compressor design. Two blade sections are con-
sidered in detail, the NACA 65-(A,,)-series blade
and the double-circular-arc airfoil section. Par-
ticular emphasis is placed on obtaining incidence~
angle, deviation-angle, and loss correlations at
minimum loss for blade elements near the hub,
mean, and tip radii of both rotor and stator blades.
Empirical correction factors that can be applied
to the two-dimensional-cascade design rules are
given, and application of the design rules and
correction factors to compressor design is illustrated.

SYMBOLS
The following symbols are used in this chapter:

@, speed of sound based on stagnation condi-
tions, ft/sec

b exponent in deviation-angle relation (eq.
(280)), function of inlet-air angle

chord length, in.

diffusion factor

incidence angle, angle between inlet-air
direction and tangent to blade mean
camber line at leading edge, deg

K; correction factor in incidence-angle relation,

@-GQ

function of blade maximum-thickness

ratio and thickness distribution

AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

K;  correction factor in deviation-angle relation,
function of blade maximum-thickness
® ratio and thickness distribution .
M  Mach number
factor in deviation-angle relation at s=1
(eq. (280)), function of inlet-air angle
m, factorin deviation-angle relation (eq. {282)),
function of blade-chord angle.
slope factor in incidence-angle relation (eq.
279)), function of inlet-air angle and solidity
total or stagnation pressure, 1b/sq ft
static or stream pressure, lb/sq ft
radius ,
blade spacing, in.
total or stagnation temperature
blade maximum thickness, in.
air velocity, ft/sec
air angle, angle between air velocity and
axial direction, deg
B  air-turning angle, 8,—8,, deg
ratio of specific heats
¥ blade-chord angle, angle between blade
chord and axial direction, deg
5° deviation angle, angle between outlet-air
direction and tangent to blade mean
camber line at trailing edge, deg
1 efficiency
K blade angle, angle between tangent to blade
mean camber line and axial direction, deg
o solidity, ratio of chord to spacing

T ge YNy S

i

© blade camber angle, difference between
blade angles at leading and trailing edges,
Ky—Ka, deg

w angular velocity of rotor, radians/sec

) total-pressure-loss coefficient

Subscripts:

ad  adiabatic

c compressor

GV  inlet guide vanes

h hub

id ideal

m mean

min minimum

0 zero camber

B rotor

S stator

ST stage

t tip

z axial direction

0 tangential direction
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parameter affecting compressor three-dimensional
losses have not been established for analysis
purposes. At present, the three-dimensional loss
can be treated only on a gross basis as a difference
between the total measured loss and the predicted
profile loss.

Deviation angle.—In the two-dimensional cas-
cade the minimum-loss deviation angle varies
primarily with the blade geometry and the inlet~
air angle. Experience with compressor operation
indicates that blade-element minimum-loss devia-
tion angle is also sensitive to three-dimensional
effects. The two principal compressor effects
are secondary flows and changes in axial velocity
across the blade element. Secondary flows are
treated in chapter XV and in reference 43.
Corrections are established in reference 43 for
the effect of secondary flows on the outlet angles
of compressor inlet guide vanes. At present,
however, rotor and stator secondary-flow effects
can be treated only on a gross basis.

The effects of changes in axial velocity ratio on
the turning angles of a fixed blade-element geom-
etry are conclusively demonstrated in the rotor
investigations of reference 218. There are several
origins of varying axial velocity ratio across a
compressor blade element: (1) contraction of the
annulus area across the blade row, (2) compres-
sibility, which varies axial velocity ratio for a
fixed annulus area, and (8) differences in the
radial gradient of axial velocity at blade-row inlet
and outlet, which can arise from the effects of
radial-pressure equilibrium (ch. VIII). Although
several attempts have been made to establish
corrections for the effect of change in axial veloc-
ity ratio on deviation angle (refs. 218 and 191),
these proposed correction techniques have not
been universally successful. The principal diffi-
culty involved in the axial velocity corrections is
the inability to determine the corresponding
changes in blade circulation (i.e., tangential ve-
locity). Values of axial velocity ratio were identified
for the deviation-angle data presented, although no
attempt was made to apply any corrections.

Some of the secondary factors influencing de-
viation angle, such as inlet Mach number and
Reynolds number, are investigated in references
52, 56, and 218. These results indicate that the
variations of deviation angle with Mach number

arid Reynolds number are small for the range of
data considered in this survey.

CORRELATION APPROACH

In this chapter, annular-cascade data are com-
pared with the two-dimensional-cascade correla-
tions of minimum-loss incidence angle, total-pres-
sure loss, and deviation angle of chapter VI. In
this way, compressor investigations serve as both
a verification and an extension of the two-dimen-
sional-cascade data. Two-dimensional-cascade
data correlations and rules, in conjunction with
correction factors deduced from the three-dimen-
sional data, can then be used for compressor design
and analysis.

With this approach in mind, all available single-
stage data were collected, computed, and plotted
in a form considered convenient for correlation.
The blade and performance parameters used in
the analysis are similar to those used in the two-
dimensional-cascade correlations of chapter VI.
Camber angle, incidence angle, and deviation angle
(fig. 182) are used to define the blade camber, air
approach, and air leaving directions, respectively.
These angles are based on tangents to blade mean
camber line at the leading and trailing edges. As
in chapter VI, the NACA 65-(Ay)-series blades
are considered in terms of the equivalent circular-
arc camber line (figs. 125 and 126, ch. VI).

Loss in total pressure across the blade element
is expressed in terms of the loss parameter @’ cos
B3/20, where the relative total-pressure-loss coeffi-
cient @’ is defined as the mass-averaged defect in
relative total pressure divided by the pressure
equivalent of the inlet velocity head:

—r__P2)a—Ps

R 2 1—P1 (58)
For stationary blade rows, or no change in stream-
line radius across the rotor, the numerator of
equation (58) becomes the decrease in relative
total pressure across the blade row from inlet to
outlet. The relative total-pressure-loss coefficient
was computed from stationary measurements of
total pressure and total temperature and from the
computed relative inlet Mach number according
to reference 9. The total-pressure-loss parameter
@’ cos B3/20, as indicated in chapter VI, can be
used as a significant parameter for correlating
blade losses.
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Figure 183.—Example of typical variation of blade-element performance parameters with incidence angle.

Transonic

rotor with double-circular-arc blade sections at tip speed of 800 feet per second; data for blade row 17 (table II) at

tip position (ref. 55).

The diffusion factor, which is used as a blade-
loading parameter, is defined in reference 9 for no
change in radius as follows:

D=(1 V;\_LV;-‘_V;,Z

Vi)' 2V
A typical example of the plotted performance
parameters for a rotor blade row is shown in figure

(278)

183. The data represent the variations of the
flow at fixed rotational speed. Plots for stator
blade rows show similar trends of variation. As
in chapter VI, a reference point was established
as the incidence angle for minimum loss (fig.
184(a)), and the blade-element flow was analyzed
at this reference point. In cases where minimum-
loss incidence was not clearly defined, the refer-
ence point was taken as the mean incidence of the
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incidence-angle range for which values of @ at the
end points are twice the minimum  value (fig.
184(b)). In some instances, near the compressor
tip the loss-against-incidence-angle curve increased
continuously from a minimum value of loss param-
eter at the open-throttle point. In presenting data
for these cases several points near the minimum-
loss value are plotted.

One of the primary objectives of this analysis
is to determine differences in blade-element per-
formance with compressor radial position. There-
fore, three radial positions along the blade span
(near the hub, mean radius, and tip) of each blade
row are considered. The radial positions at the
hub and tip are approximately 10 to 15 percent
of the passage height away from the inner and
outer walls, respectively, which are outside the
wall boundary-layer region in all cases. The anal-
ysis is directed toward correlating the loss and
deviation-angle data at reference incidence angle
and determining the variation of reference inci-
dence angle with blade geometry and Mach num-
ber at the three radial positions.

EXPERIMENTAL DATA SOURCES

There are three sources of three-dimensional-
cascade blade-element data: stationary annular-
cascade tunnel investigations, multistage-compres-
sor investigations, and single-stage or single-blade-
row compressor investigations. A relatively small
amount of data has been accumulated from blade-
row investigations conducted in stationary annu-
lar-cascade tunnels. Tunnels of this type have
been used primarily for inlet-guide-vane investi-
gations. Typical examples of annular-cascade
tunnel investigations are reported in references
215 and 225. Numerous multistage-compressor
investigations have been conducted both in this
country and abroad. Unfortunately, the data
obtained from these investigations are too limited
to permit the construction of individual blade-
row-element performance curves similar to those
illustrated in figure 183.

The data used in this investigation were obtained
primarily from investigations of single rotor rows
or of single-stage compressors. A typical single-
stage-compressor: test installation is shown in
figure 185. This particular compressor consists
of a row of inlet guide vanes, a rotor blade row
driven by a variable-speed motor, and a stator
blade row. A discharge throttle is installed in
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Fieure 184.—Definitions of reference incidence angle.

the outlet system to vary the compressor back
pressure. In this manner, the compressor mass-
flow rate can be controlled. In an installation
such as this, compressor performance over a range
of speeds and mass flows can be obtained simply.
In many cases, test rigs similar to figure 185 have
been operated with only guide vanes and rotors
or with rotors alone.

Many phases of compressor research have been
conducted in single-stage-compressor test rigs; and,
in reporting these phases, complete blade-element
results are not usually presented. - Therefore, it

-was necessary to collect available original data

and rework them in terms of the parameters of
the analysis. Since only NACA original data
were -available in blade-element form, the data
analysis is based mainly on single-stage-compressor
investigations conducted at the Lewis laboratory.
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TABLE II.—DETAILS OF SINGLE-STAGE ROTORS AND STATORS

Blade
Camber Chord, Bolidity, Blade-chord] maximum
Outer | Hub- Inlet Mach mﬁle, ¢ in. [ angle, v°, | thickness-
Blade | Descrip- |diameter,| tip Rotor tip speed, | number, @, deg ) deg chord ratio, | Refer-

row tion in. ratio 1t/sec M; tle ence

Hub | Tip | Hub{ Tip | Hub Tip {Hub| Tip | Hub | Tip

65-Series blade section
1 Rotor 14 0.5 55%,218428, 994, 1104, | 0.30-0.75 | 19.9 { 15.3 [ 1.31 | 1.31 | 1.010 | 0.590 | 30.8 | 66.4 | 10 10 230
2 Stator 14 .55 | 552, 1104 .26- .73 1 30,1 130.1{1.31]1.31 . 996 .620 119.5 1 45.9 10 10 231
3 Rotor 30 .80 , 672, .36-.70 130.1}30.1}290]2.90) 1.08 .006 1 28.8 | 45.9 1 10 10
4 Rotor 14 .50 | 1104, 1214 .60~ .80 {30.130.1{1.31}1.31] 1.010 .660 121.1 {560} 10 10 231
5 Rotor 14 .50 | 557,743 .39-.72130.1130.1]13111.31 962 .608 |15.2 | 32.0| 10 10 231
[} Stator 14 .52 1371, 557, 743 .22-.66130.1130.111.311.31 .993 .631 116.2 {32.2] 10 10 231
7 Rotor 14 .60 | 548 .35~ .56 | 40.0 { 23.9 | 1.31 | 1.31 955 .600 | 21.0158.0 ] 10 10 230
8 Rotor 14 .50 | 552, 828,1104 .30- .86 | 40.0 | 23.9 | 1.31 | 1.31 . 955 .600 | 21.0 { 58.0 | 10 10 230
9 Rotor 14 .50 | 552, 828, 1104, 1214 .30~ .76 | 40.0 1 23.9 | 1.31 | 1.31 . 955 .600]21.0158.0] 10 10 230
10 Stator 14 .53 | 412,617, 823 .25~ .74 130.1 13011311131 .870 .887 | 15.1 139.6 ] 10 10 231
11 Rotor 14 .80 | 669, 753, 836 .52~ .75 | 45.2134.111.351.35 .823 .682 ] 21.4 | 35.4 [] 6 232
12 Rotor 14 .80 | 669, 753, 836 .40~ .75 | 46.2 1 34.1 1 1.35}|1.36 | 1.12 .943 | 21.4 | 35.4 6 [] 232
13 Rotor 14 .80 | 669, 753, 836 40- .75 1452 {341 11.356]1.356] 1.69 1.36 21.4(35.4 [] [] 232
14 Rotor 14 .80 1| 600, 736, 874 50-.92130.319.4 {1.46 1,82 ] 1.20 1.20 | 42.5|48.8] 10 8 224
Circular-arc blade section

15 Rotor 14 0.4 600, 800, 1000, 1050 | 0.33-1.06 | 40.3 | 11.4 | 2.00 { 2.00 | 1.778 | 0.963 | 12.1 ; 46.7 8 5 233
16 Rotor 18 .5 60%&00, 800, 900, .38-1.07 (283 ] 7 1.5 | 1.6 1.63 1.03 |23.6 |46.3} 10 6 234
17 Rotor 14 .5 600, 800, 900, 1000 .37-1.17 1 29.4 [ 13.7 [ 2.090 | 2,32 | 1.28 1.04 |23.0] 44.1 8 b 55
18 Rotor 14 .5 800, 900 .55-1.12 1 20.4 | 13.7 | 2.08 | 2.32 .85 .66 123.0] 441 8 5 55
19 Rotor 14 .5 800, 900, 1000, 1120 .50-1.22 | 23.1| 43 11.50|1.50] 1.40 .825 | 17.4 | 561.3 | 10 b5 229
20 Rotor 14 .6 800, 900, 1000, 1120 .4-.81231) 43(1.50|1.50f 1.40 .825|17.4 1 51.31 10 b 229
21 Stator 17.36 .62 , 800, .41~ .63 | 52.0 | 52.0 | 3.25 | 3.25 | 1l.64 1.07 |10.0; 10.0 7 7 235
22 Stator 17.36 .60 | 800, 1000 .53~ .66 | 20.6 | 20.0 ] 2.66 | 3.23 | 1.45 1.08 | 34.0}28.0 8 6 222

in terms of the difference (i¢c—7._p). Thus, a
value of zero of the difference parameter corre-
sponds to an equivalence of the two incidence
angles. In view of the established tendency of
the reference incidence angle to increase somewhat
with inlet Mach number (ch. VI), it was thought
desirable to plot the variation of the difference
parameter (ic—1%,_p) against relative inlet Mach
number for the three radial positions at hub, mean,
and tip.

NACA 65-(Ay)-series blades.—The results of
the comparison between compressor and two-
dimensional-cascade reference incidence angles for
the 65-(A,()-series blades are presented in figure
189 for hub-, mean-, and tip-radius regions. Both
rotor and stator data are presented; the stator
data being represented by the solid points. Dif-
ferent values of incidence angle for a given symbol
represent different compressor tip speeds. As
might be expected in a correlation of this type
involving data from different test installations and
instrumentations, the data are somewhat scattered,
particularly in the hub and tip regions. It has
not been possible in these instances to evaluate
the significance or origin of the scatter. (In
compressor investigations, instrumentation inac-

curacy generally contributes heavily to the data
scatter, especially at hub and tip.) Nevertheless,
the results of the comparison are indicative of the
trends involved, and it is possible to make some
general observations.

For the rotor mean-radius region, where three-
dimensional disturbances are most likely a mini-
mum, the rotor minimum-loss incidence angles
are, on the average, about 1° smaller than the
corresponding cascade-predicted values. This dif-
ference may be a reflection of some of the compres-
sor influences discussed previously. The data
also indicate that no essential variation of refer-
ence incidence angle with relative inlet Mach
number exists up to values of M, of about 0.8.
The 65-(Ajp)-series blade, having a thick-nose
profile, apparently exhibits the same approximate
constancy of minimum-loss incidence angle with
Mach number as indicated for the British thick-
nose C-series profile in the cascade comparisons
of chapter VI.

At the rotor tip, the compressor reference inci-
dence angles are from 0° to 4° less than the pre-
dicted cascade values. As in the case of the
rotor mean radius, no essential variation with
inlet Mach number is observed in the range of
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Figore 190—Typical variation of loss with incidence
angle for rotor blade element near tip and in two-
dimensional cascade for same blade geometry and inlet
Mach number.

believed that there will be very little change in the
rotor incidence angle for values of Mach number
below about 0.4 to 0.5. Extrapolated values of
rotor reference incidence angle at zero Mach
number appear to be of the order of 0.5° at the
hub, 1.5° at the mean radius, and 2.5° at the tip
below cascade-rule values.

The double-circular-arc blade element in the
compressor rotor exhibits the same general inci-
dence-angle characteristic with Mach number that
was observed for sharp-nosed blade sections in the
high-speed two-dimensional cascade (ch. VI).
As indicated in chaper VI, the increase in refer-
ence incidence angle with Mach number is asso-
ciated with the tendency of the range of the blade
to be reduced only on the low-incidence side of the
loss curve as the Mach number is increased.

The rotor data for the double-circular-arc
section, like those for the 65-(A,.)-series blades,
are comparable with the cascade variations at the
mean radius, somewhat higher at the hub at the
higher Mach numbers, and noticeably lower at the
tip. Apparently, the same type of three-dimen-
sional phenomenon occurs at the tip for both
blade shapes.

The available double-circular-arc stator data
are too meager for any conclusions.

SUMMARY EEMARKS

The variation of reference incidence angle for
65-(A,0)-series and double-circular-arc blade seec-
tions has been presented. No Mach number
effect on reference incidence angle was observed for
the 65-(Ao)-series blades for the range of Mach

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

‘numbers considered. In contrast, the double-

circular-arc blade sections exhibit a pronounced
variation of reference incidence angle over the
range of Mach number investigated. Significant
differences between the two-dimensional-cascade
data and the rotor data were observed at the com-
pressor tip. In contrast, at the mean radius and
hub, the differences in two-dimensional-cascade
data and rotor data were relatively small, even
though the flow field was three dimensional.

Additional data are required to determine the
variation of stator reference incidence angle,
particularly for the double-circular-arc airfoil
sections. Also, no information has been presented
concerning the allowable incidence-angle range for
efficient (low-loss) operation and the variation of
this range with inlet Mach number. Investi-
gations of these phases of compressor research are
very essential to fill gaps in the compressor design
and analysis procedures.
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Figure 191.~—Variation of compressor reference incidence
angle minus two-dimensional-cascade-rule incidence
angle with relative inlet Mach number for double-
circular-arc blade section.
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TOTAL-PRESSURE-LOSS ANALYSIS

CORRELATION OF DATA

For two-dimensional-cascade data obtained at
low Mach numbers, the values of total-pressure-
loss parameter w cos $:/2¢ plotted against diffusion
factor (eq. (278)) form essentially a single curve
for all cascade configurations. The diffusion-
factor correlation of loss parameter was applied to
data obtained over a range of Mach numbers from
single-stage axial-flow compressors of various
geometries and design Mach numbers. Values of
total-pressure-loss parameter calculated from
single-stage-compressor data are plotted against
diffusion factor for the hub, mean, and tip meas-
uring stations in figure 192. Each symbol repre-
sents the value of diffusion factor and loss param-
eter at reference incidence angle at a given tip
speed. Also plotted as a dashed curve is the cor-
responding correlation presented in chapter VI
for the low-speed two-dimensional-cascade data.
The data of figure 192, which were obtained from
the rotor and stator configurations summarized in
table I1, represent both 65-(A,,)-series and circular-
arc blade sections. The plots of figure 192
essentially represent an elaboration of the loss-
diffusion correlations of reference 9.

The most important impression obtained from
the rotor data plots is the wide scatter and increas-
ing loss trend with diffusion factor at the rotor tip,
while no discernible trend of variation is obtained
at the rotor hub and mean radii. For the rotor
hub and mean radii, it can be assumed that the
rotor blade-element loss parameter follows the
cascade variation but at a higher average magni-
tude. Unfortunately, the range of diffusion factor
that could be covered in the compressor tests was
not sufficient to determine whether a marked rise
in loss is obtained for values of diffusion factor
greater than about 0.6 (as in the cascade).

It is apparent from the loss trend and data
scatter at the rotor tip that a different loss phe-
nomenon is occurring in the tip region. It is
recognized that a part of the scatter is due to the
general instrumentation inaccuracy in the highly
turbulent tip regions. In view of the usually large
radial gradients of loss existing in the blade tip
region, small variations in positioning radial
survey probes can cause noticeable differences in
the computed results. Nevertheless, it is obvious
that factors other than the blade-element diffusion

are influencing the tip loss. The specific three-
dimensional factors or origins involved in the loss
rise at the tip are not currently known. The
principal conclusion reached from the plot is that
the likelihood of a rising loss trend on the rotor
tip exists for values of diffusion factor greater than
about 0.35.

The stator losses at all radial positions in
figure 192 appear to be somewhat higher than
those of the two-dimensional cascade, particularly
at the higher values of diffusion factor.

SUMMARY REMARKS

Rotor and stator blade-element loss data were
correlated by means of the diffusion factor. The
losses for stator and rotor blade elements at hub
and mean radii were somewhat higher than those
for the two-dimensional cascade over the range
of diffusion factor investigated. At the rotor tip,
the losses were considerably higher at values of
diffusion factor above approximately 0.35.

The foregoing blade-element loss analysis is
clearly incomplete. The need for additional
work is indicated for such purposes as evaluating
the origin and magnitude of the tip-region losses.
The loading limits for rotors at other than the tip
region and for stators at all blade elements have
not been determined, because, for the available
data, the diffusion factors at reference incidence
do not extend to sufficiently high values. Single-
stage investigations are needed over the critical
range of Reynolds number to determine the effect
of Reynolds number on the blade-element loss.
It is desirable to isolate the effects of velocity
diffusion and shock waves on the loss at high Mach
number operation. The loss correlations pre-
sented should also be extended so that the data are
applicable over a range of incidence angle. This
would be of extreme value in the compressor
analysis problem.

DEVIATION-ANGLE ANALYSIS

In addition to design information concerning
blade-element losses and incidence angle, it is
desirable to have a rather complete picture of the
air deviation-angle characteristics of axial-flow-
compressor blade elements. Therefore, the two-
dimensional-cascade correlation results are re-
viewed and supplemented with annular-cascade
data in this section.
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in axial velocity ratio, and measurement inaccu-
racy. As in the cascade, essentially constant
deviation angle with Mach number was indicated
for the Mach number range covered. Additional
stator blade-element data; particularly for the

double-circular-arc blade, are required to establish

the stator correlations more firmly.

APPLICATION TO DESIGN
DESIGN PROCEDURE

The foregoing correlations provide a means of
establishing the reference incidence angle and
estimating the corresponding deviation angle and
total-pressure loss for rotor and stator blade
elements of compressor designs similar to those

245

covered in the analysis. This is accomplished by
establishing deduced curves of compressor blade-
element incidence-angle and deviation-angle cor-
. rections for the low-speed two-dimensional-cascade
~rules of chapter VI. Reference incidence and
‘deviation angles for the compressor blade element
are then given by :

(283)

le=1%s-p+ (’iﬁ;”"isz) L
“(280)

52'———5;—0‘1“ (52"" 5;-3)

and

where %,-p and ;-5 are given by equations (279)
and by (281) or (282), respectively. Curves of
incidence-angle and deviation-angle corrections
deduced from the rotor blade-element data of
figures 189, 191, 199, and 200 are shown as func-
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tions of relative inlet Mach number for several
radial positions along the blade height in figures
201 and 202. The curves in figures 201 and 202
are faired average values of the data spread and,
strictly speaking, represent bands of values. In
view of the very limited data available, com-
pressor correction curves could not reliably be
established for the stator deviation and incidence
angles.

Establishing single deduced blade-element loss

88+ (58—8 ) Go—in-n) [ 10=(S),_ |-EuGurt Ba(6D
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curves at reference incidence angle is a difficult
task because of the scatter of the experimental
data, especially in: the rotor tip region. Never-
theless, for completeness, in order to illustrate the
prediction procedures, curves of average total-
pressure-loss parameter as. a function of diffusion
factor obtained from the data of figure 192 are
shown in figure 203 for rotor and stator. The
shaded part of the curve indicates the possible
band of values obtainable at the rotor tip. =
The procedure involved in determining blade-
element éamber angle and efficiency at reference
incidence angle for a compressor design based
on the blade-row velocity diagram and the fore-
going correlation curves is now indicated. The
desired blade-element turning angle A8’ and rela-
tive inlet Mach number M{ are obtained from the
design velocity diagram. Camber and turning
angles are related by the equation
o=p—B+8—1 (285)

Compressor blade-element incidence angles (egs.
(279) and (283)) and deviation angles (egs. (281)
and (284)) are given by

?:c=K¢('io) wt+ne+ ('ic—?:z—p) (286)

=Ei6) 5 o+ (io—in-o) (),
+@-8-) (287)

Substituting equations (286) and (287) into equa~
tion (285) and rearranging terms yield

(288)

m
l1—=+n

All terms on the right side of equation (288)
can be determined from the velocity-diagram
properties, the specified blade shape and thickness,
and the specified solidity. After the camber
angle is determined, the incidence and deviation
angles ‘can be calculated from equations (286)
and (287). Rotor blade-element loss parameter
is estimated from the velocity-diagram diffusion
factor and the curves of figure 203. The total-
pressure-loss coefficient w’ is then readily obtained
from the blade-element solidity and relative air
outlet angle. Blade-element efficiencies for the

rotor and complete stage can be computed by
means of the techniques and equations presented
in the appendix to this chapter. If the change in
radius across the blade row can be assumed small,
blade-element efficiency can be determined through
the use of figures 204 to 206 from the selected
values of »’ and the values of M and absolute
total-pressure ratio or total-temperature ratio
obtained from the velocity diagram.

The foregoing procedure can best be illustrated
by a numerical ‘example. Suppose the following
specified rotor design values represent typical
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252 AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

203(a) yield a value of 0.025 for the loss param-
eter (o’ cos B,)/2s, and

Ba=B—AB’=56.9—10.9=46.0°

cos f;=0.6947
Therefore,

E,_(B’ cos B2\ 2¢
- 20 cos 8

0.025X2
0.6947

=0.072

(6) For a negligible change in radius across the
blade element, the following values can be found
from figures 204 and 205:

P;

1—,—;=O.962 12a=0.87 5 ==1.31

The preceding example has been carried out for
a typical transonic rotor blade section. A similar
procedure can be used for stator blade sections when
adequate blade-element data become available.

SUMMARY REMARKS

The foregoing procedures and data apply only
to the reference point (i.e., the point of minimum
loss) on the general loss-against-incidence-angle
variation for a given blade element. The ref-
erence minimum-loss incidence angle, which was
established primarily for purposes of analysis, is
not necessarily to be considered as a recommended
design point for compressor application. The
selection of the best incidence angle for a particular
blade element in a multistage-compressor design
is a function of many considerations, such as the
location of the blade row, the design Mach number,
and the type and application of the design. How-
ever, at transonic inlet Mach number levels, the
point of minimum loss may very well constitute a
desired design setting.

At any rate, the establishment of flow angles
and blade geometry at the reference incidence
angle can serve as an anchor point for the deter-
mination of conditions at other incidence-angle
settings. For deviation-angle and loss variations
over the complete range of incidence angles,
reference can be made to available cascade data.
Such low-speed cascade data exist for the NACA
65-(Ao)-series blades (ref. 54).

