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Figure 5.3: Classifyving nulti-path gestures
At the top are examples of four two-path gestures expected by this classifier, and at ihe left a two-path gesture
i be classified. Path O of this gesture is classified {by the path U classifier} as path p0, and path 1 as ql.

These path classifications are used to fraverse the decision tree, as shown by the dotted lines. The tree node
reached is ambiguous (having children Q and 8) so global features are used to resolve the discrepancy, and
the gesture is recognized as class 8.
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5.4 Training a Multi-path Classifier

The training algorithm for a multi-path classifier uses examples of each multi-path gesture class
{(typically ten to twenty examples of each class) to create a classifier. The creation of a raulti-path
classifier consists of the creation of a global classifier, a number of path classifiers, and a decision
tree.

5.4.1 Creating the statistical classifiers

The path classifiers and the global classifiers are created using the statistical algorithm described in
Chapter 3. The paths of each example are sorted, the paths for a given sorting index in each class
forming a class used to train the path classifier for that index.

For example, consider training a multi-path classifier to discriminate between two multi-path
gesture classes, A and B, each consisting of two paths. Gesture class A consists of two path classes,
Ap and A, the sobscript indicating the sorting indices of the paths. Similarly, class 5 congists of
path classes B; and B;. The first path in all the A examples form the class A, and so on. The
examples are used to train path classifier 1 to discriminate between A; and By, and path classifier
2 to discriminate between A and B;. The global features of A and B are used to create the global
classifier, nominally able to discriminate between two classes of global features, A¢ and Bg.

Within a given sorting index, it is quite possible and legitimate for paths from different gesture
classes to be indistinguishable. For example, path classes A; and By may both be straight right
strokes. (Presumably A and B are distinguishable by their second paths or global featares.) In this
case it is likely that examples of elags 4; will be misclassified as 5; or vice versa. It is desirable to
remove these ambiguities from the path classifier by combining all classes which could be nustaken
for each other into a single class.

A mumber of approaches could be taken for detecting and removing ambiguities from a statistical
classifier. One possible approach would be to compute the Mahalanobis distance between each pair
of classes, merging those below a given threshold. Another approach involves applying a clustering
algorithm [74] to all the examples, merging those classes whose members are just as likely to cluster
with examples from other classes as their own. A third approach is to actually evaluate the actual
performance of a classifier which attempts to distinguish between possibly ambiguous classes; the
misclassifications of the classifier then indicate which classes are to be merged. The latter approach
was the one pursued here.

A naive approach for evaluating the performance of a classifier would be to construct the
classifier using a set of exaraples, and then testing the performance of the classifier on those very
same examples. This approach obviously underestimates the ambiguities of the classes since the
classifier will be biased toward correctly classifying its training examples [62]. Instead, a classifier
is constructed using only a small number of the examples (typically five per class) and then uses
the remaining examples to evaluate the constructed classifiers. Misclassifications of the examples
then indicate classes which are ambiguous and should be merged. In practice, thresholds must be
established so that a single or very small percentage of misclassifications does not cause a merger.

Mathematically, combining classes is a simple operation. The mean vector of the combined
class is computed as the average of the mean vectors of the component classes, each weighted by
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the relative nomber of exarples in the class. A similar operation compuies a composite average
covariance matrix from the covariance matrices of the classes being combined.

The above algorithm, which removes ambiguities by combining classes, is applied to each path
classifier as well as the global classifier. It remains now only to construct the decision tree for the
multi-path classifier.

54.2 Creating the decision tree

A decision tree node has two fields: malags, a pointer to a multi-path gesture class, and next,
a pointer to an array of poinders to its subnodes. 1o construct the decision tree, a root node s
allocated. Then, during the class pfiase, each multi-path gesture class is considered in turn, For
cach, a sequence of path classes (in sort index order), with its global feature class appended, is
constructed. Nodes are created in the decision tree in such a way that by following the sequence
a leaf node whose mclass value is the carrent multi-path gesture class is reached. This creates a
decision tree which will correctly classify all multi-class gesture whose component paths and global
features are correctly classified.

Next, during the example phase, each example gesturc is considered in turn. The paths are sorted
and classified, as are the global features. A sequence is constructed and the class of the gesture is
added to the decision tree at the location corresponding to this sequence as before. Normally, the
paths and global features of the gesture will have been classified correctly, so there would already be
a node in the tree corresponding to this sequence. However, if one of the paths or the global feature
vector of the gesture was classified incorrectly, a new node may be created in the decision tree, and
thus the saroe classification mistake in the future will still result in a comrect classtfication for the
gesture.

When attempting to add a class using a sequence whose components are misclassifications,
it is possible that the decision tree node reached already has a non-null melass field referring
to a different multi-path gesture class than the one whose exanple is currently being considered.
This is a conflict and is resolved by ignoring the current example (though a warning message is
printed). Ignoring all but the first instance of a sequence insures that the sequences generated doring
the class phase will take precedence over those generated during the example phase. Of course,
a conflict occurring during the class phase indicates a serious problem, namely a pair of gesture
classes between which the multi-path classifier is unable to diseriminate.

Praring decision tree construction, nodes that have only one global feature class entry with a
subnode have theirmclass value set to the same gesture class as the melasse value of that subnode.
in other words, sequences that can be classified without referring to their global feature class are
marked as such. This avoids the extra work (and potential for error) of global feature classification.

5.5 Path Features and Global Features

The classification of the individual paths and of the global features of a multi-path gesture are
central o the multi-path gesture recognition algorithm discussed thus far. This section describes the
particular feature vectors used in more detail.
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The classification algorithm used to classify paths and global features is the statistical algorithm
discussed in Chapter 3, thus the criterta {or feature selection discussed in section 3.3 must be
addressed.  In particular, only features with Gaussian-like distributions that can be calculated
incrementally are considered.

The path features include all the featares mentioned in Chapter 3. One additional feature was
added: the starting time of the path relative to the starting time of the gesture. Thus, for example,
a gesture consisting of two fingers, one above the other, which enter the field of view of the Sensor
Frame simultaneously and move right in parallel can be distinguished from a gesture in which a
single finger enters the field frst, and while it is moving right a second finger is brought into the
viewfield and moves right. In particular, the classifier (for the second sorting index) would be able
to discriminate between a path which begins at the start of the gesture and one which begins later.
The path start time 1$ also used for path sorting, as described in section 5.2.

The main purpose of the global feature vector is to discriminate between multi-path gesture
classes whose corresponding individual conpourent paths are indistinguishable. For example, two
gestures both consisting of two fingers moving right, one having the fingers oriented vertically, the
other horizontaily. Or, one having the fingers about one half inch apart, the other two inches apart,

The global features are the duration of the entire gesture, the length of the bounding box diagonal,
the bounding box diagonal angle (always between 0 and 7 /2 so there are no wrap-around problems),
the length, sine and cosine between the first poing of the first path and the first point of the last path
(referring to the path sorting order), and the length, sine, and cosine between the first point of the
first path and the last point of the last path.

Another multi-path gesture attribute, which may be considered a global feature, is the actual
number of paths in the gesture. The namber of paths was not included in the above list, since itis not
included in the vector input to the statistical classifier. Instead, it is required that alf the gestures of a
given class have the same number of paths. The number of paths must match exactly for a gesture to
be classified as a given class. This restriction has an additional advauntage, in that knowing exactly
the number of paths simplifies specitying the semantics of the gesture (see Section 8.3.2).

The global features, crude as they might appear, in most cases enable effective discrimination
between gesture classes which ecannot be classified solely on the basis of their constitaent paths.

5.6 A Further Improvement

As mentioned, the multi-path classifier has a path classifier for each sorting index. The path classifier
for the first path needs to distinguish between all the gestures consisting only of a single path, as
well as the first path in those gestures having two or more paths. Similarly, the second path classifier
nwust discriminate not only between the second path of the two-path gestures, but also the second
path of the three path gestures, and 3o on. This places an unnecessary burden on the path classifiers.
Since gesture classes with different numbers of paths will never be confused, there is no need to
have a path classifier able to discriminate between their constituent paths. This observation leads to
a further improvement in the multi-path recognizer.

The improvement is instead of having a single multi-path recognizer for discriminating between
muefti-path gestures with differing nombers of paths, to have one multi-path gesture recognizer, as
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described above, for each possible number of paths. There is a multi-path recognizer for gestures
consisting of only one path, another for two-path gestures, and so on, up untif the maxinum nurber
of paths expected. Each path classifier now deals only with those paths with a given sorting index
from those gestures with a given number of paths. The result is that many of the path classifiers
have fewer paths to deal with, and improve their recognition ability accordingly.

Of course, for input devices in which the number of paths is fixed, such as the DataGlove, this
improvement does not apply.

5.7 An Alternate Approach: Path Clustering

The mulii-path gesture recognition implementation for the Sensor Frame relies heavily on path
sorting. Path sorting is used to dectde which paths are submitted to which classifiers, as well as in the
zlobal feature calculation. Errors in the path sorting {7 e similar gestures having their corresponding
paths end up in different places in the path ordering) are a potential source of misclassifications.
Thuas, it was thought that a raulti-path recognition method that avoided path sorting might potentially
be more accurate.

5.7.1  Global features without path sorting

The first step was to create a global feature set which did not rely on path sorting. As usual, a major
design criterion was that a small change in a gesture should result in a small change in its global
features. Thus, features which depend largely upon the precise order that paths begin cannot be
used, since two paths which start almost simultaneously may appear in either order. However, such
features can be weighted by the difference in starting times between successive paths, and thus vary
smoothly as paths change order. Another approach which avoids the problem is to create global
features which depend on, say, every pair of paths; these too would be immoune to the problems of
path sorting.

The global features are based on the previous global features discussed. However, for each
feature which relied on path ordering there, two features were used here. The first was the previous
feature weighted by path start time differences. For example, one feature is the length from the first
point of the first path to the first point of the last path, multiplied by the ditference between the start
tiraes of the first and second path, and again nwltiplied by the difference between the start times of
the last and next to last path. The second was the sum of the feature between every pair path, such
as the sum of the length between the start points of every pair of paths. For the sine and cosine
features, the sum of the absolute values was used.

5.7.2 Multi-path recogunition using one single-path classifier

Path sorting allows there to be a number of different path classifiers, one for the first path, one for the
second, and so on. o avoid path sorting, a single classifier is used to classily all paths, Referring
to the example in Section 5.4, a single classifier would be used to distinguish between Ay, A, 5;,
and 5.
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Once all the paths in a gesture are classified, the class information needs to be combined to
produce a classification for the gesture as a whole. As before, a decision tree is used. However,
since path sorting has been eliminated, there is now no apparent order of the classes which will
make up the sequence submitted o the decision tree. To remedy this, cach path class i assigned an
arbitrary distinct integer during training. The path class sequence is sorted according to this integer
ranking (the global feature classification remains last in the sequence) and then the decision tree is
examined. The net result is that each node in the decision tree corresponds to a set {rather than a
sequence) of path classifications. (Actually, as will be explained later, each node corresponds to a
muliiset.)

In essence, the recoguition algorithio is very simple: the lone path classifier determines the
classes of all the paths in the gesture; this set of path classes, together with the global feature class,
determines the class of the gesture. Unfortunately, this explanation glosses over a serious conceptual
difficulty: In order to train the path classifier, known instances of each path class are required. But,
without path sorting, how is it possible to know which of the two paths in an instance of gesture
class Ais A; and which is 47 Cne of the paths of the first A example can arbitrarily be called A;.
Once this is done, which of the paths in each of the other examples of class Aare in 4,7

Once asked, the answer to this question is straightforward. The path in the second instance of
A which is similar to the path previously called 4y should also be called 4;. If a gesture class has
N paths, the goal is to divide the set of paths used in all the training examples of the class into N
groups, cach group containing exactly one path from cach example. Ideally, the paths forming a
group are similar to each other, or, in other words, they correspond to one agother.

Note that path sorting produces exactly this set of groups. Within all the examples of a given
gesture class, all paths with the same sorting index form a group. However, if the purpose of the
endeavor is to build a multi-path recognizer which does not use path sorting, it seems inappropriate
o resort to i during the training phase. Errors in sorting the example paths would get builtinto the
path classitier, likely nullifying any beneficial effects of avoiding path sorting during recognition.

Another way to proceed is by analogy. Within a given gesture class, the paths in one example are
compared to those of another example, and the corresponding paths are identified. The comparisons
could concervably be based on the feature of the path as well as the location and timing of the path.
This approach was not tried, though in retrospeet it seems the simplest and most likely to work well.

573 Clustering

Instead, the grouping of similar paths was attempted. The definition of similarity here only refers
to the feature vector of the path. In particular, the relative location of the paths to one another was
ignored. To groop similar paths together solely on the basis of their feature vectors, a statistical
procedure known as hierarchical cluster analysis {74 was applied.

The first step in chaster analysis is to create a triangular matrx containing the distance between
every pair of samples, in this case the samples being every path of every examnple of a given class.
The distance was computed by first normalizing each feature by dividing by the standard deviation.
(The typical normalization step of first subtracting out the feature mean was omitied since it has
no effect on the difference between two instances of a feature.) The distance between each patr of
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cxample path feature vectors was then calculated as the sum of the squared ditferences between the
normalized features.

From this matrix, the clustering algorithm produces a cluster tree, or dendrogram. A den-
drogram is a binary tree with an additional linear ordering on the interior nodes. The clustering
algorithm initially considers each individual sample to be in a group {cluster) of its own, the distance
matrix giving distances between every pair of groups. The two most similar groups, ie the pair
corresponding to the smallest entry in the matrix, are combined inte a single group, and a node
representing the gew group is created in the dendrogram, the subnodes of which refer to the two
constituent groups. The distance matrix is then updated, replacing the two rows and columns of the
constituent groups with a single row and column representing the composite group.

The distance of the composite group to cach other group is calculated as a function of the
distances of the two constituents to the other group. Many such combining functions are possibie;
the particular one used here is the group average method, which computes the distance of the newly
formed group to another group as the average (weighted by group size) of the two constituent groups
to the other group. After the matrix is updated, the process is repeated: the smallest matrix element
is found, the two corresponding groups combined, and the matrix updated. This continues until
there is only one group left, representing the entire sample set. The order of node creation gives the
finear order on the dendrogram nodes, nodes created early having subnodes whose groups are more
similar than nodes created later.

Figure 5.4 shows the dendrogram for the paths of 10 3-path clasp gestures, where the thumb
moves slightly right while the index and middle fingers move feft. The leaves of the dendrogram
are labeled with the numbers of the paths of the examples. Notice how all the right strokes cluster
together (one per example), as do all the [eft strokes (two per example).

Using the dendrogram, the original samples can be broken into an arbitrary (between one and
the namber of samples) number of groups. To get Ngroups, one simply discards the top N— 1 nodes
of the dendrogram. For example, to get two groups, the root node is discarded, and the two groups
are represented by the two branches of the root node.

Tarning back now to the problem of finding corresponding paths in examples of the same mult-
path gesture class, the first step is to compute the dendrogram of all the paths in all examples of
the gesture. The dendrogram is then fraversed in a bottoro-up (post-order) fashion, and at cach
node a histogram that indicates the count of the number of paths for cach example is computed.
The computation is straightforward: for each leaf node (/. e. for each path) the count is zero for all
examples except the one the path came from: for each interior node, each element of the histogram
is the sum of the corresponding elements of the subnode’s histogram.

Ideally, there will be nodes in the tree whose histogranm indicates that all the paths below this
node come from different examples, and that each example 1s represented exactly once. In practice,
however, things do not work out this nicely. First, errors in the clustering sometimes group two
paths from the same example together before grouping one path from every exaraple. This case
is easily handled by setting a threshold, eg. by accepting nodes in which paths from all but two
examples appear exactly once in the cluster.

The second difficulty is more fundamental. It is possible that two or more paths in a single
gesture are quite similar (remember that relative path location is being ignored). This is actually
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Figure 5.4: Path Chusters

This shows the result of clustering applied fo the ihirty paths of the fen three-path ¢lasp gestures shown.

Fach clasp gesture bas a short, rightward moving path and two similay long lefiward moving paths. The
hierarchical clustering algovithun groups sfinflar patls {or groups of paths) together The height of an inferior
node indicates the similarity ol its groups, lower nodes being more similar Note fhat the right subtree of
the roof contains 10 paths, one from each mulii-pail gesture. If is thus termed a good cluster {indicated
by a circle on the graph), and its constituent paths correspond. The feft subtree containing 20 paths, two
from each gesture, is also a good cluster: Had one of its descendants been another good cluster {containing
approximately 10 paths, one from each gesture), it would have been conciuded that ail three paihs of the
clasp gesture are different, with the corresponding paths given by the good ciusters. As it happened, no
descendant of the Jeft subtree was a good cluster, so it js concluded that two of the paths within ihe clasp

gesture are similay and will thus be treated as examples of ane single-path class.
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common for Sensor Frame gestures that are performed by moving the elbow and shoulder while
keeping the wrist and fingers rigid. For these paths, it is just as likely that the two paths of the same
cxample be grouped together as it is that corresponding paths of different examples be grouped
together. Thus, instead of a histogram that shows one path from cach example, ideally there will be
a node with a histogram containing two paths per example. This is the case in figure 5.4

Call a node which has a histogram indicating an equoal (or almost equal} nomber of paths from
each example a good cluster. The search for good clusters proceeds top down. The root node is
surely a good cluster; eg given examples from a three path gesture class, the root node histogram
will indicate three paths from each examiple gesture. If no descendants of the root node are good
clusters, that indicates that all the paths of the gesture are similar. However, if there are good clusters
below the root (with fewer exaraples per path than the root), that indicates that not all the paths of
the gesture are similar to cach other. Tn the three path example, i, say, one subnade of the root node
was a good cluster with one path per example, those paths form a distinet path class, different than
the other path classes in the gesture class. The other subnode of the root will also be a good cluster,
with two paths per example. If there does not exist a descendant of that node which is a good chuster
with one path per example, that indicates that the two gesture paths classes are similar. Otherwise,
good clusters below that node (there will likely be two) indicate that each path class in the gesture
class is different. The cluster analysis, somewhat like the path sorting, indicates which paths in each
example of a given gesture class correspond. {(Good clusters are indicated by circles in figure 5.4.)

Occasionally, there are sfragglers, paths which are not in any of the good clusters identified
by the analysis. An attempt is made to put the stragglers in an appropriate group. If an example
contains a single straggler it can easily be placed in the group which is lacking an example from
this class. If an example contains more than one straggler, they are currently ignored. If desired, a
path classifier to discriminate between the good chusters could be created and then used to classify
the stragglers. This was not done 1n the current implementation since there was never a significant
nurber of stragglers.

Once the path classes in each gesture class have been identified using the clustering technigue, a
path classifier is trained which can distinguish between every path class of every gesture class. Note
that it is possible for a path class to be formed from two or more paths from cach example of a single
zesture class, if the cluster analysis indicated the two paths were similar. If analogy techniques were
used to separate such a class into multiple “one path per example” classes, the resulting classifier
would ambiguously classify such paths. In any case, ambiguities are still possible since different
gesture classes may have similar gesture paths. As in Section 5.4, the ambiguities are removed from
the classifier by combining ambiguous classes into a single class. Each {(now unambiguous) class
which is recognized by the path classifier is numbered so as to establish a canonical order for sorting
path class sequences during training and recoguition.

5.74 Creating the decision tree

After the single-path and global classifiers have been trained, the decision tree nwst be constructed.
As before, in the class phase, for each multi-path gesture class, the {(now unambiguous) classes of
cach constituent path are enumerated. Since two paths in a single gesture class may be similar,
this enomeration of classes may list a single class more than once, and thus may be considered a

Page 1259 of 1714



a8 DISCUSSION 93

multiset. The list of classes is sequenced into canounical order, the global feature class appended, and
the resulting sequence is used to add the nwlti-path class o the decision tree. As before, a condlict,
due to the fact that two different gesture classes have the same multiset of path classes, is fatal.

Next comes the example phase. The paths of each exaraple gesture are classified by the single
path classifier, and the resulting sequence (in canonical order with the global feature class appended)
is used to add the class of the example to the decision tree. Usually no work needs to be done, as
the same sequence has already been used to add this class (usually in the class phase). However, if
one of the paths in the sequence has been misclassified, adding ¢ to the decision tree can improve
recoguition, since this misclassification may occur again in the future. Conilicts here are not fatal,
but are simply ignored on the assumption that the sequences added in the class phase are more
important than those added in the example phase.

5,8 Discussion

Two roulti-path gesture recognition algotithms have been described, which are referred to as the
“path sorting” and the “path clustering” methods. In situations where there is no uncertainty as to
the path index information {(eg. a DataGGlove, since the sensors are attached to the hand) then the
path-sorting method is certainly superior. However, with input deviees such as the Sensor Frame,
the path sorting has to be done heuristically, which increases the likelihood of recognition error.

The path-clustering method avoids path sorting and its associated errors. However, other sources
of misclassification are introduced. One single-path classifier is used to discriminate between all the
path classes in the system, s0 will have to recognize a large number of classes. Since the error rate
of a classifier increases with the number of classes, the path classifier in a path-clustering algorithm
will never perform as well as those in a path-sorting algorithm. A second source of error 18 in the
clustering itself; errors there cause errors in the classifier training data, which cauose the performance
of the path classifier to degrade. One way around this is to cluster the paths by hand rather than
by having a computer perform it automatically. This needed to be done with some gesture classes
from the Sensor Frame, which, because of glitches in the tracking hardware, could not be clustered
reliably.

In practice, the path-sorting method abways performed better. The poor performance of the
path-clastering method was generally due to the noisy Sensor Frame data. 1t is however difficult to
reach a general conclusion, as all the gesture sets upon which the methods were tested were designed
with the path sorting algorithm in nund. It it casy to design a set of gestures that would perform
poorly using sorted paths. One possibility for future work is to have a parameterizable algorithm
for sorting paths, and choose the parameters based on the gesture set.

The Sensor Frame itself was a significant source of classification errors. Sometimes, the knuckles

of fingers curled so as not to be sensed would inadvertently break the sensing plane, causing extra
paths in the gesture (which would typically then be rejected). Also, three fingers in the sensing
plane can casily occlude each other with respect to the sensors, making it difficult for the Sensor
“rame to determine each finger’s location. The Sensor Frame hardware usually knew from recen
F to det h finger’s locat The 5 F hard ity k { ¢
history that there were indeed three {ingers present, and did its best to estimate the positions of each.
However, the resulting data often had glitches that degraded classification, sometimes by confusing
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the tracking algorithmy. It is likely that additional preprocessing of the paths before recognition
would imaprove accuracy. Also, the Sensor Frame itself is still under development, and i is possible
that such glitches will be eliminated by the hardware in the future.

Another area tor future work is to apply the single-path eager recognition work described in
Chapter 4 to the eager recognitinn of multi-path gestures., Presumably this is simply a matter of
cagerly recognizing each path, and combining the resulis using the decision tree. How well this
works remains to be seen.

It would also be possible to apply the multi-path algorithm to the recognition of multi-stroke
gestures. The path sorting in this case would simply be the order that the strokes arrive. To date,
this has not been tried.

5.9 CConclusion

In this chapter, two methods for multi-path gesture recoguition were discussed and compared. Each
classifies the paths of the gesture individually, uses a decision tree to combine the results, and uses
zlobal features to resolve any lingering ambiguities. The first method, path sorting, builds a separate
classifier for each path in a multi-path gestare. In order to determine which path to submit to which
classifier, either the physical input device needs to be able to tell which finger corresponds to which
path, or a path sorting algorithm mumbers the paths. The second method, path clustering, avoids
path sorting (which has an arbitrary component) by using one classifier to classify all the paths ina
gesture.

In general, the path sorting method proved superior. However, when the details of the path
sorting algorithn are known it is possible to design a set of gestures which will be poorly recogunized
due to errors in the path sorting. That same knowledge can also be used to design gesture sets that
will not ron into path sorting problems.

Page 1261 of 1714



Chapter 6

An Architecture for

This chapter describes the GRANDMA system.  GRANDMA stands for “Gesture Recognizers
Automated in a Novel Direct Manipulation Architectare.” This chapter concentrates solely on the
architecture of the system, without reference to gesture recognition. The design and implementation
of gesture recognizers in GRANDMA is the subject of the next chapter.

GRANDMA is an object-oriented toolkit similar to those discussed in Section 2.4.1. Like those
toolkits, is it based on the model-view-controller (MVC) paradigm. GRANDMA also borrows ideas
from event-based user-interface systems such as Squeak [23], ALGAE [36], and Sassafras [54].

GRANDMA is implemented in Objective C {28] on a DEC MicroVax-Ii running UNIX and the
X160 window systent.

6.1 Motivation

Building an object-oriented user interface toolkit s a rather large task, not to be undertaken lightly.
Furthermore, such toolkits are only peripherally related 1o the topic at hand, namely gesture-based
systems. Thus, the decision to create GRANDMA requires some justification.

A single idea motivated the author to use object-oriented toolkits to construct gesture-based
systerns:  gestures should be associated with objects on the sereen.  Just as an object’s class
determines the messages it anderstands, the author believed the class could and should be used
to determine which gestares an object understands. The ideas of inheritance and overriding then
naturally apply to gestures. The analogy of gestures and messages is the central idea of the “systems”
portion of the current work.

It would have been desirable to integrate gestures into an existing object oriented toolkit,
rather than build one from scratch. However, at the time the work began, the only such toolkits
available were Smalltalk-80’s MVC [70] and the Pascal-based MacApp [115], neither of which ran
on the UNIX/C environment available to {and preferred by) the asthor. Thus, the author createc
GRANDMA.

The existing object-oriented user interface systems tend to have very low-level input models,
with device dependencies spread throughout the system. For example, some systems require views
to respond to messages sach as middleButtonDown [28]: others use event structures that can

N
(1)
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only represent input from a fixed small set of devices [102]. In general, the cutput models of existing
systems seem to have received much oore attenttion than the input models. One goal of GRANDMA
was o investigate new architectures for input processing.

6.2  Architectural Overview

Figure 6.1 shows a general overview of the architecture of the GRANDMA system. In order to
introduce the architecture to the reader, the response to a typical input event is traced. But first, a
briet description of the system components is in order.

GRANDMA is based on the Model-View-Controller (MVC) paradigm. Meodels are application
objects. They are concerned only with the semantics of the application, and not with the user
interface. Views are concerped with displaying the state of models. When a model changes, itis the
responstbility of the model’s view(s) to relay that change to the user. Controllers are objects which
handle input. In GRANDMA, controllers take the form of event handlers.! A single passive event
handler may be associated with many view objects; when input is first initiated toward a view, one
of the view's passive event handlers may activate (a copy of) itself to handle further input.

6.2.1 An example: pressing a switch

Consider a display consisting of several toggle switches. Each toggle switch has a model, which is
likely to be an object containing a boolean variable. The model has messages to set and retrieve the
value of the variable, which are used by the view to display the state of the toggle switch, and by
the event handler to change the state of the toggle.

When the mouse cursor is moved over one of the switches and, say, the left mouse button is
pressed, the window manager informs GRANDMA, which raises an input Pick event. The event
is an object which groups together all the information about the event: the fact that it was a mouse
event, which button was pressed, and, most sigaificanily, the coordinates of the mouse cursor.

Raising an event causes the active event handler list to be searched for a handler for this
event. In turn, each event handler on the list i1s asked if it wishes to handle the event. Assuming
none of the other handlers will be interested in the event, the last handler in the Bist, called the
XYBventHandler, handles the event. This is what happens in the case of pressing the toggle
switch.

The X¥EventHandler is able to process any event at a location {J.e. events with X-Y coordi-
nates). The handler first searches the view databaseand constructs a list of views which are “under”
the event, in other words, views that are af the given event location. The search is simple: each view
has a rectangular region in which it is included: if the event location is in the rectangle, the view
is added to the list. In the switch example, the list of views consists of the indicated toggle switch
view followed by the view representing the window in which the toggle switch is drawn.

UFhe distinction between controflers and event handiers is in the way each inferacts with the nnderlying layer that
generates input events. Once activated, controllers loop, continually calling the input layer for all input events until
the interaction corapietes. {n other words, controllers take control, forcing the user to complete one interaction before
initiating the next. Iu confrast, event haundlers are essentially called by the input layer whenever input occurs. It is thus
possible to interact sirmultancously with muitiple event handlers, for exaraple via muliiple devices.
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Figure 6.1: GRANDMA's Architecture

nis (o be rajsed §.e. pressing a mouse buiton raises a Pick event).

In GRANT w%, user actions cause eve
Fach handier on the aciive event handler list is asked, in order, if if wishes to handle the event. The
XYBventHandler, last on the list, is asked only if none of the previous active handlers hiave consumed
the event. For an event with a screen focation (Z’C a mouse E‘VOHL'}, the XY¥EventHandler wuses the view
database fo determine the views at the given screen location, and asks eacti view {from front to back) if' it
wishes to handle the event, 10 answer, a view consults iis list of passive event handlers, some associated with
the view itself, others associated with the view's class and superclasses, to see if pue of those is interested

it the event. [f so, that passive handler may activate itselt, f)t cally by placing a copy of itself at the fron

i

of the active eveut handier list. This enables subsequent events to be ,’i(ms;’i’rd efftiently, short-circuiting the

TV

elaborate search for a handler initiated by the X¥EventHandler. An event handler only consuines evenis

it which it is interested, alfowing other events to propagate to other even! handlers.

P
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The views are then queried starting with the {oregroond view. First, a view is asked if the event
tocation is indeed over the view; this gives an opporfunity for a non-rectangular view to respond
only to events directly aver it. If the event is indeed over the view, the view is then asked if ¢t
wishes to handle the input event. The search proceeds until a view wighes to handle the event, or all
the views under the event have declined. In the example, the toggle switch view handles the event,
which would then not be propagated to the window view.

A view does not respond directly to a query as to whether it will handle an input event. Instead,
that request i3 passed to the view’s passive event handlers. Associated with each view is a list of
event handlers that handle input for the view; a single passive event handler is often shared among
many views in the system. The passive event bandlers are each asked about the input in turn; the
scarch stops when one decides to handle the input. In the example, the toggle switch has a toggle
switch event handler first on its list of passive handlers that would handle the Pick event.

A passive event handler that has decided to handle an event may activafe a copy or instance of
itself, i e place the copy or instance in the active event handler list. Or, 1t may not, choosing to do
all the work associated with the event when it gets the event. For example, a toggle switch may
either change state immediately when the mouse button is pressed over the switeh, or it may simply
highlight itself, changing state only if the button is released over the switch. In the former case,
there is no need to activate an event handler; the passive bandler itself can change the state of the
switch.

In the latter case, the passive handler activates a copy of itself which first highlights the switch,
and then monitors subsequent input to watch if the cursor remains over the view. If the cursor
moves away from the view, the active event handler will turn off the highlighting of the switch, and
may (depending on the kind of interaction wanted) deactivate itself. Finally, if the mouse buiton
is released over the switch, the active event handler will, through the view, toggle the state of the
switch {and associated model), and then deactivate itself.

As noted above, active handlers are asked about events before the view database is searched and
any passive handlers queried. Thus, in the switch example, subsequent mouse movements made
while the button is held down, or the release of the mouse button, will be handled very efficiently
since the active handler is at the head of the active event handler list.

6.2.2 Tools

The ool is one component of GRANDIMA's architecture not mentioned in the above example. A
tool is an object that raises events, and it is through such events that tools operate on views (and thus
models) in the system. An event handler may be considered the mechanism through which a tool
operates upon a view. The interaction is by no means unidirectional: some event handlers cause
views {0 operate upon tools as well. In addition to operating on views directly, event handlers may
themselves raise events, as will be seen.

Every event has an associated tool which typically refers to the device that generated the event.
For example, a system with two mice would have two MouseTool objects, and the appropriate
one would be used to identify which mouse caused a given Pick event. When asked to handle an
avent, an active handler typically checks that the event’s tool i the same one that caused the handler
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to be activated in the first place. In this manner, the active event handler ignores events not intended
for it.

Tools are also invalved when one device emulates another. For exaraple, a Sensor Frame may
ermulate a mouse by having an active handier that consumes events wheose tool is a SensorFrame
obiect, raising events whose tool is a MouseTool in response. That MouseTool does not
correspond to a real mouse; rather, it allows the Sensor Frame to masquerade as a mouse.

Tools do not necessarily refer to hardware devices. Virtual tools are software objects (typically
views) that act like input hardware in that they may generate events. For example, file views (icons}
would be virtual tools when implementing a Macintosh-like Finder in GRANDMA. Dragging a
file view would cause events to be raised in which the tool was the file view. A passive handler
associated with folder (directory) views would be programumed to activate whenever an event whose
ool is a file view is dragged over a folder. Thus, in GRANDMA the same mechanism is used when
the mouse cursor is dragged over views as when the mouse is used to drag one view over other
views.

The typical case, in which a tool has a semantic action which operates upon views that the tool
is dropped apon, is handled gracefully in GRANDMA. Associated with every view is the passive
GenericToolOnViewEventHandler. When atoolis dragged over a view which responds to
the tool’s action, the GenericToolOnViewEventHandler assoctated with the view activates
itself, highlighting the view. Dropping the tool on the view causes the action fo occur” Thus,
semantic feedback is casy to achieve using virtual tools (see section 6.7.7).

This concludes the brief overview of the GRANDMA architecture. A discussion of the details
of the GRANDMA system now follows. A reader wishing to avoid the details may proceed directly
to section 6.8, which summarizes the main points while comparing GRANDMA to some existing
systems.

6.3 Objective-C Notation

As mentioned, GRANDMA is written in Objective C [28], a language which augments C with
object-oricnted programming constructs, In this part of the dissertation, program fragmenis will be
written in Objective €.

In Objective C, variables and functions whose values are objects are all declared type 1d, asin

id aset;

Variables of type id are really pointers, and can refer to any Objective C object, or have the
value nil. Like all pointers, such variables need to be initialized before they refer to any object:

aSet = [Set newl]; /A createa Setobjectx/

The expression {0 megsagename] isused to send the message messagenams (o the object
referred to by o. This object is termed the recefver, and megsagename the selector. A message
send is similar to a function call, and returns a valae whose type depends on the selector

Objective C comes supplied with a namber of facfory objects, also known as classes. Set is

an example of a factory objeet, and like most factory objects, responds to the message new with a

“The related case, in which & ool is dragged over a view that acts upon the (ool {e.g. the trash can), is handled by the

et

BucketEventHandler.
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newly allocated instance of itself.
Messages may also have parameters, as in
id aRect = [Rectangle origin:10:10 corner:20:30}1;
[aSetr add:aRect];
The message selector is the concatenation of all the parameter labels (origin: :corner: :
in the first case, add: in the second). In all cases, there is one parameter after each colon.
A factory’s fields and methods are declared as in the following example:
= Rect:0bject { int z=l,v1,x2,v2; }

+ origin: {int) _x1 :{int):_yi corner: (int} =2 :{int)_y2 {
gelf = [self new];
®x1 = x1, vl = vyl, x2 = X2; v2 = _y2;

return self;

— shiftby: {intix :{int}v
{ X1 4= x; y1 += y; X2 += X; y2 += y; return self; }

This declares the factory Rect fo be a subclass of the factory Object, the root of the class
hierarchy. Note that the factory declaration begins with the "= token. A method declared with
“+” defines a message which is sent directly to a factory object; such methods often allocate and
return an instance of the factory. A method declared with “-” defines a message that is sent directly
to instances of the class. The variable self is accessible in all method declarations:; it refers
to the object to which the message was sent (the receiver). When self is set to an instance of
the object class being defined, the fields in the object can be referenced directly. Thus, as in the
origin: :corner: : method, the first step of a factory method is often to reassign sel £ to be an
instance of the factory, then to initialize the ficlds of the instance. The usage [gelf newl rather
than [Rect newl allows the method to work even when applied to a subclass of Rect (since in
that case gelf would refer to the factory object of the subclass). When the types of methods and
arguments are left unspecified, they are assemed to be 1.4, and typically methods return self when
they have nothing batter to retumn (rather than void, i e not returning anything).

When describing a method of a class, the fields and other methods are often omitted, as in

= Rect
— {int)area { return abg( (x2-x1)x{y2-vyl) ); }

In Objective C, messages selectors are first class objects, which can be assigned and passed as
parameters and then later sent to objects. The construct @selectox (message-selector) returns
an object of type SEL, which is a runtime representation of the message selector:

id aRect = [Rect origin:10:5 corner:40:35};
SEL op = flag 7 @gelector{area) : @sslector{height);

printf (*$d\n", [aRect pexform:opl);

The rectangle aRect will be sent the area or height message depending on the state of
flag. The perform: message sends the message indicated by the passed SEL to an object.
Wariants of the form perform:with:with: allow additional parameters to be sent as well.

The first class nature of message selectors distinguishes Objective € {rom more static object-
oriented languages, notably C++. As they are analogous to pointers to functions in €, SEL values
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may be considered “pointers” to messages. Objective C includes functions for converting between
SEL values and strings, and a method for inguiring at runtime whether an object responds {o
an arbitrary message selector. As will be seen, these Objective C features are often used in the
GRANDMA implementation.

In the interest of simaplicity, debugging code and memory management code have been removed
from most of the code fragments shown below, though they are of course needed in practice. Also,
as the code is explained in the text, many of the comments have been removed for brevity.

6.4 The Two Hierarchies

Thus far, two important hierarchies in object-oriented user interface toolkits have been hinted at,
and it seems prudent to forestall confusion by further discussing them here. The first one is known
as the class hierarchv. The class hierarchy is the tree of subclass/superclass relationships that one
has in a single-inheritance system such as Objective . In Objective C, the class Cbhiject is at the
root of the class hierarchy; in GRANDMA classes like Model, View, and EventHandler are
subclasses of Obiect; each of these has subclasses of its own (e g ButtonView is a subelass of
View), and so on. The entire tree is referred to as the class hierarchy, and particular subtrees are
referred to by gualifying this term with a ¢lass name. Tn particular, the View class hierarchy is the
tree with the class View at the root, with the subclasses of View subnodes of the root, and 80 on.

The second hierarchy is referred to as the view Rierarchy or view free. A View object typically
controls a rectangular region of the display window. The view may have subviews which control
subareas of the parent view's rectangle. For example, a dialogue box view may have as subviews
some radio buttons. Subviews are usually more to the foreground than their parent views; in other
words, a subview usually obscures patt of its parent’s view. Of course, subviews themselves might
have subviews, and so on, the entire structure being known as the view tree. In GRANDMA, the
root of the view tree is a view corresponding to a particular window on the display: a program with
multiple windows will have a view tree for each. It is important not to confuse the view hierarchy
with the View class hierarchy; the former refers to the superview/subview relation, the latter to the
superclass/subelass relation.

6.5 Models

Being a Model/View/Controller-based system, naturally the three most important classes in
GRANDMA are Model, View, and EventHandler (the fatter being GRANDMA’s ternt for
controfler). The discussion of GRANDMA is divided info three sections, one for each of these
classes. Class Model is considered first.

Models are objects which contain application-specific data. Model objects encapsulate the data
and computation of the task domain. The MVC paradigr specifies that the methods of models
should not contain any user-interface specific code. However, a model will typically respond to
rmessages inquiring about Hs state. In this manner, a view object may gain information about the
maodel in order to display a representation of the model.
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5 %0
H

In a number of MVC-like systems, there is no specific class named “Model” [28]. Instead,
any object may act as a model. However, in GRANDMA, as in Smalltalk-80{70], there is a single
class named Model, which is subclassed to implement application objects. This has the obvious
disadvantage that already existing classes cannot directly serve as models. The advantage is the
case of implementation, and the ability to easily distinguish models from other objects.

One of the tenets of the MVC paradigm is that Model objects are independent of their views.
The intentis that the userintertace of the application should be able to be changed without modifying
the application semantics. The effect of this desire for modularity is that a Model subclass is written
without reference to its views.

However, when the state of a model changes, a mechanism is needed to inform the views of
the model to update the display accordingly. The way this is accomplished is for each model
to have a list of dependents. Ubjects, such as views, that wish to be informed when a model
chaunges state register theraselves as dependents of the model. By convention, a Moda 1 object sends
itself the modified message when it changes; this results in all its dependents getting seunt the
modelModified message, at which time they can act accordingly.

The heart of the unplementation of the Model class in GRANDMA is simaple and instroctive:

= Mocdel : Cbject { id dependentsg; }

— addbependent:d {
if {dependents == nil) dependentsz = [OrdClin new];
idependents add:d};
return self;

removeDependent :d {
if {dependentg i= nil) [dependents remove:d];
return self;
}
— modified {
if (dependente i= nil) /A sendall dependents modelModified /
[dependents elementskPerform:@selector {modelModified) ]
raturn self;

}

Thus, a Model is a subclass of Object with one additional field, dependentg. When
a Model is first created, its dependents field is avtomatically set to nil. The first time a
dependent is added (by sending the message addDependent :), the dependents field is set to
a new instance of OrdClen, a class for representing lists of objects. The dependent is then added
to the list; it can later be removed by the removeDependent message.

Model is an absiract class; it is not intended to be instantiated directly, but instead only be
subclassed. A simple example of a Model might be boolean variable (whose view might be a toggle
switch):

= Boolean : Model

1 { BOOL state; }
— {BOCL)getState { x

eturn state; }
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— setState: (BOOL)_ state
{ state = _state; veturn [self modifiedl; }
toggle { state = !state; return {self modifiedl; }
Notice that whenever a Boolean object’s state changes, it sends itself the modi £ 1ed message,
which results in all of its dependents getting sent the modelModified message.

6.6 Views

The abstract class View, as mentioned, bandles the display of Models. ki is casily the most complex
class in the GRANDMA system: it is over 80 lines of code, and it currently implements 10 factory
methods and 67 instance methods {(not including those inherited from Object). For brevity, most
of the methods will not be mentioned, or are only mentioned in passing.
Views have a number of instance varnables (fields):
= View : Object {
id modeal;
id parent, children;
id picture, highlight;
short xloc, yloo;
id hoxX;
int state;
1
The model vaniable is the view's connection with its model. Some views have no model; in this
case model will be nil. The fields parent and children implement the view tree, parent
being the saperview of the view, children being a list (OrdCltn) of the subviews of this view.
The fields picture and highlight refer to the graphics vsed to draw and highlight the view,
respectively. The graphics are drawn with respect to the origin specified by (xloc, yvloc), and
are constrained to be within the Rectanglie object box. The state fleld is a set of bits indicating
both the current state of the view {set by the GRANDMA systen) and the desired state of the view
{controllable by the view user).
To illustrate some of View's methods, here is a toggle switch view whose model is the class
Boolean described above,
= SwitchView: View { }
To create a toggle switch view:

id aBoolean = [Boolean new];
id aSwitchView = [SwitchView createView(f:aRoolean];

The createview(f: method of class View allocates a new view object (in this case an
instance of SwitchView), sets the model instance variable, and, to add itself to the model’s
dependents, does {model addbDependent:selfl.

The graphics for the switch are implemented as:

= SwitchView
— updatePicture {
id p = [gelf VbeginPicturel;
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ip rectangle 0:0 :10:101;
1if ( {model getState])

{p rectanglse 2:2 :8:8];
[zelf VendPicture];
return self;

}

The intention is to draw an empty rectangle 10 by 10 pixels in size for a switch whose model’s
state is FALSE, but put a smaller rectangle within the switch when the model’s state is TRUE.

View’s VheginPicture and VendPicture methods deal with the picture instance
variable. (The V prefix in the method names is a convention indicating that these messages are
intended only to be sent by subclasses of View) VbeginPicture creates or initializes the
HangingPicture object which it returns. The graphics are then directed at the picture, which
is in essence a display list of graphics commands. Note how the model’s state is queried using the
model instance variable inherited from class View. This is done for etficiency purposes; a more
modular way o accomplish the same thing would be 1£ { { {gelf wmodel] getStatel).

The method updatePicture gets called indirectly from View’s modelModified method:

= View

— modelModified {
{self updatel;
if (state & V_NOTIFY CHILDREN) A propagate modeiModifiedio kids+/

{childrsn elementsPerform:@selsctor {modelModified)];

return self;

}

— update { rveturn [self updatePicture]; }

The state bit V_NOTIFY CHILDREN is settable by the creator of a view; it determines whether
modelModified messages will be propagated to subviews. Often when this bit is turned off,
the subclass of View overrides the update method in order to propagate mode1Modif ied only
to certain of its subviews. (For example, a view whose model is a list might have a sabview for
cach element in the list displayed left to right, and when one element is deleted from the list the
view could arrange that only the subviews to the right of the deleted one be redrawn.) In the more
typical case, the subclass only implements the updatePicture method which redraws the view
to reflect the state of the model.

For the switch to be displayed, it needs to be a subview (or a descendant) of a Waliview. Class
WallView is the abstraction of a window on the display. An instance of WallView is created for
cach window a program requires, as in:

id aWallvView = [WallView name:'"gdp®];
faWallvView addSubvView: [aSwitchView at:50:3011;

This fragment creates a window named “gdp.” The string “gdp” is looked up in a database (in
this case, the Xdefauits file as administered by the X window system) to determine the initial size
and location of the window. The switch is added as a subview to the wall view, and displayad at
coordinates (53,30} in the newly created window.
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This ends the discussion of the major methods of class View. As the need arnises, additional
methods will be discussed. It is ronic how in this dissertation, largely concemed with input, so
nwch effort was expended on output. The initial intention was to keep the output code as simple as
possible while still being usable. Untortunately, thousands of lines of code were required to get to
that point.

6.7 KEvent Handlers

In GRANDMA, the analogue of MVC controllers are event handlers, When input occurs, it is
represented as an event which is raised. Raising an event results in a search for an active event
handler that will handle the event. For many events, the last handler in the active list is a cateh-all
handler whose function is to search for any views at the event’s location. Each such view is asked
if it wishes to handle the event; the view then asks each of its passive event handlers if it wants
to handle the event. As mentioned, a single passive event handler may be associated with many
different views. A passive event handler may activate a copy or instance of itself in response to

nput.
Warning to readers: due to this dissertation’s focus on input, this is necessarily a very long
section.

6.7.1 Events

Before event handlers can be discussed in detail, it is helpful to make concrete exactly what is meant
by “event.” All events are instances of some subclass of Event:

= Hvent : Okject { id instigatox; }

—~ instigator { return instigator; }

— imstigator: instigator

{ instigator = _instigator; return self; }
The instigator of an event is the object posting the event.  All window manager events are
instigated by an instance of class wall.’

Figure 6.2 shows the Event class hierarchy. (Like instigator in class Event, each
instance variable shown has a method to set and a method to retrieve its valae.) The most important
subclass is WallEvent, which is an event associated with a window, and thus vsually raised by
{the GRANDMA interface t0) the window manager. A KeyEvent is generated when a character
is typed by the user. A RefreshEvent is generated when the window manager requests that a
particular window be redrawn.

The subclasses of the abstract class DragEvent, when raised by the window manager, indicate
a mouse event. In these cases, the tool {field is an instance of GenericMouseTool or one of
its subclasses. When a mouse button is pressed, a PickEvent is generated. The field locis a

*The instigator is mostly used for tracing and debugging. Occasionally, it is used for a quick check by an active event
handler that wishes to insure it is only handling events raised by the same object that raised the event which activated the
handler in the first place. Most active handlers do not bother with this check, being countent to simply check that the ool
(rather than the Instigator} is the same.
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Event
TimeoutEvent WallEvent { id wall; }
_‘/*
f——“—/*/
e,
DragEvent { id tool; id loc; KeyEvent { int charscter; } RefreshBvent
\ GestureEvent { id event; id loc; id tool; }
PickBEvent Movealvent Droplvent

Figure 6.2: The Bvent Hierarchy

Point object, indicating the location of the mouse cursor.® The mouse object referred to by the
tool ficld indicates which button has been pressed. When the mouse is moved (currently ondy
when a raouse buiton is pressed), a MoveRBvent is generated. When the mouse button is released,
a DropEvent is generated.

The classes GestureBvent and TimeoutEvent will be discussed in Chapter 7.

