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Abstract 

Executing code can be dangerous.  This thesis describes a scheme for protecting the user by 
constraining the behavior of an executing program.  We introduce Naccio, a general architecture 
for constraining the behavior of program executions.  Naccio consists of languages for defining 
safety policies in a platform-independent way and a system architecture for enforcing those 
policies on executions by transforming programs.  Prototype implementations of Naccio have 
been built that enforce policies on JavaVM classes and Win32 executables. 

Naccio addresses two weaknesses of current code safety systems.  One problem is that current 
systems cannot enforce policies with sufficient precision.  For example, a system such as the Java 
sandbox cannot enforce a policy that limits the rate at which data is sent over the network without 
denying network use altogether since there are no safety checks associated with sending data.  
The problem is more fundamental than simply the choices about which safety checks to provide.  
The system designers were hamstrung into providing only a limited number of checks by a design 
that incurs the cost of a safety check regardless of whether it matters to the policy in effect.  
Because Naccio statically analyzes and compiles a policy, it can support safety checks associated 
with any resource manipulation, yet the costs of a safety check are incurred only when the check 
is relevant. 

Another problem with current code safety systems is that policies are defined in ad hoc and 
platform-specific ways.  The author of a safety policy needs to know low-level details about a 
particular platform and once a safety policy has been developed and tested it cannot easily be 
transferred to a different platform.  Naccio provides a platform-independent way of defining 
safety policies in terms of abstract resources.  Safety policies are described by writing code 
fragments that account for and constrain resource manipulations.  Resources are described using 
abstract objects with operations that correspond to manipulations of the corresponding system 
resource.  A platform interface provides an operational specification of how system calls affect 
resources.  This enables safety policies to be described in a platform-independent way and 
isolates most of the complexity of the system.  

This thesis motivates and describes the design of Naccio, demonstrates how a large class of safety 
policies can be defined, and evaluates results from our experience with the prototype 
implementations. 
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