
 Exhibit 1030 Page 1 SYMANTEC

ILDT

I

+;U
w CJJU)

2 _o
"5 L-El

G.)

E _c
U

SYMANTEC Exhibit 1030 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Exhibit 1030 Page 2 SYMANTEC

Osborne McGraw-Hill
2600 Tenth Street

Berkeley, California 94710
U.S.A.

For information on translations or book distributors outside of the U.S.A.,

please write to Osborne McGraw-Hill at the above address.

C++ from the Ground Up

Copyright © 1994 by McGraw—Hill. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior

written permission of the publisher, with the exception that the program
listings may be entered, stored, and executed in a computer system, but they

may not be reproduced for publication.

567890 DOC 998765
Int;

ISBN 0-07-881969-5

1 T}

Publisher Computer Designer
Lawrence Levitsky Marcela V. Hancik

Acquisitions Editor Quality Control Specialist
Jeff Pepper Joe Scuderi

Project Editor Illustrator
Nancy McLaughlin Rhys Elliott

Technical Editor Interior Designer
James Turley Marla Shelasky
Proofreader Indexer

Audrey Baerjohnson Sheryl Schildt

Cover Design ,
Ted Mader Associates 2 25????‘ Al

Information has been obtained by Osborne McGraw-Hill from S0l1l(‘C:s believed to be reliable. However, because of the
possibility of human or rut-(hanical error by our sources, Osborne Mc(iraw~Hill, or others, Osborne Mcfiraw-Hill does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible tor any errors or omissions or the
results obtained from use of such information.

SYMANTE

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Exhibit 1030 Page 3 SYMANTEC

“mun! Up

ies. (Of

ISL‘ ii

tion’s

sed in
-om

ier,
run, and
tions

main()

rl Iilimry.

erally
impiler.

t

|c().
),
IL‘ SCTCCII.

"totlyprt

‘T an prim‘
' first

’ _1"‘glJt‘rl(’.t‘:i;
-4 :1 .aiue
{yea to A

Ti/on vvher
—: gallrcici.

«in()i'erviewof(.‘++ 21 ‘ it

cout << Inside myfunc() ;

The program works like this. l-'irst, main() begins, and it executes the
first cout statement. Next, main() calls myfunc(). Notice how this is
achieved: the function’s name, myfunc, appears, followed by parentheses,
and finally by a semicolon. A function call is a tZ++ statement and, therefore,
must end with a semicolon. Next, myfunc() executes its cout statement, -mamas.’
and then returns to main() at the line of code immediately following the

call. I-inally, main() executes its second cout statement and then
terminates. Hence, the output on the screen is this:

In maint) lnside myfunct J Back in main()

There is one other important statement in the preceding program:

Void myfunC(); // myfunc’s prototype

As the comment states, this is the])I'()l()I)’[)(’ for myfunc(). Although we
will discuss prototypes in detail later in this book, a few words are necessary

now. .-\ function prototype declares the function prior to its definition. The
prototype allows the compiler to know the function’s return type, as well

as the number and type of any parameters that the function may have. The
compiler needs to know this information prior to the first time the function
is called. This is why the prototype occurs before n1ain().

As you can see, n1yfunc() does not contain a return statement. The

keyword void, which precedes both the prototype for myfunc() and its
definition, formally states that myfunc() does not return a value. in C++,
functions that don’t return values are declared as void.

Function Arguments
it is possible to pass one or more values to a function. A value passed to a
function is called an (Il},’Il1lI(’I1f. in the programs‘ that you have studied so

far, none of the functions take any argurnents. Specifically, neither n1ain()
nor myfunc() in the preceding examples have an argument. However,
functions in (I++ can have anywhere from no arguments at all to many
arguinents. The upper limit is determined by the compiler you are using, but

the proposed (i++ standard specifies that a function must he able to take at
least 256 argtinients.