$.7.2 Raising an Event

A wallvView object represents the root of the view tree of a given window. Associated with each
WallView objectis a Wall object which actually implements the interface between GRANDMA
and the window manager. L\Jw associated with each WallvView object (ie cach window) is an
EventHandlerList objec
= WallView : View { id handlers; id viewdatabase; id wall; }
+ name: (3TR)name {
gelf [gelf createViewOf:nil];
wall [Wall create:name wallview:self];
handlers = [EventHandlerLigt new]:;
viewdatabase = [Xydb new];
fhandlers add: {XyEventHandler wallview:gelf]];
return self;

uil
i

i

— raise:event { return [handlers vaise:event]; }

— viewdatabase { veturn viewdatabase; }

“In retrospect it probably would have been wiser either to always p resent points and rectangles as C struciures, or as

separate coordinates, instead of using Point and Rectangle objects and their associated overhead.
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¥l

= Wall : Object {(GRANDMA,Geometrv)
{ Win win; id pictures; id wallview; }
raise:event {
if{[event i1gKindOf:RefreshBEventl)
{ [self redraw}; veturn; }
return {wallview raige:eventl;

}

Events are raised within a particular window using the raise message. Radraw events are

redraw is casily accomplished. The Redraw special case is really just old code; it would be simple
to replace this code with a redraw event handler. All other events are passed from the Wall fo the
WallView tothe EventHandlerList:
= EventHandlerList : OrdCltn { }
raise:e { int i;

for(i = {gelf lastOffset]; i »= 0; i—--—)
if{ {lself at:1i} event:el )
break;
return gelf;
5

An EventHandlerList is just an OrdCltn, thus add: and remove: messages can be
sent to it to add or remove active event handlers. The add: message adds handlers to the end
of the list; raise iterates through the list backwards, asking each element of the list in order if it
wishes to handle the event. Thus, handlers activated most recently are asked about events before
those activated earlier. (It is possible to install an active event handler at an arbitrary position in
the BEventHandlerList by using some of OrdCltn’s other methods, but this bas never been
needed in GRANDMA ) Note that the first thing 2 Wal1View object does when created is activate
an XyEventHandler; this handler, since it is first in the list, will be tred only after the other
handlers have declined to process the event.

6.7.3 Active Event Handlers

Every active event handler must respond to the event: message, retuming a boolean value
indicating whether it has handled the event.
= BventHandler : Object { }
(BOOL) event : e
{ return (BOOL} [self subclasgsResponsibilityl; }

The event : method here 1s a placeholder for the actual method, which would be implemented
ditferently in each subclass of EventHandlier. The subclassRegponsibility method is
inherited from Objact. The method simply prints an ercor message stating that the subclass of the
receiver should have implemented the method.

Note that the event : message sent to the active event handlers has no reference to any views.
When the event handler is first activated, it generally stores the view and tool which caused its
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activation®; it can then refer to these to decide whether to handle an event. When handiin g an event,
the active event handler typically sends the view messages, if only to find out the model to which
the view refers.
As previously mentioned, the last active event handler tried is the XyEventHandler. This
event handler is rather atypical in that it never exists in a passive state.
= XyBEventHandler : EventHandler { id wallview; }

+ wallview: wallview { self = [=zelf newl;
wallview = wallview; return self; }
(BOOL)event:e { id views, sey, v, tool;

Y

1£ (! {e respondsTo:@selector{loc) 1} weturn NO;
views = [[wallview viewdatabasel at:le loc]l;
tool = [e toonll;
for{seqg = [views eachElement]; v = [seq nextl; }
if{v = tool && [v event:e]) return VES;
return NO;
j

An XvEventHandler is instantiated and activated when a Wal1lView is created (see Section
6.7.2). The WallView is recorded in the handler so that it can access the current database of views
{those views in the View subtree of the WallView). (In retrospect, it would have been more
efficient for the XyEventHandler to store a handle to the database directly, rather than always
asking the WallView forit)

When an XyEventHandlex is asked to handie an event (via the event: message) it
first checks to see if that event responds fo the message loc. Currently, only (subclasses of)
DragEvents respond to Loc, but that could conceivably change in the future so the handler is
written as gencrally as possible. This points to one of the major benefits of Objective C; one can
inquire as to whether an object responds (o a message before attemptling (o send it the message.
Another example of this will be seen in Section 6.7.7. Since the XyEventHandler is going to
ook ap views at the location of an event, it obviously cannot deal with events without focations, so
returns NO (the Objective C term for FALSE or 0) in this case.

The view database is then consulted, returning alf the views whose bounding box contains the
given point. The views returned are sorted from foremost to most background, /e according to
their depth in the view tree, deepest first. In this order, each view is queried as to whether it
wishes to handle the event, stopping when a view says YES. (The enigmatic test v i= tool
will be explained in section 6.7.7; suffice it to say here that in the typical case, ool is a kind of
GenericMouseTool and thus can never be equal to a View.)

if no view is found that wishes to handle the event, the XyEventHandler retums NO. Since
this handler is the last active event handler to be tried, when it says NO, the event is ignored. I
desired, it is a simaple matter to activate a catchall handler (1o be tried after the XyEventHandler),
the purpose of which is to handle all events, printing a message to the effect that events are being
ignored.

5 a - . . a 2 . .
“As shown in section 6.7.5, passive event handlers ate asked fo handle events via the event :view: message, one
parameter being the event (from which the handler gets the tool), and the other is the view.
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Another example event handler is given in Section 6.7.6; more will be said about active event
handlers then.

6.7.4 The View Database

The function of the view database is to determune the set of views at a given location in a window.
In many object-oriented Ul toolkits, this function has been combined with event propagation, in
that events propagate down the view tree {105} {or a corresponding controlier tree [70, 63]) directly.
The idea for a separate view database comes from GWUIMS{118]. By separating out the view
database into its own data structure, efficient algorithms for looking up views at a given point,
such as Bentley’s dual range trees {7], may be applied. Unfortunately, this optimization was never
completed, and in retrospect having to keep the view database synchronized with the view hierarchy
was more effort than it was worth.

= Xydb : Set { }

— enter:object at:vectangle {

return [self replace: {Xvadbe object:cbiect
at:rectangle
depth: [object depthl]];

depthomp {ol, 02} id *01, *02;

{ return [*02 depth] — [0l depthl; }
at:aPoint {
id seq, e, arvay[MAXAT], result = [OrdCitn new]; int n;
for{n = ¢, geg = [self eachElement];
(& = [seqg nextl) != nil; )
if ([e contains:aPointl) arrayn++] = &;
gsort (array, n, sizeof{id), depthcmp);
for{i = 0; 1 < n; i++) [result add:larray[i] object]];

return vesult;

= Xydbe : Rectangle { id cbjsct; unsigned depth; }
+ object:c at:rect depth: {unsigned)d {
gelf = [gelf newl cobiect = o; depth = 4;
return [[self corigin: |rect origin]] corner: [rect cornerl];

— object { return object; }

— {unsigned)depth { return depth; }
— f{unsigned) hash { return {[object hashl; }
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An Xydb is a set of Xydbe objects (e” for “element”™), each of which is a rectangle, an
associated object (always a kind of View in GRANDMA), and a depth. View objects which move
or grow must be sure to register their new locations in the view database for the wall on which they
He. This is currently done automatically in the _gync method of class View which is responsible
for updating the display when a View chagges. The hash and isEqual : methods are used by
Set; here they define two Xydbe objects to be equal when their respective object fields are
equal.

6.7.5 The Passive Event Handler Search Continues

Each View object has a list of passive handlers associated with it. The association is often implicit:
passive handlers can be associated with the view directly, or with the class of the view, or any of
the superclasses of the view’s class. For example, the GenericToolOnViewEventHandler
is direetly assoctated with class View; it thus appears on every view’s list of passive event handlers.

= View
— (BOOL)event:e { id seq, h;
LE( {gelf isCver:[e locl]) return NO;
for{seg = [gelf eachHandler]; h = [seg next];)
if{{h event:e view:gelf]l) return YES;
return NO;
}
— eachHandler { id r = [OrdCltn new]; id class;
ir addContentsaCf: [gelf passivehandlersii;
for{class = [self classl;
clagg = Object; clasg = [class superClasgl)
{r addContentsQf: {clase passivehandlers]];

return {r eachBlement] ;
}
+ sgivehandlers
{ return [Ulprop getvalue:self propstr:“handlers"}: }
— passivehandlers
{ return [Ulprop getvalue:self propstr:"handlers®l; }

When a view is asked if it wishes to handle an event, it firsts asks if the event’s location is
indeed over the view. The implementation of the 130ver: method in class View simply returns
YES. Non-rectangular subclasses of view (e.g. LineDrawingView, see Section 8.1) override this
method.

Assuming the event location is over the view, each passive event handler associated with the
view is senf the event :view: message, which asks if the passive handler wishes to handle the
event. The search stops as soon as one of the handlers says YES or alf the handlers have been tried.

The method eachHandler returas an ordered sequence of handlers associated with a view.
The sequence is the concatenation of the handlers directly associated with the view object, those
directly associated with the view's class, those associated with the view’s superclass, and 50 on,
up to and including those associated with class View. The associations themselves are stored in a

pa

&

r
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global property list. The passive event handler is associated with a view object or class under the
"handlers® property.

Herein lies another advantage of Objective C. An object’s superclasses may be traversed at
runtime, in this case enabling the simulation of inheritance of passive event handlers. This effect
would be difficelt to achieve had it not been possible to access the class hierarchy at runtime.

6.7.6 Passive Event Handlers

A passive event handler returns YES to the event :view: message if it wishes to handle the
event directed at the given view. As a side effect, the passive event handler may activate (a copy
or instance of) itself to handle additional input without incurring the cost of the search for a passive
handler again.
in Objective C, classes are themselves first class objects in the system, known as factory objects.

A factory object that is a subclass of EventHandler may play the role of a passive event handier.®
To activate such a handler, the factory would instantiate itself and place the new instance on the
active event Hst.

= EventHandlex

+ (BOOLjevent:e view:v

{ return (BOOCL) [gelf subclassResponsibilityl; }
As an example, consider the following handler for the toggle switch discussed earlier:

= ToggleSwitchBventHandler : EventHandler { id view, tool; }

+ (BOOL) event:e view:v {
£( 1 {e 1sKindOf:PickBvent] ) return NO;
£( 1! {{e tooll isKindOf:MouseTool] |} return NO;
gelf = [g=1f new]; view = v; tool = {[e teool]l;
[[view wallview] activate:self];
[view highlight];
return YES;

[

[N

h
— {BOOL)event:e {
BOOL isOvar;

if{ {[e 1sKindOf:DragBvent] | [e tool] != tool )}
return NO;

igQuer = [view pointiInIboxandOver:ie locll:

if(tisOver || [e 1sKindOf:DropEventl) {

[view unhighlight];
[ [view wallview] deactivate:zself];
1€ {tigOver) [[view model]l togglsal;

}

“However, using factory objects for passive event handlers is restrictive, as there is only one instance of the factory
object for a given class. This makes customization of a factory passive event handler difficult. Section 6.7.8 explains
how regular {non-factory) objects may be used as passive event handlers.
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return YES;
}

Assuming this event handler is associated with a SwitchView, when the mouse is pressed over
such a view the handler’s event :view: method is called, which instantiates and then activates
this handler, and then highlights the view. Other events, such as typing a character or maoving a
maouse (with the button already pressed) over the view, will be ignored by this passive handier. Mast
handlers for mouse events, includiag this one, only respond to tools of kind MouseTocol, where
MouseTool is a subclass of GenericMouseTool. The reason for this is explained in Section
6.7.7.

{Umee the handler is activated, it gets {irst priority at all incoming events. The beginning of the
event : method insures that it ondy responds to mouse events generated by the same mouse tool
that initially caused the handler to be activated. For valid events, the handler checks if the location
of the event (J.e. the mouse cursor) is over the view using View's pointInlboxAndOver:
method. Note that during passive event dispatch, the more efficient 1e0ver : method was used,
since by that point, the event location was already known to be in the bounding box of the view.
The point InIboxandOver does both the bounding box check and the 130ver: method, since
active event handlers see events before it 1s determined which views they are over.

if the mouse is no longer over the switch, or the mouse button has been released, the highlighting
of the view is turned off, and the handler deactivated. In the case where the mouse 1g over the view
when the button was released, [ [view model]l togglel is execoted. The clause [view
model] returns the model assoctated with the switch, presumably of class Boolean, which gets
sent the toggle message. This will of course result in the switch’s picture getting changed ©
reflect the model’s new state.

In any case, by retuming YES the active event handler indicates it has handled the event, so
there will be no attemipt to propagate it further

Typically, the ToggleSwitchEventHandler would get associated with the SwitchView
as follows:

= SwitchView
+ initialize
{ return [self sethandler:ToggleSwitchBventHandler]; }

The initialize factory method 5 invoked for every class in the program (which has
such a method) by the Objective C runtime system when the program is first started. In this
case, the sethandler factory method would create a list (OrdClin) containing the single ele-
ment ToggleSwitchEventHandler and associate it with the class SwitchView under the
"handlexra® property.

Note that some simple changes to the ToggleSwitchEventHandler could radically al-
ter the behavior of the switch., For example, if [ [view model] toggle] is also executed
when the switch is first pressed (Le. in the event :view: method), the switch becomes a mo-
mentary pushbutton rather than a toggle switch., Similarly, by changing the initial check to [e
1eKindOf :DragBvent ], once the mouse moves off the switch (thus deactivating the handler),
moving the mouse back on the switch with the button still pressed {or onto another instance of
the switch) would (rejactivate the handler. If the handler is changed only to deactivate when a

Page 1279 of 1714



67 EVENTHANDLERS 113

DropBEvent is raised, the button now grabs the mouse, meaning no other objects would receive
mouse events as long as the button is pressed. It is clear that meany different behaviors are possible
stmply by changing the event handler.

While GRANDMA easily allows much flexibility in progranmuming the behavior of individual
widgets, interaction techaiques that control multiple widgets in tandent are more difficult to program.
For example, radio buttons (in which clicking ane of a set of buttons causes it to be turned on and
the rest of the set to be tumed off) might be implemented by having the individoal buttons to be
sabviews of a new parent view, and a new handler for the parent view could take care of the mutual
exclusion. (Alternatively, the parent view could handle the mutual exclusion by providing a method
for the individual buttons to call when pressed; in this case the parent necessarily provides the radio
button interface to the rest of the progran.)

6.7.7 Semantic Feedback

Semantic feedback s a response to a user’s input which requires specialized information about the
application objects [96]. For example, in the Macintosh Finder [2], dragging a file icon over a folder
icon causes the folder icon to highlight, since dropping the file icon in the folder icon will cause the
file to be moved to the folder. Dragging a file icon over another file icon causes no such highlighting,
since dropping a file on another file has no effect. The highlighting is thus semantic feedback,

GRANDMA has a general mechanism for implementing (views of) objects which react when
(views of) other objects are dropped on them, highlighting themselves whenever sach objects are
dragged over them. Such views are called buckers in GRANDMA. Any view may be made into a
bucket simply by associating it with a passive BucketEventHandler (which expects the view
to respond to the actsUpon: and actUpon:: messages discussed below). Once a view has a
BucketEventHandlex, the semantic feedback described above will happen automaticallv.

Whereas a bucket is a view which causes an action when another view is dropped in it {e.g. the
Macintosh trash can is a bucket), a Tool is an object which causes an action when it is dropped on
a view (a “delete corsor” is thus a tool). As mentioned above, a tool corresponds to a physical input
device {e.g. GenericMouseTool), butitis also possible for a view to be a tool. In the latter case,
the view is referred to as a virtual tool.

Buckets and tools are quite similar, the main difference being that in buckets the action is
associated with stationary views, while in tools the action is associated with the view being dragged.
The implementation of tools is considered next. The similar implementation of buckets will not be
described.

= Tool : Object { }

(SEL)action { return (SEL} 0; }

actionParameter { return nil; }
— (BOOLYactsUpon:v { return [v respondsto: [self actionll; }
— actUpon:v event:e {

[v perform: {s action]
with: { actionParameter]
with:e
with:gelf];
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return self;
}

Every tool responds to the actsUpon: and actUpon: : messages. In the default imple-
mentation above, a tool has an action (which is the rantime encoding of a message selector) and an
action parameter {an arbitrary object). For example, one way to create a tool for deleting objects is

= DeleteTool : Tool { }
— (8EL}action { veturn eselectox{delets); }

The actsUpon: method checks to see if the view passed as a parameter responds to the action
of the tool, in this case delete. The actUpon: : method actually performs the action, passing
the action parameter, the event, and the tool itself as additional parameters (which are ignored in the
delete case).

The GenericToolOnViewRventHandler is associated with every view via the View
class:

View
+ initialize
{ [self sethandler:CGenericToolOnViewEventHandler] ; }

GenericToolOnViewEventHandler :  EventHandler
{ id tool, view; }

+ {(BOOL) event:e view:v {

1E( ¢ [e 1isKindCf:DragBEvent]) return NO;

1f{ [[e tooll actsUpon:v]) return NO;

gaelf = [gelf new];

tool = [e toell; view = v; [view highlight];

[ fview wallview] activate:gelf];
return YES;

Y
¥
— {(BOOL)event:e {
if{ ! fe isKindOCf:DragEvent]) return NO;
if{ {e tool] !I= tool) return NO;
if{ [view pointIniboxadndCver:[e locll ) {
if{[le 1isKindOf:Dropfventl) {
[view unhighlight]
[{view wallview] deactivate:gelf];
[tool actUpon:view event:el;
return YES;
{view unhighlight]; [[view wallview] deactivate:self];
return NO;
1
i
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Passively, GenericToolinViewEventHandler operates by simply checking if the tool

over the view acts upon the view. If so, the view is bighlighted (the semantic {eedback) and the
handler activates an instantiation of yself. Subsequent events will be checked by the activated
handler to see if they are made by the same tool. If so, and if the tool is still over the view, the evend
is handled, and if it is a DropEvent then the tool will act upon the view. If the tool has moved
off the view, the highlighting is turned off, and the handler deactivates itself and returns NO so that
other handlers may handle this event.

The test v 1= tool inthe XY¥EventHandler (see Section 6.7
virtual tool from ever attempting to operate upon itselfl

.3) prevents a view thatis a

6.7.8 eneric Event Handlers

I you have been following the story so far, you know that all the event handlers shown have
the passive handler implemented by a factory (class) object which responds to event :view:
messages. When necessary, such a passive handler activates an instantiationof itself. The drawback
of having factory objects as passive event handlers is that they cannot be changed at runtime. For
example, the ToggleSwitchBEventHandler only passively responds to PlckEvents. H one
wanted to make a ToggleSwitchEventHandler that passively responded to any DragEvent,
one could either change the implementation of ToggleSwitchEventHandler (thus affecting
the behaviorof every toggle switch view), or one could subclass ToggleSwitchEventHandler.
Doing the latter, it would be necessary to duplicate much of the event :view: method, or change
ToggleSwitchEventHandler by putting the event :view: method in another method, so
that it can be used by subclasses. In any case, changing a simple item {the kind of event a handler
passively responds to) is more difficult than it need be.

In order to make event handlers more parameterizable, the passive event handlers should be
regular objects {i.e not factory objects). In response to this problemy, most event handlers are
subclasses of GenericEventHandler.

= GenericEventHandler : EventHandler
BOOL shouldbctivate;
id startp, handlep, stopp;
id view, wall, tool, env;

+

passive { return [self newl; }

— shouldactivate { ghouldActivate = YES; return self; }

startp: startp { startp = startp; return self; }

— startp { return startp; }
— (BOOL)evalstart:env { return [[startp eval:env] asBOOL]}; }

— gtopp:_stopp 4 stopp = _stopp; veturn gelf; }
— gtopp 4 return stopp; }

— (BOOL)evalstop:env { return [[stopp eval:env] asBOOLI; }
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handlep: handlep { handlep = _handlep; return self; }
handlep { return handlep; }
{BOOL} evalhandle:env

{ return [ihandlep eval:env] asBOOL]; }

{BOCL) event:s view:v {
env = |{[[Bnv new] sgty:'event" value:e]
aty:"view" value:vl;
1f{[{zelf evalstart:env])
{ [self startOnView:v]; return YES; }
return NO;

St

startOnView:v event:e {
if {shouldActivate)
gelf = [self copyl]., [[view wallview] activate:self];
view = v; wall = [view wallview]; tool = [e tooll;
igelf passgiveHandler:e];
return gelf;
}
— {BOOL}event:e {
if{tool != nil && [e tooll != tool) veturn NO;
env = [[[Env new] str:'"event' wvalue:el
gtr:"view" value:view] ;
if{{s=slf evalstop:envl])
{

or:el, [wall deactivate:self];
gelf evalhandlie:anvl)

activeHandler:el;

elge return NO;

return YES;

21f activeTermina
elze 1f({

ael

[

—;

pasgiveHandler:e { return self; }
— activeHandler:e { return self; }
— activeTerminator:e { veturn self; }

A new passive handieris created by sending a kind of GenericEventHandler the passive
message. A generic event handler object has settable predicates startp, handlep, and stopp.
These predicates are expression objects, cssenfially runtime representations of almost arbitrary
Obiective C expressions. (The Objective C interpreter built into GRANDMA is discussed in section
7.7.3.) By convention, these predicates are evaluated in an environment where event is bound to
the event under consideration and view is bound to a view at the location of the event. Of course,
the result of evahiating a predicate is a boolean value.
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The passive method is typically overridden by subclasses of GenericEventHandler
in order to provide default values for etartp, handlep, and stopp. The predicate startp
controls what events the passive handler reacts to. The class EventExpr allows easy specification
of simple predicaies, eg. the call

[2elf startp: [[[BventExpr new] eventkind:PickEvent]
toolkind:MouseToolll;

sets the start predicate to check that the event is a kind of PickEvent and that the tool is a
MouseTool. This results in the same passive event check that was hard-coded into the factory
ToggleSwitchEventHandler, but now such a check may be easily modified at runtime.

The message shouldactivate tells the passive event handler o activate itself whenever
its gtartp predicate is satisfied. Note that it is a clone of the handler that is activated, due to
the statement self = [self copyl: it is thus possible for a single passive cvent haadler to
activate multiple instances of itself simeltaneously. The active handler responds to any message
which satisfies its handlep or donep predicates. In the latter case, the active event handler is
deactivated.

When the startp, handlep, or donep predicates are satisfied, the generic event handler
sends itself the pagsivedandier:, activeHandlier: oractiveTerminator: message,
respectively. The main work of subclassesof GenericEventHandler are donein these methods.

The startOnView:event : allows a passive handler to be activated externally (i.e. instead
of the typical way of having its startp satisfied in the event :view: method). In this case, the
event parameter is usually nil. For example, an application that wishes to force the user to type
some text into a dialogue box before proceeding might activate a text handier in this manuer.

The purpose of generic event handlers in GRANDMA is similar to that of interacforsin Garnet
[95, 91] and pluggable views in Smalltalk-80 [70]. Since GRANDMA comes with a mumber of
generally useful generic event handlers, application programmers often need not write their own.
Instead, they may customize one of the generic handlers by setting up the parameters o suit their
purposes. The only parameters every generic event handler has in common are the predicates, and
indeed these are the ones most often modified. GRANDMA has a subsystem which allows these
parameters to be modified at runtime by the user.”

6.7.9 The Drag Handler

As an example of a generic event handler, consider the DragHandler. When associated with
a view, the DragHandler allows the view to be moved (dragged) with the mouse. If desired,
moving the view will result in new events being raised. This aliows the view to be used as tool, as
discussed in section 6.7.7. Also parameterizable are whether the view is moved using absolute or
relative coordinates, whether the view is copied and then the copy is moved, and the messages that
are sent to actually move the view. Reasonable detfaults are supplied for all parameters.

= DragHandler : GenericBvenitHandler {

BOOL copyview, gensvents, relative;
SEL whenmoved, whendone;

"Typically, it would be the interface designer, rather than the end user, who would use this facibity.
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BCOL deactivate;
int gavedsx, savedy;
}
+ passive {
zelf = [super passive];
{self shouldactivate];
{self startp:[[i{BEventExpr newl] eventkind:DragEvent

toolkind:MouseTool]

£ handlep: {{EventExpr newl! eventkind:DragBvent
self stopp: [ [EventExpr newl] eventkind:DropEvent]
copyview = NO; genevents = YES; relative = NO;
whenmoved = @gelector{at::}; whendons = (SEL} §;
return self;

1

i

1
i
3
H
i
4
i
i

1l
fra

A changing default parameters: % /
A copyviewON causes the view (o be copied and then the copy to be dragged x /

— copyviewON { copyview = YES; return self; }

e

genkvenisOFF makes the handler not raise any events x /
— genBventsOFF { genavents = NO; return self; }

A refativeON makes the handler send the move:! message, passing
relative coordinates {deltas from the current position) * /
relativeON { relative = YES;
whennoved = @selector{move::); }

A whendone: sets the message sent on the event that terminates the drag« /

-~ whendene: {8EL) sel { whendone = sel; return self; }
A whenmoved: sets the message sent for every point in the drag « /
—~ whenmovad: (SEL)sel { whenmoved = sel; return self; }

if{relative) savedx = {1 x], savedy = [1 vl;
else savedx = [view xloc]—{1 x1,
[vi

iew ylocel—{1 vl
if (copyview) view = [view viswcopyl;
iview flaghl;
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return zself;

— activeHandler:e {
int X, vy
if{relative) {
x = [fe locl x1, v = [le locl ¥1;
[view perform:whenmoved
with: {(x — gavedx} with:{y — savedy)l;
savedx = x, savedy = v;

et

q

zlge |

L)
x = [[e locl x] + savedx, y = [le loc] vyl + savedy;
[view perform:whenmoved with:x with:yl;

}
if (genevents)
fwall raise:i[e class] tool:view loc:newloc
wall:wall instigator:self time:fe timell];
return seli;
}
— activeTerminator:e {
if {genevents)
[wall raige: [{e class] tool:view loc:[e loc]
wall:wall instigator:zelf time:ie timelll;
i £ {(whendone) [view perform:whendone];
return zelf;
}

The paagive factory method creates a DragHandleyr with instance variables set to the
default parameters. Those parameters can be changed with the startp:, handliep, stopp:,
copyviewQlN, genBventsQFF, relativeON, whendone:, and whenmoved: messages.
{(Please refer to the comments in the above code for a description of the function of these parameters.)

For example, a DragHandler might be associated with class LabelViaw as follows:

= LabelView

+ initialize {

[melf sethandler:
{ [ [DragHandler pasgivel
startp: [ [ [BventExpr new]
eventkind:PickEvent] toolkind:MouseTooll]
genEventgQFF1 ] ;

}

Any LabelView can thus be dragged around with the mouse by clicking directly on it (since
the start predicate was changed to PickEvent). A LabelView will not generate events as itis
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dragged since genBvent sOFF was sent to the handler; thus LabelViews in general would not
be used as tools or items that can be deposited in buckets. Of course, subclasses and instances of
LabelvView may have their own passive event hardlers to override this behavior

When a passive DragHandler gets an event that satisfies its start predicate, the
passiveHandler: method is invoked. For a DragHandler, some location information is
saved, the view is copied if need be, and the view is flashed (rapidly highlighted and unhighlighted)
as user feedback.

Any subsequent event that satisfies the stop predicate will cause the act iveTerminatox:
method to be invoked. Other events that satisfy the handle predicate will cause activeHandler:
to be invoked. In DragHandler, activeHandlex: fustmoves the view (fypically by sending
itthe att : : message with the new coordinates as arguments) then possibly raises a new event with
the view playing the role of tool in the event. If the view is indeed a tool, raising this event night
result in the GenericToolCnView handler being activated, as previously discussed.

Note that the event to be raised is created by first determining the class object (factory) of the
passed event {given the defanlt predicates, in this case the class will etther be MoveEvent or
DropEvent), aad then asking the class to create a new event, which will thus be the same class
as the passed event. Most of the new event attributes are copied verbatim from the old attributes;
ondy the tool and instigator are changed. A more sophisticated DragHandler might also
change the event location to be at some designated hot spot of the view being moved, rather than
simply use the location of the passed event. For simplicity, this was not shown here.

The activeTerminator: method also possibly raises a new event, and possibly sends the
view the message stored in the whendone variable. As an example, whendons might be set to
@selector (delete) when copyview isset. When the mouse button is pressed over a view, a
copy of the view is created. Moving the mouse drags the copy, and when the mouse button is finally
released, the copy is deleted.

Creating a new drag handler and associating it with a view or view class is all that is required to
malke that view “draggable” (since every view inherits the at : : message}). As shown in the next
chapter, GRANDMA has a facility for creating handlers and making the association at runtime.

6.8 Summary of GRANDMA

This concludes the detailed discussion of GRANDMA. As the discussion has concentrated on the
features which distinguish GRANDMA from other MV C-like systems, much of the system has not
been discussed. It should be mentioned that the factlities described are sufficiently powerful to build
a nomber of useful view and controller classes. In particular, standard items such as popup views,
menus, sliders, buttons, switches, text fields, and list views have all been implemented. Chapter 8
shows how some of these are used in applications.

GRANDMA's innovations come from its input model. Here is a sammary of the main points of
the input architecture:

1. Inputevents are foll-blown objects. The Event hierarchy imaposes strocture on events without
imposing device dependencies.
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:\J

Raised events are propagated down an active event list.

Otherwise unhandled evenis with screen locations are automatically routed to views at those
focations.

A view obiject may have any nomber of passive event handlers associated with itself, its elass,
or its superclass, efc. Events are automatically routed to the appropriate handler.

A passive event handler may be shared by many views, and can activate a copy of itself to
deal with events aimed at any particular view.

Event handlers have predicates that describe the events to which they respond.

The generic event handler simplifics the creation of dynamically parameterizable event han-
dlers.

Because of the input architecture, GRANDIMA has a nuomber of novel features. They are listed
here, and compared to other systems when appropriate.

GRANDMA can support many different input devices simultaneousiy. Due to itern 1 above,

GRANDMA can support many different input devices in addition to just a single keyboard
and mouse. Each device needs to integrate the set of event classes which it raises into
GRANDMA's Event hierarchy. Much flexibility is possible; for example, a Sensor Framie
device might raise a single SenscrFrameEvant describing the corrent set of fingers in the
plane of the frame, or separate DragEvents for each finger, the tool in this case being a
SensorFrameFingerTool. Because of item 6, it is possible to write event handlers for
any new device which comes along.

By contrast, most of the existing user interface tootkits have hard-wired hmitations in the kinds
of devices they support. For example, most systems (the NeXT AppKit [102], the Macintosh
Toothox [1], the X library {41]) have a fixed stucture which describes input events, and
cannot be easily altered. Some systems go 80 far as to advocate building device dependencies
into the views themselves; for example, Hypertalk event handlers [45] are labeled with event
descriptors such as mouseUyp and Cox’s systern [28] has views that respond to messages like
rightButtonDown. Similarly, systems with a single controlier per view {70] cannot deal
with input events from different devices. On the other hand, GWUIMS [118] seems to have
a geaeral object classification scheme for describing input events.

GRANDMA supports the emulation of one device with another. In GRANDMA, to get the most
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out of each device it is necessary to have event handlers which can respond to events from that
device associated with every view that needs them. i those event handlers are not available, it
is still possible to write an event handber that emwuilates one device by another. For example, an
active handler might catch all SensorFrameEvents and raise DragEvents whose tool
is a Mousetocl in response. The rest of the program cannot tell that it is not getting real
mouse data; it responds as if it is getting actual mouse input.
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GRANDMA can handie multiple input threads simultaneously. Because passive handlers acti-

vate copies of theraselves, even views that refer 1o the same handler can get input simul-
tancously. The input events are simply propagated down the active event handler list, and
each active handler only handles the events if expects. In GRANDMA, a system that had
two mice [19] would simply have two MouseTool objects, which could easily interleave
events. Normally, a passive handler would only activate itself to receive input from a single
tool {mouse, in this case), allowing input from the two mice to be handled independently
{even when directed at the same view). It woeld also be possible to write an event handler
that explicitly dealt with events from both miice, if that was desired.
Fvent-based systems, such as Sassafras [54] and Squeak {231, are also able to deal with multi-
threaded dialogues. Indeed, it is GRANDMA’s similarity to those systems which gives it a
similar power. This is in contrast to systems such as Smalltalk {70] where, once a controller
is activated it ioops polling for events, and thus does not allow other controllers fo receive
events until it is deactivated.

GRANDMA provides virtual tools. Giventhe general structure of input events, there is no require-
ment for thern only to be generated by the window manager. Event handiers can themselves
raise other events. Many events have tools associated with them; for example, mouse events
are associated with MouseTools. The tools may themselves be views or other objects. By
responding to messages such as action, a tool makes known its effect on objects which it
is dragged over. The GenericToolOnview handler, which is associated with the View
class {and thus every view in the system) will handle the interaction when 4 tool which has a
certain action is dragged over an object which accepts that action. The tools are virtual, in the
sense that they do not correspond directly fo any input hardware, aond they reay send arbitracy
messages to views with which they interact.

SRANDMA supports semantic feedback, Handlerslike GenericToolOnView cantestat run-
time it an arbifrary toolis able to operate upon an arbitrary view which it is dragged over, and
if so highlight the view and/or tool. No special code is required in either the tool or the view
to make this work. A tool and the views upon which it operates often make no reference to
each other. The sole connection between the two is that one is able to send a message that the
other is able to receive.

(i course, the default behavior may be easily overridden. A tool can make arbitrary enquiries
into the view and its model in order to decide if it does indeed wish to operate upon the view.

Event handling in GRANDMA is both general and efficient. The generality comes fromtheevent
dispatch, where, if no other active handler handles an event, the XYEventHandler can
query the views at the location of the event. The views consult their own list of passive
event handlers, which potentially may bandie many different kinds of events. There is space
efficiency in that a single passive event handler may be shared by many views, eliminating
the overhead of a controller object per view. There s time efficiency, in that once a passive
handler handles an event, it may activate itself, after which it receives events immediately,
without going through the elaborate dispateh of the XYEventHandler.
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Arxtkit {527 has a priority list of dispatch agents that is similar to GRANDMA's active event
handler list. Such agents receive low-level events {e.g. from the window manager}, and
atteropt to transiate thers into higher level events to be received by interactor objects (which
seern to be views). Interactor agents register the high-level events in which they are interested.

Artkit’s architecture is so similar to GRANDMA’s that it is difficult to precisely characterize
the difference. The high-level events in Artkit play a role similar to both that of messages that
a view may receive and events that a view's passive event handlers expect. In GRANDMA,
the registering is implicit; because of the Objective-C runtime implementation, the messages
understood by a given object need not be specified explicitly or limited to a small set. Instead,
one object may ask another if it recognizes a given message before sending it

Because of the translation from low-level to high-level events, it does not seem that Artkit
can, for example, emulate one device with another. In particular, it does not seem possible to
translate low-level events from one device into those of another. GRANDMA does not make
a distinction between low-level and high-level events. Instead, GRANDMA distinguishes
between events and messages: events are propagated down the active event handler list: when
accepted by an event handler, the handler may raise new events and/or send messages to views
or their models.

GRANDMA supports gestures, GRANDMAs general input mechanism had the major design goal

of being able to support gestural input. As will be seen in the next chapter, the gestures are
recognized by GegtursEventHandlers; these collect mouse (or other) events, determine
a set of gestares which they recogmize depending on the views at the initial point of the gesture,
and once recognized, can translate the gestore into messages to models or views, or into new
events.

Artkit also handles gestural input, and, somewhat like GRANDMA, has gesture event handlers
which capture low-level events and produce high-level events. The designers claim that Artkit,
because of its object-oriented structure, can use a number of different gesture recognition
algorithms, and thus tailor the recognizer to the application, or even bits of the application.
The same is tme for GRANDMA, of course, though the intention was that the algorithms
described in the first half of the thesis are of sufficient generality and accuracy that other
recagnition algorithms are not typically required. Artkit’s clair that manyrecoguizers can be
used scems like an excuse not to provide any. One of the driving forces behind the present
work is the belief that gesture recognizers are sufficiently difficolt to build that requiring
application programmers to hand code such recognizers for each gesture set is a major reason
that hardly any applications use gestores. Thus, it 1s necessary to provide a general, trainable
recognizer in order for gesture-based interfaces to be explored. How such a recognizer is
integrated into an object-oriented toolkit is the subject of the next chapter.

Of course, GRANDMA does have its disadvantages. Like other MV systeras, GRANDMA

provides a multitude of classes, and the programmer needs to be tamiliar with most of them before he
can dectde how to best implement his particolar task. The elaborate input architecture exacerbates
the problem: a large number of possible cornbinations of views, event handlers, and tools must be
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considered by the programmer of a new interaction technigue. Also, GRANDMA does nothing
toward solving a common problem faced when using any MVC systerm: deciding what functionality
goes into a view and what goes into a model. Another problem is that even though the protocol
between event handlers and views is moeant to be very general {the event handlers are inttialized
with arbitrary message sclectors to use when conununicating with the view), in practice the views
are written with the intention that they will communicate with particular event handlers, so that it is
not really right to claim that specifics of input have truly been factored out of views.
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Chapter 7

Gesture Recognizers in GRANDMA

This chapter discusses how gesture recognition may be incorporated into systems for building
direct manipulation interfaces. In particular, the design and implementation of gesture handiers in
GRANDMA is shown. Even though the emphasis is on the GRANDMA system, the methods are
intended to be generally applicable to any object-oriented user interface construction tool.

7.1 A Note on Terms

Before beginning the discussion, some explanation is needed to help avoid confusion between
terms.  As discussed in Section 6.4, it is important not to confuse the view hierarchy, which is
the tree determined by the subview relationship, and the view class hierarchy, which is the tree
determined by the subclass relationship. In GRANDMA, the view hierarchy has a WallView
object {corresponding to an X window) at its root, while the view class hierarchy has the class View
at ifs root.

Another potentially ambiguous term is “class.” Usually, the terma is used in the object-oriented
sense, and refers to the type (loosely speaking) of the object. However, the term “gesture class” refess
to the result of the gesture recognition process. In other words, a gesture recognizer {also known
as a gesture classifier) discriminates between gesture classes. For example, consider a handwriting
recognizer able to discriminate between the written digits 0, 1, 2, 3, 4, 5,6, 7, §, and 9. In this
example, each digit represents a class; presumably, the recognizer was trained using a number of
examples of each class.

To make matters more confusing, in GRANDMA there is a class {in the object-orienied sense)}
named Gesture; an object of this class represents a particular gesture instance, f.e. the list of
points which make ap a single gesture. There is also a class named GestureClass; objects of
this class refer to individual gesture classes; for example, a digit recognizer would reference 10
different GestureClass objects.

Sometiraes the term “gesture” is used to refer to an entire gesture class; other times it refers
to a single instance of gesture. For example, when it is said a recognizer discriminates between a
set of gestures, what is meant is that the recognizer discriminates between a set of gesture classes,
Conversely, “the user enfers a gesture” refers to a particular instance. In all cases which follow, the
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intent should be obvious from the confext.

7.2 Gestures in MV systems

As discussed in Chapters 2 and 6, object-oriented user interface systems typically consist of models
{application objects), views (responsible for displaying the state of models on the screen), and
controllers (respounsible for responding to input by sending messages to views and models). Typical
Model/View/Controller systems, such as that in Smalltalk{70], have a view object and controller
object for each model object to displayed on the sereen.

This section describes how gestures are integrated into GRANDMA, providing an example of
how gestures might be integrated into other MV -based systems.

7.2.1  Gestures and the View Class Hievarchy

Central to all the vanations of object-oriented user interface tools is the View class. In all such
systems, view objects handle the display of models. Since the notion of views is central o all
object-oriented user interface tools, views provide a focal point for adding gestures to such tools.

Simply stated, the idea for integrating gestures into direct manipulation interfaces is this: each
view responds (o a particular set of gestures. Intuitively, it seems obvious that, for example, a
switch should be controlied by a different set of gestures than a dial. The ability to simply and easily
specily a set of gestures and their associated semantics, and to easily associate the set of gestures
with particular views, was the primary design goal in adding gestures to GRANDMA.

Of course, it is unlikely that every view will respond to a distinct set of gestures. In general, the
aser will expect similar views to respond to similar sets of gestures. Fortunately, object-oriented user
interfaces already have the concept of similarity built into the view class hierarchy. In particolar,
it usually makes the most sense for all view objects of the same class to respond to the same set of
gestures. Similarly, itis intuitively appealing for a view subclass to respond to all the gestures of its
parent class, while possibly responding o some new gestures specific to the subclass.

The above intuitions essentially apply the notions of class identity and inheritancef121] (in the
abject-oriented sense) to gestares. It is seen that gestures are analogous to messages. All objects of
a given class respond to the same set of messages, just as they respond to the same set of gestures.
Axn object in a subclass inherits methods from its superclass; simnilarly such an object should respond
to all gestures to which ifs superclass responds. Continuing the analogy, a subclass may override
existing methods or add new methods not understood by its superclass; similarly, a subclass may
override (the interpretation of) existing gestures, or recognize additional gestures. Some object-
oriented languages allow a subclass o disable certain messages understood by its superclass (though
it is not common), and analogously, it is possible that a subclass may wish to disable a gesture class
recognized by its superclass.

Given the close paraliel between gesture classes and messages, one possible way to implement
zesture semantics would be for each kind of view to implement a method for each gesture class it
expects. Classifying an input gesture would resulf in its class’s particular message to be sent to the
view, which tmplements it as it sees {it. A subelass inherits the methods of its superclass, and may
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override some of these methods. Thus, in this scheme a subcelass understands all the gestures that
its superciass understands, but may change the interpretation of some of these gestures.

This close association of gestures and messages was not done in GRANDMA since it was felt fo
be too constricting. Since in Objective € all methods have to be specified at compile time, adding
new gesture classes would require program recompilations. Since it is quite easy to add new gesture
classes at rontime, it would be unfortunate if soch additions required recompilations. One of the
goals of GRANDMA is to permit the rapid exploration of different gestures sets and their serpantics;
forcing recompilations would make the whole system much more tedious to ase for experimentation.

{nstead, the solution adopted was to have a small interpreter built into GRANDMA. A piece
of interpreted code is associated with each gesture class; this code is executed when the gesture is
recoguized. Since the code is interpreted, it is straightforward to add new code at the time a new
class is specified, as well as to modify existing code, all at mantiroe. While at first glance building
an interpreter into GRANDMA seems quite difficult and expensive, Objective C makes the task
stmple, as explained in Section 7.7.3.

7.2.2  Gestures and the View Tree

Consider a number of views being displayed in a window. In GRANDMA, as in many other systems,
pressing a mouse button while pointing at a particular view (usually) directs input at that view. In
other words, the view that gets input i3 usually determined at the time of the initial button press.
Due to the view tree, views may overlap on the screen, and thus the initial mouse location may point
at a number of views simultaneously. Typically the views are queried in order, from foremost to
background, to determine which one gets to handle the input.

A similar approach may be taken for gestures. The first point of the gesture determines the views
at which the gesture might be directed. However, determining which of the overlapping views is the
target of the gesture is usually impossible when just the first point has been seen. What is usually
desirable is that the entire gesture be collected bafore the determination is made.

Consider a simplification of GDP The wall view, behind all other views, has a set of gestares
tor creating graphic objects. A straight stroke -7 gesture creates a line, and an “1.7 gesture creates a
rectangle. The graphic object views respond to a different set of gestares; an "X deletes a graphic
obicet, while a “C” copics a graphic object. When a gesture is made over, say, an existing rectangle,
it is not immediately clear whether it is directed at the rectangle itself or at the background. It
depends on the gesture: an “X” is directed at the existing rectangle, an “L” at the wall view. Clearly
the determination cannot be made when just the first point of the gesture has been seen.

Actually, this is not quite true. It is conceivable that the graphic object views could handle
gestures themselves that normally would be directed at the wall view. There is some practical vahie
in this. For example, creating a new graphic object over an existing one might include lining op
the vertices of the two objects. However, while it is nice to have the option, in general it seems a

bad idea to force each view to explicitly handle any gestures that might be directed at any views it
COVEES.

Chapter 3 addressed the problem of classifying a gesture as one of a given set of gesture classes.
It 1s seen here that this set of gestures is not necessarily the set associated with a single view, but
instead is the union of gestare sets recognized by all views under the initial point. There are some
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technical difficulties involved in doing this. It would in general be guite inefficient to have to
construct a classifier for every possible union of view gestures sets. However, it is necessary that
classifiers be constructed tor the unions which do occur. The current iraplementation dynamically
constructs a classifier for a given set of gesture classes the first time the set appears; this classifier is
then cached for future use.

it is possible that more than one view under the initial point responds to a given gesture class.
in these cases, preference is given to the topmost view. The result is a kind of dynamic scoping.
Similarly, the way a subclass can override a gesture class recognized by its superclass may be
considered a kind of static scoping.

7.3 The GRANDMA Gesture Subsystem

In GRANDMA, gestaral inpaet is handled by objects of class GestureEventHandler. (lass
GestureEventHandler, asubclass of GenaricEventHandler, is easily the most complex
event handler in the GRANDMA system.  In addition to the five hundred lines of code which
directly tmplement its various methods, GestureEventHandler is the sole user of many other
GRANDMA subsystems. These include the gesture classification subsystery, the interface which
allows the user to modify gesture handlers (by, for example, adding new gesture classes) at runtime,
the Objective C interpreter used for gesture semantics and its user interface, as well as some classes
{e.g. GestureEvent, TimeoutEvent} used solely by the gesture handler.

Before getting into details, an overview of GRANDMA’s various gesture-refated components is
presented. Figure 7.1 shows the relations between objects and classes associated with gestares in
GRANDMA. The main focus is the GestureBventHandler, Like all eventhandlers, when acti-
vated ithas a view object, which itself has amodel and awall view.! A QestureBventHandler
uses the wall view to activate itself, raise GestureEvents, set up timeouts and their handlers, and
draw the gesture as it is being made.

Associated with a gesture event handler is a set of SemClass objects. A SemClass object
groups together a gesture class object {class GestureClass) with three expressions (subclasses
of Expr). The GestureClasas objects represent the particular gesture classes recognized divectly
by this event handler. The three expressions comprise the semantics associated with the gesture class
by this event handler. The first expression is evaluated when the gesture is recognized, the second
on each subsequent input event handled by the gesture bandler after recognition {the manipulation
phase, see Section 1.1}, and the third when the manipulation phase ends.

Associated with each GestureClass object is a set of Gesture objects. These are the
cxamples of gestures in the class and are used in the training of classifiers that recognize the
class. A GestureClass object contains aggregate information about its examples, such as the
estimated mean vector and covariance matrix of the examples’ features, both of which are used in
the construction of classifiers.

When a GestureEventHandler determines which gesture classes it must discriminate
among (according to the rules described in the previoas section), it asks the Classifier class
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for a classifier object capable of doing this discrimnination. Normally such a classifier will already
exist; in this case, the existing classifier is simaply retumed. §t is possible that one of the gesture
classes in the set has changed; in this case the existing classifier has to be retrained (7.e. recalculated).
(Occastonally, this set of gesture classes has never been seen before; in this case a new classifier is
created for this set, retumed, and cached for future use,

The components related to the gesture event handler through GestureHandlerView are all
concerned with enabling the user to see and alter various facets of the event handler. The predicates
for starting, handling, and stopping the collection of gesture input may be altered by the user. In
addition, gesture classes may be created, deleted, or copied from other gesture event handlers. The
exaroples of a given class may be examined, and individual examples roay be added or deleted.
Finally, the serantics associated with a given gesture class may be altered through the interface to
the Objective € interpreter.

7.4 Gesture Event Handlers

The details of the class GestureEventHandler are now described, beginning with its instance

variables.

static BOCL masterSwitch = YES;

= GestureBventHandler : GenericEventHandler
STR name ;
id gesture;
id picture;
id clagses;
1id env;
int timeval;
id timeouteh;
short lastx, lasty;
id sclass;
struct gassoc { id sclassz, view; } +gasgsoc;
int nYASSOCS ;
id clags get;
BOOL manip phase;
BOQL clasgify;
BOOL ignoring;
id mousetool;

}

The magterSwitch, settable viathe masterSwitch: factory roethod, enables and disables
all gesture handlers in an application. This provides a simple method for an application fo provide
two interfaces, one gesture-based, the other not. Every gesture handler will ignore all events when
masterSwitch is NO. i will be as if the application had no gesture event handlers. Typically, the
remaining event handlers would provide a more traditional click and drag interface to the application.
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A particular handler can be tumed off by setting its ignoring instance variable via the
ignore: message. GRANDMA can thus be used to compare, say, two completely ditferent ges-
tural interfaces to a given application, switching between ther af runtirae by tuming the appropriate
handlers on and oft.

The instance variable name is the name of the gestare handler. A handler is named so that it can
be saved, along with its gestare classes, their semantics and examoples, in a file. This is obviously
necessary to avoid having the user enter examples of each gesture class each time an application is
started. The name is passed to the passive: method which creates a passive gesture handier:

= GesturebBventHandler
+ passive: (STR) name {
FILE *f;

thoFhoD
0
or
W
]
T
-
et}
—

EventExpr new] eventkind:PickEvent]

toclkind:MouseTonlll ;
[self handiep:[[EventExpr new] eventkind:DragBEvent]];
[zelf stopp: [[EventBxpr newl evantkind:DropEventl];
[gself name: name];

timaval = DefaultTimeval;
classify = YES;

iE£({f = [self openfile:"r"}]} != NULL}) [self read:£];
return self;
h

The typical gesture handler activates itself in response to mouse PickEvents, handles all
subsequent mouse events, and deactivates itself when the mouse button is released. Of course, being
a kind of generic event handler, this default behavior can be easily overridden, as was done to the
DragBEventHandler discussed in Section 6.7.9.

