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Fa44 TRAINING A MULTIPATHCLASSIFIER

5.4 Training a Multi-path Classifier

The training algorithm for a multi-path classifier uses examples of each nmulti-path gesture class
(typically ten to twenty examples of each class) to create a classifier The creation of a multi-path

classifier consists of the creation of a global classifier, a wumber of path classifiers, and a decision
tree.

5.4.1 Creating the statistical classifiers

The path classifiers and the global classifiers arc created using the statistical algorithmdescribed in
Chapter 3. The paths of each example are sorted, the paths for a given sorting index im each class

forming a class used to train the path classifier for that index.

For example, consider training a multi-path classifier to discriminate between two orelti-path
gesture classes, A and 8, each consisting of two paths. Gesture class A consists of two path classes,
A; and Aj, the sabscript indicating the sorting indices of the paths. Similarly, class & consists of
path classes A; and B;. The first path in all the A examples form the class 4;, and so on. The
examples arc used to train path claasificr 1 ta discriminate betwoen A, and &,, and path classifier
2 to discriminate between Ay and &:. The global features af A and § are used to create the global
classifier, noroinally able to discriminate between twoclasses of global features, Ay and Bg.

Within a given sorting index, it is quite possible and legitimate for paths fromdifferent gesture
classes to be indistinguishable. For example, path classes A; and B, may both be siraight right
strokes. (Presurnably A and 8 are distinguishable by their second paths or global features.) In this
case itis likely that examples of class Ay will he raisclassified as 6; or vice versa. Tt is desirable to
removethese ambiguities from the path classifier by combining all classes which could be mistaken
for each other into a single class.

Asumiber of approaches could be taken for detecting and removing ambiguities fromastatistical

classifier, One possible approach wouldbe to compute the Mahalanchis distance between cach pair
of classes, merging thase belowa given threshold. Another approachinvolves applying a clustering

algorithm[74] to all the examples, merging those classes whose members are just as likely to cluster
with examples from other classes as their own. A third approachis to actually evaluate the actual
performance of a classificr which attempts to distinguish between passibly ambiguous classes; the
misclassi fications of the classifier then indicate which classes are to be merged. The latter approach
was the one pursued here.

A native approach for evaluating the performance of a classifier would be to construct the
classifier using a set of examples, and then testing the performance afthe classifier on those very

same examples. This approach obviously underestimates the ambiguities of the classes since the
classifier will be biased toward correctly classifying its training examples [62]. Instead, a classifier
is constructed using only a small number of the examples (typically five per class) and then uses
the remaming examples to evaluate the constructed classifiers. Misclassifications of the examples
then indicate classes which are ambiguous and should be merged. In practice, thresholds mast be

established so that a single or very small percentage of ousclassifications does not cause a merger.

Mathematically, carbine classes is a sinmple operation. The mean vector of the combined

class is computed as the average of the mean vectors of the component classes, each weighted by
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the relative number of examples in the class. A similar operation computes a composite average

covariance matrix from the covariance matrices of the classes being combined.

The above algorithm, which removes ambiguities by cornbining classes, is apphed to each path
classifier as well as the global classifier. Tt remains now only to constract the decision tree for the
nxnlti-path classifier.

5.4.2 Creating the decision tree

A decision tree node has two fields: mclags, a pointer to a niulti-path gesture class, and next,
a pounler lo an array of pouders to its subnades. To construct ihe decision tree, a root nade is

allocated. Then, during the class phase, each multi-path gesture class is considered in turn. For
each, a sequence of path classes Ga sort index order}, with ifs glohal feature class appended
consimicted. Nades are ercated in the decision tree in such a way that by following the sequence
a feaf node whose mclags vahue is the current multi-path gesture class is reached. This creates a

decision tree which will correctlyclassify all multi-class gesture whose component paths and global
features are correctly classified.

Next, during the examplephase, cach example gesture is considered in turn. The paths are sorted
and classified, as are the global features. A sequence is constructed and the class of the gesture is
added to the decision tree at the location corresponding to this sequence as before. Normally, the

paths and global features of the gesture will have been classified correctly, so there would already be
a nodein the tree correspondingto this sequence. However, if one of the paths or the global feature

vector of the gesture was classtiied incorrectly, a mew node maybe created in the decision trec, and
s the same classification mistake in the future will stul result in a correct classification for the

etuee
When attempting ta add a class using 4 sequence whose components are misclassifications,

it is possible that the decision tree node reached already bas a non-null melass field referring

to a different mmulti-path gesture class than the cne whose example is currently being considered.
This is a confict and is resofved by ignoring the current example (though a warning message is

printed). [gnoring all but the first instance of a Sean’© insures that the sequences generated during
the class phase will take precedence over those generated during the example phase. anCORESE,a conflict occurring during the class phase indicates a serious problem, namely a pair of gesture
classes between which the multi-path classifier is anable to discriminate.

During decision tree construction, nodes that have only one global feature class entry with a

subnode have theirmclass value set to the same gesture class as the molass vahie of that subnode.
in other words, sequences that can be classified without referring to their global feature class are
marked as such. ‘Uhis avoids the extra work (and potential for error) of global feature classification.

5.5 Path Features and Global Features

‘The classification of the individual paths and of the global features of a multi-path gesture are
central to the multi-path gesture recognition aleorithodiscussed thus far. This section describes the

particular feature vectors used in more detail.
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The classification algorithm usedto classify paths and global features is the statistical algorithm

discussed in Chapter 3, thus the criteria for feature selection discussed in section 3.3 must be
addressed. [Tn particular, oaly features with Gaussian-like distributions thal can be calculated

tneremnentally are considered.he path featares include all the features mentioned in Chapter 3. One additional featare wasaddesd the starting time ofthe path relative to the starting time of the gesture. Thus, for example,
a gesture consisting of two fingers, one above the other, which enter thehell of view of the Sensor
Prame simultancously and move right in parallel can be distinguished from a gesture in which a
single finger enters the field first, and whue it is moving right a second finger is brought into the

viewfickd and moves right. In particular, the classifier Gorthe secondsorting index) would be able
to discriminate between a path which begins at the start of the gesture and anc which begins later,
The path start timeis also used for path sorting, as describedin section $.2.

The main purpose of the global feature vector is to discriminate between multi-path gesture

classes whose corresponding individual component paths are indistinguishable. Por example, two
gestures both consisting of two fingers moving right, one having the fingers oriented vertically, the

other honzontally. Gr, one having the Gingers about one half inch apart, the olher twa inches apart.

Theglobal features are the duration ofthe entire gesture, the length of the bounding box diagonal,
the bounding box diagonal angle (always between 0 and 7/2 so there are no wrap-around problems),

the length, sine and casine between the first point of the first path andthe first paint of the last path
(referring to the path sorting order), and the length, sine, and cosine between the first point of the

first path and the last point of thelast path.

Another noulti-path gesture attribute, which may be considered a global feature, is the actual
number of pathsin the gesture. The numberofpaths was not includedin the abovelist, since itis not
included in the vector inputto thestatistical classifier. Instead, it is required that all the gestures of a
given class have the sanic numberof paths. The aumberof paths must match cxactly fora gesture to
be classified as a given class. This restriction has an additional advantage, in that knowing exactly

the number of paths simplifies specifying the semantics of the gesture (see Section 8.3.2}

 

The global features, crude as hey might appear, in most cases enable elective discrimination
between gesture classes which cannot be classified solely on the basis of their constituent paths.

5.6 A Further lmprovement

As mentioned, the multi-pathclassifier has a path classifier for each sorting index. The path classifier
for the first path needs to distinguish between all the gestures consisting only of a single path, as

well as the first path m those gestures having two or more paths. Similarly, the secondpath classifier
miust discriminate nat only between the second path of the two-path gestures, but also the second
path of the three path gestures, andso on. This places an teimecessary burden on the path classifiers.
Sinec gesture classes with different numbers of paths will never be confused, there is no necdto

have a path classifier ableto discriminate between their constituent paths. This observation leads to
a further improvernent in the multi-path recognizer.

‘The improvement is instead of having a single multi-path recogniver for discriminatimgbetween

rufti-path gestures with differing nembers of paths, to have one roulti-path gesture recognizer, as
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described above, for cach possible number of paths. There is a multi-path recognizer for gestures

consisting of only one path, another for two-path gestures, and so on, up until the maximum qumber
of paths expected. Each path classifier now deals only with those paths with a given sorting index
fromthose gestures with a given oumber of paths. The result is that many of the path classifiers
have fewer paths to deal with, and improve their recognition ability accordingly.

Of course, for input devices in which the number of paths is fixed, such as the DataGlove, this

Lprovement does not apply.

5.7 An Alternate Approach: Path Clustering

The multi-path gesture recognition implementation for the Sensor Frame relies heavily on path

sorting. Path sorting is used to decide which paths are submitted to which classifiers, as well as in the
mlobal feature calculation. Errors in the path sarting G.e. sinular gestures having their corresponding

paths end up in different places in the path ordering) are a potential source of musclassifications.
Thus, it was thoughtthat a raultt-path recognition method that avoided path sorting might potentially
be more accurate.

5.7.1 Giohal features without path sorting

The first step was to create a global feature set which did nai rely on path sortimg. As usual, a niajor
design criterion was that a small change in a gesture should result in a small change in its global
features. Thus, features which depend largely upon the precise order that paths begin cannot be
used, since two paths whichstart almost sirnultaneously may appear in either order. However, such

features can be weighted bythe difference in starting times between successive paths, and thus vary
smoothly as paths change order. Another approach which avoids the problemis to create global

features which depend on, say, every pair of paths; these tog would be immune to the problems of
path sorting.

The global features are based on the previous global features discussed. However, for each
featare which relied on path ordering there, two features were used here. The first was the previous
featarc weighted by path start hime differcnees. Far cxampic, one feature is the length fromthe first

point of the first path to thefirst point of thelast path, multiplied by the difference between the start
times of the first and second path, and again multiplied by the difference betweenthe start times of

the last and next to last path. The second was the surn of the feature between every pair path, such
as the sumof the length between the start points of every pair of paihs. For the sine and cosine
features, the sura of the absohite values was used.

5.7.2 Multi-path reeegnition using one singie-path classifier

Path sorting allows there to be a numberofdifferent path classtfers, onefor the first path, one for the

second, and sc on. ‘lo avoid path sorting, a single classifier is used to classify all paths. Referring
to the example in Section 5.4, a single classifier would be used to distinguish beiween Ay, Ao, Bi,
and By.
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Once all the paths in a gestare are classified, the class information needs to be combined to

produce a classification for the gesture as a whole. As before, a decision tree is used. However,
simce path sorting has been elimunated, there is aow no apparent order of the classes which will
make up the sequence submitted ta the decision tree. To remedythis, each path class is assigned an

arbitrary distinct integer duringtraining. The path class sequenceis sorted accordingto this infegerr
ranking (the global feature classification remains last in the sequence) and then the decision tree is

examined. The net result is that each node in the decision tree corresponds to a set (rather than a
sequence) of path classifications. (Actually, as will be explained later, each node corresponds to a
maultiset.)

In essence, the recognition algorithm is very simple: the lone path classifier determines the
classes ofall the paths in the gesture; this sct of path classes, together with the global feature class,

determines the class of the gesture. Unfortunately, this explanation glosses over a serious conceptual
difficulty: In order to train the path classifier, known instances of each path class are required. But,

without path sorting, how is it possible to know which of the two paths in an instance of gesture
class Ais A; and which is 49? One ofthe paths of the first A example canarbitrarily be called Aj.
Once this is done, which of the paths in cach of the other examples of class Aare in A)?

Once asked, the answer to this question is straightforward. The path in ne second instance ofAwhich is semtlar to the path previously called A, should also be called A).Ifa gesture class hasNopaths, tthe goal is to divule the set of paths used inall the training svaanples of the class inte NV’
groups, each group cantaining exactly one path frarn each example. Hdeally, the paths forming a
group are similar to each other, or, in other wards, they correspond to one another.

Note that path sorting produces exactly this set of groups. Within all the examples of a given

gesture class, all paths with the same sorting uidex form a group. However, if the parpose of the
endeavorts to build a multi-path recognizer which does not use path sorting, if seenis Inappropriate

to resort to it during the training phase. Errors in sorting the example paths would get built intothe
path classifier, likely nullifying any beneficial effects of avoiding path sorting during recognition.

Another waytc proceedis by analogy. Within a given gestureclass, the paths in one exampleare

compared to those of another example, and the corresponding pathsare identified. The coniparsons
could conceivably be based on the featere of the path as well as the location and timing ofthe path.
This approach was not tried, thoughin retrospect it seems the simplest and most likely to work well.

=“e
oe! 4 Chistering

Instead, the grouping of similar paths was attempted. The definition of similarity here only refers

to the feature vector ofthe path. In particular, the relative location of the paths to one another was
ignored, ‘lo group similar paths together solely on the basis of their feature vectors, a statistical

procedure known as hierarchical cluster analysis {74] was apphed.

‘The first step in chister analysis is to create a triangular matrix containing the distance between
every pair of samples, in this case the samples being every path of every example ofa given class.

‘The distance was computed byfirst normalizing each feature by dividing bythe standard deviation.
(The typical normalvation step offirst subtracting out the feature orean was omitied since il hasno effect on the difference between two instances of a featere.) The distances between each“pair of
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example path feature vectors was then calculated as the surn of the squared differences between the
normalized features.

Fromthis matrix, the clustering algorithm produces a chister tee, or dendrogram A den-

drogram is a binary tree with an additional linear ordering on the interior nodes. The clustering
algorithm imitially considers each individual sarnple to be im a group {cluster} of its own, the distance

pur. giving distances between every pair of groups. The two most similar groups. Le. the pair
corresponding to the smallest entry in the maatrix, are combined into a single group, and a node
representing the newgroup is created in the dendrogram, the sabnodes of which refer to the two
constituent groups. Thedistance matrix is then updated, replacing the two rows and colurans of the
constituent groups with a simgic row and cohimnrepresenting the composite group.

The distance of the composite group to each other group is calculated as a function of the
distances af the two constituents to the other group. Many such combining functions are possible;
the particular onc used here is the group average mcthod, which computes the distanceofthe newly

formed group to another groupas the average (weighted by group size) of the two constituent groups
to the other group. After the matrix is updated, the process is repeated: the smallest matrix clement
is found, the two corresponding groaps combined, and the matrix updated. This continnes until

there is only one group left, representing the enlire saraple set. The order of node creation gives the
linear order on the dendrogramnodes, nodes created early having subnodes whose groups are more
similar than nodescreated later.

Figure 3.4 shows the dendrogramfor the paths of 10 3-path clasp gestures, where {he thumb
moves sliehtly right while the index and middle fingers move left. The leaves of the dendrogram
are labeled with the mumbers of the paths of the examples. Notice howall the right strokes cluster
together (one per example), as do all the loft strokes (twe per exampic).

Using the dendrogram, the original samples can be broken into an arbitrary (between one and
the number of samples) number of groups. To get A’groups, onesimply discards the top N-~- 1 nodes
of the dendrogram. For example, to get two groups, the root node is discarded, and the two groups
are represented bythe two branches of the root nadc.

‘Taming back nowto the problem offinding corresponding paths in examples of the same mulu-
path gesture class, the first step is to compute the dendrogramofall the paths in all examples of
the gesturc, The dendrogram is then traversed in a hottom-up (post-order) fashion, and at cach

node a histogram that indicates the count of the number ofpaths for each example is computed.
The carmputation is straightforward: for each leaf node U.e. for each path) the count is zero forall
examples except the one the path came from: for cach interior node, each element ofthe histogram
is the sumofthe corresponding elements of the subnode’s histogram.

ideally, there will be nodes in the tree whose histogramindicates that all the paths below this

node come from different examples, and that cach example is represented exactly once. In practice,
however, things do nat work out this nicely. First, errors in the clustering sometimes group two

paths trom the same cxample together before grouping one path from every exaraple. This case
is easily handled bysetting a threshold, eg. by accepting nodes in which paths from all but two
examples appear exactly once in the cluster.

The second dilficully is more fundamental. It is possible that two or more paths im a single

gesture are quite similar (rememberthat relative path location is being ignored). This is actually
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common for Sensor Frame gestures that are performed by moving the elbow and shoulder while

keeping the wrist and fingers rigid. Por these paths, it is past as lukely that the two paths of the sare
example be grouped together as u is that corresponding paths of different examples be grouped
together Thus, mstead of a histogram that shows one path from each example, ilealby there will be
a node with a histogramcontaining two paths per example. This is the case in figure 5.4.

Call a node which has a histogram indicating an cqual (or almost equal) namber of paths from
each example a good cluster. The search for good chusters proceeds top down. The root node is
surely a good chister; eg. given examples from a three path gesture class, the root node histogram

will indicate three paths from each example gesture. If no descendants of the root node are good
clusters, that indicates that all the paths of the gesture are simular, However, if there are good clusters

belowthe root Qvith fewer oxarnpies per path than the root), that indicates that not all the paths of
the gesture are similar to cach other. In the three path example, if, say, one subnode of the root nade
was @ good cluster with one path per example, thase paths forma distinct path class, different than
the other path classes in the gesture class. The other subnode of the roor will alse be a good cluster,

with two paths per example. If there does not exist a descendant of that node whichts a good cluster
with one path per example, that indicates that the two gesture paths classes are similar. Otherwise,

goodclusters below that node (there will likely be two) indicate that each path class in the gesture
class is dilferent. The cluster analysis, somewhat like the path sorting, indicates which paths m each
example of a given gesture class correspond. (Goodclusters are indicated bycircles in figure 5.4.)

Occasionally, there are straggicrs, paths which are not in any of the good chisters identried
by the analysis. An attempt is made to put the stragelers in an appropriate group. If an example
contains a single straggler it can easily be placed in the group which is lacking an example from
this class, If an example contains more than one straggler, they are currently ignored. Hf desired, a

path classifier to discriminate between the good chisters could be created and then used to classity
the stragglers. ‘his was not done in the current unaplementation since there was never a significant

nurpber of stragglers.
Once the path classes in each gesture class have been identified using the clustering technique, a

path classifier is trained which can distinguish between every path class of every gesture class. Note
that if is passibic for a path class to bc formed from two or more paths fromcach exampleofa singic

gesture class, ithe cluster analysis indicated the two paths were similar Hf analogy techniques were
used to separate such a class into multiple “one path per example” classes, the resulting classifier

would ambiguously classify such paths. In any case, ambiguities are sul possible since different
gesture classes may have similar gesture paths. As in Section 5.4, the ambiguities are removed from

the classifier by combining ambiguous classes into a single class. Fach (Gaow unambiguous) class
whichis recognized by the path classifier is numbered soas to establish a canonical order for sorting
path class sequences during training and recognition.

3.7.4 Creating the decision tree
3

After the single-path and global classifiers have been trained, the decision tree must be constructed.

As before, in the class phase, for each multi-path gesture class, the (now unambiguous) classes of
each constituent path are enumerated. Since two paths in a single gesture class may be similar,

this enumeration of classes may list a single class more than onee, and thas may be considered a
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muluset. The list of classes is sequenced into canonical order, the global feature class appended, and

the resulting sequence is used to add the omlti-path class to the decision tree. As before, a coniict,
due to ihe fact that bvo dillereri gesture classes have the sanie muiluisei of path classes, is fatal.

Next comes the example phase. The paths of each example gesture are classified bythe single
path classifier, and the resulting sequence Gn canonical order with the global feature class appended}
is used to add the class of the example to the decision tree. Usually no work needs to be done, as

the same sequence has already been used to add this class (usually in the class phase}. However, if
one of the paths in the sequence has been misclassified, adding it to the deciston tree can improve
recognition, since this misclassification may occur again in the future. Conflicts here are not fatal,

but are simply ignored on the assumption that the sequences added in the class phase are more
important than those addedin the exaniple phase.

5.8 Discussion

‘Swo multi-path gesture recognition algorithms have been described, which are referred to as the
“path sartmg” and the “path clustering” methods. In situations where there is no uncertainty as to
the path index information (e.¢. a DataGlove, since the sensors are attached to the hand) then the

path-sorting methodis certainly superior However, with input deviees such as the Sensor Frame,
the path sorting has to be done heuristically, which increases the likelihood of recognition error.

‘The path-clustering method avouls path sorting and its associated errors. However, other sources

of misclassificationare introduced. One single-path classifier is used ta discriminate betweenall the
path classes in the system, so will have to recognize a large numberof classes. Since the error rate
of a classifier increases with the namber of classes, the path classifier in a path-clustering algonthm
will never perform as well as those in a path-sorting algorithm. A second source of crror is in the
clustering itself; errors there cause errors in the classifier aiming data, which cause the performance

of the path classifier to degrade. One way around this is to cluster the paths by hand rather than
by having a computer performit automatically. This needed to be done with some gesture classes

from the Sensor Frame, which, because of glitches in the tracking hardware, could not be clustered
reliably.

¥n practice, the path-sorting method always performed better, The poor performance of the

path-clastering method was generally due to the noisy Sensor Frame data. Itis however difficult to
reach a general conclusion, as all the gesture sets upon whichthe methods were tested were designed

with the path sorting algorithm in mind. Tt it easy to design a set of gestures that would perform
poorly using sorted paths. Qne possibility for future work is to have a parameterizable algorithm

for sorting paths, and choose the parameters based on the gesture set.
‘The Sensor Frameitselfwas a significant source ofclassification errors. Sometimes, the knuckles

of fingers curled so as not to be sensed would inadvertently break the scnsing planc, causing extra

paths in the gesture Gvhich would typically then be rejected}. Also, three fingers in the sensing
plane can easily occlude each other with respect to the sensors, making it difficult for the Sensor

Frame to determine each finger’s location. The Sensor Prame hardware usually knewfrom recent
historythai there were indeed three fingers present, and did its best to estimate the positions af each,

However, the resulting date often had glitches that degraded classification, sometimes by canfasing
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the tracking algorithm. It is likely that additional preprocessing of the paths before recognition

would improve accuracy. Also, the Sensor Prame itself is still under development, and i is possible
that such ghiches will be eliminated bythe hardware in the future.

Another area for future work is to apply the single-path eager recognition work described in
Chapter 4 to the eager recognition of multt-path gestures. Presumably this is simply a matter of
eagerly recognizing cach path, and combining the results using the decision tree. Howwell this

 

works remains to be seen.

It woald also be possible to apply the raulti-path algorithm to the recognition of multi-stroke

gestures. The path sorting im this case would simaply be the orderthat the strokes arrive. To date,
this has not been tried.

5.9 Conclusion

in this chapter, two methads for nulti-path gesture recognition were discussed and comipared. Each

classifies the paths of the gesture individually, uses a decision tree to combine the results, and uses
global features to resolve any lingering ambiguities. Thefirst method, path sorting, builds a separate

classilier for each path ima multi-path gesture. In order to determine whichpath to submit to which
classifier, either the physical input device needs to be able to tell which finger corresponils to which
path, or a path sorting algorithm mumbers the paths. The second method, path clustering, avoids
path sorting (which has an arbitrary component) by using one classifier to classify all the paths in a
gesture.

Ta general, the path sorting method proved superior, Tlowever, when the details of the path

sorting algorithmare knownit is possible to design a set of gestures which will be poorly recognized
due to errors in the path sorting. ‘That same knowledge can also be used to design gesture sets that
will not ran ilo path sorling problemas,
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Chapter 6

  An Architecture for Direct Manipulation

This chapter deserihes the GRANDMA system. GRANDMAstands for “Gesture Reeognizers
Automated in a Novel Direct Manipulation Architectarc.” This chapter concentrates solely on the

architecture of the system, without reference to gesture recognition. The design and implementation
of gesture recognizers in GRANDMAis the subject of the next chapter.

GRANDMAis an object-oriented toolkil similar to those discussed in Section 2.4.1. Like those
toolkits, is it based on the model-view-controller (MVC) paradiem. GRANDMAalso borrows ideas
fromevent-baseduser-interface systems such as Squeak [23], ALGAE [36], and Sassafras [54].

GRANDMAis implemented in Objective C [28] on a DEC MicroVax-lf running UNIX and the
X10 windowsystem.

6.1 Motivation

Buuding an object-oriented user interface toolkit is a rather large task, not to be undertaken lightly.
Purthermore, such toolkits are onfy peripherally related to the topic at hand, namely gesture-based

systems. Thus, the decision to create GRANDMAreqniires some justiiivation.
A single idea motivated the author to use object-oriented toolkits to constract gesture-hased

systems: gestures should be associated with objecta on the sereen. Just as an object’s class
determines the messages it understands, the author believed the class could and should be used
to determine which gestares an object understands. The ideas of inheritance and overriding then

naturally apply to gestures. The analogyofgestures and messages is the central idea of the “systems”
portion of the current work.

ft would have been desirable to integrate gestures into an existing object oriented toolkit,
rather than build one from scratch. However, at the time the work began, the only such toolkits
available were Smalitalk-80’s MVC [70] and the Pascal-based MacApp [114], neither of which ran
on the LINTXAC environment available to (and preferred by) the author Thus, the author createc
GRANDMA.

‘The existing object-oriented user interface systems tend to have very low-level input models,
with device dependencies spread throughout the sysiem, Por example, sonie systems require views

io respond to messages such as middleButtonDown [23], others use event structures that can

oS
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only represent input from a fixed small set of devices [102]. In general. the output models of existing

systems seem to have received much more attention than the mput models. One goal ofGRANDMA
was lo investigate new archilectures for input processing.

6.2 Architectural Overview

Figure 6.1 shows a general overviewof the architecture of the GRANDMAsystem. In arder to
imtroduce the architecture to the reader, the response to a typical input event is traced. But first, a

brief description of the system components is in order.
GRANDMAis based on the Model-View-Controller (MVC) paradigm. Models are application

objects. They are concerned only with the semantics of the application, and not with the user
interface. Views are concerned with displaying the state of models. When a model changes, itis the
responsibility of the model's view(s)to relay that change to the user. Controllers are ohjects which
handle input. In GRANDMA,controllers take the formaf event handlers! A single passive cvent
handler may be associated with many view objects; when input is first initiated toward a view, one

of the view’s passive event handlers mayactivate (a copy of) itsclf to handle furtherinput.

6.2.1 Anexample: pressing a switch

Consider a display consisting of several toggle switches. Each toggle switch has a model, which is
likely to be an object containing a boolean variable. Phe model has messages to set and retrieve the
value of the variable. which are used bythe viewto displaythe state ofthe toggle switch, and by

the event handler to change the state of the toggle.
When the mouse cursor is moved over one of the switches and, say, the left mouse button is

pressed, the window manager informs GRANDMA, which raises an input Pick event. The event
is an object which groups together all the information about the event: the fact that it was a mouse

event, which button was pressed, and, most significantly, the coordinates of the mouse cursor.
Raising an event causes the active event handler list to be searched for a handler for this

event. In turn, each event handler on ihe list is asked if it wishes to handle the event. Assuming
none of the other handlers will be interested in the event, the last handler in the fist, called the

X¥EventHandier, handles the event. This is what happens in the case of pressing the toggle
switch,

The X¥EventHandleris able to process any event at a location Ue. events with X-Y coordi-
nates}. The handler first searches the viewdatabase and constructs a list of views which are “under”

the event, in other words, viewsthat are at the given event location. The search is simple: each view

has a rectangular region in which it is inchided: if the event location is in the rectangle, the view
1s addedto the list. In the switch example, the list of views consists of the indicated toggle switch
view follo

 OPEhe distir ieollers and event handlers is in the way each inleracts with the underlying layer that
generates input events. Once activated, controllers loop, continually calling the input layer for all input events unul
the interaction cornpletes. In other words, controllers take control, forcing the user to complete one interaction before
initiating the next. In contrast, event handlers are essentially called by the input layer whenever input oceurs. It is thus
possible to interact sirmltancously with multiple event handlers, for example via multiple devices.
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Figure 6.1: GRANDMA’s Architecture
In GRANDMA, user actions cause events to be raised fc. pressing a mouse button raises a Pick event).
fach handler on the active event handler list is asked, in arder, if if wishes ta handie the event. ‘The

XYiventHandler, fast an the list, is asked only ifnone of the previcus active handlers fave consumed

the event. Por an event with a screen location (ie. a mouse event), the XY¥EventHandleruses the view

dalabase to delermine the views ai the given screen location, and asks each view (framfront to back) ifit
iis.wishes to handle the event. Jo answer, a view consults its list ofpassive event handlers, some sesoctated with

QR.the viewitself. others associated with the view's class andsuperciasses, to see if one ofthose is intereste
in the event. If so, that passive handler mayactivate ifseil, typically by placing a copyofitselfat the front

subsequent events to be handled effriently, short-circuitingtheA
An event handler anly consumes event

 ofthe active event handler list. ‘this enable
wyo +

elaborate search for a handler initiated by the XYEvent
we

 

fa which itis faterested, allowing other everts ta propas other event handlers. 
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The views are then queried starting with the foreground view. First, a view is asked if the event

location is indeed over the view; this gives an opportunity for a non-rectangular viewto respond
only io evenis duectly over it. HIthe event is indeed over the view, the view ts then asked if UL
wishes to handie the input event. The search proceeds until a view wishes to handle the event,orall
the views underthe event have declined. In the example, the togele switch view handles the event,
which would then not be propagated to the windowview.

A viewdoes not respond directly to a query as to whether it will handle an input event. Instead,

that request is passed to the view’s passive event handlers. Associated with each viewis a list of
event handlers that handle input for the view; a single passive event handler is often shared among
many views in the system. The passive event handlers are cach asked about the input in turn; the
search stops when onc decides to handic the input. In the example, the taggle switch has a toggic

switch event handlerfirst on its list of passive handlers that would handle the Pick event.

A passive event handler that has decided to handle an event may activate a copyor instance of

itself, Le place the ory or instance in the active event handler Hst. Or, 1 may not, choosing to doall the work assaciated with the event when if gets the event. For cxample, a toggle switch may
either changestate immediately when the mouse button is pressed over the switch, or it may simply
highlight itself, changing state only if the button is released over the switch. In the former case,

there is no need to activate an event handler, the passive handler itself can changethe state ofthe
switch.

In the latter casc, the passive handler activates a copyof itself whichfirst highlights the switch,

and then monitors subsequent input to watch if the cursor rernains over the view. If the cursor
moves away from the view, the active event handler will turn off the highlighting of the switch, and

may (depending on the kind ofinteraction wanted) deactivate self. Punally, if the mouse button
is released over the switch, the active event handler will, through the view, toggle the stale ofthe
awiteh (and associated model}, and then deactivate itself.

As noted above, active handlers are asked about events before the view databaseis searched and

any passive handlers queried. Thus, in the switch example, subsequent mouse movements made

while the button is held down, or the release of the mouse bulton, will be handled very efficiently
since the active handleris at the head ofthe active event handler list.

6.2.2 Tools

The teo/ is one component of GRANDMA’s architecture not mentioned in the above example. A
toclis an objectthat raises events, and it is through such events that tools operate on views Candthus

models} in the system. An event handler may be considered the mechanism through whicha tool
operates upon a view. The interaction is by no means unidirectional: some event handlers cause

views to operate upon tools as well. In addition to operating on views directly, event handlers may
themselves raise events, as will be seen.

Every event has an associated tool which typicallyrefers to the device that generated the event.

Por example, a system with two mice would have two MouseTool objects, and the appropriate
one would be used to identify which mouse caused a given Pick event. When asked to handle an

event, an active handler typically checks that the event's tool is the same one that caused the handler
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to be activated in the Hirst place. In this manner. the active event handler ignores events not intended
Tor a.

‘Tools are also mvalved when one device emulates another. Por example, a Sensor Frarse may

emulate a mouse by having an active handler that consumes events whose tool is a SensorFrame
object, raising events whose tocl is a MouseTool in response. That MouseTool does nat
correspond to a teal mouse; rather, it allows the Sensor Frame to masquerade as a rouse.

Tools do not necessarily refer to hardware devices. Virtua/ loofs are software objects (typically
views) that act like input hardware in that they may generate events. For example, fle views (icons)
would be virtual tools when implementing a Macintosh-like Pinder in GRANDMA, Dragging a
file view would cause events to be raised in which the tool was the file view. A passive handler

associated with folder (directory) views would be programmedto activate whenever an event whose
toolis a file viewis dragecd over a folder, Thus, in GRANDMAthe same mechanism is used when
the mouse cursar is dragged over views as when the mouse is used to drag ane view over other
vicws.

The typical case, in which a tool has a sernantic action which operates upon viewsthat the tool
is dropped epon, is handled gracefully in GRANDMA, Associated with every viewis the passive

GenericToolonViewEventHandler. When atoolis dragged over a view which responds to
the tool’s aclion, the GenericToolonViewEventHandler associated wilh the viewactivates

itself, highlighting the view. Dropping the tool on the view causes the action to occur? Thus,
semantic feedback is casy to achieve using virtual tools (see section 6.7.7).

This conchudes the bricf averview of the GRANDMAarchitecture. A discussion of the details

of the GRANDMAsystem now follows. A reader wishing to avoid the details may proceed directly

to section 6.8, which summarizes the main points while comparing GRANDMAto some existing
systers,

6.3 Objective-C Notation

As mentioned, GRANDMAis written in Objective C [28], a language which augments C with

object-oriented programming constructs. In this part of the dissertation, program fragments will be
written in Objective C.

Tn Objective C, variables and functions whose values are objects are all declared type id, as in
id aSet;

Variables of type id are really pointers, and can refer to any Objective C object, or have the
valuc nil. Like all pointers, such variables necd to be initialized before theyrefer to any object:

aSet = [Set new]; A create a Set abject /
The expression [Oo megsagename] is used to send the message messaqenameto the object

referred to by o. This object is termed the receiver, and megsagename the selector. A message
send is similar to a [umction call, and retums a value whose type depends onthe selector

Objective C comes supplied with a number of factory objects, also known as classes. Set is
n example of a factory object, and like most factory objects, responds to the message new with a

p

 Which « tool is d 
 

 

over a view that acts upon the tool (e.g. the trash can), is handled bythe
Sed
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newly allocated instance of itself,

Messages may also have parameters, as in

id aFect = [Rectangle origin:10:10 corner:20:30];
faSet add:aRect];

The message selector is the concatenation of all the parameter labels (origin: : corner: :
in the first case, add: in the second). In all cases, there is one parameter alter each color.

A factary’s ficlds and methods are declared as in the follawing cxample:

= Reot:Object { int zi,yl,x2,y2; }
+ origin: (int) x1 : (int):yl corner: (int) «2 :(int) y2 4

self = [self new];

xl = xl, yl = yl, x2 = 82; ya = _y2;

return self;

}
— shifthby: (int})x :(intiyv

{ xl += x; yl += y; %2 += x; y2 += yy; return self; }
This deciares the factory Rect to be a subciass of the factory Object, the root of the class

hierarchy. Note that the factory declaration begins with the “=" token. A method declared with
“4.defines a message which is sent directly ta a factory object; such methods often allocate and
retora ar instance of the factory. A method declared with “-” defines a mossage that is sent dircctly
io instances of the class. The variable seLf£ is accessible in all method declarations: it refers

io the object to which the message was sent (the receiver). When self is set to an instance of

the object class being detined, the fields in the object can be referenced directly. ‘hus, as in the
origin: :corner:: method, the Urst step of a factory method is olen to reassign Self to be an

instance of the factory, then to initialize dhe fields of the instance. The usage [gelf new! rather
than [Rect new] allows the method to work even when applied to a subclass of Rect (since in
that case self would refer to the factory object of the subclass). When the types of methods and

arguments are left unspecified, they are assumed to be id, and typically methods return seLi when
they have nothing better to return (rather than void, je not returning anything).

When describing a method of a class, the felds and other methods are often omitted, as in
= Rect

~ (int)area { return abe( (2-xl1l)«(y2-yl) }; }
In Objective C, messages selectors are first class objects, which can be assigned and passed as

parameters and thenlater seat to objects. The construct @selectior (message-selector) returns
an object of tvpe SEL, which is a runtime representation of the message selector:

id aRect = [Rech origim:10:5 cornmer:40:35

SEL op = nad @selector(area) : @geprintf('sd\n", [aRect perform:op])The rectangle ARect wil be sent the area or height message depending on the state of
Elaq. The perform: message sends the message indicated by the passed SEL to an object.
Variants of the form perform:with: with: allowadditional parameters to be sent as well.

The first class nature of message selectors distinguishes Objective C frommorestalic object-

oriented languages, notably C++. As they are analogous to pointers to fumetions in C, SEL values

f

ector (height) ;

RY{
4

4
ond
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may be considered “pointers” to messages. Objective C includes fictions for converting between

SEL values and strings, and a method for inquiring at runtime whether an object responds to
an arbitrary message selector As will be seen, these Objective C features are olten used in the
GRANDMAimplementation.

In the interest of siraplicity, debugging code and memory management code have been removed
from most of the code fragments shown below, though they are of course necded in practice. Also,

as the code is explained in the text, many of the comments have been removed for brevity.

6.4 The Two Hierarchies

‘Thus far, two important hicrarchics in obicct-oricnied user interface toolkits have been hinted at,

and if seems prudent to forestall confusion by further discussing them here. The first one is known
as the class hierarchy. Theclass hierarchy is the tree of subclass/superclass relationships that one

has in a single-inheritance system such as Objective C. In Objective C, the class Object is at the
reot of the class hierarchy; m GRANDMAclasses like Model, View, and EventHandlerare

subclasses of Object; each of these has subclasses of its own (ag ButtonView is a subclass of
View), and so on. The entire tree is referred to as the class hierarchy, and particular subtrees are
referred to by qualifying this term with a class name. Tn particular, the View class hicrarchyis the
tree with the class Viewat the root, with the subclasses of View subnodes of the root, and so on.

‘Phe second hierarchy is referred to as the view hierarchyor viewtree. A View object typically

controls a rectangular region of the display window. The view may have subviews which control
subareas of the parent view’s rectangle. For example, a dialogue box view may have as subviews
some radio buttons. Subviews are usually more to the foreground than their parent views; in other
wards, a subvicwusually obseurcs part of its parcnt’s view. OF course, subvicws themscives might

have sabviews, and so on, the entire structure being known as the view tree. In GRANDMA,the
root of the viewtree is a view corresponding to a particular windowonthe display: a program with
multiple windows will have a view tree for each. Ht is important not to confuse the view hierarchy

wilh the View class hierarchy; the lormer refers to the superview/subviewrelation, the latter to the
superclass/subclass relation.

6.5 Models

Bemg a Model/View/Controller-based system, naturally the three most important classes in

GRANDMAare Model, View, and EventHandler (he latler beng GRANDMA’stermi Lor
conteaiier). The discussion of GRANDMA is divided into three sections, one for each of these
classes. Class Model is considered first.

Models are objects which contain application-specific data. Model objects encapsulate the data
and computation of the task domain. The MVCparadigm specttes that the methods of models

should not contain any user-interface specific code. However, a model will typically respand ta
messages inquiring about its state. In this manner, a view object may gain information about the

model in orderto display a representation of the model.
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Tn a number of MVC-like systems, there is no specific class named “Model” [28]. Instead,

any object may act as amodel. However, in GRANDMA,as in Smailltalk-s0/ 70], there is a single
class named Model, which is subclassed lo implement application objects. This has the obvious
disadvantage that already existing Classes cannot directly serve as models. The advantageis the
ease of implementation, and the ability to easily distinguish models framother objects.

One of the tenets of the MVCparadigmis that Model objects are independent of their views.

The intent is that the user interface ofthe application should beable to be changed without modifying
the application semantics. The effect of this desire for modularityis that a Modelsubclass is written
without reference to its views.

However, when the state of a model changes, a mechanism is needed to inform the views of
the model to update the display accordingly. The way this is accomplished is for each model

to have a list of dependents. Objects, such as views, that wish fo be informed when a model
changes state register themselves as dependents ofthe model. By convention, a Model object sends
itself the modified message when # changes; this results im all its dependents getting sent the

modelModified message, at which time they can act accordingly.

The heart of the implementation of the Model class in GRANDMA1s simple and instractive:

= Model : Cboject { id dependents; }
~ addbependent:d {

ifi{dependents == nil) dependents = [OrdCltn new];

[dependents add:d]
return self;

- removeDependent:d

if{dependents i= nil} [dependents remove:dl;
return self;

}
— modified {

if(dependents i= nil) A send ail dependents modeliModified « /
[dependents elementsPerform:@selector (modelMadified)];

eturn self;
t4

Thus, a Model is a subclass of Object with one additional field, dependents. When

a Model is first created, its dependents ficld is automatically set to nil. The first time a

dependent is added (by sending the message addDependent:), the dependents fieldis set to
anew instance of OrdCltin, a class for representing lists of objects. The dependent is then added
to the list, it can later be removed by the removeDependent message.

Model is an abstract class; it is not intended to be instantrated directly, but instead only be
subclassed. A simple example of aModel might be boolean variable (whose view might be a toggie
awitch}:

= Boolean : Mode 1 { BOOL state;
~ (BOOL)getState qx

t
}

return state; }
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— setState: (BOOL) state
{ state = state; return [self modified}; }

~ toggle {| state = istate; return [self modified]; }
Notice that whenever a Booleanobiect’s state changes, it sends itself the modified message,

whichresults in all afita dependen

6.6 Views

The abstract class View, a5 mentiot

class in the GRANDMAsystern; it

ts getting sent the modelModified message.

ned, handles the display of Models. Iris easily the most complex

is over 800 lines of code, and it currently implements 10 factory
methods and 67 instance methods (not inchiding thase inherited from Object}. For brevity, most
of the methods will not be mentioned, or are only mentioned in passing.

Views have a number of instance vartables (felds):

= View Goject |
L model ;

id parent, children;

id picture, highlight;

short xloc, yloc;

id Dox;

int state;

}
‘The model vartable is the view’s connection with its model, Some views have no modekin this

case model willbe nil. The fields parent and children implement the view tree, parent

being the superviewof the view, children being a Hist (OrdCltn) of the sabviewsof this view,
The fields picture and highlicht refer to the graphics ased to draw and highlight the view,
reapectively. The graphics are drawn with respect to the origin specified by (xloc,
arc constrained to be within the Rec

yloc), and
tangle object box. The state ficid is a set ofbits indicating

both the current state of the view (set by theGRANDMA system) and the desired state of the view

(controllable by the view user).

‘Lo ilfustrate some of View's methods, here is a toggle switch view whose model is the class
Boolean describedabove.

SwitchView: View

To create a togele switch view:
id aBoolean

id aSwi

The createv

instance of SwitchView), sets t

ru
becohvView

1)

Boolean new];

iSwitehView createViewOf:aBoolean];

ewOf: method of class Viewallocates a new viewobject (in this case an
he model imstance variable, and, to add itself to the model’s

dependents, does [model addDependent :self].

The graphics for the switch are
SwitchView

— updatePicture {
id p = [self Vb
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fp rectangle 0:90 :16:10];

{{model getState] }

ip rectangle 2:2 :8:8];

[self VendPicture] ;

return self;

}
‘Phe intention is to draw ane , rectangle 1G by ixels in size fe whith whose model’sPhe intention is to draw an empty rectangle 10 by 10 pixels in ora switch whose model’s

stale is FALSE, but put a smaller rectangle within the switch when the niodel’sstate is TRUE.

View’s VbeginPicture and VendPicture methods deal with the picture instance

variable. (The V prefix in the method names is a convention indicating that these messages are
intended only to be sent by subclasses of View.) VbeqinPicture creates or initializes the

HangingPicture object which it returos. The graphics are then directed at the picture, which
is in essence a display list of graphics commands. Note how the model'sstate is queried using the
model instance variable inherited from class View. This is done for efficiency purposes; a more
modular way to accomplish the same thing wouldbe 1f ({ [self model] getState])}

‘Che method updatePicture gets called indirectly from View’s modelModified method:
= View ...

— modeiModiftied

iself updatel ;
if(state & V_NOTIFYCHILDREN) A propagate modelModified to kids + /

ichildren elementsPerform: @selector (modelModified) ];

return self;

}
— update { return [self updatePicture]; }

The state bit V_NOTIFY_CHILDRENis settablebythecreator of a view, it determines whether
modelModified messages will he propagated to subviews. Often whenthis bit is turned off,
the subclass of View overrides the update methodin order to propagate mode lModified only
to certain of its subvicws. (For cxampic, a view whasc model is a list might have a sabvicwfor
each element in the list displayed left to right, and when one element is deleted from the list the

view could arrange that only the subviews to the nght of the deleted one be redrawn.) In the more
typical case, the subclass only waplements the updatePicture method which redraws the view
to rellect the stale of the model.

For the switch to be displayed, it needs ta be a subview(or a descendant) of aWalilview. Class
WallViewis the abstraction of a windowon the display. An instance of Wal lViewis created for
each windowa programrequires, as im:

id aWallView = [WallView name: “gdp "Ty;
faWallView addSubView: faSwitchView at:50-:30]}];

‘This fragment creates a window named “gdp.” Thestring “gdp” is looked up in a database Gin

this case, thedefaults file as administered by the X windowsystem) to determine the initial size
and location of the wmdow. The switch is added as a subviewto the wall view, and displayedat

coordinates (50,30) in the newlycreated window.
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This ends the discussion of the major methods of class View. As the need arises, additional

methods will be discussed. It is ironic how in this dissertation, largely concerned with input, so
muuch elfort was expended on output. ‘The intial iatention was to keep the outpul code as simple as
possible while still being usable. Unfortunately, thousands of lines of code were required to get to
that point.

6.7? Event Handlers

In GRANDMA,the analogue of MYCcontrollers are event handlers, When input occurs, it is
represented as an event which is raised. Raismg an event resulis in a search for an aclive event

handler that will handle the event. For many events, the last handler in the active list is a catch-all
handfer whose functionis to search for any views at the event’s location. Each such view is asked
if it wishes to handle the event; the view then asks cach of its passive event handicrs if it wants
to handle the event. As mentioned, a single passive event handler may be associated with many

different views. A passive event handler may activate a copy or instance of itself in response te
input.

Warning to readers: due to this dissertation’s focus on input, this is necessarily a very long
section.

6.7.1 Events

Before cvent handlcrs can be discussed in detail, it is hcipful to make concrete cxactly what is meant
by “event.” All events are instances of some subclass of Event:

= Event : Object 1 id instigator; }
instigator { return instigator; }

— instigator:instigator
{ instigator = instigator; return self; }

‘The instigator of an event is the object posting the event. All window manager events are
instigated by an instanceof class Wall?

Figure 6.2 shows the Event class nerarchy. Clike instigator in class Event, each
instance variable shown has a method to set and a methodto retrieve its valec.) The most important

subclass is WallEvent, which is an event associated with a window, and thus usuaily raised by
(the GRANDMAinterface to) the window manager. A KeyEvent is generated when a character

is typed by the user. A RefreshEvent is generated when the window manager requests that a
pardicular windowbe redrawn.

The sabclasses of the abstract class DragEvent, when raised by the window manager, indicate
a mouse event. In these cases, the tool fleld is an instance of GaenericMouseTool or ane of

its subclasses. When a mouse button is pressed, a PickEvent is generated. The field Loc isa 

*The instigator is mosily used for tracing and debugging. Occasionally, il is used for a quick check by anactive eventee ‘2 i BS & S a J

handler that wishes to insure it is only handling events raised by the same objectthat raised the event whichactivated the
handler in the first place. Most active handlers do not bother with this check, being content to simply check that the tool
(rather than the instigator} is the same.
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GestureEvent { id eve

Dropkvent

Pigure 6.2: The Event Hierarchy

 
Point object, indicating the location of the mouse cursor.* The mouse object referred to by the
coal feld indicates which button has been pressed. When the mouse is moved (currently only
when a mouse button is pressed}, a MoveEvent is generated. When the mouse button is released,

a DropEvent is generated.

The classes GestureEvent and TimeoutEvent will be discussed in Chapter 7.

6.7.2 Raising an Event

A WallView object represents the root of the viewtree of a given window. Associated with each
WaliView object is a Wall object which actually implements the interface between GRANDMA
and the window manager. Also associated with each WallView object (ie. cach window) is an
EventHandlerList abject.

= WalliView : View { id handlers; id viewdatabase; id wall; }
+ name: (STR)name {

self = [self createViewOf:nil];

Wall = [Wall create:name wallview:self];

handlers = [EventHandlerList new!;

viewdatabase = [Xydb new];

Thandlers add: [XyEventHandler waliview:self]];
return self;

}
~ Yaise:event { return [handlers raise:event}]; }
- viewdatabase { return viewdatabase; }

  
 

 pit probably would have he:
separate coordinates, instead of using Poin

cs
wiser either io always represent points and rectangles as C structures, or as
and Rectangle obiccts and their associated overhead.
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= Wall : Object (GRANDMA, Geometry}

{ Win win; id pictures; id wallview; }
— yaise:event I

L£C[event iskindOf:RefreshEvent] )

{ [self redraw]; return; }
return fwallview raise:eventl;

}
Events are raised within a particular window using the raise message. Redrawevents are

handhed withthe wall: since each wall maintains a list of Plcture objects currently hung on il,
redrawis easily accomplished. The Redrawspectal caseis really just old code; it would he simple
to replace this code with a redraw event handler. Afi other events are passed from the Wall]to the
Wallviewto the EventHandlerList:

= EventHandlerList : OrdCltn { }
~ raige:e { int i;

for(i = [selE lastOffiset]; i == G; i--)

if( [[self atri] event:e) }

break;

return eelft;
t

jd

Aa EventHandlerbist is fust an OrdCltn, thus add: and remove: micssages can be

sent to it to add or remove active event handlers. The add: message adds handlers to the end
of the list; raise iterates throughthe list backwards, asking each clement of the list in order if it

wishes to handle the event. ‘Uhus, handlers activated most recently are asked about events before
ibose activated earlier. (itis possible to install an active event handler at an arbitrary position m

the EventHandlerList by using some of OrdCltn’s other methods, but this has never been
needed in GRANDMA.) Note that the first thing a Wal lView object does when created is activate
an XyEventHandler; this handler, since it is first in the list, will be tried only after the other

handlers have declinedto process the event.

