! I

L m
SOFTWARE SOLUTIONS

JOHN LEWIS
WILLIAM LOFTUS

Editor-in-Chief
Associate Editor
Production Manager

Lynne Doran Cote
Deborah Lafferty
Karen Wernholm

Production Editor Amy Willcutt
Marketing Manager ~ Tom Ziolkowski
Compositor Michael and Sigrid Wile
Technical Artist George Nichols
Copyeditor Roberta Lewis

Text Design Ron Kosciak

Indexer Nancy Fulton
Proofreading Phyllis Coyne et al.
Cover Designer Diana Coe

Library of Congress Cataloging-in-Publication Data
Lewis, John, Ph.D.
Java software solutions : foundations of program design / John
Lewis, William Loftus.
5 i ICT
Includes index.
ISBN 0-201-57164-1
1. Java (Computer program language) 2. Object-oriented
programming (Computer science) 1. Loftus, William. II. Title.
QA76.73.J38L49 1998

005.13'3--dc21 97-19400
CIP

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been

printed in initial caps or all caps.

Cover image © Jerry Blank/SIS

Access the latest information about Addison-Wesley titles from our World Wide
Web site: http://www.awl.com/cseng
Reprinted with corrections, January 1998.

Copyright © 1998 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America.

6 7 8 9 10-MA-01009998

N B g e

Prel

We have desigr
language. It ser
for pursuing ad
with object-orie
ment high-qual

This text v
gramming and
ground up, witl
emerged in mid
Web effects. Ov
object-oriented
discovered that
ing concepts wk

In response
nary version. Si
ing topics to p
students better ¢
embrace Java 1.
earlier version, i

Object-Orient

We introduce ol
out. We have fc
they are present

SYMANTEC Exhibit 1025 Page 2

4.4 Defining Methods

We’ve already used many methods in various programs and we know that methods
are part of a class. Let’s now examine method definitions closely in preparation for
defining our own classes.

A method is a group of programming language statements that are given a
name. A method is associated with a particular class. Each method has a method
definition that specifies the code that gets executed when the method is invoked.
We’ve invoked the println method many times, but because we didn’t write
println, we have not been concerned about its definition. We call it assuming that
it will do its job reliably.

When a method is called, the flow of control transfers to that method. One by
one, the statements of that method are executed. When that method is done, control
returns to the location where the call was made and execution continues. This
process is pictured in Fig. 4.4.

We’ve defined the main method of a program many times. Its definition fol-
lows the same syntax as all methods:

The header of a method includes the type of the return value, the method name, and
a list of parameters that the method accepts. The list of statements that makes up the

main method1 method2
| T T i =)
| : | |
| ! ¥ | |
7 : method2(); — - I
|
method1(); ap + : :
———————— " [[
: I [I I
| Il | | |
[e kg
|
|
v

Figure 4.4 The flow of control following method invocations

134 Chapter4 Objects and Classes

SYMANTEC Exhibit 1025 Page 3

Sody of the method are
method called third_g

int third_power (int
int cube;
cube = number * n
return cube;

1 // method third p

A method may dec
that method. The vari
method. Local variable
wther methods of the s
the main method. The:
“o not exist except wh
“ocal variable is lost frc
value to be maintained
the class level. The dec
Lst, but it must be decl:

Key Concept A var
used outside of it.

The return stal

AMethods can return a
=ethod header. The re
W hen a method does n¢
“ipe, as is always done
= the method header. T

ethods
on for

iven a
ethod
roked.

write
g that

ne by
ontrol

. This

n fol-

,, and
p the

body of the method are defined in a block. The following code is the definition of a
method called third_power:

int third power (int number) {
int cube;
cube = number * number * number;
return cube;

} // method third_power

A method may declare local variables in the body of the method for use only in
that method. The variable cube in the third_power method is local to that
method. Local variables cannot be accessed from outside of the method, even from
other methods of the same class. In previous examples we’ve declared variables in
the main method. These variables were local to the main method. Local variables
do not exist except when the method is executing; therefore the value stored in a
local variable is lost from one invocation of the method to the next. If you want a
value to be maintained from one call to the next, you should define the variable at
the class level. The declaration of a local variable can be mixed into the statement
list, but it must be declared before it is used.

Key Concept A variable declared in a method is local to that method and cannot be
used outside of it.