By defauit, the gestare event handler plans to classify any gestures directed at it (classify =
YES). This is changed in those gesture event handlers that collect gestures for training other gestore
event handlers.

The detanlt timeval is 200, meaning 200 milliseconds, or two teaths of a second. This is
the duration that mouse inpet must cease {the mouse must remain still) for the end of a gesture to
be recogmized. The user may change the default, thus affecting every gesture event handler. The
fimeout interval may also be changed on a per handler basis, a feature useful mainly for comparing
the feel of different intervals.

When an event satisfies the handler’s start predicate, the handler activates itself, and its
pagsiveHandler is called.

= GestureBventHandler
— passiveHandler:e {
gesture = [[Gesture new] newevent:el;
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picture = {[ImmediatePicture create];
fview hang:picture at:0:0];

lastz = [[e loc] xi; lasty = [[e locl vi;
env = [Env new] ;

fenv str:"gesture" wvalue:gesturel];
fenv str:"startBEvent® wvalue:[e copyvil:
a

fenv aty:"currentEvent" wvalue:{e copvil;
fenv gtr:"handler” value:gelf];

manip phase = NO;

timeouteh = [[TimeoutBventHandler active]

rec:self gel:@gelector{timedout:)];
fwall activate:timeoutehl];
fwall timeout:timevall;

if (classify) {
clasg get = [Set new];
gassoc = (struct gassoc *)
malloc (MAXCLASSES »* gizeof {(struct gassoc));
ngassocs = 05

[ {fwall handlera]
raise: [GestureBEvent instigator:self event:e
env: { [Env newl] str:tevent" value:ell];
}
return self;
j

The passive handler allocates a new Gesture object which will be sent the input events as they
arrive. The initial event is sent immediately.

The picture allows the gesture handler to ink the gesture on the display as it is being made.
Class ImmediatePicture is used for pictures which are displayed as they are drawn, rather than
the normal HangingPicture class which requires pictures 1o be completed before they can be
drawn.

The env variable holds the environment in which the gesture semantics will be executed.
Within this environment, the interpreter vanables gesture, startBvent, currentEvent,
and handler are bound appropriately (see Section 7.7.1).

The boolean manip phase is true if and only if the entire gesture has been collected and the
handier is now in the manipulation phase (see Section 1.1).

A TimeoutEventHandler is created and activated. When a TimeoutBEvent is received
by the handier, the handler will send an arbitrary message (with the timaeout event as a param-
etery to an arbitrary object. In the current case, the timedout: message is sent fo the active
GestureBEventHandler. In  retrospect, the general functionality of the
TimeoutEventHandler is not necded here; the GegtureBEventHandler could itself easily
receive and process Timeout Bvents directly, withoutthe overhead of a Timeout EventHandlex.
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The code [wall timeoub:timevall causes the wall to raise a TimeoutEvent if there
has been no input o the wall in timeval milliseconds. A timeval of zero disables the raising of
TimeoutEvents. As previously mentioned, a gesture is considered complete even if the mouse
button is held down, as long as the mouse has not been moved in timeval milliseconds. The
TimeoutEvent isused to implement this behavior

If the gesture being collected s intended to be classified, the set of possible gesture classes must
be constructed, and a Set object is allocated for this purpose. Recall from Section 7.2.2 that there
may be multiple views at the location of the start gesture each of which accepts certain gestures. An
array of gassoc stroctures is allocated to associate each of the possible gesture classes expected
with its corresponding view. A GestureEvent is then raised, with the instigator being the current
gesture handler, and having the corrent event as an additional field.

Raising the GestureEvent initiates the search for the possible gesture classes given the initial
event. Recall from Sections 7.2.1 and 7.2.2 that each view under the initial point is considered from
top to bottom, and for each view, the gestures associated directly with the view itself, and with
its class and superclasses, are added in order. Note that this is exactly the same search sequence
as that used to find passive event handlers for events that no active handler wants (see Section
6.7). The GegtureEvent, haadied by the same passive event handler mechanism, will thus be
propagated to other GestureEventHandlers in the correct order. Each passive gesture handler
that would have handled the initial event sends a message to the gesture handler which raised the
GestureEvent indicating the set of gestore classes it recognizes and the view with which it is
associated.

Note that only views under the first point of the gesture are queried. The case where a gesture
is more naturally expressed by not beginning on the view at which it is targeted is not handied by
GRANDMA. For example, it would be desirable for a knob turning gesture to go around the knob,
rather than directly over it. In GRANMDA either the knob view area would have to be larger than
the actual knob graphic to insure that the starting poind of the gesture is over the knob view, or a
background view that includes the knob as a subview must handle the knob-tuming gesture. In the
latter case, the gestore semantics are complicated because the background view needs to explicitly
determine at which knob, if any, the gesture is directed. Henry et al. {52] also notes the probiem,
and suggests that one gesture handier might hand off a gesture in progress to another handler if it
determines that the initial point of the gestare was misleading, but exactly how such a determination
would be made is unclear.

= GestureBventHandler
— (BOOL)event:e view:v
if{(classify && masterSwitch==N0) || ignoring==YES)
raeturn NO;
if{ [e isKindOf:CestureBvent] ) {
if{classify
&& [self evalstart:|[le env] styr:"view" value:v] )
[ [e instigator] classes:classes view:v 1;
refturn NO;
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return [super event:e view:v];
}

The GestureEventHandlsy overrides GenericEventHandler's event:view:
method to check directly for GestureEvents. (A check for GestureEvents could have
been incladed in the default start predicate, but this would require programs which modify the
start predicate to always include such a check, an unnecessary complication.) First the state of
the masterSwitch and ignoring switches i1s checked, so that this handler will not operate if
explicitly turned off. (The reason clasasify is checked is to allow gesture handlers which do not
classify gestures, e those used to collect gesture examples for training purposes, to operate even
though gestures are disabled throughout the systern.)

When a Gestureivent is seen, the handler checks that it indeed classifies gestures and that it
would itself have handled the start event (see Section 6.7.8). The environment used for evaluating
the start predicate is constructed so that "event " and "view" are bound to what they would have
been had the haodler actually been asked to handle the initial event. If the haodler would have
handled the event, the set of gesture classes associated with the handler, as well as the view, are
passed to the handler which instigated the GestureEvent.

Note that no special case is needed for the bandler which actually raised the GestureEvent.
This handler will be the first to receive and respond to the GestureEvent, which it will then
propagate to any other handlers. The propagation occurs simply because the event :view:
method returns NO, as if it did not handle the event at all.

= GegtureBEventHandler

- classes:gesture classes view:v {
id ¢, seg = [gesture classes eachElement];
while( ¢ = [seqg next] ) {
i€ ([class _set addNTest:cl) | A added new element? % /
gagsoc ingagsocs] .sclags = ¢;
gassoc ingasgocs] .view = v

[AGBoCB++;

}
return self;
}

Fach gesture handler that could have handled the initial event sends the gesture handler that did
handle the initial event the classes:view: message. The latter bandler then adds each gesture
class to its ¢lags _set. I the gesture class was not previously there, it is associated with the
passed view via the gassoc array. This membership test assores that when a given gesture class is
expected by more than one view (at the initial point), the topmaost view will be associated with the
gesture class.

By the time the Gesturelvent has finished propagating, the class_set variable of the
instigator will have as elements the gesture classes (SemClasgs objects, actually) that are valid
ziven the initial event. The gagsoc variable of the instigator will associate each such gestore class
with the view that will be affected if the gesture being entered turns out to be that class.
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The search for the set of valid gesture classes may be relatively expensive, especially if there are
a significant number of views under the initial event and each view has a number of event handlers
associated with it. The substantial fraction of a second consursed by the search had an unfortunate
interaction with the lower level window manager intertace that resulied in an increase in recognition
errors. When queried, the low-level window manager software returns only the latest mouse event,
discarding any intermediate mouse events that occurred since it was last queried. The time interval
between the first and second point of the gesture was often many times larger than the interval
between subsequent pairs of points. More importantly, it was much larger than that of the {irst and
second points of the gesture examples used to train the classifier. Details at the beginning of gestures
would be lost, and some features, such as the initial angle, would be significantly different. The
substantial delay in samapling the second point of the gesture thus caused the classifier performance
to degrade.

There are a number of possible solutions to this problem. The window manager software could be
set to not discard intermediate mouse events, thus resulting in similar data in the actual and training
gestares. This would result in a large additional nomber of mouse events, and a corresponding
increase in processing costs, making the system appear sloggish to the user if events could not be
processed as fast as they arvived. O, the search for gesture elasses could be postponed unul after
the gesture was collected. This would result in a substantial delay after the gesture was collected,
again making the systern appear sluggish to the user. The solution finally adopted was to poll the
window manager during the raising of GestureBvents. (In the interest of clarity, the code in
XyEventHandler and EventHandlerList which did the polling was not shown.} After this
modification, running GestureBEventHandlers received input events at the same rate as the
GegtureBEventHandlers used for training, improving recogaition performance considerably.

The polling resulted in new mouse events being raised before the GestureEvent was finished
being propagated. The result was a kind of pseuado-multi-threaded operation, with many of the
typical problems which arise when concurrency is a possibility GestureEventHandlers were
complicated somewhat, since, for example, they had to explicitly deal with the possibility that
the end of the gesture might be seen before the set of possible gesture classes was calculated.
Also, the event handling methods for GegtureEventHandlers had to be made reentrant. The
complications have been omitted from the code shown here, since they tend to make the program
much more difficult to understand.

The end of a gesture is indicated etther by a timeost event (resulting in a t imedout : message
being sent to the GestureEventHandler), or by the stop predicate being satisfied (resulting
in the activeTerminator: message being sent to the handler). The third altemative, eager
recoguition (Chapter 4}, has not yet been integrated into the GRANDMA gesture handler, though it
has been tested in non-GRANDMA applications (see Section 9.2).

= GestureBventHandler ...
— timedout:e { if{ ! [zelf gesture:gesture] )
[self deactivatel; return nil; }

— activeTerminator:e {
[env gtr:"currentBvent" value:[e copyll;
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if{! wmanip phase) [self gesture:gesture];
return self;
H

Both methods resultinthe gesture : message being sent when the gesture has been completely
coliected. The gesture: message returns nil if the gesture has no semantics to be evaluated
during the manipulation phase. This is checked by the timedout: method, and in this case
the handler simply deactivates itself immediately. This is typically ased by gesture classes whose
recognition semantics change the mouse tool (2.2 a delete gesture that changes the mouse cursor (o
a delete tool}; a imeout deactivates the gesture handler iromediately, allowing the mouse to function
as a tool as long as the mousce button is held.

The GenericEventHandler code arranges for the deact ivate message to be sent inune-
diately after the activeTerminator: message, so there i3 no need for the
activeTerminator: method to explicitly send deactivate. The environment is changed
so that the semantic expression evaluated in the deactivate method executes in the correct
environment. The gesture: method is called if the handler is still in the gesture collection phase,
e.g. it the gesture end was indicated by releasing the mouse butfon rather than a timeout.

= GegtureBventHandler
~ deactivate {
id x;
if (manip phase && sclass)
eval ({sclags done expri, env, Typeld, &r);
return [super deactivatel;
h

The gesture: method sets the sclags field to the SemClags object of the recognized
gesture, The done expression, the last of three semantic expressions, is evaluated immediately
before the gesture handler is deactivated.

= GestureBventHandler
— {BOCL}event:e { return ignoring ? NO : {super event:el; }

activeHandler:e { A new mouse point* /
fenv str:"current®Event" value:le copyli;
if { manip phase) { id x; A in manipulation phase x /

if(sclass) eval{lsclass manip_expr], emv, Typeld, &r);

’

}

else { A still in coffection phase % /
int x = [e {[loc x]], v = {e [loc vil;
{gesture newevent:e]; A updaie feature vecior x /

{view updatePicture:
ipicture line:lastx :lasty :x :v]i; Ainks/
lastx = x; lasty = v;

aturn gelf;
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}

Once  activated, the CGestureBEventHandler functions just like any other
GenericEventHandlexr except that it will not handle any events if s ignoring flag is
set. The active event handler does different things depending on whether the gesture handler i3 in
the collection phase or the manipulation phase. In the former case, the current event location is
added to the gesture, and a line connecting the previous ocation to the current one is drawn on the
display. In the latter case, the manipulation expression associated with the gesture (the second of
the three sernantic expressions) is evaloated.

= GestureBventHandler ...
— gestuve:qg { /A called wheo gesture collection phase in complete * /
double a, d;
id r;
id clagsifier;
register styruct gassoc *ga;
id ¢, clags;
id curevent;

manip phase = YES;

[wall timeout:0]; {wall deactivate:timecuteh];
A erase inking % /

ure = nil;

[view _unhang:picture]
[picture discard]; pic

2
o -

A informinterested views {only used in a training session) « /
if{[view respondsTo:@selector{gesture:)])
[view gegture:gl;

clagsifier = [Clasgifier lockupOrCreate:class set];
A run the classifier on the feature vector of the collected gesture + /
class = [classifier classify:{g £v]
ambigprob: &a distance:&d];
scolags = nil;
if{clags == nil || a < AwbigProb || 4 » MaxzDist)
return [self reject]: A rejected x [/

A find the class of the gestare in the gassoc array s/
for{ga = gassoc; ga < &gassocingassocsl; ga++)
if{{ga—»sclags gclass

break;

s
return [self srror:'gassgoes?'l;
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/4 the gassoc entry gives the both the view at which the gesture  /
A is directed and the semantic expressions of the gesture x /
selasgs = ga-—-»g8clasg;
{env str:"view" value:ga—>view];
{env str:"endEvent”
value:curevent={env atStr:"currentEvent"il;
eval{isclass recog _exprl, env, Typeld, &r);
if((c = [sclass manip exprl) != nil &&
fc vall = nil)
evali{c, env, Typeld, &r);
else { A raiseeveats/
L1E {curevent) {
ignoring = YES;

if {mousetool) {curevent tool:mousetool];
fwall raise:curevent];

fae S

£{ (o = [sclass done_expr]) == nil
I {e vall == nil)

Smmendd

}
return self;
}

The gesture: methodis called when the entire gestare has been collected. It sets the variable
manip phase toindicate the handler is now in the manipulation phase of the gestural input cycle,
deactivates the timeout event handler, and erases the gesture from the display. If the view associated
with the handler responds to gesture: it is senf that message, with the collected gesture as
argument. This is the mechanism by which cxample gestures are collected during training: one
handier collects the gesture, sends its view (typically a kind of WallView devoted to training) the
cxample gesture, which adds it to the GestureClass being trained.

In the typical case, the gesture is to be classified. The Classifierx factory method named
lookupCrCreate: iscalled to find a gestore classifier which diseriminated between elements
of the clags set. If no such classifier is found, this method calculates one and caches it for
future use. (This lookup and creation could possibly have been done in the pseudo-thread that was
spawned during the {irst point of the gesture, but was not, since most of the time the lookup finds the
classifier in the cache, and it was not worth the additional complication and loss of modularity to add
polling to the classifier creation cade.) The returned classifier is then used to classify the gesture.
In addition to the class, the probability that the classification was ambiguous and the distance of
the cxample gesture to the mean of the calculaied class are returned. These are compared against
thresholds to chaeck for possible rejection of the gesture (see Section 3.6).
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The elements of the gassoc array are searched to find the one whose gesture class is the class
retumed by the classifier. This determines both the semantics of the recognized gesture and the view
at which the gesture was directed. The sclass field is set 1o the SemClags object associated
with the recognized gesture, and then the rece
expressions, is evalvated in an environment in which "startEvent?®, "curventEvent®,
"endBvent® and "view" are all appropriately bound.

¥ it exists, the manipulation expression is evaluated immediately after evaluating the recognition
expression. If there is no manipulation expression, the current event is reraised on the assumption
that its tool may wish to operate on a view. The ignoring flag is set so that the active handler does
not attempt to handle the event if is about to raise. Furthermore, the semantics of the gesture may
have changed the current mouse tool. I 80, the tool field of the corrent event would be incorrect, and
is changed to the new tool before the event is raised. Tn order for this to work, any gesture semantics
that wish to change the current mouse tool must do s0 by sending the mousetonl: message to
the gesture handler instead of directly to the wallview.
= GestureBventHandler
— wousgetool: wousetool {
mougatool = _mousetool;
return [super mousetool: mousetool];
)
The gegture : method returms nil if there are no manipulation or done semantics associated
with the recoguized gesture class.  As seen, this is a signal for the handler to be deactivated
inwnediately after the gesture is recogaized.

7.5 Gesture Classification and Training

In this section the implementation of classes which support the gesture classification and training
algorithms of Chapter 3 is discussed.

At the lowest level is the class Gesture. A Gesture object represents a single example
of a gesture. These objects are created and manipulated by GestureEventHandlexs, both
during the normal gesture recognition that occurs when an application s being used, and during the
specification of gesture classes when training classifiers.

7.51 lass Sestur

Internally, a gesture object is an array of points, each consisting of an x, v, and time coordinate.
Auvother instance variable is the GestureClasgs object of this exampie gesture, which is non-nil
if this example was specified during training. Intermediate values used in the caleulation of the
example’s feature vector, as well as the feature vector itself, are also stored. Also. an arbitrary string
of text may be associated with a Gesture object.

For brevity, detailed listing of the code for the Gesture class is avoided. The interesting part,
namely the feature vector calculation, has already been specified in detail in Chapter 3 and C code is
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shown in Appendix A. Instead of listing more code here, an explanation of each message Gesture
objects respond to is given.

A new gesture is allocated and initialized via g = [Gesture new}. Addingapoinitoa
Gesture objects is done by sending it the newevent message: [g newevent:e], which
simaply results in the call: [g x:{{s locl x] v:Ile loc] vyl t:{e timel]. The
#:y:T: method adds the new point to the list of points, and incrementally calculates the var-
tous components of the feature vector {see Section 3.3). The call {g £v] returns the calculated
feature vector. The methods class:, class, text :, and text respectively set and get the class
and text instance variables.

A Gesture objectcan dump itselftoafile via [g save: £] {(given afile stream pointer FILE
* £} and can also initialize itself from a file domp wsing [g read:£]. Using save:, a number
of gesture objects may dump themselves sequentially into a single file, and could then be read back
one at a time asing read:. All examples of a given gesture class are stored in a single file via these
methods.

Thecall [g contains:x:y] returns a boolean value indicating if the gesture g, when closed
by connecting its 1ast point to its first point, contains the point (x,v}. This is aseful for testing,
for example, if a given view has been encircled by the gesture, enabling the gesture to indicate the
scope of a coromand. (The algorithm for testing it a point is within a given gesture is described at
the end of section 7.7.3.)

5.2 Class GestureClass

The class GestureClass represents a gesture class. A gesture class is simply a set of example
gestures, presumably alike, that are to be considered the same for the purposes of classification.
The input to the gesture classifier training method 18 a sef of Geaturelaasg objects; the result of
classifying a gesture is 2 GesturelClass object.
= GestureClass: NamedModel {

id examples;

Vector sum, average;

Matrix sumcov;

int gstate;

STR text;

1
3

GestureClass isasubcelass of NamedModel, itself a subclass of Model. GestureClass
is a model so that it can have views, enabling new gesture classes to be created and manipuolated
at rantime.  Please do not confuse GestureClasgs with GestureEventHandler objects;
a GestureClags serves only to represent a class of gestures, and itself handles no inpat. A
NamedModel augments the capabilitics of a Model by adding functions that facilitate reading and
writing the model to a file. Also, models read this way are cached, so that a model asked to be
iput more than once is only read once. This is important for gesture class objects, since a single
GestureClass object may be a constituent of many different clagsifiers, and it is necessary that
every classifier recognizing a particular class refer to the same GestureClass object.
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The GestureClass instance vanable examples is a Set of examples which make up the
class. The field sum is the vector that the sum of all feature vectors of every example in the class;
average is sum divided by the number of examples. The covariance matrix for this class roay be
found by dividing the matrix gumcov by one less than the number of examples. The calculation
of classifiers is slightly more efficient given sumcov matrices, rather than covariance matrices, as
input (see Chapter 3). C code to calculate the sumcov matrices incrementally is shown in Appendix
A.

The state instance variable is a set of bit ficlds indicating whether the average and sumcov
variables are up to date. The text field allows an arbitrary text string to be associated with a gesture
class.

The addExample: method adds a Gesture to the set of examples in the gesture class, incre-
mentally updating the sum field. The removeExample: method deletes the passed Gesture
from the class, updating sum accordingly. The examples method returns the set of examples
of this class, average returns the estimated mean of the feature vector of all the examples in
this class, nexamples returns the mumber of examples, and sumcov retarns the unnormalized
estirnated covariance matrix.

753 (lass GestureSemClasgs

= GestureSemClass: NamedModel {
i

id recog, manlip, done;
}

CestureSemClase objects are named maodels, enabling them to be referred to by name
for reading or writing to disk, and for being actomatically cached when read. The purpose of
GestureSemClass objects is to associate a given gesture class with a set of semantics. It is
necessary to have a separate class for this because a given GestureClass may have more than
one set of semantics associated with it

In addition to methods for setting and getting each field, there are methods for reading and
writing GestureSemClass objects to disk. GestureSemClaas uses Objective C's Filer
class to read and write each of the three semantic expressions {recog, manip, and done). The
availability of the Filer is another advantage of using Objective C [28]. In a typical interpreter,
a substantial amount of coding would be required to read and write the intermediate tree form of
the program to and from disk files. The Filer, which allows the writing to and from disk of any
object {at least those having no ' pointers besides strings and 1ds as instance variables), made it
trivial to save interpreter expressians to disk.

Along with the semantics, the disk file of a GestureSenClass containg only the name
of gegtureClags object referred to by gclass. When reading in a GestureSemClass,
the name is used to read in the associated GestureClass., Since GestureClass is a
NamedModel, there will be only one GestureClass object for each distinct gesture class.
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754 lass Clageifier

The Clasgsifier class encapsulates the basic gesture recognition capabilities in GRANDMA.
Fach Classifier object has a set (actually an OrdClin) of gesture classes between which it
discriminates. Bach Clagsifier object contains the linear evaluation function for each class (as
described in Chapter 3), and the inverse of the average covariance matrix, which is used to calculate
the discrimination functions, as well as to calculate the Mahalanobis distance between two of the
component gesture classes, or a given gesture example and one of the gesture clagses.

= Clagsgifier : OCbject {

id gestureclasses;

int nclasses, nfeatures;

vVector cnst, #w; & discrimination functions* /
Matrix 1NVavgCov;

int haghvalue;

13
¥

s

Clasgifier lookupOrlreate:clasgss] returns aclassifier which discriminates be-
tween the gesture classes in the passed collection clagses. The method for lookupOrCreate:
caches all classifier objects which it creates; thas, if it is subsequently passed a set of gesture classes
which it has seen before, it returns the classifier for that set without having to recompute it. The
search for an existing classifier for a given set of gestures is facilitated by the hashvalue instance
variable, which is calealated by “XORing” together the object ids of the particular GegtureClass
objects in the set.

When necessary, the LookupOrCreate: method creates a new classifier object, inttializes
its gestureclasses instance variable and then sends itself the train message. The train
method implements the training algorithm of chapter 3.

train {
register inkt i, i
int denom = (;
id ¢, s=sqg;
regigter Matrix s, avgoov;
Vector avg;
double det;

A eliminate any gesture classes with no examples + /
iself eliminateBEmptyClasses];

A calculate the average covariance matvix from the {unnorraalized)
covariance mairices of the gesture classes, & /
avgecov = NewMatrix{nfeaturesg, nfeatures);
ZevoMatrix (avgoov) ;
for{seq = [gestureclasses eachElement];
= [lseq next] gclassl; ) 4
denom += [¢ nexamples] — 1;
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s = [¢ sumcov];
for{i = 0; i < nfeatureg; 1++}
for{(i = 1; i < nfeatu eg; j++)
avgecoviil [J1 += elillil;
h
if{denom == 0) [gelf error:"no examples'];
for{i = 0; 1 < nfeatures; i++)
for{d = 1i; < nfeatures; j++)

3
e

avgecov il il = {avgcov{i][j] /= denom);

A invert the average covariance matrix x /
invavgcoov = NewMatrix (nfeatures,

nfeatures) ;
det = InvertMatrix{avgcov, invavgoov);
if{det == 0.0)

[self fixClasgifier:avgeovi;
A calculate the discrimination functons:
wiil{j] is ihe weight on ihe jib feature of the ith class.

cnistfi] is the constant term for the ith class. * /

w = allocate (nclasses, Vector);
es)

cnet = NewVector(nclasses);
for(i = 0; i < ncolasses; i++) 4
avyg = [Hﬁgestureclasses at:i] gelassl averagel];
A wli] = avgeinvavgeovs /
wli] = NewVector{nfeaturesg)

VectorTimesMatrix{avy, invavgoov, w[i} H
cngt{i] = ~0.5 * InnerProduct{wlil, avg};

}

The eliminateEmptyCliasses method removes any gesture classes from the set which
have no examaples. The (estimated) average covariance matrix is then computed, and an attempt is
made to invert it. If it is singulag the £ixClasgifier: method is called, which creates a usable
inverse covariance matrix as described in Section 3.5.2. (C code for fixing the classifier is shown in

Appendix A)
Given the inverse covari ance matrix, the discrimunation functions for each class are calculated as
specified in Section 3.5.2. The weights on the features for a given class are computed by nwltiplying

the inverse average covariance matrix by the average feature vector of the class, while the constant
term 1s computed as negative one-half of the weights applied to the class average. This constant
computation gives optimal classifiers under the assumptions of that all classes are equally likely and
the misclassifications between classes have equal cost (also assumed is mudtivariate normality and a
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common covariance matrix). The Classifier class provides a class: incrconst . method
which allows the constant termos for a given class to be adjusted if the application so desires.

The call [Clasgifier trainall:classes] cawses all Clasaifier objects whose
set of gestures includes all the gestures in the set clagses fo be retrained (by sending them the
train: message). This is usetul whenever training cxamples are added or deleted, since all the
classifiers depending on this class can then be recalculated at once. Generally a classifier may be
retrained in less than a quarter second; Section 9.1.7 presents training times in detail.

Classitying a given example gesture is done by the clasgify:ambigprob:distance:
method.  This method is passed the feature vector of the example gesture, and evaluates the
discrimination function for each class, choosing the maximom. ¥ desired, the probability that the
gesture is unambiguous, as well as the Mahalanobis distance of the example gesture from the its
calculated class are also comaputed; this allow the callers of the classification method to implement
rejection options if they so choose.

— claggify: {(Vector) fv
ambigprob: {(double x)ap distance: (double =*)dp

double maxdisc, disc{MAXCLASSES];
regigter int 1, maxclass;
double denom, expl};

id class;

1 < nelasses; i+44)

i
o

for {1 ;
digsc{il = InnerProducti{wii]l, fv} + cnstiil;

maxelass = 0y

for{i = 1; i <« nclagses; i++4)
if{disc[i]l » discimaxclaszsl)
maxclass = i
clasg = [l[gestureclasses at:maxclasgs] gclassl;
if{ap) 4 A calculate probability of non—ambiguity+ /
for{denom = 0, 1 = (; L < nclassesg; i++)
denom += expi{discii] - discimaxclassl]);

rap = 1.0 / denow;

1f {dp) fe calcidate distance to mean of chosen class * /
*dp s d2fv:iv sigmainv:invavgoov];

i
y;;
’..
V]
]

return c¢la

u
w

—-—;
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Classifier objects respond o numerous messages not vet mentioned. The evaluate
message causes the example gestures of each class to be classified, so that the recognition rate of the
classifier may be estimated. Of course, the procedure of testing the classifier on the very examples i
was trained upon resulfs in an overoptimistic evaluation, but it nonetheless is useful. By sending the
particular gesture classes and examples text : messages, the result of the evaluation is fed back
to the user, who can then see which examples of each class were classified incorrectly. A high rate

of misclassification asually points to an ambiguity, indicating a poor design of the set of gestures to
be recognized. The ambiguity is typically fixed by moditying the gesture examples of one or more
of the gesture classes. The incorrectly classified examples indicate to the gesture designer which
gesture classes need to be revised.

Classifier objects also respond to messages which save and restore classifiers to files, as
well as messages which cause the internal state of a classifier to be printed on the terminal for
debugging purposes, and a matrix of the Mahalanobis distances between class pairs to be printed
{(so that the gesture designer can get a measure of how confusable the set of gestares is).

7.6 Manipulating Gesture Event Handlers at Runtime

{Ome goal of this work was to provide a platform that allows experimentation with different gestural
interfaces to a given application. To this end, GRANDMA was designed to allow gesture recognizers
to be manipulated at rontime. Gesture classes may be added or deleted, training examples for each
class may also be added or deleted, and the semantics of a gesture class (with respect to a particular
handler) may all be specified at runtime. In addition, gestures as a whole, or particular gesture event
handlers, may be tursed on and off at runtine, allowing, for example, easy comparison between
gesture-based and click-drag interfaces to the same application program. This section discusses the
interface GRANDMA presents to the user that facilitates the manipuolation of gesture handlers at
runtime.

The View class implements the editHandlers method. When sent editHandlers, a
view creates a new window (if one does not already exist) as shown in figure 7.2. The top row is a
set of pull down menus. Each subsequent row lists the passive event bandlers for the view, its class,
its superclass, and 50 on up the class hierarchy until the View class. The event handlers are listed
in the order that they are queried for events, from top to bottom, and within a row, from left to right.

The "Mouse mode” menu itern controls which mouse cursor is currently active in the window.
With the normal mouse (indicated by an arrow), the user is able to drag the individual event handler
boxes so as to rearrange the order. (The other mode, “edit handler,” will be discussed shortly) A
handler may also be dragged into the trash box, in which case it is removed from the list of handler
associated with a view or view class. A handler may be dragged into the dock; anything in the dock
will remain visible when the handler lists for a different view are accessed. A handler dragged into
the dock reappears on its original list as well: thus the dock allows the same event handlers to be
shared between different objects and between different classes.

The “create handler” menu item results in a pull-down menu of all classes which respond to the
pagsive message. Thus, at runtime new handlers may be created and associated with any view
object or class. For example, a drag handler may be created and attached to an object, which can
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Figore 7.2: Passive Event Handler Lists

then be dragged around with the mouse. New gestare handlers may also be created this way.

The other mouse cursor, “edit handler”, may be clicked upon any passive event handler. It
results in a new window being created which shows the details of a particular edit handier. Figure
7.3 shows the window for a typical gesture handier.

At the top left of the window is the “Mouse mode” pull down meny, used in the unlikely event
that one wishes to examine the handlers of any of the views in this window. To the right is the name
of this event handler, constructed by concatenating the class of the handler with its internal address.

The next three rows show three EventExpy objects; these are the starting predicate, handling
predicate and stopping predicate of the gesture handier Fach item in the predicate display is a
button that shows a pop-up menu; it is thus a simple matter to change the predicates at runtime.
For example, the start predicate may be changed from matching only PickEvents to maiching all
DragEvents. The kind of too] expected may also be changed at rontime, as well as attributes of
the tool (eg. a particelar mouse button may be specified). If desired, the entire predicate expression
may be replaced by a completely new expression. In all cases, the changes take effect immediately.

The window contents thus far discussed are common to afl GenericEventHandlers. The
following ones are particular to GestureEventHandlexrs. First there are a set of buttons (“new
class”, “train”, “evaluate”, “save”). Below this are some squates, each representing a gesture class
recognized by this handler In cach square is a miniaturized example gesture, some text associated
with the class, and a small rectangle which names the class. The text typically shows the result of
the evaluation of the particular gesture recognizer for this set of classes when run on the examples
ased to train it. The small rectangles may be dragged (copied) into the dock. Each such rectangle
represents a particular gesture class. Any rectangles in the dock will remain there when another
gesture handler is edited. Fach then may be dragged into any gesture class square, where it replaces
the existing class. Typically, a rectangle from the dock is dragged into empty class square {created
by the “new class” button); this is the way mwltiple gesture handlers can recognize the same class.

Clicking on one of the gesture class squares (but not in the class name rectangle) brings up the
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window of example gestures, as shown in Figure 7.4. Each square in this window contains a single,
mintaturized example of a gesture in this class. These examples are used for training the classifier
A new example may be added simaply by gesturing in this window. An example may be deleted by
clicking the delete button on the left (which changes the moouse cursor to a delete cursor) and then
clicking on the example. A user wishing to change a gesture to something more to his liking simply
has to delete all the examples of the class (easily done using the “Dielete ALL” button) and then enter
new example gestures. The “train” button will cause a new classifier to be built, and the “evaloate”
button will cause the examples to be run through the newly built classifier. Any incorrectly classified
examples will be indicated by displaying the mistaken class name in the example square; the user
can then examine the example to see if it was malformed or otherwise ambiguous.

The “semantics” button in the window of examples causes the semantics of the gesture class to
be displayed. This is the subject of the next section.

7.7  Gesture Semantics

SRANDMA contains a simple Objective-C interpreter that allows the semantics of gestures to be
specified at runtime. In GRANDMA, the semantics of a gesture are determined by three program
fragments per gestare class (per handler). The first program fragment, labeled recog, is execuated
when the gesture is first recoguized to be in a pacticular class. The second fragment, manip, s
executed on every input event handled by the activated gesture handler after the gesture has been
recognized. The third fragment, done, is executed just before the handler deactivates itself. The
exact sequence of executions was described in detail in section 7.4; this section is concemed with
the contents and specification of the program fragments themselves.

771  Gesture Semantics Code

As mentioned, the semantics of a gesture are defined by three expressions, recog, manlip, and
done. The kinds of expressions found in practice may be loosely grouped according to the fevel of
the GRANDMA system that they access.

Some semantic expressions deal directly with models, ie directly with application objects.
These are typically the easiest to code and understand. An example from the GSCORE application
discussed in section 8.2 is the sharp gesture. GSCORE is an editor for musical scores. In GSCORE,
making an “S” gesture over a note in the score causes the note to be “sharped”, which is indicated
in musical notation by placing the sharp sign “#” before the note. The class Note is a model in the

SSCORE application, and one of its methods is acc: which sets the accidental of a note to one of
DOUBLEFLAT, FLAT, NATURAL, SHARP, DOUBLESHARP, or NCACCIDENTAL.

The sharp gesture, performed by making an “8” over a NoteView, has the semantics:
recgog = | [view model]l ace:SHARP 1

manip = nil;
done = nil;
In these semantics, the Note object (the model of the NoteView object) is directly sent the
ace: message when the sharp gestuse is recognized. The model then changes its internal state to
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reflect the new accidental, and then calls {gself modified] which will eventually result in the
display updated to add a sharp on the note.

Note that the semantic expressions are evaluated in a context in which certain names are assumed
to be bound. In the above exampie, obviously view and SHARP nwst be bound to their correct
values for the code to work. Section 7.4 described how the GestureEventHandler creates an
environment where view is bound to the view at which the gesture is directed, startBEvent is
bound to the initial event of the gestare, endEvent is bound to the last event of the gesture (J.e. the
event just before the gesture was classified), and currentBvent is bound to the most recent event,
typically a MoveEvent during the manipulation phase. A particular application may globally bind
application-specific synibols (such as SHARP in the above example) in order to facilitate the writing
of semantic expressions.

Instead of dealing directly with the model, the semantics of a gesture may send messages directly
to the view object. In the score editor, for exanmple, the delele gesture (in the handler associated
with a ScoreEBEvent) might have the semantics

recog = [view delete];
manip = nil;
done = nil;

{The actual semantics are slightly more complicated since they also change the mouse cursor;
see Section 8.2 for details.) The delete method for the typical view just sends delete to its
model, perhaps after doing some housckeeping.

The semantic expressions of a gesture are invoked from a GestureBEventHandler, and the
sending of messages to models and views scen so far is typical of many different kinds of event
handlers. Anocther thing that event handlers often do (see in particular section 6.7.9 for a discussion
of the DragHandlex) is raise evenis of their own. There are many reasons a handler might wish
to do this. A DragHandlery raises events in order to make the view being dragged be considered a
virtual tool. As mentioned previously, a handler might also raise events in order to simulate one input
device with another. (For example, imagine a SensorFrameMouseErmulator which responds
to SengsorFrameEvents, raising DragEvents whose tool is the current GenericMouseTool
$0 a8 to simulate a mouse with a Sensor Frame.) One of the main purposes of having an active
event handler list and a list of passive events handlers associated with each view 1s to allow this kind
of flexibility. In the Smalltalk MVC system, the pairing of a single controller with a view really
constrains the view to deal ondy with a single kind of input, namely nwouse input. In GRANDMA,
a view can have a number of different event handlers, and thus may be able to deal with many
different input devices and methods.

In GRANDMA, gesture-based applications are typically first written and debugged with a more
traditional menu driven, click-and-drag, direct manipulation interface. Given that gestures are added
on top of this existing structure, there is another level at which gesture semantics may be written.
At this level, the gesture sempantics emulate, for example, the mouse input that would give the
appropriate behavior.  In other words, the gesture is translated into a click-and-drag interaction
which gives the desired result.

An example of this from the score editor is the placement of a gote into a score. In the click-
and-drag interface, adding a note (o the score involves dragging a note of appropriate duration from
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a palette of notes to its desired location in a musical staff. This is implemented by having the
NoteView be a virtual tool which sends a message to which Staf£View objects respond. While
the note is being dragged, a DragHandler raises an event whose tool is a NoteView which will
be processed by the GenericToolOnView handler when the note is over the Staffview.

In the gesture-based interface, there is a gesture class for each possible note duration recognized
by handier associated with the StaffView class. The semantics for the gesture which gives rise
to an eighth note are

recog = |[{[noteview8up viewcopyl at:startioc]
reraige:currentBEvent] ;

manip = nil;

done = nil;

The symbol noteviewsup is bound to the view of one of the notes in the palette; it is copied
and moved to the starting location of the gesture. The currentEvent (cither a MoveEvent or
DropEvent which ended the gesture} is copied, its tool field is set to the copy of the note view, and
the resulting event is raised. The moving of the note and the raising of a new event is exactly what a
DragHandler does; the effect is to simulate the dragging of a note to a particular location. Note
that the note is moved to startLoce, the starting point of the gesture, which necessarily is overa
StaffvView {(otherwise this gesture handler would never have been invoked). Thus, the handlers
for Staffview will handle the event, and use the focation of the note view to determine the new
note’s pitch and location in the score.

It would have been possible in the semantics to simulate the mouse being clicked on the
appropriate note in the paletie and then being dragged onto the appropriate place in the staff. In this
case, that was not done as it would be needlessly complex. The point is that, due to the flexibility
of GRANDMA's input architecture, the writer of gesture semantics can address the system at many
fevels of abstraction, from simulated input to direetly dealing with application objects.

The example semantics seen thus far have only had recoqg expressions, which are evaluated
at recognition time. The following example, which implements the semantics of a gesture which
creates a line and then allows the line to be rubberbanded, illustrates the use of manip:

recog = [iview createline] endpointlat:startLoc];
manip = [recog endpointlat:currentLoc];

done = nil;

In this example, view is assumed to be a background view, typically a WallvView of a
drawing editor program (Section 8.1 discusses GDP, a gesture-based drawing editor). Sending it the
createline message results in a new line being created in the window, whose first endpoint is
the start of the gesture. The other endpoint of the line moves with the mouse after the gesture has
been recognized; this is the effect of the manip expression. Note the use of recog as a variable
to hold the newly created line ohject. H desired, the semantics programmer may create other local
variables to communicaie between different (or even the same) semantic expressions.

7.7.2 The User Interface
GRANDMA allows the specification of gesture semantics to be done at runtine. In the current
implementation, the semantics must be specified at runtime; there is no facility for hardwiring the
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semantic expressions of a given gesture into an application. Currently, the semantics of a gesture
class are read in from a file (as are examples of the gesture class) each time an application is started.
The semantics of a gesture may only be created or modified using the user interface facilities
discussed in this section.

(esture semantics are currently specified using a limited set of expressions. An expression may
be a constant expression {integer or string), a variable reference, an assignment, or a message send.
Fach expression has its obvious effect: a constant evaloates to itself, a variable evaluates to its
value in the current environment, an assignment evaluates to the evaluation of its right hand side
{with the side effect of setting the variable on the left hand side), and a message send first evaluates
the recetver expression and each argument expression, and then sends the specified message and
resulting arguments to the receiver. The vahie of a message expression is the valae that the receiver’s
method returas. For programmming convenience, infeger, string, and objects are converted as needed
so that the types of the arguments and receiver of a message send match what is expected by the
message selectorn

Figure 7.5 shows the window activated when the “Semantics” button of a gesture class is pressed.
At the top of the window are a row of buttons used in the creation of various kinds of exprossions.
They work as follows:

new message The new message button creates a template of a message send, with a slot for the
receiver and the message selector. Any expression may then be dragged into the receiver
(“REC?) slot. Clicking on the “SELECTOR?” box causes a dialogue box to be displayed
{(figure 7.6). Users can then browse through the class hierarchy uutil they find the message
selector they desire, which can then be selected. The “+” and “-” buttons may be used to
switch between factory and instance methods. The starting point in the browsing is set to the
class of the receiver, when it can be determined. Once the selector has be okayed, the template
changes to have a slot for each argument expected by the selector, as shown into figare 7.7
Any expression may then be dragged into the argument slots. In particalar, gesture attributes
(see below) are often used.

new int This button creates a box into which an integer may be typed.

new siring This button creates a box into which a siring may be typed.

new variable This button creates a template (|| =

VALUE? ) for assigning a variable into which
the name of a variable may be typed. Any expression may then be dragged into the “VALUE?Y”
slot. The entire assignment expression may be dragged around by the “=” sign. Attempting to
drag the variable name on the left hand side actually copies the variable name before allowing
it to be dragged; this resulting expression (simply the name of the variable) may be used
anywhere the value of the variable is needed.

factory This button generates a constant expression which is the object identifier of an Objective

C class {also known as a “factory”). Pressing the buiton pops up a browser which aliows the
user to walk through the class hierarchy to select the desired class.
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Figure 7.5: The interpreter window for editing gesture semantics
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atiribute Clicking this button generates a menu of uselul subexpressions that are often used in
gesture semantics. (Figure 7.7 shows both pages of atiributes). The expressions are either
variable names, or named messages. As expressions, named messages are distinguishable
from variable names by the angle brackets and the small box before the name. Clicking in the
box reveals the underlying expression to which the name refers. (Note the angle brackets and
box are not shown in the list of attributes but appear once an attribute is selected. Figure 7.5
contains some examples of sach attributes.)

Most attributes in the list refer to characteristics of the current gesture (i.e. the gesture which
causes the semantics to be evaloated). Other attnibutes refer to the current view, wall, event
handler, events, and set of objects enclosed by the gesture. Many examaples of using attributes
in gesture semantics are covered in the next chapter.

Having the attribotes of a gesture available when writing the semantics of the gesture is the
embodiment of one central idea of idea of this thesis. The idea is that the meaning of a gesture
may depend not only upon its classification, but also on the features of the particular instance
of the gesture. For example, in the drawing program it is a siraple matter fo tie the length of
the line gesture to the thickness of the resulting Hne. This is in addition to using the starting
point of the gesture as one endpoint of the line, another exarmple of how gesture attributes are
useful in gestare semantics.

cursor This button displays a menu of the available cursors. The cursors are almost always a kind
of GenericMouseTool, and consists of an icon that has been read in from a {ile, and the
message that the tool sends. The cuarsors are useful, for example, in semantic expressions that
wish to provide some feedback to the user by changing the cursor after the gesture has been
recognized.

Trace On This button turos on tracing of the interpreter evaluation loop, which prints the values
of all expressions and sobexpressions as they are evaluated. This helps the writer of gestore
semantics to debug his code.

The middle mouse button brings up a menu of usefol operations. “Normal” restores the cursor
to the default cursor which drags expressions. “Copy” changes the cursor to the copy cursor, which
when used to drag expressions causes them to be copied first. “Hide” hides the semantics window,
which is so large that it typically obscures the application window. The various remaining editing
commands are usefel for examining the event handlers associated with various objects in the user
interface, and are not really of general interest to the writer of gesture semantics. They would be of
interest if one attempted to add a gestural interface to the interpreter itself.

Anexpression dragged into a “"DOCK” slot remains there even when the gesture class is changed.
The dock provides ausefol mechanism for sharing code between different gesture classes, or between
the same gesture class in different handlers. Any expression dragged into the trash is, of course,
deleted.

The above-described interface to the semantics is usually slower to use than a more straight-
forward textual interface. A straightforward textual interface would require a parser but would
still be simpler and better that the current click-and-drag interface. On the other hand, with the
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click-and-drag interface it is not possible to make a syntax error. The main reason such an interface
was built was to exercise the facilities of the GRANDMA systemn. Before the project began the
author suspected that a click-and-drag interface to a prograraming language would be awkward, and
he was not surprised. He did, however, consider the possibility of building a gesture-based interface
to the interpreter, one which might have been significantly more cfficient to use than the current
click-and drag interface. It should be possible at the present time to add a gesture-based interface to
the interpreter without even recompiling, though to date the author has not made the attempt.

7.7.3  Interprefer Implementation

The interpreter internals are implemented in a most straightforward manner. The class Expregsion
is a subclass of Model and has a subclass for each type of expression: VarExpr, As3ignExpr,
MassageBxpr, and ConstantExpr {and some not discussed: CharBventExpy, EventExpr,
and FunctionExpr). AssignBxpr and MessageBxpr objects have fields which hold their
respective subexpressions, while ConstantBExpy and VarBzpyr objects have fields which hold
the constant object and name of the variable, respectively.

Expression Evaluation

All expressions are evaluated in an environment, which is simply an association of names with
values (which are objects). Evaluating VarBxpr objects is done by looking up the variable in an
environment and returning its value; AssignBxpr objects are evaluated by adding or modifying
an envircnment so as to associate the named variable with its value. In addition to the environment
that is passed whenever an expression is evaluated, there is a global environment. If a name is not
found in the passed environment, it is then locked up in the global environment.

The interpreter has a number of types with which it cag deal. Each type is represented by
a subclass of class Type. An instance of one of these subclasses is a value of that type. The
commonly used type classes are TypeChayr, Typeld, TypeInt, TypeShort, TypeSTR,
Typelngigned, and TypeVoid. The TypeId represents an arbitrary Objective-C object;
the others represent their corresponding C tyvpe.

Consider the implerentation of TypeInt:

= TypeInt : Type { int _int; }
initialize { [super register:"int®];
{super regigter: long"];

}
+ met int: {int}v { return [[super new] set i
+ {void ) fromChiject:o regult: (void x)r
{ #{int *)r = [0 asInt]; return v; }
+ teCbject: {void #}r { vreturn [self set int:x{int x)xl; }
set int: (int)v { dint = v; veturn gsif; }

{int}asInt { return _int;
— {short)assShort { return
— {char)asChar { return (¢

— {(unsigned)asUnsigned { rstur
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— (STR)asString: (STR})s { sprintf(s, "%d", _int); return &; }
- {int)Plus: (int)b { return _int + b; }
— {inmt)Minus: {int)b { return _int - b; }
-~ {int)Times: {int)b { return _int % b; }
— {int)DividedBy: {int)k { retuxn b == 0 ?
[gelf error:®division by zero"l, 0 : _int / b; }
— {int)Mod: (int)b { return b == 0 ?
[self error:"mod by zero"l, ¢ : _int % b; }
— (int)Clip: {(int}b : (intlc
{ return dint < B ? b : _dnt » ¢ ? ¢ : _int; }

— {int)Times: {int)b Plus: (int)c { return _int * b + ¢; }

The initialize method declares that this type represents the C types “int” and “long.” This
information is used when reading in the files that the Objective-C compiler writes to describe the
arguments and return types of message selectors. A sample line from one of these files is:

{id)at::, int, int;

This line says that the at : : method (as implemented by View, for example) takes two integers
as arguments, and retarms an id, fe an object. (In Objective C, the type or signature of a selector
such as at : : muost be the same in all classes that provide corresponding methods.y The interpreter
reads this ine and creates a Selector object which records the fact that at : : expeets its frst
argument {0 be Typelnt, s second argument to be TypeInt, and returns a TypeId. This
Selector object is used when a MessageExpy whose selectoris at : ¢ s evaluated; if assures
that the arguments are converted to machine integers before the at : : method is invoked.

