use the term selection termination to indicate the action that ends the entire menu
selection process. In non-hierarchic case, selection confirmation and selection

termination are combined in the same action.

There are many different types of input events that could be used to signal selection

confirmation:
* Pen-up/pen-down

e Item entry: Item entry means selection confirmation occurs the moment the pen

enters an item.

* Boundary crossing: Boundary crossing means that selection confirmation occurs
when the pen crosses the outside border of a menu item.

* Dwelling: Dwelling is the act of keeping the pen pressed and not moving for a
fraction of a second. A user can avoid issuing dwelling events by keeping the pen
moving. Press-and-wait is an example of a dwelling event. However, we
distinguish between these two events because press-and-wait signals the entry into
menu mode while dwelling signals selection confirmation.

* Events distinct from pen movement: This includes things like a button press or an

increase in pressure with a pressure sensing pen.
The type of selection confirmation event used affects other design features:

* mimicking drawing a mark: Since selection from a hierarchy of menu items involves
a series of selection confirmations and we wish to mimic that act of making a mark,
an event for selection confirmation that does not interrupt dragging must be used.

* reselection: In some cases, a user may desire to change the previewed selection.
For example, a user may accidentally move into the wrong item then want to move
to the correct item. We refer to this process as reselection. Most menu systems
support reselection.

* pairing command and parameters: The command compass allows dragging to
continue after the final selection confirmation. Dragging is then used to indicate

additional parameters to the menu command just selected.

48

Page 1501 of 1714

SAMSUNG EXHIBIT 1006 (Part 8 of 8)

Figure 2.5 shows which selection confirmation methods support these features. Item
entry is not feasible because it does not allow reselection. Boundary crossing,
dwelling and events distinct from pen movements support both reselection and
pairing. We discount “events distinct from pen movement” because it requires
additional input sensors like pen buttons or a pressure sensing pen.

Figure 2.5 indicates that boundary crossing and dwelling are the only applicable
choices. Boundary crossing is preferable because a visible boundary (i.e., the edge of
a menu) gives precise information as to when selection will occur. This information
is not visible if dwelling is used. Furthermore, waiting for a dwelling to occur slows
interaction. It is also possible to use pen release as a confirmation method if pairing
is not required and the item being selected is the last in a series of selections.

We implemented boundary crossing by having selection confirmation occur when
the user crossed over the outer edge of a menu item. Specifically, selection
previewing occurred as long as the user stayed within the circle of the menu.
Selection confirmation occurred when the user moved outside the circle. We
discovered, in practice, that boundary crossing created a problem. As a user moves
away from the center of the menu to confirm an item, the item’s sub-menu pops up
when the outer boundary is crossed. Unless a user moves very slowly, one is still
moving when the sub-menu appears. This results in one of the items in the sub-
menu being selected immediately. If the user is moving fast, the boundary point for
the sub-menu may have already been crossed and this results in an erroneous
selection confirmation. Even if the boundary point was not crossed, this
overshooting in the sub-menu causes reselection to be the first action to occur each
time a sub-menu is popped up. This means that users are not rehearsing the
movement of drawing a mark, but are rather making a movement which involves

reselection. This approach was therefore unacceptable.

49

Page 1502 of 1714

To solve this problem, we used a hybrid approach which combines boundary
crossing and dwelling. The approach works as follows. As long as the pointer is
within some distance from the center of menu, a dwelling event is ignored.
Selection preview and reselection are therefore possible without the threat of an
accidental dwelling occurring. Once the boundary is crossed, selection preview and
reselection are still possible but, if the user dwells, the selected item is confirmed
and its sub-menu appears. This allowed users to use coarser movements to make

selections without fear of overshooting and selecting from sub-menus.

Dwelling is also consistent with press-and-wait. In both these activities, keeping the
pen pressed against the display and holding it triggers the display of a menu.

A selection can also be confirmed without dwelling by releasing the pen at any point
in the hierarchy of a menu. This allows any item in the hierarchy to be selected and

also signals selection termination.
2.5.6. Mark ambiguities

The current design presents a dilemma if we consider using marks to make

selections from hierarchies of menus. The idea behind using marks for selection is

Selection confirmation event allows allows allows
mimicking reselection? pairing?
marking?
pen release no* yes no
item entry yes no yes
boundary crossing yes yes yes
dwelling yes yes yes
events distinct from pen yes yes yes
movement

(* yes in the non-hierarchic case)

(as long as the pointer is kept moving)

Figure 2.5: Different selection confirmation methods characteristics.

50

Page 1503 of 1714

that selection will be fast and fluid. This implies that we do not desire or expect a
user to “include” dwellings when making selections using marks. This would be
unnatural and slow the marking process.

A problem can occur if dwellings are not included when making marks. Consider a
selection from a hierarchy that is two levels deep. Suppose the user makes a straight
line mark. Does the mark correspond to a selection from the parent menu or the
child menu? Figure 2.6 shows the problem. If dwellings no longer occur we cannot
disambiguate the selection. If we base the interpretation on boundary crossing, then
the mark is unambiguous. Unfortunately, this makes the size of a mark affect its
interpretation (i.e., the marks cannot be scaled).

One solution to this problem is called no category selections. It is based on the
observation that items which have subitems are generally categories of commands,
not commands themselves, and selecting a category is not a meaningful operation.
For example, when using linear hierarchic menus on the Macintosh, selecting the
“font” category leads to a menu of commands that change the font. Selecting “font”
by itself (i.e., releasing the mouse button when “font” is selected) performs no
operation. Therefore we assume that there is no need to select a category. Thus, we
can consider any straight line to be a selection into a submenu (case (b) in Figure
2.6). Note that this permits selection of certain menu items that are embedded in
submenus by drawing a short straight mark. We recommend designers put the
most popular item in a category in this position to promote efficiency.

51

Page 1504 of 1714

P — ..ﬁ_\x
/ :
r '{; \'\L
! i
! i
; I
L i
1]
Y3 2/
r'fr
", ~
S

(@) (b)

Figure 2.6: Ambiguity in selecting from a hierarchy of menu items two levels deep
using a mark. Overlaid grayed menu show possible interpretations. In (a), the
interpretation is the selection of item 1. However, (b) is another interpretation
according to boundary crossing rules (the selection of item 1.1). Interpretation by
boundary crossing is sensitive to the size of marks.

No category selections breaks down when the depth of the hierarchy is greater than
two. Suppose a user makes a “*” mark as shown in Figure 2.7 (a). The start of the
mark and the change in direction within the mark indicate two points of menu
selection. However, what indicates selection from the third level of menu? Figure
2.7 shows this problem. Once again, boundary crossing can be applied to derive an
unambiguous set of menu selections but this results in unscalable marks.

There are several solutions to this problem which preserve scaling. The first
solution, referred to as the no-oping (from the phrase “no operation”), is to simply
not permit a series of menu selections that result in a straight line. One way of
doing this involves making the item in the child menu that “lines up” with the
selection angle of the parent a null operation. This ensures that the beginning of a
selection of a non-null item from a child menu is indicated by a change in angle.
Unfortunately, this “wastes” a useful sector in a menu.

52

Page 1505 of 1714

Figure 2.7: Possible interpretations of mark when selecting from hierarchies greater
that two levels deep. The straight line sections of the mark have no artifacts to indicate
whether the selection at that point is being made from the parent or from the child.

A second solution is axis-shifting. This involves rotating child menus such that no
item appears at the same angle as an item in the parent menu. Figure 2.8 shows an
example of this technique. Axis-shifting involves aligning the boundary between
two items in the child menu with the selection angle of the parent item. This ensures
that the beginning of a selection from child menu is indicated by a change in angle.

Axis-shifting avoids the wasted sectors that occur with no-oping.

This discussion has presented four solutions to hierarchic menu design which are
intended to produce an unambiguous vocabulary of marks. The four solutions are:
boundary crossing, no category selections, no-oping, and axis-shifting. The aspects
of the design that are affected by these solutions are: the ability to select any item
within the hierarchy, the ability to have mark interpretation independent of the size
of a mark, the ability to select leaf items with a single straight line, and the ability to
have all items in a menu active. These aspects may also vary relative to the depth of
the menu. Figure 2.9 summarizes this design space.

A solution can be chosen based on the demands of the menu. If menus are only one
or two levels deep and menu categories do not need to be selected, then no category
selections will work. Boundary crossing and axis-shifting are suitable when
hierarchies are more than two levels deep and category menu items need to be

53

Page 1506 of 1714

selected. Boundary crossing is also an acceptable solution if category items need to
be selected and mark scaling is not an issue.

Figure 2.8: Axis shifting rotates a child menu such that child menu items do not appear
on the same angle as the parent menu item. This results in a mark language where

selection confirmations are indicated by changes in angle. With this scheme marks can
be drawn at any size.

54

Page 1507 of 1714

Policy no depth | select any marks allows all items
limit? item? scalable? | “straight active?
lining”

boundary crossing Yes Yes No Yes Yes

no-oping Yes Yes Yes No No

no category No (2) No (except Yes Yes Yes

selections in1 deep
case)
axis-shifting Yes Yes Yes No Yes

Figure 2.9: Policies that avoid ambiguous interpretation of marking menu marks.

2.5.7. Display methods
There are several design options which concern how menus are displayed:

* Menu trail refers to leaving parent menus displayed as a user descends a hierarchy

of menu items.

* Menu overlap refers to displaying child menus over the top of parent menus.

These methods become important when backing up in a hierarchy of menus.
2.5.8. Backing-up the hierarchy

The ability to back-up in a hierarchy of menus is useful for browsing menu items
and correcting mistakes. Backing-up can be one of three types: back-up only to the
parent menu, back-up to any ancestor menu, back-up to any ancestor menu item.
Backing-up can be accomplished in several ways. Pointing to an item can trigger a
back-up to the item, or an explicit action can trigger a back-up (i.e., tapping the pen
triggers a back-up to the parent menu). A combination of these two methods can be
used (i.e., tapping on an item to back-up to it). Lifting the pen is already used to
indicate selection termination, so the back-up technique is restricted to pointing
while the pen is being dragged.

55

Page 1508 of 1714

Backing-up brings the roles of menu trail and menu overlap into play. Pointing to
the item in order to back-up to it requires that item be displayed on the screen.
Therefore a menu trail must be provided. However, child menu items may cover up
parent items making it impossible to point to “covered” items. The design must

ensure that parent items are not covered up.

Design requirements dictate that backing-up in marking menus operates like
backing-up in traditional drag-through hierarchical menus: to back-up to a parent
menu item, a user points to it; the system then closes the currently displayed child
menu and displays the child menu of the parent item. We can adopt this scheme for
marking menus but it reduces the advantage of radial menu selection. Figure 2.10
shows the problem that occurs. A selection from a child menu may result in
pointing to a parent menu item and this causes an unintended back-up. A prototype
implementation of marking menus revealed this to be a real problem. The problem
could be avoided if a user is “careful”, but this tends to slow users down.

-

/ .
%J

)

W/
%

Figure 2.10: A problem with the backing up by pointing to a parent item. Is the user
selecting item a.c or backing up to item b?

To solve this problem, we could restrict marking menus to operate like linear menus

where selection occurs only if the user is pointing inside a menu item. This has two

56

Page 1509 of 1714

major disadvantages. First, it selection sensitive to the length of strokes, and second,
it massively reduces item size from a sector of the entire screen to the small sector of

the menu.

The solution is to reduce the size of the back-up targets. This is done by restricting
the back-up targets to the center hole of the parent menus. This drastically reduces
the probability of accidentally pointing to a back-up target. Furthermore, we
constrain the user to dwell on a center before back-up takes place. This allows the
user to “pass through” centers without backup occurring. Figure 2.11 shows this
back-up scheme.

This approach has the restriction of only allowing back-up to parent menus.
Backing up to a parent menu and displaying another one of the child menus cannot
be combined in the same operation. Some hierarchic linear menus allow this.
However, this restriction permits fast and unconstrained selection when moving
forward in the hierarchy, while still allowing back-up.

This back-up scheme has several more advantages. First, one can back-up to any
parent menu, grandparent menu, etc. Second, menu overlap can occur just as long
as menu centers do not get covered. Finally, because backing-up actually returns
the cursor to parent menus, rather than redisplaying parent menu at the cursor
location, this reduces the chances of menus “walking off” the screen (this problem is
further discussed in Section 6.2.3).

57

Page 1510 of 1714

)

Figure 2.11: Backing-up in hierarchic marking menus. In (1) the user moves into
the center of a parent menu and dwells momentarily. In (2) the system senses the
dwelling and backs-up to the parent menu by removing the child of item a. Selection
may then continue from the parent.

2.5.9. Aborting selection

Most menu systems have a way of specifying a null selection. Generally this is
accomplished by selecting outside a menu item. As explained previously, marking
menus allow selection to occur outside the item to make selection easier. To
circumvent this problem, the center hole of a menu is used to indicate no selection.
Lifting the pen within the center hole results in the menu selection being aborted.

A mark may be also be aborted. This involves either lifting the pen before the mark

is complete or turning the mark into an uninterpretable scrawl while drawing it.
25.10. Graphic designs and layout

During everyday use of marking menus we observed some problems with a “pie”
graphical representation. First, as the number of items in the menu increases and
the length of labels increases, the size of the pie grows rapidly. This creates several
problems. First, having large areas of the screen display and undisplay is visually
annoying. Second, a large menu occludes too much of the screen. In many
situations, a menu associated with a graphical object must be popped up over the

58

Page 1511 of 1714

object. The problem is that displaying the menu completely hides the object. This
results in the context of the selection being lost. Third, large menus take time to
display and undisplay. In most systems, the image “underneath “ a menu is saved
before a menu is displayed, and restored when a menu is undisplayed. When a
menu is very large, these operations take considerable amounts of time because
large sections of memory are being copied to and from the display. Also, algorithms
for sizing and laying out labels within the pie of the menu can be quite complex.
This makes the implementation of menu layout procedures complex. Complex

computations may also delay the display of menus.

To solve these problems we designed an alternate graphic layout for marking menus
called “label”19. Figure 2.12 shows an example. This alternate design has several
advantages over a pie representation. First, it reduces the amount of screen that
changes when a marking menu is displayed and undisplayed, and therefore, it
reduces visual annoyance. Second, it occludes less of the screen than a pie
representation because only the menu center and labels are opaque. Thus more of
the context underneath a menu can be seen. This design also reduces the amount of
memory that must be copied to and from the display, and hence it reduces the

amount of time needed to display a menu.

Another issue of graphical layout is the problem of displaying menus near an edge
or corner of the screen. Pie menu systems deal with this issue by using a technique
called “cursor warping”. Unfortunately, cursor warping is not suitable for pen-
based systems. In Chapter 6, we further discuss this issue and describe an

alternative to cursor warping,.

Although not shown in Figure 2.12, marking menus have many standard features
found in traditional menus. For example, marking menus allow grayed-out and
checked items. Also, if an item has a submenu, a small circle appears to the right of
the label. The intention is that this circle represents the center hole of the submenu.
We also found it valuable to hide the labels of parent menus, thus reducing screen
clutter. The only portion of a parent menu that is displayed is the center hole (so a
user can point to it to back-up). We have also experimented with transparent menus

10 we acknowledge Mark Tapia for his assistance in designing and implementing the alternate graphical layout
for marking menus

59

Page 1512 of 1714

@ (b)

Figure 2.12: An alternate graphic representation for a radial menu “label”. Rather
than displaying “pie” shapes (a), only the labels and center are displayed (b). The
menu then occludes less of display and can be displayed faster.

and graying out parent menus but a full discussion of these experiments is beyond
the scope of this dissertation.

25.11. Summary of design

The previous sections described and discussed various design features and options
of marking menus. We now summarize the features and indicate which design
options we elected to use.

Marking menus use discrimination by angle. Selection previewing in menu mode is
supported by dragging the pen into an item, and the item being highlighted.
Selection confirmation is indicated by a combination of boundary crossing and
dwelling. Selection termination is indicated by pen up.

To avoid mark ambiguities, we recommend three possible strategies: no-oping, no
category selections and axis-shifting. If menus require only a few items, no-oping
may be a suitable solution. If menus are only two levels deep and category selection
is not required, no category selection is a suitable solution. If menus require many

60

Page 1513 of 1714

menu items, and are more than two levels deep, axis-shifting must be used. In

practice, we used no category selection in many situations.

Making a selection in menu mode leaves a menu trail but only the center of parent
menu is displayed. We found in practice this reduces the visual clutter the would be
caused by the display of inactive parent menu items. Menus are allowed to overlap,
but because only the center of parent menu is displayed, this generally does not

cause visual confusion.

In menu mode, selection can be aborted by terminating the selection while pointing
to the center hole of a menu. In mark mode, selection can be aborted by turning the

mark into a “scribble”.

If a user dwells while drawing a mark, the system indicates the menu items that
would be selected by the mark by displaying the menus “along” the mark. The
system then goes into menu mode. This process, called mark confirmation, can be
used to verify the items that are about to be selected by a mark or a portion of a

mark.

Marking menus can be displayed in either a “pie” representation or a “label”
representation. A “label” representation is suitable when there is a need to
minimize the amount of screen occluded by the display of the menu.

2.6. SUMMARY

The success of an interaction technique depends not only on its acceptance by users
but also on its acceptance by interface designers and implementors. An “industrial
strength” interaction technique must not only be effective for a user, but also have
the ability to co-exist with other interaction techniques, other paradigms, and
differing features of the software and hardware. Because of these demands, as in
many other interaction techniques, our motivation and design behind marking
menus is complex. What appears on the surface as a simple interaction technique is
actually based on many different motivations and has many design subtleties and
details.

In this chapter we defined marking menus and described the various motivations

for developing and evaluating them. These included providing marks for functions

which have no intuitive mark, supporting unfolding interface paradigms,
61

Page 1514 of 1714

simplifying mark recognition, maintaining compatibility with existing interfaces,
and supporting both novice and expert users. We are also motivated to study

marking menus as a way to evaluate the design principles they are based on.

We then outlined the issues involved in evaluating marking menus and proposed an
initial design. The major parameters to be evaluated concern the question of how
much functionality can be loaded on a marking menu. Essentially our research
focus is on establishing the limitations of marking menus so interface designers who
are utilizing marking menus can design accordingly. The remaining chapters
explore the limitations and characteristics of the design.

62

Page 1515 of 1714

Chapter 3: An empirical evaluation of
non-hierarchic marking menus

This chapter addresses basic questions about marking menu design variables: how
many items can marking menus contain; what kinds of input devices can be used in
conjunction with marking menus; how quickly can users learn the associations
between items and marks; how much is performance degraded by not using the
menu; and whether there is any advantage in using an ink-trail. This chapter
describes an experiment which addresses these questions. The approach is to pose
specific hypotheses about the relationship between important design variables and
performance, and then to test these hypotheses in the context of a controlled
experiment. The results of the experiment are then interpreted to provide answers

to the basic questions posed above.

In this experiment we limit our investigation to non-hierarchic marking menus. We
do this for several reasons. First, this experiment serves as a feasibility test of non-
hierarchic marking menus. If non-hierarchic marking menus prove feasible, then an
investigation of hierarchic marking menus is warranted. Second, we feel that the
characteristics of non-hierarchic marking menus must be understood before we can
begin to investigate hierarchic marking menus. Our findings on non-hierarchic
marking menus can then be used to refine our design and evaluation of hierarchic
marking menus. Third, this experiment addresses many factors. To include the
additional factor of hierarchic structuring would make the experiment too large and

impractical.

To date there is little research applicable to our investigation. Callahan, Hopkins,
Weiser, and Shneiderman (1988) investigated target seek time and error rates for 8-

item pie menus, but concentrated on comparing them to linear menus. In particular

63

Page 1516 of 1714

they were interested in what kind of information is best represented in pie menu

format. Section 2.3.1 described their results.

Our experiment focuses on selecting from marking menus using marks. To address
the questions posed at the start of this chapter, the experiment examines the effect
that the number of items in a menu, choice of input device, amount of practice, and

presence or absence of an ink-trail or menu, has on response time and error rate.

3.1. THE EXPERIMENT
3.1.1. Design

In this experiment, we varied the number of items per menu and input device for
three groups of subjects and asked them to select target items as quickly as possible
from a series of simple pie menus. One group selected target items from fully
visible or “exposed” menus (Exposed group). Since there is little cognitive load
involved in finding the target item from menus which are always present, we felt
that this group would reveal differences in articulation performance due to input

device and number of items in a menu.

Two other groups selected items from menus which were not visible (“hidden”
menus). In one group, the cursor left an ink-trail during selection (Marking group),
and in the other, it did not (Hidden group). The two hidden menu groups were
intended to uncover cognitive aspects of performance. Hiding the menus would
require the added cognitive load of either remembering the location of the target
item by remembering or mentally constructing the menu, or by remembering the
association between marks and the commands they invoke through repeated
practice. Comparing use of an ink-trail with no ink-trail was intended to reveal the
extent to which supporting the metaphor of marking and providing additional
visual feedback affects performance. The Exposed group provided a baseline to
measure the amount that performance degraded when selecting from hidden

menus.
3.1.2. Hypotheses

We formed the following specific hypotheses to address the questions posed at the
start of this chapter:

64

Page 1517 of 1714

How much is performance degraded by not using the menu?

Hypothesis 1. Exposed menus will yield faster response times and lower error rates
than the two hidden menu groups. However, performance for the two hidden
groups will be similar to the Exposed group when the number of items per menu is
small. When the number of items is large, there will be greater differences in
performance for hidden versus exposed menus. This prediction is based on the
assumption that the association between marks and items is acquired quickly when
there are very few items. As the number of menu items increases, the association
between marks and items takes longer to acquire, and mentally reconstructing
menus in order to infer the correct mark becomes more difficult.

How many items can marking menus contain?

Hypothesis 2. For exposed menus, response time and number of errors will
monotonically increase as the number of items per menu increases. This is because
we assume that performance on exposed menus is mainly limited by the ease of
articulation of menu selection, as opposed to ease of remembering or inferring the
menu layout. We know that performance time and errors monotonically increase as

target size decreases, all else being equal (Fitts, 1954).

Hypothesis 3. For hidden menus (Marking and Hidden groups), response time will
not solely be a function of number of items per menu. Instead, menu layouts that
are easily inferred or that are familiar will tend to facilitate the cognitive processes
involved. We predict that menus containing eight items can be more easily mentally
represented than those containing seven items, for example. Similarly, a menu
containing twelve items is familiar since it is similar to a clock face, and thus we

predict it is more easily mentally represented than a menu containing eleven items.
What kinds of input devices can be used in conjunction with marking menus?

Hypothesis 4. The stylus will outperform the mouse both in terms of response time
and errors. The mouse will outperform the trackball. This prediction is based on
previous work (Mackenzie, Sellen, & Buxton, 1991) comparing these devices in a
Fitts' law task (i.e., a task involving fast, repeated movement between two targets in

one dimension).

Hypothesis 5. Device differences will not interact with hidden or exposed menus,
or the presence or absence of marks. Differences in performance due to device will

65

Page 1518 of 1714

not depend on whether the menus are hidden or exposed, or whether or not marks
are used. The rationale for this is that we assume performance differences stemming
from different devices are mostly a function of articulation rather than cognition.
We also assume that the articulatory requirements of the task are relatively constant

across groups.
Is there any advantage in using an ink-trail?

Hypothesis 6. Users will make straighter strokes in the Marking group. We based
this prediction on the assumption that visual feedback is provided in the Marking
group and also that hidden menus support the “marking” metaphor as opposed to
the “menu selection” metaphor.

How quickly can users learn the associations between items and marks?

Hypothesis 7. Performance on hidden menus (Marking and Hidden groups) will
improve steadily across trials. Performance with exposed menus will remain fairly
constant across trials. This prediction is based on belief that articulation of selection
(or simply executing the response) will not dramatically increase with practice since
it is a very simple action. Performance on hidden menus, however, involves the
additional cognitive process of recalling the location of menu items. We believe this
process will be subject to more dramatic learning effects over time.

3.1.3. Method

Subjects. Thirty-six right-handed subjects were randomly assigned to one of three
groups (Exposed, Hidden, and Marking groups). All but one had considerable
experience using a mouse. Only one subject had experience using a trackball. None

of the subjects had experience with a stylus.

Equipment. The task was performed on a Macintosh IIX computer. The standard
Macintosh mouse was used and set to the smallest C:D ratio. The trackball used was
a Kensington TurboMouse, also set to the smallest C:D ratio. The stylus was a Wacom
tablet and pressure-sensitive stylus (an absolute device). The C:D ratio used was
approximately one-to-one.

Task. Subjects used each of three input devices to select target “slices” from a series
of pie menus as quickly and as accurately as possible. The pies contained either 4, 5,
7,8,11, or 12 slices. All pie menus contained numbered segments, always beginning

66

Page 1519 of 1714

with a “1” immediately adjacent and to the right of the top segment. The other slices
were labeled in clockwise order with the maximum number at the top (see Figure
3.1 (a)). The diameter of all pie menus was 6.5 cm., and Geneva 14 point bold font
was used to label the slices.

@)

(a) (b) (c)

Figure 3.1: Selecting item 5 from an eight-item pie menu (a) in the Exposed group,
(b) in the Hidden group, and (c) in the Marking group.

In designing this experiment, a great deal of time was spent discussing what kind of
items should be displayed in the pie menus. Menus in real computer applications
usually contain meaningful items, but the order in which they appear is not easily
inferred. The numbered menus we used, on the other hand, used ordered,
meaningless labels. We wanted to approximate the case of an expert user who is
familiar with the menu layout. We decided to reduce as much as possible the
learning time associated with memorizing the items. Our focus was on the
articulation of actions, and the cognitive processes involved in mentally
representing or mentally constructing menu layout. Since Callahan et al. (1988) have
shown that performance varies depending on the kinds of items represented, using
the same kind of items for all menus (numbered items) was an attempt to eliminate
this effect. Thus our comparisons between menus with different numbers of items
would be more accurate. We acknowledge that both the choice of menu items and
their mapping within a menu may have a significant effect on performance. These

factors are outside the scope of this investigation.

67

Page 1520 of 1714

In the Exposed menu group, the entire menu was presented on each trial (Figure 3.1
(@)). The target number corresponding to the slice to be selected was presented
when the subject located the cursor within the center circle of the pie menu and
either pressed down and held the mouse or trackball button, or pressed down and
maintained pressure on the stylus. The subject's task was then to maintain pressure
and move in the direction of the target slice. Menu slices would highlight as the
cursor moved over them, indicating to the subject a potential selection. A slice
would remain highlighted even if the cursor went outside the outer perimeter of the
pie. Releasing the button, or pressure, signaled to the system that the highlighted
slice was selected. After the selection was made, the menu would “gray out”
displaying the menu with the slice selected for a period of 1 second. If an incorrect
slice was selected, the Macintosh would beep on release. This marked the end of a
trial.

In the Hidden menu group, the task was essentially the same, except that during
selection, only the central circle of the pie menu would be visible (Figure 3.1 (b)).
After confirming the selection, subjects would receive the same grayed-out feedback
as in the Exposed group, indicating which response had been made, and whether or
not it had been correct. The Marking group was almost identical to the Hidden

group, except that the movement of the cursor with the button depressed left an ink-
trail (Figure 3.1 (c)) .

After each trial, subjects received a running score, presented in the lower right-hand
corner of the screen. A minimum of 10 points could be obtained for each correct
response, with more points scored as response time became shorter. However,
subjects were penalized 20 points for errors.1l At the end of each block of trials, each
subject's current performance was shown in relation to the best score obtained by
other subjects in the same conditions. The scoring criterion was the same for all

groups.

Design and Procedure. One third (twelve) of the subjects were randomly assigned to
the Exposed group, one third to the Hidden group, and one third to the Marking

11 This scoring scheme was arrived at by experimenting with different scoring schemes on pilot subjects. We
found that the choosen scheme emphasized both accuracy and speed. On average, subject scores were positive
and they found this encouraging and fair.

68

Page 1521 of 1714

group. Every subject used each of the three input devices (mouse, trackball and
stylus). Trials were blocked by device and order of device was counterbalanced.

For each device, all groups began by practicing on exposed menus for a total of six
trials for each of six different menus, containing either 4, 5, 7, 8, 11 or 12 items.
During practice, number of items per menu was blocked and presented in random
order. This practice period was intended to acquaint subjects with the feel of the
particular input device they were about to use. It also provided an opportunity for
subjects to familiarize themselves with the layout of the menus before beginning the
timed trials.

Subjects in the Exposed group then moved on to the timed trials, while subjects in
the Hidden and Marking groups received a further set of practice trials designed to
acquaint them with the “feel” of hidden menus. For this practice session, menus
containing both three and six items were used (six trials each) since 3-item or 6-item
menus were never used in the actual timed trials. This was a deliberate attempt to
equalize exposure to the menus of interest in the three groups.

For the timed portion of the experiment, trials were again blocked by number of
items (4, 5, 7, 8, 11, or 12). The order in which the number of items appeared was
randomly permuted for each subject. Each subject began a particular block by first
studying the menu layout for 6 seconds. They then received a total of 40 trials for
each different menu with a short break at intervals of ten trials. Targets were drawn
randomly from a uniform distribution with replacement, with the added constraint

that no target could be repeated on consecutive trials.

In summary, each subject performed 40 trials on each of the six menus (menus
consisting of 4, 5, 7, 8, 11, and 12 items) and using all three devices, resulting in a
total of 720 scores per subject. Each group consisted of twelve subjects which
resulted in 8640 scores per group. The three different groups provided a total of
25920 scores for the experiment.

3.2. RESULTS AND DISCUSSION
The main dependent variables of interest were response time and number of errors.

Response time was defined as the total time from presentation of the target number

69

Page 1522 of 1714

to confirmation of the selection for error-free trials. An error was defined as an

incorrect selection. The means for each group are shown in Figure 3.2.
3.2.1. Effects due to number of items per menu

As expected, increasing the number of items per menu significantly increased both
response time (F(5,55) = 388.4, p < .001) and errors (F(5,55) = 382.8, p < .001).12 There
were overall performance differences among the groups in terms of errors (F(2,22) =
21.97, p < .001) but not in terms of response time. However, these main effects are
not particularly meaningful because differences among groups depend on the
number of items per menu (see Figure 3.3). That is, there was a significant
interaction between group and number of items per menu both in terms of response
time (F(10,110) = 3.5, p < .001) and errors (F(10,110) = 64.7, p < .001).

These results address the first three hypotheses:

(1) As predicted by Hypothesis 1, mean response time was consistently lower in the
Exposed group versus the Hidden and Marking groups as the number of items
increased. This is supported by the significant interaction between group and
number of items per menu (reported above), and by specific comparison tests. No
difference was found between the two hidden groups and the Exposed group for
menus containing four items. However, for menus containing five items, response
times were significantly slower for hidden menus compared to Exposed (F(1,110) =
6.5, p <.001). The two hidden groups were no different from each other in terms of
errors (post hoc comparison of error means, Tukey HSD, a = .05), but both produced
significantly more errors than the Exposed menu group.

(2) Our second hypothesis predicted that in the Exposed group, response time and
errors would monotonically increase as a function of number of items per menu. In
the case of errors, this relationship seems to hold. However, this must be qualified
by the fact that errors were infrequent and thus floor effects may obscure the true
shape of the function.

12 Throughout this disseration we use the F-statistic to evaluate the equality of population means. See
Appendix A for an explanation.

70

Page 1523 of 1714

Group

Mean RT in sec. (SD)

Mean Number of

Mean Percentage

Errors in 40 Trials Errors

(SD)
Exposed 0.98 (0.23) 0.64 (1.00) 1.6%
Hidden 1.10 (0.31) 3.27 (3.57) 8.2%
Marking 1.10 (0.31) 3.76 (3.67) 9.4%

Figure 3.2: Mean response time and number of errors for each experimental group.

Figure 3.3: Response time and average number of errors (of a total of 40 trials) as a
function of number of items per menu and group.

Response time also increased monotonically except for menus containing twelve
items. Specific comparisons at the .05 level confirm significant increases in response
time from four to five items per menu (F(1,55) = 16.8, p < .001), and from seven to
eight items per menu (F(1,55) = 7.4, p < .01), but no differences between eleven and
twelve items per menu. One possibility is that familiarity with the “clock face”
layout may have reduced the time for visual search, thereby reducing overall
response time. Another possibility is that this could be a case of diminishing effects.
Adding an extra item to a menu containing four items represents a 20% increase in

71

Page 1524 of 1714

the number of items, whereas, adding an extra menu item to one which contains

eleven represents only an 8% increase in number of items.

(3) The pattern of results predicted by Hypothesis 3 is also supported: when menus
were hidden, some kinds of menus were easier to evoke or reconstruct from
memory than others. This was not purely a function of number of items per menu.
The characteristic curve that emerges (Figure 3.3) shows that performance in general
does tend to degrade as the number of items per menu increases, but that certain
numbers of items do not follow this pattern (i.e., eight and twelve items).

This hypothesis is also confirmed by a series of specific comparisons showing no
differences in either hidden menu group for seven versus eight items per menu.
Further, performance on menus of twelve items was faster than on menus of eleven
items for the Hidden group (F(1,55) = 11.25, p <.001) and was more accurate than on
menus of eleven items in both groups (Hidden, F(1,55) = 50.96, p < .001; Marking
F(1,55) = 13.51, p < .001). By contrast, for both groups, tests show menus of four
items yielded faster response times than menus of five items (Hidden, F(1,55) = 4.05,
p <.05; Marking F(1,55) = 9.00, p < .05).

The results show that menus containing twelve items in particular may have
facilitated performance. Many subjects mentioned that the metaphor of a clock face
helped them to select the target item because it could be brought readily to mind.
Thus it seems reasonable to suggest that it is the cognitive bottleneck, or the
difficulty of evoking the mapping between target and action, that limits
performance.

3.2.2. Device effects

As predicted by Hypothesis 4, subjects performed better with a stylus and a mouse
than they did with a trackball. Response time (F(2,22) = 9.64, p < .001) and errors
(F(2,22) = 11.29, p < .001) were both affected by the type of input device subjects
used. Pairwise comparisons (Tukey HSD test, a = .05) showed the trackball was
both significantly slower and gave rise to more errors than the stylus or mouse.
However, contrary to our expectations, there was no difference in mean response

time or errors between the stylus and mouse.

Initial analyses supported Hypothesis 5 where we predicted that the effect of input
device would not depend on whether or not the menus were exposed, or whether or

72

Page 1525 of 1714

not there was an ink-trail. Input device did not interact with group, either in terms
of response time or errors.!> However, on closer examination, a more interesting

result emerged.

We discovered that in the Marking group, the stylus was significantly faster than
both the trackball and mouse with no difference between the trackball and mouse
(Figure 3.4). In the Exposed group, the mouse and stylus were faster than the
trackball, with no difference between the mouse and stylus. These discoveries were
based on separate analyses of variance for each of the three groups on the response
time data. There were significant differences among devices in the Exposed (F(2,22)
= 10.44, p < .001) and Marking groups (F(2,22) = 8.32, p < .002), but not in the
Hidden group. Tukey tests revealed the superiority of the stylus in the Marking
group and the inferiority of the trackball in the Exposed group. No significant
interactions between device and number of items were found in any of the three
groups. Given these results we cautiously reject Hypothesis 5.

4
o
=
w
[
o
-
[}
Ee]
£
=]
=z

Figure 3.4: Response time and average number of errors (of a total of 40 trials) as a
function of device and group.

There may be two reasons for the superiority of the stylus when marks are added to
selection from hidden menus. First, it is often difficult to perceive when enough

13 There were also no significant interactions between number of items per menu and device, nor significant
three-way interactions (group by number of items by device).

73

Page 1526 of 1714

pressure is being applied to the stylus to make a selection. Thus, providing visual
feedback when this state is maintained may be important to realize the full potential
of this device. Second, providing an ink-trail is consistent with the metaphor of
marking with a pen, which may improve performance. Alternatively, failing to
support the pen metaphor by not providing the ink trial (Hidden group) may violate
users’ expectations and thus negatively affect performance.

Separate analyses of the error data within each group further supported the
inferiority of the trackball. The trackball was found to be the source of significant
device differences in the Exposed (F(2,22) = 9.92, p < .001)!4 and Marking groups
(F(2,22) = 9.92, p < .001). Pairwise comparisons in the Exposed and Marking groups
showed differences between the trackball and the other two devices, and no
difference between mouse and stylus.

The finding that the trackball was no more slower or error prone than the mouse
and stylus in the Hidden group may be due to the fact that in both the Exposed and
Marking groups, visual feedback emphasized the difficulty of articulating the
actions of the trackball thereby causing performance to be worse. In the Exposed
case, sectors were highlighted as they were selected and it is possible that the
trackball caused a great deal of reselection. In the Marking case, users reported that
the ink-trail was disturbing in conjunction with the trackball because the paths
looked erratic and inaccurate.

3.2.3. Mark analysis

We were interested in seeing if subjects used straight marks when making
selections. This was important to discover because, if menu selection tended to be
done in some manner other than a straight mark, we could not claim that users
rehearse this physical movement when selecting from menus. Thus we would not
expect as much transfer of skill between making menu selections and making marks.
Another reason we were interested in seeing if subjects used straight marks was
related to using marking menus in applications that recognize other marks beside
those used in menu selection. Unlike conventional menu selection which is based

14 Both a significant device by menu size interaction (F(10,110) = 2.47, p < .011) and floor effects should make us
cautious in interpreting the main effect of device in the Exposed group. However, the fact that the trackball
produces consistently more errors on average across menu size, supports the claim that the trackball is
outperformed by stylus and mouse.

74

Page 1527 of 1714

only on the last location of the cursor, mark recognition systems take the entire
shape of the stroke into account. For example, suppose the system also recognizes
the symbol “C”. A very crooked mark intended to make a selection from a hidden
menu might be interpreted as an “C”. The success of recognition depends to some
extent on knowing the shapes of the strokes that users tend to create. To address
these issues we recorded and displayed the path data for users' individual marks.
Figure 3.5 shows a typical example.

Stylus Mouse Trackball

Figure 3.5: The marks a subject used in selecting from a hidden twelve-item menu.

Subjects made approximately straight marks. No alternate strategies such as
starting at the top item and then moving to the correct item were observed.
However, there was evidence of reselection from time to time, where subjects would
begin a straight mark and then change direction in order to select something
different.

Surprisingly, we observed reselection even in the Hidden and Marking groups. This
was especially unexpected in the Marking group since we felt the idea of drawing a
mark does not naturally suggest the possibility of reselection. Hence, we reject
Hypothesis 6. It was clear though, that training the subjects in the hidden groups on
exposed menus first made this option apparent. Clearly many of the subjects in the
Marking group were not thinking of the task as making marks per se, but of making
selections from menus that they had to imagine. This brings into question our a
priori assumption that the Marking group was using a marking metaphor, while the
Hidden group was using a menu selection metaphor. It may explain why very few
behavioral differences were found between the two groups.

75

Page 1528 of 1714

Reselection in the hidden groups most likely occurred when subjects began a
selection in error but detected and corrected the error before confirming the
selection. This was even observed in the “easy” four-slice menu, which supports the
assumption that many of these reselections are due to detected mental slips as
opposed to problems in articulation. There was also evidence of “fine tuning” in the
hidden cases, where subjects first moved directly to an approximate area of the
screen, and then appeared to adjust between two adjacent sectors.

Strokes produced with the trackball appeared more jagged and less controlled than
those made with the mouse or stylus. This is consistent with the statistical results
showing that the trackball tends to be slower and less accurate than the stylus or
mouse. For four-item menus, most subjects made straighter marks with the stylus
than the mouse. The presence or absence of an ink-trail did not appear to make any
discernible difference to stroke shape.

3.24. Learning effects

The forty trials for each different menu were divided into eight consecutive blocks.
Response time and mean errors were calculated for each five-trial block in order to
look more closely at learning effects. Overall, there was a small but steady decrease
in response time over trials which was statistically significant (F(7,77) = 5.79, p <
.001). Error rate also showed signs of improving with number of trials (F(7,77) =
10.52, p <.001).

We have claimed that the major factor limiting performance on exposed menus is
the physical accuracy required for the action of selection. The results support this
claim. In the case of hidden menus, results support the claim that the factor limiting
performance is cognitive. In other words, the time it takes to remember or infer the
correct mental representation becomes the overriding factor determining
performance. Thus, performance in the Exposed group can serve as a baseline
measure that users should approach as they become expert.

Hypothesis 7 states that the cognitive component is the component most affected by
learning, as opposed to the articulatory component. Thus, we expect a steady
improvement in performance in the two hidden groups, as opposed to fairly
constant performance in the Exposed group over time.

76

Page 1529 of 1714

Figure 3.6: Group effects in terms of response time and number of errors in five
trial intervals.

As is shown in Figure 3.6, response time in the hidden groups appears to improve
across trials while the curve for the Exposed group is fairly flat. Errors also remain
relatively constant for the Exposed group over trials, while decreasing on average
for the two hidden groups. Support for Hypothesis 7 is found in a significant group
by trial interaction for response time (F(14,154) = 2.90, p < .001) and errors (F(14,154)
=3.15, p <.001).

As a final point, it follows from the above reasoning that we would expect no
significant interaction of input device by trial, since type of input device would
presumably have the greatest impact on the articulation as opposed to the cognitive
component of performance. The fact that no significant interaction of device by trial
was found is consistent with expectation.

3.3. CONCLUSIONS

Relative to our seven hypotheses, the results and their implications for design can be

summarized as follows:

Hypothesis 1. As predicted, when menus have many items, hiding menus from

users both slows their performance and increases their error rate. As number of

items per menu increases, added to the problems of articulation is the difficulty of

successfully mentally reconstructing the menu layout or remembering the necessary
77

Page 1530 of 1714

strokes to make menu selections. However, when the number of items is small (only
four), there is little or no performance difference, even early in practice.

Design Implications. For ordered sets of commands, users should be as fast and
error-free in making marks as in selecting from a visible pie menu of up to four
slices. If the commands are not ordered, then it may take more time to acquire the
skill. However, command semantics can be exploited. For example, “Open” and
“Close” can be positioned opposite to each other, as can “Cut” and Paste”. This may
speed the learning process and allow users to mark ahead faster. In addition, the
most frequently used commands form a very small set, and thus we can be
optimistic that these can be invoked successfully with marking menus.

Hypothesis 2 and 3. For exposed menus, the results showed performance declines
steadily as the number of items increases. This is probably due to two factors: (1)
the increasing reaction time to visually search and choose among alternatives, and
(2), the increasing difficulty of articulating the action as targets become smaller.

These results agree with other results concerning the effect of the number of items
on performance. Perlman conducted an experiment in which subjects made
selections from exposed linear menus (Perlman, 1984). Menus containing 5, 10, 15
and 20 items were used. The menus contained ordered numbers from 1 to 20.
Beside each item was a randomly chosen left or right arrow character. The task was
to find a target item in the menu and indicate it by pressing the corresponding left or
right arrow-key. It was found that the number of items in a menu had a linear effect
on the time it takes to find an item. These results agree with our results for exposed

menus.

Performance on hidden menus in this experiment was different, however. Instead
of a result showing monotonically increasing response times and error rates as a
function of number of items, even numbers of items (four, eight, or twelve)
appeared to facilitate performance. Not surprisingly perhaps, four-item menus
yielded significantly faster and more accurate performance than five-item menus.
However, performance on eight-item menus was no worse than performance on
menus with one less item. Subjects also reported that the eight-item menu was easy
to learn because they could easily mentally subdivide the pie and infer the position
of the target slice. Most dramatic was the finding that a twelve-item menu actually
yielded faster and more accurate performance than a menu containing only eleven

78

Page 1531 of 1714

items. We speculate that this difference may be enhanced by familiarity with circles

subdivided into twelve sectors, such as in clock faces.

Design Implications. When menus are hidden, overcoming the difficulty of learning
and using mental representations of menus can be facilitated by using layouts which
exploit known metaphors, or which are easily subdivided. Using an even number of
items or laying out items at the points of a compass or hour positions of clock can be
used to counteract the increased difficulty of having many items in a menu. The
ease with which subjects learned and performed with the twelve-item menu is
testimony to the strength of a good metaphor. One could imagine a user
remembering a command location or mark by mapping it to an hour/hand position:
“undo is at three o’clock”.

Hypothesis 4 and 5. The stylus and mouse outperformed the trackball both in terms
of response time and errors. Analysis of the paths showed that paths made with the
trackball were more jagged and less controlled than those made with the mouse or
stylus. The stylus and mouse yielded similar performance, with the exception that
the stylus was significantly faster than the mouse when an ink-trail was present.

Design Implications. The results speak strongly against using a trackball for
marking menus. Further, subjects’ comments suggest that the combination of
trackball and ink trial was especially bad. One subject complained of being
disturbed by the messy ink-trail left when using a trackball. It seems that the visual
feedback provided by the ink-trail only served to emphasize the inadequacy of the
paths made by this device.

The performance similarity of the mouse and stylus suggests that either may be
appropriate devices for this kind of mechanism. Two cautionary notes should be
made, however. First, it is likely that the ink-trail added important feedback to tell
the user when the appropriate amount of pressure was being applied to the stylus.
This suggests that another kind of stylus (i.e. one with audio or tactile feedback to
indicate a “button-click”) might have fared better against the mouse in all groups. It
also reveals a design deficiency of the stylus that could easily be overcome. Second,
while the mouse and stylus yielded similar performance, observation of people
using the mouse to make marks other than straight strokes suggests that the mouse
may be inferior to the stylus in other situations.

79

Page 1532 of 1714

Hypothesis 6. Subjects made essentially straight strokes. However, there was
evidence of reselection (where subjects would begin a straight stroke and then
change stroke direction in order to select something different) even in the hidden
groups. This casts doubt on our initial assumption that subjects in the Marking
group would begin to think of the task as making marks, instead of making menu
selections. Instead, it suggests that they thought of the task in terms of making
selections from the exposed menus they were trained on, which now happened to be

hidden. Marks themselves do not afford reselection, whereas pie menus do.

The fact that the marking metaphor was not supported as strongly as we
hypothesized may account for the fact that no major differences were found between
the Hidden and Marking groups. For example, the presence or absence of an ink-
trail did not appear to make any discernible difference to stroke shape.

Design Implications. Since users tended to make straight strokes we are optimistic
that users are rehearsing the physical movement required to make marks as they
perform menu selection. This bodes well for learning. There was some evidence of
non-straight strokes which appeared to be reselection in the Marking group but it
was not overwhelming. Perhaps in the context of a mark recognition system a user
will learn that reselection results in a mark that cannot be recognized and that
reselection is not possible when using a mark.

Hypothesis 7. Performance across trials was uniform for exposed menus but
underwent steady and significant improvement across trials for hidden menus (both
groups). We argue that the performance limiting factor for exposed menus is the
difficulty of articulating selection actions, whereas in the hidden groups the limiting
factor is the time it takes to evoke or construct the correct mental representation.
Articulation skills were acquired fairly rapidly and reached stable performance.
Thus performance in the Exposed group provides a baseline measure that users of

hidden menus approach.

Design Implications. The substantial improvement for hidden menus over only 40
trials suggests that if the menus contain meaningful and frequently used commands,
users will acquire the necessary skills quickly and easily. Both response time and
error rates can be expected to rapidly improve with time. The question of how much
practice is necessary for hidden menu performance to equal exposed menu
performance, and how that varies with number of items per menu is an issue for

80

Page 1533 of 1714

further research and analysis. Meanwhile, we can be confident that small numbers
of items will enable users to quickly begin marking ahead.