Here is a short program that uses one of (I++’s standard library (i.e., built-in)

functions, called abs(), to display the absolute value of number. The ahs()

SYMANTEC Exhibit 1030 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Exhibit 1030 Page 4 SYMANTEC

/\ parameter
is a variable

defined by a
funcfionthat
receives an

argument.

C++ from the Ground Up

function takes one argument, converts it into its absolute value, and returns
the result.

// Use the abs() function.
#include <iostream.h>

#include <stdlib.h> // required by abs()

main()
{

cout << abs(—l0);

return 0;
l

Here, the value -10 is passed as an argument to abs(). The abs() function
receives the argument that it is called with and returns its absolute value,
which is 10 in this case. Although abs() takes only one argument, other
functions can have several. The key point here is that when a function
requires an argument, it is passed by specifying it between the parentheses
that follow the function's name.

The return value of abs() is used by the cout statement to display the absolute
value of —1() on the screen. The reason this works is that whenever a function is

part of a larger expression, it is automatically called so that its return Value can
be obtained. In this case, the return value of abs() becomes the value of the

right side of the << operator and is, therefore, displayed on the screen.

Notice one other thing about the preceding program: it also includes the

header file stdlib.h. This is the header file required by abs(). In general,
whenever you use a library function, you must include its header file. The

header file provides the prototype for the library function, among other things.

When you create a function that takes one or more arguments, the variables

that will receive those arguments must also be declared. These variables are
called the paranzcters of the function. For example, the function shown next
prints the product of the two integer arguments used in the call to the function.

void mul(int x, int y)
{

cout << X * y << ;
}

Each time mul() is called, it will multiply the value passed to x by the value
passed to y. Remember, however, that x and y are simply the operational
variables that receive the values you use when calling the function.

Consider the following short program, which illustrates how to call mul():

SYMANTEC x I

An Overview of(

//

#in

voi

mai

patui

In

se]
co

Fl

.\l.
ex

ar;

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Exhibit 1030 Page 5 SYMANTEC

irozmd Up

d returns

inction

Ialue,
)'[h€f
on

itheses

bsolute
nction is
lue can
)f the

; the

ieral,
. The

‘ things.

ariables
les are
In next

unction.

re Value
mal

lul():

,—‘..rz Overview 0fC++ 23 ‘

j%:\ l§1S;€§;»%§£¥E¥?C%5Lafia¥,: /.‘$’£i‘.:V?\:2-.~.-iw.

// A simple program that demonstrates mul().

#include <iostream.h>

void mul(int x, int Y); // mul()'s prototype

main()
{

mul(10, 20);

mul(8, 9);

return 0;
l

void mul(int x, int y)
{

cout << x * y << " ";
}

This program will print 200, 30, and 72 on the screen. When mul()
is called, the C++ compiler copies the value of each argument into the
matching parameter. That is, in the first call to mul(), 10 is copied into x
and 20 is copied into y. In the second call, 5 is copied into x and 6 into y.
In the third call, 8 is copied into x and 9 into y.

If you have never worked with a language that allows parameterized
functions, then the preceding process may seem a bit strange. Don't worry;
as you see more examples of C++ programs, the concept of arguments,
parameters, and functions will become clear.

Remember: The term argument refers to the Value that is used to call
a function. The variable that receives the value of an argument is called a
parameter. In fact, functions that take arguments are called parameterized
functions.

 :28 zi4!>'a.-“>x».s¢«.1l‘:‘-W15’; -:'r2r«mw:' ; ::~ ~--‘V

In C++ functions, when there are two or more arguments, they are
separated by commas. In this book, the term argzmzcnt list will refer to

comma-separated arguments. The argument list for mul() is x,y.

Functions Returning Values
Many of the C++ library functions that you will use return values. For
example, the abs() function used earlier returned the absolute value of its

argument. Also, functions you write may return Values to the calling routine.

SYMANTEC Exhibit 1030 Page 5

mul(5, 6); 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