The knowledge of how to do conversions is embodied in the fromObject rresult: and
toObiect : methods. The intent is to freely convert between the values represented as machine
integers, or characters, etc., and the values represented as objects. Given int v; id anint =
Typeint set int:3];, thecall {Typelnt frowmGbject:anint result:&r] seis v
to 3. Conversely, ¥ = 4; anint = [TypeInt toObject:&y]; sets anint to a newly
created object of class Typelnt whose int field is 4.

Note that the ability to do arithmetic is embodied in Typelnt, as is the ability to convert
between TypeInts and the other integer types {(and string type).

Evaluating an expression node in a given environment is done by calling eval:

eval (expr, env, type, regultp}
id expr, env, type; void xresultp;

The eval function takes as argument an expression object, an environment object, a type
obiject, and a pointer 0 a place to put the result. The eval function takes care of printing out
tracing information, if necessary, and then simply sends exprtheeval rresultType:result:
message. Fach expression class is responsible for knowing how to evaluate itself, and is able to
convert ifs return value into the appropriate type.

The most interesting case is the evaluation of a MegsageExpr:

= MessageExpr: Expressicn {

id sel; A Selector objectx /
id rec; A {unevaluated) receiver object+ /
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id arg [MAYARGS] ; A unevaluated arguroents  /
}
(voidgs)eval:env resultType:rt result: (void *)r {
id v;
id rea, _arglsl;
int i;
int nargs = [sel nargsl;
SEL _sel = [sel sell;
id rettype = [sel rettypel;
eval {rec, env, Typeld, & rec);
for{i = 0; 1 < nargs; i++)
evallarglil, env, [sel avxgtype:il, & arglil);
v = meg{ rec, sel, argldl, _arglil,
_argl2l, _axgl3], _argl4l);
if{rt == vettype) { A4 noneedtoconvert*/
$(1id )r = v A hack assumes id or equal sizex /
return r;
}
return [rt fromObject: [rettype tolbject:&vl ressult:xl;
%
b

There is some pointer cheating going on here, as the arguments which are to be sent to the receiver
object are stored in an array of 1ds, even though they are not necessarily objects. This relies on the
fact that, at least on the hardware this code runs apon {a MicroVax IT), pointers, long integers, short
integers, and characters are all represented as four-byte values when passed to functions.

The sel variable is the Selector object, and is used to get the number and types of the
arguments and the return value of this selector. First eval is called recursively to evaluate the
receiver of the message; the resualt type is necessarily TypeId since a receiver of a message must
be an Objective C object. Each of the argument expressions is evaluated, the result being stored in
the arg array. The type of the returned result is that which is expected for this argument in the
message about to be sent. The function _msg is the low-level message sending function that Hes at
the heart of Objective C; it is passed a recetver, a selector, and any arguments, and returns the result
of sending the message specified by the selector and the arguments to the specified receiver, This
result is then converted to the correct type. I this message selector is already known to retum the
same type as desired, then no conversion is necessary, and the value is simply copied into the correct
place. Otherwise, the returned value is first converted to an object (by invoking the toObjsact:
method of the known retarn type) and then converted from an object to the desired return type (via
the fromChiject :result . method). In the typical case, either vt or rettype is Typeld, so
one of the conversions to or from an object does no significant work.

The reason for passing the returm type to eval, rather than having eval always return an object,
and then converting returned objects to machine integers, characters, and strings when needed, is
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efficiency. In the current scheme, nested message expressions, where the inner expression returmns,
say, an integer which is the expected argument type of the outer expression, there is no overbead
converting the intermediate result to an object and then imamediately back to an integer.

Note that the automatic conversion to objects aliows arithimetic to be done relatively painlessly.
For example, to add 11} to the x coordinate of a view, use:

{{view xloc] Plus:106]

The [view =loc] returs a machine integer; since this is the intended receiverof the Plus:
message it must be converted to a TypeId, 1.e an object, which in this case will be an instance of
Typelnt. The Plus: method expects ifs argument to be a machine integer; since the interpreter
will represent the constant 10 by a TypeInt object, it is converted to a machine integer (by calling
eval with a result type argument of TypeInt). The Plus: method is then invoked, and it
returns a machine integer, which may or may not be converted to a TypeInt object depending on
the context in which the above program fragment is used.

The above example could be specified more efficiently in the gesture semantics as [10
Plug: [view xlocl]. In this case, all the conversions are avoided, since 10 is already rep-
resented as an object of TypeInt, and Plus: expects a machine inleger as argument, which is
exactly what is returned by [view xloc].

One thing not shown in the above ifmplementation is garbage collection. During expression
evaluation, objects are freely being created and discarded, and it is important that the memory
associated with them be released when they are discarded. The current implementation of the
interpreter does not do this very well, since there is not mwuch point given the lax attitude toward
memory management throughout GRANDMA,

Interface Implementation

All the expression nodes are subclasses of Model, and cach one has a corresponding subclass of
View to display it on the screen. 'The expression views act as virfual tools; these tools act on
empty argement and receiver slots, as well as the docks and the trash. Implementing the interpreter
interface in GRANDMA was a good exercise of the GRANDMA facilities, but is not especially
interesting so will not be covered in detail here.

Controf Constructs

The only control construct currently inmplemented is Seg, which allows a list of expressions to
be evaluated in order. Seq, it turns out, was implemented without any extra mechanism in the
interpreter; all that was required was the creation of a Seq class, whose class methods simply
returned their last argument:

= Seqg: Object (GRANDMA, Primitive) { }
:al { return ai; }
:al:a2 { return a2; }
:al:a82:a3 { return ai; }
+ :al:a2:a3:a4 | return a4; }
+ :al:a2:a3:a4:85 { return ab; }

+ 4+
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Since arguments are evaluated in order, this has the desired effect.

Other control constracts, such as While and IE, have not been implemented, but could easily be
implemented if the need arose. One simple implementation technique would to make WhileExpy
and TEExpr both subclasses of MegssageBxpy, and then make While and IE classes which have
methods that have the right mumber of arguments. For simplicity, the normal message expression
display code could be used to display If and While expressions; the only new code to be added
would be new eval :resultType:result: methods in WhileExpr and TEExpr which
have the desired effect.

Attributes and Cursors

Axn important consideration in allowing gesture semantics to be specified at runtime 1s exactly what
the application prograrmomer makes visible to the gesture semantics programanier. There are a number
of means by which the application prograramer can make a f{eature available to the semantics
progranuner; all of these hinge on making visible objects which can be the receivers of relevant
HEessages.

The “Attributes” lists provides a way of giving the semantics writer easy access to application
ohjects and features. This is done by creating expressions for each attribute. GRANDMA already
supplies entrics for all accessible gesture attributes and features.

As an illustrative example of how attributes are specified and implemented, consider the two
attributes handler and enclosed. The handlex attribute simply refers to the gesture handler
that is currently executing. The enclosed attribute refers to the list of View objects enclosed
by the current gesture. Selecting enclosed from the attrbute list results in a named message;
clicking on its box reveals that the message is [handier encloged].

Internally,

handlexrVar = [[VarExpr str:"handler"]
velags:GestureliventHandler] ;
A The above statement adds "handlex" io the list of atiributes to be displayed
in the foterpreter window, and declared that its value is of type GestureEventHandler
Its value is actually set by the GestureEventHandler before any gesture
semantics are evaluated., */
enclosedBzpr = [{[[MessageExpr sel:@gelector{enclosed)]
rec:handlexrVar]
str:"enclosed"]
velagsg:0xrdCiend ;
A The above statement adds "enclosed® to the atiribute list. When evaluated
in gesture semantics, the "enclosed" attribute wifl resultin
[handler enclosed] being executed. % /

Both handlerVar and enclosedExpy are added to the list of interpreter attributes, and
show up in the fist as “handler™ and “enclosed” respectively. Each of these expressions evaluates
to an Objective C object; the velass: message records the expected class of the object. The
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recorded class is used by the selector browser as a starting point when choosing a message to send
to an atiribute.

The “handler” attribote, being a VarExpr, is evaluated by looking up the string “handler” in the
current environment. Section 7.4 described how the environment in which serpantic expressions are
evaluated 1s initialized 8o as the bind handler to the current event handler. Evaluating encloszed
thus results in the enclosed message being sent to the current handler:

= GestureBventHandler ...
— enclosed { id o, e, seq; int xmin, ymin, xmax, ymax;
[gesture xmin:&xmin ymin:&ymin xmax:&xmax ymax:&ymax] ;

o = [[wall viewdatabase]
partiallyviInRect ixminymin:xmax:ymax] ;
for(seg = [0 eachElement]; & = [zeq nextl; )

it {1 fe isContainedin:gesture] ) [o remove:el;
return ©;

L
3

The interpreter’s evaluation of the enclosged attribute thus results in a call to the above method.
This method determines the bounding box of the current gesture, and counsults the view database
for a list of views contained within this bound. Each object is polled to see if it is enclosed by the
gesture, and is removed from the Hst if it is not. The list ts then returned.

The default implementation of isContainedIn:, in the View class, simply tests if each
comner of the bounding box is enclosed within the gesture. This test may be overridden by non-
rectangular views, or rectangular views that wish to ensuore its each edge is entirely contained within
the gesture.

= View ...

—~ {BOOL) isContainedIn:g {
int x1, vl, x2, v2; |
x1 = [box leftl; vi = [box topl;

#2 = [box rightl; v2Z = [box bottom];
return {[g containg:xi:vi] && {g contains:xi:v2] &&
{g containg:x2:v1] && [g containsg:x2:v2];

h

The Gesture class implements the contains: : message, which tests if a point is enclosed
within the gestore. The current implementation first closes the gesture by conceptually connecting
the ending point to the starting point, and then counts the number of times a line {rom the pointtc a
known point outside the gesture crosses the gestare. An odd number of crossings indicates that the
point is indeed enclosed by the gesture.

Other attributes work similarly, although their code tends to be much simpler than that of
encloged. In particular, there are attributes {or each feature discussed in Section 3.3; the at-
tributes are named messages implemented as | [handler gesture] 1ifvi:N], where Nisthe
corresponding index into the feature vector.

Cuarsors are added to the list of cursors available for use in semantic expresstons simply by
sending them the public message. The application programimer should create and make available
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any cursor that might prove useful to the semantics writer.

7.8 Conclusion

The gesture subsystem of GRANDMA consists of the gesture event handler, the low level gesture
recognition modules, the user interface which allows the modification of gesture handlers, gesture
examples, and gesture classes, and the interpreter for evaluating the semantics of gestures. Each of
these parts has been discussed in detail. The next chapter demonstrates how GRANDMA is used to
build gesture-based applications.
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Chapter 8
Applications

This chapter discusses three gesture-based applications built by the author. The first, GDP, is a
simple drawing editor based on the drawing program DY [42]. The second, GSCORE, is an editor
for musical scores. The third, MDP, is an implementation of the GDP drawing cditor that uses
multi-finger gestures.

GDP and GSCORE are both written in Objective €, and ran on a DEC MicroVAX 11 They are
both gesture-based applications built using the GRANDMA system, discussed in Chapters 6 and 7.
As such, the gestures used are all single-path gestares drawn with a mouse. GRANDMA interfaces
to the X10 window systern {113} through the GDEV interface written by the author GDEV runs
on several different processors (MicroVAX H, SUN-2, IBM PC-RT), and several different window
managers (X106, X111, Andrew). GRANDMA, however, only runs on the MicroVax, which for
years was the only system available to the author that ran Objective C. It should be relatively
straightforward to port GRANDMA to any UNIX-based environment that ran Objective-(, though
to date this has not been done.

MDP is written in C (not Objective C), and runs on a Silicon Graphies IRIS 4D Personal
Workstation. MDP responds to nltiple-finger gestures input via the Scosor Frame. Unlike GDP
and GSCORE, MD¥P is notbuilton top of GRANDMA. The reason for thisis that the only functioning
Sensor Frame is attached to the above-mentioned IRIS, for which no Objective € compiler exists. k
would be desirable and interesting to integrate Sensor Frame input and multi-path gesture recognition
into GRANDMA (see Section 10.23.

81 GDP

GDP, a gesture-based drawing program, is based on DV {42]. In DP there is always a current mode,
which determines the meaning of mouse clicks in the drawing window. Single letter kevboard
comunands or a popup menu may be used to change the current mode. The current mode is
displayed at the bottom of the drawing window, as are the actions of the three mouse buttons. For
example, when the current mode is “line”, the left mouse button is used for drawing horizontal
and vertical lines, the middle button for arbitrary lines, and the right button for lines which have
no gravity. Some DP commands cause dialogue boxes to be displayed: this is useful for changing
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parameters such as the current thickness to use for lines, the current font to use for text, and so on.

With the gesture handlers tumed off, GDP (Ioosely) emulates DP. The current mode is indicated
by the cursor. For example, when the “line” cursor is displayed, clicking a mouse button in the
drawing window causes a new lne to be created and one endpoint to be fixed at the position of the
mouse. As long as the mouse button s held down, the other end of the line follows any subsequent
motion of the mouse, in a “rubberband” fashion. The user releases the mouse button when the
secondd endpoint of the line is at the desired location.

Both DP and GDP support sets, whereby multiple graphic objects may be grouped together
and subsequently fonction as a single object. Once created, a set is translated, rotated, copied, and
deleted as a unit. A set may include one or more sets as components, allowing the hierarchical
construction of drawings. In DP, there is the “pack” command, which creates a new set from a
group of objects selected by the user, and the “unpack” command, whereby a selected set object is
transformed back into its components. GDP functions similarly, though the selection method differs
from DP

GDP makes no attempt fo emulate cvery aspect of DB In particular, the various treatments of
the ditferent mouse butions are not supparted. These and other {features were not implemented since
doing so would be tangential to the purpose of the author, which was to demonstrate the use of
gestures. As the unimplemented features present no conceptual problems for implementation in

SRANDMA, the asthor chose not to expend the effort.

8.1.1 GDP’s gestural interface

{GDP’s gesture-based operation has already been briefly described in Section 1.1, That description
will be expanded upon, but not repeated, here.

Figures 1.2a, b, ¢, and d show the reciangle, ellipse, line, and pack gestures, all of which are
directed at the GDP window, rather than at graphic objects. Also in this class is the texi gesture, a
carsive “t”, and the dot gesture, entered by pressing the mouse button with no subsequent mouse
motion. The text gesture causes a text cursor to be displayed at the initial point of the gesture. The
user may then enter text via the keyboard. The dot gesture causes the last command (as indicated by
the current mode) to be repeated. For exarnple, after a delete gesture, a dot gestare over an existing
object will cause that object to be deleted.

Figures 1.2¢, f, and g show the copy, rotate, and delete gestures, all of which act directly on
graphic objects. The move gesture, a simple arrow (figure 8.1), is similar. All of these gestures act
upon the graphic object at the initial point of the gesture, These gestures are also recognized by the
GDP window when not begun over a graphic object. In this case, the cursor is changed to indicate
the corresponding mode, and the underlying DP interface takes over. In particular, dragging one of
these cursors over a graphic object causes the corresponding operation to oceur.

8.1.2 GDP Implementation

Since GEP was built on top of GRANDMA, the implementation followed the MVC paradigm.
Figore 8.2 shows the position in the class hierarchy for the new classes defined in GDP.
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8.1.3 Models

The implementation of GDP centers on the class GraphicObject, a subelass of Model. Each
component of the drawing is a GraphicCbject. The entire drawing is also implemented as
a graphic object. GraphicObjects are either Text objects, LineDrawing obhjects (lines,
rectangles, and ellipses), or GobjSet objects, which implement the set concept.

A GraphicObiject has two instance variables: parent, the Gobij Set object of which this
object 1s a member, and transg, a transformation matrix [101] for mapping the object into the
drawing. Every GraphicObject is a member of exactly one set, be it the set which represents the
entire drawing (these are top level objects), or a member of a set which is itself part of the drawing.

LineDrawing objects have a single instance variable, thickneas, that controls the thick-
ness of the lines used in the line drawing. The three subclasses of LineDrawing, namely
Line, Rectangle, and ELlipse, represent all graphics in the drawing. Associated with each
LineDrawing subclass is a list of points which specity a sequence of line segments for drawing
the object. The potnts in the list are normalized so that one significant point of the object lies on the
origin and another significant pointis at point {(1,1). For Lines, one endpointis at (0,0) and the other
at (1,1). The point list for Rectangles specifies a square with comers at (0,0}, (0,1), (1,1), and
(1,0). The E1lipse is represented by 16 line segments that approximate a circle with center (0,0)
and that passes through the point (1,1). The transformation matrix in cach LineDrawing object
is used to map the list of points in each LineDrawing object into drawing (window) coordinates.

A GobiSet object contains a Set of objects that make up the set. In order to display a set,
the transformmation matrix of the set is composed with {multiplied by) that of each of the constituent
objects. This composition happens recursively, so that deeply nested objects are displayed correctly.

Taxt objects contain a font reference and text string to be displayed.

814 vVviews

Each of the immediate sebclasses of GraphicObiject hasacorresponding subclass of GobiView
associated with it.  Each LineDrawingView object is responsible for displaying the
LineDrawing object which is its model on the screen. Similarly, GobjTextViews display
Text objects, and GobjSetViews display GobjSets.

All GoebjViews respond to the updatePicture message in order to redraw their picture
appropriately. A LineDrawingView simply asks its model for the lists of points (suitably
transformed) which it proceeds to connect via lines. The model also provides the appropriate
thickness of the lines as well. (Note that it is not necessary to provide view classes for the three
subclasses of LineDrawing since all three classes are taken care of by LineDrawingView.)

GobiTextViews draw their models one character at a time in order fo accommodate the
transformation of the model. Transformations which have a unit scale factor (no shrinking or
dilation) and no rotation component caase the fext to be drawn horizontally, with the characters
spacing determined by their widths in the current font. In the current implementation, scaling or
rotation does not effect the character size or orientations {as X 10 will not rotate or scale characters),
but does effect the character positions.

GobijsSetViews have the views of their model’s component objects as subviews. Since
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the update method for View will astomatically propagate update messages to subviews, no
updateFicturs method s required for GobjSetView.

The Gobjview class overrides the move : @ method (of View). Recall from Section 6.6 that
this methoed simaply changes the location of the view, thus translating the view in two dimensions.
This method is used, for example, by the drag handler (section 6.7.9) to cause views to move with
the mouse cursor. The purpose of overriding the defauit method is 80 that dragging any GobjView
causes its model to be changed so as to reflect the new coordinates of the object in the drawing.
The model is changed by first sending it the message getLocalTrans, which returns the model’s
transformation matrix, then calling a function which modifies the matrix to reflect the additional
translation, and then sending the model a setlocalTrans: message, which causes the new
fransformation matrix o be recorded in the model.  Of course the model then sends itself the
modi £ ied message which causes the model’s view 1o redraw the model at its new location.

GobjView also implements the delete message, by first sending itself the fres mes-
sage (which, amwong other things, removes it from its parent’s subview list), and then seand-
ing its model the delete message. GobiView also overrides the defauit isOver: and
igContainedIn: methods (Sections 6.7.5 and 7.7.3) so that they always return NO for objects
not at the top-level of the drawing. Each subclass of GobiView implements 1sReallyOver:
and 1sReallyContainediIn:, which are invoked when the object is indeed top-level.

The outermost window is itself a view. It is an jnstance of GdpTopView, which is a subclass
of GdpSetview. The GdpTopView representing the entire drawing.

8.1.5 Event Handlers

GDP required the addition of one new event handler, TwoPointEventHandler, which is of
sufficient utility and gencrality to be incorporated intothe standard set of GRANDMA event handlers.
The purpose of the TwoPointEventHandler is to implement the typical “rubberbanding”
interaction. For example, clicking the “line” cursor in the drawing window causes a new line to be
created, one endpoint of which is constrained to be at the location of the click, the other endpoint of
which stays attached to the cursorantil the mouse buttonis released. A TwoPointEventHandler
can be used to produce this behavior

As a GenericEventHandler, a TwoPcintEventHandler has a parameterizable start-
ing predicate, handling predicate, and stopping predicate (Section 6.7.8). In order for a passive
TwoPointEventHandler to be activated, the tool of the activating event must operate on the
view {o which the handier is attached {likc a GenericToolOnViewHandleyr, section 6.7.7). If
the tool operates on the view and the event satisfies the starting predicate, the handler is activated.
When activated, the tool is allowed to operate on the view, and the operation is expected to return
an object which is to be the receiver of subsequent messages. In the above example, the “line” tool
operates upon the drawing window view {a GdpTopView) the result of which is a newly createx
Line object. The handler then sends the new object a message whose parameters are the starting
event location coordinates. The actual roessage seat is a parameter fo the passive event handler; in
the example the message is setEndpoint0: ;. Each subsequent event handled results in the new
object being sent another message containing the coordinates of the event (setEndpointl:: in
the example).
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8.1.6 Gestures in GDP

This section describes the addition of gestures to the Unplementation described above. The gesture
bandlers, gesture classes, example gestures, and gesture sempantics were all added at runtime,
allowing them to be tested immediately, I should admit that in several cases it was necessary to
add some features directly to the existing € code and recompile. This was partly due to the fact
that GRANDMAs gesture subsystem was being developed at the same time as this application, and
partly due to the gesture semantics wanting to access models and views through methods other than
ones already provided, for reasons such as readability and efficiency.

Figure 8.1 shows the gesture classes recognized by each of the two GDF gesture handlers.
Note that the gestures expectod by a GobjView are a subset of those expected by a GdpTopView.
Allowing one gesture class to be recognized by multiple handlers allows the semantics of the gesture
to depend upon the view at which it is directed.

Several gestures (line, rect, ellipse, and text) cause graphic objects to be created. These gestures
are only recognized by the top level view, which covers the entire window, a GdpTopView. When,
for example, a line gesture {a straight stroke) is made, a line is created, the first endpoint of which
is at the gesture start, while the second endpoint tracks the mouse in a rubberband fashion.

The semantics for the line gestare are:

recog = [Seg : [handler mougetool:createline MouseTool]
:{itopview createline] translateBEndpoint:0
x:<startXs y:<start¥s] 1;
manilp = [recog scaleX¥VEndpcinh:l X:<currentXs y:<currant¥Vs
cx:<gtartXs> cgy:<gtartys>};

{The done expression is assumed to be nil) When the line gesture is recognized, the
gesture handler is sent the mousetool : message, passing the createLine MouseTool asa
parameter. The handler sends a message to its view's wall, and the cursor shape changes. (Internally,
the handler changes its tool instance vadable to the new tool, as well) Then, a line is created (via
the createLine message sent to the top view), and the new line is sent a message which translates
one endpoint to the starting point of the gesture. (The identifiers enclosed in angle brackets are
gestural attributes, as discussed in Section 7.7.3.) The : : message to Seq, which is used evalvate
two expressions sequentially, returns its last parameter, in this case the newly created line, which is
assigned to recog.

Upon each subsequent mouse input the manip expression is evaluated. It sends the new
line (referred to through recog) a message to scale itself, keeping the “center” point (startX,
startY) in the same location, mapping the other endpoint fo (CcurventX, currentY).

The semantics for the rect and ellipse gestures are similar to those of line, the only difference
being the resultant cursor shape and the creation message sent to topview. The start of the
rectangle gesture controls one comer of the rectangle and subsequent mouse events control the
other corner. The start of the ellipse gesture determines the center of the ellipse, and the scaling
guarantees that the mouse manipulates a poind on the ellipse. The rectangle is created so that its
sides are parallel to the window. Similarly, the ellipse is created so that its axes are horizontal and
vertical. Manipulations after any of the creation gestures is recognized never effect the orientation
of the created object. With only a single mouse position for continuous control {two degrees of
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freedom) it is irppossible to independently alter the orientation angle, size, and aspect ratio of the
graphic object. The design choice was roade to modidy only the size and aspect ratio in the creation
gesture; a rotate gesture may subsequently be used to modify the orientation angle.

{t is still possible, however, to use other features of the gestare to control additional attributes of
the graphic object. Changing the recog semantics of a line gesture to

recog = [Seg :[handier mousetool:<craatelines]
: [ [{topview createline] translateBndpoint:0
®:egtart¥s> y:<start¥s]
thickness: [ [pathLength DividedBy:40]
Clip:1 :9} 1 1;

causes the thickness of the line to be the length of the gesture divided by 40 and constrained
to be between 1 and 9 (pixels) inclusive. The length of the gesture determines the thickness of the
newly created line, which can subsequently be continaously manipulated into any length.

The dot gesture (where the user simply presses the mwouse without moving it) has the mall
semantics. When i is recognized, the gesture handler turps ttself off tramediately, enabling events
to propagate past it, and thus allowing whatever cursor is being displayed to be vsed as a tool. Thus
(GDP, like DP, has the notion of a current mode, accessible via the dot gesture.

The pack gestare has semantics:

recog = [8eq : [handler mousetool:pack MouseTool]
: [topview pack list:<encloseds]l;

The attribute <encloseds is an alias for [handler enclosged]. Recall from Section
7.7.3 that this message returns a list of objects enclosed by the gesture. This list is passed to the
topview, which creates the set. As long as the mouse button is held down, the pack tool will
cause the pack message to be sent to any object it touches; those objects will execute [parent
pack:self] (the iraplementation of the pack method) to add themselves to the current set.

The copy, move, rofate, edit, and delste gestures simply bring up their corresponding cursors
when aimed at the background (GdpTopView) view. They have more interesting semantics when
associated with a GobjView. The copy gesture, for example, causes:

recog = [Seqg :[handler wousetool:viewcopy MouseTool]
ccopy = [{view viewcopyl]
move:<endX> :<end¥s>]
:lastX = <endXs>
:1asty = <end¥s>]
manip = {Seq :[copy move: [<currentXs> Minus:lastX]
s [<current¥s> Minus:lastyYl]
:lastX <end¥>
:1asty = <end¥s>]

This illustrates that the gesture semantics can mimic the essential featares of the DragHandler
(Section 6.7.9). The semantics of the move gesture are almost identical, except that no copy is
made. A simpler way to do this kind of thing (by reraising events) is shown when the semantics of
the GSCORE program are discussed.

The delete gesture has semantics

il
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Figure 8.3: GSCORE’s cursor menu
recog = [Seg :[handler mcousstool:delets Mousetool]

:{view deletell;
The edif gesture semantics are similar.
The rofate gesture has semantics:
recog = nil;
manip = [Seg :[lhandler mousetool:rotate MouseTool]
: {view rotateindScaleBndpoint:{
®xr<Currentis
yicourrent¥s
cx:<startis
cy:<gtartyYs1];

The rotateAndScaleBndpoint : message causes one point of the view to be mapped
to the coordinate indicated by x: and y: which keeping the point indicated by cx: and cy:
constant. This gesture always drags endpoint 0 of a graphic object. It would be better to be able to
drag an arbitrary point, as is done by MDP, discussed later.

LY
8.2 GSCORE
GSCORE is a gesture-based musical score editor. s design is not based on any particular program,

but its gesture set was influenced by the SS5P score-editing tools [18] and the Notewriter I score
editor.

8.2.1 A brief description of the interface

GSCORE has two interfaces, one gesture-hased, the other not. Figure 8.3 shows the non-gesture-
based interface in action. Initially, a staff (the five lines) 1s presented to the user. The vser may call
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Figure &.4: GSCORE's palette menu

up additional staves by accessing the staff toolin the “Cursors” menu (which s shown in the figure).
In figure 8.4, the user has displayed a number of palettes from which he can drag musical symbols
onto the staff. As can be seen, the user has already placed a number of symbols on the staff. The
user has also used the down-tie tool to indicate two phrases and the beam tool to add beams s0 as to
connect some notes.! Both tools work by clicking the mouse on a starting note, then touching othe

notes. The tie tool adds a tie between the initial note and the last one touched, while the beam tool
beams together all the notes touched during the interaction.

Diragging a note onto the staff determines s starting time as follows: If a note is dragged to
approximately the same x location as another note, the two are made fo start at the same time (and
arc made into a chord). Otherwise, the note begins at the ending time of the note {or rest or barline)
just before it. Other score objects are positioned like notes.

The palettes are accessed via the palette meny, shown in figure 8.4. The palettes themselves
may be dragged around so as to be convenient for the user. The “H” button hides the palette; once
hidden it must be retrieved from the menu.

The delete cursor deletes score events. When the mouse butfon is pressed, dragging the delete
button over objects which may be deleted causes them to be highlighted. Releasing the button over
such a highlighted object causes it to be deleted. Individual chord notes may be deleted by clicking
on their note heads; an entire chord by clicking on its stem. When a beam is deleted, the notes revert
to their unbeamed state.

The gestural interface provides an alternative to the palette interface. Figure 8.5 shows the three
sets of gestures recognized by GSCORE objects. The largest set, associated with the staff, all result

"Note to readers unfamiliar with common music notation: A tie is a curved line connecting two adjacent notes of the
same pitch. A fie indicates that the two connected potes are to be performed 35 a single note whose duration equals the
sum of those of the connecied notes. A curved line between adjacent differently pitched notes is a slur, performed by
the curved Hoe

connecting the second note to the first with no intermediate breath or break. Between nonadjacent notes
is a phrase mark, which indicates a group of notes that makes up a musical phrase, as shown in figure 8.4, In GSCORE,
the tie tool can be used to enter ties, shurs, and phrase marks. A beam is a thick line that connects the sterns of adjacent
notes {agaiu see figure 8.4). By grovping muliiple short notes together, beans serve o emphasize the metrical (thythwic)
structure of the music.
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in staff events being created. There are two gestures, move and delete, that operate upon existing
score events. Seven additional gestures are for manipulating notes.

A gesture at a staff creates either a note, rest, clef, bar line, time signature, or key signature
object. The object created will be placed on the staft at (or near) the initial point of the gesture.
For notes, the x coordinate determines the starting time while the y coordinate determines the pitch
class. The gesture class determines the actual note duration (whole note, half note, guarier note,
eight note, sixteenth note, or thirtysecond note} and the direction of the stem.

Like note gestures, the remaining staif gestures use the initial x coordinate to determine the staff
position of the created object. The five rest gestures generate rests of various dorations. The two
clef gestures generate the F and G clefs (C clefs may only be dragged from the palette). The timesig
gestare generates a time signatore. After the gesture is recognized, the user controls the numerator
of the tirae signature by changes in the x coordinate of the mouse, and the denoninator by changes
in y. Similarly, after the Key gesture is recoguized, the user controls the nuraber of sharps or fats by
raoving the mouse up or down. When a bar gesture is recognized, a bar line is placed in the staff,
and the cursor changes to the bar cursor. While the mouse button is held, the newly created bar line
extends to any staff touched by the mouse cursor,

The note-specific gestures all manipulate notes. Accidentals are placed on the note using the
sharp, flat, and natural gestures. The beam gesture causes the notes to be beamed together. The
note on which the beam gesture begins is one of the beamed notes; the beam i3 extended to other
notes as they are touched after the gesture is recognized. The uptie and downtie gestures operate
similarly. The dof gesture causes the duration of the note to be multipled by 3, typically resulting
in a dot being added o a note. )

Since a note is a score event, and always exists on a staff, a gesture which begins on a note may
either be note specific (eg. sharp), score-event specific {e.g. delete), or directed at the staff (e g
one of the note gestures). The first tiroe a gesture 13 made at a note, the three gesture sets are unioned
and a clagsifier created that can discriminate between cach of them, as described in Section 7.2,

Figure 8.6 shows an example session with GSCUORE.

8.2.2 Design and Implementation

Figure 8.7 shows where the classes defined by GSCORE fit into GRANDMA’s class hierarchy. In
general, each model class created has a corresponding view class for displaying it. No new event
handlers needed to be created for GSCORE; GRANDMA's existing ones proved adequate.

Generally useful views

Two new views of general utility, PullbDownRowView and PaletteView, were imnplemented
during the development of GSCORE. A PullDownRowView is arow of buttons, each of which acti-
vates a popup menu. ft provides functionality similar to the Macintosh menu bar. A PaletteView
implements a palette of objects, each of which is copied when dragged. PaletteView instantiates
a single DragHandler (Section 6.7.9) that it associates with every object on a palette, The drag
handler has been sent the message copyviewON, which gives the palette its functionality.
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Figure 8.6: A GSCORE session

Fanef (z) shows a blankstafTupon which the Golef gesture bas been entered. Panel (b) show the created treble

7

clef, and a kay {key signature) gesture. After recognition, the number of flats or sharps can be manipulated by
the distance the mouse moves above the stafl or bedow the siaff] respectively. Panel (¢} shows the created key
signature {one flat), and a timesig {fime signaturs) gesiure, After recognition, the horizontal distance from
the recognition point defermines the numerator of the time signature, and the vertical distance determines

s the resulting fime signature, aud the 80 {quarier note) gesture, a single

3

the desominator Panel (d} show

vertical stroke. Since this is an upsiroke, the note will have an upward stem. The initial point of the gesture

determines both the pitch of the note (via vertical position) and the starting (ime of the note {via horizonial

position). Panel (e} shows the created note, and the Bu (eighth note) gesture, Like the quarter note gesture,
the gesture class determines the note's duration, and gestural attributes determines the note's stem direction,
start time and pitch. Fanel {{) shows two 184 (sixteenth note) gestures {combining two steps into one). Panel
{n} shows a beam gesture. This gesture begins on a riote, rather than the gestures mentioned thus fay, which
begin on a staff. After the gesture is recognized, the user touches other notes in order to beam them together.
Panel (b} shows the beamed notes, and a fial gesture drawn on a note. Panel (i} shows the resulting flat
sign added before the note, and an 8t {eighth rest) gesture drawn on the stalf. Pavel {j} shows the resulting
rest, and a delele gesture beginning on the rest. Panel (&} shows a 4U {quarter note} gesture drawn over an
existing quarter note {all symbols in GSCORE have rectangular input regions), the result being a chord, as

shown in panel (1.
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Figure 8.7: GSCORE’s class hierarchy

Each palette can tmplement an arbitrary action when one of the dragged objects is dropped. For
most palettes of score events (notes, rests, clefs, and so on), no special action is taken. The copied
view becomes a subview of a Staffview when dragged onto a staff. However, accidentals and
duration modifiers {(dots and tnpius) are tools which send messages to NoteView objects when
dragged over them; the NoteView takes care of updating its state and creating any accideutals or
duration modifiers it needs. The copies that are dragged from the palette thus never become part of
the score, and so are avtomatically deleted when dropped.

GECORE Models

With the exception of PullDownRowView and PaletteView, the new classes created during
the implementation of GSCORE are specific to score editing. A Score object represents a musical
score. It contains a list of Staff objects and a doubly-linked list (class D11) of ScoreBvent
objects. Fach ScoreBvent has a time field indicating where in the score it begins; the doubly-
finked list is maintained in tiroe order.
The subclass StaffBvent includes all classes that can only be associated with a single staff.

A BarLine is nota StaffEvent since it may connect more than one staff, and thus maintains a
Set of staves in an instance variable. Similarly, a Chord may contain notes from different staves,
as may a Tie and Beam. ADurationModifier isnotattached directly foa Staf £, butinstead
with a Note or Beam, soitis not a StaffEvent either,

The responsibility of mapping time to xcoordinate in a staff rests mainly with the Score object.
it has two methods timeOFf : and zposOf: which map x coordinates to times, and fimes {0 x
coordinates, respectively. Score has the method addEvent : for adding events to the list and
delete: and evage: fordeleting and erasing events. Erase is a kind of “soft” delete; the object
is removed from the list of score events, but it is not deallocated or in any other way disturbed. A
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typical use would be to erase an object, change its time field, and then add it to the score, thus
maving i in tume.

Each ScoreBvent subclass imaplements the tiebreaker message; this orders score evends
that occur simultancously. This is important for determining the position of score events; bar lines
must come before clefs, which must come before key signatures, and so on. Besides determining
the order events will appear on the staff, tiebreakers are important because they maintain a canonical
ordering of score events which can be relied upon throsghout the code.

Particular ScoreBEvent classes have straightforward implementations. Note has instance
variables that contain its pitch, raw duration (excluding duration modifiers), actual duration, stem
direction, back poinders to any Choxd or Beam that contain it, and pointers to Accidental and
DurationModifier objects that apply to it. I bas messages for setting most of those, and
maintains consistency between dependent variables. Notes are able to delete themselves gracetully,
first by removing themselves from any beams or chords in which they participate, and deleting any
accidentals or duration modifiers attached to them, then finally deleting themselves from the score.
Other score events behave similarly.

Sending a ScoreBvent the time: message, which changes its start time, results inits Score
being informed. The score takes care to move the ScoreBvent to the correct place in its list of
events. This is accoraplished by first erasing the event {rom the score, and then adding it again.

While the intemal representation of scores for use in editing is quite an inferesting topic in ifs
own right [20, 83, 88, 29] itis tangential to the main topic, gesture-based systems. The representation
has now been described in enough detail so that the implementation of the user interface, as well as
the gesture semantics, can be appreciated. These are now described.

GSUORE Views

As expected from the MV paradigm, there is a View subclass corresponding to each of the Models
discussed above., ScoreView provides a backdrop. Not sorprisingly, instances of StaffView
are sabviews of ScoreView. Perhaps more surprisingly, all ScoreEventView objects are
also subviews of ScorevView. For simplicity, the various StaffBEventvView classes are not
subviews of the StaffView upon which they are drawn. This simplifies screen update, since the
ScoreView need not traverse a nested structure to search for objects that need updating.

It is often necessary for a view fo access related views; for example a BeamView needs to
comnmunicate with the NoteView or ChordView objects being beamed together. Une alternative
is for the views to keeps pointers to the related views in instance varnables. This is very comumon in
MV -based systems: pointers between views explicitly mimic relations between the corresponding
madels. Tt is the task of the programmer to keep these pointers consistent as the model objects are
added, deleted, or modified.

In one sense, this is one of the costs associated with the MVC paradigm. For reasons of
modularity, MV dictates that views and models be separate, and that models make no reference
to their views (except indirectly, through a model’s list of dependents). The benefif is that models
may be written cleanly, and each may have multiple views. Unfortunately, the separation results in
redundancy at best (since the structure is maintained as both pointers between models and pointers
between views), and inconsistency at worse (since the two structures can get “out of sync”). Alsg,
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any changes to a model’s relationship to other models requires parallel changes in the corresponding
views. This duplication, noticed during the initial construction of GSCORE, seemed to be contrary
to the ideals of object-oriented progranuning, where technigues such as inheritance are utilized to
avoid duplication of effort.

GRANDMA attempts to address this problem of MV in a general way. The problem is caused
by the taboo which prevents a model from explicitly referencing its view{s). GRANDMA mairntains
this taboo, but provides a mechanism for inquiring as to the view of a given model. In order to
retain the possibility of multiple views of a single model, the gquery is sent to a confext object; within
the context, a model has at most one view. 'The imaplementation reguires that a context be a kind of
View object:

View
— setModelOfView:v { /4 associatesvwith {vmodelf %/ }
— gatViewOfModel:m { 4 refurns view associated withm %/ }

The implementation is done using an association list per context: given a context, the message
setModelOfView: associates a view with its model in the context. Objective C's association
list object uses hashing internally, so getvViewOEfModel: typically operates in constant time
independent of the number of associations. The result 15 a kind of inverted index, mapping modcls
{0 VIewWs.

iIn GRCORE, only a single context is used (since there is only one view per model), which,
for convenience, is the parent of all ScoreEventvView objects, a ScoreView. The various
sabclasses of ScoreEventView no longer have to keep consistent a set of pointers to related ob-
jects. For example, a BeamView needs only to guery its model for the list of Note and/or Chord
models that it is to bearn together; it can then ask each of those models m for its view via [parent
getViewOfiModel :m]. The instance variable parent here refers to the ScoreView of which
the BeamView is a subview. Thus, the problem of keeping parallel structures consistent is elimi-
nated. One drawback, however, is that it is now necessary to maintain the inverted index as views
are created and deleted.

Now that the problem of how views access their related views has been solved, redisplay-
ing a view is straightforward. Recall (Section 6.5) that when a model is modified, it sends
itself the modified message, which results in all its dependents (in particular its view) get-
ting the message modelModified. The default imaplementation of modelModifiad resulis
in updatePicture being sent to the view and all of its subviews (Section 6.6). Normally,
updatePicture is the method that is directly responsible for querying the model and updating
the graphics. ScoreEventView overrides updatePicture, and the task of actually producing
the graphics for a score event is relegated to a new method, createPicture, implemented by
each of ScoreBventView's subclasses. ScoreEventView's updatePicture sends itself
createPicture, but also does some additional work to be discussed shortly.

As an example, consider what happens when the pitch of a note is changed. When a Note
is sent the abspitch: message, which changes ifs pitch, it updates is interal state and sends
itself the modified message. {Changing the pitch might result in Accidental objects being
added or deleted from the score, a possibility ignored for now.) This Note's NoteView will get
sent createPicture, and query its model (and the Score and Staff objects of the model) to
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determine the kind and position of the note head, as well as the stem direction, if needed. The proper
note head is sefected from the music font, and drawn on the stafl (with ledger lines if necessary) at
the determined location.

One reason for ScoreBvent’s updatePicture sending createPicture i to test in
a single place the possibility that the view may bave moved sinee the fast tune it was drawn. In
particular, if the ¥ coordinate of the right edge of the view’s bounding box has changed, this is an
indication that the score events after the this might bave to be repositioned. It so, the Score object
is sent a message to this effect, and takes care of changing the x position of any affected models.
Another reason for the extra step in creating pictures is to stop a recursive niessage that attempts to
create a picture currently being created, a possibility in certain cases.

Adding or deleting a ScoreBvent causes the Score object to send itself the modified
message. Before doing so, it creates a record indicating exactly what was changed. When notified, its
ScoreView object will request that record, creating or deleting ScoreEventViews as required.
ScoreView uses an association lst to associate view classes with model classes; it can thas send
the createViewOEf : message to the appropriate factory.

ScoreBEventViews function as virteal tools, performing the action scoreeventview:.
{(This default is overridden by AccgView, DurModView, BarLineView, and TieView, as these
do not operate on Staffviews.) The only class that handles scoreeventview: messages
is StaffvView. A version of GenericToolOnViewEventHandler different than the one
discussed in Section 6.7.7 is associated with class ScoreEventView. This version is a kind of
GenericBventHandler, and thus more parameterizable than the one discussed eardier. The
instance assoctated with StaffViews has is parameters set so that it performs ifs operation
immediately {as soon as a tool is dragged over a view which accepts its action), rather than the
normal behavior of providing immediate semantic feedback and performing the action when the
tool is dropped on the view.

Thus, when a ScoreEventView whose action is scoreevantview: is dragged over a
StaffvView, the StaffView immediately gets sent the message scoreeventview:, with
the tool (/e the ScoreEventView} as a parameter. The {irst step is to erase: the model
of the ScorveBEventView from the score, if possible. The Staffview then sends its model’s
Score the £imeOf : message, with parameter the x coordinate of the StaffEventView being
dragged. The time retumed is made the time of the ScoreEventView's model, which is then
added to the score. When a subsequent drag event of the ScoreBventView results in the
gcoreaventview: message to be sent to the StaffView, the process is repeated again. Thus
as the user drags around the ScoreEventView, the score is continuously updated, and the effect
of the drag immediately reflected on the display.

Though they have differeni actions, AccView, TieView, DurModView, and BarLinaView
tools operate similarly to the other ScorsEventViews. Rather than explain their functionality in
the non-gesture-based interface, the next section discusses the semantics of the gestural interface to
GSCORE.
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GSCORE’s gesture semantics

The gesture semantics rely heavily on the palette interface deseribed above. When the paleties are
first created, every view placed in the palette is named and made accessible via the “Attributes”
button in the gesture semantics window (see Sections 7.7.2 and 7.7.3). It is then a simple matter in
the gesture semantics to simulate dragging a copy of the view onto the staff (see Section 7.7.1}. For
example, consider the semantics of the 8u gesture, which creates an eighth note with an up stenu:

recog = [[[noteviewBup viewcopyl] at:<startlocs]

reRaise:<currentiEvent ;
The name noteviewdup refers to the view of the eighth note with the up stem placed in the
palette during program imitialization. That view is copied (which resuits in the model being copied as
well), moved 1o the starting location of the gesture {(another “Atiribute™), and the currentEvent
{another “Atiribute”) is reraised using this view as the tool and its location as the event focation.
This simulates the actions of the DragHandler, and since gtartLoc is guaranteed (o be over
the staff (otherwise these semantics would never have been executed) the effect is to place an eighth
note into the score. Similar semantics {the only difference is the view being copied) are used for all
other note gestures, as well ag all rest gestures and clef gestures.
The semantics of the bar gesture is similar to that of the note gestures, the difference being that
a mouse tool 18 used rather than a virteal (view) tool.
recog = [handier mousetool:
[barlineBvent MouseTool
reRaige: <currentBvent s
at:«startLoes1]1;
The timesiq gesture for creating time signatures is more interesting. After it is recognized, x
and yof the mouse control the numerator and the denominator of the time signature, respectively:
recog = [Seg :ex = <currentXs
18y = <current¥>
[ [ {timesigviewd 4 viewcopyl at:<startLocs]
reRaige:<currentEvent>]]
[ [recog model]
timegiqg: [ [ [«<currentX> Minug:sx]
DividedBy:10] Clip :1 :100]
[ {i<ccurrent¥> Minus:sv]
Dividedsy:10] Clip :1 :10011
Note that the recog expression is similar to the others; a view from the palette is copied, moved
to the staff, and used as a tool in the reraising of an event. The manip expression, in contrast,
does not operate on the level of simulated drags. Tostead, it accesses the model of the newly
created TimeSigView directly, sending it the timesig: : message which sets ifs numerator and
denominator. The division by 10 means that the reouse has to move 10 pixels in order to change one
unit. The Clip:: message ensures the result will be between | and 18, inclusive. For musical
purposes, it is probably better to only use powers of two for the denominator, but unfortunately no
toThe : message has been implemented in TypeInt (thoogh it would be simple to do).

manip
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The key signature gesture (key) works similarly, except that only the ycoordinate of the mouse
is used (to control the number of accidentals in the key signature):
recog = [8Seqg :8y = <gurrent¥s
: {[[keysigviewlsharps viewcopy]
reRaise:«<currantEvenis]]
manip = [l{recog modell
kevgig: [ [ {sy Minus:<current¥>]
DividedBy:10] Clip: [0 Minug:6}] :6]11]

A positive value for key signature indicates the number of sharps, a negative one the (negation
of the) number of fats. The awkward [ Minus: 6] is used because the author failed to allow the
creation of negative numbers with the “pew int” button.

The above gestures are recognized when made on the staff. The delete and move gestures are
only recognized when they begin on ScoreEventViews. The semantics of the delete gestare
are:

recog = [Seg :[handler mcousstool:delets MouseTool]
:{view deletell;

This changes the cursor, and deletes the view that the gesture began on. The latter effect could
also have been achieved using reRaise :, but the above code is simpler.

The move gesture simply restores the normal corsor and reraises it at the starting location of
the gesture, relying on the fact that in the non-gesture-based interface, score events may be dragged
with the mouse:

recog = {[{handler mousetool:normal MouseTool]
reRaise:startBventl;

In addition to the gestures that apply to any ScoreEventView, NoteView recognizes a few
of its own. The three gestures for adding accidentals to notes (sharp, flat, and natural) access the
Note object directly. For example, the semantics of the sharp gesture are:

recog = {i{view modell acc:SHARP];

The beam gesture changes the cursor to the beam cursor and simudates clicking the bears cursor

on the NoteView at the initial point:
recog = [ {handler mousetool:beamtool MouseTool]
reRaige:gtartBEvent] ;

The tie gestures {uptie and downtie) could have been implemented similarly. Instead, a variation
of the above serpantics causes the mouse cursor to revert to the normal cursor when the mouse button
is released after the gesture is over:

recog = [Seq : [handler mousetool:tieUpEBvent MouseTool]
: [tisUpEvent MouseTool reRaiss:startBEventll];

manip = :[tieUpEvent MouseTool reRailse:currentBvent]ll;
done = [Seq :[tieUpEvent MouseTool reRaise:currentBvent]

: [handler mousetoocl:normal MoussTool]l;
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The dot gesture accesses the Note’s raw duration, multiplies it by ; and changes the duration
to the result. The note will add the appropriate dot in the score when it receives ifs new duration
reeog = [Seq :m = {[view model]
fm dur: {{[m rawdur] Times:3] DividedBy:2111;
manip = recog;

e

Themanip = recog statement tself does nothing of itself, but by virtue of it being non-nil,
the gesture handler does not relinguish control until the mouse button is released. Without this
staternent, the mouse cursor tool {whatever it happens to be) would operate on any view it was
dragged across after the dot gesture was recognized.

