
  Exhibit 1016  Page 1

Weighted Voting for Replicated Data 
Da,·id K. Gifford 

Stanford University and Xerox Palo Alto Research Center 

In a new al&orithm ror maintaining replicated data. 
e'el1 copy or a nplicated file Is usigned some number or 
'otes. E'ery. transaction collects a nad quorum orr 'otes 
to nad a me. and a write quorum or Ill 'otes to write a file, 
such that r +Ill Is greater tban the total number or 'otes 
assigned to the file. n1s ensures tbat there is a non•null 
intersection between ettry read quorum and etery write 
quoruaa. Version numbers make it possible to determine 
which copies an curnnt. The nliabUitJ and perrormance 
cbaracteristics or a npUcated file can be controlled br 
appropriatelr choosing r, w, aad the file's 'oting 
configuration. The algorithm guarantees serial 
consistenq, admits temporary copies in a natural war br 
the introduction or copies with no 'otes. and bas been 
implemented in tile context or an application srstem caned 
Violet. 

Ker Words and Phrues: weighted 'otlna. replicated 
data. quorum. file srstem. file suite. npresentatite. weak 
npresentati'e. transaction. lockina:, computer network 

CR Categories: 4.3. 4.35, 4..13, 3.81 

The wort reponed bere wa supported in pan by the Xet01 
Corporation. and by the Fullie and John Hertz Foundation. 
Author's present lddress: Xet01 Palo Alto Research Center, 3333 
Coyote HDl Road. Palo Alto. Calit"onlla 94304. 

Permission to copy without fee all or pan of this material is 
aranted provided that the copies an not made or distributed 
for dinct commercialadvantaae. the ACM copyriaht notice 
and the title of the publication and its date appear. and notice 
is aiven that copyina is by permission of the Association for 
Computina Machinery. To copy otherwise, or to republish. 
requires a fc:e and( or specific permission. 

• 1979 ACM 0-89791~·5(79/ 1200/0150 S00.75 

150 

1. Introduction 

The requirements of distributed computer systems 
are stimulating interest in keeping copies of the same 
information at different nodes in a computer network. 
Replication of data allows information to be located close 
to its point of use. either by statically locating cories in 
high use ueas. or by dynamically creating temporary 
copies as dictated by demand. Replication of data· also 
increases the availability of data. by allowing many nodes 
to service requests for the same information in parallel. 
and by masking panial system failures. Thus. in some 
cues.. the cost of maintaining copies is offset by the 
performance. communication cost. and reliability benefits 
that replicated data affords. 

We present a new algorithm for the maintenance of 
replicated files. The algorithm can be briefly 
clwac:terized by the following Jescription: 

• Every copy of a replicated tile is assigned some 
number of votes. 

• Every transaction collects a read quorum of r votes 
to read a file, and a write quorum of w votes to 
write: a file. such that r+ w is greater than the total 
number of votes assigned to the file. 

• This ensures that there is a non-null intersection 
between every read quorum and every write 
quorum. There is always a subset of the 
representatives of a file whose votes total to w that 
are current 

• Thus. any read quorum that is gathered is 
guaranteed to bav• a current copy. 

• Version numbers make it possible to determine 
which copies are current 

The algorithm has a number of desirable propenies: 

• It continues to operate correctly with inaccessible 
copies. 

                                              SYMANTEC
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


  Exhibit 1016  Page 2

- It consists of a small amount of extra machinery that 
runs on top of a transactional me system. Although 
"voting" occurs IS will become evident later in the 
paper. no complicated message based coordination 
mechanisms are needed. 

- It provides serial consistency. In other words. it 
appears to each transaction that it alone is running. 
The most cum:at version or data is always provided 
to a user. 

- By manipulatina r, w, and the voting structure·of a 
replicated me, a system administrator can alter the 
file's perfoi'IDUlCC and reliability c:haracteristic:s. 

- All of the extra copies of a file that are created, 
including temporary copies on users' loc:al disks. can 
be incorporated into our framework. 

