
Page 1251 of 1714

SAMSUNG EXHIBIT 1006 (Part 7 of 8)

CH-/1P‘IE'1?<” 5 11/1’LiL.jz'1’»-R411 TURE I{:E'COG1\E]'YOI\v’

11 1’§'z‘.11Cl--]3BC1l gesture classes

Q R S'c

 cu‘-,‘ 0 _',,a..,, 1
to ‘Xw~, -
\ 10

Mu1ti~path ~"~_Input

i~———e——u»-.1.

3._—n—._...

K‘
S Lchcxseu -;;es‘:=_u'e;

Figure 5.3: C1assifyi11gmuiti-path gestures
/1[‘ the top are cxamplcs 0fA‘E7u1‘ {Wmpa :12 g-1i'.s:u'1”CS cxpcc {Cd f1'21's Classiffc-1; and (3 t tbc [off a IWo—pa I12 gcstuz‘-z?

 V]? by (110 rj'c)£f(?{f iinr-.9, 2'1’24:- Z}"?:'(‘ 170017

/'5-ar:i7er,1’ 1'5 ambi_,z»;211M2s (Fm v:'z2g c}21'lriz‘et:r Q and S) 50 g gal fean12‘e.s are .2/sea’! Li; 1v9.s‘r,2IL'¢= the 4;"i5(,:1‘ep.-az;-(gyg and
the 1'5 rer;9 ;i;1'2es;’ as (71.3 55 S.

Page 1251 of 1714

SAMSUNG EXHIBIT 1006 (Part 7 of 8)

Page 1252 of 1714

54 3'i’\Z<li’i7‘J NE A]‘v;»'UL II»-If/UH’ CL/5LS':'{IFI.E‘R

54 Training a llvlaltiupatli Classifier

The training algorithm for a tnulti--path classifier examples of each multiv-path gesture class

(typically ten to twenty examples of each class) to create a classifier. The creation of a multi—path

classifier consists of the creation of a global classifier, a number of path classifiers, and decision
tree.

5.4-ti Creating the statistical classifiers

The path classifiers and the global classifiers are created using the statistical algorithm (lCSCI‘;ll3C(l in

Chapter 3. The paths of example are sorted, the paths for a given sorting index in each

forniing a class used to train the path classifier for that index.

For example, eonsitler training a niulti--path classifier to ttiscriininate hetween two niulti-path

gesture classes, A and Br, each consisting oi‘ two paths. tiiesture class A consists oi‘ two path classes,

A; and fig. the subscript inclicating the sorting indices of the paths. Similarly, class 5 consists of

path classes B; and B3. The tirst path in all the /l e>-Laniples i"orm the class A1,, and so on. The

examples are used to train path classifier l to rliscriniinate hetwcen At and 8;, and path classifier

2 to discriminate A3 and E3. The global features of A and B are to the global

classitier, tioiriina.lly able to cliserirninate between two classes of glolial featurest Al(; and 185".

Within a given sorting index“, it quite possible and legitimate for paths froin ttilferent gesture

classes to he iiidistingiiisliahle. For Bxétlllpla, path classes A; and B; may both he straiglit right

stroltes. (liaesuniably A and B are distinguishable hy their secontl paths or global t'eatui'es,Ti hi this

it is lilrely that exatnples of class A; will he mis-;.:lassit"ied B; or vice versa it is desirable to

rcrnove these anihi guitics irorii the path classitierhy conihining all classes which could he rnistaltcn

for each other into a single class.

A nuinher of approaches could be taken for detecting and re moving ainhi guities from a. statistical

classitiet. One possible approach would be to compute the Mahalanohis ttisiance hetween each pair

ol‘ classes, merging those below a given threslioltl. Another approach involves applying a clustering

algorithin [74] to all the examples, ineiging those classes whose tnenibers are just as likely to cluster

with examples from othercl as their own. A third approach is to actually evaluate the actual

peitorrnance of a classifier which attempts to distinguish hctween possibly anihiguous cl asses; the

ntisclassitieations oi" the classifier then indicate which classes are to he rnergetl, The latter approach

was the one pursued here.

A naive approach for evaluating the performance of a classifier‘ would be to COl1SlI1l{‘i the

classilier using Et set oi’ examples, anti then testing the perlorniance oi" the classilier on those very

same examples. This approach obviously tniderestiniates the ambiguities of the classes since the

classifier will he hiased toward correctly classifying its training exantples [62]. lnsteatl, a elassitiei’

is constructed using only a small number of the exarnplcs (typically tive per class) and then

the remaining examples to evaluate the constructed elassitiers. Misclassifications of the

then indicate classes which are ambiguous and should he rnerged. In practice, thresholds must he

established so that a single or small percentage. of niisclassiti.cations does not cause a merger.