8.3 MDP

MDP is gestore-based drawing progranm that takes multi-finger Sensor Frame gestures as inputl.
Though primarily a demonstration of multi-path gesture recognition, MDP also shows how gestares
can be incorporated cheaply and quickly into a non-object-oriented system. This s in contrast to
GRANDMA, which, whatever its merits, requires a great deal of mechanism (an object=oriented
user interface toolkit with appropriate hooks) before gestures can be incorporated.

The user interface to MDP is similar o that of GDP The user makes gestures, which results
in various geometric objects being created and manipulated. The main differences are due to the
different input devices. In addition to classifying maltiple finger gestures, MDP uses multiple fingers
in the manipulation phase. This allows, for example, a graphic object to be rotated, translated, and
scaled simmltancously.

Figure 8.8 shows an example MDP session. Note that how, once a gesture has been recognized,
additional fingers may be brought in and out of the picture to manipulate various parameters.
Multiple finger tracking imbues the two-phase interaction with even more power than the single-
path two-phase interaction.

8.3.1  Internals

Figure 8.9 shows the intemnal architecture of MDP. The lines indicate the main data flow paths
through the various modules.

Like the gesture-based systems built using GRANDMA, when MDP is first started, a set of
gesture training examples is read from a file. These are used to train the multi-path classifier as
described in Chapter 3. MDP itself provides no facility for creating or modifying the training
examples. Instead, a separate program is used for this purpose.

The Sensor Frame is not integrated with the window manager on the IRIS, making the handling
of its input more difficult than the handling of mouse inpot. In particelar, coordinates returned by
the Sensor Frame are absolate screen coordinates in an arbitrary scale, while the window manager
generally expects window-relative coordinates to be used. Fortunately, the IRIS windowing system
sapports general coordinate transformations on a per-window basts, which MDP uses as follows.

When started, MDP creates a window on the screen, and reads an alignment file to determine
the coordinate transformation for mapping window coordinates to screen coordinates that makes the
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(@ {2}

Figure 8.8: An example MDP session

This figure consists of snapshots of a video of an M’ul session. Some panels have been retouched to make
the inking more apparent. Panel (a) shows the single finger ling gesture, which is essentially the same
as GDPsline gesture. As in GDE the start of the gfesi'u,ft- gives one f‘mipoﬂ it of the Jine, while the other
endpoint is dragged by the gesturing finger alter the gesture is recognized. Additional fingers may be used
to control the line's color and thickness. Panel (b} shows the created imr, and the rectangie gesture, again

o

ckness, and filled property, as shown in panel (). Panel {d} shows the

the same as GDP's. Affer the gesture js recagnized, additional fingers may be brought into the sensing plane

fo control the rectangle’s ¢ 0(()1

circle gesture, which works analogously, Panel (g} shows the two finger parailelogram gesture. After the

ogriized, the two gesiuring fingers controf two corniers of the parallegram. An additional finger

Page 1349 of 1714



83 MDP 183

k)

{m) () (o)

Fig 8.8 {(continued}

in the sensing plane will then confrol a third corner; allowing an artitrary paraflclogramio be ertered
Pared () shows the edit color gesture being made at the revdy created paralldogram After this gesture is
recognized, the parallclograms color and flled properiy may be dyramically manipdlated. Pard (gf shons
the tiree finger PACK (group) gesture During the pack interaction, all object touched by arsy of the fingers
are grouped into a single set. Here the line reciangle. and dircle are grouped tagether to nake a cart. Panel
{h} shows the copy geshare  After the gesture is recogrizad, the object indicated by the first point of the
gesture (in this case the cart) is dragged by the gesturing finges, as shown in panel (i), Additional fingers
alfow the cofor, edge thicknesses, and filed property of the copy to be rienipulated, as shovn in parel ().
Circle ardfrectangie gestures (both ot showry were then used to create sorre additional shepes, Pared (K
shows the two finger rotate gesture After it is recognized, each of the two fingers becorre attached to their

respective points where they first touched the desigrated olyect. By noving the fingers apart or fogethes;

oy

otating the hand, and 1moving the hand, the cbiect v be simultaneously scaled, rotated, and translated as
shown in pandl (1), {The fingers are not touching the object due to the ddav in geiting the input data and

veffesting the screen) Parnel (i shows thedelete gesture haing usad to delete a req)

wie Not shownare

&3

nore deletion and creation gestures, leaving the drawing in the state shovwn i panedl (). Parel (1)) showns

NG

the three finger undo gesttre Upory recognition, the rost revent creation or ddletion is undone Movirg

he fingers up causes srore atdd rrore aperations 1o be urddones, while imoving the fingers dowe allows urdore

K3

operations o be redong irderactively: Parnel (o} stiows a state during the interaction where riary operations

Feve beent undone, In this inplarentation creations and deletions are tndoable bt position changes are
;

riot. This explairs win; inpanal (o), only the cart iterts remmain (undo back to paned (&), bt those iterrs are

in the position they assurmed in panel (.
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window coordinate systemn identical with the Sensor Frame coordinate system. I the given window
size and position has not been seen before (as indicated by the alignment file) the user is forced
to go through an alignment dialogue before proceeding (this also occurs when the window occurs
moved or tesized). Two dots are displayed, one in each corger of the window, and the user is asked
to touch each dot. The data read are used to make window coordinates exactly maich Sensor Frame
coordinates. The transformation for window coordinates 0 screen coordinates is done by the IRIS
software, and does not have to be considered by the rest of the program. The parameters are saved
in the alignment file to avoid having to repeat the procedure each time MDP is started

Onee initialized, the MDP begins to read data from the Sensor Frame. The current Sensor Frame
software works by polling, and typically returns data at the rate of approximately 3( snapshots
per second. The “Receive Data” module performs the path tracking (see section 5.1} and returns
snapshot records consisting of the current time, number of fingers seen by the frame, and tuples
{x, y, 7} for each finger, {x, y) being the finger’s tocation in the frame. The 7 is the path identifier, as
determined by the path tracker. The intent is that a given value of 7 represents the same finger in
successive snapshots.

Normally, MDP s in its WAIT state, where the polling indicates that there are no fingers in the
plane of the frame. (nce one or more fingers enter the field of view of the frame, the COLLECT state
is entered. Each soccessive snapshot is passed to the “calculate features” module, which performs
the incremental feature calculation. The COLLECT state ends wheun the user remnoves all fingers from
the frame viewfield or stops moving for 150 milliseconds. {The timeout interval is settable by the
user, but 150 milliseconds has been found to work welly Unlike a mouse user, it is difficult for
Sensor Frame users to hold their fingers perfectly still, so a threshold is used to decide when the
user has not moved. In other words, the threshold deternunes the amount of movement allowable
between successive snapshots that is to count as “not moving.” This is done by comparing the
threshold to the error metsic calculated during the path tracking (sum of squared distances between
corresponding points in successive snapshots).

Ouce the gesture has been collected, ifs feature vectors are passed to the nwlti-path classifier,
which returns the gesture’s class. Then the recognition action associated with the class s looked
up in the action table and executed. As long as at least one finger remains in the field of view, the
manipelation action of the class is execuoted.

Many of GRANDMA’s ideas for specifying gesture semantics are used in MDP. Although
MDP does not have a full-blown interpretey, there is a table specifying the recognition action and
manipulation action for cach class. While it would be possible for the tables to be constructed at
runtime, currently the table is compiled into MDP, Each row in the entry for a class consists of a
finger specification, the name of a C function to call {o execute the row, and a constant argument
to pass to the function. The finger specification determines which finger coordinates to pass as
additional arguments to the function.

Consider the table entries for the MDP ling gestare, similar to the GDP line gesture:

ACTION( LINErecog)
{ ALWAYS, BltnCreate, {int)Line, },

“Moving or resizing the window often requires the alignment procedure fo be repeated, a problem that would of course
rel
have to be fixed in a production version of the program.
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{ START {0}, BltnSetPoint, 0, 1,
END ACTION

ACTION{ LINEmanip)
{ CURRENT (0), BltnSetPoint, 1,
{ CURRENT (1}, BltnThic:“mess, 0,
{ CURRENT (2}, BltnColorFill, 0,
END ACTION

When a line gesture is recognized, the LINErecog action is executed. Tts firat line resulta in
the call BltnCreate {Line) being executed. The ALWAYS means that this row is not associated
with any particular finger, thus no finger coordinates are passed to BltnCreate. The next line
resulis in BltnSetPoink (0, Xus ¥ being called, where (s, yos) 15 the initial point of the first
finger (finger () in the gesture.

For each snapshot after the ling gesture has been recognized, the LINEmanip action is
executed. The first line causes BltunSetPoint {1, Xoe, W) to be called, where (X, o) is the
current location of the first finger (finger §). The next line causes BltnThickness (0, x., vid)
to be called, (x.-, ¥1 ) being the corrent location of the second finger. Similarly, the third line causes
BltnColorFill (0, i yae) to be called.

It any of the fingers named in a line of the action are not actually in the ficld of view of the
frame, that line is ignored. For example, the line gesture in MDP, as in GDP, is a single straight
stroke. Immediately after recognition there will only be one finger seen by the frame, namely finger
zero, so the lines beginning CURRENT (1} and CURRENT (2} will not be executed. I a second
finger is now inserted into the viewfield, both the CURRENT {0} and CURRENT (1) lines will be
executed every snapshot. If the inttial finger is now runoved, the CURRENT (0) line will no longer
be executed, untd another finger is placed in the viewfield.

The assignment of finger numbers is done as follows: when the gesture is first recognized, each
finger is assigned its index in the path sorting {(see Section 5.2). During the manipulation phase,
when a finger (s removed, s number is freed, but the numbers of the remaining fingers stay the
same. When a finger enters, it is assigned the smallest free number.

mnd bt Mgt

The semantic routines (e g BltnColorFill) communicate with each other {(and successive
calls to themselves) viashared variables. All these functions are defined ina single file with the shared
variables declared at the top. When there are no fingers in the viewfield, the call BltnReset () 5
made; its function is to initialize the shared variables. Tn MDP, all shared variables are initialized
by BltnRegsat {); from this it follows that the interface is modeless. Another system might have
some state retained across calls to BltnResst () for example, the corrent selection might be
maintained this way.

The Bltn. .. functions manipulate the drawing elements through a package of routines. The
actual implementation of those routines is similar to the implementation of the GDP objects. Rather
than go into detail, the underlying routines are summarized. MDP declares the following types:

typedef enum { Nothing, Line, Rect,
Circle, SetOfObjects | Type;
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typedef stryuct { A.. %/ } *Element;
typedef struct { A..*/ } xTrang;
Assume the following declarations for expositional purposes:

Blement e; A a graphic objectx /

Type type; A the type of a graphic objectx /
int X, Y A& coordinates % /

int D; A a pointnumber: O 1, or 2 3%/
int thickness, color;

BOCL b;

Trang txr; A a transformation matrix « /

The Element is a pointer to a structure representing an element of a drawing, which is eithera
Line, Rect, Circle or SetOfObjects. The Blement structure includes an array of points
for those element types which need them. A Line has two points (the endpoints), 2 Rect has three
points (representing three cormers, thus a Rect is actually a parallelogram), and a Circle has
two points {the center and a point on the circle), A SetOfCbijacts contains a list of component
elements which make ap a single composite element.

Element StNewObij{type) adds a new element of the passed type to the drawing, and
returns a handle. Tnitially, all the points in the element are marked uninitialized. Any element
with uninitialized points will not be drawn, with the exception of Rect objects, which will
be drawn parallel to the axes if point 1 is uninitialized.

StUpdatePoint {e, p, x, y) changespoint p of clement e tobe (x, v} . Returns FALSE
tff @ has no point p.

StGetPoint{e, p, &x, &v) setsxand v io point p of element e. Returns FALSE iff e has
no point p or point p is uminitialized.

StDelete(e) deletes object e from the drawing.

StFill{e, b) makesobject  filled if b is TRUE, otherwise makes e unfilled. This only applies
to circles and rectangles, which will be only have their borders drawn if unfilled, otherwise
will be “colored in.”

StThickness{e, t} seisthe thicknessof ’s borders to t. Only applies to circles, rectangles,
and lines.
Stlolori{e, color) changesthe colorof e to color, which is an index into a standard color

map. H e is a set, all members of e are changed.

StTransformie, tr) applics the transformation ty to . In general, tr can cause fransla-
tions, rotations, and scalings in any combination.

void StMove (e, x, vy) isaspecial case of St Transform which translates e by the vector
{(x.vy).
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ScCopyBlement (o) adds an identical copy of & to the drawing, which is also returmned. If e is
a set, its elements will be recursively copied.

StPick(x, y) returnstheelement inthe drawing at point {x, v}, or NULL if there is no element
there. The topmostelement at (x, v} is retumed, where elements created later are considered
to be on top of elements created earlier. The thickness and “filled-ness” of an element are
considered when determining  an element s at (x,v).

StHighlight (e, b) torms on highlighting of e if b is TRUE, off otherwise. Highlighting is
currently implemented by blinking the object.

StUnRighlightAll{) turnsoff highlighting on all objects in the drawing.

void StRedraw{) draws the entire picture on the display. Double buffering is used to ensure
v
smooth changes.

StCheckpoint {) saves the carrent state of the drawing, which can be later restored via
StUndoMore.

StUndoMore (1) changes the drawing to its previously checkpointed state (if b is TRUE). Each
successive call 1o StUndoMore {(TRUE) retums to a previous state of the picture until the
state of the picture when the program was starfed in reached. StUndoMore (FALSE)
performs a redo, undoing the effect of the last StUndoMore (TRUE}. Successive calls to
StUndoMore (FALSE) will eventually restore a drawing to its latest checkpointed state.

Trana AllocTran{) allocates a transformation, which is initialized to the identity transforma-
tion.

SegmentTran{tr, x0,v0, x1,y1, X0,Y0, XI,Y1) sets tr to a transformation con-
sisting of a rotation, followed by a scaling, followed by translation, the net effect of which
would be to map a line segment with endpoints (x0,v0) and {x1,v1) to one with end-
points (X0,Y0) and (X1,Y1). Other transformation creation functions exist, but thisis the
only one used directly by the gesture semantics.

JotC{color, =, v, texit) draws the passed textstring on the screen in the passed color, at
the point {x, v). The text will be erased at the next call to StRedraw.
8.3.2 DMDP gestures and their semantics

Now that the basic primitives used by MDP have been described, the actual gestures used, and their
effect and implementation are discussed. Figure .10 shows typical examples of the MDP gestures
used. Bach is described in turn.

Line The line gesture creates a line with one endpoint being the start of the gesture, the other

tracking finger O after the gesture has been recognized. Finger 1 (which must be brought in
after the gesture has been recognized) controls the thickness of the line as follows: the point
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Figure 8.10: MDP gestures

where finger 1 first enters is displaved on the screen; the thickness of the line is proportional
to the difference in ycoordinate of finger 1's current point and initial point. Finger 2 controls
the color of the line in a similar manner. (Here 4 color is represented simply by an index into
a color map.)
The action table entry for line has already been listed in the previous section. The C routines
called are listed here:

BitnCreate{arg) {

E = StNewlbi {arg) ;

gshouldCheckpoint = TRUE;
}
BitnSetPoint (ary, gx, gy) {

1if (B) StUpdatePointi{E, arg, gx, gv!;
3
BltnThickness(arg, gx, gy) { int =, t;

if{tx == -1} tx = gx, ty = gy

1F (IR} return;

% = arg==0 7 abs{tx-gx) : abs{ty-gy):
le{x, 1, 2, 1, 100};

t
JotC(RED, tx, ty, args==0 ? "TX3d" : "TY%d", t):
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JOEC{RED, gx, gy+10, "t%);

}

BltnColorFill {(arg, gx, gy} { int color, £ill;

if (1B} return;

if{efx == 1) cfx = gx, cfy = gy;

£1i11 = Scale{ofx — gx, 1, 10, -1, 1);
SEFL11(E, £ill »= 0);

color = Scalel(cfy — gy, 1, 25, —15, 15};
if {(color < §) color = —color;

elge if(color == 0) aolor = 1;

StColor(E, colovr);
JotC (GREEN, cfx, cfy, "CF3d4/3%dv%, color, f£ill);
JotC{GREEN, gx, gy+10, "cf"});

Scale (i, num, den, low, high) {
ing 3 o= 1 % num;
int k = 3 »= 0 ? J/den : —{{(-7)/den};

return k¥ < low ? low : k » high ? high : k;

The BltnReget ()} function sets B to NULL, and sets tx, tvy, ¢fx, and ¢fy all 1o - 1.
BltnReset () calls StCheckpoint {) if shouldCheckpoint is TRUE and then sets
shouldCheckpoint o FALSE.

The functions BltnThickness and BltnColorFill provide feedback to the user by
jotting some text ("IX” and “CF”, respectively) that indicates the location that the finger fitst
entered the viewfield, Lower case text ("t” and “cf™) is drawn at the appropriate fingers,
indicating to the user which finger is controlling which parameter.

Rectangle The rectangle geswre works similady to the line gesture. After the gesture is recog-

nized, a rectangle is created, one corner at the starting poiat of the gesture, the opposite cormner
tracking finger 0. Fingers 1 and 2 control the thickness and color as with the ling gesture.
Finger 2 also controls whether or not the rectangle is filled; if it 1s to the left of where it
inititally entered, the rectangle is filled, otherwise not.
ACTION (_RECTrecog)
{ ALWAYS, BltnCreate, (int)Rect, },
{ START(0), BltnSetPoint, ©, },
END_ACTION

ACTION( RECTmanip)
{ CURRENT {0}, BltnSetPoint, 2, }
{CURREN‘I‘(ZL), BitnThickness, 0, },
4 CURRENT {2}, BlinColorFill, o, }
END ACTION
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Circle The circle gesture causes a cirele 1o be created, the starting point of the gesture being the
center, and a point on the circle controlled by finger 0. Fingers 1 and 2 operate as they do in
the rectangle gesture. Its semantics of the circle gesture are almost identical that of the line
gesture, and are thus not shown here.

Edit color This gesture lets the aser edit the color and “filled-ness” of an existing object. Beginning
the gestare on an object edits that object. Otherwise, the user moves finger 0 until he touches
an object to edit. Once selected, finger § determunes the color and fill properties of the object
as finger 2 did in the previous gestures.

ACTION { COLCRrecog)
{ 8TART {0}, BltanPick, o, L.
END ACTION

ACTION {_ COLCRmanip)
{ CURRENT (0), BitnPickIfNull, g, %,
{ CURRENT(0), BitnColorFill, 0, }
END ACTION

BltnPick{arg, gz, gy) 1
StpPicki{gx, gvi;

if(E) px = gx, py = gy

=

s}

1
b
BlinPickIfNull{arg, gx, gv) {

1f{!E) BltnPick{arg, gx, gy

i

Copy The copy gesture picks an element to be copied in the same manner as the edit-color gesture
above. Once copied, finger § drags the new copy around, while finger 1 can be used to adjust
the color and thickness of the copy.

ACTION { COPYrecog)

{ START{0), BltnPick, 2. },
END ACTION
ACTION{ COPYmanip)
{ CURRENT (0}, BltnPickIfNull, 0, },
{ CURRENT (), BltnCopy, 0, 1,
{ CURRENT(0), BltnMove, 0, },
{ CURRENT (1}, BltnColorFill, 0, }.

END ACTICN

in the interest of brevity the { routines will no longer be listed, since they are very similar to
those already seen.
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Meove Move is a two-finger “pinching” gesture. An object is picked as in the previous gestures,
and then tracks finger 0.
ACTION (_MOVErecoq)
{ START(0), BitnPick, o, I,
END_ACTION

ACTION( MCVEmanip)

{ CURRENT(0), BltnPickIfNull, o, },
{ CURRENT (0}, BltnMove, o, },

END ACTION

Delete The delele gestare picks an object just like the previous gestures, and then deletes it
ACTION ( DELETErecog)

{ START(0), BiltnPick, o, 1,
END ACTION
ACTION (_DELETEmanip)
{ CURRENT {0}, BitnPickIfNull, 0, 1,
{ CURRENT {0}, BitnDelete, 0, }.

END ACTION

Parallelogram The parallelogram gesture is a two-finger gesture. One corner of the parallclogram
is deternined by the initial location of fingers 0; an adjacent comer tracks finger 0, and the
opposite cormer tracks finger 1. Adding a third finger (finger 2} moves the initial point of the

paralielogram.
ACTION (_PARArecog)
{ ALWAYS, BltnCreate, {(int}Rect, },
{ START(0), BltnSetPoint, o, }.

END ACTION

ACTION (_ PARAmanip)

{ CURRENT {0}, RltnSetPoint, i, 1,
{ CURRENT {1}, RltnSetPoint, 2, 1,
{ CURRENT ({2}, BltnSetPoint, ¢, 1,

END ACTION

Rotate Rotate is a two-finger gesture. An object is picked with either finger. At the time of the
pick, cach finger becomes attached to a point on the picked object. Fach finger then drags its
respective point; the object can thus be rotated by rotating the fingers, scaled by moving the
fingers apart or together, or translated by moving the fingers in parailel.

ACTION (_ROTATErecog)
{ START(0), BltnPick, ¢, }.
{ START(1), BltnPickIfNull, ¢, },
END_ACTION
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{ CURRENT(0), BltnPickIfNull, 0,
{ CORRENT {1}, BltnPickIfNull, 0
{ CURRENT(0), BltnRotate, 0,
{ CURRENT (1)}, BltnRotate, 1
END ACTION

..
gt b S Nergnd

Pack The pack gesture is a three-finger gesture. Any objects touched by the any of the fingers are
added to a newly created SetOE£0bjects.
ACTION{ PACKracog)
END ACTICN

ACTICH { PACKmanip)

{ CURRENT (0), BltnPick, 0, 1,
{ ALWAYS, BlinAddTosSet, 0, },
{ CURRENT (1), BltnPick, 0, 1},
{ ALWAYS, BiltnaddToSet, o, }.
{ CURRENT (2), BitnPick, 0, }.
{ ALWAYS, BitnaddToSet, 0, }.

END ACTION

Unde The undo gesture is also a three-finger gesture, basically a “¥” made with threc fingers
moving in paraliel. After it is recognized, moving finger § up causes more and more of the
edits to be undone, and moving finger § down causes those edits to be redone.

ACTION { _UNDOrecog)
{ CURRENT (0) , BltnUndo, 0, 1,
END ACTION

CURRENT (G}, BltnUndo, 0, }.

%.3.3 DBiscussion

MDP is the only system known to the author which uses non-BataGlove multiple finger gestures.
Thas, a brief discussion of the gestures themselves is warranted.

MIIP’s single finger gestures are taken directly from GDP. After recognition, additional fingers
may be brought into the sensing plane to control additional parameters. Wherever an additional
finger is first brought into the sensing plane becomes the position that gives the current value of
the parameter which that finger conirols; the position of the finger relative to this initial position
determines the new value of the parameter. This relative control was felt by the author to be less
awkward than other possible schemes, though this of course needs to be stadied more thoroughly.
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The multiple finger gestures are designed to be intuitive. The parallelogram gesture is, for
example, two fingers making the rectangle gesture in parallel. The move gesture is meant to be
a pinch, whereby the object touched is grabbed and then dragged around. The two finger rotate
gesture allows two distinet points on an object 0 be sclected carefully. During the manipulation
phase, cach of these points tracks a finger, allowing for very intuitive translation, rofation, and
scaling of the object, The three finger undo gesture is intended fo simulate the use of an eraser on a
blackboard.

The Sensor Frame is not a perfect device for gestural input. One problem with the Sensor Frame
is that the sensing plane is slightly above the surface of the sereen. 1t is difficult to precisely pull a
finger out without changing its position. This often results in parameters that were carefally adjosted
during the manipulation phase of the interaction being changed accidentally as the interaction ends.
This problers happens more often in multiple finger gestures, where, due o probleras with the Sensor
Frame, removing one finger may change the reported position of other fingers even though those
fingers have not moved. Also, it is more difficult to pull out one finger carefully when other fingers
must be kept still in the sensing plane. Finally, it does not take very long for a gesturer’s arm to get
tired when vsing a Sensor Frame attached to a vertically mounted display.

In MDP, the two-phase interaction technigue s applied in the context of multiple fingers. As
cach finger’s position represents two degrees of freedom, multi-path interactions allow many more
parameters o be manipulated than do single-path interactions.  Also, since people are used to
gesturing with more than one finger, multiple fingers potentially allows for more natural gestures.
Even though sometimes only one or two fingers are used to enter the recognized part of the gesture,
additional fingers can then be utilized in the manipulation phase. The result is a new interaction
technique that needs to be studied further

8.4 {Conclusion

This chapter described the major applications which were built to demonstrate the ideas of this
thesis. Two, GDP and GSCORE, were built on top of GRANDMA, and show how single-path
gestures may be integrated into MVC-based applications. The third, MDP, demonstrates the use of
multi-path gestures, and shows how gestures may be integrated in a quick and dirty fashion in a
non-objected-oriented context.
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Chapter 9
Evaluation

The previous chapters report on some algorithms and systems used in the construction of gesture-
based applications. This chapter attempis to evaluate how well those algorithms and systems work.
When possible, quantitative evaloations are made. When not, subjective or anecdotal evidence is
presented.

9.1 Basic single-path recognition

Chapter 3 presents an algorithm for classifying single-path gestures. In this section the performance
of the algorithm is measured in a variety of ways. First, the recognition rate of the classifier
is measured, as a function of the number of classes and the number of training examples. By
examining the gestures that were misclassified, various sources of errors are uncovered. Nexi, the
effect of the rejection parameters on classifier performance is studied. Then, the classifier is tested
on a number of different gesture sets. Finally, tests are made to determine how well a classifier
trained by one person recognizes the gestures of another.

9.1.1 Recognition Rate

The recognition rate of a classifier is the fraction of example inputs that it correctly classifies. In this
seetion, the recognition rates of a nurober of classifiers trained using the algorithm of Chapter 3 are
measured. The gesture classes used are drawn {rom those used in GRCORE (Section 8.2). There are
two reasons for testing on this set of gestures rather than others discussed in this dissertation, First,
it consists of a fairly large set of gestures (30) used in a real application. Second, the GSCORE set
was not used in the development or the debugging of the classification software, and so is unbiased
in this respect.

GRANDMA provides a facility through which the examples used to frain a classifier are classified
by the classifier. While running the training examples through the classifier s useful for discovering
ambiguous gestures and determining approximately how well the classifier can be expected to
perform, it is not a good way {0 measare fecognition rates. Any trainable classifier will be biased
toward recognizing its training examples correctly. Thus in all the tests described below, one set of

1895
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Figure 9.1: GSCORE gesture classes used for evaluation

cxample gestures is used {o train the classifier, while another, entively distinct, set of examples is
used to evaluate its performance.

Figure 9.1 shows examples of the gesture classes used in the first test. All were entered by the
author, using the mouse and computer system described in Chapter 3. First, 100 examples of each
class were entered; these formed the éraining set. Then, the author entered 100 more examples of
each class; these formed the festing set. For both sets, no special attempt to was made to gesture

carefully, and obviocusly poor examoples were not eliminated.

There was no classification of the test exaroples as they were entered; in other words, no feedback
was provided as to the correctness of each example immediately after it was entered. Given such
feedback, a user would tend to adapt to the system and improve the recognition of futere input. The
test was designed to eliminate the effect of this adaptation on the recognition rate.

The performance of the statistical gesture recognizer depends on a number of factors. Chief
among these are the number of classes to be discriminated between, and the mumber of training
examples per class. The effect of the number of ¢lasses is studied by building recognizers that use
only a subset of classes. In the experiment, a class size of C refers to a classifier that attempts to
discriminate between the first C classes in figure 9.1. Similarly, the effect of the training set size is
stadied by varying £, the number of examples per class. A given value of £ means the classifier
was trained on examples 1 through £ of the training data for each of C classes.

Figure 9.2 plots the recognition rate against the number of classes (for various training set sizes
E. Each point is the result of classifving 100 examples of each of the first C classes in the testing
set. The number of correct classifications is divided by the total number of classifications attempted
(100 C) to give the recognition rate. {Rejection has been turged off for this experiment.) Figure 9.3
shows the results of the same experiment plotted as recognition rate versus £ for various values of
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In general, the data are not too surprising. As expectad, recognition rate increases as the training
set size increases, and decreases as the number of classes increases. For C = 30 classes, and £ = 40
examples per class, the recogunition rate is 96.9%. For C=30 and £ = 10 the rate is 95.6%. C= 10
and £ = 40 gives arate of 99.3%, while for C= 10 and £'= 10 the rate is 97.8%.

(it practical significance for GRANDMA asers is the mumber of training examples needed to
give good results. Using £ = 15 examples per class gives good results, even for a large number of
classes. Recognition rate can be marginally improved by using £ = 40 examples per class, above
which no significant improvement occurs. £ = 10 results in poor performance for more than C= 10
classes. It is comforting to know that GRANDMA, a system designed to allow expertmentation
with gesture-based inferfaces, performs well given only 15 examples per class. This is in marked
contrast to many trainable classifiers, which often require hundreds or thousands of examples per
class, precluding their use for casual experimentation [ 125, 47].

Analysis of errors

It is enlightening 0 cxamine the test examples that were misclassified in the above experiments.
Figure 2.4 shows examples of all the kinds of misclassifications by the C = 30, £ = 40 classifier.
Not every misclassification is shown in the figure, but there is a representative of every Aclassified
as &, forall A# B The label “A as B(x 0y indicates that the example was labeled as class Ain the
test set, but classified as Sby the classifier. The » indicates the number of times an A was classified
as a B, when it is more than once.

The following types of errors can be observed in the figure. Many of the misclassifications are
the resolt of a combination of two of the types.

Poorly drawn gestures. Some of the mistakes are simply the result of bad drawing on the part of
the user. This may be due o careiessness, or to the awkwardness of using a mouse to draw.
Fxamples include “Su as aptie,” “2r as sharp,” “8r as 2,7 and “delete as 16d.” “Felef as dot”
was dug to an accidental mouse click, and in “delete as 8d” the mouse button was released
prematorely. The example “key as delete” was likely an error caused by the mouse ball not
rolling propetly on the table. “4u as Bu” and “16d as delete” each have extraneous points at
the end of the gesture that are outside the range normally climinated by the preprocessing.
“4r as 167" is drawn so that the first comer in the stroke is looped (figure 9.5); this causes the
accurpuiated-angle features fy, fio, and £y to be far from theur expected value (see Section
3.3}

Poor mouse tracking. Many of the errors are due to poor tracking of the mouse. Typically, the
problem is a long time between the first mouse point of a gesture and the second. This occurs
when the first mouse point causes the svster to page in the process collecting the gesture; this
may take a substantial amount of time. The underdying window manager interface queues up
every mause event involving the press or release of a button, but does not queus successive
mouse-movement events, choosing instead to keep only the most recent. Because of this,
mouse movements are missed while the process is paged in.

Page 1365 of 1714



91 BASIC SINGLE-PATH RECOGNIT

Page 1366 of 1714

e ks
o

rer

RO

=

164 as 83(x2)

key as 1&d(zx7)

Figure 9.4:

i as timesiq

1ION

L

=

{

1
A

uptie as Folef (x

VR

uptie as beam

delete as 16d{x§)

199

4u as 8su ) léw as su i6u as 32u
2u as uptie
e

= s TERRESSESSSN
1€y as 4r{x2) 16y as 21
./} ]
o
Fclef as 8r(x14) Folef as uptie

—

4d

delete as

I'4

delete as 32d

an

uptie as move (x2)

Misclassified GSCORE gestures

downtie

;clef as dot
!

|

i

delete as &d



2406 CHAPTER 9 EVALUATION

Figure 9.5 A looped corner
The left figure is a magnification of a misciassified “ 4r as 160" shown in the previous figure. The portion of the
gesture enclosed in the rectangie has been copied and its aspect ratio changed, resufting in the figure on the

i

3

cht. As can been seen, the corper, which should be a simple angle, is looped. This resufted in the angle-based

o

&

features having values significantly different from the average 4r gesture, thus the misclassification.

33 ¢

in"2uasdu,” “2d as 4d,” “8Bras 4d,” “8r as 8d,” and “timesig as 24”7 there is no point between
the initial point and the first corner, probably due to the paging. This interacts badly with
the features 1y and 5, the cosine and sine of initial angle. Features 1y and 1) are computed
from the first and third point; this usually results in a better measurement than using the {irst
and second point. In these cases, however, this results in a poor measurement, since the third
point is after the comer.

“Br as nat” was the result of a very long page in, during which the asthor got impatient and
jiggled the mouse.

Ambigunous classes. Some classes are very similar to each other, and are thus likely to be mistaken
for each other. The 14 misclassifications of “Ficlet as 87 are an example. Actually, these
may also be considered examples of poor moase tracking, since poixts lost from the normally
rounded top of the Felef gestare caused the confusion. The mistakes “optie as 8u,” and “uptie
as Felef” are also examples of amgbiguity.

Ideally, the gesture classes of an application should be designed so as to be as unambiguous
as possible. Given nearly ambiguous classes, it is essential that the input device be as reliable
and as ergonomically sound as possible, that the features be able to express the differences,
and that the decider be able to discriminate between them. Without all of these properties, it
is ingvitable that there will be substantial confusion between the classes.

Inadeguacy of the feature set. The examples where the second mouse pojutis the first corner show
one way in which the featores inadequately represent the classes. For example, the “2r as
sharp” examples appear to the system as simple left strokes. Sometimes, a small error in the
drawing resulis in a large error in a feature. This occurs most often when a stroke doubles
back on itself; a small change resulis in a large difference in the angle features fo, 1o, and
£y (sec figure 9.5). The mistakes “4r as 161" and “16d as delete” are in this category. “16u
as 8u” and “I6u as 32u” point to other places where the features may be improved.
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The mapping {rom gestures o features is certainly not jnvertible; many different gestures
might have the same feature vector in the current scheme. This results in ambiguities not
due entirely to simailarities between classes, but due to a feature set unable to represent the
difference. Example “key as 16d™ is an dlustration of this, albeit not a great one.

Inadequacy of linear, statistical classification. Given that the differences between classes can be

expressed in the feature vector, it still may be possible that the classes cannat be separated
well by linear discrimination functions. This typically comes about when a class has a feature
vector with a severely non-multivarate-normal distribution. In the current feature set, this
most often happens in a class where the gesture folds back on itself (as discussed earlier),
causing fy, and thus the entire feature vector, to have a bimodal distribution.
The averaging of the covariance matrix in essence implies that a given feature is equally
important in all classes. In the above class, the initial angle features are decmed traportant by
the classifier. When compounded with errors in the tracking, this leads to bad performance
on cxamples such as “vptic as beamy” and “uptic as move.” It is possible for a linear classifier
to express the per-class importance of features in a linear classifier; in essence this is what
is done by the neural-network-like training procedures {a.£.2 back propagation, stochastic
gradient, proportional increment, or perceptron training).

Inadequate fraining data. Drawing and tracking errors occur in the training set as well as the
testing set. {3iven enough good examples, the effect of bad examples on the estimates of the
average covariance matrix and the mean feature vectors is negligible. This is not the case
when the number of examples per class is very small. Bad or insufficient training data causes
bad estimates for the classifier parameters, which in torn causes classification errors. The
gestures classified correctly by the € = 30, F = 40 classifier, but incorrectly by the U = 30,
F = 10 classifier are examples of this.

Analyzing errors in this fashion leads to a number of seggestions for easy improvements to the
classifier. Timing or distance information can be used to decide whether to compute £ and 5 using
the first two points or the first and third points of the gesture. Mouse events could be queued up
to improve performance in the presence of paging. Some new features can be added to improve
recognition even in the face of other errors; in particular, the cosine and sine of the final angle of
the gestuse stroke would help avoid a number of errors. These modification are left for future work,
as the author, at the present time, has no desire to redo the above evaluation using 6000 examples
from a different gesture set.

One error not revealed in these tests, but seen in practice, is misclassification due to a premature
timeout in the two-phase interaction. This resolts in a gestare being classified before it is completely
entered.

9.1.2 Rejection parameters

S8

Section 3.6 considered the possibility of rejecting a gesture, i.e. choosing not to classity it. Two
parameters potentially useful for rejection were developed. An estimate of the probability that
a gesture is classified unambigoously, &, is derived from the values of the per-class evaluation
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Figure 9.6: Rejection parameters

functions. An estimate of the Mahalanobis distance, &8, is used to determine how close a gesture is
to the norm of its chosen class.

It would be nice if thresholds on the rejection parameters could be used to neatly separate correctly
classified example from incorrectly classified examples. It is clear that it would be impossibie to
do a perfect job; as “delete as 8d” illastrates, the system would need to read the user’s mind. The
hope is that most of the incorrectly classified gestures can be rejected, without rejecting too many
correctly classified gestures.

A fittle thought shows that any tejection rule based solely on the arabiguity metric Pwill on the
average reject at least as many correctly classified gestures as incorrectly classified gestures, This
follows from the reasonable conjecture that the average ambiguous gesture is at least as likely to
be classified correctly as not. {This assumes that the gesture is not egually close to three or more
classes. In practice, this assumption is almost always true.)

Figure 9.6 is a scatter plot that shows the value for both rejection parameters for all the gestures
in the GRCORE test set. A plus signindicates a gesture classified correctly; a triangle indicates each
zesture classified incorrectly, i.e. those represented in figure 9.4. Most of the correctly classified
cxamples have an estimated uvnambiguity probability of very close to one, thus accounting for
the dark mass of points at the right of the graph. 96.3% of the correctly classified examples had
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P > 0.99. However, the same interval contained 33.7% of the incorrectly classified examples.
Figure 9.7 shows how many correctly classified and how many incorrectly classified gestures would
be rejected as a function of the threshold on =

Exaniining exactly which of the incorrect examples have P > (.99 is interesting. The garbled
“Br as nat” and the left stroke “2r as sharp” have P= 1.0 within six decimal places. In retrospect this
is not sarprising; those gestores are far from every class, but happen to be unambiguously closest to
a single class. This is borne out in the ¢ for those gestures, which is 380 (off the graph) for "8t as
nat” and at least 70 for each “2r as sharp” gesture. Other mistakes have P> 999 but £ < 20. In
this category are “Felef as 8r,” “uptie as Felet,” “delete as 84, and “4u as 8u”; these gestures go
beyond ambiguity to ook like their chosen classes so could not be expected to be rejected.

Also interesting are those correctly classified test examples that are candidates forrejection based
on their Pand & values. Figure 9.8 shows some GSCORE gestures whose P = T and 2 > 90.
Examples “movel2” and “beam63” are abnormal only by virtue of the fact that they are larger than
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normal. The two bar examples have their endpoints in funny places, among other things, while
the three Golef examples are faidy unrecognizable. The algoritho does however classity all of
these correctly; and i would be too bad to reject them. Figure 9.9 shows gestures whose ambiguity
probability is less that .95, In many of the exaraples this is caused by at least one corner being made
by two mouse points rather than one. In “delete33” one corner is looped. These gestures ook so
nwch like their prototypes it would be too bad to reject them.

The Mahalanobis estimate 1s mainly useful for rejecting gestures that were deliberately entered
poorly. This is not as silly as it sounds: a user may decide during the couarse of a gesture not to
go through with the operation, and at that time extend the gesture into gibberish so that it will be
rejected.

One possible improvement would be 1o use the per-class covariance matrix of the chosen class
in the Mahalanobis distance calculation. Compared to using the average covariance matrix, this
would presumably result in 2 more accurate measurement of how much the input gesture difters for
the noro of its chosen class.

9.1.3 Coverage

Figure 9.1 shows the performance of the single-path gesture recognition algorithm on five different
gesture sets, The classifier for each set was trained on fiftecn examples per class and tested on an
additional fifteen examples per class. The first set, based on Coleman’s editor [25], had a substantial
amount of variation within each class, both in the training and the testing examples. The remaining
sets had muuch less variation with each class.  As the rates demonstrate, the single-path gesture
recognition algorithm performs quite satisfactorily on a number of different gesture sets.

914 Varying orientation and size

(Oue feature that distinguishes gesture from handwriting is that the orientation or size of a gesture ina
given class may be used as an application parameter. For this to work, gestures of such classes must
be recognized as such independent of their orientation or size. However, the recoguition algorithm
should not be made completely orientation and size independent, as some other classes may depend
on orientation and size to distinguish themselves.

it is straightforward to indicate those classes whose gestures will vary in size or orientation:
simply vary the size or orientation of the training examples. The goal of the gestare recognizer is to
malke irrelevant those features in classes for which they do not matter, while using those featare in
classes for which they do.

Theoretically, having some classes that vary in size and orientation, while other that depend on
size or orientation for correct classification should be a problem for any statistical classifier based on
the assumptions of a omltivariate normal distribution of featres per class, with the classes having
a comunon covariance matrix. A class whose size is variable s sure o have a different covariance
matax than one whose size remains relatively constant; the same may be said of orientation. Thus,
we would suspect the classifier of Chapter 3 to perform poorly in this sitoation. Surprisingly, this
does not seem to be the case.
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Figure 9.12: Recognition rate for set containing classes that vary

Figure 9.11 shows 16 classes, some of which vary in size, some of which vary in orientation,
athers of which depend on size or orientation to be distinguishable. The training set consists of thirty
examples of cach class; variations in size or orientation were reflected in the training examples, as
shown in the figore. A testing set with thirty or so examples per class was similarly prepared.

Figure 9.12 shows the recognition rate plotted against the number of classes for various numbers
of examples per class in the {raining set. As can be seen, the performance is good; 96.9% correct
on 16 classes trained with 30 examples per class. Using only 15 examples per class results in a
recognition rate of 96.7%.

Figure 9.13 shows all the nustakes made by the classifier. None of the mistakes appeartobe a
result of the size or orientation of a gesture being confused. Rather, the mistakes are quite similar o
those seen previously, The conclusion in that the gesture classifier does surprisingly well on gesture
sets in which some classes have variable size or orientation, while others are diseriminated on the

basis of their size or orientation.

8.1.5 Interuser variability
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All the gestures shown thus far have been those of the author. It was deemed necessary to show
validity of the current work by demonstrating that the gestures of at least one other person could
be recognized. Two questions come to roind: what recoguition rate can be achieved when a person
other than the author gestures at a classifier trained with the author’s gestures, and can this rate be
improved by allowing the person to train the classifier using his or her own gestures?

Setup

As preparation for someone besides the author actually using the GSCORE application (see Section
9.4.2 below), the GSCORE gesture set (figure 9.1) was uvsed in the evaluvation. The hardware vsed
was the same hardware used in the majority of this work, a DEC MicroVAX I running UNEX and
X1

A simple testing program was prepared for training and evaluation (Figure 9.14). In a trial, a
prototype gestore of a given class is randomly chosen and displayed on the screen, with the start point
indicated. The user attempts to enter a gesture of the sarme class. That gesture is then classified, and
the results fed back to the user In training mode, if the system roakes an error, the trial is repeated.
in evaluation mode, each tral is independent.

Subject PV is a music professor, a professional musician, and an experienced music copyist. He
is also an experienced coraputer user, familiar with Macintosh and NeXT computers, among others.

Procedure

The subject was given one half hour of practice with the testing program: in fraining mode. He was
also given a copy of figure 9.1 and instructed to take notes at his own discretion. After the half hour,
the tester was put in evaluation mode, and two hundred trials run. The test was repeated one week
fater, without any warpwp. The subject was then instructed to create his own gesture set, borrowing
from the set he knew as much as he liked. Thirty examples of each gesture class were recorded, and
two hundred evaluation trials run on the new set.

Resulis

During the initial training there was some confusion on the subjeet’s part regarding which hand to
use. The sabject normally uses his right hand for mousing, but, being left handed, always writes
music with his left. After about ten minutes, the subject opted to use his left hand for gesturing.

In the initial evaluation trial the system classified correctly 188 out of 200 gestures. The subject
felt he could do better and was allowed a second run, during which 179 out of 200 gestures were
correctly classified. By his own admission, he was more “cocky” during the second run, generally
making the gestures faster than during the first. The average recognition rate 15 91.8%.

After the test, the subject commented that he felt much of his difficulty was due to the fact
that he was not used to using the mouse with his left hand, and that the particular mouse felt very
different than the one he was used to (NeX'T’s). He felt his performance would further improve with
additional practice.
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Figure 9.15: PV’s misclassified gestures (author’s set)

His notes are interesting. Although the subject had no particular knowledge of the recognition
algorithm being used, in many cases his notes refer to the particular features used in the algorithm.
For gestures whole and sharp he wrote “start up” and “don’t begin too vertically” respectively,
noting the importance of the correct initial angle. For 1r he wrote “make short,” for bar he wrote
“make large,” and for delete he wrote “make quickly.” For 2u and 2d he wrote “sharp angle.”

The subject commented on places where the gesture classes used did not conform to standard
copyist strokes. For example, he stated the Joop in flat goes the wrong way. He explained that
many music symbols are written with two strokes, and said that he might prefer a system that could
recognize rauftiple-stroke symbols.

When the test was repeated a week later, the subject, withoot any warmup, achieved a score of
183 out of 200, 91.5%. Figare 9.15 shows the misclassified gestures. The subject was again onsure
of which hand to ase, but used his left hand at the urging of the author.

The subject then created his own gesture set, examples of which are shown in figure 9.16. A
training set consisting of 30 examples of each class was entered. Running the training set through
the resulting classifier resulted in the rather low recognition rate of 94.7% (by comparison, running
the author’s training set through the classifier it was used to train yielded 97.7%.) The low rate was
due to the some ambiguity in the classes (e.g. “Hat” and “16d” were frequently confused) as well
as mauny classes where the corners were fooped (as seen before in section 9.1.1), causing a bimodal
distributions for £y, £ig, and £y

The problems in the new gesture set nonwithstanding, PV ran two handred trials of the tester on
the new set. He was able to get a score of 186 out of 200, 93%.

At the time of this writing, PV has not yet made the atternpt to remove the ambiguities from the
new gesture set and to be more careful on the sharp comers.

&
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Figure 9.16: PV’s gesture set
Conclasion

it is difticelt to draw a conclusion given data from only one subject. The author expected the
recognition rate to be higher when PV trained the system on his own gestures than when he used
the author’s set. The actual rate was slightly higher, but not enough to make a convincing argument
that people do better on their own gestures (some slightly more convineing evidence is presented in
section 9.4.2 below). In retrospect, PV should have created a training set that copied the author’s
gestures before aticrapting fo significantty modify that gesture set. The author’s gesture set turned
out to be better designed than PV's, in the sense of having less inherent ambiguities; this tended to
compensate for any advantage PV gained {rom using his own gestures.

However, PV’s new gesture set is not withoutmerit; on the contrary, ithas a number of interesting
gestures. The new delete gesture, a quick, long, lefiward stroke, gives the user the impression of
throwing objects off the side of the screen. The new move gesture is like a delete foliowed by a
fast minute change of mind. The flat gesture is much closer to the way PV writes the symbol, as are
the leftward whole and half rests gestures 1r and 2r. The stylized “4” for timesig is clever, as is the
way it relates to key. PV’s bar gesture is much more econorical that the author’s.

The experiments indicate that a person can use a classifier trained on another person’s gesture
with moderately good resulis. Also indicated is that people can create interesting gesture sets on
their own. Some modification to the feature set also seems desirable, mainly to make the features
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less sensitive to “looped” comers. It would be useful 1o give more feedback to the gesture design as
to which classes are confusable. This should be sinple to do simply by examining the Mahalanobis
distance between every pair of classes.

9.1.6 Recognition Speed

ft ts well known that a user interface must respond quickly in order to satisty users; thus for gesture-
based systems the speed of recognition is an imaportant factor in the usability of the system. This
section reports on measurements of the speed of the components of the recognition process.

The statistical gesture recognizer described in Chapter 3 was designed with speed in mind. Each
feature is incrementally calculated in constant time; thus (XF) work must be done per mouse point,
where Fis the number of features. Given a gesture of # mouse points, it thes takes OUFF) time to
compute its featore vector. The classification compates a linear evahuation function over the features
for each of C classes; thus classification take (X CF) time.

Feature calculation

The abstract datatype FV is used to encapsulate the feature calculation as follows:

o

FV FvAlloc ()} allocates an object of type FV. A classifier will generally call FvAlloc () only
once, during program initialization.

Fvinit {fv} inifializes £v, anobject of type FV. FviInit (£v) is called once per gesture, before
any points are added.

FvAaddPoint performs the incremental feature calculation. Tt is called for every mouse
paint the program receives. There are thirteen features calculated (F = 13).

