
17th ACM Symposium on Operating System Principles (SOSP’99)
Published as Operating Systems Review 34(5):202–216, Dec. 1999

202

Design and implementation of a distributed virtual
machine for networked computers

Emin Gün Sirer, Robert Grimm, Arthur J. Gregory, Brian N. Bershad

University of Washington
Department of Computer Science and Engineering

{egs, rgrimm, artjg, bershad}@cs.washington.edu

Abstract
This paper describes the motivation, architecture and
performance of a distributed virtual machine (DVM) for
networked computers. DVMs rely on a distributed service
architecture to meet the manageability, security and
uniformity requirements of large, heterogeneous clusters of
networked computers. In a DVM, system services, such as
verification, security enforcement, compilation and
optimization, are factored out of clients and located on
powerful network servers. This partitioning of system
functionality reduces resource requirements on network
clients, improves site security through physical isolation
and increases the manageability of a large and
heterogeneous network without sacrificing performance.
Our DVM implements the Java virtual machine, runs on
x86 and DEC Alpha processors and supports existing Java-
enabled clients.

1. Introduction
Virtual machines (VMs) have the potential to play an
important role in tomorrow’s networked computing
environments. Current trends indicate that future networks
will likely be characterized by mobile code [Thorn 97],
large numbers of networked hosts per domain [ISC 99] and
large numbers of devices per user that span different
hardware architectures and operating systems [Hennessy
99, Weiser 93]. A new class of virtual machines,
exemplified by systems such as Java and Inferno [Lindholm
& Yellin 96, Dorward et al. 97], has recently emerged to
meet the needs of such an environment. These modern
virtual machines are compelling because they provide a

platform-independent binary format, a strong type-safety
guarantee that facilitates the safe execution of untrusted
code and an extensive set of programming interfaces that
subsume those of a general-purpose operating system. The
ability to dynamically load and safely execute untrusted
code has already made the Java virtual machine a
ubiquitous component in extensible systems ranging from
web browsers and servers to database engines and office
applications. The platform independence of modern virtual
machines makes it feasible to run the same applications on
a wide range of computing devices, including embedded
systems, handheld organizers, conventional desktop
platforms and high-end enterprise servers. In addition, a
single execution platform offers the potential for unified
management services, thereby enabling a small staff of
system administrators to effectively administer thousands or
even hundreds of thousands of devices.

While modern virtual machines offer a promising
future, the present is somewhat grim. For example, the Java
virtual machine, despite its commercial success and
ubiquity, exhibits major shortcomings. First, even though
the Java virtual machine was explicitly designed for
handheld devices and embedded systems, it has not been
widely adopted in this domain due to its excessive
processing and memory requirements [Webb 99]. Second, it
is the exception, rather than the rule, to find a secure and
reliable Java virtual machine [Dean et al. 97]. And third,
rather than simplifying system administration, modern
virtual machines, like Java, have created a substantial
management problem [McGraw & Felten 96], leading many
organizations to simply ban virtual machines altogether
[CERT 96].

We assert that these symptoms are the result of a much
larger problem that is inherent in the design of modern
virtual machines. Specifically, state of the art modern
virtual machines rely on the monolithic architecture of their
ancestors [Goldberg 73, Popek & Goldberg 74, IBMVM
86, UCI 96]. All service components in a monolithic VM,
such as verification, security management, compilation and
optimization, reside locally on the host intended to run the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP-17 12/1999 Kiawah Island, SC
© 1999 ACM 1-58113-140-2/99/0012…$5.00

PALO ALTO NETWORKS Exhibit 1004 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

203

VM applications. Such a monolithic service architecture
exhibits four shortcomings:

1. Manageability: Since each modern virtual machine
is a completely independent entity, there is no
central point of control in an organization.
Transparent and comprehensive methods for
distributing security upgrades, capturing audit trails
and pruning a network of rogue applications are
difficult to implement.

2. Performance: Modern virtual machine services,
such as authentication, just-in-time compilation and
verification, have substantial processing and
memory requirements. Consequently, monolithic
systems are not suitable for hosts, such as
embedded devices, which lack the resources to
support a complete virtual machine.

3. Security: The trusted computing base (TCB) of
modern VMs is not small, well-defined, or
physically isolated from application code. A large
TCB with ill-defined boundaries makes it difficult
to construct and certify secure systems [Saltzer &
Shroeder 75]. The lack of separation between
virtual machine components means that a flaw in
any component of the virtual machine can place the
entire machine at risk [McGraw & Felten 99].
Further, co-location of VM services has resulted in
non-modular systems that can exhibit complex
inter-component interactions, as observed for
monolithic operating systems [Accetta et al. 86,
Bershad et al. 95, Engler et al. 95].