Matlierriatically, combining classes simple operation. The mean vector ol‘ the cornbiiietl

class is eotriputerl as the average of the mean vectors of the component classes, each weightecl by

Page 1253 of 1714

CH;-4tP’I]E71i’ A/1UL’1"}"»-Z3111}! YURE I~;’_t7'COG]‘vl’HO1‘v’

relative number ol‘ in the A similar operation computes a composite average

covariance inatrix froin the covarhance inatrices of the heing eoinhined.

The above algorithm, which removes arnhiguities by combining classes. is applied to each path

classifier as well as the global classifier. lt remains now only to construct the decision tree for the

multi -pathcl

5.4.2 Creating the decision tree

A decision tree node has two fields: inc.l.a.ss, a pointer to a n‘iulti~path gesture class, and next,

pointet to an array oi’ pointers to its stibnodes. 'l‘o construct the decision tree, a root node is

allocated. Then, during the class phase, each niulti-—path gesture elass is considered in turn. For

eaech. :1 sequence of path classes (in sort index order), with its glohal t'e-attire appended, is

eoiistnictecl. Nodes are created in the decision tree in such a way that hy following the sequence

a leaf node whose mclass value is the content niulti-path gesture class is reached. This creates a

decision tree which will correctly classify all niulti—class gesture whose component paths and global

features are correctly classified.

Next, during the exarnpiepliase, each e>:;atnple gesture is eonsitlered in turn, The paths are sorted

and classified, are the glohal ‘features. A sequence is constructed and the class of the gesture is

atlrled to the decision tree at the location conespoiitling to this sequ,eni::e before. Ntilrfllillly‘, the

paths and global features of the gesture will have classified correctly, so there would already be

a node in the tree corresponding to this sequence. llowever, if one of the paths or the global feature

Vector of the gesture was classitied incorrectly., anew node may he created in the decision tree, and
thus the same classification ni,istal<e in the future will still result in a correct el3.ss,ilieation for the

gesture.

When attempting to add a el using a sequence whose eotnponents are nriiselassilications,

it is possible that the decision tree node reaened already a non-null n7.c.l_ass field elerring

to a L‘-.it'fei'ent niulti—path gesture class than the one whose ertaihpl.e is currently being considered.

This a Co,z7f_Z:'z:t and is resolved by ignoring the current exaniple (though a waming message is

printed). ignoring all but the first instance of a sequence insures that the sequences generated during

the class phase will take precedence over those generated during the Cxfilllpltl phase. Oi" course.

a coiiilittt oeeuri'itig during the class phase indicates a serio-its prohieint narnely a pair of gesture

classes hetween which the miilti—path classifier is unahle to discriminate.

During decision tree eonstnictioii, nodes that have only one global t‘ea.tui'e entiy with a

suhnode have theirmclas S value set to the same gesture class as the melas S Value of that suhnode.

in other words, sequences that can be classified without referring to their global feature class are

ll12Erl§;C4Zl as such This avoids the extra work (and potential for error) of global feature classification.

5.5 llath Features and Glohal Features

'l'he mzlassltiaration of the individual paths and of the global features of a inulti-vpath gesture are

central to the iiiulii--path gesture recognition algoiithtn discussed thus far. This section describes the

particular feature vectors used in more detail.

Page 1254 of 1714

56 A FUR;l'HER Llfl”RO l«.’E‘_t’l,/.E.«"v’i’" 87

The elassillcation algonthrn used to classify paths and global features is the statistical algoritliin

discussed in ‘Chapter 3, thus the erjteria fill‘ feature selection tliscussed in section must he

arltlresseti. in particular, on y l'eatures with Gaussian~lii<e distrihuti:;iiis that can be calculated

inereinentaily are tronsidered.

The path features include all the features mentioned in Chapter One additional feature was

added: the starting time of the path relative to the startin tithe of the gesture. Thus, for example,

a gesture eonsistin of two lingers, one ahove the other, which enter the field of view of the Sensor

Fraiite simultaneously and move right in parallel can he distinguished from a gesture in which a

single enters the field tirst, and while it moving right a second is brought into the

viewfteltl and tnoves right. in particular, the classifier {for the second sorting iridexl would he ahle

to discriminate between a path which hegins at the start of the gesture and one which begins later.

The path start time is also used for path sorting, as described in section 5.2.