The remainder of the paper is orpnized as five 
sections. Section 2 describes related work, and how the 
algorithm differs from previous solutions. The algorithm's 
mvironment, interface, and basic structure are introduced 
ia Section 3. Refinements are offered in Section 4, 
iacluding the introduction of temporary copies and a new 
locking technique. The Violet System, which oontains an 
implementation of this proposal, and some performance 
IDIISiderations are discussed in Section S. The final 
section is a brief CDDclusion. The appendix demonstrates 
lbat our algorithm maintains serial oonsistency (1~ 

The ideas in this paper are illustrated in Mesa. a 
rqramming lanaua&e developed at the Xerox Palo Alto 
Research Center (8). Mesa is well suited for this tat 
because it contains integrated support for processes, 
IIIOilitors, and condition variables (6). To simplify this 
presentation some nonessential details bave been omitted 
from the Mesa examples. 

~ Related Work 

Previous algorithms for maintaining replicated data 
&II into two classes. Some insist that every object has a 
primary site which assumes responsibility for update 
arbitration. Distributed INORES (10) is such a system. 
This technique is simple, but relatively inflexible. Others 
lkt not employ distin11Jished sites for objeciS, and are 
IIIOI'e complex than primary site algorithms. SDD-1 (9) 
tecps all copies or an object up to date by sending 
updates via a communication system that will buffer 
aasces over machine cruhes. Thomas' proposal (11) 
an~· requires that a majority or an object's copies be 
apdated, and includes voting. 

Although we share the notion of voting, it is difl"lcult 
., directly compare our algorithm with Thomas' because 
die two provide different services. Notably: 

· We guarantee serial oonsistency for queries (read· 
only transactions), while Thomas' algorithm does 
not. 

151 

- We do not insist that a majority of an object's copies 
be updated. 

- Thomas' algorithm does not employ weighted 
voters. which limits its flexibility. 

- Thomas' algorithm is more complex because it 
addresses consistency i~es IS well as replication 
issues. We have separated the two, resulting in an 
algorithm that is easier to reason about and to 
implement 

Our structure allows for the inclusion of temporary 
oopies. 

3. The Basic Alcorlthm 

3.1 Emironment 
The concepts necessary for the implementation or our 

algorithm are modeled below IS a stable jilt systtm. In 
Section 3.3 we build our algorithm for replicated data 
assuming the existence of such a system. 

Our exposition uses two kinds of objects, flits and 
containtn. Files are arrays of bytes, addressed by read 
and write operations as described below.' Containers are 
storage repositories for files: they are intended to 
represent storage devices such as disk drives. These 
objects, and others introduced later in the paper, have 
unique names. No two objects will ever be assigned the 
same name, even if they are on different machines. We 
will not ooncem ourselves further with how programs 
acquire names. but will assume that the names or 
CDDtainers and rues of interest are at hand. 

A file is logically an array of bytes that can be 
, created. deleted, read. and written. 
Plt.Crute: Plon:DUIIE fcoataiaer: CHI....,JDI 

u:ruaNS lRie: fltJDI; 
Plt.Delete: PIOCIDUaE(nte: r•JDI; 
ne.Rad: I'IIOCEOtlal (file: ri&ID, startB)'te., COVIIC IHTIGEJl, 

llllffer: POUfTIII)i 

fill. Write: PIOCEDUIE (file: fiiiJD, startBJte., couaC INlECU, 
Wfer: POINDilJ; 

To keep the discussion simple, we assume that file 
system primitives operate on remote and local fil~ alike. 
This can be accomplished by encoding a file's location or 
CDDtainer in its unique identifier, or by maintaining 
location hints for remote files. These details will not be 
oonsidered further. 