34. SUMMARY

This chapter investigated basic questions concerning design variables of marking
menus: how many items can marking menus contain; what kinds of input devices
can be used in conjunction with marking menus; how quickly do users learn the
associations between items and marks; how much is performance degraded by not
using the menu; is there any advantage in using an ink-trail. An experiment
addressed these questions by varying the number of items per menu and input
device for three groups of subjects, and asking them to select target items as quickly
as possible from a series of simple pie menus. One group selected from menus that
were visible at all times, another group selected from menus that were hidden, and
the final group selected from menus that were also hidden, but had the additional
visual feedback of a cursor ink-trail. The differences in group conditions were
intended to separate articulation and cognitive aspects. The experiment compared
selection times and error rates. In addition, learning effects were analyzed.

The results of the experiment indicate that non-hierarchic marking menus, or
specifically the action of using a mark to select from a menu, is a useful idea. Our
results indicate that: (1) four, eight and twelve items menus are suitable for marks;
(2) if that number of items is kept low (e.g., four, eight and twelve), users will be
able to use marks very early in practice; (3) higher numbers of items are possible but
require more practice; (4) for non-hierarchic menus, users will perform as well with
the mouse as they would with the stylus/tablet. Using a trackball, however, will be

slower and more error-prone than using a mouse or stylus/tablet.

In terms of using marking menus in an application, the results indicate that a
designer should attempt to use four, eight or twelve item menus. For example, if
seven commands are to be placed in a menu, the designer should use an eight-item
menu and leave one item blank or duplicate one of the more popular commands in
the extra item. Although this experiment did not address this issue, it may also be
also be advantageous to maintain consistent subdivisions for menu items. For
example, use four and eight item menus (items on 45 angles) but not twelve item
menus (items on 30 angles).

81

Page 1534 of 1714

The results are encouraging because there are many applications where menus
which have a small number of items could be effective. For example, Microsoft Word
has seven groups of function icons that appear in the “ribbon” and “ruler” display
area. These icons could be grouped into seven marking menus containing four or
less items. Each group of icons could be replaced by a single icon which when
pressed displays a four-item marking menu. The elimination of icons would allow
space to display more text, or other or larger function icons (larger icons make
pointing to them easier). The graphics editor in Microsoft Word already has tool
pallet icons that work this way but uses pop-up linear menus. The popular
Macintosh drawing program called Canvas also uses a similar scheme. Many of the

menus that pop up from tool pallets icons in Canvas have twelve or fewer items.

While there are many situations where menus with twelve items or less may be
sufficient, there are also many situations where menus contain more that twelve
items. For example, font menus, large color pallets and paragraph style menus
commonly contain more than twelve items. Chapter 5 shows that hierarchic
marking menus make it possible to use a mark to select from a large number of

items.

Given the results of this experiment, we can now apply them to the design of
hierarchic marking menus. We recommend that hierarchic marks contain only
menus with even numbers of items and the number of items be less than twelve.
Because the poor performance of the trackball in this experiment, it would not be
suitable for hierarchic marking menus. Also it would be worthwhile to see if the
mouse performs as well as the stylus on “zig-zag” marks. Chapter 5 applies these
design recommendations and evaluates hierarchic marking menus.

Despite the value of such controlled studies, there are a number of questions which
can only be answered by careful design and implementation of marking menus in
real applications. How long will it take for users to start using marks? How
intensely will users use marks? What are the issues involved in integrating such a
mechanism into a larger, more complex interface? Chapter 4 addresses these types
of questions by means of a case study of user behavior using a marking menu for a
real task.

82

Page 1535 of 1714

Chapter 4: A case study of
marking menus

The previous chapter has developed an empirical understanding of non-hierarchic
marking menus. From this understanding, guidelines for designing marking menus
and interfaces that use marking were generated. In this chapter we report on a
study which applies those guidelines to the design of marking menus in an
application and we evaluate user behavior while operating this application. The
application was designed to solve a real world task and was used in accomplishing
real work for a project not related to this thesis. The intention was to gain insight on
integrating marking menus with other interface components and to find out how

well marking menus perform in everyday practical work situations.

4.1. DESCRIPTION OF THE TEST APPLICATION

A conversation analysis/editor program, named ConEd, developed at University of
Toronto, was used as a test application for marking menus (Sellen, 1992). By
digitizing audio from a conversation among four people, data were collected
concerning who is speaking and when. The conversation analysis/editor program
is then used to display this data in a “piano roll” like representation. The program
runs on a Macintosh computer. Figure 4.1 shows a typical display of the data
window. The y-axis represents the four participants in the conversation, and the x-
axis represents time. A black rectangle indicates that a particular person is speaking
for a duration of time (this is referred to as an event). The window can be scrolled to
reveal different moments in the conversation. Besides displaying the data, the
application can be synchronized to a video recording of the conversation. As the

video plays, the application moves a horizontal bar across the window to indicate

83

Page 1536 of 1714

the current location in the conversation. If the bar moves past the right side of the

display, the application automatically scrolls to the next section of conversation.

Zoom: ®100.00, Threshold: 0.0333 sec start: 0:3:22:12 end: 0:17:52:23 events: 2704

jeff

brian

0:3:44:12 0:3:47:22 : : 0:3:54:12

Figure 4.1: The “piano roll” representation of speaker versus time in ConEd.

Data can be edited as well as viewed with this application. Such things as coughs
and extraneous noises need to be deleted. Other pieces of conversation, such as
laughter, must be tagged for later analysis. Very often events must be added or
extended because the automated speaker tracking system was not accurate enough.

Typically, a user sits in front of the Macintosh and video monitor, watching the
video and editing events in real-time. Most of the time, a user operated the video
transport with the left hand and the mouse with the right hand.

A marking menu triggers the six most frequently used commands, which consisted
of commands that coded and edited the blocks of speech. The amount of coding and
editing required was extremely high. Over 18 hours of operation, the two users

performed 5,237 selections.

42. HOW MARKING MENUS WERE USED

4.2.1. The design

84

Page 1537 of 1714

Figure 4.2 shows the marking menu used in ConEd. This menu can be popped up
by pressing-and-waiting with the mouse in the “piano roll” window. Alternatively,
a mark can be made to select the command. A user can issue six commands using

this menu: laugh, delete, add, fill-in, ignore, and extend.

E([=————— Data:fFl.b.trace EE%E
, Zoom: ®100.00, Threshold: 0.0333 sec start: 0:3:22:12 end: 0:17:52:23 events: 2704 E

stuart
| | J”L

0:3:47:22 0:3:51:2 0:3:54:12

|u'\uchi I |

0:3:37:22 0:3:41:2 0:3:44:12

Figure 4.2: The six most frequently used editing commands are placed in a marking
menu in ConEd.

Delete: The “delete” command deletes events. If the starting point of the delete
selection/mark is made over an event, then that event is deleted. If the starting point
is not over an event, then the events lying between the starting and ending points of
the selection/mark are deleted. See Figure 4.3.

85

Page 1538 of 1714

Deleting one event
m 2
Delecting a series of events

Figure 4.3: Events can be deleted one at time, by pointing to the event, or in a series
by drawing over a series events.

Add: "Add” allows new events to be added. The starting point of the add
selection/mark defines the beginning of a new event. The starting point of the
following add selection/mark defines the end point of the new event and causes it

to be displayed. If add is performed over an existing event, it is disregarded. See
Figure 4.4.

Adding an event

3) ‘

Figure 4.4: Events are added by specifying a starting point followed by and
endpoint.

Extend: “Extend” elongates an event. The starting point of the extend
selection/mark defines the length of the elongation. Either the start or the end of an
event can be extended. If the selection/mark is made between two events, the event
whose starting or ending point is closest to the starting point of the selection/mark

is elongated. If extend is started over an event, it is ignored. See Figure 4.5.

86

Page 1539 of 1714

Extending an event

h
1T T |

Figure 4.5: Events can be extended by pointing to the location of the extension.

Fill-in: “Fill-in” allows a gap of silence between two events to be filled. The two
events are replaced by one long event. The starting point of the selection/mark

indicates the gap to be filled. If Fill-in is ignored if started over an event. See Figure
4.6.

Filling in a gap

(1)
b

Figure 4.6: Gaps between events can be filled in by pointing to the gaps.

Ignore and Laugh: “Ignore” and “Laugh” allow events to be coded as special types.
For example, speaking events generated by laughter must be tagged so they can be
excluded from analysis of the conversation. Back-channel events (i.e., someone
saying “uh huh” or “yes” but not trying to interrupt while another person is talking)
must also be tagged. The starting point of the ignore or laugh selection/mark
defines the event being coded. Either command is disregarded if not started over an
event. See Figure 4.7 and 4.8.

87

Page 1540 of 1714

Marking an event to be ignored

1) (2)

Figure 4.7: An event can be marked to be ignored by pointing to it.

Marking an event as laughter

r-x

(1) @

Figure 4.8: An event can be marked as laughter by pointing to it.

4.2.2. Discussion of design
Menu item choice

ConEd has more commands than the six contained in the marking menu. There are
several reasons for placing this particular set of commands in a marking menu.
First, the experiment in Chapter 3 showed that even numbers of items, up to twelve,
enhance marking performance. Hence, six is within this range. Second, a
requirements analysis told us that these six commands are the most frequently used.
This implied several things. First, it would be advantageous if these commands
could be invoked quickly. Therefore, marks would be suitable for these commands
since marks can be issued very quickly. Second, these commands would be good
candidates for marking menus because using the commands frequently would help
a user memorize the associations between marks and commands. This, in turn,
would lead to users using the marks.

Spatial aspects

Use of end points: While the marks used in marking menus are very simple, other
features of a mark besides its angle can be used. The starting and ending points of a
mark are obvious candidates. Features of a mark have been used in a similar

manner by previous researchers (Coleman, 1969; Rhyne, 1987).

38

Page 1541 of 1714

A requirements analysis revealed that the most frequent operations would involve
selecting an event and applying an operation to it. Thus, marking menus were used
in an object oriented manner —the starting point of the selection/mark indicates the
object of the command. Note that this is not always the case. For example, the
extend command does not point to an event to be extended but to the location of the
extension. The particular event to be extended is inferred by the system. However,
we found that this inconsistency caused no problems for the user.

The combination of pointing and marking produces the feeling of directness one
gets when pointing and moving in objects in direct manipulation interfaces. When
using marks in ConEd, there is no sensation of explicitly making a selection before
applying an operation.

Use of horizontal/vertical dimension: Spatial commonalties between the
representation being edited and the direction of menu items can be used to
determine the assignment of directions to commands. For example, horizontal and
vertical aspects of the marks can be exploited. Specifically, the direction of a mark
means the objects along that direction can be selected using the mark. The delete
command is an example of this. Preliminary design testing indicated that deleting a
series of horizontal events was a very frequent operation. This meant putting the
delete command at a horizontal menu position would allow deletion of several
events in a row. This “trick” was found to be very useful.

Spatial commonalties can also be used to provide mnemonics to help recall the mark
associated with a command. The add and extend commands are examples of this.
Both these commands require a vertical time location value. A common way to
indicate location along the horizontal is by a vertical “tick”. This serves as a
mnemonic for the marks associated with these commands.

Temporal aspects

Time versus space pointing: There are many temporal aspects of a mark that can be
used. For example, the speed of drawing (i.e., fast or slow, fast at the start then slow
at the end) or the time when a drawing occurred can be used. The aspect we
exploited is time-based drawing. Specifically, the add command has two modes of
operation. The first mode has been described already —the starting location of the
mark is used to define the start or end of the event being added. However, if ConEd

is synchronized to the playback of a video tape of the conversation, the start or end

89

Page 1542 of 1714

point of an event is defined by the current playback location of the video, not by the
spatial position of the mark. This is analogous to indicating a point in time by
saying “... now” instead of pointing “here”. However, users did find that adding

events while the tape was playing was difficult.
Inverting semantics of menu items

ConEd’s marking menu permits a unique method for undoing. Commands can be
undone in ConEd in the standard Macintosh manner (i.e., by pressing the “undo”
key or selecting “undo” from the Edit menu). The limitation of this approach is that
only the most recent edit can be undone. However, the laugh and ignore commands
can also be undone by repeating the laugh or ignore command on the same event.
The first laugh mark turns an event into a laugh event. A second laugh mark
toggles the event back to a normal event. Therefore, even if these types of edits are
not the most recent, they still can be undone.

Toggling the way the laugh and ignore commands work is an example of inverting a
menu item semantics. In this case, once a function in a menu is invoked, it is
replaced by the corresponding inverse function. Hence, the semantics are
“inverted”. For example, selecting “open” will invoke the open function and replace
the “open” menu item with “close”. There are several reasons why inverting
semantics are important to marking menus. First, inverting semantics allows extra
functions to be associated with a menu without increasing the number of items in a
menu. This helps keep the number of items in a marking menu small, which in turn
makes marking easier. Second, inverting semantics provides a mnemonic to help
recall the association between mark and function. For example, if one remembers
the mark associated with “open” then one can recall the mark associated with

“close”, because the two functions are the inverse of each other.
The role of command feedback

There are several ways that a user receives command feedback using marking
menus in ConEd. When using the menu, the user knows which command is about
to be executed because the name of the command appears highlighted in the menu.
When marking, a user can either recall the mark/command correspondence or
watch the results of drawing the mark. We have observed that, as users gain more
experience with marking menus, they graduate from watching the menus and

90

Page 1543 of 1714

marks, to watching the results of their actions to determine if they have selected the

correct command.

Context also plays an important role in determining the command a mark triggers
when semantic inversion is being used. For example, events that were marked as
“laugh” events appeared in a gray color. This feedback provides essential
information to the user that a “laugh” mark on this event was not actually a laugh

command but a command to “unlaugh” the event.

In ConEd, a marking menu interaction combines object selection and command
application. Typically, in mouse-based direct manipulation systems, these two
actions are distinct. For example, a user selects an object by pointing to it; the object
then appears “selected”; next, a command is applied to the object by selecting from a
menu. When using the marking menu in ConEd objects never appear “selected”. It
is interesting to note that none of the users ever reported missing it. We can
speculate the reason for this is that the combination of selection and marking is
intuitive (i.e., emulates our experiences with pen and paper), and the result of a
command appeared quickly enough that the starting point of the mark was still in

visual image storage.

4.3. ANALYSIS OF USE

The behavior of two users using ConEd over an extended period of time was
studied. Both users were employed to edit conversation data. The edited data was
used in a research project which was independent of this research thesis. Therefore,
a user's main motivation was not to use marking menus, but to complete the task of
editing and coding the data. The amount of data to be edited was extremely large
and therefore the users were mainly interested in performing the edits as quickly as
possible.

The first user (user A) was an experienced Macintosh user and was also familiar
with video technology. User A was also familiar with the intentions of the
conversation analysis experiment. Given this profile, user A could be considered an
expert, although unfamiliar at the start of the study with marking menus. The
second user (user B) could be considered a novice. While user B did have some
computer experience, it was mainly with the MS-DOS environment, not the
Macintosh. Therefore, user B not only had to learn how marking menus worked,

91

Page 1544 of 1714

she also had to learn the many details of the Macintosh interface, and the correct
way to edit the conversation data.

It was explained to both users how the conversation data was to be edited. The goal
of editing was to ensure that the data matched the conversation patterns on the
video tape. Users edited the conversation patterns using ConEd and then checked
their work by playing back the video tape and comparing the audio of the
conversation with the data in ConEd. This process was very interactive. The user
played the video and watched the conversation data “playback” on ConEd. When
the user saw a piece of data that did not match the audio on the video tape, the user
edited the data, then rewound and replayed the video tape and data to ensure the

edit was correct.

Each user had the interface to ConEd explained to them and some example edits
were performed for their benefit. In particular, the commands in the marking menu
were carefully explained and demonstrated. The menu and mark mode was
explained and demonstrated, as well as the ability to reselect menu items or confirm
a mark. We then verified that the user understood the marking menu by having

them perform a few edits using the menu and marks.

Data on user behavior was gathered by recording information about a marking
menu selection every time a selection was performed. The information included the
time the selection was made, the user’s name, the item selected, the mode used to
select the item (menu or mark), the length of time the selection took, and the path of
the mark or the series of reselections from the menu. A user only needed to register
his or her name at the start of an editing session. The rest of the trace data was
accumulated transparently.

User A edited for a total of 8.55 hours over approximately six days. User B edited
for 10.1 hours over a 29 day period. Most editing sessions lasted one to two hours.

After completing the task, the users were asked to fill out a questionnaire on their
experiences using marking menus. The intention of the survey was to reveal users’
perception of marking menus and gauge their level of satisfaction.

4.3.1. Issues of use and hypotheses

The main goal for tracing menu usage was to understand how users behave when
using marking menus. Specifically, we wanted to find out whether or not in a real

92

Page 1545 of 1714

work situation users would evolve from using the menus to using marks and the
characteristics of this evolution. In Chapter 2, we described the design of marking
menus and how it embodied several assumptions concerning user behavior. The
assumptions are that, first, a user will begin by using the menu but with experience
the user will evolve to using marks, and second, as part of this evolution, users will
make use of intermediate modes of selection (i.e., mark-confirmation and
reselection). We wanted to discover whether or not user behavior reflected this in
order to prove our assumptions about the novice to expert transition, and to verify
that these intermediate modes are actually needed in the marking menu design.

With these goals in mind, we formed the following hypotheses about user behavior
with the marking menu in ConEd:

(1) Menu mode will dominate a user’s behavior at first. However, with experience,

mark mode will dominate.

(2) The more frequently a command is executed the more likely it is to be invoked by

a mark.

(3) Users will make use of mark-confirmation and reselection but with experience
this behavior will disappear.

The following hypotheses test our assumptions concerning the differences between
novice and expert behavior. Specifically, expert behavior will demonstrate faster
selection times and more efficient movement than novice behavior.

(4) Time to select from the menu, even with the wait delay subtracted, will be
greater than time to make a mark.

(5) With experience, the average length of a mark and time required to make a mark

will become smaller.
4.3.2. Results

We analyzed the data from the two users separately for several reasons. First, we
were concerned with individual differences. Combining the data would have
masked these differences. Second, this study was not a controlled experiment. The
data being edited varied, as did the amount of time and number of sessions the
users worked. Thus, there was no logical way to merge the users’ trace data.

93

Page 1546 of 1714

Finally, our two users were very different in attitude and expertise, and therefore
combining the trace data would have been inappropriate.

Menu versus mark usage

Hypothesis (1) was shown to be true. Figure 4.9 shows the percentage of times a
mark was used to make a selection (as opposed to using the menu to make a
selection) versus the total number of selections performed. Over time, marking
dominated as the preferred mode of selection. For user A, out of a total of 3,013
selections 6.6% used the menu. For user B, out of a total of 1,945 selections, 45%

used the menu.

There are several interesting observations concerning the usage of marks over time.
First, when users returned to using ConEd after a lay-off period, the percentage of
marking dropped. Figure 4.10 shows that several long lay-offs from ConEd
occurred during the study. Note the correspondence between periods of inactivity
and dips in mark usage. This indicates that mark/command associations were
forgotten when not practiced. However, the amount of fading reduced with the
amount of experience (i.e., the dips in Figure 4.9 become less pronounced with
experience). Second, note how user B’s mark usage rises dramatically at
approximately 650 selections. We believe the reason this happened was because
user B was a very cautious and inexperienced user. For user B, every command was
a new experience. For example, user B needed help opening, saving, and closing
files. User B commented that it took her several hours to get comfortable with the
video machine and the Macintosh interface before she could begin to think about
using marks.

Hypothesis (2) claims that the more frequently a command is used, the more likely it
will be invoked by marking. This is based on the assumption that frequent use
demands fast interaction and this motivates a user to learn the association between
mark and command. Some commands were used more frequently than others. The
horizontal axes in the graphs in Figure 4.11 shows this. Hypothesis (2) is shown to
be true by a strong correlation between the frequency at which a command was
used, and the frequency at which that command was invoked by a mark. Figure

94

Page 1547 of 1714

411 shows a linear relationship between frequency of command and frequency of
marking (for user A, 2=0.81, p<.05; for user B, 2 = (.88, p<.05)15,

15 Note that the add command was not used in this analysis because it appeared to be an outlier point. Its
frequency of marking was much lower than the rest of the commands. Our users reported that the add
command didn’t work correctly all the time. Therefore we assume that users were not as confident about using
a marking for the add command as they were for the other commands and hence the outlying mark frequency.

95

Page 1548 of 1714

1001
percentage 80:
of marking 28
usage v
207
0
0 500 1000 1500 2000 2500 3000 3500
number of selections performed
User B
percentage
of marking
usage

0 500 1000 1500 2000
number of selections performed

Figure 4.9: With experience, marking becomes the dominate method for selecting a
command. Each data point is the percentage of times a mark was used in 50

selections.
User A
time
(hours)
0 500 1000 1500 2000 2500 3000 3500
number of selections performed
User B
700 1 [
600 1 [
500 1 I
time 400 1 [
(hours) 300 1 -
200 1 F
100 1 [
0¥

0 500 1000 1500 2000
number of selections performed

96

Page 1549 of 1714

Figure 4.10: Usage of ConEd spanned many days with “lay-offs” between sessions.

Steps in the graph represent layoff periods.

Dips in the graphs in Figure 4.9

correspond to lay-offs. After a layoff, a user had to resort to the menu to reacquaint

oneself with the marks (especially user B).

User A

1 1 1

100 1 1 1

98 1

fill-in
[o]

(<]
deletd’

96
94 1
92 1
90 A

percentage of markings

88 1
86

g7 T T T T T T
20

percentage of use

User B
B
75 -
70
65]
60
55
50
45
40 1 laugh
35 -
30 .

delete]

fill-in
o

percentage of markings

ignore

1
15 20 25
percentage of use

35

Figure 4.11: The more frequently a command is invoked the more likely it is to be
invoked by a mark. The vertical axes show the percentage of times a mark was used
to invoke a particular command. The horizontal axes show the percentage of times a
particular command was invoked using either a mark or the menu.

97

Page 1550 of 1714

Mark confirmation and reselection

As predicted by hypothesis (3), users did make use of the ability to confirm a mark
and reselect from a menu but with experience this behavior disappeared. We draw
evidence for this from Figure 4.12 as follows. Figure 4.12 (a) plots three types of
behavior when using the marking menu:

* mark: a selection is made by making a mark;

* mark-confirm: a selection is made by making a mark but waiting at the end of the
mark, thus popping up the menu to confirm the mark selects the correct item;

* mark-corrected: a selection is made in the same manner as “mark-confirm” but after
popping up the menu another item is reselected.

We conjecture that these three behaviors are indicative of a user’s skill in making
accurate marks. Mark is the most skilled behavior. In this case, a user is so skilled at
making a mark that no feedback is needed before confirming the selection. Mark-
confirm is the next level of skilled behavior. In this case, a user has enough skill to
make the correct mark but not the confidence to invoke it without checking it
against the menu. Mark-corrected is a third level of skilled behavior. In this case, a
user has made a mark, checked it against the menu and has corrected the mark

using reselection.

Figure 4.12 shows several things. First, mark-confirm and mark-corrected behavior
did occur and therefore this functionality is used and needed. Second, this behavior
occurs during the transition from using the menu to drawing marks. Third, when
used, this type of behavior occurred less than ten percent of the time.

98

Page 1551 of 1714

User A

User B
100

percentage of use

0

100 901
mark 801 mark
80
70

0

601
501
401
301

percentage of use

10 I mark-corrected

t 20
10

! 04

number of selections performed

0 500 1000 1500 2000 2500 3000 3500

104 mark-confirm L

10 1 mark-corrected [

0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of selections performed

Figure 4.12: Users made use of the ability to confirm the selection a mark would
make before committing to it. However, with experience this behavior disappears.
Measures were averaged every 200 selections.

Reselection

Another topic of interest was whether or not users reselected when using menu

mode. Figure 4.13 shows that reselection occurred less than ten percent of the time.

User A demonstrated that with experience reselection disappears. However, user B

did not exhibit this behavior.
radial menu is needed.

Page 1552 of 1714

This is evidence that the reselection function in a

99

User A User B
40 100

804 N
V reselections

304 V reselections
0 menu

O menu
601

40 4

percentage of use
percentage of use

0 500 1000 1500 2000 2500 3000 3500 20
number of selections performed

0 200 400 600 800 1000 1200 1400 1600 1800 2000

number of selections performed

Figure 4.13: Both users utilized reselection in menu mode. While user A’s use of
reselection diminished with time, user B utilized reselection even after substantial
experience. Measures were averaged every 200 selections.

Selection time and length of mark

Selection time is defined as the time elapsed from the moment the mouse button is
pressed down to invoke a marking menu, to the moment the button is released,
completing the selection from the menu. This measurement applies to either a menu
or mark mode. The selection time, for both users, was substantially faster in mark
mode than in menu mode. Figure 4.14 shows these differences. For user A, a mark
was seven times faster than using the menu. For user B, a mark was four times

faster.

Even though menu and mark mode require the same type of movement, using the
menu is slower than making the mark. There are several reasons why. First, a user
must press-and-wait to pop up the menu. This delay was set to 0.33 seconds.
However, as the fourth column in Figure 4.14 shows, even with this delay subtracted
from the menu selection time, a mark is still much faster (i.e., user A is 4.2 times
faster, user B is 3.0 times faster). The user most likely waits for the menu to appear
on the screen. Displaying the menu takes the system about 0.15 seconds. The user
must then react to the display of the menu (simple reactions of this type take no
more than 0.4 seconds, according to Card, Moran, & Newell, 1983). However, when
making a mark, the user does not have to wait for a menu to display and react to its
display. Thus, a mark will always be faster than menu selection, even if press-and-
wait was not required to trigger the menu. Figure 4.15 graphically shows this. The

100

Page 1553 of 1714

average time to perform a selection (seconds)

mark menu menu - delay
User A 0.18 £0.004 1.097 £ 0.042 0.763
User B 0.404 £ 0.01 1.543 +0.052 1.209

Figure 4.14: On average, marks were much faster than using the menu. For user A, a
mark was seven times faster than using the menu. For user B, a mark was four times
faster. Confidence intervals are at 95%.

Making a mark
pen/ movetodrawa _~° pen/
button| mark button
down up

.07 secs 3 secs .07 secs

Using the menu

pen/ | press and wait to trigger menu system user reacts to move to select pen/

button displays | menu display from menu button

down menu up

.07 secs 33 secs 15 secs 2secs 3 secs .07 secs
Time >

Figure 4.15: Why a mark is faster than using a menu. The typical durations of
various events that take place when making a selection are depicted. Even if press-
and-wait was eliminated from menu selection it would still take longer than making
a mark because of the additional events.

fourth column of Figure 4.14 provides evidence of this. This supports hypothesis

(4)-

Selection time, using a mark, decreased with practice, however the decrease was
very small. In view of the very fast times for marking performance, this is good
news, since this means that, even early in practice, novice performance was very
similar to expert performance. The decrease in selection time was less than 0.1
seconds. For this analysis we used the Power Law of Practice (performance time
declines linearly with practice if plotted in log-log coordinates (Snoddy, 1926)).
Linear relationships were found for both users (an analysis of variance of linear

101

Page 1554 of 1714

regression used; for user A, F(1, 1654) = 166.5, p<0.0001; for user B, F(1, 541) = 23.03,
p <0.0001).16

The average length of a mark decreased slightly with practice for user B, but not for
user A (an analysis of variance of linear regression used; F(1, 2813) = 10.82, p<0.01).
The average length of a mark was approximately one inch. The delete mark was
excluded from this analysis because its length was used to indicate a range of events.

Given these results for mark time and length we accept hypothesis (5)-mark time
decreases with practice, but only in the case of user B is there support for the
hypothesis that mark length also decreases with practice.

Users' perceptions

Both users were given a questionnaire after performing the editing task. The
intention of the questionnaire was to discover if a user’s perception of marking
menus matched their behavior and also to allow us to obtain information not
captured in the trace data.

An important parameter not captured in the trace data was selection errors. The
reason for this is that prior to a selection we did not know what item a user intended
to select. Therefore, when a selection was made, we could not tell whether or not
the user had successfully invoked the desired selection. Since users should be the
judges of what acceptable error rates are, we simply asked them how many errors
they made with the marking menu: no errors, few but acceptable, or too many?
Both users reported “few errors but acceptable”.

Users perceived marking menus as a tool that helped them get the task completed
quickly. Both users reported that their performance with the marking menu was
“fast”. User B, the less confident user, however, reported she didn’t have enough
regular experience with the marking menu to be completely comfortable drawing

marks.

16 Lincar relationships were determined by estimating a regression line using an analysis of variance approach
(see Appendix A further explanation).

102

Page 1555 of 1714

Both users confirmed the differences we found in performance between menu and
mark mode. The trace data indicates that using a mark was substantially faster than

using the menu. Both users reported a mark was “much faster” than using a menu.

We were also interested in how users recalled the relationship between command
and mark. We suggested to both users three methods they could have used to recall
mark/command associations. The first is by recollecting the spatial layout of the
menu. The second is by rote-"this mark produces this command”. The third
method is the situation where one is so skilled at performing the mark/command
that one is not aware of performing an explicit association—one just “does” the
correct mark.1” User A reported using the second technique, except in the case of
“delete” for which he used the third method. User B reported using the first
technique. If we assume that the three methods represent various stages of
increasing practice, we can conjecture that user A was farther along in expertise and
practice than user B. Our data shows this to be true (i.e., user A performed 1,068
more selections than user B).

Marking menus versus linear menus

The results from this study allow us to build on the comparison between marking
menus and linear menus discussed in Chapter 2. When a user is familiar with the
layout of a menu, selection from a radial menu will be faster than selection from a
linear menu. Callahan et. al., (1989) provide empirical evidence of this for eight-item
menus. It is possible that a linear menu may be more suitable when there an natural
linear ordering to the menu items and a user must search the menu for an item
before making a selection. Alternatively, a radial menu may be more suitable when
there is a natural radial ordering of menu items. However, as shown by both Card
(1982), and McDonald, Stone, & Liebelt (1983), the effects of organization disappear
with practice. Callahan et. al., (1989) provide evidence that, for eight-item menus,
even when menu items have a natural linear ordering, selection using a radial menu

is still faster and less error-prone than selection using a linear menu.

Drawing from data in an experiment by Nilsen (1991), we can directly compare six-
item marks and six-item pop-up linear menus. In Nilsen's experiment, a selection

17 Recall may also be by rote in this case, but, since recall is so quick, users may perceive it differently.

103

Page 1556 of 1714

from a six-item linear menu required on average 0.79 seconds. In our study, user A
and user B required, on average, 0.18 and 0.40 seconds respectively to perform a
selection using marks. Furthermore, in Nilsen's experiment the subjects' only task
was to select from a linear menu. Therefore, one would expect selection speed to be
artificially fast. In our study, in contrast, the users were performing selections in the
context of other real world tasks.

The fact that radial menus are faster to select from than linear menus is not the
complete story. Selection using a mark is faster than selection via a radial menu.
This case study has shown marks to be substantially faster than selection from a
radial menu, even if press-and-wait time is factored out. The reason for this is, when
selecting using a menu, a user must react to the display of the menu before selecting.
However, making a mark involves no reaction time. Hence selection with the mark
is faster by design. Obviously faster selection with a mark comes at the price of
higher error rates, especially when menus become dense. But the results from this
chapter, Chapter 3, and Chapter 5 indicate that menus of breadths four, six and eight
have acceptable error rates.

Thus, we can conclude that if menus contain an even numbers of items and less than
ten of them, and users frequently use the menus, marking menus will have a distinct
advantage over linear menus. Data from this chapter tells us that using the marks
will be approximately 3.5 times faster than selecting from a radial menu. We
conjecture this speed-up figure would be greater if compared to linear menus.

As a practical example of the impact of this speed-up, we can consider the
performance of another real user using ConEd.!8 This user performed 16,026
selections during 36 hours of work. Her average time to select using a mark was
0.23 seconds. Her average time to select using the menu was 1.48 seconds. If the
task had been done exclusively with a radial menu that did not use a press-and-wait
delay of 0.33 seconds, the average time to select from a menu would have been 1.07
seconds, and 16,026 selections would have required 17,099 seconds in total.
However, when using the marking menu, the menu was used for 185 selections and
marks were used for 15,841 selections. Thus, menu selections required 185 x 1.48 =

18 A third user used ConEd extensively over a long period of time but she was not included in this study
because she assisted in the design of the marking menu used in ConEd and ConEd itself. Therefore, we felt she
would not be an unbiased user of marking menus.

104

Page 1557 of 1714

274 seconds. Selections made with a mark required 15,841 x 0.23 = 3627 seconds.
This results in the 16,026 selections requiring 3901 seconds in total. Thus using a

marking menu, as opposed to a radial menu that popped up immediately, saved the
user 17,099 - 3,901 = 13,198 seconds or 3.66 hours.

44. SUMMARY

This chapter has described a case study which served two purposes. First, the case
study involved designing an application that used a marking menu. From this
exercise we gained insights on design. Second, data on two users' behaviors using
this application to perform a real task was collected and analyzed. Information was
collected on a user's performance using a marking menu every time a selection was
performed. This information consisted of selection time, selection method, item
selected, time of selection, and cursor movement. Analysis of this information
allowed us to verify whether or not our assumptions about user behavior, which are
embodied in the design of marking menus, are true.

This study demonstrated several things:

* A marking menu was a very effective interaction technique in this setting. Its
effectiveness was contingent on applying the technique to an appropriate setting —
specifically, using a marking menu to invoke a few commands that are used
frequently, and require a screen location as a command parameter. Also, despite the
simplicity of the mark, features of the mark, such as the start and end points, and the
orientation of the mark, can be used to make interactions more efficient and easier to

learn.

* A user's skill with marking menus definitely increases with use. A user begins by
using the menu, but, with practice, graduates to making marks. Users reported that
marking was relatively error free and empirical data showed marking was
substantially faster than using the menu.

* The various modes of a marking menu (menu, mark, mark-confirmation, and
reselection) are utilized by users and reflect levels of skills. In addition, when a
user's skill depreciates during a long lay-off period, the user utilizes these modes to
reacquire skills. We conclude that these features are a necessary part of the design,

105

Page 1558 of 1714

and furthermore, interfaces which supply mutually exclusive novice and expert

modes are inappropriate when a user’s level of skill depreciates.

* In this setting a mark is a very fast way to invoke a command, and users, very
early in practice, become skilled at making marks. Evidence of this is that selection
time was much faster in mark mode than in menu mode, and did not decrease
substantially with practice. This same data indicates that even if the delay time is
removed from a menu selection time, menu selection is still slower than marking.
This may be due to a user simply moving slower when using the menu. In theory,
however, even if there was not press-and-wait delay, and the user moved as quickly
in menu mode as they do in mark mode, the user would still be delayed by, first,
having to wait for the system to display the menu, and, second, by their own
reaction time to its display. Hence, within the limitations on the number of items in
a menu described in Chapter 3, we conclude that a mark will always be faster than a
menu that immediately pops up. This, of course, is dependent on the user recalling
the menu layout.

We can expect hierarchic marking menus to exhibit the same performance properties
as non-hierarchic marking menus, since selection from a hierarchic marking menu
consists of a series of selections from non-hierarchic menus. Chapter 5 establishes
the breadths and depths of hierarchy at which we can expect these properties to
hold true.

106

Page 1559 of 1714

Chapter 5: An empirical evaluation of
hierarchic marking menus

This chapter reports on an experiment to investigate the characteristics of human
performance with hierarchic marking menus. Performance using a hierarchic
marking menu is affected by the number of items in each level of the hierarchy and
the depth of hierarchy. This chapter reports on an experiment which systematically
varied these parameters to determine the conditions under which using a mark to
select an item becomes too slow or prone to errors. Increasing depth and breadth
tends to degrade performance. Thus the intention of this experiment was to find an
practical upper bound for these parameters. Understanding of the role of depth and
breadth helps us address the types of questions one asks when designing hierarchic

marking menus for an interface:

Q1: Can users use hierarchic marks? Chapters 3 and 4 have shown non-hierarchic
marking menus to be useful. (Hopkins, 1991) describes how hierarchic pie-menus
can be useful. Thus we can expect hierarchic marking menus, even without using
marks, to also be useful. However, the question remains: Is it possible to use a mark

to quickly and reliably select from a hierarchic radial menu?

Q2: How deep can one go using a mark? Just how “expert” can users become? Can
an experienced user use a mark to select from a menu which has three levels of
hierarchy and twelve items at each level? By discovering the limitations of the
technique we are able to predict which menu configurations, with enough practice,
will Jead to reliable selections using marks, and which menu configurations,
regardless of the amount of practice, will never permit reliable selections using
marks. Also, will some items be easier to select regardless of depth? For example, it

107

Page 1560 of 1714

seems easier to select items that are on the up, down, left and right axes even if the
menus are cluttered and deep.

Q3: Is breadth better than depth? Will wide and shallow menu structures be easier
to access with marks than thin and deep ones? Traditional menu designs have
breadth/depth tradeoffs (Kiger, 1984). What sort of tradeoff exists for marking

menus?

Q4: Will mixing menu breadths result in poorer performance? The experiment on
non-hierarchic marking menus described in Chapter 3 has shown that the number of
items in a menu and the layout of those items in the menu affects subjects'
performance when using marks. Specifically, menus with 2, 4, 6, 8 and 12 items
work well for marks. What will be the effect of selecting from menu configurations

where number of items in a menu varies from sub-menu to sub-menu?

Q5: Will the pen be better than the mouse for hierarchic marking menu marks? The
experiment in Chapter 3 compared making selections from non-hierarchic marking
menus using a stylus/tablet, a trackball and a mouse. Subjects' performance was
poorest with the trackball while performance with the stylus/tablet and mouse was
approximately equal. However, hierarchic marking menus require more complex
marks. Will the mouse prove inadequate?

We are also concerned with some pedagogical issues which help us design human-
computer interactions. Buxton has described the notion of chunking in human-
computer dialogs (Buxton, 1986). For example, when using a mark to specify a
“move” command, one can issue the command verb, source and destination all in
one mark or “chunk”. This notion is related to the concept of a “motor program” in
motor control studies. A motor program is “a set of muscle movements structured
before a movement begins, which allows the entire sequence to be carried out
uninfluenced by peripheral feedback” (Keele, 1968).

Some systems or interaction techniques allow chunking to take place while others
don't. In some systems a user can articulate a series of operations without having to
wait for the system to finish each operation. This allows these commands to be
chunked. For example, a user quickly clicks on three graphical buttons without
having to wait for each button to complete its operation. In this case, the user may
perceive the three clicks as a chunk. If the user was restricted to wait for each button
to complete its operation before clicking on the next button, the user may not

108

Page 1561 of 1714

perceive the three operations as chunk. Hence, this indicates that something as low-
level as input event handling policies can affect user perception and behavior.

Relative to marking menus, the phenomenon of chunking occurs when a user, rather
than articulating a selection from a hierarchic menu as a series of directional strokes
separated by pauses in movement, performs the entire series of selections in one
fluid movement or “chunk”. We speculate that chunking is related to expertise. The
more expert a user becomes with an interface the more the user chunks. This
experiment provides the opportunity to investigate this phenomenon.

51. THE EXPERIMENT
5.1.1. Design

In order to determine the limits of performance, we needed to simulate expert
behavior. We defined expert behavior as the situation where the user is completely
familiar with the contents and layout of the menu and can easily recall the mark
needed to select a menu item. To make subjects “completely familiar” with the
menu layouts we chose menu items whose layout could be easy memorized. We
tested menus with four, eight and twelve items. For menus of four items, the labels
were laid out like the four points of a compass: “N”, “E”, “S” and “W”. This type of
menu we referred to as a “compass4”. Similarly, a “compass8” menu had these four
directions plus “NE”, “SE”, “SW” and “NW”. Menus with twelve items, referred to
as a “clock” menus, were labeled like the hours on a clock.

Will users of real applications ever be as familiar with menus as they are with a
clock or compass? We believe the answer is yes, and base this on three pieces of
evidence. First, our own behavioral study of users using a marking menu in a real
application (Chapter 4) shows, with practice, they used marks without the aid of
menus over ninety percent of the time. Other researchers have reported this type of
familiarity with pie menus (Hopkins, 1991). Second, Card (1982), and McDonald,
Stone, & Liebelt (1983) report that effects of menu organization disappear with
practice. In other words, with practice, users memorize menu layouts and navigate
directly to the desired menu item. Finally, it must be remembered that a user does
not have to memorize the layout of an entire menu. For example, a hierarchic

109

Page 1562 of 1714

marking menu could contain 64 items but the user might only memorize the marks
needed to select the two most frequently used menu items.

The design of a trial in our experiment was as follows. A subject was completely
familiar with the menu layout and the marks needed to select an item. The system
would ask the subject to select a certain item using a mark (the menu could not be
popped up by the subject). The subject would input the mark and the system would
then record the time taken to draw the mark and whether or not the mark
successfully selected the requested item. After a series of trials, we would then vary
the menu configuration and input device in order to see what effect these variables
had on selection performance.

The rationale for choosing menus of four, eight and twelve items was based on the
results from the experiment in Chapter 3. This experiment showed that menus with
even numbers of items and less that twelve items were suitable for marking. Using
four, eight and twelve item menus is a deliberate attempt to explore a reasonable
range of menu breadth. We would expect that performance on a menu of four items
to be quite acceptable even at extreme depths. Whereas selection from a menu
structure consisting of twelve-item menus which are two levels deep, seems quite

treacherous.

Using a similar rationale, we chose to evaluate menu depths from one to four. A
depth of one is a non-hierarchic menu which we know from the experiment in
Chapter 3 produces acceptable performance. A maximum depth of four was chosen

since it is in the range where we believe performance will become unacceptable.

For the sake of brevity we adopt a simple notation in the experiment. A menu
structure can be described by a tuple B,D. B is the breadth of each menu in the
structure and D is depth of menu structure. For example, 8,2 menu is a menu
hierarchy where every menu contain eight items and the hierarchy is two level deep.
An 8,2 menu contain 64 leaf menu items. When menu structures consist of different
breadth at different levels we use the notation B:B:B, where B is the breadth of a
menu at a certain depth. For example, a 12:8:12 menu is menu structure consisting
of a top level menu of twelve items, second level menus of eight items and a third

level menus of twelve items. A 8,2 menu is represented in this notation as 8:8.

In menu structures of even moderate depth and breadth the number of selectable
items becomes very large. For example, in an 8,2 menu there are 64 selectable items.

110

Page 1563 of 1714

As stated earlier, we wanted to simulate the case where the user was familiar with
the marks being drawn. Given the practical time constrains of the experiment we
could not expect subjects to become familiar all marks. Instead we decided to use
only three target selections for each menu structure. A subject could then quickly
become familiar with the mark needed to make the target selection with a
reasonable amount of practice. In this way, the experiment addressed the question:
given that the user knows the mark and is practiced at making it, will selection be

quick and reliable?

The next issue concerning targets was “which three targets”? For menus of small
breadth and depth this was not a major issue as one type of selection is
approximately as easy to draw as another. However, in the case of menus which
consist of combinations of larger breadths and depths, some selections are definitely
harder that others. For example, we observed that making the selection “12-6-3-9”
from a 12,4 menu was much easier that “10-11-10-11".

Our approach was to pick three targets for each menu configuration such that one
was easy, one was moderately difficult, and one was difficult. Easy targets were
those that had items along the vertical and horizontal axes (on-axis items). Difficult
targets were those with items not on the vertical and horizontal axes (off-axis items),
and little angle change between items. Finally, targets of moderate difficulty were
those with a 50% mix of on-axis and off-axis items, and a 50% mix of little and large
angle changes between items. It was hoped this mixture of targets would result in

behavior that would be representative of an “average selection”.

In the case of menus that contain only on-axis items and large angle changes, we
observed, prior to the experiment, that up and to the left selections seemed to be
hardest, and down to the right selections seemed to be easiest. Thus we chose hard
targets and easy targets accordingly. For moderately hard targets we chose either
down-and-to-the-left, or up-and-to-the-right targets.

We also had subjects perform selections from a 12:8:12 menu. This was done so we
could observe the effects of combining menus of different breadths in a menu

configuration.
5.1.2. Hypotheses
Nine hypotheses are proposed:

111

Page 1564 of 1714

(1) Pen outperforms mouse: The subjects will perform better with the pen than with
the mouse in terms of response time and errors. Once again, the experiment in
Chapter 3 showed that subjects performed marginally better with the stylus/tablet
than with the mouse on non-hierarchic marking menus. However as depth
increases, marks become more complex to draw and therefore the pen should be a

more suitable device.

(2) Increasing breadth increases response time and errors: As breadth increases,
response time and error rate will increase. The experiment in Chapter 3
demonstrates this effect for non-hierarchic marking menus. Therefore, we believe
this effect will apply to hierarchic marking menus as well.

(3) Increasing depth linearly increases response time: As depth increases response
time will increase. We base this on the belief that marks to access deep menu
configurations will require more time to draw because they will be longer.

A study by Fischman is the most relevant work to this hypothesis (Fischman, 1984).
In the study, subjects used a stylus to tap on a series of metal disks (ranging from
one to five disks) that were either arranged in a straight line or in a staircase pattern
that required changes in direction of 90t between disks. Changes in direction and
different numbers of disks in the series roughly correspond to directional
movements and different depths in hierarchical marking menus. Fischman found
that response time linearly increased with the number of disks, but changes in

direction did not affect response time.

(4) Increasing depth increases errors: As depth increases error rate will increase.
As depth increases so does the number of times a subject has to estimate at the angle
of mark needed to select an item. Therefore the error rate will increase as the

probability of error increases.

(5) Inaccuracies propagate: We hypothesize that the depth at which errors take
place will be on average greater than half the depth of a menu structure. Informally,
we claim that inaccuracies in one portion of a mark will affect the accuracy of the
remaining portion of a mark. Our reasoning is as follows: a subject uses the angle
of a partially drawn mark to estimate the angle for the next portion of the mark.
Inaccuracy in the first portion of the mark may then propagate into the rest of the
mark, eventually resulting in an error. The effect of this is that the probability of an
error increases with depth. If the probability of an error was the same at every level,

112

Page 1565 of 1714

an error would occur on average at half the depth of the menu structure. However,
if the probability of an error increases with depth we should see errors take place on

average at a depth greater than half the depth of the menu structure.

(6) Mixing menus degrades performance: Combining menus of different breadths
in a menu configuration will degrade response time and increase the error rate
relative to menu configurations where all menu breadths are the same. Specifically,
we hypothesize that subjects will perform better on a 12:12:12 menu than on a
12:8:12 menu, even though an eight-item menu is easier to select from than a twelve-
item menu. We believe it is easier for users to select items when the difference of
stroke angle needed to select different items is consistent. For example, in a menu
structure consisting exclusively of eight-item menus, all items are at 45 degree
angles. If a twelve-item was introduced into the menu structure, some items would
be at 45 degrees while others, the ones from the twelve-item menu, would be at 30
degree angles. We believe inconsistency in “item angle” will degrade performance.

(7) On-axis items enhance performance: Marks that consist of on-axis items will be
faster to draw and produce fewer errors than marks that consist of off-axis marks.
This hypothesis is based on prior practical experiences using hierarchic marking

menus.

(8) Drawing direction affects performance: The direction of drawing will affect
performance. Specifically, marks that require drawing left to right will be
performed faster than marks that require drawing right to left. Other researchers
have found a similar bias in directional movements (Boritz, Booth, & Cowan, 1991;
Malfara & Jones, 1981; Guiard, Diaz, & Beaubaton, 1983).

(9) Subjects will chunk: The number of pauses when drawing a selection will
approach zero with practice. Once a subject starts to think of selection not as a series
of strokes at certain angles, but as a mark of a certain shape, the subject will draw
the mark without pauses between strokes. This hypothesis was based on our own
experiences using marking menus in the laboratory.

5.1.3. Method

Subjects: Twelve right handed subjects were recruited from University of Toronto.
All subjects were skilled in using a mouse but had little or no experience using the

pen on a pen-based computer.