The return statement

Methods can return a value, whose type must correspond to the return type in the
method header. The return type can be a primitive type or a reference to an object.
When a method does not return any value, the reserved word void is used as the return
type, as is always done with the main method. A return type must always be specified
in the method header. The return statement in a method can take one of two forms:

or

. expression;

4.4 Defining Methods

SYMANTEC Exhibit 1025 Page 4

The first form causes the processing flow to return to the calling location without
returning a value. The second form returns to the calling method and specifies the
value that is to be returned. If a return type other than void is specified in the
method header, then the Java compiler insists that a return statement exist in the
program and that a value of the proper type is returned.

» Key Concept A method must return a value consistent with the return type specified in
the method header.

The following code is another way to define the third_power method, per-
forming a calculation in the expression of the return statement. This modification
eliminates the need for the local variable.

int third power (int number) {
return (number * number * number) ;
} // method third_power

If there is no return statement in a method, processing continues until the end
of the method is reached. If there is a return statement, then processing is stopped
for that method when the return statement is executed, and control is returned to
the statement that invoked the method.

It is usually not good practice to use more than one return statement in a
method even though it is possible to do so. In general, a method should have one
return statement as the last line of the method body unless it makes the method
overly complex.

Parameters

A parameter is a value that is passed into a method when it is invoked. The parame-
ter list in the header of a method specifies the types of the values that are passed and
the names by which the called method will refer to the parameters in the method
definition. In the method definition, the names of the parameters accepted are called
formal parameters. In the invocations, the values passed into a method are called
actual parameters. A method invocation and definition always specify the parameter
list in parentheses after the method name. If there are no parameters, an empty set of
parentheses are used.

The formal parameters are identifiers that essentially act as local variables for
the method and whose initial value comes from the calling method. Actual parame-

136 Chapter4 Objects and Classes

ters can be literals,
passed as the paran

public void acid
String title
generate_repo

} // method aci:

This example is a
invoking another r

.acid_test are s

Note that substa
method invocation
in acid_test,
generate_repor
When primitive
meter. When objects
to the actual param
parameter becomes
Java, primitive data

Key Concept A
Therefore the actu

Let’s look at a1
we have a class Nun
gram demonstrates

// Demonstrates
class Parameter_]

public static
(int forma:
Num forma:

System.out
System.out
System.out
System.out

SYMANTEC Exhibit 1025 Page 5

thout
:s the
n the
n the

edin

per-
tion

:nd
sed
to

1a
ne
od

ters can be literals, variables, or full expressions that are evaluated and the result
passed as the parameter. Let’s look at an example:

public void acid_test (int substancel, float substance2) ({
String title = "Acid Test Order Form'";
generate_report (title, substancel, substance2);

} // method acid_test

This example is a method called acid_test. The method generates a report by
invoking another method called generate_report. The formal parameters for
acid_test are substancel and substance2, as listed in the parameter list.
Note that substancel and substance2 also serve as actual parameters to the
method invocation of generate_report. The variable title is a local variable
in acid_test, and serves as an actual parameter for the «call to
generate_report.

When primitive data is passed, a copy of the value is assigned to the actual para-
meter. When objects are passed, a copy of the reference to the original object is assigned
to the actual parameter. Therefore when an object is passed as a parameter, the formal
parameter becomes an alias of the actual parameter. Another way to say this is that, in
Java, primitive data is passed by value and objects are passed by reference.

» Key Concept An object is passed by reference when it is used as a parameter.

Therefore the actual parameter and the formal parameter are aliases of each other.

Let’s look at an example that tests the issue of parameter passing. Assume that
we have a class Num that contains an int variable called value. The following pro-
gram demonstrates passing the various data types:

// Demonstrates the effects possible using parameter passing.
class Parameter_Passing {

public static void change_values
(int formall, int formal2, Num formal3,
Num formald, Num formal5) {

‘

"Before changing values");

System.out.println()
(

System.out.println ("Formal parameter 1: " + formall);
(

System.out.println

System.out.println ("Formal parameter 2: " + formal2);

4.4 Defining Methods

137

SYMANTEC Exhibit 1025 Page 6

Vi

SOFTWARE SOLUTIONS

! JURE
9947
\

R

‘\
|

]
1

)

Ut
\
|
| |
7183-3 $53.35 |

;

07

.

\#
i
1.1

SYMANTEC Exhibit 1025 Page 7