Transac:-j..~n~ are used to define the scope of 
ooncurrency oontrol and failure recovery. A transaction is 
a group of related file operations bracketed by a begin 
transac:tion call and a CDDtmit transaction call. 
T-....aechl: PIOCEDCJIIZ: 

T-.... eo...nic PIOCEDUU; 

A tranmction hides concurrency by making it appear 
to its file operations that thl is no other activity in the 

                                              SYMANTEC
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


  Exhibit 1016  Page 3

system, a property known as serial consistency (1~ A 
transaction hides undesirable events that can be recovered 
from, such as a detected disk read error, or a server cra~h. 
A transaction also guarantees that either all of its write 
operations are performed, or none of them are. 
Furthermore, once a transaction has committed, its effects 
must be resilient to hardware failures, such as a server 
crash. Every process has a single current transaction. 
Thus, for an application program to use two transactions it 
must create at least two processes. A forked process can 
join its parent's transaction by calling: 

T---.loiaPanatsTnasaction: raocmuu:; 

A file may be unavailable if the server it resides on is 
down, or if there is a communication failure. If a read 
operation is directed to a file that is unavailable, the 
corresponding File.Read call will never return. Multiple 
processes are used by our algorithm to allow it to proceed 
in this case. Outstanding uncompleted reads, because 
they never occurred, do not affect the ability of a 
transaction to commit The transaction system only 
guarantees serial consistency for reads that have actually 
completed when the transaction is committed. Ukewise. 
if a write operation is directed to a file that is unavailable. 
the corresponding File.Write call will never return. 
However, a transaction that attempts to commit with 
unfinished writes will remain uncommitted until all of its 
writes complete. 

It is possible that a user will want to abort a 
transaction in progress. A transaction abort. which can be 
initiated by a user as shown below, will discard all of a 
transaction's writes, and terminate the transaction. 
T.-....AMrt PaOCIDUH; 

It is also possible that the file system will 
spontaneously abort a transaction because of a server 
crash, communication failure, or lock conftict. 

This concludes our model set of primitive objects and 
operations. The: model abstracts a confederation or 
coorcrating computers into a structure that has uniform 
naming and a distributed transactional file system. As we 
shall see in following sections, the abstrac:tions introduced 
here make the replication algorithm straightforward to 
explain. Of course we believe that the model that we 
have described is realizable and pr&l.-tical; in fact. the ideas 
necessary for an implementation have received a great 
deal of attention. Gray (4) provides a nice discussion of 
two phase commit protocols. locking, and synchronization 
primitives. Lampson and Sturgis (S, 7) describe an 
implemented system that has all of the properties our 
model requires. 

3.1 Interrace 
Our algorithm uses the facilities described in Section 

3.1 to provide an abstraction called a ji/e suite. This is a 
file that is realized by a collection of copies, which we call 
representatives because of the democratic way in which 
update decisions are reached. When a file suite is created, 

152 

a description of its configuration must be supplied, which 
includes r. w, the number of represent.'ltives, the 
containers where they should be stored. and the number 
or votes each should be accord.:d. 
Configuration: TYPE • RECORD ( 

r: INTEGER. 
w: ll'ITECER. 
r. ARRAl' OF RECORD (cnulaincr: COIII•i-JD. \Otes: INTECERJI; 

l'iii.CrcatcSuitc: PROC"EDl'RE lconrtCur:~tion: ConlicunationJ 
RPURNS (suite: FIIIJDJ; 

Filc.CreateSuite stores a suite"s configuration in stlble 
storage. The structurt:l; stored would depend on the 
algorithm's implementation, but Figure 1 shows one 
possible alternative. A suite is cataloged by directory 
entries, preferably more than one in case one of them is 
unavailable. Each representative has a prefix that 
identifies all the other representatives in the suite and 
their voting strength. 