113

Page 1566 of 1714

Equipment: A Momenta pen-based computer development system was used. The
input devices consisted of a Microsoft mouse for IBM personal computers, and a
Momenta pen and digitizer. The digitizer was transparent and placed over the
screen. This allowed subject to “write on the screen” with the pen. The screen was
placed in front of the subject at approximately a 45 degree angle. When using the
pen the hand could be rested on the screen. The mouse was placed to the right of
the screen on a mouse pad. No mouse acceleration was used and the sensitivity of
the mouse was set to a value of 50 in the control panel. A setting of 50 corresponds
to a one to one C:D ratio.??

Task: A trial occurred as follows. The type of menu structure being tested appears
in the top left corner of the screen. A small circle appears in the center of the screen.
A subject then presses and holds the pen or mouse button over the circle. The
system then displays instructions describing the target at the top center of the
screen. A subject then responds by drawing a mark that is hoped to be the correct
response. The system responds by displaying the selection produced by the mark.
If the selection did not match the target, the system beeps to indicate an error. The
system then displays each menu in the current menu structure at its appropriate
location along the mark and indicates the selection from each menu. The subject’s
score would be shown in the lower left of the screen. Figure 5.1 shows the
experimental screen at this point. If the selection is incorrect, a subject loses 100
points and the trial is recorded as an error. If the selection is correct, the subject
earns points based on how quickly the response was executed. Response time is
defined as the time that elapsed between the display of the target and the
completion of the mark.

A subject's score (accumulated points) is displayed in the lower left corner of the
screen plotted against current trial number. The graph also shows the best score for
that particular pairing of menu structure and input device. This gives subjects a
performance level to compete against. This helped to ensure that subjects
performed the task both quickly and accurately.

A subject's progress through the trials was self paced. Subjects could pause between
trials for as long as they liked. Subjects used this pause to check their score and rest.

19 Gee Section 2.5.3 for the definitions of C:D ratio and mouse acceleration.

114

Page 1567 of 1714

Most subjects paused just a few seconds. All subjects required approximately one
hour and fifteen minutes to complete the experiment.

Menu is compass8:compass8

Select NE - S
Response NE - S

Figure 5.1: The experiment screen at the end of a trial where the target was “NE-
S”. After the mark is completed, the system displays the menus along the mark to
indicate to the subject the accuracy of their marking.

Design: All three factors, device, breadth and depth were within-subject. Trials
were blocked by input device with every subject using both the pen and the mouse.
One half of the subjects began with the pen first while the other half began with the
mouse. For each device, a subject was tested on the thirteen menu structures
(breadths 4, 8 and 12 crossed with depths 1 to 4, plus the mixed menu structure of
12:8:12). Menu structures were presented in random order. For each menu structure
a subject performed 24 trials. For the 24 trials, subjects were repeatedly asked to
select one of three different targets. Each target appeared eight times in the 24 trials
but the order of appearance was random.

Given this design, for each data point (a particular combination of input device and
menu structure) 288 selections were collected (24 selections times 12 subjects). For
the experiment, 7,488 selections were performed in total.

115

Page 1568 of 1714

Before starting a block of trials for a particular menu configuration, subjects were
allowed eight seconds to study the menu configuration. Before starting trials with a
particular input device, a subject was given ten practice trials using the device on a
4,3 menu. This was intended to acquaint a subject with the “feel” of the input
device.

It can be argued that the practice session on the 4,3 menu gave subjects an unfair
advantage on this particular menu. We believe the effect was small for several
reasons. First, a different set of targets was used for practice than those used in the
timed trials so subjects did not become practiced at drawing the targets for the timed
trials. Second, because of our choice of obvious menu labels and structure for all
menus, a subject was already familiar with all of the menu structures even before
practice.

5.2. RESULTS AND DISCUSSION

The main dependent variables of interest were response time and percentage of
errors. Response time was defined as the time that elapsed between the display of
the target and the completion of the mark. Percentage of errors was the percentage
of incorrect selections out of 24 trials on a particular combination of device, breadth
and depth. Figures 5.2 and 5.3 show the means tables.

Response time averaged across all subjects, breadths and depths for the pen was 1.69
seconds, while the mouse was significantly slower at 2.07 seconds (F(1,11)=19.7, p <
.001). The subjects produced significantly more errors with the mouse than with the
pen (F(1, 11)=6.41, p < .05). Subjects' performance with the pen was better than with
the mouse both in terms of response time and percentage of errors, and therefore we
accept hypothesis 1.

Breadth significantly affected both response time (F(2,22)=91.7, p < .001) and errors
(F(2,22)=130.5, p < .001). Figure 5.3 shows, in general, that increasing breadth
increases response time and percentage of errors. Based on these results we accept
hypothesis 2.

Depth significantly affected both response time (F(3,33)=195.4, p < .001) and errors
(F(3,33)=51.5, p < .001). Figure 5.3 (a) shows a linear increase in response time as

depth increases. Linear regression on each device, menu breadth pair verifies this

116

Page 1569 of 1714

claim (for the pen: breadth four, 2= 0.79, breadth eight, 2= 0.88, breadth twelve, 2
= 0.82;, for the mouse: breadth four, 2 = 0.73, breadth eight, 2 = 0.77, breadth
twelve, r2 = 0.67; p < .001 for all values). Figure 53 (b) shows that as depth

increased so did percentage of errors. Given these results we accept hypotheses 3

and 4.
Depth
Breadt | Devic 1 2 3 4 Total mouse & pen
h e
4 | mouse| .752(146) | 1.189(188) | 1.797 (407) | 2.102 (445) | 1.460 (616)
1.367 (.554)
pen | .710(108) | 1.098 (142) | 1.451 (275) | 1.835(.298) | 1.279 (473)
8 | mouse| 932(211) | 1.665(543) | 2938 (:829) | 3309 (845) | 2.211 (1.159)
2.021 (1.047)
pen | 810(142) | 1.411(298) | 2.258 (420) | 2.843 (698) | 1.831 (.895)

12 | mouse | 1.170 (289) | 1.842 (407) | 3.011 (763) | 4.181 (1.363) | 2.551 (1.406)
2.250 (1.208)

pen | 915(236) | 1.531(266) | 2.331 (519) | 3.022 (443) | 1.950 (.888)

Total |mouse | 951(278) | 1.565 (484) | 2582 (.877) |3.197 (1.272) | 2.074 (1.194)

pen | 812(186) |1.347(1.272) | 2.013 (572) | 2.567 (.724) | 1.685 (.826)

mouse
881 (.245) | 1.456 (415) | 2.298 (.789) | 2.882 (1.075)
& pen

Figure 5.2: Means table for response time. Each entry is average response time in
seconds. Standard deviation is shown in parentheses.

117

Page 1570 of 1714

Depth
Breadt | Devic 1 2 3 4 Total mouse & pen
h e
4 |mouse| 143(281) | 418435 | 424359 | 510(420) | 374 (3.92)
3.94 (4.65)
pen | 219(5.09) | 4594.63) | 491(697) | 4.89(569) | 415(532)
8 | mouse| 590485 | 882462 | 2044 (8.60) | 2298 (9.64) | 1451 (10.18)
12.42 (9.93)
pen | 521(713) | 6.64(6.56) | 1671 (9.84) | 1277 (9.26) | 1033 (9.34)
12 | mouse | 1319 (6.37) | 2126 (8.79) | 38.56 (14.98) | 38.58 (12.06) | 27.90 (15.45)
24.50 (16.26)
pen | 833(833) |14.61(14.91) | 31.87 (14.13) | 31.87 (14.13) | 21.09 (16.48)
Total | mouse | 6.84(6.84) | 1142 (9.51) | 21.08 (17.32) | 2219 (16.52) | 15.38 (14.69)
pen | 524(724) | 8.62(10.46) | 17.83 (155) | 15.74 (14.90) | 11.86 (13.29)
mouse
. 6.04 (7.04) | 1012 (10.02) | 19.46 (16.24) | 18.96 (15.95)
pen

Figure 5.3: Means table for percentage of errors. Standard deviation is shown in

parentheses.
4.5 - 40 1
4] mouse i
2 pen 35 O mouse
5 3.5 w 301 m pen
|4
a 3] 2 251
g w
£ 25 ‘s 4
= g 20
Q (=2}
a 24 8 151
S @
2 151 e 10
Q Q
© o
1 54
5 T T T T T T T T T T T T 0 T T T T T T T T T T T T
41 42 43 44 81 82 83 84 12,1122 12,3 124 41 42 43 44 81 82 83 84 121122 12,3 124
Breadth, Depth Breadth, Depth
(a) (b)

Figure 5.3: Response time and percentage of errors as a function of menu breadth,
depth and input device. Each data point is the average of 288 trials.

All three factors, input device, breadth and depth affected response time. Analysis

of variance revealed a three way interaction between input device, breadth, and

depth (F(6,66)=3.32, p < .05) affecting response time. Figure 5.3 (a) shows these

relationships.

Page 1571 of 1714

118

As one would expect, increasing breadth and depth increases

response time, however subjects' performance degraded more quickly with the
mouse than with the pen.

Both depth and breadth interacted to affect error rate (F(6,66)=12.28, p < .0001).
Variance in the error data is large, so the curves in Figure 5.3 (b) must be interpreted
carefully. Individual comparisons of error means revealed no significant differences
for breadth four at any depth. For breadth eight and twelve, the only significant
change in error rate occurred between depth two and three (F(1, 11) = 23.85, p <.001;
F(1, 11) = 60.52, p < .0001). This indicates that the “rolling off” of the errors curves
for breadths eight and twelve between depths two and three is not statistically
significant but the increase between depths two and three is significant.

It is important to compare these errors against what we believe would be reliable
menu configurations. It seems reasonable that selection from 4,2 menus would be
reliable since these marks can be recognized even if drawn very inaccurately. A
comparison between 4,2 and 8,2 menus reveals no significant difference. Hence, we
have no evidence to claim that eight-item menus, up to two levels deep are more
unreliable than 4,2 menus.

A similar comparison between the 4,2 and 12,1 menu revealed a significant
difference (F(1, 11) = 8.25, p < .01). However, the 12,1 menu was not significantly
different from the 8,2 menu. Continuing the comparison, we found that the 12,2
menu was significantly different from the 8,2 menu (F(1, 11) = 21.11, p < .0001).
Hence, we claim that the 12,1 menu borders on being unreliable. Section 5.2 has

further interpretations on these results.

Hypothesis 5 (inaccuracies propagate) was shown to be true. As depth increased,
the average depth at which errors occurred became significantly greater than half
the depth of the hierarchy (F(3,33)=7.62, p < .001). However, the input device had an
effect on this behavior. Figure 5.4 shows the pen consistently demonstrated this
effect but the mouse exhibited a more erratic behavior.

119

Page 1572 of 1714

37 O mouse

25 - B pen

average depth of an error - depth/2
1
T

depth

Figure 5.4: Average depth of error - depth/2 versus depth. Depth is the depth of the
menu structure being selected from.

We tested the effects of mixing menu breadths in menu configurations by comparing
the performance of a 12:12:12 menu with a 12:8:12 menu. We found no significant
performance difference between the two menu structures. Therefore, we have no

evidence that hypothesis 6 (mixing menus degrades performance) is true.

In order to test the hypothesis 7 (on-axis items enhance performance), targets for the
12,2, 12,3 and 12,4 menus were picked such that the experiment data could be
divided into 3 groups. With each group we associated an “off-axis-level”: al, a2 and
a3. Experimental data was placed in group al if the target consisted only of menu
items that were on-axis, such as “12-3-9-3.” Group a3 consisted of data on targets
that consisted of entirely off-axis targets such as “1-2-1-2”. Group a2 consisted of
data on targets that were a mixture of on-axis and off-axis menu items, such as 12-7-
3-9. Figure 5.5 shows that axis level had a significant effect on response time
(F(2,22)=104.84, p < .001), and on percentage of errors (F(2,22)=36.2, p < .001). Figure
5.5 (a) shows how the type of device interacted with off-axis level (F(2,22)=6.93, p <
.05). This indicates that subjects response time using the pen did not degrade as
much as their response time with the mouse on the worse off-axis targets.

120

Page 1573 of 1714

3.75 - 18 -

354 o mouse 16 4 o mouse
1l m pen m pen
5 3.25 @ 14 J
& 2 E 12 |
o 275
E B 10
= 25
3 g 5]
S 2.25 4 S
o 2 64
2 2)
K o
1.75 41
1.5 . T : 2 T T T
ai a2 a3 ai a2 ald
Off Axis Level Off Axis Level

Figure 5.5: Average response time and percentage of errors for targets with an
increasing number of “off-axis” items.

In order to evaluate hypothesis 8 (drawing direction affects performance), targets
were picked for 4,3, 4,4, 8,3, and 8,4 menus such that mirror image pairs of targets
could be compared. For example, the target N-W-N-W was compared with the
target N-E-N-E. No significant different in response time was found between “left”
and “right” direction targets. Therefore this experiment provides no evidence that
hypothesis 8 is true.

The data was analyzed for learning effects by examining performance after every
sixth trial. Figure 5.6 shows the results. Response time dropped over 24 trials
(F(3,33)=59.227, p<.0001). Percentage of errors dropped as well (F(3,33)=8.294,
p<.0003). This shows that not only were subjects getting faster but also producing
fewer errors. No significant performance differences were found between trial 18
and trial 24. It may be possible that, because subjects were only selecting from three
targets, their performance was beginning to asymptote by trial 24.

121

Page 1574 of 1714

2.3 9 16.5 5
224

21 4

Reponse Time (sec)
©
1
Percentage of Errors
=

T
trial 6 trial 12 trial 18 trial 24

trial count trial count

trialI 6 triall12 triaII‘IS triall24
Figure 5.6: Average response time and percentage of errors after every sixth trial.

We analyzed the data for the number of pauses that occurred as a selection was
being drawn. A pause was defined as the pen or mouse not moving more than five
pixels for more than 1/2 of a second. Figure 5.7 shows that, as users gained
experience the number of pauses dropped (F(9,99)=38.409, p < .0001). This is
evidence that subjects, with experience, began to draw a mark not as a series of
discrete selections but as a single mark of a certain pattern (assuming that when
pauses did occur they occurred between different selections). The number of pauses
did not fall all the way to zero because some of the most difficult targets required
careful drawing which resulted in pauses. Given these results we accept hypothesis
9 (subjects will chunk).

2.8 7 B

26 - B

24 A -

2.2 4 -

Pause Count

1.8 -

14 -

1.2 T T T T
trial 6 trial 12 trial 18 trial 24

trial count

Figure 5.7: Average number of pauses counted after every six trials.

122

Page 1575 of 1714

We also gave subjects a questionnaire after the experiment. This was to elucidate
subjects' perception of their own performance and compare some of the

experimental data with subjects' perceptions.

Eleven out the twelve subjects thought making selections with the pen was faster
and more accurate than with the mouse. This agrees with the data from the
experiment. Also, when asked to comment on the experiment, four subjects
reported that, although their performance with the mouse was fast, they found the

mouse required more effort.

We wanted subjects' opinion on the accuracy of our mark recognizer. In some cases,
for example, menus which are only one level deep, recognition is simple. In this
case, only the start and end points of the mark need to be examined to determine the
item picked. However, at depths greater than one, submenu selections must be
determined so changes in direction along a mark must be recognized. The
algorithm for determining these “kinks” along a mark is complex because it has to
handle dense menus and marks that are drawn sloppily. Typical of most
recognition systems, occasionally what appears to the subject as a correct mark is
misinterpreted by the system. However, on average, subjects claim that this
happened only three percent of the time. This is an acceptable recognition rate by
mark recognizer standards (Sibert, Buffa, Crane, Doster, Rhyne, & Ward, 1987).
Nonetheless, after observing the type of recognition errors that occurred during the
experiment, we believe the recognition rate can be further improved by a few

refinements to the recognizer algorithm.

Another phenomenon that occurred in the experiment was subjects selecting the
wrong direction by accident. For example, the screen would display “select N” and
the subject would select south. Errors of this type are referred to as “mental slips”
(Norman, 1981). These types of errors were removed from the data set before
analysis because they are not caused by drawing inaccuracies. Other errors such as
clear cut errors on part of the recognizer were also removed from the data. Subjects
reported several causes for mental slips: “I just goofed” or “I started to draw the
mark from the previous trial”. Subjects, on average, claimed that mental errors
occurred two percent of the time. This approximately agrees with the data: we
found a one percent error rate for clear cut “mental slips”. We do not feel these

123

Page 1576 of 1714

errors are particular to drawing marks —mental slips are common in any human
activity (Norman, 1981).

We hypothesized before the experiment that drawing marks that were
predominately left to right movements would be easier, and hence faster, than right
to left marks. However, our analysis of the data showed drawing direction had no
significant effect on selection times. This agrees with the results of the
questionnaire: six out of the twelve subjects thought left to right marks were easier
to draw that right to left marks. This even split among subjects perhaps explains the
non-significant effect of direction. A closer examination of the data might reveal
individual effects.

5.3. CONCLUSIONS

We can now revisit the questions posed at the start of this chapter and interpret the

results of this experiment.

Q1: Can users use hierarchic marks? Even if using a mark to access an item is too
hard to draw or cannot be remembered, a user can perform a selection by displaying
the menus. Nevertheless, since the subjects could perform some of the marks in the
experiment with acceptable response times and error rates, marking is a usable

method of selection.

Q2: How deep can one go using a mark? Our data indicates that increasing depth
increases response time linearly. The limiting factor appears to be error rate. Error
rate was found to rise significantly for menus beyond the 8,2 menu. 8,2 menus were
not any more unreliable than 4,2 menus. Common sense tell us that the marks
required to select from a 4,2 menus are not difficult to draw. Hence we consider
menu configurations which did not significantly differ in error rate from 4,2 menus
to be reliable. It seems reasonable to recommend using menus of breadth four, up to
depth four, and menus of breadth eight, up to depth two. 12,1 menus border on
unreliability.

Off-axis analysis indicates that the source of poor performance at higher breadths
and depths is due to selecting off-axis items. Thus, when designing a wide and deep
menu, the frequently used items should be placed at on-axis marks. This would

124

Page 1577 of 1714

allow some items to be accessed quickly and reliably with marks, despite the
breadth and depth of the menu.

What is an acceptable error rate? The answer to this question depends on the
consequences of an error, the cost of undoing an error or redoing the command, and
the attitude of the user. For example, there is data that indicates, in certain
situations, experts produce more errors than novices (Sellen, Kurtenbach, & Buxton,
1990). The experts were skilled at error recovery and thus elected to sacrifice
accuracy for fast task performance. Our experiences with marking menus with six
items in a real application indicate that experts perceived selection to be error-free.
Other research reports that radial menus with up to eight items produce acceptable
performance (Hopkins, 1991). Marking menus present a classic time versus
accuracy tradeoff. If the marking error rate is too high, a user can always use the
slower but more accurate method of popping up the menus to make a selection.

Marking error rates can be compared to linear menu error rates but one must be
very cautious when comparing results from different experiments and different
interaction techniques. Even within the same experiment, subjects may not
consistently perform at the same level of accuracy, or the experimental task may
artificially inflate or deflate the error rate. We can, however, make some
approximate comparisons. In a study of selection performance using pop-up
hierarchic linear six-item menus of depth two, Nilsen (1991) reports error rates of
2.3%. Nilsen also reports that subjects accidentally popped up the wrong submenu
on their way to making a correct selection 6.3% of the time. In another study of
similar pop-up linear menus, Walker, Smelcer, & Nilsen (1991) report error rates that
range from 2.0% to 12.6% for subjects selecting from nine-item menus of depth 2.
These error rate figures are in the range of the error rates found in our experiment
for menus of up 8,2 menus. Therefore, we can conclude, with caution, that marks,
within the limits discussed above, can be as accurate as selection from linear menus.
It is also critical to note that this level of accuracy is not the expense of speed. For
example, in this experiment selection from 8,2 menus required on average 1.5
seconds. In Nilsen's experiment, selection from six-item linear menus of depth 2
required on average 1.8 seconds (six-item menus should be faster). We found that,
comparing the data from Nilsen and Walker experiments with this experiment, for
equivalent menu configurations, selection from linear menus is slower than selection

using marks.

125

Page 1578 of 1714

Q3: Is breadth better than depth? For menu structures that resulted in acceptable
performance, breadth and depth seems to be an even tradeoff in terms of response
time and errors. For example, accessing 64 items using 4,3 menus, is approximately
as fast as using 8,2 menus. Both have approximately equivalent error rates. Thus,
within this range of menu configurations, a designer can let the semantics of menu
items dictate whether menus should be narrow and deep, or wide and shallow.

Q4: Will mixing menu breadths result in poorer performance? The experiment did
not show this to be true. One possible explanation is that our menu labels strongly
suggested the correct angle to draw and thus eliminated confusion. A stronger test
would use less suggestive labels when mixing breadths. Our results do indicate that,
when there is enough familiarity with the menus, mixing breadths is not a
significant problem.

Q5: Will the pen be better than the mouse for marking menu marks? Overall, the
pen proved to be more suitable. However, for small menu breadths and depths, the
mouse produced approximately equivalent performance. We found this extremely
encouraging because it implies that marking menus are an interaction technique that
not only takes advantage of the pen but also remains compatible with the mouse. Of
course, it is worthwhile to note that some subjects thought their performance with
the mouse was just as good as with the pen, but that the mouse required more effort
to attain this level of performance.

These conclusions should be tempered by reminding the reader that this experiment
simulated an expert situation (i.e., subjects were asked only to select from three
different targets, thus they quickly became “expert” at those targets). We have
argued that this situation is reasonably realistic. Other realistic situations, such as
the performance of users on unfamiliar hierarchic marking menus with varying

targets, has yet to be explored.

54. SUMMARY

The chapter described an experiment to test the limitations of using marks to select
from hierarchic marking menus. Subjects were asked to select from marking menus
using marks only. Menus were chosen such that the subject would very quickly
learn and remember the mark required to perform a given selection. The breadth
and depth of these menus and the input device was then systematically varied to

126

Page 1579 of 1714

elucidate the effects of these variables. Subjects' time to perform selections and error
rates were collected and analyzed. Subject’s perceptions were collected using a

questionnaire.

The experiment revealed that error rate was the limiting factor. Menus of breadth 4,
8 and 12 were examined. Error rate became a factor when menu breadth was eight
or twelve. For these breadths of menu, error rate rose significantly when depth was
greater than two. For these menu structures with acceptable error rates, there
appeared to be an even depth/breadth tradeoff. When menus structures contained
equivalent numbers of items, subjects showed equivalent performance on both
narrow, deep menus and wide, shallow menus. It was also discovered that mixing
menus of different breadths in a menu structure did not adversely affect
performance. Finally, we concluded that the pen is more suitable for drawing
marking menu marks than the mouse, but the difference is not large.

This chapter has answered some basic questions about the design variables of
hierarchic marking menus. Specifically, how deep and wide can menu structures be
yet still allow a user to perform selections using marks? The following chapter takes
the answers to these questions and applies them to the design of hierarchic marking
menus in a pen-based application.

127

Page 1580 of 1714

Page 1581 of 1714

Chapter 6: Generalizing the concepts of
marking menus

6.1. INTRODUCTION

This chapter reports on a design experiment which deals with applying the design
principles of self-revelation, guidance, and rehearsal to interface design. Two issues
are explored. First, we examine the ramifications of integrating an interaction
technique that is based on these principles (marking menus) into a pen-based
interface. We found that it is possible to integrate marking menus into an interface
but several compromises needed to be made. Although these compromises change
the original design of marking menus, we show that the resulting design still obeys
our three design principles. Second, we examine how these design principles can be
applied to other types of marks besides zig-zag marks. With this goal in mind, we
developed an interaction technique that provides self-revelation, guidance, and
rehearsal for these other types of marks. These experiences provide a better
understanding of the role of marking menus in interface design and demonstrate the

value of the design principles.

The test bed for this design experiment was a pen-based electronic whiteboard
application called Tivoli (Pederson, McCall, Moran, & Halasz, 1993). Tivoli is
intended to be used in collaborative meeting situations, much in the same way that a
traditional whiteboard is used. Tivoli runs on a large vertical display, called
Liveboard (see Figure 6.1) (Elrod et. al., 1992), that can be written on with an
electronic pen (see Figure 6.2). Much like a whiteboard, several people can stand in
front of a Liveboard and write, erase, gesture at, and discuss hand drawn items.

129

Page 1582 of 1714

|

Figure 6.1: The Liveboard in use.

Tivoli, however, does more than just emulate marking on a whiteboard. Marks can
be edited, stored, and retrieved. Marks are remembered by Tivoli in terms of strokes.
A stroke is the path of the pen recorded from the moment the pen is pressed against
the screen and moved, until it is released from the screen. A screenfull of strokes
can be grouped into a “slide”, and saved for retrieval later. Typical operations on
strokes include moving or copying groups of strokes, changing the color or
thickness of the pen tip, and undoing edit operations. Users draw “edit marks” to
perform some of the editing operation described above. Figure 6.3 shows the types
of marks used. Other operations are triggered using graphical buttons, dialog
boxes, and menus.

One basic goal of our design study was to address the problem of operating
extremely large displays. It is envisioned that someday the Liveboard display surface
would be very large, and therefore, we wanted to address the problem of bringing
the commands to the user as opposed to the user moving to the commands.
Marking menus seemed suitable for this type of design since the menus can pop up
at any location and the marks can be made at any location.29 Furthermore, since

20 This is not completely true. Depending on the design of the interface a user may have to be over some
particular area or object on the display before a menu can be popped-up or a marking intepreted. However, the
point is that pop-up menus and marks help reduce the amount of movement a user must make to invoke
functions. For example, when a user wants to change pen color, traditionally one has to move from the drawing

130

Page 1583 of 1714

Tivoli has many commands, we felt that hierarchical marking menus might allow
access to many of these commands from a single location. The issue was whether or
not we could integrate marking menus into the existing Tivoli interface design to
solve some of these problems.

Another basic design goal was that Tivoli should be based on the unfolding interface
paradigm described in Chapter 2. For example, for a novice Tivoli user the interface
presents a limited set of functions —the type of functions one gets with an ordinary
whiteboard. However, additional functions can be discovered and used with
minimal instruction and experience. In effect, once a user has the “key” to unlock
the hidden functionality, Tivoli can be unfolded and additional functions invoked.
Using edit marks is a way to hide additional functions. The edit marks are not in
themselves self-revealing, and therefore, this serves as a way to hide functions from

a novice.

area to a color pallet and back. With a pop-up menu, this trip is avoided since the menu can be popped-up over
some white space in the drawing area.

131

Page 1584 of 1714

Tivoli 2.2 of Aug 27 1992 11:25:51

e

XERDX
ivate
Data |

[v ont
EEAREN

) e Sy%

Y @Mﬂ \/

Unde/redo: Clipboard: draw gesture wipe Pen widths:
EIED ﬂ-- [+ 2] (][] (2])& (]

?
0
ﬂ'-'-"

Figure 6.2: An application called Tivoli, running on Liveboard, emulates a
whiteboard but also allows drawings to be edited, saved and restored.

Given these basic goals, we explored two problems. The first problem was to
determine which Tivoli functions would be suitable for marking menus, and how
marking menus could be integrated into the existing interface. The second problem
was how to provide self-revelation, guidance, and rehearsal for the edit marks in

Tivoli.

6.2. INTEGRATING MARKING MENUS INTO A PEN-BASED INTERFACE

We decided we would explore design issues by using marking menus to control pen
settings in Tivoli. In Tivoli, the pen can be set to different colors and thicknesses.
Originally, these settings were performed using a pallet of buttons which had an
individual button for each pen thickness and color. There were several reasons why
it would be advantageous to control these functions using marking menus. First, the
original buttons consumed a large amount of screen space. Replacing these buttons

with a marking menu would free up this screen space. Second, changing pen

132

Page 1585 of 1714

settings was a frequent operation while drawing. Changing settings meant many
trips to and from the button pallet. A marking menu could be made to pop up at the
drawing location, thus avoiding trips to the button pallet. Third, no intuitive set of
marks exist for controlling pen settings. Marking menus could provide a set of
marks and a method for learning those marks.

6.2.1. Adapting to drawing and editing modes

Figure 6.4 shows the marking menu we used to control pen thickness and color. The
range of items is deliberately small. We felt that, in Tivoli, users need only a few
different thicknesses and colors for the pen. This is like real whiteboards, where the
number of markers is limited. The menu items “inc” and “dec” allow a user to
increment and decrement the pen size to get custom thicknesses. The menu appears
when a user presses-and-waits with the pen anywhere in the drawing area. This
allows a user to change pen settings without having to move the pen from the
current drawing location.

133

Page 1586 of 1714

Figure 6.4: The hierarchical marking menu used to control pen settings in Tivoli.
The menu can be popped up by pressing-and-waiting instead of drawing.

There is a complication with this design. Normally, a marking menu allows a user
the alternative of drawing a mark to select a menu item. However, in the situation
just described, Tivoli is in the “drawing mode” (i.e., all marks are interpreted as
drawings, not commands). A mark is interpreted as a command in Tivoli when it is
drawn while a button on the pen (the command button) is pressed. Thus, the design
of the Tivoli's interface requires that menu selection marks (which are actually
command marks) be performed with the command button pressed. However, this
deviates from the rehearsal principle slightly: the physical action of making a
selection mark is the same as selecting from the menu, but the command button
must also be pressed. All the directional motions remain the same so we can be
hopeful that using the menu still develops skills useful for learning and making the
selection marks.

We have no empirical data to verify that, despite this deviation in rehearsal, skills
developed in using the menu are still transferred to using the marks. However,

134

Page 1587 of 1714

when using Tivoli ourselves, because of our experiences with the menu, we were
able to recall the spatial layout of the menu, and issue marks. The role of spatial
memory and physical movement memory in the transition from menus to marks is a

topic for future research.
6.2.2. Avoiding ambiguity

Typically interfaces that use marks as commands identify marks by the shape of the
mark or the context in which the mark is made. This discussion discriminates
between marks intended for marking menu selections and other kinds of marks
intended for commands. For the sake of brevity in this discussion, we will refer to
these other kinds of marks as iconic marks, although the meanings of these marks
may not be strictly based on iconic shape (see section 6.3.1 for further discussion).
Also for the sake of brevity, we refer to marking menu's zig-zag marks as menu
marks. The important point is that the potential exists for marking menu marks
(menu marks) to be confused with iconic marks. Figure 6.5 shows an example of
two marks for a menu structure of breadth eight and depth of two which are the

same as some of the iconic marks in an early version of Tivoli.

These types of ambiguities are not peculiar to marking menu marks. Many
interfaces that use marks exhibit this problem. For example, a classic problem is
drawing an “O” for the letter “O” and having it confused with a small circle (where
circling performs a selection). We present three strategies for overcoming this
problem for marking menus, and the advantages and disadvantages of each one.

We then describe how a one of these three strategies was used in Tivoli.
Avoidance

One way to avoid ambiguities between marking menu marks and iconic marks is to
eliminate the ambiguous marks from the marking menu set. This can be done by
avoiding the placement of menu items at locations in a menu structure that would
result in ambiguous marks. These “avoided locations” can be occupied by null
menu items. A mark that selects a series of null items is then considered no longer a

marking menu mark, and therefore ambiguity is eliminated.

135

Page 1588 of 1714

Marking menu marks Tivoli marks
for breadth 8, depth 2 menu

Insert text

Move

Figure 6.5: The marks used for a marking menu may conflict with other marks. The
example shows two marks used for selecting from a marking menu that can be
confused with edit marks in an early version of Tivoli. A dot indicates the starting
point of the mark.

One drawback to this approach is that the number of items a menu can hold is
reduced and “unnatural” gaps may appear in the menus. For example, suppose a
menu contains an ordered set of font sizes. If one of the menu items is not used,
then a gap appears between two menu items that logically should appear adjacent to
one another. This may make learning the layout of the menus more difficult.

Another drawback is that eliminating a menu item from certain location forces that
the item to be placed somewhere else. Menu structures can be expanded to hold
displaced items either in breadth or in depth. As shown in Chapter 5, expanding in
breadth or depth slow menu selection and increases errors. Furthermore,
eliminating items may result in losing on-axis items, which have been shown in
Chapter 5 to enhance performance. Ultimately, rearranging menus may lead to
menus that appear to be oddly structured, and this results in menus that are hard to
learn, slow to use and error-prone.

These drawbacks makes avoidance a poor solution. In certain restricted cases,
though, it can be a simple and easy solution to implement. For example, suppose
the only conflicting mark is a horizontal stroke which is to the right, and the

marking menu only needs to contain six items. The simple solution is to use an

136

Page 1589 of 1714

eight-item menu and the make the “right stroke” menu item and some other menu
item null items, and populate the remaining menu items with the six commands. A
variation on this strategy is to change the iconic marks. This, of course, avoids the
problems with modifying a marking menu as described earlier, but in certain
situations may cause confusion for a user when obvious or common marks are

replaced by non-obvious, uncommon iconic marks.
Different context

Another design alternative is to allow iconic marks and marking menu marks of the
same shape to coexist but determine their meaning by the context in which they are
drawn. Two dimensions in which the context can vary are time (i.e., when the
system is in a certain mode a mark has a certain meaning), and by space (i.e., a

mark’s meaning varies depending on the location at which it is drawn).

Distinguishing the meaning of a mark by the context of time leads to moded
interfaces. An interface where a user must enter a “marking menu mode” to issue a
marking menu mark seems to defeat the purpose of making a mark—a fast way to
invoke a particular command. However, if the cost of switching modes is very low
and properly designed (Sellen, Kurtenbach, & Buxton, 1992), this can be an effective
technique. An example of low cost mode switching is a dedicated pop-up menu
button on the mouse which is found in many windowing systems such as X711 (X11,
1988) and Open Look (Hoeber, 1988). After developing the habit of holding down the
button to pop-up and maintain a menu, a user no longer perceives using a menu as a
mode. One can imagine such a similar design for marking menus where a user
presses down a button on the pen or mouse to indicate to the system that the mark is
intended for the marking menu. The obvious disadvantage to this scheme is that a
hardware button must be dedicated strictly to a menu. Many pen-based system
pens do not have buttons, or the buttons have already been assigned other functions.
For example, in Tivoli the two buttons on the pen were already used for other
functions. The first button is used to distinguish between drawing mode and
command (edit mark) mode. The second button is used to control whether the pen
is in drawing mode or erasing mode.

Another type of context that can be used to distinguish the meaning of a mark is
location. For example, a stroke through a word may mean “delete the word” while
the same stroke starting on a graphic may mean “move the graphic”. This type of

137

Page 1590 of 1714

scheme works well with object oriented direct manipulation systems, where the
combination of an object and a mark can be used to distinguish a mark's meaning.
Of course, distinguishing meaning by location will not work if the same location

must accept two identically shaped marks.

Marking menus work very well in identification by location situations. For example,
on a different project, we found an effective interaction technique can be created by
embedding a marking menu in an ordinary graphical button. In effect, this extends
the functionality of the button. Along these lines, we developed a system called
HyperMark which allows marks to be used in Apple's Hypercard (Apple 1992). For
example, if HyperMarks are added to a button, not only does a button react to a
mouse press, but marks can also be drawn on the button which trigger other actions.
This results in the interface having fewer buttons and faster interactions in some
cases. In effect, HyperMarks are similar to pop-up menus where additional
functions are hidden under a button until popped up. However, with HyperMarks,
a user does not have to wait for a menu to pop up, visually search the menu and
point to an item. Instead, a mark triggers the item directly. Our intention was to
permit ordinary Hypercard users or programmers to incorporate marks into their
own Hypercard stacks.

With HyperMark, different buttons accept the same mark but the interpretation of
the mark is different. Figure 6.6 shows an example of different locations having
different menus but reusing the same set of marks. The meaning of the marks is
disambiguated by the location of the mark. We feel this is a reasonable design as
long as the common commands (scroll up and scroll down, for example) are kept
consistent from button to button.

The disadvantages of discriminating by location are, first, it does not eliminate the
problem if the same location accepts two ambiguous commands and second, it
consumes screen space. Consumption of screen space results in situations where the
desired location is not displayed on the screen and must be acquired by the user.
This can slow interactions and defeat the purpose of using marks.

138

Page 1591 of 1714

= NewsStack = =

HeadLines Buxton falls from horse Hlorint toggea % detete tagged | [Noaren... f2-E3 W show aumor JJrs€
i ivel Noted researcher and squistrian, Bill Buston, Elvis Found Alive! Notad researcher and equistrian, Bill Busor,
Elvis Found Alive) shattered his ankle While riding i preparation for ths vis Found Aye . shattered iz ankle while riding in preparation for the
Kurtenbach Wins Grand Prix! Otympic trials. Bwston fell from his horse meurring Kurtenbach W' oad Jjand Prix! Olympic trials. Buxton fell from his horse incurring
Baudel Wins Turing Award the crippling injury Baudel Wins TorRg Award the crippling injury
Hoffa's Dentures Sighted “1 tlarne it on bad interface design’, says the esteemed Hoffa's Dentures Sighted "I blamme it on bad interface design”, says the esteerned
o R~ ressarcher " The way we control horses novadays is - . ressarcher. " The way we control horses nowadays is
Victory Is Ours” claims loser antiquaited. Reins and spurs may have been acceptatie Victory Is Ours" claims loser anfiquaited. Reins and spurs may have been acceptable
Buxton falls from h 200 years ago, but today ve can do better. Iam . < 200 years ago, bu o better. Iam
xton fa'ls trom horse proposing a joy stick control, embedded in the saddle Buxton f proposing 2 joy st|_ et page Joided in the saddle
Madonna joins IRG where historically the saddle horn has been placed. Madonna B where historically TE TqTE ToTn has been placed.
The Boss gels sued This fiis my riding style better anyvay” The Boss This fils oy riding style febier anywray”
8 g
UFO found in shoe box “The design will exploit everyday riding skills UH : “The ryday riding skills
(ERS)", claims Busion, "Th joystick vill work just (ERS)' b joystick will work just
Stanley Cup won, but lost like neck reining, so this should give experienced Sta but lost like neck reining, so this should give experienced
100 Monkeys write novel riders aleg up right from the start” 100 Mon el riders a leg up right fromy the start”
Beatles sue Stones Busdon has fallen from other modes of transportation Beatles Buston has fauJ:l"’E”'““’ page Icf transportation
in the past, “I've heard he's laid dovn a fow in the past. "I've Teard e's a8 down a few

(@) (b)

Figure 6.6: A simple news reader program in Hypercard that is controlled by
marking menus. (a) shows the four major area of the screen: “Headlines”, a list of
articles, the title of the current article, and text of the article. (b) shows the marking
menus associated with each of these areas. When marks are used to select from the
menus the context (the location) of the mark contributes to its meaning.

Distinguishing tokens

Distinguishing marks by tokens involves augmenting a mark with some
characteristic that disambiguates it. Augmentation can be of several forms. The
shape of marks can be augmented. Alternatively, the dynamics of drawing the mark

can be used to augment a mark.

Figure 6.7 shows how an augmenting “dot” at the start of a marking menu mark is
used to indicate the mark is intended for a marking menu. An augmenting token,
however, does not have to be at the start of the mark. The token could appear as a
prefix to the mark, within the mark or as a suffix to the mark. However, if the mark
is not distinguished from the start, then mark-confirmation may lead to ambiguities,
since the system may identify the partially completed mark as both the start of a

marking menu mark and an iconic mark.

139

Page 1592 of 1714

Figure 6.7: Two marking menu marks that are augmented by a “dot” to distinguish
them from other types of marks in an interface.

There are many alternatives to “dot”. Any sort of token that guarantees distinction
could be used. In practice, we found “dot” easy to draw and easily and reliably
recognized by the system.?l We also found that one could make an analogy between
it and press-and-wait. In Tivoli, pressing-and-waiting in drawing mode popped up
a marking menu to change pen settings. “Dot” could be thought of as a mark in
command mode that mimicked press-and-wait, and allowed access to the pen

setting menu.

Another way of distinguishing marks is by dynamics. For example, in some systems
the speed at which a mark is drawn determines its meaning. For example, a slow
up-stroke may mean “next page”, while a quick up-stroke (a “flick-up”) may mean
“go to the end of the document” (Go, 1991). In Tivoli, we experimented with
dynamic schemes and found several problems. First, flicks are not consistently
recognized because the speed of a flick varied with direction and the user's
dexterity. Also, quick movements sometimes caused the pen to skip off the display
surface before the speed of a flick could be attained. Flicking was not very reliable
because of these problems. We also experimented with prefix flicks and suffix flicks.
Prefix flicks made drawing the remaining mark too hard: slowing the pen down
after drawing the flick to draw the rest of the mark, was difficult. Alternatively,
drawing the entire mark at flick speed was too hard. Suffix flicks were more
reliable: we could safely draw the first part of the mark then add a “flick flourish”
on the end of the mark to indicate it as a marking menu mark.

21 We occasionally operated Tivoli with a mouse, although it is intended to be operated with a pen. In this case
y op g P P

we found a "dot" very difficult to draw. Thus we would not recommend the use of the "dot" for mouse driven

system that use markings.

140

Page 1593 of 1714

Recognizing flicks was further complicated by limitations in the input event
software. On occasion, input events are buffered. Time stamping of input events
occurs after events are read from the input buffers and therefore, at times, these
buffering delays confuse the flick recognition process. This problem could be
overcome by immediately time stamping all events. Nevertheless, this indicates that
tracking dynamics place special demands on input software.

Even if flicks could be made reliable they still present a problem: how can flicks be
demonstrated to a user? The “dot” is easy to learn because a user can simply be
told: “make a dot, about this big”. Flicks on the other hand are dynamic in nature
and are best learned by demonstration and practice. Section 6.3.2 discusses issues
concerning self-revelation of mark dynamics.

To summarize, we have presented three strategies to avoid ambiguity between
menu marks and iconic marks: avoidance, different context, and distinguishing
tokens. Based on the various advantages and disadvantages each strategy just
discussed, we elected to use a distinguishing tokens strategy in Tivoli. Specifically
we used the “dot” prefix mark shown in Figure 6.7. Section 6.4 discusses our

experiences with this strategy.
6.2.3. Dealing with screen limits

One problem that can occur in a pop-up menu system is that, when a menu is
displayed near the edge of a screen, some portion of the menu may be clipped-off.
This may make it impossible to see or select some items. We refer to this as the
screen limit problem. Marking menus suffer from this problem because they use

pop-up menus.

One possible solution to the screen limit problem is not to allow menus to be
displayed too close to the edge of the screen. This implies placing menu “pop-up
spots” some safe distance away from the edge of the screen. While this is a
workable solution, it is not practical when menu hierarchies are deep, since pop-up
spots may have to be located a large distance from the edge of the screen to keep the
submenus from hitting the edge of the screen. Furthermore, it seems to be an
unreasonable constraint given popular interface design. For example, most drawing
programs have scrollable windows, and a user is allowed to scroll a window till

menu pop-up spots are close to the edge of the screen.

141

Page 1594 of 1714

Another solution to the screen limit problem is constraining., Most pop-up menu
systems constrain menus to display entirely on the screen, even if the location from
which the menu was invoked would cause some portion of it to be clipped-off. For
example, the menus in Open Look use this solution (Hoeber, 1988). Constraining,
however, causes problems when hierarchic menus are used. In this case, accessing a
series of menus causes each menu to hit the edge of the screen. We refer to this
problem as crowding. When crowding occurs, users end up making a series of
selections from menus that are against the screen edge and this can sometimes make

menu selection slow and error-prone.

Hopkins (1991) uses a constraining solution for radial menus. Since marking menus
use radial menus, it is worthwhile to consider this solution. With Hopkins' radial
menus (or pie menus), normally, a pie menu pops up centered around the cursor
location. However, when the cursor is close to the edge of the screen, this results in
some portion of the menu being clipped-off, To overcome this problem the menu is
displayed not centered around the cursor, but shifted over so it is completely
displayed. The cursor is then reset by the system to the center of the menu (this is
referred to as “warping” the cursor). At this point, the user can make a selection in

the usual way.

Problems occur with Hopkins' solution when the input device is an absolute device
like the pen, and this makes it unsuitable for marking menus in Tivoli. The problem
is that the system cannot change the location of pen (given the constraint that the
cursor always appears under the tip of the pen). An example demonstrates this.
Suppose a radial menu is popped up too close to the edge of the screen. If the menu
is constrained to display completely on the screen, the pen tip is no longer in the
center of the menu. The pen tip generally ends up located in one of the menu items.
This immediately highlights the item. If the highlighted menu has a submenu, this
menu would then be displayed. Thus, a user inadvertently descends the menu
hierarchy. Even if the menu item has no submenu the user would still have to move

the pen out of the menu item if the menu item was not the desired one.

We propose the following solution which permits marking menu selections near the
edge of the screen when using a pen. When the pen is pressed close to the edge of
the screen, the marking menu appears centered around the pen tip cursor with some
portion of it clipped-off. If the clipped-off portion is large enough to obscure some

menu items, another special menu item (referred to as the “pull-out” menu item)

142

Page 1595 of 1714

appears on the screen (see Figure 6.8). At this point a user can select the visible
menu items in the normal fashion. However, if the user moves the cursor to the
pull-out menu item, the menu is redisplayed centered at the location of the pull-out
item. The pull-out menu item is located far enough away from the edge of the
screen so that the menu is completely visible when redisplayed. At this point the
pen is located in the center of the menu and all items are accessible. This same
scheme works with hierarchic menus. Every time a submenu hits the edge of the

screen, a pull-out item is displayed.

143

Page 1596 of 1714

Figure 6.8: A “pull-out” menu item allows a user to access menu items that would
be clipped-off by the edge of the screen. In (a) a user has displayed a marking menu
but a portion of it is clipped-off by the edge of the screen. Because of this, a pull-out
item appears (the gray circle). In (b) when the user drags over to the pull-out item,
the menu is redisplayed so all items can be accessed.

Marks also have a screen limit problem. If one starts a mark too close to the edge of
the screen one may run into the edge. As with menu mode, the input device used
makes an important difference in a solution to the problem.

If a relative input device like the mouse is used, it is possible for users to draw
marks “beyond” the edge of the screen. Hopkins (1991) has proposed a solution that

144

Page 1597 of 1714

is suitable for marks. Hopkins’ pie menus use a technique called mousing-ahead
which is similar to marking but the path of the cursor leaves no ink-trail (see Section
2.3.1 for a complete explanation of mousing-ahead). Mousing-ahead is possible
even when the cursor hits the edge of the screen. Although the cursor is constrained
to the area of the screen, mouse movement after the cursor hits the edge of the
screen is still tracked. Thus, a user can mouse-ahead beyond the edge of the screen.
Applying this solution to marks, a user could draw marks beyond the edge of the
screen, although some portion of the mark would not be visible. This solution is
important because it preserves the principle of rehearsal. The movement to select
from the menu must be the same as movement to make a mark and this happens
even when menus and marks hit the edge of screen.

If the input device is a pen, drawing a mark close to the edge of the screen behaves
logically: if the mark does not hit the edge of the screen, it can be performed as
usual; if the mark does hit the edge of the screen, a user cannot physically draw it.
This behavior mimics the way pen and paper works —if one is too close to the edge
of the page one cannot draw certain marks.

We still need to, however, be able to apply marks to objects that are near the edge of
screen. To do this we mimic pen and paper traditions. Generally, when something
is too close to the edge the page to fit, a line is drawn from the object, out to some
clear space and then an annotation is made. We propose a similar design. Suppose
an object is too close to the edge of the screen for a certain mark to be made. A user
can draw a line, out to some clear space on the screen, then make a “pull-out” mark,

followed by the desired mark. Figure 6.9 shows this.