6.7.3 Active Event Handlers

Every active event handler must respond to the event: message, returning a boolean value
indicating whether it has handled the event.

= EventHandler : Object { }
(BOOL} event :e

{ return (BOOL) [self subclassResponsibility
The event : method here is a placchalderfor the actual method, which would be implemented

differently in each subclass of EventHandler. The subclassRegponsibility method is
inherited from Object. The method simplyprints an error message stating that the subclass of the

receiver should have unplemented the method.
Note that ihe event: message sent to the active event handlers has no reference to any views.

When the event handler is first activated, it generally stores the view and tool which caused its

 Seep
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activation”; it can then refer to these to decide whether to handle an event. When handling an event,
the active event handler typically sends the view messages, if only to find out the model to which
the viewrelers.

As previously mentioned, the last active event handler tried is the KyEventHandler. This
event handleris rather atypical in that it never exists in a passive state.

= XyEventHandler : EventHandler { id wallview; }
+ walliview: wallview { self = [self new] i

fallwiew; return gelf; }
i

} KRviews, Séq, v, to\ ry
dstTo:@selector{({loc) }]) return NO;

ew viewdatabage] at:fe loc]];

eachElement]; v = [seq next]; } 
&& [v event:e]}) return YES;

return NO;

}
An XvEventHandleris instantiated and activated when a Wal 1Viewis created (see Section

6.7.2). The WallViewis recorded in the handler so that it can access the current database of views

(those views in the View subtree of the WallView). (in retrospect, it would have been more

elficient for the KyEventHandler to store a handle to the database directly, rather than always
asking the WaliViewfori.)

When an XyEventHandler is asked to handle an event (ia the event: message) it
first checks to see if that event responds to the message loc. Currently, only Gubclasses of)

DragEvents respond to Loo, buat that could conceivably change in the future so the handleris
written as generally as possible. This points to one of the major benefits of Objective C; one can

inguire as to whether an object responds to a message before attempting to send it the message.
Another example of this will be seen in Section 6.7.7. Since the XyEventHandler is going to
look up viewsat the location of an event, it obviously cannot deal with events without locations, so

returas NO (the Objective C term for FALSE or 0) in this case.
The view databasc is then consulted, returning all the views whose bounding box contains the

given point. The views returned are sorted frorn foremost to most background, ie. accorling to

their depth in the view tree, deepest first. In this order, each viewis queried as to whether it
wishes to handle the event, stopping when a view says YES. (The enigmatic test v i= tool
will be explained in section 6.7.7; suffice it to say here that in the typical case, tool 1s a kind of

GenericMouseTool and thus can never be equal to a View.)
If no viewis found that wishes to handie the event, the XyEventHandler retums NO. Since

this handicr is the last active event handicr to be tricd, when it says NO, the cvent is ignorcd. H

desired, it 15 a siraple matter to activate a catchall handler (io be tried after the NyEventHandler},
the parpose of whichis to handle all events, printing a message to the effect that events are being
ignored.

 “As shown in section 6.7.5, passive event handlers are asked to handle events via the event: view:
parameter being the event (from which the handler gets the toc), and the other is the view.
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Another example event handler is given in Section 6.7.6; more will be said about active event
handlers then.

6.7.4 The View Database

The function oftheview databaseis to determine the setof views at a given location in a window.
In many object-oriented UT toolkits, this function has been combined with event propagation, in
that events propagate down the vicwtrec [1045] far a corresponding controllertree (70, 63) directly.
The idea for a separate view database comes from GWUIMS[118]. By separating out the view

database into its own data structure, efficient algorithms for looking up views at a given point,
such as Bentley’s dual range trees [7], may be applied. Unfortunately, this optimization was never

completed, and in retrospect having to keep the viewdatabase synchronized withthe viewhierarchy
was more effort than it was worth.

= Xyéb : Set { }
— enter:object at:rectangle {

return [self replace: iXvdbe object:object

at: rectangle

depth: [object depth] ]];

depthemp (ol, o2) id «ol, #02;

{ return [xo2 depth] - [#01 depth}; }

 id seq, @, array [MAKAT], result = [OrdCitn new]; int n;

forin = 0, seq = [self eachElement];

fe = [seq next]) t= nil; }

L€({e contains:aPoint]) array[n++] = 4;

qsort (array, nm, Sizeof{id), depthemp);

for(i = OG; i < n; i++} [result add: farray[i] object]];
return result;

= Xydbe : Rectangle { id object; unsigned depth; }
+ object:o at:rect depth: Gmsignedid {

self = [gelf new] object «= o; depth = d;

return [[self origin: [rect origin]] corner: [rect corner|];

— object { return object; }
- (unsignedidepth { return deoth; }
— (ansigned) hash { return fobject hash}; }
- (BOOL)isHqual:o { object == o-sebject; }
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An %ydb is a set of Kydbe objects (“e” for “element”), each of which is a rectangle, anassociated object (always a kind of ViewinGRANDMA}, and a depth. View objects which move
or grow roust be sure to register their new locations im the viewdatabase for the wall on which they

he. This is currently done automatically ia theeyne method of class View which is responsible
for updating the display when a View changes. The hash and isicrual: methods are used by
Set; here they define twa Xydbe objects to be equal when their respective object fields are

equal.

6.7.5 The Passive Event Handler Search Continues

Each View object has a list of passive handlers associated withit. The association is often implicit:
passive handlers can be associated with the view directly, or with the class of the view, or any of

the superclasses of the view’s class. For example, the GenericToolOnViewEventHandler
is directly associated with class View; it dius appears on every view’s list of passive event handlers.

= View ...

— (BOOL)event:e { id seq, fh;
LEC! igself isOver:[e Loc]]) return NO;

for(seq = [self eachHancdler]; h = [seq next] ;}
iftth event:e view:self]) return YES;

return NO;

— eachHandler { id r = [OrdCltn new]; id class;
fy addContentsof:fiself passivehandlers]1];

for(class = [self class];

clase {= Object; clase = [class superClas¢]}

ir addContentsOf: {class pagsivehandlers] ];

return fr eachElement];

}
+ oassivehandiers

{ return [UIprop getvalue:self propatr:"handlers"}]; }

_ari return [Ulprop getvalue:self propastr:"handlers”"}; }
When a view is asked if it wishes to handle an event, it firsts asks if the event’s location is

indeed over the view. ‘he unplementation of the isOver: method in class View siraplyreturns

YES. Non-rectangular subclasses of view (ag. LineDrawingView, sce Section §.1) override this
method.

Assuming the event location is over the view, each passive event handler associated with the
viewis sent the event :view: mcasage, which asks if the passive handler wishes to handle the

event, The search stops as soon as one of the handlers says YES orall the handlers have been tried.
The method eachHandier returns an ordered sequence of handlers associated with a view.

‘The sequence is the concatenation of the handlers directly associated with the view object, these
directly associated with the view’s class, those associated with the view’s superclass, and so on,

up to and including those associated with class View. The associations themselves are stored in a
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global property list. The passive event handler is associated with a view object or class under the

"handlers" property.

Herein lies another advantage of Objective C. An object’s superclasses ronay be traversed at
runtime, in this case enabling the simulation of inheritance of passive event handlers. This etfect
would be difficult to achieve had it nat been possible to access the class hierarchyat rentime.

6.7.6 Passive Event Handlers

A passive event handler retums YES to the event: view: message if it wishes to handle the

event directed at the given view. As a side effect, the passive event handler mayactivate (a copy
of instance of) itself to handle additional input without incurring the cost ofthe search for a passive

handler again.

in Objective C, classes are theraselves first class objects in the sysiem, knownas factory objects.
A faetoryobject that is a subclass of EventHandlermayplaythe role of a passive event handler.
To activate such a handler, the factory would instantiate itself and place the new instance on the
active event list.

= EventHandiler ...

+ (BOOLevent:e view:v

1 veburn (BOOL) [self subclassResponsibility]
As an example, consider the following handlerfor the toggle switch discussedcarlicr:

«x ToogleSwitchEventHandler : EventHandler { id view, tool; }
+ (BOOL) event:e view:v {

 

1fC 1 fe iskindOf:PickEvent] }) return NO;

LEC {fe tool] iskindOf:MouseToolj] } return NO;

self = [self new]; view = v; tool = [e tool];

[[view wallview] activate:self];

[view highlight] ;rao
return YES;

3
— (B0OLevent:e {

BOOL isOver;

if( {{@ iskindOf:DragEvent] {| [e tool} [= tool }
return NO;

igOQver = [view Ooenctnenowene fe loc]};if(!isover || [e isKindO£:DropEvent]) {[view onhighlight i
[{view wallview] deactivate:seli

if(fisOver) [[view model] couglel ;
 

“However, using factory objects for passiveevent handlersis restrictive, as thereis only one instance ofthe factoryobject for a given ci This makes customization of a factory passive event handier difficult. Section 6.7.8 explains
howregular (non-factory) objects may be used as passive event handlers.
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Assumingthis event handler is associated with a SwitchView, when the mouseis pressed over
such a view the handler’s avent: view: methodis called, which instantiates and then activates

this handler, and then highlights the view. Other events, such as typing a character or moving a

micnise (with the button already pressed) over the view, will be ignored by this passive handler, Mast
handlers for mouse events, including this one, only respond to tools of kind MouseTool, where
MouseTool is a subclass of GenericMouseTool. The reason for this is explained in Section
6.7.7.

Onee the handler is activated, it pets first priority at all incoming events. ‘he beginning ofthe

event: method insures that it only responds to mouse events generated by the same mouse tool
that initially caused the handler to be activated. For valid events, the handler checksif the location
of the event U.e. the mouse cursor) is aver the view using View's point InIboxAndOver:
method. Note that during passive event dispatch, the more cfficient ieOver: method was uscd,
since by that pom, the event location was already known to be in the bounding box of the view.
The point IniboxAndOver does both the bounding box check andthe isOver: method, since

active event handlers see events before it is determined which views theyare over.

If the mouseis no longer over the switch, ar the mouse button has been released, the highlighting

af the yvicwis tamed off, and the handicr deactivated. In the ease where the mouse is over the view

when the batton was released, [[view model] toggle] is executed. The clause [view

model] returns the model associated with the switch, presumably of class Boolean, which gets
sent the toggle message. This will of course result in the switch’s picture getting changed to
reflect the madel’s newstate.

in any case, by returning YES the active event handier indicates it has handled the event, sothere will be no attempt to propagate it further.
Typically, the ToggleSwitchEventHandler would gei associated wiih the SwitchView

as follows:

= SwitchView ...

+ initialize
{ return {self sethandler:TogyleSwitchEventHandler] ; }

The initialize factory method is invoked for every class in the program Qvhich has
such a method) by the Objective C runtime system when the programis first started. In this

case, the sethandiler factory method would create a list (OrdCLtn) containing the single ele-
ment TogqleSwitchEverntHandler and associate it with the class SwitchView underthe

*"handlerg" property.

Note that some simple changes fo the TogqleSwitchEventHandler could radicallyal-
ter the behavior of the switch. For example, if [iview model] toggle] is also cxccated
when the switch is first pressed (.e. in the event:view: method), the switch becomes a mo-
mentary pushbutton. rather than a toggle switch. Simularly, by changing the initial check to [e

isKindOf :DragEvent], once the mouse moves offthe switch (hus deactivating the handler),
moving the mouse back on the switch with the bution still pressed (or onto another imsiance of

the switch) would (rejactivate the handler. If the handler is changed only to deactivate when a

Page 1279 of 1714



Page 1280 of 1714

G7 EVENTAANDIERS iis

DropEvent is raised, the button now grabs the mouse, meaning no other objects would receive

mouse events as long as the button is pressed. It is clear that many different behaviors are possible
siniply by changing the event handler,

While GRANDMAeasily allows much flexibility in programming the behavior of individual
widgets, interaction techniques that control rnultiple widgets in tandem are mare difficult to program.
For example, radio buttons Gm which clicking one of a set of buttons causes it to be timed on and

the rest ofthe set to be turned off might be implemented by having the individeal buttons to be
sabviews of a newparent view, and a newhandler for the parent view could take care of the mutual

exclusion. (Altematively, the parent view could handle the mutual exclusion by providing a method
for the individual buttons to call when pressed; in this case the parent necessarily provides the radio

button intertace to the rest of the program.)

6.7.7 Semantic Feedback

Semantic feedbackis a response to a user’s input which requires specialized information about the
application obiects [96]. Por cxampic, in the Macintosh Finder[2], dragging a filc icon overa folder
icon causes the folder icon to highlight, since dropping the file icon in the folder icon will cause the

file to be moved to the folder. Dragging a file icon over anctherfile icon causes no such highlighting.
since dropping a file on another file has no effect. The highlighting is thus semantic feedback.

GRANDMAhas a general mechanismfor implementing (views off objects which react when
(views of} other objects are dropped on them, highlighting themselves whenever sech objects are
dragged over them. Such views are called buckcis in GRANDMA. Any view may be made into a
bucket simply by associating it with a passive BucketEventHandler (which expects the view

to respond to the actstipom: and actUporn:: messages discussed below). Once a view has a
BucketEventHandler, the semantic feedback described above will happen automatically.

Whereas a bucket is a view which causes an action when another view is dropped init (e.g. the
Macintosh trash can is a bucket), a Tool is an object which causes an action when it is dropped on

a view(a “delete cersor”is thus a tool). As mentioned above, a tool corresponds to a physical inpat
device (e.g, GenericMouseTool), but itis also possible for a view to be a tool. Inthe latter case,
the viewis referred to as a virtualtool.

Buckets and tools arc quite similar, the main difference being that in buckets the action is

associated with stationary views, while in tools the action is associated with the viewbeing dragged.
The implementation oftools is considered next. The similar implementation of buckets will not be
described.

= Tool : Object

(SELJ action { return (SEL) ©; }
- actionParameter { return nil;

i}
.to a

}
(BOOL) actsUpon:v { return [v respondsTo: [self action]]; }
actUpon:v event:e {

lv perform: [self action]
with: [self actionParameter]

with:selfl;
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return self;

}
Every tool responds to the actsUpon: and actUpori:: messages. In the default iraple-

mentation above, a tool has an action (whichis the rantime encoding of a message selector) and an
action parameter (an arbitrary object). Por example, one way fo create a tool for deleting objectsis

= DeletetTool : Tool { }
~ (SELjaction { return @selector{(delete); }

The actsUpon: method checks to seeif the view passedas a parameter respondsto the action
of the tool, in this case delete. The actUpon:: method actually performs the action, passing
the action parameter, the event, and the tool itself as additional parameters (which are ignorcd in the
delete case).

 
 

The GenericToolOnViewEventHandler is associated with every view via the View
class:

= View

+ initialize

{ {self sethandler:GenericToolOnViewRventHandler]; 4

GenericToolonViewEventHandler : EventHandler

{ id tool, view; }
+ {BOOL) event:e view:y {

if( ! fe iskKindof:Dragivent}]) return NO;

LE¢ i [le tool] actsUpon:v]) return NO;

self = [self new];

tool = [é tool]; view = v; [view highlight];

[[view wallview] activate:self];

return YES;
tI

— (BooL)event:e {
if ¢ ! fé isKindOf:DragEvent}]} return No;

1£i( fe tool] != tool) return NO;

if( [view pointIniboxandover:[e loc]] } 3
Lf({e isKindOf:DropEvent}]) {

[view unhighlight] ;

[{view wallview] deactivate:selfl;

[tool actUpon:view event:e];

return YRS;

iview unhighlight]; [[view wallview] deactivate:self];
return NO;

t
I
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Passively, GenericToolOnViewRventHandler operates by simply checking if the tool

over the view acts upon the view. Hfsa, the viewis bighlughted (the seraantic feedback) and the
handler acuvates an instantiation of self Subsequent events will be checked by the activated
handler to see if they are made by the same tool.so, and tf thetoolis still overthe view, the event
is handled, and ifitis a bropivent then the tool will act upon the view. Tf the tool has move
off the view, the highlighting is turned off, and the handler deactivates itself and returns NO so that

other handlers may handle this event.
The testy [= tool inthe XYEventHandler (Gee Section 6.7.3) prevents a viewthat is a

virtual tool from ever attempting to operate upon itself.

6.7.8 Generic Event Handlers

H you have been following the story so far, you know that all the event handlers shown have
the passive handler implemented by a factory (class) object which responds to event: view:
messages. When necessary, such a passive handler activates an instantiation of itself. The drawback
ot having factory objects as passive event handlers is that they cannot be changed at runtime. For
example, the ToggleSwitchEventHandler only passively responds to FickEvents. Hf one

wanted to make a ToggleSwitchiventHandlerthat passively responded to any DragEvent.
one could either change the unplementation of ToggleSwitchEventHandler (thus affecting

the behaviorolevery toggleswitch view), or one could subclassToggleSwitchEventHandler.
Doing the latter, if would be necessary to dephcate much of the event :view: method, or change
ToggleSwitchEventHandier byputting the event: view: method in another method, so
that it can be used by subclasses. In any case, changing a simple item (the kind of event a handler

passively responds to) is more diffieult than it need be.
In order to make event handlers more parameterizable, the passive event handlers should be

regular objects (i.e. not factory objects). In response to this problem, most event handlers are
subclasses of GenericEventHandler.

«= GenericEventHandler : EventHandler {
BOOL shouldActivate;

id startp, handlep, stopp;

id view, wall, tool, env;

+ passive { return [self new}; }

~ ghouldActivate { shouldActivate = YES; return self; }

rtp: startp { startp =
rtp { return startp; }
Objevalstart:env { return [[startp eval:env] asBOcL]; }

_startp; return self; }

BOf

stopp = stopp; return gelf; }
stopp; }

:env { return [[stopp eval:enyv] asBOOL]; } 
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~ handlep: handlep { handlep = handlep; return self; }
~ handiep { return handlep; }
~ (BOOL) evalhandle:env

{ return [fhandlep eval:eny] asBocL]; }

{BOOL) event:e view:v {
envy = [E [Env new] str: "event" value:e}

str: view" value:v];

if{{self evalstart:env])

{ ‘eelt startOnView:v]; return YES; }
return WoO;

}
— startOnView:v event:e {

if (shouldActivate}

self = [self copy], [[view wallview] activate:self];

yiew = vy; wall = [view wallview]; tool = [e tool];

[self pasgiveHandler:e];

return self;

}
— (BOOL)event:e {

if{tool t= nil && fe tool] != tool) return NO;

env = [[ [Envy new] str: "event" value:el

str: "view" value:view! ;

if([self evalstop:env])
igelt activeTerminator:e!, [wall deactivate:self];

else LE( [self evalhandie:env]}

iseli activeHandler:e];

else return NO;

return YES;

}
passiveHandier:e { return self; }
activeHandler:e { return self; }

— activeTerminator:e 4 return self; }
Anewpassivehandleris created by sending a kindofGenericEventHandler thepa

message. A goncric event handler object bas settable predicates startp

These predicates are expression objects, essentially rantime

ssive

, bandlep,and stopp
representations of almost arbitrary

Objective C expressions. (The Objective C interpreter built into GRANDMAts discussed in section

7.7.3.) By convention, these predicates are evaluated in an environment where event is bound to
the event under consideration and view is boundto a viewat the location of the event. Of course,

the result of evaluating a predicate is a boolean value.
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The passive method is typically overridden by subclasses of GenericEventHandler

in order to provi“ default values for etartyp, handlep, and stopp. The predicate startpcontrols what everis ihe passive handler reacis io. The class EventExpr allows easy specificationof simple radiates, eg. the call
self startp: [[[EventExpr new] eventkind:PickEvent]

toolkind:MouseTooll]]>

sets the start predicate to check that the event is a kind of PickEvent and thatthe tool is a
MouseTool. This resulis in the same passive event check that was hard-coded into the [actory

ToggleSwitchEventHandler, but nowsuch a check may beeasily modified at runtime.
The message shouldaActivate tells the passive event handler to activate itself whenever

its gtartp predicate is satisfied. Note that it is a clone of the handler that is activated, due to
the statement selLE = [self copy]; it is thus possible for a single passive event handler to

activate multiple instances of iself simultaneously. The active handler responds to any message
which satisfies its handlep or donep predicates. In the latter case, the active event handler is
deactivated.

When the startp, handlep, or doneppredicates are satisfied, the generic event handler
sendsitself the pagsiveHandler:, aactiveHandier: oractiveTerminator: message,
respectively. The main work of subclasses of GenericEventHandler are done in these methods.

The startOnView:event: allows a passive handler to be activated externally Ue. instead

of the typical way of having us startp satistied in the event :view: method). In this case, the
event parameter is usually nil. For example, an application that wishesto force the user to type

some text inte a dialogue box before proceeding might activate a text handler in this manner.
The purpose of generic event handlers in GRANDMAis similar to that of /nteractorsin Garnet

[85, OF] and pluggable views in Smalltalk-80 [70]. Since GRANDMA comes with a number of
generally useful generic event handlers, application programmers often need not write their own.

Instead, they may customize one of the generic handlers by setting up the parameters to suit their
purposes. ‘Vhe only parameters every generic event handler has in common are the predicates, and
indeed these are the ones most olten modified. GRANDMA has a subsysiem which allows these
parameters to be modified at runtimebythe user.’

6.7.9 The Drag Handler

As an example of a generic event handler, consider the DragHandler. When associated with
a view, the DragHandler allows the view to be moved (dragged) with the mouse. Hf desired,
moving the view will result in new ovents being raised. ‘This allaws the viewto be usedas tool, as

discussed in section 6.7.7. Also parameterizable are whether the viewis moved using absolute or
relative coordinates, whether the view is copied and then the copy is moved, and the messages that

are sent to actually move the view. Reasonable detaults are supplied for all parameters

= DvagHandler : GenericEventHandler {
BOO copyview, genevente, relative;
SEL whenmoved, whendone;

rather than the end user, whe would use this facility. 
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BOOL deactivate;

bat savedx, savedy;

+ passive {
self = [super passive];

{self shouldActivate];

{self startp: [[[EventExpr new] Seinewonetmeattolkind:MouseTool]]}iself handlep: [[EventExpr new] cvonthind: Deagteont
feelf stopp: [[EventExpr new] eventkind:DropEvent]]

copyview = NO; genevents = YES; relative = No;
whenmoved = @selector (at: >; whendone = (SEL) 0; 
return self;

 

& Changing default parameters: x /

& copyviewONcauses the view to be copied and then the copy to be dragged * /

— copyviewOoN { copyview = YES; return self; t

A geolventsOFF makes the handler not raise any events * {
— genkventsOFF { genevents = NO; return self; }

& relativeONmakes the handler send the mave: message, passing
relative coardinates fdeftas 8fromthe current j20s8ition} «/

— relativeON { relative = YES;
whenmoved = @selector(move::}; }

f& whendone: sets the message sent an the event that terminates the drag * /
whencone: (SEL)sel { whendone=sel; return self; }

whenmoved: sets the message sent for everypointin the drag * /
whenmoved: (SEIO sel { whenmoved = Se@l; return self;

— passiveHandler:e {
id L = fe loc];

eee) gsavedx = [1 x], savedy = {1 yl;else savedx = [view xloc]-[1 x],

savedy = [view yloc]-[1 vl];

£ (copyview) view = [view viewcopy] ;
i

[view flash];
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return self;

sae

elative} {
x = [fe Loc] x], y = [[e Loc] yl;

[view perform: whenmoved
with: (x — favedx) with: (y — savedy)]i;

savedx = x, savedy = y;

loc] x] + savedx, y = [fe lo yi + savedy;
fwut

e c

[view perform:whenmoved with:x with:y
}

f (genevents}
[wali raise: [[e class] tool:view Lloc:newloc

wall:wall instigator:self time:fe timeji];
return seli;

— activeTerminator:e {
LE (genevents)

[wall raise: f[e class} tool:view loc: [fe loc}

Wall:wall instigator:self time:fe ¢

if(whendone}) [view perform:whendone] ;
return self;

L
4

The passive factory method creates a DragHandler with instance variables set to the

default parameters. Those parameters can be changed with the startp:, handlep, stopp:,
copyviewOhN, genEventsOFP, relativeON, whendone:, and whenmoved: messages.

(Please refer to the comments in the abovecodefor a description ofthe function ofthese parameters.)

For exarople, a DragHandler might be associated with class LabelView as follows:
= LabelView ...

+ initialize {
[self sethandler:

ee passiv
startp: UT DEveneEape 3new]eventkind:PickEvent] toolkind:MouseTool]]

genkEventsOrf) j

}
Any LabelView can thus be dragged around with the mouse by clicking directly on if (Since

the start predicate was changed to PickEvent}, A LabelViewwill not generate events as if is
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dragged since genEventsOFF was sent to the handler; thus LabelViews in general would not

be used as tools or items that can be deposited in buckets. Of course, subclasses and instances of
LabelView may have thelrown passive event haadlers to overrule this behavior.

When a passive DragHandler gets an event that satisfies ifs start predicate, the
passiveHandier: method is invoked. For a DraqHandler, some location information is

saved, the viewis copied if need be, and the viewis dashed (rapidly highlighted and unhighhghbted)
as user feedback.

Anysabsequent event that satisfies the stop predicate will cause the activeTerminator:
method to he invoked. Other events that satisfy the handle predicate will cause activeHandler:
to be invoked. In Draghandler, activeHandler: first moves the view (typically by sending
itthe at: : message with the newcoordinates as arguments) then possibly raises a new cvent with

the view playing the role of tool in the event. Hf the view is indeeda tool, raising this event might
result in the GenericToolOnViewhandier being activated, as previously discussed.

Note that the event to be raised is created byfirst determining the class object Gactory) ofthe
passed event (given the default predicates, in this case the class will cither be MoveEvent or
DropEvent)}, and then asking the class to create a new event, which will thus he the same class
as the passed cvent. Most of the newevent attributes arc copicd verbatim from the old attributes;
omy the tool and instigator are changed. A more sophisticated DragHandler might also

change the event location to be at some designated hot spot of the view being moved, rather than
simply use the location of the passed event. For simplicity, this was not shown here.

The activeTerminator: method also possiblyraises a new event, and possibly sends the
view the message stored in the whendone variable. As an example, whendone might he set to
@selector (delete) when copyviewis sct. When the mouse button is pressed over a vicw, a
capyof the view is created. Moving the mouse drags the copy, and when the mouse button is finally

released, the copyis deleted.

Creating a new drag handler and associating it with a view or viewclass is all that is reqetred to
make that view “dragegable” (since every view inherits the at: : message). As shownin the next
chapter,GRANDMAhas a facility for creating handlers and making the associationat rantime.

6.8 Summary of GRANDMA

This concludes the detailed discussion of GRANDMA.As the discussion has concentrated on the

features which distinguish GRANDMAfrom other MVC-like systems, muchof the systemhas not
been discussed. It should be mentioned that the facilities described are sutficiently powerful to build
a nomber of useful view and controller classes. in particular, standard items such as popup views,

menus, sliders, buttons, switches, text fields, and list views have all been implemented. Chapter 8
shows how some of these are used in applications.

GRANDMA’s imovations come fromits input model. Here is a summaryof the main points of
the input architecture:

1. Inputevenis are fall-blown objecis. The Event hierarchy imposes siracture on evenis without

imposing device dependencies.
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Raised events are propagated down an active eventlist.

Otherwise unhandled evenis with screen locations are automatically routed to views at those
locations.

A view object may have any namber of passive event handlers associated with itself, its class,
orits superclass, efc. Events are automatically routed to the appropriate handler.

A passive event handler may be shared by many views, and can activate a copyof itself to

deal with events aimed at any particular view.

Event handlers have predicates thai describe the events to which they respond.

7. The generic event handler simplifies the creation of dynamically parameterizable event han-oo

ders.

Because of the input architecture, GRANDMAhas a number of novel features. They are listed
here, and comparedto other systems when appropriate.

GRARDM A can support many different Input devices simultaneously. Due to item 1 above,
GRANDMAcan support many different input devices in addition to just a single keyboard
and mouse. Fach device needs to integrate the set of event classes whichit raises inte
GRANDMA’s Event hierarchy. Much flexibility is possible; for example, a Sensor Frame
device might raise a single SensorFrameEvent describing the current set of fingers in the

plane of the frame, or separate DragEvents for cach finger, the tool in this case being a
SensorFrameFingerTool. Because of item 6, itis possible to write event handlers for

any newdevice which comes along.

 

By contrast, most of the existing user interface toolkits have hard-wired limitations in the kinds
of devices they support. Por example, most systems (the NeXT AppKit [102], the Macintosh
Toofhox [1], the X library [417) have a fixed stmicture which describes input events, and
cannot be casily altered. Some systems go sofar as to advocate building device dependencies

into the views themselves; for example, [lypertalk event handlers [45] are labeled with event
descriptors such as mouseUp and Cox’s system [28] has views that respond to messages like
rightButtonDown. Similarly, systems with a single controller per view [70] cannot deal

wih input events from different devices. On the other hand, GWUIMS [118] seems to have
a general object classification scheme for describing input everits.

GRANDMA supports the emulation of one device with another. In GRANDMA, to get the most
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out of each device it is neecssaryto have cvent handicrs which can respondto events fromthat

device associated with every viewthat needs them. Hthose event handlers are not available,it
is still possible to write an event handler that enwlates one device by another. Por example, an

active handler might catch all SengorFrameEvents and raise DragEvents whose tool
1s a Mousetool in response. The rest of the program cannot tell that it is mot getting real

mouse data; it responds as if it is getting acteal mouse inpat.
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GRANDMAcan handle multiple input threads simultaneously, Because passive handlers acti-

vate copies of themselves, even views that refer to the same handicr can get input simul-
lancously. Phe inpul events are simply propagated downthe active event handler list, and
each active handler only handles the events if expects. In GRANDMA,a system that had
two mice [19] would simply have two MouseTool objects, which could easily interleave
events. Normally, a passive handler would onlyactivate itself to receive input frorn a single

tool (mouse, in this case}, allowing input from the two mice to be handled independently
(even when directed at the same view). It woeld also be possible to write an event handler

that explicitly dealt with events from both mice, if that was desired.

Event-based systems, such as Sassafras [54] and Squeak [23], are also able to deal with multi-
threaded dialogues. Indeed, it is GRANDMA’s similarity to those systems which gives if a

Slinilar power. ‘This ts to comirast to systems such as Smalltalk [70] where, once a controller
is activated it loops polling for events, and thus does not allow other controllers to receive
events until itis deactivated.

GRANDMAprovides virtual fois. Given the general structure of iaputevenis, there is no require-

rent for thera only to be generated by the winduwmanager. Event handlers can themselves
raise other events. Many events have tools associated with them; for example, mouse events
are associated with MouseTools, The tools may themselves be views or other objects. By
responding to messages such as act ion, a tool makes knownits effect on ohjects whichit

is dragged over. The GenericToolOnViewhandler, which is associated with the View
class (and thus every viewin the system) will handle the interaction when a tool which has a
certain action is dragged over an object which accepts that action. The tools are virtual, in the

sense that hey do not correspond directly to any inpul hardware, and they may send arbitrary
messages to views with which they interact.

sRANDMA supports semantic feedback. Handlers like GenericToolOnViewcantest at ran-
time if an arbitrary tool is able to operate upon an arbitrary view which itis dragged over, and

if se highlight the view and/or tool, No special code is required in either the tool or the view
to make this work. A tool and the views upon whichit operates often make no reference to
each other. The sole connection between the twais that ane is able to send a message that the
other is able to reccive.

Of course, the default bchavior may be easily overndden. A tool can make arbitrary enquiries

into the viewand its model in order to decide if it does indeed wish to operate upon the view.

Event handling in GRANDMAis both general and efficient. The generality comes fromthe event
dispatch, where, if no other active handler handles an event, the KYEventHandler can
query the vicws at the location of the event. The views consult their own list of passive

event handiers, which potentially may handle many different kinds of events. There is space
efficiency in that a single passive event handler may be shared by many views, eliminating

the overhead of a controller object per view. ‘Phere is time efficiency, in that once a passive
handler handles an event, il may activate uself, afler which it receives events immediately,

without going throughthe elaborate dispatch of the AYEventHandler.
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Agtkit [52] has a priority list of dispatch agents that is sumilar to GRANDMA’s active event

handler list. Such agents receive low-level events (e.g. from the window manager), and
alteropt to translate thermmito lugherlevel events to be received by mteractor objects (which
seer to be views). Interactor agents register the high-level events tn which theyare interested.

Artkif’s architecture is so similar to GRANDMA’s that itis difficult to precisely characterize
the difference. The high-level events in Artkit play a role similar to both that af messages that
a view may receive and events that a view's passive event handlers expect. In GRANDMA,

the registering is implicit; because of the Objective-C runtime implementation, the messages
understoodby a given object need not be specified explicitly or hmited to a small set. Instead,

one object may ask another fit recognizes a

 

given message before sendingit.gi

Because of the translation from low-level to high-level events, it does not seem that Artkit
can, for example, ernulate one device with another In particular, it does not seem possible to
translate Low-level events from one device inte those of anather. GRANDMA does aot make

a distinction between low-level and high-level events. Instead,GRANDMAdistinguishes
between events and messages: events are propagated downthe active event handler list: when

accepted by an event handler, the handler mayraise new events and/or send messages to views
or their models.

GRANDMAsupports gestures. GRANDMA’s general input mechanism had the major design goal
of heing able ta support gestural input. As will he seen in the next chapter, the gestures are
recognized by GestureEventHandLers; these collect mouse (or other) events, determine

a set of gestures which they recognize depending onthe viewsatthe initial point of the gesture,
and once recognized, can translate the gesture inlo messages to models or views, or Into new
events.

Artkil also handies gestural mput, and, seomewhal like GRANDMA,hasgesture event handlers
which capture low-level events and prodace high-level events. The designers claimthat Artkit,
because of ifs object-oriented structure, can use a murnber of different gesture recognition
algorithms, and thus tailor the recognizer to the application, or even bits of the application.
The same is tue for GRANDMA, ofcourse, though the intention was that the algorithms

described in the first half of the thesis are of sufficient generality and accuracy that other
recognition algonthms are not typically required. Artkit’s claim that manyrecognizers can be

used seems like an excuse not to provide any, One ofthe driving forces behind the present
work is the behef that gesture recogmvers are sulliciently difficult to build that requiring

application programmers to hand code such recognizers for each gesture set is a major reason
that hardly any applications use gestares. Thus, it is necessary to provide a general, trainable
recognizer in order for gesture-based interfaces to be explored. How such a recognizer is
integrated into an object-oriented toolkit is the subject of the next chapter.

OF course, GRANDMAdoes have its disadvantages. Like other MVC systems, GRANDMA

provides a multitude ofclasses, and the programmer needs to be familiar with most of them before he
ean decide howto best implement his parlicular task. The elaborate input architecture exacerbates

the problem: a large number of possible combinations of views, event handlers, and tools must be
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considered by the programmer of a new interaction technique. Also, GRANDMA does nothing

toward solving a comumon problemfaced when using any MVCsystem: deciding whatfunctionality
goes toto a view and what goes inte a miodel, Another probleni is chat even though the protocol
between event handlers and views is maeant to be very general he event handlers are inttialized
with arbitrary message selectors to use when communicating with the view), in practice the views
are written with the intention that they will communicate with particular event handlers, sc that it is

not really right to claim that specifics of input have truly been factored out of views.
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Chapter 7

 Gesture Recognizers in GRANDMA

This chapter discusses haw gesture recagnition may be imcorporated imto systems for building

direct manipulation interfaces. In particular, the design and implementation of gesture handlers in
GRANDMAis shown. Even though the emphasis is on the GRANDMAsystem, the methods are

intended to be generally applicable to any object-oriented user interface construction tool.

7.1 A Nete on Terms

Before beginning the discussion, some explanation is needed to help avoid confusion between
terms. As discussed in Section 6.4, it is fmportant not to confuse the view hierarchy, which is
the tree determined by the subview relationship, and the view class hierarchy, which is the tree

determined by the subclass relationship. In GRANDMA, the view hierarchy has a WallView
object (corresponding to an X window) at its root, while the viewclass hierarchyhas the class View
at its root.

Another potentially ambiguous termis “class.” Usually, the termis used in the object-onented
sense, and refers to the type Gousely speaking) of the object. However, the term “gesture class”refers
to the result of the gesture recognition process. Tn other words, a gesture recognizer (alsa known
as a gesture classifier) discriminates between gesture classes. For example, consider a handwriting

recognizer able to discriminate between the written digits 0, 1, 2,3, 4,5, 6,7, 8, and 9. Tn this
example, each digit represents a class; presumably, the recognizer was trained using a number of

examples of each class,

‘To make mailers more confusing, in GRANDMAthere is a class Gn the object-oriented sense)
named Gesture: an object of this class represents a particular gesture instance, Le. the Hst of
points which make up a single gesture. There is also a class named GestureClass: objects of
this class refer to indivichial gesture classes; for example, a digit recognizer would reference 10

different GestureClass objects.

Sometimes the term “gesture” is used to refer to an entire gesture class; other times it refers

 

to a single instance of gesture. For example, when it is said a recognizer discriminates between a
set of westures, what is meant is that the recognizer discriminates between a set of gesture classes.

Conversely, “the user enters a gesture” refers to a particular instance. In all cases which follow, the

i2s
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intent should be obvious fromthe context.

7.2 Gesturesin MVCsystems

As discussed in Chapters 2 and 6, object-oriented user interface systems typically consist of models
{application objects), views Gesponsible for displaying the state of models on the sereen)}, and

controllers (responsible for responding to input by sending messages to views and models). ‘Typical
Model/View/Controller systems, such as that m Smalltalk[70], have a view object and controler
object for cach model object to displaved on the screen.

This section describes how gestures are integrated intoGRANDMA, providing an exaraple of
howgestures might be integrated into other MVC-based systems.

72.1 Gestures and the View Class Hlerarchy

Central to all ine variations of object-oriented user interlace tools is the Viewclass. In all such
systems, View objects handle the display of models. Since the notion of views is central to afl
object-oriented user interface tools, views provide a focal point for adding geatures to suchtools.

Simply stated, the idea for integrating gestures into direct manipulation interfaces is this: each
view responds to a particular set of gestures. Intuitively, it seers obvious that, for example, a

switch should be controlled bya different set of gestures than a dial. The ability to sumplyandeasily
specily a set of pestures and ther associated semantics, and to easily associate the set of gestures
with particular views, was the primary design goal in adding gestures lo GRANDMA.

Of course, it is unlikelythat every viewwill respond toa distmet set of gestures. In general, the
ascr will expect similar views to respondto similar sets of gestercs. Fortunately, object-oriented user
interfaces already have the concept of similarity built into the view class hierarchy. In particular,

if usually makes the most sense for all view objects of the same class to respond to the same set of
gestures. Similarly, itis intuitively appealing for a viewsubclass to respond to all the gestures of its

parent class, while possibly responding to some new gestures specific to the subclass.

The above intuitions essentially apply the notions of class identity and inhenitance[ 121] Gn the
object-oriented sense) to gestares. [tis seen that gestures are analogous ta messages. All objects of

a given class respond to the same set of messages, fust as they respond to the same set of gestures.
An object in a subclass inherits methods fromits superclass; similarly such an object should respond

to all gestures to which its superclass responds. Continuing the analogy, a subclass may override
existing methods or add new methods not understood byits superclass; similarly, a subclass may

override (the interpretation of) existing gestures, or recognize additional gestures. Some object-
oriented languages allowa subclass to disable certain messages understood byits superclass Ghough
itis not common), and analogously, itis possible that a sebclass may wish to disable a gesture class
recognized byits superclass.

Given the close parallel between gesture classes and messages, one possible way to implement

gesture semantics would be for each kind of view to implement a method for each gesture class it
expects. Classilying an input gesture wouldresull in iis Class’s particular message io be sent to the

view, which implements it as it sees fit. A subclass inherits the methads of its superclass, and may
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override some of these methods. Thus, in this scheme a subclass understands all the gestures that

its superclass understands, but may change the interpretation of some of these gestures.
This close association of gestures and messages was not done im GRANDMAsince it was fell to

be too constricting. Since in Objective €C ali methods have to be specified at compile time, adding
newgesture classes would require program recampilations. Since it is quite easy to add newgesture
clasacs at rantime, it would be unfornimate if such additions required recoropilations. Onc of the
goals ofGRANDMAis to permit the rapid exploration of different gestures sets and their semantics;
forcing recompilations would make the whole system much more tedious to use for experimentation.

Instead, the solution adopted was to have a small interpreter built into GRANDMA.A piece
of interpreted code is associated with cach gestare class; this code is executed when the gesture is

recognized, Since the code is interpreted, it is straightforward to add newcodeat the time a new
class is specified, as well as ta modify existing code, all at runtime. While at first glance building
an interpreter into GRANDMA seems quite difficult and expensive, Objective C makes the task
simplc, as explained in Scction 7.7.3.

V2.0 Gestures and the View Tree

Consider a number of views being displayed ina window. In GRANDMA,as in many other systems,
pressing a mouse button while pointing at a particular yiew Qisually) directs input at that view. In

other words, the view that gets input is usually determined at the time of the utitial button press.
Due to the view tree, views may overlap on the screen, and thus the intial mouse location maypoint
at a number of views simultaneously. Typically the views are queried in order, from foremost to
background, to determine which onc gets to handic the input.

Asirailar approach maybe taken for gestures. The first point of the gesture determines the views
at which the gesture might be directed. However, determining which of the overlapping viewsis the
target of the gesture is usually impossible when just the first point has been seen. What is usually

desirable is that the entire gesture be collected before the determination is made.
Consider a simplification of GDP. The wall view, behind all other views, has a set of gestures

for creating graphic objects. A straight stroke “-” gesture creates a line, and an “IT? gesture creates a
rectangle. The graphic object views respondto a different set of gestures; an “A” deletes a graphic

object, while a “C” capies a graphic object. When a gesture is made over, say, an existing rectangle,
it is not immediately clear whetherit is directed at the rectangle itself or at the background. It

depends on the gesture: an “XN”is directed at the existing rectangle, an “L” at the wall view. Clearly
the determination cannot be made when fust thefirst point of the gesture has been seen.

Actually, this is not quite true. Tt is conceivable that the grapine object views could handle
gesteres themselves that normally would be directed at the wall view. There is some practical vahie
in this. For example, creating a new graphic object over an existing one might include hning up
the vertices of the two objects. However, while it is nice to have the option, in general if acems a

bad idea to force each view to explicitly handle any gestures that might be directed at anv viewsit
covers.

 Chapter 3 addressed the problem ofclassifying a gesture as one of a given set o
Hi is seen here thai this set of gestures is nol necessarily the set assoctaied wilh

i pesture classes,
@ Single view, but

instead is the union of gesture sets recognized byall views under the initial point. There are some
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technical difficulties involved in doing this. It would in general be quite mefficient to have to

construct a classifier for every possible union of view gestures sets. However, it is necessary that
classifiers be constructed for the unions which do occur. The current iplenierniation dynamically
constructs a classifier for a given set of gesture classesthe first time the set appears; this classifier is
then cached for future use.

ltis possible that more than one view under the initial point responds to a given gesture class.

in these cases, preference is given to the topmost view. The result is a kind of dynamic scoping.
Sunilarly, the way a subclass can override a gesture class recognized by its superclass may be

considered a kind of static scoping.

7.3 The GRANDMA Gesture Subsystem

in ORANDMA, gestural inpot is handled by objects of class GestureEventHandler. Class
atureEverntHandler, a subclass of GenericEventHandler, is easily the most complex

event handler in the GRANDMA system. In addition to the five hundred lines of code which

directly implement its various methods, GestureEventHandler isthe sole user of many other
GRANDMAsubsystems. These include the gesture classification subsystem, the interface which
allows the uscr to modify gesture handlers (by, for cxampie, adding new gesture classes) at rantime,

the Objective C interpreter used for gesture semantics andits user interface, as well as some classes
(eg. GastureEvent, TimeocutEvent} used solely by the gesture handler.

Before getting into details, an overview of GRANDMAYs various gesture-related componentsis
presented. Figure 7.] shows the relations between objects and classes associated with gestures in

GRANDMA.The main focus is the GestureEventHandler. Like alf event handlers, when acti-
vated ithas a viewobject, whichitselfhas a model and awall view.! AGestureBventHandler

uses the wall viewto activate itself, raise GestureEvents, set up timeouts and their handfers, and

draw the gesture as itis being made.

Associated with a gestare event handler is a set of SemClags objects. A SemClass objec
groups togethera gesture class object (class GestureClass) with three expressions (subclasses
ofExpr). The GestureClass objects representthe particular gesture clasacs recognized directly
by this event handler. The three expressions comprise the semantics associated with the gesture class

by this event handler The first expresston is evaluated when the gesture is recognized, the second
on each subsequent input event handled by the gesture handler after recognition (the manipulation

phase, see Section 1.1}, and the third when the manipulation phase ends.

Associated with each GestureClass object is a set of Gesture objects. These are the
examples of gesturcs in the class and arc used in the training of classifiers that rccognize the

 

class. A GestureClass object contains aggregate information about its examples, such as the
estimated mean vector and covariance matrix of the examples’ features, both of which are used in
the construction of classifiers.

When a GestureEventHandler determines which gesture classes it must discriminate
among (according to the rules deseribed in the previous section), it asks the Classifier class 

"Recall that a wall viewis the root of the viewtrce and represents a windew on theserecn.
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Figure 7.1: GRANDMA’s gesture subsystem

tHandleris associated with a view or view class that expects gestural input. A passive Ge
   

Once gestural input bow the handler is activated and refers directly to the view at which the gesture was

directed, as shawntn the figure. The TmmediatePicr } is used for the inkingofthe fhe

tmechanism to indicate when to change from the collection to manipulation state. A

 gessture expectedbythe bandler with each SemClass object associating a
Hach GestureClassobject is described by a set ofoxaurpre  a view»oieis for each of the examples (Smal1¢

a Wa
 agsView, Small View) which allow these to be displayed and

edited. Thc gesture semantics are represented by Expr objects, and may he edited in the InterpView
window
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for a classifier object capable of doing tms discrimination. Normally such a classifier will already

exist; in this case, the existing classifier is siraply returned. ft is possible that one ofthe gesture
classes m ibe set bas changed; in this case the existingclassilier has to be retrained Ue. recalculated).
Occasionally, this set of gesture classes has never been seen before; in this case a new classifier is
created for this set, returned, and cached for future use.

The components related to the gesture event handicr through GestureHandlerVieware all
concerned with enabling the userto see andalter various facets of the event handler. Thepredicates

for starting, handling, and stopping the collection of gesture input maybe altered by the user In
addition, gesture classes may be created, deleted, or copied from other gesture event handlers. The

examples of a given class may be examined, and individual exaniples may be added or deleted.
Finally, the semantics assoctated with a given gesture class maybe altered through the interface to
the Objective Cinterpreter.

7.4 Gesture Event Handlers

Thedetails of the class GestureEventHandler are nowdescribed, beginning with its instance
variables.

stabic BOOL masterSwitch = YES;}

= GestureEventHandler : GenericEventHandler {
STR name;

id aera,id picture;
id classessy
id eriv ;

int timeval:

id timeouteh;

Short lastx, Lasty;

id sclass;

struct gassoc { id sclass, view; } *gassoc;
int NGAESocs ;
id classset;

BOOL manipphase;
BOOL classify;

BOOL ignoring;

id mousetool ;

}
‘The masterSwitch,settable viathe masterSwitch: factory method, enables and disables

all gesture handlers in an application. This provides a simple method for an application to provide

two interfaces, ane gesture-based, the other not. Every gesture handler will ignore all events when
masterSw itch is NO. ft will be as if the applicalion had no gesture eyent handlers. Typically, the

remaining event handlers wouldprovide a more traditional click and drag interface to the application.
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A particular handler can be tamed off by setting us ignoring instance variable via the

ignore: message. GRANDMAcan thus be used fo compare, say, two completely different ges-
iural interlaces io a given application, swiichig between (heral runtime by lumuing the appropriate
handlers on and off.

The instanec variable nameis the name of the gesterc handler. A handler is named so that it can
be saved, along with its gesture classes, their semantics and examples, ina file. This is obviously
necessary to avoid having the user enter examples of each gesture class each time an applicationis

started. The nameis passed to the passive: method which creates a passive gesture bandier:
= GestureventHandler

+ passive: (STR) name {
FILE +*£;

a rh
i! wu

uper passive] ;

asses = [OrdCltn new];

self inestantiatedn] ;

elf startp: [[[EventExpr new] eventkind:PickEvent]
toolkind:MouseTool]]

{7

[seli handiep: [[EventExpr new] eventkind:DracEvent]];

[self opp: | [EventBxpr new] eventkind:DropEvent]];
[self name: name];
timeval = DefaultTimeval;

classify = YES;

L£((f£ = [self openfile:*r"]}) t= NULL) [self read: f];
re self;

i

The typical gesture handler activates ilsel{ in response io mouse PickEvents, handles all
subsequent mouse events, and deactivates itself when the mousebutton is released. Of course, being
a kind of generic event handler, this default behavior can be easily overridden, as was doneto the
bragiventHandler discussedin Section 6.7.9.