Once created. a file suite can be treated like an 
ordinary file. The File.Rcad. File. Write, and File.Dclete 
operations specified in Section 3.1 can be used to 
manipulate the abstract array of bytes represented by a 
file suite. Uke file operations, all file suite operations are 
part of some transaction. A file suite appc:ars to be an 

· ordinary file: in almost every respect. 
Differences arise because a file suite can have 

performance and reliability characteristics that are 
imp<mible for a file. It is possible: to tailor the relinbility 
and performance of a file suite by manipulating its voting 
configuration. A high performance suite results by 
heavily weighting high performance representatives. and a 
very reliable suite results by heavily weighting reliable 
represc:Dtatives. A file suite can also be made very reliable 
by having many equally weighted representati,es. A 
completely decentralized structure results from equally 
weighting representatives, and a completely centralized 
scheme results from assigning of all of the votes to one 
representative. Thus the algorithm falls into both or the 
classes described in Section 2. 

Once the general reliability and performance of a 
suite is established by its voting configuration. the relative 
reliability and performance of Read and Write can be 
controlled by adjusting r and w. As w decreases, the 
reliability and performance of writes increases. As r 
decreases, the reliability and performance of reads 
increases. The choice of r and "' will depend on an 
application's read to write ratio. the cost of reading and 
writing, and the desired reliability and performance. 

The following examples suuest the diverse mix of 
properties that can be created by appropriately setting r 

and w. In the table below we assume that the probability 
that a representative is unavailable is .01. · 

Example 1 is configured for a file with a high read to 
write ratio in a single server. multiple user environment 
Replication is used to enhance the performance of the 
system, not the reliability. There is one server on a local 
network that can be accessed in 75 milliseconds. Two 
users have chosen to make copies on their personal disks 

                                              SYMANTEC
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


  Exhibit 1016  Page 4

by creating weak representatives. or representatives with 
no votes (see Section 4.1 for a oomplete discUssion of 
weak representatives). This allows them to access the 
COf'Y on their local disk, resulting in lower latency and less 
tramc to the shared server. 

Example 2 is oonligured for a lile with a moderate 
rc:ad to write: ratio tbat is primarily accessed from one 
local netWork. The server on the local network is assigned 
two votes. with the two servm on remote networks 
assigned one vote apiece. Reads can be satisfied from the 
local server, and writes must access the kx:al server and 
one remote server. The system will oontinue to operate in 
read-only mode if the local server fails. Users could 
create additional weak representatives for lower read 
latency. 

Example 3 is oonfigured for a me With a very high 
read to write ratio, such u a system directory, in a three 
server environment ·Users can read from any server, and 
the probability that the file will be unavailable is very 
small. Update5 must be applied to all copies. Once apin. 
users could create additional weak representatives on their 
local machines for lower read lateDcy. 

l.atencJ (IIIIIC) 
,..,,.1 f•rp!el fi'Epi!J 

RepreRDtalive1 75 75 75 
Repl'ellllt8dvel 65 100 750 
RepNICII&IIiYeJ 65 750 750 

Vodna Caaftagndaa <1.0.0> <2.1.1> <1.1.1> , 1 2 1 
w 1 J J 

Rlld 
LltencJ (IIIIIC) 65 75 75 
8loctlna Prubabillty ux 1o·l 2.0X10"" l.OX10-6 

Wrile 

I..ICeacJ (IIIIK) 75 100 750 
Bloctina Prababtlit7 1.0X 1o·l u.x 1o·2 1.ox 1cr2 

3.3 Tile Alprit._ 
We present the basic algorithm in proee and 

f'tagments of Mesa CXJde. The prose is meant be a 
oomplete explanation. with the Mesa code provided so the 
reader can check his understandin& of the ideas. AD the 
Mesa procedures shown below are part or a sinsle 
monitor called FileSuite. There is a separate instance of 
FileSaite for each transaction accessing a Jiven suite. 
ENTRY procedures manipulate shared data, and thus lock 
the monitOr. Careful usc of public non-entry procedures 
has been made so the monitnr is never locked while input 
or outpUt is in proaress. allowing FileSuite to process 
liimultaneous requests. 