6.3. APPLYING THE PRINCIPLES TO ICONIC MARKINGS

Marking menus provide self-revelation, guidance, and rehearsal for “zig-zag” types
of marks, specifically, the type of marks that are the byproducts of selecting from
radial menus. Can a similar mechanism be provided for iconic marks? As a design
experiment we decided to see if we could design mechanisms similar to marking
menus but for the edit marks in Tivoli. Thus we attempted to design ways to self-
reveal these marks, guide a user in making them, and have this be a rehearsal which
builds skills for expert behavior.

145

Page 1598 of 1714

® 4

Figure 6.9: Using a “pull-out” mark to apply a mark to an object close to the
screen edge. In (1), the pull-out mark is drawn (a line followed by a dot). In (2), the
system has turned the mark into a pull-out object. A mark is then drawn in the pull-
out object, in (3). In (4), the mark is applied to the object that is “pulled out”, and it
is deleted.

Another design goal was ease of programming. One of the attractions of marking
menus is that an interface programmer can implement interactions which provide
self-revelation, guidance, and rehearsal with something as simple as a pop-up menu
subroutine call. We wanted a mechanism for iconic marks that was just as
convenient to program. The idea was to avoid creating custom code to self-reveal

each different type of mark.
6.3.1. Problems with the marking menu approach
Overlap

Suppose we strictly applied the marking menu design to the marks shown in Figure
6.3. In other words, display all the possible marks a user could make starting from a

146

Page 1599 of 1714

certain location. Figure 6.10 shows the result of this approach. Marks overlap and
can cause confusion. Part of the problem is that iconic marks are not suitable for
displaying in this manner. Menu marks, however, are suitable because of their
directional nature. Another problem in the example is that each entire mark is
displayed. If all the marks of a hierarchical marking menu were displayed, this too,
would result in overlap.

Type-in point

Select
Paste

Figure 6.10: Overlap causes confusion when using the marking menu approach to
self-reveal other types of marks. Here we display the commands available when
starting a mark from a clear spot in the drawing region of Tivoli.

Not enough information

A display like Figure 6.10 gives little contextual information. For example, the
important thing about the “Select” mark is that it should encircle objects and the

shape of the circle can vary. This type of information is not shown in Figure 6.10.

The meaning of several edit marks in Tivoli is determined not only by the shape of
the mark but also by the context in which the mark is made. For example, a straight
line over a bullet-point moves an item in a bullet-point list, while a straight line in a
margin scrolls the drawing area. These types of inconsistencies can potentially
confuse the user. To avoid these problems, we wanted to provide context sensitive
information about which edit marks a user can make over what objects. Informally,
we wanted a user to be able to answer the question: “what marks can I draw on this
object or location?”. Since marking menus are sensitive to context (i.e., the contents
of a menu may vary depending on where it is popped up), we hoped that some
similar mechanism could be designed for iconic marks in Tivoli.

147

Page 1600 of 1714

For mark sets in general, besides Tivoli's iconic mark set and the marking menu
mark set, the following characteristics may contribute to a mark's meaning and this

type of information therefore needs to be self-revealed.

Shape: This is the case where a particular shape is an icon for a certain command.
For example the “pigtail” shape is an icon for the delete command.

Direction: Sometimes the direction of a mark affects its meaning. For example a
up-stroke means “scroll up” while a down-stroke means “scroll down”. The shape
of the mark is basically the same but the direction or orientation of the mark has

meaning.

Location of features: The location of particular features of a mark can affect its
meaning. For example, the summit of the “Type-in” point mark shown in Figure
6.10, determines the exact placement of the text cursor.

Dynamics of drawing: How a mark is drawn can affect its meaning. For example, a
flick could mean “scroll to the end of document”, while a slow up-stroke could
mean “scroll to the next page”.

6.3.2. Solutions
Crib-sheets

Interactive crib-sheets self-reveal marks without the overlap problem. When the
user requires help, a crib-sheet can be popped up which shows the available marks
and what they mean. The user can then dismiss the crib-sheet (or “pin” it down on
the side) and make a mark. In Chapter 1, two systems that use mechanisms similar
to this were described. Crib-sheets can be as succinct as a simple list of named
marks or as elaborate as multi-page explanations of the marks in great detail. Thus a
crib-sheet could contain complete information on all the characteristics of a mark.
However, since crib-sheets are for reminding and guidance, they are usually
succinct.

Figure 6.11 shows the crib-sheet technique we designed for Tivoli. The design
works as follows. Similar to a marking menu, if one doesn’t know what marks can
be applied to a certain object or location on the screen, one presses-and-waits over
the object for more information, rather than marking. At this point, rather than a
menu popping up as in the marking menu case, a crib-sheet is displayed. The crib-

148

Page 1601 of 1714

sheet displays the names of the functions that are applicable to the object or location,
and example marks. If this is enough information, a user can draw one of the marks
in the crib-sheet (or take any other action) the crib-sheet automatically disappears. If
the pen is released without drawing mark, the crib-sheet remains displayed until the

next occurrence of a pen press followed by a pen release or a press-and-wait event.

Iha
selection

Figure 6.11: Self-revealing iconic marks in Tivoli: The user has selected the word
“Tea” by circling it. To reveal what functions can be applied to the selection, the
user presses-and-waits within the selection loop. A crib-sheet pops up indicating the
context (“In a selection”) and the available functions and their associated marks.

This design has several important features. First, the system displays the crib-sheet
some distance away from the pen tip so that the crib-sheet does not occlude the
context. This leaves room for a user to draw a mark. Second, the significance of the
location of the pen tip is displayed at the top of the crib-sheet (i.e., in Figure 6.11 “In
a selection” is displayed at the top of the crib-sheet). This is useful for revealing the
meaning of different locations and objects on the screen.

This design obeys the principles of self-revelation, guidance, and rehearsal. The
crib-sheet provides self-revelation, and a user can use the examples as guidance
when drawing a mark. Rehearsal is enforced because a user must draw a mark to

149

Page 1602 of 1714

invoke a command. For example, a user cannot press the delete button on the crib-
sheet to perform a deletion. The user must draw a delete mark to perform a

deletion.
Animated, annotated demonstrations

While the crib-sheet does self-reveal contextual information about marks, it still
lacks certain types of information. For example, one static example of a mark relays
little information about variations and features of a mark. It has been shown that
people need good examples to help visualize procedures (Lieberman, 1987). Ideally
a demonstration of the mark in context should be provided, similar to what one
receives when an expert user demonstrates a command. The tutorial program in
Windows for Pen Computing works like this. In the tutorial, a user is shown how

marks are made by animated examples.

Demonstrations can be provided through animation. Baecker and Small have
described how animation can assist a user, and how the animation of icons can be
effective (Baecker & Small, 1990; Baecker, Small, & Mander, 1991). The idea of
animated help is not new. Cullingford (1982) used “precanned” graphical
animation coupled to natural language contextual messages to provide help. Feiner
(1985) used graphical explanations to illustrate the problem solving process of real
world physical actions. Feiner's system, however, was not sensitive to the user's
current context. A research system, called Carfoonist, which automatically generates
context sensitive animated help for direct manipulation interfaces, has been
developed (Sukaviriya & Foley, 1990; Sukaviriya, 1988). The major difference
between Cartoonist and the system we are about to describe is that Cartoonist is
designed for direct manipulation interfaces, not mark-based interfaces. As we shall
see, an animation of drawing a mark must have special features to make it
meaningful and helpful. Specifically, in our system, the animation of a mark is
annotated with text for explanation. Cartoonist does not support annotations.
Furthermore, Cartoonist relies on an extensive knowledge base to describe the
application and interface. The system we describe has a vastly simpler
implementation which is compatible with existing user interface architectures.

Crib-sheets could be animated. A crib-sheet could show how to draw a mark,
variations on a mark, and the various features of a mark. This certainly would help
a user understand how a mark should be drawn. However, crib-sheets illustrate

150

Page 1603 of 1714

marks outside of the context of the material that the user is working on, and this can
make it difficult to see how the mark applies to the context. Marking menus, on the
other hand, have the advantage of showing the available marks directly on top the
object being worked on,.

To solve these problems we extended the function of the crib-sheet by adding
animations of marks which take place in context. If the crib-sheet does not provide
sufficient information, a demonstration of a mark can be triggered by pressing the
“demo” button on the crib-sheet. The demonstration of the mark begins at the
location originally pressed. The demonstration is an animation of the drawing of
the mark which is accompanied by text describing the special features of the mark
(see Figure 6.12).

There are several important aspects to this design:

* Marks are shown in context. The animation of the mark is full size, and emanates
from the exact location originally pressed on by the user. A user can trace the

animated mark to invoke the command.

* Variations in marks can be demonstrated by multiple animations. There is
usually a variety of ways to draw mark. For example, a pigtail, signifying deletion,
may be drawn in any direction, clockwise or counterclockwise, big or little. To
prevent users taking a single animated example too literally, we show variations by
animating multiple examples of mark. Usually, two examples seems to be enough.

* Information about features is provided by annotations. Not only is the drawing
of a mark animated but the animation is annotated with text to explain features or
semantics of marks (e.g., in Figure 6.12 “A pigtail deletes the selected objects.”). In
addition, features of the application can be displayed. For example, in Tivoli
scrolling marks can only be drawn in the margins of the drawing area, but the
borders of margins are not visible.22 In situations like this, the animation can
display these features to clarify matters. Annotations appear in sequence during
the

22 This was done to keep the drawing area uncluttered.

151

Page 1604 of 1714

ha
selecton

Figure 6.12: A demonstration of a particular function can be attained by pressing its
icon. In (1) the user presses on the delete icon for more information. This triggers an
animated demonstration of the mark with text annotation to explain its features. This is
shown in (2), (3) and (4). In (5), the user traces along the example mark to invoke the
function. When the pen is lifted, the action for the mark is carried out, and the crib-
sheet and animation disappear (shown in (6)).

152

Page 1605 of 1714

mark’s animation, and they are timed to remain on the display long enough for the
user to be able to read them.

* Animation can be controlled. A long series of animations takes quite a bit of time
and this can be tedious for the user. By pressing a button in the crib-sheet,
individual animations of the marks can be started or stopped. Pressing “Demo All”
causes the system to cycle through all the animations. Pressing the “Dismiss”
button stops the animation and removes the crib-sheet. As in the case of the crib-
sheet by itself, the moment a user completes a mark, the crib-sheet is removed and
the animation terminates.?3

* The user is not required to make a mark from the crib-sheet. The user is free to
perform any mark at any location on the screen while the animation is running. As
before, the moment the user completes a mark, the animation and crib-sheet are
removed. The user can also choose to not draw a mark by tapping the pen against
the screen. This also removes the animation and crib-sheet.

Architecture

A goal for our crib-sheet/animation design was that it be easy for an interface
programmer to use. We designed the software architecture with this in mind. To
describe the characteristics of this architecture, we will describe an interactive
computer system as consisting of two parts, an application module and animator
module. The application allows the user to interact with a particular domain of
materials by means of marks (i.e., Tivoli is the application and the materials are free-
hand drawings). The animator is called by the application to show the marks to the
user. The animator is generic —it can be made to work with different applications.

The design of the animator raises many specific design problems. We describe the

animator by laying out the problems and describing how they are addressed.

How does the animator get invoked? This is the job of the application. As with a
marking menu, the user deliberately presses-and-waits while the command button
pressed. The application detects this action and then calls the animator.

23 The animation actually freezes when a user begins drawing a marking so a user can trace the animated
mark. The animation is removed from the screen when the user finishes drawing the mark and raises the pen.

153

Page 1606 of 1714

How does the animator know which marks to animate? In order to make an
application work with the animator, an application-specific Mark Animation
Database (MAD) must exist. The MAD contains descriptions of examples of marks
grouped by application context. When the user presses-and-waits, the application
calls the animator with a description of the current context. The animator can then
select the marks to be animated based on context.

How are marks and contextual features animated? In order to understand how
marks are animated it is convenient to first understand the structure of MAD.
Figure 6.13 shows an example of the structure of MAD. MAD consists of annotated
examples of marks which are grouped by context. When the application calls the
animator with a context, the examples corresponding to the context are retrieved
from MAD. When a user requests a demonstration, the animator animates these
examples. A mark is a sequence of x and y coordinates which is animated by
incrementally displaying the mark. The marks that appear in MAD were originally
drawn by hand. When animating a mark the animator uses the same drawing
dynamics as the original hand-drawing (a technique developed by Baecker (1969)).
In this way, dynamics of drawing can be revealed and the speed of an animation can
be controlled by the constructor of the database. Annotations are labeled by where
and when they should occur in the animation cycle (e.g., “start” and “end”). The
pacing of the animation of text annotations is determined by length of text: after an
annotation is displayed the animator pauses for an amount of time that is
proportional to the length of the text before continuing with the rest of the
animation. This gives a user time to read the annotation and then watch the rest of

the animation.

How are variations shown? Variations are shown by animating another example of
a mark. A mark in MAD can have more than one example. If an extra example is
tagged as “variation”, it is then included in the animation along with the original

example.

How is the crib-sheet constructed? When the animator retrieves the examples from
MAD, labels for the crib-sheet buttons are extracted, and example marks are shrunk
down to be displayed in the buttons. We found it convenient to designate certain

example marks for shrinking. Therefore, a function in MAD can contain an extra

154

Page 1607 of 1714

example mark that is tagged for use as an “icon” in the crib-sheet. If no “icon”
example is found, the animator shrinks the first example mark it finds.

How are application features animated? Like text annotations, application features
appear in MAD. If during an animation an application feature needs to be
displayed, the animator makes a call-back to the application. For example, the call-
back may ask the application to display the margin boundaries of the drawing area.
Therefore, a call-back protocol must exist between the application and animator.

context: "in a selection"
item: Delete
example:

end: "deletes the
selected objects"

S

start: "A pigtail"

item: Reselect
example:

start: "A loop"

end: "reselects
objects"

context: "on an object”

Figure 6.13: An example of the structure of the Mark Animation Database (MAD).
Annotated examples of marks used for the crib-sheet and animations are grouped by
context and function.

How are marks animated in constrained spaces? Assume that a user invokes the
animator near the bottom of the drawing area, and that one of the possible marks at

that point is a pigtail. At the bottom of the drawing area, there is no room to draw a

155

Page 1608 of 1714

pigtail downwards, but there is room to draw it upwards. Thus, the animator
should show only pigtails that fit in this place. The solution to this problem lies in
the fact that MAD contains multiple examples of marks. When the animator
retrieves examples from MAD it looks for examples that will fit in the space it is
working with. Thus, MAD should be set up with many examples of each mark, so
that the animator can find an example for any location. We found as little as four
different examples were sufficient. In the event that an example which fits cannot be
found, the animator generates and displays a “no room message (e.g., “not enough
room to demo pigtail here”). This tends to only happen when there is not enough

room for a user to actually draw the mark.

How is MAD constructed? MAD is constructed by drawing the examples in the
form shown in Figure 6.13 and then copying these examples into MAD. For Tivoli,
we constructed the examples by drawing them in Tivoli. Thus we could easily
design examples that fit in constrained spaces in Tivoli by drawing them in those
spaces. For example, we drew instances of pigtails that fit at the top, bottom, left
and right edge of the screen. The animator does not have to be sophisticated at
laying out the animations—the layouts are determined by the constructor of the
examples. The animator need only check if an example will fit at a certain location.
If it does not fit, it merely looks for another example.

More sophisticated features

The design for the crib-sheet/animator and MAD previously described has been
implemented. Section 6.4 describes experiences using it. We now discuss future
designs which are currently not implemented.

One problem with our current implementation is that, although animations do
appear in context, they do not “work with” the context. For example, the animation
of a loop being drawn to select objects sometimes doesn't enclose any objects. The
problem is the animator has no knowledge about the application objects underlying
the animation.

A more advanced version that we have not implemented extends the notion of
parameterized marks to allow them to utilize application objects in the current
working context. For example, assume we have a mark to move a list item. There
would be two typed parameters to this mark: the list item and the location to which
it is moved. In Tivoli, the list item would be a set of strokes between two “blue

156

Page 1609 of 1714

lines” (like the blue lines on lined paper), and the location would be a blue line
between two other list items. When the application calls the animator and tells it to
animate a move-list-item mark, it would have to also give the animator some actual
items and locations in the current context. The animator would then deform a
move-list-item mark to fit the items and locations. Thus, the user would see a real
example in the current context.

Having examples that manipulate the objects in the current context requires a much
more sophisticated architecture for the animator. The animator must be able to
manipulate objects in the application interface, and therefore a protocol that allows
this must exist. Essentially, the distinction between the application and the animator
becomes blurred in this more sophisticated scheme: the animator needs to know
how to manipulate the application in the same way a user does. It must be able to
identify objects and locations, construct marks and apply those marks. In addition,
it needs to annotate the examples in a meaningful way. All these features require
that examples in MAD be parameterizable. The design of this architecture is future
research. A good starting point is to build on the work that Sukaviriya and Foley
have done on the generation of parameterizable, context sensitive animated help for
direct manipulation interfaces (Sukaviriya & Foley, 1990; Sukaviriya, 1988).

Integrating menu marks

As described earlier, menu marks in Tivoli are treated in the same manner as iconic
marks. Specifically, menu marks will be interpreted as commands if drawn in
command mode (i.e., drawn with the command button pressed down). The crib-
sheet/animator provides self-revelation for all marks available in this mode
including menu marks.

It would be impractical to include in the crib-sheet and animations all the marks
used to access the pen settings menu. The menu is a much better mechanism for
revealing this information, but is available only in drawing mode. Therefore, the
crib-sheet/animator refers the user to the marking menu that is available in drawing
mode. The animation of this is shown in Figure 6.14. The animation shows how to
draw the dot required for a menu mark to be distinguished from other marks, and
shows one example pen setting. The animation then displays a message for the user
to see the marking menu available in drawing mode for more information. In this
way an information link exists between the crib-sheet/animator and the marking

157

Page 1610 of 1714

menu. Hence the crib-sheet provides self-revelation for the menu marks by
referring the user to the marking menu.

A dot-stroke

changes the pen
color or thickness,
press and hold pen
for more info

Figure 6.14: To self-reveal menu marks, the animator shows one example then
refers the user to pop up the marking menu itself for more information. This avoids
the problem of explaining and animating the many marks used for the marking menu.

6.4. USAGE EXPERIENCES

A large portion of the design described in this chapter has been implemented. The
crib-sheet, animator, and MAD have been implemented, although the parameterized
version of the animator was not implemented. Tivoli currently supports animations
with multiple examples for every mark it uses. As Tivoli evolves, we expect the
mark set to change. This can be supported by simply modifying MAD. The pen
setting menu and marks were completely implemented. The “pull-out” menu item
has yet to be implemented.

Future research will include formal user tests of our designs. It would be optimistic
of us not to expect users to have problems with our system. First, there are many
details that user might trip over: are the menus and buttons labeled meaningfully?
Are the press-and-wait time thresholds correct? We believe the next step in user
testing is to evaluate some of these details and refine the content of the animations.
As Baecker, Small, & Mander (1991) point out, animations require significant
development and refinement. Fortunately, our design makes this easier than a
frame by frame process.

The design has been used informally by several researchers at Xerox PARC. Users

appeared to be quite successful at using the marking menu, once press-and-wait was

158

Page 1611 of 1714

understood. Users were also successful at selection using a mark but found
recognition unreliable. We traced this unreliability to incorrectly drawn “dots” at
the start of marks. We found the source was not that a user failed to draw the “dot”,
but that the system occasionally did not start tracking the pen till after the “dot” was
drawn. This implies that the pen tracking hardware and software needed

improvement.

Another problem revealed through informal use was the “right-handedness” of the
marking menu. Depending on a user's handedness, some portion of the screen is
occluded from view when one's arm is holding the pen against the screen. When
using the marking menu, left handed users found some menu items occluded from
view (they had to look “under” their arms). This implied that, like most pen-based
systems, marking menus must be configurable for handedness.

Users also experimented with using the crib-sheet/animator. Initially, we found
that users did not notice the crib-sheet pop up on the left side of the display. This
was because users were so close to the large display that the crib-sheet popped up
outside their visual focus. We then added an animation of the crib-sheet expanding
from the point at which press-and-wait occurred. This helped users notice the
display of the crib-sheet.

Users were also able to make use of the crib-sheet/animator after a brief demo. We
found that users explored the interface by pressing-and-waiting at different spots to
see what functions where available. We also observed users tracing the animated
marks. The most common error involved a user pressing-and-waiting with the
command button pressed, then releasing the button while watching the animation.
The user would then trace the animated mark without the command button being
pressed. This would result in the mark being drawn but not interpreted (i.e., the
mark as drawn in drawing mode, not in command mode). We feel this type of error
may disappear when a user gets into the habit of holding down the command
button to issue a command. It is also possible to have the system recognize this
error and advise the user to press the command button.

6.5. SUMMARY

In the beginning of this chapter we set out to integrate hierarchical marking menus
into a pen-based application, and provide self-revelation, guidance, and rehearsal

159

Page 1612 of 1714

for iconic marks. A design was developed and implemented to satisfy these goals.

The design gives rise to many issues and conclusions:

The integration of marking menus into Tivoli reflects the situation with many
applications today. Tivoli had an interface prior to our design experiment. Thus we
were faced with the task of integrating marking menus with other interaction
techniques. The main effect of this was that our design of marking menus had to
change, not the existing interface components. This was an excellent test of the
resiliency of the marking menus paradigm.

Marking menus had to be integrated with a range of interaction techniques. The
interface to Tivoli not only contains edit marks but also free-hand drawing, buttons,
dialog boxes, pop-up menus, mode buttons and a windowing system. Thus it was a
challenge to find a spot where marking menus could fit in and be effective. The
exploration also reminded us that interaction techniques cannot be added to an
interface design without considering the other interaction techniques that surround
it.

There were many other situations where we could have experimented with marking
menus. One goal in redesigning the Tivoli interface was to reduce the number of
buttons on the screen. Consolidating many buttons into a marking menu, hence,
removing them from the screen, would have accomplished this. Also, using
marking menus to issue commands to Tivoli objects such as list-items would have
been another effective use. Time constrained us to only explore one particular
usage. We thought using a marking menu to control pen settings would elucidate
many design issues, since the menu marks would have to be used in the same mode
as the edit marks. Nevertheless, this simple implementation gave rise to many
design issues which one would encounter in a larger scale integration.

This design exploration also revealed issues concerning using marking menus in
mark-based interfaces. Figure 6.15 summarizes the major design problems and the
solutions we developed. Specifically, ambiguities can develop between menu marks
and iconic marks. We proposed three solutions: avoidance, different context, and
distinguishing token. We elected to used a distinguishing token strategy, given the
way marking menus were being used in Tivoli. The other strategies, however, can

be useful in other situations. Also this design exploration allowed us to use marking

160

Page 1613 of 1714

Problem Solution

Ambiguity between iconic and menu marks. [Draw a distinguishing token (a “dot”) at the

start of an menu mark.

Menu items clipped-off near edge of screen. Use pull-out menu item.

Object too close to edge of screen to mark. Use pull-out mark.

Need self-revelation for iconic marks. Use crib-sheet/animator.

Provide guidance for iconic marks. Draw a mark based on crib-sheet example or...

Trace a mark over an example displayed by

the animator.

Ensure rehearsal of iconic marks. A mark is the only way to issue a command.

Crib-sheet/animator should be easy to|The programmer generates multiple examples

program and work at any screen location. in MAD.

Getting information on marking menus marks [A crib-sheet/animator item refers user to the

from the crib-sheet/animator. marking menu.

Figure 6.15: Major design problems encountered integrating marking menus into Tivoli and
the solutions developed.

menus with a pen. This uncovered issues and led to developments concerning

screen limits and drawing dynamics.

The crib-sheet/animator is designed to support the principles of self-revelation,
guidance and rehearsal. These mechanisms do not appear and behave exactly like
marking menus, and we have shown why this must be so, but we feel that the
design supplies the same type of information to the user and promotes the same
type of behavior.

Designing a mechanism to self-reveal iconic marks brings to light many issues
concerning the self-revelation of marks. First, revelation can occur at various levels
of detail. The crib-sheet is the first level: a quick glance at the icon for the mark may
be sufficient for the user. An animation is the second level: it requires more time

161

Page 1614 of 1714

but provides more information and explanation. Our design essentially supports a
hierarchy of information where there is a time versus amount of information
tradeoff.

A hierarchic view of information can also be applied to the way in which marks
themselves are self-revealed. For some marks, it is sufficient just to show a static
picture of the mark. For other marks an annotated animation is needed before each
one can be understood. Besides an animation, some marks need to show variations.
Finally some marks, like menu marks, are best self-revealed incrementally.
Depending on the characteristics of a mark, there are different ways of explaining
the mark. This implies our self-revelation schemes must support these different
forms of explanation. Marking menus, crib-sheets, and animations are instances of
different forms of explanation. A complete taxonomy of forms of explanation is
future research.

While user testing is needed to refine our design, we feel that this design supports
the desired type of information flow. Users can interactively obtain information on
marks and this information is intended to interactively teach them how to use these
marks like an expert. No mark-based system that we know of supports this type of
paradigm.

162

Page 1615 of 1714

Chapter 7: Conclusions

71. SUMMARY

This dissertation develops and evaluates an interaction technique called marking
menus. Marking menus were developed based on several observations:

1) Marks can be an efficient and expressive way to issue commands, especially for

pen-based computers.

2) Marks, by themselves, are not easy to use because unlike buttons, menus, and
icons, they do not automatically reveal themselves to a user.

3) Therefore, marks must rely on some other interaction technique to reveal

themselves to the user.

Given these observations we designed an interaction technique that combines
menus and marks with the intention that using the menu helps a user learn the
marks. The design of marking menus was based the design principles of self-
revelation, guidance, and rehearsal. The principle of self-revelation states the
system should interactively provide information about what commands are
available and how to invoke those commands. The principle of guidance states that
the way in which this information is provided should guide a user through invoking
a command. The principle of rehearsal states that the guidance provided should be
a rehearsal of act of drawing the mark associated with a command. The goal of
these design principles is to help a user learn and use marks and quickly move from
novice to expert.

163

Page 1616 of 1714

After proposing a design for the technique based on these principles, we then
evaluated the technique. The intention of the evaluation was to determine the

limitations of the technique.

The first evaluation was an empirical experiment on non-hierarchic (i.e., one level)
marking menus. This experiment showed that certain configurations of menu items
make marking faster and less error-prone. Specifically, the experiment showed that
four, eight, and twelve item menus enhance performance when marking. Also this
experiment showed that subjects, on average, performed marks faster and more
accurately with a mouse and stylus/tablet than with a trackball.

The second evaluation was a practical case study of two users' behaviors using a six-
item marking menu for a real-life editing task. From this study we observed several
things. First, with practice, users learn to use the marks and tend towards using the
marks 100% of the time. Second, users utilized the features of the technique that
were designed to aid in learning the marks (i.e., reselection and mark-confirmation).
Third, using a mark in this situation was on average 3.5 times faster than selection

using the menu.

A third evaluation was an empirical experiment examining the effect of menu
breadth and depth on users' performance when selecting from hierarchic marking
menus using marks. We found as breadth and depth of a menu structure increases,
subject performance slows and the number of incorrect selections increases. Error
rate appears to the limiting factor when selecting using marks. The experiment
examined menus of breadth four, eight, and twelve, and menu depths from one to
four. A significant change in error rate occurred when menu depth was greater than
two and breadth was eight or twelve. The results suggest that marks can be used to
reliably select from four-item menus up to four levels deep, or from eight-item
menus up to two levels deep. This experiment also examined the effect of using a
pen or a mouse. We found that subjects, on average, performed better with the pen
than with the mouse. However, the difference in performance was not large. This
indicated that the mouse would be an acceptable input device for hierarchic

marking menus.

A final design study examined generalizing the design concepts of marking menus.
Marking menus are an interaction technique that provides self-revelation, guidance,
and rehearsal for a particular class of marks (i.e., straight lines and zig-zag marks).

164

Page 1617 of 1714

We developed an interaction technique that provides self-revelation, guidance, and
rehearsal for more general classes of marks. We also showed why the technique
must differ from marking menus, and described an efficient means of implementing

the technique.

7.2. CONTRIBUTIONS

The contributions of this work can be divided into two categories: contributions
concerning marking menus specifically, and contributions concerning larger issues

of human computer interaction.
7.2.1. Marking menus

The design of marking menus is a contribution in itself because of several design
features. These features were described in detail in Section 2.2. The following is a
summary of the design features that make marking menus a valuable and unique
interaction technique. Marking menus:

* Allow menu selection acceleration without a keyboard.
* Permit acceleration on all menu items.

¢ Minimize the difference between the menu selection and accelerated
selection.

* Permit pointing and menu selection acceleration with the same input

device.
* Utilize marks that are easy and fast to draw.

* Use a spatial method for learning and remembering the association

between menu items and marks.
* Are implementable as a “plug-in” software module.
The empirical studies and case studies in this work have contributed in:

Proving that users behave with marking menus as predicted. The design of
marking menus features three modes of interaction: menu mode, mark confirmation
mode, and mark mode. The case study in Chapter 4 has shown that users utilize all

165

Page 1618 of 1714

three modes in the transition from novices, who use menus, to experts, who use
marks. The case study also showed that users performed marks as quickly as
keypresses. An equivalent interaction implemented with accelerator keys would
have required pointing with the mouse and pressing an accelerator key. Hence we
can conjecture that interaction was faster with marks than with accelerator keys in
this setting.

Increasing our understanding of the limitations of marking menus. There is a
limit to how accurately one can select items from a marking menu using a mark.
The experiment in Chapter 5 has determined that selection using marks from menus
with more than eight items per level and more than two levels of hierarchy will be
error-prone. However, if two levels of eight item menus are used, marks can be
used to quickly select from 64 menu items.

Determining configurations of marking menus that produce the best
performance. Certain configurations of menu items make marking faster and less
error-prone than other configurations. Specifically, our experiments have shown

that 4, 6, 8 and 12 item menus and on-axis items enhance performance.

Demonstrating how command item selection and command parameters can be
combined. Our case study demonstrates how both the starting point and end point
of a mark can be used to express command parameters. This results in efficient

interactions.
7.2.2. Issues of human computer interaction.

This work has several contributions to the study of human computer interaction in
that it:

Identifies the fact that markings are not self-revealing. In the past, it has been
assumed that mark-based interfaces will be easy to use because marks will be
“natural” or mnemonic. This may be true in a some situations but not in all cases.
There is a danger of falling into the trap that a system will be easy to use because it
uses marks. This research makes the important point that while marks can be a very
efficient means of interaction, this efficiency cannot be obtained if the user does not
first have knowledge about the mark set. In some situations our experience with
everyday pen and paper conventions supplies this knowledge. In other situations it

166

Page 1619 of 1714

does not, and a self-revealing mechanism must be provided in conjunction with the

marks.

Develops interaction techniques for self-revealing markings. Marking menus are
a solution to the self-revealing problem for one particular class of mark. The crib-
sheet/animator is a solution for more general classes of marks.

Identifies and develops the design principles of self-revelation, guidance and
rehearsal. To solve the problem of marks not being self-revealing, this research
develops the design principles of self-revelation, guidance, and rehearsal. Marking
menus serves as an example of the application of the design principles and the crib-
sheet/animator demonstrates that the principles can be applied to other situations.

We feel that these design principles are valuable for interface design in general.

Develops a unique way to support novice/expert differences. The notions of
guidance and rehearsal are a unique way of supporting novice/expert differences
and transitions in mark-based interfaces. We know of no other systems that use a

similar scheme.

Other research has dealt with novice/expert differences by providing explicit
novice/expert modes. In these types of systems, novice mode has fewer functions
than expert mode. The focus of this research is on supporting novice/expert
differences and transitions using mark-based interfaces at the level of interaction,
not at the level of available functions. These two approaches differ but they are not
mutually exclusive.

Demystifies “the folk legend of gesture” in human computer interaction. It is
clear from the literature that the types of gestures performed while operating an
interface contribute to the overall sense of satisfaction with an interface. While
others have observed that careful design of the body language of interactions results
in better interface design, the research here is an explicit attempt to make use of this
philosophy in a practical interaction technique.

Identifies the real value of marks as an interaction technique. Finally this research
demonstrates that if the real advantages of particular interactions are understood,
simple technology, used appropriately, can exploit these advantages. It is not
simply the case that marks are desirable because marks are easy to remember.
Another desirable property is the ability of a mark to efficiently express a command

167

Page 1620 of 1714

and its parameters. The marks created by marking menus demonstrate this
property. Furthermore, the technology required to support this property is not
overly complex. Recognition methods, and ways of embedding and recognizing

command parameters, are easily programmable.

7.3. FUTURE RESEARCH

As we developed marking menus we came across many interesting design
variations, extensions and applications worth exploring;:

* Adapt marking menus to be used on very small screens. A problem with very
small screen computers is that there isn't enough room to draw long marks or
display hierarchic menus. A variation on our marking menu design is to use a series
of short strokes, all starting from the same location to perform a selection from a

hierarchy of menus.

* Investigate other types of combinations of marks and menus. Continuous menu
items, and dartboard and donut layouts, which were mentioned in Chapter 1, are
examples of other types of combinations of marks and menus.

* Investigate feedback and pairing with command parameters. This research has
only scratched the surface of things that can be done while performing a selection or
after making a selection. Marking menus need the ability to show system status
(e.g., display the current font), to preview the effects of selecting a menu item (e.g.,
highlighting a particular font in a menu causes an example of the font to be
displayed), and to embed command parameters after a selection is confirmed (e.g.,
after selecting “volume” a user is automatically connected to a graphical slider).
Integrating these features while maintaining the design principles is an open
problem.

* 3D marking menus. Marking menus are based on selection by direction in two
dimensions with two dimensional pointing devices. A natural generalization is to

three dimensions.

* While our research has established some upper bounds on the limits of hierarchic
marking menus, a natural extension would be a case study of user behavior with
hierarchic marking menus in a real application. We know from our first case study

on non-hierarchic menus that with enough practice users will use marks. Hierarchic
168

Page 1621 of 1714

menus have many more menu items than non-hierarchic menus. For example, a
menu hierarchy which is two levels deep, with eight items in each menu, contains 64
items. It would be interesting to see if this potential could be tapped in an

application.

* Further development and evaluation of the crib-sheet/animator is another topic
for future research. Clearly, user testing of the design is required. Also developing

a parameterized version of the animator is an interesting research challenge.

* Investigating the application of self-revelation, guidance and rehearsal to other
domains, besides marking is of interest. An example of the use of guidance and
rehearsal in another domain is keyboard driven menus. The menus serve to reveal
functionality to a novice, and the novice is guided through the menu by hitting keys
to select menu items. This guidance provides a rehearsal of an expert type of
behavior in which menu items are selected without looking or waiting for the menus
to be displayed.

* There are many open questions concerning using marks and motor behavior.
Does using a distinct gesture when drawing a mark have an advantage? What is a
distinct gesture? Are there ways that we can design the gestures of drawing marks
such that learning or performance is improved?

74. FINAL REMARKS

The interfaces to many ordinary, non-computerized objects have properties which
make human operation of them second nature. For example, gear-shifts and turn-
signal levers in automobiles have labels which we initially look at to learn the
function mappings but with experience these mappings become automatic.
Furthermore, with practice, the gestures of operating these devices become
secondary to the task of driving. The fact that the gestures are unique contribute to
our ability to perform them with very little attention. This provides the advantage
of allowing our attention to be focused on other more important tasks, for example,
watching traffic or reading street signs.

In this thesis, we have tried to exploit these types of properties in the realm of the
computer interface. As computers become more entrenched as our everyday
objects, tools and instruments, it is not unreasonable to expect them to exhibit the

169

Page 1622 of 1714

properties that make many non-computerized objects easy and effective to use. This
dissertation contributes to the understanding and creation of human computer

interactions that have these properties.

170

Page 1623 of 1714

References

Allen, R. B. (1983) Cognitive factors in the use of menus and trees: an experiment.
IEEE Journal on Selected Areas in Communications, SAC 1(2), 333-336.

Apple Computer (1992) Hypercard User's Guide. Apple Computer, Cupertino,
California.

Baecker, R., & Small, I. (1990) Animation at the interface. In Laurel, B. (Ed.)The Art
of Human-Computer Interface Design, 251-267, Reading Massachusetts: Addison
Wesley.

Baecker, R., Small, I., & Mander, R. (1991) Bringing icons to life. Proceedings of the
CHI '91 Conference on Human Factors in Computing Systems, 1-6, New York: ACM.

Baecker, R. M. (1969) Picture-driven animation. Proceedings of the 1969 Spring Joint
Computer Conference, 273-278.

Barnard, B.]J.,, & Grudin, J. (1988) Command Names. In Helander, M. (Ed.)
Handbook of Human Computer Interaction, 237-255, B. V. North Holland: Elsevier
Science.

Boritz, J., Booth, K. S., & Cowan, W. B. (1991) Fitts's law studies of directional
mouse movement. Proceedings of Graphics Interface '91, 216-223.

Bush, V. (1945) As We May Think. Atlantic Monthly. July, 101-108.

Buxton, W. (1986). Chunking and phrasing and the design of human-computer
dialogues. In Kugler, H. J. (Ed.) Information Processing '86, Proceedings of the IFIP
10th World Computer Congress, 475-480, Amsterdam: North Holland Publishers.

Buxton, W. (1990) The “Natural” Language of Interaction: A Perspective on
Nonverbal Dialogues. In Laurel, B. (Ed.)The Art of Human-Computer Interface
Design, 405-416, Reading Massachusetts: Addison Wesley.

Callahan, J., Hopkins, D., Weiser, M., & Shneiderman, B. (1988) An empirical
comparison of pie vs. linear menus. Proceedings of the CHI ‘88 Conference on
Human Factors in Computing Systems, 95-100, New York: ACM.

171

Page 1624 of 1714

Card S. K. (1982) User perceptual mechanisms in the search of computer command
menus. Proceedings of the CHI ‘82 Conference on Human Factors in Computing
Systems, 190-196, New York: ACM.

Card, S. K., Moran, T. P., & Newell, A. (1983) The Psychology of Human-Computer
Interaction. Hillsdale NJ: Lawerence Erlbaum.

Card, S. K., Robertson, G. G., & Mackinlay, J. D., (1991) The information visualizer,
an information workspace. Proceedings of the CHI ‘91 Conference on Human Factors
in Computing Systems, 181-188, New York: ACM.

Carroll, J. M, (1985) What's in a name? New York: Freeman.

Carroll, J. M., & Carrithers, C. (1984) Training wheels in a user interface.
Communications of the ACM, 27, 800-806.

Coleman, M. L. (1969) Text Editing on a Graphics Display Device Using Hand-
drawn Proofreader's Symbols. Proceedings of the Second University of Illinois
Conference on Computer Graphics. 282-291, Chicago: University of Illinois Press.

Cullingford, R. E., Krueger, M. W., Selfridge, M., & Bienkowski, M. A. (1982)
Automated explanations as a component of a computer-aided design system.
IEEE Transactions on System, Man and Cybernetics, March/April, 168-181

Ellis, T. O., & Sibley, W. L. (1967) On the Development of Equitable Graphic 1/0O.
IEEE Transactions on the Human Factors in Electronics. 8(1), 15-17.

Elrod, S., Bruce, R., Gold, R., Goldberg, D., Halasz, F., Janssen, W., Lee, D., McCall,
K., Pedersen, E., Pier, K, Tang, J., & Welch, B. (1992) Liveboard: A large
interactive display supporting group meetings. presentations and remote
collaboration. Proceedings of the CHI ‘92 Conference on Human Factors in Computing
Systems, 599-607, New York: ACM.

Fischman, M. G. (1984) Programming time as a function of number of movement
parts and changes in movement direction. Journal of Motor Behavior, 16(4), 405-
423.

Fitts, P. M. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental Psychology, 47,
381-391.

Furnas, G., Gomez, L., Landauer, T., & Dumais, S. (1982) Statistical Semantics: How
can a computer use what people name things to guess what things people mean

when they name things? Proceedings of the CHI ‘82 Conference on Human Factors in
Computing Systems, 251-253, New York: ACM.

Gaver, W, W. (1991) Technology affordances, Proceedings of the CHI ‘91 Conference
on Human Factors in Computing Systems, 79-84, New York: ACM.

172

Page 1625 of 1714

Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin,
New York.

Gibson, J. J. (1982) Reasons for realism: Selected essays of James]. Gibson. Reed, E. &
Jones, R. (Ed.), Hillsdale NJ: Lawerence Erlbaum.

Go (1991) PenPoint System Manual, Go Corporation, Foster City, CA.

Goldberg D., & Goodisman A. (1991) Stylus User Interfaces for Manipulating Text.

Proceedings of the ACM Symposium on User Interface Software and Technology, 127-
135, New York: ACM.

Gould, J. D., & Salaun, J. (1987) Behavioral Experiments in Handmarks. Proceedings
of the CHI + GI '91 Conference on Human Factors in Computing Systems and Graphics
Interface, 175-181, New York: ACM.

Guiard, Y., Diaz, G., & Beaubaton, D. (1983) Left-hand advantage in right-handers
for spatial constant error: preliminary evidence in a unimanual ballistic aimed
movement. Neuropsychologia, Vol. 21, No. 1, 111-115.

Hardock, G. (1991). Design issues for line driven text editing/annotation systems.
Proceedings of the Graphics Interface ‘91 Conference, 77-84, Toronto: Canadian
Information Processing Society.

Hoeber, T. (1988) Face to face with Open Look, Byte, V(13) (Dec. '88), 286-288.

Hopkins, D. (1987) Direction selection is easy as pie menus! login: The USENIX
Association Newsletter, 12(5), 31-32.

Hopkins, D. (1991) The design and implementation of pie menus. Dr. Dobb’s
Journal, 16(12), 16-26.

Hornbuckle, G. D. (1967) The Computer Graphics User/Machine Interface. IEEE
Transactions on the Human Factors in Electronics. 8(1), 17-20.

Jorgensen, A. H., Barnard, P, Hammond, N., and Clark, 1., (1983) Naming
commands: An analysis of designers' naming behavior. Psychology of computer
use, Green T. R. G., Payne S. J., and van derr Veer, G. C. (Eds.), 69-88, London:
Academic Press.

Keele, 5. W. (1968) Movement control in skilled motor performance, Psychological
Bulletin, 70, 387-403.

Kiger, J. L. (1984) The depth/breadth tradeoff in the design of menu-driven user
interfaces. Intfernational Journal of Man Machine Studies, 20, 210-213.

Kirk, R. E. (1982) Experimental design: Procedures for the Behavioral Sciences. Belmont
California: Wadsworth.

173

Page 1626 of 1714

Krueger M. W., Giofriddo T., & Hinrichsen K. (1985) VIDEOPLACE — An Artificial
Reality. Proceedings of the CHI "85 Conference on Human Factors in Computing
Systems, 35-40, New York: ACM.

Kurtenbach, G. & Baudel, T. (1992) HyperMark: Issuing commands by drawing
marks in Hypercard. Proceedings of CHI '92 Conference poster and short talks, 64,
New York: ACM.

Kurtenbach, G. & Buxton W. (1991) Issues in combining marking and direct
manipulation techniques. Proceedings of UIST '91 Conference, 137-144, New York:
ACM.

Kurtenbach, G. & Buxton, W. (1991) GEdit: A testbed for editing by contiguous
gesture. SIGCHI Bulletin, 22-26, New York: ACM.

Kurtenbach, G. & Buxton, W. (1993) The limits of expert performance using
hierarchical marking menus. to appear in Proceedings of the CHI ‘93 Conference on
Human Factors in Computing Systems, New York: ACM.

Kurtenbach, G. & Hulteen, E. (1990) Gesture in Human-Computer Communication.
In Laurel, B. (Ed.)The Art of Human-Computer Interface Design,, 309-317, Reading
Massachusetts: Addison Wesley.

Kurtenbach, G., Sellen, A., & Buxton, W. (1993) An empirical evaluation of some
articulatory and cognitive aspects of “marking menus”. Human Computer
Interaction , 8(2), 1-23

Landauer, T. K. & Nachbar, D. W. (1985) Selection from alphabetic and numeric
trees using a touch screen: breadth, depth and width. Proceedings of the CHI "85
Conference on Human Factors in Computing Systems, 73-78, New York: ACM.

Lee, E. & MacGregor, J. (1985) Minimizing user search time in menu driven
systems. Human Factors, 27(2), 157-162.

Licklider, J. C. R. (1960) Man-Computer Symbiosis. IRE Transactions on Human
Factors in Electronics. March 1960, 4-11.

Lieberman, H. (1987) An example-based environment for beginning programmers.
Al and Education: Volume One, Lawler, R. and Yazdani, M., (Ed.), 135-152,
Norwood NJ: Ablex Publishing,.

Mackenzie, 1. S. & Buxton, W. (1992) Extending Fitts” law to two-dimensional tasks.
Proceedings of the CHI “92 Conference on Human Factors in Computing Systems, 219-
226, New York: ACM.

Mackenzie, 1. S., Sellen, A. J., and Buxton, W. (1991) A comparison of input devices
in elemental pointing and dragging tasks. Proceedings of the CHI '91 Conference on
Human Factors in Computing Systems, 161-166, New York: ACM.

174

Page 1627 of 1714

Makuni, R. (1986) Representing the Process of Composing Chinese Temples.
Design Computing. Vol. 1, 216-235.

Malfara, A. & Jones, B. (1981) Hemispheric asymmetries in motor control of guided
reaching with and without optic displacement. Neuropsychologia, Vol. 19, No. 3,
483-486.

McDonald, J. E., Stone, J. D., & Liebelt, L. S. (1983) Searching for items in menus:
The effects of organization and type of target. Proceedings of Human Factors
Society 27th Annual Meeting. 834-837, Santa Monica, CA: Human Factor Society.

Momenta, (1991) Momenta User’s Reference Manual. Momenta, 295 North Bernardo
Avenue, Mountain View, California.

Morrel-Samuels, P. (1990) Clarifying the distinction between lexical and gestural
commands. International Journal of Man-Machine Studies , 32, 581-590.

Nilsen, E. L. (1991) Perceptual-motor control in human-computer interaction. Technical
Report No. 37, University of Michigan, Cognitive Science and Machine
Intelligence Laboratory.

Norman, D. A. & Draper, S. W. (1986) User centered system design: New perspectives
on human-computer interaction. Hillsdale, NJ: Erlbaum Associates.

Norman, D. A. (1981) Categorization of action slips. Psychological Review, 88, 1-15.

Normile, D. & Johnson, J. T. (1990). Computers without keys. Popular Science,
August 1990, 66-69.

Paap, K. R. & Roske-Hofstrand, R. J. (1986) The optimal number of menu options
per panel. Human Factors, 28(4), 1-12.

Paap, K. R. & Roske-Hofstrand, R. J. (1988) Design of Menus. Handbook of Human
Computer Interaction, Helander, M. (Ed.), 205-235, B. V. North Holland: Elsevier
Science.

Pederson, E. R.,, McCall, K., Moran, T. P, & Halasz, F. G. (1993) Tivoli: An
Electronic Whiteboard for Informal Workgroup Meetings. to appear in

Proceedings of the CHI “93 Conference on Human Factors in Computing Systems, New
York: ACM.

Perkins R., Blatt L. A., Workman D., & Ehrlich S. F. (1989) Interactive tutorial design
in the product development cycle. Proceeding of the Human Factors Society 33rd
Annual Meeting, 268-272.

Perlman, G. (1984) Making the right choices with menus. Proceedings of Interact ‘84,
317-320, B. V. North Holland: Elsevier Science.

Rasmussen, J. (1983) Skills, Rules and Knowledge: Signals, Signs and Symbols and
other Distinctions in Human Performance Models. IEEE Transactions on Systems,
Man and Cybernetics, SMC-13, 257-266.