4. Scalability: Monolithic virtual machines are
difficult to port across the diverse architectures and
platforms found in a typical network [Seltzer 98].
In addition, they have had problems scaling over
the different usage requirements encountered in
organizations [Rayside et al. 98].

The goal of our research is to develop a virtual machine
system that addresses the manageability, performance,
security and scalability requirements of networked
computing. In addition, such a system should preserve
compatibility with the wide base of existing monolithic
virtual machines in order to facilitate deployment. To this
end, we focus on implementation techniques that preserve
the external interfaces [Lindholm & Yellin 96] and platform
APIs [Gosling & Yellin 96] of existing virtual machines.

We address the problems of monolithic virtual
machines with a novel distributed virtual machine
architecture based on service factoring and distribution. A
distributed service architecture factors virtual machine
services into logical components, moves these services out
of clients and distributes them throughout the network. We
have designed and implemented a distributed virtual
machine for Java based on this architecture. Our DVM

includes a Java runtime, a verifier, an optimizer, a
performance monitoring service and a security manager. It
differs from existing systems in that these services are
factored into well-defined components and centralized
where necessary.

The rest of the paper is structured as follows. The next
section describes our architecture and provides an overview
of our system. Section 3 describes the implementation of
conventional virtual machine services under our
architecture. Section 4 presents an evaluation of the
architecture and Section 5 shows how a new optimization
service can be accommodated under this architecture.
Section 6 discusses related work; Section 7 concludes.

2. Architecture overview
The principal insight behind our work is that centralized
services simplify service management by reducing the
number and geographic distribution of the interfaces that
must be accessed in order to manage the services. As
illustrated by the widespread deployment of firewalls in the
last decade [Mogul 89, Cheswick & Bellowin 94], it is far
easier to manage a single, well-placed host in the network
than to manage every client. Analogously, we break
monolithic virtual machines up into their logical service
components and factor these components out of clients into
network servers.

The service architecture for a virtual machine
determines where, when and how services are performed.
The location (i.e. where), the invocation time (i.e. when),
and the implementation (i.e. how) of services are
constrained by the manageability, integrity and performance
requirements of the overall system, and intrinsically involve
engineering tradeoffs. Monolithic virtual machines
represent a particular design point where all services are
located on the clients and most service functionality,
including on the fly compilation and security checking, is
performed during the run-time of applications. While this
paper shows the advantages of locating services within the
network, changing the location of services without regard
for their implementation can significantly decrease
performance as well. For instance, a simple approach to
service distribution, where services are decomposed along
existing interfaces and moved, intact, to remote hosts, is
likely to be prohibitively expensive due to the cost of
remote communication over potentially slow links and the
frequency of inter-component interactions in monolithic
virtual machines. We describe an alternative design where
service functionality is factored out of clients by
partitioning services into static and dynamic components
and present an implementation strategy that achieves
performance comparable to monolithic virtual machines.

In our distributed virtual machine, services reside on
centralized servers and perform most of their functionality
statically, before the application is executed. Static service

PALO ALTO NETWORKS Exhibit 1004 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

204

components, such as a verifier, compiler, auditor, profiler,
and optimizer, examine the instruction segment of
applications prior to execution to ensure that the application
exhibits the desired service properties. For example, a
verifier may check the code for type-safety, a security
service may examine the statically determinable arguments
to system calls, and an optimizer may check code structure
for good performance along a particular path.

The dynamic service components provide service
functionality during the execution of applications. They
complement static service components by providing the
services that inherently need to be executed at application
run-time in the context of a specific client. For example, a
security service may check user-supplied arguments to
system calls, a profiler may collect run time statistics, and
an auditing service may generate audit events based on the
execution of the application.

The glue that ties the static and dynamic service
components together is binary rewriting. When static
service components encounter data-dependent operations
that cannot be performed statically, they insert calls to the
corresponding dynamic service components. For example,
our static verification service checks applications for
conformance against the Java VM specification. Where
static checking cannot completely ascertain the safety of the
program, the static verifier modifies the application so that
it performs the requisite checks during its execution. The

resulting application is consequently self-verifying because
the checks embedded by the static service component are an
integral part of the application code.

Figure 1 illustrates our distributed virtual machine
architecture. Static service components produce self-
servicing applications, which require minimal functionality
on the clients. Dynamic service components provide service
functionality to clients during run-time as necessary. The
static services in our architecture are arranged in a virtual
pipeline that operates on application code, as shown in
Figure 2.