It is recognized that many qualifications and
limitations exist in the use of the foregoing design
procedure and correlation data. For best results,
the application of the deduced variations should
be restricted . to the range of blade geometries
(camber, solidity, etc.) and flow conditions (inlet
Mach number, Reynolds number, axial velocity
ratio, etc.) considered in the analysis. In some
cases for compressor designs with very low turning
angle, the calculated camber angle may be nega-
tive. For these cases it is recommended that a
zero-camber blade section be chosen and the in-
cidence angle selected to satisfy the turning-angle
requirements. The data used in the analysis were
obtained for the most part from typical experimen-
tal inlet stages with essentially uniform inlet flow.
Nevertheless, such data have been used success-
fully in the design of the latter stages of multi-
stage compressors. It should also be remembered
that the single curves appearing in the deduced
variations represent essentially average or repre-
sentative values of the experimental data spread.
Also, in some cases, particularly for the stator, the
available data are too limited to establish reliable
correlations. Considerable work must yet be
done to place the design curves on a firmer and
wider basis. The design procedures established
and trends of variation determined from the data,
however, should prove useful in compressor blade-
element design.
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APPENDIX

EQUATIONS FOR BLADE-ELEMENT EFFICIENCY

By definition, for a complete stage consisting
of inlet guide vanes, rotor, and stator, the adia-
batic temperature-rise efficiency of the flow along
a stream surface is given by

o | ]
—1

1—"3)7- & )
PlST Pl GVPI

From the developments of reference 7 (eq. (B8) in
the reference), the absolute total-pressure ratio
across a blade row P./P; can be related to the
relative total-pressure ratio across the blade row
P;/P; according to the relation

Pz ) (Tz)" -t

(A2)

where (P;/P;)y is the ideal (no loss) relative total-
pressure ratio. The relative total-pressure ratio is
also referred to as the blade-row recovery factor.
For stationary blade rows (i.e., inlet guide vanes
and stators), (P;/P;), is equal to 1.0. For roters,
the ideal relative total-pressure ratio (eq. (B4) of
ref. 9) is given by

Y
2 _ 1, 71\ -1
@) {72 [-C)T}

in which M, is equal to the ratio of the outlet
element wheel speed to the inlet relative stagnation
velocity of sound (wr./a;,), and 7i/r, is the ratio
of inlet to outlet radius of the streamline across
the blade element. (For a flow at constant
radius (cylindrical flow), (P;/P;) is equal to 1.0.)
Thus, from equations (A1) and (A2),

(A3)

7=1

.
e g D),

Yad, ST~ T
2
Ti/»

(A4)

For the rotor alone, the blade-element efficiency
is given by

y~1

1_"_3) x
Pi/s (To\"1
Pz) T
P 1/ R, id

) ~1
From equation (B3) of reference 9, the loss

coefficient of the rotating blade row (based on
inlet dynamic pressure) is given by

—1

(A5)

Nad, R==-

r -~ ;;T%) N
__%
(P )M - 1:‘)“' = ©®
[1+112‘i (M:)*]
. J

For any blade element, then, from equation (58),

_ 1 =
S Tt s
[1+’T @y

The relations presented in equations (A4),
(A5), and (A6) indicate that four quantities are
required for the determination of the blade-
element efficiency across the rotor or stage: the
rotor absolute total-temperature ratio, the relative
total-pressure-loss coefficient (based on inlet
dynamic pressure), the relative inlet Mach
number, and the ideal relative total-pressure
ratio. Thus, the blade-element efficiencies for a
given stage velocity diagram can be calculated if
the loss coefficients of the blade elements in the
various blade rows can be estimated.

For simplicity in the efficiency-estimation pro-
cedure, effects of changes in radius across the
blade row can be assumed small (i.e., r=r;), 80
that the ideal relative pressure ratio is equal to

253

P, (P;

2=\l (46)
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unity. Then, equations (A4), (A5), and (A6)
become, respectively,

'_y_—_l
Y Y
&).&.E0E)] -
_L\P/ev\P/e\T\/r \Pi/s
Nad, ST T2
_.> -1
T\/=
(A7)
y1
L-T
(@@ -
Nad, R= Pi RTfl 2 (A8)
2) —1
)
and
_'Y__i
1%:‘1-_5' T R | (A9)
' 1+155= (1))

For purposes of rapid calculation and pre-
liminary estimates, the efficiency relations are
expressed in chart form in figures 204 to 206.
The relation among relative recovery factor,
blade-element loss coefficient, and -inlet Mach
number (eq. (A9)) is presented in figure 24.
A chart for determining rotor blade-element
efficiency from relative recovery factor and ab-
solute total-temperature ratio (eq. (A8)) is given
in figure 205. Lines of constant rotor absolute
total-pressure ratio are also included in the
figure. Figure 206 presents the ratio of stage
efficiency to rotor efficiency for various stator
or guide-vane recovery factors. The ratio of
stage efficiency to rotor efficiency is obtained
from equation (Al) in terms of rotor absolute

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

total-pressure ratio as

=1
(®.3)..@).]
Nad, 8T PIRPIGV PlS

) —1
Nad, R &).VT_— .
Pl R

(A10)

The charts are used as follows: For known or
estimated values of rotor total-pressure-loss co-
efficient @’ and relative inlet Mach number
M, of the element, the corresponding value of
relative recovery factor P,/P, is determined
from figure 204. From the value of rotor-
element absolute total-temperature ratio T,/T)
(obtained from calculations of the design velocity
diagram) and the value of (P,/P,) obtained from
figure 204, the rotor-element efficiency is deter-
mined from figure 205. Rotor absolute total-
pressure ratio can also be determined from the
dashed lines in figure 205.

If inlet guide vanes and stators are present,
the respective recovery factors of each blade
row are first obtained from figure 204. The
product of the two recovery factors is then cal-
culated and used in conjunction with the rotor
absolute total-pressure ratio in figure 206 to
determine the ratio of stage efficiency to rotor
efficiency. A simple multiplication then yields
the magnitude of the stage efficiency along the
element stream surface.

The charts can also be used to determine gross
or mass-averaged efficiencies through the use of
over-all loss terms. Furthermore, the charts can
be used for the rapid determination of relative
total-pressure-loss coefficient from known values
of efficiency, pressure ratio, and inlet Mach
number on an element or gross basis.
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of the equations are then discussed. The equa-
tions are applied to determine the design velocity
distribution in the meridional plane after a blade
row. The necessary boundary-layer correction
factors are indicated. In addition, the selection
of design variables is discussed. A numerical
example is then carried out with the equations
and methods presented.

SYMBOLS
The following symbols are used in this chapter:

Ag frontal ares, sq ft

a speed of sound, ft/sec

C curvature of meridional streamline, ft.!

Cp specific heat at constant pressure, Btu/
(Ib)(°R)

D diffusion factor

F blade force acting on gas, Ib/lb

g acceleration due to gravity, 32.17 ft/sec?

H total or stagnation enthalpy, Btu/lb

J mechanical equivalent of heat, 778.2
ft-Ib/Btu

Ky weight-flow blockage factor

K, energy-addition-correction factor

Ky pressure-correction factor

Ky efficiency-correction factor

M Mach number

n polytropic compression exponent

P total or stagnation pressure, 1b/sq ft

D static or stream pressure, lb/sq ft

Q external heat added to gas, Btu/(Ib) (sec)

R gas constant, 53.35 ft-1b/(Ib) (°R)

r radius, ft

e radius of curvature of streamline in
meridional plane, ft

S entropy, Btu/(1b) (°R)

T total or stagnation temperature, °R

t static or stream temperature, °R

U rotor speed, ft/sec

% internal energy, Btu/lb

14 air velocity, ft/sec

w weight flow, 1b/sec

z coordinate along axis, ft

g air angle, angle between air velocity and
axial direction, deg

¥ ratio of specific heats

) ratio of total pressure to NASA standard

sea-level pressure of 2116 lb/sq ft

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

5* boundary-layer displacement thickness, ft

€ angle between tangent to streamline pro-
jected on meridional plane and axial
direction, deg

efficiency

ratio of total temperature to NASA stand-
ard sea-level temperature of 518.7° R

kinematic viscosity, sq ft/sec

density, 1b-sec?/ft!

solidity, ratio of chord to spacing

time

-viscous dissipation of energy, Btu/(cu ft)
(sec)

work-done factor

angular velocity of rotor, radians/sec

total-pressure-loss coefficient

BN Qv ¥ < 3

ele

Subscripts:

a stagnation conditions

ad adiabatic

ay average

d design value neglecting wall boundary
layer

hub

reference position, radial station where
variables are known

ideal

meridional

mass-averaged value

polytropic

rotor

radial direction

stator

stage

tip

axial direction

a, B, v, radial design stations at 10, 30, 50, 70,
5, € and 90 percent of blade height from

tip, respectively

b=,

-,

LRI
8

L O
.M

0 tangential direction

0 station ahead of guide vanes
1 station at rotor inlet

2 station at stator inlet .

3 station at stator exit
Superscript:

relative to rotor
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STATEMENT OF DESIGN PROBLEM
SPECIFICATION OF COMPRESSOR PERFOERMANCE AND

CONFIGURATION REQUIREMENTS

The design of the axial-flow compressor begins
with the determination of the over-all performance
specifications obtained from the over-all engine
and airplane requirements. In general, the engine
inlet-air conditions (pressure, temperature, and
density), engine thrust, engine air-flow, turbine-
inlet temperature, and compressor pressure ratio
are fixed by cycle and flight-plan analyses such as
are discussed in chapter II. The compressor-
inlet hub-tip diameter ratio, the component tip
diameters, -the compressor rotational speed, the
compressor-inlet axial velocity, and the com-
pressor-discharge velocity are then determined
considering the compressor efficiency, turbine
stresses, compressor stresses, performance of the
various components, engine weight, and engine
space limitations in the airplane. The interrela-
tion of some of these factors (compressor air-flow
per unit frontal area, compressor pressure ratio,
rotational speed, turbine size, and turbine stresses)
is discussed in reference 17. It should be empha-
sized that a large number of compressor configu-
rations are possible for given over-all performance
requirements. The choice of a given configuration
is based on a compromise among the various
performance and geometric parameters. This
compromise depends in turn on the intended use
of the engine.

FLOW AND GEOMETRY CONDITIONS TO BE DETERMINED

The design procedure involves an iterative solu-
tion of the flow equations after each blade row.
Thus, the flow conditions and hub and tip diameter
after the first blade row must be calculated from
the known inlet and the specified design condi-
tions. The blade-element loadings and Mach
numbers selected” must be consistent with the
attainment of low loss as indicated by the loss
data presented in chapters VI and VII. The
resulting flow must. also be acceptable to the
following blade row. After a satisfactory solu-
tion for these conditions-has been found, the
resulting flow distribution after the blade row
becomes the inlet condition for the following row.
The flow conditions and geometry of the second
blade row are then determined. The same pro-
cedure is repeated all through the machine until
the desired over-all pressure ratio and discharge
velocity are obtained.

691-564 O-65—18
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When the flow conditions have been calculated
after a given blade row, the blade sections may be
selected to give the desired air turning or the
desired blade work. The incidence- and deviation-
angle data correlated in chapter VII may be used
to assist in this selection. Some consideration of
off-design performance may be required in the
selection of blading. In addition, the loss corre-
lations that are presented in chapter VII enable
the designer to reestimate the originally assumed
blade-element losses for the particular blade con-
figuration selected. These reestimated loss data
are then used to recalculate the flow distribution
after the blade row by the methods of the present
chapter,

GENERAL EQUATIONS

The basic equations that apply to the general
case of the flow of a real compressible fluid
through a turbomachine can be formulated from
the conservation laws of matter, momentum, and
energy, along with the thermodynamic equation
of state. As pointed out in reference 236, these
general basic equations of the flow can be stated
a8 follows:

The. equation of state for a perfect gas:

p=pgRBt (34)
The energy equation:

Du Dp? i
D, TP, =9+ p (289)
The continuity equation:
24V (s7)=0 (200)
-

The Navier-Stokes equation:

ST -1 904> [vz(‘V)+§ (V- ‘7>] (291)

BASIC ASSUMPTIONS

The simplifying assumptions usually made in
the treatment of the problem of flow through
axial-flow compressors are as follows:

(1) The general flow equations are applied only
to compute flow distributions between blade rows
where blade forces are nonexistent.

(2) The flow is assumed to be steady and
axially symmetric. The theoretical significance
of this assumption is discussed in chapter XIV.
However, when blade-element data including
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some of the effects of unsteady asymmetric flow
conditions are used in calculating the velocity
distributions, the errors introduced by this
assumption are expected to be small.

(3) The local shearing effects of viscosity (be-
tween blade rows) are neglected by dropping the
viscosity terms in the flow equations. However,
the accumulated effects of upstream viscous ac-
tion in increasing entropy are considered by use
of experimentally determined blade-element per-
formance. Empirical corrections are also made
when required for wall boundary-layer effects on
required flow area and mass-averaged energy
addition and efficiency.

(4) Heat transfer is neglected.

SIMPLIFIED FLOW EQUATIONS

As a result of the preceding assumptions and
the use of the definition of entropy, the general
flow equations may be combined and restated as
follows: '

Jg(H,—H,)=u[(rVe)s—(rV5),]
=(UVe)s— (UV0)1=Jng(T2—T1) (292)

V(pV)=0 (293)

JGVH=JgtVS+V X (VXT) (294)

Equation (292) relates the change in stagnation
enthalpy along a streamline at axial stations
ahead of and behind a rotor blade row to the
change in angular momentum and the angular
velocity of the wheel. Of course, the stagnation
enthalpy is constant along a streamline passing
through a stator blade row if it is assumed that
the heat transfer from streamline to streamline is
negligible.

Equation (293) states the law of conservation
of matter, which, for application to compressor
design, may be expressed as

w,=2n-gﬁr“ o1V 1y dry=ws (295)
&, 1

This equation will be discussed in detail in a later
section with reference to boundary-layer blockage
corrections and with reference to application of
the flow equations in the design procedure.
Equation (294) is referred to as the equilibrium
equation for the fluid between the blade rows.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

SOLUTIONS OF EQUILIBRIUM EQUATIONS

The equations presented in the preceding section
may be solved in several ways within the assump-
tions stated. Most of these solutions differ only
in the simplifications made in the equilibrium
equation (eq. (294)).

Since the design methods presented here are
concerned with finding the radial variation of
flow at a specified axial station, the radial com-
ponent of equation (294) is applicable. For the
assumed axially symmetric flow between blade
rows, this component equation is

T : r
(296)

As in the method of reference 237, it has gener-
ally been assumed in design applications that the
meridional velocity V,=yV?+V? is given by the
axial velocity V, and that 9V,/dz=0. Such a
condition (generally referred to as the “simplified-
radial-equilibrium” condition) has been success-
fully used in low-aspect-ratio and lightly loaded
blade-row designs. However, a less restricted
design solution may be necessary for high Mach
number, highly loaded designs. Several analyses
(refs. 34, 49, 236, 238, and 239) have been made
to determine the factors influencing the meridional
velocity distribution. The analysis of reference
236 considers the effect of the radial motion
resulting from velocity-distribution changes
through a blade row and evaluates the magnitude
of this effect for several cases by assuming that
the air flows through the compressor along
sinusoidal streamlines. The analyses of refer-
ences 238 and 239 for incompressible flow also
consider the effects of radial motion due to
velocity-distribution changes through the com-
pressor. These analyses consider the effects of
the velocity induced by the gradients in circulation
or vorticity along the blade on the velocity distri-
bution ahead of and behind the blade row. The
procedure permits evaluation of the mutual inter-
ference effects of blade rows in the multistage
compressor. These analyses neglect the radial
motion due to the blade blockage resulting from
blade thickness variations. Reference 34 presents
a simplified analysis of the effect of the radial
variation of blade thickness on inlet velocity and
incidence-angle distributions. This analysis also

UTC-2019.276



DESIGN VELOCITY DISTRIBUTION IN MERIDIONAL PLANE

assumes axial symmetry but makes a correction in
the flow continuity relation for blade thickness.
In general, the higher the inlet Mach number, the
greater the variation in the axial velocity from
hub to tip.

All these investigations neglect the effects of
gradients of entropy on radial distributions of
velocity and therefore are not directly applicable
in regions of high loss. Reference 49 applies
experimental data to determine the relative magni-
tudes of the effects on velocity distributions of the
entropy-gradient term for a wide variety of axial-
flow-compressor blade rows. Although vast dif-
ferences generally exist in the shapes of the velocity
distributions in the inlet and the outlet stages of
the multistage compressor, essentially the same
techniques (assuming a knowledge of the entropy
distribution across the annulus) can be used to
calculate the velocities. Consideration of the
entropy gradients was particularly necessary in
the rear stages, where the accumulated effects of
viscosity noticeably affected the velocity distribu-
tion. On the other hand, the complete radial
acceleration term appeared to be significant for
the highly loaded inlet stages investigated, where
the wall curvatures were large.

The following discussion presents the various
forms of the radial-equilibrium equation that may
be used in the compressor design procedure.

SIMPLE-RADIAL-EQUILIBRIUM EQUATION NEGLECTING

ENTROPY GRADIENTS

The simplest solution of the radial-equilibrium
equation (eq. (296)), usually referréd to as the
“gimple-radial-equilibrium solution,” has been
widely used in compressor design. It is arrived
at by assuming (1) that the derivative of V, with
respect to z is zero, and (2) that the derivative of
S with respect to r is zero. These assumptions
are made, of course, only at the fixed value of z.
The resulting equation is

oT bVo

chp’a + V

which is referred to herein as the “isentropic-
simple-radial-equilibrium” or “‘isre” equation. In
this case, “isentropic’ refers simply to the condi-
tion of radially constant circumferentially aver-
aged entropy within the space between blade rows
outside the boundary layers. Thus, the entropy
of the flow may still change through the blade row.

(297)

259

Equation (297) may be integrated between any
two radial positions in the free-stream region of
the annular flow area at an axial station between
blade rows. For purposes of a design procedure,
it is most convenient to integrate between ,some
reference radius, at which the dependent va.na.bles
are known or assumed, and the other radial posi-
tions. The resulting integrated form of the isre
equation is ‘

ViV =2gJo,(T—T)—(Vi—V3,)— f 2V'd
(298)

The radial variation of axial velocity or V,— V3,
at the blade-row outlet is obtained by presecribing
the distribution of either the stagnation tempera-
ture or the tangential velocity after the blade row.
These two parameters (stagnation temperature
and tangential velocity) are related by equation
(292) for the known flow conditions at the inlet
of the blade row. As will be shown later, the value
of the reference axial velocity V. is assigned and
the mass continuity condition is applied to deter-
mine the required annulus area. For those cases
in which the annulus area is specified, the refer-
ence velocity is determined by application of the
continuity relation.

A series of charts is presented in chapter IX to
permit rapid solution of equation (298).

SIMPLE-RADIAL-EQUILIBRIUM EQUATION CONSIDERING
RADIAL GRADIENTS OF ENTROPY

The major effect of upstream viscous action is
manifested by an increase in the entropy of the
flow. The major effects of viscosity on the axial
velocity distribution are therefore accounted for
in the radial-equilibrium equation through the use
of the term involving the radial gradients of
entropy. Thus, the equation presented here is
obtained from equation (296) by assuming only
that the derivative of the radial velocity V, with

respect to the axial distance z is zero. Equation
(296) then becomes
Tger Lt Byv, Loy Vayy, 2e (209)

Equation (299), hereinafter referred to as
the ‘‘nonisentropic-simple-radial-equilibrium” or
“pisre” equation, may be integrated between two
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radial positions at an axial station between blade
rows to give

V=V =2¢Je,(T—T)—(Vi=V3.)

; °()
—2J' L4 2JRJ' dr

The nisre equation can be solved in the same
manner as the isre equation, except that the
entropy term must be evaluated. By the defini-
tion of stagnation cond1t10ns stagnation entropy
is identically equal to static entropy at any given
point. Therefore, the change in the entropy along
a streamline from the inlet to the outlet of a blade
row may be expressed as

.
T. 2)7—1

7 ()~ (7).~

In the design procedure, the temperature ratio is
assumed or is determined from a specified vari-
ation in tangential velocity by use of equation
(292). The stagnation-pressure ratio may be
related to the stagnation-temperature ratio in
terms of either a polytropic blade-element efficiency
7, Or a stagnation-pressure-loss coeflicient w.

When the polytropic efficiency or polytropic
compression exponent is used, the stagnation-
pressure ratio is given by

(300)

(301)

v =
P2 T2)1—l_ —T—2>'n-
P, \T; “\Ty

The blade-element data of chapters VI and VII
present the blade-element loss in terms of w.
When these data are used, it is more convenient
to express the stagnation-pressure ratio across
the blade element in terms of »’, stagnation-
temperature ratio, and inlet-air Mach number
relative to the blade element. The expression
for pressure ratio is restated from chapter VII as

(302)

= { LT} oo
where

.
y—1 (ur)? [, A\
+ 5 YR, (I“E)T (59)

54) =[
7).}
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‘This equation holds for both rotor and stator

when the appropriate indices are used.

The ideal relative pressure ratio (Pj/P7) can
be taken equal to 1.0 for those cases in which the
variation in the streamline radius across the
rotor is negligible, a condition obtained in high
hub-tip ratio or lightly loaded blade rows.

For convenience in the design procedure, any
upstream station at which the entropy is essen-
tially constant radially—for example, the com-
pressor-inlet station 0—is used as the reference
station. .Therefore, the radial variation of entropy
is, from equation (301),

T\
o2&, . ] |@
brz b?‘z In ——E__;_-
P,

(304)

The static temperature appearing in the second
integral of equation (300) can be expressed in
terms of the velocity components and stagnation
temperature as follows:

vi_v:iv:

Jget=Jgc, T————F— 5

2 2 2 (305)

For the simplified-radial-equilibrium solutions,
the radial velocity term is neglected in equation
(305). In general, this V, component can be
neglected in the stages with high hub-tip ratio
without introducing significant errors in static
temperature. In the stages with low hub-tip
ratio (where wall slopes may be large), however,
V., may have to be considered in this equation by
estimating a streamline slope in the meridional
plane and expressing V, as a function of V, and
this slope.

RADIAL-EQUILIBRIUM EQUATION CONSIDERING RADIAL

ACCELERATIONS

As pointed out in the previous discussions on
the simple-radial-equilibrium equations, high hub-
tip radius ratio and lightly loaded blade rows have
been successfully designed by assuming that the
meridional velocity V, is equal to the axial
velocity V, and that the gradient of radial velocity
V, along the axial direction is zero. In this case,
the radial gradient of static pressure is

dp_ V%‘
ar- 7
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However, for high-aspect-ratio, highly loaded
stages, the effects of streamline curvature become
significant. In this case, the contribution of the
radial acceleration of the meridional velocity to
the pressure gradient in the radial direction must
be considered. The radial gradient of static
pressure for this general case of curved streamline
flow may be stated as

( V2 cos e)

where ¢ is the angle of the streamline with respect
to the axial direction, and r, is the radius of
curvature of the streamline.

An accurate determination of the radius of
curvature of the streamline and the slope of the
streamline (which determines the angle ¢) requires
a knowledge of the shape of the streamline through
the blade row. The streamline configuration is a
function of the annular-passage area variation, the
camber and thickness distribution of the blades in
the radial and axial directions, the blade forces
existing within the blade row, and the flow angles
at inlet and discharge of the blade row. Because
the effects of radial acceleration have been small
in conventional subsonic-compressor designs, very
little information is available concerning the rela-
tive importance of each of these wvariables in
determining the effects of radial accelerations in
the highly loaded designs being studied. There-
fore, the usefulness of several methods that have
been proposed for evaluating these radial accelera-
tions has not yet been established.

Several analyses, such as the work of references
58 and 62, have been applied to determine velocity
distributions throughout the flow field in high-
solidity mixed-flow compressors and axial-flow
turbines. These procedures require estimation
of a streamline-orthogonal flow system through
the blade row. The distribution of velocity along
the orthogonal is then determined from the known
inlet conditions, a mean air-turning variation along
each streamline, and a blade thickness variation
along each streamline. Since this method requires
estimation of the streamlines as well as a knowl-
edge of the blade configuration, it is apparent that
it becomes an iterative solution.

An approximate evaluation of the radial accel-
eration term is also made in reference 236 by
agsuming the streamline shape to be sinusoidal.
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A gimilar technique for evaluating the effect of
radial accelerations is applied in reference 240.
The analysis of reference 236 further assumes that
the product of the radial velocity at a given axial
station between blade rows and the axial gradient
of axial velocity is negligible and that the slope
of the streamlines at this axial station is zero.
Therefore, for the assumptions of reference 236,
the last term (the radial-flow term) of equatlon
(296) may be expressed as

DVT eV2

Results obtained with this procedure are shown in
reference 241 to agree with results obtained from
the general three-dimensional-flow solution de-
scribed in reference 242 for a single-stage non-
tapered-passage compressor.

In addition to the preceding analyses, which
attempt to consider the effects of the blades on
the streamline configuration through the blade
row, several analyses, such as the work of refer-
ences 243 to 245, present methods of estimating
the effects of radial velocity and curvature terms
from simplified calculations of the flow only
between blade rows. In these solutions, a set of
smooth streamlines is estimated through the
compressor stage on the basis of the velocities
calculated between blade rows. It is apparent
that these methods do not consider the effects of
the blade thickness and camber distributions and
the effects of the blade forces on the streamline
curvature.

In view of the present meager knowledge of the
effects of the various design parameters on the
radial acceleration terms in the general flow
equations, it seems reasonable to use the simpler
methods of accounting for these effects as stop-gap
design measures. In addition, it may be desirable
at the present time to try to alleviate the con-
ditions leading to large radial accelerations. In
the case of highly loaded designs having high
aspect ratios, one technique for reducing the
effects of radial accelerations is to taper the tip of
the compressor inward so that the hub curvature
is reduced. Definitive experimental and analyt-
ical work is still required to evaluate the various
techniques that have been suggested for computing
velocity distributions including the effects of
radial accelerations.
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CdNSIDERATION OF WALL BOUNDARY-LAYER
EFFECTS

. The equilibrium equations that must be solved
in determining the meridional distribution of
flow conditions between blade rows in the axial-
flow machine were discussed in - the preced-
ing section. When the simple-radial-equilibrium
equations are suitable, a procedure similar to the
following is required to execute a blade-row design
if the inlet conditions are given:

(1) The tip radius at. the blade-row discharge is
specified.

(2) The axial and tangential velocities at the
tip radius after the blade row are assumed.
These values must be consistent with the con-
siderations for low losses and compatible with the
requirements of the following blade row.

(3) Theradial distribution of tangential velocity
after the blade row is specified.

(4) The radial distribution of energy addition
in the blade row is determined from the known
inlet conditions and the specified distribution of
tangential velocity by use of equation (292).

(5) The radial distribution of loss and there-
fore entropy is assumed based on blade-element
data taken in a similar flow environment.

(6) The radial distribution of axial velocity is
calculated.

(7) The radial distributions of all other flow
properties are calculated.

(8) The continuity condition is used to calcu-
late the hub radius from the known tip radius and
mass flow and the calculated distributions of
axial velocity and density.

When the radial acceleration terms associated
with streamline curvature become significant, this
procedure may be considered as an initial step in
the design system. It then becomes necessary to
recalculate the radial distributions of axial veloc-
ity and other flow properties (items (6) and (7))
and to determine a new hub radius (item (8)).

This technique is referred to as method I. The
critical information in this solution is the radial
distribution of loss or entropy from wall to wall.
Figure 207 illustrates a form of the entropy dis-
tribution that might be encountered after a blade
row in & compressor. The large rise in entropy at
the end walls results from the losses in the wall
boundary layers. Across the major portion of the
flow passage, the entropy variation is illustrated
as being relatively small. It must be emphasized
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that (as indicated in ref. 49) some cases have been
encountered where the variation of entropy is
Iarge even in the main stream. In any case, the
“ponisentropic’’ equations can be applied to
determine the velocity distribution even into the
boundary layers if means of predicting the
entropy distribution are available. - This ‘pro-
cedure would be a direct process near the tip,
since the tip radius is specified. Near the hub,
however, the entropy and other flow properties
could not be determined until after the hub
radius is known. Therefore, iteration procedures
must be used near the hub for this complete solu-
tion. The distribution of flow properties and the
annulus area determined from these procedures
then permit calculation of the mass-averaged

energy addition, pressure ratio, and efficiency for

the stage.

Of course, it is apparent that the determination
of the entropy distribution from wall to wall for all
the possible design velocity diagrams, blade-row
geometries, and locations in the multistage com-
pressor would require very extensive tests of many
different compressors. Such detailed information
requires the analysis of much more multistage-
compressor data than are currently available.
Substitute techniques for the determination of the
annulus area after the blade row and the mass-

Entropy, S

Hub
Tip
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Figure 207.—Typical entropy distribution after com-
pressor blade row.
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averaged efficiency, energy addition, and pressure
ratio have therefore been used.

One such technique (referred to herein as
method IT) involves dividing the flow passage into
three parts, the tip boundary layer, the main-
stream region, and the hub boundary layer. In
the process of solution of the equations, the wall
boundary-layer regions are actuslly treated as
one region. The velocities across the annulus are

computed by the previously itemized procedure '

assuming that no wall boundary layer exists. The
entropy distribution used in the determination of
the velocities is obtained from the blade-element
loss data presented in chapter VII. If, as is
illustrated in figure 207, the entropy gradient is
small in the main stream, then the velocity dis-
tribution may be computed using the isre equa-
tion (eq. (297) or (298)). If the blade-element loss
data indicate a large variation of entropy in the
main stream, then the nisre equation (eq. (299) or
(300)) must be used to determine the velocity
distributions.