175

Page 1628 of 1714

Rebello, K. (1990) New PCs can kiss keyboards good-bye. USA Today, Feb. 22., 6B.

Rhyne, J. R. & Wolf, C. G. (1986) Gestural Interfaces for Information Processing
Applications. IBM Technical Report 12179 (#54544).

Rhyne, J. R. (1987) Dialogue Management for Gestural Interfaces. ACM Computer
Graphics. 21(2), 137-142.

Robertson, G. G., Henderson, Jr. A. D., & Card S. K., (1991) Buttons as First Class
Objects on an X Desktop. Proceedings of UIST '91 Conference, 35-44, New York:
ACM.

Rubine, D. (1991) Specifying Gestures by Example. Computer Graphics, 25(4), 329-
337.

Rubine, D. H. (1990) The Automatic Recognition of Gestures. Ph.D. Thesis, Dept. of
Computer Science, Carnegie Mellon University.

Sellen, A. J., Kurtenbach, G., & Buxton, W. (1992) The prevention of mode errors
through sensory feedback. Human-Computer Interaction. 7(2), 141-164.

Sellen, A. J. & Nicol, A. (1990) Building user-centered on-line help. In Laurel, B.
(Ed.)The Art of Human-Computer Interface Design, 143-153, Reading Massachusetts:
Addison Wesley.

Sellen, A.J. (1992) Speech patterns in video-mediated conversation, Proceedings of
the CHI 92 Conference on Human Factors in Computing Systems, 49-59, New York:
ACM.

Shneiderman, B. (1987) Designing the User Interface: Strategies for Effective Human
Computer Interaction. Reading Massachusetts: Addison-Wesley.

Sibert, J., Buffa, M. G., Crane, H. D., Doster, W., Rhyne, J. R., & Ward, J. R. (1987)
Issues Limiting the Acceptance of User Interfaces Using Gestures Input and
Handwriting Character Recognition. Proceedings of the CHI + GI '91 Conference on

Human Factors in Computing Systems and Graphics Interface, 155-158, New York:
ACM.

Snoddy, G. S. (1926) Learning and stability. Journal of Applied Psychology 10, 1-36.

Snowberry, K., Parkinson, S. R., & Sisson, N. (1983) Computer display menus.
Ergonomics, 26(7), 699-712.

Sukaviriya, P. & Foley, J. D. (1990) Coupling a Ul framework with automatic
generation of context-sensitive animated help. Proceedings of the ACM Symposium
on User Interface Software and Technology '88, 152-166, New York: ACM.

Sukaviriya, P. (1988) Dynamic construction of animated help from application
context. Proceedings of the ACM Symposium on User Interface Software and
Technology '88, 190-202, New York: ACM.

176

Page 1629 of 1714

Sutherland, I. E. (1963) Sketchpad: A man-machine graphical communication
system. AFIPS Conference Proceedings 23, 329-346.

Walker, N., Smelcer, J. B., & Nilsen, E. (1991) Optimizing speed and accuracy of
menu selection: a comparison of walking and pull-down menus. International
Journal of Man-Machine Studies, 35, 871-890.

Ward, J. R. & Blesser, B. (1985) Interactive Recognition of Handprinted Characters
for Computer Input. IEEE Computer Graphics & Algorithms . Sept. 1985, 24-37.

Weiser, M. (1991) The computer for the 21st century. Scientific American, 265(3), 94-
104.

Welbourn, L. K. & Whitrow, R. J. (1988) A gesture based text editor. People and
Computers IV, Proceedings of the Fourth Conference of the British Computer Society
Human-Computer Specialist Group. 363-371, Cambridge UK: Cambridge University
Press.

Westheimer, G. & McKee, S. P. (1977) Spatial configurations for visual hyperacuity.
Vision Research, 17, 941-947.

Wiseman, N. E., Lemke, H. U., & Hiles, J. O. (1969) PIXIE: A New Approach to
Graphical Man-machine Communication. Proceedings of 1969 CAD Conference
Southhampton, 463, IEEE Conference Publication 51.

Wixon, D., Whiteside, J., Good, M., & Jones, S. (1983) Building a user-defined
interface. Proceedings of the CHI ‘83 Conference on Human Factors in Computing
Systems, 185-191, New York: ACM.

Wolf, C. G. & Morrel-Samuels, P. (1987) The use of hand-drawn gestures for text
editing. International Journal of Man-Machine Studies , 27, 91-102.

Wolf, C. G. (1986) Can People Use Gesture Commands? ACM SIGCHI Bulletin, 18,
73-74, Also IBM Research report RC 11867.

Wolf, C. G., Rhyne, J. R., & Ellozy, H. A., (1989). The paper-like interface. Designing
on Using Human Computer Interface and Knowledge-Based Systems. 494-501, B. V.
North Holland: Elsevier Science.

X11 (1988) X window system user's guide for version 11. X window series, v. 3,
Sebastopol CA: O'Reilly & Associates._

177

Page 1630 of 1714

Page 1631 of 1714

Appendix A: Statistical Methods

This appendix explains the statistical methods used in this dissertation. Analysis of
variance (ANOVA) is used for hypothesis testing. Specifically, the F-statistic is used
to determine if an independent variable has any effect on a dependent variable. In an
experiment, the dependent variable is a variable being measured. The independent

variable is a variable being controlled.
Testing for differences in means: F(k-1, k(n-1)) =f, p < a.

Data is grouped according to different values of the independent variable. Each
group is commonly referred to as a treatment. Random samples of size n are selected

from each of k treatments. It is assumed that the k treatments each have a
population that is independent and normally distributed with means u;, u,, . . ., 14

and a common variance ¢®. The null hypothesis can be represented as:
= By=. =
The ANOVA procedure separates the total variability of the samples into two

component: s,> and s> The variance s,? is the variability between treatments

attributed to changes in the independent variable and chance or random variation.

2

The variance s- is the variability within treatments due to chance or random

variation.
It can be shown that, assuming the null hypothesis is true, the ratio:
f= 512 /52.

is a value of the random variable F having the F distribution with k - 1 and k(n - 1)
degrees of freedom. Since s,? overestimates the true variance when the null

hypothesis is false, a large value for f suggest a large portion of the variance in the

179

Page 1632 of 1714

dependent variable is caused by the independent variable. A test can be done by
comparing the observed value f with the theoretical value of F(k - 1, k(n -1)) and
reporting the probability, p, of such a large value for f occurring simply by chance. If
p is very small (e.g., p < .05), this suggests that the null hypothesis should be
rejected.

Multiple comparison of means: Tukey HSD, a= p

After determining a significant f ratio, it is may be necessary to determine which
pairs of means are significantly different. Various procedures, which are referred to
as post-hoc comparisons, allow this. If means x; and u, are being compared, the null

hypothesis is:
ty -ty =0.

A Tukey HSD post-hoc test reports the significantly differing means with a
probability of a of incorrectly rejecting the null hypothesis (i.e., no difference exists
between the means). Generally a .05 level of significance is used. This means one
can be 95% sure that two means actually differ.

Contrasting means: F(1) =f, p < a.

Post-hoc tests are not available for within subjects factors in repeated measures
experimental design. An alternative method for determining which pairs of means
are significantly different is by contrasting means. ANOVA separates the variance
into two components: SSw and s> SSw is the variance attributed to the difference
between the means. The variance s? is the variability due to chance or random

variation.
It can be shown that, assuming the null hypothesis is true, the ratio:
f= SSw/s*

is a value of the random variable F having the F distribution with 1 and n - k degrees
of freedom. Since SSw overestimates the true variance when the null hypothesis is
false, large values of f indicate a large portion of the variance is due to a difference
between the means. A test can be done by comparing the observed value f with the
theoretical value of F(1, n - k)) and reporting the probability, p, of such a large value

180

Page 1633 of 1714

for f occurring simply by chance. If p is very small (e.g., p < .05), this suggests that
the null hypothesis should be rejected.

Testing for linear relationships: F(1, n - 2)

The F-statistic is used to provide a single significance probability of a linear
relationship between dependent and independent variables. In this case, the null
hypothesis is that the slope of the regression line is zero. If the null hypothesis is
true, then

f=SSR/s*>

Where SSR is the amount of variation explained by the straight regression line. The
variance s is the variability around the regression line due to errors. It can be
shown fis the value of the random variable F having the F distribution with 1 and n
- 2 degrees of freedom. A test can be done by comparing the observed value f with
the theoretical value of F(1, n - 2)) and reporting the probability, p, of such a large
value for f occurring simply by chance. If p is very small (e.g., p < .05), this suggests
that the null hypothesis should be rejected.

Testing a linear relationship for goodness of fit: r?

The sample correlation coefficient 12 is used to test the quality of the fit of a linear
regression line. The amount of variation in the dependent variable which is
explained by the independent variable is r2 x 100% . A r? value greater than .5 is
considered to indicate a linear relationship.

For further information on these statistical methods see Kirk (1982).

181

Page 1634 of 1714

3
3

]

3

3

2]

o Speag

o Live Damos
o .

g]ﬂ'l
5]
A
Z
“
=
a
c oo
%3
%
7
2
%

%
o
A
et
P
7
75

o
L]

7
7
%
%
]
1/,’/'

...Username: ¥

Password: ¥

Page 1635 of 1714

20G5-08-27 06134,

PP Meng

P fiesad e U 3 N N
HNPpPpacatns SN SRR

The Design and Implementation of Pie Menus
There're Fast, Easy, and Self-Revealing.

Copyright (C) 1991 by Don Hopkins.
Originally published in Dr. Dobb's Journal, Dec. 1991, lead cover
story, user interface issue.

Introduction

Although the computer screen is two-dimensional, today most users
of windowing environments control their systems with a one-
dimensional list of choices -- the standard pull-down or drop-down
menus such as those found on Microsoft Windows, Presentation
Manager, or the Macintosh.

This article describes an alternative user-interface technique I call
"pie" menus, which is two-dimensional, circular, and in many ways
easier to use and faster than conventional linear menus. Pie menus
also work well with alternative pointing devices such as those found
in stylus or pen-based systems. I developed pie menus at the
University of Maryland in 1986 and have been studying and
improving them over the last five years.

During that time, pie menus have been implemented by myself and
my colleagues on four different platforms: X10 with the uwm
window manager, SunView, NeWS$ with the Lite Toolkit, and
OpenWindows with the NeWS Toolkit. Fellow researchers have
conducted both comparison tests between pie menus and linear
menus, and also tests with different kinds of pointing devices,
including mice, pens, and trackballs.

Included with this article are relevant code excerpts from the most
recent NeWS implementation, written in Sun's object-oriented
PostScript dialect.

Pie Menu Properties

In their two-dimensional form, pie menus are round menus
containing menu items positioned around the cursor -- as opposed
to the rows or columns of traditional linear menus. The menu item
target regions are shaped like the slices of a pie, and the cursor
starts out in the center, in a small inactive region. The active regions
are all adjacent to the cursor, but each in a different direction. You
select from a pie menu by clicking the mouse or tapping the stylus,
and then pointing in a particular direction.

Page 1636 of 1714

Although there are multiple kinds of pie menus, the most common
implementation uses the relative direction of the pointing device to
determine the selection -- as compared with the absolute
positioning required by linear menus. The wedge-shaped slices of
the pie, adjacent to the cursor but in different direction, correspond
to the menu selections. Visually, feedback is provided to the userin
the form of highlighting the wedge-shaped slices of the pie. In the
center of the pie, where the cursor starts out, is an inactive region.

When a pie menu pops up, it is centered at the location of the click
that invoked it: where the mouse button was pressed (or the
screen was touched, or the pen was tapped). The center of the pie
is inactive, so clicking again without moving dismisses the menu and
selects nothing. The circular layout minimizxes the motion required
to make a selection. As the cursor moves into the wider area of a
slice, you gain leverage, and your control of direction improves. To
exploit this property, the active target areas can extend out to the
edges of the screen, so you can move the cursor as far as required
to select precisely the intended item.

You can move into a slice to select it, or move around the menu,
reselecting another slice. As you browse around before choosing,
the slice in the direction of the cursor is highlighted, to show what
will happen if you click (or, if you have the button down, what will
happen if you release it). When the cursor is in the center, none of
the items are highlighted, because that region is inactive.

Pie menus can work with a variety of pointing devices -- not just
mice, but also pens, trackballs, touchscreens, and (if you'll pardon
the hand waving) data gloves. The look and feel should, of course,
be adapted to fit the qualities and constraints of the particular
device. For example, in the case of the data glove, the two-
dimensional circle of a pie could become a three-dimensional sphere,
and the wedges could become cones in space.

In all cases, a goal of pie menus is to provide a smooth, reliable
gestural style of interaction for novices and experts.

Pie Menu Advantages

Pie menus are faster and more reliable than linear menus, because
pointing at a slice requires very little cursor motion, and the large
area and wedge shape make them easy targets.

For the novice, pie menus are easy because they are a self-
revealing gestural interface: They show what you can do and direct
you how to do it. By clicking and popping up a pie menu, looking at
the labels, moving the cursor in the desired direction, then clicking
to make a selection, you learn the menu and practice the gesture to
"mark ahead" ("mouse ahead" in the case of a mouse, "wave
ahead" in the case of a dataglove). With a little practice, it becomes
quite easy to mark ahead even through nested pie menus.

For the expert, they're efficient because -- without even looking --
you can move in any direction, and mark ahead so fast that the
menu doesn't even pop up. Only when used more slowly like a

Page 1637 of 1714

traditional menu, does a pie menu pop up on the screen, to reveal
the available selections.

Most importantly, novices soon become experts, because every time
you select from a pie menu, you practice the motion to mark ahead,
so you naturally learn to do it by feell As Javon Laniar of VPL
Research has remarked, "The mind may forget, but the body
remembers." Pie menus take advantage of the body's ability to
remember muscle motion and direction, even when the mind has
forgotten the corresponding symbolic labels.

By moving further from the pie menu center, a more accurate
selection is assured. This feature facilitates mark ahead. Our
experience has been that the expert pie menu user can easily mark
ahead on an eight-item menu. Linear menus don't have this
property, so it is difficult to mark ahead more than two items.

This property is especially important in mobile computing
applications and other situations where the input data stream is
noisy because of factors such as hand jitter, pen skipping, mouse
slipping, or vehicular motion (not to mention tectonic activity).

There are particular applications, such as entering compass
directions, time, angular degrees, and spatially related commands,
which work particularly well with pie menus. However, as we'll see
further on, pies win over linear menus even for ordinary tasks.

Pie Menu Flavors

There are many flavors or variants of pie menus. One obvious
variation is to use the semicircular pie ("fan") menus at the edge of
the screen.

Secondly, although the usual form of pie menus is to use only the
directional angle in determining a selection, there is a vartiant of pie
menus which offers two parameters of choice with a single user
action. In this case, both the direction and the distance between
the two points are used as parameters to the selection. The ability
to specify two input parameters at once can be used in situations
where the input space is two-dimensional. Direction and distance
may be discrete or continuous, as appropriate.

For example, for a graphics or word processing application, a dual-
parameter pie menu allows you to specify both the size and style of
a typographic font in one gesture. The direction selects the font
style from a set of possible attributes, and the distance selects the
point size from the range of sizes. An increased distance from the
center corresponds to an increase in the point size. This pie menus
provides satisfying visual feedback by dynamcally shrinking and
swelling a text sample in the menu center, as the user moves the
pointer in and out.

Other variants include scrolling spiral pies, rings, pies within square
windows, and continuous circular fields. These variants are
discussed in a later section.

A minor variation in the use of pie menus is whether you click-and-

Page 1638 of 1714

drag as the menu pops up, or whether two clicks are required: one
to make the menu appear, another to make the selection. In fact,
it's possible to support both.

Pie Menu Implentations

As mentioned earlier, several pie menu implementations exist,
including: X10, SunView, and two NeWS implementation (using
different toolkits).

I first attempted to implement pie menus in June 1986 on a Sun
3/160 running the X10 window system by adding them to the
"uwm" window manager. The user could define nested menus in a
".uwmrc" file and bind them to mouse buttons. The default menu
layout was specified by an initial angle and a radius that you could
override in any menu whose labels overlapped. The pop-up menu
was rectangular, large enough to hold the labels, and had a title at
the top.

Then I linked the window manager into Mitch Bradley's Sun Forth, to
make a Forth-extensible window manager with pie menus. I used
this interactively programmable system to experiment with pie menu
tracking and window management techniques, and to administer
and collect data for Jack Callahan's experiment comparing pie menus
with linear menus.

In January 1987, while snowed in at home, Mark Weiser
implemented pie menus for the SunView window system. They are
featured in his reknowned "SDI" game, the source code for which is
available free of charge.

I implemented pie menus in round windwos for the Lite Toolkit in
NeWS 1.0 in May 1987. The Lite Toolkit is implemented in NeWS,
Sun's object-oriented PostScript dialect. Pie menus are built on top
of the abstract menu class, so they have the same application
program interface as linear menus. Therefore, pie menus can
transparently replace the default menu class, turning every menu in
the system into a pie, without having to modify other parts of the
system or applications.

Because of the equivalence in semantics between pie menus and
linear menus, pies can replace linear menus in systems in which
menu processing can be revectored. Both the Macintosh and
Microsoft Windows come to mind as possible candidates for pie
menu implementations. Of course, for best results, the application's
menus should be arranged with a circular layout in mind.

My most recent implementation of pie menus runs under the NeWS
Toolkit, the most modern object-oriented toolkit for NeWS, shipped
with Sun Open Windows, Version 3. The pie menu source code, and
several special-purpose classes, as well as sample applications
using pie menus are all available for no charge.

Usability Testing

Over the years, there have been a number or research projects
studying the human factors aspects of pie menus.

Page 1639 of 1714

Jack Callahan's study compares the seek time and error rates in
pies versus linear menus. There is a hypothesis known as Fitts' law,
which states that the "seek time" required to point the cursor at the
target depends on the target's area and distance. The wedge-
shaped slices of a pie menu are all large and close to the cursor, so
Fitts' law predicts good times for pie menus. In comparison, the
rectangular target areas of a traditional linear menu are small, and
each is placed at a different distance from the starting location.

Callahan's controlled experiment supports the result predicted by
Fitt's law. Three types of eight-item menu task groupings were
used: Pie tasks (North, NE, East, and so on), linear tasks (First,
Second, Third, and so on), and unclassified tasks (Center, Bold,
Italic, and so on). Subjects with little or no mouse experience were
presented menus in both linear and pie formats, and told to make a
certain selection from each. Those subjects uising pie menus were
able to make selection significantly faster and with fewer errors for
all three task groupings.

The fewer the items, the faster and more reliable pie menus are,
because of their bigger slices. But other factors contribute to their
efficiency. Pies with an even number of items are symmetric, so the
directional angles are convenient to remember and articulate.
Certain numbers of items work well with various metaphors, such as
a clock, an on/off switch, or a compass. Eight-item pies are optimal
for many tasks: They're symmetric, evenly divisible along vertical,
horizontal, and diagonal axes, and have distinct, well-known
directions.

Gordon Kurtenbach carried out an experiment comparing pie menus
with different visual feedback styles, numbers of slices, and input
devices. One interesting result was that menus with an even
number of items were generally better than those with odd
numbers. Also, menus with eight items were especially fast and
easy to learn, because of their primary and secondary compass
directions. Another result of Kurtenbach's experiment was that, with
regard to speed and accuracy, pens were better than mice, and
mice were better than trackballs.

The "Eight Days a Week" menu
shown in Figure 1 is a contrived
example of eight-item symmetry: It
has seven items for the days of the
week, plus one for today. Monday
is on the left, going around
counterclockwise to Friday on the
right. Wednesday is at the bottom,
in the middle of the week, and the
weekend floats above on the
diagonals. Today is at the top, so
it's always an easy choice. The
NeWS Toolkit code that creats this
pie menu is shown in Listing 1.

Pie Menu Disadvantages

Page 1640 of 1714

The main disadvantage of pie menus is that when they pop up, they
can take a lot of screen space due to their circular layout. Long item
labels can make then very large, while short labels or small icons
make them more compact and take up less screen space.

The layout algorithm should have three goals: to minimize the menu
size, to prevent menu labels from overlapping, and to clearly
associate labels with their direction. It's not necessary to confine
each label to the interior of its slice -- that could result in enormous
menus. In a naive implementation, you might use text labels rotates
around the center of the pie. But rotated text turns out not to work
well, because it exaggerates "jaggies". This is hard to read without
rotating your head, and doesn't even satisfy the goal of minimizing
menu size.

One successful layout policy I've implemented justifies each label
edge within its slice, at an inner radius big enough that no two
adjacent labels overlap. To delimit the target areas, short lines are
drawn between the slices, inside the circle of labels, like cuts in a
pie crust.

One solution to the problem of pie menus with too many items is to
divide up large menus into smaller, logically related submenus.
Nested pies work quite well, as you can mark ahead quickly through
several levels. You remember the route through the menus in the
same way you remember how to drive to a friend's house: by going
down familiar roads and making the correct turn at each
intersection.

Another alternative is to use a scrolling pie menu that encompasses
many items in a spiral but only displays a fixed number of them at
once. By winding the cursor around the menu center, you can scroll
through all the items, like walking up or down a spiral staircase.

Other Design Considerations

When you mark ahead quickly to select from a familiar pie, it can be
annoying if the menu pops up after you've already finished the
selection, and then pops down, causing the screen to repaint and
slowing down interaction. If you don't need to see the menu, it
shouldn't show itself. When you mark ahead, interaction is much
quicker if the menu display is preempted while the cursoris in
motion, so you never have to stop and wait for the computer to
catch up. If you click up a menu when the cursor is at rest, it should
pop up immediatly, but if you press and move, the menu should not
display until you sit still. If you mark ahead, selecting with a smooth
continuous motion, the menu should not display at all. However, it's
quite helpful to give some type of feedback, such as displaying the
selected label on an overlay near the cursor, or previewing the
effect of the selection.

When you pop up a pie menu near the edge of the screen, the
menu may have to be moved by a certain offset in order to fit
completely on the screen, otherwise you couldn't see or select all
the items. But it would be quite unexpected were the menu to slip
out from under the click, leaving the cursor pointing at the wrong

Page 1641 of 1714

slice. So whenever the menu is displayed on the screen, and it must
be moved in order to fit, it is important to "warp” the cursor by the
same offset, relative to its position at the time the menu is
displayed. If you mark ahead so guickly that the menu display is
preempted, the cursor shouldn't be warped. Pen- and touchscreen-
based pie menus can't warp your pen or finger, so pie menus along
the screen edge could pop up as semicircuiar fans. Note that cursor
warping is also an issue that linear menus should address.

ideally, pie menu designers should arrange the labels and
submenus in directions that reflect spatial associations and
refationships between them, making it easy to remember the
directions. Complementary items can be opposite each other, and
orthogonal pairs at right angles.

it's difficult to mark ahead into a ple menu whose items are not
always in the same direction, because if the number of items
changes, and they move around, you never know in which directions
to expect them. Pie menus are better for selecting from a constant
set of items, such as a list of commands, and best when the items
are thoughtfully arranged to expioit the dreular layout.

Sampie Pie Menu

The pie menu shown
in Figure 2 is an
example of one that
I added to the
NeWS environment.
Clicking on the
window frame pops
up this menu of
window-
management
commands,

designed to take
advantage of mark &

ahead. Because this

menu is so commoniy used, you can learn to use it quickly, and save
a lot of time. At the leff of the figure is the top-level menu with
commoniy used commands and logically related submenus. The
"Grab" item has been selected, popping up & graphical submenu of
corners and edges. The icon for the bottom edge is highlighted, but
has noot yet been selected, Clicking in that slice allows you to grab
and stretch the edge of the window frame.

Figure 3 shows a second example, a color wheel that allows you to
set the brightness, and to select a color from a continuous range of
hues and saturations. The hue varies smoothly around the color
wheel with direction, and the saturation varies smoothily with
distance, with pure colors in the center fading to gray around the
edge. Quiside the pale perimeteris a continuous band of grays from
white 1o black, that looks like the shadow inside a paint can, and
functions as a circular brightness dial, Dipping into this gray border
sets the brightness of the whole wheel, You may seilect any shade

Copyright (C) 2005 by Don Hopkins.

Page 1642 of 1714

of gray around the border, or
move back into the paint can,
to select a color at the
current brightness, As you
move around, the cursor
shows the true color
selected, and because the
cursor is displayued even
before the menu is popped
up, you can mark ahead and
seiect a color without
popping up the menu!

Conciusion

Pie menus are easy to leam,

fast to use, and provide a gestural style of interaction that suits
both novices and experts. The techniques are available for anyone
to share, so take a look and feel freel

e

- sifvenradodsvan? ToaeY N casudey
2 GRORPKRING'S 0 L aagin

a3 : A

o post comments

Bloomberg Businessweek

Innovation & Design

http ://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek-business-news-stock-market-and-financial-
advice

The Long Nose of Innovation

By Bifi Buxton January 02, 2008

The bulk of innovation is low-amplitude and takes place over a long period. Companies should focus on refining
existing technologies as much as on creation

In October 0f 2004, Chris Anderson wrote an article in Wired magazine called The Long Tail, a theory he
expanded upon in his 2006 book, The Long Tail: Why the Future of Business is Selling Less of More. In it he
captures some interesting attributes of online services, using a concept from statistics which describes how it is
now possible for the "long tail" of a low-amplitude population to make up the majority of a company's business.

One of his examples came from music: A large quantity of often obscure but nonetheless listened-to music can
outperform a much smaller quantity of huge hits. The implications of the phenomenon have been significant for
those interested in understanding the meaningful attributes of online vs. brick-and-mortar businesses and the
book has apparently had an enormous impact among executives and entrepreneurs.

But those looking to apply the theory to the implementation of innovation within an organization should beware.
My belief'is there is a mirror-image of the long tail that is equally important to those wanting to understand the
process of mnovation. It states that the bulk of mnovation behind the latest "wow" moment (multi-touch on the
iPhone, for example) is also low-amplitude and takes place over a long period—but well before the "new" idea
has become generally known, much less reached the tipping point. It is what I call The Long Nose of Innovation.

A Mouse Family Tree

As with the Long Tail, the low-frequency component of the Long Nose may well outweigh the later high-
frequency and (more likely) high-visibility section n terms of dollars, time, energy, and imagination. Think of the
mouse. First built in around 1965 by William English and Doug Engelbart, by 1968 it was copied (with the
originators' cooperation) for use in a music and animation system at the National Research Council of Canada.
Around 1973, Xerox PARC adopted a version as the graphical mput device for the Alto computer.

In 1980, 3 Rivers Systems of Pittsburgh released their PERQ-1 workstation, which I believe to be the first
commercially available computer that used a mouse. A year later came the Xerox Star 8010 workstation, and in
January, 1984, the first Macintosh—the latter being the computer that brought the mouse to the attention of the
general public. However it was not until 1995, with the release of Windows 95, that the mouse became
ubiquitous.

On the surface it might appear that the benefits of the mouse were obvious—and therefore it's surprising it took
30 years to go from first demonstration to mainstream. But this 30-year gestation period turns out to be more

Page 1643 of 1714

typical than surprising. In 2003 my office mate at Microsoft (MSFT), Butler Lampson, presented a report to the
Computer Science and Telecommunications Board of the National Research Council n Washington which
traced the history of a number of key technologies driving the telecommunications and information technology
sectors.

Understanding Immature Technologies

The report analyzed each technology (time-sharing, client/server computing, LANSs, relational databases, VLSI
design, etc.) from first inception to the point where it turned into a billion dollar imdustry. What was consistent
among virtually all the results was how long each took to move from inception to ubiquity. Twenty years of
Jumping around from university labs to corporate labs to products was typical. And 30 years, as with the mouse
and RISC processors, was not at all unusual (and remember, this is the "fast-paced world of computers," where
it is "almost impossible" to keep up).

Any technology that is going to have significant impact over the next 10 years is already at least 10 years old.
That doesn't imply that the 10-year-old technologies we might draw from are mature or that we understand their
implications; rather, just the basic concept is known, or knowable to those who care to look.

Here's the message to be heeded: Innovation is not about alchemy. In fact, imnovation is not about invention. An
idea may well start with an invention, but the bulk of the work and creativity is in that idea's augmentation and
refinement. The newer the idea, the coarser the granularity of most analysis, and the more likely people are to
say, "oh, that's just like X" or "that's been done before," without any appreciation for how much work and
mnovation is involved in taking an idea from concept to wide practice.

Rewarding the Art of Refinement

The heart of the innovation process has to do with prospecting, mining, refining, and goldsmithing. Knowing how
and where to look and recognizing gold when you find it is just the start. The path from staking a claim to piling
up gold bars is a long and arduous one. It is one few are equipped to follow, especially if they actually believe
they have struck it rich when the claim is staked. Yet the true value is not realized until after the skilled goldsmith
has crafted those bars into something worth much more than its weight in gold. In the meantime, our collective
glorification of and fascination with so-called invention—coupled with a lack of focus on the processes of
prospecting, mining, refining, and adding value to ideas—says to me that the message is simply not having an
effect on how we approach things in our academies, governments, or businesses.

Too often, universities try to contain the results of research in the hope of commercially exploiting the resulting
mtellectual property. Politicians believe that setting up tech-transfer incubators around universities will bring
significant economic gains in the short or mid-term. It could happen. So could winning the lottery. I just wouldn't
count on it. Instead, perhaps we might focus on developing a more balanced approach to nnovation—one
where at least as much mvestment and prestige is accorded to those who focus on the process of refinement and
augmentation as to those who came up with the mitial creation.

To my mind, at least, those who can shorten the nose by 10% to 20% make at least as great a contribution as
those who had the mitial idea. And if nothing else, long noses are great for sniffing out those great ideas sitting
there neglected, just waiting to be exploited.

Page 1644 of 1714

©2013 Bloomberg L.P. All Rights Reserved. Made m NYC

Page 1645 of 1714

Bloomberg Businessweek

Innovation & Design

http://www .businessweek.com/innovate/content/oct2009/id20091021_629186.htm

The Mad Dash Toward Touch Technology

By Bill Buxton October 21, 2009

Buried within the current mad scramble towards touch and multitouch technologies lies an important lesson in
mnovation: "God is in the details" (Ludwig Mies van der Rohe).

So while executives and marketers all seem to be saying, "It has to have touch," I am more inclined to say that
anyone who describes a product as having a "touch interface" is likely unqualified to comment on the topic. The
granularity of the description is just too coarse. Everything—including touch—is best for something and worst for
something else. True innovators needs to know as much about when, why, and how not to use an otherwise
trendy technology, as they do about when to use it. Let me explain.

The photo above shows four watches n my collection. On three of them (a, b, and ¢), the entire crystal is a
touchscreen. Three of them (a, b, and d) have built-in calculators.

When Fat Fingers Meet Small Targets Watch (a) is the Casio AT-550. Despite its conservative styling, it has
some pretty amazing software. To put it into calculator mode, you push a button on the lower left side. To enter
numbers or operators into the calculator, you just draw them on the crystal with your finger. So, for example, a
downward stroke from 12 to 6 o'clock enters the digit one (1), whereas the same stroke followed by a
horizontal stroke from 9 to 3 o'clock enters a plus (+) sign. The numbers appear in the main part of the LCD
window, and the current operator as a kind of superscript, above them.

The whole screen is used for entering each character, thereby bringing the scale of the action well within the
bounds of normal human finger motor control. Less obvious but just as important, the technique enables "heads
up" data entry—the equivalent of touch typing. In other words, I can input numbers without diverting my gaze
from you or the document from which [am copying a number.

Watch (b) is the Casio TC-50. To put it into calculator mode, you also push a button on the lower left side of the
watch. In this case, however, a graphical representation of the familiar calculator numerical keypad appears on
the watch face. To enter a number, you touch the desired digit on the virtual keypad. To enter an operator, you
touch the appropriate icon

(A, x, -, +) permanently marked just below the LCD at the bottom of the watch crystal. The design is intended
to take advantage of your previous experience with calculators. However, while this all seems clear, it does little
to make the calculator usable. The watch is a victim of what happens when fat fingers meet small targets—even
when accompanied by high concentration. As for touch typing, forget it.

Important Product Lessons Watch (c) is a Tissot Touch. While the crystal is touch-sensitive, this watch does not
have a calculator. To activate the touchscreen you push and hold the watch stem for a couple of seconds.

Page 1646 of 1714

Different functions are enabled by touching the crystal at particular places. For example, if you touch at the 6
o'clock digtt, the hands of the watch align and pomt north, converting the watch into a compass.

Watch (d) 1s a third calculator watch, a Casio Data Bank 150. This one has a physical, mechanical keypad
rather than a touchscreen. While the physical keys are small, they can be accurately used, but not without
looking.

What I like about these watches is their power to teach us, using relatively simple existing products, important
lessons about products that we might be dreaming about. Take watches (a), (b), and (c¢). Even though they are
all just watches, and all use a touchscreen to gain access to their functionality, knowing how to use any one of
them buys you pretty much nothing in terms of knowing how to use the other two. Even if you know how to use
two of them, you still don't know how to use the third.

In fact, isn't it nteresting to note that there is a closer affinity between the touch interface of (b) and the non-touch
mterface of (d) than between the two touch ones? In light of this, what in terms of user experience is conveyed
by specifying that a product requires a touch mterface? Very little. Yet how many of those nsisting on a touch
mterface know about products such as these, much less the lessons that they have to teach?

Touch Isn't New As with almost any suddenly hot technology, touch and multitouch are decidedly not new. They
are a textbook example of my notion of the "Long Nose of Innovation. " For example, multitouch was first
discovered by researchers in the very early 1980s, before the first generally available PC using a mouse was
commercially released. It has been gradually mined and refined ever since. The companies whose products have
mitiated the current buzz just happened to recognize the latent value of touch, and believe i it enough to take on
the risk and investment required to effectively exploit its potential.

Significantly, these companies neither invented the underlying technology, nor were they the first companies to
exploit it commercially. This is not a criticism, by the way, but rather a respectful commentary on the nature of
design and mnovation—one that counters the myth of the genius mventor, and gives appropriate recognition to
those who laid the foundation that enabled this to happen.

Understand the Long Nose Finally, consider the following: Casio released the AT-550 in 1984 for under $100.
That's the same year that the first Macintosh was released. Working Moore's Law backward, that means that
wonderful "heads up" character recognition was created using only one 131,072th of the computer power that
would be found on an equivalently sized chip today.

There is a serious lesson here for those would-be mnovators who, on seeing the great success of one company's
use of some technology or another, scramble to adopt it in the hope that it will bring them a share of that wealth
as well. Such behavior is more appropriate for lemmings than mnovators.

Rather than marveling at what someone else is delivering today, and then trying to copy it, the true innovators are
the ones who understand the long nose, and who know how to prospect below the surface for the nsights and
understanding that will enable them to leap ahead ofthe competition, rather than follow them. God is in the
details, and the details are sitting there, waiting to be picked up by anyone who has the wit to look for them.

Page 1647 of 1714

Bill Buxton is Principal Scientist at Microsoft Research and the author of Sketching User Experiences: Getting
the Design Right and the Right Design. Previously, he was a researcher at Xerox PARC, a professor at the
University of Toronto, and Chief Scientist of Alias Research and SGI Inc.

©2013 Bloomberg L.P. All Rights Reserved. Made mn NYC

Page 1648 of 1714

{NASA“Cﬁml?QZQB} THE SENSOR FRAME
GRAPHIC MANIPULATOR Final Report
{Sensor Frame} 27 o

N9&-T0016
Unclas

{9761 0183157

Page 1649 of 1714

The Sensor Frame Graphic Manipulator
NASA Phase I Final Report

_194243
NASA-CR-1942 PROJECT SUMMARY
PURPOSE OF THE RESEARCH:

Most of the useful information in the real world resides in humans, not in computers. Therefore we must
find better ways of moving spatial information from the human to the computer. Quality 3-D graphics
displays are necessary but not sufficient for a highly interactive and intuitive human interface. We need to
improve input devices that capture human gestures and spatial knowledge.

One problem associated with direct manipulation interfaces in a design environment is that the user may
not be skilled or precise enough to achieve the desired result. We can alleviate this problem through the use of
constrained virtual tools. We define virtual tools as tools, displayed on the computer's video monitor, which
are analogous to the tools used in factories, machine shops, or design studios. They include, but are not
limited to, tools for cutting, smoothing, shaping, or joining operations. Virtual tools would map multifinger
two and three-space gestures into the operations performed by the "business end" of the tool (such as the blade
of a cutting tool), with constraints imposed by the model of the tool itself, the material or workpiece being
operated upon, and the objectives of the user. The virtual tool would allow us to sculpt a smooth 3-D surface,
varying the curvature or even the smoothness of a curve as it is drawn. However, the manipulation of a
virtual tool requires more than six degrees of freedom. We believe that optical gesture recognition can
provide up to twelve degrees of freedom per hand without the necessity for wires or gloves which inhibit
casual use. The essential purpose of our research was to implement the enabling technology which makes
casual use of virtual tools possible.

RESEARCH ACTIVITIES:

A prototype Sensor Cube was built using a neon-tube light source for contrast enhancement. A UNIX X-
Windows interface was developed, and a control-panel builder was designed and implemented using X-
Windows. A gesture-analysis package was developed, and is currently being extended for use in a multiple-
finger environment.

RESEARCH RESULTS:

During the course of development of the three-dimensional Sensor Cube, we were informed that the sensors
intended for use in the cube would no longer be available (see Section 3.1 for a more detailed discussion).
This forced us to evaluate different approaches to optical multifinger sensing. Subsequently, we discovered a
method of building the Sensor Cube with only one CCD sensor. This development will allow the three-
dimensional Sensor Cube device to be less expensive than it's predecessor, the Sensor Frame. Unfortunately,
the need to redesign the optical system and controller hardware and software of the cube delayed completion
of this part of the project. Interesting and useful algorithms for 3-D finger tracking were developed and will
be evaluated in detail as soon as sensor cube construction and interfacing are complete.

POTENTIAL COMMERCIAL APPLICATIONS:

The two-dimensional Sensor Frame technology will soon be supplanted by the three-dimensional capability
of the Sensor Cube. However, the technology developed for use in the Sensor Frame has been transferred to a
recently-announced commercial musical-instrument controller, the VideoHarp. The VideoHarp has
attracted widespread attention in electronic-music circles, and was recently featured on the cover of
Computer Music Journal (Volume 14, No. 1, MIT Press).

Sensor Cube gesture-recognition technology has it's greatest potential impact in computer-aided design
(CAD) and teleoperation. Current input devices with six degrees of freedom or less are inappropriate for the
manipulation of virtual tools. By gaining additional ability to capture the gestures of skilled scientists,
designers, and technicians, computers will become a better alternative to traditional manual methods of
design. If desktop manufacturing workstations with gesture-recognition input devices having up to 12
degrees of freedom can do for designers what time-sharing did for the programmers of the punch-card era,
human productivity might be enhanced considerably; possibly by orders of magnitude.

Page 1650 of 1714

1. Background and Motivation For Gesture-Based Systems
1.1. Virtual Reality and Virtual Tools
1.2. Virtual Tools
1.3. Related Research In Gesture-Sensing Technology
1.4. The Next Step: Vision-Based Gesture Sensing
1.5, Future Applications of Gesture-Based Systems
2. Phase I Technical Objectives

3. Methodology, Observations, And Results
3.1. Development of Sensor Cube Hardware
3.2. The Sensor Cube Finger-Tracking Algorithm
3.3. Development of an Intuitive Interface for Graphic-Object Manipulation
3.4. Development of an X-Window Interface and UNIX Device Drivers
3.5. Development of Soft Control Panels
3.6. The VideoHarp
4. Conclusions And Recommendations
Appendix A: Reprint of Dannenberg/Amon SIGGRAPH Article
Appendix B: Sensor Frame UNIX Device Driver Library Functions

Appendix C: Contents of VideoTape Enclosure (VHS Format)

Page 1651 of 1714

ford ok ,
mq&&mmﬁqqmmmmwww

N2 BN
|91 ST

IE CORPORATION 5/8/90 1

SENSOR FRAR

1. Background and Motivation For Gesture-Based Systems

1.1. Virtual Reality and Virtual Tools

By the time a human child begins to speak, it has already spent approximately
gighteen months to two years learning how to identify objects, people, and actions.
It can distinguish one parent from another. [t can distinguish itself from other
objects and people, It can grasp and manipulate objects. Spatial knowledge comes
early, and preceeds language.

Many young children can thread a nut onto a bolt before they go to school. A child
less than four years old can do this. The task requires more than six degrees of
freedom per hand (ie - positioning and orientation of the object in three-space plus
a grasping operation), and implies that manipulation of twelve or more indepen-
dent parameters is not unusually difficult for a young human.

In contrast, most workstations available today allow simulianecus manipulation
of only fwo independent parameters, using a mouse. One can specify and
manipulate representations of three-space objects with a mouse; but decomposing
a six-parameter task into at least three sequential two-parameter tasks is not only
counterintuitive, time-consuming, and error-prone; it 18 a waste of time if we can
find a better way. By analogy, we could probably show that anyvthing one can do
using a keyboard can also be done using a telegraph key. But most of us would not
exchange our computer keyboards for telegraph keys, despite the fact that the
latter is cheaper, simpler, smaller, and standardized.

These considerations have prompted several researchers to attempt to improve
workstation interfaces with a view toward accommodating human gesturing and
tool-manipulation ability. In section 1.3, we will describe several systems which
permit manipulation of objects in three dimensions. We will discuss their
usefulness and their drawbacks, and ask how they might evolve in the future.
While much of the published literature on 3-D input devices concentrates on the
videogame-like ambiance of virtual reality, we will move the emphasis toward the
idea of virtual tools, a subset of virtual reality that concerns itself with the
development of more productive tools for use in design. Design and the need for
redesign are among the most costly components in the production of high-
technology products such as airplanes, rockets and space vehicles, and of low-tech
mass-produced products such as automobiles,

1.2. Virtual Tools

One problem associated with direct manipulation interfaces in a design
environment is that the user may not be skilled or precise enough to achieve the
desired result. We can alleviate this problem through the use of virtual tools. We
define virtual tools as tools, displayed on a workstation's video monitor, which are
analogous to the tools used in factories, machine shops, or design studios. They
include, but are not limited to, tools for cutting, smoothing, shaping, or joining
operations. Virtual tools would map multifinger two and three-space gestures into
the operations performed by the "business end” of the tool {(such as the blade of a
cutting tool), with constraints imposed by the model of the tool itself, the material
or workpiece being operated upon, and the objectives of the user. The virtual tool
would allow us to sculpt a smooth 3-D surface, varying the curvature or even the
smoothness of a curve as it is drawn.

Page 1652 of 1714

SENSOR FRAME CORPORATION 5/8/80 2

Virtual tools might be used to add material to a workpiece, to cut material, or to
extrude it. The motion of a tool might be low-pass filtered, with filter-cutoff
frequency of the filter being controlled,for example, by the distance between two
fingers.

As we evolve hierarchies of virtual tools, designer productivity will hopefully
increase. If we can significantly shorten design time, customization will be
easier... and it is important to realize in this context that the higher-order goods of
mass production, the machines that make other machines, are often highly cus-
tomized tools, made in small quantities, but requiring many design iterations over
their useful lifetime. As we build the virtual tools that cut design time, learning
time for the designer will also be shorter, in relation to productivity. This is
especially true if the designer can see "immediate feedback” on his or her latest
design at low cost.

1.3. Belated Research In Gesture-Sensing Technology

How can we best capture human gestures for intuitive manipulation of spatial
objects? There are several different approaches to solving this problem. First, let's
look at several currently-available devices:

» The DataGlove (VPL Systems)

* The Dexterous Hand Master (Exos)

* The Spaceball (Spatial Systems)

¢ The Flying Mouse (S8imGraphics Engineering Corp.}

The DataGlove and Dexterous Hand Master (DHM) both sense finger-flexing
motions. The DataGlove also senses hand position and orientation using a
"Polhemus sensor” developed by McDonell-Douglas. The Polhemus sensor
determines position and orientation of the hand using an externally-generated
oscillating electromagnetic field. The version of the DataGlove with a Polhemus
sensor has the advantage that it can sense relatively large-scale hand positions
and orientations. Knowing position and orientation of the palm of the hand, one
can use knowledge of finger-joint flexure to determine fingertip position, for use in
grasping and tool-manipulation applications. In addition, by inserting
piezoelectric transducers in the fingertips of the glove, one could conceivably
provide some degree of touch feedback. Force feedback is a more difficult problem,.
The DHM has the advantage that its determination of finger-joint flexure appears
to be considerably more accurate and repeatable than that of production
DataGloves. It has the disadvantage that it does not currently provide hand
position and orientation, although this could probably be implemented if market
demand warrants it. Users of the DHM assert that it is lighter and less
encumbering than it locks, although the time required to fit it to the hand seems to
preclude casual use.

The use of glove-like sensors to sense gestures poses some problems. Currently,
these devices use a cable to transmit data from the glove to the workstation,
making casual use difficult. More later about the importance of casual use.

Page 1653 of 1714

SENSOR FRAME CORPORATION 5/8/90 3

Hand (and consequently fingertip) position sensing {as opposed te detection of
finger-joint flexure) requires the use of the relatively-expensive Polhemus sensor,
and its use can be complicated by the presence and movement of ferrous metals in
the vicinity of the sensor. A variation of the DataGlove developed by for Nintendo
games, the Power(Glove, uses sonar devices mounted in the glove, but this severely
constrains the orientation of the hand.

In the case of the DataGlove, unless each user has his own glove, a workstation
supporting the device must have multiple gloves available in order to support left
and right-handed persons with varying hand sizes. The same is probably true for
the Exos device. Neither device yet provides sufficiently accurate and repeatable
fingertip position information for use in a virtual tool environment. These latter
considerations are an argument against the use of glove-like devices in a virtual
tool (as copposed to virtual-reality) environment. Nevertheless, for many
applications, we should expect them to provide a reasonably cost-effective solution,

The Spaceball is essentially a 3-D joystick. It is a ball slightly larger than a tennis
ball, mounted in such a way as to make extended use very comfortable. The
spaceball is excellent for positioning and orienting displayed 3-D objects, and for
modifyving one's view of a stationary object. It has good accuracy and repeatability,
Because it functions like a joystick, it has some of the disadvantages that the
joystick has relative to a mouse, and it has only six degrees of freedom. Six degrees
of freedom are adequate for positioning and orienting objects, but more degrees of
freedom are required to manipulate virtual tools. Once the tool is positioned, there
are more things we must do to make it work, and that is the problem.

The Flying Mouse is a three-button mouse with a Polhemus sensor inside,
designed so that it is easy to pick up. One can position and orient it in space, and
then press the buttons. This is almost good enough for virtual tools, but not guite.
For virtual tools, one might prefer the butfons to be more analog, ie - pressure
sensitive. A nice thing about the Flying Mouse is that it can function as a normal
2-D mouse when on a tabletop, a convenient feature. The builder, Simgraphics
Engineering Corporation, is well aware of the importance of the design and CAD
markets, and emphasizes development of software necessary for the future
"virtual tool” environment.

It is important to point out that the technologies we are describing are in their
infancy, and constantly evolving. For this reason, many of the remarks pertaining
to the products described above may become quickly cutdated.

1.4. The Next Step:; Vision-Based Gesture Sensing

The devices described in section 1.4 generally involve the use of mechanical,
magnetic, or Hall-effect sensors in the sensing of palm position or finger flexure.
A different approach to the problem of sensing muliifinger gestures involves the
use of vision-based systems.

Computer vision systems that analyze complex real-world scenes in real time
remain beyond the state of the art. Nevertheless, in some applications, such as
visual inspection, where scenes are specialized and predictable, systems are
approaching feasibility (and a few systems are in commercial use).

