
Enforcing Java Run-Time Properties Using Bytecode
Rewriting

Algis Rudys and Dan S. Wallach

Rice University, Houston, TX 77005, USA
(arudys|dwallach)@cs.rice.edu

Abstract. Bytecode rewriting is a portable way of altering Java’s behavior by
changing Java classes themselves as they are loaded. This mechanism allows us
to modify the semantics of Java while making no changes to the Java virtual
machine itself. While this gives us portability and power, there are numerous
pitfalls, mostly stemming from the limitations imposed upon Java bytecode by
the Java virtual machine. We reflect on our experience building three security
systems with bytecode rewriting, presenting observations on where we succeeded
and failed, as well as observing areas where future JVMs might present improved
interfaces to Java bytecode rewriting systems.

1 Introduction

Bytecode rewriting presents the opportunity to change the execution semantics of Java
programs. A wide range of possible applications have been discussed in the literature,
ranging from the addition of performance counters, to the support of orthogonal persis-
tence, agent migration, and new security semantics. Perhaps the strongest argument in
favor of bytecode rewriting is its portability: changes made exclusively at the bytecode
level can be moved with little effort from one Java virtual machine (JVM) to another, so
long as the transformed code still complies to the JVM specification [1]. An additional
benefit is that code added by bytecode rewriting can still be optimized by the underlying
JVM.

JVMs load Java classes from disk or elsewhere through “class loaders,” invoked as
part of Java’s dynamic linking mechanism. Bytecode rewriting is typically implemented
either by statically rewriting Java classes to disk, or through dynamically rewriting
classes as they are requested by a class loader. This process is illustrated in Figure 1.

In this paper, we describe three systems which we have built that use bytecode
rewriting to add security semantics to the JVM. SAFKASI [2] is a bytecode rewriting-
based implementation of stack inspection by security-passing style. Soft termination [3]
is a system for safely terminating Java codelets.1 Finally, transactional rollback [4] is
a system for undoing the side-effects of a terminated codelet, leaving the system in a
consistent state suitable for, among other thing, restarting terminated codelets.

1 The term “codelet” is also used in artificial intelligence, numerical processing, XML tag pro-
cessing, and PDA software, all with slightly different meanings. When we say “codelet,” we
refer to a small program meant to be executed in conjunction with or as an internal component
of a larger program.

 Exhibit 1023 Page 1 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

public class Foo {
Bar b;

}

public class Bar {
. . .

}

JVM

ClassLoader {
. . .

}

(1) Executing class Foo

ByteCode Transformer {
. . .

}

(4) Fetches
Bar class

from
filesystem

(2) Undefined
Reference to Bar

(3) Calls
class loader

(4a) Bytecode Transformer
Rewrites Bar class

(5) Class loader
loads Bar class

into JVM

(6) Class is
loaded

Bar.class

Fig. 1. How a Java bytecode transformation changes the process of loading a class. If an already
loaded class, Foo, uses an as yet undefined class Bar (either accesses a static member or creates
an instance) (1), the JVM traps the undefined reference to Bar (2), and sends a request for the
class loader to load the class (3). The class loader fetches the class file (Bar.class) from the
filesystem (4). In standard Java, the input class is then loaded into the JVM (5). In a bytecode
rewriting system, the bytecode transformer is first invoked to transform the class (4a). In either
case, the class is now loaded in the JVM (6).

Java bytecode rewriting has been applied in far too many other systems to provide
a comprehensive list here. We cite related projects in order to discuss the breadth of the
use of the technique.

Access Control. By intercepting or wrapping calls to potentially dangerous Java meth-
ods, systems by Pandey and Hashii [5], Erlingsson and Schneider [6], and Chander et
al. [7] can apply desired security policies to arbitrary codelets without requiring these
policies to be built directly into the Java system code, as done with Java’s built-in secu-
rity system.