The effects of the wall boundary layers on the
required annulus area and on the mass-averaged
energy addition, pressure ratio, and efficiency are
determined in method IT from the velocity dis-
tributions calculated assuming appropriate ‘“‘gross’
correction factors and the absence of wall bound-
ary layers. Although the evaluation of these
gross correction factors will also require extensive
compressor testing and analysis, it is anticipated
that the general correlations with velocity-diagram
parameters and environment may be more readily
attainable than those for the detailed entropy
distributions in the boundary layers. In addition,
indications of the magnitudes of these gross cor-
rection factors may be obtained from comparisons
of design and measured velocities in the main-
stream region,

The general effects of wall boundary layers on
rotor performance are indicated in figure 208.
This figure is an example of a design that has been
worked out for constant mass flow (fiz. 208(a))
and energy addition (fig. 208(b)) along the radius
without considering the effect of the end-wall
boundary layers. The isre solution was used to
determine the velocities across the annulus from
the specified energy addition (fig. 208(b)), as-
suming that the stagnation-pressure loss was con-
stant along the radius (fig. 208(c)) and that the
effects of the wall boundary layers could be
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Fiaure 208.—General effects of wall boundary layer.

neglected. For such a design, the conditions that
might be measured in the flow annulus when the
mainstream flow conditions are the same as the
design conditions are indicated by the dashed
curves. It is apparent that the integrated weight
flow is less than the design weight flow, and the
mass-averaged energy addition or temperature
rise and the mass-averaged pressure ratio may
differ from the design value. The average values
of mass flow, temperature rise, and pressure ratio
are indicated on the figure as the dot-dash lines.
Therefore, three correction factors are required in
method II to account for the presence of the wall
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boundary layers. An annulus-area correction
must be applied to account for the blockage effect
of the wall boundary layer so as to ensure the
attainment of the design weight flow; a tempera-
ture-rise factor must be applied to calculate the
mass-averaged energy addition for the blade row
at this design weight flow; and a pressure-ratio
factor must be applied to permit calculation of the
mass-averaged pressure ratio.

Another system of correction that has been used
extensively involves specifying the annulus area
and adjusting the axial velocity level across the
mainstream region by the -continuity equation to
ensure the attainment of the design weight flow.
This method of design and correction involves
principally a rearrangement of the previously
enumerated design steps. Other correction factors
are still necessary to permit calculation of the
mass-averaged energy addition and pressure ratio.

It must be emphasized that, in all the techniques
described, the velocities across the mainstream
region of the annulus area and the annulus area
geometry are calculated with blade-element loss
or efficiency data obtained from stages operating
in environmental conditions similar to those of
the stage being designed. Such blade-element
data, principally for inlet stages, are presented in
chapter VII.

For those cases where blade-element loss data
are not available or where a general design review
of a large number of multistage compressors is
required, a blade-row and stage mass-averaged
efficiency may be assumed to determine the total
pressure at each blade element from the specified
energy addition. It is assumed in this approach
that the blade-element efficiency is equal to the
blade-row mass-averaged efficiency. Although
this is admittedly not an exact approach, it has
been found to give reasonable design accuracy and
serves as an extremely uséful tool, especially as a
first roughing-out step in the design procedure.
This method is referred to in the present report as
method ITI. It is described in detail and applied
through the use of charts in chapter IX. The
method usually assumes that the correction for
determining mass-averaged energy addition is
negligible. A correction is required for wall
boundary-layer blockage in determining the an-
nulus area.

The following discussion is concerned with the
boundary-layer correction factors required in
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‘method II for the calculation of the annulus

geometry and the mass-averaged temperature rise
and pressure ratio. Although only very limited
amounts of blade-element data and boundary-
layer correction date are available, it is felt that
this method offers the basis for an accurate design
gystem. »

CORRECTION FOR WEIGHT-FLOW BLOCKAGE FACTOR

The correction for weight-flow blockage factor
is intended to ensure the attainment of the design
weight flow with the design velocity distribution
over the major portion of the annulus area.
Because of the lack of extensive data on the
boundary-layer characteristics in the compressor,
an empirically obtained correction factor that is
applied as a gross boundary-layer blockage
factor has usually been applied. Although this
empirical correction factor leaves much to be
desired, it has been used successfully in design.
This gross blockage factor is designated by K
and is defined by the following continuity
equation:

w=wgﬁ:‘ oV, () =Kbk1rgf,:‘ bV, A

76
—rg f L V.aek (306)

The subscript d refers to design values calculated
across the annulus as if no wall boundary layer
were present. In essence, this gross blockage
factor involves the determination of the ideal
(no boundary layer) velocity distribution required
to pass a flow greater than the design flow. For
a given value of tip radius, the hub radius is thus
decreased as Ky is decreased (or boundary-layer
allowance is increased).

Very little useful data regarding the best values
of blockage factor are currently available from
multistage-compressor investigations. Reference
243 suggests values of 0.98 for inlet stages and
0.96 for all others. Some single-stage data
indicate blockage factors of 0.96 after both rotor
and stator. These blockage factors are not
expected to be the same for compressors differing
in size, axial velocity diffusion, chord length, and
so forth.

CORRECTION FACTOR FOR STAGNATION.TEMPERATURE
RISE

Besides occupying space and thereby affecting
the weight flow, the wall boundary layer causes
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the mass-averaged energy addition or stagnation-
temperature rise to differ from the design value
when the main stream velocities are equal to the
design values. Application of the blockage-factor
correction does not eliminate the need for the
temperature-rise or energy-addition factor in
computing the mass-averaged temperature rise
for the stage from the design velocities. This
temperature-rise or energy-addition factor K, can
be defined by the following equation:

[ (F-1) bv.den,

. 16V, 09k

LER ] 2_ :I
_K‘Kbkﬁh.z [(T 1 1) pV, d(rz) 2,4

Ko f " (oY d ks

_ Kf [(F-1)vaden]

e V. a9

T, _
TI)M —1.0=

(307)

It should be emphasized that the temperature-
correction factor is used only in calculating the
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mass-averaged energy addition once the design
velocity distributions and the annulus area
geometry have been determined in the design
process. It does not influence the design velocity
diagram or the hub radius.

In most cases, the temperature-rise correction
factor is assumed equal to 1.0. However, analysis
of limited data taken on the single-stage rotor
of reference 57 indicates that a value of 1.03 for
the temperature-rise correction factor may be
more reasonable. More extensive and precise
data are still required.

CORRECTION FACTOR FOR STAGNATION PRESSURE

In the design procedure, the value of the
stagnation-pressure loss w at any blade element
in the mainstream region can be estimated from
the velocity diagram by using the correlation of
diffusion factor with & presented in chapter VII.
This method tends to give a higher mass-averaged
value of stagnation pressure at a blade-row outlet
and higher mass-averaged efficiency than are
actually achieved, since consideration of the wall
boundary layer is not completely included in the
blade-element data. Hence, a correction for the
wall boundary layer must be applied in deter-
mining the mass-averaged pressure ratio. This
pressure-ratio correction factor K can be defined
by the following equation:

r - =1
KpKuf 1) T 1|1V, donn.,
P2 fh'z Pl
Pina ™) O
) Kbkf [pV.d(™)].
Th, 2
\
r - 1
(@) =11V a9k
=<4 Kp=22 Lo +1.0 (308)
f C AV d()]ag
rh'g

Limited data on the rotor with 0.4 hub-tip
diameter ratio described in reference 57 indicate
that the value of K, may be approximately 1.0
after a rotor. These data were taken from an

inlet-stage rotor where wall boundary layers were
small, Detailed data after stators are not yet
available.

A knowledge of the mass-averaged temperature
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rise and the mass-averaged pressure ratio permits
calculation of the mass-averaged efficiency by the
following equation:

PN'T
)" -1
NMm.a. = Tl et (309)
=) -1
T 1/ ma.

It is apparent that an efficiency correction similar
to the temperature-rise and pressure-ratio correc-
tion factors may also be applied to determine the
mass-averaged efficiency of a stage if the average
efficiency based on the mainstream velocities and
blade-element Josses is known. Thus, the average
rotor efficiency is obtained by multiplying the
efficiency calculated from the mainstream flow
conditions by the efficiency-correction factor. As
a result of the correction factors determined from
the data of reference 57 for the temperature rise
and the pressure ratio, the efficiency correction
K, for the rotor was found to be approximately
equal to 0.97.
WOREK-DONE-FACTOR SYSTEM

A boundary-layer correction procedure that
has been widely used by British designers (refs.
2, 31 (pt. IT), and 246) includes the “‘work-done”
factor, which is used to estimate stage tempera-
ture rise from design values of axial velocity and
air angles. In this case, the hub and tip radii of the
blade row are prescribed. For a given weight flow
through the blade row, the effect of the wall bound-
ary layers is to increase the axial velocities above
the design values across the mainstream portion
of the annulus and to decrease the axial velocity
near the end walls as shown in figure 209. Because
of the high values of velocity over the major portion
of the annulus, the mass-averaged energy addi-
tion at the design flow is lower than the design
value (i.e., the low mass flow at the end walls does
not weight the temperature rise in this region
enough to compensate for the central-portion
deficit in work), resulting in less “work done.”
Thus, the actual stage temperature rise is lower
than that predicted on the basis of the design
values of velocity and air angles. The work-done
factor @ is defined in reference 31 (pt. II) by the
following relation:

e J gAT=Q(U.V ., tan g,—U,V ;1 tan B),

where the flow parameters are the ideal values
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Ficure 209.—Effect of wall boundary layer on axial
velocity.

calculated assuming that wall boundary layers
do not exist.

Although it was developed for designs with
free-vortex velocity diagrams, the work-done
factor has since been applied to other types of
diagrams. It is necessary in this system to set
the blades (on the basis of the design velocities)
at an incidence angle higher than the optimum
value. The higher velocities actually obtained
across the main stream will then produce in-
cidence angles close to the optimum values.

Thus, the design velocity and blade-angle
distributions are set so as to ensure that ap-
plication of the work-done factor will result in
the desired energy addition. It is then usually
assumed that the major part of the correction for
boundary-layer blockage has been considered
by application of the work-done factor.

SELECTION OF DESIGN VARIABLES

The design calculation of the multistage-
compressor blade rows requires first the specifi-
cation of certain aerodynamic and geometric
characteristics. Among these are the inlet values
of hub-tip radius ratio, weight flow, and wheel
speed; the variation through the compressor of
blade loading, axial velocity, and tip diameters;
and an additional parameter specifying the
radial distribution of work or velocity in each
stage. Since the emphasis in aircraft compressors
is for high mass flow per unit frontal area and
high pressure ratio per stage, the discussion of
the selection of design variables is slanted toward
achieving these goals.
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The selection of design variables and the entire
design procedure involve an iterative process in
which compromises are necessary at each step.
The process can be shortened by using a quick
approximate method for the initial parts of the
design and, after a rough outline of the compressor
is determined, using the more accurate methods
to fix the details of the compressor blading.
Thus, a trial hub and tip contour for the entire
compressor can be obtained from the method
that uses the isre equation along with an assumed
efficiency for the blade rows. Most of the
necessary compromises can be made in this
step, so that the required performance is reason-
ably assured without exceeding specified limita-
tions on divers flow variables.

YELOCITY DIAGRAMS

A general velocity diagram for a fixed radius
is shown in figure 210. In the past, many
compressors have been designed to achieve a
specific type of velocity diagram at a given
radius or given radii. A discussion of the com-
monly used velocity diagrams and their application
in the design procedure is given in references
35 and 236. The free-vortex diagram has been
widely used because of its simplicity and because
of the accuracy with which flow distributions
can be calculated for this type flow. Two-

dimensional blade-element considerations (which ..
are now known to be insufficient) showed that

the symmetrical velocity diagram gave maximum
blade-element-profile efficiency as well as high
flow and stage pressure ratio for a subsonic Mach
number limit. Therefore, this type of diagram
also has been used extensively. As the various

~ Yo :]
}_,_m Sy, 2T

Fiaure 210.—General velocity diagram.
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limitations of compressors became better known,
more freedom was taken in the type of velocity
diagram. With the advent of the transonic
compressor and- the removal of the subsonic
Mach number limit, the free-vortex design re-
turned to prominence for inlet stages. The
absence of large gradients in outlet axial velocity
with this type design facilitates the maintenance
of recently established loading limits and the
achievement of high pressure ratio.

Experimental tests of axial-flow compressors
show that satisfactory performance can be obtained
for a wide range of velocity-diagram types if the
blade-loading and Mach number limits are not
exceeded. Therefore, present design philosophy
emphasizes the limitations as determined by Mach
number and diffusion factor rather than the
specific velocity diagram used. In general, an
iterative procedure of specifying radial distribu-
tion of work (AH or AT) and checking all radial
sections for extremes in diffusion factor or Mach
number is satisfactory. A specification of a
velocity diagram may in some cases be desirable
to systematize the procedure or to utilize past
experience.

COMPRESSOR-INLET CONDITIONS

Inlet hub-tip radius ratio and axial velocity
must be specified to satisfy the design weight-flow
requirement, which is fixed by an engine analysis.
Figure 211 presents curves of compressor weight
flow per unit frontal area against axial Mach
number for constant values of hub-tip radius
ratio. It is apparent from this figure that weight
flow per unit frontal area increases with decreas-
ing hub-tip radius ratio and with increasing axial
velocity (or Mach number). Reduction in hub-
tip ratio below approximately 0.4 may be expected
to result in aggravated aerodynamic as well as
mechanical problems, thus giving diminishing
returns. For instance, the blade-element-flow
choking problem (M=1.0 at throat) at the
compressor hub becomes more acute because of
large fillets and blade thicknesses, while blade
fastening may become difficult and blade stresses
may become high,

Figure 211 also illustrates that the value of
weight flow per unit frontal area depends on the
value of inlet axial Mach number. However, de-
sign values of axial Mach number are fixed (for
any desired blade speed and air prerotation) by
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Figure 211.—Weight-flow-—Mach number characteristics
for various values of hub-tip radius ratio.

the limiting relative inlet Mach number of the
blade sections used in the inlet row. Thus, the
relative inlet Mach number becomes the impor-
tant variable and will be considered here.

The limiting relative Mach number for con-
ventional subsonic blade shapes and designs is
usually set at 0.7 to 0.8; whereas good efficiencies
have been obtained at Mach numbers up to 1.1
(ref. 41) and even higher for transonic blade shapes
(thin blades with thin leading edges and solidity
of the order of 1.0). These limits are determined
from loss and efficiency considerations, which in
turn may be affected by blade-row choking con-
siderations, particularly at the compressor hub.
An analysis of the choking problem is presented
for two-dimensional cascades in reference 31 (pt.
I). If a cascade analysis is applied to a compressor
rotor and does not indicate choking, there will
probably be a built-in safety factor because of the
advantage of the energy rise through the rotor.

In the past, inlet corotation has been used to
reduce the relative Mach number at the rotor
inlet. Since compressors have been operated
efficiently at high values of relative inlet Mach
number, the role of inlet guide vanes has become
decreasingly important in compressor design.
However, the use of counterrotation inlet guide
vanes to increase Mach number at a given wheel
speed for the attainment of high stage pressure
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ratio should not be overlooked when blade speed

1s otherwise limited.

VARIATION OF DESIGN PARAMETERS THROUGH
COMPRESSOR

Axial velocity—In any compressor, values of
axial velocity are fixed at two axial stations:
at the compressor inlet by the weight flow and
hub-tip ratio, and at the compressor exit by
compressor-discharge diffuser and combustor-inlet
requirements. With the trend toward higher
compressor-inlet velocities, fixed combustor re-
quirements will necessitate appreciable decreases
in axial velocity through the unit. Care must
also be taken that blade heights in the latter
stages do not become so small that end-wall
boundary layers and blade tip clearances occupy
a large percentage of the passage and thus de-
teriorate performance. The exact scheduling of
axial velocity through the compressor will de-
pend largely on the individual blade-row require-
ments. Large axial velocity reductions across
any blade element are to be avoided if high effici-
ency is desired.

Diffusion factor.—The diffusion factor, a blade-
loading criterion discussed in reference 9, is
given by

AV,

D1 Uiy AV

+o (310)

The analysis of single-stage-compressor data in
reference 9 indicates the following diffusion-factor
limits for inlet stages: for the rotor tip, I less than
0.4; for the rotor hub, D less than 0.6; for the
stator, D less than 0.6. The variation of limiting
diffusion factor through the compressor is not yet
known. Although this blade-loading parameter
(eq. (310)) is a good stop-gap, a more complete
and general loading criterion and a better correla-
tion of loss with loading are still required.
Efficiency.—The stage or blade-row efficiency,
rather than the blade-element loss, may be used
as a design parameter in certain design procedures
(e.g., method IIT). Experimental investigations
of axial-flow compressors indicate that, where
blade-loading limits are not exceeded, the stage
efficiencies remain at a relatively constant high
value. A slight decrease in efficiency in the rear
stages of the compressor has usually been at-
tributed to distortions of the radial distributions
of velocity in these blade rows. Also, the ratio
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of wetted area to flow area is greater in the latter
stages than in the inlet stage, so that boundary-
layer effects become more prominent. - The design-
speed peak adiabatic efficiency for an inlet stage
operating as a single-stage unit is about 0.92. Of
course, the assumed design efficiency will vary with

the performance requirements of pressure ratio and

weight flow and perhaps with axial position in the
COMPpressor. ' .

Boundary-layer characteristics.—Unfortunately,
there is very little information from ‘which the
boundary-layer growth through a compressor can
be determined accurately beyond that mentioned
in reference 243. Values of correction factors used
to account for boundary-layer growth have been
given and discussed in the section on weight-flow
blockage. Data obtained from an 8-stage axial-
flow compressor (ref. 247) indicate that the bound-
ary-layer thickness (expressed as a percent of blade
height) remained approximately constant through
the last four stages near the design weight flow.
Although the boundary layer in the compressor of
reference 247 was thicker than might be generally
expected, these results support the choice of a
constant value of K, through the latter stages of
an axial-flow compressor.

PHYSICAL ASPECTS

Physical considerations limit some compressor
variables that affect the aerodynamics of the flow.
The shape of the compressor outer casing is limited
by restrictions on over-all size of the engine and
accessories, and a constant-tip-radius configura-
tion has been used in the past as a good compro-
mise between aerodynamic and weight considera-
tions. The required decrease in annular area
from inlet to outlet is then obtained by gradually
increasing the hub radius. Of course, other com-
binations of hub and tip shapes may be desirable
for specific applications; for example, the section
on radial-flow accelerations indicates that tapering
the tip casing at the compressor inlet may be
desirable to reduce hub-wall curvature effects, if
these are otherwise detrimental.

The value of the solidity used in each blade
row may be varied slightly to keep the blade
loading (expressed for the present by the diffusion
factor) within certain limits. Reasonable values
of solidity for the transonic compressors appear to
be in the order of 1.0 at the tip section. Ex-
tremely low solidities lead to poor guidance and
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high losses, while extremely high solidities lead to
hub choking problems and high losses.

Although the tip clearance used in a com-
pressor design is usually set by mechanical con-
siderations, large effects of tip clearance on aero-
dynamic performance have been noted ‘in various
compressor investigations. Some effects of blade
tip clearance are discussed in reference 5, which
reports that the smallest clearance used in the
series of tests gave the best rotor efficiency. -

OFF-DESIGN PERFORMANCE

In regard to compressor weight, it is desirable
to select a design for the minimum number of
stages consistent with good aerodynamic efficiency
to achieve a specified over-all pressure ratio.
Since the compressor must also have good ac-
celeration characteristics, good high flight Mach
number performance, and a reasonable overspeed
margin as well as satisfactory design-point opera-
tion, the off-design operating characteristics should
be considered when the stagewise variation of
blade loading is chosen. Possible means of de-
termining the off-design operating characteristics
are given in chapter X. At compressor speeds
above and below design speed, the front and rear
stages deviate considerably from design angle of
incidence, operating over a range from choked
flow to stall (ref. 248). Therefore, it is im-
portant to prescribe blading and velocity dia-
grams in the front and rear stages that will permit
the attainment of a large stall-free range of
operation.

Consideration of compressor-inlet flow distor-
tions resulting from inlet-diffuser boundary layers,
aircraft flight at angle of attack, and so forth,
may also influence the stage design selection,
especially in the inlet stages of the compressor.

APPLICATION OF EQUATIONS
DESIGN EQUATIONS

The equations to be used in & design are grouped
in table III for ease of reference. They are either
repeated or are directly derived from equations in
the previous sections. Additional relations are
obtained from the velocity diagram such as is
shown in figure 210.

Equations (d1b) (the isre solution) and (d2b)
(the nisre solution) for determining the axial
velocity variation along the radius are obtained
from equations (dla) and (d2a) by evaluating
the integrals by the trapezoidal rule. [In addi-
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DESIGN VELOCITY DISTRIBUTION IN MERIDIONAL PLANE 271

tion, eqs. (304) and (305) or eqs. (301) and (d8)
(with the radial velocity equal to zero) are applied
to derive eq. (d2b) from eq. (d2a).] An accurate
evaluation of the axial velocity distribution by
use of equations (d1b) and. (d2b) requires that the
reference radius be shifted from point to point.
That is, the integration is first carried out from the
initial reference radius to an adjacent. radial
station. The computed values of velocity at this
adjacent radial station are then used as the refer-
ence-point values to compute conditions at the
following radial station. Thus, the effect of any
variation of entropy, temperature, and tangential
velocity on the axial velocity distribution may be
accurately considered if enough radial stations
are specified across the annulus area.

Equation (d7) is a form of (d1a) for the special
case of inlet guide vanes where the stagnation
temperature is constant. This equation is de-
rived in reference 249. Equation (d6) is an alter-
nate form of the diffusion-factor relation (eq.
(310)). A graphical solution of equation (d6) is
presented in chapter IX,

GENERAL DETERMINATION OF AXIAL VELOCITY
DISTRIBUTION

The design of the multistage compressor requires
the solution of the general flow equations after
each blade row in the compressor. This section is
concerned with the methods of determining the
velocity distributions after the inlet guide vanes
and rotor and stator blade rows.

For the case of no inlet guide vanes or for guide
vanes that impose a vortex turning distribution, it
may be assumed for the initial design trial that the
axial velocity is constant along the radius at the
inlet to the first rotor row. For compressors
having inlet guide vanes imparting a nonvortex
turning distribution to the flow, the axial velocities
at the outlet of the guide vanes or at the inlet to
the first rotor will vary with radius and must be
computed. As indicated in the previous dis-
cussion, the effects of streamline curvature may be
sufficiently large in certain cases to necessitate
consideration of these effects in the calculation
procedure. In the design procedure, corrections

for these curvature effects may be applied after

the preliminary velocity distributions and passage
geometry have been specified. '

After the flow conditions at the inlet to the
rotor are determined, the steps previously enu-
merated in the section on CoNsiDERATION oF WALL

Bounpary-LayEr EFrFEcTs are used to determine
the velocity distribution and annulus area geometry
after the rotor. The design variables that must be
specified for the first rotor are the tip radius at
the rotor discharge, the tangential and axial
velocity changes (based on blade-loading considera-

. tions) across the critical blade element (usually

the tip) of the rotor, and the radial distributions
of energy addition and blade-element loss. The
specification of these quantities completely de-
termines the flow parameters at the discharge of
the blade row. Application of the blockage
correction K,; in the continuity equation then
permits the determination of the hub radius
of the annular flow passage after the rotor. A
similar procedure is used to determine the flow
conditions after the following stator.

It is then necessary to review completely the
preliminary design in order to determine its critical
and undesirable features with respect to both the
compressor performance and the performance of
the other engine components. For instance, it
will be necessary to go through the design pro-
cedure again in order to correct for streamline-
curvature effects, or to improve the shape of the
hub contour, or to revise the loss assumptions made
originally. A recalculation may also be required
to change the loading or Mach number level
because certain blade elements appear to be too
critically loaded. The blade sections may then be
determined from the two-dimensional and annular-
cascade data of chapters VI and VII and the
calculated design flow conditions.

Three methods discussed generally in the section
on CONSIDERATION OF WALL BoOUNDARY-LAYER
Errects for determining the flow conditions in
the compressor are presented here to indicate the
possible uses of the available equations and data.
In discussing these methods, it is assumed that the
compressor tip geometry and aerodynamic con-
ditions are known (i.e., inlet and outlet tip radii,
wheel speed, limiting-loading parameter, and
axial velocity ratio) and that inlet values for
pressure, temperature, weight flow, and velocity
are known. = It is assumed that the radial velocity
terms may be neglected. The tangential velocity
distribution is taken to be the prescribed outlet
variable. The values selected are not to be
considered as uniquely desirable values. They
are chosen merely to illustrate the methods of
solution of the design equations. Itshould be em-
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Stator.—

(1) The tip radius at the discharge of the stator
blade row is specified.

(2) The axial velocity and tangential velocity
at the tip radius after the stator are specified
considering the effect of these values on the losses
and on the characteristics that are desirable for
the following rotor row. ‘ ‘

(3) Theradial distribution of tangential velocity
after the stator is specified.

(4) The radial variation of stagnation tempera-
ture is assumed to be the same after the stator
as at the inlet to the stator.

(5) The radial distribution of loss from wall
to wall is assumed from boundary-layer data of
similar stators and. from the diffusion-factor—
loss correlation of chapter VII. The radial
distribution of stagnation pressure is computed
from equation (d3b).

(6) The radial distribution of axial velocity
is computed from equation (d2b).

(7) The density variation along the radius is
computed from equation (d4).

(8) The hub radius after the stator is deter-
mined from equation (d5) with the blockage
factor K;; equal to 1.0.

METHOD I

The essential difference between solution of
the flow equations by methods IT and I is that in
method II the flow distributions are computed
using available blade-element data as if no wall
boundary layers were present. Appropriate cor-
rection factors for the effects of the wall boundary
layers are then applied. Specifically, the principal
differences are in the evaluation of the loss dis-
tribution along the radius (step (5) of method I)
and in consideration of the wall boundary-layer
blockage factor in the flow-continuity condition
(step (8) of method I). The radial variation of
loss for method II is determined from blade-
element considerations alone and does not -go
into the wall boundary-layer effects. The block-
age factor K, used in applying the continuity
equation (d5) in method IT is some value less than
1.0. As pointed out in reference 243, it may vary
from 0.98 to 0.96 through the compressor.

The isre equation can also be used in this method
for an initial approximation of the flow or for
cases in which the radial gradients of entropy
are negligible. In these cases, equation (dla) or

691-564 O-65~19
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(d1b) is used in step (6) of method I.  Equation
(d7) may be used to compute the axial velocity
distribution for blade rows having negligible
radial gradients of stagnation temperature and
pressure. In applying equation (d7), however,
it is necessary to specify the flow-angle distribu-

tion after the blade row rather than the tangential

'METHOD I :

The principal difference between the solution
by method IIT and that by method II is in con-
sideration of the blade-element loss. Rather
than estimating a blade-element loss ’, an average
rotor row efficiency is assigned in: this method.
It is then assumed that the rotor blade-element
efficiency is equal to this average rotor efficiency.
The stator losses may then be considered by
specifying an average stage efficiency. The stag-
nation pressure after the rotor and stator blades
may then be determined from the rotor and stage
temperature ratios and the appropriate efficiencies.
The isre equation ((d1a) or (d1b)) is then used in
calculating the velocity distribution after the
blade row. A method very similar to this one is
presented in chapter IX, in which the solution is
accomplished by the use of charts.

REMARKS

It must be emphasized that the previously
outlined calculations are to be considered as
preliminary calculations. After the annulus area
geometry is determined, it will be necessary to
review and probably recalculate the design to
determine the final flow conditions through the
compressor.

Naturally, other forms of these equations can
lead to variations in the design procedure. It
should be noted, however, that any variations
must use self-consistent boundary-layer correction
factors. Indiscriminate use of correction factors
can lead to a design that is as poor as or worse
than one in which boundary-layer corrections are
completely neglected.

The radial velocity terms may be included in
the methods presented if the streamline slope in

“the meridional plane is estimated. Thus, the

radial velocity is related to the axial velocity.
This necessitates retaining the radial velocity

terms in equations (d4) and (dS8).

Some secondary-flow effects may also be con-
sidered for certain specific cases in the design
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system. For instance, reference 43 presents a
method of considering the induced effects of the
trailing vortex system on the inlet-guide-vane
turning angle. Research on secondary-flow effects
in annular cascades will no doubt eventually lead
to corrections in the design system.

NUMERICAL EXAMPLE

As an illustration of the design procedure of
method II, the design calculations for an inlet
stage consisting of inlet rotor and stator are pre-
" sented here. The given inlet conditions are as

follows:
P,=2116 lb/sq ft G,,1==1116 ft/sec

T1=518.7° R r, =15 ft

Vi,1=0 ""f =35.0 (Ib/sec)/sq ft

The following design variables are selected:

Radial stations r., rs, 74, 75, and r. at 10, 30, 50,
70, and 90 percent of passage depth.