Page 1654 of 1714

SENSOR FRAME CORPORATION 5/8/90 4

At Sensor Frame Corporation in Pittsburgh, we have developed a device called a
Sensor Frame, a 2-D optical finger-tracking device developed by the author and
colleagues at Sensor Frame Corporation and Carnegie Mellon University. The
prototype Sensor frame, using four sensors, reliably tracks up to three fingers at 30
Hz despite the fact that fingers sometimes block one-another from the point-of-view
of some of the sensors. Tracking of multiple fingers is what distinguishes it from
commonly-available touch screens. A drawing of the Sensor Frame, mounted on a
monitor and in "standalone" mode, is shown below. The Videotape accompanying
this report as Appendix C-1 shows the Sensor Frame in use.

The Mark IV Sensor Frame

Although the Sensor Frame represents a technology still in the early stages of it's
development, it has aroused a fair amount of interest in industry, the press and
media. In late 1988, CNN featured the Sensor Frame and VideoHarp in their
AT&T Science and Technology series, and in 1989 Business Week featured both
devices in their technology section. The Sensor Frame also appeared on the cover
of NASA Tech Briefs, together with a feature article.

Unfortunately, production of the Sensor Frame, intended for September of 1989,
was abruptly halted when the sensor manufacture halted delivery of optical
dynamic-RAM sensors in the spring of 1989. This development is discussed in
more detail in section 3.1. At present, we are developing the Sensor Cube, a 3D
extension of the Sensor Frame, which will use one area CCD sensor to track up to
three fingertips in three dimensions.

Page 1655 of 1714

SENSOR FRAME CORPORATION 5/8/90 5
1.5. Future Applications of Gesture-Based Systems

Much of the metivation for building gesture-based systems can come from
thinking about how we might apply them in the future in order to increase the
productivity of designers. When wes ask which gesfure-sensing input devices will
survive, we need to ask what future applications will require. Let's do a little
thought experiment, and imagine what we would like our workstation to do for us
if our objective were to design or meodify a three-dimensional object, such as a ma-
chine-tool part, a piece of furniture, a molecule, or a nozzle for a rocket engine.
We'll call this new type of workstation a deskiop manufucturing (DTM)
workstation, because it is intended to permit rapid prototyping of real-world
objects. It would enable a designer to interactively specify or modify the shape of an
ghject using spatial gestures and the virtual fools described above. Then it would
build the object.

The DTM workstation would consist of the following components:

* A powerful CAD workstation that displays celored, shaded 3D objects,
with full-motion video capability.

* A "3.D copier” similar to the stereolithography device manufactured by 3-
D Systems Corperation. This device, or some future variation of it, will be
used to fabricate a prototype or custom part guickly. There are currently at
least three companies working on this aspect of DTM technology, and the
number will probably increase.

* A 3-D} gesture sensor, with gesture-recognition software and a virtual-
toolmaker’s foolkit.

¢ An optional 3-D laser scanner for scanning 3-D shapes.

Page 1656 of 1714

SENSOR FRAME CORPORATION 5/8/80 6

2. Phase H Technical Objectives

Phase II Technical objectives consisted of the following:
1. Development of Sensor Cube hardware and finger-tracking software.
2. Development of an intuitive interface for graphic-object manipulation.

3. Development of X-Window interface and UNIX device drivers for the
Sensor Cube.

4. Development of soft control panels.

These objectives correspond to objectives 3.1.1 through 3.1.4, as described in our Phase
I1 proposal for this project. Due to the sudden unavailability of DRAM sensors, as
described in section 3.1 of this report, not all objectives were achieved in the form
originally anticipated in the Statement of Work. Because the Sensor Cube design had
to be modified significantly as a consequence of the sensor-availability problem, the
resultant implementation delay precluded implementation of the 3D aspects of task
3.1.4,

Page 1657 of 1714

SENSOR FRAME CORPORATION 3/8/90 7

3. Methodology, Observations, And Results

3.1. Development of Sensor Cube Hardware

In hardware terms, the Sensor Cube described in ocur NASA Phase II proposal
was intended to be a thicker version of the Sensor Frame. A Sensor Cube was built
with a 4.5" deep neon light source and four dynamic RAM (DRAM) sensors of the
type used in the original Sensor Frame. This first Sensor Cube hardware was
completed on schedule, about six months after the inception of Phase II. The Srst
Sensor Cube prototype is shown schematically below, and in a videotape enclosed
as Appendix C-2 of this report.

/ Sensor B

Sensor A

View From Sensor & Yiew From Sensor B

The First Prototype Sensor Cube, and Two Views From the Sensors

After completion of the first Sensor Cube prototype, work began on a UNIX
interface for a Silicon-Graphics workstation, and at the same time for an X-
Windows interface for an IBM RT workstation.

SENSOR FRAME CORPORATION CONFIDENTIAL INFORMATION

Page 1658 of 1714

SENSOR FRAME CORPORATION 5/8/90 8

The UNIX and X-Windoew projects were essentially complete, in March of 1989,
when Sensor Frame Corporation was abruptly informed by Micron Technology
Corporation, the sole supplier of the DRAM sensors, that the fabrication of their
line of DRAM sensors had been terminated. Our plans for commercial production
of the Sensor Frame, intended to begin in August 1989, had to be shandoned. Both
the then-current Sensor Frame and Sensor Cube designs made use of the 256K
optical DRAMS supplied by Micron. All supplies of the 256K DRAMS had been
committed o larger users by Micron before we were informed of the decision,
leaving us with only five sensors; enough for our single prototype Sensor Frame,
plus one spare. We were {old that we would be able to obtain 100 of the smaller 84K
DRAMSs; however, we considered the 64K devices unsuitable for use either in a
commercial Sensor Frame or in a Sensor Cube. Nevertheless, we bought the 100
64K devices, because we had a third product on the drawing boards that could use
it; the VideoHarp.

It is perhaps relevant at this point to discuss the original reasons for the selection
of DRAM sensors rather than charge-coupled devices (CCDis) as sensors, as well
as the decision not to seek out another DRAM vendor to supply the optical DRAMs.

In 1982, when the first precursor of the Sensor Frame was built, CCDs were
extremely expensive compared fo DRAMs, with linear CCDs running in the
thousand-dollar range. Further, CCDs require much more complex interface
circuitry than do dynamic RAMs. In the early 80's, there were no integrated-
circuit devices to provide the complex clock pulses, with their carefully-controlled
slew rates, required by CCDs. Although integrated CCD clock and level-conversion
chips became available in the mid-to-late 80's, the system cost of reasonable-quality
CCDs is still considerably greater than the cost of optical DRAM chips. Further,
the DRAM chips had several desirable properties that CCDs currently lack, one of
the most important being addressability. In addition, it has not been any easier to
obtain a second-sourced CCD than is was to obtain a second-spurced optical
DRAM.

Although desperate, we were unable to convince Micron Technology to reverse
their decision. They had little incentive to persue this still-relatively-small sensor
market, having been awarded a virtual monopoly on the American DRAM market
{(along with Texas Instruments and IBM, the only remaining American DRAM
manufacturers) by the U.8. Department of Commerce decision in 1988 to severely
limit the importation of DRAMS from Japan.

As a consequence of this unforfunate event we did two things. First, since we could
not manufacture Sensor Frames or Sensor Cubes, we decided to produce the
VideoHarp, an optically-scanned musical instrument, which was the only one of
the three products resulting from Sensor Frame technology that could make use of
the available 64K DRAMs. Second, since we knew that we must switch to a
different sensor technology after the 100th VideoHarp was built, and in order to
build a commercial Sensor Cube (at present, we believe that it may be possible for a
future VidecHarp and Sensor Cube to use the same area sensor), one of us (Paul
McAvinney) attempted to find a way to build a Sensor Cube using fewer sensors.
This effort succeeded shortly thereafter in the summer of 1989, when we developed
a design using only one sensor and two mirrors.

SENSCOR FRAME COBRPORATION CONFIDENTIAL INFORMATION

Page 1659 of 1714

SENSOR FRAME CORPORATION 5/8/30 9

The illustration below shows the a perspective view of the resultant single-sensor
Sensor Cube mounted on a video monitor. Unlike the Sensor Frame, this design
requires use of a gray-scale sensor such as a CCD or MOS area sensor. Hawever,
because it requires fewer sensors and associated optics, it will probably be cheaper
to produce than the first Sensor Cube design. It's Z-axis depth will be about six
inches, a significant improvement over the original design. In addition, the new
design lends itself more easily to use as a two-handed teleoperation device, If two
cubes are positioned side-by-side, they can share a controller.

Figure 2: The Prototype Sensor Cube Mounted on a Video Monitor

Several important design considerations are driving the design of the second
Sensor Cube. We list here the most important ones:

* The device must allow for at least ten degrees of freedom per hand,
hopefully more. This will allow positioning and orientation of a virtual
tool relative {0 a workpiece, followed by x-y manipulation of analog inputs
on the tool itself by two opposed fingers. Even twelve degrees of freedom
may not be too difficult to obtain,

® The device should allow casual use. This becomes especially important as
inereasingly powerful virtual tools permit a given operation to be
completed in a short time, allowing the user to do something else which
may not reguire the use of the gesture-sensing device. Good virtual tools
should preclude the need for constant use, lessening concern about
operator fatigue caused by holding one's hand in the air all day.

* The user's hands should be left free to use other devices, such as
keyboards and telephones,

* Position of fingers relative to screen objects should be sensed.

* The device should be able to sense fingers in the vicinity of a video monitor.

It should be attachable to the monitor, so that the user need not sacrifice
desk space.

¢ It should operate independently of the video monitor, so that it can be
mounted in another location (possibly for teleoperation-oriented
applications} if the user so desires.

It should be inexpensive in mass production, in order to encourage
general use and standardization of application and user-interface
software,

SENSOR FRAME CORPORATION CONFIDENTIAL INFORMATION

Page 1660 of 1714

AME CORPORATION 5/8/90 10

The next illustration shows a perspective schematic view of the new Sensor Cube
design. The sensor is at lower left, and the shaded areas represent two mirrors at
right angles.

Perspective View of Sensor Cube, With Monitor Screen At Rear

The next illustration shows the Sensor Cube from the front. Also shown are the
positions of the virfual sensors. The scene produced in the single real sensor, at
lower left, includes the scenes reflected from the mirrors along the top and right
walls of the Sensor Cube enclosure. These virtual images may be treated
geometrically as if they were images seen by the virtual sensors in the three
positions shown. The net effect of the mirror system is to provide an image from
four directions instead of just one. Since all sensors, real and virtual, lock at the
hand from a position near the plane of the video monitor, occlusion of fingers by
the palm is minimized, except in the cases of extreme rotation of the hand.

SENSOR FRAME CORPORATION CONFIDENTIAL INFORMATION

Page 1661 of 1714

SENSOR FRAME CORPORATION 5/8/90 11
Virtual
X Sensor 3 L &
Virtual Q“%Q ma,,as"ﬂ&&@
Sensor 1 -

]
8
8
8
L]
®
]
8
8
B

Virtual °
Sensor ! Front View

Foldback Sensor 2
Mirror

Front View of Sensor Cube, Showing Virﬁuai Sensors

The new Sensor Cube controller is currently under construction. Delays in
delivery of suppert chips for the new design, based on a relatively inexpensive CCD
designed by Texas Instruments, preclude the possibility of completion before the
end of the NASA Phase I contract. Most U.S.- based CCD vendors have their CCD
chips and support circuitry {(and associated data sheets) produced in Japan for use
in Japanese video cameras, and the 1.5, wholesale market iz small. As 3
consequence, some parts that have been on order for six months are still not being
delivered.

A more long-term solution to the problem caused by the fact that there are
currently no multiply-sourced area image sensors suitable for our designs is for
us to design our own area sensor chip. This effort would make use of a scaleable
CMOS process and the multi-foundry capabilities of the MOSIS prototyping service
offered by the Information Sciences Institute at the University of Southern
California (USC/IBI). PC-based software for MOSIS project-chip designs is
available from commercial vendors at nominal cost.

Because of the uncertainty in the design schedule for this approach and ocur
limited resources, we chose the more conservative approach of using commercial
CCDs. Nevertheless, in the fall of 1989 we submitted a proposal to DARPA to fund a
"smart” addressable MOS image sensor chip for use in gesture-based systems, but
the proposal was rejected. We were told by DARPA that the proposal was
considered technically sound, but that most if not all of their new funding had been
reserved for HDTV and Star Wars projects. DARPA's approach may change,
given the recent high-level shake-ups within the organization, but Sensor Frame
Corporation intends to stake it's future on commercial product development (ie. -
the VideoHarp), and fund new sensor development internally,

SENSOH FRAME CORPORATION CONFIDENTIAL INFORMATION

Page 1662 of 1714

SENSOR FRAME CORPORATION 5/8/90 12
3.2. The Sensor Cube Finger-Tracking Algorithm

The algorithm for determining the spatial position and orientation of fingers in the
Sensor Cube image area, stated here in somewhat oversimplified form, works as

follows:

1) From the point-of-view of virtual sensor 3, the furthest sensor away
from any sensed object, the scan line which intersects the mirrors at
the greatest angle relative to the base-plane is read. This is
guaranteed to sense a finger and allow it to be tracked at a z-axis
value at or beyond the maximum guaranteed z-axis (Zy,x) tracking
value.

2) As any finger approaches Zy,x, it is scanned by a "crosshair" pattern
for each virtual sensor. One line of the crosshair is oriented along the
axis of the finger, the angle being determined from previous scans.
This is called the "longitudinal scan". For the simple case of a finger
pointing directly along the Z axis, this value, taken from each virtual
sensor, determines the position of the fingertip in the Z dimension.
Information regarding fingertip position from each longitudinal scan
is used to determine the height (above the fingertip) of the next lateral
scan (see below).

3) The second scan is at right angles to the first, scanning across the
width of the finger. This is called the "lateral scan”. Information
from each lateral scan is used to determine the lateral position of the
next longitudinal scan.

In this method of tracking, each longitudinal scan corrects the position of the next
lateral scan for a given finger, and vice-versa. Whether a frame-buffered image or
an addressable sensor is used, the method allows us to locate fingers by scanning
a relatively small fraction of the total number of pixels in the image, greatly
reducing Sensor Cube controller processing requirements. In practice, two lateral
scans of each finger may be needed to determine finger orientation accurately.
When partial occlusion of a finger occurs, things become somewhat more
complex. Experience with the Sensor Frame leads us to predict that we should not
try to track more than three fingers at a time. This necessitates a style of gesturing
which requires folding of the two smallest fingers into the palm. However, such a
constraint appears to be easily learnable by most users. Further, the plane formed
by three fingertips is useful for determining the orientation of a displayed object
"grasped” by the hand. In the future, with more experience, we may try to relax
the "three-finger" constraint.

SENSOR FRAME CORPORATION CONFIDENTIAL INFORMATION

Page 1663 of 1714

SENSOR FRAME CORPORATION 5/8/90 13

3.3. Development of an Intuitive Interface for Graphic-Object Manipulation

Because the development of the Sensor Cube was delayed, the translation, rotation,
grasping, and scaling of graphic objects in three dimensions was not possible.
However, Appendix C-1, in the videctape attached to this report, shows how these
capabilities were implemented using the Sensor Frame prototype for the two-
dimensional case. We believe that when the Sensor Cube becomes operational,
extension of these capabilities to the 3D case will not be difficult.

3.4. Development of an X-Window Interface and UNIX Device Drivers
for the Sensor Cube.

X-Window and UNIX device-driver interfaces were successfully implemented for
the Sensor Frame on IBM-RT and Silicon-Graphics IRIS workstations, The
videotapes attached as appendices to this report show the effects of this
implementation. Appendix B lists the implemented UNIX device-driver functions
written in C.

In general, it was found that the X-Windows interfaces (particularly on the IBM
RT) were quite slow duse to the excessive overhead of message passing between
various X-Window components. This made multifinger tracking and screen
update slow and difficult. The widely-acknowledged problem of excessive message-
passing overhead has resulted in the recent appearance of terminals with
processors dedicated to the efficient execution of X Windows.

Our implementation of the Sensor Frame on the Silicon-Graphics IRIS
workstation was done using Sun's NEWS windowing system provided by Silicon
Graphics.

3.5. Development of Soft Control Panels

The control-panel editing program was developed by researchers at Carnegis
Mellon University under subcontract to Sensor Frame Corporation. An article
describing this effort, "A Gesture Based User Interface Prototyping System”, by
Dr. Roger Dannenberg and Dale Amon of the School of Computer Science at
Carnegie Mellon, was published in the Proceedings of the Second Annual ACM
SIGGRAPH Symposium on User Interface Software and Technology, November
1988. That article is included in it's entirety as Appendix A of this report. The
attached videotape (Appendix C-3) shows the operation of this system,

Page 1664 of 1714

SENSOR FRAME CORPORATION 5/8/90 14
3.6. The VideoHarp

The

VideoHarp

o

The VideoHarp is an optically scanned musical instrument which converts
moving images of the fingers into music. Unlike keyboards and other mechanical
sensing devices, the VidecHarp, because of the flexibility of it's optical scanning
method, can recognize many classes of musical gestures, including bowing,
strumming, keyboarding, and even conducting. A given class of gesture may be
applied {0 any class of instrument timbre. For example, one could bow a horn or
strum an organ. Using a fixed mechanical controller, such as a kevboard, one
could produce non-keyboard sounds, such as the sound of a stringed instrument.
However, even a keyboard with aftertouch cannot vary the timbre of a bowed note
significantly as the note is played. Note that a cellist or viclinist can press harder
on the bow, play closer to the bridge of the instrument, and produce vibrats all at
the same time. Keyboard controllers do not permit such quantitative, intuitive, and
flexible conirol of many parameters at once.

Page 1665 of 1714

SENSOR FRAME CORPORATION 5/8/90 15

The VidecHarp, because it can optically track all the player's fingers at once,
allows conirol of many independent parameters. It permits a richness of timbral
expression approaching, and often exceeding, that of traditional instruments. The
playing surfaces of the VideoHarp can be divided up into regions. Each region
possesses it's own attributes, such as which instrument is to be played, the width
of keys, pitch and amplitude ranges, and many others too numercus to mention

here. 1

Some classes of gestures lend themselves well to conducting. For example, a
stored score can be conducted using bowing motions. Each reversal of the bow
causes the next note to be played. While one hand executes the bowing motions, the
fingers of the other hand can be used to control additional aspects of timbre at the
orchestral level2. This allows a novice user to obtain immediate musical results,
and to express himself musically at a high level without having to learn all the
nuances of the instrument. It is the musical expression which is important here,
not the ability to specify which notes are to be played. That has already been done by
the composer. Although a conductor may lock at an orchestral scere in order to
plan what to do next, he is primarily interested in developing his own
individualized expression or interpretation of the composition.

The following diagram illusirates the internal structure of the VideoHarp, as seen
from above. The dashed line shows the light path from the light source {(at right) to
the sensor, at left. Mirrors are used {o bend the light path so that both playing
surfaces can be scanned by a single area sensor. Fingers placed against the
playing surface block light from the light source, creating a shadow image on the
sensor after being focused by a lens system (the cylindrical object at left).

The V2 VideoHarp, As Seen From Above

The VideoHarp can assume four different roles:

* A Musical-Instrument Controller: The VideoHarp is an optically-
scanned free-hand gesture sensor adapted to the needs of the
instrumentalist. It can be connected to any synthesizer with a MIDI
input.

1 For more information, see The VideoHarp, in Proceedings of the 14th International
Computer Music Conference, Cologne Germany, 1988, Ed. Lishka and Fritsch.

2 An orchestra can be thought of as 2 large instrument played by a eonductor. The conductor
does not specify the notes to be played, only kow they are to be played.

Page 1666 of 1714

SENSOR FRAME CORPORATION 3/8/80 18

* A Conducting Controller: The VideoHarp can capture gestures used in
conducting a group of instruments, such as a guartet, an ensemble, or
even a full orchestra.

* A Composition Tool: With it's ability to optically sense playving and
conducting gestures of many types, the VideoHarp is an enabling
technology which permits composers to experiment with the interaction
between melody, tempo, timbre, and dynamics, with a flexibility and
immediacy unmatched by current controllers.

¢ A Complete Musical Instrument: In the future, a VideoHarp with
built-in synthesizer will be a complete musical instrument. At present,
because there is no "standard” synthesizer, it is better to leave the choice
of this device up to the user.

The VideoHarp has received national and international coverage in several
publications, including Science News and Business Week. A color picture of the
VideoHarp appeared recently on the cover of Computer Music Journal, which
included a paper by the inventors.

Page 1667 of 1714

SENSOR FRAME CORPORATION 5/8/90 17

4. Conclusions And Recommendations

We beleive that in the long run, vision-based gesture recognition systems such as the
Sensor Cube will be widely used; first in design workstations, and later in personal
computers, when full-motion video display of virtual tools and workpieces becomes
inexpensive (this may happen relatively socon). We believe this for the following
reasons:

e Casual, hands-free use of virtual tools will become increasingly
important to users as the number, quality, cost, and utility of
constrained virtual tools continues to shorten the design process and
increase the number of people who will make use of it.

¢ Desktop Manufacturing (DTM) will allow fast prototyping, quick
redesign, and inexpensive small-batch production of evolving
products. As DTM becomes cheaper, a wider base of users will insist
on standardized and portable virtual tools.

s Because each virtual tool must contain a description of the gesture-to-
teolblade mapping, optical, rather than mechanical methods of
gesture sensing permit the most flexible and repeatable interpretation
of gestures having on the order of twelve degrees of freedom from a
wide range of human hand and finger shapes.

¢ The Sensor Cube will be inexpensive in large quantities, and
ungbtrusive in casual use.

In the short run, we have to survive; we have had our problems obtaining a reliable
supply of appropriate sensors and support circuits in a sensor market still dominated
by videc cameras for television applications. This situation has delayed construction
of the Sensor Cube prototype (see Section 3.1}, but things will probably improve. One
Japanese image-sensor manufacturer has already requested that we submit a
detailed proposal to them outlining ocur design requirements for a "smart”
addressable area sensor. American 1C manufacturers continue to lag in their
understanding of the future role and importance of smart optical sensors which can
detect and flag the pixel locations of image changes in the time domain.

We believa that the next great reveolution in human productivity will be the result of a
nonlinear increase in the utility and productivity of design tools. Good tools will make
design more fun, and human creativity and productivity always profit when a process
is viewed as being fun rather than work.

Page 1668 of 1714

SENSOR F

CORPORATION

5/8/90

Appendix A: Reprint of Dannenberg/Amon SIGGRAPH Article

A Gesture Based User Interface Prototyping System

Roger B, Danneaberg and Dale Amon

Schoo! of Computer Science
Carnegic Mellon University
cmail: Roger.Dannenberg@cs.cmu.edu

Abstract

GID, for Gestural Interface Desigaer, is an experimental
sysiem for prototyping gesture-based user interfaces. GID
structures an interface as a collection of “‘controls™: ob-
jects that mainiain an image on the display and respond 10
input from pointing and gesture-sensing devices. GID in-
cludes an editor for arranging controls on the screen and
saving screen layouts to g file. Once an interface is
created, GID provides mechanisms for routing input o the
appropriate destination objects even when input arrives in
paratlel from several devices. GID also provides tow level
feature extraction and gesture representation primitives o
assist ip parsing gestures.

1. Introduction

Gestures, which can be defined as stylized motions that
convey meaning, are used every day in a variety of tasks
ranging {rom expressing ouwr emotions 10 adjusting volume
controls, Cestures are a promising approach to human-
computer inieraciion because they ofien allow several
parameters 10 he controlled simultancously in an intuitive
fashion. Geswures also combine the specification of
operators, operands, and qualifiers into a single motion.
For example, a single gesture might indicate '‘grab this
assembly and move ii to here, rotating it this much.”
Previous work on gesture based systems {1, 2, 6, 4, 12] has
only begun 1o explore the potential of gostural input. We
need a beuer understanding of how (o construct gestural
interfaces, and we need systcms that allow us 10 prolotyps
them rapidly in order to lcarn how to tuke advantage of
gestures. Our work is a siep toward these zoals.

Building interactive systems based on gesture recognition
is not a simple wsk. As we desigoed and implemented our
system, we encountered several problems which do not
arise in more conveational mouse-bascd systems. One
problem 1s supporting meltiple input devices, each of

Permission 1o copy without fee all or parnt of this material is granted
provided that the copies are not made or distributed for direcs

commercial advantage, she ATM copysight notice and the title of the
publication and s date appear, and notice is given thal copying i by
permission of the Asociation for Computing Machinery. To copy other-
wise, of to republish, requires 8 fee and/or specific permission.

© 1989 ACKM 0-89791-335-3/89/0011/0127 $1.50

Page 1669 of 1714

127

which might have many degrees of freedom. Unlike most
mouse-based systems which can only engage in one inter-
action al a Ume, our system suppons, for example, turning
a knob and flipping a switch simultaneously.

Another problem is how 1o parse input into recognized
gestures. We assume that gestures are specific 10 various
inieractive objects. For example, a switch displays an im-
age of a toggle on the screen and can be "flipped”’ by a
{ingertip, but only if the finger wravels across the image in
the right direction. In this case, finger motion must be
interpreted in the context of the interactive object, and a
path (as opposed o instantaneous positions) defines the
gesture.

Beyond these problems, we were also interested in making
our prototyping eavironment easy to use, modular and ex-
iensible. Thus, we have been concerned with the issues of
how 1o combing interactive objects in a screen-based inter-
face, how to cdit the layoui and appearance of the infer-
fuce, and how 10 encapsulats the behaviors of interactive
objects and isolate them from other aspects of the system.

A final issue is the gquestion of debugging support to aid in
the impiementation of new inieractive objects. We use
input logging 1o make bugs more reproducible and a com-
bination of interpreted and compiled code to speed
development.

We have compleied 3 system, named GID for Gestural
Interface Designer, in which one can interactively create
and position instances of interactive objects such as menaus,
knobs and switches. One can interactively attach semanlic
actions o these objects. GID supporis input from both a
mouse and a free-hand sensor that can wack muliple
fingees, We are far from having the ultimate gesture based
interface support environment, but we have developed in-
teresting new technbgucs that are applicable o fulure
gesture-based sysiems,

In section 2 we describe the structure of our prolotyping
system, and section 3 describes the handling of input from
multiple devices. In section 4 we describe our general
technique for processing input in order o recognize ges-
tures. Section § describes in greater detail our develop-

i8

e

SENSOR FRAME CORPORATION

ment technigues and the current implementation. Conclu-
sions are presented in section 6 along with suggestions {or
future work.

3. The Interface Designer

Thig project extends an earlicr effort called Tnterface
Designer, or ID. The goal of ID was © provide a small,
practical and portable system for creating screen-based in-
terfaces by direct manipulation. 1D was inspired by Joan-
Marie Hullot's work at INRIA, a precursor 0 Interface
Builder {5, 9]. A typical use of 1D might e the following:
by selecting 2 menu item, the user creates an instance of an
object which displays 2 3-D database. In order 1o manipu-
jate the image, the user creates 3 few instances of shiders,
A short Lisp expression is typed © supply an action for
esch stider, and labels of “azimuh’, “altitnde’” and
*pitch’ are entered. Now, moving a slider causes a mes-
sage to be sent o the display object and the image is up~
dated accordingly.

The basic internal stucture of 1D introduces 1o significant
improvements over other abject-oricated event-driven in-
terface systems such as MacApp (11} or Cardelli’s user
interface system [3]. ¥t will be described here, however,
for clarity.

1D represenis the screen as @ ok of objects. At the root is
a screen object that contains a set of window objects, Each
window object may coniain a set of control objects. One
type of control objest is the control group, which serves i
collect 2 set of control objects into an aggregate. Other
iypes of control objecis include sliders, buttons and
switches of various styles. (See figure 2-1.)

Consols

\L f

Window 1 Lw.indow 2

¥ y

Control
Group

¥

Button {iBution

Slider

Figure 2-1: An ID control object tree.

In addition o the hicrarchy iroplicd by this tree, there is
also 2 class hierarchy arranged so that classes can inherit
much of their behavior, (Sece figure 22} The Input-
Control class encapsulates generic behavior of objects that
handie input from the user and manage SOMe §o1L of image

Page 1670 of 1714

5/8/80 19

on the screen. PictureControls, a subclass of Input-
Controls, actually draw images. These include classes
such as Switch and Slider. Another subclass of Input-
Conuol is ControlGroup, which implements the search for
an input handler. New interactive controls are typically
created by subclassing PictureControl or one of its sub-
classes. Output-only ““controls’ have also been defined as
subclasses of Control. For example, class 3dPict draws a
wire-frame rendering of a 3-I3 data base which is loaded
from a file.

Object
Control
InputControl
PictureConirol
Baiton
Switch
Stider
FontDev
ControlGroup
Console
Window
Menu
MenuCard
PictureGroup
Menuliem
CutputOnlyControl

Figure 2-2: Interface Designer class hiersrehy.

in normal operation, 1D has a single main loop that waits
for input and delivers &t t© the appropriate destination,
Each input event is represented by a window identifier, a
device type (&.g. mouse or keyboard), coordinates (if any},
and other data. This event is passed to the root of the tree
where a search for a recipient begins. Typically. each
node which is not a leaf node (a PictureControl) passes the
event 1o cach of its children until one of them accepts the
input event.

To make this recursive search reasonably efficient, a Con-
trolGroup object rejects mouse input which falls outside of
its bounding box, and windows reject input unless the
event's window identifier matches. Even with these op-
umizations, it is too incfficient o search the object tree
from the root for cach mouse-maoved event during a drag-
ging operation. Instead, a coniext mechanism is used.

in 1D, the handler for input is found at the top of a conlex:
stack. An object can grab future input events by pushing a
new coniext onto the stack 1o direct futurs input (o the
shiject. For example, a dragging operation would start with
2 mouse-down event that would be handled in the normal
way. Upon rcceiving the mouse-down event, the object
that handles the dragging operation pushes the coniext
stack and hecomes the target of futurs input. Al sucees-
sive mouse-move events go directly to the object. When
mouse-up is received, the object pops the current context
1o restore input processing W normal.

The context stack has two uses in addition 1o temporarily
grabbing mouse input. The context stack is used for nested

128

SENSOR FEAME CORPORATION

pop-up windows and also for implementing an Sedit”
mode in which conurol objects <an e created, moved,
copied, and deleted. In edit mode, we wani to be able to
select controls without invoking their norraal operations.
“This is accomplished by pushing a special “edit context”
which routes all input 1o an editor that can manipulate the
on-screen objects.

3, Parallel Input Handling

We used ID as the basis for GID, our gesture-based sys-
tem, OID was designed 1o be used with a Sensor Frame
[7] as the gesture sensing device, The Semsor Frame
wracks multiple objects (normally fingurs) in 2 plane
positioned just above the face of a CRT display. The
‘‘plane’’ actually has some thickness, so three coordinates
are used 1o locate each visible finger. When a finger enters
the field of view, it is assigned 2 unique ideatifier called
the finger identifier Each time the finger moves, the new
coordinates of the finger and the finger identifier are trans-
mitted from the Sensor Frame 10 the host computer.
ideally, when a finger enters the ficld of view of the Sene
sor Frame, it is assigned a number which it retains for the
entire lime it remains in view. Since the Sensor Frame
may be wracking multiple fingers parallel, coordinate
changes for several fingers may be interlcaved in time.

In owr gesture-based system, we wanied be able to handle
muliiple finger gestures acling on a single object, for ex-
ample, wrning a knob, We also wanted 1o allow users 0
operate a control with each hand. The stack-based context
mechanism deseribed in the previous scetion, however,
does not allow inputs to be direcied 10 several objects. We
could simply pass all input 10 the oot of the object uee,
but again, the search overhead would be too high

Our solution is to mainiain a more general mapping from
input events to objects. Each context containg a list of
input templates, each of which has an associated handiing
object. Input templates consist of a window idenulfier,
device type, and finger identifier. If all clements of the
template match corresponding elerments of an input event
(the templaie may have “don’t care’® values) then the
event is sent 1o the indicated handling object if no
template matches, then input is sent 1o a defaolt handling
cbject, also specified in the current context. As a result,
we can have:
s two fingers operating a knob {input from ei-
ther finger is forwarded immediaicly 10 the
knob object),

s anciher finger moving toward & switch {input
from this finger goes 10 the root of the object
wrec as usual. The switch object may change
the current coniexi and iake future input
directly when the finger gets close), and

s a simulianeous mouse click on a button {this
input would work its way through the object
tree from the root o the bution object).

Page 1671 of 1714

5/8/80

In some cases, one might want 1o effect a global context
change, such a3 a pOp-up dialog box which preempis all
controls. This is accomplished by pushing a new context
on the stack. This may redirect input from an ohject with a
gesture in progress. We avoid problems here by sending a
“finger up”’ event to the old handling object and a **finger
down'' event 1o the new handling object whenever 3 finger
changes windows,

4. Gesture Representation and Processing
Since individual finger coordinates do not convey amy
dynamic aspects of gestures, the first stage of processing
Sensor Frame input data is 1o represent the path of each
finger by a set of features. The features are then inter-
preted by conwols. The current sel of features includes a
piece-wise linear approaimation of the path, the point
where the path {irst ¢rosses into an “‘activaton radius’,
and the cumulative angular change.

4.1. Initial Processing

The x.y.2 coordinaies are supplied by the Sensor Frame as
integers but are wansiated o floating point for further
processing. The x,y.2 portion of the input data is referred
1o hereafier as a Raw Data Point ot RDE.

Normaly, the default handling object for RDP's is the root
of the object wee. The uee is searched after each inpuy
however, when the RDP falls within the bounding box of 2
control object, the object responds by putting a template in
ihe current context that will direct future events with the
same finger identifier 10 the objecs. Future maiching
events will arrive at the object where they are added i &
iable associated with both the object and the finger iden-
tificr. This table of RDP's is called an open veCior,

4.2. Path Decomposition

The next sep i5 1© iprocess the open vector of RDP's 1©
obtain a segmented representation. This representation
simutianeousty provides data reduction and immunity from
jister.

For convenience, we wani our approximation 10 be con-
tinuous; that is, each segment begins whers the previous
one ended, and all endpoints coincide with data poinis
(RDP's), The algorithm for constructing the approxima-
tion is straightforward: as each RDP is added o the open
veetor, and emor measure is computed. When the ermor
measure exceeds a constant threshold, 8 segment from the
first 1o the nexi-to-last point is added 1o the paih and the
open vector is adjusted 10 contain the last two RDP's. This
algoritm can be descrived as “‘greedy withowt
backiracking™ since we pack as many RDP's into each
segment as possible (limited by the error threshold) and we

i this discussion, & segment is an ordsred pair of points, e.g. RDPs,
and & polm IS SR K, ¥, 2 sriphe.

128

20

SENS@R F ‘;

CORPORATION

never vy alternative assignments of RDP's (o scgments.

Figure 4-1 illustrates the process. The scgment from point
1 1o point 3 falls below the eror threshold, but a segment
from point 1 1o point 4 exceeds the threshold. Therelors,
the segment [point 1, point 3] is added o the path, and a
new open vecior [point 3, point 41 is started. This is ex-
tended to point 5 and then o point 8.

A 3

-2
®

¥

Figure 4-1: Fitling vectors {0 a sei of poinis.

The error measure is:

1. n) L . , ‘ L
error= A ID,@IVHCID BN+ I0)V
= 1= 1=}

where O (p} is the x-component of the shoriest vector

i‘rc{m an RDP p; o the proposed segment {py, p,l from

point py 10 p,. We elecied not 1o take a sum-of-squases in

the innermost summation (o save a bit of computation, and

the resulting path decompuosition scems o work well. The

distance from 3 point o a line can be computed without

trigonometric or square oot functions as shown in Appen-
dix L

4.3, The Activation Volume

Gesture analysis is performed if an opon vocior passes inlo
the volume defined by an activation radius and an activa-
tion center, Such processing will continue so long as suc-
ceeding RDP's remain within that volume.

An activation conter is not necessarily static. For example,
the knob on a slider has an activation center that moves
along with it. The vaiue associated with the device class s
in this case a default initial value for the shider location.

Because we are polling the Scnsor Frame from the applica-
tion program, we cannot guamnlee that we will catch all
{or any) relevant RDP’s within a possibly small ectivaiion
volume. This is particularly true if the finger is traveling

Page 1672 of 1714

5/8/90 21

quickly. However, by setting the size of the bounding box
large cnough, we can guarantee we will at least pick up
endpoinis of a path segment that intersects this volume.
The same distance algorithm {se¢ Appendix I} used for
path decompusition is then used to see if the point of
closest approach of the path (o the activation center is less
than the acrivation radius.

4.4, (zestures
Once an RDP falls within the activation radius, the gesture
featurcs are examined by the corresponding ohbject.
Response 1o gestures is programmed procedurally for each
type of control.

A toggle switch {or any other control affected by a simple
fincar motion), can be moved if the direction of ravel of a
finger path (&) matches the preferred axis of wavel of the
device (B). We define a maximum angle (8,) bstween
the vwo and see if the actual angle (8} is within bounds,
The actual angular crror can be found using the definition
of the vector dot product:

AB=Kibkos {8

dCi)
and rearranging to solve for cos{@,)

cos (8,)= (A-B)/ (4180
if the ineguality:
cos(8,, scos{B, 3

holds, then the movement of the finger is close enough o
the preferred direction to cause a stale change, Noie that
cos(®,...} is a constant that can be precalculaled, thus we
avoid calculating transcendentals at run time by comparing
cosines of angles insicad of the angles themselves and by
using the equation:

A-B =AXIEX+AYI}\,+A2,€3Z

The knob rotation gesture consists of one or two fingers
moving within the activation radius of the knob, Once it is
detcemined that a finger path crosses the activation radius,
an angle from the center of the knob to the finger is com-
puted and saved. Fach location change within the activa-
tion radios results in 3 recalculation of the angle, and the
angle of the knob is updated by the angular difference.
When there are two fingers within the activation radius,
the knob is updated when either finger moves; the overall
knob rotation is effectively the average rotation of the two
fingers.

5. System Considerations

8.1, Implementation Languages

Our Sensor Frame interface, gesture recognition software,
and graphics primitives are all implemenied in the C pro-
gramming language. Graphical and interactive objects, as
well as the top-level input handling routines, are im-

130

SENSOR FRAME CORPORATION 5/8/90

plemented in XLISP, a lisp interpreter with built-in support
for objects.

Although we would have preferred a compiled lisp, this
work was begun at a time when our workstation environ-
ment was in a state of rapid change. During the course of
the project, we ported XLISP to three machine types and
implemented our graphics intcrface on two window
managers. The fact that XLISP is a rclatively small C
program made it easy to port and (o extend with the ad-
ditional graphics and 1/O primitives we needed.

5.2. Input Diagnostics

For diagnostic purposes, input of raw position data points
is done through a device-independent module that allows
input 1o come from a Scnsor Frame, to be partially simu-
lated by a mouse, or 10 be played back from a file that was
“‘recorded’’ on a previous run with a mousc or a Scnsor
Frame. Bugs that appcar only in long runs can be
reproduced by playing back the log file during a dcbugging
session.

The interface is implemented in such a way that regardless
of which device is being uscd as the pointing device, the
window menu is still available via the mouse. Commands
are available to display cvery RDP as a small box on the
screen; 1o print the results of cvery Sensor Frame input o a
diagnostic window; 1o sclect a prerecorded file, a mousc or
the Sensor Frame as the sourcc of input; or o begin or end
recording data for futurc playback.

6. Results and Conclusions

In the process of building GID, we have encountered
scveral problems which arc worth (urther study. Onc
problem is how to organizc protolyping soltware such as
GID to allow controls to be operated in “‘run’” mode and
edited in ‘“‘edit’”’ mode. It sccms inappropriatc to imple-
ment editing within cach objcct (Should a slider contain
code for editing its sizc, placcment, label, cic?), but a
modular approach is preferable to a monolithic editor that
captures all input in edit mode. [n GID. we divert input
when in “‘cdit’”’ mode, but we have specific cditing
methods in various subclasscs of Control. Onc alicrnative
is to implement all interactive behavior vutside of control
objects as in Garnct [8].

Another problem is that we have no high-fevel procedures
for recognizing complex gestures: our recognizers must be
hand-coded using fairly low-level representations. A
promising alicrnative is the patiern recognition approach
being pursucd by Dean Rubine | 10].

We know of no window managers that support multiple
cursors. Idcally, the window manager should track cach
finger with a cursor and also detcrmine what window con-
tains cach visible finger. Currently, the overhead of cursor
tracking and mapping input 10 windows [rom outside of
the window manager (X11) causes significant performance

Page 1673 of 1714

problems.

The present resolution of the Sensor Frame is only about
160 x 200 points. While this provides plenty of resolution
relative 1o the size of controls displayed on the screen,
greater resolution is needed in order 10 accurately measure
the direction of motion and to minimize jitter.

The organization of GID prevents a single gesture from
being received by multiple controls simultaneously. We
do not fee! this is a scrious limitation, but it could be
avoided by utilizing a more complete mapping from
RDP’s (0 objects. Rather than scarching the object tree
depth first, we could use hashing or a linear search of all
objects to locate potentially overlapping bounding boxes
which contain each RDP. Input events would then be
duplicated and sent to cach ‘“‘interested’’ object. This
technique was tried in an carlier system and allowed, for
example, two adjacent switches to be flipped by moving a
finger between them.

We notc that some window managers might assist in the
implementation of controls: if each control is implemented
as a sub-window, then the scarch for a handler could be
performed by the window manager. This technique will
not work if we want input to rcach multiple controls be-
cause current window managers will map input to only one
window cven if there is overlap. Furthcrmore, window
managers typically assume a single pointing device, and
extensive modification would be required to handle input
from the Scnsor Frame or some other gesture sensing
device.

In conclusion, we have implcmented a system for
prototyping gesturc-based user interfaces. The system is
capable of cditing its own interface, and applications are
typically built by extension. The system allows us 10 ex-
periment with screen layout and with multiple input
devices without programming, and the system is extensible
so that new interaction techniques can be integrated and
cvaluated. We have found piccewisc lincar approxima-
tions to paths to be an appropriate representation for
simplc gestures, and our vector software can be rcused by
different control objects.

7. Acknowledgments

We would like 10 thank Paul McAvinney, who played a
crucial role in this rescarch as inventor of the Sensor
Frame and promoter of the value of gestures. Portions of
this work were supported by the Sensor Frame Corporation
as part of a project sponsorcd by NASA. Workstations
used in this study were made available through an equip-
ment grant {rom IBM. Thanks are also due to lo Gerald
Agin for the time he spent discussing curve fitting al-
gorithms and analytic geometry.

SENSOR FRAME CORPORATION

References

1. R. A, Bolt, The Human Inierface: where people and
computers meel. Lifetime Leaming Publications, 1984,

2. Frederick P. Brooks, Jr. Grasping Reality Through H-
lusion - Interactive Graphics Serving Science. CHE'88
Proceedings, May, 1988, pp. 1-11.

3. Luca Cardelli. Building User fnterfaces by Direct
Manipulation, Tech. Rept. 22, Digital Equipment Cor-
poration Sysicms Rescarch Center Rescarch Report, Oct,
1987,

4. 8.8, Fisher, M. McGreevy, J. Humphrics, and

W, Robinett. Virwal Environment Display System, ACM
Workshop on Interactive 3D Grahpics, Association for
Computing Machincry, 1986, pp. 77-87.

8, Jean-Maric Hullot. faterfuce Builder. Sania Barbara,
CA, 1987,

6. Myron W. Krucger, Ariificial Reality. Addison-
Wesley, Reading, MA, 1933,

7. Paul McAvinney. U.S. Patent No. 4,746,770; Mcthod
and Apparatus for Isolating and Manipulating Graphic Ob-
jects On Computer Video Monilor. May 24, 1988,

8. Brad A. Mycrs., Encapsulating Interactive Behaviors,
Human Factors in Computing Sysicms, SIGCHPE9, Aus-
tin, TX, April, 1989, pp. (to appear).

9. NeXT, Inc. interface Buitder. Palo Allo, CA, 1988,
{online, preliminary documentauon).

10, Dean Rubine. The Automatic Recognition of Ges-
tures. {thesis proposal, Carncgic Mellon University Schood
of Computer Scienec).

3% Kurt], Schucker. Objeci-oriented programming for
the Macintosh. Hayden Book Co., Hasbrouck Heighis,
NJ., 1986,

12. David Weimer and S, K. Ganapathy. A Synthetic
Visual Environment With Hand Gestaring and Voice In-
put, CHI'8S Confcrence Procecdings, Astociation {or
Computing Machincry's Special Interest Group on Com-
puter Human Interaction, 1988, pp. 235-240,

Page 1674 of 1714

5/8/90 23

I. Minimum Distance Between 2 Point and
Segment

A mmmmmmmmmmm

Paramcterize equation of AR
V{k)={1-k}A + B

for 0<i<l, and ASVEB so that V is any point on the
segment bciwc:en Aand B

Rclease the constraint on k for the time being, and let P be
the point ncarest X on AB: P:V{kp)‘

This gives us Equation Lt
Egnl P= (1~&F}A +ka%
of, in cxpanded form:
P=A-kA+i DB
We want a line normal to AB that passes through X, By

definition the dot product is zero if ZAPX =90° so for
XPLAP we have:

(P-X3(P-A)=0

MNow substitute for P2
(A—kPA +kpB~X)4(~kpA+kp§3}=0
expand tonms:
(ke DA AY + (ki DAY +
(kpz)(BBHkp(A-X}~kP(EE-X}=(}
divide through by k and siraplify:
(~14k XA A)+(=2k +1HA B+
£+ (AX) - (B %) =0
arrange terms for easicr reduction:

(i~ &,)(A AY+ (5 A DAB) - (A B)] +
£ (BB) +(A-X) - B-x)=0

apply dssmbmwc property of dot product:
{1k A (B-A)]+ k [(B-A)B] = X-(B~A)]
coliect torms:
kA B+ [{(B-AY B} + [A-(B-A)) = [X(B-A)]
apply distributive property of dot product again:
£ {B-AY (DA = [(K-AM(B-A)]
solve for kp:

(B-A}{(X-A}
El m"'"'""""""""""""
L Ty W Ty
Noic that if k< 0, the ncaresti pointto X is &, Ik > 1, it
is B. Otherwise solve Eqn 1 with value of k from Egn 2

to get the nearest point.

SENSOR FRAME CORPORATION 5/8/90

Appendix B: Sensor Frame UNIX Device Driver Library Functions

Following is a list of the Sensor Frame UNIX device driver C-callable functions:

sf_open(connection)
sf close(sf fd)

sf_perror(string)

sf_scale(sf fd, xmin, xmax, ymin, ymax, zmin, zmax)
st_query_scale(sf_fd, xmin, xmax, ymin, ymax, zmin, zmax)

sf_enable(sf_fd, types, boolean)
sf_q_enable(sf fd, types)

sf_queue(f_fd, types, hoclean)
st_g_queue(sf_fd, types)

st_poll_once(event_structure)
sf_poll_ali(boolean, sf fd, event_structurs)

sf_glest()

sf_gread(event_structure)

sf_gfiusk()

sf_gadd{ event_structure)

sf_gpush(event_structure)

sf_user_input_handler(sf_fd, user_function_address)

sf filter(sf fd, filter_structure)
sf_g_filter(sf_fd, filter_id, filter_structure)

sf toss()

Page 1675 of 1714

CORPORATION 5/14/90 25

Appendix C: Contents of Sensor Frame Videotape (VHS Format)

Appendix C consists of a VHS Videotape showing the Following:
¢ Appendix C-1: The Sensor Frame
e Appendix C-2: The First and Second Prototype Sensor Cubes
» Appendix C-3: The Gesture Based User Interface Prototyping Systern (G1D)
¢ Appendix C-4: The VideoHarp
Copies of the Videotape are available upon request from Sensor Frame Corporation.