The main purpose of the global feature vector is to discriminate hetween multi-path gesture

classes whose corresponding individual eoniponeiit paths indistinguishalule. Poi" example, two

gestures hoth consisting of two lingers inoving right. one having the fingers oriented Vertically. the

other horizontally. Or, one having the lingers about one hall‘ inch apart, the other two inches apart.

The global features are the duration of the entire gesture, the length of the hountling hos diagonal,

the honnding ho); diagonal angle (always between G and in 7’ so there are no wraparound prohlerns),

the length, sine cosine between the first point or" the first path and the first point of the last path

(ieietiriiig to the path sorting order), and the length, sine, and cosine between the point of the

iirst path and the last point of the last path.

Another tnulti—path gesture attribute. wliieli may he considered global feature. is the actual

number of paths in the gesture. The nuniher of paths was not included in the above list, since it is not

included in the vector input to the statistical (3l£lSSlll€T_ lnstead, it is required that all the gestures of a

given class have the same nurnher of paths. The nuinher of paths niust thatch exatrtly for a gesture to

he as given class. This restriction has an additional advantage, in that ltnowing exaetly

the number of paths simplifies specifying the semantics of the gesture (see Section 83.2),

The global leatures, crude as they might appear, in most cases enahle eil'eetive discrimination

between gesture which cannot he elassitied solely on the ‘basis of their eonstituent paths.

5.6 A Further lrnprnvernent

As mentioned, the niulti-path classifier a path classifier for earth sorting index. The path classifier

for the path needs to distinguish between all the gestures consisting only of a single path, as

well as the first path in those gestmes having two or niore paths. Siniiiarly, the se-;:ond path til-assitier

must diseriniinate not only between the second path of the two--path gestures, hut also the second

path of the three path gestures, and so on. This plaees an unnecessary harden on the path classitiers.

Sinee gesture classes with tlitfererit nunthers of paths will never he confused, there is no need to

have a path classifier able to discriminate between their constituent paths. This observation leads to

a further inipruvernent in the niulti~path recogiiizei".

The lt11pl'0\/(‘.l1ltZ‘.lli is instead of having a single nnilti--path retmgnizer for diseriniinating between

n1ulti—path gestures with differing nulnhers of paths, to have one rnulti—path gesture recegnizer, as

Page 1255 of 1714

CH;-4iP’I]E71{’ A/1ULJl"»-B1llH YURE I~;’_ECOG]‘vY1"YO1‘\/

descn bed ahuve, for each possible it umber of paths. There is a multi—path recognizer for gestures

eunsisting of only one path, I-mother fur twu—pa.tli gestures, and st) (in, up until the ma , llltlt number‘

of paths expecterl. Each path elassi tier new deals only with those paths with a given sorting imlex

frurn these gestures with a given nurnher of paths. The result is that many of the path

have few ‘er paths to deal with. and improve their recognition ability aecorrilngly.

Of course, for input devices in which the number of is tixetl, such as the Datafilove, this

impruvernent does not apply.

5.7 An Alternate Appreaeh: Path illustering

fhe rnulti~path gesture recognition irnplemeutution for the Sensor Frame relies heavily on path

sorting. Path setting is usecl to tlecicle which paths are s'uhlnitted to which iclassiiiers, as well in the

global feature calculation. Errors in the path sorting (1. e. similar’ gestures liavirtg their currespontliiig

paths end up in rlifferent places in the path urdering) are a potential source uf iniselassificatiuns.

Thus, it was thought that a rnulti—path t'ee<>griitii'sn metln'nl that avoided path sum’ ng mi ght potentially
he inure accurate.

5.7.1 Gluhal features withuut path suiting

The first step was to create tit global feature set which did next rely en path starting. As usual, at major‘

design criterion was that a small change in a gesture should result a small change in its global

features. Thus, features which depend largely upon the precise order’ that paths begin cannot he

userl, since two patlis which start alnlsisst simultaneously niay appear in either order: However‘. such

features can he weighted by the difference in starting times between successive paths. and thus Vary

smoothly as paths change order. Another approach which avoids the problem is to create global

features which depend on, say, every of paths; these tee would he innuurte to problems of

path sortj ng.

The global features are hasetl on the previous global features discussed. However, for each

feature which relied on path ordering there, twu features were used here. The first was the previous

feature weighted by path start time differences. For exaniplc, one feature is the length from the first

point of the first te first point of the last path? multiplied by the differeiiee betweert the start

tinies of the first and second path. and again rnultiplietl hy the cliffereuce between the start times of

the last and next tu last path. The seeund was the sum of the feature between every pair path. such

as the Still} of the length hetween the start points of every pair of paths. For the sine and t;iOSlttt3
features. the sum of the absolute values was used.