M¢,1=0.6 V0,3= D&.éo.ﬁ
M; .=1.1 Dy, o=0.35 D3=0.6
Kp=0.98
K, K,, and K, are not used.
73, =1.44 ft
(Vs l)a—l.o 73, :=1.44 ft
0'3,¢=1.0
(V ) =10 0'5,4::0.7

Values used for various constants are

g=32.17 ftfsec? ¢,=0.243 Btu/(Ib)(°R)
J=778.2 ft-lb/Btu R=53.35 ft-1b/(1b) (°R)
y=14

The value of inlet hub-tip radius ratio is com-

puted from the flow per unit frontal area, axial
Mach number, and tip radius, as follows:

wyd 1 35
34, K,, 0.98

35.7 (Ib/sec)/sq ft

From M., w/8/6A,, and figure 211, r,/r,=0.377.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

The actual weight flow is obtained from

Ap,1=‘l’r: "‘—'=7.069 8q ft
(] ]
’;?1/; Ar, 'w;/_ w=247 lb/sec

The conditions at the rotor tip design station «
(10 percent of passage depth) are computed next.
From M, , and reference 250,

==0.9658

a1
2,=1078 ft/sec

Vii=aM, =(1078)(0.6)=647 ft/sec

Vi «e=a; M} «=(1078)(1.1)=1186 ft/sec

Uy oa=Vi,1,a=[(V1,a)?—V2,,a]"2=994 ft/sec

Ui\ s a0
I—,——) =56.9

zl/a

B, a=tan—!

Vs, 2, a™ (1 -O) (Vz, 1, u) =647 ft/sec

The value of B;. is computed fr6m equation
(d6) by application of the appropriate chart (fig.
217, ch. IX):

B:,«=46.0°
Vi.2,a= Vi3, tan B; «=670 ft/sec
Viaa=Us a—V;, 4,.=297 ftfsec

The iteration procedure for the computation of
the radial variation of gas state is started by
selecting the inlet radial stations. The computa-
tion lineups and results for the velocity calcula-
tions using the isre and nisre equations are shown
in tables IV (a) and (b), respectively, where only
the final results and final calculation lineups of the
iteration procedure are presented.

In these designs the variation of outlet tangen-
tial velocity is prescribed as a function of r;, so
that an analytical integration of the isre equation
is possible. Of course, graphical or numerical
procedures may also be used. This velocity
distribution is

Vor=Voa, (2——”—)
T4

It should be emphasized that this distribution is
chosen only to illustrate the design procedure for
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(a) Using isre equations

TABLE IV.~CALCULATION PROCEDURES

275

Radial posttion
Step | Parameter Known design Procedure
condition
a -] 4 ] €
1 | nfn,e ri.afr. ¢ =0.377 Choose 10, 30, 50, 70, 90 percent of passage depth 0.938 0.813 0.888 0. 564 0.439
2 | =V, , U, ¢=1060 Unelniir ) 904 862 729 508 465
3|8 Va1 =647 tan-1(V, ,/Va1) 56.9 831 . 48.4 42.8 35.7|
4 v [+ (vi )" 1188 1078 o5 881 ™
5| M @=1078 Vilm 1.100 0.999| 0.904] 0.817 0.739
8 | rajra =144 73 » known from preliminary design (step 1) 0. 950 0.832 0.720 0. 608 0. 496
7] Ve Vs =283 Vasd2—(r/rosl 207 331 362 394 426
8|1 h Uy, =1018 Us.o(rfroa 067 847 733 619 505
9| Ta=Ts T,=518.7 Ti-H(UsVas— Ui Va,1)fgJes] 566 ] 562 550 564
10 | Vas Vota=647 Eq. (311) 647 640 627 612 600
1 |v,, Uz~ Vi 670 516 3n 225 7
12 | A tan-1(V, 4/ Vas) 46.0 38.9 30.6 20.2 7.5
13 |V, Varlcos By 932 822 728 852 605
14 |aas Ge1=1116 Gt (T8 TN 1166 1165 1162 1158 1158
15 | My Valae.s and ref, 250 0. 638 0. 644 0. 649 0. 658 0. 666
16 | M; MV, 0.830 0. 735 0.853 0. 587 0.548
17 | o Ga=1.0 oy, o150/ (r1+Hra) 1.00 115 1.34 161 2.02
18 | D 1-(Vy/V)+(AV, 24V} 0351} 037] 0.30] o039 0.360
19 |7 D', cos By/2s, and fig. 212 0.0734 | 0.0360 | 0.0405| 0.0446 0.0489
20 | (p/PYs M, and ref. 250 0. 636 0. 609 0.751 0.792 0.816
.
21 | PP, (-;'—.:) "" [1—5' (1—13)] 1.320 1.333 1.313 1.284 1.248
Py Vs, 3+V-. ""
2 | gor BT 2TocTs ) 0.0764 | 0.0760| 0.0758 | 0.0744 0.0724
28 lw Ku=0.08 2xKsarn: f (o Va)s d(rafrae) %7
. (rafrods
24 | nfree r3e=1.44 .4 known from preliminary design (step 1) 0.950 .838 0.730 0. 622 0. 514
25 | VamWa Veram Vasa [V3.4. H20Jes(Te-T00]'" 047 637 612 576 24
28 | My Gesmaen Vilae,s and ref. 250 0.573 0. 564 0.527 0.408 0. 455
27 | e am0.7 a1 (rs, s )/ (rat-m) 0.700 0.796 0.917 1.08 1.32
2% | D 1—(Vi/ V) +(AV o/2¢ V2) 0.389 0.405 0.427 0.458 0. 507
% |3 D, 20, and fig. 212 0.0182] 00228 0.0275| 0.0346 0.0501
30 | (o/Pn M; and ref. 250 0.800 0.806 0.819 0.837 0.862
31 | PyP, 1-% (1-—-) 0.996 0.996 0.995 0.994 0.903
32 | H 0.0788 | 0.0800| 0.0800| 0.0709 0.0799
(<] 20 Jc ’ﬁ N ), 3 5
B |w 2x Ksarne J: o Vo d(nirsd A1
T
34 | PYR ' 1.82 1.33 1.3 1.28 L4
Ned ST -— -1]/(-—-1 0.895 0.946 0.044 0.940 0.928
(TVTD e Mass-average T T 1.083
(PyP1)es Mass-average Py P, 1.2
Nadi sy Mass-average ges s7 0.932
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TABLE IV—CALCULATION PROCEDURES—Concluded
(b) Using nisre equations

8tep| Parameter Known design Procedure Radial position
condition « 8 o 3 «
36 | rifri.e R (8tep 1) 0.938| 0.813] 0.688] . 0.564 0,439
37 | ti=V,, Ui, +=1080 U.s(rifr1.e) 294 862 729 598 466
38 |8 Vi1 =647 tan-! (V; 4/ V1) 56.9 53.1 8.4 4.8 35.7
39 |V V2V, D2 1186 1078 75 881 797
0 | M a1=1078 Vit 1.100 0.999{ 0.904] 0.817 0.789
41 | rafrs. e =1.44 r3.» known from preliminary design 0. 950 0.838 0.730 "0.622 0. 514
42 | Vs V3,0=283 Vo, [2—('_1‘).] 207 320 359 390 420
43 | U U1,0=1018 Un,(rafra,e) 967 853 743 633 523
U | D=Ts Ti=518.7 Ti+(UiVas—Ti V) fgJes) 566 565 563 559 555
Ty, Y-
4 | SS P; known from pre- | In [..:_7_"_2"_: ________ 1.009| 0.988f. 0.981 0.974
RJH vious trial Py Py
48 | Vea Vata=M7 Eq. (312) 647 662 652 640 628
47 | Vy, Ui=Vias 670 524 384 243 103
18 | g tant (Vg o/ Vis) 46.0 38.4 30.5 20.8 0.3
49 | aen Ga1=1116 Gat(To/ TV 1186 1165 1162 1159 1154
50 | M: Va/aa,s and ref. 250 0.635 0. 662 0. 669 0.875 0. 685
51 | My MVyVs 0,830 0.756 0.680 0.617 0.577
62 | o oa=1.0 ou(rLefra ) f(nrs) L0 L14 1.33 1.50 L.98
8 | o 1= (VYV)+(aV if2aV)) 0.31| o0.3s3| o3| o0.3%0 0.316
M | IY, cos B3/20, and fig. 212 0.0734| 0.0350 [ 0.0371| -0.0409 0.0422
55 | (p/P') M; and ref. 250 0.636| 0.685| 0.734| 0.774 0.798
% | PyPy (—;;’) ?1_1[ 1-o (1—”—’,) ] Lazw | 13s2]| 1L316] 1290 1.256
1 P;
& | o Py l__Vf.a+V?.z ;é’l' 0.07
o3 T, STy ) .0764 | 0.0781 | 0.0750 | 0.0738 0.0719
1.0
58 jw Ku=0.98 2K un.gf (V)3 d(rsfr.e) 247
(rafre)s

59 | rara. re, i=1.44 r3,» known from preliminary design (step 1) 0. 950 0.844 0.740 0. 636 0.532

. [(’%“)‘5‘
80 -;;—F— P;) g&?&s?ﬁ In _13;‘?/'13,— ________ 0.0152| 0.0005| 0.0000| —0.0004
6l | Va=Vi Vata=847 Eq.(313) 847 658 638 606 559
62 | M; @a2=Ca,3 Vi/aa.3 and ref, 250 0.573 0.584 0. 568 0.538 0, 406
63 o 7a=0.7 oo(ra, era )/ (ratrs) 0.700 0.7911 0.905 1.057 1.272
64 | D 1~(Vi/V3)+(A V2 Vs) 0.300| 0.301] 0.410] 0,438 0.480
65 | w D, 2, and fig. 212 0.0182 | 0.0208) o0.0253| 0.0817 0.0445
68 | (p/P)s M, and ref. 250 0.8005! 0.794] 0.804]| 0.822 0.845
67 | PyPs 1-3 (1--12,3 0.9964 | 00068 o0.0951{ o0.9941| o0.0031

1

8 | gos E% 1—20}:5 n):‘ o.0788 | o.072| o.0m1| o072 o.0m

w 2xK, nn.:fm p3Vaars d(rafrs.e) 247

. raafrse

0 | PyPy [ P )Z'-;!_.l] / ( 1"_1) 1.315 La27| 1309 1.282 1247
71 | ned8r P, T 0.885 0. 947 0.946 0. 940 0.932

(T8/T1)as Mass-average T4/ T} 1,080

(PYP1)as Mass-average Py Py 1.30

Nadsav Masgs-average 1qa.87 0.936
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the general case where radial temperature gra-
dients are present and does not necessarily repre-
sent an optimum design condition. - The: isre
equation (dla) can then be directly mtegrated
with the following result:

V=V 511+29Jc,(Ta—T5, ) —V35,2—V5.20)
~8Viai[In e e () (310 |
(311)

where the « station is used as the initial reference
station. All the terms on the right side of
equation (811) are known as functions of the trial
values of r; (7, depends on the selection of r,;, and
Ts,n, Since in this procedure the radial stations were
chosen at stated percentages of the passage depth).
The final value of 7,,; is obtained by the iteration
procedure of steps 6 to 23 in table IV(a). The
weight flow is computed numerically (e.g., by
plotting (2xKypV .r 7). against (r/r,); and carrying
out a graphical integration).

In order to compute weight flow, density and
hence stagnation pressure must be calculated at
the blade-row outlet. Stagnation pressure can be
computed from stagnation temperature and the
loss-velocity-diagram correlations presented in
chapters VI and VII. The design chart (from
data presented in ch. VII) used here to relate
stagnation-pressure loss to velocity diagram is
shown in figure 212. This chart is used in the
design procedure shown in table IV, while an
explanation of its significance is given in chapter
VII. Here (P;/P;)u is taken equal to 1.0, which
is exact for a constant-radius blade element.

The stator design is simpler than that for the
rotor in this case, since Vi ; is chosen to be zero;
however, the basic approach is the same. The
isre equation becomes

Vis=V:3.4+29Jc,(T3— T3, )

where again the a station is used as the initial
reference station. The stator curve in figure 212
is used for all radial stations.

The rotor and stator design using the nisre
equation is carried out with the same design
conditions as prescribed for the design using the
isre equation. Thus steps 36 to 44 of table IV (b)
are the same as those from 1 to 9. The method
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of computing the outlet axial velocity is now
changed, since data from a previous approxima-
tion are used in the solution. Here the final
results of the isre solution are used to obtain the
loss data for the initial nisre solution for outlet
axial velocity. = This is an intermediate step for
which the data are not. presented in the: tables.
The nisre equation for outlet axial velocity for
the assumed conditions is

Via[ 14525 S-S0 |

=V3 . ,+2ch,(Tr—- T )—(Vi2—Via
Te—Tye, 1 .

+2 [QR(Tz,H-Tz) L Vit Vit V2a 0 |
(S~ (312)
T, N1
R "T?)

Sz, ¢—Sz=:]‘ ].11 1—32_"

P,

where

Equation (312) was obtained under the following
restrictions: (1) that V,=0, and (2) that entropy
and static temperature vary linearly with radius
in the interval of integration and thus the refer-
ence radius is shifted from point to point, starting
at a near the tip. This solution illustrates a
numerical solution of the equilibrium equation.
The remainder of this calculation for the rotor is
the same as that for the isre case.

The loss estimates for the stator are made
initially from the isre solution for the stator, and
the entropy variation is computed from these
values. The stator velocity-diagram calculations
then proceed as do the rotor nisre calculations,
using the equation

[1+7 1 (Sa 1 Sa):l

=V3, 3, ¢+29J0p (T5—1T5,0)
+ [ RE A TO-T2 V. |

(S5,1+—8) (313)
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CONCLUDING REMARKS

The general flow equations that must be solved
in the determination of design velocity distribu-
tions and flow passage configuration in compressors
have been presented. In general, it is felt that
more data are required to establish accurately the

boundary-layer effects and correction factors on

weight flow or annulus area and average stage
pressure ratio and efficiency. It is expected, how-
ever, that the boundary-layer correction system
discussed in this chapter will lead to a satisfactory
design approximation. The need for concentrated
analytical and experimental work is indicated by
the lack of satisfactorily evaluated calculation
procedures for determination of velocity distribu-

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

tions where streamline-curvature effects are large.
In the high-performance compressors being con-
sidered‘at the present time, accurate prediction of
design-point - performance may not be possible
until these curvature effects can be considered in
the design procedure. For the time being, these
three-dimensional-flow problems may be alleviated
by geometric modifications of the hub and casing
profile. It should be reemphasized here that the
compressor design procedure is a trial-and-error
compromise procedure. It is generally necessary
to go through the design calculations a number of
times before all elements of the compressor may
be considered to be satisfactorily designed with
respect to serodynamic and mechanical consid-
erations.
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| CHAPTER IX |
CHART PROCEDURES FOR DESIGN VELOCITY DISTRIBUTION

By ArtEUR A. MEDEIROS and Brrry Jane Hoop

A series of charts for the solution of the flow
equations used in the design of axial-flow compressors
is developed. The equations, which are presented
in chart form, are radial equilibrium (in a simplified
Jorm), continuity of flow, energy addition, efficiency,
vector relations, and diffusion factor.

Because the charts are based on general flow
equations, they can be used wn the design of any
axial-flow compressor. An example of the use of the
charts in the design of a stage consisting of a rotor
and stator blade row is presented. Comparison of
the pertinent design values obtained by the chart
procedure with analytically calculated values indi-
cates that good accuracy can be attained by careful use
of the charts.

INTRODUCTION

The over-all design requirements of ow
and pressure ratio for the compressor component
of a gas-turbine engine are generally determined
on the basis of a cycle analysis for the particular
application of the engine. For many present-day
aircraft applications, an axial-flow compressor is
selected because of its high efficiency and high
flow per unit frontal area.

The general geometry of the compressor, such
as the tip diameter, blade speed, inlet and dis-
charge axial velocities, and inlet and discharge
areas, is determined by consideration not only of
the compressor but also of the combustor and tur-
bine components of the engine. The selection of
inlet axial velocity, compressor blade speed, and
inlet hub and tip diameters involves a compro-
mise among high weight flow per unit frontal area
(low hub-tip diameter ratio and high axial veloc-
ity), high stage pressure ratio (high blade speed),
and reasonsable turbine blade stresses (low blade
speed, low axial velocity, and high hub-tip
diameter ratio). The magnitudes of the axial
. velocity and blade speed must also be compro-
mised on the basis of the effects of the resultant

Mach number on blade-section efficiency.. Com-
pressor blade stresses, other than vibratory stresses,
play only a small part in this compromise. The
factors affecting these considerations are discussed
more completely in chapter II and in reference 17.

Other compromises must be made in the com-
pressor design in addition to the inlet configura-
tion. - The compressor-discharge velocity must be
adjusted on the basis of compressor diffuser and
combustor-inlet requirements. Low compressor-
discharge axial velocities are favorable with re-
spect to combustor efficiency; however, high axial

/\velocitiw are desirable through the compressor

for attaining high stage pressure ratios and hence
decreasing compressor weight. With the inlet
and discharge axial velocities selected, it is then
necessary to prescribe a stagewise variation in the
axial velocities and blade-loading limits so that a
reasonable hub shape is obtained.

Another variable that must be dealt with is the
radial distribution of tangential velocities. Not a
great deal of information is available on the over-
all desirability of the various radial distributions
of velocity diagrams, so that, for the most part,
the choice is a matter of experience with some
particular distribution.

It is obvious that, with this wide selection of
combinations of axial and radial distributions of
velocities and the compromises required because
of the factors affecting aerodynamic performance,
weight, and mechanical reliability of the various
components, many compressor configurations are
possible to meet the given over-all design require-
ments. Some preliminary design calculations are
therefore necessary before & final compressor con-
figuration is selected.

Each of these preliminary design calculations
requires the solution of the fundamental flow
equations after each blade row. The application
of the fundamental flow equations to compressor
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design is discussed in detail in chapter VIII.
However, the complete design procedure pre-
sented in chapter VIII would be very time-
consuming if used for the purpose of design
evaluations. It is desirable to put the funda-
mental flow equations applicable to compressor
design in simple and easily used chart form.
Another reason for simplifying the compressor
design procedure for certain applications is the
iterative nature of the complete design proce-
dure. The iteration is a result of the mutual
interrelation between the calculation of the radial
distribution of velocities, the passage shape of the
compressor, and the selection of blading to achieve
the radial distributions of velocity. For example,
the axial velocity distribution after any blade row
is a function not only of the radial distribution of
tangential velocities but also of the energy gradient
and the gradient of losses. However, the. tan-
gential velocities (or energy) and losses are func-
tions of the blading and the angular setting of the
blading with respect to the flow. The general
procedure is to prescribe the desired radial dis-
tribution of tangential velocity or energy and
assume a loss at each radial station at which the
axial velocity is to be calculated. The calculation
of the axial velocity to satisfy the radial-equilib-
rium condition completes the vector diagram,
and it is then possible to select blading on the
basis of data such as that presented in chapters
VI and VII. At this point, the losses for the
selected blade section can be obtained from blade-
element data and checked against the assumed
losses. If the assumed and calculated losses are
sufficiently different, the entire calculation must
be repeated with new assumed values of losses.
Streamline curvature, particularly in stages
with low hub-tip diameter ratios and high pressure
ratios, will affect the radial distribution of axial
velocity. Some of the factors that control the
streamline curvature and methods of analytically
correcting for the effect on axial velocity are
discussed in chapter VIII and in references 34,
49, 236, 238, and 239. It is obvious that the hub
and tip diameter variation through the compressor
will greatly influence the streamline . shape.
Therefore, a preliminary design calculation is
‘necessary to determine the approximate passage
shape variation before streamline-curvature cor-
rections to the axial velocity can be made. For
this reason, also, it is advantageous to have the

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

preliminary design procedure in easily used chart

form..

This chapter develops and presents a chart
procedure for the design of axial-flow compressors
using any consistent set of assumed design values
and velocity distributions. The radial-equilibrium
equation (in simplified form), the continuity
equation, the energy-addition and efficiency equa-
tions, vector relations, and the diffusion-factor
equation (see ref. 9) are presented in graph form.

The method can be used for making preliminary
design calculations to determine the compressor
configuration to meet given over-all performance
requirements with any given set of aerodynamic
limitations such as Mach number and blade-
loading levels. It can also be used as the first
step in a complete design procedure to determine
initial velocity diagrams and passage shape var-
iations. An intelligent estimate of losses in the
blading and streamline curvatures due to the walls
can then be made, so that iterations in the com-
plete design procedure can be minimized or elim-
inated. When the corrections to the design due
to entropy gradients and streamline curvatures
are expected to be small, the charts can be used
for final design calculations, provided, of course,
that they are used with care and judgment. An
example of the use of the charts in the design of an
axial-flow compressor stage is presented herein,
and the results of the graphical procedure are
compared for accuracy with analytically calculated
values.

SYMBOLS
The following symbols are used in this chapter:

A area, sq ft

a speed of sound, ft/sec

@ speed of sound based on stagnation con-
ditions, ft/sec

C+V;—V3,, (ft/sec)?

29Je,(T'—1T), (ft/sec)?

specific heat at constant pressure, 0.243
Btu/(Ib) (°R)

diffusion factor

blade force acting on gas, 1b

acceleration due to gravity, 32.17 ft/sec’

total or stagnation enthalpy, Btu/lb

mechanical equivalent of heat, 778.2 ft-1b/
Btu :

weight-flow blockage factor

Mach number

QW

iy
N

RN SRS QU
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Equations (34) and (318) can be handled con-
veniently by using readily computed stagnation
conditions, instead of static conditions, and using
the tables of reference 250; therefore, no charts
are deemed necessary to determine state conditions
and Mach numbers. Charts for the solution of
equations (310) and (314) to (317) and the vector
relations are presented herein.

FORMULATION OF CHARTS
RADIAL EQUILIBRIUM

In order to calculate the vector diagrams for an
axial-flow turbomachine, it is necessary to satisfy
the radial-equilibrium condition given as equation
(314). For the purpose of preliminary design
analyses and, in some instances, even for the final
design procedure, it is possible to simplify the
equation.

Since the equation is usually applied between
blade rows, the blade force term & is zero. If the
entropy gradient dS/dr is assumed zero and the
streamline curvature is assumed small so that the
change in radial velocity in the axial direction
OV,/dz can be neglected, equation (314) can be

written

g SV VidVy V.V,
r ' or or

(319)

Equation (319) is the isentropic simplified-radial-
equilibrium equation that is widely used in the
design of axial-flow compressors and will be put
in chart form.

Integration of equation (319) between any
radius 7 and the radius at which all values are
known r, gives the following:

gJ(Hl_H)—f -8 br-i—m i VEJ_VI {2 V

(320)

If the absolute tangential velocity V, is expressed
analytically as a function of radius », the integral
in equation (320) can be evaluated analytically
and the equation solved for any desired variable.
However, it is sometimes impossible or undesir-
able to use a distribution of tangential velocity
that makes equation (320) convenient to apply.

If it is assumed that Vj/r is linear with respect
to r over the interval r,—r, equation (320) can be
written

2chp(Ti T)+V2_ 2, 1=

[(Y;g)‘-i-V?"] (r—n)+V3.—V}

(321)

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

With a rearrangement of terms, equation (321)
becomes

2¢Je,(T—T)+V3
Vi«

Vo1

a1
: .I.’_?.)_z |
Vg,, 7 (322)

Equation (322) is presented in graph form in
figure 213. In the first quadrant, the tangential
velocity ratio Vie/Vj, is plotted against the right
gide of equation (322): with the radius ratio
r/r as a parameter. Then, with Vj , as a param-
eter in the second quadrant, the numerator of
the left side of equation (322) appears as the
abscissa. Therefore, if the tangential velocities
are known at two radii, use of the first two
quadrants of figure 213 will give a value for

2gJe,(T—T)+Vi—Vi =B

If the radial interval is sufficiently close for the
approximation of linearity between V;/r and r, the
value of B will be that required to satisfy isen-
tropic simplified radial equilibrium between radial
stations 7, and r. For convenience, let

2gJe,(T\—T)=12,170(T—T)=C
Vi—V?2 ;=B-—-C

(323)
Then
(324)

The third quadrant of figure 213 is a plot of
B—C against V, with V, , as the parameter. The
abscissa of quadrants IT and III, then, represents
two values, depending on which quadrant is being
used. When used with- the second quadrant, its
value is B; when used with the third quadrant,
its value is B—C. If the temperature gradient is
known, C can be calculated by the use of equation
(323). This value is subtracted from the value
of B, determined by use of the first two quadrants
of figure 213, and the difference (B—0C) is used
as the abscissa of the third quadrant together with
the known value of axial velocity V, . to deter-
mine the value of axial velocity V., at radius ».

Although the use of figure 213 has been dis-
cussed on the basis of known tangential velocities
and temperatures at all radii and solving for the
axial velocities, it is obvious that the chart can
also be used with other assumptions, - For example,
the axial velocities and temperatures can be
assumed at all radii and the tangential velocity
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of tangential velocity is a combination of constant,
wheel, and vortex rotations. The assumptions
and results are as follows:

Ve=2400—900 -—900
T r

=0.5; V..:=450; %Z——-O

3-Point chart 7-Point chart
procedure procedure
r Caleulated
;; VI V.
Vi Percont Vs Percent
error error
1.0 600 450 80 | —eeee- 480 | aeenan
.9 500 <. J RN [N, 536 0.4
8 585 638 | eeeenn | eemee- 636 3
75 525 . 601 683 12 691 0
7 484 (' J RN I, 743 1
8 360 846 | e | eemeen 844 .2
] 150 21 910 12 921 0

As the table shows, even with the larger radial
interval, the errors in axial velocity are only 1.2
percent; however, with the 7-radial-position pro-
cedure, the error is reduced to a maximum of 0.4
percent. It should be noted that the radial
intervals used in the 7-position procedure are not
all equispaced; an extra position was used at r/r,=
0.75. The error in the region of this smallest
interval was 0.1 percent. Thus, extremely good
accuracy can be obtained by the use of the radial-
equilibrium chart, even with nonlinear distribu-
tions of Vi/r, if small radial intervals are used.
CONTINVUITY

Another condition that must be satisfied, in
addition to the radial-equilibrium condition, is
continuity of flow:

Wy=2rKy, frr‘ pgV'r cos gdr (315)
h

The use of the boundary-layer blockage factor
Ky in compressor design is discussed in chapter
VIII. From the equations of state and Mach

number and the adiabatic relations, the following
equations can be obtained:

,,g=1_g131_,’(1+"—;—1 M) = (325)
and
Vetq (¥ )=—MrgBT (326)

a) ‘/___

AERODYNAMIC DESIGN OF AXTAL-FLOW COMPRESSORS

Substituting equations (325) and (326) into the

continuity equation (315) produces the following
expression:

W= 21I'Ku

" vgPMeosB g (g)
1/_T(1+7 1L P

Writing equation (327) in terms of equivalent
weight flow,

( ‘/—) —-2WKM ‘ng”M cos 8 ey rdr
g (1 +‘Y —1 M2)2(7-—1)

(328)

The part of the integrand in brackets is the local
value (value at radius ) of equivalent weight flow
per unit annulus area:

G

'YgPaM cos B

(329)
7+1
o (155 202

The first quadrant of figure 214 is a plot of
equation (329). The local value of equivalent
flow per unit annulus area is plotted against
absolute resultant Mach number for constant
values of absolute flow angle. ILocal values of
equivalent flow per unit annulus area can be
determined from figure 214 for all radii at which
the vector dlagrams have been determined; then,
the continuity value of equation (328) becomes

(‘/’) 20K [ " ( rdr

The integral can be evaluated by a graphical or
mathematical procedure, and either the con-
tinuity value of equivalent flow, the tip radius, or
the hub radius can be calculated, depending on
which conditions are given.

If the radial gradient of (wv8/64,.s); is small,
sufficient accuracy in evaluating the integral can
be attained by using either an arithmetic average
or the mean-radius value of local equivalent flow
per unit annulus aress. This, of course, means
that the hub and tip diameters must either be
known or assumed. The continuity value of the

(330)
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fiow per unit annulus area then becomes

(6 ; —K”"(A.,.)