Page 1676 of 1714

DOHI0.1I45/1810282. 1810277

Interactive Surface Technolog

By Shahram Izadi, Steve Hodges, Alex Butler, Darren West, Alban Rrustemd, Mike Molloy and William Buxton

ABSTRACLT

ThinSight is a thin form-factor interactive surface technol-
ogy based on optical sensors embedded inside a regular
liguid crystal display (LCD). These augment the display
with the ability to sense a variety of objects near the sur-
face, including Gngertips and hands, to enable mudtitouch
ioteraction, Optical sensing aso allows sther physical itesus
to be detected, allowing interactions wsing varicus tan-
gible objects. A major advantage of ThinSight over existing
camera and projector-based systems is its compact form-
factor, making it casier to deploy in a variety of seitings. We
describe how the ThinSight hardware is embedded behind
a regular LOD, allowing sensing without degradation of dis-
play capability, and Hlustrate the capabilities of our system
through a mumber of proof-of-concept bardware prototypes
and applications.

1. INTRODUCTION

Touch input using a single point of contact with a display
is a natural and established technique for human computer
interaction. Research over the past decades,” and more
recently products such as the iPhone and Microsoft Surface,
have shown the novel and exciting interaction techniques
and applications possible if multiple simultaneous touch
points can be detected.

Various technologies have been proposed for mudtitouch
sensing in this way, some of which extend to detection of
physical objects in addition to fingertips. Systems based
on optical sensing have proven to be particularly powerful
in the richness of data captured and the Gexibility they can
provide. As yet, however, such optical systerns have predom-
inately been based on cameras and projectors and require
a large optical path in front of or behind the display. This
typically resudts in relatively bulky systems—sormething that
can impact adoption in many real-world scenarios. While
capacitive overlay technologies, such as those in the iPhone
and the Dell XT Tablet PC, can support thin form-factor mul-
titouch, they are limited to sensing only fingertips.

ThinSight is a novel interactive surface technology which
is based onuoptical sensors integrated jioto a thin forme-factor
LCD. It is capable of Imaging multiple fingertips, whole
hands, and other objects near the display surface as shown
in Figure 1. The system is based upon custom hardware
embedded behind an LCD, and uses infrared {IR) light for
sensing without degradation of display capability.

In this article we describe the ThinSight electronics and the
modified LCD construction which results. We present two pro-
totype systerns we have developed: a3 muudtitouch laptop and a
touch-and-tangible tabletop (both shown in Figure 1). These

80 COMMUMNICATIONS OF THE ACM

i CECEMBE

Page 1677 of 1714

systems generate rich sensor data which can be processed
using established computer vision techniques to prototype a
wide range of interactive surface applications.

Asshown in Figure 1, the shapes of many physical ohjects,
including fingers, brushes, dials, and so forth, can be “seen”
when they are near the display, allowing thero to enhance
nudtitouch interactions. Furthermore, ThinSight allows
interactions close-up or at a distance using active IR point-
ing devices, such as styluses, and enables IR-based commu-
nication through the display with other electronic devices.

We believe that ThinSight provides a glimpse of a future
where display technologies such as LCDs and organic light
emitting diodes {OLEDs} will cheaply incorporate optical

sensing pixels alongside red, green and blue (RGB) pixels in

Figure 1. ThinSight brings the novel capabilities of surface computing
o thin displays. Tep left: photo manipuliation using multiple fingers on
a laptop prototype {(note the screen has been reversed in the style of

a Tablet PC}. Top right: 2 hand, mebile phone, remote conirel and reel
of tape placed on a tabletep ThinSight protolype, with corresponding
sensor data far right. Note how ail the objects are imaged through the
display, potentially aliowing not only muliitouch but tangible input.
Bottom left and right: an example of how such sensing can be used

to support digital painting using multiple fingertips, a reat brush and
a tangible palette to change paint colors.

NSSSSSSSSSSS

Original versions of this paper appeared in Proceedings
of the 2007 ACM Symposium on User Interface Software
and Technology as “ThinSight: Versatile Multi-touch
Sensing for Thin Form-factor Displays” and in
Proceedings of the 2008 IEEE Workshop on Horizontal
Inieractive Human Computer Systers as “Experiences
with Building a Thin Forrm-Factor Touch and Tangible
Tabletop.”

a similar manner, resulting in the widespread adoption of
such surface technologies.

2. OVERVIEW OF OPERATION

2.3 Imaging through an LCD using IR light
A key element in the construction of ThinSight is a device
known as a retro-reflective aptosensor. This is a sensing ele-
ment which contains two components: a light emitter and
an optically isolated light detector. It is therefore capable
of both emitting light and, at the same time, detecting the
intensity of incident light. If a reflective object is placed in
front of the optosensor, some of the emitted lght will be
reflected back and will therefore be detected.

ThinSight is based around a 2D grd of retroreflective
optasensors which are placed hehind an LCD panel. Fach
optosensor ernits light that passes right through the entire
panel. Any reflective object in front of the display {such as a
fingertip) will reflect a fraction of the lght back, and this can
be detected. Figure 2 depicts this arrangement. By using a suit-
ably spaced grid of retro-reflective optosensors distributed uni-
formly behind the display it is therefore possible to detect any
pumber of fingertips on the display surface. The raw data gep-
erated is essentially a low reschution grayscale “image” of what
can be seen through the display, which can be processed using
computer vision technigues to support touch and other input.

A critical aspect of ThinSight is the use of retro-reflective
sensors that operate in the infrared part of the spectrum, for
three main reasons:

- Although IR Hght s attenuated by the layers in the LD
panel, some still passes through the display.” This is
largely unatfected by the displayed {roage.

- A human fingertip typically reflects around 20% of inci-
dent IR light and is therefore a quite passable “reflective
object.”

- IR light is not visible to the wuser, and therefore does not
detract from the image being displayed on the panel.

Figure 2. The basio principle of ThinSight. An array of retro-reflective
optosensors is placed behind an LOD. Each of these contains two
elements: an emitter which shines IR light through the panel; and

& detector which picks up any light reflected by objects such as
fingertips in front of the screen.

Detastor

Optosensor array

Page 1678 of 1714

2.2. Further features of ThinSight

ThinSight is not limited to detecting fingertips in con-
tact with the display; any suitably reflective object will
cause IR light to reflect back and will therefore generate a
“silhouette.” Not enly can this be used to deternine the loca-
tion of the object on the display, but also its orientation and
shape, within the limits of sensing resolution. Furthermuore,
the underside of an object may be augraented with a visual
rnark—a barcode of sorts—to aid identification.

In addition to the detection of passive objects via their
shape or some kind of barcode, it is also possible to embed
avery small infrared transmitter into an object. In this way,
the object can transmit a code representing its identity, its
state, or sorne other information, and this data transmission
can be picked up by the IR detectors built into ThinSight.
indeed, ThinSight naturally supports bidirectional IR-based

ata transfer with nearby electronic devices such as smart-
hones and PDAs. Data can be transmitted from the dis-

x

d
p
play to a device by modulating the IR light emitted. With a
b

large display, it is possible to support several simultaneous
bidirectional communication channels in a spatially multi-
plexed fashion.

Finally, a devicewhich emits a collimated bearn of IR light
may be used as a pointing device, either close to the display
surface like a stybus, or from some distarce. Such a pointing
device could be used to support gestures for new forms of
interaction with a single display or with multiple displays.
Multiple pointing devices could be differentiated by modu-
fating the light generated by each.

3. THE THINSIBHT HARDWARE

3.1. The sensing electronies

The prototype ThinSight circuit board depicted in Figure
3 uses Avago HSDL-9100 retro-reflective infrared sensors.
These devices are especially designed for proximity sensing
----- an IR LED emits infraved light and an IR photodiode gener-
ates a photocurrent which varies with the amount of incident
light. Roth ernitter and detector bave a center wavelength of
940 nm.

A 7 x 5 grid of these HSDL-9100 devices on a regular
10mm pitch is mounted on custom-made 70 x 50mm
4-layer printed circuit board (PCB). Multiple PCBs can be
tiled together to support larger sensing areas. The IR detec-
tors are interfaced directly with digital input/output lines on
a FIC18LF4520 roicrocontrolier

The PIC finmware collects data from one row of detec-
tors at a time to construct a “frame” of data which is then
transmitted to the PC over USB via a virtual COM port. To
connect multiple PCBs to the same PC, they must be syn-
chronized to ensure that IR emitted by a row of devices on
one PCE does not adversely affect scanning on a neighbor-
ing PCR. In our prototype we achieve this using frame and
row gynchronization signals which are generated by one
of the PCRs {the designated “master”} and detected by the
athers {“siaves”).

Note that more information on the hardware can be
found in the full research publications.”*

COMMUNICATIONS OF THE AcM 81

NC. 32

Figure 3. Top: the front side of the sensor PCR showing the 7x 8 array
of {R spiosensors. The transistors thatl enable sach detecior are
visibie to the right of each optosensor. Boltom: the back of the
sensor PCE has little more than a BIC microcontroller, a USE interface
and FETs to drive the rows and columns of IR emitting LEDs. Three
such PLBs are used in our ThinSight laptop while there are thirty in
the tabletop prototype.

\

JSR irte ’fac“

s

IR LED row drivers PIC micro

[

§
Setenn 8

st

3.2, LOD technology overview

To understand how the ThinSight hardware is integrated
into a display panel, it is useful to understand the construc-
tion and operation of a typical LOD. An LCY panel {s made
up of a stack of optical components as shown in Figure 4. At
the frong of the panel {s a thin layer of Bguid crystal material
which is sandwiched between two polarizers. The polarizers
are orthogonal to each other, which means that any light
which passes through the first will naturally be blocked by
the second, resulting in dark pixels. However, if a voltage is
applied across the Hquid crystal material at a certain pixel
location, the polarization of light incident on that pixel is
twisted through 90° as it passes through the crystal struc-
ture. As a result it emerges from the crystal with the correct
polarization to pass through the second polaxizer. Typically,
white light is shone through the panel from behind by a
bacldight and red, green, and blue filters are used to create
a color display. In order to achieve a low profile construction
while maintaining uniform lighting across the entire displa
and keeping cost down, the backlight is often a large “i;ght
guide” in the form of a clear acrylic sheet which sits behind
the entire LCD and which is edge-lit from one or more sides.
The light source is often a cold cathode fluorescent tube
or an array of white LEDs. To maximize the efficiency and
uniformity of the lighting, additional layers of material may

82 COMMUNICATIONS OF THE ACM

Page 1679 of 1714

Figure &, Typical LOD edge-tit archilecture shown lefl. The LOR
comprises a stack of optical elements. & white light sourceis
typicatly located along sne or two edges 31 the back of the panel.

A white reflector and transparent light guide direst the light toward
the front of the panel. The films help scatter this lUght uniformily and
enhanse brightness. However, they alss cause exsessive attenusation
of IR light. In ThinSight, shown right, the films are substituted and
placed behind the light guide o minimize atienuation and alss
reduse noise caused by LOD flexing upon {such. The sensors and
emitiers are placed at the bottom of the resulting stack, aligned with
hotes cut in the reflector.

Standard edga-lit LCD

A

ANRRRIIAAEAEMNAAAA NN

RSN

R R
.\.\\\.\\\.\.\\\.\\\\\.\\\.\.\\\.\Q\\.\\\.\.\\\.\.\

ESXNNN \\ \\\ \\ \\\\\\\

BRSNS

be placed between the light guide and the LCD. Brightness
enhancing film (BEF) “recycles” visible light at suboptimal
angles and polarizations and a diffuser smoothes out any
local nonuniformities in light intensity.

3.3. Integration with an LOD panel

We constructed our ThinSight prototypes using a variety of
desktop and laptop LCD panels, ranging from 177 to 217
Twa of these are shown in Figures 5 and 6. Up to 30 PCBs
were tiled to support sensing across the entire surface. In
instances where large munbers of PCBs were tiled, a cus-
tom hub circuit based on an FPGA was designed to collect
and aggregate the raw data captured from a number of tiled
sensors and transfer this to the FC using a single USR chan-
nel. These tiled PCBs are mounted (‘irc—mtlv behind the light
guide. To ensure that the cold cathode does not cause any
stray IR light to emanate from the acrylic light guide, we
placed a narrow piece of IR-blocking film bei.wcer: it and
the backlight. We cut small holes in the white reflector
behind the light guide to coincide with the location of every
IR emitting and detecting element.

During our experiments we found that the combination
of the diffuser and BEF in an LUD panel typically caused
excessive attenuation of the IR signal. However, removing
these materials degrades the displayed image significantly:
without BEF the brightness and contrast of the displayed
image is reduced unacceptably; without a diffuser the image
appears to “foat” in front of the backlight and at the same
time the position of the IR emitters and detectors can be
seen in the form of an array of faint dots across the entire
display.

To completely hide the IR emitters and detectors we
required a material that lets IR pass through it but not vis-
ible light, so that the optosensors could not be seen hut
would operate normally. The traditional solution would be

Figure &, Qur {aptop prototype. Top: Three PERs are tiled together
and mounted on an acrylic plate, to give a total of 105 sensing
pixels. Holes ars alss out in the white reflector shown on the

far left. Boltom lefl: an aperiure is cut in the laptop lid io allow
the PCBs to be mounted behind the LCD. This provides sensing
across the center of the taptop screen. Boltom right: side views
of the proisiype-—asie the display has been reversed on iis
hinges in the style of 3 Tablet PC.

N

-

Figure 8. The ThinSight tabletop hardware as viewed from

the side and behind. Thirty PCBs (in a 5«8 grid) are tiled with
columns interconnecied with ribbon cable and altached to

a hub board for aggregating data and inter-tile communication.
This provides a total of 1850 discrete sensing pixels across
the entire surface.

N
N\

R
N

N
.

R
.

to use what is referred to as a “cold mirror.” Unfortunately
thesearemadeusing a glass substratewhich meanstheyare
expensive, rigid and fragile and we were unable to source a
cold mirror large enough to cover the entire tabletop dis-
play. We experimented with many alternative materials
incheding tracing paper, acetate sheets coated in emulsion
paint, spray-on frosting, thin sheets of white polythene
and mylar. Most of these are unsuitable either because of

Page 1680 of 1714

a lack of IR transparency or because the optosensors can
be seen through them to some extent. The solution we set-
tled on was the use of Radiant Light Film by 3M (part num-
ber CM500), which fargely lets IR light pass through while
reflecting visible light without the disadvantages of a true
cold mirror. This was combined with the use of a grade “07
neutral density flter, a visually opaque but IR trapsparent
diffuser, to even ouf the distribution rear Shunination and
at the same time prevent the “floating” effect. Applying the
Radiant Light Film carefully is critical since minor imper-
fections {e.g. wrinkles or bubbles} are highly visible to the
user—thus we laminated it onto a thin PET carrier. One
final modification to the LCD construction was to deploy
these filims behind the light guide to further improve the
optical properties. The resulting LCD layer stack-up is
depicted in Figure 4 right.

Most LCD panels are not constructed to resist physical
pressure, and any distortion which results from touch inter-
actions typically causes internal IR reflection resulting in
“flare.” Placing the Radiant Light Film and neutral density
filter behind the light guide improves this situation, and
we also reinforced the ThinSight unit using several lengths
of extruded aluminum section ronning directly behind
the LCD.

4, THINSIGHT IN OPERATION

4.1, Processing the raw sensor data

Fach value read from an individual IR detector is defined
as an integer representing the intensity of incident light.
These sensor values are streamed to the PC via USB where
the raw data undergoes several simple processing and fil-
tering steps in order to generate an IR image that can be
used to detect objects near the surface. Once this image is
generated, established image processing techniques can be
applied in order to determine coordinates of fingers, recog-
nize hand gestures, and identify object shapes.

Variations between optosensors due to manufacturing
and assembly tolerances result in a range of differentvalues
across the display even without the presence of objects on
the display surface. To make the sensor image uniform and
the presence of additional incident light (reflected from
nearby ohjects) more apparent, we subtract a “background”
frame captured when no objects are present, and normalize
refative to the image generated when the display is covered
with a sheet of white reflective paper.

We use standard bicubic interpolation to scale up the
sensorimage bya predefined factor (10 in our currentimple-
mentation). For the larger tabletop implementation this
results in a 350 x 300 pixel image. Optionally, a Gaussian
filter can be applied for further smoothing, resulting in a
grayscale “depth” image as shown in Figure 7.

4.2, Seeing through the ThinSight display

The images we obtain fror the prototype are quite rich, par-
ticularly given the density of the sensor array. Fingers and
hands within proximity of the screen are cleardy identifiable.
Exarnples of images captured through the display are shown
in Figures 1, 7 and 8.

CECEMBER 20C8 VOL. 52 © NC.12 ¢ COMMUKICATIONS OF THE AcM 83

Figure 7. The raw ThinSight sensor data shown left and after
interpoiation and smoothing right. Note that the raw image is a very
low resolution, but contains enough dais io generate the relatively
rich image ai right.

Figure 8. Fingertips can be sensed easily with ThinSight. Left: the
user places five fingers on the display to manipulate 3 photo. Right:

a close-up of the sensor data when flngers are positioned as shown
at left. The raw sensor daia is: {1} scaled-up with interpolation,

{2} normalized, {3} thresholded to produce 8 binary image, and finaily
{4} processed using connected components analysis to revesl the
fingertip locations.

N

Fingertips appear as sinall blobs in the image as they
approach the surface, increasing in intensity as they get
closer. This gives rise to the possibility of sensing both touch
and hover. To date we have only implemented touch/no-
touch differentiation, using thresholding. However, we can
reliably and consistently detect touch to within a few milli-
meters for a variety of skin tones, so we believe that disam-
biguating hover from touch would be possible.

In addition to fingers and hands, optical sensing allows
us to observe other IR reflective objects through the display.
Figure 1 illustrates howthe display can distinguish the shape
of many reflective objects in front of the surface, including
an entire hand, mobile phone, remote control, and a reel
of white tape. We have found in practice that many objects
refect IR,

A logical next step is to attempt to uniquely identify
objects by placement ofvisual codes underneath them. Such
codes bave been used effectively in tabletop systems such as
the Microsoft Surface and various research prototypes'#® to
support tangible interaction. We have also started prelimi-
nary experiments with the use of such codes on ThinSight,
see Figure 9.

Active electronic identification schemes are also feasible.
For example, cheap and small dedicated electronic units
containing an IR ermitter can be stuck onto or embedded
inside objects that need to be identified. These emitters will
produce a signal directed to a small subset of the display
sensors. By enutting modulated IR it is possible to transmit
a unique identifier to the display.

B4 COMMUMNICATIONS OF THE ACM

i DECEMBER 2009 VGOL. 52 1 NQ, 12

Page 1681 of 1714

4.3, Communicating through the ThinSight display
Beyond simple identification, an embedded IR transmit-
ter also provides a basis for supperting richer bidirectional
communication with the display. In theory any IR modula-
tion scheme, such as the widely adopted IrDA standard,
could be supported by ThinSight. We have implemented
2 DC-balanced modudation scheme which allows retro-
reflective object sensing to cccur af the same fime as data
transmission. Thisrequired no additions or alterations tothe
sensor PCB, only changes to the microcontroller finnware.
To demonstrate our prototype implementation of this, we
built a syall embedded IR transceiver based on a low power
MSP430 microcontroller, see Figure 10. We encode 3 bits of
data in the IR transmitted from the ThinSight pixels to con-
trol an RGB LED fitted to the embedded receiver. When the
user touches various soft buttons on the ThinSight display,
this in furn transmits different 3 bit codes from ThinSight
pixels to cause different colors on the embedded device to
¢ activated.

It is theoretically possible to transmit and receive dif-

ferent data simultaneously using different colunns on the

S

Figure 8. &n exampie 2" diameter visusl marker and the resulting
ThinSight image afier processing.

Figure 10, Using ThinSight to communicate with devices using IR,
Top left: an embedded microcontrolier/iR transceliver/RGE LED
device. Bottom left: touching a soft bution on the ThinSight display
signals the RGB LED on the embedded device to turn red (bottom
right}. Top right: A remote control is used to signal from a distance
the display whichin turn sends an IR command {0 the REE device to
turn the LED blue.

display surface, thereby supporting spatially multiplexed
bidirectional communications with multiple local devices
and reception of data from remote gesturing devices. Of
course, it is also possibie to time multiplex conununications
betweernt different devices if a suitable addressing scheme is
used. We have not yet prototyped either of these oudtiple-
device communications schemes.

4.4, Interacting with ThinSight

As shown earlierin this section, it is straightforward to sense
and locate multiple fingertips using ThinSight. In order to
do this we threshold the processed data to produce a binary
image. The connected coraponents within this are isolated,
and the cepter of mass of each component is calculated
to generate representative X, Y coordinates of each finger.
Avery simple homography can then be applied to map these
fingertip positions {which are relative to the sensor image)
to onscreen coordinates. Major and minor axis analysis or
more detailed shape analysis can be performed to deter-
mine orientation information. Robust fingertip tracking
algorithuns or optical fow techuigues™ can be employed to
add stronger heuristics for recognizing gestures.

Using these established techniques, fingertips are
sensed to within a few millimeters, currently at 23 frames/s.
Both hover and touch can be detected, and coudd be disamn-
biguated by defining appropriate thresholds. A user there-
fore need not apply any force to interact with the display.
However, it is alse possible to estimate fingertip pressure by
calculating the increase in the area and intensity of the fin-
gertip “blob” once touch has been detected.

Pigure 1 shows two simple applications developed using
ThinSight. A sirople photo application allows oudtiple
images to be translated, rotated, and scaled using estab-
lished multifinger manipulation gestures. We use distance
and angle between touch points to compute scale factor
and rotation deltas. To demonstrate some of the capabili-
ties of ThinSight beyond just multitouch, we have built an
exampie paint application that allows users to paint directly
on the surface using both fingertips and real paint brushes.
The latter works because ThinSight can detect the brushes’
white bristles which reflect IR. The paint application also
supports a more sophisticated scenario where an artist’s
palette is placed on the display surface. Although this is vis-
ibly transparent, it has an IR reflective marker on the under-
side which allows it to be detected by ThinSight, whereupon
a range of paint colors are rendered underneath it. The user
can change color by “dipping” either a fingertip or a brush
into the appropriate well in the palette. We identify the pres-
ence of this object using a sivaple ellipse matching algo-
rithim which distinguishes the larger palette from smaller
touch point “blobs” in the sensor image. Despite the Bm-
ited resolution of ThinSight, it is possible to differentiate a
number of different objects using simple sithouette shape
information.

5. DISCUSSION AND FUTURE WORK

We believe that the prototype presented in this article {s an
interesting proof-of-concept of a new approach to oudtd-
touch and tangible sensing for thin displays, We have already

Page 1682 of 1714

described some of its potential; here we discuss a number of
additional observations and ideas which came to light dur-
ing the work.

8.1, Fidelity of sensing

The original aim of this project was simply to detect fin-
gertips to enable multi-touch-based direct manipulation.
However, despite the low resolution of the raw sepsor data,
we still detect quite sophisticated object images. Very small
objects do currently “disappear” on sceasion when they are
midway between optosensors. However, we have a num-
ber of ideas for improving the fidelity further, both to sup-
port smaller objects and to make object and visual marker
identification more practical. An obvious solution is to
increase the density of the optosensors, or at least the den-
sity of IR detectors. Another idea {s to measure the amount
of reflected light under different lighting conditions—for
example, simultaneously emitting light from neighboring
sensors is likely to cause enough reflection to detect smalier
objects.

5.2. Frame rate

It inforrpal trials of ThinSight for a direct manipulation
task, we found that the current frame rate was reasonably
acceptable to users. However, a higher frame rate would not
only prodhice a more responsive UL which will be important
for some applications, but would make temporal filtering
more practical thereby reducing noise and improving sub-
pixel accuracy. It would also be possible to sample each
detector under a number of different Jhunination condi-
tions as described above, which we believe would increase
fidelity of operation.

%.3. Robustness to lighting conditions

The retro-reflective nature of operation of ThinSight com-
bined with the use of background substitution seems to give
reliable operation in a variety of lighting conditions, includ-
ing an office environment with some ambient sunlight.
One conunon approach to mitigating any negative effects
of ambient light, which we could explore if necessary, is to
emit modudated IR and to ignore any nonmoduiated offset
in the detected signal.

5.4. Power consumption
The biggest contributor to power consumption in ThinSight
is emission of IR light; because the signal is attenuated in
both directions as it passes through the layers of the LCD
panel, a high intensity emission is required. For mobile
devices, where power consumption is an issue, we have
ideas for improvements. We believe it is possible to enhance
the IR transmission properties of an LCD panel by optimiz-
ing the materials used in its construction for this purpose—
something which is not currently done. In addition, it may
be possible to keep track of object and fingertip positions,
and mit the most frequent IR emissions to those areas. The
rest of the display would be scanned less frequently (e.g. at
2-3 frames/s) to detect new touch points,

One of the main ways we feel we can improve on power
consumption and fidelity of sensing is to use a more

2 | COMMUNICATIONS OF THE AcM 88

sophisticated IR iHlumination scheme. We have been experi-
menting with using an acrylic overlay on top of the LCD and
using IR LEDs for edge illumination. This would allow us to
sense multiple touich points using standard Frustrated Total
Internal Reflection (FTIR),® but not objects. We have, how-
ever, alse experimented with a material called Endlighten
which allows this FTIR scheme to be extended to diffuse illu-
mination, allowing both roultitouch and object sensing with
far fewer IR emitters than our current setup. The overlay can
also serve the dual purpose of protecting the LCD from fex-
ing under touch.

8, RELATED WORK

The area of interactive surfaces has gained particular
attention recently following the advent of the {Phone and
Microsoft Surface. However, itisafieldwithovertwo decades
of history.” Despite this sustained interest there has beenan
evident lack of off-the-shelf solutions for detecting multiple
fingers and/or objects on a display surface. Here, we sum-
marize the relevant research in these areas and deseribe the
few commercially available systems.

8.1. Camera-based sysiems

One approach to detecting roultitouch and tangible input
{5 to use a video camera placed in front of or above the
surface, and apply computer vision algorithms for sens-
ing. Early seminal work includes Krueger's VideoDesk™
and the DigitalDesk, which use dwell time and a micro-
phone (respectively) to detectwhen a user is actually touch-
ing the surface. More recently, the Visual Touchpad? and
C-Slate” use a stereo camera placed above the display to
roore accurately detect touch. The disparity between the
image pairs determines the height of fingers above the
surface. PlayAnywhere® introduces a pumber of addi-
tional image processing technigues for front-projected
vision-hased systems, including a shadow-based touch
detection algorithin, a novel visual bar code scheme,
paper tracking, and an optical flow algorithm for biman-
ual interaction.

Camera-based systems such as those described above
obviously require direct line-nf-sight to the objects being
senised which in some cases can restrict usage scenarios.
Occlusion problems are mitigated in PlayAnywhere by
mounting the camera off-axis. A natural progression is to
mount the camera befiind the display. Holowall*® uses IR
illuminant and a camera equipped with an IR pass filter
behind a diffusive projection panel to detect hands and
other IR-reflective objects in front of it. The system can aceu-
rately detexmine the contact areas by simply thresholding
the infrared image. TouchLight” uses rear-projection onto a
holographic screen, which is also iluminated from behind
with IR Hight. A mumnber of multitouch application scenarios
are enabled including high-resohstion imaging capabilities.
Han® describes a straightforward yet powerful technique
for enabling high-resolution multitouch sensing on rear-
projected surfaces based on FYIR. Compelling moultitouch
applications have beent demonstrated using this technique.
The Soart Table™ uses this sarve FTIR technigue in a table-
top form factor.

88 COMMUNICATIONS OF THE ACM | DECEMBER 2009 VOL. 52 © NO, 12

Page 1683 of 1714

The Microsoft Surface and ReacTable® also use rear-
projection, IR illuminant and a rear mounted IR camera to
monitor fingertips, this time in a horizontal tabletop form-
factor. These systems also detect and identify objects with
IR-reflective markers on their surface.

The rich data generated by camera-based systerns pro-
vides extreme flexibility. However, as Wilson discusses®
this flexibility comes at a cost, neluding the computa-
tional demands of processing high resoclution images, sus-
ceptibility to adverse lighting conditions and problems of
motion blur. However, perhaps more importantly, these
systems require the camera to be placed at some distance
from the display to capture the entire scene, Hniting their
portability, practicality and intreducing a setup and cali-
bration cost.

§.2. Opague embedded sensing

Despite the power of camera-based systems, the associ-
ated drawbacks outlined above have resulted in a number
of parallel research efforts to develop 2 non-vision-hased
multitouch display. One approach is to embed a mulil-
touch sensor of some kind behind a surface that can have
ah image projected onto it. A natural technology for this is
capacitive sensing, where the capacitive coupling to ground
introduced by a fingertip is detected, typically by monitoring
the rate of leakage of charge away from conductive plates or
wires mounted behind the display surface.

Some manufacturers such as Logitech and Apple have
enhanced the standard laptop-style touch pad to detect
certain gestures based on more than one point of touch.
However, in these systerns, using more than two or three fin-
gers typically results in ambiguities in the sensed data. This
constrains the gestures they support. Lee et al.** used capac-
itive sensing with a number of discrete metal electrodes
arranged in a matrix configuration to support multitouch
over a larger area. Westerman® describes a sophisticated
capacitive multitouch system which generates x-ray-like
images of a hand interacting with an opaque sensing suf-
face, which could be projected onto. A derivative of thiswork
was copunercialized by Fingerworks.

DiamondTouch? is composed of a grid of row and col-
woo anternas which eoit signals that capacitively couple
with wusers when they touch the surface. Users are also
capacitively coupled to receivers through pads on their
chairs. In this way the system can identify which antennas
behind the display surface are being touched and by which
user, although a user touching the surface at two points can
produce ambiguities. The SmartSkin® svetem consists of
a grid of capacitively coupled transmitting and receiving
antenpas. As a finger approaches an intersection poind,
this causes a drop in coupling which is measored to deter-
mine finger proximity. The system is capable of supporting
muultiple points of contact by the same user and generat-
ing images of contact regions of the hand. SmartSkin and
DiamondTouch alse support physical objects, but can only
identify an object when a user touches it. Tactex provide
another interesting exarnple of an opaque multitouch sen-
sox, which uses transducers to measure surface pressure at
rmultiple touch points.

8.3. Transparent overiays

The systems above share one major disadvantage: they all
rely on front-projection for display. The displayed image
will therefore be broken up by the user's fingers, hands and
arms, which can degrade the user experience. Alsg, 2 large
throw distance is typically required for projection whiclh
timits portability. Purthermore, physical objects can only
se detected o limited ways, if object detection is supported
at all.

One alternative approach to address some of the issues
of display and portability is to use a transparent sensing
overlay in conjunction with a self-contained {i.e., not pro-
jected) display such as an LCI panel. DualTouch™ uses
an off-the-shelf transparent resistive touch overlay fo
detect the position of two fingers. Such overlays typically
report the average position when two fingers are touching.
Assuming that one finger makes contact first and does
not subsequently move, the position of & second touch
peint can be calculated. An extension to this is provided
by Loviscach.*

The Philips Entertaible® takes a different “overlay”
approach to detect up to 30 touch points. IR emiiters and
detectors are placed on a bezel around the screen. Breaks in
the IR bearus detect fingers and objects. The SMART DVIT#
and HP TouchSmart® utilize cameras in the comers of a
bezel overlay to support sensing of two fingers or styluses.
With such line of sight systems, occlusion can be an issue
for sensing.

The Lemur music controller from JazzMutant® uses a
proprietary resistive overlay technology to track up to 20
touch points simultaneously. More recently, Balda AG
and N-Trig® have both released capacitive multitouch
overlays, which have been wsed in the iPhone and the
Dell XT, respectively. These approaches provide a robust

ay tor sensing multiple fingers touching the surface,
but do not scale to whole hand sensing or tangible
objects.

8.4, The need for intrinsically integrated sensing
The previous sections bave presented a number of oudt-
touch display technologies. Camera-based systerns produce
very rich data buthave a number of drawbacks. Opague sens-
ing systems can more accurately detect fingers and objects,
but by their nature rely on projection. Transparent overlays
alleviate this projection requirement, but the fidelity of sens-
ing is reduced. It is difficul, for example, to support sensing
of fingertips, hands and objects.
A potential solution which addresses all of these
requirements is a class of technologies that we refer to as
“intrinsically integrated” sensing. The coromon approach
behind these is to distribute sensing across the display
surface, integrating the sensors with the display elements.
Hudson® reports on a prototype 0.7" monochrome display
where LED pixels double up as light sensors. By operating
one pixel as a sensor while its neighbors are illuminated,
it is possible to detect light reflected from 2 fingestip close
to the display. The main drawbacks are the use of visible
hominant during sensing and practicalities of using LED-
sased displays. SensoLED uses a similar approach with

Page 1684 of 1714

visible light, but this time based on polymer LEDs and pho-
todiodes. A 1" diagonal sensing polymer display has been
demonstrated.?

Planar® and Toshiba* were among the first to develop
LCD prototypes with integrated visible light photosensors,
which can detect the shadows resulting from fingextips or
styluses on the display. The photosensors and associated
signal processing circuitry are integrated directly onto the
LCD substrate. To illuminate fingers and other chjects,
either an external light source is required—impacting on
the profile of the system-—or the screen must uniformly
emit bright visible light—which in turn will disrupt the dis-
played imnage.

The motivation for ThinSight was to build on the con-
cept of intrinsically integrated sensing. We have extended
the work above using invisible (IR) illuminant to allow
simultaneous display and sensing, building on current
LCD and IR technologies to rmake prototyping practical
in the near term. Another important aspect is support
for much larger thin touch-sensitive displays than is
provided by intrinsically integrated solutions to date,
thereby making it more practical to prototype multitouch
applications.

7. CONCLUSION

Inn this article we have desecribed 3 new technigue for
optically sensing multiple objects, including fingertips,
through thin form-factor displays. Optical sensing allows
rich “camera-like” data to be captured by the display and
this is processed using coyoputer vision techniques. This
supports new types of human computer interfaces that
exploit zero-force rulti-touch and tangible interaction
on thin form-factor displays such as those described in
Buxton.” We have shown how this techoique can be inte-
grated with off-the-shelf LCD technology, making such
interaction techniques more practical and deployable in
real-world settings.

We have many ideas for potential refinements to the
ThinSight hardware, firmware, and PC software. In addi-
tion to such incremental improvements, we also believe
that it will be possible to transition to an integrated “sens-
ing and display” solution which will be much more straight-
forward and cheaper to manufacture. An obvious approach
is to incorporate optical sensors directly onto the LCD
backplane, and as reported earlier early prototypes in this
area are beginning to emerge.” Alternatively, polymer pho-
todiodes may be combined on the same substrate as poly-
mer OLEDS® for a similar result. The big advantage of this
approach is that an array of sensing t:Eu‘r.t,ms can be com-
bined with a display at very little incremental cost by sboply
adding “pixels that sense” in between the visible RGB dis-
play pixels. This would essentially augment a display with
optical multitouch input “for free,” enabling truly wide-
spread adoption of this exciting technology.

Acknowledgments

We thank Stuart Tayior, Steve Rathiche, Andy Wilson,
Turner Whitted and Otmar Hilliges for their invahuable
input. B

2 | COMMUNICATIONS OF THE acM 87

References
1. Abileah, A., Green, P. Optical sensors
In Proceedii standard
ACM Sympn: of
Software and).
WM, Bot. 24 Technelo
2 Oerohe
New York, }
egrated polyrer and object.
s and polymer LEDs. remcte ool
er Shadow
3 A
4, .
g a finger, har Surface. F , University of
bhody, and ¢ Delawsre
Proceedi 26, Wellner, P Interacting with Psper
3 (A X ACM Symin the Digital Desk. CACM 36,7
(8}, Tabletop 3 Sof 35,
s 27, Touc!
5 U1s
18, Mats
Rekimote, J. 200 the bth
L C 150, M. two-handed interface i1 Muttirrio
ACM Sy unner, M The reacTs iAs. In Proceed; 3 PA, O K
Suftwoer 2
Anywhere: A
chive tshietop
6.
7
13 Reality 2,
fessional (1891,
Proce " Annuat
ACH : er Interfoce 14 Shalwam lzadi, Steve Hodges, Atex Butler, Darren West, Altban Rrustemi,
Software ond Te (Newport, ronlti-tou 2 UGH- Mike MoBloy, and Witliam Buxten | {shahrami, shadges, dabl@microsoft.comy), Microscft
R, Set ST'07.] Research Camiridge, UK.
ACM, NY,
8. Hudsor, 15. 02 ACM 0001-0782/05/1200 $10.00

N K N ¥F X R S SN §
e

NSRRI § Ig® D NN N § 3 M ¥ N
§\\“ &\\b‘\\“\\\a N RTINS N . SR SEar S e ¥ ¥ ow o §
ATl @ Qe F HHEDJJA 70 AP R0 D Dl) a0 A § Sy s

%y

A Litetin s dues may be tax deductible under certain circumstances, so

becoming a Lifetime Member can have additional advantages if you act before the end of
20089, {Please consult with your tax advisor}

« Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of

the benefits of U Frotessionsg

{
3

e

Nk

RERE N

i Assoclation for
§\\‘ Computing Machinsry

88 COMMUNICATIONS OF THE ACM | DECEMBER 2009 VOL. 52 © NO, 12

Page 1685 of 1714

CH 85 PROCEEDINGS

APRIL 18885

YIDECELACE~-Ap Arbificial Reality

Myron W. Erueger,

Tnomas Gionfriddo and XKatrin Hinrichsen

Computer Science Department
Univeraity of Connecticut
Connectiout 06268

Storrs,

tra

The human-machine dnterface is generalized
beyond traditional control devices to permit phye
sical participation with graphic images. The
VIDEOPLACE System combines a participantis live
video image with a computer graphic world, It also
coordinates the behavior of graphic objects and
oreatures so that they appear to react to the
movements of the participant!s image in real~time,
A& prototype system bas been Implemented and a
number of experiments with aesthetic and practical
implications have been conducted.

Introduction

This paper describes a number of experiments
in alternate wmodes of himan-machine interaction.
The premise is that interaction is 2 central, not
peripheral, issue in computer science, We must
explore this domain for insight as well as immedi~
ate application. It is as important to suggest
new applications as it is to solve the problems
associated with existing ones, Hesearch should an-
ticipate future practicality and not be bound by
the constraints of the present.

Unlike most computer science professionals,
who have been content to rely on traditional come
puter lLanguages and the hundred year old keyboard
as the nmeans of input, designers of graphic sys-

tems have long recognized the importance of the
human-machine dinterface. BEBven so, most innova~
tions, including the light pen, Joy stick, data

tablet and track ball have besn dictated by the
minimun needs of ijmmediate graphics applications.

There have been few experiments motivated by
a purely intellectual desire o explore the means
through which people and machines wmight interact,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and natice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or speaific permission.

© 1985 ACM 0-89791-149-0/85/004/0033 $00.75

Page 1686 of 1714

35

independent of specific applications. Opne such
novel approach was Ivan Sutherland's head-mounted
steres displays which sensed the orientation of
the viewar's head and displayed what would be seen

in a3 simulated graphic envircmsent from each
position. [SUTHE§]
Ancther unigue approach was taken with the

GROFE system at the Univeraity of North Carclina,
It provided foree feedback to a remote manipulator
that could be used Lo pick up graphic
bloaks, [BATTT2] In addition, thers have been the
well funded efforts of the Architecture Machine
Group at MIT, dincluding ¢the Dataland project,
MovieMap and wPut that there®,
[BLLITY, 80, 811, [LIPPEO]

Finally, my work in Responsive Envircomments,
beginning in 1969 and continuing to the present,
has allowed a8 participant’s wmovements around a
room to be translated into actions in a projected
graphic sgene generated by the
computer, [KRIETY, 831

This paper describes one of my early experi~
ments with Responsive Environments, the VIDEOFLACE
project currently under development and applica-
tions plapned for the near future,

Abskract Versus Loncrete Intelliigence

The observation underlying this research is
that there are two guite different aspects of hu~
man intelligence. The first is the logical, deduc-
tive, explicitly rational process that we assoei~
ate with abstiract symbolic reasoning. While the
technically inclined take great pride in this

8kill, a large fraction of the population has no
interest in developing it. The second is the fa~
cility for understanding, navigating and wmavipu~
lating the physical world., This ability is part of
our basic huwan heritage.

As a greater percentage of the population be
comes invelved in the use of computers, it is na-
tural to expect the manner of controlling ocomput-
ers L0 move away [row the programming wmodel and
cioser (o the perceptual process we use Lo aCcom~
plish our goals in the physical world.

CHI "85 PROCEEDINGS

APRIL 1885

£arly Respobsdve Environments

In 1969, I began to explore the idea of phy~
sical participation im a graphic world using the
paradigm of a Responsive Bnviromment. & Responsive
Envirooment 18 an empty room in which 2 single
participant’s movements are perceived by the com~
puter which responds through visual displays and
electronic sound. Since 1970, video projection of
computer graphie images has been used to provide
the visual response.

PEYCHIC B3PACE

In PSYCHIC SPACE, a Responsive Environment
ereated din 1971, sensing of the participantls
behavior was accomplished through a grid of hune
dreds of pressure sensors placed in the floor, is
the participant walked sround the room, the oom-~
puter scanned the floor and detected the movement
of his feet. The person’s position in the room
was then used ¢o¢ ocontrol en interaction in a
graphic goene which was displayed on an Bfxzi0?
rear-screen video projection.

In one P3YCHIC SPACE interaction, the
participant’s movements in the room were used to
conirol the movements of a symbol op the video
sereen, After a few wminutes, allocated for ex-
ploration of this phenomenon, a second symbol ape
peared, The participant, inevitably wondering what
would happen if be walked his symbol over o the

intruder’s position, wmoved until the two symbols
colineided. At that point, the second symbol
disappeared and & maze appeared wiith the

participant®s symbol at the starting point,

1)

{¥Fig.

W 7
-

Fig. 1

Page 1687 of 1714

38

Again, inevitably, the participant tried to
walk the maze. However, after a few minutes the
participant would realize that sinoe there were no
physical boundaries in the roowm; there was nothing
to prevent cheating. When this realization
struck, the participant, typically with some
eerenony, raised his foof and planted it on the
other side of ome of the graphic boundaries. Howe
ever, the maze program had anticipated this
response and stretched that boundary elastically.
Subsequent cheating attempts were greeted with a
number of other gambits. The participant®s symbol
might fall apart; the whole maze could nOVE S Or, A
speeific boundary would disappear and a new one
would appear elsewhere. By the end of the experi-
ence, the participant could have encountered as
many as forty different veariations on the mase
theme. (KRUETT, 833

PSYCHIC SPACE was presented as an aesthetie
work in the Union Qallery at the University of
Wisconsin., It suggested a new art form in which
the participant®s expectations about cause and ef-
fect couwld be wsed to create intereating and
entertaining experiences, guite unlike anything
that existed at that time and still different in
splrit from the video games of today.

HTIDEQPLACE
Coneept

In Y970, ¥ combined computer graphic images,
created by an artist using a data tablet, with the
live image of people. Observing their reactions to
this computer graphic graffiti led to the formula~
tion of the VIDEOPLACE concept.

VIDEOPLACE is & computer graphic envirsment
in which the participant sees his or her live im-~

age projected on a video screen. It may be alone
on the screen, or there may be images of other
people at different locations. In addition, there

may be graphic objects and creatures which ine
tepact with the participantts image.

When people see their image displayed with &
graphic object, they feel a universal and irresis-
tible desire to reach out and touch it. {Fig. 2}
Furthermore, they expect the act of touching to
affect the graphic world. By placing each parti-
cipant sagainst a neutral background, it is possie
ble to digitize the image of his silbouette and to
recogaize the moment when it touches a graphic obe
Jeet. The system can then cause the object to

move, apparently in response to the participant®s
touch.

It i3 also possible for the computer o
analyze the participant's image and $o alter its

appearance on the screen. By either analog or di-
gital technigues, the participant’s image can be
scaled and rotated and placed anywhere on the
screen, Thus, in principle; the participant sould
alimb graphic wountaine, swim in graphic sess, or
defy gravity and flcat around the scereen. The po-
tential for new forms of interaction within this
model is very rich, with certain spplication as an
art form, likely application in education and
telecommunication, as well a3 arguable applicae
tion for general numan~machine interaction,

CHYt "85 PROCEEDINGS

APRIL 1885

Fig. 2

Prototype System

& prototype VIDECOPLACE system has besn con~
stracted. Sines understanding the movemenis of the
participant's image appeared to be the most chel-
lenging issue, wmuch of the initial effort was

focussed om solving this problem. Graceful
mechanisms for specifying and controlling the
desired Jlateractive relationships have been

developad., To date, only very simple graphiocs have
been used because of the very mnodest presources
svailable and the fact that until recently coumer~
cial equipment did not emphasize high spesd mani-
pulation of raster data. To a great extent; we
have worked with graphic hardware of our own Ccol~
struction which provides a number of features im~
portant to owr interactions. In addition, we have
recently acquired three Silicon Graphices worksta-
tions, which will greatly enbauce our ability te
ereate and mapipulate realistic three-dimensional
seensys.,

The software employed to control the interacs
tions is guite upusual. ¥We believe the methodology
is of general interest for graphics and other
real~time applications. He treat the overall sys-
tem as a model of a real-time intelligence. It is
divided dnto two major components: the Cognitive
System which runs on a VAX11/780 and the Reflex
System which consists of a group of closely cou~
pled dedicated proocessoras operating on a speeial-
ized bus structure.

The Rerlex System handles instantansous deoi-
sion making. The plan is for the Cognitive System
to monitor the events in the Enviromment and the
decisions of the Reflex System, in order to undepr-
stand what is happening in semantic terms and then
to meaks strategic decisions that will alter the
fature chapacter of the interaction.

Although all of the communications are esta-
blished, the Cognitive System is not yet performe
ing this monitoring fumction. However, it has to-
tally saltersd the programming process. Instead of
writing 8 separate program for each interaction,
we desoribe the desired causal relationships in
concaptusl terms. This conceptual representation
iz then tramnsliated into a form that the Reflex
System csn interpret in real-itime. 7The long term

Page 1688 of 1714

37

objective is to develop an ouline real-tims intel-
ligence that understands the participant's
behavior and the interaction in human terms.

CRITIER, A VIDEOPLACE Interaction

In one current imtsraction, the participsnt
is Jjoined by a single graphic oreature on the
screen. Ihe bebavior of this coreature is very com-
plex and context dependent. The intent is to pro~
duce the sensation of an intelligent and witty ine
teraction between oreature and the participant.

Initially, the creature sees the participant
and chases his image aboukb the soreen, If the par-
ticipant moves rapidly tewards it, the cpeaturs;
nicknamed CRITIER, moves to avold contact. If the
human holds out a hand, CRITTER will land on it
and olimbd up ¢the person’s silhouette. As it
climbs, its posture adapts te the contour of the
bhuman form. ¥new it finally scales the person's
head, it does & trivaphant jig.

(nce this immediate goal i3 reached, the
ereature considers the current orientation of the
personts arms. If ome of the hands is raised, it
does a flying somersawlt and lands on that hand.
If the hand is extended to the side but not above
the horigontsal, CRITYER dives off the head, rolls
down the arm, grabs the finger and dangies from
it When the person shakes his hand, CRITIER
falls off and dives to the bottom of the screen.
Each time it celimbs to the top of the
participant's head, it is in a gifferent state and
is prepared to take a different set of actions,
{Fig. 3a=h}

The CRITITER experience will soon be enhanced
in a number of ways. Hardware has besn built that
shrinks the human image down to CRITTER size. The
smaller size increases the npumber of relationships
that can exist belwsen the participant and the
ereature. Simple graphic scenes are being added.
Both husan and graphic entities will interact with
these graphic props by moving among thewm, olimbing
then or hiding hebind them. The new displays
will provide a2 capability for three~dimensional
acenery which can be navigated in real-time.

