

 1

Policy-Directed Code Safety
by

David E. Evans

S.B. Massachusetts Institute of Technology (1994)
S.M. Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the
Massachusetts Institute of Technology

February 2000

©Massachusetts Institute of Technology 1999. All rights reserved.

Author………………………………………………………………………………………
David Evans

Department of Electrical Engineering and Computer Science
October 19, 1999

Certified by…………………………………………………………………………………
John V. Guttag

Professor, Computer Science
Thesis Supervisor

Accepted by…………………………………………………………………...……………
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

 Exhibit 1015 Page 1 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Exhibit 1015 Page 2 SYMANTECSYMANTEC Exhibit 1015 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 3

Policy-Directed Code Safety
by

David E. Evans

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

Executing code can be dangerous. This thesis describes a scheme for protecting the user by
constraining the behavior of an executing program. We introduce Naccio, a general architecture
for constraining the behavior of program executions. Naccio consists of languages for defining
safety policies in a platform-independent way and a system architecture for enforcing those
policies on executions by transforming programs. Prototype implementations of Naccio have
been built that enforce policies on JavaVM classes and Win32 executables.

Naccio addresses two weaknesses of current code safety systems. One problem is that current
systems cannot enforce policies with sufficient precision. For example, a system such as the Java
sandbox cannot enforce a policy that limits the rate at which data is sent over the network without
denying network use altogether since there are no safety checks associated with sending data.
The problem is more fundamental than simply the choices about which safety checks to provide.
The system designers were hamstrung into providing only a limited number of checks by a design
that incurs the cost of a safety check regardless of whether it matters to the policy in effect.
Because Naccio statically analyzes and compiles a policy, it can support safety checks associated
with any resource manipulation, yet the costs of a safety check are incurred only when the check
is relevant.

Another problem with current code safety systems is that policies are defined in ad hoc and
platform-specific ways. The author of a safety policy needs to know low-level details about a
particular platform and once a safety policy has been developed and tested it cannot easily be
transferred to a different platform. Naccio provides a platform-independent way of defining
safety policies in terms of abstract resources. Safety policies are described by writing code
fragments that account for and constrain resource manipulations. Resources are described using
abstract objects with operations that correspond to manipulations of the corresponding system
resource. A platform interface provides an operational specification of how system calls affect
resources. This enables safety policies to be described in a platform-independent way and
isolates most of the complexity of the system.

This thesis motivates and describes the design of Naccio, demonstrates how a large class of safety
policies can be defined, and evaluates results from our experience with the prototype
implementations.

Thesis Supervisor: John V. Guttag
Title: Professor, Computer Science

 Exhibit 1015 Page 3 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 4

Acknowledgements

John Guttag is that rare advisor who has the ability to direct you to see the big picture when you
are mired details and to get you to focus when you are distracted by irrelevancies. John has been
my mentor throughout my graduate career, and there is no doubt that I wouldn’t be finishing this
thesis this millennium without his guidance.

As my readers, John Chapin and Daniel Jackson were helpful from the early proposal stages until
the final revisions. Both clarified important technical issues, gave me ideas about how to
improve the presentation, and provided copious comments on drafts of this thesis.

Andrew Twyman designed and implemented Naccio/Win32. His experience building
Naccio/Win32 helped clarify and develop many of the ideas in this thesis, and his insights were a
significant contribution to this thesis.

During my time at MIT, I’ve at the good fortune to work with many interesting and creative
people. The MIT Laboratory for Computer Science and the Software Devices and Systems group
provided a pleasant and dynamic research environment. Much of what I learned as a grad student
was through spontaneous discussions with William Adjie-Winoto, John Ankcorn, Anna Chefter,
Dorothy Curtis, Stephen Garland, Angelika Leeb, Ulana Legedza, Li-wei Lehman, Victor
Luchangco, Andrew Myers, Anna Pogosyants, Bodhi Priyantha, Hariharan Rahul, Michael
Saginaw, Raymie Stata, Yang Meng Tan, Van Van, David Wetherall, and Charles Yang. This
work has also benefited from discussions with Úlfar Erlingsson and Fred Schneider from Cornell,
Raju Pandey from UC Davis, Dan Wallach from Rice University, Mike Reiter from Lucent Bell
Laboratories, and David Bantz from IBM Research.

Geoff Cohen wrote the JOIE toolkit used as Naccio/JavaVM’s transformation engine and made
its source code available to the research community. He provided quick answers to all my
questions about using and modifying JOIE.

Finally, I thank my parents for their constant encouragement and support. I couldn’t ask for two
better role models.

 Exhibit 1015 Page 4 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 5

Table of Contents

1 Introduction 9

1.1 Threats and Countermeasures 10

1.2 Background 13

1.3 Design Goals 14
1.3.1 Security 16
1.3.2 Versatility 16
1.3.3 Ease of Use 17
1.3.4 Ease of Implementation 17
1.3.5 Efficiency 18

1.4 Contributions 18

1.5 Overview of Thesis 19

2 Naccio Architecture 21

2.1 Overview 21

2.2 Policy Compiler 23

2.3 Program Transformer 24

2.4 Walkthrough Example 26

3 Defining Safety Policies 29

3.1 Resource Descriptions 29
3.1.1 Resource Operations 30
3.1.2 Resource Groups 32

3.2 Safety Properties 33
3.2.1 Adding State 33
3.2.2 Use Limits 34
3.2.3 Composing Properties 35

3.3 Standard Resource Library 36

3.4 Policy Expressiveness 39

4 Describing Platforms 41

4.1 Platform Interfaces 41

4.2 Java API Platform Interface 43
4.2.1 Platform Interface Level 43
4.2.2 File Classes 45
4.2.3 Network Classes 48
4.2.4 Extended Safety Policies 49

 Exhibit 1015 Page 5 SYMANTECf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