FvAddPoint {(Ev, =, v, t} adds the point (x,y) which occurs at tme ¢ to the gesture.
i

Vector FvCalc(fv) returns the feature vector as an array of double precision floating point
pumbers. It performs any necessary calculations needed to transform the incrementally
calcolated auxiliary features into the feature set used for elassification. It is called once per
gesture.

The function CalcFeatures (g) represents the entire work of computing the feature vector
for a gesture that is in memory:
Fv fv; A allocated via FvAlloc(} elsewhere  /
Vector
CalcFeatures {g)
register Gesture g;

i
v

register Point p;

FvInit{fv);

for{p = g—-»point; p < &g-—>point{g-sopointel; p++)
Fvaddpoint (£v, p-»x, p->y, p->t);

Page 1380 of 1714



214 CHAPTER 9 EVALUATION

Processor Time(sec) | Relative Speed
MicroVAX I 227.95 0.76
VAX 11/780 72.20 18
MicroVAX TIY 60.97 2.8
PMAX-3100 1130 IN

Table 9.1: Speed of various computers used for testing

Processor milliseconds per call
FvaddPoint | FvCale | CalcFeatures
MicroVAX I 0.22 .34 39
MicroVAX I 0.0674 0.13 1.3
PMAX-3100 0.029 0.040 0.44

Table 9.2: Speed of feature calculation

return FvCalc{fv);
}

To obtain the tinungs, the festing set of Section 9.1.1 was read into memory, and then cach
gesture was passed to CalcFeatures. Three processors were used: the DEC MicroVAX I that
was used for the majority of the work reported in this dissertation, a DEC MicroVAX Hi, and a DEC
PMAZ-3 160 (to get an idea of the performance on a more modem system). The UNEX profiling tool
was used to obtain the times. In all cases, the imes are virtual times, i.e. the tme spent executing
the program by the processor. All tests were run on enloaded systems, and the real times were never
more than 10% more than the virtual timoes.

Before timing any code related to gesture recognition, the following code fragment {(compiled
with “cc -07) was timed on a number of processors, MicroVAX 1, VAX 11/780, MicroVAX T,
and PMAX-3100, in order to compare the speed of the processors used in the following tests to that
of a VAX 11/78(:

regigter int i, n = 1000000;
double s, ails], blis];

for{i = 0; 1 < i5; i++) ali] = i, b[1] = ixi;
do {

a = 0.0;

for{i = 0; 1 < 15; i++) g += ali]l = bilil;

} while{——mn);

The times for the above fragment shown in table 9.1,

Note that on this code fragment the PMAX-3100 runs about 2{} times faster than the MicroVAX
II. On more typical code, it usually runs only 10-15 times faster.

The testing set averaged 13.4 points per gesture. The timings for the routines that calculate
features are shown in table 9.2,

The cost per mouse point to incromentally process a mouse point (s a small fraction of a
millisecond, even on the slowest processor. Since mouse points typically come no faster than 40
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Frocessor Computation time (milliseconds)
vt max v< Pl & | total
(one class) | (30 classes)
MicroVAX [f 0.27 RO | 08 37| 126
MicroVAX i 0.074 2210 63 11 386
PMAX-3100 0.022 0.66 | 0.01 | 026 | 0.99

Table 9.3: Speed of Classification

per second, only a small fraction of the processor is consumed incrementally calcalating the feature
vector. Indeed, substantially more of the processor is consumed comummnicating with the window
manager to receive the mouse pount and perforn the inking.

Classification

Once the feature vector is calculated it must be classified.  This involves computing a linear
evaluation function v on F features (F = 13) for each of C classes. If the rejection parameters are
desired, it takes an additional (X C) work to estimate the ambiguity Pand (XF2) work to estimate
the Mahalanobis distance &. The computation times for each of these is shown in table 9.3,

To get these times, four rons were made. Fvery gesture in the testing set was classified in every
run. The first run did not calculate cither rejection parareter. The average time to classify a gesture
¢ 4}0 of that time.
(The v column thus gives the time to compute the evaluation function for a single class; multiply
this by the mumber of classes to estimate the classification time of a particular classifier.) The second
run computed P after each classification; the difference between that time and the max v’ time is
reporied in the Peolomn. The third run computed ¢ and is reported similarly. The fourth run
computed both Pand ¢?; the average time per gesture is reported in the “total” column.

For a 30-class discrimination with both rejection parameters being used, after the last mouse
point of a gesture is entered it takes a MicroVAX I 13 milliseconds to finish calculating the feature
vector (FvCale) and then classify it. This is acceptable, albeit not fantastic, performance. If the
end of the gesture 18 indicated by no mouse motion for a timeout interval, the classification can begin
before the timeout interval expires, and the result be ignored if the user moves the mouse before the
interval is up.

Currently, all arithmetic is done using double precision floating point numbers. There is no
conceptual reason that the evahuation functions could not be computed osing integer arithmetic,
after suitably rescaling the features so as not too lose much precision. The resulting classifier would
then run much faster (on most processors). This has not been tried in the present work.

If eager recognition is ranning, classification must occur at every mouse point, and the number
of classes is 2C. This puts a ceiling on the number of the classes that the eager recognizer
can discrminate between in real-time. On a MicroVAX 1L, the cost per mouse point includes
FvaddrPoint {0.22 msec) plus FvCalc (0.34 msec) plus the per class evaluation of 2C classes,
(.54 C. If mouse paints come at a maximum rate of one every 25 milliseconds, € = 45 classes would
consume the entire processor. Practically, since there is other work to do (eg. inking), C = 20 is

as one of thirty classes is reported the maxv® column; the v* column is computed as
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probably the maximum that can be reasonably expected {rom an eager recognizer on a MicroVAX L
On today's processors, instead of coraputation time, the limiting factor will be the tower recognition
rate when given a large nuraber of classes.

{Une approach tried to increase the number of classes in eager recognizers was to use only a subset
of the features. While this improved the response time of the system, the performance degraded
significantly, so the idea was abandoned. There is no point getting the wrong answer quickly.

9.1.7 Traiping Time

The stated goal of the thesis work is to provide tools that allow user interface designers to experiment
with gesture-based systems. One factor impacting on the usability of such tools is the amount of
time it takes for gestare recognizers to retrain themselves after changes have been made to the
training examples. In almost all trainable character recognizers, deleting even a single training
example requires that the training be redone {rom scratch. For some technologies, notably neural
networks, this retraining may take mimutes or even hours. Such a system would not be conducive to
experiraenting with different gesture sets.

By contrast, statistical classifiers of the kind described in Chapter 3 can be trained very rapidly.
Training the classifier from scratch requires (X EF) to compute the mean feature vectors, ({EF%) time
to calculate the per-class covariance matrices, ((CF?) to average them, (YF®) to invert the average,
and (XCF?) to compute the weights used in the evaluation functions. If the average covariance
wnatrix is singularn an Q) algorithm is run to deal with the problem.

Often, a fair amount of work can be reused in retraining after a change to some training examples.
Adding or deleting an example of a class requires ({F) work to incrementally update its per-class
class mean vector, and (XF”) work to incrementally update its per-class covariance matrix [137].
Retraining then involves repeating the steps starting from computing the average covariance matrix.
Thus, for retraining, the dependency on E, the total number of examples, is eliminated. The retraining
time is instead a function of the mymber of examples added or deleted.

The Objective C implementation does not atterapt to incrementally update the per-class covari-
ance matrix when an example is added. Instead, only the averages are kept incrementatly, and the
per-class covariance matrix is recomputed from scratch. This involves (X F?) work for each class
¢ changed, where £7 is the number of training exarmples for class ¢. This results in worse perfor-
mance when a small number of examples are changed, but better performance when all the examples
of a class are deleted and a new set entered. The latter operation is commeon when experimenting
with gesture-based systems.

The author has implemented both € and Objective C versions of the single path classifier
Besides maintaining the per-class covariance matrices incrementally, the C version differs in that it
does not store the list of examples that have been used to train it. (3t is not necessary to store the listto
add and remove examples, since the mean vector and covariance matrix are updated incrementallv.)
1t is thus more efficient since it does not need fo maintain the lists of examples. (Objective C's Set
class, implemented via hashing, is used to maintain the lists in that version.} It also does not have
the overhead of separate objects for examples, classes and classifiers that the Objective € version
has (see Section 7.5).
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Processor Time (moilliseconds per call)
sAddBExample | sRemoveBxzample | sDoneAdding | shoneAdding
(10 classes) (30 classes)
MicroVAX H 37 3.8 130 234
MicroVAX Hi .90 (.90 43 78
PMAX-3100 (0.024 3.026 14 22

Table 9.4: Speed of classifier training

Since only the C version could be ported to the PMAX-3100, it was used for the timings. (C
versions of the feature computation and gesture recognition were used for the timings above; however
in these cases the Objective C methods are straightforward trapslations of their corresponding C
functions. I some cases, the methods merely call the corresponding C function.) The following C
functions encapsulate the process of training a classifier:

sClassifier sNewClasgsifiex() allocatesandreturnsahandletoanew classifier. Initally
it has no classes and no examples. The “s” at the beginning of the type and function
names refers to “single-path”; there are corresponding types and functions for the nwlti-path

classifiers.

sAddBxample (sClagsifier sc, char *classname, Vector e) adds the training
cxample (feature vector @) to the named class clagsname in the passed classifier. The
class is created if ©f has not been seen before. Linear search is used to find the class name;
howevey, it is optimized for successive calls with the same name. The sAddExample
function incrementally maintains the per-class mean vectors and covariance matrices,

sRemoveExample (eClasgifier sc, char *classname, Vecbor e removes ex-
ample e, assumned o have been added carlier, from the named class. The per-class mean
vector and covariance matrix are incrementally updated.

shoneddding (sClassifier sc) wains the classifier on its current set of examples. It
computes the average covatance matrix, inverts it (fixing it if singulan), and computes the
weights.

sClasgs sClassify(sClassifier sc, Vector e, double *p, *d2) actually
performs the classification of e. If p i3 non-NULL the probability of ambiguity is esti-
mated; f d2 is non-NULL the estimated Mahalanobis distance of e to tfs computed class is
returned. This is the function timed in the previous section.

The functions were exercised first by adding every exampie in the training set, training the
classifier, and then looping, removing and then re-adding 10 consecutive examples before retraining.
No singular covariance matrix was encounted, due fo the large number of exaraples. Table 9.4 shows
the performance of the various routines.

Even on a MicroVAX I, training a 30 class classifier once all the examples have been entered
takes less than a guarter second. Thus GRANDMA is able to produce a classifier immediately the
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first tirne a gesture is made over a set of views whose combined gesture set has not been encountered
before (see Sections 7.2.2 and 7.4}, The user has to wait, but does not have to wait fong.

9.2 Eager recognition

This section evaluates the effectivencss of the eager recognition algorithm on several single-stroke
gesture sets. Recall that eager recognition s the recoguition of a gesture while if is being made,
without any explicit indication of the end of the gesture. Ideally, the eager recognizer classifies a
zesture as soon as enough of it has been seen to do so unambiguously {see Chapter 4).

In order to determine how well the eager recognition algorithm works, an eager recognizer was
created to classify the eight gestures classes shown in 9.17. Each class named for the direction of
its two segments, ¢.g. Ur means “up, right.” FEach of these gestures is ambiguous along its initial
segment, and becornes unambiguous once the comer is turned and the second segment begun.

The eager recognizer was trained with ten examples of each of the eight classes, and tested on
thirty examples of each class. The figure shows ten of the thirty test examples for each class, and
inchudes all the exanples that were nusclassified.

Two comparisons are of interest for the gesture set: the cager recognition rate versus the
recognition rate of the full classifier, and the cagerness of the recognizer versus the maximum
possible eagerness. The eager recognizer classified 97.0% of the gestures correctly, compared to
99.2% correct for the full classifier. Most of the eager recognizer’s errors were due to a corner
looping 270 degrees rather than being a sharp 90 degrees, so it appeared to the eager recognizer the
second stroke was going in the oppostte direction than intended. In the figure, “E” indicates a gesture
misclassified by the eager recognizer, and “F” indicates a misclassification by the full classifier.

On the average, the eager recognizer examined 67.9% of the mouse points of cach gesture before
deciding the gesture was unambiguous. By hand, the author determined for each gesture the mumber
of mouse points from the start through the comer turn, and concluded that on the average 59.4%
of the mouse points of each gesture needed to be seen before the gesture could be unambiguously
classified. The parts of each gesture at which snambiguous classification could have occuorred but
did not are indicated in the figure by thick lines.

Figure 9.18 shows the performance of the cager recognizer on GDP gestures. The eager
recognizer was trained with 10 examples of each of 11 gestore classes, and tested on 30 examples
of each class, five of which are shown in the figure. The GDP gesture set was slightly altered to
increase eagerness: the group gesture was trained clockwise because when it was counterclockwise
it prevented the copy gestore from ever being eagerly recognized. For the GDP gestures, the full
classifier had a 99.7% correct recognition rate as compared with 93.5% for the eager recognizer.
On the average 60.5% of each gesture was examined by the eager recognizer before classification
occurred. For this set go atterapt was made to determine the minimum average gesture percentags
that needed to be seen for unambiguous classification.

From these tests we can conclade that the trainable eager recognition algorithm performs ac-
ceptably but there is plenty of room for improvement, both in the recognition rate and the amount
of eagerness.

Computationally, eager recognition is quite tractable on modest hardware. A fixed amount of
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computation needs to occur on each mouse point: fivst the feature vector must be updated (taking
0.5 msec on a DEC MicroVAX 1), and then the vector must be classified by the AUC (taking 0.27
msec per class, or 6 msec in the case of GDP).

9.3 Multi-finger recognition

Multi-finger gestural input is a significant innovation of this work. Unfortunately, circumstances
have conspired to make the evaluation of nwulti-finger recognition both impossible and irrelevant.
The Sensor Frame is the only input device upon which the mwulti-finger recognition algorithm
was tested. Unfortunately, there is only one functioning Sensor Frame in existence, and that was
damaged sometime after the multi-finger recognition was runming, but before formal testing could
begin. (Fortunately, a videotape of MDP in action was made while the Sensor Frame was working.}
No progress was made in repairing the Sensor Frame for over a year; testing was thus impossible.
Eventually the Sensor Frame was repaired, but Sensor Frame, Inc. went out of business shortly
afterward, making any detailed evaluation irrelevant. The owner of the Sensor Frame has left the
country, taking the device with him.

An informal estimate of the multi-finger recognition accuracy may be estimated from ten minutes
of videotape of the author using MDP. This version of MDP uses the path sorting mult-finger
recognition algorithm (Section 5.2). As shown in figure 8.10, MDP recognizes 11 gestures {6 one
finger gestures, 3 two finger gestures, and 2 three finger gestures). In the videotape, the author made
30 gestures, 2 of which appear to have been misclassified, and one of which was rejected, resulting
in a correct recognition rate of 90%. The processing time appears to be negligible.

All three misclassifications are the result of the Sensor Frame seeing more fingers in the gesture
than were intended. This was due to kuauckles of fingers curled up (s0 as not to be used in the
gesture) accidentally penetrating the sensing plane and being counted as additional fingers. As there
are distinct classifiers for single finger, two finger, and three finger gestures, an incorrect number of
fingers inevitably leads to a misclassification. While it is possible to imagine methods for dealing
with such errors during recognition, the main cause of this problem is the ergonomics of the Sensor
Frame.

For the small gesture set examined, the recognition rate is 100% once the errors due to “extra
fingers” are eliminated. This is to be expected, given the small number of gestures for each number
of fingers. It is expected that the multi-path classifier operating on one finger gestures would perform
about as well as the single-path classifier, as the algorithms are essentially identical. The single-path
classifier, when given only six classes to discriminate among, has been shown (on mouse data) to
perform at 100% in almost all cases. When operating on two finger gestures, it 1s expected that
the performance of the recognition algorithm would be similar to that of the single-path classifier
on twice the number of classes. Actually, it is possible that some of the paths in the two-finger
gestures will be similar to other paths in the set, and be merged into a single class by the training
algorithm (Section 5.4). Thus, when the number of unique paths will be less than twice the number
of two-finger gesture classes, performance may be expected to improve accordingly. Similarly, the
three finger gesture classifier may be expected to perform as well as a single-path classifier the
recognizes between one and three times the number of three finger gesture classes, depending on
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the number of unique paths in the class set.

One more factor to counsider is that nouse data tends to be much less noisy than Sensor Frame
data. The triangulation by the Sensor Frame is ervatic, especially when multiple fingers are being
tracked. For example, both horizontal segments of the Parallelogram gestore of figure €.10 should
be straight lines. Until this problem can be solved, it is expected that recognition rates for Sensor
Frame gesture sets will suffer.

9.4 GRANDMA

Evaluating GRANDMA is much more subjective than evaluating the low-level recognition rates.

SRANDMA may be evaluated on several levels: the effort reguired to build new interaction
technigues, to build new applications, 1o add gestures (o an application, to change an application’s
gestures, ot to use an application to perform a task.

No atterapt was made to formally evaluate any of these. In order to get statistically valid results,
it would have been necessary to run carefully designed experiments on a sumber of users, something
the author had neither the time, space, inclination, or qualifications to do. Furthermore, the avthor
does not wish to claim that GRANDMA is superior to existing object-oriented toolkits for any
particolar task. GRANDMA is simply the platform through which some ideas for input processing
in object-oriented toolkits were explored. GRANDMA’s significance, if any, will be its influence on
future toolkits, rather than any more direct results.

Nonetheless, this section informally reports on the author’s experience building gesture-based
systems with GRANDMA. (No one besides the avthor tried to program with GRANMDA) Also,
in order to confirm that GRANDMA can be used by someone other than the author, this section also
reports on observations of a subject trying o use GSCORE and GRANDMA to due some tasks.

8.4.1 The auther’s experience with GRANDMA

GRANDMA ok approximately seven months to design and develop. It consists of approximately
12000 lines of Objective C code. There are an additional 5000 lines of C code which implement
a graphics layer as well as the feature vector caleulation. GDP took ap additional 2000 lines of
Obijective C code to implernent. GDP was developed at the same tirae as GRANDMA, as it was the
primary application used to test GRANDMA.

Initially, only two GDP gestures were vsed to test GRANDMA’s gesture handler and associated
utilities. Once these were working well, it took foar days to add the remaining gestares to GDP
Muost of this time was spent writing Objective C methods to use in semantic expressions. These
were methods that were not needed for the existing direct manipulation interface.

GSCORE consists of 6000 lines of Objective C code. It took six weeks to design and implemaent
GSCORE, including its palette-based interface. Much of this time was spent on the details of
representing conunon music notation, mechanisms for displaying music notation, and producing
usable music fonts. The palette, an interaction technique that did not as yet exist in GRANDMA,
took about eight hours to tmplement. It took two weeks to add the gestural interface to GSCORE,
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including writing some additional methods. Much of this time was spent experimenting with
different semantics for the gestures.

Section 10.1.3 lists features of GRANDMA that will be important to incorporate into future
toolkits that support gestures.

8.4.2 A aser uses GSCORE and GRANDMA

This sections informally reports on subject PV's (see Section 9.1.5) attempts to use the GSCORE
program.

The task was to enter the music shown in figure 9.19. The music was chosen to exercise many
of the GRCORE gestures. PV is an experienced music copyist, and it took him 100 seconds to write
out the music as shown, copying it from an earlier attempt.

Using gestares, the author was able to enter the above score in 280 seconds (almost five minutes).
He made a total of 53 gestures, four of which did not give the desired results and were immediately
undone. Only two of those were misclassifications; the other two were notes gestures where the note
was created having the wrong piteh, duc to misplacement of the cursor at the start of the gesture.
Torning off gestures and using only the palette interface, it took the author 670 seconds (eleven
minutes}. No mistakes needed to be undone in the latter trial.

PV's first atternpt was at using the GSCORE program trained with the author’s gestures. PV
had already gained experienced with this set of gestures during the study of interuser variation.
PV practiced for one half hour with the GSCORE program before atterapting the task. The author
coached PV during this time, as no other documentation or help was available.

PV took 600 seconds (10 minutes) to complete the task. He made a total of 73 gestures, 16 of
which were immediately undone. It appeared to the author, who was silently observing, that each
undo was used to recover from a misclassification. Figure 9.20 shows the product of his labor. PV
then turned off gestures, and used the palette interface to enter the example. He completed the task
in 683 seconds (11 minutes).
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PV then entered his own gestures in place of some of the author’s. In particular, he substituted
his own gestures for the nine classes: delete, move, beam, 1r, 2r, 8r, 16r, Keysig, and bar,
entering 15 or more exaniples of each. The total time to do this, including incremental testing of the
new gestures and periodic saves to disk, was 25 aimuates. PV did not atferopt to enmlate the author’s
gestures; instead, he used the forms he had created carlier (see Section 9.1.5).

Once done, PV repeated the experiment. It took him 31{} seconds (5 minutes} to enter the music.
He made S8 gestuares, 4 of which were undone.

PV was interviewed after the tests, and made the following comments: The biggest problem,
he stated, was that mouse tracking in the GSCORE program was omch more sluggish than in
the recorder and tester. (This is accurate, as the time required for GSCORE events to be created
and consumed adds significant overhead to the mouse tracking. Much of this is overhead due to
GRANDMA ) PV characterized the systern as “sluggish.” Bad tracking, especially at the start of
the gesture, coniributed significantly to the number of misclassifications.

PV stated that he thought the system “intuitive” for entering notes. He described the gesture-
based interface as “excellent” compared to the palette-based system, but when asked how the
gesture-based interface compared (o writing on paper, he replied it sucks.” He did not hike using
the mouse for gesturing, and believed that a styius and tablet would be much better.

Itis again difficult to draw conclusions from an informal study of one user. Did PV’s performanee
improve because he tailored the gestures to his liking, or because he had been practicing? This is
unknown. Some things are clear: GRANDMA makes it easy to experiment with new gesture sets,
and, in GSCORE, with moderate practice the gesture-based interface iniproved task pecformance by
a factor of two over the palette-based interface. Whether gesture-based interfaces gencrally improve
task performance over non-gesture-based interfaces is a question that requires nrech forther study.
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irections

Conclusion and Future

This chapter sumarizes the contributions of this thesis and indicates some directions for futare
work.

i1  Contributions

This thesis makes contributions in four areas:
¢ New interaction techniques
¢ New recognition-related algorithms

s Integrating gestures into interfaces

&

Tnput in object-oriented toolkits

Bach of these will be discussed in turmn.

16.1.1  New interactions techniques

A major contributions of this work has been the invention and exploration of three new interaction
techniques.

The two-phase single-stroke interaction The two-phaseinteraction enables gesture and direct ma-
pipulation to be integrated in a single interaction that combines the power of each. The first
phase is collection, during which the points that make op the gesture are collected. In the
simplest case, the end of the collection phase is indicated by a motion timeout, classification
occurs, and the second phase, manipulation, s entered. In the manipulation phase, the user
moves the mouse fo manipulate some parameters in the application. The particular parameters
manipulated depend on the classification of the collected gesture. The collection phase 1s like
character entry in handwriting inferfaces; the manipulation phase is like a drag interaction in
direct-manipulation interfaces. Generally, the operation, operands, and some parameters are
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determined at the phase transition (when the gesture is recognized), and then the manipulation
phase allows additional parameters to be set in the presence of application feedback.

Eager recognition Bager recoguition is a modification of the two-phase single-stroke inferaction
in which the phase transition from gesturing to manipelation occurs as soon as enough of the
gesture has been seen so that it may be classified unambiguoussly. The result is an interaction
that combines gesturing and direct manipulation in a single, smooth interaction.

The two-phase multiple-finger interaction Gesture and direct manipulation may be combined for
nwltiple path inputs in a way similar to the two-phase single-stroke interaction. With multiple
finger input, opportunitics exist for expanding the power of cach phase of the interaction.
By allowing multiple fingers in the collection phase, the repertoire of possible gestures is
greatly increased, and a multiple finger gesture allows many parameters to be specified
simultaneously when the gesture is recognized. Similarly, even when only one finger is used
for the gesture, additional fingers may be brought in during the manipulation phase. Thus,
the two-phase raultiple-finger interaction allows a large number of parameters to be specified
and interactively manipulated.

16.1.2 Recognition Technology

This thesis discloses five new algorithms of general atility in the construction and use of gesture
FeCOgnizers.

Automatic generation of single-stroke gesture recognizers from training examples A practical
and efficient algorithm for generating gesture recognizers has been developed and tested. Init,
a gesture is represented as a vector of real-valued features, and a standard pattem recognition
technique is used to generate a linear classifier that discriminates between the vectors of
different gesture classes. The training algorithm depends on aggregate statistics of each
gesture class, and empirically it has been shown that usoally only fifteen examples of each
class are needed to produce accurate recognizers. Itis simple to incorporate dynamic attributes,
sach as the average speed of the gesture, into the feature set. The algorithm has been shown
to work even when some classes vary in size and orientation while others depend on size or
ortentation to be recognized. The recognizer size is independent of the number of training
examples, and both the recognition and training times have been shown to be small. A features
set that is both meaningful and extensible potentially allows the algorithm o be adapted to
future input devices and requirements.

Incremential feature calculation The calculation used o generate features from the input points of
a gesture is incremental, meaning that it takes constant time to update the features given anew
input point. This allows arbitrarily large gestures to be processed with no delay in processing.

Rejection algorithms Two algorithms for rejecting ill-formed gestures have been developed and

tested. Une estimates the probability of correct classification, enabling input gestures that are
ambiguous with respect to a set of gesture classes to be rejected. The other uses a normalized
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distance metric to determine how close an input gesture is to the typical gesture of the its
computed class, allowing outliers o be rejected.

Automatic generation of eager recogrizers from training examples An eager recognizer classi-
fies a gesture as soon as it is unambiguous, alleviating the need for the end of the gesture to be
explicitly indicated. An algorithm for generating eager recognizers from training examples
has been developed and tested. The algorithm produces a two-class classitfier which is run on
every input point and used to determine if the gesture being entered is unambiguous.

Awutomatic generation of multi-path gesture recognizers The single-stroke recognition work has
heen extended so that a number of single-stroke recognizers may be combined info a mulin-
finger gesture recognizer. The described algorithm produces a multi-path recognizer given
training examples. Relative path timing information is counsidered during the recognition,
and global classification is attemipted when the individual path classifications do not uniquely
determine the class of the multi-path gesture. For dealing with the problems that arise
from melti-path input devices that do not a priori determine “which path 1s which,” two
approaches, path sorting and path clastering, have been explored. The resulting algorithm hag
been demonstrated using the Sensor Frame as a multi-finger input device.

18.1.3  Integrating gestures into interfaces

A paradigm for integrating gestures into object-oriented interfaces has been developed and demon-
strated. The key points are:

A gesture set is associated with a view or view class. Each class of object in the user interface
potentially responds to a different set of gestures. Thus, for example, notes respond to a
ditferent set of gestures than staves in the GSCORE music editor.

The gesture set is dynamically determined. From the first point of a gestore, the system dynam-
ically determines the set of gestures possible. The first point determines the possible views
at which the gesture is directed. For each of these views, inheritance up the class hierarchy
determines the set of gestures it handles. These sets are combined, and if need be, a classifier
for the resulting union is dynamically created.

The gesture class and attributes map to an application operation, operands, and parameters.
Gestares are powerful because they contain additional information beyond the class of the
gesture, The attributes of a gesture, such as size, orientation, length, speed, first point, and
anclosed area, can all be mapped (o parameters (including operands) of application routines.
in the two-phase interaction, after the gestare i3 recognized there is an opportunity (o map
subsequent input to application parameters in the presence of application feedback.

Gesture handlers may be manipulated at runtime. In order to encourage exploration of gesture-
based systems, all aspects of the gestural interface can be specified while the application is
running. A new gesture handler may be created at runtime and associated with one or more
views or view classes. Gesture classes may be added, deleted, or copied from other handlers.
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Exaraples of each gesture class can be entered and modified af runtime. Finally, the semantics
of the gesture class can be entered and modified at runtime. Three semantic expressions
are specifiable: one evaluated when the gesture s first rec
subsequent mouse poind, and one evaluated when the interaction completes.

ognized, one cvaluated on cach

L4

16.1.4 Input in Object-Oriented User Interface Toolkits

A number of new ideas in the area of input in object-oriented user interface toolkits arose in the
course of this work.

Passive and active event handlers A single passive event handler may be associated with multiple
views. When input occurs on one such view, the handler usually activates a copy of itself.
Thus, the active/passive dichotomy eliminates the need to have a controller object instantiated
for each view that expects input, a major expense in many MV systems.

Event handlers may be associated with view classes nstead of having to associate a handler with
every iastance of a view, the handier may be associated with one or more view classes, A
view may have multiple handlers associated with it, and handlers are gueried in a specific
order to determine which handier will handle particular input.

Unified mouse input and virtual tools All input devices are tools, but when desired a single input
device may at times be different tools, one way to implement modes in the interface. Tools
may also be software objects, and some views are indeed such virtual tools. Tools often have
an action, which allows them to operate on any views that respond to that action. The test of
whether a given view responds to a given tool is made by an event bandler associated with
every view; this allows semantic feedback to occur automatically without any explicit action
on the part of the view or the tool.

Automatic semantic feedback As justmentioned, the feedback as to whether a given tool operates
upon a view over which it is has been dragged happens astomatically. For example, objects
that respond to the delete message will automatically highlight when a delete tool is dragged
over them. If desired, an object can do more elaborate processing to determine it it truly
responds o a given tool, e.g. an object may check that the user has permission to delete it
before indicating it responds to the delete took.

Runtime creation and manipulation of event handlers Hvent handlers may be created and asso-
ciated with views or view classes at runtimae. For example, a drag handler may be associated
with an object, allowing that object to be dragged (i.e. have its position changed). Inn addition,
soach handlers may be modified at runtime, for example, to change the predicate that activates
the handler.

18.2 Future Directions

In this section, directions for future work are discussed. These direciions include remedies for
deficiencies of the current work as well as extensions.
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The single-stroke training and recogunition algorithm is the most robust and well-tested part of
the current work, and even in its current form it is probably suitable for conmunercial applications.
However, a number of simple modifications should iraprove performance. Sections 2.1.1 and 9.1.5
contain suggestions for additional features as well as modifications to existing features; these should
be implemented. Tracking the mouse in the presence of paging has proved to be a problem, and a
significant improvement in recognition rate would be achieved if real-time response {0 mouse events
could be guaranteed.

it should be simple o extend the algorithim to three dimensional gestures. Al that would be
required would be to add several more features to capture motion in the extra dimension. The
training algorithm and linear classifier would be untouched by this extension.

Alternatives for rejection should be explored further. The estimated probability of ambiguity
is useful, though using it will always result in rejections of about as many gestures that would
have been correctly classified as not. The estimated Mahalanobis distance based on the comnion
covariance matrix 18 really only useful for rejecting deliberately garbled gestures. The Mahalanobis
distance based on the per-class covariance matrix farcs somewhat better, but requires significantly
more training examples to work well.

Given the obvious false assumption of equal per-class covariance matrices, it seems that the
statistical classifier should not perform well on gesture sets, some classes of which vary in size and
oricntation, others of which do not. In practice, when the gesture classes are unambiguous, the
classifiers have tended to perform admirably. Presumably this would not be the case for all such
gesture sets. One area for exploration is a method for calculating the coramon covariance matrix
differently, in particular, by not weighing the per class contributions by the nomber of examples of
that class.

Another challenge would be to handle such gesture sets without giving up linear classification
with a closed form training fornmuia. There seems to be only one candidate, which relies on the
nwticlass minimum squared error and the pseadoinverse of the matrix of examples {30}, It should
be explored as a potential alternative to classifiers that rely on estimates of a common covariance
matrix.

It would be interesting to explore the possibility of allowing the user to indicate declaratively
that a given gesture classes will vary in size and/or orientation. This might be handled simply
by generating additional training examples by varying the user-supplied examples accordingly.
Alternatively, it may be possible to augment the training algorithm so that the evaloation functions
for certain classes are constrained to ignore certain features.

Relaxing the requirement that a closed form exist for the per-class feature weights allows
iterative training methods to be considered. They have been ignored in this dissertation since they
are expensive in fraining time and tend to require many training examples. However, as processor
speed increases, iterative methods become more practical for use in a fool for experimenting with
gesture-based interfaces.

Similarly, relaxing the requirement that the classifier be a linear discriminator opens the door
for many other possibilities. Quadratic discrimination, and various non-parametric discrimination
algorithmas are but a fow. These t00 are expensive and reguire many fraining examples.

Perhaps recogunition technologies that require expensive training may be used in a produoction
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system while the cheaper technology developed here used for prototyping. This is analogous ©
using a fast compiler for development and an optimizing compiler for production. At the time of this
writing it seems likely that peural networks will soon be in cormnmon use, and gesture recognition is
but one application.

Additional attention should be given to the problem of detecting ambiguous sets of gesture
classes and useless featares. The trianguiar matrix of Mahalanobis distance between each pair of
gesture classes is auseful starting point for determining similar gesture classes. Multivariate analysis
of variance techniques {74} can determine which features contribute to the clagsification and which
features are irrelevant. These techniques can be used to support the design of new featores.

Eager recognition needs to be explored further. The classifiers generated by the algorithm of
Chapter 4 are less eager than they could possibly be, due to the conservative choices being made.
Hand labeling of ambiguous and unambiguous subgestures should be explored more fully; it is not
difficult to imagine an interface that makes such labeling relatively painless, and it is likely to give
better resulis than the current automatic labeling. Another possible improvement comes from the
observation that, during eager recognition, the full classifier is being used to classify subgestures,
upon which it was not trained. It might be worth trying to retrain the foll classifier on the complete
subgestures. Even better, perhaps a new classifier, trained on the newly complete subgestures (ie
those made conplete by their last point), should be substituted for the full classifier. Also, cager
recognition needs to be extended to multi-path gestares.

Algorithms for automatically determining the start of a gesture would also be usefid, especially
for devices without any discrete signaling capability {most notably the DataGlove). In the current
work, gestures are considered atomic, essentially having no discernible structare. It is easy to
imagine separate gestures such as select, copy, move, and delete that are concatenated to make
single interactions: select and move, select and delete. This raises the segmentation question: when
does one gesture end and the next begin? Specifying allowable combinations of gestures opens up
the possibility of gesture gragunars, an interesting area for future study.

This dissertation has concentrated on single-path gestures that are restricted to be single strokes,
for reasons explained previously. The utility of multiple-stroke gestures needs to be examined more
thoroughly, In a multiple-stroke gesture, does the relaxation between strokes ruin the correspon-
dence between mental and physical tension that makes for good interaction? Does the need for
segmentation make the system less responsive than it otherwise might be? (Can a manipulation
phase and eager recognition be incorporated into a system hased on multiple-stroke gestures? These
questions require further research.

Duae 1o the interest in multiple stroke recognition, the question arises as to whether the single-
stroke algorithm can be extended to handle multiple stroke gestures. First, the segmentation problem
{grouping strokes into gestures) needs to be addressed. One way this might be done is to add a large
timeout to determine the end of a gesture. The distance of a stroke from the previous stroke might
also be used. A sequence of strokes determined to be a single gesture might then be treated as a
single stroke, with the exception of an additional feature which records the number of strokes in the
gesture. The single-stroke recognition algorithm may then be applied.

Multi-path recognition is really stiflin its infancy. While the recognition algorithms of Chapter 5
seem to work well, there is not much to compare them against. Many others methods for multi-path
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recognition need to be explored. That said, the author is somewhat wary that nmltiple finger input
devices are so seductive that gesture research will concenirate on such devices to the exclusion of
single~-path devices. This would be unfortunate, as it seerns likely that single-path devices will be
awich more prevalent for the foreseeable future, and thus more users will potentially benefit from
the availability of single-path gesturing. Also, a thorough understanding of the issues involved in
single-path gesturing will likely be of use in solving the more difficult problems encountered in the
multi-path case.

The advent of pen-based computers leads to the question of how the single-stroke recognition
described here may be combined with handwriting recognition. One approach is to pass input to the
gesture recognizer after it has been rejected by the handwriting recognizer. The context in which the
stroke has been made (e.g. drawing window or text window) can also be used to determine whether
to invoke handwriting recognition or stroke recognition first.

The start of a single-stroke gesture ts used to determine the set of possible gestures by looking
at possible objects at which the gesture is directed. It may be desirable to explore the possibility
that the gesture is directed at an object other than one indicated by the first point, e.g. an object
moay be indicated by a hot point of the gesture (e.g. the intersection point of the delete gesture). A
sirpilar ambiguity occurs when the input is a multiple-finger gesture; which of the fingers should be
used to determine the object{s) at which the gesture is directed? In this case, a union of the gestures
recoguized by objects indicated by each finger could be used, but the possibility of conflict remains.

Oue problem with gesture-based systers is that there is usually no indication of the possible
gestures accepted by the system.! This is a difficulty that will potentially prevent novices from using
the systeni. One approach would be o use agimation{6] to indicate the possible gestures and their
effects, although how the user asks to see the animation remains an open question.

Also daunting to beginners is the timeout interval, where “stillness” is used to indicate that
collection is over and manipulation is to begin. Typically, a beginner presses a mouse button and
then thinks about what to do next; by that time the system has already classified the gesture as a dot.
The timeout cannot be totally disabled, since it is the only way to enter the manipulation phase for
some gestores. Perhaps some scheme where the timeosts are long (.75 seconds) for noviees and
decrease with use is desirable. Another possibility is eliminating the timeout totally at the beginning
of the gestares, thus disallowing dot gestures.

The current work suffers from a lack of formal user evaluation. Additional studies are needed
to determine classifier performance as a function of training examples, and whether one user can
use a classifier trained by another. In general, the costs and the benefits of fixed verses trainable
recognition strategies need to be studied. The usability of eager recognizers is also of inferest.

Recognizers that gradually adapt to users need to be studied as well. Such a recognizer requires
the user to somehow indicate when a gesture is misclassified by the system. Lemer [78] demonstrated
a potentially applicable scheme in which the systern monitored subsequent actions to see if the user
was satisfied with the result of an applied heuristic. There are dangers inherent in doubly-adaptive
systeras-if the system adapts to the user and the user 1o the systern, both are aiming at moving
targets, and thrashing is possible. The current approach requires the user explicitly to replace the

"Kuttenbach et. al. {75] say that gesture-based interfaces are “non-revealing,” and present an inieresting solution that
ynifies gesturing and pie-menu selection.
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existing training examples with his own—a workable, if not glamorous, solation.

The low-level recognition work in this thesis is guite usable in its current state, and may be
directly incorporated into systems as warranted. GRANDMA, however, 1s not useful as a base for
future development. ft (s purely a research systern, built as a platform for experimpenting with inputin
user interface tookkits. Its output facilities are totally inadequate for real applications. GRANDMA
was built solely by and for the author, who has no plans to maintain it. Nonetheless, GRANDMA
cmbodies sonme impartant concepts of how gestures are to be integrated into object-oriented user
interface tools.

The obvious next step is to integrate gestures into some existing user interface construction tools.
Issues of technical suitability are important, but not paramount, in deciding which system to work on.
Any chosen system must be well supported and maintained, so that there is a reasonable assurance
that the system will survive. Furthermore, any chosen system must be widely distributed, in order
to make the technology of gestare recognition available to as many experimenters as possible.

A number of existing systems are candidates for the incorporation of gestures. The NeXT Ap-
plication Kit is technically the ideal platform—itis even programmed in Objective C. The appropriate
hooks scem to be there to capture input at the right level in order to associate gestures with view
classes. 1t is probably not worth the effort to tnplement an entite interpreter for entering gesture
sernantics at runtime, as this is not something a user will typically manipulate. A graphical interface
to control semantics, based on constraints, would be an interesting addition. In general, a simpler
way for mapping gestural attributes to application parameters needs to be determined.

The Andrew Toolkit (ATK) is anather system into which gestures may be incorporated. ATK
uses its own object-oriented progranuming language on top of C, so runtime representation of the
class hierarchy, if not already present, should be straightforward to add. ATK has implemented
dvnamic loading of objects into running programs—this should make it possible to compile gesture
semantics and load them into a running program without restarting the program. Unfortanately, due
to their overhead, views fend to be large objects in ATK (e.g. individual notes in a score editor
would not be separate views in ATK} making it difficult to associate different gestures with the
sraller objects of interest in the interface. Scott Hassan, in a different approach, has added the
author’s gesture recognizer to the ATK text object, creating an interface that allows text editing via
proofreader’s marks.

[ntegrating gestures into Garnet is another possibility. What would be required is a gesture in-
teractor, analogous to the gesture event handler in GRANDMA. Garnet interactors routinely specify
their semantics via constraints, with an escape into Lisp available for unusual cases. Specifying ges-
ture semantics should therefore be no problem in Garnet. James Landay has begun work integrating
the author’s recognizer into Garmet.

Gestures could also be added to MacApp. Besides being widely used, MacApp has the advantage
that it runs on a Macintosh, which historically has run only one process at a time and has no virtual
memory (this has changed with a recent system software release}. While these points sound like
disadvantages, the real-time operation needed to track the mouse reliably should be easy to achieve
because of them. Because MacApp is implemented in Object Pascal, minimal meta-information
about objects is available at runtime. i particolar, message selectors are not first class objects in
Obiect Pascal, it is not possible to ask if a given object responds to a message at runtime, and there
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is no runtime representation of the class hierarchy. Many things that happen automatically because
GRANDMA is written in Objective C will need to be explicitly coded in MacApp.

it would be desirable to have additional attributes of the gesture available for use in gesture
semantics. Notably missing from the current set are locations where the path intersects itself and
lacations of sharp corners of the stroke. Both kinds of attributes can be used for pointing with a
gestare, and atfow for multiple points to be indicated with one single-path gesture. Also, having the
numerical attributes also available in a scaled form (e g between zero and one) would simplify their
use as parameters o application functions.

14.3 Final Remarks

The wtility of gesture-based interfaces derives from the ability to copununicate an enfire primitive
application transaction with a single gesture. Forthis to be possible, the gesture needs to be classified
to determine the operation to be perdormed, and attributes of the gesture mwst be mapped to the
parameters of the operation. Some parameters may be culled at the tinwe the gesture is recognized,
while others are best manipulated in the presence of feedback from the application. This is the
justification for the two-phase approach, where gesture recognition is followed by a manipulation
phase, which allows for the continsous adjustinent of parameters in the presence of application
feedback.

From the outset, the goal of this work was to provide tools to allow the easy creation of gesture-
based applications. This research has led to prototypes of such tools, and has thus faid much of the
groundwork for building such tools in the future. However, the goal will not have been achieved until
gestures are integrated into existing user interface construction tools that are both well maintained
and highly available, This involves more development and marketing than it does research, but it is
vitally important {o the future of gesture-based systems.
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Appendix A

Code for Single-Stroke Gesture
ecognition and Training

This appendix contains the actual T code used to recognize single-stroke gestures, The feature vector
calculation, classifier training algorithm, and the Hnear classifier are all presented. The code may
be obtained free of charge via anonymous fip to emsworth.andrew.cimiedu (subdirectory gestures)
and is also available as part of the Andrew contribution to the X11RS distribution.

A.1 Feature Calculation

The lowest level of the code deals with computing a feature vector from a sequence of mouse points
that make up a gesture. Type FV is a pointer to a structure that holds a feature vector as well as
intermediate resukis used in the calculation of the features. The function Fvalloc allocates an FV,
which is initialized before processing the points of a gesture via FvInit. FvAddPoint is called
for each input point of the gesture, and FvCalc returns the feature vector for the gesture once all
the points have been entered.

The following is a samaple code fragment demonstrating the use of these functions:

#include "matriz.h®
#include "fv.h"

Vector
InputAGesture ()
{
static FV fv;
int x, v; long t; Vegtor v;

A FvAlioc{) is typically called only once per program invocation. * /
1f(fv == NULL) fv = FvAlloc{);
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A A prototypical loop to compute a feature vector fiom a gesture
being read from a window manager:  /
FvInit (£v);
while (GetNextPolnt (&x, &y, &t) i= END OF GESTURE)
FvaddPoint (fv, =, vy, t};
v o= FvyCalc(fv);
return v;

The returned vector v might now be passed to sClassify to classify the gesture.

The remainder of this section shows the header file, fv.h, which defines the FV type and the
feature vector inferface. This interface is implemented in fv.e, shown next.

/4<**$#}Kkk****XX¥***kl<k**$***k**#?\kk***xk***’fxxk****Xk¥*$*>\xk* ook ok ek sk sk okok

fuh— Create a feature vector, usefid for gesture classification,
from a sequence of points (e.g. mouse points).

sk st stk sk sk sk o ok sk stk ok ok sk ok sk st stk stk skt o stk stk ko stk otk ok stk sk ko o/
F s e s s e cOppite e SEHADIE PAFAINEIETS - e s s %/

A some of these can also be set at runtinme, see fucs /

#undef USE TIME
A Define USE_TIME to enabie the duration and naxinnmax /
A velocity features.  VWhen not defined, Cmay be passed s /
A as the time to FvAddPoiot. « /

#define DI STMSQWTHRESHOLD {3%3)
A poinis within sqrifDIST _SQ_THRESHOLD) + /

A will be ignored (o efiminate mouse jitter « /
#cefine SE_TH ROLLOFF  (4%4)

A The SE_THETA features {cos and sinof « /

A angle between first and last point) will 5 /

A be scaled down if the distance between the* /

A points is less than sqrt{SE_TH_ROLLOFF) + /
A e s JEEPTRCE o e o e e [
typedef sgtruct £v *FV;

A During gesture coflection, an FV holds /

A all intermediate resulis used in the v /
A calculation of a single feature vector » /
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FV FvAlloc(); Ao/

void FvFreae{) ; A Fvivs/

void PvInit {); AFVivs/

void FvaddpPoint {) ; A FVfy intx y long Himer + /
Vector FvCalc{); A FVHr «/

fi oo e e iiternial data Structune — - e e %/

#define MAXFEATURES 32
A maximum nuinber of features, cocasionally useful as an array bounds /

A indices info the feature Vector returned by FvCalcx /

f#define PF_INIT COS 0 A inftial angle (cos) » /

#define PF_INIT SIN 1 A initial angle (sin) x /

#define PF_BB_LEN 2 A length of bourding box diagonal + /
#define PF BB TH 3 A angle of bounding box diagonal = /
f#define PF_SE LEN 4 A length between start and end poiris < /
fdefine PF_SE COS 5 A cos of angle between start and end poinitss /
#define PF_SE _SIN & A sinofangle between start and end points x /
#define PF_LEN 7 A arelength of path+ /

#define PF_TH 8 A total angle traversedx /

#define PF_ATH 9 A sumofahs vals of angles iraversed /
fdefine PF _SQTH 10 A sumofsguares of angles traversed+ /
#ifndef USE TIME

& define NFEATURES 11

#else

# define PF_DUR i1 A durationof pathix /

# define PF MAXV iz A masimum speed [/

# define NFEATURES 13

fendif

A structure which holds intermediate results during feature vector calculation /

A the foliowing are used in calculating the features = /

double gtartx, starty; A starfingpoints/
long gtarttime; A starting mes /

fe these are set after a few points and then left alone /
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double initial sin, initial cos; 4 infdal angletoxaxisx/
A these are updated incrementally upon every point s /
int npoints; A rmber of points in path * /
double dx2, dyz; A differences: ends— prevx, endy—prevy s /
double magsg ; A dvaedys+ dydedvzs [
double endx, endy; A fastpointaddeds=/
long endtime;
doubla minx, waxx, wminy, maxy; A bounding boxs /
double path v, path th; A otaljengthand rotation {fnradians) « /
double abs_th; A sumof absolute values of path angles+ /
double sharpness; A surn of squares of path angles x /
double maxv; A maxirour velocity s /
vactor v; A Actual feature vector + /

3.

fe

Aokt sk ootk ok ok sk ko skok R ok tob sk sk ool Rk K Rk otk ok skokok sk ok skokob ok kokkok o
fue — Creates a feature vector, usefid for gesture classification,
from a sequence of points {e.g. mouse poinis).