5.7.2 Multhpath reeugnitiun using tune single~path elassifier

Path sorting allows there to he a number of rliffererit path classifiers, one for the first path, one for

second, and so on 'll:t avuid path sorting, a single classifier used to classify paths. Referring

to the exalnple in Section a single elassilier waitultl be used to rlistinguisli between A1. zlg, B1.

and

Page 1256 of 1714

5 7 AN./¥'n_’.2’2ii'I\’J\/}‘l}t'E ./~l1'—’PI»3t’)./ilCI-i".* IZQIH CLtJ.<.'i’;E‘Rz?v‘t7-

Once all the paths in a gesture are classified, the class infonnation needs to combined to

proriuce a elassirieatioit for the gesture, as a whole. As hetore, a tleeision tree is used. However,

since path sorting has heen cli mi nate=;l, there is now no apparent ortler ot" the classes which will

matte up the setpience stlbtnittetl to the decision tree. To remecly this, each path class is assigneai an

arbitrary distinct integer during training. The path class sequence is sortetl according to this integer

ranlting (the glohal feature classification remains last in the sequence) and then the decision tree

examined. The net result is that each node in the decision tree corresponds to a set (rather than a

sequence) of path classifications. (Actually, as will he explained later, each notle corresponds to a

in ultiset.)

in essence, the recognition algoritlini is Very simple: the lone classifier tletennines the

classes of all the paths in the gesture; this set of path classes? together with the global feature class,

deterinines the class of the gesture. Unfortu nately, this explanation glosses over a serious conceptual

tliflicttlty: In order to train the path classifier. lrnown instances of each path class are required, But,

without path sorting, how is it possible to know which or the two paths in an instance of gesture

class A is /-‘l; and which is :43‘? One of the paths oi‘ the that fl example can arbitraril he ealletl /11.

Once this is done, which of the paths in each of the other examples of class 11; are in .41‘?

Once asked. the answer to this question is straightt'orwarrl. Tlie path in the second instance of

A which is similar to the path previously called .41 should also he called .41. if a gesture class has

.Npa.ths. the goal is to divide the set of used in all the training exaniples of the class into N

groups, each group containing e>:actly one path frorn each e>:;arnple. ltleally, the paths forming a

group are similar to each other, or. in other wonls, they correspond to one another.

Note that path sorting pl’0£lUC€S exactly this set of groups. ‘Within all the exarnples of a given

gesture class, all paths with the same sorting iiidex form a group. However, if the purpose of the

endeavor is to build a rnulti—path recognizer which tloes not use path sorting. it seems inappropriate

to resort to it during the training phase. Errors in sorting the example paths would get huilt into the

path classitier, likely tttillityiitg any heneticial effettts of avoiding path sorting during recognition.

Another way to proceeti. by analogy. Within a given gesture class, the paths in one example are

compared to those oi‘ another example, and the corresponding paths are itlentiiied. The comparisons

cottltl conceivably based on the feature of the path well the location and timing of the path.

This approach was not tried. though in retrospect it seems the simplest and most likely to W0l'l{ well.

5.7.3 Clnsterln{,>;

instead. the grouping of sinrilar paths was attempted. The (letinition of similarity here only refers

to the feature vector of the path. in particular. the relative location of the paths to one another was

igrtored. to group similar paths together solely on the basis of their feature vectors, a statistical

procedttre lznown Zriez'ar(:hi'(:a/ citz.<;te1"anai}«:s‘i'.s ['74] applied.

The iirst step in cluster arta.lysis is to create a triaitgular -containing the distance hetween

every pair of samples. in this case the samples being every path of every example of a given class.

The distance was compntecl hy first normalizing each feature hy tlividing by the standard tleviation.

(The typical l10t'tl1£1ll.£:':tll0ll step ol lirst subtracting out the leatttre mean was omitted since it has

no effect on the tlifference between two instartces of a t"eatut'e;) The distance between each pair or

Page 1257 of 1714

90 t:H;-4tPI]E7R A/1ULJl"»-B!lfH YURE I~;’_t'7COGNi'HO1‘v’

example path feature vectors was then calculated the sum of the squared di l:l"t3t‘<31*.C€S hetween the
horirtalized ieatures.

Front this matrix, the clustering algorithm protluees a cluster tree. or r,z’<:~r;a’t'r)g1'airz. A den-

drograni is a binary tree with an additional linear ordering on the interior nodes. The clustering

algorithm initially C01‘lSltl€1’S each individual sample to he in a group (cluster) of its own, the distance

tnatrix giving tlistanees between every pair oi" groups. Tlie two most sitnilar groups, 1'. e. the pair

eon'esponth'ng to the smallest entry in the matrix; are combined into a single group. and a node

representiing the new group is created the (l.€Tl(ll‘0gt”t";ttTl., the snhnoties of which refer to the two

constituent groups. aiistance iriatrlx is then uprlatetl. replacing the two rows and columns of the

constituent groups with a single row and column representing the coinposite group.