Bydefault, the gesture event handlerplans to classify any gestures directed at it(classify =

YES). This is changed in those gesture event handlers that collect gestures for training other gestare
event handlers.

The default timeval is 200, meaning 200 milliseconds, or two tenths of a second. This is
the duration that mouse inpot must cease (he mouse mast remain sib for the end of a gesture fo
be recognized. The user may change the default, thus affecting every gesture cvent handler The
timeout interval mayalso be changed on a per handler basis, a feature useful mainly for companng
the feel of different intervals.

When an event satisfies the handler’s start predicate, the handler activates ttsell, and ils

passivedler is called.= stureEventHandler ...

_ aweveHandler:e (
gesture = [[Gesture new] newevent:el;
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picture = [ImmediatePicture create];

[view hang:picbure at:0:0];
lastx = [[e loc] x]; lasty = [le loc] yl];

eny = fEnv new];

feny str: "gesture" value:gesture] ;

tx:"startEvent"™ value:[e copy]];

tr: "ourrentEvent" value:fe copy]];
fenv gtr: "handler" value:gelf];

D Bs< aw

manipphase = NO;
timeouteh = [[TimeoutEventHandler active]

ree:self sel: @selector (timedout:)];

lwall activate :timeouteh] ;

[wall timeout:timeval];

if(classify) {
classset = [Set new];
gassoc = (struck gassoc *)

malloc (MAXCLASSES 4 sizeof(struct gassoc));

ngassecs = 0;

iiwall handlers]

raise: [(Gestureivent instigator:self event:e

env: {fEnv new] str:"event" value:ell];

}
return self;

}
The passive handicr allocates a new Gestureobject which will be sent the input cvents as they

arrive. The initial event is sent immediately.

‘Phe picture allows the gesture handlerto ink the gesture on the display as if is being made.Class ImmediatePictureis used lor pictures which are displayedas (bey are drawn, rather than
the normal HangingPicture class which tequires pictures to be completed before they can be
drawn

The env variable holds the environment in which the gesture semantics will be executed.
Within this environment, the interpreter variables qesture, startEvent, currentEvent,

and handler are bound appropriately (see Section 7.7.1).

The boolean manipphage is true if and onlyif the entire gesture has been collected and the
handleris now in the manipulation phase (see Section 1.1.

A TimeoutEventHandler is created and activated. When a TimeoutEvent is received

by the handler, the handler will send an arbitrary message Gwith the timeout event as a paran-
eter) to an arbitrary object. In the current case, the timedout: message is sent to the active

GestureEventHandler. In retrospect, the general functionality of the
TimeoutEventHandler is not needed here; the GestureEventHandlercould itself easily

receive and process TimeoutEvents directly, without the overhead ofa TimeoutEventHandler,
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The code [wall timeout:timeval] causes the wall to raise a TimeoutEvent if there

has been no inputto the wallin timeval milliseconds. A Cimevalof zero disables theraising of

TimeoutEvent“8, As previouslymentioned, a gesture is considered complete even 1! ibe prouse
button is held down, as long as the mouse bas not been moved in timeval milliseconds. The
TimeoutBvent. is used to implement this behavior

ifthe gesture being collected is intended to be classified, the set of possible gesture classes moust

be constructed, and a Set. object is allocated for this purpose. Recall from Section 7.2.2 that there
may be multiple views atthe location of the start gesture ezach of which accepts certaingestures. An
array of gassoc stractures is allocated to associate cach of the possible gesture classes expected
with its corresponding view. A GestureEvent is then raised, withtheinstigator being the current
gesture handler, and having the carrent event as an additional field.

Raising the GestureEvent imtiates the searchfor the possible gesture classes giventhe initial

event. Recall from Sections 7.2.1 and 7.2.2 that each view under the initial point isconsideredfrom
top to bolom, and for each view, the gestures associated directly with the view sel, and with

its class and superclasses, are added im order. Note that this is exactly the same search sequence
as that used to find passive event handlers for events that no active handler wants (see Section
6.7). The GegtureEvent, handicd by the same passive event handicr mechanism, will thus be
propagated ta other GestureEvent Handlers inthe correct order. Eachpassive gesturehandler

that would have handled the initial event sends a message to the gesture handler which raised the
Gestureivent indicating the set of gestere classes it recognizes and the view with whichit is
associated.

Note that only views underthe first point of the gesture are queried. The case where a gesture
is taore naturally expressed by not beginning on the viewat whichit is targeted is not handied by

GRANDMA. Por example,it would be desirable for a knob turning gestureto go around the knob,
rather than directly overit. In GRANMDAeither the knob view area would haveto be larger than

the actual knob graphic to insure that the starting pouv of the gesture is over the knob view, or a
background view that includes the knob as a subview roust handle the kaob-iuraing gesture. In the

latter case, the gesture semantics are complicated because the background view needs to explicitly
determine at which knob, ifany, the gesture is directed. Henry et. al. [52] alse notes the problem,
and sugecsts that once ecsture handler might hand off a gesture in progress to another handler ifit
determinesthatthe initial point of the gestare was misleading, bat exactly howsuch a determination
would be madeis unclear.

 = GestureRventHandilsr ...

- (BOOLjevent:e view:yv {
if((classify && masterSwitch==NO) [|] ignoring==YES)

return NO;

if( [e isKindOf:Gesturefvent}] ) {

 str: "view" value:iv] }

es:classes view:yv J;

return NO;
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return [super event:e view:yv];

}
The GestureEventHandler overrides GenericHventHandler’s event: view:

method to check directly for GestureEvents. (A check for GestureEvents could have

been included in the default start predicate, but this would require programs which modsfy the
start predicate to always include such a check, an unnecessary complication.) First the state of
the masterSwitch and Lgnoring switches is checked, so that this handler will not operate if

explicitly tumed off (The reason classifyis checkedis to allow gesture handlers which do not
classify gestures, Le. those used to collect gesture exaniples for training purposes, to operate even
though gestures are disabled throughout the system.)

When aGestureEventis seen, the handler checks that ut mdeed classifies gestures and chatit

would itself have handledthe start event (see Section 6.7.8). The environment used for evaluating
ae start predicate is constructed se that "event" and "view" are bound to what they would havebeen had the handler actually been asked to handle the initial event. If the handler would have

handled the event, the set of gesture classes associated with the handler, as well as the view, are
passed to the handler which instigated the GestureEvent.

Note that no special case is needed for the handler which actuallyraised the GestureEvent.
This handler will be the first to receive and respond t the GestureEvent, which it will then

propagaic ta any other handlers. The propagation occurs simply because the event :view
method returns NO, as if it did not handle the event at all.

= GestureEventHandier ...

~ Classee:gestureclasses visw:v DhachBlement ]>

 
.sclaes = ¢;

et addNTest:c]) 4 A added newelemeni? + /
S35]

b.view = v;

return self;

i

Each gesture handler eatcould have handled the initial event sends the gesture handler that didhandle the initial event the cClasses:view: message. The latter handler then adds each gestureclass to jis Classset. irihe gesture class was ROL previously there, i is assoctated with the
passed view via the gassoc array. This membership test assures that when a given gesture classis
expected by more than one view(at the initial point), the topmost view will be associated with the
gesture class.

By the ime the GestureEvent has finished propagating, the class set variable of the
instigator will have as elements the gesture classes (SemClags objects, actually) that are valid
siven the initialevent. The gassoc variable olthe instigator will associate each such gesture class

with the view that will be affected if the gesture being entered tums out to be that class.
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The searchfor the set of valid gesture classes maybe relatively expensive, especiallyif there are

a significant number of views under the initial event and cach view has a mamberof event handlers
associaled wilh it. The substanual fraction ala second consumed by the search had an unfortunate
interactionwith thelowerlevel windewmanagerinterface that resulted in anincreasein recognition
errors. When queried, thelow-level window manager softwarereturns only the latestmouseevent,
discarding any intermediate mouse events that occurred since it was last queried. The tirae interval

between the first and second point of the gestare was often many times larger than the interval
beoween subsequent pairs of points. More importantly, it was much larger thanthat of thefirst and

second poms of the gesture examples usedto train the classifier. Details at the beginning of gestures
would be lost, and some features, such as the initial angle, would be significantly ditferent. ‘Che

substantial delay in sarapling the second point of the gesture thus caused the classifier performance
to degrade.

There are a number ofpossible solutions to this problem. The window manager software could be
set to not discard intermediate mouse evenis, thus resulting in similar data in the actual and training

gestures. This would resull in a large additional number of mouse events, and a corresponding
inerease in processing costs, making the systern appear sleggish to the user if events could not be
processed as fast as they arrived. Or, the search for gesture classes could be postponed until after
the gesture was collected. This would result in a substantial delay after the gesture wascollected,

again making the svstem appear shiggish to the user. The solution finally adopted was to pall the
window manager during the raising of Gestureivents. Un the interest of clarity, the code in

XyEventHandler and EventHandlerList which didthe polling was notshown.) Afterthis
modification, running GestureiventHandlers received input events at the same rate as the

GestureEventHandlers used for tainmg, improving recogmilion‘petlormnance considerably.
he pollingresultedin new mouseevents being raised beforethe GestureEvent was finishedbeing propagated. The result was a kind of pseudo-rmulti-threaded operation, with many of the

typicalproblems which arise when concurrency is a possibility. GestureEventHandlers were

coniphcaied somewhat, since, lor exampis, they had to expliculy deal with the possibiliy that
the end of the gesture might be seen before the set of possible gesture classes was calculated.
Also, the event handling methods forGestureiventHandlers had to he made reentrant. The
complications have been omitted fromthe code shown here, since they tend to make the program
tuch more difficult to understand.

The end ofa gesture is indicatedeitherby a timeoutevent(resulling ina timedout: message

being sent to the GestureEventHandler), or by the stop predicate being satisfied (resultme
in the activeTerminator: message being sent to the handler}. Thethird alternative, eager
recognition (Chapter 4), has not yet becn integrated inte the GRANDMAgcsturc handicr, though it
has been tested ia non-~GRANDMA applications (see Section 9.2).

= GestureEventHandler ...

- timedout:e { if( ! [self gesture:gesture] }
[self deactivate]; return nil; }

— activeTerminator:e {
leny str: "currentEvent" value:f[e copyl];
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Lpphase} [self gesture: gesture] ;

Both methods result inthegesture: message being sent whenthe gesture has been completely
collected. The gesture: message returs nil if the gesture has no semantics to be evaluated

during the marupulation phase. This is checked by the timedout: method, and in this case
the handler simply deactivates itself immediately. ‘his is typically ased by gesture classes whose
recognition semantics change the mouse tool (e.g. a delete gesture that changes the mouse cursor to
a delete tool); a timeout deactivates the gesture handler immediately, allowimg the mouse to function
as @ tool as long as the mouse button is held.

The GenericHventHandler code arranges forthe deactivate message to be sent imme-

diately after the activeTerminator: message, so there is no need for the
activeTerminator: method to expheitly send deactivate. The environment is changed

so thai the seniantic expression evaluated in ihe deactivate method executes in the correct
environment The gesture: method is called if the handleris sulin the gesturecollection phase,
og. if the gesture end was indicated hy releasing the mouse button rather than a timeout.

= GestureEventHandler ...

~ Geactivate {
id x;

if(manipphase && sclass)

eeclass done_expr], env, Typeld, &r);veturn [super deactivatel;

i

"The qeecurs: method sets the sclags ficid to the SemClass object of the recognizedgesture. e done expression, the last of three semantic expressions, is evalnated immediatelybefore hho:ecstune handler is deactivated.
= GestureHventHandier ...

— ({BoOL)event:e { return ignoring ? NO : [super event:e}]; }

- activeHandler:e { A new mouse points /
fenv str: "ourrentEvent" value: fe copyli;

if{ manipphase) { id
ass)

i Yr; & in manipulationphase * /

LE (sel eval(isclass manipexpr], env, Typeld, &¥);
SorR?

elise { & stil in collection phase x /

int x = fe [loc x]], y = fe [loc armigesture newevent:e]; & update feature vector * /

iyiew updatePicture:

[picture line:lastx :lasty :x :ivli; Ajink*/
lastx = x; lasty = y;

1
f

return self;
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}
Once activated, the GestureEventHandler functions just like any ather

GenericEventHandler except that it wil not handle any events U us ignoring flag is
set. The active event handlerdoes diferent things depending on whether the gesturehandler is in
the coHection phase or the manipulation phase. In the former case, the current event location is

added to the gesture, and a line connecting the previous location to the current one is drawn on the
display. In the latter case, the manipulation expression associated with the gesture (the second of
the three sernantic¢expressions) is evaluated.

= GestureEventHandler ...

— gesture:g 4 A called when gesture collection phase in complete * /
double a, d;

id x;

id classifier;

register struct gassoc «ga;
id oc, class;

id curevent;

[wad timelout :01 ; {wall deactivate:timeouteh] >
iview unhang:picture] ; _ Aeraseinking */[picture discsrd]; picture = nil;

# inform interested views fonly usedin a training session) * /
iE( [view respondsTo:a@selector(gesture:)])

[view gesture:g];

iffelagsify) {
* Gnd a classifier for the set; create it ifnecessary + /
Clagsifier = [Classifier lookupOrCreate:classget];
f& ran the classifier on the feature vector ofthe collected gesture » /
class = [classifier classify:iq fv]

ambigprob:&a distance:&d];
sclass = nil;

iffelags == nil || a < AmbigProb || d >» MaxDist)
return [self reject]; &rejected * /

&find the class ofthe gesture in the gassoc array< /
for(ga = gassec; ga < &gassocingassocs}]; gat+)

Lf(iga—»sclaess gclass] == class)
break;

ifiga == &gassoc[ngassocs] )

return [self error: "gassocs?7"] ;
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&& the gassoc ontrygives the bath the view at which the gesture * /
& is directed and the semantic expressions ofthe gesture * /

sclass = ga—>sclass;

jenv str: "view" value:ga—»view];

env str: "endEvent"

value:curevent=[env atStr:"currentEvent"}];

eval (isclass recog_expr], env, Typeld, ar);

ifi((c = [sclass manip_expr]) != nil &&
fe val] != nil)

evali(c, env, Typeld, &r}

elee { A raise event» /
Li(curevent) {

oring = YES;

{mousetool} fecurevent tool:mousetool] ;

wall raiseé:curevent];:

5
igno
Lf

i.

jeNewyan
Lf( (a = [seclass done expr]}) == nil

fi fo val] == nil)
return nil;

}
}
return self;

1
J

The gesture: method is called whenthe entire gestere has been collected. It sets the variable

manipphaseto mdicate the handleris nowin the manipulation phase of the gestural input cycle,
deactivates the tuneout event handler, and erases the gestare from the display. Hthe viewassociated

with the handler responds to gesture: it is sent that message, with the collected gesture as
argument. This is the mechanism by which example gestures are collected during training:
handler collects the gesture, sends its view (typically a kind of WallViewdevotedta training) the
cxample gesture, which adds it to the GestureClass beingtrained.

In the typical case, the gesture is to be classified, The Classifier factory method named

LookupOrCreate: is called to find a gestere classifier which discriminated between elements
of the classset. If no such classifier is found, this method calculates one and caches it for
future use. (This lookup and creation could possibly have been done in the pseudo-thread that was
spawnedduringthe first point ofthe geshire, but was not, since mast of the time the lookupfinds the
classifier in the cache, and if was not worth the additional complication and loss of modularity to add
polling to the classifier creation cade.) The returned classifier is then used to classify the gesture.
In addition to the class, the probability that the classification was ambiguous and the distance of
the example gesture lo the mean ofthe calculated class are returned. These are compared against

thresholds to check for possible rejection of the gestare (see Sectton 3.6).
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The elements of the gassoc array are searched to find the one whose gesture class is the class

retumed bythe classetier. his determines both the semantics of the recognized gesture and the view
al which the gesture was direcied. The sclase field is set to the SemClags object associaicdwith the recognized gesture, and then the.recognition expression, the first of the three semantic
expressions, is evaluated in an environment in which "startEvent", “currentivent",
TandEvent™ and "view"are all apprapriately bound.

iHfit exists, the manipulation expressionis evaluated immediatelyafter evaluating the recognition

expression. If there is no manipulation expression, the current event is reraised on the assumption
that its tool may wish io operate on a view. The ignoring flag is set so that the active handler does
not attempt to handle the event it is about to raise. Furthermore, the semantics of the gesture may
have changed the current mouse tool. H'so, the tool field of the current event wouldbe incorrect, and

is changed to the newtool before the event is raised. In order for this to work, any gesture semantics
that wish to change the current mouse tool rust do so by sending the mousetaol: message to

 

 rh

the gesture handler instead of directly to the wallview.
= GestureEventHandler

— mougetool: mousetool {
mou setool = mousetool;
return [super mousetool:mousetool] ;

iThe gesture: method retums nil ifthere are no manipulation or done semantics associatedwith therecognized gesture class. As seen, this is a signal for the handler io be deactivated
innnediately afterthe gesture is recognize

7.4 Gesture Classification and Training

Tn this section the implementation of classes which support the gesture classification andtraining
algorithms of Chapter 3 is discussed.

At the lowest level is the class Geeture. A Gesture object represents a single example
ola gesture. These objecis are created and manipulated by GestureEventHandlers, both

during the normal gesture recognition that occurs when an application is being used, and during the
spectication of gesture classes when training classtfiers.

754 Class Gesture

Intemally, a gesture object is an array of points, each consisting of an x, y, and time coordinate.

Another instance variabic is the GastureClags object of this example gesture, which is non-nil
if this example was specified during training. Intermediate values used in the calculation of the
examplc's feature vector, as well as the feature vectoritself, arc also stored. Also, an arbitrary string
of text may be associated with a Gesture object.

Forbrevity, detailed listing of the code for the Gestureclass is avoided. The interesting part,namelythe feature vector calculation, has already beenoa specifiediin detail in Chapter 3 and C codeis
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shownin Appendix A. Instead of listing more code here, an explanation of each message Gesture

objects respond to is grven.

A new gesture is allocated and initialized viag = [Gesture new]. Adding a point toa
Gesture objects is dane by sending it the newevent message: [gq newevernt:e], which

simply results in the call [gq x: [fe loc] x] y: [fe loc] y! t:fe time}]. The

mzsyit: method adds the new point to the list of om and incrementally calculates the var-
ious components of the feature vectar (see Section 3.3). The call [gq fv] returns the calculatedfeature vector. the methods class:, class, text:,“snd text respectively set andget the class
and text instance variables.

AGesture objcct can dump itsclfto a file via [q save: f] (givena file strcam poinicr FILE

*£} and can also initialize itself from a fle damp usimg [q read:f£]. Using save:, a mumber
of gesture objects may chump themselves sequentiallyinto a single file. and could then be read back
one al atime using réad:. Allexamples of a given gesture class are stored ina single file via these
methods.

Theeall [g contains:x:y] returns a boolean value indicating if the gesture g, when closed

by connecting its last point to its first point, contains the point (x,v}. This is aseful for testing,
for exarnple, if a given viewhas been encircled bythe gesture, enabling the gesture to indicate the

scope of a command. (The algorithmfor testing if a point is within a given gesture is describedat
the end of section 7.7.3.)

752 Class GestureClass

The class GestureClass represents a gesture class. A gesture class is simply a set of example
gestures, presumably alike, that are to be considered the same for the purposes of classification.
The input to the gesture classificr traing method ia a set ofGestureClags objects: the result af

classifying a gesture is a GestureClass object.
= GegtureClagss: NamedModel {

id examples;

Vector sum, average;

Matrix sumcov;

int state;

STR text;

}
SGestureClags isusubcless ofNamedModel, itselfa subclass ofModel. Gestureclass

is a model so that it can have views, enabling new gesture classes to be created and manipulated
at runtime. Please do not confuse GestureClass with GestureEventHandler objects;
a GestureClass serves only to represent a class of gestures, and itself handles no input. A
NamedModel augments the capabilities of a Model by addin g functions that facilitate reading and
writing the model to a fle. Also, models read this way are cached, so that a model asked to be

input more than once is only read once. ‘This is important for gesture class objects, since a single
GestureClass objeci may be a constiluent of many dillerent classifiers, and it is necessary that

every classifier recognizing a particular class refer to the same GestureClase object.
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The GestureClass instance varnable examples is a Set of examples which make up the

class. The field sum is the vector that the sumof all feature vectors of every examplein the class;
average is sum divided by the number of examples. The covariance matrix lor this class may be
found by dividing the matrix sumcovby one less than the number of examples. The calculation
of classifiers is slightly more efficient given Sumcov matrices, rather than covariance matrices, as
input (see Chapter 3). C cade ta calculate the sumcov matrices incrementallyis shown in Appendix
AL

The stateinstance variable is a set of bit fields indicating whether the average and sumcov
vartables are up to date. The text field allows anarbitrary text string to be associated with a gesture
class.

The addExample: method adds a Gesture tothe set of examples in the gesture class, incre-
mentally updating the sum field. The removeExampie: method deletes the passed Gasture
frorn the class, updating sum accordingly. Thc examples method returns the set of cxampics

of this class, average rehumns the estimated mean of the feature vector of all the examples in
this class, nexamples returmis the mumber of examples, and sumcov reterms the unnormalized
estimated covariance matrix.

75.4 Class GestureSemclass

id recog, manip, done;

}

GestureSemClass objects are named models, enabling them to be referred to by name

for reading or wriling io disk. and for being automatically cached when read. The purpose of
GestureSemClass objects is to associate a given gestere class with a set of semantics. [ft is
necessary to have 4 separate class for this because a given GestureClass may have more than
one set of semantics associated with it.

tn addition to methods for setting and getting each field, there are methods fur reading and
writing GestureSemClass objects to disk. GestureSemClass uses Objective C’s Filer
class to read and write each of the three semantic expressions (recog, manip, and done). The

availability of the Filer is another advantage of using Objective C [28]. In a typical interpreter,
a substantial amount of coding would be required to read and write the internicdiate tree form of
the program to and from disk files. The Filer, which allows the writing to and fromdisk of any

object (at least those having no C pointers besides strings and ids as instance variables}, made it
ifivial Lo Save interpreter expressians to disk.

 

Along with the semantics, the disk file of a GestureSemClass contains only the name

of gegtureClags object referred to by gclass. When reading in a GestureSemClass,
the name is used to read m the associated GestureClass. Smee GestureClags is a

NamedModel, there will be only one GestureClass object for each distinct gesture class,
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75.4 Class Classifier

The Classifier class encapsulates the basic gesture recognition capabilities in GRANDMA.
Each Classifier object has a set (actually an OrdCltn) of gesture classes between whichit

discrininates. Each Classifier object contains the linear evaluation junction for cach class (as
described in Chapter 3), and the inverse of the average covariance matrix, which is usedto calculate
the discrimination functions, as well as to calculate the Mahalanobis distance between two ofthe

component gesture classes, or a given gesture example and one of the gesture classes

= Classifier : Object {
id gestureclasses
int nclasses, nfeatures;
Vector ornst, #W; & discrimination functions + /

Matrix invavgcov;
int hashvalue;

tJ

Classifier LookupOrCreate:classes] returns a classifier which discriminates be-sy

tween the gesture classes in the passed collection classes. ‘The method for lookupOrCreate:

caches alf classifier objects which it creates; thas, if it is subsequently passed a set of gesture classes
whichit has seen before, it retums the classifier for that set withoet having to recompute it. The
search for an existing classifier for a givenset of gestures is facilitated by the hashvalue instance
variable, which is calculated by “XORing”together the obicct ids ofthe particular GestureClass
objects in the se

When necessary, theLlookupOrCreate: method creates a new classifier object, initializes

is gestureclasses instance variable and then sends itself the train message. The train
method implements the training algorithra of chapter3.

train {
register int i, 4;
imt denom = G;

id c, geq;

register Matrix s, avgcov;

Vector avg;

double det;

»& eliminate anygesture classes with no examples * /
[self eliminateEmptyClasses!

& catculate the average covariance matrixfrom the (unnormalized)
covariance matrices of the gesture classes, * {

avgcov = NewMatrixi(nfeatures, nfeatures);

ZeroMatrix (avgeov) ;

for{(seq = [gestureclasses eachElement] ;

c = [[gaq next] gclase]; } {
denom += [co nexamples] - 1;
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s = {ca sumcov];

for(i = 0; i < nfeatures; i++}

for(j = i; 4 < nfeatures; j++)
avgcov [il [fj] += sil tdi;

}

if(denom == 0) [self error: "no examples"];

for(i = 0; i « nfeatures; i++)

for(j} = i; J «< nfeatures; j++)

avgcov[j} [i] = (avgcoviilig] /= denom);

> invert the average covariance matrix x {
e@

nvavgeov = NewMatrix(nfieatures, nfeatures) ;QO
det = InvertMatrixfavgceyv, invavgcoyv} ;
Lf(det == 0.9)

[self fixClassifier:avg i

& calculate the discrimination functions:

wif[i] is the weight on thejth feature oftheith class.
cnst{i} is the constant termforthe ith class. * /

w= @llocate(nclasses, Vector);

net = NewVecCUOF (HCL ASSeS) |
for(i = 0; i «< nelasses; i++) {

avg = [ligestureclasses at:il gelass! average];
Aowli] = avoxinvavegcov + /

wli] = NewVector (nfeatures)}

VectorTimesMatrixlavg, invavgcov, wfil};

enst fi] = —-0.5 * InnerProduct(wfil, avg);

}
}

The eliminateBmptyClasses method removes any gesture classes from the set which
have no examples. The (estimated) average covariance matrix is then computed, and an attemptis

miade to invert i. Hit is singular the fixClasgifier: methodis called, which creates a usable
inverse covariance matrix as described in Section 3.5.2. (C code for fixing the classifieris shown in
Appendix A.)

Giventhe inverse covariance matrix, the discrimination fanctions for cach class are calculated as

specified in Section 3.5.2. The weights on the features fora given class are computed by omltiplying
the inverse average covariance matrix by the average feature vector ofthe class, whilethe constant

term is computed as negative one-half of the weights applied to the class average. ‘his constant
comipulation gives optimal classiliers under the assumptionsofthat all classes are equally lkely and

the misclassifications berween classes have equal cost (also assumed is multivariate normality and a
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commion covariance matnx}. The Classifier class providesa class:inerconst: methodwhich allows the constant terms fora given class to be adpusted ufthe appleication so desires.
The call [Classifier trainall:classes] causes all Classifier objects whose

set of gestures includes all the gestures in the set clagses to be retrained (by sending them the
train: message). This is useful whenever training examples are added or deleted, since all the

 

classifiers dependingon this class can then be recalculated at once. Generally a classifier may be
retrained in Less than a quarter second, Section 9.1.7 presents training times in detail.

Classifying a given example gesture is dane hy the classify:ambigorob: distance:
method. This method is passed the featere vectar of the example gesture, and evaluates the

discrimination function for each class, choosmg the maximem. If desired, the probability that the
gesture is unambiguous, as well as the Mahalanobis distance of the example gesture from theits

calculated class are also computed; this allowthe callers of the classification method to implement
repection options if they so choose.

 

~ Qlassify: (Vector) fv

ambioprob: (double +)ap distance: (double +)dp

double maxdisc, disc{[MAXCLASSES] ;

register int 1, ma

double denom, exp(};

id class;

for(i = 0; i < nelagses; i++)

dise{i} = InnerProduct (wfli], fv} + enst[il;

maxclass = Q;

for(i = 1; i «< nelasses; i+4}

Lf(dise[ij > disc imaxclaas})
maxclass = 1;

class = [[gestureclasses at:maxclass] gclasel;

iffap) f & calculate probability ofnon— ambiguity+ /
for (denom = 0, i = G; L < nelasses; i++}

denom += expidiscli] — digsec|[maxclass]);

wap = L.0 / denom;

Lf ldap} & calculate distance to mean ofchosen class * /

¥dp = [class d2iv:iv sicmainv:invavgcov];

return class;

ae

Page 1311 of 1714



Page 1312 of 1714

7G MANIPULATING GESTURE EVENTHANDLERSATRUNTIME 14s

Classifier objects respond to numerous messages not yet mentioned. The evaluate

message causes the example gestures of each class to be classified, so that the recognitionrate of the
classifier nay be estimated. Of course, the procedure oftesting the classilier on the very exaniplesil
was trained upon results in an overoptinustic evaluation, but it nonetheless is useful. By sending the
particular gesture classes and examples text:
ta the user, who can then see which examples of each class were classified incorrectly. A high rate

 
 

messages, the result of the evaluation is fed back

of misclassificationusually points to an ambiguity, indicating a poor design of the set of gestures to
be recognized. The ambiguity is typically fixed by modifving the gesture examples of one or more

of the gesture classes. The incorrectly classified examples indicate to the gesture designer which
gestare classes need to be revised.

Classifier objects also respond to messages which save andrestore classifiers to files, as
well as messages which cause the internal state of a classifier to be printed on the terminal for
debugeing parposcs, and a matrix of the Mahalanobis distances between class pairs to be printed

(so that the gesture designer can get a measure of how confusable the set of gestures is).

7.6 Manipulating Gesture Event Handlers at Runtime

Ome goal of this work was to provide a platform that allows experimentation with different gestural
interfaces fo a given application. To this end, GRANDMAwas designed to allow gesture recognizers
to be manipulaied at runtime. Gesture classes may be added or deleted, training examples for cach

class may also be added or deleted, and the semantics of a gesture class (with respect to a particular
handler) mayall be specified at runtime. In addition, gestures as a whole, or particular gesture event!

handlers, may be turaed on and off at runtime, allowing, for example, casy comparison betweegesture-based and click-draginterfaces to the same application program. This section discusses the
interface GRANDMApresents to the user that facilitates the manipulation of gcsturc handicrs a
nentime.

The View class unplements the editBandlers method. When sent editHandlers, a

view creates a new window Gf one does not already exist) as shown in ligure 7.2. The lop row is a
set of pull down menus. Each subsequent rowlists the passive event handlers for the view,its class,
its superclass, and so on up the class herarchy until the View class. The event handlers are Hsted
in the order that they are queried for events, from top to bottom, and within a row, from[eft fo right.

The “Mouse mode” menu iter controls which mouse cursor is currently active in the window.

With the normal mouse (indicated by an arrow), the useris able to drag the individual event handler
DOXES SO as to rearrange the order (Lhe other mode, “edit handler,” will be discussed shartly.) A

handl:rraay also be dragged into the trash box, in which case it is removed fromthe list of handler
associated with a viewor viewclass. A handler may be draggedinte the dock; anything in the dock
will remain visible when the handler lists for a different view are accessed. A handler draggedinte
the dock reappears on its original list as well thus the dock allows the same event handicrs to be

shared between different objects and bebveen different classes.

‘The “create handler” menu itemresults in a pull-down menu ofall classes which respondto the
passive miessage. Thus. al nmtome new handlers may be created and assoctated with any view

object or class. For example, a drag handler may be created and attached to an object, which can
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Pigore 7.2: Passive Event Handler Lists

then be dragged around with the mouse. New gesterc handlers may also be created this way.

The other mouse cursor, “edit handler”, may be clicked upon any passive event handler. It

results in a new windowbeing created which shows the details of a particular edit handler. Figure
7.3 shows the windowfor a typical gesture handler.

At thetop left of the windowis the “Mouse mode” pull down menu, usedin the unlikely event
that one wishes to examine the handlers of any of the viewsin this window. To the right is the name
of this event handler, constructed by concatenating the class of the handler withits internal address.

‘The next three rows showthree EventExpr objects; these are the starting predicate, handling
predicate and stopping predicate of the gesture handler Each item in the predicate displayis a

button that shows a pop-up menu; it is thus a simple matter to change the predicates at rantume.
Por example, the starl predicate may be changed [rom maiching only PickEventsto matching all
Dragivents. The kind of toal expected may also be changed at runtime, as well as attributes of
the toal (e.g. a particular mouse button may bespecified). If desired, the entire predicate expression
may be replaced by a completely new expression. In all cases, the changes take effect immediately.

The window contents thus far discussed are common to all GenericHventHandlers. The

following ones are particular to GestureEventHandlers. Purst there are a set ot buttons (new
class”, “train”, “evaluate”, “save”). Below this are some squares, each representing a gesture class
recogmived by this handler. Tn each square is a muniaturized example gesture, some text associated

with the class, and a small rectangle which names the class. The text typically showsthe result of
the evalaation of the particular gesture recognizerfor this set of classes when nin on the examples
usedto train if. The small rectangles may be dragged (copied) inte the dock. Each such rectangle

represents a particular gesture class. Anyrectangles in the dock will remain there when another
gesture handler is edited. Each then maybe dragged into any gesture class square, where it replaces

the existing class. Typically, a rectangle from the dock is dragged inte empty class square (created
by the “new class” button}; dhis is the way ovultiple gesture handlers can recognize the same class.

Clicking on one af the gesture class squares (but not in the class name rectangle) brings up the
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Figure 7.3. A Gesture Eyent Handler

 
Figure 7.4: Windowof examples of a gesture class
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windowof example gestures, as shown in Figure 7.4. Each square in this window contains a single,

miniaturized exaraple of a gesture in this class. ‘Vhese examples are used fortraining the classifier.
A newexample may be added siraply by gesturing in this window. An example may be deleted by
clicking the delete button on the felt Qwhich changes the mouse cursor to a delete cursorand then
clicking on the example. A user wishing to change a gesture to something more to bis Hiking simply
has to delete all the examples of the class (easily done using the “DeleteALL” button} and then enter

new example gestures. The “train” button will cause a newclassifier to be built, and the “evaluate”
button will cause the examples to be run through the newly built classifier. Anyincorrectly classified

examples will be indicated by displaying the mistaken class name in the example square; the user
can then examine the example to see if it was malformed or otherwise ambiguous.

The “semantics” button in the windowof examples causes the semantics of the gestare class to
be displayed. This is the subject of the next sectian.

7.7 Gesture Semantics

GRANDMA contains a simple Objective-C imterpreter that allows the semantics of gestures to be

specified at nintime. In GRANDMA, the semantics of a gesture are determined bythree program
fragments per gesture class (per handler). The first program fragment, labeled recag, is executed
when the gcsture is first recognized to be in a particular class. The second fragment, manip, is
executed on every input event bandied by the activated gesture handler after the gesture has been

recognized. The third fragment, done, is executed just before the handler deactivates itself. The
exact sequence of executions was described in detail in section 7.4, this section is concered with

the contents and specification of the program fragments themselves.

7.74 Gesture Semantics Cade

AS mentioned, the semantics of a gesture are defined by three expressions, recog, manip, and
done. The kinds of expressions found in practice may be loosely grouped according to the level of
the GRANDMAsystem that they acccss.

Some semantic expressions deal directly with models, fe. directly with application objects.

‘These are typicallythe easiest to code and understand. An example from the GSCORE application
discussed in section 8.2is the sharp gesture. GSCOREis an editor for musical scores. In GSCORE,
making an “S” gesture aver a note in the score causes the note to be “sharped”’, which is indicated
in musical notation by placing the sharp sign “#” hefore the note. The class Note is a model in the
aSCORE application, and one of its methods is ace: which sets the accidental of a note ta oneof

DOUBLEPLAT, FLAT, NATURAL, SHARP, DOUBLESITARP, or NOACCIDENTAL.

‘The sharp gesture, performed by making an “S” over a NoteView, has the semantics:
recog = [ [view model] ace:SHARP 1;

manip = nil;

done = nil;

In these semantics, the Note object (he model of the NoteView object) is directly sent the
ace: message when the sharp gesture is recognized. The model then changes its internal state to
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reflect the newaccidental, and then calls [sel£ modified] which will eventuallyresult in the

display updated to add a sharp on the note.

Notethat the semantic expressions are evaluated in a context in which certain names are assumed

to be bound. In the above example, obvicusly view and SHARP nist be bound to their correct
values for the code to work. Section 7.4 described how the GestureEventHandlercreates an

efivironment where view is boundto the viewat which the gesture is directed, startEvent is
bound to the iitial event of the gestere, andEvent is bound to the last event of the gesture (/.e. the

event just before the gesture was classified), and current Event is boundtothe most recent event,
typically a MoveBvent during the manipulation phase. A particular application maygloballybind
application-specific symbols (such as SHARP in the above example) in order to facilitate the writing
of semantic expressions.

Instead ofdealing directly with the model, the semantics ofa ge
io the view object. In the score editor for example, the delete gesture (in the handler associated
with a ScoreEvent) might have the semantics

sture may send messages directly

recog = [view delete];

manip = nil;

done = nil;

(The actual semantics are slightly more complicated since they also change the mouse cursor;
see Section 6.2 for details.) The delete method forthe typical view just sends delete to its
model, perhaps afier doing some housekeeping.

‘The sernantic expressions of a gesture are invoked from a GestureEventHandier, and the

sending of messages to models and views seen so far is typical of many different kinds of event
handlers. Another thing that event handlers often do (see in particular section 6.7.9 for a discussion

of the DragHandler) ts raise events af their own. There are many reasons a handler might wish
todo this.A DragHandlerraises everits in order to make the view being dragged be considered a
virtual tool. As mentioned previously, a handler might also raise events in order to simulate one inpat
device with another. (For example, imagine a SensorFrameMouseEmulator which responds
to SensorFrameivents, raising DragEvents whose toalis the current GenericMouseTool

so as to simmlate a mouse with a Sensor Trame.) Ome of the main purposes of having an active

 
 

event handler list anda list of passive events handlers associated with each view1s to allowthis kind

of flexibility. In the Smalltalk MVC system, the paring of a single controller with a view rally
constrains the view lo deal only with a single kind of input, namely mouse tapul. In GRANDMA,

a view can have a number of different event handlers, and thus may be able to deal with many
different input devices and methods.

In GRANDMA,gesture-based applications are typically first written and debugged with a more
traditional menu driven, click-and-drag, direct manipulation interface. Giventhat gestures are added

on top of this existing structure, there is another level at which gesture semantics miay be written.
At this level, the gesture semantics emulate, for example, the mouse input that would give the
appropriate behavior. In other words, the gesture is translated into a click-and-drag interaction
which gives the desired result.

An example of this fromthe score editor is the placement of a note info a score. In the click-

and-drag interface, adding a note to the score involves dragging a note of appropriate duration from
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a palette of notes to its desired location in a nousical staff. This is implemented by havingthe

NoteViewbe a virtual tool which sends a message to which Staff£Viewobjects respond, While
the note is bemg dragged, a DragHandlerraises an everwhose tool is a NoteView which will
be processed by the GenericToolonViewhandler whenthe note is over the StaffView.

Ta the gesture-hased interface, there is a gesture class for each possible note duration recognized
by handler associated with the StafiView class. The semantics for the gestare which gives rise

to an cighth note are
recog = |[i[noteview8up viewcopy!] at:starthoc]

reraise:currentEvent];

manio = nil;
done = nil;

The symbol noteview8up is bound to the view of one of the notes in the palette; it is copied
and roved to the starting location of the gesture. The currentEvent(either a MoveEvent or

Dropivent which ended the gesture) is copied, its tool field is set to the copy of the note view, and
the resulting event is raised. The moving of the note and the raising of a newevent is exactly what a

DragHandler does; the effect is to simulate the dragging of a note to a particular location. Note
that the note is moved to startLoc, the starting point of the gesture, which necessarily is over a
StafiView (otherwise chis gesture handier would never have been invoked). Thus, dhe handlers
for Staffiview will handle the event, and use the location of the note view to determine the new

note’s pitch and location in the score.
It would have been possible in the semantics to simulate the mouse being clicked on the

appropriate note in the palette and then being dragged onto the appropriate place in the staff. In this

case, that was not done as it would be needlessly coraplex. The poimtis that, due to the flexibility
of GRANDMA's input architecture, the writer of gesture semantics can address the systemat many

levels of abstraction, fronsimulated input to directly dealing with application objects.
The example semantics scen thus far have only had recog expressions, which are evaluated

at recognition time. The following example, which implements the semantics of a gesture which
creates a line and then allows theline to be rubberbanded, Ulustrates the use of manip:

recog = [[view createLine] endpoint0at:startLoc] ;
manip = Inecog endpointlat :currentLoc] ;
done = nil;

In this example, view is assumed to be a background view, typically a WallView of a

wens3 editor program (Section &.1 discusses GDP, a pesture-based drawingeditor). Sendingit thereateLine message results in a newline heme created in the window, whose first endpointiis
the start of the gesture. "The other endpoint of the line moves with the mouseafter the gesture has
been recognized; this is the cffect of the manip expression. Note the use of recog as a variable

to hold the newly created line object. If desired, the semantics programmer may create other local
variables to communicate between different (or even the same) semantic expressions.

 

o

 

7.7.2 The User Interface

GRANDMAallowsthe specification af gesture semantics io be done al rumiinie. In the current

implementation, the semantics must be specified at rantime; there is no facility for hardwiring the
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semantic expressions of a given gesture into an application. Currently, the semantics of a gesture

class are read in froma file (as are examples ofthe gesture class) each time an applicationsis started.
The semantics of a gesture may only be created or modified using the user mterlace facilities
discussed tn this section.

Gesture semantics are currently specified using a limitedset of expressions. An expression may
be a constant expression (integer orstring), a variable reference, an assigament, or a message send,

Fach expression has its obvious effect: a constant evaluates to itself, a variable evaluates to its
value in the current environment, an assignment evaluates to ihe evaluation of iis night hand side

(with the side effect of setting the variable on the left hand side), and a message send first evaluates
the receiver expression and each argument expression, and then sends the specified message and
resulting arguments to the receiver. The valie of a message expression is the value that the receiver’s

method returns. Por programming convenience, integer, string, and objects are converted as needed
so that the types of the arguments and receiver of a message send match whatis expected by the

message selector.

Figure 7.5 shows the windowactivated when the “Semantics” button of a gesture class is pressed.
At the top of the windoware a row of buttons used in the creation of various kinds of expressions.

They work as follows:

new message The new measage button creates a template of a message send, with a slot for the
receiver and the message selector. Any expression may then be dragged into the receiver

(“REC?’) slot. Clicking on the “SELECTOR?” box causes a dialogue box to be displayed
(igure 7.6). Users can then browse through the class hierarchy until they find the message

“." Dultons may be used to
switch between factory and instance rnethods. The starting point in the browsing is set to the
class ofthe recetver, whenit can be determined. Once the selector has be okayed, the template
changes to have a slot for each argument expected by the selector, as shown into Beare 7.7.
Any cupression may then be draggcd into the argument slots. In particular, gesture attributcs
(see below) are often used.

selector they desire, which can then be selected, The “+” and

newint This button creates a box inte which an integer may be typed.

newstring This button cecates a box into which a string may be typed.

 newvariable This button creates a template Ct ) for assigning a variable into which
the name ofa variable may be typed. Anycexpression may then be dragged into the “VALUE?”
slot. Theentire assignment expression maybe dragged around by the “=”sign. Attempting ta

drag the variable name on the left handside actually copies the variable name before allowing
it to be dragged; this resulting expression (simply the name of the variable) may be used

anywhere the value of the variable is needed.

factory ‘his button generates a constant expression which is the object identifier of an Objective
C class (also known as a “lactory”). Pressing the bulton pops up a browser which allowsthe

user to walk throughthe class hierarchyto select the desired class.
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Figure 7.5: The interpreter windowfor editing gesture semantics
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atirtbute Clicking this button generates a menu of useful subexpressions that are often used in

gesture semantics. (Figure 7.7 shows both pages ofattributes). ‘Vhe expressions are either
variable nanies, or named messages. As expressions, named messages are distinguishable
from variable names bythe angle brackets and the small box before the name. Clickingin the
box reveals the underlying expression to which the namerefers. (Notethe angle brackets and
box are not shownin the list of attributes but appear once an attribute is selected, Figure 7.5

contains some examples of sech attributes.)

Mast attributes in the fist refer to characteristics of the current gesture Ge. the gesture which
causes the semantics to be evaluated). Other attnibutesrefer to the current view, wall, event

handler, events, and set of objects enclosed bythe gesture. Many examples of using attributes
im gesture semaritics are covered in the next chapter.

Having the attributes of a gesture available when writing the semantics of the gesture is the

embodiment of one central idea of idea ofthis thesis. ‘The idea is that the meaning of a gesture
may depend net only upon its classification, but also on the features of the particular instance
of the gesture. Por example, in the drawing program it is a simple matter to tie the length of
the line gesture to the thickness of the resulting fine. This is in addition to using the starting
point of the gesture as one endpoint of the line, anather exaraple of howgesture attributes are

useful in gestare semantics.

cursor This button displays a menu of the available cursors. The cursors are almost always a kind
of GenericMouseTool, and consists of an icon that has been read in from a file, and the

message that the tool sends. The cursors are useful, for cnamplc, in scrnantic cxpressions that

wish to provide somefeedback to the user by changing the cursor after the gesture has been
recognized.

Traee On This button turns on tracing of the interpreter cvaluation loop, which prints the values
of all expressions and subexpressions as they are evaluated. This helps the writer of gesture
semantics to debug his code.

The middie mouse batten brings up a menu of usefal operations. “Normal” restores the cursor
to the default cursor which drags expressions. “Copy” changes the cursor to the copy cursor, which

when used to drag expressions causes them to be copied first. “lide” hides the semantics window,
which is so large that it typically obscures the application window. The various remaining editing

commands are useful for examining the event handlers associated with various objects in the user
interlace, and are not really of general interest ta the writer of gesture semantics. They would be of

interest if one attempted to add a gestural interface to the interpreter itself.
Anexpression dragged into a “DOCK”slot remains there even when the gesture class is changed.

The dock provides auscfal mechanism for sharing code between different gesture classes, or between
the same gesture class in different handlers. Any expression dragged into the trash is, of course,
deleted,

‘The above-described interface to the semantics is usually slower to use than a more straigh

forward textual mterface, A straightlonwardtextual interface would require a parser bul would

&

still be simpler and better that the current click-and-drag interface. On the other hand, with the
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click-and-drag interface it is not possible to make a syntax error. The main reason such an interface

was built was to exercise the facilities of the GRANDMAsystem. Before the project began the
auibor suspected that a ciick-and-drag ouerlace to a programming language would be awkward, and
he was not surprised. He did, however, consider the possibility of buildinga gesture-based interface
to the interpreter, one which might have been significantly more effictent to use than the current
click-and drag interface. It should be possible at the present time to add a gesture-based interfaceto

the interpreter without even recompiling, thoughto date the author has not made the attempt.

7.73 interpreter lmpiementation

The interpreter intemals are implemented in a most straightforward manner. The class Expression
is a subclass of Model and has a subclass for each tyne of expression: VarExpr, Assignxpr,
MessageEzpr, and ConstantExpr (and somenot discussed: CharEventExpr, EventExor,

and FunctionmExpr). AssignExpr and MessageBxpr objects have fields which holdtheir

respective subexpressions, while ConstantExpr and VarExpr objects have fields which hoid

the constant object and name of the variable, respectively.

 

Expression Evahnation

All expressions are evahiated in an environrnent, which is simply an association of names with
valocs (which are objects}. Evaluating VarExor objects is done by looking up the variable in an
environment and returning its value; AssignExpr objects are evaluated by adding or modifying
an environment so as to associate the named variable with its valuc. In addition to the environment

that is passed whenever an expression is evaluated, there is a global environment. If a nameis not
found ia the passed enviroament, it is then looked up in the global environment.

The interpreter has a nurmber of types with which it can deal. Each type is represented by
a subclass of class Type. An instance of one of these subclasses ts a value of that type. The
conmnonly used type classes are TypeChar, Typeld, TyperInt, TypeShort, TypestTR

TypeUnsigned, and TypeVoid. The Typeld represents an arbitrary Objective-C object;
the others represent their corresponding C type.

Consider the implementation of TypeInt:

= Typeint : Type { int int; }
initialize {| [super register:"int"];

[super register:"long"]; }
getint: (int})y 4 return [[super new] set_int:v]; }
(void +) ExomObject :0 result: (void #)r

\ *{int *}r = fo asInt]; return r; }+ toeObject: (void *}r { return [self set_int:*(int «)r]; }
~ setint: (int})v { int = v; return self; }
~ {int}asint { return (int; }
— {ghort)asShort { return 4
~— (charjasChar { return
~ (unsigned) asUnsigned 
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— (STRiasString: (STR)s { sprintf(s, "%d", (int); return s; }
~ (int}Plus:(int)b ¢ return int + b; }
— (int)Minus:(int)b { return int — b; }
~ (int)Times: (int)b { return int + b; }

— (int}DividedBy: (int)b { return b ?
[self error:"division by zero"], G@ : (int / bh; }

— (int)Mod: (int}b { return b == 90 ?
[self error: "mod by zero], O : _int & b; }

— (int)Clip:f{intyb :{intic

{ return int < Bb? b: —int>c? e@: _int; }— (int)Times:(int)b Plus: (int)e { return int * b + a; }
f

Phe initialize method declares that tus type represent ibe c types “int” and “long.” ‘This
information is used when reading in the liles that the Objective-C conipiler writes to describe the

arguments and retarm‘types of message selectors. A sample line from one of these files1s:
(idjat::,int,int;

This line says that the at: ; method (as implemented by View, for exarnplc) takes twointegers
aS arguments, and returns an id. Le. an object. (in Objective C. the lype or signature of a selector
such as at: : mast be the samein all classes that provide corresponding methods.) The interpreter
reads this ne and creates a Selector object which records the fact that at:: expects its first
argument to he Typeint, its second argument to be TypeiInt, and returns a Typerd. This

Selector chject is used when a MessageRupr whoseselectoris at: : is evaluated; it assures
that the arguments are converted to machine integers before the at: ; method |18 invoked.