The annulus area of the compressor in terms of
the frontal area and hub-tip radius ratio is given by

Aumte[1=()]

Combining equations (331) and (332) gives

A"

(331)

(332)

().,

(50,

Equation (333) is plotted in the second quadrant
of figure 214, with w+8/6A4,, as the ordinate,
w+/6/8Ar 83 the abscissa, and 7,/r, as the parameter.
After determining values of (w+/6/3A4,,); at all
radii at which the vector diagrams have been
calculated, (w+y8/5A.,): is computed from equa-
tion (331). Then this value is used in the second
quadrant to find the value of r,/r, for a given
value of wy0/6Ar. If the specific weight flow
w+/0/8A4, is specified at one axial station (1), the
_ value at any other axial station (2) is obtained as

follows:
(-6
0Ar 3 8A,1P, ( )
a0 Tll

where (73/T1)s and (P,/P,),, are arithmetically
averaged values across the annulus.

If the value of hub-tip radius ratio determined
by this procedure is greatly different from the
value assumed for the purpose of averaging the
local values of flow per unit annulus area in equa-
tion (331) and the temperature and pressure
ratio in equation (334), it will be necessary to
repeat the procedure with a new assumed radius ratio.

By proper use of figure 214 and equations (331)
and (334), the continuity requirement, with any
consistent set of assumptions, can be met. Use
of the charts and equations is shown in a specific
example later in this chapter.

(334)

ENERGY ADDITION AND EFFICIENCY

The energy addition across a rotor blade element
is a function of both the change in tangential

AERODYNAMC‘:]‘.')ESIGN OF AXIAL-FLOW COMPRESSORS

velocity and in blade speed across the blade row.
The magnitude of the energy addition is given by
Euler’s equation as

gJe(To—Ty)=U; V43— U, Vs,1 (316)
or
gJey(To— 1) = Uy (Vo,2— Vo) + Voo (Up—TUy)
(335)

Solving equation (335) for the temperature
ratio T,/T; across the blade element gives
T, Ui(Vo,3—Vo1) +Vo2(U:—U,)

23_ 104
T1 I'OT gJCpTl

or, by using equivalent velocities,

r,_,0,8)Ce), (%) Ca)

T;[ gJCpTu chp sl (336)
where
AVO= Vo,a—' VO,l
and
AU=U,—U,=w(r,—nr)

The last term on the right side of equation (336)
is the contribution to the temperature ratio of
the change in radius across the blade element;
therefore, if the design is carried out on cylindrical
stream surfaces (r=r;), equation (336) can be
used in the following form:

AV
2 1/79? 8.
T 1.0+ 9o (337)

Equation (337) is plotted in quadrant I of figure
215 with T3/T, as a function of AV/+/6, for
constant values of Ul/\/ﬁl

If there is a change in streamline radius across
the blade element, figure 215 can still be used
directly to determine the temperature ratio
because of the change in tangential velocity.
The contribution to the temperature ratio of the
change in radius across the blade element can be
obtained either by calculating the last -term of
equation (336) or by obtaining it from the chart,
and adding this value to the temperature ratio
previously obtained from the chart result based
on U,/+/6; and AVy/+/6;,. In order to use the chart
for obtaining the last term of equation (336), the
abscissa is considered as AU/+/6; and the parameter
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as Vyo/v6.. The ordinate will then be the value
of the last term of equation (336) plus 1; therefore,
1 should be subtracted from this value before it
is added to the first two terms of equation (336).

The chart can also be used for any change in
radius if either Vj, or Vi, is zero. If V,,=0,
then U"‘ Uz and AVO-—— Vo ' a.nd if Va 3——-0 then
U=U, and AVy=V,,,.

The second quadrant of figure 215 gives pressure
ratio as a function of temperature ratio and
adiabatic temperature-rise efficiency. The rela-
tion is as follows:

r

A
-1
w4 1.0— —————1—9—————’
10+ ( D2
1.0

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

[11,,, 1. 0)+1 O] (338)
In compressor design it may be more desirable to
specify a value of relative pressure-loss coefficient
w instead of a blade-element efficiency. A dis-
cussion of the relative pressure-loss coefficient and
its use in compressor design is presented in chap-
ters VI and VII. If a relative pressure-loss
coefficient is used, the adiabatic temperature-rise
efficiency can be obtained from the following
expression:

11

—1.0

y—1 U,
L {5

aa.l

)[ ol

VECTOR BRELATIONS

The constant use of the relations between
velocities and angles in the compressor velocity
diagram warrants a chart regardless of the sim-
plicity of application. Construction of the chart
can be illustrated by inspecting the following two
relations:

Vit Vi=V? (340)
and

Ve=V, tan B (341)
From equation (340) it can be seen that, if V, and
Ve are used as rectilinear coordinates, constant
values of V will be concentric circles with V,=
V.=0 as a.center. Using the same coordinates, a
plot of equation (341) would produce a family of
straight lines going through the origin (Vy=V,=
0). The angle between these lines and the V,
axis would be equal to the value of 8.

Such a vector chart is shown in figure 216 with -

V. as the abscissa and V, as the ordinate. Ob-
viously, relative values of the velocities and flow
angle can also be used.in the chart. Further, the
coordinates can represent Mach numbers if the
decimal point is changed for the values appearing
in both axes.

-—-—-1 0

(339)

DIFFUSION FACTOR

A blade-element-loading criterion for axial-flow
compressors is developed in reference 9. The
application of this loading criterion to blade
elements in cascades and in compressors is pre-
sented in chapters VI and VII. The loading
criterion, or diffusion factor, in the form usua.lly
applied is given by the following expression:

Vi, AV,

The diffusion factor can be used in two ways in
compressor design: (1) With the vector diagrams
known, the diffusion factor is computed and the
energy losses across the blade element are esti-
mated from data such as presented in chapters
VI and VII; or (2) a limiting value of diffusion
factor is prescribed and the conditions required to
satisfy the assumed diffusion factor for given inlet
or outlet conditions are calculated.

Although equation (342) is in satisfactory form
for the first of these purposes, it is not directly
applicable for the second purpose. In order to
put equation (342) in-a form that can be used to
determine conditions for a prescribed diffusion
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Ficure 218.—Crosss section of typical stage showing
axial and radial stations.

inside the brackets. The ratio of the two functions
will be equal to the axial velocity ratio across the
blade row. In order to simplify the expression, let

o(1—D) , tan B,

X cosp T2 (344)
and
G tan 8,
“wm B 2 (345)
Then,
Vz,ﬂ_z
-V:—Y (346)

Figure 217 is a plot of X as a function of 8, for
constant values of o(1-D). The same family of
curves represents Y as a function of 8, for constant
values of ¢. Figure 217 and equation (346) can
be used for the solution of equation (343) for any
desired parameter. The use of figure 217 to
compute diffusion factor with the velocity dia-
grams known and to compute the discharge flow
angle for given diffusion factor, inlet conditions,
and axial velocity ratio, is shown in the following
example.

201

EXAMPLE

The procedure in using the-charts is best illus-
trated by an example of the design of an axial-flow-
compressor stage. The stage design assumptions
were made so that they would provide a stringent
case for the charts and also to illustrate as many
uses of the charts as possible. The axial and
radial station designations and a typical vector
diagram are shown in figures 218 and 219, respec-
tively. The design assumptions and calculation
procedure are as follows.

Compute the vector diagrams, pressure ratio,
temperature ratio, Mach number, and diffusion
factor at five equispaced radial positions and the
passage shape for an axial-flow-compressor stage
consisting of rotor and stator blade row to meet
the following specifications:

Assumed design parameters: *

Parameter Design value Parameter | Design value
%W/Mp)l 35.0 (Ibfsec)/sq ft dT/dr 12° R/ft
a1 0.6 R,t 0.35
M’y 12 R,A <0.6
Tl 1.60 1t Dg;x <0.6
rHa=r43a 1.42 1t TRy 1.0
W me o 08
[ 1Y ni)s .. bb .
Vatal Vatae 1.0 @8 0.02
1=V 0 Ti=Ta | 5187°R
TedrR 0.92 P=P,; | 21161b/sq ft

= Blade chords constant from hub to tip.

&
\ A 2a
g
Vzlu % Voq
Y
VZ,3G \\\ “ 2a
¢-_.AVG,R-—" V9,2c| __Ayé 5 % o™

V. =U, Y20 —
(A

Fiaure 219.—Vector diagram for typical stage; Bi=
Bsa=0.
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Calculated design parameters:

Parameter Procedure Value I’araﬁxeter . Procedure Value
Ar ) = (L5 7.069 sq ft
7.1 1}, 1==(1.5) q v X/(I‘:‘,’ ' 216 196
[
(21’_5) ""/5) Apa=(35) (7.069) | 247 Ihjsec ,
’ -9 . '.Y;g!..gli,7 or,t=1.0, and 46.3°
( M,1=0.6, f1=0, and fig. 214 | 41.6 (Ib/sec)/ )
GA... b sq 1t Vi
( ( w 1/5) Vet Van (T’:) ‘=(647) 1.1 712 ft/sec
. En (527 ), =0.98) 41.6) | 40.8 (by/sec)/ , g
8dan b1 ‘/;A"‘ ! sqft Vi.ts V,...5=T12, B, y=46.3, and 744 t/seo
( ) 2B ), =408, 0.878 Via fig. 216 1028 ft/sec
an
wﬁ) 35,0, aad fig. 214 Ues - U ( ) =(1120) (‘ 42 | 1060 ft/sec
ddp /0 ’ Vou=AVe=AV,, | U=V}, 4=1060—744 316 ft/seo
Th
ran ro1 (r—‘)le(l.ﬁ) ©37) 0.567 1t z) s, 8¥5t_g1g
(alaa)y M,,1=0.6 and ref. 250 0.9658 T o 6 ' 1.1061
+6:=1.0, and fig. 215
& Gat (ai)f(um) (0.9658) | 1078 ft/sec , r '
s ) 1
Vi 1M ,1=(1078) (0.6) 647 ftfsec E) —f) =1.1061, na4,3=0.92, | 1.386
128 aiM, =(1078) (1.2) 1204 ft/sec and fig. 215
Vie=Usi V=647, Vi =1204, and |[11201t/sec AT: Tm—Tm;sT
Bi1 fg. 216 6o Tx[ (?":) ‘-1.0]
o8,{1—Dg.s) 1.0 (1.00—0.35) 0.65 =518.7(1.1061-1.0) | 55.03° R
.4 or.((1—Dg,¢) =0.85, 8; =60, | 2.16
e gy 00 Pri=00,

Vector-diagram calculation:

dial posit!
Btep Parameter Known design Procedure Ra posTon
condition
Tip b Mean [ Hub
1|n T1,1=1.50 1.500 1.267 1 0.800 0. 567
, r:.1=0.667 % 03¢
2| Ui=v,, f’:f;‘.‘.’ﬁlsﬁo ('U') 1120 946 e 597 428
3jv, 1204 1144 1006 87 i3
{ ,l Vo, 1=647 Va1, Uy, and fig, 218 }
A 60,0 B5.6 50.0 42.7 3.1
’ (3
5| M, a,=1078 (-‘-:-)1 1.200 1.061 0.933 0.815 0.716
8| re,1=1.42 1.420 1.207 0,984 0.780 0.567
Ta,9=74,1=0,567
7| AT AT =55.03 a 85.03 52.47 49,92 47.35 44.79
a AT (5 res-ra
(F)=n
T
8 7.1‘ Ty=518.7 %—Z—'ﬂ.o 1.1061 11012 1.0062 1.0913 1.0864
Ut, 11060 U
LAY by (—;‘—') 1060 901 742 582 423
AV Us T
10 | ===Vy,a 6=1.0 =L, 22, and fig. 215 31 365 409 406 645
o V5, Ty ondfe 6
P
u|p Nag, 2=0.92 -%, Neds &, and fig, 215 1.3 | - 1.366 136 1.326 1.308
(-'- 4 Enmpleatmean(—') -(’—") 0.85 0.82 0.78 0.7
ri/a ri/s \n/s |77 ’ ’ : L
_1’_.‘) Vs Vo
B (vh), Example st hub (572) = (722) | -..... 112 1182 1213 1.300
14| By 7 ‘) (n) + Vo114, and fig, 213] oo 0.012X108 |  0.021X10° |  0.026X100 0.050X10°
15]| O I2IMAT—AT) e 0.031X100 | 0.081X10° |  0.031310° 0.031X100
18 | (Vi-V1D: (B—-C)s wameme | =0.010X100 | ~0.010X10° | 0008100 0.010X10°
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Radial position
8tep Parameter Known design Procedure
condition
Tip b Mean '] Hub
17| Vas Vet 1=T12 W=V s, Viu,4, and fig. 213 72 006 688 683 698
18| Vi, (U=Vi) 74 546 333 .86 —223
19|V, , 1028 883 763 a8p 732
, Vs, Vg4, and fig, 216
20 | B3 46.3 38.2 25,8 7.0 ~17.6
DIRR 778 780 800 843 940
Vi1, Va.3, nnd fig. 216 i
22 23.8 27.0 30.6 35.0 42.7
Vi
(al’) o,1=1116 — 7= 0.6620 0. 6661 0.6847 0.7231 0.8150
o/3 a..x-‘/;
1
M (;‘—’)  and ref. 260 0.604 0.608 0.719 0.764 0.87
e
(=5) |
. M;, B2, and fig, 214 4.2 40.2 30.3 37.8 35.8
w+b K=098 -
(.sA...) K"(:Z/o) 40.4 30.4 38.5 37.0 35.1
1] 3 5 . . N
w -JE w ‘J- 3 an/ 1
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an indication of accuracy:

CHART PROCEDURES FOR DESIGN VELOCITY DISTRIBUTION

COMPARISON OF CHART AND CALCULATED VALUES

The more important parameters obtained by use of the chaxt procedures are summarized in the
following table. The analytically calculated values of the parameters are also given for comparison and

Chart procedure Anslytical calculation
Parameter Radial position Radiel position
Tip b Mean [ Hub Tip b Mean ] Hub

M 1,200 1. 061 0.933 0.815 0.716 1,200 1,064 0. 934 0.817 0.717
B 60.0 55.8 50.0 42.7 3.1 60.0 55.7 50.0 42.7 33.2
Bz. 46.3 39.2 28.5 13.1 -8.7 46.3 39.8 20.1 15. 4 —=5.1
[ 23.8 26.6 30.0 34.0 40.0 24.0 26.8 - 28.9 3.1 39.7
V.o 712 697 680 684 680 72 a9 686 679 618
M, . 694 .697 72 744 822 . 686 .607 .710 . 740 .804
D, .35 .35 .35 .34 .25 .35 .35 .35 .33 .25
Vi 712 601 670 650 620 712 602 671 648 625
M,, .630 .612 . 503 LE75 . 557 .630 .612 . 504 .51 .558
Dy W37 .40 .43 .46 .51 .38 .30 .42 45 .51
Ty,/ Tx 1. 1061 1.1017 1.0073 1,0929 1. 0885 1. 1066 1.1021 1.0976 1. 0928 1.0882
PP, 1378 | 1360 | 1342 | 1324 | 1306 138 | 1360 | 1342 | 1324 | 1305
(rr), 0.378 0.377

rron. 0.460 0.471

(G 0.484 0.485
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Comparison of the values in the table indicates that good accuracy can be obtained with the charts.
The largest differences in axial velocities and resultant Mach numbers were about 2 percent, occurring
At all other stations the differences were less than 0.7 per--
cent. The flow angles agreed within 0.6° at all stations except the hub and ¢ positions at the rotor
discharge, where the chart values of the relative flow angles varied 1.6° and 2.3°, respectively, from the

at the hub of the rotor-discharge station.

analytically calculated values.
percent of the analytically calculated areas.

The passage areas obtained by the chart procedure were within 1.4
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CHAPTER X

PREDICTION OF OFF-DESIGN PERFORMANCE OF
MULTISTAGE COMPRESSORS

By WiLLiam H. Roesins and James F. Dugan, Jr.

Three techmiques are presented for estimating  original design is called the “inverse’” or ‘‘design
compressor off-design performance. The first meth-  problem.” The design problem is discussed in
od, which is based on blade-element theory, is useful  detail in chapter VIII.

Jor obtaining only a small part of the compressor Prediction of off-design performance is con-
map over which all blade elements in the compressor  gidered in this chapter. A typical compressor
operate unstalled. The second method, which in-  performance map is shown in figure 220 with the
volves individual stage performance curves and ¢  design point and the stall-limit or surge line indi-
stage-by-stage calculation, is wseful for estimating  cated. The regions of the performance map that
the performance of a compressor for which reliable  are discussed herein are those to the right of the
stage performance curves are available. The third  gtall-limit line along lines of constant speed; in
method, which is based on over-all performance daia  other words, the complete compressor map.
of existing compressors, may be used to estimate the  Three techniques for predicting off-design per-

complete performance map of a new compressor if, rmance are presented.

the compressor design conditions are specified. In the first method, compressor performance is

INTRODUCTION & obtained by first radially integrating compressor
blade-element data to obtain blade-row performance.
The performance of successive blade rows is deter-
mined by utilizing the computed outlet conditions of
one blade row as the inlet conditions to the follow-
ing blade row until complete compressor performance
is obtained. This type of solution for compres-
sor off-design performance, of course, requires a
rather complete knowledge of compressor blade-
element flow, radial integration techniques, bound-
ary-layer growth, blade-row interactions, and the
radial mixing process. Some of this information
is currently available; although it is limited in
many cases, the amount is steadily increasing.
For example, the axial-flow-compressor blade-
element theory and correlation results are given
in chapters VI and VII for cascades and single-
stage compressors. By utilizing this type of data,
the performance of a compressor blade element

The availability of good analytical techniques
for predicting performance maps of designed com-
pressors reduces costly and time-consuming testing
and development and in addition aids in selecting
the best compressor for a given application.
Specific information that is required to achieve
these goals is the relation between the stall-limit
line and the operating line and the variation of
efficiency and pressure ratio along the operating
line. Therefore, one of the goals of compressor
research is to obtain reliable performance predic-
tion methods. This problem, which can be con-
sidered as an analysis of off-design compressor
performance, is one of the most difficult tasks
facing the compressor designer.

Off-design performance is defined as the per-
formance of the compressor at flow conditions and
speeds other than those for which the compressor .
was specifically designed. The off-design analysis can be determmed.. themom, th? results. of
differs from the design case in that the compressor chapter VIII provide & means for radial stacking
geometry is given and the object is to find the of blade elements to estimate blade-row perfox:m—
compressor-outlet conditions for a range of speeds  ance and axial stacking of blade rows to determine
and weight flows. It is sometimes referred to as  design-point performance, provided adequate
the “direct compressor problem,” whereas the blade-element performance data are available.
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Freure 220.—Typical axial-flow-compressor over-all
performance map.

This information can be applied to the off-design
problem and is discussed in detail herein.

The second method is somewhat more simplified
than the first, in that the average performance of
each stage is obtained and the stages are axially
stacked to acquire the compressor map. There-
fore, neither blade-element data nor radial inte-
gration is necessary to obtain a performance map
by this method. The success or failure of the
technique depends upon the accuracy of the indi-
vidual stage performance curves used for the com-
putation of over-all performance. This method
is used in the analyses of multistage-compressor
performance in references 248 and 251 to 255 and
in chapter XIII.

The final method of predicting multistage-
compressor performance that is discussed in this

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

chapter is based on data obtained from over-all
performance maps of previously designed com-
pressors. It is considerably more simplified than
the first two methods, because there are no inte-
gration procedures or stage-stacking techniques
involved in the computation of performance maps.
This method was first proposed in reference 256
and was subsequently used in the analysis of two-
spool compressor performance in reference 26.
In the present chapter, data from several multi-
stage compressors are correlated, so that it is
possible to obtain a complete performance map
from known compressor design conditions by
means of a few simple and short numerical
calculations.

Essentially, the purpose of this chapter is to
review the methods currently available for predict-
ing multistage-compressor performance. Although
the techniques apply primarily to fixed-geometry
compressors, they may be adapted to study oper-
ation with variable geometry and bleed. The
advantages, disadvantages, limitations, and appli-
cability of each method are discussed.

SYMBOLS
The following symbols are used in this chapter:
A area, sq ft
a speed of sound, ft/sec
5 specific heat at constant pressure, Btu/

(b)(°R)
acceleration due to gravity, 32.17 ft/sec®
total or stagnation enthalpy, Btu/lb
mechanical equivalent of heat, 778.2 ft-1b/

Btu
weight-flow blockage factor
Mach number
rotational speed, rpm
total or stagnation pressure, Ib/sq ft
gas constant, 53.35 ft-1b/(Ib) (°R)
radius, 1t
entropy, Btu/(Ib)(°R)
total or stagnation temperature, °R
static or stream temperature, “R
rotor speed, ft/sec
air velocity, ft/sec
weight flow, 1b/sec

e o9

»

E QT NRY RUZEN

P =1
3\ 7 _
p) !

coordinate along axis, ft

hq

0
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PREDICTION OF OFF-DESIGN: PERFORMANCE OF MULTISTAGE COMPRESSORS 301

losses be made. In some cases a guide-vane
over-all efficiency is assumed. Some information
that may be helpful in estimating losses is pre-
sented in reference 213.

Rotor and stator analysis.—With the guide-
vane-outlet (rotor-inlet) conditions fixed, ‘the
rotor-outlet calculations can proceed. The pro-
cedure for determining the performance of the
rotor is more complicated than that for the guide
vanes, and the following information must be
provided:

(1) Blade camber
(2) Blade angle
(3) Solidity

(4) Relative inlet-air angle

(5) Relative inlet Mach number
(6) Rotor speed

Determined from blade
geometry

Determined
from inlet
conditions

With this information available, blade-element
results similar to those in chapters VI and VII
are required to determine the turning angle and
therefore the variation of rotor-outlet air angle.

In order to obtain an approximate velocity dis-
tribution at the rotor exit, zero losses are assumed
between stations 1 and 2 and simple radial equi-
librium with no radial entropy gradient is assumed
at station 2. The simple-radial-equilibrium equa-
tion can be expressed as follows:

22— Vi, =[U—V,tan g');
—(U—-V, tan ﬁ’)2]+2chp(Tz—T2 0

+2f"@__‘_’_@_&d (350)

where

Jge, To=Jge, Ti— U, Vo 14+ Us(U—V, tan )2
As in the case of the inlet guide vanes, the varia-
tion of outlet axial velocity V, can be determined
by assuming a reference value of outlet axial
velocity V, . The assumption of V,, can be
verified by means of the continuity equation
(eq. (349)), where

1

P2 (chpT1+U 2V, a—U,V, =52 v
pa. 1

2
J gcpT 1 (351)
for the rotor blade row with no losses. The

simultaneous solutions of equations (349) and
(350) for the rotor require a double iteration for

axial velocity. Solutions of equations of this type
are readily adaptable to high-speed electromc
computing eqm"pment

The solution of equations (349) and (350) pro-
vides only a first approximation to the rotor-
outlet velocity distribution, because no allowance
for losses is included in the calculation. “One way
of refining this calculation to account for losses is
by the use of the equilibrium equation with the
entropy-gradient term included. The equilibrium
equation with entropy gradient is given in chapter

VIII and can be expressed as follows:

Vi .—V: 2,1=[(U—V_tan g')3,,
—(U—V, tan g")j]4+2J ge,(To—

Tt (U—Vz tan B’)z

+2J: ___...._r_.___z

+2JgR f a(R) dr (352)

A detailed discussion of the solution of equations
(352) and (349) for the design case is presented in
chapter VITII. A solution of these equations to
satisfy the off-design problem is similar and re-
quires detailed knowledge of bo.undary-layer
growth and blade-element losses over the complete
range of operating conditions. Although com-
plete loss information is not readily available at
the present time, the relations between the diffu-
sion factor and blade-element losses (chs. VI and
VII) might be used for operating points in the
vicinity of the design point. If a solution of these
equations is obtained, mass-averaged values of
rotor over-all pressure ratio and efficiency can be
calculated.

The blade-element calculations for the stator
blade performance are similar to those for the
rotor. Values of outlet axial velocity can be
determined by an iteration solution of equation
(352) where the subscript 1 becomes 2, the sub-
script 2 becomes 3, and the term (U—V, tan 8')
becomes (V, tan B). Continuing this iteration
process blade row by blade row through the com-
pressor will ultimately provide the compressor-
outlet conditions.

Remarks on blade-element method.—Unfortu-
nately, at present the complete blade-element-
flow picture is unknown. In the region near the
compressor design point, adequate blade-element
data are available for entrance stages. However,

Tz
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the variations of loss and turning angle have not
been established as compressor stall is approached.
In addition, boundary-layer theory does not as yet
provide a means of calculating the boundary-layer
growth through a multistage compressor, and
there are no unsteady-flow results, blade-row in-
teraction effects, nor data concerning radial
mixing of blade wakes that can be applied di-
rectly to compressor design.

The preceding analysis reveals the gaps in our
knowledge (particularly off-design blade-element
data) that must be bridged by future research pro-
grams. In view of the length of the preceding
calculation, it probably is not justified at present
unless a good estimate can be made of the blade-
element flow at off-design operating conditions.
As stated previously, the method is presented
because it has the greatest potentiality for pro-
viding a complete picture of the internal-flow
mechanism through a compressor at off-design
operating conditions. Of course, one obvious
way of simplifying the calculation would be to
carry it out at only one radius of the compressor.
This procedure would not be exact; however, a
qualitative picture could be obtained of the com-
pressor operating characteristics.

STAGE-STACKING METHOD

Over-all compressor performance for a range of
speeds and weight flows may be estimated by a
stage-stacking method. The performance of each
stage of the multistage compressor is obtained and
presented so that its performance is a function
only of its inlet equivalent weight flow and wheel
speed. For assigned values of compressor weight
flow and speed, the first-stage performance yields
the inlet equivalent flow and wheel speed to the
second stage. A stage-by-stage calculation
through the compressor gives the individual stage
pressure and temperature ratios, so that over-all
compressor pressure ratio and efficiency can be
calculated for the assigned values of compressor
weight flow and wheel speed.

Stage performance.—Single-stage performance
tests are conveniently made at constant speed, so
that performance is very often presented as plots
of pressure ratio and adiabatic efficiency against
equivalent weight flow for constant values of
equivalent speed. Such plots, however, are not
convenient to use in applying the stage-stacking
method, and stage performance for this use is

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

presented as plots of efficiency and pressure co-
efficient against a flow coefficient. These dimen-
sionless quantities are defined by the following
equations:

ﬂm=2§: (353)

AH,

0 ,
AR (#54)

7w G

Representative single-stage performance curves
are shown in figure 223. These curves may vary
in the multistage environment (ch. XIII); how-
ever, for undistorted inlet flow, stage performance
generalizes quite well for a considerable range of
Reynolds and Mach numbers. The stage charac-~
teristics at different speeds may be presented as
a single line (fig. 223) for relative stage-inlet Mach
numbers up to approximately 0.75. An exception
is made for stage operation at low angles of attack.
Even for relatively low values of relative stage-
inlet Mach number, the flow coefficient denoting
a choked condition changes with wheel speed, so
that a family of curves is required in the high-flow-
coefficient range. Stage performance for relative
stage-inlet Mach numbers higher than about 0.75
may be presented as a family of curves for the
different wheel speeds. Stage performance is
influenced by flow distortion at its inlet, but very
little quantitative information is available.

Sources of stage performance.—The stage per-
formance curves needed for the stage-stacking
method may be obtained from single-stage and

.multistage testing or from theoretical calculations.

The chief shortcoming of the single-stage test data
available to date is the lack of information con-
cerning radial maldistribution of flow and unsteady
flow. Such information is needed to estimate
over-all compressor performance by the stage-
stacking method ; for example, at low wheel speeds,
the inlet stage of a multistage compressor operates
stalled so that the inlet flow to the second stage
often is far from uniform.

Stage performance obtained from interstage
data on multistage compressors (see refs. 253, 257,
and 258) includes specific amounts of radial
maldistribution of flow; for example, the stalled
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Fravre 223.—Typical stage characteristic curves.

portions of the second-stage curves are obtained
for inlet flow affected by stall in the first stage.
The difficulty in estimating stage performance
from theoretical calculations is concerned with
the fact that the flow in a compressor is three-
dimensional, while the basic data normally used
are based on two-dimensional flow. Employing
blade-element theory to obtain stage performance
involves all the difficulties discussed in the section
entitled Blade-Element Method. As before, the
calculation breaks down when a blade element
stalls. A theoretical method of estimating stage
performance along the mean line is presented in
reference 256. Conditions at the mean diameter
are taken as representative for the stage. For
stages having hub-tip radius ratios lower than 0.6,
reference 256 indicates that some form of inte-
gration of the individual blade-element character-
istics (possibly by means of the blade-element
method) along the blade height should be at-
tempted. An example of stage performance
calculated from mean diameter conditions is
presented in appendix I of reference 256.

