©
L

CKE

Weighted Voting for Replicated Data

David K. Gifford
Stanford University and Xerox Palo Alto Research Center

In a new algorithm for maintaining replicated data,
every copy of a replicated file is assigned some number of
votes. Every transaction collects a read quorum of r votes
to read a file, and 2 write quorum of w votes to write a file,
such that r+w is greater than the total number of votes
assigned to the file. This ensurcs that there is a non-nuil
intersection between every read quorum and every write
quorum. Version numbers make it possible to determine
which copies are current. The reliability and performance
characteristics of a replicated file can be controlled by
appropriately choosing », w, and the file’s voting
configuration. The algorithm guarantees serial
consistency, admits temporary copies in a natural way by
the introduction of copies with no votes, and has been
implemented in the context of an application system called
Violet.

Kcy Words and Phrases: weighted voting, replicated
data, quorum, file system, file suite, representative, weak
represcntative, transaction, locking, computer network

CR Categories: 4.3, 4.35, 4.33, 381

The work reported here was supported in part by the Xerox
Corporation, and by the Fannie and John Hertz Foundation.
Author's present address: Xerox Palo Alto Research Center, 3333

Coyote Hill Road, Palo Alto, California 94304.

Permission to copy without fee all or part of this material is
ranted provided that the copies are not made or distributed
or direct commercial advantage, the ACM copyright notice

and the title of the publication and its date appear, and notice

is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish,

requires a fce and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0150 $00.75

T
M

A R

150

1. Introduction

The requirements of distributed computer systems
are stimulating interest in keeping copies of the same
information at different nodes in a computer network.
Replication of data allows information to be located close
to its point of use, either by statically locating copies in
high use areas, or by dynamically creating temporary
copies as dictated by demand. Replication of data also
increases the availability of data, by allowing many nodes
to service requests for the same information in parailel,
and by masking partial systemn failures. Thus, in some
cases, the cost of maintaining copies is offset by the
performance, communication cost, and reliability benefits
that replicated data affords.

We present a new algorithm for the maintenance of
replicated files. The aigorithm can be briefly
characterized by the following Jescription:

- Every copy of a replicated file is assigned some
number of votes.

- Every transaction collects a read quorum of 7 votes
to read a file, and a write quorum of w votes to
write a file, such that r+ w is greater than the total
number of votes assigned to the file.

- This ensures that there is a non-null intersection
between every read quorum and every write
quorum. There is always a subset of the
representatives of a file whose votes total to w that
are current.

- Thus, any read quorum that is gathered is
guaranteed to hav~ a current copy.

- Version numbers make it possible to determine
which copies are current.
The aigorithm has a number of desirable properties:

- It continues to operate correctly with inaccessible
copies.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

D
A

- It consists of a small amount of extra machinery that
runs on top of a transactional file system. Although
"voting™ occurs as will become evident later in the
paper, no complicated message based coordination
mechanisms are needed.

- It provides serial consistency. In other words, it
appears to each transaction that it alone is running.
The most current version of data is always provided
to a user.

- By manipulating 7, w, and the voting structure of &
replicated file, a system administrator can alter the
file's performance and reliability characteristics.

- All of the extra copies of a file that are created,
including temporary copies on users’ local disks, can
be incorporated into our framework.

The remainder of the paper is organized as five
sctions. Section 2 describes related work, and how the
sigorithm differs from previous solutions. The algorithm’s
environment, interface, and basic structure are introduced
in Section 3. Refinements are offered in Section 4,
including the introduction of temporary copies and a new
locking technique. The Violet System, which contains an
implementation of this proposal, and some performance
ooasiderstions are discussed in Section 5. The final
section is a brief conclusion. The appendix demonstrates
that our algorithm maintains serial consistency [1].

The ideas in this paper are illustrated in Mesa, a
programming language developed at the Xerox Palo Alto
Research Center [8]. Mesa is well suited for this task
because it contains integrated support for processes,
monitors, and condition variables [6]. To simplify this
presentation some nonessential details have been omitted
from the Mesa. examples.