#include <stdio.h>

#include <math.h>

#include "matyrix.h" A comfains Vector and associated functions  /
#include "fv.h"

A runtime seitable pararmeters = [

double dist_sqg_threshold = DIST SQ THRESHOLD:
double se_th rolloff = SE TH ROLLOFF;

#define BPS (1.0e—4)

A allocate an FV struct including feature vector + /

EV
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Fvalloce ()

{
1

register FV £v = (FV)

fv—>y = NewVector (NFEATURES) ;
FvInit (Ev);
return £v;

A free memory associated with an FVstruct x /
vold

FvFree (£v)

BV fv;

{
1

FreeVector(fv—>y);
free{{char %} fv);

mallocOrDie (sizec

£z

A initialize an FVstruct to prepare for incoming gesture points s /

void
Fvinit (fv)
register FV £v;

register int i;

fv—>npoints = 0;
fv->initial
fv—smaxv = §;
fv—spath ¥ = 0;
fv-»path th = 0;
fv->abs th = §;
fv-—>sharpness = 0;
fv—-smaxv =

sin = fv->initial cos =

0;
for(i = 0; i < NFBATURES; di++)
fv->y[i] = 0.0;

A update an FVsiruct {o refbct a new input point % /

FvaddPoint (fv, =, v, t}

regigster FV fv; int =, yv; long t;
double dxl, dyl, wmagsgl;

(]

trac

£v) )
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double th, absth, 4;
#ifdaf PF_MAXYV

long lasttime;
#endif

++Ev—>npoints;

3 d A fEst poiot, initialize some vars s /
fv-sgtarttime = fv-sendbime = t;

fv—>gtartx = fv-sendx = fv-sminx = fv—-smaxx = %;
Ev—>gtarty = fv-sendy = fv->miny = fv-s>maxy = v;

fv-sendx = x; fv-cendy = y;

return;
}
dxl = % — fv—sendx; dyl = v — fv—s>endy;

magsgl = dxl * dxl + dyl s dyi;

if {magsgl <= dist sg threshold) {

fv-snpointg- - ;
return; A ignore a poiat close to the last point* /
if{x < fv—euinx) fv->minx = Xx;

1f{x » fv-osmaxx) Ffv-s>maxx = x;
1f(y < fv—-sminy) Lv-s>miny

= y'.;

if{y » fv-s>maxy) Lv-s>maxy = y;

o

lasttime = fv-sendtime;
#endif
fv-sendtime = ¢;

4 = sgrt{magsgl);
fv—->path r += d; A update path length feature  /

A calculate initial theta when the third point is seen » /
if (fv-snpoints == 3) {
double magsg, dx, dy, recip;
dx = x — fv-s»startx; dy = vy — fv->gtarty;
magsyg = dx * dx + dy = Ay
if (magsg » dist_sg threshold) {

A& fid angle wat. positivex axiseg. (1 %/
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recip = 1 / sqrtimagsqg);
fv—>initial cos = dx # recip;

Ev—»>initial_sin = dy * recip;
¥
if(Ev—s>npointe == 3) { /A update angle—based features * /
th = absth = atan2{dxl % fv->dy2 - £v->dx2 % dyl,

Axl # fv—>dx2 + dyl * £v—>dvZ);
if {absth < 0} absth = —absth;
Ev-—»>path th += th;
fv—»abg th += absth;
fv->sharpness += thxth;

#ifdef PY _MAXV /A compute max velocity s /
if (fv-»endtime » lasttime &&
(v = da / {fv—>endtime — lasttime)} > fv-omaxv)
Ev—>manv = v;
fendif

¥

A prepare for next fteration * /

fv—sendx = x; fv-sendy = v;
fv—->dx2 = dxl; £v->dv2 = dyi;

fv—->magsqg2 = magsqgl;

retuyn;

[

A calculate and return a feature vecior = /
Vector

FvCalco (fv)

regigter FV fv;

{
1

double bbhlen, selen, factor;

1E{fv->npoints <= 1)
return fv—>y; A a feature vector of all zeros v /

fyv—->y [PF_INIT C0S] fv->initial cos;
fv—>y [PP_INIT SIN] = fv—sinitial sin;
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A compute the length of the bounding box diagonal = /

bbien =

hypot (Ev—>manx — fv-—-sminx,

fv—>y[PF_BB LEN] = bblen;

A the bounding box angle defaults to Ofor small gestures x /
if {(bblen # bblen > dist_sq threshold)
fv-»>y {PF_BB_TH] = atan (fv-s>maxy

A compuie

gsalen =

fv— >y [PF

A when the frst and las
are muted so that ih ey s 10‘9 the stdhzufv criterions /
factor =
if (factor
factor =
v—>y [PF _SE C08] = {(fv-»endx - fv-s>startx)
fv-»>y[PF_SE SIN] = (fv-»endy - fv->

A the remaining features have already been computed * /

SV >=TaxX

the length and angle between the fist and last poi

hypot {(fv—>»endx — fv-—-sstartx,
fv—sendy — fv—sstarty);

_SE _LEN] = selen;

selen + gelen / se_th rolloff;

» 1.0) factor = 1.0;

fv-»y[PF_LEN]l = fv->path r;
fv—>y [PF_TH] = fv-»path_th;

Ev—>y [P

#ifdef PF_DUR
fv—>y [PF_DUR] = {(fv—>endtime — fv->starttimels.01;

#endif

F ATH] = fv-»abs th;
v—>y [PF

SQTH}! = fv—>gharpness;

#ifdef PF_MAXV

fv->y [PF_MAXV] = fv-s>maxv % 10000;

#endif

return fv—>v;

[—
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fv—sminzx) ;

 points are very close, the angle

ac
gelen » EPS ? factor/selen
x factor;

ATINING

\

fv—>miny’ ;

&



Az DERIVING AND USING THE LINEAR CLASSIFIER 243

A2 Deriving and Using the Linear Classifier

Type sClassifier points at an object that represents a classifier able to discriminate between a
set of gesture classes. Each gesture class is represented by an sClassDope type. The functions
sRead and sWrite read and write a classifier to a file. The function sNewClagssifer creates
anew {empty) classifier. A training example is added using sAddExample. There is no function
to explicitdy add a new class to a classifier. When an example of a new class is added, the new class
is created automatically. To train the classifier based on the added exaraples, call sDoneadding.
Once trained, sClagsify and sClaasifvAl arc used to classify a feature vector as one of the
classes; gClasaifyAD optionally computes the rejection information.
Here is an example fragment for creating a new classifier, entering new training examples, and
writing the resulting classifier out to a file. Some of these functions are timed {and further deseribed)
in section 9.1.7.

#include <stdio.h>
#include <math.h>»
#incliude "bitvector.h?
#include "matrix.ht
#include "sc.h”

#define NEXAMPLES 15

gClasgifier
MakeAClasgifier()
{
1
sClassifier s¢ = sNewClassifiex{);

Vector InputAGesture();
char name [100] ;

int i;
for(;;) {
printf ("Enter class name, newline to exit: ")
if {gets (name) == NULL || name (0] == *\0’)
break;
for{i = 1; 1 «= NEXAMPLES; i++) {
printf ("Enter %8 example %$d\n", name, 1);
SsAddE xampl els name, InputdGesture(});
¥
h
sDoneAddwﬂq( )

sWrite (fopen{®clagsgifier.cout®, "w"), sc);
return sc;
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[

Once a classifier has been created it can be used to classifier gestares as follows:

TestAClassifier(sc)
gClassifier so;
Vector v;

aClasglops sad;

double punambig, distance;

for{;;} {

rintf ("Enter a ges
= InputhAGesture{)
scd = gClassifyADi(s

< T

printf ("Gesture classified as %s ", scd-s>name);

punambig) ;
printf ("Distance fr

(-

tur

c L

om

e\n");

v, &punamblg, &distance);

7

class mean: %g\n", diztance);

What follows is the header file and code to implement the statistical classifier

st ot st e kst e s st s e otk ke stk ke st sk et et st ke st sk sk ke ok ke sk ok s ks et s ok

sc.di — create single path classifers from feature veciors of examples,

as well as classifyii

]L
*

g exampie feature vectors.

#define MAXSCLASSES 100 4 maximum number of classesx /

typedef struct sclasgifier *sClassifier; A classifers/
1

typedef
typedef s

+sClasgsDope

A per—class index + /

A per—class information# /

struct sclassdope { A per gesture class information within a classifbr« /

char name ;
sClagsindex number;
int nexamples;
vector average;
Matrix SUMCOV;

1.

fr
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L
A
7

L

29
y3
A

name ofa classx /

unigue index mail integer) of a class + /
number of training examples x /

average of training examples  /

covariance matrix of examples + /



AZ DERIVING AND USING THE LINEAR CLASSIFIER

Page 1412 of 1714

B3CLAaS

truct

[}
et
ti- ()
=3
=
(41

-t
=
)

b T

sC

asgshope

sifier { 4 aclassifprs/
nfeatures; f

- .
ncilasges;

Yad

numpber o
awumber of classes known by this classifer = /

ffeatures in feature vector + /

xclassdope; & array of pointers to per class dala + /

vector cnst; A constant term of discrimination function  /
Vector *W ; A array of coefftient weighits * /
Matrix invavgeov; A inverse covariance matrixs/
1
sClagsifier sNewllagsifier () : LR
aClagsifier sRead(); A FHExf«/
void gWrite{); A FILE < sClassifbr sc; [
void sFreeClagsifier{); fesck/
void sAdGdBExample {) ; A sc, char xclassname; \ector y*/
void gbhoneAddding () ; Ascx/
sClassDope sClassify(); Aose, vx/
sClassDope sClassifyAD{); A s, v, doablesap, double xdpx /
aClaselope eClaseNamsLookup () ; A sc, classname x /
double MahalanobisDistance {) ; & Vectorv, a4 Matrix sigma x /
Akt g totokok ok ek bk st ok st gk ok kR ok ok stk o ko s ok s ok ook sk R ok sk ok ok ok s ke
sc.o - credles classiters from featuie vectors of examples, as well as
classifving example feature vectors.
sekokok s ok stk ket stk stk btk b sk otk sk sk kool otk ot ok ok ok s koo s kol ok ok /
#include <«<stdioc.h>

#include <math.

#include "bi
#include
#include "sc

#define EPS

tvector. ht

"matrix.h"

(h!!

{1.0e—6)

A for singular matrix check x /

A allocate memory associated with a new classifer s /

aClagsifier
aNewClasgsifi

ex (}
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{sClaggifier) mallocOrDie{sizeof {struct sgclassifier));
sc—>nfeatureg = —1;
se-»nclasses = 0;
ac—»clasgdope = (gllasshope *)

mallocOrDie (MAXSCLASSES « sizeof (sClassDope)) ;
SC—>w = NUILL;

return sc;

=

t
register aClassDope scd;

for{i = ¢; 1 < sc—>nclasses; i++) {
scd = sc-—»>classdopeli];
if {(scd—»name) free(scd—>name);
free {sed) ;
if{sc—>w && sc—>wiil) FreeVector(sc—>wli]);
if (scd—>gumcov) FreeMatrix{god—s>sumeov) ;
i€ (scd—»averags) FreseVector (scd-—raverage) ;

}

.

¥
free{ac—>classdops} ;
ifi{sc—>w) freel

if (sc—>cnet) FreeVectoris
if (go—»invavgeov) Free
freel(sc);

[—

A given a string name of a class, return its per—class faformations /
aClassbDope

sClagsNamelookup (sc, clazgsname)

register aClasgifier so;

regigter char xclassname;

{

register int i;
register sClassDope sc
gtatic sClassifier lastsc;
gtatic eClassbope last
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A guick check for last class name * /

if(lastsc == 3¢ && STREQ(lastscd->name,
return lastscd;

A linear search through all classes for name x /

for{i = 0; i < sc—»>nclasses; i++)} {
scd = se-—-»classdope(il;
1T {STREQ (scd—»>name, classname))

return lastsce = tscd = 8

sSC, L1as

¥

return NULL;

5

A add a new gesture class to a classiferx /
static sClassDops
sAaddClass (s¢, classname)
regigter sClagsifier sc;

har xclasgname;

register sClagsDope sod;

sc—>clagsdope {sc—>nclasgeg] =

clagsname) )

cd;

153
mallocOrDie (sizeof (gstruct sclassdope));

scd—sname = scopy{claasname) ;
acd->nunber = SC—->nclasses;
scd—>nexamples = (;
scd—>gumcov = NULL;
++8c->ncliasses;

return sed;

A add a new training example to a classifer + /

3

void

aaddiExample (s¢,

Clasaname,

v)

register ellassifier sc;
char *classname;
Vector v;
{
register sClassDops scd;
37

register int i,
double nfv[50]

’
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double nmion, recipn;

goed = sClassNamseLookup (sc, classname);

A
i€ (E’Cd B EJU.JL)

god = gaddClase{sc, classname) ;
if {se—>nfeatureg == —1)

gc—-s>nfeatures = NROWS{v);

if (ged—>nexamples == 0) {
ged-raverage = NewVector {sc-—s>nfeatures);
ZeroVector (scd—»average) ;
god—>gumcov = NewMatrix{sc—>nfeatures, gsc— >nfeatures) ;
ZeroMatrix (gcd—s>sumcov) ;

if {sc—>nfeatures I= NROWS(y}) {
PrintVector{y, "sAddExample: fumny vector nrowsi=%d?,
sc—>nfeatureas) ;
return;

sod-— anex—mples +
nmion = {{double} scd->nexamples—1)/scd->nexamples;
recipn = 1.0/scd—>nexamplsas;

A fncrementally update covariance mateixx /

for{i = 0; 1 < sc->nfeatureg; i++)
nfv[i] = yv[i] — scd-s>averag ]' 1;

A only upper triangular part computed s /

for{i = 0; 1 <« sc—>nfeabures; 1++)
for(j = 1; 4 < sco->»nfeatures; j++)
gsed—sgumcov i {1 += nmlon % nfvi{il * nfvjl;

A incremnentally update mean vector « /
for{i = 0; 1 < sc—>nfeatures; i++)
gcd—-»average {1

nmlon % gced-»average (il + recipn % yvI[il;

f—

—-—;
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/

A run the training algorithm on the classi

)

Adding (s
v eClassifier sc;

L

register int 1, I,

int ¢;

denom;

double consoverdenowm;
register Matrix s;
register Matrix avgoov;
double det;
register sCi

int ne,

assDope scd;

if (go->nclagses == 0)
error {("sDoneAdding:

A& Given covariance malrices for each class

el /

fiBr

No classes\n");

7

number of ¢ kdﬁ}}h’té

iTGﬁ?pljf@ the aver rage ((‘Ul unRon/ covariance matrix = § /

avgoov = Newrafrlxﬁsc >nfeatures,

ZeroMatr H
ne = 0;
for{c = 0; ¢ <

ge—>nclasgses; c++) 4

sed = gso->classdope[cl;

ne += sced-s>nexamples;

g = sCd—>5umcov;
for{i = 0; 1 < se->nfeatures; i+4
for{j = i; 7 « sc—-s>nfeatures;
avgeov [i] 4] += s{il [§1;
h
denom = ne - sc—>nclasges;
if (denom <= 0) {
printf {("no examples, denom=%d\n",
return;
}
cneoverdenom = 1.0 / denom;
for{i = 0; i < goc—>nfeatures; 1++)
for{j = 1; j < sc—>nfeatures; j++

3
7

Fe+)

denom}

\
!

¥

sc—snfeatures) ;

249
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avgeov il {11 = avgeovi{il [j] #*= oneoverdenom;

avg covariance matrix+ /

c—»invavgeov = NewMatrix (sc—=nfeatureg, sc->nifeatures);
e sc->1nvavgcov);

t = InvertMatrix{avgceov,
f{fabs {det) <= EPS}

FizClassifier{sc, avgeov);

8
d

A now compute discrimination functions = /
= (Vector )

So->w =
mallcocOrDie {gc—>ncla Vector) ) ;

asse

sc—>cnst = NewVector (sc—snclasses) ;
for{c = 0; ¢ < sc—»>nclasses; c++) {

wo—»clasasdope {c] ;
ge-»>wicl = NewVector(gc—s>nfeatures
VectorTimesMatrix{scd—>average,

A product =%/ s
ge-»cnst {¢] = ~0.5 %
InnerProduct (sc—>wlcl,

A could add log (priorprob class ¢} to cnstfc] + /

scd—savarage) ;

FreeMatrix {(avgcov) ;
return;

[—

A classify a feature vector « /
sClazsDope
sClagsify(sc, £v} {

(sc, fv, NULL, NULL);

-
o
§ “

return sClassifyal

Nyt

A classify a feature vector, possibly computing refection meirics s /
sClagsDope
sClagsifyAb{sc, fv, ap, dp)
sClagsifier sc;

Vector fv;
doubrle =*ap;
double #dp;

{

double disc [MAXSCLASSES];
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register int i, maxclass;
double dencom, exp{);
register sClassDope sod;
double 4;

ervor ("sClagsifvAl: %x no trained classifier®,

for{(i = 0; 1 « gc—>nclasses; i++)

digefil]l = ImnerProduct{sc—»>wli], £v) + sc—>¢nst

for(i = 1; 1 < sc—-»noclasses; L+4+)
if{disciil » discimaxclass])
] .

=
1]
]
w
0
o5}
i

scd = sc—»>classdope [maxclass];

if{ap) { A calculate probability of non—ambiguity + /
for{denom = ¢, i = 0; 1 <« gc—>nclasses; i++)
A quick check to avoid computing negligible term # /
if{{d = discl[i] - disclmazclass]) > =7.0)
denom += exp(d};

/

tap = 1.0 / denom;

1if{dp) A calculate distance to mean of cliosen class % /
*dp = MahalanobisDistance (fv, scd-saverage,
c->invavgoov) ;

[

return gcd;

A Compute the Mahalanobis distance between two veciors v and u /
double

Mahalanobighigtance (v, u, sigma)

register Vector v, u;

register Matrix sigma;

f
1

register i;
static Vector space;
double result;
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if {space == NULL || NROWS (space) I= NROWS(v}) {
if (space) FreaVector{space);
space = NaewVector (NROWS (v)};
}
for{i = 0; 1 < NROWS(v); i
gpaceii]l = wvi{i] — uflil;
result = QuadraticFormispacs, sigma);
return result;

+4

[—;

A handle the case of a singular average covariance matrix by removing features x /
FixClassifier(gc, avgcov)
register =zClassifier so;
Matrix avgoov;
|
int i;
double det;
BitVector bv;
Matrix m, ©;

A just add the features one by one, discarding any that cause
the matrix io be non—invertiblex /

"LEAR BIT VECTOR (bv) ;

for{i = 0; 1 < gc-»nfeatures; i++) {
BIT SET(i, bv);
m = SliceMatrix{avgcov, bv, bv);
¥ = NewMatrix (NROWS (m), NCOLS(m)):

det = InvertMatrixim, x);

if {fabg{det) <= EPS)
BIT CLEAR (i, bv};

FreeMatrix (m)

FreeMatrix (r)

;
7

[S——;

m = SliceMatrix{avgcov, bv, bv};
¥ = NewMatrix (NROWS (m), NCOLS{m));
det = InvertMatrixim, ¥};
if (fabs{det) <= EPS)
error{"Can't fix classifier:!");
DeSliceMatrix(xr, 0.0, bv, bv, sC—»>invavgceov);
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A write a classiferio g fHe s/

void

alWrite{outfile, sc)
FILE =outfile;
gClasgifier go;

i

[y

int 1i;

register sClassDope sod;

fprintf(outfile,
for{i = 0; 1 < sc—>nclasses;
sc—>clagsdope (1]

cd o=
fprintf(outfile, "%s\n",

4]

¥

for(i =
scd = sg—>classdope (i
CutputVector (outfile,

0; i < so-s>nclasses;
il;

¥

QutputVector (outfile,
CutputMatrix (cutfile,

A read a classifer froma Hex /
gClaggifier

sRead (infile)

FILE xinfile;

{
s

int i, n;

register sClassifier sc;
register sClassbope scd;
char buf[100];

erintf ("Reading clagsifier ")

N \
"5d classes\n",

i++} 4
sed->name) ;

i++) o

god—>average) ;
QutputVector (outfile, sc-

>wlil);

sc—s>cnst) ;
SC—>invavgeov) ;

, Efiugh{gtdout);

se-snclasses) ;

o

3
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gs¢ = gNewClagsifiex(});
Egetae(ouf, 100, infile);

if {(ggecanf (buf, *%dv*, &n) != 1) error{"sRead 1");
printf ("%d classes ", n), f£flush(stdout);

for{i = 0; 1 < n; i++) {
fscanf (infile, "%s", buf);
gcd = sAddClass{sc, buf);
ged-—-»name = scopy (buf);
printf{*%$s *, gcd-s>name), £flush(stdout);
i
gsc->w = allocate(sc—»>nclasses, Vector);
for{i = 0; 1 < sc—>nclasses; i++) {
gcd = sc—>classdopeli];
scd—savervage = InputVector (infile);
sc—>wii]l = InputVector{infile);
}
gse—>cnst = InputVector{infile);
sc—>invavgeov = InputMatrix{(infile);
printf ("\n");
raturn eC;

(-

A compute pairwise distances between classes, and print the closest ones,
as a clue as to which gesture classes are confusable + /

sDistances {sc, nclogsst)
register sllassifier sc;

{

i - -

register Matrix d = NewMatrix{sc-snclasses, sc-s>nclasses);
register int i, 7;

double min, max = 0;

int n, wmi, mij;

-

\

printf (Y- — AN )
printf ("3d closest pairs of classges\n", nclosgest);
for{i = 0; 1 < NROWS(A}; i++) 4

for{j = i+1; j < NCOLS{d}; j++) {

d{il [§] = MahalancbigDistance/(
sc—>classdope [1] - »average,
se—-»>classdope i1 - >average,
8C—>invavgeov) ;

> max) max = diil31;
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[
41
[

ot

"

for{n = 1; n <= nclosest; n++) {
min = max;

mi = mj = —1;
for{i = 0; i < NROWS({d}; i++) {

for{j = i+ i <« NCOLS(d); ++) {

TE(A{LT ] <« wming
min = dimi=1] [mi=3];

}
\
§
if{mi == —1}

break;

printf ("3%2d) %10.10s to %10.10s d=%g nstd=%g\n",
n,
se—>clagsdope [mi] — >name,
se—>clagsdope [mj] —>name,
dimil [mjd,
sgre{dmi] mii));

dlmil [mi] = max+l;
PLINtE (e e e\ )
reeMatrix(d);

[

A3 Undefined functions

The above code uses some fanctions whose definitions are not included in this appendix. These fall
into four classes: standard library functions (including the math library}, utility functions, bitvector
functions, and vector/matrix functions, The standard library calls will not be discussed.

The utility functions used are

STREQ (81, s2) returns FALSE iff strings 81 and 32 are equal.

[}

scopy (

mn

) returns a copy of the siring s.
error (format, argl...)} printsamessage and causes the program to exit.

mallocOrDie (nbytes) calls malloc, dying with an error message if the memory cannot be
obtained.
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The bit vector operations are an efficient set of functions for accessing an array of bits.
CLEAR BIT_VECTCR (bv) resets an entire bit vector b to all zeros,
BIT.SET(i, bv) setsthe i bit of bv to one, and
BIT.CLEAR (i, bv) setsthe 1™ bit of bv to zero.

The vector/matrix functions are declared in matrix h. Objectsof typeVector andMatrix may
be accessed like one and two dimensional arrays, respectively, but also contain additional information
as to the size and dimensionality of the object (accessible via macros NROWS, NCOLS, and NDIM. It
should be obvious from the names and the use of most of the functons (WewVector, NewMatrix,
FreeVector, FreeMatrix, Zerovector, ZeroMatrix, PrintVector, PrintMatrix,
InvertMatrix, InputVector, InputMatrix, CutputVector, OutputMatrix,
VectorTimesMatrix, and InnerProduct) what they do. As for the remaining functions,

double QuadraticForm{Vector V, Matrix M) computes the quantity VMV, where
the prime denotes the transpose operation.

Matrix SliceMatrix{Matrix m, BitVector rowmask, BitVector colmask)
creates a new matrix, consisting only of those rows and cohumns in m whose corresponding
bits are set it rowmask and colmask, respectively.

Matrix DeSliceMatrix{Matriz m, double £ill, BitVector rowmagk;
BitVector colmask; Matrix result) firstsetseveryelermentinresulttofill,
and then, every element in regult whose row number is on in rowmask and whose column
numberisonin colmask, is setfrom the corresponding element in the inputmateix m, which is
smallerthan v, Theresultof SliceMatrix (DeSliceMatyrix(m, £ill, rowmask,
colmask, result), rowmask, colmask) isacopyofm, givenlegal values for all
parameters.

These auxiliary functions, as well as a C-based X11R5 version of GDF, are gl available as part
of the ftp distribution mentioned above.
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Abstract

This research focuses on the use of hand drawn marks as a human-computer input
technique. Drawing a mark is an efficient command input technique in many
situations. However, marks are not intrinsically self-explanatory as are other
interactive techniques such as buttons and menus. This research develops and
evaluates an interaction technique called marking menus which integrates menus
and marks such that both self-explanation and efficient interaction can be provided.

A marking menu allows a user to perform a menu selection by either popping up a
radial menu and then selecting an item, or by drawing a straight mark in the
direction of the desired menu item. Drawing a mark avoids popping up the menu.
Marking menus can also be hierarchic. In this case, hierarchic radial menus and
“zig-zag” marks are used. Marking menus are based on three design principles:
self-revelation, guidance and rehearsal. Self-revelation means a marking menu
reveals to a user what functions or items are available. Guidance means a marking
menu guides a user in selecting an item. Rehearsal means that the guidance
provided by the marking menu is a rehearsal of making the mark needed to select
an item. Self-revelation helps a novice determine what functions are available, while
guidance and rehearsal train a novice to use the marks like an expert. The intention
is to allow a user to make a smooth and efficient transition from novice to expert
behavior.

This research evaluates marking menus through empirical experiments, a case
study, and a design study. Results shows that (1) 4, 8 and 12 item menus are
advantageous when selecting using marks, (2) marks can be used to reliably select
from four-item menus that are up to four levels deep or from eight-item menus that
are up to two levels deep, (3) marks can be performed more accurately with a pen
than a mouse, but the difference is not large, (4) in a practical application, users
tended towards using the marks 100% of the time, (5) using a mark, in this
application, was 3.5 times faster than selection using the menu, (6) the design

principles of marking menus can be generalized to other types of marks.
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abstract
This research focuses on the use of hand drawn marks as a human-computer input
technique. Drawing a mark is an efficient command input technique in many
situations. However, marks are not intrinsically self-explanatory as are other
interactive techniques such as buttons and menus. This research develops and
evaluates an interaction technique called marking menus which integrates menus
and marks such that both self-explanation and efficient interaction can be provided.

A marking menu allows a user to perform a menu selection by either popping up a
radial menu and then selecting an item, or by drawing a straight mark in the
direction of the desired menu item. Drawing a mark avoids popping up the menu.
Marking menus can also be hierarchic. In this case, hierarchic radial menus and
“zig-zag” marks are used. Marking menus are based on three design principles:
self-revelation, guidance and rehearsal. Self-revelation means a marking menu
reveals to a user what functions or items are available. Guidance means a marking
menu guides a user in selecting an item. Rehearsal means that the guidance
provided by the marking menu is a rehearsal of making the mark needed to select
an item. Self-revelation helps a novice determine what functions are available, while
guidance and rehearsal train a novice to use the marks like an expert. The intention
is to allow a user to make a smooth and efficient transition from novice to expert

behavior.

This research evaluates marking menus through empirical experiments, a case
study, and a design study. Results shows that (1) 4, 8 and 12 item menus are
advantageous when selecting using marks, (2) marks can be used to reliably select
from four-item menus that are up to four levels deep or from eight-item menus that
are up to two levels deep, (3) marks can be performed more accurately with a pen
than a mouse, but the difference is not large, (4) in a practical application, users
tended towards using the marks 100% of the time, (5) using a mark, in this
application, was 3.5 times faster than selection using the menu, (6) the design

principles of marking menus can be generalized to other types of marks.
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Chapter 1: Introduction

Research in the last forty years has brought great improvements in the quality of
human-computer interactions. In the past, human-computer dialogs were
optimized for the computer; humans communicated with computers using protocols
that were easy for the computer to understand but were hard for a human to
understand and use, for example, machine languages. Advances in human-
computer interaction have changed this situation. Controlling a computer no longer
requires memorizing obtuse, cryptic codes or an intimate understanding of the
internal workings of the computer. In well-designed systems, human-computer
interactions are optimized for the human. Interfaces now make use of sophisticated
graphics, sound, and pointing devices to make the human's job easier.

The major advances in human-computer interaction have been in making computers
easier to use. Specifically, research on methods to reduce the amount of training a
person needs before being able to operate a computer has come a long way. For
example, the Apple Macintosh has set standards for the minimal amount of
instruction that a person needs before operating a computer. Because of these
advances, the world of computers opened up for people who otherwise would not
have invested the time in training to operate a computer system.

Given these advances in human-computer interaction, we can think of the interface
as currently being optimized for the human, specifically, the novice computer user.
Clearly, this is of great value, but we can consider another important class of user —
the expert. Human capacity for the development of skills is great. Virtuoso pianists
are proof of this. Virtuosos invest a great deal of time in practicing their skills—
eight hours of practice a day is not uncommon. Now consider expert computer
users. It is not uncommon for an expert computer user to spend eight hours a day

working on the computer. Therefore, there is untapped potential for human skill

1
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development in human-computer interactions. A good interface should take
advantage of this potential and not limit the efficiency of a skilled user.

In order for this skill potential to be tapped, an interface must have certain
properties. First, the interface must provide interaction methods that are suitable for
an expert. Experts require efficient interactions. As a result, interactions may be
terse and unprompted. Second, and most critically, the interface must also provide
support for a novice to become expert. We look at the interface design not so much
as making the interface easier to use but rather as accelerating the rate at which novices
begin to perform like experts. This goal demands three components: support for the
novice, support for the expert, and an efficient mechanism to support the transition
from novice to expert (see Figure 1.1).

Novice component Transition component  Expert component

(recognition) (recognition and recall) (recall)

Skill development >

Figure 1.1: The components required to accelerate the rate at which users begin to
perform like experts. The novice component allows a user to issue commands by
searching for them and recognizing them. The expert component allows a user to
efficiently issue commands by recalling the action associated with the command.
The transition component allows a user to efficiently switch between these two
methods to learn and practice command action associations.

In this dissertation, we focus on an interaction technique that is intended to take
advantage of this skill potential and support the development of skill. We propose
an interaction technique which has a two modes. In the first mode, the style of
interaction is intended to facilitate novice use. In the second mode, the style of
interaction is intended for skilled expert behavior. The first mode is also designed to
allow a novice to practice the skills required in the second mode. A user can switch
to the second mode by operating the technique quickly. One can think of this in
metaphorical terms. When you are learning to drive a car, its suitable to have a car

2
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that is designed for a student driver. However, as your driving skills improve, the

car incrementally transforms into a Ferrari.

1.1. GENERAL AREA AND DEFINITIONS

To support the expert component described in the previous section, we focus on a
style of human computer interaction in which a user “writes” on the display surface.
This style of interaction is similar to writing or drawing with a pen on ordinary
paper. Writing on a display, however, is accomplished with a special pen and the
computer simulates the appearance of ink.1

We define a mark as the series of pixels that are changed to a special “ink” color
when the pen is pressed and then moved across the display. The pixels that are
changed to an ink color are those which lay directly under the tip of the pen as it is
moved across the display. Free hand drawings, ranging from meaningless scribbles
to meaningful line drawings and symbols, including handwriting, are examples of

marks. The act of drawing a mark is referred to as marking.

Marks can be created not only with a pen but also with other types of input devices.
For example, a mouse can leave a trail of ink (commonly referred to as an ink-trail)
behind the tracking symbol when the mouse button is pressed and the mouse is
dragged. Some systems use a pen and tablet. In this case, marks are made on the
display by writing on the tablet instead of the display.

From a user’s point of view, these interfaces allow one to make marks and then have
the system interpret those marks. There are, however, systems in which marks can
be made but not recognized by the system. They are interpreted strictly as
annotations, for example, Freestyle (Perkins, Blatt, Workman, & Ehrlich, 1989). The
focus of this dissertation, however, is on systems in which marks are interpreted as

commands and parameters.

Much of the literature refers to marks as gestures. However, the term gesture is

inappropriate in this context. Indeed creating a mark does involve a physical

1 The pen, in these types of systems, is sometimes referred to as a stylus.

3
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gesture but the real object of interpretation is the mark itself.2 For example, the “X”
mark requires a completely different physical gesture if performed with a pen
instead of a mouse. Gesture is an important aspect of mark because some marks
may require awkward physical gestures with the input device. However, the two
terms should be distinguished. The term gesture is more appropriate for systems in
which the gestures leave no marks, for example, VideoPlace (Krueger, Giofriddo &
Hinrichsen, 1985). The term mark is more appropriate for pen-based computer

systems or applications that emulate paper and pen.

1.2. WHY USE MARKS?

Current human-computer interfaces are asymmetric in terms of input and output
capabilities. There a number of computer output modes: visual, audio and tactile.
Most computers extensively utilize the visual mode; high resolution images which
use thousands of colors of can be displayed quickly and in meaningful ways to a
user. In contrast, a computer's ability to sense user input is limited. Humans have a
wide range of communication skills such as speech and touch, but most computers
sense only a small subset of these. For example, keyboards only sense finger presses
(but not pressure) and mice only sense very simple arm or wrist movements.
Therefore, we believe the advent of the pen as a computer input device provides the
opportunity to increase input bandwidth through the use of marks.3

There are two major motivations for using marks. The first addresses the problem
of efficiently accessing the increasing number of functions in applications. The
second motivation is that there are some intrinsic qualities that marks have which
can provide a more “natural” way to articulate otherwise difficult or awkward
concepts (such as spatial or temporal information). Both of these motivations will

now be examined in more detail.

2 There are systems where interpretation depends not only on what is drawn but also how it is drawn. For
example, an "X" drawn quickly may have a different interpretation from a "X" that is drawn slowly. By this
dissertation's terminology, these systems would contain a combination of marking and gesture recognition.

3 Itis ironic that one of the first input devices for graphics was a light pen which wrote directly on the display
surface (Sutherland, 1963).
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1.2.1. Symbolic nature

The inadequacy of mouse and keyboard interfaces is exemplified by applications
that are controlled through button presses and position information.# Buttons must
be accessible and thus require physical space. Problems occur when an application
has more functions than can be mapped to buttons or reasonably managed on the
display. Other problems also exist: arbitrary mappings between functions and
buttons can be confusing, and user management of the display and removal of
graphical buttons can be tedious.

Expert users of these types of systems find the interface inadequate because button
interfaces are inefficient. The existence of interaction techniques that override
buttons for the sake of efficiency is evidence of this. Experts, having great
familiarity with the interface, are aware of the set of available commands. Menus
are no longer needed to remind them of available commands and invoking
commands through menu display becomes very tedious.

Designers have addressed this problem in several ways. One solution is accelerators
keys which allow experts direct access to commands. An accelerator key is a key on
the keyboard which, when pressed, immediately executes a function associated with
a menu item or button. The intention is that using an accelerator key saves the user
the time required to display and select a menu item or button. Many systems
display the names of accelerator keys next to menu items or buttons to help users
learn and recall the associations between accelerator keys and functions.

Another way of supporting an expert is by supplying a command line interface in
addition to a direct manipulation interface. Commodore’s command line interface,
CLI, and graphical user interface, Intuition, are an example of this approach.

Both these approaches have their problems. In the case of accelerator keys, arbitrary
mappings between functions and keys can be hard to learn and remember.
Sometimes mnemonics can be established between accelerator key and function
(e.g., control-o for “open”), but mnemonics quickly run out as the number of
accelerator keys increases. Further confusion can be caused by different applications

4 The term buttons is used as a generic way of describing menus items, dialog box items, icons, keys on a
keyboard, etc., which are typical of direct manipulation interfaces.

5
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using a common key for different functions or by different applications using
different keys for a common function. Experts must then remember arbitrary or
complex mappings between keys and functions depending on application.
Command line interfaces are problematic because they are radically different from
direct manipulation interfaces. To become an expert, a novice must learn another

entirely different interface.

Marks, because of their symbolic nature, can make functions more immediately
accessible. Rather than triggering a function by a button press, a mark can signal a
command. For example, a symbolic mark can be associated with a function and a
user can invoke the function by drawing the symbol. In theory, because marks can
be used to draw any symbol or series of symbols, marks can provide a quicker
method of choosing a command than searching for a physical or graphical button
and pressing it. In practice, the number of marks is limited by the system's ability to
recognize symbols and a human's ability to remember the set of symbols.
Nevertheless, even if only a small set of marks are used, a user can invoke the
associated functions immediately.

Marks can also be used to hide functions because they are user generated symbols.
For example, researchers at Xerox PARC made use of this property when faced with
a dilemma during the design of a pen-based application. This application runs on a
wall sized display where a user can write on the display using an electric pen (Elrod
et. al., 1992). There were two major design requirements. First, the designers
wanted the application to look and operate like a whiteboard and maximize the size
of the area where drawing could take place. Second, they wanted to provide
additional functions commonly found in computer drawing programs. This second
requirement meant that many graphical buttons would need to appear on the
screen. This, however, violated the first design requirement because the numerous
graphical buttons would consume too much of the drawing area and make the

interface look complicated.

The design solution was to assign many of the drawing functions to marks. Marks
provided a way to hide additional functionality from novices while expert users
could use the marks to access additional functions. This design also avoided using
buttons for these functions and, in many cases, marks were a much more effective

way of articulating a function.
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1.2.2. Intrinsic advantages

The advantages of pen input and marks have been expressed in the literature (Bush,
1945; Licklider 1960; Ellis & Sibley, 1967; Hornbuckle, 1967; Coleman, 1969; Ward &
Blesser, 1985; Rhyne & Wolf, 1986; Wolf, 1986; Buxton, 1986; Welbourn & Whitrow,
1988; Wolf, Rhyne, & Ellozy, 1989; Morrel-Samuels, 1990; Kurtenbach & Hulteen,
1990). Specifically, marks provide the ability to:

* embed many command attributes into a single mark;

* reduce learning time due to the mnemonic nature of marks and users' existing
knowledge of pen and paper marks;

* capture and recognize handwriting and drawing;

* enter different types of data without switching input device. For example, text,
menu selections, button presses, and screen locations can be entered without

changing input device;?

* replace the computer keyboard, thus making computers smaller and more
portable;

* maintain a visible audit trail of operations;

* maintain a clear figure/ground relationship (Hardock, 1991). For example, marks
written over formatted text can be distinguished from the text.

1.3. SELF-REVELATION, GUIDANCE AND REHEARSAL

Despite all of these advantages, pen input and marks have not been widely used.
Pen-based interfaces have many difficult technological requirements. Historically,
hardware for pen-based systems was too expensive and recognition was not reliable
(Sibert, Buffa, Crane, Doster, Rhyne, & Ward, 1987). Given these limitations pen-
based applications presented no advantage (in reality, more of a disadvantage) over
a mouse-based version of the application.

5 This eliminates homing time between physical input devices but it does not eliminate homing time between
graphical devices such as graphical buttons, sliders, etc.

7
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This situation is changing and this change is clearly evident in the marketplace
(Normile & Johnson, 1990; Rebello, 1990). Several companies such as Go, Grid, IBM,
Apple, Microsoft, and NCR are introducing pen-based systems. Hardware and
recognition has improved to the point where pen-based systems are technically
possible. Applications such as portable notebook computers and large whiteboard
size computer screens make the pen an attractive input device (Goldberg &
Goodisman, 1991; Weiser, 1991).

On the surface, it appears that once the recognition and hardware problems are
solved, pen-based systems will be successful. However, there is still a serious
interface problem when using marks.

1.3.1. The problem: learning and using marks

An intrinsic problem with marks is that they are not self-revealing. In contrast,
menus and buttons are self-revealing; the set of available commands and how to
invoke a command is readily visible as a byproduct of the way commands are
invoked. An interface which uses only marks as a means of command entry cannot
support walk-up-and-use situations. A first time user has no way of finding out
interactively from the system what marks/commands are available. This situation is
reminiscent of command line interfaces such as the UNIX shell or MS-DOS where
the only information presented by the system is a command line prompt. Some
source of information distinct from the process of making a mark must be consulted

before commands can be generated.

The problem is even more acute. Not only do users need to know what marks can
be made but also when or where these marks can be made. In menu and button
interfaces, one can find out when and where a command can be invoked by which
buttons or menu items appear active when an interface object is selected. Marks do
not have this property.

Is there a problem? Aren't the existing pen-driven systems easy to use and self-
revealing? Hybrid interfaces which use both direct manipulation and marks (e.g.,
the PenPoint or Momenta interfaces (Go, 1991; Momenta, 1991)) may be somewhat

capable of walk-up-and-use. However, only the direct manipulation components of
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the interface can be used without external instruction.® Manuals must still be used to
find out about marks. Hence these system do not solve the self-revealing/marks

problem.

The motivation for creating walk-up-and-use interfaces is strong. Successful
computer interfaces such as the Macintosh are based on the notion that “nobody
reads manuals”. These types of interfaces are designed to help a user learn and
remember how to operate the interface without explicit external help such as on-line
help or manuals (Sellen, & Nicol, 1990). This situation can be viewed practically: a
user wants to get a certain task done; this task can be accomplished using a
computer tool; the shortest path between the user and task completion is using the
tool; a manual will be consulted only if the tool cannot be used directly.

If we expect a worker in the information age to utilize many different applications, a
huge amount of training for each application is an unrealistic demand. Users expect
interfaces that are consistent and permit transfer of skills from other applications.
They also expect interfaces to be self-explanatory and to guide a user in the
operation of the application. Thus, the motivation for walk-up-and-use self-

revealing interfaces is paramount.

An argument can be made that walk-up-and-use interfaces are not efficient, but this
argument misses the point. The reason to make marks self-revealing is so a user can
graduate from using the walk-up-and-use techniques to the more efficient marks.
Once this graduation has taken place, the user can benefit from the advantages of
marks such as efficient articulation and conservation of screen space. The key to the
success of this scheme is in how easily a novice can acquire expert skills.

It can be argued that if marks are mnemonic, then no self-revealing mechanism is
needed. However, this argument is analogous to using mnemonic names for
commands in command line interfaces. This technique relies on the user “being a
good guesser” and it has been shown that they are not; command naming behavior
of individuals is extremely variable (Furnas, et al., 1982; Carroll, 1985; Jorgensen et
al. 1983; Wixon et al., 1983). The more fail-safe approach is to provide an explicit
mechanism which explains the command set (Barnard & Grudin, 1988). On the

6 Of course, even some of the direct manipulation components may require instruction.
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other hand, other researchers have shown or argued that users commonly agree on
certain marks for certain operations (Wolf, 1986; Wolf & Morrel-Samuels; Gould, &
Salaun, 1987; Buxton, 1990). Nevertheless, if we wish to use marks for operations
which do not have commonly agreed upon marks, a mechanism must be provided
for learning about these marks.

We define three design principles to support learning and using marks. We do not
claim that these principles are unique. Other researchers have described similar
general principles, and many systems have interactions which obey these general
principles. However, we define specific design principles for two reasons. First, our
application of the general design principles to marks is novel, and second, our own
specific definitions help us to explain and discuss the details of the application.

The three design principles to support learning and using marks are self-revelation,
guidance, and rehearsal.

Self-revelation

The system should interactively provide information about what commands
are available and how to invoke those commands.

When an interface provides information to a user about what commands are
available and how to invoke those commands, we refer to this as self-revelation or
the system being self-revealing. Menus and buttons, for example, are self-revealing.
The available commands and how to invoke those commands can be inferred from
the display of menus or buttons. Marks, on the other hand, are not self-revealing
because they must be generated by the user.

To ensure that every aspect of a system is self-revealing is a difficult task. For
example, displaying menu items may help a user understand what functions are
available but does not guarantee that the user will understand, from the display, the

mechanics of selecting a menu item.

A common approach to interface design, and the approach that we adopt in this
dissertation, is to rely on a user receiving a small amount instruction before starting
to use the system. These instructions explain the basic mechanics and semantics of
operating the interface. For example, pointing, dragging, double clicking, and the

meaning of these actions may be explained. The Macintosh computer uses this
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technique. The intention is that with this small set of skills a user can start

interactively exploring and learning about the remainder of the system.

The interaction technique developed in this dissertation uses this type of design. A
user must be informed, a priori, that in order to display a menu the pen must be
pressed against the display and held still for a fraction of second. We call this “press
and wait for more information”. Once users have this bit of information, however,
they receive further instructions interactively from the system. In our model of the
interface, users can interactively learn about what functions can be applied to
various displayed objects by “pressing and waiting” on the objects for menus.

The principle of self-revelation is based on interface design principles and
psychological mechanisms proposed by others. Norman and Draper (1986) propose
a design principle to “bridge the gulfs of execution and evaluation”. Specifically, a
designer should make interface objects visible so users can see what actions are
possible, how actions can be done, and the effects of their actions. Shneiderman
(1987) proposes a similar principle: “offer informative feedback”. The principle
states that objects and actions of interest should be made visible to the user.
Shneiderman claims that this design principle is the basis of direct manipulation
interfaces.

The principle of self-revelation is distinct from affordance theory (Gibson, 1979;
Gibson 1982). Self-revelation is concerned with absence/presence of information
about what functions are available and how to invoke those functions. Affordance
theory, in human computer interaction, is concerned with an interface object’s
appearance suggesting its function (Gaver, 1991). These two notions, however, are
related. For example, consider the display of a pop-up menu. The principle of self-
revelation dictates, first, that function names or icons must be displayed, and,
second, that they are displayed in a menu so that a user knows by convention how
to invoke them. Affordance theory, on the other hand, dictates that the name or icon
for an item accurately suggests its function, and that the appearance of the menu
suggest items are selectable. Correct use of affordances may help reduce the amount
of a priori instruction a user requires. For example, items in a menu may “look”
selectable (they “afford” selection) and therefore the user does not have to be
explicitly taught these mechanics.

Guidance
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The way in which self-revelation occurs should guide a user through invoking
a command.

If an interface actually assists a user in the articulation of commands we refer to this
as guidance. For example, in the editor emacs, by hitting a “command completion
key” while typing a command, emacs will display all the command names that

"

match the partially completed command. In effect, emacs “guides” a user in
completion of the command, as opposed to waiting for the command to be
completely typed before examining its validity. Another example is selection from a

hierarchic menu. In this case, selection of an item guides a user to the next menu.

Guidance does not necessarily have to be triggered by the user. Some on-line help
systems prompt the user with information to guide them through a command. The
critical point is that in these systems getting or receiving helpful information on how
to invoke a command (guidance) does not interrupt the articulation of a command.
On the other hand, a system like the on-line manual pages in UNIX violates the
principle of guidance. In this case, in order to receive information about what
commands are available and how to invoke those commands, a user must terminate

or at least suspend the act of invoking a command.
Rehearsal

Guidance should be a physical rehearsal of the way an expert would issue the
command.

Rehearsal is the notion of designing interactions such that the physical actions made
by a novice in articulating a command are a rehearsal of the actions an expert would
make invoking the same command. The goal of rehearsal is to develop skills in a
novice that transfer to expert behavior. It is hoped that this leads to an efficient

transition from novice to expert.

Many interaction techniques support rehearsal. When the basic action of the novice
and the expert are the same for a particular function we can say that rehearsal takes
place. For example, novices may draw lines, move icons, or select from menus using
the same actions as an expert when there is one and only one way of issuing the
command. In many cases, the single way of issuing the command may be suitable
for both the novice and expert.
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There are also many situations, however, where a single method for invoking a
command is not sufficient. The popularity of accelerator techniques is proof of this.
Typically, good interfaces provide two modes of operation. The first mode, designed
for novices, is self-revealing. Conventional menu-driven interactions are an
example of this. The self-revealing component of this mode is emphasized over
efficiency of interaction because novices are more concerned with how to do things
rather than how quickly things can be done. The second mode, designed for
experts, typically allows terse, non-prompted interactions. ~Command line
interfaces and accelerator keys are examples of this mode. However, usually there is
a dramatic difference between novice and expert behavior at the level of physical
action. For example, a novice uses the mouse to select from a menu whereas an

expert presses an accelerator key.

The intention of the three design principles is to reduce this discrepancy in action
without reducing the efficiency of the expert and ease of learning for the novice.
The basic actions of the novice and expert should be the same. It is hoped that as
novice performance develops the skills that lead to expert performance will develop

in a smooth and direct manner.
1.3.2. Unfolding interfaces

The principles of self-revelation, guidance and rehearsal support the notion of an
unfolding interface. An unfolding interface works as follows. Initially, a novice is
provided with a small amount of information about how to get information on parts
of the interface. For example, double clicking on an object may open it up or
“unfold” it to reveal additional functions. Thus, given this key to unfolding objects,
a user can explore the interface, learning and using new functions. The intention is
that, with experience, exploration and use leads to expert knowledge of the system.

There are other schemes which control the number and types of functions available
to a user, for example, Training Wheels (Carroll & Carrithers, 1984). These types of
systems provide explicit novice/expert modes in which the novice mode has fewer
functions than the expert mode. The intention is to avoid confusing a novice with a
large set of complex functions. Once the reduced set of functions is mastered, the
novice can switch to the larger “expert” set of functions. The major difference

between this approach and the notion of an unfolding interface is that an unfolding
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interface has no explicit novice and expert modes. An unfolding interface allows

users to incrementally add functions to their repertoire.