Stacking procedure.—In order to estimate the
performance of & multistage axial-flow compressor
with a stacking procedure, the following must be
known:

(1) Stage performance curves of each stage

(2) Annulus area at inlet to each stage

(3) Mean radius at inlet to each stage

(4) Design value of absolute flow angle at
inlet to each stage
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The over-all compressor performance can be calcu-
lated for assigned wvalues of compressor-inlet

equivalent weight flow w+/8,/8; and rotative speed

Un1/N6i. The value of flow coefficient into the
first stage is found from

s

o= (356)

5

A

where the value of V,,/v6; is read from curves
representing the following equation:

;Df :/’_ [ Cj—) 27 ges T 0052 ﬁ]—?g"" (357)

The area term A., in equation (357) is commonly
taken as the geometrical annulus area. However,
experience has shown that more realistic values of
axial velocity are obtained from equation (357)
if effective annulus area is used. In order to
determine effective annulus area, the boundary-
layer growth through the compressor must be
known (ch. VIIT). Again, information concern-
ing the growth and behavior of the boundary
layer in an axial-flow compressor is required for
the off-design case.

The first-stage performance curves yield values
of ¢; and 5, that permit calculation of the first-
stage pressure ratio and temperature ratio from
the following equations:

14
r, | ]

358
P, 1+ J gcp sl (358)

m1 ?
T, [1 I\ ]

Ty " mJge, T
The values of equivalent flow and speed at the

inlet to the second stage are calculated from

l/l'&
wyl,_we VT,
1

(359)

R (360)
P,
Uﬂl. 3 Um. 1 Z_ﬂﬂ 1 (361)

Vo5 «/o—lfm-l\/%
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The values of equivalent weight flow and equiva-
lent wheel speed at the second-stage inlet deter-
mine the value of the flow coefficient ¢;, so that
the second-stage pressure and temperature ratios
may be calculated from the values of ¥; and #,.
The stage-by-stage calculation is continued
throughout the compressor, and over-all pressure
ratio and efficiency are calculated from the
compressor-inlet and -outlet pressures and tem-
peratures. Thus, for any wheel speed, the over-
all compressor pressure ratio and efficiency can
be calculated for each assigned value of compressor
weight flow.

In calculating a compressor performance map,
some means must be employed for estimating the
surge line, which influences starting, acceleration,
and control problems. One scheme is to draw
the surge line through the peak-pressure-ratio
points of the over-all performance map. If the
stage performance curves exhibit discontinuities,
surge at any compressor speed may be taken to
correspond to flow conditions for which a dis-
continuity is encountered in the performance
curve of any stage.

Remarks on stage-stacking method.—The stage-
stacking method may be used as a research tool
to investigate compressor off-design problems or
to estimate the performance of an untested com-
pressor. In reference 3, the stage-stacking method
was employed to indicate qualitatively the
operation of each stage in a high-pressure-ratio
multistage compressor over a full range of operat-
ing flows and speeds, the effect of stage perform-
ance on off-design performance, the effect of
designing for different stage-matching points, and
the effect on over-all performance of loading exit
stages and unloading inlet stages by resetting
stator blade angles. The part-speed operation
for high-pressure-ratio multistage axial-flow com-
pressors is analyzed in chapter XIII with regard
to the surge-line dip and the multiple performance
curves that exist in the intermediate-speed
range. In both these references, stage perform-
ance curves were assumed.

The difficulty in estimating the performance of
an actual compressor lies in obtaining reliable
stage performance curves. Use of stage curves
obtained from a given multistage compressor re-

- sults in good performance estimation of a com-
pressor having similar stages and only a slightly
different over-all design pressure ratio. This is
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Fi1cure 224.—Comparison of predicted and experimental
over-all performance for modified eight-stage compressor.

illustrated in reference 254, where the perform-
ance of a modified compressor is predicted from
the stage curves of the original version of the
compressor. The results of this performance-map
prediction by the stage-stacking method are illus-
trated in figure 224. Calculated and measured
values agreed particularly well at the higher com-
pressor speeds.

This method is also useful for determining the
effects of interstage bleed and variable geometry
on compressor performance. In the interstage-
bleed calculation, the flow coefficient ¢ can be
adjusted for the amount of air bled from the com-
pressor. The effect of variable geometry can be
accounted for in the calculation procedure if the
variation of the stage curves is known as the com-
pressor geometry is varied.
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SIMPLIFIED METHOD

A drawback common to the blade-element and
stage-stacking methods of estimating over-all com-
pressor performance is the length of time required
for the calculations, A simplified method requir-
ing much less calculating time is discussed herein.
This method provides a means of obtaining the
performance map of a new compressor from the
results of previously designed compressors. Cor-
relation curves are provided to facilitate the
calculation. ‘

Background information.—In reference 256 a
method for predicting multistage-compressor per-
formance is outlined. It was used to estimate
the performance map of a newly designed com-
pressor having blading similar to an existing com-
pressor but slightly different design values of
weight flow, pressure ratio, wheel speed, and num-
ber of stages. The application of this method to
new compressor designs is, of course, restricted to
cases where a compressor map of a similar exist-
ing compressor is available.

In this report, an attempt is made to extend
the method presented in reference 256 to a more
general case. Therefore, experimental data on
eight multistage compressors were collected, cor-
related, and plotted in curve form, so that multi-
stage-compressor performance maps of new com-
pressors could be obtained easily from a knowledge
of the design conditions alone. The method pre-
sented herein is similar to that used in reference
26 to obtain multistage performance maps. There
are three phases of the calculation procedure.
First, points of maximum efficiency at each speed
are calculated. The line of maximum efficiency
is called the backbone of the compressor map,
and values along this line are termed backbone
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values. Second, the stall-limit line is determined,
and values along the stall-limit line are referred to
as stall-limit values or stall-limit points. = Finally,
points along lines of constant speed are calculated
from the stall limit t6 maximum flow. . The inte-
gration of these phases results in a complete com-~
pressor performance map. B

Calculation of compressor backbone,—Experi-
mental over-all performance maps (similar to
fig. 220) of eight compressors (listed in table V)
were obtained. For the condition of maximum
adiabatic efficiency at each speed, values of
pressure ratio, weight flow, and efficiency were
tabulated. From these backbone  values, the
reference-point values of speed, pressure ratio,
weight flow, and adiabatic efficiency were found.
The reference point of a compressor map, which is
not necessarily the design point, is defined as the
point of maximum polytropic efficiency of the
compressor backbone.

The effect of reference-point pressure ratio on
backbone characteristics is shown in figure 225,
where each backbone value is plotted as a percent-
age of its reference-point value. In figure 225(a),
values of backbone pressure ratio are plotted
against reference pressure ratio with equivalent
rotor speed as a parameter. Similar plots of
backbone weight flow and adiabatic efficiency are
shown in figures 225 (b) and (c), respectively.

The backbone of a new compressor may be
calculated from figure 225 and known reference-
point values of pressure ratio, weight flow, adia-
batic efficiency, and rotor speed. For the refer-
ence pressure ratio, the backbone values of pressure
ratio, weight flow, and efficiency at various speeds
are read from figure 225. Absolute backbone
values are obtained by multiplying the values

TABLE V.—EXPERIMENTAL COMPRESSOR DATA

Compressor g-ln.:llgg I;ert‘;esl;gge Btages dig:%get;r, 1?1135233 Reference
vanes ratio in,

1. Subsonic....| Yes 2,08 6 15.75 (V877 S -
2. Subsonic....| Yes 3.00 10 19 0.5 | eeemenes
3. Bubsonic....| Yes 3.48 12 Varigble 0.6 | cceminen
4. Transonic...] No 4.02 5 20 0. 50 51
5. Bubsonlc....] Yes 5.53 10 20 0.55 47
6. Transonic...| No 7.85 8 20 0.48 53
7. Bubsonic....| Yes 9.20 16 33.5 0.55 2563
8. Transonie...| No 10.26 8 Variable 0.48 255

691-564 0-65-21
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for a particular ratio of design speed to reference
speed (N/~/8) e/ (N/8)rer:

(1) A trial value of reference pressure ratio
(Pout/P i) rer 18 selected. )

(2) A value of backbone total-pressure ratio

PoulPer)y 100 is read from figure 225(a) for the

(Pout/Ptn)ref
values of (Poyi/Pin)rey and (gffwj—; ):; 100.

(3) A value of (P,yi/P1y);er is calculated from

P aut)
out)
P in / ref -ﬂz_u_t)

P in

Pm)

P in/ref
If this calculated value does not equal the trial

value from step (1), steps (1) to (3) are repeated
until the two values do agree.

(4) A value of ~——"7% (wv8/0), 100 is read from figure

(362)

’w‘v/_/ Yrer
225(b) for the values of ( P":)W and (3']\;/7/3/—; ):; 100.

(5) The value of (w+/8/5),., is calculated from

(363)

wyf (wo)
(%), (
D

(6) A value of 2%2 100 isread from figure 225(c)

Nad, res
for the values of (%l’) nd —-24 WADY 100.
fn "f (N] \/— 0)rer

(7) The value of 7,4, s is calculated from

Nad, @
Nad, » (364)

Nad, res

Nag, rer=

Remarks on simplified method.—How closely
the performance map calculated by the simplified
method will conform with the actual performance
map depends on each phase of the calculation.
The agreement depends on (1) how well the avail-
able compressor performance maps generalize to

PERFORMANCE OF MULTISTAGE COMPRESSORS
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Figure 228.—Generalized performance curves of four
multistage compressors.

backbone, stall-limit, and constant-speed curves,
(2) how closely design conditions are realized in
the new compressor, and (3) how accurately ref-
erence-point conditions are calculated from design
conditions. The performance maps of the limited

number of compressors designed along the lines

suggested in this volume have had some affinity
in shape. As previously noted, however, double-
valued stall lines cannot be anticipated by this
method.
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CONCLUDING REMARKS

Three techniques have been presented for esti-
mating compressor off-design performance. The
first method, which is based on blade-element
theory, is useful for obtaining only a small part
of the compressor map over which all blade ele-
ments in the compressor remain unstalled. This
technique is restricted at present because of the
limited amount of available information concern-
ing off-design blade-element data, boundary-layer
growth, blade-row interaction effects, and radial
mixing of blade wakes. This method has the
greatest potential for providing a complete pic-
ture of the internal-flow mechanism through a
compressor.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

The second method, which involves individual
stage performance curves and a stage-by-stage
calculation, is useful for estimating the perform-
ance of a compressor for which reliable stage per-
formance curves are available. In addition, this
method has been used effectively as a research
tool to determine the effects of interstage bleed
and variable geomefry on compressor performance.

The third method, which is based on over-all
performance data of existing compressors, may be
used to estimate the-complete performance map
of a new compressor if the compressor design con-
ditions are specified. At present, it is as effective
as the other methods and has the advantages of
simplicity and short calculating time.
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CHAPTER XI
COMPRESSOR STALL AND BLADE VIBRATION

By RoserT W. GraHAM and ELeaNor CosTiLow GUENTERT

The extent of the useful operating range of the
hultwta,ge axial-flow compressor is greatly influenced
by its stalling characteristics. Over the entire
range of possible compressor speeds there is a
minimum flow point for each speed where the com-
pressor will either surge or stall, depending upon
the geometry of the compressor receiver. If surge
does not occur, the efficiency will be so poor in the
stalled condition that the compressor will limit the
useful operation of a turbojet engine. These surge
or stall points define the familiar surge or stall-
limit line. In addition to this stall line, stall of
the front and rear stages occurs at part-speed and
overspeed operation, respectively. Serious blade
vibrations may occur for either of these conditions
as a result of stall.

Comapressor stall may be manifested as rotating
stall, individual stall of each blade, or stall flutter.
From experimental evidence, the first of these seems
the most prevalent.

Several theories of rotating stall in single-stage
compressors appear in the literature, none of which
can be used to predict propagation rates with any
appreciable degree of reliability. However, these
theories are useful in evaluating the significance of
parameters pertinent to the stall-propagation mech-
anism and thus in planning ezperimental research
programs. The oprediction of rotating-stall data
Jfor multistage compressors is even more complicated,
because of interaction effects among the stages. 0

INTRODUCTION [

Historically, it is interesting that one of the
earliest references to rotating stall appeared in
1945 in a British report on the performance of a
centrifugal compressor (ref. 259). ‘In 1950 an
NACA publication (ref. 260) reported the oc-
currence of an asymmetric flow pattern in an im-
pulse axial-flow compressor. In both of these
early investigations, flow patterns were detected
by means of wool tufts. This asymmetric flow
phenomenon was labeled as a propagating stall

in reference 261 (1951), which presented the stall-
ing characteristics of an axial-flow compressor,
The rotating-stall patterns found in that investi-
gation were detected with high-frequency-response
hot-wire anemometers. During the past three
years, much research effort has been devoted to
the study of rotating stall in both single- and
multistage compressors.

OFF-DESIGN

With the use of aerodynamic theory, the design-
point performance of a multistage compressor
can be predicted with reasonable accuracy.
However, as is pointed out in chapter X, current
design techniques cannot be used to predict
compressor operation that deviates markedly
from design. Since the compressor of a turbojet
engine must operate at part design speed during
acceleration of the engine and also at high flight
Mach numbers, analytical methods for accurately
predicting part-speed operation are desired by
compressor designers. In addition, designers are
concerned with blade vibrations that occur during
operation in stall.

The internal aerodynamics of the compressor
must be throughly understood at off-design
conditions before design techniques applicable to
this region of operation can be developed. During

/"compressor off-design operation degeneration of
he performance of a sta,ge is accompanied by a
gerious flow separation in the blade passages.
This unfavorable operating condition is termed
stall. Two significant areas of off-design per-
formance are labeled in figure 229, which is a
representative multistage-compressor map: (1)
inlet-stage stall, and (2) the stall-limit or surge
line. These conditions result from stall of some
of the compressor blade elements. The occurrence
of separated flow at each of these regions can be
explained without an elaborate analysis.

Inlet-stage stall—At low speeds, insufficient
pressure rise in the stages causes the density level
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316 AERODYNAMIC DESIGN: OF AXIAL-FLOW COMPRESSORS

TABLE VI.—Concluded. SUMMARY OF ROTATING-STALL DATA

(b) Multistage compressors
Propagation
Compres- | Number rate, Stall Radial
sor num- of stall speed, abs/: .| extent.of | - Periodicity Type of stall Reference
ber zones rotor speed stall zone
1 3 0.57 .~ " Partial Steady Progressive | Unpublished
4 ‘{ : “data
5 ;
6
7 v
2 : 0. 55 Partial Intermittent ngresslve 19
; l |
3 1 0.48 Partial Steady - | Progressive | Unpublished
data. .
4 ; 0. 57 Partial Steady Progressive
P
4
] ; 0.57 Partial Intermittent | * Progressive 20
3 1’
4
5
6 1 0.47 Total Steady Abrupt Unpublished
i data
7 1 0.43 Total Bteady Abrupt 267
8 1 0.53 Total Steady Abrupt 20

TABLE VIL—SINGLE-STAGE-COMPRESSOR DESIGN DATA
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steady or intermittent, according to the geometry
of the stall zone and the periodicity.

Progressive or abrupt stall.—Classifying rotat-
ing stall by the type of stage performance charac-
teristic associated with it is probably the most

important way to denote stall types. A smooth,
continuous-stage performance characteristic in the
stall region similar to that shown in figure 234
indicates the gradual increase in blocked annulus
area due to stall. Appropriately, this type is
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Freure 236.—Correlation of pressure drop at stall with
compressor pressure ratio at stall.

called “‘progressive” stall. In contrast, a discon-
tinuous stage performance characteristic like that
shown in figure 231 has also been observed during
stall. Generally, for this type of performance
curve a single stall zone covering as much as half
the annulus area and extending over the entire
blade span has been observed. Because of the
discontinuity in the pressure curve, this type of
stall is called “abrupt.”

The term ‘“‘complete compressor stall” is applied
to multistage compressors to describe a discon-
tinuous performance curve similar to that for
abrupt stall of single-stage compressors. The
complete-compressor-stall points on the perform-
ance may define the stall-limit line. '

The magnitude of the pressure drop at the
discontinuous point of the performance character-
istic is shown in figure 236 for abrupt stall of blade
elements. Here the pressure drop due to stall
divided by the pressure rise immediately before
encountering stall is plotted against the com-
pressor pressure ratio measured just before com-
pressor stall. Both single-stage and multistage
data are included; that is, both abrupt and com-
plete-compressor stall data are plotted. Evi-
dently, abrupt stall of some blade elements and
complete compressor stall are similar. From this
figure it is apparent that the pressure drop accom-
panying complete compressor stall is severe and
will result in appreciable penalties in compressor
efficiency.

Partial- or total-span stall.—The radial extent
of the stall zone along a blade is another convenient
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characteristic for classifying rotating stall. In
addition to extending citcumfereéntially over sev-
eral blade passages, the stall zone also covers part
or all of the blade span. Thus, the term partial-
span stall is used to denote stall covering part of
the. blade span, and total-span refers to stall
covering the whole blade length. Figure 237
shows the type of oscillogram obtained during a
radial traverse with a hot-wire-anemometer probe.
The large-amplitude pulsations from hub to tip
(fig. 237(a)) are typical for total-span stall.
Figure 237(b) shows a partial-span stall concen-
trated at the tip, as shown by the disappearance
of the stall “blip”’ from the anemometer trace at
the hub.

Steady or intermittent stall—It has been ob-
served that compressors may also have an inter-
mittent type of stall pattern for a given operating
point. In this case one stall pattern exists for an
instant, then changes to a new stall pattern. In-
termittent changing among three different stall
patterns has been observed in one multistage
compressor.

GENERAL OBSERVATIONS ON ROTATING-STALL PHENOMENA

The following general observations concerning
rotating-stall phenomena are made from examina-
tion of the existing data. The remarks apply to
both single-stage and multistage compressors.
Exceptions to the generalizations are also discussed.

Hysteresis effect.—When a compressor is be-
ing run at a constant aerodynamic speed and a
rotating-stall pattern is encountered during a
throttling of the weight flow, usually that same
stall pattern will be observed for subsequent re-
peated tests. In fact, for single-stage tests over
a range of speeds the stall pattern will be repeated
for all speeds if the compressor is operated at the
same flow coefficient in each case. However, it is
interesting that once a stall pattern has been
established during a throttling process, if the flow
is allowed to increase, the pattern will persist above
the value of the throttled weight flow (or flow
coefficient for single-stage compressors) to a higher
weight flow before disappearing. A graphical
superposition of this apparent reluctance of the
stall pattern to change on a compressor perform-
ance curve resembles the well-known hysteresis
loop of other physical phenomena. Consequently,
it has been labeled ‘‘hysteresis,” although no time-
dependency is involved. The resemblance is most
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F1auRe 237.—Sketches of typical oscilloscope traces of
total- and partial-span rotating stall.

striking for abrupt stall, because a distinct loop is
formed.

This so-called hysteresis effect is also present
when a change in the stall pattern ocours. The

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

weight flow marking the inception of a pattern
during the throttling process is lower than that
marking the disappearance of the pattern when
the flow is increased.

Stall-propagation rates.—Single-stage compres-
sors exhibit a wider range of stall-propagation rate
than multistage compressors. Most multistage
compressors have stall patterns with propagation
rates of about half the rotor speed; whereas, single-
stage-compressor stall patterns range from approx-
imately 10 to 85 percent of rotor speed. Both
multi-stage and single-stage compressors usually
exhibit one stall-propagation rate for all stall
patterns, if the geometry of the stall pattern does
not change. Exceptions to this generality have
been mentioned in the discussion of single-stage
stall data. No exceptions have been observed for
multistage compressors.

Flow and pressure fluctuations.—Table VI(a)
in¢ludes a column in which the flow fluctuation
accompanying rotating stall in a single-stage com-
pressor is listed in terms of the parameter ApV/,V.
The magnitude of ApV/pV varies from 0.6 to 2.14.
No apparent correlation of the magnitude of the
parameter with the size or number of stall zones
can be obtained from the existing data on single-
stage compressors.

The magnitude of ApV/pV for blade wakes
measured during design flow conditions may range
from approximately 0.1 to 0.2. By comparison,
the stall disturbance is rather severe.

The magnitude of the parameter ApV/pV in the
inlet stage of a 10-stage research compressor was
found to be similar to that observed in single-stage
compressors. The stall data reported in refer-
ence 266 were obtained at 50, 60, and 70 percent
of design speed. This operating region is the
inlet-stage stall region indicated in figure 229.
By locating hotwire anemometers at various axial
stages, the magnitude of the flow fluctuation
throughout the entire compressor was measured.
The data of figure 238 (ref. 266) show that the in-
tensity of the flow-fluctuation level diminished
appreciably after the fourth or fifth stage of the
COMPressor.

The pressure fluctuations peculiar to the abrupt
stall that occurs along the stall-limit or surge line
of multistage compressors are significant, because
the attendant efficiency drop limits the useful en-
gine operating range. In discussing figure 236, it
was pointed out that an abrupt (40- or 50-percent)
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drop in pressure rise may occur when the com-
pressor operating point reaches the stall-limit line.
In reference 267 the drop in the discharge pressure
and the pressure fluctuation accompanying abrupt
stall were measured during stalled operation. At
82-percent design speed, when the compressor
. reached the stall-limit line, the mean level of the
discharge pressure dropped 50 percent and the
discharge pressure fluctuated 25 percent above and
below the mean pressure level of the stalled oper-
ation. ‘

Usually, the rotating-stall pattern observed
when the stall-limit line is reached is a single-
zone total-span stall. Because of the disconti-
nuity in the performance curve, the stall is
-classified as abrupt.

Multistaging effect.—Experimental evidence has
shown that data on propagation rate or number of
stall zones in single-stage compressors do not ap-
ply to the rotating-stall characteristics of multi-
stage units composed of these stages. In refer-
ence 268, the single-stage stall data for three
identical stages composing a multistage compres-
sor are compared with the multistage stall data.
In order to explain the difference in the stall of
stages tested individually and as a part of a multi-
stage compressor, multistaging or interaction
effects must be considered.

In multistage compressors, each stage operates
in an aerodynamic environment determined to
some extent by all the compressor stages. This
environment comprises two multistaging or inter-
action effects:

(1) The radial gradients in axial velocity
emanating from a stage at off-design opera-
tion, which may be sufficiently severe to
cause a stall angle of attack over a part of
the blade span of some downstream blade
row

(2) The influence of low-flow or stall zones
emanating from other stages of the com-
pressor

The result of the radial gradient in axial ve-
locity might well be the development of a rotat-
ing-stall pattern considerably different from any-
thing expected from single-stage stall data alone.
In a series of tests conducted at the NACA Lewis
laboratory on a production turbojet engine, it was
observed that the stall characteristics of the com-
pressor could be changed by altering the velocity
profile entering the first blade row. Wire screens
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FIGURE 238.—Variation of flow fluctuation with axial
distance in compressor at three radii at 50-percent
design speed (ref. 266).

were used to block part of the flow into the com-
pressor inlet. When the screens were arranged to
produce circumferential variation in the flow, no
appreciable changes in the stalling characteristics
were evident. However, when radial gradients in
the flow were achieved by partial blockage of the
whole annulus of the inlet passage, the stalling
characteristic of the compressor was altered sig-
nificantly.

It was previously pointed out that, when rotat-
ing stall occurs in multistage compressors, the stall
zones extend throughout the entire axial length of
the compressor, as shown in figure 238. This
means that each stage in the compressor will ex-
perience periodically recurring low-flow zones. If
a stage or stages operate sufficiently near the stall
point, the presence of the low-flow zones may cause
stall angles of attack to occur when the blades
pass through the stall zones.

Variation in stall patterns.—One of the objec-
tives in presenting table VI is to emphasize the
great variety of stall patterns that have been
observed. At present, there appears to be no
way of cataloging the stall with respect to any
type of compressor design. Among several com-
mercial engines of one type, each of which was in-
stalled in the same test facility, the stall patterns
were different, although the propagation rate re-
mained essentially the same. Apparently, in this
case the stall pattern was sensitive to such small
changes In compressor geometry as would result
from production tolerances. Such minute differ-
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ences in geometry would be difficult to include in
a theory that would predict the stall pattern from
design data.

Effect of inlet temperature.—Stall frequency for
a given stall pattern is proportional to actual
engine speed and is independent of inlet tempera-
ture. The speed range over which a given stall
pattern is observed is a function of equivalent
speed and therefore varies with inlet temperature.
If the mechanical speed is changed to accom-
modate inlet temperature changes, so that the
corrected speed N/4/6 is constant, the stall fre-
quency will vary with the mechanical speed.
Consequently, it will be impossible to tune the
natural frequency of the compressor blades to
avoid a resonance with the fundamental stall
disturbance or its harmonics over a range of
compressor-inlet temperatures.

BLADE VIBRATION INCURRED DURING ROTATING STALL

Since rotating stall consists of one or more low-
flow zones that rotate in the compressor annulus,
usually at constant speed, the blade rows experi-
ence periodic aerodynamic forces as the low- and
high-flow zones go by the blades. In reference
269 the fluctuating forces due to rotating stall
were measured on the guide vanes and stators of
a single-stage compressor. The blade-force fluctu-
ations during rotating stall were comparable to
the steady-state blade force measured during
unstalled operation. This periodic force can
therefore be a source of resonant blade vibration,
where the frequency of the stall relative to the
blades excites the blades. From current evidence,
the compressor designer must always be concerned
with the possibility of blade failure due to reso-
nance between the blade frequency and the stall
frequency.

Single-stage compressors.—When the high
stresses accompanying rotating stall are investi-
gated, it is necessary first to determine the magni-
tude of the blade stresses when accompanied by
rotating stall. An investigation of the effect of
rotating stall on the blading of a single-stage
compressor with a hub-tip radius ratio of 0.5 is
reported in reference 270. The experimental
results show that stall zones can excite blade
vibration with resultant bending stresses suffi-
ciently severe to cause blade failure. Fatigue
cracks were observed in the aluminum stator
blades. The blades were in resonance with the

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS
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Fraore 239.—Variation of stall frequency with rotor speed
for three stall patterns in a single-stage compressor.

first two harmonies, as shown in figure 239, which
is a plot of the ratio of the stall frequency to the
natural bending frequency of the blade against
rotor speed. Resonant vibrations occur at com-
pressor speeds corresponding to the intersection
of the stall-frequency line with horizontal lines
representing resonance with the fundamental
stall frequency and the first two harmonics.

Other fatigue failures of experimental single-
stage compressors have been attributed to rotating
stall. Stall data were not obtained for all the
compressors that failed, but each compressor had
been operated in the stalled region. Most of
these compressors were stages of 0.5 hub-tip ratio.
A fatigue failure with much shorter blades, where
the hub-tip ratio was 0.72, was attributed to
resonance between the relative fundamental stall
frequency and the natural bending frequency of
the blades (see ref. 271). '

Multistage compressors.—Although several
multistage-compressor failures at the NACA might
be attributable to rotating stall, only one was
sufficiently instrumented with strain gages and
hot-wire anemometers to trace the failure directly
to rotating stall. This investigation is reported in
reference 19, in which a resonant-vibration condi-
tion was found in the first-stage rotor at approxi-
mately 62- and 70-percent design speed, as shown
in figure 240. The strain-age data indicated vibra-
tory stresses of approximately 13,500 and
+ 34,800 pounds per square inch, respectively, at
these operating points, which were sufficient to
cause fatigne failure of the aluminum blades.
Typical high-stress vibration bursts caused by
rotating stall as recorded from the strain gages are
shown in figure 241 for 62-percent design speed.
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Fieure 240.—Correlation of relative stall frequency with
rotor blade-vibration frequency for a multistage com-
pressor (ref. 19). '

Methods of alleviating blade vibration.—To the
axial-flow-compressor designer, the most serious
result of rotating stall is blade failure. The theory
of rotating stall developed thus far does not pro-
vide a method for predicting stall frequency for
new designs and thus “tuning” blades out of
dangerous blade-vibration frequencies. Further-
more, as mentioned in the discussion of the effect
of inlet temperature on the stall frequency, it ap-
pears impossible to tune the blades for all the
troublesome stall frequencies over the range of
inlet temperature encountered in flight.

Since it appears impossible to tune blades to
avoid critical stall frequencies, other possible
means of circumventing the blade-vibration prob-
lem must be considered. These include (1) in-
creasing the damping of the blades, (2) preventing
the operation of any compressor blade row in a
stalled attitude, and (3) disrupting the periodicity
of the stall patterns so that a resonant condition
between the blade frequency and the stall fre-
quency cannot exist.