L Related Work

Previous algorithms for maintaining replicated data
fall into two classes. Some insist that every object has a
primary site which assumes responsibility for update
wbitration. Distributed INGRES ([10] is such a system.
This technique is simple, but relatively inflexible. Others
d not employ distinguished sites for objects, and are
more complex than primary site algorithms. SDD-1 {9]
keeps all copies of an object up to date by sending
vpdates via a communication system that will buffer
messages over machine crashes. Thomas' proposal [11]
only requires that a majority of an object’s copies be
tpdated, and includes voting.

Although we share the notion of voting, it is difficult
v directly compare our algorithm with Thomas' because
the two provide different services. Notably:

- We guarantee serial consistency for queries (read-
only transactions), while Thomas' algorithm does
not.

OCKET

- We do not insist that a majority of an object’s copies
be updated.

- Thomas' algorithm does not employ weighted
voters, which limits its flexibility.

- Thomas' algorithm is more complex because it
addresses consistency issues as well as replication
issues. We have separated the two, resulting in an
algorithm that is easier to reason about and to
implement.

= Our structure allows for the inclusion of temporary
copies.

3. The Basic Algorithm

3.1 Eunvironment

The concepts necessary for the implementation of our
algorithm are modeled below as a stable file system. In
Section 3.3 we build our algorithm for replicated data
assuming the existence of such a system.

Our exposition uses two kinds of objects, files and
containers. Files are arrays of bytes, addressed by read
and write operations as described below. Containers are
storage repositories for files; they are intended to
represent storage devices such as disk drives. These
objects, and others introduced later in the paper, have
unique names. No two objects will ever be assigned the
same name, even if they are on different machines. We
will not concern ourselves further with how programs
acquire names, but will assume that the names of
containers and files of interest are at hand.

A file is logically an array of bytes that can be
,created, deleted, read, and written.

Fie.Create: PROCEDURE {container: Container.ID]
RETURNS [file: rae.ID|;
Fie.Delete: PROCEDURE [file: File.ID};

File.Read: PROCEDURE {file: File.ID, startByte, count: INTEGER,
buffer: POINTER];

File.Write: PROCEDURE ((ile; File.ID, stantByte, count: INTEGER,
buffer: POINTER];

To keep the discussion simple, we assume that file
system primitives operate on remote and local files alike.
This can be accomplished by encoding a file's location or
container in its unique identifier, or by maintaining
location hints for remote files. These details will not be
considered further.

Transactiuns are used to define the scope of
concurrency control and failure recovery. A transaction is
a group of related file operations bracketed by a begin
transaction call and a commit transaction cail

Transaction.Begin: PROCEDURE;
Traasaction.Commil: PROCEDURE;

A transaction hides concurrency by making it appear
to its file operations that the is no other activity in the

L A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

©
L

CKET
M

A R

system, a property known as serial consistency [1}. A
transaction hides undesirable events that can be recovered
from, such as a detected disk read error, or a server crash.
A transaction aiso guarantees that either all of its write
operations are performed, or none of them are.
Furthermore, once a transaction has committed, its effects
must be resilient to hardware failures, such as a server
crash. Every process has a single current transaction.
Thus, for an application program to use two transactions it
must create at least two processes. A forked process can
join its parent’s transaction by calling:

Treasactios.JoinParentsTransaction: PROCEDURE;

A file may be unavailable if the server it resides on is
down, or if there is a communication failure. If a read
operation is directed to a file that is unavailable, the
corresponding File.Read call will never return. Muitiple
processes are used by our algorithm to allow it to proceed
in this case. OQutstanding uncompleted reads, because
they never occurred, do not affect the ability of a
transaction to commit. The transaction system only
guarantees serial consistency for reads that have actually
completed when the transaction is committed. Likewise,
if a write operation is directed to a file that is unavailable,
the corresponding File.Write call will never return.
However, a transaction that attempts to commit with
unfinished writes will remain uncommitted until all of its
writes complete.