A distributed service architecture allows the bulk of VM
service functionality to be placed where it is most
convenient. A natural service placement strategy is to
structure the static service components as a transparent
network proxy, running on a physically secure host. Placed
at a network trust boundary, like a firewall, such a proxy
can transparently perform code transformations on all code
that is introduced into an organization. In some
environments, the integrity of the transformed applications
cannot be guaranteed between the server and the clients, or
users may introduce code into the network that has not been
processed by the static services. In such environments,
digital signatures attached by the static service components
can ensure that the checks are inseparable from applications
[Rivest et al. 78, Rivest 92], and clients can be instructed to
redirect incorrectly signed or unsigned code to the

Internet

Static Service Components

Perimeter Services

Management Svcs

Execution Svcs

Runtime

Clients

Runtime

Runtime

Client
Manager Cache

Verifier

Security
Enforcement

Auditer Profiler

Compiler

Optimizer

Dynamic Service
Components

Security
Server

Network
Management

Server

Library
Manager

Administration
Console

Figure 1. The organization of static and dynamic service components in a distributed virtual machine.

Code Verifier Security Compiler Optimizer Profiler Cache
Cache
Check

check
type
safety

check
static
rules

annotate
for
dynamic
checks

translate
to native
format

transform
code for
performance

collect data
on program
behavior

Runtime

check
signatures

execute
program

Figure 2. The flow of code through a pipeline of static service components in a distributed virtual machine. The ordering of
services in this pipeline may be modified to suit organizational or functional requirements. Further, the client runtime may
communicate with the static service components for client-specific services.

PALO ALTO NETWORKS Exhibit 1004 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

205

centralized services [Spyglass 98].

A DVM introduces a modest amount of new
functionality into the existing trusted computing base of an
organization. A DVM client needs to trust that the static
and dynamic service components it relies on for safety,
including the proxy and binary rewriter, are implemented
correctly. In addition, any service authentication scheme
used in the clients, which may include a digital signature
checker and a key manager, form part of the trusted
computing base under our design. However, we believe the
actual impact of these additions to the TCB to be small.
Monolithic clients already trust all of the service
components that form a traditional VM and often already
have provisions for cryptographic protocols and digital
signature checking to support their target applications
[Gong 99]. Overall, a modest increase in the TCB enables
DVM clients to migrate the trusted components to
physically secure, professionally managed and administered
hosts, which is critical to addressing the operational
problems that have plagued monolithic VMs.

Our service architecture is unique in several
fundamental ways. First, the centralized services are
mandatory for all clients in an organization. For example,
security checks injected into incoming code are inseparable
from applications at the time of their execution and are thus
binding throughout the network. Second, there is a single
logical point of control for all virtual machines within an
organization. In the case of the security service, policies are
specified and controlled from a single location;
consequently, policy changes do not require the cooperation
of unprivileged users. And third, using binary rewriting as a
service implementation mechanism preserves compatibility
with existing monolithic virtual machines. A monolithic
virtual machine may subject the rewritten code to redundant
checks or services, but it can take advantage of the added
functionality without any modifications.

While a distributed service architecture addresses the
problems faced by monolithic virtual machines, it may also
pose new challenges. Centralization can lead to a bottleneck
in performance or result in a single point of failure within
the network. These problems can be addressed by
replicated or recoverable server implementations. The next
section shows how the separation between static and
dynamic service components can be used to delegate state-
requiring functionality to clients. Section 4 shows that this
implementation strategy does not pose a bottleneck for
medium sized networks even in the worst possible case and
can easily be replicated to accommodate large numbers of
hosts.

3. Services
We have implemented the architecture described in the
previous section to support a network of Java virtual
machines (JVMs). In this section, we describe the

implementation of conventional virtual machine services
under our architecture and show that the distributed
implementation of these services addresses the
shortcomings of monolithic VMs outlined in the first
section. Our services are derived from the Java VM
specification, which broadly defines a type-safe, object-
based execution environment. Typical implementations
consist of a verifier, which checks object code for type-
safety, an interpreter and a set of runtime libraries. In some
implementations, the interpreter is augmented with a just-
in-time compiler to improve performance. The following
sections describe the design and implementation of the
services we have built to supplant those found in traditional
Java virtual machines.

All of our services rely on a common proxy
infrastructure that houses the static service components.
The proxy transparently intercepts code requests from
clients, parses JVM bytecodes and generates the
instrumented program in the appropriate binary format. An
internal filtering API allows the logically separate services
described in this section to be composed on the proxy host.
Parsing and code generation are performed only once for all
static services, while structuring the services as independent
code-transformation filters enables them to be stacked
according to site-specific requirements [Heidemann &
Popek 94, O’Malley & Peterson 92]. The proxy uses a
cache to avoid rewriting code shared between clients and
generates an audit trail for the remote administration
console. The code for the dynamic service components
resides on the central proxy and is distributed to clients on
demand.