Increasing blade damping: The vibration-
damping properties of a blade may be changed
markedly by changing the blade material. Some
materials exhibit greater damping properties than
others; for example, stainless steel has better
damping properties than aluminum. Blades fab-
bricated from plastics are currently being investi-
gated for their damping qualities: Obviously,
the damping properties of a blade may also be
improved by changing the mechanical design of
the blade. Such modifications as altering the
thickness-chord ratio, the aspect ratio, or the
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fillet radius may substantially increase the stiffness
of blades. In addition, the method of blade at-
tachment or blade support is a design variable
that can alter the damping.

Preventing stalled attitude: As was mentioned
in the INTRODUCTION, part-speed operation
of multistage compressors causes the exit stages
to choke, which limits the flow in the inlet stages
and causes them to stall. Any bleed-off system
that unchokes the rear stages will alleviate the
stalling condition in the inlet stages and conse-
quently will increase the stallfree range of the
COmpressor.

Another possible method of increasing the stall-
free range of a compressor is the use of adjustable
guide vanes and stators. By this method, the
angle of attack on the inlet rotors is diminished
so that stall of the early stages is delayed. By
increasing the angle of attack in the latter stages,
the situation there is improved. This device is
currently being used in one commercial multistage
compressor as a means of improving the part-
speed operation.

Disrupting periodicity of stall: As a means of
controlling the stalling characteristics of multi-
stage compressors, adjustable inlet ramps or
baffles have been used. Reference 20 reports the
successful application of ramps at the hub that
appreciably reduced the range of inlet-stage stall.
The effect of the ramps or baffles is to reduce the
inlet flow area. In engines tested with the baffles,
rotating-stall patterns were no longer periodic, and
the danger of blade failure due to resonant vibra-
tion was eliminated.

THEORIES OF ROTATING STALL

Several theoretical analyses have been proposed
to predict the propagation rate of rotating stall.
In order to identify the theories for discussion,
each is referred to by the name of the first author.
The notation is that used in the original references.

Emmons theory.—In the presentation of the
Emmons theory in reference 272, the authors did
not produce a result involving the prediction of
stall-propagation rates. The purpose of the
analysis was to establish the necessary conditions
for the amplification of small disturbances of
asymmetric flow corresponding to those observed
in stall propagation.

The physical model analyzed was a cascade in
which total-pressure losses were considered by
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F1GURE 242.—Carpet plot of Stenning’s results (eq. (365)); 0°<p;<40°.

0.75.) Thus, only the inlet-air angle, the prop-
agation-rate parameter, and the wvalue of L/b
could be considered to be ‘“data” in the compari-
son. The carpet surfaces were drawn to extend
over a wide range of possible exit and inlet flow
angles. Assuming o to be 0.5, most experimental
data of table VI(a) are within the values predicted
by the Stenning theory. These points are plotted
on the interpolated L/b carpet plots indicated by
the dashed lines. If ais taken as 0.75 as Stenning
suggests, the data do not agree well with the
theoretical values, These points do not appear
in figure 242. It is not clear whether the in-
consistency of the predicted values as compared
with the data should be attributed to the limita-
tions of the theory or to inappropriate applica-
tion of the theory to compressors not similar to the
model used by Stenning.

The theoretical results show that the velocity
of stall propagation relative to the rotor increases
with the size of the stall zone. A comparison with
the test results of Emmons also shows this to be
true; however, stall data taken from the com-
pressors of table VI(a) indicate thismay not always
be the case. The inclusion of a boundary-layer
time delay in the analysis had the effect of de-
creasing the velocity of propagation of the stall
zone and indicated that rotating stall is possible
for a range of inlet angles.

Sears airfoil theory.—Sears has published two
papers on the subject of stall propagation. The

first paper (ref. 275) demonstrates that asym-
metric flow can exist in a cascade. It also presents
a picture of the model used by Sears for the second
paper.

Theory: To represent a blade row in a compres-
sor, an annulus of infinitely many blades of small
chord was chosen. This configuration amounts to
an actuator disk or vortex sheet simulating the
blade row, as shown in figure 243. The flow
pattern was considered steady with respect to a
rotating coordinate system (rotating slower than
rotor speed), so that the circulation distribution in
the disk could be assumed to be a function of the
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flow ( .
X Rotational flow
ﬁ H
// ‘ X
/, (‘\
£ Swirl angle of . 2
asymmetric flow with L \\w
respect to inlet flow . \
vector \
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‘- Rotation of
Iy asymmetric
§ flow
.

Figure 243.—Actuator disk employed by Sears.
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y-coordinate of figure 243. An incompressible flow
field was assumed, and small-perturbation theory
was applied in the analysis. Since the blades of
this rotor move relative to a fixed circulation dis-
tribution, they experience unsteady flow. Un-
steady-flow theory states that airfoils will shed
wakes at their trailing edges. The complete
model, then, consists of a vortex sheet representing
the rotor, an irrotational flow field representing the
flow entering the rotor, and a rotational flow
representing the wake leaving the rotor disk.

The model proposed by Sears differs from that
used by Emmons in the following respects: Sears
used an actuator disk where Emmons used a
cascade of finite length; and, while Emmons
assumed constant static pressure at the exit of
the cascade, Sears considered the vorticity follow-
ing the blade row to be uniformly distributed and
did not impose any restrictions on the pressure
field. ,

The principal object of Sears in reference 275
was to develop the relation between the induced
velocities at the rotor disk and the circulation
distribution. Briefly, the manner of solving the
problem was to divide the flow field into two parts,
an irrotational part and a rotational part, and
then to devise relations between the z and y
velocity components in each type of flow (see fig.
243). The next step was to develop expressions
for the circulation in terms of the velocity distribu-
tion. The induced inflow velocities at the actuator
disk could then be calculated when the circulation
distribution was known. To complete the solu-
tion, airfoil theory was used to relate the circula-
tion function to the incidence angle of the blade
row. This type of solution is called the ‘“airfoil
theory” to distinguish it from another analysis in
which Sears substituted a so-called ‘‘channel
theory.”

Results and conclusions: Assuming a sinusoidal
variation in the circulation distribution, Sears
found that no solution could be obtained for a lift
function that was linear with incidence angle,
whether the airfoil is stalled or unstalled. How-
ever, when a phase angle was introduced between
the lift and angle of attack so that the lift lagged
the angle of attack, a solution was found, which
means that a permanent asymmetric flow pattern
exists. The phase-angle concept used by Sears
was based on the work presented in reference 276.

Emmons and Stenning studied the stability of

AERODYNAMIC DESIGN OF AXJAL-FLOW -COMPRESSORS

an asymmetric pattern imposed on the flow field;

Sears did not employ a stability study to show that
an asymmetric flow could initiate itself under the
conditions mentioned in the preceding paragraph.

Sears channel theory.—Theory: The second
paper by Sears (ref. 277) presents an. extension of
the first theory. The analysis involving the
airfoil relations is repeated, but the final results are
presented in a somewhat different manner. The
phase angle A is related to the asymmetric-flow
propagation rate and the properties of the cascade
by the following formula:

tan A=b+(%;;’3) A+5)  (366)

where

b é(z'h\?_q’ tan 3)

L (b

& flow coeflicient

/N ratio of stall-propagation rate to rotor speed,
absolute frame of reference

B absolute inlet~air angle

The analysis also presents an equation that
relates the slope of the lift curve m to the variables
appearing in equation (366):

‘;’“’=1—*,;T”’; VIFBFF cos A

(367)

where o is the solidity. The curves of the pre-
dicted asymmetric flow patterns for the airfoil
theory (fig. 244(a)) result from the simultaneous
solution of equations (366) and (367). It should
be noted that the parameter % used by Sears is the
ratio of the stall-propagation speed to the axial
velocity.

In this theory, an analysis involving channel
relations is substituted for the airfoil analysis.
The so-called channel theory is based on empirical
relations derived from cascade tests. The two
principal relations of the channel theory state that
the relative outlet-air angle is a function of the
inlet angle and that the pressure rise across the
blade row is independent of the inlet-air angle.
The principal distinction between the airfoil theory
and the channel theory is an inclusion of the total-
pressure loss in the latter. Since stall implies
large losses, it would seem at the outset that the
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Flaure 244.—Predicted asymmetric flow patterns ob-
tained from Sears theory of rotating stall.

channel theory would conform more nearly to the
physics of the actual flow. The procedure of the
analysis involving channel theory is similar to that
of the airfoil theory previously outlined. Also, a
phase angle & comparable to the phase angle A
of airfoil theory is introduced.

Results and conclusions: Solutions for asym-
metric flows satisfying the conditions of the prob-
lem were found for both types of analysis. The
results of both airfoil and channel analyses are
presented in reference 277 in graphical form and
are reproduced here in figure 244. The ordinate
and abscissa are labeled with Sears’ notation and
in terms of the vector-diagram terminology. The
ordinate is the rotor tangential velocity relative
to the tangential velocity of the stall propagation
divided by the axial velocity, and the abscissa is
simply the tangent of the mean relative inlet-air
angle 8’. The ordinate may also be expressed as

the tangent of the swirl angle of the asymmetric
flow pattern relative to the rotor.

For the airfoil analysis, solutions were found for
a considerable range of phase angles including zero.
In reference 275 Sears assumed a small swirl
angle and did not obtain a solution for zero phase
angle; but in reference 277 the swirl angle con-
sidered was larger, and a solution resulted for
zero phase angle. However, the zero-phase-angle
solutions do seem out of the range of the compres-
sor data and consequently are of little interest.

The channel-analysis solution shown in figure
244(b) indicates that asymmetric flow patterns are
possible for a wider range of conditions than was
evident from the airfoil analysis. For flow condi-
tions comparable to actual compressor data,
asymmetric flow solutions are possible with zero
phase lag. The equation for the phase angle §
used in the channel analysis is

14-b2—k2
b(b+k)*+2k+b

tan 6= (368)

where k and b are the same parameters used in the
airfoil analysis. In the channel-theory analysis,
the slope of the pressure-rise curve plays a role
analogous to that of the slope of the lift curve in
the airfoil theory. The expression for the slope
m of the pressure-rise curve is

-—%i=1+<b+k)2

The curves of the asymmetric flow patterns for
the channel theory shown in figure 244(b) result
from simultaneous solution of equations (368) and
(369).

Experimental comparison: In reference 278, ex-
perimental rotating-stall data from several single-
stage compressors are compared with the results
of Sears’ theory. Both the airfoil and channel
analyses were tried; however, it was found that,
in using the channel analysis, the phase angle &
was consistently negative. To the authors of
reference 278, a negative phase angle seemed in-
consistent with physical interpretation, and for
this reason the comparison was limited to the air-
foil analysis, where the computed phase angle A
was positive for all the data used.

The points in figure 245 represent experimental
data superimposed on the theoretically derived
curves. The data points for each stall-propaga-

(369)
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FicurEe 245.—Correlation of stall data with analytically
derived phase angle (Sears theory).

tion rate lie along curves of approximately con-
stant phase angle. Furthermore, if the phase
angle is plotted as a function of the stall-propaga-
tion rate, a correlation exists, as shown by figure
246. The stall-propagation rate diminishes as the
phase angle increases, which seems to be in accord
with the generally accepted mechanism of stall
propagation. Also apparently involved in the
process of stall propagation is a time constant
that governs the propagation rate. The greater
the time constant, the slower the propagation
rate. The correlation of phase angle and stall-
propagation rate of figure 246 does not permit
the prediction of stall-propagation rates, since the
phase angle cannot be determined from design
data.

Marble theory.—A recent analysis of rotating
stall is presented by Marble in reference 279. In
this theory, an expression for the stall-propagation
rate and the peripheral extent of the stall zone is
developed.

Theory: The model employed in the analysis is
similar to that used by Sears in his channel theory,
in that the blade row is simulated by means of
an actuator disk across which pressure and fluid
velocity change discontinuously. Using an actu-
ator disk to represent the blade row without the
introduction of a phase angle prohibits Marble
from introducing inertia effects within the blade
row. The Stenning analysis demonstrated the
significance of inertia in the blade passage and
its effect on stall-propagation velocity. Experi-
mental characteristics of a cascade were utilized
to prescribe the change in pressure and velocity
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relative to rotor and phase angle (ref. 278).

across the actuator disk. The pressure-rise curve
across the disk (based on experimental evidence)
was assumed to be a linear function of the air
inlet angle for unstalled flow, but for stalled flow
the pressure rise was assumed to drop discon-
tinuously to zero. In choosing this discontinuous
lift curve, Marble more fully described the per-
formance of the channel in comparison with the
Sears linearized lift curve. Consequently, Marble
was able to obtain solutions for the peripheral
extent of the stall zone as well as the stall-
propagation rate.

The expression for stall-propagation rate differs
from that of Sears, in that a phase angle was not
included in Marble’s equation. By considering
the pressure-rise parameter to be a function of
the air inlet angle and to behave as described,
the increased losses attending stall were included
in the analysis. Marble simulated the asym-
metric flow in his model by considering a stall
zone of variable circumferential width to exist in
the actuator disk. It was assumed that small-
perturbation theory could be applied to describe
the influence of rotating stall on the velocity and
pressure. The coordinate system used in the
analysis was selected to rotate at stall frequency
so that the steady-flow equations would apply.

In order to describe the flow field upstream and
downstream of the actuator disk, it was assumed
that the pressure and angle perturbations vanished
far upstream and were at most a constant value
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: Marble’s theory.

nate system) to rotor rotation. Experimental evi-
dence has shown that this does not occur. The
sense of the stall-zone rotation is the same for
counterrotating guide-vane turning as for con-
ventional guide vanes.

Remarks on stall theories.—In order to compare
the results of the Stenning, Sears, and Marble
theories, the phase angle introduced by Sears in
the channel theory is considered to be zero. For
this condition the results show that the Sears and
Marble theories are identical in their expression
of propagation rate. A comparable result from
Stenning’s analysis indicates that his predicted
propagation rate is twice that of the other two
investigators.

Experimental evidence shows that the radial
extent of the stall zones varies considerably, but
none of the existing theories include radial effects.
All the theories apply to a single blade row.
There is considerable doubt whether the theories
can be applied to a single stage including guide
vanes, rotor, and stators, or whether the theories
can be further extended to the more complicated
case of the multistage compressor.

INDIVIDUAL BLADE STALL

A type of stall in which all the blades around
the compressor annulus stall simultaneously,
without the occurrence of a stall-propagation
mechanism, has been observed. The circum-
stances under which individual blade stall is
established rather than rotating stall are unknown
at present. It appears that the stalling of a blade

row generally manifests itself in some type of

propagating stall and that individual blade stall
is an exception.

STALL FLUTTER
DISTINCTION BETWEEN STALL AND CLASSICAL FLUTTER

Before flutter is discussed, the distinction
between classical flutter and stall flutter should be
made clear. Classical flutter is a coupled torsional-
flexural vibration that occurs when the free-
stream velocity over a wing or airfoil section
reaches a certain critical velocity. For wings of
low frequency, this critical velocity can be calcu-
lated. According to reference 280, classical flutter
cannot occur with compressor or turbine blades,
because the critical velocity required would be
unreasonably high. Stall flutter, on the other
hand, is a phenomenon that has been explained
on the basis of the behavior of the lift characteristic

at stall.
MECHANISM OF STALL FLUTTER

At stall the lift may decrease sharply as shown
in figure 248, where a typical lift characteristic
is plotted as a function of angle of attack. Accord-
ing to reference 280, the aerodynamic damping
of a blade is a function of the partial derivative
of lift with respect to angle of attack. When
this derivative becomes negative, stall flutter is
likely to take place. That is, a reduction in the
aerodynamic damping allows the airstream to
feed energy into the blades and produce a self-
excited oscillation.

Another explanation for stall flutter is presented
in reference 281, in which the airfoil vibration is
considered to result from a system of Karmén
vortices in the airfoil wake. Whenever the fre-
quency of these vortices coincides with a natural
frequency of the airfoil, flutter will occur.

The concept of an aerodynamic hysteresis was
developed by Studer to show that energy could
be absorbed from the airstream to promote blade
vibration (ref. 276). It was hypothesized in this
explanation of stall flutter that separation at the
stall point was delayed until the oscillating blade
reached its position of maximum angle of attack,
and then the nonseparated flow was not established
until -the blade reached its minimum angle of
attack. The maximum and minimum angles of
attack were considered to be above and below
the stalling angle of attack, respectively, giving
rise to the hysteresis effect.
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Brief literature survey.—The general theory of
flutter, even for an isolated airfoil in a potential
flow, is not a very elementary mathematical
problem. The problem becomes much more
complicated when flutter in a cascade of airfoils is
considered, because the effects of the geometry of
the cascade must be included in the theory in
order to account for the interference -effects
between the blades. Much of the early work on
flutter theory was devoted to airfoils with but one
degree of freedom, a torsional oscillation or
vibration.

However, in the type of cascade that more
accurately represents conditions in a turbine or
compressor, according to reference 282, the stall-
flutter oscillations may have at least two degrees
of freedom, torsional oscillation and flexural
bending. This latter type of flutter is treated in
reference 283. The experimental observations of
such a cascade showed that either torsional or
flexural vibrations were obtained»depending upon
the velocity of the airstream; and the frequencies
of each mode were practically identical. The
two modes of vibration were not coupled as in the
case of the classical flutter for wings. The flutter
or bending self-excited vibrations were explained
as the result of variations in the angle of incidence,

which in turn causec: the lift force to vary. How-
ever, the lift force always lags the elastic force by
a phase angle.® The forces acting on a blade are
shown in figure 249. Whenever the component of
the force parallel to the damping force exceeds
the damping force, a self-excited vibration of the
blade takes place.

The authors of reference 283 observed that
self-induced vibrations occurred whenever the
free-stream velocity entering the cascade reached
a critical value. They found that the critical
velocity could be determined from a dimensionless
velocity coeflicient that was shown to be a function
of the geometry of the cascade (stagger angle and
angle of incidence) and the angle between the
direction of the blade displacement and the blade
chord. .

In a more recent paper (ref. 284), only one
degree of freedom, a flexural oscillation, is ad-
mitted as a possible mode of stall-flutter vibration
in a two-dimensional cascade representing com-
pressor blades. A different interpretation of the
mechanism of flexural vibration is also presented
in this paper. After rather extensive experimental
observations, it was concluded that no appreciable
changes in lift were observed for varying positions
of the cascade in a separated-flow field; conse-
quently, no self-excited flexural vibrations could
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Fieure 249.—Diagram of forees on blade.
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be established by this mechenism as proposed in
reference 283. However, it was observed that,
when an airfoil is translated in separated flow, the
lift force will feed energy into the blade and thus
sustain a self-excited motion.

QOther more mathematically complicated treat-
ments of flutter in cascades have been considered
in papers such as reference 285. Phase differences
in the mode of the vibration between the blades
in the cascade are considered mathematically in
this paper. :

Extension of flutter theory to compressor blades
brings up a most complicated problem, because
not only cascading effects but also centrifugal
effects must be considered. The cascading or
interference effects on flutter are not well under-
stood for the compressor.

Experimental evidence.—Although stall flutter
has been considered to be a cause of compressor
blade failure, there is insufficient experimental
evidence to support this view. According to
reference 282, conditions where flutter exists do
not correspond to operation at high angles of inci-
dence and low speed, the mode of operation that
has caused compressor blades to fail. The meas-
urements required of rotating rigs in order to
investigate the possibility of stall flutter are al-
most impossible to make with current research

" techniques.
CONCLUSIONS
AERODYNAMIC ASPECT

The stalled operation of a compressor may be
described as the degeneration of compressor per-
formance accompanied by serious flow separation
in the flow passages. Three distinctively different
phenomena may occur during stalled operation:
(1) rotating stall, (2) individual blade stall, or (3)
stall flutter. The first two are aerodynamic effects
and the third is an aeroelastic effect. Rotating
stall has been found to be the most prevalent
type of stall phenomenon. A large amount of
data is available which demonstrates that poor
performance of compressors may be directly at-
tributable to the occurrence of rotating stall.

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

In this chapter, rotating-stall patterns are cat-
aloged according to their effect on the performance
characteristic of single-stage compressors. A pro-
gressive rotating stall is associated with a smooth
continuous performance characteristic; and an
abrupt rotating-stall pattern, with a discontinuous
performance characteristic that is coincident with
an abrupt drop in compressor pressure. Similar
types of stall are observed in multistage com-
pressors; however, the discontinuous performance
characteristic for a multistage unit is defined here
as complete compressor stall. The pressure rise
across a multistage compressor may drop as much
as 50 percent after complete compressor stall is
initiated. This stalling condition is particularly
important, because it determines the limit of use-
ful operation of the compressor (the surge limit or
stall limit shown in fig. 229).

With a single blade row as a model, several
theories have been developed showing the existence
of asymmetric flow and in some cases predicting
the rotative speed and the size of the pattern.
The results of the theories are in poor agreement
with experimental data.

VIBRATION ASPECT

Although rotating stall seems to be the most
significant cause of blade vibration in compressors,
it must be recognized from cascade data that stall
flutter may be a possible cause of blade vibration.
No experimental evidence is presently available
to show that stall flutter has been the cause of
compressor blade excitation. If the rotating-
stall frequency coincides with the natural bending
frequency of the blade or a harmonic thereof, a
resonant condition will result that may cause
blade failure. Other possible causes of blade vi-
bration include (1) resonance of the rotor blade
frequency with the frequency of wakes from
stators or supporting struts, and (2) mechanical
failures resulting from a resonance between the
natural bending frequency of the blade and trans-
mitted vibrations emanating from the gearing or
shafts. These effects are considered unimportant
compared with the problem of rotating stall.
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CHAPTER XII
COMPRESSOR SURGE
By MzerLe C. HuPPERT

Ezxperimental data indicate that there are two
principal types of surge in compressors: (1) surge
due to an abrupt stall, and (2) surge due to progres-
stve stall. Surge due to abrupt stall is generally
violent and audible, whereas that occurring with
progressive stall is generally mild and inaudible.
The violent surge obtained in jet engines during
engine acceleration is identified as surge due to
abrupt stall.

INTRODUCTION A

The effect of unsteady flows on compressor
performance and life expectancy has become of
considerable interest and importance in the appli-
cation of axial-flow compressors to jet engines.
Perhaps the most significant flow fluctuations are
those associated with stall of blade elements
within the compressor. In the past, any audible
flow fluctuation or rumbling noise emanating from
a compressor was loosely defined as surge. Com-
paratively recent investigations show that certain
flow fluctuations are not due to surge in a strict
sense, but are due to a phenomenon called prop-
agating or rotating stall. Rotating stall, which is
discussed in detail in chapter X1, consists of zones
of low flow that revolve about the compressor axis.

The term surge, as used herein, defines flow
fluctuations distinctly different from those due to
rotating stall. Surge involves fluctuations in the
net flow through the compressor; whereas rotating
stall consists of low-flow zones revolving about
the compressor axis, but with a constant net or
average flow through the compressor.

This chapter presents a discussion of surge in
axial-flow compressors. Pressure- and flow-flue-
tuation data obtained from surging compressors
are presented and discussed. Data obtained from
both compressor test facilities and jet engines are
included. Some theoretical aspects of surge are
discussed, and & distinction is made between surge
due to abrupt stall and surge due to progressive
stall. The surging compressor is compared with
other types of oscillators.

SYMBOLS

The following symbols are used in this chapter: |

][ stall
/,m, frequency of flow fluctuations due to
surge, cps
P total or stagnation pressure, 1b/sq ft
compressor total-pressure rise at stall
point, 1b/sq ft

frequency of flow fluctuations due to
rotating stall, cps

AP, decrease in compressor-discharge total
pressure due to abrupt stall, 1b/sq ft
APryres amplitude of total-pressure fluctuation

due to surge, lb/sq ft
1% air velocity, ft/sec

w weight flow, lb/sec :

w+/6/5 equivalent weight flow, Ib/sec

o angular spacing of hot-wire-anemom-
eter probes, deg

) ratio of total pressure to NASA stand-
ard sea-level pressure of 2116 1b/sq ft

6 ratio of total temperature to NASA
standard sea-level temperature of
518.7° R

A number of stall zones in stall pattern

p density, Ib/cu ft

ApV oV amplitude of pV fluctuation divided by

’ average pV based on average ane-

mometer current (see ch. XI)

Subseripts:

1 station at compressor inlet

2 compressor-discharge station

STEADY-.STATE COMPRESSOR CHARACTERISTIC

Before the phenomenon of surge is considered,
“steady-state” or ‘‘surge-free’” compressor opera-
tion should be discussed. Steady-state operation
(sometimes called static operation) is operation
under conditions in which the net flow through the
compressor and the torque required to drive the
compressor are constant for any given operating
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Ficure 250.—Over-all compressor performance map
showing conditions at which rotating stall occurred in

10-stage subsonic axial-flow research compressor (ref.
266).

point. From this definition, operation with
rotating stall is considered a steady-state con-
dition. (Rotating stall is discussed in detail in
ch. XI.) Figure 250 shows the range of flow for
each of several compressor speeds over which
steady-state operation occurred in a 10-stage
axial-flow research compressor. The shaded areas
indicate the flow range where rotating stall
existed. At 50 percent of design speed, rotating
stall occurred over the entire range of flow from
the surge point to the maximum flow obtainable.
The number of zones in the stall pattern, however,
varies from 3 at the highest flow attainable to 7 at
the surge point. At higher values of rotational
speed, rotating stall existed over only a part or
none of the flow range between maximum flow and
the surge line. The surging obtained was due to
abrupt stall of the compressor, as will be discussed
later.

Stall may, in most cases, be classified as either
progressive or abrupt (ch. XI). Progressive
stall results in a gradual reduction in stage pressure
‘rario and efficiency as the flow is decreased and
geuerally results in the formation of a rotating-
stall pattern consisting of more than one stall zone.
The shaded area of figure 250 represents the con-
dition of progressive stall in the inlet stages.
Abrupt stall in single- or multistage compressors

AFRODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

results in an abrupt or apparently discontinuous
drop in compressor pressure rise and efficiency and
a “hysteresis” loop between stall and stall re-
covery. A single-zone stall pattern is associated
with abrupt stall,

In the intermediate-speed range, the steady-
state performance at a given compressor speed is
not always unique. As discussed in chapter
XIII, several steady-state performance character-
istics may be obtained at a single compressor
speed.

EXPERIMENTAL INVESTIGATIONS OF SURGE

On the basis of experimental evidence, two
types of surge may be distinguished as follows:
(1) surge associated with discontinuous compressor
characteristics due to abrupt stall, and (2) surge
associated with apparently continuous compressor
characteristics where blade-row stall is progressive
rather than abrupt.

SURGE DUE TO ABRUPT STALL

In order to describe the flow fluctuations due to
surge associated with abrupt stall, the results of
recent investigations in which fast-response pres-
sure and flow instrumentation were used will be
reviewed.

10-Stage subsonic axial-flow research compres-
sor.—The investigation reported in reference 266
was conducted with a 10-stage subsonic axial-flow
research compressor. The test facility incor-
porated a large inlet tank and a large receiver at
the compressor discharge. The overall compressor
performance map showing the speed and flow range
where rotating stall occurred is presented in figure
250. At all rotational speeds investigated, the
useful operating flow range was terminated at low
flows by a violent surge.

The flow fluctuations associated with surge at
50 percent of design speed were investigated in
some detail; the variation in compressor-inlet
and -discharge total pressure and the variation in
flow rate measured behind the first rotor due to
surge are shown in figure 251. The amplitude of
the compressor-discharge total-pressure variation
(fig. 251(a)) was 75 percent of the compressor
pressure rise at the surge point. The variation in
compressor-inlet stagnation pressure was some-
what smaller. The compressor-discharge pressure
recovered to the value at the surge point at the
end of each surge pulse. The hot-wire-anemom-
eter signal (flow fluctuations, fig. 251) indicates
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COMPRESSOR BURGE ' - 339

published analyses of surge that consider the non-
linear aspects of the problem. It seems evident,
however, that the flow oscillations that result from
an instability will depend to a great extent on the
shape of the compressor characteristic. - ‘That is,
the variation in the slope of the compressor
characteristic with flow, at flows greater and less
than that at an unstable operating point, probably
constitutes the principal nonlinearity of the system.

In chapter XI compressor characteristics are
classified as either continuous or discontinuous,
depending on whether stall occurred in a gradual
or progressive manner or abruptly. It seems
appropriate to classify surge in a similar way.
That is, surge may occur because of the dis-
continuous decrease in pressure ratio due to
abrupt stall, or because of an instability resulting
from a gradual reduction in compressor pressure
ratio due to progressive stall.