153 

FUeSuite: MONITOil(suiteName: F"lle.ID) = DEOJN 

VenionNumber: TYPE • {untnown,l. 2. 3, 4,-} 

Set: TYPE • AllllAYOFIIOOl.EAN: 

SultcEntry: TYPE • IU!COilD ( 
DIIM: File.ID, 
version: VminnNumber, 
¥ales: IHIEOEilJ; 

Illite: AllllA Y OF SuiteEDtry; 

c:uneatVeniallNumber: VenionNumber: 

tlnlRcspoDdecl: IIOOUAM: - ,_ wlwll/1111 ..... MiM,., ,...,., 
r: IHftOIIl: - ...... .,_ ...--Jbr.,....,_ 
W:INTIGD: _ _....,_,.,,_Jbr•-...-

When FUeSuite is instantiated, the number of 
representatives. their names. their version numbers, their 
voting strengths, '· and w must be oopied from some 
representative's prefix into the data structure shown 
above. This information must be obtained with the same 
transaction that is later used ·to access the me suite, in 
order to guarantee that it occurately reflects the suite's 
oonfiguration. Additional information. such u the speed 
of a representative, has been omitted from a SuiteEntry to 
mate the biSic algorithm easier to understand. 

To read from a file suite, a read quorum must be 
gathered to ensure that a current representative is 
included. After a file suite is first accessed, oollccting a 
quorum never encounters any delays. The operation or 
the collector which gathers a quorum is described in detail 
below. From the quorum, any current representative can 
actually be read. Ideally, one would like to read from the 
representative that wm respond fastest. 

ReM: PJtOCEDUilE (ftle: 1'11&10, ftrslBJte, couat: JNTEOEll. buffer: 
POIHTD)• 

IEGIN _....,..., ....... .. 
quonnn: Set - CollectR.adQuanun(): 
'-l: IJ111'10D • 

SelectFIIttltCurreatRepresenlatiwe(quorumJ: 

---...-~=:r=e. FIII.R · best finlBJte. coua&. buffer): 
IND: 

To write to a .file suite, a write quorum is assembled: all of 
the representatives in the quorum must be current so 
updates are not applied to obsolete represcntative!t .lJI of 
the writes to the quorum are done in parallel. The first 
write of a transac:tion increments the version numbers of 
its write quorum. Thus. all subsequent writes will be 
directed to tbe same quorum, because it will be the only 
one that is current. Determining which write is the first 
one must done under the protection of the monitor, and is 
not shown in the Mesa code. With the procedure below, 
the result of issuin1 two concurrent writes that update the 
same portion of a me is undefined. 

                                              SYMANTECf 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


  Exhibit 1016  Page 5

Write: PROC!DUU(ftle: Fl1e.ID, ftntByte, COUDC lN'nGEl. buffer. 
POINtD.). 

1!0114 
_...,.,.~ 

quorum: Set • CoUectWrtteQuorum(J; 
i. cauat: IJIITIOD • 0: 
procas: AUA Y OP l'llOCISS: 

-.-.......... ~11/~-... ,., ....... 
FOa I IN (l..LBNOTH(IUileU 

DO 
IP q\IONIII(IJ THIN 

IIE011f 
COUll& ., COUftt + 1; 
pmcea(couatJ .. f'OilK 

R.,_....liveWrt&e(l. ftntByte, couat. bufl'er); 
!NO: 

INDLOOP: 
POa i tN (L.couatl 

DO 
lOIN pnlelll(l); 
ENDLOOf: 

Re,resentatl,eWrite: PltOCIDUII(i. ftntDyte. count: INTEOI!Il. bufl'er: 
JIOINTU)• 

IIEOIM ___ ...., ... Niw(/11/-~}tllrlllr----
T....-..loinParentsl'ranUclion(): 
UpdateVenionNumber(IJ: --..... ~.,........,._,,... 
FilL Wrile(lllite(i).Dame. ftnlByte, COUDI. bulfttl: 

DID; 

It is possible tbat a representative will become 
unavailable whUe a file suite is iD use. perhaps due to a 
server cruh. A simple solution to this problem, not 
shown in the procedures above, is to abort the current 
transaction if Rad or Write take more thaD a specified 
length of time. This will restart the suite, u delcribed 
bdow. ' . 