While the implementation details of our virtual machine
services differ significantly, there are three common themes
among all of them:

• Location: Factoring VM services out of clients and
locating them on servers improves manageability by
reducing replicated state, aids integrity by isolating
services from potentially malicious code and simplifies
service development and deployment.

• Service Structure: Partitioning services into static and
dynamic components can enhance performance by
amortizing the costly parts of a service across all hosts
in the local network.

• Implementation Technique: Binary rewriting is used to
implement services transparently. Binary rewriting
services can be designed to incur a relatively small
performance overhead while retaining backward-
compatibility with existing clients.

3.1 Verification
A comprehensive set of safety constraints allows a virtual
machine to integrate potentially malicious code into a
privileged base system [Stata & Abadi 98, Freund &

PALO ALTO NETWORKS Exhibit 1004 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

206

Mitchell 98]. Indeed, Java’s appeal for network computing
stems principally from its strong safety guarantees, which
are enforced by the Java verifier.

The task of verifying Java bytecode has been a
challenge for monolithic virtual machines. First, since the
Java specification is not formal in its description of the
safety axioms, there are differences between verifier
implementations. Verifiers from different vendors differ on
underspecified issues such as constraints on the uses of
uninitialized objects, subroutine calls, and cross-validation
of redundant data in class files. Second, monolithic
implementations tie the verifier to the rest of the VM,
thereby prohibiting users from using stronger verifiers
where necessary. Furthermore, monolithic verifiers make it
difficult to propagate security patches to all deployed
clients in a timely manner. As a case in point, 15% of all
accesses to our web site originate from out-of-date browsers
with well-known security holes for which many patches
have been issued. Finally, the memory and processing
requirements of verification render monolithic VMs
unsuitable for resource limited clients, such as smart cards
and embedded hosts [Cohen 97]. Some monolithic virtual
machines for embedded and resource-limited systems have
abandoned verification altogether for a restricted extension
model based on trust [HP 99].

We address these shortcomings by decoupling
verification from the rest of the VM, migrating its
functionality out of clients into a network verification
service and centralizing the administration of this service.
Moving verification out of clients poses some challenges,
however, because parts of the verification process require
access to client namespaces and have traditionally required
close coupling with the client JVM. Specifically, Java
verification consists of four separate phases. The first three
operate on a single class file in isolation, respectively
making sure that the class file is internally consistent, that

the code in the class file respects instruction integrity and
that the code is type-safe. The fourth phase checks the
interfaces that a class imports against the exported type
signatures in its namespace, making sure that the
assumptions that the class makes about other classes hold
during linking.

In our implementation, the first three phases of
verification are performed statically in a network server,
while the link-time checks are performed by a small
dynamic component on the client. This partitioning of
functionality eliminates unnecessary communication and
simplifies service implementation. During the processing of
the first three phases, the verification service collects all of
the assumptions that a class makes about its environment
and computes the scope of these assumptions. For example,
fundamental assumptions, such as inheritance relationships,
affect the validity of the entire class, whereas a field
reference affects only the instructions that rely on the
reference. Having determined these assumptions and their
scope, the verification service modifies the code to perform
the corresponding checks at runtime by invoking a simple
service component (Figure 3). Since most safety axioms
have been checked by this time, the functionality in the
dynamic component is limited to a descriptor lookup and
string comparison. This lazy scheme for deferring link
phase checks ensures that the classes that make up an
application are not fetched from a remote, potentially slow,
server unless they are required for execution.

The distributed verification service propagates any
errors to the client by forwarding a replacement class that
raises a verification exception during its initialization.
Hence, verification errors are reflected to clients through
the regular Java exception mechanisms. Since the Java VM
specification intentionally leaves the time and manner of
verification undefined except to say that the checks should
be performed before any affected code is executed, our

class Hello {
 static boolean __mainChecked = false; // Inserted by the verifier
 public static void main() {
 if(__mainChecked == false) { // Begin automatically generated code
 RTVerifier.CheckField(“java.lang.System”,“out”,

“java.io.OutputStream”);
 RTVerifier.CheckMethod(“java.io.OutputStream”,“println”,

“(Ljava/lang/String)V”);
 __mainChecked = true;
 } // End automatically generated code
 System.out.println(“hello world”);
 }
}

Figure 3. The hello world example after it has been processed by our distributed verification service. The vast majority of safety axioms
are checked statically. Remaining checks are deferred to execution time, as shown in italics. The first check ensures that the System
class exports a field named “out” of type OutputStream, and the second check verifies that the class OutputStream
implements a method, “println,” to print a string. The rewriting occurs at the bytecode level, though the example shows equivalent
Java source code for clarity.

PALO ALTO NETWORKS Exhibit 1004 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