It is possible that a user will want to abort a
transaction in progress. A transaction abort, which can be
initiated by a user as shown below, will discard all of a
transaction’s writes, and terminate the transaction.

Trassaction.Abort: PROCEDURK;

It is also possible that the file system will
spontaneously abort a transaction because of a server
crash, communication failure, or lock conflict.

This concludes our model set of primitive objects and
operations. The model abstracts a confederation of
cooperating computers into a structure that has uniform
naming and a distributed transactional file system. As we
shall see in following sections, the abstractions introduced
here make the replication algorithm straightforward to
explain. Of course we believe that the model that we
have described is realizable and practical; in fact, the ideas

necessary for an implementation have received a great

deal of attention. Gray [4] provides a nice discussion of
two phase commit protocols, locking, and synchronization
primitives. Lampson and Sturgis [S, 7] describe an
implemented system that has all of the properties our
model requires.

3.2 Interface

Our aigorithm uses the facilities described in Section
3.1 1o provide an abstraction called a file suite. This is a
file that is realized by a collection of copies, which we call
representaiives because of the democratic way in which
update decisions are reached. When a file suite is created,

182

a description of its configuration must be supplied, which
includes 7, w, the number of representatives, the
containers where they should be stored. and the number
of votes each should be accord:d.

Configuration: TYPE = RECORD {
r: INTEGER,
w: INTEGER.
¥: ARRAY OF RECORD {coutainer: Contsiner.]1D, votes: INTEGER}|:

File.CreateSuite: PROCEDURE [configuration: Configuration]

RETURNS [suite: FilelD};

File.CreateSuite stores a suite's configuration in stable
storage. The structures stored would depend on the
algorithm's implementation, but Figure 1 shows one
possible alternative. A suite is cataioged by directory
entries, preferably more than one in case one of them is
unavailable. Each representative has a prefix that
identifies all the other representatives in the suite and
their voting strength.

Once created, a file suite can be treated like an
ordinary file. The File.Rcad, File.\Write, and File.Delete
operations specified in Section 3.1 can be used to
manipulate the abstract array of bytes represented by a
file suite. Like file operations, all file suite operations are
part of some transaction. A file suite appears to be an

- ordinary file in almost every respect.

Differences arise because a file suite can have
performance and reliability characteristics that are
impossible for a file. It is possible to tailor the reliability
and performance of a file suite by manipulating its voting
configuration. A high performance suite results by
heavily weighting high performance representatives, and a
very reliable suite results by heavily weighting reliable
representatives. A file suite can also be made very reliable
by having many equally weighted representatives. A
completely decentralized structure results from equally
weighting representatives, and a completely centralized
scheme results from assigning of all of the votes to one
representative. Thus the algorithm fails into both of the
classes described in Section 2.

Once the general reliability and performance of a
suite is established by its voting configuration, the relative
reliability and performance of Read and Write can be
controlled by adjusting r and w. As w decreases, the
reliability and performance of writes increases. As ¢
decreases, the reliability and performance of reads
increases. The choice of r and w will depend on an
application’s read to write ratio, the cost of reading and
writing, and the desired reliability and performance.

The following examples suggest the diverse mix of
properties that can be created by appropriately setting »
and w. In the table below we assume that the probability
that a representative is unavailable is 0l.

Example 1 is configured for a file with a high read to
write ratio in a single server, multiple user environment
Replication is used to enhance the performance of the
system, not the reliability. There is one server on a iocal
network that can be accessed in 75 milliseconds. Two
users have chosen to make copies on their personal disks

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

by creating weak representatives, or representatives with
no votes (see Section 4.1 for a complete discussion of
weak representatives). This allows them to access the
copy on their local disk, resulting in lower latency and less
tralfic to the shared server.

Example 2 is configured for a file with a modeme
read to write ratio that is primarily accessed from one
local network. The server on the local network is assigned
two votes, with the two servers on remote networks
assigned one vote apiece. Reads can be satisfied from the
local server, and writes must access the local server and
one remote server. The system will continue to operate in
read-only mode if the local server fails. Users could
create additional weak representatives for lower read
latency.