Quorum sizes are the mtnlnfllm number of votes that 
must be collected for read and write operations to 
proceed. It is possible to increase the performance of a 
file suite by anificialJy apandma a quorum with 
additional representatives. Once apin, ·to reduce 
complexity, the procedures shown above do DOt use this 
appi'OICh. 

When a file suite is fli'St accessed, version number 
inquiries are sent to representatives. The information that 
results is used a the basis ror fUture collector dec:isions. 
To determine tbe correct ·value of a me suite's current 
version number a read quorum must be established before 
the tile suite can entertain requests. AD representatives 
might not contain the current votin& rules, but the 
alaorithm will stabilize with the correct rules before a read 
quorum is established, u shown in Section 4.6. If a 
representative is unreachable its version number read will 
never return. This does not prohibit a user's transaction 
from committina. u described in Section 3.1. 

154 

laitlatelaquiries: l'llOCEDUU = 
1£011'1 . 
i:tHriOD: 
- jfiW ""' ,,., ,.,, ,, rqrat~~fllliWI 

FOa i IN (l..uNOTH(suitcl) 
DO 
Detath(FOilK lnquiry(iU; 
ENDLOOP: .. __ ,.,~----·rvl• 

( J .. CollectRead(]; 
!ND: 

laquirr: PKOCIDUU(i: UC11!GD) • 
IIEOIM - __ _..,.,. Nlw(/11/"r,.,., 

,._JoinP:areatsTransa:tion(): -jfiW""',., -II/ • ..,...,._ 
NewRepraentative(RcadPrcfta laformatioa(iD; 

END: 

RudPreRlllafarmatlon: l'tlQCEDUaE (1: Jlf"I'EOElt) arru..m (i. version, 
rP, wP: INTIOIIl. v: Aaii.A Y OF IMTEOD) • 

IIOIN 
< rwu/wnioot nullllm. r. ~ andtlrrayo{YOtinl strenJtlls{rom 

tile prefix o{rqf'IIRflttlli .. i > 

NewRepresetltlthe: !Nn.Y PJt.OCIDUaE (1. version. rP, wP: INTEG Ill. v: 
ADA Y OF tN'nGB) • 

IEOIM 
j: ltfTSG!It; -.,.,. ,_ .. -~ 

suitcfl).venionNumber .. venioft: 

-"''* --~- """'""'" IF version > currentVeJSioaNumbcf ntEN 
IEOtM 
cum:ntVcnionNumber .. version; 
r .. rP: w .. wP; 
FOaj IN (l..L!NGTH(sutteU 

DO 
suitc{j). votes .. v[j); 
ENDLOOP: 

END: 
llntResponded .. nUE: 
IIOADCAST Clowdl.arpr; 

DID: 

The collector is usel.l by every file suite opcn1tion to 
pther a quorum of representotives. Normally the 
collector selects what it considers to be the quorum that 
will respond the fastest. and returns immediately to its 
caller. Occasionally one of two problems will arise. First. 
it is possible that a read quorum or the suite's 
representntivcs have not reported their version numbers. 
In this c:1se the collector can only wait for one of them to 
report in. The second I!Utcntiul problem is that a read 
quorum have reported their version numbers. but there is 
not a current write quorum. This can only occur if some 
representatives have not reported their version numbers. 
In this case if r < w the collector will initiate a background 
process to copy tne contents of the suite into one o;" the 
obsolete represcntotives thnt has reported in. lt is always 
lqal to copy the current. contents of the file suite to an 
obsolete representative. Note that the copy process will 
be reading from the suite, in erfect a rec::ut'Sive call, but 
there will be enough votes for this rend-only operntion to 
proceed. To minimize lock connicts the backtnound 
process should be run in a separate transaction. The 
background process signifies its completion by breaking 
the transaction of its pnrenL 

                                              SYMANTEC
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