Practical Applicaticns

The interface described 43 a deliberately informal
one. The resemblance to video games might seex
frivelous to the hard-nosed computer scilentist
used to catering to the needs of government agen-
cles and three letter oompanies, However, gomes
are 8 mulii~billion dellar indusiry amd by that
measure practical. More importantly, games provide
an extremely compelling interface whose advantages
should be considered for wmore standard applica-
tions. Therefore, before adapiing the technigues
described to fit a more familisr practical con~
text, we will examine their potemtial in the
current VIDEQPLACE enviromment.

Computer Alded Xusiruction

In our culture, education is a sedentary ace
tivity imposed on naturally active crsatures. Sti-

CHI "85 PROCEEDINGS APRIL 1985

Fig. 3a-~d Fig. 3e~n

£iing this energy is the first task of svery ele~ task of the childrern would be to discover thess
mentary school teacher. As an alternative, VIDEG- laws, They would enter the Enviromsent singly, in-
PLACE could be used to oreate a physically active Feract with it and mske individual observaticns of
fors of Compuber Alded Instruction in which the its rules. Under the guidance of their teacher,
computer is used mot fo teach traditional materie they would discuss their experiences and present
al, but to alter what, as well as how, we teach. their opinions. They would compare notes and for-
mulate theories. Since each ¢hild would behave

In ome proposal, which I first made formally differently, in the VIDEOQPLACE, individuals would

to NSF in 1975, slementary school children were to have unique experiencea and produce oconfliicting
be placed in the rele of scientists landing on an theories. They would argue and then revislt the
alien planet. VIDEOPLACE would be used to define Environtent, executing oriticsl experimenis to
an artificial reality in which the laws of cause resolve which theories were cobrect undsr whioh
and effect are composed by the programmer. The conditions, Thus, students would learn how obser-

38

Page 1689 of 1714

CHI "85 PROCEEDINGS

APRIL 1885

vation leads to hypothesis formation, prediction,
testing and reformulation. They would learn the
process of sclentific thought rather than memorize
ing vocsbulary and performing mechanical calculaw
tions as they often do now.

Telecommunications

VIDEOFLACE was originally concelved aond ime
plemented as a telecommunications environment ale
lowing people in different places to share a come
mon video experience. While the possibility of
such graphic interaction may seem unnecessary to
comnunication, we showld remember two points.
First, a bundred years ago the telephone seemed to
have no advantage over the telsgraph which could
transmit the content of npessagss equally well.
Second, since compunication betwesn friends or
business associates is not limited to words, it is
elearly desirable teo provide a place in which ip-
dividuals who are geographically separated can
share a common visual enviromment.

in example of this use of VIDEOPLACE 1is
degeribed in Artificial Realdty (KRUE 83). &
two-way computer graphic and live video telecom~
murnications link was used to solve an engineering
problem. In this experdment, the graphic images
from two compubers were vieswed Dy television and
copbined by standard video techniques. Each partis
cipant pointed to the image omn his local screen.
The images of both of the participants® hands were
combined with the graphbic imags, allowing thex to
gesture a3 naturally as if they were sitting o~
gether at a table. For the signal processing task
at hand, the communication was complete.

Computing by Hand

A& nupber of technologles
spacse on the xodern professionall's desk. Tele-
phones, answering devices, wmodems and computer
terminals with touch secreens are all candidates
for the desk top. From the user's point of view,
an empty desk is preferabdle, Two technology
trends augur the removal of the nomputer Serminal
from the desk’s surface., First, the keyboard will
ultimately succumb to volce input, . Second, flat
scereen displays of adeguate resolution already ex-
ist. They are likely to be placed on a wall
behind the desk, not on it, making touch soreen
input awkward.,

are competing For

The VIDEQPLACE technigues described in
paper cam be used to duplicate any touch screen
eapability. 4 video camsra pointed down at a desk
surface can be used Lo create a VIDECDESK environ~
ment that will have several advantages over a
touch scoreen,

this

In the VIDEOPLACE system, the user's hands
ean be used for any traditional graphics applica-

tion, Since the systenm oan detect when a personts
hand touches a particular object, pointing and
selection can be controlled. Similarly, a finger

can be used to position the selected object in 8
design. & finger can also be used to draw on the
sereen, for example, o connect components in a
logic design, We have slready implemented simple
menu selection, typing and {inger painting sys-
tems., {Fig. 4}

Page 1690 of 1714

38

Fig. &
Video inpui offers more than a simpls alter-
native to other pointing techniques, ¥With the ex~
ception of the recent development of three-

dimensional input devices, virituwally =il polnting

devices sre limited to iwo degrees of fresdom,
However, on the VIDECDESK, two hands can be used
in concert to increase the user's bandwidth. In

fact, 1o one commen graphle application, it is
easy to see the use for eight or more degrees of
freedom. Bespline curves are used widely to design
car bodies, ships hulls, turbine blades, ete.
Toese curves are defined in terms of a relatively
small mumber of control points. The user controls
the shape of the ourve by moving these points.
Hith existing input devices only one point can be
moved at a time. (n the VIDEODESK, the tips of
the index fingers and thumbs can be used to mani~
pulate four control points simeltanscusly. {Fig.
52

Conelusion

VIDEQPLACE 15 mot so much a solution &0 ex~
isting problems, as an effort to satretch our
thinking about the human-machine Iinterface. We
have already entered am era where most of the peo~
ple using computers are no longer programesrs in
the traditional sense. We can look to a day when
nost of the people interacting with computers will
uot be users in the current sense,

Since computers are becoming less expensive
than the people who use them, we can expect that
as much computing power will be dedicated to pro-
viding a3 pleasing hwarn-machine interface as is
actually used to accomplish the userta applice~

tion. Az computer interaction becomes the dom-
inant mode of performing work and transacting
business, it becomes a significant ingredient in

our guality of 1life,
aestheties of
thought.

It i3 ¢time to give the
buman-machine interaction serious

CHI "85

PROCEED

APRIL 1885

Page 1691 of 1714

Fig, B

40

Biblicoraphy

{BAYTT2] Batter, James J. & Brooks, Frederick P.
dr., PGROPE~T, ® IFIFS T1, pp. T59-765.

{BALT8I} Bolty, Richard 3., "Saze Orchestrated
Dynemic Windows,® SIGGRAPH 81. pp. 32-%2,
{BCLTBOY Boly, Richard 4., ®Put That There: Voice
and Gesture at the Graphic Interfaces.® SIGRRAPH
80, pp. 2B2-270.

[BOLT79)] Bolt, Richard A., "Spatial Data Manage~
ment, ¥ MIT 1979,

{CROCE1] Crockett, D.¥., "Triform Modules.® QACH.
Yol 2%, No &. pp. 344350,

{CULLR2] Cullingford, R.E., Krueger, M.W., Sele
fridge, M., "Automated Explanaiions in a CAD Sys-
tem, ® IEEE JIransactions on SME. January 1982,
{HAYET77] Hayes~Roth, F. and Leaser; ¥., ®Foous of
Attention in the Hearssy~II Spesch Understanding
System. ¥ IJCAX 77. pp. 27-35.

{KRUES&3] Krueger, M.¥., Avtifieisl Realitv.
Addison~Hesley, 1983. 212 pp.

{£RUEBI] Krueger, M.¥W., Cullingford, R.E. & Bella-
vanee, D.A., 2Control Issues in a CAD System with
Expert Knawledge.® Proceedings SMC. Oot. 1981,
{ERUETY] Kruegsr, M.¥., PResponsive Enviromments,®
APIPS 1977. 46:423~42%.

[ERUBTS] Erueger, M.W., IVAM, Annual Reports of
NOAS Contract ¢5-315156 1975-1978.

{LIPPEO] Lippman, Acdrew., "Movie Maps: &n spplica-
tion of the Cptical Disc to Computer Graphics.®
SIGGRAPH 81. pp. 109~120.

[SCHATT] Schank, K. and Abelson, R.P., ®3cripts,
Plams, Goals apd Underatanding.® Erlbaum Press,
1977,

{SUTE68] Sutherland, Ivan. 1968. "4 Head~Mounted
Threse~Dimensional Display.? FJCC AFIPES 33-1:75785~
754,

227113 windows on tahiets

Brown, E,, Buxton, W. & Murtagh, K. {1990). Windows on tablets as a means of achieving virtual mput
devices. In D. Diaper ot al (Bds), Human-Computer Interaction - INTERACT "0, Arsterdam: Elsevier
Science Publishers BV, (North-Holland), 675-681.

WINDOWS ON TABLETS AS A MEANS OF
ACHIEVING VIRTUAL INPUT DEVICES

Computer Systerss Research [nstitute,
University of Toronto,

Torente, Ontario,

Canada M35 1A4

Users of computer systems are often constrained by the hmited number of physical devices at ther
disposal For displays, window systems have proven an effective way of addressing this problem.
As comimonly used, a window system partitions a single physical display into a number of different
virtual displays. It is our objective to demonstrate that the model s also usefil when applied to
nput,

We show how the surfice of a simgle nput device, a tablet, can be partitioned into a urmber of
virtual input devices. The demonstration makes a nurrber of inportant poinis. First, # demonstrates
that such usage can improve the power and flexibility of the user interfaces that we can implement
with a given set of resources. Second, demonstrates a property of tablets that distinguishes them
from other tnput devices, such as mice. Third, i shows how the technique can be particularly
effective when implemented vsing a fouch sensitive tablet. And finally, i describes the
implementation of a profotype an "nput window managexr” that greatly facilfates owr ability to
develop user inferfaces using the techmigque.

The research described has significant implications on direct mampulation interfices, rapid
prototyping, taforability, and user inferface management systems.

L INTRODUCTION

A significant trend in user interface design Is away from the discrete, serial nature of what we might call a digital
approach, towards the continuous, spatial properties of an analogoe approach.

Direct Manipulation systens are a good exarmple of this trend. With such systeirs, controk and fimetions (such
as scroll bars, butfons, switches and potentiometers) are represented as graphical objects which can be thought
of as virtual devices, A number of these are dlustrated n Fig. L.

The mpression i that of a number of distinct devices, each with #s own specialized fimction, and cccupymg its
own dedicated space. While powerlud, the supression 1 an ilusion, since virtually all interactions with these
devices i via only one or two physical devices: the keyboard and the mouse.

e bibuexdon. comdwindows. hitrrd

Page 1692 of 1714

it

G273 windows on fablels

{-2-4-5-15.30
Hard Disk & |

E Stag awake when plugesd in

v Changes o RaM disk
gize will 1ske effect
Powhen g restart,

Lo
.0

e dde fd i 1. .
dutornatic Wake-up @ & 1] internal
2f FIB0 (‘%O ¢ Modsrn
9:35 AM 'S {%ﬁ? Expernal
T ¥ 71 when Phone Rings N | Moden
3.3,

Figure 1: Virtual Devices i the Macintosh Control Panel

The figure shows graphical objects such as potentiometers, radio buttons and icons. Each
Junctions as a distinct device. Interaction, however, s via one of two physical devices: the
mouse or keyboard.

The strength of the illusion, however, speaks well for its effectivensss. Nevertheless, this paper s rooted na
belief that direct manpulation systems can be improved by expanding the design space to better afford turning
this dlusion into reality. Distinct controls for specific fanctions, provide the potential to improve the directness of
the user's access (such as through decreased homing time and explotting motor memory). Input finctions are
noved from the display to the work surfice, thereby fleeing up valuable screoen real-estate. Because they are
dedicated, physical controls can be specialized to a particular fimction, thereby providing the possibility to
improve the quality of the manipulation

While one may agree with the peneral concepts being expressed, things generally break down when we try to put
these ideas into practice. Given the number of different fimetions and virtual devices that are found in typical
drect manpulation systenss, having a separate physical controller for each would generally be wmanageable,
Our desks (which are already crowded) would begin to ook Ike an aivcraft cockpit or a percussionist's stodio.
Clearly, the designer st be selective in what fimetions are assipned to dedicated controllers. But even then, the
practical management of the resources remains a problem.

The confribution of the curvent research is fo describe a way in which this approach to designing the control
structures can be supported. To avoid the explosion of input transducers, we infroduce the notion of virtual input
devices that are spatially distinct. We do so by partitioning the strface of one physical device into a munber of
separaie regions, each of which emulates the fimction of a separate coniroller. This s analogous on the input side
to windows on displays.

We highlight the propertics that are requited of the input techunology to support such windows, and discuss why
certain fypes of touch tablets are particularly sutted fr this type of inferaction.

Finally, we discuss the Hnctionality that would be required by a user mterfice management system to support the
approach. We do so by describing the mnplementation of a working prototype system.

www il budon.comisindows. him 211

Page 1693 of 1714

G273 windows on fablets

2. RELATIONSHIP TO PREVIOUS PRACTICE

The idea of virtual devices is not new. Oune of the most mnovative approaches was the virtual keyboard
developed by Ken Knowlion (1975, 1977a,b) at Bell Laboratories. Knowlon developed a system using halft
silvered mirrors to permit the finctionality ofkeyboards to be dynamically reconfigured. Partitioning a tablet
surface info regions Is alo not new. Tablet mounted menus, as seen i many CAD systems, are one example of
existing practice.

O contribution:

* pakes this model explicit

¢ develops i beyond current common practice

¢ deovelops some of the design issues (such as mput transducers)

¢ demonstrates its utility

s and presends a prototype User Tnterface Management (UIMS) utility to support its use.

3. RELEVANT PROPERTIES OF INPUT TRANSDUCERS

The techiique of "nput windows" mvolves a mapping of different Rinctions to distinct physical locations in the
confrol space. This mapping can only be supported by mput transducers that possess the Hllowing two
properties:

¢ Position Sensitive: They nust give absoltte coordinates defining position, rather than a measure of
motion (a8 with mice).

s Fixed Planar Coordinate System: Posttion st be messured in ferms of a two dimensional Cartesian
space.

Hence digitizing tablets will work, but imice, trackballs, and jovsticks will not. Within the class of devices which
meetl these two crferia (inchidmg light pens, graplics tablets, fouch screens), touch technologies (and especially
iouch tablets) have noteworthy potential

Confrol systems that cmploy mualtiple miput devices penerally have two important properties:

s Eyes-Free Operation: Suficient kinesthetic feedback is provided to permit the operation of the control,
leaving the eyes free to perform some other task, such as monttoring & display.

s Simulfaneous Access: More than one device can be operated at a time, as in driving a car (steering
wheel and gear lever) or operating an andio mixing console (where muliiple faders mught be accessed
simultaneously).

In many design situations, these properties are usefid, if not essential In mixing a colour in 8 paint program, one
rmight assign a pofentiometer 1o each of hue, saturation and value. In performing the task, & is reasonable to
expect that the artist generally is better served by focusing visual attention on the colow produced rather than the
potentiometers controflling #8 components values, Driving a car wounld be impossible if operating the steering
wheel required vispal attention. '

Simultaneous access s alo Important i miany sinations. Within the domain of human-computer inferaction, for
exarple, Buxton and Myers {1986} demonstrate benefits in tasks similar to those demanded in text editing and

ww bilibuston convwindows il 3

Page 1694 of 1714

QA3 windows on tablets

CADD.
4. THE AFFORDANCES OF TOUCH TABLETS

Touch tablets are leresting in that they can be designed and employed in such a way as to afford eyes-free
operation and simultaneous access. As well, they can meet owr constraints of providing absolite posttion
mfbrmation ina planar coordimnate system. o this, they are rare among nput transducers.

The primary attribute of touch technologies that affords eyes-fiee operation s their having no mtermediate hand-
held transducer (such as a stylus or puck). Sensing is with the finger. Consequently, physical templates can be
placed over a fouch tablet (as dlustrated in Fig. 2) and provide the same fype of kinesthetic feedback that one
obtaing fom the frets on a guitar or the cracks between the keys of a piano. This was demonstrated i Buxton,
Hill and Rowley (1985). Because of the ability to memporize the position of virtual devices and sense their
boundaries, usage &8 very different than that where a stylus is used, or where the virual devices are delimited on
the tablet swhce graphically, and cannot be fol

An interesting result fom owr studies, however, & the degree to which eves-fice control can be exercised ona
touch tablet which is partitioned into a number of virtual devices, but which has no graphical or physical
terplates on the tablet surface.

Figure 2: Using a template with a touch fablet

A cut-out template is being placed over a touch tablet. Each cut-out vepresents o diffevent
virtual device on a prototype operating console. The user can operate each device "eves-
free” since boundaries of the virtual devices can be felt (due to the raised edges of the
template). If the tablet can sense move than one point of contact at a time, multiple virtual
devices can be operated at once. (From Buxton, Hill, & Rowley, 1985).

waivws bilibuadon. copiwindows mi

Page 1695 of 1714

73 windows on feblels

Figure 3: A 33" Touch Tablet

A touch tablet of this size has the important property that it is on the same spatial scale as
the hand. Therefore, control and access over its surface fulls within the bounds of the
refatively highly developed fine motor skills of the fingers, even if the palm is resting in a
Jixed (home?) position.

Using a 3™3" fouch sensitive touch tablet (shown n Fig. 3), ow nformal experience suggests that with very litle
training users can easily discriminate regions fo a resolution of up to 1/3 ofthe tablet surface's vertical or
horizontal dimensions. Thus, one can Implement three virtual lnear potentiometers by dividing the swfice info
three unform sized rows or colurns, or, Bt example, one can implement nine virtual push-button switches by
partitioning the fablet surface into a 3x3 matrix.

Ifthe surface is divided info smaller regions, such as a 4x4 grid, the resulf will be significantly more ervors, and
longer learning time. In such cases, using the virtual devices will require visual attention. The desired eves-fiee
operabifity i lost.

These fimits are flostrated m Fig. 4. For exanple, we see that nine butions r playing tick-tack-toe can worl
rather well, while a sixteen button numerical batton keypad does not. Similarly, three virtual linear faders to
conirol Huoe, Saturation and Value work, while four such potentiometers do not.

Our belief'is that the performance that we are observing is due 1o the size of the tablet as # relates to the size of
the hand, and the degree of fine motor skills developed in the hand by virtue of everyday living. Being sensitive o
these lmits & very ipportant as we shall see later when we discuss "dynamic windows." Because of this
oportance, these fimits of motor control warrant more formal study {1}

(a) (b)

&
QOX
X

H 5 ¥
{c) (d)

gy 9

RIS

i1 2F 81 -

Cg = +
i 2 3 4

v bifibaxdon.condwindoas. it 511

Page 1696 of 1714

Y23 windows on tablefs

Figure 4: Gnds on Touch Tablets

Four mappings of virtual devices are made onto a touch tablet. in (a) and {c}, the vegions
represent linear potentiometers. The surface is partitioned into 3 and 4 vegions, respectively.
In (b) and (d) the surfoce is partitioned into a matrix of push buttons (3x3 and 4x4,
respectively). Using a 3"x37 touch tablet without templates, our informaol experience is that
users can resolve virtual devices relatively easily, eyes-free, when the tablet is divided into
up to 3 regions in either or both dimensions. This is the situation llustrated in (@) and (b).
However, resolving viriual devices where the sirface is more finely divided, as in (¢} and {d),
presents considerably more load, Eyes-free operation reguives far move training, and ervors
are more frequent. The limits on this discrimination warrant more formal study.

Fually, there is the issue of parallel access. Touch technologies have the potential to support nudtiple virtual
devices simultancously. Again, this is krgely by virtue of their not demanding any hand-held infermediate
transducer. If for example, T am holding a stylus i my hand, the affordances of the device bias my expectations
towards wanting to draw only one line at a time. In contrast, if T were using finger pamts, T would have no such
restrictive expectations.

A similar effect i at play in interacting with virtual devices implernented on touch tablets. Congider the template
shown in Fig. 2, Nothing biases the user against operating more than one of the virtual linear potentiometers at a
time. In fact, experience in the everyday world of such potentiometers would Jead one to expect this o be
allowed. Consequently, if# is not allowed, the designer must pay particular attention to avoiding probable errors
that would result from this Hilse cxpectation.

Being able to activate more than one virtual device at a time opens up a new possibilities m confrel and
prototyping. The mock vp of nstroment control consoles is just one example. The biggest obstaclke restricting the
exploftation of this potential is the Jack of a touch tablet that is capable of sensing mudtiple points. However, Lee,
Buwston and Smith (1985} have demonstrated a working prototype of such a transducer, and # is hoped that the
applications described in thus current paper will help stinmilate more activity i this direction

In summary, we have seen that position sensitive planar devices readily support spatially distinet virtual input
devices, Further, we have seen that touch technologies, and touch tablets In particular, have affordances which
are particularly well sufied to this type of interaction. Finally, # has been shown that a touch tablet capable of
sensing more than one pont of contact at a time would enable the simuttaneons operation of nultiple virtual
devices.

5 VIRTUAL INPUT TRANSDUCERS

In current "menn on the tablet” praciive, there i typically just one device driver which returns a single strean of
coordinates, The application must decode the data according to the current partitioning of the tablet. This & allad
hoc, as are the means of specifying the boundaries of the various partitions. There are {few took, and litle
flexibility.

I our approach, the data from each virtual device & transmiitted to the application as if # were coming from an
independent physical device with #s own driver. I the region Is a bution device, #s driver transmils state changes.

wawv.bifibidon combsindows . htrd &11

Page 1697 of 1714

Q273 windows on iablets
Ifitis a 1-D relative valuator, # transmifs one dimension of relative data In stream mode. All of this s
accomplished by pleing a "window manager” between the device driver for the sensing transducer and the
application.j2 | Hence, applications can be constructed mdependent of how the virtual devices are implomented,
thereby maintaining all of the desired properties of device independence. Furthermore, this is accomplished with
a uniform set of tools that allows one to define the various regions and the operational behaviour of each region,

6. WHAT ABOUT DYNAMIC WINDOWS?

Wndow managers for displays can support the dynaimic creation, manipulation, and destruction of windows, Is it
reasonsble to consider comparable fimctionality for fnput windows?

Our research (Buxton, Hill & Rowley, 1985} has demonstrated that under certain circumstances, the mapping of
virtuel devices onto the tablet surface can be dynamically aliered. For example, i a paint system, the tablet may
be a 212 pointing device 11 one context, and in another (such as when mixing colowrs} may have three linear
pofentiometers mapped onto £,

Changing the mapping of virtual devices onto the tablet surface restricts or precludes the use of physical
terplates. However, this is not always a problem 1 visual (but not tactile) feedback s requared, then a touch
sensitive flat panel display can provide graphical foedback as to the current mapping. This is standard practice in
wany fouch screen “soft machine” systems.

As has already been discussed, under certain circumstances, some tooch tablets can be used effectively without
physical or graphical ternplates. Tlus can be #lustrated using a pant mixing exaniple. Since there are ilwee
cormponenis to colour, three Inear polentiometers are used. As m Fig. 4(b), the potentioneters are vertically
oriented so that there s no confusion: up 8 increase, down is decrease. The potentiometers are, lefl-to-right,
Hue, Saturation, and Vale (H, § & V m the figure). This ordering 18 consistent with the conventional order in
speech, consequently there 18 lttle or no confusion for the user.

The exanple finstrates three conditions for using virtual devices without templates:

¢ a low menber of devices;
+ carefid layout;
* strong compatibilify between the virtual devices and the application.

Our objective is not to encowrage or kegitimize the arbirary use of menus on tablet sucfaces. As many CAD
systerns flustrate, this ofien leads to bad wer nterface design. What we hope we have done s identify a
technigee which, when wsed i the appropriate context, will resulf 1 an inproved user mterface.

7. UIMS's AND VIRTUAL DEVICES

User Interface Management Systerns, or UIMS's, are sets of tools designed to support fterative development of
user interfaces through all phiases of development (Tamner & Buxton, 1983; Buxton, Lamb, Sherman & Snith,
1983}, Ideally, this imcludes specification, design, implementation, testing, evaluation and redesign. Typically,
UIMS's provide tools for the lavout of graphic iterfaces, control low level details of Input and output, and {more
rarely) provide monitoring ficilities to aid in evaluation of the jnterfaces developed.

s Bl budon.coriwindows it 7

Page 1698 of 1714

812713 ’ windows o1t fableds
We have developed an inpur window manager (IWM). The tool consists of a "meta device™ that provides for
quick specification ofthe layout and behavior of the virtual devices. The specificd confipuation fmctions
mdependent of the application. Users employ a gesture-based trainer to "show™ the system the location and

type of virtual device being specified. Hence, {or example, adding a new template nvolves little more than tracing

its outhne on the control surfice, defining the virnal device types and ranges, and attaching ther to application
parameters. Since the mmplementation of new devices can be achieved as quickly as they can be hid out on the
tablet, this tool provides a new dimension of system failorability.

In order to support #erative development, the tool should allow the user to suspend the application program,
change the mput configuration (by invoking a special process fo control the virtual devices), and then proceed
with the application program usmg the altered input configuration.

Humber of Dimensians
i Z 3
HF_
S 1§ Retery . Shding |Tablets . Tablet & . Light Pea, Flosting | 30 Joystick | M
1 Pot . Pot Puck | Stylus | , Jstick
[N e I i Sl B g e e oo s e U M me e e -
) 3 t l %
o e : Touch | sToush &
& : Tablal tSpreen] T
= . +0 o : X +
iy,
- .~ s s 5 [1
Comdimious @ . : ! - N
5 151 potary Pot | Tresdmili] Mouse ! * Trackball §30 Trackball | M
3§ e 2 t X ¢
3 B R R e AR LR e S S o
O . F t 3 i H
' Farinsis ' ! Vg ;
L +0 +{35 : 5 A Pad + r
@ 3 3 ? i)
=i Terque : X ! fsametrie
;"g Sansor ‘ ; t 4 dﬁ:}&hﬁy T
L : : ! :
. to * - : : .

Figure 5, Taxonomy of Hand-Controlied Continuous Input Devices.

Cells represent input transducers with particular properties. Primary vows (solid lines)
categorize property sensed {position, motion or pressure). Primary columus categorize
number of dimensions transduced. Secondary rows (dashed lines) differentiote devices using
a hand-held intermediate transducer (such as a puck or sivius) from those that vespond
divectly to touch - the mediated (M) and touch (T} rows, respectively. Secondary columns
group devices roughly by muscle groups employed, or the type of motor control used to
operate the device. Celly marked with a "+ can be easily be emulated using virtual devices
on a multi-touch tablet. Cells marked with a "O" indicate devices that have been emulated
using a conventional digitizing tablet. After Buxton (1983).

8 THE REPERTOIRE OF SUPPORTED VIRTUAL DEVICES

The mopact of the physical device used on the quality of mteraction has been discussed by Buxton (1983), The
objective, therefore, is to make availabl as broad a repertoive of "virtual” devices as possible froma limited
munber of physical ransducers, We based ow nitial prototype on a conventional graphics tablet, and have
designed to include fitre support for both single and multiple touch-sensitive tablets. The repertoire of virtual

v ifbudon.comivindows biml

Page 1699 of 1714

a1

QTS windows on tablafs

devices supported by onr prototype & indicated i Fig 5.
9. APROTOTYPE INPUT WINDOW MANAGER

The architecture of the IWM that we have inplemented i depicted m Figure 6. The user iteracts with the TWM
at two separate pomts ndicated by ovab in the diagram. The Trainer program, provides for configuring the mput
conirol structure. The application exists outside of the IWM, and the workings ofthe IWM are incidental to &
{uther than the mterface to the request handler).

i e T
Hard { Trainer Y
Davice . P
A ;‘/ “““““““““““““ \\
; s :
; f‘f \ . . -\:
: ,/f ¥ Reguests:
; . Yirtial g
f| Tablel | Mormslized, | pouic Request |
Y Paller | Foordinatas | aoo8 Handler |
: e = i Coordinater ‘,

Spaciatizis

Figure 6. Architecture of a Prototype Input Window Manager

The tablet poller monitors the activity on the physical device, filters redundant information, and normalizes the
dala poinis before passing them on, The normalized format allows use of a vange of physical devices simply by
changing the tablet poller for the specific device.

The virfual device coordinator is active if'the current activity i not a frainer session. It yses the ncoming tablet
data and the configoration provided by a trainer session to identify the virtual device to which the incoming data
belongs. It ;;i)a.sses the approprate mfbroation on to the device specialist {device driver) for that virfual device.
The device speciafist determmes the effoct of the input and signals the reguest handler appropriately.

The virtual devices are accessed by the application program through two commamication routines. One routine
allows the activation and deactivation of varions types of event signals, The other routine accesses the event-
gueue, returning the specifics of the last event fo be signaled. A number of requests are available to the activation
routing, including discrete status checks on a device, turning the device "on® or "ofl? for continuous event
signading, and a wtility shutdown request.

The request handler module terprets and acts on requests fom the application program, aliering or extracting
wdormation of the device specialisis as needed. It posts appropriate events to the event gueue.

Finally, the architecture is such that mnch of the underlying software can reside in a dedicaled processor, therehy
freeing up resources on the machine running the main application. This ncludes the part of the tablet polier, the
mbernal representation of the current mapping of the virtual devices onto the tablet, and the virtual device
coordmator,

19, CONCLUSION

bl Hsdon.comfwindows ki 9ftH

Page 1700 of 1714

Q273 : windows on tablats
This paper has discussed one way of making direct manipulation nterfaces more direct and mangpulation more
effective. The general approach hag been to extend the nunber of discrete and continuous controllers which can
be tied to different finctions. This is accomplished through spatially distinct virtual devices, and an input window
management system In the process, a number of properties of nput devices have been discussed, and a
prototype system presented. The resulfs have important implications on the usability and taflorability of systens,
and the archifecture of UIMS's,

The work described has been explratory. Nevertheless, we Bel that the results are sufliciently cormpelling i
X y ’ Ed W

suggest that more formal investisations of the seues discussed are warranted. We hope that the current work will
help serve as a catalyst to such research.

ACKNOWLEDGEMENTS

‘The work described in this paper has been supported by the Natueal Science and BEngineering Research Counedl
of Canada and Xerox PARC. This support s gratefilly acknowledged. We would also like to acknowledge the
confribution of Ralph Hill, Peter Rowley and Abigail Sellen. Finally, we would lke o thank Tom Milligan for his
help i proofreading the final manuseript.

NOTES

§ It vt be enphasized that the Hoits discussed here were obtamed through mformal study. We mtend only to
suggest that there & something nteresting and nsefid here, rather than to frply that these are experimentally
derived data.

2 We thank Alain Fournier for first suggesting the analogy with window managers.

REFERENCES

Anson, B, (1982). The Device Model of Interaction. Computer Graphics, (16,33, 107-114.

Buxton, W, (1983}, Lexical and Pragmatic Considerations of Input Structures. Computer Graphics, (17,13, 31-
37

Buxton W, Hill R, & Rowley P. (1985). Issues and Techniques i Touch-Sensitive Tablet Input. Computer
Graphics, 19(3), 215 - 224,

Buxton, W., Lamb, M., Sherman, D, & Smith, K.C. (1982}, Towards a Comprehensive User Interface
Managerent Systern. Conputer Graphics, {16,3), 99-106.

Buxton, W. & Myers, B. (1986}, A Study in Two-Handed Input. Proceedings of CHI'86 Conference on
Human Factors in Computing Systerns, 321-326.

Evans, K. Tamner, P., & Wem, M. (1981). Tablet-based Valoators that Provide One, Two, or Three Degrees
of Freedom Computer Graphics (15,3}, 91-97.

Kasik, D. {1982), A User Interface Management Systemn, Corputer Graphics, (16,3}, 99-106.
v hilibiadon.comidncows. himd 1011

Page 1701 of 1714

23 windows on fablets
Knowlion, K. (1975}, Virtual Pushbuttons as a Means of Person- Machine Interaction. Proc. IEEE Conf on
Conputer Graphics, Pattern Matching, and Data Structure., 350-351,

Knowlton, K. (1977a). Computer Displays Optically Superimposed on Input Devices. The Bell System
Technical Journal (56,3}, 367-383.

Knowlon, K. (1977b). Prototype for a Flexible Telephone Operator's Console Using Conputer Graphics.
161 film, Bell Labs, Muray Hill, NJ.

Lee 8., Buxton, W., & Smith, K.C. {1985). A Multi-Touch Three Dimensional Touch Tablet. Proceedings of
CHI'85 Conference on Human Factors in Computing Systems, 21 - 23,

Myers, B, (1984a), Strategies for Creating an Easy to Use Window Manager with Icons. Proceedngs of
Graphics Inferface '84, Otitawa, May, 1984, 227 - 233,

Myers, B. (1984b)}, The User Interface for Sapphive. IEEE Computer Graphics and Applications, 4 (12}, 13 -
23. ,

Pike, R {(1983). Graphics in Overlipping Bitmap Layers. Computer Graphics, 17 (3), 331 - 356,

Tanner, P.P. & Buxton, W. (1985). Some Issucs in Future User Interface Management Syster (UIMS}
Development. In PRE G. (Bd.), User Interface Management Systems, Herlin: Springer Verhg, 67 - 79

s il buston.comiwindows, hirrl i1t

Page 1702 of 1714

s 5 s . s e s - o N
A DNICR I e THIVEA Boad 1 (atinet Wabk Ann o T lagn - Prwernd B Riona R ER v imoay e Smew ey inane QSv

QR umean v

Page 1703 of 1714

Prad, Bilf Guxton Pandiets the ¥ad
of Fatzanal Campudars,

s He Pebbie Snat Wateh &
Boud Fuy¥ - Walk Moasherg

R 2013 Hores Opan fuas-dinal) X4
iy - AA Longy fFult MatehiShant

wius of Wnllovball - Saving

& Fro Trak SR00T Review

g Volteyhall Techniques ang Tacties
Wi the Gave

Aasvin Ming

AN

Shars this videx

§ S35 ebay CARIC CALTIN
WATON DRC-OZ0-I8 urdsaxteng &

Page 1704 of 1714

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention: Capacitive Responsive Electronic Switching Circuit
First Named Inventor/Applicant Name: Byron Hourmand

Filer: Brian A. Carlson

Attorney Docket Number: 5796183RX2

Filed as Small Entity

ex parte reexam Filing Fees

Description Fee Code Quantity Amount Suz-;'s(tsa)l in
Basic Filing:
REQUEST FOR EX PARTE REEXAMINATION 2812 1 6000 6000
Pages:
Claims:
Reexamination Independent Claims 2821 5 210 1050
REEXAMINATION CLAIMS IN EXCESS OF TWENTY 2822 65 40 2600

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Page 1705 of 1714

Sub-Total in

Description Fee Code Quantity Amount usD($)
Post-Allowance-and-Post-Issuance:
Extension-of-Time:
Miscellaneous:
Total in USD ($) 9650

Page 1706 of 1714

Electronic Acknowledgement Receipt

EFS ID: 17754459
Application Number: 90013106
International Application Number:
Confirmation Number: 9188

Title of Invention:

Capacitive Responsive Electronic Switching Circuit

First Named Inventor/Applicant Name:

Byron Hourmand

Customer Number:

25962

Filer:

Brian A. Carlson

Filer Authorized By:

Attorney Docket Number: 5796183RX2
Receipt Date: 24-DEC-2013
Filing Date:
Time Stamp: 15:03:12

Application Type:

Reexam (Patent Owner)

Payment information:

Submitted with Payment

yes

Payment Type Deposit Account
Payment was successfully received in RAM $9650

RAM confirmation Number 1558

Deposit Account 501065

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

Page 1707 of 1714

File Listing:
Document .. . File Size(Bytes Multi Pages
Document Description File Name (y V . . 9
Number Message Digest | Part/.zip| (ifappl.)
125658
1 Transmittal of New Application PTO_NAR-5796183RX2_Reexa no 3
PP m_Request_Form_PTO.pdf
17f01010949a811011ceaadb8cbaeb2ecd 2|
<095
Warnings:
Information:
. - 350144
Receipt of Original Ex Parte Reexam PTO_NAR-5796183RX2_Reques
2 no 34
Request t_for_Reexam_PTO.pdf
edch2edcddcd654c0466¢7 705362975404
3d421
Warnings:
Information:
. 6723309
3 Reexam Miscellaneous Incoming Letter PTO_NAR-5796183RX2_Exhibit no 37
9 _A_PTO2.pdf
a60672b73e9aa2bdb0a60c5ee3b11f12¢aal
63bb5
Warnings:
Information:
- 17839163
R R PTO_NAR-5796183RX2_Exhibit
4 Reexam Miscellaneous Incoming Letter no 136
_B_PTO2.pdf
5d37¢96622ch2804ea03b3b41d6022278b
5f07ba
Warnings:
Information:
. 2031975
5 Reexam Miscellaneous Incoming Letter PTO_NAR-5796183RX2_Exhibit no 13
g _C_PTO2.pdf
164bc7c660d83257€8969243352¢131ad2¢]
Warnings:
Information:
. 2558063
6 Reexam Miscellaneous Incoming Letter PTO_NAR-5796183RX2_Exhibit no 16
9 _D_PTO2.pdf
6b2c2a6bc334b4e355e5chc6c24bc59d77|
11fa2
Warnings:
Information:
. 309214
R R PTO_NAR-5796183RX2_Exhibit
7 Reexam Miscellaneous Incoming Letter no 2
_E_PTO2.pdf
6d597cfba861476043777049d6835394e24|
262dc
Warnings:
Information:
683580
8 Preliminary Amendment PTO_NAR-5796183RX2_Amend no 142
i _Acc_Reexam_Req_PTO.pdf
179abf2337afcc80e4 1cd06652a3000e163f|
9d8a
Warnings:
Information:

Page 1708 of 1714

2272260
Copy of patent for which reexamination| PTO_NAR-5796183RX2_183Pat
9 R no 36
is requested ent_PTO.PDF
415329791153446bb65436b84cf199105373}
el81
Warnings:
Information:
. .) 123283
10 Assignee showing of ownership per 37 | PTO_NAR-5796183RX2_373_Fo o 3
CFR 3.73. rm_PTO.pdf
128c4¢53bfe9c2b814cf0c6338402¢2330¢
T4ce
Warnings:
Information:
302528
- Power of Attorne PTO_NAR-5796183RX2_Power | no 1
y of _Atty_PTO.PDF
b07c6a63a6c63630476018b064d c444d89)
5b527
Warnings:
Information:
15259
. PTO_NAR-5796183RX2_IDS_Co|
12 Transmittal Letter no 1
ver_Ltr_PTO.pdf
¢305711d19f296a4b83e31e8170fb 106c6f]
7957
Warnings:
Information:
. . 695955
13 Information Disclosure Statement (IDS) [PTO_NAR-5796183RX2_SB08_F o 7
Form (SB08) orm_PTO.pdf
883bcH6b5537b8497a0e597f27f0062d0eby
basd
Warnings:
Information:
PTO_NPL_Buxt InvitedP. 409495
14 Non Patent Literature - —buxton_invitedraper no 5
_PTO.pdf
312f0417fac8701faeee3f50d9fa0e57b54f5
b4
Warnings:
Information:
248635
15 Non Patent Literature PTO_NPL_Hinckley_PTO.pdf no 4
55da6e593e3e6b72c4baf769a1e91ea0307|
<3ca2
Warnings:
Information:
16890598
16 Non Patent Literature PTO_NPL_Lee_Thesis_PTO.pdf no 118
ah9acf8a342960946582eb3e3b7206f9fbc6)
e5ds
Warnings:
Information:
PTO_NPL_Hillis_AHighRes_PTQ 1879168
17 Non Patent Literature - - |s;|f 'ghnes_ no 12
! p aa40075463062ed7a2ebde71f2f34ec049f5|
17ef
Warnings:
Information:

Page 1709 of 1714

PTO_NPL_Lee_AMulti 874510
ee ulti-
Pat Lit iy -
18 Non Patent Literature Touch_PTO.pdf no 5
df53aec5188e8773b1722bag95f8184e317
2a8fc
Warnings:
Information:
2257242
19 Non Patent Literature PTO_NPL_Hlady_PTO.pdf no 7
e0d2386694a86e80874a7684a55c3ae92db)
fas5f2
Warnings:
Information:
5118466
20 Non Patent Literature PTO_NPL_Sasaki_PTO.pdf no 5
ce673fbb29fbbde7 cffba06f5f0337047b230)
7ch
Warnings:
Information:
1192812
21 Non Patent Literature PTO_NPL_Callahan_PTO.pdf no 6
adee8f6a5fbh28823fc4295ececch97cfe4790)
778
Warnings:
Information:
321343
22 Non Patent Literature PTO_NPL_Casio_Ad_PTO.pdf no 1
bab17¢766e91da884c0f3235447ae2f2227
bcb4
Warnings:
Information:
PTO_NPL_Casio_M |_PTO 1939711
23 Non Patent Literature - - asu()i? anual_ ’ no 14
p b598ae16ch083a0d9b7db30bf8e47816423)
8871c
Warnings:
Information:
PTO_NPL_Smith_Bit-slice_PTO 1363333
24 Non Patent Literature —rkmi d? tslice ’ no 7
p d82b4cdfb5dead78274a51afe2da349f570d|
a041
Warnings:
Information:
1522073
25 Non Patent Literature PTO_NPL_Boie_PTO.pdf no 9
574b22e97a3475322299d25a826d 128ec6!
2dae4
Warnings:
Information:
. 219994
. PTO_NPL_CliveThomson_PTO.
26 Non Patent Literature df no 3
p 2¢5bd016bd4ef378eccdacBac2c] 24ae3efd)|
fcab
Warnings:
Information:

Page 1710 of 1714

. 830527
27 Non Patent Literature PTO_NPL_NaFlonaI_Research_ no 85
Council_PTO.pdf
18ce9991051b72736e5e6b0797e3c0adeee|
Warnings:
Information:
PTO_NPL_Buxt | Tech 2176107
28 Non Patent Literature NFL_Buxton_lssuesech no 10
PTO.pdf
f4d1d89e7255ef9edbf37a4¢3fd385507f4b)
besd
Warnings:
Information:
PTO_NPL_Buxt L Displ 699993
29 Non Patent Literature NrF-_Buxton_targebispla no 8
ys_PTO.pdf
Taface304e3752dc2b700ebdd3d6f104dd2)
6235d
Warnings:
Information:
PTO_NPL_Buxt LexicalP 1531125
30 Non Patent Literature - —buxton_Lexicalirag_ no 7
PTO.pdf
781e65ebd8d45a45f6a0e30d 1b5a5a61a24|
fc7al
Warnings:
Information:
81930
31 Non Patent Literature PTO_NPL_LightBeam_PTO.pdf no 2
5027e8f24277c185a160634ffe254a811889)
e25b
Warnings:
Information:
PTO_NPL_Buxt Multi 643791
: _NPL_Buxton_Multi-
32 Non Patent Literature Touch_PTO.pdf no 22
ee40592d58cadcfb1894732afd286d0035b)
0df7d
Warnings:
Information:
1550938
33 Non Patent Literature PTO_NPL_Herot_PTO.pdf no 7
87b7288c423780d930b4a5c062013ee322l
Warnings:
Information:
15411551
34 Non Patent Literature PTO_NPL_Wolfeld_PTO.pdf no 68
619e70b30024524a72a6181ac4f6317a033
bboe
Warnings:
Information:
613852
35 Non Patent Literature PTO_NPL_Lewis_PTO.pdf no 6
ecc53097f693967b592bad 1026125a16ec9)
Tdec5
Warnings:
Information:

Page 1711 of 1714

36

Non Patent Literature

PTO_NPL_Nakatani_PTO.pdf

1112483

5c2d9a7ff7d21d354e8097017e0608c%aald
7aa

no

Warnings:

Information:

37

Non Patent Literature

PTO_NPL_Rubine_PTO.pdf

3162925

557a95160c204d5233ff036d96b23bc10b8
680d

no

285

Warnings:

Information:

38

Non Patent Literature

1670439

PTO_NPL_Kurtenbach_PTO.pdf|

0dc0ca4099f4b05bb0bdf6025f87a999e2dd
6e14

no

201

Warnings:

Information:

39

Non Patent Literature

113021

PTO_NPL_Hopkins_PTO.pdf

19671f1645e82db2843bf6c0557227911ed|
€095

no

Warnings:

Information:

40

Non Patent Literature

PTO_NPL_Buxton_LongNose_P|

27893

TO.pdf

621d2f1a416496295bd f582e2595a3bb4c|
b29eb

no

Warnings:

Information:

41

Non Patent Literature

PTO_NPL_Buxton_MadDash_P

37401

TO.pdf

d513532e5b9fc379095305b2235f487e 34
0055

no

Warnings:

Information:

42

Non Patent Literature

PTO_NPL_NASA_Graphic_Mani

4547824

pulator_PTO.pdf

87aa779ba0b278%7b017d0a92784dbd0b)
59ad9d

no

28

Warnings:

Information:

43

Non Patent Literature

1221374

PTO_NPL_lzadi_PTO.pdf

ab87fdb52a4317631f99f54206dd79f0f187
ceB7

no

Warnings:

Information:

44

Non Patent Literature

PTO_NPL_Krueger_PTO.pdf

1080548

<5868e5addea39874c8a8b01c14e5beS5b1

e35f7

no

Warnings:

Information:

Page 1712 of 1714

1150381
45 Non Patent Literature PTO_NPL_Brown_PTO.pdf no 11
7¢d9999fde 19f757a96158¢178b3277a593
Obc4
Warnings:
Information:
. 478495
. PTO_NPL_YouTube_Video1_PT|
46 Non Patent Literature no 1
O.pdf
8caeaa56b47adc32cceca7a37f5062e1458h)
2656
Warnings:
Information:
) 611272
R PTO_NPL_YouTube_Video2_PT]
47 Non Patent Literature no 1
O.pdf
155f817a147f94608c33dc9f0a5e86b94823)
d38¢
Warnings:
Information:
33467
48 Fee Worksheet (SB06) fee-info.pdf no 2
2041622¢6292997365ba41e75802557ae35)
3bde6
Warnings:
Information:
Total Files Size (in bytes):l 107055108

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR

1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Page 1713 of 1714

UNITED STATES PATENT AND TRADEMARK OFFICE

Page 1 of |

A OO G

» 4hy

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
WWW.LSPLO.gov

CONFIRMATION NO. 9188

Bib Data Sheet
FILING OR 371(c) ATTORNEY
SERIAL NUMBER DATE CLASS GROUP ARTUNIT [S0 TORTCH
90/013,106 12/24/2013 307 3992 5796183RX2
RULE
AlA (First Inventor to File): YES
INVENTORS
5796183, Residence Not Provided;
NARTRON CORPORATION, REED CITY, MI;
APPLICANTS
5796183, Residence Not Provided;
NARTRON CORPORATION, REED CITY, MI;
*k CONTINUING DATA AARRRARKRKRARRRAAKRRRK KRR ‘,7
This application is a REX of 08/601,268 O1I31/1 996 PAT 5796183
ki FORElsN APPL'CATIONS e de s o de ok e ok e e o e ok ok ke ok ok ook
** SMALL ENTITY **
Foreign Priority claimed Uyes Ono
35 USC 119 (a-d) conditions [yes U o (I et after STATEOR | SHEETS gL(.)ATIII\\IILs INDEEE:‘,:ADSENT
fret Allowance COUNTRY | DRAWING 32 . 8
Verified and
IAcknowledged Examiner's Signature Initials
TITLE
Capacitive Responsive Electronic Switching Circuit
N O Al Fees
U 1.16 Fees (Filing)
FILING FEE [FEES: Authority has been given in Paper D 1.17 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT time)
. llowing:
6000 No for following |D 1.18 Fees (Issue) }
|D Other J
iD Credit J

Page 1714 of 1714