Resource Management and Accounting. J-Kernel [8] and J-SEAL2 [9] both focus
primarily on isolation of codelets. Bytecode rewriting is used to prevent codelets from
interfering in each others’ operations. JRes [10] focuses more on resource accounting;
bytecode rewriting is used to instrument memory allocation and object finalization sites.

Optimization. Cream [11] and BLOAT (Bytecode-Level Optimization and Analysis
Tool) [12] are examples of systems which employ Java bytecode rewriting for the pur-
pose of optimization. Cream uses side-effect analysis, and performs a number of stan-
dard optimizations, including dead code elimination and loop-invariant code motion.
BLOAT uses Static Single Assignment form (SSA) [13] to implement these and several
other optimizations.

 Exhibit 1023 Page 2 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Profiling. BIT (Bytecode Instrumenting Tool) [14] is a system which allows the
user to build Java instrumenting tools. The instrumentation itself is done via bytecode
rewriting. Other generic bytecode transformation frameworks, such as JOIE [15] and
Soot [16], also have hooks to instrument Java code for profiling.

Other Semantics. Sakamoto et al. [17] describe a system for thread migration imple-
mented using bytecode rewriting. Marquez et al. [18] describe a persistent system im-
plemented in Java entirely using bytecode transformations at class load time. Notably,
Marquez et al. also describe a framework for automatically applying bytecode trans-
formations, although the status of this framework is unclear. Kava [19] is a reflective
extension to Java. That is, it allows for run-time modification and dynamic execution of
Java classes and methods.

All of these systems could also be implemented with customized JVMs (and many
such customized JVMs have been built). Of course, fully custom JVMs can outperform
JVMs with semantics “bolted on” via bytecode rewriting because changes can be made
to layers of the system that are not exposed to the bytecode, such as how methods are
dispatched, or how memory is laid out. The price of building custom JVMs is the loss
of portability.

Code rewriting techniques apply equally to other languages. One of the earliest im-
plementations of code rewriting was Informer [20], which, to provide security guaran-
tees, applied transformations to modules written in any language and running in kernel
space. In particular, the transformations discussed in this paper could be applied to
add similar semantics to other type-safe languages like Lisp and ML as well as such
typed intermediate representations as Microsoft’s Common Language Infrastructure
and typed assembly languages.

A number of issues arise in the course of implementing a bytecode rewriting sys-
tem. In this paper, we describe our experiences in implementing three such system in
Section 2. Section 3 discusses JVM design issues that we encountered when building
our systems. Section 4 discusses optimizations we used to improve the performance
impact of our systems. Finally, we present our conclusions in Section 5.

2 Bytecode Rewriting Implementations

This paper reflects on lessons learned in the implementation of three security systems
built with Java bytecode rewriting. The first, SAFKASI [2], uses bytecode rewriting to
transform a program into a style where security context information is passed as an
argument to every method invocation. Soft termination [3] is a system for safely ter-
minating Java codelets by trapping backward branches and other conditions that might
cause a codelet to loop indefinitely. Transactional rollback [4], intended to be used in
conjunction with soft termination, allows the system to undo any side-effects made to
the system’s state as a result of the codelet’s execution, returning the system to a known
stable state.

 Exhibit 1023 Page 3 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.1 SAFKASI

SAFKASI [2] (the security architecture formerly known as stack inspection), is an im-
plementation of Java’s stack inspection architecture [21] using Java bytecode rewriting.
SAFKASI is based on security-passing style, a redesign of stack-inspection which prov-
ably maintains the security properties of stack-inspection, improves optimizability and
asymptotic complexity, and can be reasoned about using standard belief logics.

Stack inspection is a mechanism for performing access control on security-sensitive
operations. Each stack frame is annotated with the security context of that stack frame.
Stack inspection checks for privilege to perform a sensitive operations by inspecting
the call stack of the caller. Starting at the caller and walking down, if it first reaches
a frame that does not have permission to perform the operation, it indicates failure. If
it first reaches a frame that has permission to perform the operation and has explicitly
granted permission, the operation is allowed. Otherwise, the default action is taken as
defined by the JVM.