The knowledge of how to do conversions is embodied in the EromObject:result: and

toObiect: methods. The intent is to freely convert between the values represented as machine
integers, or characters, etc., and the values represented as objects. Given int xr; id anInb =
Typeint set_int:3];, thecal [TypeInt fromObject:anint result:&yr] sets xr
to 3. Conversely, r = 4; aniInt = [TypeInt toObject:&r]; scts anInt to a newly

created object of class TypeInt whose int field is 4.
Note that the abuity to do arithmetic is embodied in TypelInt, as is the abuity to convert

between Typelntsand the other integer types (and string type)
Evaluating an expression nodeina given environment is done bycalling eval:

eval(expr, env, type, resultp)

id expr, env, type; void *resultp;

The evalfunction takes as argument an expression object, an environment ohject, a type
object, and a pointer to 4 place to pat the result. The eval function takes care of printing out
tracing information, ifnecessary, and then simplysends expr the eval: resultType:result:
message. Each expression class iis responsible for knowing how to evalnate itself, and is able to
convert its return value into the appropriate type.

The most interesting caseis the evaluation of a MessageExpr:

= MessaqeExpr: Expression {
id sel; & Selector object+ /
id rec; & funevaluated) receiver object * /
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id arg [MAXARGS] ; & unevaluated arguments * /

}

~ (voidsleval:eny resultType:rt result: (void *)x {
1a ov;

id rec, arg[5];
int i;

int nargs = [sel nargs!];

SEL sel = [sel sel];
id rettype = [sel rettype];

evalirec, env, Typeld, &rec);
for(i = 0; i < nargs; i++)

eval(argfil, env, [sel argtype:i], &_arg[i]);
v= megrec, sel, arg{[0}], _argl[il,

_arg[2], _arg[3], _arg{[4]);
ii(et == rettype) 4 A no need toconverts/

(id #)n = v; & hack, assumesid or equal size * /
return x;

}
return [rt fromObject: [rettype toObject:&v] result:r];

}
Thereis some pointer cheating goingon here, as the arguments whichare to be seat to the receiver

objectarc stored im anarray of ids, evcn thoughtheyarc not necessarilyabjects. Thisrelics onthe
fact that, at leastonthe hardwarethis code runsapon(a MicroVax ID, pointers, long integers, short

integers, and characters are all represented as four-byte values when passed to functions.

The sel variable ts the Selector object, and is used to get the number and typesofthe
arguments ard the return value of this selector First eval is called recursively to evaluate the

receiver of the message: the result type is necessarily TypeTd sincea receiverof a message must
be an Objective C object. Each of the argurnent expressions is evaluated, the result being stored in

the arg array. The type ofthe returned result is that which is expected for this argument in the
message about to be sent. The function msg is the low-level message sending function that les at
the heart of Objective C; it is passed a receiver, aselector, andany arguments, andreturas the result
of sending the message specified by the sclector and the arguments to the specified receiver, Uhis

result is then converted to the correct type. Tf this messageselectoris already knownto return the
ganic type as desired, then no conversionis necessary, and the valueis simply capied inte the correct
place. Otherwise, the returned value is first canverted to an object (hy invoking the toObject:
method of the known return type) and then converted from an object to the desired rectum type (via
the EromObject:result: method). In the typical case, either rt or rettype is Typeld, so

one of the conversionsto or from an object does no significant work.

‘The reason forpassing the retumtype io eval, ratherthan having eval always returnan object,

and then converting returned objects to machine integers, characters, and strings when needed, is
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efficiency. In the current scheme, nested message expressions, where the inner expression retums,

say, an integer which is the expected argument type of the outer expression, there is no overhead
converting the mlermediate resuli to an object and then immediately back to am integer.

Note that the automatic conversion to objects allows arithmetic to be done relatively painlessly.
For example, to add 10 to the x coordinate of a view, use:

{iview xioc] Plus:16]

The [view xLoc] returns a machine integer; since this is the intended receiverof the Plus:
message it mast be converted to a Typed, Lean abject, which in this case will be an instanceof
Typetnt. The Plus: method expects its argument to be a machine integer; since the interpreter

will represent the constant 10 by a TypeInt object, it is converted to a machine integer (by calling
eval with a result type argument of TypeInt}. The Plus: method is then invoked, and it
retums a machine integer, which may or may not be converted to a Typeint object depending on
the context in which the above program fragmentis used.

The above example could be specified more efficiently in the gesture semantics as [16

Plus: [view xloc]]. In this case, all the conversions are avoided, since 10 is already rep-
resented as an object of TypeInt, and Plus: expects a machine infeger as argument, whichis

exactly what is returned by [view xloc].
One thing not shown in the above implementation is garbage collection. Dring expression

evaluation, objects are frecly being created and diacarded, and it is important that the memory

associated with them be released when they are discarded. The current implementation of the
interpreter does not do this very well, since there is not much point given the lax attitude towardmemory management throvshowt GRANDMA.

Interface Implementation

Ad the expression nodes are subclasses of Model, and cach one bas a corresponding subclass of
Viewto display it on the screen. The expression views act as virtual tools; these tools act on

empty argument andreceiver slots, as well as the docks and thetrash. Implementing the interpreter
interface in GRANDMA was a good exercise of the GRANDMAfacilities, but is not especially
interesting so will not be coveredin detail here.

Contral Canstructs

The only control construct currently implemented is Seq, which allows a list of expressions to
be evaluated in onder. Seq, it tums out, was implemented without any extra mechanism in the
interpreter, all that was required was the creation of a Seq class, whose class methods simply

returned their last argument:

= Seq: Object (GRANDMA, Primitive) { }
:ail { return al; }

a

+ :a1:a2 4 return az; }
+ :a4:a2:a3 { return a3; }
+ :@l:a2:a3:a4 { return a4; }

ho+ sal: Cyoo :a4:a5 4 return a5; }
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Since arguments are evaluated in order, this has the desired effect.

Othercontrol consiracts, such as While and If, have not been implemented, bat could easily be
implemented if the need arose. One siraple pmplementation technique would to make WhileExpr
and ITfExpr both subclasses of MessageEzpr, and then make While and Tf classes which have
methods that have the right mimber of arguments. Por simplicity, the normal message expression

display code could be used to display If and While expressions; the only newcodeto be added
would be new eval: resultType:result: methods in WhileExpr and TfExpr which
have the desired effect.

Attributes and Cursors

An important consideration in allowing gesture semantics to be specified at runtimeis exactly what

the application programmer makes visible to the gesture semantics programmier. There are a number
of means by which the application programmer can make a feature available to the semantics
programmer; all of these hinge om making visible objects which can be the receivers of relevant
Messages,

The “Attributes” lists provides a way of giving the semantics writer easy access to application
objects and featurcs. This is donc by creating expressions for cach attribute. GRANDMAalready
supplies entries for all accessible gesture attributes and features.

As an illustrative example of how attributes are specified and implemented, consider the two
aliributes handler and enclosed. The handler atiribute simplyrelers to the gesture handler

that is currently executing. The enclosed attribute refers to the list of View objects enclosed
by the current gesture. Selecting enclosed from the altribute list results in a named message;
clicking on its box reveals that the message is [handler encloged].

Internally,

handlerVar = [[VarExpr str: thandler"]

velass :GestureEventHandler] ;

A The abovestatement adds "handler" fo the list ofattributes to be displayed

in the interpreter window and declared that its value is oftype GesturcEvontilandicr.
its value is actuallyset by the GestureventHandler before anygesture
semantics are evaluated. ¥* /

anclosedExpr = [[[[MessageExpr sel: @selector(enclosed)j
rec: handlerVar]

str: "enclosed']
velass:OrdCltn

& The above statement adds “enclosed” te the attributelist, When evaluated

dened
r

in gesture semantics, the "enclosed" attribute will result in
fhandier enclased] being executed. + /

Both handlerVar and enclosedExpr are added to the list of interpreter attributes, and
show up in the list as “handler” and “enclosed” respectively. Each of these expressions evaluates

to an Objective C object; the veclass: message records the expected class of the object. The
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recorded class is used bythe selector browser as a starting point when choosing a message to send
to an attribute.

The “handler” attribote, being a VarExpr, is evaluated by looking up the string “handler” in the
current environment. Section 7.4 described how the environment in which semantic expressions are
evaluatedis initialized so as the bind handler to the current event handler. Evainating enclosed
thus results in the enclosed message being sent to the current handler:

= GestureEventHandler ...

enclosed { ido, @, seq; int  ymin, KM&e, ymax;

[gesture xmin:&=min ymin: &ymin xmax:&xmax ymax: &ymax] ;
Z

o = [[wall viewdatabase]

partiallyingect :xmin:ymin:xmax:ymax];

for(seq = [o eachElement}]; ¢ = [seq next]; }

LEG! le isContainedin:gesture] } [lo remove:e];
return o;

i
j

‘The interpreter’s evaluation of the encloged attribute thus results ina call to the above method.
This method determines the bounding box of the current gesture, and consults the view database

for a list of views contained withia this bound. Each object is polled to see if it is enclosed by the
gesture, and is removed {rom the list U itis nal, The list ts then returned.

The default implementation of isContainedIn:, in the View class, simplytests if each
comer of the bounding box is enclosed within the gesture. This test may be overridden by non-
rectangular views, or rectangular views that wishto ensure its each edge is entirely contained within

the gesture.
= View

- (BOOL)isContainedin:g {
int xi, yl, x2, y2; [self calc_new_box];
Xl = [box left]; yl = [box top];

= [box right]; y2 = [box bottom];

return {gq contains:xi:yl] && [gq contains:xl:y2] &&

ig contains:x2:yl] && [g containg:=2:y2];

 

1

The Gesture class implements the contains:: message, whichtests if a point is enclosed
within the gestere. The current implementation first closes the gesture by conceptually connecting
the ending point to the starting point, and then counts the number of times a lime fromthe point to a

knownpoint outside the gesture crosses the gestare. An odd numberof crossings indicates that the
point is mdeed enclosed by the gesture,

Other attabetes work similarly, although their code tends to be mach simpler than that of
enclosed. In particular, there are attnbetes for cach fcaturc discussed in Section 3.3: the at-
tributes are named messages implemented as [[handler gesture] ifvi:N], where Nis the

corresponding index into the feature vector.

Cursors are added to the list of cursors available for use In semantic expressions simply by

sending thermthe public message. The application programmer should create and make available
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any cursor that might prove useful to the semantics writer.

7.8 Conclusion

The gesture subsystem of GRANDMAconsists of the gesture event handler, the low level gesture

recognition modules, the user interface which allows the modification of gesture handlers, gesture
examples, and gesture classes, and the interpreter for evaluating the semantics of gestures. Each of

these parts has been discussed in detail. The next chapter demonstrates how GRANDMAis usedto
build gesture-based applications.
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Applications

This chapter discusses three gestare-hased applications butt by the author. The first, GDP is a

simple drawing editor based on the drawing program DP [42]. The second, GSCORE,is an editor
for musical scores. The third, MDP, is an implementation of the GDP drawing editor that uses

miulti-finger gestures.

GDP and GSCOREare both written in Objective C, and run on a DEC MicroVAX IL They are

both gesture-based applications built using the GRANDMAsyatem, discussed in Chapters 6 and 7.
As such, the gestures usedare all single-path gestures drawn with a mouse. GRANDMAinterfaces
to the X10 windowsystera [1131 through the GDEVinterface written by the author GDEVruns
on several different processors (MicroVA Uf, SUN-2, IBM PC-RT), and several different window

managers (X10, XLL, Andrew), GRANDMA, however, only runs on the MicroVax, which for
years was the only system available to the author that ran Objective C. It should be relatively
straightiorward to port GRANDMAto any UNEX-based environment that ran Objective-C, though
to date this has not been done.

MDP is written in C (not Objective C), and runs on a Sihcon Graphics TRIS 4D Personal
Workstation. MDPresponds to multipic-finger ecsturcs input via the Sensor Frame. Unlike GDP
and GSCORE, MDPis not built on tap of GRANDMA.Thereasonfor this is that the only functioning

Sensor Frame is attached to the above-mentioned IRIS, for which no Objective C compiler exists. Et
would be desirable and interesting to integrate Sensor Frame input and multi-path gesture recognition
into GRANDMA (Gee Section 10.2).

8.1 GDP

GDP. a gesture-based drawing program, is based on DP [42]. In DPthere is always a current made,
which determines the moaning of mouse clicks in the drawing window. Single letter keyboard

commands or a popup menu may be used to change the current mode. The current mode is
displayed at the bottomof the drawing window, as are the actions of the three mouse buttons. Por

example, when the current mode is “ine”, the left mouse button is used for drawing horizontal
and vertical lines, the middie button for arbilrary lines. and the right bution lor Imes which have

no gravity. Some DP commands cause dialogue boxes to be displayed: this is useful for changing
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parameters such as the current thickness to use for lines, the current font to use for text, and so on.

With the gesture handlers turned off, GDP Goosely) emulates DP. The current mode is indicated
by the cursor. For exaniple, when the “line” cursor is displayed, clicking a mouse button in the
drawing windowcauses a ncwline to be created and one endpoint to be fixed at the position ofthe
mouse. As long as the mouse button is held down, the other end of the line follows any subsequent
motion of the mouse, in a “rubberband” fashion. The user releases the mouse button when the

second endpoint of the line is at the desired location.

Both DP and GDP support sets, whereby multiple graphic objects may be grouped together
and subsequently fanction as 4 single object. Once created, a act is translated, rotated, copied. and
deleted as aumt. A set may inchide one or more sets as components, allowing the hierarchical

construction of drawings. In DP, there is the “pack” command. which creates a newset from a
group of objects selected by the user, and the “unpack” command, whereby a selected set object is

transformed backinto its components. GDPfunctions simuarly, though the selection method differs
trom DP.

GDP makes no attempt to emulate every aspect of DP. In particular, the various treatments of
the different mouse buttons are not supported. These and other features were not implemented since

doing so would be tangential to the purpose of the author, which was to demonstrate the use of
gestures. As the unimplemented features present no conceptual problems for implementation in

GRANDMA,the aethor chose not to expend the effort.

8.1.1 GDP’s vestural interface

GDP’s gesture-based operation has already been briefly described in Section 1.1. That description
will be expanded upon, but not repeated, here.

Figures 1.2a, b, c, and d showthe rectangle, ellipse, line, and pack gestures, all of which are
directed at the GDP window, rather than at graphic objects. Also in this class is the text gesture, a
cursive “U’, and the dot gesture, entered by pressing the mouse button with no subsequent mouse
motion. The text gesture causes a text cursor to be displayedat the initial point of the gesture. The
user mayther enter text via the keyboard. ‘The dot pesture causes the last command (as indicated by
the current mode) to be repeaied. For example, alter a delete gesture, a dot gesture over an existing
object will cause that object to be deleted.

Figures 1.2e, f, and g showthe copy, rotate, and delete gestures, all of which act directly on
graphic objects. The move gesture, a simple arrow (igure 8.1), is similar. All of these gestures act

upon the graphic object at the initial point of the gesture, These gestures are also recognized bythe
GDP window when not begun over a graphic object. In this case, the cursor is changed to indicate

the corresponding mode, and the underlying DP interface takes over. In particular, dragging one of
these cursors over a graphic object causes the corresponding operation to occur.

8.1.2 GDP Implementation

Since GDP was built on top of GRANDMA, the implementation followed the MYC paradigni.

Figure 8.2 shows the position in the class hierarchyfor the newclasses defined in GDP.
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Figure 8.2: GDP’s class hierarchy

Page 1332 of 1714



Page 1333 of 1714

166 CHAPTER & APPLICATIONS

8.1.3 Models

‘The unplementation of GDP centers on the class GraphicObject, a subclass of Model. Each

cornponent of the drawing is a GraphicObject. The entire drawing is also implernented as
a gtaphic object. GraphicObjects are either Text objects, LineDrawing objects (lines,
rectangles, and ellipses), or GobSet objects, which implement the set concept.

AGraphicObject has two instance variables: parent, the Goby} Set object of whichthis
object is a member, and trans, a transformation matrix [101] for mapping the object into the

drawing. Every GraphicObject is a memberof exactly one set, be it the set which represents the
entire drawing (these are top level objects), or a member of a set whichis itself part of the drawimg.

LineRrawing objects have a single instance variable, thickness, that controls the thick-
ness af the Hines used in the linc drawing. The three subclasses of LineDrawing, namely
Line, Rectangle, and Ellipse, represent all graphics in the drawing. Associated with each

LineDrawing subclass is a list of points which specify a sequence of line segments for drawing
the object. The points in the list are normalized so that one significant point of the abject hes onthe

origin and another signilicant poimtis al pomt (1,4). Por Lines, one endpointis at (0,0) andthe other
at (1). The point list for Rectangles specifies a square with comers at @,0), QP,2), and
(1.0). The Ellipseis represented by 15 line segments that approximate a circle with center (0,0)
and that passes through the poiat (1,4). The transformation matrix in cach LineDrawing object
is used to map the list of points in cach LineDrawing objcet inte drawing Gvindow) coordinates.

A Gobi Set object contains a Set of objects that make up the set. In order to displaya set,
the transformation matrix of the set is composed with (multiplied by) that of each of the constituent
objects. This composition happens recursively, so thai deeply nested objects are displayed correctly.

Text objects contain a font reference and text string to be displayed.

8.1.4 Views

Eachof the pnmediate subclasses ofGraphicoObject has a corresponding subclass of Gobj View
associated with if. Each LineDrawingView object is responsible for displaying the

LineDrawing object which is its model on the screen. Similarly, GobjTextViews display
Text objects, and Gobj SetViews display Goby Sets.

AH GobjViews respond to the updatePicture message in order to redraw their picture

appropriately A LineDrawingView simply asks its model for the lists of points (suitably
transformed} which it proceeds to connect via lines. The model also provides the appropriate

thickness of the lines as well. (Note that it is not necessary to provide viewclasses for the three
subclasses of LineDrawing sinceall three classes are taken care of by LineDrawingView.)

GobjTextViews draw their models one character at a time in order to accommeadate the
transformation of the model. Transformations which have a unit scale factor (io shrinking ar

difation) and no rotation coraponent cause the text to be drawn horizontally, with the characters

spachig determined by their widths in the current font. In the current implementation, scaling or
rotation does not effect the character size or orientations (as X10 will not rotate or scale characters),

but does effect the character positions.

GobjSetViews have the views of their model's cormponent objects as subviews. Since
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the update method for View will automatically propagate nodate messages to subviews, no

updateFPlcture method is required for Gob] SetView.
The Gobj View class ovemdes the move: : raecthod (of View). Reeall from Section 6.6 thal

this method simply changes the location of the view, thus translating the view in two dimensions.
This method is used, for example, by the drag handler (section 6.7.9) to cause views to move with
the mouse cursor. The purpose of overriding the default method is so that dragging any Gobi View
causes its model to be changed so as to reflect the new coordinates of the object in the drawing.
The model is changed byfirst sending it the message getLocalTrans, whichreturns the model's

transformation matnx, then calling a Tunction which modifies the matrix to reflect the additional
translation, and then sending the model a setLocalTrans: message, which causes the new
transformation matrix to be recorded in the model. OF course the model then sends itselfthe

modified message which causes the model’s viewto redraw the modelat its newLocation.
GobjView also implements the delete message, by first sending itself the free mes-

sage (which, among other things, removes it from its parcnt’s subvicw list), and then send-

ing its model the delete message. GobiView also overndes the default isOver: and
isContainedin: methods Gections 6.7.5 and 7.7.3) so that they always return NO for objects

not at the top-level of the drawing. Each subclass of Gobj View implements lgReallyOver:
and igReallyContainedin:, which are invoked whenthe object is indeed top-level.

The outermost windowis itself a view. Tt is an instance of GdpTopView, which is a subclass

of GdpSetView. The GdpTopView representing the entire drawing.

&.L5 Event Handlers

GDP required the addition of one new event handler, TwoPointEventHandler, which is of
sufficient utility and generality to be incorporated into the standard set ofGRANDMAevent handlers.

‘The purpose of the TwoPointEventHandler is to implement the typical “nibberbanding”
inferacuion. Por example, clicking the “line” cursor in the drawing windowcauses a new line to be

created, one endpoint of which is consirainedto be at the location of the click, the other endpoint of
which stays attachedto the cursor antil the mouse button is released. ATwoPointEventHandler
can be used to producc this behavior.

As a GenericEventHandler, a TwoPointEventHandlerhas a parameterizable start-

ing predicate, handling predicate, and stopping predicate Gection 6.7.8}. In onder for a passive
TwoPointEventHandiler to be activated, the tool of the activating event must operate on the
view to which the handleris attached (ike a GenericToolOnViewHandler, section 6.7.7). If

the tool operates on the view and the event satisfies the starting predicate, the handleris activated.
When activated, the tool is allowed to operate on the view, and the operation is expected to retarn
an object whichis to he the receiver of subsequent messages. In the above example, the “line” tool
operates upon the drawing window view (a GdpTopView) the result of which is a newly ercated

Line object. The handler then sends the new object a message whose parameters are the starting
event location coordinates. The actual message sent is a parameter to the passive event handler; in

the example the message is set Endpointo::. Each subsequent event handled results in the new
object being sent another niessage containing the coordinates of the event (getEndpointi:: m

the example).
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8.1.6 Gestures in GDP

This section describes the addition of gestures to the unplementation described above. The gesture
handlers, gesture classes, example gestures, and gesture semantics were all added at rantime,

allowing them to be tested iramediately, I should admit that in several cases if was necessary to
add same features directly to the existing C code and recompile. This was partly due to the fact
thatGRANDMA’s gesture subsystem was being developed at the sare time as this appheation, and
partlychic to the ecsture semantics wanting to access models and vicws through methodsother than

ones already provided, for reasons such as readability and efficiency.

Figure 8.1 shows the gesture classes recognized by each of the two GDF gesture handlers.

Note thai the gesiures expected by a Gobj Vieware a subset of those expected by a GdpTopVie
Abowing one gestureclass fo be recognized by mulaple handlers allows the semantics of the gesture
to depend upon the viewat whichit is directed.

Several gestires (line, rect, ellipse, and text cause graphic objects to be created. These gestures
are only recognized bythe top level view, which covers the entire window, aGdpTopView. When,tor example, a line gesture (a straight stroke) 1s made, a line is created, the first endpoint of which
is at the gesture start, while the second endpomnt tracks the mouse in a rubberband fashion.

The semantics for the line vestare are:
recog = [Seq : {handler mousetool:createLineMouseTool]

:{[topview createLine] trannslateEndpoint: 0
<gtarth> yi<startyY>! |;

Manip = [recog scaleXYEndpoint:1 x:<currentX> y:<currentY>
CX:<Startk> cy:<starty>i;

(The done expression is assumed to be nil. When the line gesture is recognized, the
gesture handler is sent the mousetool: message, passing the createLineMouseTool asa

parameter. The handler sends a messageto its view’s wall, and the cursor shape changes. (Internally,
the handler changes its tool instance variable to the newtool, as well.) Then, a line is created (via

the createLine messagesent to the top view), and the newline is sent a message whichtranslates
one endpoint to the starting point of the gesture. (The identifiers enclosed im angle brackets are
gestural attribates, as discussed in Section 7.7.3.) The :: message to Seq, which is used evalaate
fwo expressions seqoentially, returns its last pararneter, in this case the newly created line, which is

Q rm®

x

assigned to recog.

Upon each subsequent mouse input the manip expression is evaluated. Ht sends the new

line (referred to through recog) a message to scale itself, keeping the “center” point (startk,
startY) im the same location, mapping the other endpoml to (currentX, current yY).

‘The semantics for the rect and ellipse gestives are similar to those of line, the only difference
being the resultant cursor shape and the creation message sent to topview. The start of the
rectangle gesture controls onc comer of the rectangle and subscqucnt mousc events control the
other corner. The start of the ellipse gesture determines the center ofthe ellipse, and the sealing
guarantees that the mouse manipulates a point on the ellipse. The rectangle is created so that its

sides are parallel to the window, Similarly, the ellipse is created so that its axes are horizontal and
vertical. Manipulations after any of the creation gestures is recognived never effect the orientation

of the created object. With only a single mouse position for contimsous control (two degrees of
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freedom) it is impossible to independentlyalter the orientation angle, size, and aspect ratio of the

graphic object. ‘Phe desiga choice was made to modify onlythe size and aspect ratic in the creation
geslure; a rotate gesiure may subsequentiy be used to modily the orientation angle.

tis still possible, however, to use other features of the gestare to control addittonal attributes of
the graphic object. Changing the recog semantics of a line gestureto

recog = [Seq :[fhandiler mousetool:<createLine>}

:[[{topview createLine] translateEndpoint:0
xiestartX%> y:i<startye]

thickness: [[pathhLength DividedBy:40]

Clip:1 :3) ] ?

causes the thickness of the line to be the length of the gesture divided by 40 and constramed
ta be between | and 9 (pixels) inclusive. The length of the gesture determines the thickness of the

newly created line, which can subsequently be continuously manipulated into any length.

hes

he dot gesture Gvhere the user simply presses the mouse without moving it) has the null
semantics, When if is recognized, the gesture handler turns itself off ummiediately, enabling events

to propagate past it, and thus allowing whatever cursoris being displayed to be used as a tool. Thus
GDP, like DB has the notion of a current mode, accessible via the dot gesture.

The pack gesterc has acmantics:

cog = [Seq :fhandler mousetool:packMouseTool}

:ftopview packlist:<encicseds]];
The attribute <enclosed> is an alias for [handler enclosed]. Recall from Section

7.7.3 that this message retumsa list of objects enclosed by the gesture. This list is passed to the

topview, which creates the set. As long as the mouse button is held down, the pack tool will
cause the pack message to be sent to any object it touches; thase obfects will execute [parent

pack: self] Ghe implementation of the pack method) to add themselvesto the current set.

The copy, move, rotate, edit, and delete gestures simply bring up their corresponding cursors
when aimed at the background (GdpTopView) view. They have more interesting sernantics when

associated with a GobjView. The capy gesture, for example, causes:

recog = [Seq :lhandler mousetool:viewcopyMouseTool]
:copy = [[view viewcopy]

move:cendx> :<endYs]
:lastxX = <endX»

:laetY = <endy

[x

vis

banatY>

‘CurrentX» Minus: lastx]

-currentY> Minus:lasty] ]
:last& = <endxX>

:laety = <andy>}

This illustratesthat the geshire semantics can mimicthe esscnitial featarcs of the DragHandier

Section 6.7.9). The semantics of the move gesture are almost identical, except that no copyis
made. A simpler wayto do this kind of thing (byreraising events) is shown when the semantics of

the GSCORE programare discussed.

The delete gesture has semantics

manip = [Seq : [copy move
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Figure $.3: GSCORE’s cursar menu

vcecog = [Seq :fhandler mousetcol:deleteMousetool]
: [view deletel]>

The edit gesture sernantics are similar
The rotate gesture has semantics:

recog = nil;

manip = [Seq :fhandler mousetooal: rotateMouseToo] |
: {view rotateAndScaleEndpoint :6

Ki <Currenta>

yi<currentY>
CX:<StartAn

gtartYe>t];

The rotateAndScaleEndpoint: message causes one point of the view to be mapped
to the coordinate indicated by x: and y: which keeping the paint indicated by cx: and cy:
constant. This gestarc always drags endpoint 0 of a graphic object. Tt would be better to be able to

drag an arbitrary point, as is done by MDP, discussedlater.

aeLa
cy:i<s

8.2 GSCORE

GSCORE is a gesture-based musical score editor. [ts design is not based on any particular program,

but its gesture set was influenced by the SSSP score-editing tools [1&8] and the Notewriter IE score
editor.

8.2.1 <A brief description of the interface

GSCORE has two interfaces, one geslure-hased, the other nat, Figure 8.3 shows the non-gesture-

based interface in action. Ininally, a staff Qhe five lines) is presented to the user. The user maycall
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Figure &.4: GSCORE’s palette menu

up additional staves by accessing the staif toolin the “Cursors” menu (which is shownin the figure).

In figure 8.4, the user has displayeda number of palettes from which he can drag musical symbols
onto the staff. As can be seen, the user has already placed a number of symbols on the staff. The

userhas also used the down-tie tool to indicate two phrases and the bearn tool to add bears so as ta
connect some notes.’ Both tools work byclicking the mouse onastarting note, then touching othe
notes. The tie tool adds a ie beiween the inital note and the last one touched, while the beartool

beamis together all the notes touched during the interaction.
Dragging a note onto the staff determines its starting time as follows: If a note is draggedto

approximately the same x location as anather note, the two arc made to start at the same time (and

are made into a chord). Otherwise, the note begins at the ending time of the note (or rest or barline}
just before it. Other score objects are positioned like notes.

‘The palettes are accessed via the palette menu, shown in figure 8.4. The palettes themselves

may be dragged around so as to be convenient for the user. The “H” button hides the palette; once
hidden it must be retrieved from the menu.

The delete cursor deletes score events. When the mouse bution is pressed, dragging the delete

button over objects which may be deleted causes themto be highHghted. Releasing the button over
such a highlighted object causes it to be deleted. Individual chord notes may be deleted by clicking

on their note heads; an entire chord by clicking onits stem. When a beamis deleted, the notes revert
to their unbeamedstate.

The gestural interface provides an alternative to the palette interface. Figure 8.3 shows the three
sets of gestures recognized by GSCOREobjects. The largest set, associated with thestaff, all result 

'Note to readers unfamiliar with common music notation: A tie is a curved Line connecting two adjacent notes ofthe
same pitch. A fie indicates that the two connected notes are to be performed as a single nofe whose duration equais the
sum of those of the connected notes. A curved line between adjacent differently pitched notes is a slur, performed by
connecting the second note te the first with no intermediate breath or break. Between nonadjacent notes, the curved Hne
is a phrase mark, which indicates a group of noles thal makes up a musical phrase, as shown in figure 8.4. In GSCORE,
the be tool can be used to enter ties, shivs, and phrase marks. A beamis a thick line that connects the sterns of adjacent
notes (again see figure 8.4}. By grouping multiple short notes together, beams serve to emphasize the metrical (chythtnic)
structure of the prusic.
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Figure 8.5: GSCOREgestures
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in staff events being created. There are two gestures, move and delete, that operate upon existing
score events, Seven additional gestures are for manipulating notes.

A gesture at a staff creates either a note, rest, clef, bar line, time signature, or key signature
object. The object created will be placcd on the staff at (or near) the initial point of the gesturc.

Yor nates, the x coordinate determines the starting time while the y coordinate determines the pitch
class. The gesture class determines the actual note duration (whole note, half note, quarter note,
eight note, sixteenth note, or thirtysecond note} and the direction of the stem.

Like note gestures, the remaining staff gestures use the initial y coordinate to determine the staff
position of the created object. The five rest gestures generate reats of various durations. The two
clef gestures generate the F and Gclefs (C clefs may only be dragged fromthe palette). The timesig
gesture generates a time signature. After the gesture is recognized, the user controls the numerator
of the time signature by changes in the x coordinate of the mouse, and the denommator by changes
in y. Sindlarly, afier the Key gesture is recognized, the user controls the nuraberof sharpsor Hats by
moving the mouse up or down. When a bar gesture is recognized, a bur line is placed in the staff,
and the cursor changesto the har cursor. While the mouse button is held, the newly created bar tine
extends to anystaff touched by the mouse cursor,

The note-specific gestures all manipulate notes. Accidentals are placed on the note using the
sharp, flat, and natural gestures. The beam gesture causes the noles to be bearned together. The
note on which the beam gesture begins is one of the beamed notes: the beamis extendedto other
notes as they are touched after the gesture is recognized. The uptie and downlie gestures operate
similarly. The dot gesture causes the duration of the note to be multipled by 3 , typically resulting
ina dot being addedto a note.

Since a note is a score event, and always exists on a staff, <
either be nate specific (e.g. sharp), score-event specific (e.g. delete), or directed at thestaff (eg.
one of the note gestures}. The first time a gesture is made at a note, the three gesture sets are unioned
and a classifier created that can discriminate between each of them, as described in Section 7.2.

Figure 8.6 shows an example session with GSCORE.

gesture which begins on a note may 

8.2.2 Design and implementation

Figure 8.7 shows where the classes defined by GSCORE fit into GRANDMA’s class hierarchy. in

general, each model class created has a corresponding view class for displaying it. No newevent
handlers needed to be created forGSCORE;, GRANDMA’s existing ones proved adequate.

Generally useful views

‘Two new views of general utility, Pul LDownRowView and PaletteView, were implemented

during the developmeat ofGSCORE, A Pul lDownRowViewisa rowof buttons, each ofwhichacti-
vates a popup menu. It provides functionality similar to the Macintosh menu bar. A PaletteView

implements a palette of objects, each of which is copied when dragged. PaletteView instantiates
a single DragHancller (Section 6.7.9) that if associates with every object an a palette, The drag

handler has been sent the message copyviewON, whichgives the palette its functionality.
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Pigure $.6: A GSCOREsession
ariel fa} shows a blankstafupoa which the Gclef gesture has been entered. Panel {b} showthe createdtreble 

> fj ’ we *
clef anda key (keysiggnature} gesture. After recagnition, the mimberof Hats ar sharps can he manipulated hy

for belowthe staff ni   ctively. Panel fe) shows the created keythe distance the mouse inoves above thesta ;

signature (one flat}, and a timesig (time signature) gesture. After recognition, the horizontal distance from

the recognition point determines the numerator ofthe time signature, and the vertical distance determinesthe devorinator Panel (d? shows the resulttug time signature, aud the AU fquarter negesture a stugle
vertical stroke, Since this is an upstroke, the note will have an upwardstem The initial point of the gesture
determines both the pitch of the nate (via vertical position) and theve time ofthe note (via Rorizontal

  position}. Pancl fe} shows the created note, and the Bu (eightnote) gestuc. Like the quarter note gesture.the gesture class determines the note’s duration, andg fesos detrermines the no temdirection,
start time and pitch. Panel (f} shows two 1 6u (sixteenth note) gesturesvs (commnbining twe steps intovo one), Panel
(al shows a beam¢gesture. This gesture begins ona note, ra her t A the gestures mentioned thus fax which

sognized, the user touches other notes ia order to beam themtogether  

fisshows ihe beamed! notes, anda flat gesture drawn on a note. Pane! G) showsthe resuliing fat
 added belore the note. and an Sf (eighth rest) gesture drawnon the staff. Panel (}} shows theresultingrest, and a delete gesture beginningon the vest. Panel [(8 shows a 4u (quarter note) gesture drawn over an/

existing quarter note fall svinbals in GSCORP have rectangular input regions), the result being a chord, as
shownin panel ().
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a ScoreTopView} Stafiviewi

PullDownRowView ScorsEventView
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Durat ionModifier + x
. a Chordv

View 
Figure 8.7: GSCORE’s class hierarchy

Bach palette can unplement an arbitrary action when one of the dragged objects is dropped. For

most palettes of score events (notes, rests, clefs, and so ond, no special action is taken. The copied
view becomes a subview of a Staffview when dragged onto a staff. However, accidentals and
duration modifiers (dots and triplets) are tools which send messages to NoteView objects when
dragged over them; the NoteViewtakes care of updating its statc and creating any accidentals or

duration modifiers it needs. The copies that are dragged fromthe palette thus never become part of
the score, and so are automatically deleted when dropped.

GSCORE Models

With the exception of Pul LDownRowView and PaletteView, the newclasses created dunng
the implementation of GSCOREare specific to score editing. A Score object represents a musical

score. Ft contains a list of Staff objects and a doubly-linkedlist (class DL1) of ScoreEvent
obiects. Fach ScoreBvent has atime field indicating where in the score it begins; the doubly-
linked list is maintained in time order.

The subclass StaftEvent meludes all classes that can only be associated with a single staff.
A BarLine is nota StaffEvent since tt may connect more than one staff, and thus maiitains a

Set of staves im an insiance variable. Similarly, a Chordmay contain notes {rom different slaves,
asmayaTie and Beam. A DurationModifier is not attached directly to a Staf£, but instead
with a Note or Beam, so itis nota StaffEventeither.

The responsibility of mapping time to xcoordinate ina staff rests mainly with the Score object.
it has two methods timeQ&: and xposOf: which map x coordinates to times, and times to x

coordinates, respectively. Score has the method addEvent: for adding events to the list and
delete: anterase: for deleting and eras

is removed fromthe list of score events, but it is not deallocated or in any other way disturbed. A

 
ng events, Erase is a kind af “salt” delete; the abject
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typical use would be to erase an object, change its time field, and then add it ta the score, thus

moving if io tune.
Each ScoreEvent subclass ioplemenis ihe tiebreaker message; us orders score evenis

that occur simultaneously. This is iniportant for determining the position of score events; bar limes
must come before clefts, which must come before key signatures, and so on. Besides determining
the order events will appear on the staff, ticbroakers are important because they maintain a canonical
ordering of score events which can be rehed apon throaghoutthe code.

Particular Scorekvent classes have straightforward unplementations. Note has instance
variables that contain its pitch, raw duration (excluding duration modifiers}, actual duration, stern

direction, back poinlers io any Chord or Beam that contain u, and pointers io Accidentaland
DurationModifier objects that apply to it. It has messages for setting most of those, and
maintains consistency between dependent variables. Notes are able to delete themselves gracefully,
first by removing themselves from any beams or chords in which they participate, and deleting any

accidentals or duration modifiers attached to them, then finally deleting themselves fromthe score.
Other score events behave similarly.

Sending a ScoreEvent the time: message, which changesits start time, results in its Score
being informed. ‘Phe score takes care to move the ScoreEvent to the correct place inits list of

events. This is acconaplished by first erasing the event frora the score, and then adding tt again.
While the internal representation of scores for use in editing is quite an interesting topic in its

own right (26, 83, 88, 29] itis tangential fa the main topic, sesture-based systems, The representation
has nowbeen described in cncugh detail so that the implementation of the user interfacc, as well as

the gesture semantics, can be appreciated. These are nowdescribed.

GSCORE Views

As expected from the MVCparadigm,there is a Viewsubclass corresponding to each of the Models

discussed above. ScoreView provides a backdrop. Not surprisingly, instances of Staffiview
ure sabviews of ScoreView. Perhaps more surprisingly, all ScoreEventView objects ure
also subviews of ScoreView. For simplicity, the various StaffEventView classes are not
subviews of the StaffView upon which they are drawn. This simplifies screen update, since the

ScoreView need not traverse a nested structure to search for objects that need updating.
It is often necessary for a view to access related views: for example a BeamView needs to

communicate with the NoteView or ChordViewobjects being beamed together, One alternative
is for the views to keeps pointers to the related views in instance variables. This is very common in

MVC-based systerns: pointers between views exphettly mimic relations between the corresponding
models. ft is the task of the programmer to keep these pointers consistent as the model objects are
added, deleted, or modified.

In one sense, this is one of the costs associated with the MVC paradigm. For reasons af

modularity, MVCdictates that views and modeis be separate, and that models make no reference
to their views (except indirectly, through a model’s list of dependents}. The benefit is that models

maybe written cleanly, and each may have nuultiple views. Unfortunately, the separation results in
redundancyat best (smce the structure is maintained as both pointers between models and pointers

between views), and inconsistencyat worse (since the twostructures can get “out of syne”). Also,
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any changes to a model’s relationship to other models requires parallel changes in the corresponding

views. ‘Chis duplication, noticed during the initial construction of GSCORE, seemed to be contrary
io the ideals af object-oriented progranuming, where techniques such as inheriiance are utilized to
avoid duplication of effort.

GRANDMAattempts to address this problem ofMVC in a general way. The problemis caused
bythe taboo which prevents a model fromexplicitly referencingits view(s). GRANDMAmaintains

this taboo, bul provides a mechanism lor inquiring as to the view olf a given model. In order to
retain the possibility of nuultiple viewsof a single model, the queryis sent to a context object, within
the context, a model has at most one view. The implementation requires that a context be a kind of
Viewobject:

— setModelOfiview:v 4 & associates v with |v model] */
- gqetViewO£Model:m {

The implementation is done osing an association list per context: given a context, the message
SetModelOfView: associates a view with its model in the context. Objective C’s association
list object uses hashing internally, so qetViewOfModel: typically operates in constant time

independent of the number of associations. The result is a kind of inverted index, mapping models
to views.

GSCORE, only a single context is used (since there is only one view per model), which,
for convenience, is the parent of all ScoreEventView objects, a ScoreView. The various
sebclasscs of ScoreEventViewno longer haveto keep consistent a set of pointers to related ab-

jects. Tor example, a BeamView needs onlyto queryits modelfor the list of Note and/or Chor
models that itis to bear together: it can then ask each of those models m for its view via [parent
getViewOiMoadel :m]. Phe instance variable parent here refers to the ScoreView of which
ihe BeamViewisa subview, Thus, the problemof keeping parallel structures consistent is elrni-
nated. One drawback, however, ts that it is now necessary to maintain the inverted index as views
are created and deleted.

& reiurns viewassociated with m*/ }

Nowthat the problem of how views access their related views has been solved, redisplay-

ing a view is siraightlorward. Recall (Section 6.5) that when a model is modified, it sends
itself the modified message, which results in all its dependents (in particular its view) get-
ting the message modelModified. The default implementation of modelModifiedresults
in updarePicrure being sent to the view and all of its subviews Gection 6.6). Normally,

updatePicture is the methodthat is directly responsible for querying the model and updating

the graphics. ScoreEventViewoverrides updatePicture, and the task of actually producing
the graphics for a score event is relegated to a new method, createPicture, implemented by
ach of ScoreEventView’s subclasses. ScoreEventView’s5s updatePictur‘a sends itself

createPicture, but also does some additional work to be discussed shorily.

 

© gr

erFe}

“As an example. ¢consider what happens when the pitch of a note is changed. When a Note
is sent the abspitch: message, which changes its pitch, it updates its internal state and sends
itself the modifiedmessage. (Changing the pitch might result in Accidental objects being
added or deleted from the score, a possibility ignored for now.) This Note’s NoteViewwill get

sent createPicture, and query its model (and the Score and Staff objects of the model} ta
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determine the kind and position ofthe note head, as well as the stemdirection, if needed. The proper

note head is selected fromthe music font, and drawn on the staff (with ledger limes if necessary) at
the deteroiuned location.

One reason lor ScoreEvent’s updatePicture sending createPicture is to test i

a single place the possibility that the view may have moved since the last time it was drawn. In
particular, if the x coordinate of the right edge of the view’s bounding box has changed, this is an
indication that the score events after the this might have to be repositioned. If so, the Score objec

is sent a message to this effect, and takes care of changing the x position of any affected models.
Another reason for the extra step in creating pictures is to stop a recursive messagethat attempts to

create a picture corrently being created, a possibility in certain cases.

Adding or deleting a ScoreEvent causes the Score object to send itself the modified
message. Before doing so, it creates a record indicating exactly what was changed. Whennotified, its

ScoreView object will request that record,creating or deleting ScoreEventViews us required.
ScoreViewuses an association list to associate view classes with model classes; mt can thes send

the createViewO#: message to the appropriate factory.

ScoreEventViews function as virteal tools, performing the action scoreeventview:(This default is overridden by AceView, DurModView, BarLineView, and TieView, as these
do not operate on StaffViews.) The only class that handles scoreeventview: messages
s StatfView. A version of GenericProolOnViewEventHandiler different than the one

discussed in Section 6.7.7 is associated with class ScoreEventView. ‘This version is a kind of

GenericEventHandler, and thus more parameienzable than the one discussed earlier. The

instance associated with StaffViews has its parameters set so that it performs its operation
immediately (as soon as a tool ts dragged over a view which accepts its action), rather than the
normal behavior of providing immediate semantic feedback and performing the action when the

tool is dropped on the view.

Thus, when a ScoreEventView whoseaction is scoreeventview: is dragged over a
StatfivView, the StaffivView immediately gets sent the message scoreeventview:, with

the tool (.e. the ScoreEventView} as a parameter. The first step is to erage: the model
of the ScoreEventView from the seore, i possible. ‘The Staff£Viewthen sends its model’s

Score the timeOf: message, with parameter the x coordinate of the StaffEventView being
dragged. The time returned is made the time of the ScoreEventView’s model, which is then
added ta the score. When a subsequent drag event of the ScoreEventView results in the
acoreeventview: message to be sent to the Stak fView, the process is repeated again. Thus

as the user drags around the ScoreEventView, the score is continuously updated, and the effect
of the drag immediately reflected on the display.

‘Thoughthey have different actions, AccView, TieView, DurMocdView, and BarLineView

tools operate similarly to the other ScoreEventViews. Rather than explain their functionalityin
the non-pesture-based mierface, the next section discusses the semantics of the gestural mierlace to
GSCORE.
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GSCORE’s gesture semantics

The gesture semantics rely heavily on the palette interface deserihed above. Whenthe palettes are
first created, every view placed in the palette is named and made accessible via the “Attributes”
button in the gesturc scmantics window(see Sections 7.7.2 and 7.7.3). [tis then a simple maticr in
the gesture semantics to simulate dragging a capy of the view onto the staff (see Section 7.7.1}. Por
example, consider the semantics of the Su gesture, which creates an cighth note with an up stem:

recog = [[f{noteview8up viewcopy] at:<starthoc>]
rekaise:<currentEvent.!];

The name noteview8up refers to the viewof the eighth note with the up stemplaced in the
palette during program initialization. That viewis copied Qvhichresults in the model being copied as
well, movedto thestarting location of the gesture (another “Attribute”), and the currentEvent
(another “Attribute” is reraised using this view as the taal and its location as the event location.

This simmilates the actions of the DraqHandler, and since startLoc is guaranteed to be over
the staff (otherwise these semantics would never have been executed) the effect is to place an cighth
note into the score, Similar semantics (the only difference is the view being copied) are used for all

other note gestures, as well as all rest gestures and clef gestures.
‘The semantics of the bar gesturc is similar ta that ofthe note gestures, the difference being that

a mouse tool is used rather than a virtual (view) tool.

recog = [handler mousetool:

[barlineBventMouseTool
reRaise:<currentBvent>

at:<startLoc>s]];

‘The limesig gesture for creating time signatures is more interesting. After it is recognized, x
and y of the mouse control the numerator and the denominator ofthe (ume signature, respectively:

=

recog = [Seq :sx = <currentxX>

:Sy = <currentyY>

:[[[timesigview44 viewcopy] at:<startLoc»]
reRaise:<currentEvent>.}]

manip = [[recog model]

btimesigq: [[[«<currentxX> Minug:sx]

DividedBy: 1G] Clip :1 :100]

:{if{<currentY> Minus:sy]

DividedBy:10] Clip :1 :1007]

Note that the recog expression is similar to the others; a view from the palette is copied, moved
to the staff, and used as a tool in the reraising of an event. The manip expression, in contrast,
does not operate on the level of simulated drags. Tostead, it accesses the model of the newly

created TimeSigqView directly, sending ifthe timesiq:;: message which sets its numerator and
denominator The division by 10 means that the mouse has fo move 10 pixels in order to change one

nit. The Clip:: miessage ensures the result will be between I and 100, inclusive. For musical
purposes, it is probably better to only use powers of two for the denominator, bul unfortunately no

toThe: message has been implemented in TypeInt (hoeghit would be simple to do).
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The key signature gesture (Key) works similarly, except that only the y coordinate of the mouse
is used (to control the qurober of accidentals in the Key signature): 

recog = {Seq :sy = <currentYy>

:{[[keysiqviewlsharps viewoopy]

abi<starthlocs]

reRaise:<currentEvent>] ]

recog model}

keysia: [[ [sy Minus:<currentyY>]

DividedBy:10] Clip: [Q@ Minug:6] :6]]

A positive value lor key signature indicates the nuniber olf sharps, a negalive one the (negation
of the) number of flats. The awkward [0 Minus:6] is used because the author failed to allowthe
creation of negative numbers with the “new int” button.

The above gcstures arc recognized when madc on the staff. The delete and move gestures arc
only recognized when they begin on ScoreEventViews. The semantics of the delete gesture
are:

=manip = |

recog = [Seq : [handler mousetocol:delLeteMouseTool]
: [view deletel]>

This changes the cursor, and deletes the viewthat the gesture began on. The latter effect could
also have been achieved using reRaise:, but the above code is simpler.