Example 3 is configured for a file vmh a very high
read to write ratio, such as a system directory, in a three
server environment. ‘Users can read from any server, and
the probability that the file will be unavailable is very
small. Updates must be applied to all copies. Once again,
users could creaté additional weak representatives on their
local machines for lower read latency.

Examplel Examplel Example)

Latency (msec)

Representative 1 75 75 75

Representative 2 63 100 750

Representative 3 65 750 750
Voting Configuration (11.0.0> <Zil.l> <1il.1>

r

w 1 3 3
Read

Latency (msec) 65 ' 75

Blocking Prubability 10X102 20x104 10x10
Write

Latency (msec) 15 100 750

Blocking Probability 10x102 10x102 30x10°2

3.3 The Algorithm

We present the basic algorithm in prose and
fragments of Mesa code. The prose is meant be a
complete explanation, with the Mesa code provided so the
reader can check his understanding of the ideas. All the
Mesa procedures shown below are part of a single
monitor called FileSuite. There is a separate instance of
FileSuite for each transaction accessing a given suite.
ENTRY procedures manipulate shared data, and thus lock
the monitor. Careful use of public non-entry procedures
has been made so the monitor is never locked while input
or output is in progress, allowing FileSuite to process
simultaneous requests.

DOCKET

_ ARM

FileSuite: MONITOR [suiteName: File ID] = DEGIN
VersionNumber: TYPE = {unknown, 1, 2,3,4, ... }
Set: TYPE = ARRAY OF BOOLEAN;

SuiteEntry: TYPE = RECORD |
name: FilelD,
version: VersionNumber,
voles: INTEGER);

suite: ARRAY OF SuiteEntry;
currentVersionNumber: VersionNumber:

firstResponded: BOOLEAN: = true when first represensetive has
responded

r. INTEGER: - ber of votes required for @ read ¢
w: INTEGER: -- sumber of vores required for @ write quorum

When FileSuite is instantiated, the number of
representatives, their names, their version numbers, their
voting strengths, 7, and w must be copied from some
representative’s prefix into the data structure shown
above. This information must be obtained with the same
transaction that is later used to access the file suite, in
order to guarantee that it accurately reflects the suite’s
configuration. Additional information, such as the speed
of a representative, has been omitted from a SuiteEntry to
make the basic algorithm easier to understand.

To read from a file suite, a read quorutn must be
gathered to ensure that a current representative is
included. After a file suite is first accessed, collecting a
quorum never encounters any delays. The operation of
the collector which gathers a quorum is described in detail

. below. From the quorum, any current representative can

actually be read. 1deally, one would like to read from the
representative that will respond fastest

Resd: noczouuls {fle: FueID, firstByte, count: INTEGER, buffer:
i =
~ select best represemtative
quorum: Set ~ CollectReadQuorum(];
best: INTEGER »
SelectFastestCurrentRepresentative{quorum];

"“Wume firstByte, count, buffer];

To write to a file suite, a write quorum is assembled: all of
the representatives in the quorum must be current so
updates are not applied to obsolete representatives Al of
the writes to the quorum are done in parallel. The first
write of a transaction increments the version numbers of
its write quorum. Thus, all subsequent writes will be
directed to the same quorum, because it will be the only
one that is current. Determining which write is the first
one must done under the protection of the monitor, and is .
not shown in the Mesa code. With the procedure below,
the result of issuing two concurrent writes that update the
same portion of a file is undefined.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A R

Write: PROCEDURE [file: FileID, firstByte, count: INTEGER, bulfer:

POINTER] =

SEGIN

= select write quorem
qQuorum: SaOColle:theQwumﬂ
i, count: INTEGER + (:
process: ARRAY OF PROCESS: st

= send requens 10 olf members of quorvm, walt for reaponses
Fonimu..ma'm(3]