Marks, self-revelation, guidance and rehearsal can play important roles in an
unfolding interface. Unfolding is essentially an inefficient operation. As suggested
earlier, by associating marks with “hidden” functions, unfolding can be avoided.
For example, rather than double clicking on an object to unfold it and then clicking
on a function button, a mark can be made on the object to invoke the function. To
help users learn the marks associated with functions, it would be beneficial if
unfolding a function also revealed its mark. This is an application of the principle of
self-revelation. Ideally, we want the principles of guidance and rehearsal to hold as
well; we want to design an interface such that exploration is equivalent to invoking
commands, and exploration allows a novice to practice skills that lead to expert
behavior.

1.3.3. Solution: ways of learning and using marks

The concerns of this research are interfaces that use marks but are also self-
revealing. Therefore, solutions for making marks self-revealing can be classified by
how tightly coupled the act of marking is with the act of getting information about

command/mark associations.

Interfaces that use marks and only supply information about those marks through
off-line manuals are considered to be at one end of a self-revelation continuum.
These interfaces are not interactively self-revealing. Interfaces which supply
information about marks as a command is actually being articulated can be
considered the other end of the self-revelation continuum. These would be
considered interactively self-revealing interfaces.

In the following sections we classify solutions based on this criterion. Since
interfaces that use marks are still in their infancy there are few pre-existing

examples.
Off-line documentation

Off-line documentation consists of manuals which provide information about how

marks are used in an interface. Examples of the marks are displayed and text or

graphics provides information on their usage. Although this type of scheme is not

self-revealing it is of interest because, first, it is the status quo for pen-based
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products and, second, it demonstrates the type of information needed for a user to

understand marks.

Figure 1.2 shows a section from a pen-based system's manual. Clearly this type of
scheme is not interactively self-revealing. However, if the mark set is small, the
documentation could be placed directly on the computer in the form of a “cheat
sheet”. This scheme would be partially self-revealing.
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Figure 1.2: Typical off-line documentation for mark commands (PenPoint system,
Go, 1991)

On-line documentation

This class is essentially the “on-screen” version of off-line documentation. A user
can display manual pages on-screen while the application in question is running,.
Note that this does constrain the user into suspending the real task of issuing a

command while obtaining command information.

Sometimes command information can be found in the application used to train the
software module that recognizes marks. Figure 1.3 shows one such example.
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Figure 1.3: Gesture handler window allows inspection of marks associated with a
view in Rubine's system. This window is, however, intended for the system
programmer. The window shows ten classes of marks but does not shows the
semantics associated with each mark. (from Rubine, 1990).

Unfortunately, training interfaces are not designed specifically to deliver this type of

information, and the information can be very minimal and confusing to the user.

Microsoft's Windows for Pen Computing uses on-line documentation. A special
application provides a tutorial which features animations demonstrating marks and
editing operations. A user can also practice using the marks on sample text. While
the tutorial is effective, a user still has to change context (i.e., switch from the
working application to the tutorial application) in order to get information on
marks.

On-line interactive methods

On-line interactive methods supply information about marks as one issues a
command. Figure 1.4 shows an example where sample marks are displayed beside
menu items. Windows for Pen Computing using this technique to a limited degree.
This technique relies initially on another interaction method such as menus or
buttons to invoke commands. In Figure 1.4, the interaction technique initially relied
on is a menu. As the menu is used, it reveals the marks that can be used. Once a

user remembers the mark associated with a command, the revealing technique (the
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menu) can be bypassed and a more efficient mark can be used. Figure 1.5 shows a
system called XButtons which also uses this method. In contrast to on-line
documentation, an on-line interactive method does not constrain the user into
suspending the real task of issuing a command, while obtaining command
information.

This method is similar to accelerator keys. Every time a user uses a menu item or
button, the mark is seen. Like accelerator keys, the mark can be memorized and
used as a shortcut in calling the command. Note that “accelerator marks” are more
powerful that accelerator keys because they are not limited to characters on the
keyboard, they indicate the object of the requested action by the location of the
mark, and they can contain command attributes, such as destinations or modifiers.

Diew Special

Undo

Cut

Copy
Paste
Clear
Select Al il

INAD ¢ =

Show Clipboard

Figure 1.4: An example of “accelerator marks” which allow quick access to menu
items similar to accelerator keys.
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Figure 1.5: XButtons provides a menu which shows what commands are available
from a button and the associated marks. A command can be invoked by either a
menu selection or by making the mark on the button (Robertson, et al, 1991).

On-line interactive rehearsal methods

This category is similar to on-line interactive methods except invoking a command
using the self-revealing technique (i.e., a menu) makes the user physically rehearse
making the corresponding mark. In contrast, when using on-line interactive
methods, the user does not physically rehearse making the mark (e.g., selecting
“copy” from the menu in Figure 1.4 requires a vertical movement, not a hand drawn
“C” movement).

Marking menus, the technique focused on in this dissertation, is an example of this
class (Kurtenbach & Buxton, 1991). The complete definition of this technique is
given in Chapter 2. Figure 1.6 illustrates this technique in the context of creating
three simple objects. An expert uses simple shorthand marks to create and place

circles, square, or triangles.
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If a user is unsure of what marks can be made, the user presses the pen against the
display and waits for approximately 1/3 of a second. This signals to the system that
no mark is being made and it then prompts the user with a radial menu of the
available commands, which appears directly under the cursor. The user may then
select a command from the radial menu by keeping the pen tip pressed and making
a stroke towards the desired menu item. This results in the item being highlighted
(see Figure 1.7). The selection is confirmed when the pen is lifted from the display.

Figure 1.6: An example of the technique using three simple shorthand marks. Three
objects can be defined: a circle, square and triangle. A mark which is a simple
straight line (shown here with an arrowhead to indicate drawing direction) defines
the type of object created, and its placement.
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Figure 1.7: A radial (or “pie”’) menu can also be popped up if the user does not
know what commands or marks are available. Rather than drawing a mark as in
Figure 1.6 a novice keeps the pen pressed and a menu appears. An object can then
be selected from the menu.

The important point is that the physical movement involved in selecting a command
is identical to the physical movement required to make the mark corresponding to
that command. For example, a command that requires an up-and-to-the-right
movement for selection from the pie menu, requires an up-and-to-the-right mark in
order to invoke that command. The intention is that selection from the menu is a
rehearsal of making a mark.

Other menu layouts can be used for interactive rehearsal methods besides radial
menus. Another possibility is a “bull’s eye menu” which is a menu that is divided
into concentric circles rather than sectors, where each concentric circle corresponds
to a different command (Figure 1.8).” The corresponding marks are therefore
discriminated by length rather than angle. Many more exotic schemes have been
proposed and are as of yet unexplored.8 Chapter 2 presents the motivation for
choosing radial menus, and describes in detail the design of marking menus.

7 We thank Professor John W. Senders for this suggestion originally called “donut menus”. Professor William
Buxton later took great exception to the use of the word “donut” and suggested the more dramatic name of
“bull’s eye menu”.

8  Dr. Tom Moran has proposed a combination of donut and pie menus. Dr. Stuart Card has proposed a
continuous version of hierarchical marking menus.
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Figure 1.8 Examples of alternate menu styles in which selection will result in a
unique marks. a) is a “bull’s eye” menu which discriminates by mark length rather
than angle. b) is a “dart board” menu which discriminates by length and angle.

14. THESIS STATEMENT

This dissertation is an in-depth investigation of marking menus. We present the
thesis that marking menus are a valuable interaction technique. When used in the
proper situation, marking menus are easy and efficient to use, can be used with
different input devices, and integrate well with existing interface techniques.
Furthermore, marking menus allow a user to take advantage of writing skills with a
pen and attain levels of performance not possible with other interaction techniques.
To support this thesis, we present a design for marking menus, evaluate marking
menus by means of user behavior experiments, and provide a case study of marking
menus in practice. We conclude our investigation by showing how the design
concepts of marking menus, self-revelation, guidance, and rehearsal, can be
generalized to other situations.

The intention of this investigation is to provide practical guidelines for interface
designers interested in using marking menus. With this in mind, we describe when
and where marking menus would be an effective technique, and the limitations and
properties that must be observed and maintained for marking menus to work well
in an interface. We also describe the design principles behind marking menus and
give examples of how these principles can be applied to other contexts.
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1.5 SUMMARY

This chapter has provided motivation for marks as an interaction technique,
described a basic interface problem with marks, set out design principles to solve
this problem and introduced an approach, marking menus, which observes these
design principles. In Chapter 2 we expand on our motivation for using marking
menus and explain in detail the design and design rationale behind marking menus.
Chapter 3 reports on an empirical study of the non-hierarchic marking menus.
Chapter 3 is a condensed version of a paper that appears in Human Computer
Interaction (Kurtenbach, Sellen, & Buxton, 1993). Chapter 4 is a case study which
reports on how marking menus can be designed into an application and investigates
user behavior with marking menus in an “everyday work” situation. Chapter 5
presents an empirical study on the limits of user performance with hierarchic
marking menus. Chapter 5 is an expanded version of a paper published in The
Proceedings of InterCHI "93 (Kurtenbach & Buxton, 1993). Chapter 6 describes how
we integrated marking menus into a pen-based application and applied the notions
of self-revelation, guidance and rehearsal to this application. Chapter 7 summarizes
this dissertation and its contributions, and proposes future research.
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Chapter 2: Marking menus

In this chapter we expand on our description of marking menus. First, we present a
definition of marking menus and the motives for investigation. Next, we describe
previous research that is related to marking menus and we identify open research
questions and the issues pursued in this dissertation. Finally, we complete our
description of marking menus by providing the complete rationale behind our
design.

2.1. DEFINITION

A marking menu is an interaction technique that allows a user to select from a menu
of items. There are two basic ways (or modes) in which a selection can be
performed:

menu mode In this mode a user makes a selection by displaying a menu. A user
enters this mode by pressing the pen against the display and waiting for
approximately 1/3 of a second. We refer to this action as press-and-wait. A radial
menu of items is then displayed centered around the pen tip. A radial menu is a
menu where the menu items are positioned in a circle surrounding the cursor and
each item is associated with a certain sector of the circle. A user can select a menu
item by moving the pen tip into the sector of the desired item. The selected item is
highlighted and the selection is confirmed when the pen is lifted from the display.
(See Figure 2.1)

mark mode In this mode, a user makes a selection by drawing a mark. A user enters
this mode by pressing the pen against the display and immediately moving in the
direction of the desired menu item. Rather than displaying a menu, the system
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draws an ink-trail following the pen tip. When the pen is lifted, the item that
corresponds to the direction of movement is selected. (See Figure 2.1)

Clipboard

selection using selection using
menu mode mark mode

Figure 2.1: The two basic ways of selecting from a marking menu.

The key concept of marking menus is that the physical movement involved in
selecting an item in menu mode mimics the physical movement required to select an

item using a mark.

Marking menus may also be hierarchic. In menu mode, if a menu item has a
subitem associated with it, rather than lifting the pen to select the item, the user
waits with the pen pressed to trigger the display of the submenu. The submenu is
also a radial menu. The user can then select an item from the submenu in the
manner previously described. In mark mode, a user makes a selection by drawing a
mark where changes in direction correspond to selections from submenus. Figure
2.1 show an example of selecting from hierarchic menus using menu mode and

mark mode.

Using radial menus in this way produces a set of mark which consist of a series of
line segments at various angles (“zig-zag” marks). Marking menus which have no
hierarchic items produce strictly straight line segments. Figure 2.2 shows an
example of a menu hierarchy and the associated marks.
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Figure 2.2: An example of a radial menu hierarchy and the marks that select from
it. Each item in the numeric menu has a submenu consisting of the items a, b, ¢ and
d. A mark's label indicates the menu items it selects. A dot indicates the starting
point of a mark.

It is also possible to verify the items associated with a mark or a portion of a mark.
We refer to this as mark confirmation. In this case a user draws a mark but presses-
and-waits at the end of drawing the mark. The system then displays radial menus
along the mark “as if” the selection were being performed in menu mode. Figure 2.3
shows an example of this.

Other types of behavior can occur when selecting from a marking menu such as
backing-up in a menu hierarchy or reselecting an item in menu mode. Details of the
behavior are discussed in Section 2.5.
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M 2)

Figure 2.3: An example of mark-confirmation in a menu with three levels of
hierarchy. In (1), the user draws the first part of the mark then waits with the pen
pressed for the system to recognize the selection so far. In (2), the system then
displays its interpretation of the mark and goes into menu mode for completion of the
selection.

2.2. MOTIVATION FOR STUDY

We have many motives for studying marking menus; they have advantages over
traditional menus; they use marks that are easy to draw and that are easy for
computer to recognize; they can be used for functions that have no intuitive mark;
they are compatible with different interface styles; and they exploit human motor
skills. In this section, we expand on these motivations.

2.21. Advantages over traditional menus

One motivation for studying marking menus is that they have many differences and
potential advantages over the traditional menus used in current practice. Examples
of the current practice in menu design are the pop-up menus or pull-down menus
on the Macintosh. With these types of menus, selection is performed by popping up
the menu and selecting items by pointing with the mouse. Menu items can also be
selected by pressing an accelerator key associated with a menu item. There are
several specific advantages marking menus have over these traditional menus:

Keyboardless acceleration

Marking menus allow menu selection acceleration without a keyboard. With
traditional linear menus, keypresses must be used to accelerate selection. Marking
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menus provide a method of accelerating menu selections when no keyboard is
available. This is extremely important for portable, keyboardless, pen-based

computers.
Acceleration on all items

Marking menus, if configured accordingly, can permit acceleration on all menu
items. With traditional menus, it is common for the application developer to assign
accelerator keys to the most frequently used menu items. This assumes that the
application designer is able to predict the most frequently used menu items. In
many cases, however, it is not possible to accurately predict which menu items will
be frequently used, if there is a large variance in the way an application may be
used. In contrast, with marking menus, the selection of all items can be accelerated
by the user making a mark. The designer does not have to predict, a priori, which
items will be the most frequently used.

Menu selection mimics acceleration

Marking menus minimize the difference between the menu selection and accelerated
selection. Selecting a menu item from a marking menu physically mimics the act of
making the accelerating mark. The design intention is to help users become skilled
at the movements required for accelerated menu selection. This is dramatically
different from traditional menus and accelerator keys where menu selection is
performed with the mouse and accelerated selection is performed with the
keyboard. In this case selection from the menu in no way physically mimics
selection using an accelerator key.

Combining pointing and selecting

Marking menus permit pointing and menu selection acceleration with the same
input device. This is an intrinsic property of marks and has been utilized by other
researchers (e.g., Coleman, 1969; Rhyne 1987; Wolf & Morrel-Samuels, 1987). In
mouse-based direct manipulation interfaces it is very common to point to an object
and then select a menu item. If accelerator keys are used, this operation requires
coordinating pointing with the mouse and pressing on the keyboard. With a
marking menu, not requiring a hand to be on the keyboard frees the hand to control
other input devices or perform auxiliary tasks such as controlling a VCR transport or
turning the pages of a book.
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Spatial mnemonics

Marking menus use a spatial method for learning and remembering the association
between menu items and marks. In contrast, traditional menus and accelerator keys,
rely on symbolic mnemonics to help users remember the associations between menu
items and keys. Due the limited number of symbols on a keyboard, mnemonics
often cannot be established between all menu items and their accelerators keys. This
results in menu item/key associations that may be arbitrary or inconsistent.
Marking menus avoid this problem by relying on a consistent method to establish
mnemonics: the shape of a mark corresponds to the spatial layout of a menu item in
the menu hierarchy.

2.2.2. Ease of drawing and recognition

Marking menus use a very simple set of marks consisting of straight and zig-zag
marks. This simple set of marks has three advantages. First, these types of marks
are easy and fast to draw and are therefore suitable for accelerated performance.
Ease of drawing is especially important when drawing precision is hampered by
imperfect pen/display technology. Second, computer recognition of these types of
marks can be reliable, fast and user independent. The recognizer requires little
processing power and no training. Third, any interface designer, by using marking
menus, can make use of some of the advantages of marks without having to design
their own mark symbols. Of course, it is still necessary to design the layout of the

menus.

The single contiguous marks in marking menus have several advantages. Other
types of marks which require multiple non-contiguous pen strokes create many
problems. Recognizer design is more complicated when groups of strokes must be
recognized. This is referred to as the segmentation problem. Sometimes groups of
strokes are distinguished by constraining the user to put all the strokes associated
with a mark in a certain region. Alternatively, strokes may be grouped by time.
This constrains the user to momentarily pause between making different marks.
With a marking menu mark, a user is not constrained by timing, size of mark, or
location. Recognition takes places the moment the pen is lifted.

The marking menu mark set does have disadvantages. First, a designer has no
choice in the shape of the marks (besides what can be controlled through the layout
of the menus). Fortunately, marking menus do not prohibit the use of other mark
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sets and mark recognition techniques (see Chapter 6 for a detailed discussion of this
issue). Second, the size of the mark set is limited by a user’s accuracy at drawing
lines at various angles. Third, the mark set is not particularly expressive. The angle
at which the stroke is drawn is used to define the type of mark. The line must also
be somewhat straight. This leaves starting point, ending point and temporal
information about how the line was drawn to be used as additional information
encoding parameters. In contrast, other mark vocabularies permit many more
parameters to be controlled by the shape of the mark (Makuni, 1986). Nevertheless,
we have discovered that the limited set of parameters of a marking menu mark can
be quite useful (see Chapter 4).

2.2.3. Marks when no obvious marks exists

Researchers have shown or argued that users commonly agree on certain marks for
certain functions (Wolf, 1986; Gould, & Salaun, 1987; Morrel-Samuels, 1990; Buxton,
1990). However, we believe that there are many situations where invoking a
function with a mark could be beneficial but no commonly agreed upon mark exists
for the function. This is similar to icon design where some functions have no
intuitive icon. For example, there is no “natural mark” for “change pen width to
thin”. Marking menus might work well in these types of situations because the
menu can provide textual or pictorial explanations of functions while the mark for
the menu item provides a quick way to invoke the function.

2.24. Compatibility with unfolding interfaces

Marking menus are compatible with unfolding interfaces (described in Section
1.3.2). The intention is that menus pop up to self-reveal or unfold functions and the
marks provide way to efficiently invoke the functionality. Guidance and rehearsal
are intended to help a novice learn the efficient way of invoking a function.

2.2.5. Compatibility with existing interfaces

Marking menus are compatible with popular input devices and interface paradigms.
First, the type of marks used can be reasonably drawn with a mouse (Chapters 3 and
5 explore this issue in detail). Second, since traditional menus are created by the
application calling library routines, by replacing the library routines, marking
menus could be used in place of pop-up menus without changing a single line of
application code or changing application functionality. Finally, marking menus can
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extend existing dialogue styles without major changes to an interface paradigm. An
example of this is HyperMarks, developed by the author (Kurtenbach & Baudel,
1992), which is a Hypercard xcommand that supports marking menus in Hypercard
(Apple Computer, 1992). When a marking menu is used from a Hypercard button,
the Hypercard button still retains its single function when pressed. However, if the
button is kept pressed, a marking menu pops up with more commands. A user can
select from the marking menu using menu mode or marks. In this way, the function
of a button can be extended.

Marking menus can be effective because they are a pop-up interaction technique.
When displays become small or very large, marking menus can be effective. On
large displays, a mark or a menu selection can be made at a user's current location
without a long trip to a menu bar or tool pallet. On small screens, since both the
menu and mark “go-away” once performed, no valuable screen space is consumed.

2.2.6. Novices, experts, and rehearsal

Marking menus are intended to support both the novice and expert user. The
intention is that a novice uses menu mode and an expert uses the marks. Menu
mode can provide the self-revelation and guidance needed for a novice to invoke a
command. The marks can provide efficient interactions for experts.

Marking menus are also intended to support the transition between novice and
expert. Selection in menu mode provides the user with rehearsal for making a mark.
In essence, using the menu trains a novice to use marks. We believe that rehearsal
helps in learning the association between mark and command.

There are other menuing schemes which support the novice and expert and the
transition between the two. For example, the Macintosh supports novices by
providing menus and supports experts by providing menu accelerator keys. The
transition between novice and user is supported by the user being reminded of the
keystrokes associated with particular menu items every time a menu is displayed.
This is done by having the names of the accelerator keys appear next to menu items
in the menu. However, actually using an accelerator key is avoidable. The user can
always just select from the menu. Furthermore, this is easiest because the user is
already displaying the menu. The end result is that accelerator keys are sometimes
not used even after extensive exposure to the menu. With marking menus the user
is not only reminded, but rehearses the physical movement involved in making the
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mark every time a selection from the menu is made. What makes marking menus
unique from the accelerator key scheme is that rehearsal is unavoidable. We believe

this helps in learning the association between mark and command.
2.2.7. Utilizing motor skills

The idea of using physical rehearsal to train novices to become experts is a unique
concept and is worth investigating for pedagogical reasons. Marking menus
purport to reduce the cognitive load of memorizing mark/command association by
relying on muscle memory (since each mark/command is a distinct physical
movement). This technique is similar to the approach used in the Information
Visualizer Project (Card et al, 1991). The Information Visualizer relies on low level
sensory input processing such as depth or motion perception to reduce the burden
on higher cognitive processes in visualizing information. Marking menus can be
thought of in a similar manner. It is believed that low level sensory output
processes (muscle memory) are used to reduce the load on higher level cognitive
processes. We explore this issue in this dissertation.

2.2.8. “Eyes-free” selection

Selection by a distinct physical movement with a marking menu lends itself to
“eyes-free” selection. For example, most of us can draw the eight directions of a
compass without looking. Eyes-free selection is useful in situations where a user’s
visual attention must be on something other than the selection process, for example,
selecting commands while watching a video tape. An eyes-free selection technique
is also extremely valuable to the visually impaired.

2.3. RELATED WORK AND OPEN PROBLEMS

This dissertation develops and explores the use of marking menus. There is no
previous research on this technique, per se, however, marking menus are based on
radial menus (see Section 2.1 for the definition of radial menus). Therefore, research
on radial menus is relevant. The most widely used instance of a radial menu is the
pie menu (Hopkins, 1991). A pie menu is a radial menu where the visual
representation of the menu resembles a sliced pie. Other types of visual
representations are possible, for example, we have developed an alternative
representation for a radial menu which does not look like a pie (see Figure 2.12).
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Two instances of radial menus are pie menus and command compasses. We now
describe these two techniques, contrast them with marking menus, and report on the

current state of research on their design and usage.
2.3.1. Pie menus

To date, there is little research on pie menus. The origin of pie menus can be traced
back to radial menus proposed by Wiseman, Lemke, & Hiles (1969). Since then,
research on pie menus has mainly been concerned with menu layout and suitable
applications (Hopkins, 1991; Hopkins, 1987). The only empirical study of pie menus
investigated menu item selection time and error rates for 8-item menus but
concentrated on comparing them to linear menus (Callahan, Hopkins, Weiser, &
Shneiderman, 1988). It was found that selection from pie menus was significantly
faster (15%) and produced marginally significant fewer errors (42%) than linear
menus. The experiment also investigated the effect of using menu items with a
natural linear ordering (i.e., “First”, “Second”, “Third”, etc.), with a natural radial
ordering (i.e., “North”, “North-east”, “East”, etc.), and with an unclassifiable
ordering (i.e., “Center”, “Bold”, “Italic”, etc.). Callahan et al. hypothesized that
certain types of menus (pie or linear) would perform better with items that have a
certain type of natural ordering (radial, linear, or unclassified). A marginally
significant correlation was found between menu types and types of orderings. The
weak correlation occurred because selection time means for the pie menus were
lower even on items with natural linear orderings. Results also showed that
unclassified menu items produced significantly slower selections than ordered

menu items regardless of menu type.

What has not been extensively studied is the claim that muscle memory for different
gestures plays a helpful role in menu selection. Anecdotal evidence from designers
of pie menu systems suggest that item selection from a menu hierarchy is possible
without displaying the menus after practice (Hopkins, 1987). Not only was
unprompted selection possible but it was also desirable for efficiency reasons.

Unprompted selection is supported in pie menus by a technique called mousing-
ahead. Mousing-ahead means the user does not have to wait for the system to
display the menu before moving the cursor to make a selection. As the user moves
the cursor, the input system buffers cursor location data. When the menu is finally
displayed, the system reads the buffered data and analyzes it as if it were generated
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with the menu displayed. The system then immediately selects a menu item and
removes the menu. In this way a user can make a selection without waiting for the
menu to display (in effect, the mouse is being operated “ahead” of the display,
hence the term mousing-ahead). Hopkins' implementation is slightly more
sophisticated than just described. Menu display is suppressed until the user stops
moving the cursor.

On the surface, it appears as if a marking menu is a pie menu with an ink-trail
added to cursor. However, there is a major difference in the way the two techniques
behave. Marking menus, depending on the context, may use sophisticated
recognition. Marking menus analyze the path of a cursor as a mark, looking for
certain features. If the interface recognizes other types of marks, a mark has to “look
like” a marking menu mark before it can select from the menu. For example,
suppose an interface recognizes a “C” mark (e.g., “C” triggers the copy command)
and also marking menu marks (i.e., zig-zag marks). If mousing-ahead was used, the
“C” would select the bottom item of a menu (assuming the user started drawing
from the top of the “C”). With marking menus, the recognizer identifies the mark as
a “C” and not as a zig-zag mark. Chapter 6 discusses in more detail, issues of
integrating marking menu marks with other types of marks.

As a consequence of mark recognition, marking menu marks can be performed more
casually than mousing-ahead movements with pie menus, especially with hierarchic
menus. Mousing-ahead on pie menus must be an exact imitation of cursor
movement used when selecting with the menu displayed. Marking menus, on the
other hand, recognize the shape of the mark, independent of size and therefore the
user can be more casual when drawing marks as opposed to mousing-ahead. There
are designs where mousing-ahead can be made independent of movement size but,
in general, this is not possible. See Section 2.5.6 for a detailed discussion of these

issues.

The visual difference between marking and mousing-ahead is that marking leaves
an ink-trail after the cursor, whereas mousing-ahead does not. We believe that,
without an ink-trail during selection, a user must visualize selection from the menu.
With an ink-trail, the user does not have to visualize selection, but rather remember
the mark associated with a menu item and then correctly draw the mark. We believe

the ink trial provides feedback which helps the user to correctly draw the mark.
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2.3.2. Command compass

An interface mechanism very similar to a marking menu is the command compass
used in the Momenta pen-based computer. Figure 2.3 shows how the command

compass is used to move text.

Using the Command Compass

to Move a Piece of Text

1. Select text to be moved. Compas icon 2. Towck the pew-iip o the icom, opening
appears in cemter. the compazs.

3. Stroke pen - t3p te the right, invoking the 4. Lift the pen off the xraem, cansing rext to
d, thew ? ing line be pasted inte new ipot.

move

um&emery;nmtdutmm

(3

Figure 2.3: The Momenta Command Compass (Momenta, 1991).

There are several differences between the command compass and marking menus.
First, the command compass does not permit reselection. Once the pen is moved in
the direction of a command, that command is immediately selected. Second, an
explicit unprompted selection mode is not provided. No ink-trail is provided and
unprompted selection relies on mousing-ahead (or “penning-ahead”, since
Momenta is a pen-based computer). While the Momenta interface uses marks, the
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command compass does not utilize marks. Finally, only one type and size of
command compass is used. No hierarchic command compasses are supported.

The subtle difference in the way selection is done with a command compass versus
selection with a marking menu affects the type of interactions each technique can
support. With marking menus command selection occurs after a sector has been
moved into and the pen lifted. With the command compass, command selection is
done the moment a sector is moved into. Thus when selection occurs, the user is
still in a physical mode (keeping the pen pressed). This physical mode can be used
to express more parameters for the command, hence, physically pairing a command
verb and its parameters. This is, of course, at the expense of not permitting
reselection.

24. RESEARCH ISSUES

The ultimate goal of this research is to create a useful interaction technique. To
attain this goal, several things must be accomplished. First, we must create a design
for marking menus. Next, this design must be evaluated to determine its limitations
and possible applications. From these evaluations, we can refine our design and
develop recommendations for interface designers about when, where, and how
marking menus can be beneficial. Given these goals, research issues surround the
following question: ~what characteristics of marking menus do we need to

understand to effectively incorporate this mechanism into the interface?

The most immediate question about marking menus is: how many items can be
placed in the menus before it becomes too difficult to make selections using marks?
Common sense tell us that parameters governing this aspect are articulation
accuracy (i.e., how precisely can a human draw directional strokes), and human
memory limitations (i.e., how quickly can a human learn and remember associations
between menu items and marks). Other issues concern how hierarchic structure
affects selection performance, how command parameters can be attached to marks,
and how the design can be varied to accommodate the constraints of an interface.

The following sections expand on these issues.
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2.4.1. Articulation

Accuracy in selecting menu items and in marking is limited by the human motor
system and the input device being used. This constrains the number of items that
can be placed in a marking menu. Articulation refers to the motor system activities
associated with selecting from a menu or making a mark, not memory activities like
recalling the mark associated with a menu item. For example, suppose a user
remembers the mark for a desired menu item. Can the user draw the mark
accurately enough to select the menu item? In other words, can the user successfully
articulate the mark once it is remembered?

Many factors may affect the success of articulation:

The type and characteristics of the input device. While the pen appears to be a
natural input device for marks, operating marking menus with other types of input
devices is also desirable. Thus, it is of interest to study users' performance not only
with a pen but also with other popular types of input devices.

The number of items in a menu. As the number of items in a menu increases, the
size of the menu items decreases and therefore pointing to them will become more
error-prone and slower. Using a mark for selection should behave in a similar
fashion. Precision of marking must increase as the number of items increases.

The type of articulation feedback provided. Feedback helps a user verify that a
selection is being successfully articulated. For example, highlighting a menu item
provides feedback. Supplying an ink-trail is another form of feedback, but is
perhaps less salient. Finally no ink-trail (i.e., just the pen's or cursor's movement)
provides even less feedback.

Chapters 3 and 5 investigate the effect of these factors through empirical
experiments which measure speed and accuracy of selection when using marking
menus. The results from these experiments are then interpreted to produce design
guidelines.

24.2, Memory

Another aspect of marking menus concerns human memory. Using a mark to select
from a marking menu involves, first, learning the association between menu item

and mark, and then, recalling the association from memory before articulating the
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mark. There are several ways in which learning and recall can occur. For example,
a user can memorize the association by rote memory (“this mark invokes this
command”), or a user can reconstruct a mental image of the spatial layout of the
menu or process of selection.

There are other factors affecting learning and recall. Differences in the angles
between items must be memorable enough so the angle can be reproduced in
drawing the mark. For example, a user may remember an item was the third from
the top in a very densely packed menu, but the angular difference between items
may be so small that it cannot be remembered precisely enough.

Whatever technique is used to remember the mark/item association, the exact
limitations of marking menus relative to the limitations of human memory is a very
complex question. Human memory in some situations can be considered almost
infinite. For example, humans are capable of memorizing many complex symbol
systems such as languages. With enough practice, the paths through extremely
complex hierarchies of menus could be memorized and recalled. The question of
how quickly one “learns the marks” depends on many variables: frequency of use,
presence or absence of mnemonics or metaphors, menu layout, intelligence,

motivation, application, etc.

Determining hard figures for “learning time” or “maximum number of items”
relative to human memory is not possible. These measures depend largely on the
user and the application. The intent of this research is to come up with guidelines
that help designers exploit aspects such as frequency of use, metaphors, and menu
layout to help make marking menus easier to learn.

In the case of marking menus note that training time is not as critical as with other
interface techniques because a user “trains on the job”. A user of marking menus
does not have to spend time training before the selections can be performed. A
novice can use the menus while a forgetful expert may occasionally have to use the
menu. In either case, the user will still be performing “training on the job”.

Do users learn and use marking menus the way the design suggests? The three
modes of interacting with a marking menu (menu, mark-confirmation and mark
modes) are intended to support the transition from problem solving to skilled
behavior in a user. Card, Moran and Newell (1983) suggest that novices exhibit

problem solving behavior (“how do I do this?”) and experts exhibit skilled behavior
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(an expert knows how to solve the problem and does it efficiently). Rasmussen
(1984) further refines this notion to include a middle step called rule-based behavior.
Informally, rule-based behavior can be thought of as the user explicitly thinking “in
order to do this I must do this”. As Figure 2.3 shows, these stages of behavior can be
mapped to the three modes of marking menus. The intention is that these modes are
designed such that use of one mode builds the skills for the next mode and this
assists in making the transition between modes. Do users actually behave this way
with marking menus? If not, what sort of behavior is occurring and why?

We examine these issues of learning and remembering through empirical
experiments (Chapter 3 and 5), and user behavior case studies (Chapter 4). The
empirical experiments reveal learning curves and insights into the sort of menu
structures that assist in learning and remembering menu layout and marks. A case
study of user behavior using marking menus in a real application investigates

learning and behavior patterns when marking menus are used in “everyday work”

situations.
Behavior
with marking
menus
Menu mode Mark confirmation Mark mode

Stage of | b h1em solving Rule based Skilled
behavior
Type of

)':F;er Novice Intermediate Expert

Expertise

Figure 2.3: The relationship between stages of behavior, type of user, a user's
behavior with a marking menu and expertise.
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2.4.3. Hierarchic structuring

Another question concerns the effect that the structure of the menu hierarchy has on
user performance. Specifically, how is user performance affected when breadth or
depth is increased? (Depth is the number of levels in a hierarchy of menus; breadth

is the number of items in a menu.)

Most of the research on hierarchic structuring of traditional menu systems focuses
on depth versus breadth. This research can be divided into two types of studies: (1)
theoretical models describing menu structure and user performance, and (2)
empirical studies of menu usage. The theoretical studies concern models that
describe menu search performance based on structure. From these models,
structures that optimize search-time can be produced. The empirical studies
attempt to verify the theoretical models, and estimate search time and error rates.

These research efforts have addressed some basic issues concerning depth versus
breadth.

The navigation problem (getting lost or using an inefficient path to find a menu item)
becomes more likely as depth increases. Snowberry, Parkinson and Sission (1983)
showed that error rates increased from 4% to 34% as menu depth increases from one
to six levels.

Despite the problem of errors, there are several reasons to increase menu depth:
crowding, insulation and funneling. Crowding refers to the problem of not having
enough space on the screen to simultaneously display all the menu items. Insulation
refers to the hiding information in deeper menus to protect a user from information
overload. Funneling refers to the structuring of menus such that the hierarchy helps
a user “narrow down” the choice and access items more quickly than using a flat

menu structure.

Lee and MacGregor (1985) examine the tradeoff between funneling and response-
execution time. Assuming all items were viewed before a selection is made, they
found that optimal breadth was between 3 to 8 items per menu level depending on
user response time and computer processing response time. Depth was effective
when user response times were fast and computer processing time per option was
slow. If it is assumed that the search terminates on average halfway through the
items, then the optimal breadth is between 3 to 13 items at each level. These results
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should be tempered by the fact that they are based on a theoretical model and not on

empirical user tests.

If meaningful groupings of items are used, Paap and Roske-Hofstrand (1988) show
that optimal breadth at any level tends to be in the range of 16 to 36 and sometimes
as high as 78 for traditional menu systems depending on human and computer
response time. In terms of marking menus, these ranges are well outside the
maximum number of items that can be selected with a mark. This raises the issue
that reduction of breadth in a marking menu may increase the performance of
marking but degrade the efficiency of menu selection in the menu mode.

Menu search time increases monotonically with depth (Landauer & Nachbar, 1985).
This produces a log-linear relationship between search time and number of menu
items. Kiger (1984) also found that performance (time and accuracy) decreased as
depth increased further confirming that depth presents navigation problems to

users.

Kiger also included error recovery in his analysis. This increased the variance in
search time from 6 seconds to 20 seconds. Since error recovery occurs in the real
world, this study more realistically characterizes the costs associated with
hierarchical structuring. Kiger tested five types of hierarchical structures varying
the depth from two to six levels and the breadth from two to eight items.

Performance can vary at different levels of the hierarchy. Snowberry, Parkinson and
Sission (1983) report on error rate versus hierarchy level in a six level hierarchy. A
higher proportion of errors occurred at the top two levels of the hierarchy than at
the bottom two despite the fact that every level was a binary choice. The
explanation for this is that higher level items are more abstract and therefore more
subject to misinterpretation. Kiger also found that search times gradually become
faster as a user came closer to the goal item. Other studies have revealed opposite
results —better performance occurred at top levels (Allen, 1983). The explanation
offered for the differences is that users were much more familiar with the top level
items than the lower level items. This lends support to the notion that performance,

structure, and item semantics in menus are intimately related.

Paap and Roske-Hofstrand (1986) point out that users restrict navigation because the
menu structure has semantics or because they have experience with the menu. Both
Card (1982), and McDonald, Stone, & Liebelt (1983) report that effects of
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organization disappear with practice. In other words, with practice, users navigate
directly to the desired menu item. With experience, users move from a state of great
uncertainty to one of total certainty. This lends support to the hypothesis that
marking menu users will use marks with practice.

The previous research on depth versus breadth in menus indicates two important
points relative to marking menus. First, users need to explore to make selections
from menus with which they are not familiar, and the semantics associated with the
structure has an effect on human performance. Marking menus behave somewhat
like traditional menu systems when used in the menu mode (i.e., users can see item
names and navigate through the hierarchy). Therefore, we can assume that the
research findings mentioned above are applicable in menu mode. Second, once
familiar with the menu structure, users of traditional menu systems want to directly
select an item. In other words, users no longer require a menu. This behavior bodes
well with using a mark to select from a marking menu.

Since the previous research in this area is somewhat applicable to the menuing
mode of marking menus, the open research issues concern using mark mode to
access hierarchic marking menus. The main issue is the effect of breadth and depth
on user performance when using marks. Specifically, how deep and how wide can
menus be made before marking becomes too slow or error prone? What sort of
structuring makes mark articulation easier? For example, selection using marks
from a menu with 16 items seems difficult. Selection from a menu with two levels of
four item menus (16 items in total) seems more reasonable. In Chapter 5, we
examine the effect of breadth and depth on marking by means of an empirical
experiment on human performance using marks to select items from hierarchic

marking menus.
24.4. Command parameters and design rationale

Besides the angle of a mark specifying the command verb, other aspects of a mark
can express command parameters. For example, a mark’s starting point, ending
point and size can all contribute to command semantics. The question is how can
these aspects of a mark be exploited in an interface? Issues of this type are examined
in a case study which involved implementing marking menus in a real application
(Chapter 4).

41

Page 1494 of 1714



Subtle differences in design may have a profound effect on the way in which
marking menus can be used. For example, a design that uses selection upon sector
entry (e.g., the Momenta command compass) must be used differently than a design
that uses selection on pen release (e.g., marking menus). These small design details
can have a large impact on a design's ability to support hierarchic menus,
command/parameter pairing, and reselection. In section 2.5, we describe this
design space and present a design rationale for marking menus.

2.4.5. Generalizing self-revelation, guidance and rehearsal

Marking menus provide self-revelation, guidance, and rehearsal for the particular
class of mark. Specifically, this is the type of mark that is created as a byproduct in
selecting from directional menus. We referred to this class of marks as “zig-zag”
marks. A pen-based application may also use other types of marks (e.g., editing
symbols). There are two issues concerning the relationship of marking menus and
other types of marks. First, can marking menu marks be integrated with other types
of marks? Second, can a mechanism be developed to provide self-revelation,
guidance and rehearsal for other types of marks?

A major advantage of marks is the ability to use features of a mark as additional
command parameters. For example, a copy mark not only specifies that a copy
command should be executed but also specifies what should be copied and to where
it should be copied. How self-revelation, guidance and rehearsal can be provided

for this type of information is an open question. Chapter 6 addresses this question.

2.5. DESIGN RATIONALE

This section presents the design rationale behind marking menus. First, the
fundamental goals and the space of the design are defined. Next, an explanation and
taxonomy of design options is presented. Finally, the rationale for choosing a
particular set of options for the design of marking menus is given.

2.5.1. Fundamental design goals

The fundamental design goals of marking menus are:
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* in the mark mode, speed of selection is emphasized over the self-revealing
features.

* in the menu mode, self-revelation and guidance are emphasized over speed of
selection

* in menu mode movement must be as close as possible to a rehearsal of marking.

Ultimately, using the menu must facilitate learning the marks.

The last goal dictates that marking must mimic selecting in menu mode.
Furthermore, marks must be distinguishable from one another. This provides a
further goal for the design:

* selection in menu mode must create a unique path which can be reliably
recognized by a computer.

We next examine the types of designs that address these goals.
2.5.2, The design space

In the most general sense, the design space can be described as: “discriminating
selections from menus by cursor movements”.  Linear menus, array menus, and
radial menus all fall into this design space. Linear menus are menus where the
items are laid out in sequential linear fashion (top to bottom, or left to right). Array
menus are menus where the items are laid out in both a top to bottom and left to
right fashion. Radial menus are menus where the items are laid out in a circle. In
these types of menus, the position of the cursor ultimately determines the item
selected. A design that does not fit in this class would be menu selection based on
time. In this case, the computer cyclically displays each menu item and the user
presses a button when the desired item appears. This type of menu selection is often
used in interfaces for handicapped users.

In this space, selection is performed relative to a starting point and the amount and
direction of movement determines the selection being made. For example, in a linear
menu, when the cursor is initially placed on the first item in the list, selection is
determined by how far the cursor is moved down the menu.

Within this design space we are only considering designs in which menu selection is
a physical rehearsal of marking. We want each movement path traced by a menu

selection to be unique relative to the other movement paths involved in selecting
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from the menu. This will result in an unambiguous language of movements (or

marks when the cursor leaves an ink-trail).

Within this design space we can identify several important design issues. These
issues are discrimination, control, selection, display, backing up, and aborting.

2.5.3. Discrimination method

Discrimination method is defined as the type of movement used to discriminate
selections. This can be either angle, length, or a combination of the two. Figure 1.8
shows a menu that uses length, and another menu that uses the combination of
length and angle. Whether humans are better at discrimination by length or by
angle is an open question.? In our context, discrimination by angle is preferable to

discrimination by length for two reasons: efficiency, and scaling and rotation issues.

Under certain conditions, discrimination by angle (radial menus and angular marks)
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(a) discrimination by angle (b) discrimination by length

Figure 2.4: An example where discrimination by angle makes selection faster than
discrimination by length. The lines with arrow heads show the movement needed to
select an item. In the discrimination by angle case, selection of any item requires a
movement of distance d. In the discrimination by length case, assuming all items are
accessed with the same frequency and distance is equivalent to movement time, the
average selection time will be 2L, where L is the height of a menu item. Assuming d
is 0.5L, selection is four times faster with discrimination by angle.
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allow faster selection than discrimination by length (linear menus and linear marks).
First, because all the menu items are equidistant from the center of the menu in a
radial menu, selection time is approximately the same for any item in the menu. In
contrast, with linear menus, the first item can be selected more quickly than the last
item in the menu. Figure 2.4 shows an example which compares a four-item radial
menu and a four item linear menu. As described in Section 2.3.1, Callahan,
Hopkins, Wieser, & Shneiderman (1988) have empirical evidence that eight-item
radial menus are 15% faster and produce 42% fewer errors than eight-item linear
menus. Treating selection from a radial menus as a one dimensional pointing task,
and assuming that the amount of area used by a radial menu and a linear menu are
the same, it can be shown that target size in a radial menu will always be larger than
target size in a linear menu. For example, in Figure 2.4, the target size in the radial
menu is the diagonal of an item. In contrast, target size in the linear menu is the
height of an item. However, as the number of items increase in a radial menu,
pointing to the narrow slices will become more difficult. To compensate for this,
users will have to move farther away from the center, thus slowing their selection
time. Determining the point where performance with a radial menu will degrade to
the performance level of a linear menu is an open problem. Current research on two
dimensional pointing (Mackenzie & Buxton, 1992) only deals with rectangular

targets and therefore cannot be directly applied to radial menu slices.

There are also issues related to mark-based interfaces that make discrimination by
angle preferable. Angular marks are preferred over linear marks because an angular
mark can be scaled without changing its meaning (or, rather, changing the item the
mark selects). In terms of a mark-based interface this means that a user is not
restricted to draw the marks at a prescribed size. For example, a small “L” shaped
mark would have the same meaning as a large “L” shaped mark. This is not the case
with marks that are discriminated by length.

However, the meaning of angular marks changes if the mark is rotated. Rotating a
horizontal to the right mark 45 degrees will cause it to be interpreted as a down to-

9 1t should be noted that discrimination can be performed at the reading or at the writing level (i.e., perception
versus production of marks). These are significantly different problems. This dissertation examines production
of angular marks. See Westheimer & McKee (1977) for a discussion of the perception of angle and length.
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the-right mark by the system. In contrast, linear marks are not affected by rotation
(i.e., a bull’s eye menu. See Figure 1.8).

Discrimination by angle better reflects the way marks are interpreted in everyday
life. Marks are generally insensitive to scaling but sensitive to rotation. For

“ 1”

example, a small has the same meaning as a large “1” but if it is rotated 90

degrees it perhaps takes on the meaning of “dash”.

There is also the issue of C:D ratio. C:D ratio is defined as the ratio between the
amount of movement of the input device (Control) and the amount of movement
this imparts to the cursor (Display). On a pen-based system, the C:D ratio is
constant and one to one because the cursor follows directly under the pen tip. For
example, a one inch movement of the pen corresponds to a 1 inch mark. Therefore,
with pen-based systems, C:D ratio is not an issue. However, with input devices that
do not write directly on the display, (i.e., the mouse), C:D ratio is an issue. A one
inch movement of the mouse may result in different lengths of marks on different
computers if they have different C:D ratios. C:D ratios that vary depending on the
speed of the movement (referred to as cursor acceleration) complicate this situation
even further. A one inch movement made quickly can generate a much longer mark
than the same movement made slowly, for example. Therefore, under these
conditions, discrimination by length may be unreliable. However, discrimination by
angle is not affected by varying C:D ratios. For example, a 45 degree mark is a 45
degree mark whether or not it is one or two inches long. Since it is desirable that our
technique be usable with other input devices besides the pen, discrimination by

angle is a better choice.
2.54. Control methods

Selection from a menu with a pointing device is generally accomplished by dragging,
by tapping, or a combination of the two. We refer to these as the control methods.
When dragging is the control method, pressing the pen down on the screen (“pen-
down”) displays the menu; moving the pen while it pressed against the screen
(“dragging”) selects different items; lifting the pen from the screen (“pen-up”)
confirms the selection. When menus are hierarchic, dragging into certain areas may
cause submenus to be displayed for selection. When tapping is the control method,

a pen-down followed quickly by a pen-up (a “tap”) causes the menu to be
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displayed; a “tap” over an item confirms its selection. If the menu is hierarchic, the
selection will result in another menu being displayed.

Dragging is preferred because selection in menu mode must be a rehearsal of the
movement needed to make the mark. Marks are created by dragging the pen across
the display surface and therefore dragging is a more accurate rehearsal of marking
than tapping.

Marking menus use an action called press-and-wait to allow the user to switch into
menu mode. We elected to use this action for several reasons. First, it deviates very
slightly from the act of marking (the wait is only 1/3 of second). Thus the principle
of rehearsal is not dramatically violated. For example, an action such as holding
down a special key or making a special movement to invoke the menu would be a
much more dramatic violation of rehearsal. Second, when a user wants to avoid
menu mode, it usually means one wants to articulate the command quickly. Press-
and-wait is easily avoided by quick articulation and avoiding it also makes selection
faster. Third, according to our design goals, we assume that novices are not
concerned with fast selection and therefore a slight delay in selection is a minor
inconvenience. However, as users become more experienced with the menus and

desires faster selection, the delay may also provide incentive to use marks.

There are other reasons why delaying the pop-up of the menu is valuable: it can be
distracting; it can obliterate part of the screen; and it takes time. For a novice user
these may not be problem since displaying the menu is desirable. For expert users,
however, a delayed menu pop-up allows the creation of marks and avoids the
negative side effects of the menu's display.

2.5.5. Selection events: preview, confirm and terminate

There are several events that occur when making a selection. Selection from a menu
generally involves some sort of feedback indicating which item is about to be
selected, for example, an item highlights. We refer to this capability as selection
preview. Selection also involves an action which indicates to the system that it
should actually carry out the selection. We refer to this as selection confirmation.

In the non-hierarchic case, selection confirmation results in the termination of the
entire selection process. In the hierarchic case, selection confirmation will not
necessarily terminate the selection process if the item selected has a sub-menu. We
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