The Move gesture simply restores the normal cursor and reraises it at the starting location of
the gesture, relying on the fact that in the non-gesture-based interface, score events may be dragged
with the mouse:

recog = [fhandler mousetool:normalMouseTool]

veRaise:startEvent] ;

In addition tu the gestures that apply to any ScoreBventView, NoteViewrecognizes a few
of its own. The three gestures for adding accidentals to notes (sharp, flat, and natural access the
Note object directly. For example, the semantics of the sharp gesture are:

recog = [iview model] acc:SHARB];

The beam gesture changes the cursor io the beamcursor and simulaies clicking the beam cursor
on the NoteViewat the initial point:

recog = [fhandler mougetool :-beamtoolMouseTool)
reRaise:startEvent] ;

The Gegestures (uptie and downtie) could have been implemented similarly. Instead, a variation
of the above semantics causes the mouse cursorfo revert to the normal cursor when the mouse button

is released after the gesture is over:

scog = [Seq : {handler mousetool:tieUpEvent_MouseTool]
: [bieUpEventMouseTool reRaise:startEvent!]];

manip = :[tieUpEvent MougeTool reRaise:currentEvent]]];

done = [Seq :{ftietipBventMouseTool reRaise:currentkvent]
:thandler mousetool:normalMoussTooil]];
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The dot gesture accesses the Note’s raw duration, multiplies it by : and changes the duration
to the result. Phe note will add the appropriate dot in the score when it receives Ws new duration

recog = [Seq :m = [view model]

:fm dur: [ffm rawdur] Times:3] DividedBy:2]]];

manip = recog;

The manip = recog staternent iisell docs nothing ofitself, but by virtue of it being non-rul,

the gesture handler does not relinquish control until the mouse button is released. Without this
Staternent, the raquse cursor tool (whatever it happens to he} would operate on any view if was
dragged across after the dot sesturc was recognized.

83 MDP

MDP is gesture-based drawing program that takes miulii-finger Sensor Frame gestures as input.

Though primarily a demonstration of multi-path gesture recognition, MDP also shows how gestures
ean be mcorporated cheaply and quickly into a non-object-oriented system. This is in cortrast to
GRANDMA, which, whatever its merits, requires a great dcal af mechanism (an objcet=oriented
user interface toolkit with appropriate hooks) before gestures can be incorporated.

The user interface to MDPis simifar to that of GDP. The user makes gestures, which results

in various geomeliric objects being created and manipulated. The main differences are due to the
different input devices. In adcdition to classifying malktiple finger gestures, MDP uses roultiple fmgers
in the manipulation phase. This allows, for example, a graphic object to be rotated, translated, and
scaled simultaneously.

 
i
 

Tigure 6.8 shows an example MDP session. Note that how, once a gesture has been recognized,
additional fingers may be brought in and out of the picture to manipulate various parameters.

Multiple finger tracking imbues the two-phase interaction with even more power than the single-
path two-phase interaction.

8.3... Internals

Figure 8.9 shows the internal architecture of MDP. The lines indicate the main data How paths
through the various modules.

Like the gesture-based systems built using GRANDMA, when MBP is first started, a set of

gesture training examples is read from a file. These are used to train the multi-path classifier as
described in Chapter 3. MDP iself provides no facility for creating or modifying the traming

exaniples. Iisicad, a separale prograni is used [or this purpose.

The Sensor Frame is not integrated with the window manager on the IRIS, making the handling
of its input more difficult than the handling of mouse inpet. In particalar, coordinates returned by
the Sensor Frame are absolate screen coordinates in an arbitrary scalc, while the windowmanager

generally expects window-relative coordinates to be used. Fortunately, the IRIS windowing system
supports general coordinate transformations on a per-windowbasis, which MDPuses as follows.

When started, MDP creates a window on the screen, and reads an alignment Ale to determine
the coonlinate transformation for mapping window coordinates to screen coordinates that makes the
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Figure §.8: An example MDP session

This fourc ists of snapshots ofa video ofan MDP session. Some Is have been retouched t iigus gure consists of shapsiots of a viaeo of an MUL session, Some pancis have becn retouched to make

the inking more apparent. Panel (a) shaws the single finger \in@ gesture, which is essentially the same
@ gesture, As ig GOP the start of the gesture gives one endpoint of the jine while the other

by the gesturing fagerafter the gesture is recognized Additional fingers may be used
mt si

to control the line’s color and thickness. Panel (b) shows the created fine, and the rectangle gesture, agaln

 sBe
Sbay

f
the same as GDE's, Afterihe gesture is recognised, additional fingers may be brought into lhe sensing plane

fo control the vectangle’s coloz thickness, and filled property, as shown in panel (c). Panel (d) shows the
f, ¢

circle gesture, which works analogously Panel (e} shows the two finger paraligiogram gesture. After theGZ x

enizcd, the two gesturing fingers control two corners ofthe paralicgram. An additional finger
 

gesture is
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() 

Fig 8.8 (continued)

in the sensing plane will then control a third comme; allowing an artitraryparallelogramto be entered

Panel (f) shows the edit color gesture being mace at the newly createdparalldooram: After this pestureis

recognised the parallelogramis color and filledpropertymay be dynanicallymanipulated Panel (g) shovus

the three Finger pack (group) gesture During the pack interaction, all object touched hyanyofthe lingers
aregroupedintoa single set. Here theline rectangle andcircle anegrouped together tomakea cart. Panel‘4
{ht shows the Copy gesture After the gesture is reoqanized the object indicated by the first point ofthe  
  
  

 

 
turing Finger as shownin panel (i). Achitional fingers

  arbyafthe copyto be manip. shown in panel (7).
chown) vere toausec to creat

  
sorte ackitional shapes, Pared tk

 

shows the twofirger rotate gesture Aller itis recognized each ofthe two fingers become allachecd to their

respective points where they first touched the designated object. By movingthe fingers apart or together

rotating the hand andmoving the hand the abjectmay be simultaneouslyscaled rotated and translatedas

shown in pancl G). (Tho Bnecrs arc not touching the objcot duc to the dolayin gciting the input data and
 refhestiingthe screen) Panel (rp shows the delete gesture balon

  

 
 

delete a rectangle Not shown are

  
nore cel  ion and creation gestures. leavingthe drawing in the

the three fing
 

rUNGO gesture Upon recognition the most recent creation ar del
 

the fogers up causes sore andnore operationsto be undone while movi 90 Che Gogers down alloves undone  
 

uperalions to be redone, iri
 

actively Panel (co) shows astate ducing the interaction where TerOpetalions
oN

Fieve been undone fn this imnlererntation creations and deletions are undoable, butposition changes are

not. This explains why inpenel (0), onlythe cart Itemp renin (undoback topanel (e)}, but those iterrs are
a

in the position theyassumed inpanel (n}.
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Calculate Features
Single Path Classifier

t

; _.. |Read Training Examples ftt
i

 
 Receive Data
 

penanceeeneeeenenaneeeeneentees:a

Action Table

Action Routines 
+Graphics Outpu

Figure 8.9: MDPinternal structure
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windowcoordinatesystem identical with the Sensor Frame. coordinate system. Ifthe given window
size and position has not been seen before (as indicated by the alignment4 file) the user is foreed
io go through an alignment dialogue belore proceeding (this alsa occurs when the window occurs
moved or resized), Two dots are displayed, one in each corner of the window, and the useris asked
to touch each dot. The data read are used to make windowcoordinates exactly match Sensor Frame
coordinates. The transformation for windowcoordinates fo screen coordinates is done by the TRIS

software, and does not have to be considered by the rest of the program. The parameters are saved
in the alignment file to avoid haying to repeat the procedure each time MDP is started.”

Once intialized, the MDPbegins to read data from the Sensor Frame. ‘Uhe current Sensor Frame

software works by polling, and typically returns data at the rate of approximately 30 snapshots
per second. The “Receive Data” module performs the path tracking (sce section 5.1) and returns
snapshot records consisting of the current time, mumber of fingers seen by the frame, and tuples
(x, y, f} for each finger, Ox, y) being the finger’s location in the frame. The / is the path identificr, as

determined by the path tracker. The intent is that a given value of / represents the same finger in
successive snapshots.

Normally, MDPis in its WAITstate, where the polling imdicates that there are no fingers in the

plane of the frame. Onee oneor rnore fingers enter thefield of view of the frame, the COLLECTstate
is entered. Each successive snapshotis passed to the “calcalate features” module, which performs
the incremental feature calculation. The COLLECTstate ends when the uscr removes all fingers from
the frarne viewfield or stops moving for 150 milliseconds. (The timeout interval is settable bythe
user, but 180 milliseconds has been found to work well.) Unlike a mouse user, it is difficult for

Sensor Frame users to hold their fingers perfectly still, so a threshold is used to decide when the
user has not moved. In other words, the threshold determines the amount of movement allowable

between successive snapshots that is to count as “not moving.” This is done by comparing the
threshold to the error metric calculated during the path tracking (sum of squared distances between
corresponding points in successive snapshots).

 

Once the gesture has been collected, its feature vectors are passed to the nvulti-path classifier,
which returns the gesture’s class. Then the recognition action associated with the class is looked

up in the action table and executed, As long as at least one finger remains in the Held of view, the
mianipalation action ofthe class is executed,

Many of GRANIIMA’s ideas for specifying gesture semantics are ased in MDP. Although
MBP docs not have a full-blown interpreter, there is a table specifying the recognition action and
manipulation action for each class. While it would be possible for the tables to be constructed at

runtime, currently the table is compiled into MDP. Each rowin the entry for a class consists of a
finger specification, the narne of a C function to call to execute the row, and a constant argument

io pass to the function. The fmger specification determines which finger coordinates to pass as
additional arguments to the finetion.

Consider the table entries for the MDP line gesture, similar to the GDPline gesture:

ACTION (_LINErecog)
{ ALWAYS BlitnCreate, {int}Line, },fam

 i 38 e windowoften requires the alignment procedure to be repeated, a problem that would of course
haveto be fixed ina production version of the program.
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{ START (O), BltnSetPoint, o, f,
END ACTION

_INEman ip}
{ CURRENT(O),  BltnSetPoint, L,
{ CURRENT(1), BltnThickness, 0,
{ CURRENT (2), BltnColorFill, 9,

ENDACTION

When a line gesture is recoognized, the LINErecogaction is executed. its first line results inthe call BLtmCreate (Line) being executed. The ALWAYS means that this rowis not associated
with any particular finger, thus no Hager coordinates are passed to BltnCreate. The next line
results in BltnSetPoint (0, Xos,>) being called, where Oxys, Yas) iS the initial point of the first
finger Ginger 0) inthe gesture.

 

Ramptenn!ney

For each snapshot after the liné gesture has been recognized, the LINEmanip action is
executed, Thefirst line causes BltnSet Point (1, xXoc,o<) to be called, where Cac, 19) is the
current location of the first finger Ginger 0). The next line causes BLtnThickness (0, Xo, Vic}
to be called, (4... Vic) being the current location of the second finger. Similarly, the third line causes

BlenColorFill (0, 42,39.) to be called.

If any of the fingers named in a lime of the action are not actually in the ficid of view of the
frame, that line is ignered. For example, the line gesture in MDP, as in GDPis a single straight
stroke. Iramediately after recogmition there will only be one finger seen bythe frame, namely finger

zero, so the ines beginning CURRENT (1) and CURRENT (2) will not be executed. H a second
linger ig now Inserted into the viewlield, both the CURRENT (0) and CURRENT (1) Sines will be
executed every snapshot. [the imual finger is nownremoved, the CURRENT(0) line will no longer
be executed, until another finger is placed in the viewfield.

Theassignmentof finger numbers is done as follows: when the gestureis first recognized, each
finger is assigned its index in the path sorung (ace Section 5.2). During the manipulation phase,

when a finger is removed, ite number is freed, but the numbers of the remaining fingers stay the
sane. When a finger enters, itis assigned the smallest [ree number.

The semantic routines (e.g. BltnColorFill} communicate with each other (and successive
calls to themselves) viasharcd variables. All these fimetions are defined in a single file withthe shared

variables declared at the top. Whenthere are no fingers in the viewfield, the call BltnReset(} is
made; its function is to initialize the shared variables. In MDP, all shared variables are initialized

by BLinReget(); fromthis it follows that the interface is aiedeless. Another system might havesome siate retained across calls to BlinReset (); foror exainple. the current selection nught be
maintained this way.

The Bltn... functions manipulate the drawing elements through a package of routines. The
actual implementation of thase routines is similar to the implementation of the GDP objects. Rather

than ge into detail, the underlying routines are summarized. MDP declares the following types:

typedef enum { Nothing, Line, Rect,
Circle, SetOf&Objects } Type;
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typedef struct { A... */ } *Element;
typedef struct { &... #/ } #Trans;

Assume the following declarations for expasitional purposes:
Rlement 6; & a graphic abject» /
Type type; & the type ofa graphic object * /
int x, YP & coordinates * /

int QR; Aa pointnuimber Of, or Z 3% /
int thickness, color;

BOoGL b;

Trans tx; & a wansformatian matrix * /

The ent is a pointer to a structurerepresenting an element of a drawing, whichis either aLine, — Cirele or Secorcbiects. Uhe Element structure includes an array of points
lor those clement types which need them. A Line has two points (ihe endpoints}, a Rect has three
points (representing three comers, thus a Rect. is actually a parallelogram), and a Circle has
two points (the center and a point on the circle), A SerOfObj ects contains a list of component
elements which make up a single composite clement.

ea lement StNewObj (type) adds a new element of the passed type to the drawing, and

returns a handle. fnitially, all the points in the element are marked wninitialized. Any clement
with uninitialized points will not be drawn, with the exception of Rect objects, which will

be drawn parallel to the axes if point 1 is uninitialized.

StUpdatePoint (e, p, x, y) changes point p of element e to be (x,y). Returns FALSE

if & has no point p.

StGetPoint(e, p, &x, &y)} sets x and yto point p of element e. Returns FALSEiff e has
no pout p or point p is uninitialized.

StDelete(e) deletes obicct e from the drawing.

StPill(e, b) makes object e filled if bis TRUE, otherwise makes e unfilled. This only applies

to circles and rectangles, which will be only have their borders drawn if unfilled, otherwise
will be “colored in!’

 

StThickness(e, t) sets the thickness of e’s borders to £. Onlyappliestocircles, rectangles,
and lines.

StColor(e, color) changes the colorof eto color, whichis an index into a standard color
map. Tf e is a set, all members of e are changed.

StTransform(e, tr) applics the transformation tr te e. In general, tr can cause transla-
tions, rotations, and scalings in anv combination.

vold StMovele, x, y) isaspecial case of StTransform which translates e bythe vecior
(x,y).
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StCopyBlement (e) adds an identical copy of ¢ to the drawing, which is also retumed. Tf e is

a set, its elements wul be recursively copied.

StPick(x, y) returns the clement inthe drawing at point (x,y), or NULL ifthere is no clement

there. The topmost clement at (xx, v} is returned, where elements created later are considered
to be on top of elements created earlier. The thickness and “filled-ness” of an element are

considered when determining U an clement is at (x,y).

StHighlight (6, )) tums on highlighting of e if b is TRUE, off otherwise. Highlighting is

currently implemented by blinking the object.

StuUnHighlightAll () turns off highlighting on all objects in the drawing.

vold StRedraw() draws the entire picture on the display. Double buffering is used to ensure

smooth changes.

StCheckpoint () saves the current state of the drawing, which can be later restored via
StUndoMore.

StUndoMore (b) changes the drawing to its previously checkpointed state Gf b is TRUE). Each
suecossive call to StUndoMore (TRUE) rcfurns to a previous state of the pictarc until the

state of the picture when the program was started in reached. StUndoMore (FALSE)
performs a redo, undoing the effect of the last ScUndoMore (TRUE). Successive cails to
StUndoMore (FALSE) will eventuallyrestore a drawing to its latest checkpointed state.

&.
Trans AllocTran() allocates 4 transformation, which is imtalizedto the identity transforma-

tion.

SegmentTran(tr, xd,y0, xl,yl, KO,¥O, X1,¥1) sets tr to a transformation con-

sisting of a rotation, followed by a scaling, followed by translation, the net effect of which
would be to map 4 line scement with endpoints (x0,v0) and (x1,yi)} to one with end-

points (0, ¥0) and (X1,¥1). Other transformation creation functions exist, but this is the
only one used directly by the gesture semantics.

Jotc (color, *, y, text) draws the passedtext string on the screen in the passedcolor, at
the point (x,y). The text will be erased at the next call to StRedraw.

8.3.2 MDP gestures and their sernantics

Nowthat the basic primitives used by MDP have been described, the actual gestures used, and their

effect and implementation are discussed. Figure 8.10 shows typical examples of the MDP gestures
used. Each is described in turn.

Lime ‘The line gesture creates a line with one endpoint being the start of the gesture, the other
tracking finger O after the gesture has been recognized. Finger 1 Qvinch must be brought in

after the gesture has been recognized) controls the thickness of the line as follows: the point
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Figure 8.10: MDP gestures

where finger | frst enters is displayed on the screen; the thickness of the line is proportional
to the differcnee in ycoordinate of finger I’s current point and initial point. Finger 2? controls

the color of the Ime in a sumilar manner. (Here a color is represented simply by an index into
acolor map.)

The action table entry for line has already been listed in the previous section. The C routines
called are listed here:

BlenCreatelarg) {
StNewObj (ar

shouldCheckpoin

E =

}
BltnSetPoint (arg, qx, gy} 4

StUpdatePoint (Ez,LE (BH)
%

BltnThickness (arg,
1i(tx == +1} tx

LEC(IEB) return;
x =a abe
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JotCc (RED, gx, gyv+i0, "t");

}
BltnColorFill(arg, gx, gy} ¢{ int color, fill;

L£(!E) return;

LE(CEx ==  -1) cfx = gx, cfy = gy;
fill = Scale

StPill(B, £

cEx -— gx, 1, 416, -—1, 1);

s(ofy — gy, i, 25, —i5, 15);
}) color = —color;

or == 0) color = 1;

StcColor(E, colar);

 
Jocc (GREEN, cfix, cfy, eee30", color, Fill};JotcC(GREEN, gx, gy+15, ");

}
Scale(i, mum, den, low, high) {

ink Fo = 1 * mum;

int k = j >= 0 ? %4d/fden : ((-4) /den);
return k < low ? low : k >» high ? high : &k;

}

The BltnReset () function sets B to NULL, and sets tx, ty, cfx, and cfy all to -1.
BlitnReset () calls StCheckpoaint () if shouldCheckpoint is TRUE and thensets

shouldCheckpoint to FALSE.

The functions BLtnThickness and BltnColorFill provide feedback ta the user by
jotting some text CTX” and “CY’, respectively) that indicates the location that the finger first

entered the viewtield. Lower case text (“t? and “ci”) is drawn at the appropriate fingers,
indicating to the user which fingeris controlling which parameter.

Rectangle The rectangle gesture works similarly to the tine gesture. After the gestarc is recag-
tized, a rectangle is created, one comer at the starting pomt of the gesture, the opposite comer
tracking finger 0. Fingers 1 and 2 control the thickness and color as with the line gesture.
Finger 2 also controls whether or not the rectangle is filled; if it is to the eft of where it
imiuially entered, the rectangle is (led, otherwise not.

ACTION ( RECTrecog)
{ ALWAYS, BlenCreate, {int}Rect, f,

{ START (O), BlenSetPoint, 6, },
ENDACTION

ACTION (RECTmanip)
{ CURRENT(OQ}, BltnSetPoint, 2, }
{ CURRENT (1), BltnThickness, 0, },
{ CURRENT (2), BltnColorFill, o, }

ENDACTION
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Circle The circle gesture causes a circle to be created, the starting point of the gesture being the
center, and a point on the circle controlled by finger 0. Fingers 1 and 2 operate as they do in
the rectangie gesture. Its semantics of tbe circle gesture are alms! identical that ofthe line
gesture, and are thus not shown here.

Edit color This gesture lets the user edit the color and “Giled-ness”of an existing object. Beginning
the gesterc on an object edits that object. Otherevise, the uscr moves finger 0 until he touches

an object to edit. Once selected, finger 0 determines the color and fll properties of the object
as finger 2 did in the previous gestures.

ACTION ( COLORrecog)

{ START (O}, BltnPick, oO, f,

ENDACTION

ACTION ( COLORmanip)

{ CURRENT (0), BltnPickI£Mull, Oo, #,
{ CURRENT (0), BltnColorFill, Oo, f,

BNDACTION

BltnPick(arg, gx, gy) f
B= StPick(gx, gy);

3

if{B) px = gx, Py = gy;

}
BlimPickifNull (arg, gx, gy)

if(iE) BltnPicklarg, gx, gy);

i

Copy The copy gesture picks an clement to be copied in the same manner as the edit-color gesture
above. Once copied, finger 0 drags the newcapy around, while finger 1 can be used to adjust
the color and thickness of the copy.

ACTION (Copyrecog)

{ START (O), BltnPick,

ENDACTION

a ~
a)

~

ACTION ( CoPYmanip)

{ CURRENT (0), BltnPickIfNull, oO, },
{ CURRENT (0), BlincCopy, o, },
{ CURRENT (0), BltnMove, Oo, },
{ CURRENT (1), BltnColorFill, a, f,

ENDACTION

in the interest of brevity the C routines will no longerhe listed, since they are very similar to

those alreadyseen.
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Move Move is a two-finger “pinching” gesture. An object is picked as in the previous gestures,
and then tracks fingerO.

ACTION (_MOVErecog
{ START (0), BltnPick, Oo, f,

ENDACTION

ACTION (MOVEmanip)
{ CURRENT (0), BltnPickifNull, Gc, }
{ CURRENT (0), BltnMove, c, }

ENDACTION

Delete The delele gesture picks an object just like the previous gestures, and thendeletesit.
ACTION ( DELETErecag)

{ START(O), BltnPick, o, f,
ENDACTION

ACTION ( DELETEmanip)
{ CURRENT (0), BitnPickIfMulil,
{ CURRENT (0), Biltnbelete,

ENDACTION

m© ranean!

Parallelogram The parallelogram scsturcis a two-finger gesture. One cornerofthe paraliclogram
is determined by the initial location of fingers 0; an adjacent comer tracks finger 0, and the

opposite corertracks finger 1. Adding a third finger (finger 2} moves the initial point ofthe
parallelogram.

ACTION (_PARArecog)
{| ALWAYS, BlenCreate, (int}Rect, },
{ START (0), BlenSetPoint, a, f,

ENDACTION

ACTION ( PARAmanip)
{ CURRENT (0), BlenSetPoint, i, j,
{ CURRENT (1), BltnSet Point, 2, },
{ CURRENT (2), BltnSetPoink, c, },

ENDACTION

Rotate Rotate is a two-finger gesture. An object is picked with either finger. At the time of the
pick, cach finger becomesattached to a point on the picked object. Each finger then drags its

respective point; the object can thus be rotated by rotating the fingers, sealed by moving the
fingers apart or together, or translated by moving thefingers in parallel.

ACTION (_ROTATErecog}
{1 START(C), BlonPick, o, },
{ START(1), BlenPickIf£Null, 06, },

ENDACTION
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ACTION ( ROTATEmanip}
{ CURRENT(0), BltnPickI£Null, a, },
{ CURRENT(1), BltnPickIfFNuil, oo, 4,
{ CURRENT(0), BltnRotate, o, f,
{ CURRENT (1), BitnRotate, 1, },

ENDACTION

Pack ‘The pack gesture is a three-finger gesture, Any objects touched bythe anyofthe fingers are
added to a newly created SetOfObjects.

ACTION ( PACKrecog}
END ACTION

ACTION ( PACKmanip)
{ CURRENT (0G), BltnPick, a, },
{ ALWAYS, BltnAddToSet, o, },
{ CURRENT (1), BltnPick, Qo, 3},
1 ALWAYS, BltenAddToSet, 0, f,
{ CURRENT (2), BitnPick, a, 4,
{ ALWAYS, BltnAddtToset, 0, },

INDACTION

Unde The undo gesture is also a three-finger gesture, basically a “4” made with three fingers
moving in parallel, After itis recognized, moving finger 0 up causes more and more of the

edits to be undone, and moving finger 0 down causes those edits to be redone.

ACTION ( UNDOrecog}
{ CURRENT (0), BltnUndo, a, f,

ENDACTION

ACTION (_UNDOmanip)
4 CURRENT (O), Bitntnde, Oo, f,
ACTIONENE

8.3.3 Discussion

MBP is the only systern knownto the author which uses non-DataGlove multiple finger gestures.
Thas, a brief discussionof the gestares themselves is warranted.

MDP’s single fager gestercs are taken directly from GDP. After recognition, additional fingers

may be brought into the sensing plane to control additional parameters. Wherever an additional
finger is first brought into the sensing plane becomes the posttion that gives the current value of

the parameter which that finger controls; the position ofthe finger relative to this initial position
determines the new value of the parameter. This relative control was felt by the authorto beless

awkward than other possible schemes, thonghthis of course needs to be stadied more thoroughly.
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The multiple finger gestures are designed to be intuitive. The parallelogram gesture is, for
example, two fingers making the rectangle gesture in parallel. The move gesture is meant to be
a pinch, whereby the object touched is grabbed and then dragged around. The two Imger rolate
gesture allows two distinct points on an object to be selected carefully. During the manipulation
phase, each of these points tracks a finger, allowing for very intuitive translation, rotation, and
sealing of the object. The three finger undo gesture is intended to simulate the use of an eraser on a
blackboard.

The Sensor Prame is not a perfect device for gestural input. One problem with the Sensor Prame

is that the sensing plane is slightly above the surface of the screen. Ttis difficult to precisely pall a
finger out without changing its position. Vhis often results in parameters that were carefully adjusted

during the manipulation phase of the interaction being changed accidentallyas the interaction ends.
This problem happens more often in multiple finger gestures, where, due to problems with the Sensor
Frame, removing one finger may change the reported position of other fingers even though those
fingers have not moved. Also, it is more difficult to pull out one finger carefully when other fingcrs
must be kept still in the sensing plane. Finally, it does not take very long for a gesturer’s arm ta get

tired when using a Sensor Frame attached to a vertically mounted display.
Tn MDP, the two-phase interaction technique is applied in the context of nrultiple fingers. As

each lingers position represents two degrees of freedom, multi-path mteractions allow many more
parameters to be manipulated than do single-path urteractions. Also, since people are used to
gesturing with more than one finger, mrultiple fingers potentially allows for more natural gestures.
Even though sometimes only one or twofingers are used to enter the recognized part of the gesture,

additional fingers can then be utilized in the manipulation phase. The result is a newinteraction
technique that needs to be studied further.

8.4 Conchuision

This chapter described the major applications which were built to demonstrate the ideas of this
thesis. Two, GDP and GSCORE, were builf on top of GRANDMA, and showhowsingle-path
gestures may be integrated into MVC-based applications. The third, MDP, demonstrates the use of

nrulti-path gestures, and shows howgestures may be integrated in a quick and dirty fashion in a
non-objected-ortented context.
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Chapter 9

Evaluation

The previous chapters report on some algorithms and systems used in the construction of gesture-
based applications. This chapter attempts to evaluate how well those algorithms and systems work.

When possible, quantitative evaluations are made. When not, subjective or anecdotal evidence is
presented.

§.1 Basic single-path recognition

Chapter 3 presents an algorithmfor classifying singie-path gestures. In this section the performance

of the algorithm is measured in a variety of ways. Furst, the recognition rate of the classifier
is measured, as a function of the mumber of classes and the mumber of training examples. By

exaniiaing the gestures that were nusclassified, various sources of errors are uncovered, Next, the
effect of the rejection parameters on classifier performanceis studied. Then, the classifier is tested
on a number of different gesture sets. Finally, tests are made to determine how well a classifier
trained by one person recognizes the gestures of another.

9.1.2 Recognition Rate

The recognition rate of a classifier is the fraction of example inputs that it correctly classifies. In this

section, the recognition rates of a numberofclassifiers trained using the algorithm of Chapter3 are
measured. The gesture classes used are drawn from those used in GSCORE(Section 8.2). There are

iwo reasons for testing on this set of gestures rather than others discussed in this disseriation, First,
it consists of a fairly large set of gestures (30) used in a real application. Second, the GSCORE set
was not used in the development or the debugeing of the classification software, and so is unbiased
in this respect.

GRANDMAprovides a facility through which the examples used totrain a classifier are classified
bythe classifier, While running the training examples through the classifier is useful for discovering

ambiguous gestures and determining approximately how well the classifier can be expected ta
perlorm, i 1s not a good way io measure recognition rates. Anytrainable classiiier will be biased

toward recognizing its training examples correctly. Thus in all the tests descnbed below, one set of

195
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Figure 0.1: GSCORE gesture classes used for evaluation

example gestures is used to train the classifier, while another, entirely distinct, set of examples is

used to evaluate its performance.
Figure 9.1 shows examples of the gesture classes used in the first test. All were entered by the

author, using the mouse and computer system described in Chapter 3. First, 100 cxamples of cach
class were entered; these formed the training set. Then, the author entered 100 more examples of
each class; these formed the testing set. Tor both sets, no special attempt fo was made to gesture

carefully, and obviously poor examples were not chminated.

There was no classification of the test examples as they were entered; im other words, no feedback

was provided as to the correctness of each example immediately after it was entered. Given such
feedback, a user would tend to adapt to the systemand improve the recognition of future input. The
teat was designed to climinate the effect of this adaptation on the rceagnition rate.

The performance ofthe statistical gesture recognizer depends on a number offactors. Chief
among these are the number of classes to be discriminated between, and the mumber of traming

examples per class. [he effect of the number of classes is studied by building recognizers that use
only a subset cf classes. In the experiment, a class size of C relers to a classifier thal atlempts to
discriminate betweenthe first C classes in figure 9.1. Similarly, the effect of the training set size is
studied by varying F, the number af examples per class. A given value of & means the classifier
was traincd on examples 1 through # of the training data for each of Celasses.

‘igure 9.2 plots the recognition rate against the number of classes C for varioustraining set sizes
&, Each point is the result of classifying 100 examples of each ofthe first C classes in the testing
set. ‘The nuraber of correct classifications is divided by the total numberof classifications attempted
(160C}to give the recognition rac. (Rejection has been turned olf forthis expertment.) Figure 9.3
shows the results of the same experiment plotted as recognition rate versus © for various values of
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Figure 0.3: Recognition rate vs. training set size
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Tn general, the data are not too surprising. As expected, recognition rate increases as the training
set size Increases, and decreases as the numberof classes increases. For C = 30 classes, and F = 40

examples per class, the recognitionrate is 96.9%. For C= 30 and F= 10the rate is 95.6%. C= 10
and £ = 40 gives arate of 99.3%, while for C= 10 and & =10 the rate is 97.8%.

OF practical significance for GRANDMAusers is the mimber of training examples neededto
give goodresults. Using & = 1S examples per class gives goodresults, even for a large number of
classes. Recognition rate can be marginally improved by using & = 40 examples per class, above
whichno significant improvement occurs. & = 10 results in poor performance for more than C= 16
classes. Tt is comforting to know that GRANDMA, a system designed to allowexperimentation
with gesturc-based interfaces, performs well given only LS cxamples per class. This is in marked

contrast to many trainable classifiers, which often require hundreds or thousands of examples per
class, precluding their use for casual experimentation (125, 47].

Analysis of errors

it is enlightening to examine the test examples that were misclassified in the above experiments.

Figure 9.4 shows examples of all the kinds of misclassifications by the C = 30, & = 40 classifier
Not every misclassification is shownin the figure, but there is a representative of every A classified
as 8 for allA# B The label “Aas B(« nY’ indicatesthat the example waslabeled as class Aim the
test set, but classified as B by the classifier. ‘The o indicates the number of tumes an A was classified
as a 4, when il is more than once.

The following types of errors can be observed in the figure. Manyof the misclassifications are
the result of a combination of two ofthe types.

Poorly drawn gestures. Some of the mistakes are simply the result of bad drawing on the part of

the user, This may be due io carelessness, or to the awkwardness of using a mouse to draw.
Examples inchide “Su as aptic,” “2r as sharp,” “Sr as 21,” and “delete as 16d." “Felef as dot”
was duc to an accidental mouse click, and in “delete as &d” the mouse button was released

prematurely. The example “key as delete” was likely an error caused by the menise bali not
rolling properly on the table. “4a as Su” and “E6d as delete” cach have extrancous points at

the end of the gesture that are outside the range normally climmated by the preprocessing.
“dr as loris drawn so that the first comer in the stroke is looped (igure 9.5), this causes the

accumulated-angle features fy, fig, and fy; to be far from their expected value (see Section
3.3).

Poor mouse tracking. Many of the errors are due to poor tracking of the mouse. Typically, the
problem is along time between the first mouse point of a gesturc and the second. This accurs

whenthe first mouse point causes the systern to page in the process collecting the gesture; this
maytake a substantial amount of time. The underlying window manager interface queues up

every mouse event involving the press or release of a button, but does not queue successive
mouse-moverment events, choosing pisiead to keep only the most recent. Because ofthis,

mouse movenients are missed while the process is paged in.
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Figure 9.4: Misclassified GSCOREgestures
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 rrrnee
Figure 9.5: A fooped corner

The left figure is a magnificationofa misclassified “ 4r as 16r" shawn ta theprevious figure. The portion ofthe

gesture enclosed in the rectangle has been copied and its aspect ratio changed. resufting in the figure on the

righl As can been seen, the coruer which should be a stinple angie, fs fvoped. Lis resulted jn the angle-based

features having values significantly different from the average AY gesture, thus the misclasstlica tion.

In “2u as 4u,° “2d as 4d,” “Gras 4d.” “Rr as Bd,” and “timesig as 2d” there is no point between

the initial point and the first corner, probably due to the paging. This interacts badly with
the features /; and f5, the cosine and sine of initial angle. Peatures f, and f, are computed

trom the first and third point; this usually results m a better measurement than using the first
and second point. In these cases, however, this results in a poor measurement, since the third

point is after the comer.

“Sr as nat” was the result of a very long page in, during which the author got impatient and
jiggled the mouse.

Ambiguous classes. Some classes are very similar to each other, and are thus likely to be mistaken

for each other. ‘Phe 14 misclassifications of “fclef as 8° are an example. Actually, these
may also be considered examples of poor mouse tracking. since pomts lost from the normally

rounded top of the Fclef gesture caused the confusion. The mistakes “aptie as 8u,” and “uptie
as Felef” are also examples of ambiguity.

Ideally, the gesture classes of an application should be designed so as to be as unambiguous
as possible. Given nearly ambiguous classes, it is essential that the input device be as reliable
and as ergonomically sound as possible, that the features be able to express the differences,

and that the decider be able to discriminate between them. Without all ofthese properties,it
is mevilable that tiere wil be substantial confusion betweenthe classes.

Tnadequacyof the feature set. The examples where the second mouse pointis the first comer shaw
ane way in which the foatercs inadequately represent the classes. For example, the “2r as

sharp” examples appearto the system as simple left strokes. Sometimes, a small error in the
drawing results in a large error in a feature. This occurs most often when a stroke doubles

back on itself; a small change results in a large difference in the angle features fo, fro, and
fy, (see figure 9.5). The mistakes “dr as 161° and “16d as delete” are in this calegory. “L6u

as 8u” and “I6u as 32u” point to other places where the featares may be improved.
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The mapping from gestures to features is certainly not invertible; many different gestures

mught have the same feature vector in the current scheme. ‘Uhis results in ambiguities nat
due enlirely to similarities between classes, bul due to a feature set unable to represent the
diiference. Example “key as 16d” is an dlustration ofthis, albeit not a great one.

Inadequacyof Hnear, stafistical classification. Given that the differences between classes can be

expressed in the feature vector, it still may be possible that the classes cannot be separatec
well by linear discrimination functions. This typically comes about when a class has a feature

vector with a severely non-mmultivariate-normal distribution. In the current feature set, this
most often happens in a class where the gesture folds back on itself (as discussed earlier),

causing fy, arid thus the entire feature vector, to have a bimodal distribution.

The averaging of the covanance matrix in essence implies that a given feature is equally

umportant in all classes. in the above class, the initial angle features are deemed unportant by
the classilier. When compounded with errors m the iracking, this leads to bad perlormance

on examples such as “uptic as beam” and “uptie as move.” It is passible fora linear classifier
to express the per-class importance of features in a linear classifier; in essence this is what

‘

is donc by the neural-nctwork-like training procedures (@.f.a back propagation, stochastic
gradient, proportional increment, or perceptron training).

Inadequate traiming data, Drawing and tracking errors occur in the training set as well as the
testing set. Given enough good examples, the effect of bad examples on the estimates of the

average Covariance matrix and the mean feature vectors is negligible. This is not the case
when the number of examples per class is very small, Bad or inswtficient training data causes
bad estimates for the classifier parameters, which in torn causes classification errors. The
gestures classified correctly by the C = 30, B= 40classificr, bat incorrectly by the C = 30,
# = 10 classifier are examples ofthis.

Analyzing errors in this fashion leads to a mumbcr of suggestions for casy improvernents to the

classifier. Timing or distance information can be used to decide whether to compute f; and f> using
the first two points or the first and third points of the gesture. Mouse events could be queued up

to lmprove performance in the presence of paging. Some new features can be added to unprove
recognition even in the lace of other errors; in particular, (he cosine and sine of the final angle of

the gesture stroke would help avoid a numberof errars. These modification are left for future work,
as the author, at the present time, has no desire to redo the above evaluation using 6000 examples
from a different gesture set.

Ome error not revealed in these tests, but seen in practice, is misclasstfication due to a premature
timeout in the two-phase interaction. This results in a gestare being classified before it is completely
entered.

9.1.2 Kejection parameters

Section 3.6 considered the possibility of rejecting a gesture, Le. choosing not to classify it. ‘Twa
parameters potentially useful for rejection were developed. An estimate of the probability that
a gesture is Classified unarmbiguously, & is derived from the valtes of the per-ciass evaluation
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Figure 9.6: Rejection parameters

functions. An estimate of the Mahalanobis distance, @, is used to determine howclose a geshireis
to the norm of its chosen class.

Itwould be nice if thresholds onthe rejection parameters could be used to neatly separate correctly
classified example from incorrectly classified examples. EHis clear that it wouldbe impossthle to
do a perfect job: as “delete as Sd”illustrates, the system would need ta read the user’s mind. The
hape is that most of the incorrectly classified gestures can be rejected, without rejecting too many

correctly classified gestures.
A fittle thought showsthat any rejection rule based solely on the ambiguity metric P will on the

average reject at least as manycorrectly classilied gestures as incorrectly classified gestures. This
follows from the reasonable conjecture that the average ambiouous gesture is at least as likely to
be classified correctly as not. (This assumes that the gesture is not equally close to three or rnore
classes, In practice, this assumptionis almost always true.)

‘igure 9.6 is ascatter plot that shows the value for both rejection parameters for all the gestures
in the GSCOREtest set. A plus sign indicates a gesture classified correctly; a triangle indicates each

gesture classified incorrectly, i.e, those represented in figure 0.4. Mast of the correctly classified
examples have an estimated anambiguilty probability af very close io one, thus accounting for

the dark mass of points at the nght of the graph. 96.3%of the correctly classified examples had
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Figure 9.9: Correctly classified gestures with P< .05

P > 0.99. However, the same interval contained 33.7%ofthe incorrectly classified examples.
Figure 9.7 shows how manycorrectly classified and how manyincorrectly classified gestures would
be rejected as a function of the threshold on Pp

Examining exactly which of the incorrect examples have P > 0.99 is interesting, The garbled
“Sr as nat” and the left stroke “2as sharp” have P= 1.0 withinsix decimal places. In retraspect this
is not serprising: those gesteres are far from every class. but happento be unambiguously closcat to
a single class. This is borne out in the ¢’ for those gestures, which is 380 (off the graph) for “Sr as
nat” andat least 70 for each “2r as sharp” gesture. Other mistakes have P > 999 but ? < 20. In
this category are “Pelef as 81,” “uptec as Pelef,” “delete ax 8d,” and “4u as Su"; these gesturce go
beyond anabiguily to Pook like their chosen classes so could noi be expected to be rejected.

Alsointeresting are those correctlyclassified test examples that are candidates for rejection based
on their P and cP values. Figure 9.8 shows some GSCORE gestures whose P= land P > 90.
Examples “movel2” and “beam63” are abnormal only by virtue of the fact that they are larger than
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normal. The two bar examples have their endpoints in funny places. among other things, while
the three Gclef examples are fairly unrecognizable. Phe algorithm does howeverclassify all of
these cc ectly; and id would be too bad to reject then. Figure 9.8 shows gestures whose arnbiguily
probabilttyis less that .95. In many of the examples this is caused by at least one corner being made
by two roouse points rather than one. In “delete33” one carner is looped. These gestures look so
much like their prototypes it would be too bad to reject them.

‘The Mahalanobis estimate is mainly aseful for rejecting gestures that were deliberately entered
poorly. This is not as silly as it sounds; a user may decide during the course of a gesture not io
go through with the operation, and at chat time extend the gestare into gibberish so that it will be
rejected.

One possible improvement would be to use the per-class covariance matrix of the chosen class
in the Mahalanobis distance calculation. Compared to using the average covariance matrix, this

would presumably resull in a more accurate nicasurement of howmuch the impul gesture differs for
the norm of its chosen class.

9.1.3 Coverage

Figure 9.10 shows the performance ofthe single-path gesture recogmuion algorithmonfive different
gesture sets, The classifier for cach set was trained onfifteen examples per class and tested on an
additional fifteen examples per class. The first set, based on Colernan’s editor [25], had a substanttal
amount of variation within each class, both in the training and the testing examples. The remaining

sets had much less variation with each class. As the rates demonstrate, the single-path gesture
recognition algorithmperforms quite satisfactorily on a mumber of different gesture sets.

9.1.4 Varying orientation and size

Oncfeature that distinguishes gesture from handwriting is that the orientation or size af a gosturc ina

given class may be used as an application parameter. [Mor this to work, gestures of such classes must
be recognized as such independent oftheir orientation or size. However, the recognition algorithm

should not be made completely orientation andsize independent, as some other classes may depend
on orientation and sive to distinguish themselves.

it is straightforward to indicate those classes whose gestures will vary in size or oricntation:

simply vary the size or orientation of the training examples. The goal of the gesture recognizeris to
take irrelevant those features in classes for which they do not matter, while using those feature in

classes for whichthey do.

Theoretically, having some classes that vary in size and orientation, while other that depend on
size or oricntation for correct classification should be a problemfor anystatistical classifier based on

the assumptions of a omaltivariate normal distribution of features per class, with the classes having
a common covariance matrix. A class whose size is variable is sure to have a different covariance

rnatrix than one whose size remains relatively constant; the same may be said of orientation. Thus,
we wouldsuspect the classifier of Chapter 3 to perform poorly in this siluation. Surprisingly, this
does not seem to be the case,
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Figure 9.10: Recognition rates for various gesture setsLI

Hach set was trained with 15 examples per class andtested on an additional 15 examples perclass.
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Figure 9.12: Recognition rate for set containing classes that vary

Figure 9.11 shows 16 classes, some of which vary in size, some of which vary in orientation,
others of which dependon size or orientation to be distinguishable. The training set consists afthuty
examples of each class; variations in size or orientation were reflected in the training examples, as

shownin the figure. A testing set wilh thirty or so examples per class was similarly prepared.

Migure 9.12 shows the recognition rate plotted against the numberofclasses for various numbers

of examples per class in the training set. As can be seen, the performance is good; 96.9%correct
on 16 classes trained with 30 examples per class. Using only IS examples per class results in a

recognition rate of 96.7%.

Figure 9.13 shows all the mistakes made bythe classifier. None of the mistakes appear to be a

result ofthe size or orientation of a gesture being confused. Rather, the mistakes are quite simular to
those seen previously, The conclusion in that the gesture classifier does surprisingly well on gesture
sets in which some classes have variable size or orientation, while others are discriminated on the
basis of their size or onentation.

9.1.5 Interuser variability
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AHthe gestures shown thus far have been those of the author. It was deemed necessary to show

validity of the current work by demonstrating that the gestures of at least one other person could
be recognized. ‘Two queslions come to romd: what recogmilion rale can be achieved when a person
other than the author gestures at a classifier trained with the author's gestures, and can this rate be
improved by allowing the person to train the classifier using his or her own gestures?

Setup

As preparation for someone besides the author actually using the GSCOREapplication (see Section
9.4.2 below}, the GSCORE gesture set (igure 9.1) was used in the evaluation. The hardware used

was ihe same hardware used in the majority of this work, a DEC MicroVAX IE running UNEX and
AAO.

A simple testing program was prepared for training and evaluation (Figure 9.14). In atrial, a

prototype gesture of a given class is randomly chosen and displayed on the screen, withthe start point
indicated. The user attempts to enter a gesture of the sarne class. That gesture is then classified, and
the results fed back to the user In training mode, if che systemmakes an erros, the trial is repeated.

in evaluation mode, each trial is independent.

Subject PVis a music professor, a professional musician, and an experienced music copyist. He
is also an experienced computer user, familiar with Macintosh and NeXT computers, among others.

Procedure

The subject was given one half hour of practice with the testing program in training mode. He was
also given a copy of figure 9.1 and instructed to take notes at his own discretion. After the half hour,
the tester was put im evaluation mode, and two hundred trials nin. The test was repeated one week
later, without any warmup. The subject was then instructedto create his own gesture sct, borrowing

from the set he knewas muchas he liked. Thirty examples of each gesture class were recorded, and
two hundred evaluationtrials run on the newset.

Results

During the initial training there was some confusion on the subject’s part regarding which hand to
use. The sabject normally uses his nght hand for mousing, but, being left handed, always writes
music with his left. Aftcr about ten minutes, the subject opted to use his icft hand for gesturing.

In the initial evabuation trial the systemclassified correctly 188 out of 200 gestures. ‘Uhe subjec

felt he could do better and was allowed a second run, during which 179 out of 200 gestures were
correctly classified. By his own admission, he was more “cocky” during the second run, generally
making the gestures faster than during the first. The average recognition rate is DI.8%.

After the test, the subject commented that he felt much of his difficulty was due to the fact

that he was not used to using the mouse with his lett hand, andthat the particular mouse felt very
different than the ane he was used to (NeT's). He felt his performance would further iniprove with

additional practice.
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Figure 9.15: PV's misclassulied gesiures (author's set}

ifis notes are interesting. Although the subject had no particular knowledge of the recognition

algorithm being used, in many cases his notes refer to the particular features used in the algorithm.
Por gestures whole and sharp he wrote “start up” and “don’t begin foo vertically” respectively,
noting the inaportance of the correct initial angle. Por Ip he wrote “make short,” for bar he wrote
“snake large,” and for delete he wrote “make quickly.” For 2u and 2d he wrote “sharp angle.”

The subject commented on places where the gesture classes used did not conform to standard
copyist strokes. For example, he stated the loop in flat goes the wrong way. He explained that
many music symbols are written with twostrokes, and said that he might prefer a systemthat could
recognize multiple-stroke symbols.

When the test was repeated a week later, the subject, without any warmup, achieved a score of
£83 out of 200, 91.5%. Figarc 9.15 shows the misclassificd gestures. The subject was again ensure
of which hand to use, but used his feft hand at the urging of the author.

The subject then created his own gesture set, examples of which are shown in figure 9.16. A

training set consisting of 30 examples of each class was entered. Running the training set through
the resulting classifier resulted in the rather low recognition rate of 94.7%(by comparison, running

the author’s training set through the classifier it was used to train yielded 97.7%.) The low rate was
due to the some ambiguity in the classes (e.g. “Hat” and “16d” were frequently confused) as well
as manyclasses where the corners were looped (as seen before in section 9.1.1}, causing a bimodal
distributions for fo, fig, and fy

The problems in the new gesture set nonwithstanding, PV ran two hundred trials ofthe tester on

the newset. He was able to get a score of 186 out of 200, 93%.

At the timeof tms whiting, PVhas not yei made the attempt to remove the ambiguities fromthe

new gesture set and to be more careful on the sharp comers.
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Figure 0.16: PV’s gesture set

Conclusion

It is difficult to draw a conchision given data from only one subject. The author expected the

recognition rate to be higher when PV trained the system on his own gestures than when he ased
the author’s set. The actual rate was slightly higher, but not enough to make a convincing argument

that people do better on their own gestures (some slighUly more convincing evidence is presented in
section 9.4.2 below). tn retrospect, PV should have created a training set that copied the author’s
gestures before attempting to significantly modify that gesture set. The author's gesture set turned
out to be better designed than PV's, in the sense of having less inherent ambiguities; this tended to
compensate for any advantage PV gained frarn using his own gcsturcs.

However, PV's new pesttre set is not withoutrmerit; on the contrary, if has a number of mteresting
gestures. The new delete pcsturc, a quick, long, icfeward stroke, gives the user the impression of
throwing objects off the side of the screen. The new Move gesture is like a delete followed bya
last minute change of mind. The flat gesture is much closer to the way PV writes the symbol, as are7 e.,
the leftward whole andhalf rests gestures Tf and 2p. Vhe stylized “4” for timesig is clever, as is the
wayit relates lo key. PV’s bar gesture is much more econotaical thal dhe author's.

‘he experiments indicate that a person can use a classifier trained on another person’s gesture
wih moderaicly good results. Also mdicaiedis that people can create interesting gesture seis on

their own. Some modification to the feature set also seems desirable, mainly to make the features
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less sensitive to “looped” comers. Tt would be useful to give more feedback to the gesture design as

to which classes are confusabls. ‘his should be simple to do simply by examining the Mahalanobis
distance between every pair afclasses.

9.1.6 Recognition Speed

itis well known that a user interface must respond quickly in order to satisfy users; thus for gesture-
based systems the speed of recognition is an important factor in the usability of the system. This
section reports on measurements of the speed of the components ofthe recagnition process.

Thestatistical gesture recognizer described in Chapter 3 was designed with speed in mind. Each
feature is incrementally calculated in constant time; thus OCP) work must be done per mouse point,
where Fis the mumberof features. Given a gesture of mouse points, it thus takes OL) time to
computeits fealure vecior. The classification computes a hnear evaluation function over the features
for each of C classes: thus classification take CCCP) time.