With security-passing style, instead of storing the security context in the stack, the
security context is passed as an additional parameter to all methods. This optimizes
security checks by avoiding the linear cost of iterating over the call stack.

SAFKASI is implemented by passing an additional parameter to every method in
the system. This parameter is the security context. It is modified by the says operator,
which is used by a class to explicitly grant its permission for some future operation. The
stack-inspection check simply checks this context for the appropriate permission.

Performance. SAFKASI was tested using the NaturalBridge BulletTrain Java Compiler,
which compiles Java source to native binary code [22]. With CPU-bound benchmarks,
SAFKASI-transformed programs executed 15 to 30% slower than equivalent stack in-
specting programs.

2.2 Soft Termination

Soft termination [3] is a technique for safely terminating codelets. The basis for soft
termination is that the codelet doesn’t need to terminate immediately, as long as it is
guaranteed to eventually terminate. We implemented soft termination by first adding a
termination flag field to each class. We then instrumented each method, preceding all
backward branches with termination checks to prevent infinite loops and beginning all
methods with termination checks to prevent infinite recursion.

The termination check simply checks the class’s termination flag. If set, a Java ex-
ception is thrown. The codelet is free to catch the exception, and resume. However, the
next time a backward branch or method call is encountered, the exception is thrown
anew. Using this mechanism, we can prove that the codelet is guaranteed to terminate
in finite time.

Soft termination distinguishes between system code and user code (that is, codelets).
System code should not be interrupted, even if the associated codelet has been marked
for termination. Codelets are rewritten by the transformer, while system code is not
touched. This result can be achieved by performing the transformation in the Java class

 Exhibit 1023 Page 4 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

loader. Since the system classes and codelets are naturally loaded by different class
loaders, the separation becomes natural.

Blocking calls are also addressed in our system. Blocking calls are method calls,
most commonly input/output calls, which wait for a response before returning. We
wanted to guarantee that a codelet could not use blocking calls to bypass termination.
The Thread.interrupt() method allows us to force blocking method calls to re-
turn.

To determine which threads to interrupt, we wrap blocking calls with code to let the
soft termination system know that a particular thread is entering or leaving a blocking
call. This code also uses Java’s stack inspection primitives to determine whether the
code is blocking on behalf of a codelet or on behalf of the system code. Only threads
blocking on a codelet’s behalf are interrupted.

Performance We implemented this system and measured the performance when run-
ning on Sun Microsystems Java 2, version 1.2.1 build 4. The worst results, of a simple
infinite loop, was 100% overhead. In the real-world applications tested, the overhead
was up to 25% for loop-intensive benchmarks, and up to 7% for the less loop-intensive
benchmarks.

2.3 Transactional Rollback

Transactional rollback [4] was designed to complement soft termination in a resource
management system. Soft termination guarantees that system state is never left incon-
sistent by a codelet’s untimely termination. However, the same guarantee is not made
about a codelet’s persistent state. Any inconsistencies in this state could destabilize
other running codelets as well as complicate restarting a terminated codelet.

We solve this problem by keeping track of all changes made by a codelet, and if
the codelet is terminated, the changes are undone. Each codelet is run in the context of
a transaction to avoid data conflicts. We implement transactional rollback by first du-
plicating each method in all classes (including system classes). The duplicate methods
take an additional argument, the current transaction.

In the duplicate methods, all field and array accesses (that is, field gets and puts
and array loads and stores) are preceded with lock requests by the transaction on the
appropriate object. Method calls are also rewritten to pass the transaction parameter
along. A number of fields are added to a class to maintain a class’s backups and lock
state for the class.

If the code is not running in a transaction, the methods called are for the most part
exactly the original methods. This allows us to limit the performance impact to code
running in a transaction.

Performance We implemented this system and measured the performance when run-
ning on Sun Microsystems Java 2, version 1.3 for Linux. The overhead of the transaction
system ranged from 6 to 23×. The major component in this overhead was in managing
array locks.

 Exhibit 1023 Page 5 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