IF quomm(i] THEN
: BEGIN
count = count + 1;
nt] » PORK
RepresentativeWritefi, firstByte, count, buffer};
END:
ENDLOOP:
FOR :’ga [1..count)
JOIN processii);
ENDLOOP:
END:
RepresentativeWrite: PROCEDURE (i, firstByte, count: INTEGER, bulTer:
POINTER] =
BEGIN of oue parent o
[- [) franaaction
"Tmm .JoinParentsT' mmctkonll
UpdateVenimNmn:ﬁll
- write dosg on inform perent process
mWruq' suitelil.name, firstiyte, count, bufTer];

It is possible that a representative will become
unavailabie while a file suite is in use, perhaps due to a
server crash. A simple solution to this problem, not
shown in the procedures above, is to abort the current
transaction if Read or Write take more than a specified
length of time. This will restart the suite, as described
Quorum sizes are the minimum number of votes that
must be collected for read and write operations to
proceed. It is possible to increase the performance of a
file suite by armificially expanding & quorum with
additional representatives. Once agsin, to reduce
complexity, the procedures shown above do not use this
approsch.

When a file suite is first accessed, version number
inquiries are sent to representatives. The information that
resuits is used as the basis for future collector decisions.
To determine the correct value of a file suite’s current
version number a read quorum must be established before
the file suite can entertain requests. All representatives
might not contain the current voting rules, but the
algorithm will stabilize with the correct rules before a read
quorum is established, as shown in Section 4.6. If a
tepresentative is unreachable its version number read will
never return. This does not prohibit a user's transaction
from committing, as described in Section 3.1

CKET
M

Initiatelnquiries: PROCEDURE =
BEGIN
i: INTEGER:
« find out the siote of represencatives
FOR i IN[1.LENGTH(suite]}
Do
Detach(Fol.x Inquiryfif];

BY mrl'mﬂnurai voring rviles
zNDS] = CollectRead(];

Inquiry: PROCEDURE [i: INTEGER] =
BEGIN

« wg are acting on behalf of our parent
Transacvon. JoinParentsTransaction[);
- find out the seane of @ represensative
NewRepresentative{R eadPrefiz Informationfi]);
END:

ReadPrefixinformation: PROCEDURE (i: INTEGER] RETURNS {i, version,
tP, wP: INTEGER. v: ARRAY OF INTEGER] =
BEGIN
< read version number, r. w, and array of voting strengths from
the prefix of represeniative i >

NewRepresentative: ENTRY PROCEDURE [i., version, rP, wP: INTEGER. v:
ARRAY OF INTEGER] =
BEGIN
J: INTEGER;
« wpdate shared dose end notlfy
suitefi).versionNumber + version:
o« ([1his is new information, updste suite
IF version > currentVersionNuniber THEN
BECIN
current VersionNumber « version;
r~1P; wewh;
FOR j IN [1.LENGTH[suite]]
po
suite{jj.votes * v{j};
ENDLOOP:
END:
fintResponded ~ TRUE:

BROADCAST CrowdLarger;
END;

The collector is used by cvery file suite opcration to
gather a quorum of representatives. Normally the
collector selects what it considers to be the quorum that
will respond the fastcst, and returns immediatcly to its
caller. Occasionally one of two problems will arisc. First,
it is possible that a read quorum of the suite's
representatives have not reported their version numbers,
In this case the coilector can only wait for one of them to
report in. The second putential problem is that a read
quorum have reported their version numbers, but there is
not a current write quorum. This can only occur if some
representatives have not reported their version numbers, -
In this case if r < w the collector will initiate a background
process to copy the contents of the suite into one or the
obsolete represcntatives that has reported in. It is always
legal to copy the current contents of the file suite to an
obsolete representative. Note that the copy process will
be reading from the suite, in effect a recursive cail, but
there will be enough votes for this read-only operation to
proceed. To minimize lock conflicts the background
process should be run in a separate transaction. The
background process signifies its compietion by breaking
the transaction of its parent

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