Feature calculation

The abstract datatype F'Vis used to encapsulate the feature calculation as follows:

FY FvALloc() allocates an object of type FV. A classifier will generally call FvALloc (} only

once, during program initialization.

Fyinit (fv) initializes fv, an object of type BV. Pvinit(fv) is called once per gesture, before

any points are added.

PvAddPoint (fv, x, v, ©) adds the point Oy ¥i which occurs at ime fio the gesture.
FvAddPoint performs the incremental feature calculation. It is called for every mouse
point the programreceives. There are thirteen features calculated CF = 13).

Vector FvCalc (fv) returns the feature vector as an array of double precision floating point

numbers. Jt performs any necessary calculations needed to tansform the incrementally
calculated apxiliary feateres into the featare set used for classification. Tris called once per
gesture.

The function CalcFeatures (gq) represents the entire work of computing the feature vector
for a gesture that is in memory:

Fy fv; fe allocated via FvAlloc@elsewhere « /
Vector

CalcFeatures (gy)

register Gesture gq;
£t

register Point p;
FyiInit (iv);

for(p = g-epoint; p < &g->point{g-snpoints}; p++}

FvAddPoint (fv, p->x, p>
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|Time(sec)|RelativeSpeed|
227.95 | 0.76 |

VAX 11/780 172.20 | 10 |

MicroVAX TH 60.97 | 28 |

| PMAX-3100 11.30| 15 |
 
 

 
  

Processor milliseconds percall
| FvAddPoint|Fv i CaloFeatures

“MicroVAKIE|0.22|034003.9|
MicroVAX UE | 0.074 1.3

PMAX-3100 0.029 B.040 | 0.44 

Table 9.2: Speed offeature calculation

return FvCale (fv);

}
"fo obtain the timings, the testing set of Section 9.1.1 was read into memory, and then each

gesture was passed to CalcFeatures. Three processors were used: the DEC MicroVAX Ui that

was used for the majority of the work reported in this dissertation, a DEC MicroVAX HE, and a DEC
PMAX-3 100 (to get an idea of the performance on a more modem system). The UNEX profiling tool

was used to obtain the times. In all cases, the times are virtual times, i.e. the time spent executing
the programby the processor. All testis were run on unloaded systems, and the real umes were never
more than 1% more than the virtual times.

Before timing any code related to gesture recognition, the following code fragment (cormpiled
with “ce -O") was timed on a numberof processors, MicroVAX TT, VAX 11/780, MicroVAX TH,

and PMAX-3 100, in order to compare the speed of the processors usedin the following tests to that
of a VAX 11/780:

register int i, n = 1000000;
double s, afi5], biis];

for(i = GO; 2 < 15; i+4¢) afij = i, bli] = isi;
;

do {
S$ = 9.0;

For(i = G; 2 < 15; i++) g += ali] *« bli};

} while(-—n);
The times for the above fragment shownin table 9.1.
Note that on this code fragment the PMAN-3 100 nins about 20 times faster than the MicroVAX

UL. On more eypical code, ic usually rans only 10-15 times faster.

The testing set averaged 13.4 points per gesture. The timings for the routines that calculate
features are shown in table 9.2.

The cosi per piouse pomto incremenially process a mouse point is a small fraction of a

millisecond, even on the slowest processor. Since mouse points typically come no faster than 40
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Table 0.3: Speed of Classification

per second, only a small fraction of the processoris consumed incrementally calculating the feature
vector, Padced, substantially more of the processoris consumed communicating with the window
manager to receive the mouse point and performthe inking.

Classification

Once the feature vector is calculated it roust be classified, This involves computing a linear
evaluation function v" on Ffeateres Ui’ = 13} for each of C classes. If the rejection parameters are
desired, it takes an additional QC) work to estimate the ambiguity P and QF’) work toestimate
ihe Mahalanobisdistance ¢. The computation times for each ofthese is shownin table 9.3.

To get these times, four rans were made. Every gesture in thetesting set was classified in every

run. The first run did not calculate either rejection parameter. The average time to clasasify a gesture
as one of thirty classes is reported the maxv’ column; the v° column is computed asi, of that time.
(The v® column thus gives the time to compute the evaluation function for a single ¢lass: nrultiply
this by the mumberof classes to estimate the classification time ofa particular classifier.) The second
ran computed Pafter each classification; the difference between that time and the max v“ timeis
reported in the Pcolema. ‘Vhe third run computed a” and is reported similarly. ‘Phe fourth nun
computed both Pand &; the average lime per gesture is reported in the “total” column.

Por a 30-claas discrimination with both rejection parameters bemg used, after the last mouse
point of a gesture is entered it takes a MicroVAX Tf 73 milliseconds to finish calculating the feature
vector (FvCalc) and then classify ut. This is acecptabic, albcit not fantastic, performance. ifthe
end of the gesture is indicated by no mouse motion for atimeoutinterval, the classification can begin

before the timeout interval expires, and the result be ignoredif the user moves the mouse before the
interval is up.

Currently, all arithmetic is done using double precision floating point numbers, ‘Uhere is no

conceptual reason that the evaluation fiinctions could not be computed using integer arithmetic,
after suitably rescaling the feateres so as not too lose mach precision. Theresulting classifier would
then run much faster (on most processors). This has not been tried in the present work.

Tf cager recognition is rennin

 

 

g, classification must occur af every mouse point, and the number

of classes is 2C. This puts a ceiling on the number of the classes that the eager recognizer
can discriminate between in real-time. On a MicroVAX IL, the cost per mouse point includes

FyAddPoint (0.22 msec) plus FvCalc (0.34 msec) plus the per class evaluation of 2€classes,

G.54C. mouse peints come al a maximumrate of one every 25 milliseconds, C = 45 classes anconsume the entire processor. Practically, since there is other work to do (¢,g. inking), C =20is
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probablythe maximumthat can be reasonably expected from an eager recognizer on a MicroVAX HL.

On today’s processors, instead of computation time, the limiting factor will be the lower recognition
raic when given a large number of classes.

One approach tried to increase the number of classes in cager recognizers was to use onlya subset
of the features. While this improved the response time of the system, the performance degraded

significantly, so the idea was abandoned. There is no point getting the wrong answerquickly.

9.1.7 Training Time

The stated goal of the thesis work is to provide tools that allow user interface designers to experiment
with gesture-based systems. One factor impacting on the usahility of such tools is the amount of

time it takes for gestere recognizers to retrain themselves after changes have been made to the
training examples. In alrnost all trainable character recognizers, deleting even a single traming

example requires that the traming be redone from scratch. For some technologies, notably neural
networks, this retraining may take mimites or even hours. Such a system would not be conducive to

experimenting with different gesturesets.

By contrast, statistical classifiers of the kind described in Chapter 3 can be trained very rapidly.
Training the classifier fromscratch requires OLE) to corapute the mean feature vectors, OUEF”) time
to calculate the per-class covariance matrices, CX CF} to average them, CO1F*) to invert the average,
and CYCF*) to compute the weights used in the evaluation functions. If the average covariance
matrix is singular, an OCF?) algorithmis run to deal withthe problem.

Often, a fair amount of work can be reusedin retraining after a change to some training examples.

Adding or deleting an example of a class requires GLP) work to incrementally update its per-class
class mean vector, and OCF") work to incrementally updateifs per-class covariance matrix [137].
Retraining then involves repeating the steps starting fromcornputing the average covariance maton.
Thus, for retraining, the dependency on &,the total wumberof examples, is eliminated. The retraining
time is instead a fimetion of the mumber af exarnples addedar deleted.

‘Phe Objective C implementation does not attempt to incrementally update the per-class covari-
ance malrix when an exaniple is added. Insiead, only the averages are kept incrementally, and the
per-class covariance matrix is recomputed from scratch. This involves OCF F*) work for eachclass
c changed, where F° is the numberof training examples for class c. This results in worse perfor-
mance when a small nuoiber of examples are changed, but beticr performance whenall the cxamples
of a class are deleted and a newset entered. The latter operation is common when experimenting
with gesture-based systems.

The asthor has implemented both C and Objective € versions of the single path classifier.
Besides maintaining the per-class covariance matrices incrementally, the C version differs in that it
docs not store the list ofcxamples that have becn usedto train it. (tis not neecssaryto store thelist to

add and remove examples, since the mean vector and covariance matrix are updated incrementally.)
itis thus more efficient since it does not need to maintain the lists of examples. (Objective C's Set.

class, unplemented via hashing, is used to maintain the lists in that version.) Ht also does not have
the overhead of separate objects for examples, classes and classifiers that the Objective C version
has (see Section 7.5).
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i rocessor Time (milliseconds per call} i
| sAddExample sRemovenzample sDoneAdding|sDoneAdding |
| (10 classes) (30 classes) |)
| MicroVAX TT 37 | 3.8 | 136 234 |
| MicroVAX I 0.90 | 0.90 | 43 78 |

| PMAX-3100 0.024 | 0.026 | 14 22 |
   

Table 9.4: Speed of classifier training

Since only the C version could be ported to the PMAX-3100, it was used forthe timings. (C

versions ofthe feature computation and gesture recognition were used forthe uniings above; however
in these cases the Objective C methods are straightforward translations of their corresponding C
functions. In semecases, the methods merely call the corresponding C function.) The following C
functions encapsulate the process of training a classifier:

sClassifisr sNewClassifier() allocates andretumsahandletoanewclassitier. Initially

it has no classes and no easThe “s” at the beginning of the type and functionnames refers to “single-path”; thereas trespondingtypes and functions for the multi-path
classifices.

sAddExample (sClagsifier sc, char *clagssname, Vector e) adds the training

example (feature vector e)} to the named class classname in the passed classifier. The
class is created if it has not been seen before. Linear search is used to find the class name;

however, it is optimized for successive calls with the same name. The sAddExample
function incrementally maintains the per-class mean vectors and covariance matrices,

 sRemovelxample ] sc, char *clasename, Vector ©) removes cx-
ample @, asssuroed to have been added earlier, from the named class. The per-class mean
vector and covariance matrix are incrementally updated.

sDoneAdding (sClagsifier sc) trains the classifier on its current set of examples. [ff

coroputes the average covariance matrix, inverts it (Gximg it if singular), and computes the
weights.

sClass sClassify(sClassifier sc, Vector ¢, double *p, *d2) actaally
performs the classification of e. Hf p is non-NUUL the probability of ambiguity is esti-

mated; if d2 is non-NULLthe estimated Mahalanobis distance of @ to its computed class is
returned. This is the function tumed in the previous section.

The fimetions were exercised first by adding every exampic in the training sct, training the

classifier, and then looping, removing and then re-adding 10 consecutiveexamplesbefore retraining.
Nosingular covariance matrix was encounted, due to the large number of examples. Table 9.4 shows

the performanceof the various routines.
Even on a MicroVAX H, training a 30 class classifier once all the examples bave been entered

takes less than a quarter second. Thus GRANDMAisable to producea classifier immediately the
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first time a gesture is made over a set of views whose combinedgesture set has not been encountered

before (see Sections 7.2.2 and 7.4}. Uhe user has to wait, but does not have to wait long.

9.2 Hager recognition

This section evaluates theeffectivences of the eager recognition algorithm on several single-stroke
gesture sets. Recall that eager recognition is the recognition of a gesture while it is being made,

without any explicit indication of the end of the gesture. Ideally, the cager recognizer classifies a
gesture as soon as enough ofit has been seen to do so unambiguously(see Chapter 4).

Tn order to determine howwell the eager recognition algorithmworks, an eager recognizer was
created to classify the eight gestures classes shown in 9.17. Each class named for the direction of
its two scements, c.g. Uf means “up, right.” Each of these gestures is arabiguous along its initial
segment, and becomes unambiguous once the comer is turned and the second segment begun.

The eager recognizer was trained with ten examples of each of the eight classes, and tested on
thirty examples of each class. ‘The figure shows ten ofthe thirty test examples for each class. and

inchides all the examples that were misclassified.
Two comparisons are of interest for the gesture set: the eager recognition rate versus the

recognition ratc of the full classificr, and the cagernacss of the recognizer versus the maximum

possible eagerness. The eager recognizer classified 97.0%of the gestures correctly, compared to
99.2%correct for the full classifier. Most of the eager recognizer’s errors were due to a corner

looping 270 degrees rather than being a sharp 90 degrees, so it appeared to the eager recognizer the
second stroke was going in the opposite direction than intended. In thefigure, “EK” indicates a gesture
misclassified by the eager recognizer, and “F” indicates a misclassification by the full classifier.

Gnthe average, the cager recognizer examined 67.9% of the mouse points of cach gesture before

deciding the gesture was unambiguous. By hand, the author determined for each gesture the mimber
of mouse points from the start through the comer turn, and conehided that on the average 59.4%
of the mouse points of each gesture needed to be seen before the gesture could be unambigguously
classified. ‘he parts of cach gesture at which unambiguous classification could have occurred but

did not are indicated in the figure by thick lines.
Figure 9.18 shows the performance of the eager recognizer on GDP gestures. The eager

recognizer was traincd with 10 cxamplcs of cach of 11 gcsterc classes, and tested on 30 examples
of each class, five of which are shownin the figure. The GDP gesture set was slightly altered to

increase eagerness: the group gesture was trained clockwise because when it was counterclockwise
it prevented the copy gesture from ever beimmg eagerly recognized. For the GDP gestures, the full

classifier bad a 99.7% correct recognition rate as coumpared with 93.3%lor the eager recognizer.
On the average 60.5%of each gesture was examined by the eager recognizer betore classification
occurred. For this set ao atterapt was made to determine the minimumaverage gesture percentage
that needed to be seen for unambiguous classification.

lrom these tests we can conclude that the trainable cager recognition algorithmperforms ac-
ceptably but there is plenty of room for improvement, both in the recognition rate and the amount

of eagerness.

Computationally, eager recognition is quite tractable on modest hardware. A fixed amount of
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Figure 9.17: The performanceof the eager recognizer on easily understood data
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Pigere 9.18: The performance ot the eager recognizer on GDPgestures

The transitions trom thin to thick lines indicate where eager recognition occurred.
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computation needs to occer on each mouse point: first the feature vector must be updated (taking

0.3 msec on a DEC MicroVA® Li), and then the vector must be classified by the AUC Caking 0.27
nisee per class, or G pisec in the case af GDP).

9.3 Multi-finger recognition

Muht-imger gestural input is a significant innovation of this work. Unloriunately, ciecumstances

have conspired to make the evaluation of multi-finger recognition both impossible andirrelevant.
The Sensor Frame is the only input device upon which the multi-finger recognition algorithm
was tested, Unfortunately, there is only one finctioning Sensor Frame in existence, and that was

damaged sometime after the multi-finger recognition was running. but before formal testing could
begin. (ortunately, a videotape of MDP in action was made while the Sensor Trame was working.}

No progress was made in repairing the Sensor Frame for over a year; testing was thas impossible.
Eventually the Sensor Prame was repaired, but Sensor Frame. Inc. went out of business shortly

afterward, making any detailed evaluation inelevant. The owner of the Sensor Frame has left the
country, taking the device with him.

An informal cstimate of the mlti-finecr recognition accuracy maybe estimated fromten minutcs

of videotape of the author using MDP. This version of MDP uses the path sorting multi-finger
recognition algonthra Gection 5.2}. As shown in figure 8.10, MDPrecognizes 11 gestures (one

finger gestures, 3 two finger gestures, and 2 three finger gestures}. In the videotapes,the author made
30 gestures, 2 of which appear ta have been musclassilied, and one of which was rejected, resulting

in a correct recognition rate of 90%. The processing time appears to be negligible,
All three misclassifications are the result of the Sensor Frame secing more fingers in the gesture

than were intended. This was due to knuckles of fingers curied up (so as not to be used in the
gesture) accidentally penetrating the sensing plane and bemg counted as additional fingers. As there
are distinct classifiers for single finger, two finger, and three finger gestures, an incorrect number of

fuapers inevilably leads to a muisclassificalion. While if is possible to imagine methods for dealmy
with such errors during recognition, the main cause of this problemis the ergonomics of the Sensor
Frame.

Por the small gesture set examined, the recagnition rate is 100%once the errors due to “extra

fingers” are eliminated. This is to be expected, given the small number of gestures for each number
ot fingers. [tis expected that the multi-path classifier operating on one finger gestures would perform
about as well as the single-pathclassifier, as the algorithms are essentially identical. Phe single-path

classifier, when given only six classes to discriminate among, has been shown (an mouse data} to
perform at 100% in almost all cases. When operating on two finger gestures, it is expected that
the performance of the recognition algorithm would be similar to that of the single-path classifier
on fwice the number of classes. Actually, it is possible that some of the paths im the ewo-finger

gestures will be similar to other paths in the set, and be merged into a single class bythe training
algorithm (Section 3.4). Thus, when the aumber of unique paths will be less than twice the number

of two-finger gesture classes, performance may be expected to improve accordingly. Sumilarly, the
three finger gesture classifier pray be expected to perform: as well as a single-path classifier the

recognizes between one and three times the number of three finger gesture classes, depending on
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the mumber of unique paths in the class set.

One more factor to consider is that mouse data tends to be much less noisy than Sensor Frame
data. The triangulation by the Sensor Prame is erratic, especially when multiple fingers are being
tracked. For example, both horizontal segments of the Parallelogram gesture of figure 8.10 should
be straight lines. Until this problem can be solved, it is expected that recognition rates for Sensor

Frame gesture sets will suffer.

9.4 GRANDMA

Evaluating GRANDMAis mich more subjective than evaluating the low-level recognition rates.
GRANDMA may be evaluated on several levels: the effort required to build new interaction

techniques, to build newapplications, to add gestares to an application, to change an application’s
gestures, or to use an application to pertorma task.

No atternpt was made to formally evaluate any of these. In orderto get statistically validresults,
it would have been necessaryto run carefully designed experiments on a mumberofusers, something

the author hadneither the time, space. inclination, or qualifications to do. Purthermore, the author
does not wish to claim that GRANDMAis superior to existing object-oriented toolkits for any

partivalar task. GRANDMAis simply the platform through which some ideas for input processing
in object-oriented toolkits were explored. GRANDMA’ssignificance, if any, will be its influence on
future toolkits, rather than any more direct results.

Nonetheless, this section informally reports on the author’s experience budding gesture-based
sysiems wilh GRANDMA, (No one besides the author inied to program with GRANMDA,) Also,
in order to confirm that GRANDMAcan be used by someoneother than the author, this section alsa
reports on observations of a subiect trying ta use GSCORE and GRANDMAto due sometasks.

9.4.1 The author’s experience with GRANDMA

GRANDMA took approximately seven months to design and develop. It consists of approximately
12000 lines of Objective C code. There are an additional 5000 lines of C code which implement

a graphics layer as well as the feature vector calculation. GDP took an additional 2000 lines of
Objective C code to inyplerment. GDP was developedat the same lime as GRANDMA, as it was the

promary application used to test GRANDMA.

Initially, only two GDP gestures were used to testGRANDMA’s gesture handler and associated
utilities, Onee these were working well, it took four days to add the remaining gestures to GDP.
Most of this time was spent witing Objective C methods to use in semantic expressions. ‘Lhese

were methods that were not needed for the existing direct manipulation interface.

GSCOREconsists of 6000 tines of Objective C code. Tt took six weeks to design and implement
GSCORE, inchuding its palette-based interface. Much of this time was spent on the details of

representing common music notation, mechanisms for displaying mrasic notation, and prodacing
usable music fonts. The paletie, an interaction technique that did not as yet exist im GRANDMA,

took about eight hours to implement. ft took two weeks to add the gestural interface to GSCORE,
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Pugure 20: PY"s result

including writing some additional methods. Much of this ime was spent expenmenting with

different semantics for the gestures.
Section 10.1.3 lists feateres of GRANDMA that will be important to incorporate into future

toolkits that support gestures.

9.4.2 A aser ases GSCORE and GRANDMA

This sections iaformally reports on subject PV’s (sce Section 9.1.5) attempts to use the GSCORE
program.

The task was to enter the nausic shownin figure 9.19. The music was chosen to exercise many

ofihe GSCORE gestures. PV is an experienced music copyist, and it look him 100 seconds io write
out the music as shown, copying it from an earlier attempt.

Using gestures, the author was able to enter the ahove score in 280 seconds (almostfive minutes).
He made a total of 53 gestures, four of which did not give the desired results and were immediately

undone. Only two of those were misclassifications: the other two were notes gestures where the note
was created having the wrong pitch, due to misplacement of the cursor at the start of the gesture.

Turning off gestures and using only the palette interface, it took the author 670 seconds (eleven
minutes}, No mistakes needed to be undone in the lattertrial.

PV'sfirst atternpt was at using the GSCOREprogramtrained with the author’s gestures. PV
had already gained experienced with this set of gestures during the stady of interuser variation.
PVpracticed for one half hoar with the GSCORE programhefore atterapting the task. The author
coached PV during this time, as no other documentation or help was available.

PVtook 600 seconds (10 minutes) fo complete the task. Tle made a total of 73 gestures, 16 of
which were immediately undone. It appeared to the author, who was silently observing, that each

ndo was usedto recover froma misclassification. Figure 9.20 shows the product of his labor PV
then turned olf gestures, and used the palette interface to enter the example. He completed the task
in 6&0 seconds (11 minutes}.
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PVthen entered his own gestures in place of some of the author's. In particular, he sebstituted
his own gestures for the nine classes: delete, move, beam, tr, 2r, Gr, 16r, keysig, and bar,
entering 13 or mwre examples of cach. The total time to do this, including incremental testing ofthe
new gestures and periodic saves to disk, was 25 raimutes. PYdid not atteropt to enmlate the author's
gestures: instead, he usedthe forms he had created earlier (see Section 9.1.5).

Once done, PV repeated the experiment. It took him 310 seconds (5 minutes} to enter the music.

He made 58 gestures, 4 of which were undone.
PV was interviewed after the tests, and made the following comments: The megest problem,

he stated, was that mouse tracking in the GSCORE program was nruch more sluggish than in
the recorder and tester. (This is accurate, as the time required for GSCOREevents to be created

and consumed adds significant overhead to the mouse tracking. Much of this is overhead dueto
GRANDMA.) PY characterized the system as “sluggish.” Bad tracking, especially at the start of
the gesture, contributed significantly to the number of misclassifications.

P¥ stated that he thought the system “intuitive” for cntcring notes. He described the gesture-
based interface as “excellent” compared to the palctte-hased systern, but when asked howthe

gesture-based interface compared to writing on paper, he replied “it sucks.” He did not hke using
the mouse for gesturing, and believed that a styhis and tablet would be muchbetter.

Tus again diWicull to draw conclusions (rom an informal study ofone user. Did P'V’s performance
improve because he tailored the gestures to his liking, or because he had been practicing? This is
unknown. Some things are clear: GRANDMA makes it easy to experiment with new gesture sets,
and, in GSCORE, with moderate practice the gesture-based interface iniproved task performance by

a factor of two over the palette-based interface. Whether gesture-based interfaces generally improve
task performance overton-gesture-based interfaces is a question that requires muct further study.
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Chapter 10

Conclusion and Future Directions

This chapter summarizes the conutbutions of this thesis and indicates same directions for future
work.

if.l Contributions

This thesis makes contributions in four areas:

e Newinteraction techniques

® New recognition-related algorithms

# Integrating gestures into interfaces

@ Input in object-oriented toolkits

Bachof these will be discussed in turn.

18.1.1 Mew interactions techniques

A major contributions of this work has been the invention and exploration of three new interaction
techniques.

The two-phase single-stroke interaction The two-phase interaction enables gesture and direct ma-
nipulation to be integrated in a single interaction that combines the power of each. The first
phase is collection, during which the pomts that make up the gesture are collected. In the
simplest case, the end afthe collection phaseis indicated by a motion timeout, classification

occurs, and the second phase, manipulation, is entered. In the manipulation phase, the user
moves the mouse to manipulate some parameters in the application. The particular parameters

maripulated depend on the classification of the callected gesture. The collection phase is like
character entry im handwriting interfaces; the manipulation phase is like a drag mleraclion in

chrect-rmanipulation interfaces. Generally, the operation, operands, and some parameters are
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determinedat the phase transition Gwhen the gesture is recognized), and then the manipulation

phase allows additional parameters to be set in the presence of application feedback.

Eager recognition Eager recognition is a modification of the two-phase single-stroke interaction

in whichthe phase transition from gesturing to manipulation occurs as soon as enoughofthe
gesture has been seen so that if may be classified unambiguously. The resull is an interaction

that combines gesturing and direct manipulation in a single, smooth mteraction.

The Ovo-phase multiple-linger interaction Gesture and direct nianipulation may be conibinedlor

niultiple path inputs ma way similar ta the two-phase single-stroke interaction, With multiple
finger input, opportunities exist for expanding the power of each phase of the interaction.
By allowing multiple fingers in the collection phase, the repertoire of possible gcstures is
greatly increased, and a multiple finger gesture allows many parameters to be specified

simultaneously when the gesture is recognized. Sumiarly, even when only one finger is used
for the gesture, additional fingers may be brought in during the manipulation phase. Thus,

the two-phase roultiple-lmger mleraction allows a large numtber of paranieters to be specified
and interactively manipulated.

iG.12 Recegnition Technology

This thesis discloses live new algorithms of general uulity m the constmiction and use of gesture

FECOEMIZEES.

Automatic generation of singie-stroke gesture recognizers from training examples A practical
and efficient algorithmfor generating gesture recognizers has been developedandtested. Init,

a gesture is represented as a vector of real-valued features, and a standard pattem recognition
technique is used to generate a linear classifier that discriminates between the vectors of

different gesture classes. The training algorithm depends on aggregate statistics of each
gesture Class, and empirically it has been shownthat usually only fifteen examples of each

class are needed to produce accurate recognizers. Itis simple to mcorporate dynamic attnbates,
sech as the average speed of the gesture, into the feature set. The algorithm has been shown
to work even when sorne classes vary in size and orientation while others depend on size or
orientation to be recognized. The reeognizer size is independent of the numberoftraining
examples, and both the recognition andtraining times have been shownto be small. A features

set that is both meaningful and extensible potentially allows the algorithmto be adapted to
future input devices and requirements.

Incremental feature calculation The calculation used to generate features fromthe input points of
a gesture is incremental, meaning that it takes constant time to update the features given a new

ipul peint. This allows arbitrarily large geslures (o be processed with no delay im processing.

Rejection algorithms ‘wo algorithms for rejecting ill-formed gesteres have been developed and
tested. One estimates the probability of correct classificaitom, enabling input gestures that are

arnbigaous with respect to a set of gesture classes to be rejected. The other ases a normalized
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distance metric to determine how close an imput gesture is to the typical gesture of the its

computed class, allowing outliers to be rejected.

Automatic generation of eager recognizers from training examples An cager recognizer classi-
fics a posture as soonas if is unambiguous, alleviating the necd for the ond ofthe gcsturc to be
explicitly indicated. An algorithm for generating cager recognizers from training examples

has been developed and tested. The algorithmproduces a two-class classifier which is nm on
every urput point and used io determine if the gesture being entered is unambiguous.

Automatic generation of mali-path gesture recognizers The single-stroke recognition work has
been extended so that a number of single-stroke recognizers may be combinedinto a mualti-

finger gesture recognizer. The described algorithm produces a multi-path recognizer given
training examples. Relative path timing information is considered during the recognition,
and global classification is attempted when the individual path classifications do not uniquely
determine the class of the multi-path gesture. Por dealing with the problems that arise

from molti-path input devices that do not a prior? determine “which path is which.” two
approaches, path sorting and path clastering, have been explored. The resulting algorithmhas
been demonstrated using the Sensor Frameas a multi-finger input device.

 

19.1.3 Integrating gestures into interfaces

A paradigmfor integrating gcsturcs into object-oriented intcrfaccs has been developed and demon-

strated. The key points are:

A gestureset is associated with a viewor view class. Each class of object in the user mierlacepotentially responds to a different set of gestures. Thus, for example, notesXs respond toa
different set of gestures than staves in the GSCOREmusic editor.

The gesture set is dynamically determined. Dromthe first point of a gesture, the system dynam-

ically determines the set of gestures possible. The first point determines the possible views
at which the gesture is directed. Por each of these views, utheritance up the class hierarchy

determines the set of gestures it handles. Thesesets are combined, and if need be, a classifier
for the resulting union is dynamically created.

The gesture class and attributes map to an application operation, operands, and parameters.

Gestures are powerful because they contain additional information beyond the class of the
gesture. ‘The attributes of a gesture, such as size, orientation, length, speed, first point, and
enclosed area, can all be mapped io parameters GQncluding operands) of application routines.

Tn the two-phase interaction, after the gestare is recognized there ia an opportunity to map
subsequent input to application pararneters in the presence of appHeation feedback.

Gesture handlers may be manipulated at runtime, In order to encourage exploration of gesture-

based systems, all aspects of the gestural interface can be specified while the applicationis
running. A new gesture handler may be created at runtime and associaied with one or more

viewsor view classes. Gesture classes may be added, deleted, or copied from other handlers.

Page 1394 of 1714



Page 1395 of 1714

228 CHAPTER IQ CONCLUSIONAND FUTURE DIRECTIONS

Examples of each gesture class can be entered and modified at runtime. Finally, the semantics

of the gesture class can be entered and modified at runtime. ‘Three semantic expressions
are speciliable: one evaluaied when the gesture is first recognized, one evaluated on each
subsequent mouse pout, and one evaluated when the interaction completes.

 

16.14 input in Object-Oriented User luterface Toolkits

A amber of newideas in the area of input in object-oriented user interface toolkits arose in the
course of this work.

Passive and active event handlers A single passive event handler may be associated with multiple

views. When input occurs on one such view, the handler usually activates a copyof itself.
Thus, the active/passive dichotomyeliminates the need to have a controller object instantiated

for each view that expects inpul, a plajor experise in many MVCsystems.

Event handlers may be associated with view classes Insiead of having to associate a handler with

every imstance of a view, the handler may be associated with one or more viewclasses, A
view may have multiple handlers associated with it, and handlers are queried in a specific
order to determine which handler will handle particular input.

Unified mouse input and virtual tools All imput devices arc tools, but when desired a single input

device may at times be different tools, one way to implement modes in the interface. Tools
may also be sottware objects, and some views are indeed such virtual tools. Tools often have

an action, which allows them fo operate on any views that respond to that action. ‘The test of
whether a given view responds to a given loolis made by an event handler associaied with

every view; this allows semantic feedback to occur automatically without any explicit action
on the part of the view or the tool.

Automatic semantic feedback As just mentioned, the feedback as to whether a given tool operates
upon a view over whichit is has been dragecd happens automatically. For cxanrple, objects

that respond to the delete message will automatically highlight when a delete tool is dragged
over them. If desired, an object can do more elaborate processing to determine if it truly

responds to a given tool, e.g. an object may check that the user has permission to delete it
belore indicating iresponds to the delete tool.

Rueotime creation and manipulation of event handlers Event handlers may be created and asso-
ciated with views or viewclasses at runtime. For example, a drag handler may be associated
with an ohject, allowing that object to be dragged G.e. have its position changed). In addition,
seach handiers may be modified at runtime, for cxample, to change the predicate that activaics
the handler.

16.2 Future Directions

In this section, directions for fulure work are discussed. These directicans include remedies for
deficiencies of the current work as well as extensions.
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The single-stroke training and recognition algorithmis the most robust and well-tested part of

the current work, and even in its current form it is probably suitable for commercial applications.
However, a number of simple niodiications should inprave perlormance. Sections #1] and 9.1.5
contain suggestions for additional features as well as moditications to existing features; these should
be implemented. Tracking the mouse in the presence of paging has proved to he a problem, and a
Significant improvement in recognition rate would be achieved if real-time response to mouse events

could be guaranteed.

ht should be simple to extend the algorithm to three dimensional gestures. All that would be
required would be to add several more features to capture motion in the extra dimension. The
training algorithmand lincar classifier would be untouched bythis extension.

Alternatives for rejection should be explored further. The estimated probability of ambiguity
is useful, though using it will always result in rejections of about as many gestures that would
have beencorrectly classified as not. The estimated Mahalanobis distance based on the common
covariance matrix is really only useful for rejecting deliberately garbled gesturcs. ‘The Mahalanobis
distance based on the per-class covariance matrix fares somewhat better, but requires significantly

miore training examples to work well.

Given the obvious false assumption of equal per-class covariance matrices, it seems that the
statistical classificr should nat perform well on gesture sets, some classcs of which vary in size and

otientation, others of which do not. In practice, when the gesture classes are unambiguous, the
classifiers have tended to perform admirably. Presumably this would not be the case for afl such

gestere sets. One area for exploration is a method for caloulating the common covariance matrix
differently, in particular, by not weighing the per class contabutions by the number of examples of
that class.

Another challenge would be to handle such gesture sets without giving up linear classification

with a clased form training formmala. ‘Uhere seems to be only one candidate, which relies on the
niulticlass rainbowsquared error and the pseudoinverse of the matrix of examples [30], It should

be explored as a potential alternative to classifiers that rely on estimates of a common covariance
matrix.

Ho would be interestuig to explore the possibility of allowing the user to indicate declaratively

that a given gesture classes will vary in size and/or orientation. This might be handled simply
by generating additional training examples by varying the user-supplicd examples accordingly.
Altematively, it may be possible to augment the training algorithm so that the evaluation fimctions
for certain classes are constrained to ignore certain features.

Relaxing the requirement that a closed form exist for the per-class feature weights allows
iterative traming methods to be considered. They have been ignored in this dissertation since they
are expensivein training time and tend to require many training examples. However, as processor
speed inercases, iterative methods bccome more practical for use in a tool for experimenting with

gesture-based interfaces.

Similarly, relaxing the requirernent that the classifier be a linear discriminator opens the door
for many other possibilities. Quadratic discrimination, and various non-parametric discrimination

algorithms are but a few. These foo are expensive and require manytraining examples.

Perhaps recognition technologies that require expensive training may be used in a production
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system while the cheaper technology developed here used for prototyping. This is analogous to

using a fast compiler for development and an optimizing compiler for production. At the time of this
writing u seenis Hkely that neural networks wil soon be in common use, and gesture recognition is
but one application.

Addittonal attention should be given to the problem of detecting arabiguous sets of gesture

classes and useless features. The triangular matrix of Mahalanobis distance between cach pair of
gesture classes is a useful starting point for determining similar gesture classes. Multivariate analysis
of variance techniques [74] can determine which features contribute to the classification and which
feanires arc irrelevant. These techniqucs can be uscd to support the design of newfeatures.

Fager recognition needs to be explored further. The classifiers generated by the algorithra of
Chapter 4 are less eager than they could possibly be, duc to the conservative choices being made.

Hand labeling of ambiguous and unambiguous subgestures should be explored more fully; it is not
difficult to imagine an interface that makes such labeling relatively painless, and it is likely to give

better results than the current automatic labeling. Another possible improvement comes fromthe
observation that, during eager recognition, the full classifier is being used to classify subgestures,

upon which it was not trained. Tt might be worth trying to retrain the full classifier on the complete
subgestures. Even better, perhaps a new classifier, trained on the new/y complete subgestures Ce.
those rnade complete by their last point), shauld be substituted for the full classifier, Also, eager
recognition necds to be extended to multi-path gestures.

Algorithms for automatically determining the start of a gesture wouldalso be useful, especially
for devices without any discrete signaling capability Gmost notably the DataGlove}. In the current

work, gestures are considered atomic, essentially having no discernible stracture. Ht is easy to
imagine separate gestures such as select, copy, move, and delete that are concatenated to make
single interactions: select and move, select and delete. This raises the segmentation question: when

does one gesture end and the next begin? Specifying allowable combinations of gestures opens up
the possibility of gesture granumars, an inleresting area for luture study.

This dissertation has concentrated on single-path gestures that are restricted to be singlestrokes,

for reasons explained previously. The utility of mulirple-stroke gestures needs to be exanuined more
thoroughly. In a roultiple-stroke gesture, does the mlaxation between strokes ruin the correspon-
dence between mental and physical tension that makes for goodinteraction? Does the need for
segmentation make the systemless responsive than it otherwise might be? Can a manipulation
phase and cager recognition bc incorporatedinto a system based on multiplc-strake gestures? These

questions require further research.

Dac to the mtcrest in multiple stroke recognition, the question arisca as to whether the singic-
stroke algorithm can be extended to handle multiple stroke gestures. First, the segmentation problem

(grouping strokes into gestures) needs to be addressed. One waythis might be doneis to add a large
timeout to determine the end of a gesture. The distance of a stroke fromthe previous stroke might
also be used. A sequence of strokes determined to be a single gesture might then be treated as a

single stroke, with the exception of an additional feature which records the nuraber ofstrokes in the
gesture, The single-stroke recognition algorithm may then be applied.

Muli-path recognitionis really sGlliniis infancy. While the recognition alworithras of Chapter §

seem to work well, there is not much tc compare them against. Many others methods for multi-path
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recognition need to be explored. That said, the author is somewhat wary that nvuluple finger inpat

devices are so seductive that gesture research will concentrate on such devices to the exclusion of
single-path devices, This would be unfortunate, as ii seerns Likely that single-paih devices will be
much more prevalent for the foreseeable future, and thus more users will potentially benefit from
the availability of single-path gesturing. Also, a thorough understanding ofthe issues involvedin
single-path gesturing will likely be of use in solving the more difficult problems encountered in the

multi-path case.

‘The advent of pen-based computers leads to the question of howthe single-stroke recognition
described here may be combined with handwriting recognition. One approachis 10 pass impai to the

gesture recognizerafter it has been rejected by the handwriting recognizer. The context in which the
stroke has been made (e.g. drawing windowor text window} can aiso be used to determine whether
to invoke handwriting recognition or stroke recognition first.

The siart of a single-stroke gesture is used to determine the set of possible gestures by looking
at possible objects at which the gesture is directed. lt may be desirable to explore the possibility

that the gesture is directed at an object other than one indicated by the first point, e.g. an object
may be indicated by a hot pointof the gesture (e.g. the intersection point of the delete gesture). A
similar ambiguity occurs when the input is a multiple-finger gesture; which of the fingers should be
used to determine the object(s) at which the gesture is directed? In this case, a union ofthe gcaturcs

recognized by objects indicated by each finger couldbe used, but the possibility of conflict remains.

One problem with gesture-based systems is thal there is usually mo iadication of the possible
gestures acceptedbythe system.! This is a difficultythat will potentially prevent novices from using
the system. One approach would be to use animation [6] to indicate the possible gestures andtheir
effects, although howthe user asks to see the animation remains an open question.

Adso daunting to beginners is the timeout interval, where “stillness” is used to indicate that

collection is over and manipulation is to begin. ‘Lypically, a beginner presses a mouse button and
then thinks about whiai to do next; by that time the systemhas already classified the gesture as a dot.
The timeout cannat be totally disabled, since it is the only way to enter the manipulation phase for
some gestares. Perhans some scheme where the trneoats are long (0.75 seconds) for novices and
decrease with use is desirable. Another possibility is chiminating the timeouttotallyat the beginning
ofthe gesteres, thus disallowing dot gestures.

‘The current work suffers from a lack of formal user evaluation. Additional studies are needed

to determine classifier performance as a function of training examples, and whether one user can
use a classifier ttamed by another. In general, the costs and the benefits of fixed verses trainable
recognition strategies need to be snidied. The usamhity of eager recognizers is also of interest.

Reeognizers that gradually adapt to users need to be studied as well. Such a recognizerrequires
the userto somehowindicate when a gesture is musclassified by the system. Lemer [78] demonstrated

a potentially applicable scheme in which the systems monitored subsequent actions to see il the user
was satished with the result of an applied heuristic. There are dangers inherent in doubly-adaptive
systems-—if the systemadapts to the user and the user to the systern, both are aiming at moving
targets, and thrashing is possible. The current approach requires the user explicitly to replace the

 ud. [75] at sesture-based interfaces are “non-vevealing,” and present an interesting solution that
unifics gesturing and pio-menu sclection.
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existing training examples with bis own—a workable, if not glamorous, solution.

The low-level recognition work in this thesis is quite usable in its current state, and may be
directly incorporated into systems as warranted. GRANDMA, however, is not useful as a base for

future development. [tis purelya research system, built as a platform for experimenting with inputin
user unfterface toolkits. Its output facilities are totally inadequate tor real applications. GRANDMA

was built solely by and for the author, who has ne plans to maintain i, Nonetheless,GRANDMA
embodies some important concepts of how gestures are to be integrated into object-oriented user
interface tools.

The obvious next step is ta integrate gestures into some existing user interface constructiontools.
issues of technical suitability are important, but not paramount, in deciding which system to work on.
Anychosen system must be well supported and maintained, so that there is a reasonable assurance

that the system will survive. Furthermore, any chosen system must be widely distributed, in order
to make the technologyof gesture recognition available to as many experumenters as possible.

A number of cxisting systems arc candidates for the incorporation of gestures. The NeXT Ap-
phieation Kitis technically the ideal platform—it is even programmed in Objective C. The appropriate

hooks seem to be there to capture input at the nght level in order to associate gestures with view
classes. Tt is probably not worth the effort t+ unplement an entire mterpreter for entering gesture

semantics al runtime, as this is not something a user will typically manrpulate. A graphical interlace
to contral semantics, based on constraints, would be an interesting addition. In general, a sunmpler
way for mapping gestural attributes to application parameters needs to be determined.

The Andrew Toolkit (ATK) is anaiher sysieminto which gestures oyay be incorporated. ATK

uses its own object-oriented programming language on top of C, so nintime representation of the
class hierarchy, if not already present, should be straightforward to add. ATK has implemented
dynamic loading of objcets into running prograras—this should make it possible to compile gesture
semantics and load them into a ranning program withoutrestarting the pragram. Unfortunately, due

to their overhead, views tend to be large objects in ATK (e.g. individual notes im a score editor
would not be separate views in ATK} making it difficult to associate different gestures with the

sinaller objects of interest in the interface. Scott Hassan, in a different approach, has added the
author’s gesture recognizer to the ATK text object, creating an interface that allows text editing via
proofreader’s marks.

Integrating gestures into Gamiet is another possibility. What would be required is a gesiure in-

teractor, analogousto the gestare event handler in GRANDMA. Gamietinteractors routinely specity
their sernantics via constraints, with an escape into Lisp available for unusual cases. Specifying ges-
hire semantics should therefore be no problem in Garnet. James Landayhas begun work integrating
the author’s recognizer into Garnet.

Gestures could aise be added ta MacApp. Besides being widely used, MacApp hasthe advantage
that it runs on a Macintosh, which historically has nan only one process at a time and has no virtual

memory (this has changed with a recent system software release}. While these points sound like
disadvantages, the real-time operation needed to track the mouse reliably should be easyto achieve

because of them. Because MacApp is implemented in Object Pascal, minimal meta-information
about objecis is available at runtime. In particalar, message selectors are not first class objects in

Obiect Pascal, it is not possible to ask ifa given object responds to a message at runtime, and there
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is mo runtirne representation of the class hierarchy. Many things that happen automatically because

GRANDMAis written in Objective C will need to be explicitly coded in MacApp.
it would be desirable to have additional attributes of the gesture available lor use im gesture

semantics. Notably missing from the current set are locations where the path intersects itself and
locations of sharp carners of the stroke. Both kinds ofattributes can be used for pointing with a
gesture, and allow for multiple points ta be indicated with one single-path gesture. Also, having the

numerical attributes aiso available in a scaled form (e.g between zero and one) would simplifytheir
wse as parameters to application functions.

10.3 Final Remarks

‘The unlity of gesture-based interfaces derives from the ability to communicate an entire primitive
application transaction with a single gesture. For this ta be passtblic, the gesture needsto be classified
to determine the operation to be performed, and attributes of the gesture must be mapped ta the

parameters of the operation. Some parameters may be culled at the tinie the gesture is recognized,
while others are best manipulated in the presence of feedback from the application. This is the

justification for the two-phase approach, where gesture recognition is followed by a manipulation
phase, which allows for the continous adpustrnent of parameters in the presence of application
feedback.

Fromthe outset, the goal of this work was to provide tools to allowthe easy creation of gesture-

based applications. This research has led to prototypes of suchtools, and has thus laid much of the
groundwork for building such tools in the future. However, the goal will not have been achieved untill

gestures are integrated into existing user interface construction tools that are both well maintained
and highly available. This involves more development and marketing than it does research, but it is
vilally important to the future of westure-basedsystenis.
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Appendix A

Code for Single-Stroke Gesture
 ecognition and Training

This appendix contains the actual € cade used to recognize singic-stroke ecsturcs. The feature vector

calculation, classifier training algorithm, and the linear classifier are all presented. The code may
be obtained free of charge via anonymous ftp to emsworthandrew.cmmeda (subdirectory gestures}
and is also available as part of the Andrew contnbation to the XLIRS distribution.

Al Feature Calculation

The lowest level of the cade deals with computing a feature vector from a sequence of mouse points

that make up a gesture. Type FV is a pointer to a structure that holds a feature vector as well as
intermediate results used in the calculation of the features. The function FvAlL loc allocates an FV,

which is initialized before processing the points of a gesture via PvInit. FvAddPoint is called

for each input point of the gesture, and FvCalc returns the feuture vector for the gesture once all
the points have been entered.

The following is a sample code fragment demonstrating the use of these fanctions:

#include “matrix.h"

#include “fv.”

Vector

InputAGesture ()

{
static FV fv;

int x, yv; long t; Vector v;

‘

LE (iv == NULL) Ev = FvALloc();
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36 APPENDIXA CODE FOR SINGLE-STROKE GESTURE RECOGNITIONAND TRAINING

Ute

& A prototypical loop to compute a feature vectoriroma gesture

being read froma windowmanager + /
Fyinit (fv);

while (GetNextPoint (&x, &y, &t) {= END_OFGESTURE)
FyAddPoint (fv, =, y, t);

yo= FyCale (fv);

return v;

}
The returned vector v might now be passed to sClassify to classifythe gesture.

The remainder ofthis section shows the header file, fv.h, which delines the FV type and the

featare vector interface. This interface is implemented in fv.c, shown next.

Asookiidikgaigcidok didia kaigiidci ck daickak ickdc kcak ok seekke desk ak ak ook

fh — Create a feature vector usetul for gesture classification,
 

g. TRousepoints).
RiceRicockcedakik dcicsakiokdokiatatat ckokaaak a: /

 
from a sequence ofpoints (e,

a ke oe ae ke fe Ske ee ofc oft ok Dee ae kc ice oka kc ot oe  ok ok ae

fs
JAPBPDELELSmeeS
 

Aeon> compile imesettable
& some ofthese can also be set at runtime, see fic * /

 

#undeft USE TIME

& Define USETIME to enable the duration and maxinuim» /

A velocity features, Vbern nat defined, Ormeybe passed + /
A&Aas the time to FvAddPaint » /

#idefine DISTSQTHRESHOLD 3*3)
A points within sqri(DIST. SQTHRESHOLD) « /
& will be ignoredto efiminate mousejitter* /

#define SHTHROLLOFF {4x4}
A The SETHETAfeatures (cos andsin of * /

»& angle betweenfirst andlastpoint} will x /
& be scaled down ifthe distance botwoen the * /

f

A points is less than sqrtiSE_ THROLLOFF) * /

typedef struct Ev +FV;

& Duringgesture coffection, an PVholds * /
*& all intermediate results used in the» /

#& calculation ofa single feature vector»/
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f
fee /

void FyFree (); APiw |

void PyInit(); BEVEee /

void FPvAddPoint (); A PVfy int x, y longtime: = /
Vector FvCale() APVR: */

feoceee infernal data structure —--—---- # f
#Hdefine MAXFEATURES 32

 A maximumnumber of t}
atures, occasionally useful as an array bound + /

& tadiccs into the feature Vector returned byPvCale « /

a#define PF_INIT_COS
#define PF_INITSIN 1
#define PF_BBLEN

p

& inital angle {cos} * /
& initial angle (sin) + /

Ne & length ofbounding box diagorsal * /

 

#define PFBBTH 3. & angle ofbounding box diagonal * /

#define PFSEHLEN 4 & length between start and endpoints * /
#define PFSECOS 5 & cos ofangle bewween start aneencpoints + /
#define PFSHSIN 6 & sin ofangle between start and endpoints * /
#define 7 7 A arclengih ofpath * /
#define PF_TH 8 & total angle traversed + /
H#define PF ATH 9 & sum ofabs vals ofangles traversed * {
tdefine PF & surofsyuares ofangles traversed * /

#ifndef USETIME
# define NFEATURES it

telse

+ define PFDUR 12 & duration of path + /
# define PFMAXV 12 A masinum speed * /
# define NFEATURES 123

Handi£

& structure which holds intcrmodiate vosulis during feature voctor calculation ® /

*& the followingare used in calculating the features + /
double gtartx, sStarty; - startingpoint /
long starttime; & starting ime * /

* these are set after ran)
i fewpoints and then left alone « /
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double initialsin, initial_cos; 4 initialangle to x axisx /

A these are updatedincrementally uponevery points /
int npoints; A umberofpoints inpath * /

double ax2, dy2; & differences: ends—prevx, encdy—prevy + /
double mags? ; & dvckdse+ duckedvels |

double endx, endy; A fastpoint added» /
Lone endtime;

double minx, Maxx, miny, maxy;  -& bounding how» /

double pathr, pathth; A tota/ length androtation {in radians) + /
double abs_th; & sumofabsolute values ofpath angles/
double sharpness; * surn ofsquares ofpath angles* /
double MAX; A maxinumvelocity» /

Vector a & Actual feature vector + /
1,
fe

ASCO SES GSCI ORS fob Soak ok fk fesfoskobak ak deo sk ak dcp cok ob ook ee eof ak desea ok dco scabs te besa sh fo
fuc — Creates a feature ecton useful forgesture classification,

froma sequence ofpoints (e.g. mousepoints),a f (Gf DOIENS}

Joicodidackdak dickdddoikadddok dob kdciisidakdok daakokadokakacdekdckkededak a /

#include <stdio.h>

#include «math .h»>

#include "“matrix.kh" & contains Vector andassociated functions * /
#include "fv .h"

A runtime scitable paramvctors * {
double dist_sqthreshold = DIST_SQTHRESHOLD;
double se_th_rolloff = SETHROLLOFF;

#define EPS (1.0e~-4)

& allocate an PVstruct including feature vector*/

FV
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FvALlLoc (}
f
i

register FV fv = (FV) mallocOrDie (sizeof (struct fv));

fv—>y = NewVector (NFEATURES}) ;

FyviInit Civ);
LV;return

Naan!