SURGE DUE TO ABRUPT STALL

Surge due to abrupt stall may be described in a
qualitative manner with the aid of figure 259.
The compressor static or steady-state character-
istic is represented by the solid line. The throttle
characteristic is represented by the dashed line
that crosses the compressor characteristic curve at
points A and B. Point C is the stall recovery
point. The compressor is operating at point A
(the stall point). Point B is a possible stable
operating point. Point A is unstable, because a
small reduction in flow will cause the compressor
to stall and immediately become incapable of pro-
ducing a discharge pressure equal to that in the
receiver. If the receiver volume were infinite, the
direction of flow through the compressor would
reverse after stall, and steady backflow would
occur with operation at point D. If the receiver
volume were very small, its pressure would adjust
very quickly after stall to that which the com-
pressor is capable of producing, and operation
would instantaneously come to equilibrium at
point B.

In any compressor installation the receiver
volume would be neither large enough to permit
steady operation at point D nor small enough to
cause equilibrium to be established instantane-
ously at point B. In the practical case, then, the
pressure and flow fluctuations may follow paths
depicted in figure 259 as surge or abrupt stall.
For the case of abrupt stall, the receiver pressure
and flow may follow the path indicated. After

Comg.lessor characteristic
— —— Throttle characteristic
~—-— Surge cycle

——--— Abrupt. stall without surge

Receiver ————— Steady backfiow

pressure

) e e ] e i i ) - iy g s e

N \[“/'
\*7L .o ]

Single-zone - |
rotating stall

Compressor weight flow

FigURrE 259.—Flow and pressure oscillations due to abrupt
stall.

a few damped oscillations in pressure and flow
(indicated by the spiral path), the system comes
to equilibrium at point B. If, however, the flow
oscillations are sufficiently large to exceed the
value required for stall recovery (point C), equi-
librium will not be established at point B. In-
stead, stall recovery will occur and result in an
increase in flow followed by a gradual increase in
receiver pressure and decrease in flow. Following
stall recovery, the system tends toward equilib-
rium at point A. Stall will occur again, and the
cycle (called the limit cycle) will be repeated as
indicated in figure 259. Surging will cease if the
throttle is opened (throttle curve moved to the
right in fig. 259) sufficiently to prevent stall from
occurring during the flow transient following stall
recovery. Similarly, surging will cease if the
throttle is closed (throttle curve moved to the left
in fig. 259) sufficiently that stall recovery does

'not occur during the flow transient following stall.

If equilibrium is established on the stalled branch
of the compressor characteristic and the throttle
is then opened so that the throttle characteristic

- passes through the stall recovery point C, the

situation is quite similar to that with operation at
the stall point. A small disturbance in the flow
may cause stall recovery, and a surge cycle may
be established similar to that which occurs with
the throttle characteristic passing through the
stall point. Equilibrium operation after stall is
not always completely stable. Mild surge may
occur after abrupt stall has occurred (figs. 255 and
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256). The flow fluciuations of mild surge may, in
some cases, become.sufficiently large to cause stall
recovery, as indicated by the oscillogram shown in
figure 256.
SURGE DUE TO PROGRESSIVE STALL

Mild surge due to progressive stall will be dis-
cussed in conjunction with figure 260. The solid
curve is the compressor characteristic, and the
dashed curve is the throttle characteristic, which
crosses the compressor characteristic at the highest
flow at which the system is critically stable. That
is, small oscillations about the intersection point
are undamped. Since the slope of the compres-
sor characteristic becomes larger positively at flows
less than point A, the damping becomes larger neg-
atively if the flow is reduced a finite amount.
If the flow increases to a value greater than that
at point A, the slope of the compressor character-
istic becomes negative and the system damping
becomes positive. Asa consequence of the variation
system damping with compressor flow, any small
disturbance will grow in amplitude, as indicated by
the spiral path from point A, until the effective or
average damping of the cycle vanishes (see ref. 290).
The resulting cycle of oscillation is the limitcycle. Ro-
tating stall may exist during all or part of the surge
cycle (fig. 258). Presumably, surge could occur at
any compressor operating point where the system

damping is negative, since the flow is unstable there. -

As pointed out in the section on experimental
investigations, most data obtained with surge asso-

Damping

~ +

—~—Rotating stall —{ ,

-

Receiver pressure

Compressor charocteristic
—————— Throttle characteristic
~————— Surge cycle

Compressor weight flow

Fieure 260.—Flow and pressure fluctuations due to surge
associated with progressive stall.
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ciated with progressive stall indicate a mild in-

audible surge. Although the relation between the
shape of the compressor characteristic and the
amplitude of the flow fluctuations of surge has
not been established, it seems quite likely that
surge with progressive stall may, in some cases,
become quite violent. In fact, if the damping is
sufficiently negative, the situation is not unlike
that for abrupt stall.

COMPARISON OF COMPRESSOR SURGE WITH OTHER OSCIL-
LATORY PHENOMENA

Although surge in compressors is very undesir-
able, there are many technologically useful devices
that utilize oscillatory phenomena. Since much
of the theory of nonlinear effects has been devel-
oped through the study of oscillators, it seems
appropriate to apply some of concepts and ter-
minology used in oscillator theory to explain
cOmpressor surge.

According to reference 290, there are two
principal kinds of oscillators, feedback and relaxa-
tion oscillators. All oscillators depend for their
operation on some nonlinear action, and feedback
and relaxation oscillators are distinguished by the
type of nonlinearity utilized to control the ampli-
tude of the oscillations. Relaxation oscillators
operate by virtue of some discontinuous or quasi-
discontinuous effect. Certain trigger circuits used
with relaxation oscillators are discussed in reference
291. The effects of the discontinuous steady-state
compressor characteristic are evidently analogous
to those of the trigger circuits used with relaxation

-oscillators. Consequently, it seems justifiable to

refer to surge associated with abrupt stall as a
relaxation oscillation. Similarly, it seems justifiable
to refer to surge associated with progressive stall
as feedback-type oscillations. Progressive stall
results in a progressive nonlinearity. The theo-
retical treatment of compressor surge could un-
doubtedly be enhanced by use of the theory of
nonlinear systems.

SUMMARY OF RESULTS

A survey of available data obtained from surging
compressors indicates that there are two principal
types of surge: (1) surge due to abrupt stall,
which is generally a violent audible surge, and (2)
surge due to progressive stall, which is generally a
mild ‘inaudible surge detectable by use of fast-
response instrumentation. The violent surge ob-
tained in jet engines during engine acceleration is
identified as surge due to abrupt stall.
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CHAPTER XIII

COMPRESSOR OPERATION WITH ONE OR MORE BLADQﬂ.
ROWS STALLED

By WiLLiam A. BENSER

An analysis of the part-speed operating problems
of high-pressure-ratio multistage azial-flow com-
pressors is made by means of a simplified stage-
stacking study. The principal problems considered
are poor low-speed efficiency, multiple-valued per-
formance characteristics at intermediate speeds, and
poor intermediate-speed compressor surge or stall-
limit characteristics. The analysis indicates that
all these problems can be attributed to discontinuities
w0 the performance characteristics of the front stages.
Such discontinuities can be due to the type of stage
stall or to a deterioration of stage performance re-
sulting from stall of adjacent stages.

The effects of compromaises of stage matching to
favor part-speed operation are also considered. This
phase of the study indicates that such compromises
would severely reduce the complete-compressor-stall
margin. Furthermore, the low-speed stage stall
problem 1is transferred from the inlet stages to the
middle stages, which are more susceptible to abrupt-
stall characteristics.

The analysis indicates that inlet stages having
continuous performance characteristics at their stall
points are desirable with respect to part-speed com-
pressor performance. However, these characteristics
must be obtained when the stages are operating in
the flow environment of the multistage compressor.
Alleviation of part-speed operational problems may
also be obtained by improvement in either stage flow
range or stage-loading margin.

The results of this analysis are only qualitative.
The trends obtained, however, are in agreement with
those obtained from experimental studies of high-
pressure-ratio multistage azial-flow compressors, and
the results are valuable in developing an understand-
ing of the off-design problem. In addition to these
stage-matching studies, a general discussion of

INTRODUCTION

High-pressure-ratio multistage axial-flow com-
pressors frequently exhibit extremely low efficien-
cies and severe blade-vibration problems at
intermediate and low rotational speeds. In
addition, such compressors may exhibit a sharp
dip or kink in the surge or stall-limit line at
intermediate rotational speeds, so that the attain-
able pressure ratios in this speed range are severely
limited. Multiple performance characteristics
have also been observed in this intermediate-
speed range. Operation such as engine accelera~
tion and high Mach number flight requires that
the compressor component of the engine operate
satisfactorily in the low- and intermediate-speed
ranges. In order to alleviate these part-speed
compressor problems, an understanding of the
flow mechanism that causes poor part-speed per-
formance is required. Such variable-geometry
features as adjustable guide vanes or compressor
air bleed may solve some part-speed operating
problems, but satisfactory application of such
features also depends on a knowledge of the flow
mechanism.

As indicated by the stage-matching analysis of
reference 248, the fundamental difficulty of low-
speed operation results from stalling of the front
stages of the compressor., As compressor speed
is decreased, the density ratio across the com-
pressor decreases rapidly; and at low values of
density ratio the small flow area of the rear stages
seriously limits the flow through the compressor.
Thus, the inlet stages are forced to operate at
flows well below their stall limits. These trends
have been verified experimentally. For example,
reference 253 indicated first-stage stall for speeds
below 80 percent of design speed, and reference

variable-geometry features such as air bleed and /\ 257 indicated first-stage stall for speeds below 70

adjustable blades is included.

&

percent of design speed. It should be noted that
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this mismatching of the front and rear stages of
the compressor at low speeds will, in general, be
more severe for high-pressure-ratio than for low-
pressure-ratip compressors. A further indication
as to the source of the part-speed problem can be
obtained from chapter XI, which shows that
rotating stall is the prevalent type of stage stall
and that rotating stall originating in the first
stage of a multistage compressor results in flow
fluctuations that extend completely through the
compressor. ' The flow fluctuations of rotating
stall are also a serious source of compressor blade
vibrations (ch. XI).

As pointed out in chapter XII, serious .com-
pressor surge is a result of a discontinuity in the
compressor performance characteristics.
discontinuity of performance may result from the
abrupt type of stage stall discussed in chapter XI
or from a deterioration of the performance of
several stages as a result of the flow fluctuations
imposed by the instigation of rotating stall in
the inlet stage. The dip or kink in the surge-
limit line of a 16-stage research compressor (ref.
253) was attributed to these interaction effects or
to deterioration of performance of several stages
as a result of stall of the inlet stage.

The existence of multiple-valued performance
characteristics is shown in reference 292, which
presents data showing three separate and distinct
performance curves for a three-stage axial-flow
compressor operating at a constant value of
rotational speed. Tests of a high-pressure-ratio
multi-stage compressor (ref. 293) show the exist-
ence of six separate performance characteristic
curves for a rotational speed of approximately
75 percent of the design value. Hot-wire-
anemometer data taken during this investigation
indicate a correlation between compressor per-
formance and the number of stall zones in the
rotating-stall pattern.

It is evident that the problems of poor part-
speed efficiency, compressor blade vibration,
intermediate-speed surge or stall limit, and
multiple-valued performance characteristics of
high-pressure-ratio multi-stage axial-flow com-
pressors are all related to rotating stall and the
attendant interactions or deteriorations of ‘stage
performance due to unsteady flow. The experi-
mental approach does not yield a complete under-
standing of the general part-speed performance
problem, because the inherent performance of

This
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each stage is not easily obtained, particularly in
the range of speeds and flows where rotating stall
exists in the compressor. Furthermore, the range
of stage operation that can be studied experi-
mentally is limited because of compressor surge.
Therefore, to obtain a qualitative evaluation of
the effects of stage stalling characteristics and of
stage interactions on the general part-speed com-
pressor performance problem, a simplified stage-
stacking study was made. The basic hypothetical
compressor considered was a 12-stage unit with
an overall pressure ratio of 7.75. The stage per-
formance characteristics used in the computation
of multistage performance were assumed to be
similar to those obtdined from single-stage com-
pressors. Interaction effects were evaluated by
arbitrary modification of the assumed stage per-
formance curves. The first three cases considered
herein (repeated from refs, 294 and 295) concern
various severities of interaction effects. The last
two cases considered evaluate the effect of com-
promises of stage matching to favor part-speed
performance as suggested in reference 248. When
possible, the results of these studies are compared
with experimental data.

Because of the assumptions made in regard to
stage performance characteristics and stage inter-
action effects and because of the simplified stacking
technique used, the computed values of com-
pressor performance must be considered only as
qualitative values. The general trends, however,
are valuable in obtaining an understanding of the
part-speed efficiency problem, the intermediate-
speed surge or stall problem, and the multiple-
valued performance characteristic problem of
high-pressure-ratio axial-flow compressors. An
indication of desirable types of stage performance
characteristics is obtained; and, in addition, this
analysis indicates some of the factors that must be
evaluated if accurate performance predictions are
to be obtained for the range of compressor opera-
tion where one or more of the elements are stalled.
This analysis, however, does not consider the
adverse effects of inlet flow distortion on the
compressor stall limit.

GENERAL CONSIDERATIONS
SINGLE-STAGE STALL CHARACTERISTICS

As discussed in chapter XI, stage stall may be
divided into two types: (1) progressive stall, char-
acterized by a gradual but continuous decrease in
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stage performance as the flow coefficient is de-
creased below the stalling value, and (2) abrupt
stall, characterized by a sudden or abrupt drop
in stage performance at the stalling value of flow
coefficient. KEither type of stage stall normally
results in the formation of one or more low-flow or
stalled zones that rotate about the compressor
axis and are thus defined as rotating stall. Pro-
gressive stall is normally associated with rotating-
stall zones that start at one end of the blade and
grow radially and circumferentially as the flow
coefficient is decreased. The stall pattern for
this type of stall may consist of from one to
twelve stall zones, and the number of stall zones
generally increases as flow coefficient is decreased.
Abrupt stall is normally associated with a simul-
taneous stall of all radial elements of the blade,
and the stall pattern generally consists of a single
stall zone. A
Progressive stall is prevalent in low hub-tip
ratio or inlet stages, whereas abrupt stall is
prevalent in high hub-tip ratio or exit stages.
Typical middle stages of a multistage compressor
or intermediate hub-tip ratio stages may exhibit
a progressive stall followed by an abrupt stall as
flow is further reduced. Both progressive and
abrupt stalls exhibit a hysteresis effect, in that the
flow coefficient at which stall recovery is achieved
is higher than that at which stall was first en-
countered as the flow was decreased. This
hysteresis effect is also discussed in chapter XI.

STAGE INTERACTIONS

The performance and stalling characteristics
may be appreciably different when a stage is
operated as a single stage and when it is
operated as a stage of a multistage compressor.
These differences of performance, which may be
designated as interaction effects, result from the
radial and circumferential variations of stage-inlet
conditions that may exist in the multistage
compressor. As pointed out in chapter XI, inter-
action effects may be attributed to two main
sources: (1) radial maldistribution of flow due to
off-design performance of adjacent stages, and
(2) circumferential maldistribution of flow or un-
steady flow due to rotating stall originating in
adjacent stages.

Radial maldistribution of flow.—Radial maldis-
tribution may be defined as large variations from

.stages.

343

the design radial distribution of flow.:: For any
stage other than the first stage of a multistage
compressor, these radial maldistributions of flow
result from off-design performance of preceding
For example, as the flow coefficient of the
first stage is decreased, the energy addition at the
tip of this stage usually increases more rapidly
than that at the root. Requirements of radial
equilibrium of static pressure at the exit of the
first-stage stator may therefore lead to a ratio of
axial] velocity at the blade tip to that at the blade
root that is larger than the design value. This
radial variation from design flow may be aggra-
vated through the first few stages of the com-
pressor and may alter the relative rate of approach
to stall for the tip and root sections of subsequent
stages. Thus, a stage that exhibits a partial-span
progressive stall when tested as a single stage may
exhibit an abrupt total-span stall when operated
as a stage of a multistage compressor. Further-
more, radial maldistribution of flow can result in
appreciable variations in average stage-work input
for a given value of flow coefficient as well as in
variations in the stalling value of flow coefficient
for any stage.

Unsteady flow.—When rotating stall exists in a
multistage compressor, the resulting flow fluctu-
ations extend through all stages (ch. XI). These

flow fluctuations of rotating stall impose a time-

unsteady circumferential velocity variation on all
stages, and the instantaneous loading of the blades
is certainly altered from that for steady flow at
the same mean value of flow coefficient. Thus,
when rotating stall is instigated by an inlet stage,
the performance of all subsequent stages may be
altered because of the resulting variations in
circumferential flow distribution.

Imposition of flow fluctuations of rotating stall
on any stage that is operating near its stall point
may result in stall of that stage. Thus, the flow
fluctuations may be increased in magnitude, as
was the case for the 10-stage compressor discussed
in chapter XI. In addition to premature incur-
rence of stall in a given stage due to stall of an
adjacent stage, the resulting stall pattern and
performance of the given stage may be appreciably
different from those predicted by single-stage
tests. Stages operating at flow coefficients appre-
ciably above the value for stall or near their choke
limit, however, tend to.decrease the amplitude of
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flow fluctuations resulting from rotating stall
originating in preceding stages. Consequently,
the effects of flow fluctuations on the performance
of such stages may be small.

COMPLETE COMPRESSOR STALL AND SURGE

Abrupt stall of one or more stages and progres-
sive stall of the inlet stage, which result in deterio-
ration of the performance of several subsequent
stages, will both result in discontinuities in over-all
performance of a multistage compressor. For the
purposes of this analysis, discontinuity points in
the over-all compressor performance characteristic
at a given speed are designated as complete com-
pressor stall to differentiate between stall of the
over-all compressor and stall of the individual
stages. As discussed in chapter XII, discon-
tinuities in over-all compressor performance may
result in compressor surge. The occurrence of
surge will, of course, depend on the external
system characteristics as well as the compressor
characteristics. If surge does not occur, stable
performance at a lower level of pressure ratio and
efficiency will be obtained. During component
tests of a multistage compressor, these discon-
tinuities in performance are not often observed,
because compressor surge is encountered. Com-
plete compressor stall and surge, however, repre-
sent the same limit of compressor operation.

STAGE STACKING

As pointed out in chapter X, the off-design
performance of a multistage axial-flow compressor
may be approximated by a simplified stage-
stacking technique if the generalized stage per-
formance characteristics are known. The main
purpose of the analysis reported herein is to study
qualitatively the effects of various stage stall
characteristics and stage interactions on the part-
speed operating characteristics of multistage axial-
flow compressors. In order to simplify the
computations, effects of radial maldistribution
of flow and effects of Mach number on stage flow
range and efficiency are ignored. The detailed
stacking procedure used for these computations is
given in appendix B of reference 294 and is similar
to that outlined in chapter X.

For this analysis the stage curves are assumed
‘ih terms of adiabatic efficiency and pressure
coefficiént as functions of flow coefficient. The
adiabafic efficiency is the ratio of useful or isen-

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

| tropic work input to actual work input; the pres-

sure coefficient is a function of useful work input
divided by the square of the mean-radius wheel
speed; and the flow coeflicient is the ratio of the
average inlet axial velocity to the wheel speed at
the mean radius. Study of the performance of
numerous stages indicates that stage performance
for a range of speeds can be generalized to a single
curve on the basis of these parameters. The
effectiveness of this manner of generalization of
data is illustrated in figure 261, which is a plot of
the performance of the first, fifth, and tenth stages
of the compressor reported in reference 257. Some
random variations exist because of the difficulty
of obtaining accurate stage performance data in
the multistage compressor. The stage data, how-
ever, can be well approximated by a single curve
for all speeds except for the maximum-flow points
in the tenth or last stage of the compressor. In
this case the effect of stage-inlet Mach number on
the negative-incidence stalling angle tends to
decrease the choking value of flow coefficient as
compressor speed is increased. Similar Mach
number effects may exist in the inlet stage. At
any given speed, however, the inlet stage covers
only a small part of its total range. Therefore,
the Mach number effect is not noted on such a
plot of experimental data. The fifth stage does
not cover an appreciable flow range and thus does
not exhibit a noticeable Mach number effect.
Since the inclusion of Mach number effects would
not appreciably alter the trend obtained from the
stage-stacking analysis, these effects are not
considered in the computation of compressor
performance.

Interaction effects were small for the compressor
of reference 257, as indicated by the measured
stage performance characteristics. For the com-
pressor of reference 253, however, appreciable
interaction effects were noted. For the computa-
tions reported herein, interaction effects due to
unsteady flow resulting from stall in the inlet
stage were estimated by altering  the individual
stage performance curves of several succeeding
stages for those conditions where stall existed in
the inlet stage. KEstimated hysteresis effects in
the unstalling characteristics are also incorporated
in the stage curves.

For cases I to III, three combinations of stage
stall, interaction effects, and unstalling hysteresis
are considered. In cases IV and V, stage matching
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Figure 261.—Generalized stage performance for stages 1, 5, and 10 of reference 258.
is compromised to favor part-speed operation. Absolute inlet-air angle at pitch radius of each ,
No effects of interaction or unstalling hysteresis are stage, deg. o 22)%
evaluated for cases IV and V . Flow coefficient for each stage. __.___________.___ 0. 69
: Pressure coefficient for each stage_______....___._. 0.3

HYPOTHETICAL COMPRESSOR, CASES 1, I, AND Il

The basic hypothetical compressor was identical
for the first three cases considered and was the
same as that presented in references 294 and 295.
The compressor had 12 stages of constant tip
diameter. All stages had identical performance
in terms of pressure coefficient and efficiency
against flow coefficient, except for the stalling
characteristics. Pertinent reference-point details
of the compressor are as follows:

Over-all total-pressure ratio ... .. oo oo ___ 7.75
Inlet specific weight flow, equivalent flow per sq ft

E:3 L LV TUTRE:S J-Y: T I 33.5
Inlet corrected tip speed, ft/sec....___ ..o o ____ 950

Individual stage hub-tip radius ratios, area ratios, mean-
radiue ratios and reference-point pressure ratios are listed
in table VIII(a).

The assumptions of stall type, interactions, and
hysteresis effects for cases I to III are as follows:

Type of stall
Inter- | Hystere-
Case actions sis
Stages 1to ¢ Stages 5t0 8 S:oaglezs 9 effects
I Progressive Progressive Abrupt | None None
-and abrupt
I Progressive | Progressive Abrupt | Stages1 | Stagel
and abrupt to 4
III Progressive Togressive Abrupt | Stages1 | Stagel
and abrupt to8
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The individual stage curves assumed for each con-
figuration are discussed in the section Discussion
oF CoMPUTED PERFORMANCE.

HYPOTHETICAL COMPRESSOR, CASES IV AND V

Reference 248 suggests that:improvements in
part-speed performance of multistage compressors
might be obtained by matching the stages so that
at design speed the inlet stages operate at the high
end and the rear stages at the low end of their
flow-coefficient ranges. Case IV was therefore
considered in order to evaluate the potential of
such stage-matching compromises. Thus, the
match-point flow coefficients for case IV were
arbitrarily varied from 0.76 in the first stage to
0.63 in the twelfth stage, as compared with a con-
stant value of 0.69 for cases I to III. The stage
characteristics used were identical to those for
case I. Since the results of case I'V indicated that
this stage-matching compromise greatly reduced
the complete-compressor-stall or surge margin at
design speed, case V was considered, in which a
thirteenth stage was added. The performance
characteristics for this added stage were assumed
identical to those for stages 9 to 12, and the match-
point flow coefficient was taken as 0.626. As in
previous cases, the compressor was assumed to
have a constant tip diameter.

Pertinent reference-point values for cases IV and
V are as follows:

Case IV Case V
Number of stages_ .. _._______.____ 12 13
Over-all total-pressure ratio_..__..... 7.73 9.10
Inlet specific weight flow, equivalent &
flow per sq ft of annulus area_...___ 35. 96 35. 96
Inlet corrected tip speed, ft/sec._._.._ 950 950
Absolute inlet-air angle at pitch radius
of each stage, deg________________ 22Y% 22%

Individual stage parameters for these two cases are
listed in table VIII(b).

TABLE VIII.—-REFERENCE-POINT VALUES
(a) Cases I, IT, and III

Ares Mean- Hub-tip Stage
Stage ratio= radius radius pressuare

railo® ratio ratio

1 0.8431 1.071 " 0.5000 1.179
2 8510 1.046 8063 1.196
3 8547 1.033 6795 1.203
4 8580 1.028 .7348 1.204
5 8630 1.019 779 1.202
6 8695 1.016 8120 1,108
7 8720 1.012 8380 1.102
8 8780 1.010 5613 1.186
9 8835 1.008 8794 1.179
10 8876 1.007 8043 1.172
1 8920 1.0055 9068 1.168
12 8060 10046 9173 1.1569

AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS

(b) Cases IVand V

. Area Mean- | Hub-tip | Stage Flow | Pressure
Stage | ratios radius radius | pressure | coeffi- coeffi-
ratio b ratio ratio clent cient

1 0.9009 1.046 0.5000 1.136 0.760 0.231
2 8929 1.038 5696 1.157 741 252
3 .8889 1.031 6299 1.173 .23 270
4 8857 1.026 .6810 1.186 705 287
5 8818 1.022 7246 1.197 086 304
6 8803 1.018 7623 1.205 668 .32
7 8606 1.018 7944 1.210 650 335
8 86851 1.014 8261 1.205 650 335
9 8787 1.010 8516 1.198 .650 335
10 8850 1.008 8709 1.193 543 .340
11 8857 1.007 8867 1.189 T .636 346
12 8889 1.006 9003 1.183 .630 360
13 8897 1.006 9100 1.177 .626 353

® Ratio of exit to inlet area for stage.
b Ratfo of exit to inlet mean radius for stage.

RANGE OF CALCULATIONS

For each case considered, calculations were
made for a range of speeds of 50 to 110 percent of
the reference value. The maximum flow con-
sidered at each speed was the estimated exit-vane
choke flow. For these examples, choke flow was
assumed to exist at a value of specific weight flow
at the exit of the last stage of 41.4 pounds per-
second per square foot of annulusarea. This value
of specific flow is based on flow conditions at the exit
of the last stage. The minimum flow considered
at each speed was that at which a discontinuity
in the performance curve of any stage was en-
countered. As indicated in chapter XII, discon-
tinuities in multistage-compressor performance at
a given speed may lead to either compressor surge
or complete compressor stall. In the computa-
tion of intermediate-speed performance for cases
IT and III, operation with the inlet stage stalled
and unstalled was considered.

DISCUSSION OF COMPUTED PERFORMANCE
CASE 1

The assumed stage performance curves for case
I are presented in figure 262. The first four stages
were assumed to have only a progressive stall, and
the pressure coefficient and efficiency were taken
as continuous functions of the flow coefficient, as
shown in figure 262(a). Stages 5 to 8 were as-
sumed to have an initial progressive stall and an
abrupt stall at lower values of flow coefficient
(fig. 262(b)). Stages 9 to 12 were assumed to
have only an abrupt stall (fig. 262(c)). As noted
in figures 262 (b) and (c), a discontinuity of stage
performance characteristics was considered to re-
sult from abrupt stall. The stage characteristics
for stage pressure ratios below 1.00, which were
the same for all stages, are given in figure 263.
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Fi1eure 262.—Assumed stage performance characteristics for case I.

As noted in appendix B of reference 294, a modi-
fied computational procedure was used when stages
operated at turbining pressure ratios. Inter-
action effects were considered negligible through-

out the compressor.

Computed over-all performance.—The com-
puted over-all performance map for case I is given
in figure 264 as a plot of over-all total-pressure
ratio against specific weight flow. The over-all
total-pressure ratio, which is the ratio of total
pressure at the exit of last stage to that at the
compressor inlet, would not include an exit-vane
or diffuser loss. The specific weight flow is the
equivalent weight flow per square foot of annulus

area at the compressor inlet.

Also shown in

figure 264 are contours of constant efficiency, the
estimated choking-flow condition for the exit
vanes, and the estimated complete-compressor-

stall limit.

The computed maximum efficiencies for this
case varied from slightly over 0.70 at 50 percent
of reference speed to approximately 0.87 at 100-
percent speed. The values of computed efficiency
at the lowest speeds considered indicate that
stage mismatching at low speeds will not com-
pletely explain the extremely low efficiencies ob-
tained experimentally for some high-pressure-ratio
multistage axial-flow compressors.

The exit-vane choke limit was the maximum
flow considered at each speed. Further decreases
in over-all pressure ratio would not alter the stage
matching but would merely increase the losses
downstream of the point of choking.

The complete-compressor-stall limit at each
speed was the flow at which a discontinuity of
performance occurred because of abrupt stall of
some stage. Occurrence of abrupt stall in a stage
results in very large flow fluctuations that could
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