& &ee memoryassociated with an PVstruct x /
void

FvFree (fv)

FV fv;

vo ay);

4) Ev);

G q

*th

& inidalize an PWstruct to preparefor incoming gesture points * /
void

Fyinit (fv)

register FV fv;potnm,pe
register int i;

fy—snpoints = 0;

iv-sinitial sin = fv->initialcos = 0.0;
Ev-—omaxyvy = 0;

fv—ppathxr ;

fv->pathth = 0;

fv—->absth = 0;

fv->sharoness = 0;

fv->maxv = 0;

for{i = GO; i

fv->yfi] = 0.9;y
f

& update an FVstruct to refbct a new input point + /
void

FyvAddPoint (iv, «, y, t)

register FV fv; int x, y; long t;
fi

ccuble dxi, dyl, magsql;
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deuble th,

#ifdeé PFMAXxV
long lasttime;

#tendif

absth, d;

++iv—snpoints;

if(fv—>npoints == 1)
fv- >starttime =

Ev->Startx =

iv-sstarty =
iv-pendx = x;

return;

eee!

= % — Ev—>endx;
Gxil * Gx1i +

dist{magsql <=

fv-snpoints--- ;
return;

LE

fv-—>-endx =

Ev->pendy =

Sg

q & festpoint,
five-sendtime = t;

fv->minx = fv—->maxx

fv-ominy = Ev-—->maxy

fv->endy = y;

dy

dy

y — fv—>endy;
amYbe

threshold) {

& ignore a point close to the last point» /7

{x < fv-sminx) fv->mMinx = x;

Li(x > fv-omaxx) fv->maxx = x;

iffy < fv-ominy) Ev-sminy = y;

iffy » fv->maxy) fv->maxy = y;

#ifdef PF_MAXV
lasttime =

#Hendif

fv->endtime =

fv-rendti

t;

i \
do = sqrt (magegl);

Ev-opathro += a;

& cateulate initial theta when

if(fv-snpoints == 3)

double mageq, dx, dy,

fv->startx;ax =

magqsg =

x -

dx *

me ;

Ae uipdatepath longth feature* /

the third point is seen ™ f£
4

recip;

ay = Yo fv-sestarty;

ax + dy =« dy;

if(magsgq > dist_eqthreshold) {
& Brad angle wrt.

Page 1407 of 1714
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recip = 1 / sqrt (mage) ;

fv-sinitlalcos = dx # recip;
fyv-sinitialsin = dy * recip;

bene!

if(fv—enpoints e= 3) { A&A update angle—basedfeatures * /
th = absth = atan2Z(dxi * Ev-sdy2 -— £fv-sdxz * dyl,

Gxl *« Ev—sdx2 + dyl *« Ev—sdy2);

iifabsth < 0) absth = —absth;

fv-epathth += th;

fv— vabeath += absth;
fiv-csharpness += theth;

 

#ifdefk PRMAKV=«& compute max velocity + /
if(fv->endtime > lasttime &&

( fv—>maxv)
 

iy = d / (fv-sendtime -— lasttime)}) »

fv- oma = VG

#endil
t3

& prepare for next iteration * /
fv—sendx = «x; Ev-—>endy = v;

fv->dx2 = dxl; fv->dy2 = dyl;

Eiv-smagsqz = magsql;

return;
i5

& calculate and returna feature vector » /
Vector

FvCale (iv}

register FV fv;f
i

double bbien, selen, factor;

if(fv->npoints <= 1)

return fv->y; & a feature vector ofall zeros »/

fv->y{PF_INIT_COS] = fv->initial_cos;
fv—>y{PF_INITP_SIN] = fv—>initial_sin;
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& compute the length of the bounding box diagonal! * / 

Bholen = hypot (five >Ma
 

~ fyv-vominx, fv-smaxy - fv->miny);
 

fv—>y([PF_BBLEN] = bblen;

*& the bounding box angle defaults to Ofor small gestures * {

if(pblen +« bblen » Gistsqthreshold)

ty->y{PF_BBTH] = atan2(fiv->maxy - fv-—->miny,
fv—-smaxx — fv—>minx);

& compute the lengtli and angle between the frst and last points * /

selen = hypot (fv--sendx — fv->startx,

fv—>endy — fiv—-sstarty);

fv—>y([PF_SELEN] = selen;

& when the frst and last points are very close, the angle features   

are muted so that theysatisfy thestability criterion» /

factor = selen * selen / se_th_rolloff;
ifi{factor » 1.6) Factor = 1.0;a

> EPS ? factor/selen : 0.0;factor = selen

Ev—>y[PF_SECOS] = (fv->endx — Ev—sstartx) * factor;

fv->y[PF_SE SIN] = (fv-vendy — fv-—->starty) *« factor;

& the remaining features have already heen computed * {

fv->y[PF_LEN}] = fv->path_r;

Ev— py [PF_TH] = Ev—spath_th;

fv—>y[PF_ATH] = fv-—»abs_th;

fv—>y[PF_SQTH] = fv—>sharpress;

#ifde= PF_DUR

fv—>y[PF_DUR] = (fv->endtime — fv—sstarttime)+.01;
#fendif

#ifdef PFMAXV

fv->y[PP_MAKV] = fv->maxvy + 10000;
#ftendift

return £v—>y;

Neue!
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A.2 Deriving and Using the Linear Classifier

Type sClassifier points at an abject that represents a classifier able to discriminate between a
set of gesture classes. Each gesture class is represented by an aClagsDope type. The fimetions
sRead and sWrite read and write a classifierto a file. The function sNewClassifercreates

anew fempty) classifier. A training example is added using sAddExample. Thereis no function
to explicitly add a newclass to a classifier, Whenan iexample ofanewclass|isadded,thenew class
is created automatically. To train the classifier based on the added examples, call sDoneAdding.
Once trained, sClaasify and sClaesifyaAtare usedto classily a feature vector as one of the
classes; sClassifyAD optionally computesthe rejection information.

llere is an exarnple fragment for creating a newclassitier, entering newtraining examples, and
writing the resulting classifier outto a file. Some of thesefunctions are timed (and further described}
in section G17.

#include <stdio.h>

#include «<math.h>

#inecludé "bitvector.h"

lude "matrix.h" 
include Wao lh”

#define NEXAMPLES 15

sClassifier

MakeAClasgifier({)
£i

sClassifier sc = sNewClassifier();

Vector InputAGesture ();

char name fico);

int i;

for(;;) 4
printi ("Enter class name, newline to exit: ");

{getsi(name) == NULL || name[0] == ‘\0")
break;

for(i = 1; i «<= NEMAMPLES; i++) {
printf ("Enter $s example $d\n", name, i);

sAddExample(s name, InputAGesture ());Y

}
f
«

sDooneAdding (sc) ;
cite (fopen("classifier.our", "w"), ga);

Page 1410 of 1714



Page 1411 of 1714

244 APPENDIXNA CODEFOR SINGLE-STRORKEGESTURE RECOGMTIONAND TRAINING

Once a classifier has been created it can be used to classifier gestares as follows:

TestAClassifier

sClassifier sc;

{

fort;;} 4
printf ("Enter a gesture\n") ;£

vo = InputAGesture () ;

scd = gClassifyADisc, v, &punambig, &distance) ;

printf ("Gesture classified as $s ", sed-name);

printf("*Probability of unambiguous classification: %q\n

pumambig) ;

printf ("Distance from clags mean: %q\n", distance);

Nye

What follows is the header file and code to implementthestatistical classifier.

3c.A - create single path classtférs trom feature vectors ofexamples,
as well as Classi ying example feature vectors. 

SHOES HACER OR SS defo Fe obeeeese oe de eae eee seat oe ee ef ae ee ease eeeee ea eee ess ke of oe see bea ede def

 #tdefine MAXSCLASSES 100 A maximum numberofclasses « /

typedef struct eclaseifier +sClassifier; A classifers/
cypedef int sClassiIndex; & per—ciass index * /
typedef struct sclassdope -#¢sClassDope; A per- class information + /

struct sclassdope { & per gesture class intormation within a classiferx
char #TIAMS ; f& name ofa class * /

asClassindex number; & unique index mall integer} ofa class * /
int nexamples; fe number of training examples * /
Vector average ; & average of training examples * /
Matrix EuUMCov >; & covariance matrix of‘examples 4 f

r,ys
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gtruct sclagsifier { Aw classifpr + /
int nfeatures; A nurmber offeatures in feature vector * /

int nclasses; fe pumber ofclasses known bythis classifer « /
sClassDope *classdope; & arrayofpointers fo per class data * /

Vector enst; *& constantterm ofdiscrimination function * /

Vector aw & array ofcoclfriecnt weights * /
Matrix invavgcov; inverse covariance matrix/

};

sClagsifier sNewClassifier(); perf

sClaesifier sRead(); & PILE xf/

void eWrite{); & FILE xf sClassifersc; + f

yoid ePreeClagsifier(); A sc¥/

void sAddExample () ; #& st, Char «classname; Vector v * /
void sDoneAdding (); & sek /
sClagsDope sClassifv(; se,yx/
sClassDope sClassifyAD(); & sc, y, double sap; double xdp * /

 sClaseBope eClaseNamehLookup 0) ; &8c, Classname * /
al « double MahalanobisDistance (); 4 Verory, a) Mbirix sigma »

(ESERIESSILESIA
sc.c ~ creales classifersfromfeature vectors ofexamples, as well as

C

classi}fying€EXa“ample feature vectars,
FRC AE ER SS A ie SEioe oO Oe a oe oe ee i oe SS A RE ok Seea seaa Sedodekok ded ok sede desk:

#ineludeé <stdio he

#include emath.he
#include "bitvector.h"

#include "matrix.h"

#include “sc.h"

tdefine BPS (1,0e—-6}

 
& allocate memory associated v

sClagsifier

saNewClassifier (}
£i

register sClassifiler sc =
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sc-eonfeabures = -1;

sc-onclasses = 0;

ec-r»clasedope = (sClassfope +)
mallocOrDie (MAXSCLASSES

sc-—>w = NULL;

return sc;

yen!

& free memory associated with a new classifer * /

ESTURERECOGNUTION

mallocOrDie (sizeof (struct sclassifi

Vector (sc—-2wfi]})

eMatrixiscd—ssumcov} ;

PreeVector {eed.average) ;

register int i;

register sClassDope scd;

for{i =» 0; i «< s¢-snclasges; i++) ¢
sed = sc->classdope lil;

if(scd—sename) free (scd—>name) ;

free (sed) ;

Lfisc-—sw && sc-oe FreLE (sed—ssumcov) Fr

Lf (sed-->average}

} i

free (sc-—>classdope) ;

LEise—>w) Eree(se—>w) ;

Li(sec—>enet) FreeVectoris

ifisc->invavgcov) Free
free (sec) >;

Neue!

A given a string name ofa class, return its per—class information» /

Sdeeemenn
ClasssNameLookupl(se, clasgsna

register sClassifier
register char *classname;
4

me )4 et «
Se;

register int i;

register s
etatic sClassi

static sClasspope last
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A yuick check for last class name + /
Li(lastsec == sc && STREQ(Lastscd--.name, classname) )}

& linear search throughall classes for name + /
for(i = 0; i < sc-snclasses; i++} {

scd = sc-~> eenssdope [1];LE (STREQ(scd-oname, classname) }return tae tsa = sc, lastscd = sed;
}
return NUL;

i
J

adda newgesture class to a classifbr* /
static sClassDope
sAddClass is classname}

reqister

char +classname;

4
register sClassDope é

sc—>classdope {sce—>nclasses}] = scd = (sClagsDope}

mallocOrDie (sizeof(struct sclassdepe));

sed-.name = scopy (classname) ;
Scd-snumber = sc-snclasses;

scd—>nexamples = 0;

scd-—>sumcov = NULL;

+4+60- >nclasses;

return sed;

& add a newtraining example to a classifer * /
void

sAddtxampleise, classname, y)

register sClassifi
char +*classname;

Yeotor v;
4

register sClassDope

register imt i, 4;
couble nfv[5o}

ua +2)

i
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double nmion, recipn;

sed = sClassNameLookupise, classname);

scd = gAddClassisc, classname) ;

ifisc—>nfeatureg == —1)

sc-snfeatures = NROWS (y);

if(scd—snexamples == 0) {
scd-->average = NewVector(sc--»nfeatures) ;

erovVector (scd—>-average} ;
scd—-ssumcov = NewMatrix (sc- >nfeatures,sc- ->nfeatures) ;

ZeroMatrix (sed—->sumcov) ;

amen

if(se-snfeatures [= MROWS(y)) {
PrintVector(y, "sAddExample: funny vector nrowsi=%d",

sc—onfeatures) ;

return ;

scd-—->nexamplest++;

mmion = ({double} scd-->nexamples-1) /scd->nexample

recipn = 1.0/scd—>nexamples;

# tocrementally update covariance matrix» f
for(i = 0; 1 < Se-snfeatures; i++)

nfvfi] = yl[il — scd-—-average[il

& only upper triangularpart computed * /
for(i = G@; 1 «< sc-snfeatures; i++)

for(j = 1; jo < sc-onfeatures; j++)

sed—>sumeov [ij [7] = mmion *« nfv{il *« nfvifjl;

& incrementally update mean vector+ /
for(i = 0; i < se-snfeatures; i++}

gsod—- saverage [il «=

mmlon * gcd-->average [i] + recipn « yfil];

ae
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register int i, 4;

int née, denom;

Soubile oneoverdenom;

register Matrix s;

register Matrix avgcov;
double det;

register sClassDope sad;

fisce-snelasses == 0)

error ("sDoneAdding: No classes\n");

he

é £ c 1
cs fe number of examples ~ & Given covariance matrices for each cl:

 

compute theaverage (common) covariancematrix * /

avgcov = NewMatrix(sc-—snfeatures, sc—snfeatures} ;

ReroMatrix (avgcoyv) ;
ne = QO;

for(e = 0; a « Sc-»enclasses; c++} {
an Q oO nm Gi

sc >Classdope [ca];

ne += scd—snexamples;

for(i = 0; i < gc-eonfeatures; i++}

5 jo < sc-snfeatures; y++)

avgceov[i] fi] += s{il[4l;

}

denom = ne - Ssc-onclasses;

if(denom <= 0) {
printt ("no examples, denom=%d\n", denom);
return;

1
5

oneoverdenom = 1.9 / denom;MQbefor(i = 0; 2 < sc-enfeatures; i++)
bh °wy

tele
it be

hele < gc-snfeatures; J++}

249
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avgeoviai] iil = avgeoviil [yj] *= oneoverdenom;
Ja

& invert the avg cavariance matrix * /

gc->invavacovy = NewMatrix(se-snfeatures, sc-»nféeatures) ;

det = InvertMatrix(avgeov, sc-—>invavgcov) ;

Be tabsfoot) <= BPS)
FixClassifier(se, avagcov);

& nowcompute discrimination functions + /
Sc~>w = (Vector +)

mallocOrbDie (ac-—snclasses *

ector (sc- snclasses)

+}

 
enst = New

for({c = G; G¢ «< gc-snclagsses;
aohe
se

sed = gc->classdope ic] ;

gc--cwlc}] = NewVector(sc- >nfeatures) ;

otorTimesMatrix(scd—>vaverage, sc i

& product =*/ sc->wiese
go->sengt {oe} = -0.5

TnnerProduct (sc—-wicl],

& could add log(prierprob classc} to cnstle] * /
scd—>average}) ;

FreeMatrix{(avgcov) ;
return;

ee!

& classifya feature vector + /

eeeClassify(se, fv) {
return sClassifyAD(se, fv, NULL, NULL);

1
J

& classifya feature vector, possibly computing rcfection motrics * f
ClassDopeaagssifyAD(sc, fv, ap, dp)

sClassifier sc;

Veoator fv;

double +ap;

double *dp;

4
double disc [MAXSCLASSES] ;
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register int 1, maxclass;

double denom, exp{);

register sClassDope sad;
couble d;

LE(sc—>w == NULL)

error ("sClaesifyAp: %* no trained classifier", sc);

sc-—enclasses; i++}th o5 7 i

mmO
te A

disoefi] = InnerProduct (sc~swtlil, Ev) + se-scnst [il];

maxciass = 0;

for(i = 1; 1 < Sc-snclasses; i++)

Li(disefi] > disef[maxclass])

maxclass = i;

scd = sc-—>classdope [maxclags] ;

if(ap) { & calculate probability ofnonambiguity¥ /
for(denom = G, i = 0; i «< gc-»nclagses; i++}

& quick checkto avoid computing negligibic torm «/
LE({d = disefi] ~— dise[maxclass}]} » -7.0)

denom += exp (d);

ap = 1.0 / denon;
X
3

Li(dp)  & calculate distance to mean of chasen class x {

*0p = MahalanobisDistance(fv, scd-—>average,

se->-invavgcoy} ;

return sed;

& Compute the Manalanahis distance between two vectors v and ax /
double

Mahalanobististance(v, u, sigma)

register Vector v, uj;

egister Matrix sigma;
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if ‘ses ‘6 == NULL |] NROWS (space) i= NROWS(v}) {fispace) FreeVector {space};

Space = NewVector (NROWS(v));

for(i = 0; 2 < NROWS(v}); i++}

space fi] = vfi] - ufil;

esult = QuadraticForm(space, sigma);
return result;

a5

& handic the case ofa singular average covariance matrix hy removing features * /
Fixtlagsifier(ec, avqcov)

egister sClassifier sec;

——
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Jalrix AVGCOV;

imt i;

double det;

BitVector by;

Matrix m, 4X;

& just add the features one by one, discarding any that cause
the matrix to he non—favertible « /

CLEARBITVECTOR (bv);
for(i 0; i < gc-onfeatures;

BIT_SET (i, by);
m SliceMatrixlavgcov, bv, b

y = NewMatrix (NROWS (m), NCOLS

det InvertMatrixim, ©);

if (fabs (det)

BIT_CLEAR (i, by);

FreeMatrix(m) ;.

FreeMatrix(r) ;

Let)
4L

¥
vit

(m));be

aon

Nea

m = SliceMatrix(avgcov, bv, bv);
Yr NewMatrix (NROWS (m}), NCOLS (m)};

det InvertMatrixim, 4};

if (fabs (det) EPS)

error ("Can't fix clagsifier!'");
eMatrix(r, 0.6, by, bv,

<a

De SizSii sO->inmvavgcov) ;
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FreeMatrix Um);

FreeMatrix (r};

& write a classifer to a fe */
void

aWrite(outfile, sec)

FILE *outfile;

sClassifier sc;
i
q

int 1;

register sClagsDope escd;

iprintf(outfile, "sd classes\n", -sniclagsse
for(i = Q; i < S¢-snelasses; i++) {

scd = sc->clagssdape [i];

fprintf(outfile, "%s\n", sced->name);

}
For(i = 0; i < gc->nelassea; it+

sed = sc—sclassdope [il];

OutputVector(outfile, sed—saverage) ;

OutputVector (outfile, sec->w{lil);

}
OQutputVector (outfile, sc-—senst});

QutputMatrix(euttile, sc-sinvavgcov) ;
y
i

& read a classifer froma Hex /
sClassifier

sRead(inftile)

FILE xinfile;
£tL

imt i, my;

register sClassifier sa;

register sClassDope scd;

char buf [100];

printf ("Reading classifier "), fflush (stdout

ea}oie
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58] &oDsO ie mn uh ts kh m KR

ror("sRead 1");

stdout) ;

for = O; i < Fl; itt)

printfi("$s ", scd—sname}), fflushi(stdout);

Sc->w = allocate(sc-enclasses, Vector):
'

asses; it+) {

sced— raverage = InputVector(infile
fi] M;sc-—>wiil = InputVector (inti le ;

3
3

sc-senst = InputVector (infile) ;

se-sinvavgeoy = InputMatrix(infile} ;

printé(™\n");
return so;

Nye

A compute pairwise distances between classes, andprint the clasest ones,

as a Clue as lo which gesture classes are conlusable + /

enn
Lo

€
closest)

register sClassifier sc;

{
register Matrix d = NewMatrixisc-snclasses, sc->.nclasses

register int i, J;

double min, max = 0;

int n, mi, mi;

printf (%—-----eeln):
printf ("td closest pairs of clasges\n", neclosest);

For{i = GO; 2 < NROWS(d); d++) {
Eor(j = i+32; 9 < NCOLS(d); j++) {

afi} [yj] = MahalanocbisDistance{

sc->classdope [i] ~>-average,

sc-~- »classdope [jl -->average,

sc—>invavgcov) ;

LfCa(1] [3] > max) max = diil [ji;
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y
f

for(n = 1; n <= ncloseat; n+) ¢
min = Max;

mis @po= —-1;

for(i = 0; i < NROWS(d); i++) {
for(j = i+1; 4 < NCOLS(a); j++) {

LE (ail [3] «< min}

min = Gd{mi=i) baj=9);

LE (mi oss -1)}

break;

print&("s2d) 3%
nh,

fea 2 po cae) wh ct o ae pa Oo BR 2 ! fs
it o

ws it cri atess - 43

agsdope [mi] —>name,

sc->classdope [mj] —>name,

dfmi] [mjl,

sqrt (d[mij [mj}});

d[mil[mj} = max+1;

}
printf ("———-—-—-—-—-——-——\n");
FPreeMatrix (d);

A.3 Undefined functions

The above code uses some fenctions whose definitions are not included in this appendix. These fall

into four classes: standard library functions Gacluding the maithlibrary}, wulity functions, bitvector
functions, and vector/matrix functions, The standard library calls will not be discussed.

The utility functions used are

STREQ (Si, S2) returns PALSEof strings si and 32 are equal.

scopy(3) retums a copyof the string s.

error (format, argl...)} prints a message and causes the programtoexit.

mallowOrDie (nbytes) calls malloc, dying with an error message ufthe memory canal be
obtained.
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The bit vector operations are an efficient set of functions for accessing an array of bits.

CLEARBIT VECTOR(ov) resets an entire hit vector bvto all zeras,

BIT.SET(i, bv) sets the i® bit of by to one, and

BITCLEAR (i, by) sets the 1bit of byto zero.

The vector/matrix functions are declared in matrix.h. Objects of type Vector and Matrix may

be accessed like one and twe dimensional arrays, respectively, bul also contain additional information
as to the size and dimensionalityof the object (accessible via macros NROWS, NCOLS, and NDIM.It
should be obvious from the names and the use of most of the functions WewVector, NewMatrix,

Freevector, FreeMatrix, ZeroVector, ZeroMatrix, PrintVector, PrintMatrix,

InvertMatrix, InputVector, InputMatrix, GutputVector, OutputMatrix,

VectorTimesMatrix, and InnerProduct} what they do. As for the remaining functions,
i

double QuadraticForm(Vector V, Matrix M) computes the quantity AVY where
the prime denotes the transpose operation.

Matrix SliceMatrix(Matrix m, BitVector rowmask, BitVector colmask)

creates a new matrix, consisting only of those rows and columns in m whose corresponding
bits are set it rowmask and colmask, respectively.

Matrix DeSliceMatrix (Matrix m, double £ill, BitVector rowmagk;

BitVector colmask; Matrix result} firstsetsevery clementin result tofill,

and then, every element in reeult whose row number is on in rowmask and whose column
momber isonin colmask, is set from the corresponding element in the inpul matrix m, whichis
smallerthan rv. The resultof{SliceMatrix (DeSliceMatrixim, fill, rowmask,

colmask, result), rowmask, colmask) isacopy of m, given legal values for all
parameters.

‘hese auxiliary functions, as well as a C-based A11R5 version of GDBare all available as part

of the ftp distribution mentioned above,
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Abstract

This research focuses on the use of hand drawn marks as a human-computer input

technique. Drawing a mark is an efficient command input technique in many

situations. However, marks are not intrinsically self-explanatory as are other

interactive techniques such as buttons and menus. This research develops and

evaluates an interaction technique called marking menus which integrates menus

and marks suchthat both self-explanation and efficient interaction can be provided.

A marking menu allows a user to perform a menuselection by either popping up a

radial menu and then selecting an item, or by drawing a straight mark in the

direction of the desired menu item. Drawing a mark avoids popping up the menu.

Marking menuscan also be hierarchic. In this case, hierarchic radial menus and

“zig-zag” marks are used. Marking menus are based on three design principles:

self-revelation, guidance and rehearsal. Self-revelation means a marking menu

reveals to a user what functions or items are available. Guidance means a marking

menu guides a user in selecting an item. Rehearsal means that the guidance

provided by the marking menuis a rehearsal of making the mark needed to select

an item. Self-revelation helps a novice determine what functions are available, while

guidance and rehearsal train a novice to use the marks like an expert. The intention

is to allow a user to make a smooth andefficient transition from novice to expert
behavior.

This research evaluates marking menus through empirical experiments, a case

study, and a design study. Results shows that (1) 4, 8 and 12 item menus are

advantageous whenselecting using marks, (2) marks can be used toreliably select

from four-item menusthat are up to four levels deep or from eight-item menusthat

are up to two levels deep, (3) marks can be performed more accurately with a pen

than a mouse, but the difference is not large, (4) in a practical application, users

tended towards using the marks 100% of the time, (5) using a mark, in this

application, was 3.5 times faster than selection using the menu, (6) the design

principles of marking menus can be generalized to other types of marks.
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Chapter1: Introduction

Research in the last forty years has brought great improvements in the quality of

human-computer interactions. In the past, human-computer dialogs were

optimized for the computer; humans communicated with computers using protocols

that were casy for the computer to understand but were hard for a human to

understand and use, for example, machine languages. Advances in human-

computer interaction have changed this situation. Controlling a computer no longer

requires memorizing obtuse, cryptic codes or an intimate understanding of the

internal workings of the computer. In well-designed systems, human-computer

interactions are optimized for the human. Interfaces now make use of sophisticated

graphics, sound, and pointing devices to make the human's job easier.

The major advances in human-computerinteraction have been in making computers

easier to use. Specifically, research on methods to reduce the amountof training a

person needs before being able to operate a computer has come a long way. For

example, the Apple Macintosh has set standards for the minimal amount of

instruction that a person needs before operating a computer. Because of these

advances, the world of computers opened up for people who otherwise would not

have invested the time in training to operate a computer system.

Given these advances in human-computer interaction, we can think of the interface

as currently being optimized for the human, specifically, the novice computer user.

Clearly, this is of great value, but we can consider another importantclass of user —

the expert. Humancapacity for the developmentof skills is great. Virtuoso pianists

are proof of this. Virtuosos invest a great deal of time in practicing their skills—

eight hours of practice a day is not uncommon. Now consider expert computer

users. It is not uncommon for an expert computer user to spend eight hours a day

working on the computer. Therefore, there is untapped potential for human skill

1
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development in human-computer interactions. A good interface should take

advantage of this potential and notlimit the cfficiency of a skilled user.

In order for this skill potential to be tapped, an interface must have certain

properties. First, the interface must provide interaction methodsthat are suitable for

an expert. Experts require efficient interactions. As a result, interactions may be

terse and unprompted. Second, and mostcritically, the interface must also provide

support for a novice to become expert. We look at the interface design not so much

as making the interface easier to use but rather as accelerating the rate at which novices

begin to perform like experts. This goal demands three components: support for the

novice, support for the expert, and an efficient mechanism to support the transition

from novice to expert (see Figure 1.1).

Novice component Transition component Expert component
(recognition) (recognition and recall) (recall)

 
Skil developnente _\_MoJWHWHsh4—asd4+4~'t'tTYtddza‘a‘cWlHdHlll0

Figure 1.1: The components required to accelerate the rate at which users begin to
perform like experts. The novice component allows a user to issue commands by
searching for them and recognizing them. The expert component allows a user to
efficiently issue commands by recalling the action associated with the command.
The transition component allows a user to efficiently switch between these two
methods to learn andpractice command action associations.

In this dissertation, we focus on an interaction technique that is intended to take

advantage of this skill potential and support the developmentof skill. We propose

an interaction technique which has a two modes. In the first mode, the style of

interaction is intended to facilitate novice use. In the second mode, the style of

interaction is intended for skilled expert behavior. The first modeis also designed to

allow a novice to practice the skills required in the second mode. A user can switch

to the second mode by operating the technique quickly. One can think of this in

metaphorical terms. When you are learning to drive a car, its suitable to have a car

2
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that is designed for a student driver. However, as your driving skills improve, the

car incrementally transforms into a Ferrari.

11. GENERAL AREA AND DEFINITIONS

To support the expert component described in the previous section, we focus on a

style of human computer interaction in whicha user “writes” on the display surface.

This style of interaction is similar to writing or drawing with a pen on ordinary

paper. Writing on a display, however, is accomplished with a special pen and the

computcr simulates the appearanceof ink.!

Wedefine a mark as the series of pixels that are changed to a special “ink” color

when the pen is pressed and then moved across the display. The pixels that are

changed to an ink color are those which lay directly underthe tip of the penas it is

moved across the display. Free hand drawings, ranging from meaningless scribbles

to meaningful line drawings and symbols, including handwriting, are examples of

marks. The act of drawing a markis referred to as marking.

Markscan be created not only with a pen but also with other types of input devices.

For example, a mouse can leavea trail of ink (commonly referred to as an ink-trail)

behind the tracking symbol when the mouse button is pressed and the mouse is

dragged. Some systems use a pen andtablet. In this case, marks are made on the

display by writing onthe tablet instead of the display.

From a user’s point of view, these interfaces allow one to make marks and then have

the system interpret those marks. There are, however, systems in which marks can

be made but not recognized by the system. They are interpreted strictly as

annotations, for example, Freestyle (Perkins, Blatt, Workman, & Ehrlich, 1989). The

focus of this dissertation, however, is on systems in which marks are interpreted as

commands and parameters.

Much of the literature refers to marks as gestures. However, the term gesture is

inappropriate in this context. Indeed creating a mark does involve a physical

 

1 The pen, in these types of systems, is sometimes referred to as a stylus.

3
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gesture but the real object of interpretation is the markitself. For example, the “X”

mark requires a completcly different physical gesture if performed with a pen

instead of a mouse. Gesture is an important aspect of mark because some marks

may require awkward physical gestures with the input device. However, the two

terms should be distinguished. The term gesture is more appropriate for systems in

which the gestures leave no marks, for example, VideoPlace (Krueger, Giofriddo &

Hinrichsen, 1985). The term mark is more appropriate for pen-based computer

systems or applications that emulate paper and pen.

1.2. WHY USE MARKS?

Current human-computer interfaces are asymmetric in terms of input and output

capabilities. There a number of computer output modes: visual, audio andtactile.

Most computers extensively utilize the visual mode; high resolution images which

use thousands of colors of can be displayed quickly and in meaningful ways to a

uscr. In contrast, a computer's ability to sense uscr input is limited. Humans have a

wide range of communication skills such as speech and touch, but most computers

sense only a small subset of these. For example, keyboards only sense finger presses

(but not pressure) and mice only sense very simple arm or wrist movements.

Therefore, we believe the advent of the pen as a computer input device provides the

opportunity to increase input bandwidth through the use of marks.?

There are two major motivations for using marks. The first addresses the problem

of efficiently accessing the increasing number of functions in applications. The

second motivation is that there are some intrinsic qualities that marks have which

can provide a more “natural” way to articulate otherwise difficult or awkward

concepts (such as spatial or temporal information). Both of these motivations will
now be examined in more detail.

2 There are systems where interpretation depends not only on what is drawn but also howit is drawn. For
example, an '"X" drawn quickly may have a different interpretation from a "X" that is drawn slowly. By this
dissertation's terminology, these systems would contain a combination of marking and gesture recognition.

3 It is ironic that oneof thefirst input devices for graphics wasa light pen which wrote directly on the display
surface (Sutherland, 1963).
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1.2.1. Symbolic nature

The inadequacy of mouse and keyboard interfaces is exemplified by applications

that are controlled through button presses and position information.4 Buttons must

be accessible and thus require physical space. Problems occur when an application

has more functions than can be mapped to buttons or reasonably managed on the

display. Other problems also exist: arbitrary mappings between functions and

buttons can be confusing, and user management of the display and removal of

graphical buttons can be tedious.

Expert users of these types of systems find the interface inadequate because button

interfaces are inefficient. The existence of interaction techniques that override

buttons for the sake of efficiency is evidence of this. Experts, having great

familiarity with the interface, are aware of the set of available commands. Menus

are no longer needed to remind them of available commands and invoking

commands through menu display becomesvery tedious.

Designers have addressed this problem in several ways. Oncesolution is accelerators

keys which allow experts direct access to commands. An accelerator key is a key on

the keyboard which, whenpressed, immediately executes a function associated with

a menu item or button. The intention is that using an accelerator key saves the user

the time required to display and select a menu item or button. Many systems

display the namesof accelerator keys next to menu items or buttons to help users

learn and recall the associations between accelerator keys and functions.

Another way of supporting an expert is by supplying a commandline interface in

addition to a direct manipulation interface. Commodore’s commandline interface,

CLI, and graphical user interface, Intuition, are an example of this approach.

Both these approaches have their problems. In the case of accelerator keys, arbitrary

mappings between functions and keys can be hard to learn and remember.

Sometimes mnemonics can be established between accelerator key and function

(e.g., control-o for “open”), but mnemonics quickly run out as the number of

accelerator keys increases. Further confusion can be caused by different applications

4 The term buttons is used as a generic way of describing menus items, dialog box items, icons, keys on a
keyboard, etc., which are typical of direct manipulation interfaces.

5
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using a common key for different functions or by different applications using

different keys for a common function. Experts must then rememberarbitrary or

complex mappings between keys and functions depending on application.

Command line interfaces are problematic because they are radically different from

direct manipulation interfaces. To become an expert, a novice must learn another

entirely different interface.

Marks, because of their symbolic nature, can make functions more immediately

accessible. Rather than triggering a function by a button press, a mark can signal a

command. For example, a symbolic mark can be associated with a function and a

user can invoke the function by drawing the symbol. In theory, because marks can

be used to draw any symbol or series of symbols, marks can provide a quicker

method of choosing a command than scarching for a physical or graphical button

and pressing it. In practice, the number of marksis limited by the system's ability to

recognize symbols and a human's ability to remember the set of symbols.

Nevertheless, even if only a small set of marks are used, a user can invoke the

associated functions immediately.

Marks can also be used to hide functions because they are user generated symbols.

For example, researchers at Xerox PARC made use of this property when faced with

a dilemma during the design of a pen-based application. This application runs ona

wall sized display where a user can write on the display using an electric pen (Elrod

et. al, 1992). There were two major design requirements. First, the designers

wanted the application to look and operate like a whiteboard and maximize the size

of the area where drawing could take place. Second, they wanted to provide

additional functions commonly found in computer drawing programs. This second

requirement meant that many graphical buttons would need to appear on the

screen. This, however, violated the first design requirement because the numerous

graphical buttons would consume too much of the drawing arca and makc the

interface look complicated.

The design solution was to assign many of the drawing functions to marks. Marks

provided a way to hide additional functionality from novices while expert users

could use the marks to access additional functions. This design also avoided using

buttons for these functions and, in manycases, marks were a much moreeffective

way of articulating a function.
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1.2.2. Intrinsic advantages

The advantages of pen input and marks have been expressedin the literature (Bush,

1945; Licklider 1960; Ellis & Sibley, 1967; Hornbuckle, 1967; Coleman, 1969; Ward &

Blesser, 1985; Rhyne & Wolf, 1986; Wolf, 1986; Buxton, 1986; Welbourn & Whitrow,

1988; Wolf, Rhyne, & Ellozy, 1989; Morrel-Samuels, 1990; Kurtenbach & Hulteen,

1990). Specifically, marks provide the ability to:

* embed many commandattributes into a single mark;

* reduce learning time due to the mnemonic nature of marks and users' existing

knowledge of pen and paper marks;

* capture and recognize handwriting and drawing;

* enter different types of data without switching input device. For example, text,

menu selections, button presses, and screen locations can be entered without

changing input device;

* replace the computer keyboard, thus making computers smaller and more

portable;

* maintain a visible audittrail of operations;

* maintain a clear figure/ground relationship (Hardock, 1991). For example, marks

written over formatted text can be distinguished from thetext.

13. SELF-REVELATION, GUIDANCE AND REHEARSAL

Despite all of these advantages, pen input and marks have not been widely used.

Pen-based interfaces have many difficult technological requirements. Historically,

hardware for pen-based systems was too expensive and recognition was notreliable

(Sibert, Buffa, Crane, Doster, Rhyne, & Ward, 1987). Given these limitations pen-

based applications presented no advantage (in reality, more of a disadvantage) over

a mouse-basedversion of the application.

> This eliminates homing time between physical input devices but it does not eliminate homing time between
graphical devices such as graphical buttons, sliders, etc.

7
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This situation is changing and this change is clearly evident in the marketplace

(Normile & Johnson, 1990; Rebello, 1990). Several companics such as Go, Grid, IBM,

Apple, Microsoft, and NCR are introducing pen-based systems. Hardware and

recognition has improved to the point where pen-based systems are technically

possible. Applications such as portable notebook computers and large whiteboard

size computer screens make the pen an attractive input device (Goldberg &

Goodisman, 1991; Weiser, 1991).

On the surface, it appears that once the recognition and hardware problems are

solved, pen-based systems will be successful. However, there is still a serious

interface problem when using marks.

1.3.1. The problem:learning and using marks

An intrinsic problem with marks is that they are not self-revealing. In contrast,

menus and buttons are self-revealing; the set of available commands and how to

invoke a commandis readily visible as a byproduct of the way commandsare

invoked. An interface which uses only marks as a means of command entry cannot

support walk-up-and-use situations. A first time user has no way of finding out

interactively from the system what marks/commandsare available. This situationis
reminiscent of command line interfaces such as the UNIX shell or MS-DOS where

the only information presented by the system is a command line prompt. Some

source of information distinct from the process of making a mark must be consulted

before commandscan be generated.

The problem is even more acute. Not only do users need to know what marks can
be made but also when or where these marks can be made. In menu and button

interfaces, one can find out when and where a command can be invoked by which

buttons or menu items appear active when an interface object is selected. Marks do

not have this property.

Is there a problem? Aren't the existing pen-driven systems easy to use andself-

revealing? Hybrid interfaces which use both direct manipulation and marks(e.g.,

the PenPoint or Momenta interfaces (Go, 1991; Momenta, 1991)) may be somewhat

capable of walk-up-and-use. However, only the direct manipulation components of
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the interface can be used without external instruction.© Manuals muststill be used to

find out about marks. Hence these system do not solve the self-revealing/marks

problem.

The motivation for creating walk-up-and-use interfaces is strong. Successful

computer interfaces such as the Macintosh are based on the notion that “nobody

reads manuals”. These types of interfaces are designed to help a user learn and

remember how to operate the interface without explicit external help such as on-line

help or manuals (Sellen, & Nicol, 1990). This situation can be viewed practically: a

user wants to get a certain task done; this task can be accomplished using a

computer tool; the shortest path between the user and task completion is using the

tool; a manual will be consulted onlyif the tool cannot be used directly.

If we expect a workerin the information age to utilize many different applications, a

huge amountof training for each application is an unrealistic demand. Users expect

interfaces that are consistent and permit transfer of skills from other applications.

They also expect interfaces to be self-explanatory and to guide a user in the

operation of the application. Thus, the motivation for walk-up-and-usc sclf-

revealing interfaces is paramount.

An argument can be made that walk-up-and-use interfaces are notefficient, but this

argument misses the point. The reason to make marksself-revealing is so a user can

graduate from using the walk-up-and-use techniques to the more efficient marks.

Once this graduation has taken place, the user can benefit from the advantages of

marks suchasefficient articulation and conservation of screen space. The key to the

success of this schemeis in how easily a novice can acquire expertskills.

It can be argued that if marks are mnemonic, then no self-revealing mechanism is

needed. However, this argument is analogous to using mnemonic names for

commands in commandline interfaces. This technique relies on the user “being a

good guesser” and it has been shownthat they are not; command naming behavior

of individuals is extremely variable (Furnas,et al., 1982; Carroll, 1985; Jorgensen et

al. 1983; Wixonet al., 1983). The more fail-safe approach is to provide an explicit

mechanism which explains the command set (Barnard & Grudin, 1988). On the

 

© Of course, even someofthe direct manipulation components mayrequire instruction.

9
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other hand, other researchers have shown or argued that users commonly agree on

certain marks for certain operations (Wolf, 1986; Wolf & Morrel-Samucls; Gould, &

Salaun, 1987; Buxton, 1990). Nevertheless, if we wish to use marks for operations

which do not have commonly agreed upon marks, a mechanism must be provided

for learning about these marks.

Wedefine three design principles to support learning and using marks. We do not

claim that these principles are unique. Other researchers have described similar

general principles, and many systems have interactions which obey these general

principles. However, we define specific design principles for two reasons. First, our

application of the general design principles to marks is novel, and second, our own

specific definitions help us to explain and discussthe details of the application.

The three design principles to support learning and using marksareself-revelation,

guidance, and rehearsal.

Self-revelation

The system should interactively provide information about what commands
are available and howto invoke those commands.

When an interface provides information to a user about what commands are

available and how to invoke those commands, werefer to this as self-revelation or

the system being self-revealing. Menus and buttons, for example, are self-revealing.
The available commands and how to invoke those commands canbe inferred from

the display of menus or buttons. Marks, on the other hand,are notself-revealing

because they must be generated by the user.

To ensure that every aspect of a system is self-revealing is a difficult task. For

example, displaying menu items may help a user understand what functions are

available but does not guarantee that the user will understand, from the display, the

mechanics of selecting a menu item.

A common approach to interface design, and the approach that we adopt in this

dissertation, is to rely on a user receiving a small amountinstruction before starting

to use the system. These instructions explain the basic mechanics and semantics of

operating the interface. For example, pointing, dragging, double clicking, and the

meaning of these actions may be explained. The Macintosh computer uses this

10
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technique. The intention is that with this small set of skills a user can start

interactively exploring and lcarning about the remainder of the system.

The interaction technique developed in this dissertation uses this type of design. A

user must be informed, a priori, that in order to display a menu the pen must be

pressed against the display and heldstill for a fraction of second. Wecall this “press
and wait for more information”. Once users have this bit of information, however,

they receive further instructions interactively from the system. In our model of the

interface, users can interactively learn about what functions can be applied to

various displayed objects by “pressing and waiting” on the objects for menus.

The principle of self-revelation is based on interface design principles and

psychological mechanisms proposed by others. Norman and Draper (1986) propose

a design principle to “bridge the gulfs of execution and evaluation”. Specifically, a

designer should make interface objects visible so users can see what actions are

possible, how actions can be done, and theeffects of their actions. Shneiderman

(1987) proposes a similar principle: “offer informative feedback”. The principle

states that objects and actions of interest should be made visible to the uscr.

Shneiderman claims that this design principle is the basis of direct manipulation
interfaces.

The principle of self-revelation is distinct from affordance theory (Gibson, 1979;

Gibson 1982). Self-revelation is concerned with absence/presence of information
about what functions are available and how to invoke those functions. Affordance

theory, in human computer interaction, is concerned with an interface object’s

appearance suggesting its function (Gaver, 1991). These two notions, however, are

related. For example, consider the display of a pop-up menu. Theprinciple ofself-

revelation dictates, first, that function names or icons must be displayed, and,

second, that they are displayed in a menu so that a uscr knows by convention how

to invoke them. Affordance theory, on the other hand, dictates that the name or icon

for an item accurately suggests its function, and that the appearance of the menu

suggest items are selectable. Correct use of affordances may help reduce the amount

of a priori instruction a user requires. For example, items in a menu may “look”

selectable (they “afford” selection) and therefore the user does not have to be

explicitly taught these mechanics.

Guidance

11
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The way in whichself-revelation occurs should guide a user through invoking
a command.

If an interface actually assists a user in the articulation of commandswerefer to this

as guidance. For example, in the editor emacs, by hitting a “command completion

key” while typing a command, emacs will display all the command names that

match the partially completed command. In effect, emacs “guides” a user in

completion of the command, as opposed to waiting for the command to be

completely typed before examiningits validity. Another example is selection from a

hierarchic menu. In this case, selection of an item guides a user to the next menu.

Guidance does not necessarily have to be triggered by the user. Some on-line help

systems prompt the user with information to guide them through a command. The

critical point is that in these systems getting or receiving helpful information on how

to invoke a command (guidance) does not interrupt the articulation of a command.

On the other hand, a system like the on-line manual pages in UNIX violates the

principle of guidance. In this case, in order to receive information about what
commands are available and how to invoke those commands, a uscr must terminate

or at least suspendthe act of invoking a command.

Rehearsal

Guidance should be a physical rehearsal of the way an expert would issue the
command.

Rehearsalis the notion of designing interactions such that the physical actions made

by a novice in articulating a commandare a rehearsal of the actions an expert would

make invoking the same command. The goal of rehearsal is to develop skills in a

novice that transfer to expert behavior. It is hoped that this leads to an efficient

transition from novice to expert.

Manyinteraction techniques support rehearsal. Whenthebasic action of the novice

and the expert are the same for a particular function we can say that rehearsal takes

place. For example, novices may draw lines, moveicons, or sclect from menus using

the same actions as an expert when there is one and only one wayofissuing the

command. In many cases, the single way of issuing the command maybesuitable

for both the novice and expert.

12
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There are also many situations, however, where a single method for invoking a

commandis not sufficient. The popularity of accelerator techniques is proof of this.

Typically, good interfaces provide two modesof operation. The first mode, designed

for novices, is self-revealing. Conventional menu-driven interactions are an

example of this. The self-revealing component of this mode is emphasized over

efficiency of interaction because novices are more concerned with how to do things

rather than how quickly things can be done. The second mode, designed for

experts, typically allows terse, non-prompted interactions. Command line

interfaces and accelerator keys are examples of this mode. However, usually there is

a dramatic difference between novice and expert behavior at the level of physical

action. For example, a novice uses the mouseto select from a menu whereas an

expert presses an accelerator key.

The intention of the three design principles is to reduce this discrepancy in action

without reducing the efficiency of the expert and ease of learning for the novice.

The basic actions of the novice and expert should be the same. It is hoped that as

novice performance develops the skills that lead to expert performance will develop
in a smooth and direct manncr.

1.3.2. Unfolding interfaces

The principles of self-revelation, guidance and rehearsal support the notion of an

unfolding interface. An unfolding interface works as follows. Initially, a novice is

provided with a small amount of information about how toget information on parts

of the interface. For example, double clicking on an object may open it up or

“anfold” it to reveal additional functions. Thus, given this key to unfolding objects,

a user can explore the interface, learning and using new functions. The intention is

that, with experience, exploration and use leads to expert knowledgeof the system.

There are other schemes which control the number and types of functions available

to a user, for example, Training Wheels (Carroll & Carrithers, 1984). These types of

systems provide explicit novice/expert modes in which the novice mode has fewer

functions than the expert mode. The intention is to avoid confusing a novice with a

large set of complex functions. Once the reduced set of functions is mastered, the

novice can switch to the larger “expert” set of functions. The major difference

between this approach and the notion of an unfolding interface is that an unfolding

13
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interface has no explicit novice and expert modes. An unfolding interface allows

users to incrementally add functions to their repertoire.

Marks, self-revelation, guidance and rehearsal can play important roles in an

unfolding interface. Unfolding is essentially an inefficient operation. As suggested

earlier, by associating marks with “hidden” functions, unfolding can be avoided.

For example, rather than double clicking on an object to unfold it and then clicking

on a function button, a mark can be made on the object to invoke the function. To

help users learn the marks associated with functions, it would be beneficial if

unfolding a function also revealed its mark. This is an application of the principle of

self-revelation. Ideally, we want the principles of guidance and rehearsal to hold as

well; we want to design an interface such that exploration is equivalent to invoking

commands, and exploration allows a novice to practice skills that Icad to expert
behavior.

1.3.3. Solution: ways of learning and using marks

The concerns of this rescarch are interfaces that usc marks but are also sclf-

revealing. Therefore, solutions for making marksself-revealing can be classified by

how tightly coupled the act of marking is with the act of getting information about

command/ mark associations.

Interfaces that use marks and only supply information about those marks through
off-line manuals are considered to be at one end of a self-revelation continuum.

These interfaces are not interactively self-revealing. Interfaces which supply

information about marks as a command is actually being articulated can be
considered the other end of the self-revelation continuum. These would be

considered interactively self-revealing interfaces.

In the following sections we classify solutions based on this criterion. Since

interfaces that use marks are still in their infancy there are few pre-existing

examples.

Off-line documentation

Off-line documentation consists of manuals which provide information about how

marks are used in an interface. Examples of the marks are displayed and text or

graphics provides information on their usage. Although this type of schemeis not

self-revealing it is of interest because, first, it is the status quo for pen-based
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products and, second, it demonstrates the type of information needed for a user to
understand marks.

Figure 1.2 showsa section from a pen-based system's manual. Clearly this type of

scheme is not interactively self-revealing. However, if the mark set is small, the

documentation could be placed directly on the computer in the form of a “cheat

sheet”. This scheme would be partially self-revealing.

[ Bracket, left X Croes ous y Pigtail
Deletes a wordorselection in text or any Deletes a characterin a weit

] Bracket, right object directly beneaththe ¥. character box, or an individin text.
m@ One bracket selects a word toits left oF
right.
m@ Asecondbracker extends the selection. .— Flick left

y Frese
—=Flick right m Begins a move.

A Ceret. mw Begins a drag through s.

m Intext, pops up asmall writing pad to | Fick upinsert a word.
@ IntheTable of Contents, pops ap the

Create menuco create a new document. | Flick down .
Selects or activates what you

Scrolls dociments tigt, left. deen. or up. the pen,
m@ Onthe document tive line, flick left - mn text, selects one chara

Y/Y Check or right — to turn to the next or previouspage.
. . . m Onoverlappec rabs, flick up Lor down

ephss options for seecied tex, objects, to move the tab up or down. Hick left — toicons. decumer ts, aud tools. val cs mice.
display all cabs ar once. J Tap press

Begins a copy.

OC) Circle ! neert space

Figure 1,2: Typical off-line documentation for mark commands (PenPoint system,
Go, 1991)

On-line documentation

This class is essentially the “on-screen” version of off-line documentation. A user

can display manual pages on-screen while the application in question is running.

Note that this does constrain the user into suspending the real task of issuing a

command while obtaining commandinformation.

Sometimes command information can be found in the application used to train the

software module that recognizes marks. Figure 1.3 shows one such example.
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Gestucetandier106500

EventKind: pickEvent Tecixind: _MouseToo.
EveacKkind: Dragkven: TeolKind: nli

EventKind: DropEvent TeelKind: ali 
Figure 1,3: Gesture handler window allows inspection of marks associated with a
view in Rubine's system. This window is, however, intended for the system
programmer. The window shows ten classes of marks but does not shows the
semantics associated with each mark. (from Rubine, 1990).

Unfortunately, training interfaces are not designed specifically to deliver this type of

information, and the information can be very minimal and confusingto the user.

Microsoft's Windows for Pen Computing uses on-line documentation. A special

application provides a tutorial which features animations demonstrating marks and

editing operations. A user can also practice using the marks on sample text. While

the tutorial is effective, a user still has to change context (ie., switch from the

working application to the tutorial application) in order to get information on
marks.

On-line interactive methods

On-line interactive methods supply information about marks as one issues a

command. Figure 1.4 shows an example where sample marks are displayed beside

menu items. Windowsfor Pen Computing using this technique to a limited degree.

This technique relics initially on another intcraction method such as menus or

buttons to invoke commands. In Figure 1.4, the interaction techniqueinitially relied

on is a menu. As the menu is used, it reveals the marks that can be used. Once a

user remembers the mark associated with a command, the revealing technique (the

16
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menu) can be bypassed and a more efficient mark can be used. Figure 1.5 shows a

system called XButtons which also uscs this method. In contrast to on-line

documentation, an on-line interactive method does not constrain the user into

suspending the real task of issuing a command, while obtaining command
information.

This methodis similar to accelerator keys. Every time a user uses a menu item or

button, the mark is seen. Like accelerator keys, the mark can be memorized and

used as a shortcut in calling the command. Note that “accelerator marks” are more

powerful that accelerator keys because they are not limited to characters on the

keyboard, they indicate the object of the requested action by the location of the

mark, and they can contain commandattributes, such as destinations or modifiers.

 
Figure 1.4: An example of “accelerator marks” which allow quick access to menu
items similarto accelerator keys.
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Phone:

Click - Get phone #

Flick Right — Dial phone #
PK Legh

Comment

Copy
Delete
Edit

Heip
Mail

 
Figure 1.5: XButtons provides a menu which shows what commands are available
jrom a button and the associated marks. A command can be invoked by either a
menu selection or by making the mark on the button (Robertson, et al, 1991).

On-line interactive rehearsal methods

This category is similar to on-line interactive methods except invoking a command

using the self-revealing technique(i.e., a menu) makes the user physically rehearse

making the corresponding mark. In contrast, when using on-line interactive

methods, the user does not physically rehearse making the mark (e.g., selecting

“copy” from the menu in Figure 1.4 requires a vertical movement, not a hand drawn

“C” movement).

Marking menus, the technique focused on in this dissertation, is an example of this

class (Kurtenbach & Buxton, 1991). The complete definition of this technique is

given in Chapter 2. Figure 1.6 illustrates this technique in the context of creating

three simple objects. An expert uses simple shorthand marks to create and place

circles, square, or triangles.
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If a user is unsure of what marks can be made, the user presses the pen against the

display and waits for approximatcly 1/3 of a second. This signals to the system that

no mark is being made and it then prompts the user with a radial menu of the

available commands, which appears directly under the cursor. The user may then

select a command from the radial menu by keeping the pen tip pressed and making

a stroke towards the desired menu item. This results in the item being highlighted

(see Figure 1.7). The selection is confirmed when the penislifted from the display.

Figure 1,6: An example of the technique using three simple shorthand marks. Three
objects can be defined: a circle, square and triangle. A mark which is a simple
straight line (shown here with an arrowhead to indicate drawing direction) defines
the type ofobject created, and its placement.
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Figure 1.7: A radial (or “pie”) menu can also be popped up if the user does not
know what commands or marks are available. Rather than drawing a mark as in
Figure 1.6 a novice keeps the pen pressed and a menu appears. An object can then
be selectedfrom the menu.

The important point is that the physical movement involved in selecting a command

is identical to the physical movement required to make the mark corresponding to

that command. For example, a command that requires an up-and-to-the-right

movement for selection from the pie menu, requires an up-and-to-the-right mark in
order to invoke that command. The intention is that selection from the menu is a

rehearsal of making a mark.

Other menu layouts can be used for interactive rehearsal methods besides radial

menus. Another possibility is a “bull’s eye menu” which is a menuthat is divided

into concentric circles rather than sectors, where each concentric circle corresponds

to a different command (Figure 1.8).? The corresponding marks are therefore

discriminated by length rather than angle. Many more exotic schemes have been

proposed and are as of yet unexplored.’ Chapter 2 presents the motivation for

choosing radial menus, and describes in detail the design of marking menus.

7 Wethank Professor John W.Sendersfor this suggestion originally called “donut menus”. Professor William
Buxton later took great exception to the use of the word “donut” and suggested the more dramatic name of
“pull’s eye menu”.

8 Dr. Tom Moran has proposed a combination of donut and pie menus. Dr. Stuart Card has proposed a
continuous version of hierarchical marking menus.
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 \heChicagoSL) ))
Figure 1.8 Examples of alternate menu styles in which selection will result in a
unique marks, a) isa “bull’s eye’ menu which discriminates by mark length rather
than angle. b) is a “dart board” menu which discriminates by length and angle.

14. THESIS STATEMENT

This dissertation is an in-depth investigation of marking menus. We present the

thesis that marking menus are a valuable interaction technique. When used in the

proper situation, marking menus are easy and efficient to use, can be used with

different input devices, and integrate well with existing interface techniques.

Furthermore, marking menus allow a user to take advantage of writing skills with a

pen andattain levels of performance not possible with other interaction techniques.

To support this thesis, we present a design for marking menus, evaluate marking

menus by meansof user behavior experiments, and provide a case study of marking

menus in practice. We conclude our investigation by showing how the design

concepts of marking menus, self-revelation, guidance, and rehearsal, can be

generalized to other situations.

The intention of this investigation is to provide practical guidelines for interface

designers interested in using marking menus. With this in mind, we describe when

and where marking menus would be an effective technique, and the limitations and

properties that must be observed and maintained for marking menus to work well

in an interface. We also describe the design principles behind marking menus and

give examples of how these principles can be applied to other contexts.
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15 SUMMARY

This chapter has provided motivation for marks as an interaction technique,

described a basic interface problem with marks, set out design principles to solve

this problem and introduced an approach, marking menus, which observes these

design principles. In Chapter 2 we expand on our motivation for using marking

menus and explain in detail the design and design rationale behind marking menus.

Chapter 3 reports on an empirical study of the non-hierarchic marking menus.

Chapter 3 is a condensed version of a paper that appears in Human Computer

Interaction (Kurtenbach, Sellen, & Buxton, 1993). Chapter 4 is a case study which

reports on how marking menuscan be designed into an application and investigates

user behavior with marking menus in an “everyday work”situation. Chapter 5

presents an empirical study on the limits of user performance with hicrarchic

marking menus. Chapter 5 is an expanded version of a paper published in The

Proceedings of InterCHI '93 (Kurtenbach & Buxton, 1993). Chapter 6 describes how

we integrated marking menus into a pen-based application and applied the notions

of self-revelation, guidance and rehearsal to this application. Chapter 7 summarizes

this dissertation and its contributions, and proposes future research.
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Chapter 2: Marking menus

In this chapter we expand on our description of marking menus. First, we present a

definition of marking menus and the motives for investigation. Next, we describe

previous research that is related to marking menus and weidentify open research

questions and the issucs pursued in this dissertation. Finally, we complcte our

description of marking menus by providing the complete rationale behind our

design.

2.1. DEFINITION

A marking menu is an interaction technique that allows a user to select from a menu

of items. There are two basic ways (or modes) in which a selection can be

performed:

menu mode In this mode a user makesa selection by displaying a menu. A user

enters this mode by pressing the pen against the display and waiting for

approximately 1/3 of a second. Werefer to this action as press-and-wait. A radial

menu of items is then displayed centered around the pen tip. A radial menu is a

menu where the menu items are positioned in a circle surrounding the cursor and
each item is associated with a certain sector of the circle. A user can select a menu

item by moving the pen tip into the sector of the desired item. The selected item is

highlighted and the selection is confirmed whenthe penis lifted from the display.

(See Figure 2.1)

mark mode In this mode, a user makes a selection by drawing a mark. A user enters

this mode by pressing the pen against the display and immediately moving in the

direction of the desired menu item. Rather than displaying a menu, the system
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draws an ink-trail following the pen tip. When the pen is lifted, the item that

correspondsto the direction of movementis selected. (See Figure 2.1)

 

 
Clipboard

ce
ir |

I

selection using selection using
menu mode mark mode

Figure 2.1: The two basic ways ofselectingfrom a marking menu.

The key concept of marking menus is that the physical movement involved in

selecting an item in menu mode mimics the physical movement required to select an

item using a mark.

Marking menus may also be hierarchic. In menu mode, if a menu item has a

subitem associated with it, rather than lifting the pen to select the item, the user

waits with the pen pressed to trigger the display of the submenu. The submenu is
also a radial menu. The user can then select an item from the submenu in the

manner previously described. In mark mode, a user makes a selection by drawing a

mark where changes in direction correspond to selections from submenus. Figure

2.1 show an example of selecting from hierarchic menus using menu mode and
mark mode.

Using radial menus in this way produces a set of mark which consist of a series of

line segments at various angles (“zig-zag” marks). Marking menus which have no

hierarchic items produce strictly straight line segments. Figure 2.2 shows an

example of a menu hierarchy andthe associated marks.
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menu hierarchy mark set

Figure 2.2: An example ofa radial menuhierarchy and the marks that select from
it. Each item in the numeric menu has a submenu consisting of the items a, b, c and
d. A mark's label indicates the menu items it selects. A dot indicates the starting
point ofa mark.

It is also possible to verify the items associated with a mark or a portion of a mark.

Werefer to this as mark confirmation. In this case a user draws a mark but presses-

and-waits at the end of drawing the mark. The system thendisplays radial menus

along the mark “asif” the selection were being performed in menu mode. Figure 2.3

showsan exampleof this.

Other types of behavior can occur when selecting from a marking menu such as

backing-up in a menu hierarchyor reselecting an item in menu mode. Details of the
behavior are discussed in Section 2.5.
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(1) (2)

Figure 2,3: An example of mark-confirmation in a menu with three levels of
hierarchy. In (1), the user draws the first part of the mark then waits with the pen
pressed for the system to recognize the selection so far. In (2), the system then
displays its interpretation ofthe mark and goes into menu modefor completion ofthe
selection.

2.2. MOTIVATION FOR STUDY

We have many motives for studying marking menus; they have advantages over

traditional menus; they use marks that are easy to draw and that are easy for

computer to recognize; they can be used for functions that have no intuitive mark;

they are compatible with different interface styles; and they exploit human motor

skills. In this section, we expand on these motivations.

2.2.1. Advantages overtraditional menus

One motivation for studying marking menusis that they have many differences and

potential advantages over the traditional menus used in current practice. Examples

of the current practice in menu design are the pop-up menus or pull-down menus

on the Macintosh. With these types of menus, selection is performed by popping up

the menu and selecting items by pointing with the mouse. Menu items can also be

selected by pressing an accelerator key associated with a menu item. There are

several specific advantages marking menushaveoverthese traditional menus:

Keyboardless acceleration

Marking menus allow menu selection acceleration without a keyboard. With

traditional linear menus, keypresses must be used to accelerate selection. Marking
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menus provide a method of accelerating menu selections when no keyboard is

available. This is extremely important for portable, keyboardless, pen-based

computers.

Acceleration on all items

Marking menus, if configured accordingly, can permit acceleration on all menu

items. With traditional menus, it is commonfor the application developer to assign

accelerator keys to the most frequently used menu items. This assumes that the

application designer is able to predict the most frequently used menu items. In

many cases, however,it is not possible to accurately predict which menu items will

be frequently used, if there is a large variance in the way an application may be

used. In contrast, with marking menus,the selection of all items can be accelerated

by the user making a mark. The designer does not have to predict, a priori, which

items will be the most frequently used.

Menu selection mimics acceleration

Marking menus minimize the difference between the menu selection and accelerated

selection. Selecting a menu item from a marking menu physically mimics the act of

making the accelerating mark. The design intention is to help users becomeskilled

at the movements required for accelerated menu selection. This is dramatically

different from traditional menus and accelerator keys where menu selection is

performed with the mouse and accelerated selection is performed with the

keyboard. In this case selection from the menu in no way physically mimics

selection using an accelerator key.

Combiningpointing andselecting

Marking menus permit pointing and menu selection acceleration with the same

input device. This is an intrinsic property of marks and has been utilized by other

researchers (e.g., Coleman, 1969; Rhyne 1987; Wolf & Morrel-Samuels, 1987). In

mouse-based direct manipulation interfaces it is very common to point to an object

and then select a menu item. If accelerator keys are used, this operation requires

coordinating pointing with the mouse and pressing on the keyboard. With a

marking menu, not requiring a hand to be on the keyboard frees the hand to control

other input devices or perform auxiliary tasks such as controlling a VCR transport or

turning the pages of a book.
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Spatial mnemonics

Marking menus use a spatial method for learning and remembering the association

between menu items and marks. In contrast, traditional menus and accelerator keys,

rely on symbolic mnemonics to help users rememberthe associations between menu

items and keys. Due the limited number of symbols on a keyboard, mnemonics

often cannot be established betweenall menu items andtheir accelerators keys. This

results in menu item/key associations that may be arbitrary or inconsistent.

Marking menus avoid this problem by relying on a consistent method to establish

mnemonics: the shape of a mark correspondsto the spatial layout of a menu item in

the menu hierarchy.

2.2.2. Ease of drawing and recognition

Marking menus use a very simple set of marks consisting of straight and zig-zag

marks. This simple set of marks has three advantages. First, these types of marks

are easy and fast to draw and are therefore suitable for accelerated performance.

Ease of drawing is especially important when drawing precision is hampered by

imperfect pen/ display technology. Second, computer recognition of these types of

marks can be reliable, fast and user independent. The recognizer requires little

processing power and notraining. Third, any interface designer, by using marking

menus, can make use of some of the advantages of marks without having to design

their own mark symbols. Of course, it is still necessary to design the layout of the
menus.

The single contiguous marks in marking menus have several advantages. Other

types of marks which require multiple non-contiguous pen strokes create many

problems. Recognizer design is more complicated when groups of strokes must be

recognized. This is referred to as the segmentation problem. Somctimcs groups of

strokes are distinguished by constraining the user to put all the strokes associated

with a mark in a certain region. Alternatively, strokes may be grouped by time.

This constrains the user to momentarily pause between making different marks.

With a marking menu mark, a user is not constrained by timing, size of mark, or

location. Recognition takes places the momentthe penis lifted.

The marking menu mark set does have disadvantages. First, a designer has no

choice in the shape of the marks (besides what can be controlled through the layout

of the menus). Fortunately, marking menus do not prohibit the use of other mark
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sets and mark recognition techniques (see Chapter 6 for a detailed discussion of this

issuc). Second, the size of the mark sct is limited by a uscr’s accuracy at drawing

lines at various angles. Third, the mark set is not particularly expressive. The angle

at whichthe stroke is drawnis used to define the type of mark. The line must also

be somewhat straight. This leaves starting point, ending point and temporal
information about how the line was drawn to be used as additional information

encoding parameters. In contrast, other mark vocabularies permit many more

parameters to be controlled by the shape of the mark (Makuni, 1986). Nevertheless,

we have discovered that the limited set of parameters of a marking menu mark can

be quite useful (see Chapter4).

2.2.3. Marks whenno obvious marks exists

Researchers have shown or argued that users commonly agree on certain marks for

certain functions (Wolf, 1986; Gould, & Salaun, 1987; Morrel-Samuels, 1990; Buxton,

1990). However, we believe that there are many situations where invoking a

function with a mark could be beneficial but no commonly agreed upon mark exists

for the function. This is similar to icon design where some functions have no

intuitive icon. For example, there is no “natural mark” for “change pen width to

thin”. Marking menus might work well in these types of situations because the

menu can provide textual or pictorial explanations of functions while the mark for

the menu item provides a quick way to invoke the function.

2.2.4. Compatibility with unfolding interfaces

Marking menus are compatible with unfolding interfaces (described in Section

1.3.2). The intention is that menus popupto self-reveal or unfold functions and the

marks provide way to efficiently invoke the functionality. Guidance and rehearsal

are intended to help a novice learn the efficient way of invoking a function.

2.2.5. Compatibility with existing interfaces

Marking menus are compatible with popular input devices and interface paradigms.

First, the type of marks used can be reasonably drawn with a mouse (Chapters 3 and

5 explore this issue in detail). Second, since traditional menus are created by the

application calling library routines, by replacing the library routines, marking

menus could be used in place of pop-up menus without changing a single line of

application code or changing application functionality. Finally, marking menus can
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extend existing dialogue styles without major changes to an interface paradigm. An

example of this is HyperMarks, developed by the author (Kurtenbach & Baudcl,

1992), which is a Hypercard xcommand that supports marking menus in Hypercard

(Apple Computer, 1992). When a marking menu is used from a Hypercard button,

the Hypercard buttonstill retains its single function when pressed. However, if the

button is kept pressed, a marking menu pops up with more commands. A user can

select from the marking menu using menu mode or marks. In this way, the function
of a button can be extended.

Marking menus can be effective because they are a pop-up interaction technique.

When displays become small or very large, marking menus can be effective. On

large displays, a mark or a menu selection can be made at a user's current location

without a long trip to a menu bar or tool pallet. On small screens, since both the

menu and mark “go-away” once performed, no valuable screen space is consumed.

2.2.6. Novices, experts, and rehearsal

Marking menus are intended to support both the novice and expert uscr. The

intention is that a novice uses menu mode and an expert uses the marks. Menu

mode can provide the self-revelation and guidance needed for a novice to invoke a

command. The marks can provideefficient interactions for experts.

Marking menus are also intended to support the transition between novice and

expert. Selection in menu mode provides the user with rehearsal for making a mark.

In essence, using the menu trains a novice to use marks. We believe that rehearsal

helps in learning the association between mark and command.

There are other menuing schemes which support the novice and expert and the

transition between the two. For example, the Macintosh supports novices by

providing menus and supports experts by providing menu accelerator keys. The

transition between novice and user is supported by the user being remindedof the

keystrokes associated with particular menu items every time a menuis displayed.

This is done by having the namesof the accelerator keys appear next to menu items

in the menu. However, actually using an accelerator key is avoidable. The user can

always just select from the menu. Furthermore, this is easiest because the user is

already displaying the menu. The end result is that accelerator keys are sometimes

not used even after extensive exposure to the menu. With marking menusthe user

is not only reminded, but rehearses the physical movement involved in making the

30

Page 1483 of 1714



Page 1484 of 1714

mark every time a selection from the menu is made. What makes marking menus

unique from the accelerator key scheme is that rehearsal is unavoidable. We belicve

this helps in learning the association between mark and command.

2.2.7. Utilizing motor skills

The idea of using physical rchearsal to train novices to become experts is a unique

concept and is worth investigating for pedagogical reasons. Marking menus

purport to reduce the cognitive load of memorizing mark/command association by

relying on muscle memory (since each mark/command is a distinct physical

movement). This technique is similar to the approach used in the Information

Visualizer Project (Card et al, 1991). The Information Visualizer relies on low level

sensory input processing such as depth or motion perception to reduce the burden

on higher cognitive processes in visualizing information. Marking menus can be

thought of in a similar manner. It is believed that low level sensory output

processes (muscle memory) are used to reduce the load on higher level cognitive

processes. We explorethis issue in this dissertation.

2.2.8. “Eyes-free” selection

Selection by a distinct physical movement with a marking menu lendsitself to

“eyes-free” selection. For example, most of us can draw the eight directions of a

compass without looking. Eyes-free selection is useful in situations where a user's

visual attention must be on something other than the selection process, for example,

selecting commands while watching a video tape. An eyes-free selection technique

is also extremely valuable to the visually impaired.

2.3. RELATED WORK AND OPEN PROBLEMS

This dissertation develops and explores the use of marking menus. There is no

previous research on this technique, per se, however, marking menus are based on

radial menus(see Section 2.1 for the definition of radial menus). Therefore, research

on radial menusis relevant. The most widely used instance of a radial menu is the

pie menu (Hopkins, 1991). A pie menu is a radial menu where the visual

representation of the menu resembles a sliced pie. Other types of visual

representations are possible, for example, we have developed an alternative

representation for a radial menu which docs not looklike a pic (see Figure 2.12).
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Twoinstances of radial menus are pie menus and command compasses. We now

describe these two techniques, contrast them with marking menus, and report on the

current state of research on their design and usage.

2.3.1. Pie menus

To date, there is little research on pic menus. The origin of pic menus can be traced

back to radial menus proposed by Wiseman, Lemke, & Hiles (1969). Since then,

research on pie menus has mainly been concerned with menu layout and suitable

applications (Hopkins, 1991; Hopkins, 1987). The only empirical study of pie menus

investigated menu item selection time and error rates for 8-item menus but

concentrated on comparing them to linear menus (Callahan, Hopkins, Weiser, &

Shneiderman, 1988). It was found that selection from pie menuswassignificantly

faster (15%) and produced marginally significant fewer errors (42%) than linear

menus. The experiment also investigated the effect of using menu items with a

natural linear ordering (ie., “First”, “Second”, “Third”, etc.), with a natural radial

ordering (ie., “North”, “North-east”, “East”, etc.), and with an unclassifiable

ordering (i.c., “Center”, “Bold”, “Italic”, ctc.). Callahan ct al. hypothesized that

certain types of menus(pie or linear) would perform better with items that have a

certain type of natural ordering (radial, linear, or unclassified). A marginally

significant correlation was found between menu types and types of orderings. The

weak correlation occurred because selection time means for the pie menus were

lower even on items with natural linear orderings. Results also showed that

unclassified menu items produced significantly slower selections than ordered

menu items regardless of menu type.

Whathas not been extensively studied is the claim that muscle memory for different

gestures plays a helpful role in menu selection. Anecdotal evidence from designers

of pic menu systems suggest that item selection from a menu hicrarchy is possible

without displaying the menus after practice (Hopkins, 1987). Not only was

unpromptedselection possible but it was also desirable for efficiency reasons.

Unprompted selection is supported in pie menus by a technique called mousing-

ahead. Mousing-ahead means the user does not have to wait for the system to

display the menu before moving the cursor to makea selection. As the user moves

the cursor, the input system buffers cursor location data. When the menuis finally

displayed, the system reads the buffered data and analyzesit as if it were generated
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with the menu displayed. The system then immediately selects a menu item and

removes the menu. In this way a user can make a selection without waiting for the

menu to display (in effect, the mouse is being operated “ahead” of the display,

hence the term mousing-ahead). Hopkins' implementation is slightly more

sophisticated than just described. Menu display is suppressed until the user stops

moving the cursor.

On the surface, it appears as if a marking menu is a pie menu with an ink-trail

added to cursor. However, there is a major difference in the way the two techniques

behave. Marking menus, depending on the context, may use sophisticated

recognition. Marking menus analyze the path of a cursor as a mark, looking for

certain features. If the interface recognizes other types of marks, a mark has to “look

like” a marking menu mark before it can select from the menu. For example,

suppose an interface recognizes a “C” mark (e.g., “C” triggers the copy command)

and also marking menu marks(i.e., zig-zag marks). If mousing-ahead wasused, the

“C” would select the bottom item of a menu (assuming the user started drawing

from the top of the “C”). With marking menus, the recognizer identifies the mark as

a “C” and not as a zig-zag mark. Chapter 6 discusses in more detail, issues of

integrating marking menu marks with other types of marks.

As a consequence of mark recognition, marking menu marks can be performed more

casually than mousing-ahead movements with pie menus, especially with hierarchic

menus. Mousing-ahead on pie menus must be an exact imitation of cursor

movement used when selecting with the menu displayed. Marking menus, on the

other hand, recognize the shape of the mark, independent of size and therefore the

user can be more casual when drawing marks as opposed to mousing-ahead. There

are designs where mousing-ahead can be made independent of movementsize but,

in general, this is not possible. See Section 2.5.6 for a detailed discussion of these
issucs.

The visual difference between marking and mousing-ahead is that marking leaves

an ink-trail after the cursor, whereas mousing-ahead does not. We believe that,

without an ink-trail during selection, a user must visualize selection from the menu.
With an ink-trail, the user does not have to visualize selection, but rather remember

the mark associated with a menu item and then correctly draw the mark. Webelieve

the ink trial provides feedback which helps the user to correctly draw the mark.
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2.3.2. Command compass

An interface mechanism very similar to a marking menu is the command compass

used in the Momenta pen-based computer. Figure 2.3 shows how the command

compassis used to movetext.

Using the Command Compass

to Move a Piece of Text

1, Selees text te be moved. Compass icon 2. Toweh thepen-tip to the icon, opening
appears in center. the compass.

3. Stroke pen - tip tethe right, invoking the 4. Lift thepen offthe screen, causing text to
move command, then continue tracing line bepasted inte mew sper.
to whereveryou want the text moved.

 
Figure 2.3: The Momenta Command Compass (Momenta, 1991).

There are several differences between the command compass and marking menus.

First, the command compass docs not permit resclection. Once the pen is moved in

the direction of a command, that command is immediately selected. Second, an

explicit unprompted selection mode is not provided. Noink-trail is provided and

unprompted selection relies on mousing-ahead (or “penning-ahead”, since

Momenta is a pen-based computer). While the Momenta interface uses marks, the
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command compass does not utilize marks. Finally, only one type and size of

command compassis used. No hicrarchic command compasscsare supported.

The subtle difference in the way selection is done with a command compass versus

selection with a marking menu affects the type of interactions each technique can

support. With marking menus command selection occurs after a sector has been

moved into and the pen lifted. With the command compass, commandselection is

done the moment a sector is moved into. Thus when selection occurs, the user is

still in a physical mode (keeping the pen pressed). This physical mode can be used

to express more parameters for the command, hence, physically pairing a command

verb and its parameters. This is, of course, at the expense of not permitting
reselection.

2.4. RESEARCH ISSUES

The ultimate goal of this research is to create a useful interaction technique. To

attain this goal, several things must be accomplished. First, we must create a design

for marking menus. Next, this design must be evaluated to determineits limitations

and possible applications. From these evaluations, we can refine our design and

develop recommendations for interface designers about when, where, and how

marking menus can be beneficial. Given these goals, research issues surround the

following question: what characteristics of marking menus do we need to

understandto effectively incorporate this mechanism into the interface?

The most immediate question about marking menus is: how many items can be

placed in the menusbefore it becomes too difficult to make selections using marks?

Common sense tell us that parameters governing this aspect are articulation

accuracy (i.e, how precisely can a human draw directional strokes), and human

memory limitations(i.e., how quickly can a human learn and rememberassociations

between menu items and marks). Other issues concern how hierarchic structure

affects selection performance, how command parameters can be attached to marks,

and how the design can be varied to accommodate the constraints of an interface.

The following sections expandon these issues.
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2.4.1. Articulation

Accuracy in selecting menu items and in marking is limited by the human motor

system and the input device being used. This constrains the numberof items that

can be placed in a marking menu. Articulation refers to the motor system activities

associated with selecting from a menu or making a mark, not memoryactivities like

recalling the mark associated with a menu item. For example, suppose a user
remembers the mark for a desired menu item. Can the user draw the mark

accurately enoughto select the menu item? In other words, can the user successfully
articulate the mark once it is remembered?

Manyfactors mayaffect the success of articulation:

The type and characteristics of the input device. While the pen appears to be a

natural input device for marks, operating marking menus with other types of input

devices is also desirable. Thus, it is of interest to study users' performance not only

with a pen but also with other popular types of input devices.

The number of items in a menu. As the number of items in a menu increases, the

size of the menu items decreases and therefore pointing to them will become more

error-prone and slower. Using a mark for selection should behave in a similar

fashion. Precision of marking must increase as the numberof items increases.

The type of articulation feedback provided. Feedback helps a user verify that a

selection is being successfully articulated. For example, highlighting a menu item

provides feedback. Supplying an ink-trail is another form of feedback, but is

perhapsless salient. Finally no ink-trail (ie., just the pen's or cursor's movement)

provides even less feedback.

Chapters 3 and 5 investigate the effect of these factors through empirical

experiments which measure speed and accuracy of selection when using marking

menus. The results from these experiments are then interpreted to produce design

guidelines.

2.4.2. Memory

Another aspect of marking menus concerns human memory. Using a mark to select

from a marking menu involves, first, learning the association between menu item

and mark, and then, recalling the association from memory before articulating the
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mark. There are several ways in which learning and recall can occur. For example,

a uscr can memorize the association by rote memory (“this mark invokes this

command”), or a user can reconstruct a mental image of the spatial layout of the

menu or process of selection.

There are other factors affecting learning and recall. Differences in the angles

between items must be memorable enough so the angle can be reproduced in

drawing the mark. For example, a user may rememberan item wasthe third from

the top in a very densely packed menu, but the angular difference between items

may be so small that it cannot be rememberedprecisely enough.

Whatever technique is used to remember the mark/item association, the exact

limitations of marking menusrelative to the limitations of human memoryis a very

complex question. Human memory in somesituations can be considered almost

infinite. For example, humans are capable of memorizing many complex symbol

systems such as languages. With enough practice, the paths through extremely

complex hierarchies of menus could be memorized and recalled. The question of

how quickly one “Iearns the marks” depends on many variables: frequency of use,

presence or absence of mnemonics or metaphors, menu layout, intelligence,

motivation, application, etc.

Determining hard figures for “learning time” or “maximum number of items”

relative to human memory is not possible. These measures depend largely on the

user and the application. The intent of this research is to come up with guidelines

that help designers exploit aspects such as frequency of use, metaphors, and menu

layout to help make marking menuseasierto learn.

In the case of marking menus note that training time is not as critical as with other

interface techniques because a uscr “trains on the job”. A uscr of marking menus

does not have to spend time training before the selections can be performed. A

novice can use the menus while a forgetful expert may occasionally have to use the

menu. In either case, the user will still be performing “training on the job”.

Do uscrs Iearn and use marking menus the way the design suggests? The three

modes of interacting with a marking menu (menu, mark-confirmation and mark

modes) are intended to support the transition from problem solving to skilled

behavior in a user. Card, Moran and Newell (1983) suggest that novices exhibit

problem solving behavior (“how do I do this?”) and experts exhibit skilled behavior
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(an expert knows how to solve the problem and doesit efficiently). Rasmussen

(1984) further refines this notion to include a middle step called rule-based behavior.

Informally, rule-based behavior can be thought of as the user explicitly thinking “in

order to do this I must do this”. As Figure 2.3 shows, these stages of behavior can be

mapped to the three modes of marking menus. The intention is that these modesare

designed such that use of one mode builds the skills for the next mode and this

assists in making the transition between modes. Do users actually behave this way

with marking menus? If not, what sort of behavior is occurring and why?

We examine these issues of learning and remembering through empirical

experiments (Chapter 3 and 5), and user behavior case studies (Chapter 4). The

empirical experiments reveal learning curves and insights into the sort of menu

structures that assist in learning and remembcring menu layout and marks. A casc

study of user behavior using marking menus in a real application investigates

learning and behavior patterns when marking menus are used in “everyday work”

 

situations.

Behavior

with marking
menus

Menu mode Mark confirmation Mark mode

Stageof|problem solving Rule based Skilled
behavior

Type of ; ;
user Novice Intermediate Expert

Expertise

Figure 2.3: The relationship between stages of behavior, type of user, a user's
behavior with a marking menu and expertise.
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2.4.3. Hierarchic structuring

Another question concernsthe effect that the structure of the menu hierarchy has on

user performance. Specifically, how is user performance affected when breadth or

depth is increased? (Depth is the numberof levels in a hierarchy of menus; breadth

is the numberof items in a menu.)

Mostof the research on hierarchic structuring of traditional menu systems focuses

on depth versus breadth. This research can be divided into two types of studies: (1)

theoretical models describing menu structure and user performance, and (2)

empirical studies of menu usage. The theoretical studies concern models that

describe menu search performance based on structure. From these models,

structures that optimize search-time can be produced. The empirical studies

attempt to verify the theoretical models, and estimate search time and error rates.

These research efforts have addressed some basic issues concerning depth versus
breadth.

The navigation problem (getting lost or using an inefficient path to find a menu item)

becomes morelikely as depth increases. Snowberry, Parkinson and Sission (1983)

showedthat error rates increased from 4% to 34% as menu depth increases from one
to six levels.

Despite the problem of errors, there are several reasons to increase menu depth:

crowding, insulation and funneling. Crowding refers to the problem of not having

enoughspace on the screen to simultaneously display all the menu items. Insulation

refers to the hiding information in deeper menusto protect a user from information

overload. Funneling refers to the structuring of menus such that the hierarchy helps

a user “narrow down”the choice and access items more quickly than using a flat
menu structure.

Lee and MacGregor (1985) examine the tradeoff between funneling and response-

execution time. Assuming all items were viewed before a selection is made, they

found that optimal breadth was between3 to 8 items per menu level depending on

uscr response time and computer processing response time. Depth was cffective

when user response times were fast and computer processing time per option was

slow. If it is assumed that the search terminates on average halfway throughthe

items, then the optimal breadth is between 3 to 13 items at each level. These results
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should be temperedbythe fact that they are based on a theoretical model and not on

empirical uscrtests.

If meaningful groupings of items are used, Paap and Roske-Hofstrand (1988) show

that optimal breadth at any level tends to be in the range of 16 to 36 and sometimes

as high as 78 for traditional menu systems depending on human and computer

response time. In terms of marking menus, these ranges are well outside the
maximum number of items that can be selected with a mark. This raises the issue

that reduction of breadth in a marking menu may increase the performance of

marking but degradethe efficiency of menu selection in the menu mode.

Menusearch time increases monotonically with depth (Landauer & Nachbar, 1985).

This produces a log-linear relationship between search time and number of menu

items. Kiger (1984) also found that performance (time and accuracy) decreased as

depth increased further confirming that depth presents navigation problems to
users.

Kiger also included crror recovery in his analysis. This increased the variance in

search time from 6 seconds to 20 seconds. Since error recovery occurs in the real

world, this study more realistically characterizes the costs associated with

hierarchical structuring. Kiger tested five types of hierarchical structures varying

the depth from twoto six levels and the breadth from twoto eight items.

Performance can vary at different levels of the hierarchy. Snowberry, Parkinson and

Sission (1983) report on error rate versus hierarchy level in a six level hierarchy. A

higher proportion of errors occurred at the top twolevels of the hierarchy than at

the bottom two despite the fact that every level was a binary choice. The

explanation for this is that higher level items are more abstract and therefore more

subject to misinterprctation. Kiger also found that search times gradually become

faster as a user camecloser to the goal item. Other studies have revealed opposite

results—better performance occurred at top levels (Allen, 1983). The explanation

offered for the differences is that users were much more familiar with the top level

items than the lowerlevel items. This lends support to the notion that performance,

structure, and item semantics in menusare intimately related.

Paap and Roske-Hofstrand (1986) point out that users restrict navigation because the

menu structure has semantics or because they have experience with the menu. Both

Card (1982), and McDonald, Stone, & Liebelt (1983) report that effects of
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organization disappear with practice. In other words, with practice, users navigate

directly to the desired menu item. With expericnce, uscrs move from a state of great

uncertainty to one of total certainty. This lends support to the hypothesis that

marking menu users will use marks withpractice.

The previous research on depth versus breadth in menus indicates two important

points relative to marking menus. First, users need to explore to make selections

from menus with which they are not familiar, and the semantics associated with the

structure has an effect on human performance. Marking menus behave somewhat

like traditional menu systems when used in the menu mode(i.e., users can see item

names and navigate through the hierarchy). Therefore, we can assume that the

research findings mentioned above are applicable in menu mode. Second, once

familiar with the menu structure, users of traditional menu systems want to directly

select an item. In other words, users no longer require a menu. This behavior bodes

well with using a mark to select from a marking menu.

Since the previous research in this area is somewhat applicable to the menuing

mode of marking menus, the open research issucs concern using mark mode to

access hierarchic marking menus. The main issueis the effect of breadth and depth

on user performance when using marks. Specifically, how deep and how wide can

menus be made before marking becomes too slow or error prone? What sort of

structuring makes mark articulation easier? For example, selection using marks
from a menu with 16 items seems difficult. Selection from a menu with twolevels of

four item menus (16 items in total) seems more reasonable. In Chapter 5, we

examine the effect of breadth and depth on marking by means of an empirical

experiment on human performance using marks to select items from hierarchic

marking menus.

2.4.4. Command parameters and design rationale

Besides the angle of a mark specifying the command verb, other aspects of a mark

can express command parameters. For example, a mark's starting point, ending

point and size can all contribute to command semantics. The question is how can

these aspects of a mark be exploited in an interface? Issues of this type are examined

in a case study which involved implementing marking menus in a real application

(Chapter4).
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Subtle differences in design may have a profound effect on the way in which

marking menus can be used. For example, a design that uses selection upon sector

entry (e.g., the Momenta command compass) must be used differently than a design

that uses selection on penrelease (e.g., marking menus). These small design details

can have a large impact on a design's ability to support hierarchic menus,

command/parameter pairing, and reselection. In section 2.5, we describe this

design space and present a design rationale for marking menus.

2.4.5. Generalizing self-revelation, guidance and rehearsal

Marking menus provide self-revelation, guidance, and rehearsal for the particular

class of mark. Specifically, this is the type of mark that is created as a byproduct in

selecting from directional menus. Wereferred to this class of marks as “zig-zag”

marks. A pen-based application may also use other types of marks (e.¢., editing

symbols). There are two issues concerning the relationship of marking menus and

other types of marks. First, can marking menu marks be integrated with other types

of marks? Second, can a mechanism be developed to provide self-revelation,

guidance and rchcarsal for other types of marks?

A major advantage of marks is the ability to use features of a mark as additional

command parameters. For example, a copy mark not only specifies that a copy

command should be executed but also specifies what should be copied and to where

it should be copied. Howself-revelation, guidance and rehearsal can be provided

for this type of information is an open question. Chapter 6 addresses this question.

2.5. DESIGN RATIONALE

This section presents the design rationale behind marking menus. First, the

fundamental goals and the space of the design are defined. Next, an explanation and

taxonomy of design options is presented. Finally, the rationale for choosing a

particular set of options for the design of marking menusis given.

2.5.1. Fundamental design goals

The fundamental design goals of marking menusare:
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* in the mark mode, speed of selection is emphasized over the self-revealing
features.

* in the menu mode, self-revelation and guidance are emphasized over speed of
selection

* in menu mode movement must be as close as possible to a rchcarsal of marking.

Ultimately, using the menu mustfacilitate learning the marks.

The last goal dictates that marking must mimic selecting in menu mode.

Furthermore, marks must be distinguishable from one another. This provides a

further goal for the design:

* selection in menu mode must create a unique path which can be reliably

recognized by a computer.

Wenext examine the types of designs that address these goals.

2.5.2. The design space

In the most general sense, the design space can be described as: “discriminating

selections from menus by cursor movements”. Linear menus, array menus, and

radial menusall fall into this design space. Lincar menus are menus where the

items are laid out in sequential linear fashion (top to bottom,or left to right). Array

menus are menus where the items are laid out in both a top to bottom and left to

right fashion. Radial menus are menus where the itemsare laid out in a circle. In

these types of menus, the position of the cursor ultimately determines the item

selected. A design that does notfit in this class would be menu selection based on

time. In this case, the computer cyclically displays each menu item and the user

presses a button when the desired item appears. This type of menuselection is often

used in interfaces for handicapped users.

In this space, selection is performed relative to a starting point and the amount and

direction of movement determines the selection being made. For example, in a linear

menu, when the cursor is initially placed on the first item in the list, selection is

determined by howfar the cursor is moved down the menu.

Within this design space we are only considering designs in which menuselection is

a physical rehearsal of marking. We want cach movement path traced by a menu

selection to be unique relative to the other movement paths involved in selecting,
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from the menu. This will result in an unambiguous language of movements (or

marks when the cursor Icaves an ink-trail).

Within this design space we can identify several important design issues. These

issues are discrimination, control, selection, display, backing up, and aborting.

2.5.3. Discrimination method

Discrimination method is defined as the type of movement used to discriminate

selections. This can be either angle, length, or a combination of the two. Figure 1.8

shows a menu that uses length, and another menu that uses the combination of

length and angle. Whether humansare better at discrimination by length or by

angle is an open question.? In our context, discrimination by angle is preferable to

discrimination by length for two reasons:efficiency, and scaling and rotation issues.

Under certain conditions, discrimination by angle (radial menus and angular marks)

 
(a) discrimination by angle (b) discrimination by length

Figure 2.4: An example where discrimination by angle makes selection faster than
discrimination by length. The lines with arrow heads show the movement needed to
select an item. In the discrimination by angle case, selection of any item requires a
movementofdistance d. In the discrimination by length case, assuming all items are
accessed with the same frequency and distance is equivalent to movementtime, the
average selection time will be 2L, where L is the height ofa menu item. Assuming d
is 0.5L, selection is four timesfaster with discrimination by angle.
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allow faster selection than discrimination by length (linear menus and linear marks).

First, because all the menu items are equidistant from the center of the menu in a

radial menu,selection time is approximately the same for any item in the menu. In

contrast, with linear menus, the first item can be selected more quickly thanthe last

item in the menu. Figure 2.4 shows an example which compares a four-item radial
menu and a four item linear menu. As described in Section 2.3.1, Callahan,

Hopkins, Wieser, & Shneiderman (1988) have empirical evidence that eight-item

radial menus are 15% faster and produce 42% fewer errors than eight-item linear

menus. Treating selection from a radial menus as a one dimensional pointing task,

and assumingthat the amount of area used by a radial menu anda linear menu are

the same, it can be shownthattarget size in a radial menu will alwaysbe larger than

target size in a linear menu. For example, in Figure 2.4, the target size in the radial

menu is the diagonal of an item. In contrast, target size in the linear menu is the

height of an item. However, as the number of items increase in a radial menu,

pointing to the narrow slices will become more difficult. To compensate for this,

users will have to move farther away from the center, thus slowing their selection

time. Determining the point where performance with a radial menu will degrade to

the performancelevel of a linear menu is an open problem. Current research on two

dimensional pointing (Mackenzie & Buxton, 1992) only deals with rectangular

targets and therefore cannot be directly applied to radial menuslices.

There are also issues related to mark-based interfaces that make discrimination by

angle preferable. Angular marks are preferred over linear marks because an angular

mark can be scaled without changing its meaning (or, rather, changing the item the

mark selects). In terms of a mark-based interface this means that a user is not

restricted to draw the marks at a prescribed size. For example, a small “L” shaped

mark would have the same meaning as a large “L” shaped mark. This is not the case

with marksthat are discriminated by length.

However, the meaning of angular marks changesif the mark is rotated. Rotating a

horizontal to the right mark 45 degrees will cause it to be interpreted as a downto-

9 It should be noted that discrimination can be performed at the reading or at the writing level (i.e., perception
versus production of marks). These are significantly different problems. This dissertation examines production
of angular marks. See Westheimer & McKee (1977) for a discussion of the perception of angle and length.
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the-right mark by the system. In contrast, linear marks are not affected by rotation

(i.c., a bull’s eye menu. See Figure 1.8).

Discrimination by angle better reflects the way marks are interpreted in everyday

life. Marks are generally insensitive to scaling but sensitive to rotation. For
“ 1’example, a small has the same meaning as a large “I” but if it is rotated 90

degrees it perhaps takes on the meaning of “dash”.

There is also the issue of C:D ratio. C:D ratio is defined as the ratio between the

amount of movement of the input device (Control) and the amount of movement

this imparts to the cursor (Display). On a pen-based system, the C:D ratio is

constant and one to one because the cursor follows directly under the pen tip. For

example, a one inch movement of the pen corresponds to a 1 inch mark. Therefore,

with pen-based systems, C:D ratio is not an issue. However, with input devices that

do not write directly on the display, (i.e., the mouse), C:D ratio is an issue. A one

inch movement of the mouse mayresult in different lengths of marks on different

computers if they have different C:D ratios. C:D ratios that vary depending on the

speed of the movement (referred to as cursor acceleration) complicate this situation

even further. A one inch movement made quickly can generate a much longer mark

than the same movement made slowly, for example. Therefore, under these

conditions, discrimination by length may be unreliable. However, discrimination by

angle is not affected by varying C:D ratios. For example, a 45 degree mark is a 45

degree mark whetherornotit is one or two inches long. Sinceit is desirable that our

technique be usable with other input devices besides the pen, discrimination by

angle is a better choice.

2.5.4. Control methods

Selection from a menu with a pointing device is gencrally accomplished by dragging,

by tapping, or a combination of the two. Werefer to these as the control methods.

Whendragging is the control method, pressing the pen downonthe screen (“pen-

down”) displays the menu; moving the pen while it pressed against the screen

(“dragging”) selects different items; lifting the pen from the screen (“pen-up”)

confirms the selection. When menusare hierarchic, dragging into certain areas may

cause submenustobe displayed for selection. When tapping is the control method,

a pen-down followed quickly by a pen-up (a “tap”) causes the menu to be
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displayed; a “tap” over an item confirmsits selection. If the menu is hierarchic, the

selection will result in another menu being displayed.

Dragging is preferred because selection in menu mode must be a rehearsal of the

movement needed to make the mark. Marks are created by dragging the pen across

the display surface and therefore dragging is a more accurate rehearsal of marking

than tapping.

Marking menususe anaction called press-and-wait to allow the user to switch into

menu mode. Weelected to use this action for several reasons. First, it deviates very

slightly from the act of marking (the wait is only 1/3 of second). Thus the principle

of rehearsal is not dramatically violated. For example, an action such as holding

downa special key or making a special movement to invoke the menu would be a

much more dramatic violation of rehearsal. Second, when a user wants to avoid

menu mode, it usually means one wants to articulate the command quickly. Press-

and-waitis easily avoided by quick articulation and avoiding it also makesselection

faster. Third, according to our design goals, we assume that novices are not

concerned with fast selection and therefore a slight delay in selection is a minor

inconvenience. However, as users become more experienced with the menus and

desires faster selection, the delay may also provide incentive to use marks.

There are other reasons why delaying the pop-up of the menu is valuable: it can be

distracting; it can obliterate part of the screen; andit takes time. For a novice user

these may not be problem since displaying the menu is desirable. For expert users,

however, a delayed menu pop-up allows the creation of marks and avoids the

negative side effects of the menu's display.

2.5.5. Selection events: preview, confirm and terminate

There are several events that occur when making a selection. Selection from a menu

generally involves some sort of feedback indicating which item is about to be

selected, for example, an item highlights. We refer to this capability as selection

preview. Selection also involves an action which indicates to the system that it

should actually carry out the selection. We refer to this as selection confirmation.

In the non-hierarchic case, selection confirmation results in the termination of the

entire selection process. In the hierarchic case, selection confirmation will not

necessarily terminate the selection process if the item selected has a sub-menu. We
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