The distance of the composite group to each other group is calculaterl as a ttinetioii or" the

distances of the two constituents to the other group. Many such combining functions are possible;

the particular one used here is the g‘1‘0t1p at'e1'ager1ictl1otl, which computes the distance of the newly

formed group to another group the average tfweiglited hy group size‘) of the two constituent groups

to the other group. At"tet' the matrix is updated, the process is repeated: the smallest matrix element

is found, the two correspontlirig groups eonihinetl, and the matrix updated. This continues until

there is only one group left, representing the entire sample set. The order oi’ node creation gives the

linear order on the tlentlrograrn nodes, notles created early having suhnotles whose groups more
similar than nodes created later.

Figure 5.4 shows the ttentlrograrn for the paths of it) 3—path clasp gestures, where the thumb

rnoves slightly right while the index and ntitltlle iriove left. The leaves of the tlentlrogratri

are labeled with the numbers of the paths of the examples. Notice how all the right strokes cluster

together (one per exantple). do all the let"t sti'ol<,es (two per example).

Using the rlentlrograrn, the original be broken into an arbitrary (between one and

the number of samples) number of groups. To get Ngroups, one simply tliscurtls top 1“\/7~ l nodes

of the rien-:li‘ograrn. For example, to get two groups, the root norle is rlisearrlerl, and the two groups

are rcprcsciitcr.l by the two branches of the root node.

Turning haul; new to the prohlern of finding corresponding paths in exarnples of the same multi-

path gesture class, the tirst step is to compute the tlendroginnt of all the in examples of

the gesture. The rlentlrograni is then trayerscr_l in a hottoni~up (post~orr.ler) fashion, and at each

node a histogram that indicates the count of the number of paths for each e.\:a.rnple is eotnputetl.

lfhe cornputation is str'aigl1tlorwartl: for each leaf node (1. for each path} count is zero for all

eiraniples except the one the path canie front: for each interior node, each elenient of the histogram

is the sum of the eorresporitling eletnents of the sul:3nocle’s histograni.

ideally, there will nodes in the tree whose tiistogi'a.nt inrlieates that all the paths hetow this

node conie lrorn differerit eyianiples, and that each example is represeritetl exactly once. in practice,

however, things do not work out this nicely. First. errors in the clustering sornetirnes group two

paths front the same example together before grouping one path from every example. This case

is easily haritlletl hy setting a threshold. hy accepting nodes in which paths from all but two

examples appear exactly once in the cluster.

The sect:-ncl dllllettlty is more l'un(laineiital. It is possible that two or more paths in a single

gesture are quite similar {r'errieriiher' that relative path location is being ignored). This is actually

Page 1258 of 1714

5 7 ANz¥'1;_’.2’2ii'I\’J\/}‘f\}!'E ./»§1'—’17I€Q4C'H‘ IZZUH CLU5'1}E-”R&“v‘L3‘—

r»»»»»»»»»»»»»»» >-

1

...............u

70 90 El 80 42

awn-var--av---I g 2

muu..x._.._... S2

nfiflov-at-not 5 0

Figure 5.4: ?-2:111 Clusters

' his :.=.;'0w.s‘ I”;-e ream-'1' z:-1“ (‘i£I;‘§f€!‘iI'I_g ajapiiad (0 he .€I;'1'r.IfV paths of he tar) tht299—p.aI;r ciasp geasr'zI,"e.s' .S'h1)u'Ti.L
!

.m:‘}1 eta:-zp gE:.~!L!I“i? a simrig 1'1'gl1tv-/a1‘<i mov1'!;'_q ,‘ sh and W1)’ :;imj.:'.a1; 10.15;’]st?w'a!’ci mo i/1173:; ,‘3a.f}25. The

hi 1‘éz‘I”z'T}1I'C‘.éi}(Ti!15f(?E‘ifEg3I:gl)Z‘if[}}F)_g1UZ4gD:S 5it1;~1'I.a1' pa 5'1;-5 (sfigmzms ofpa ills) fogefizer The he1'gf2.f'0fa/2 infe1"z'o1'
;,rm..e 1';

415* I'()U{ (S()fI."&‘i,F1.$ I U paiizs, (ill-£5 1}'c:I.v1 cigar}: ,r.r::,i!'/jz'—A}9a2/,1; gssizjzze, fl is ./is:/.5‘ {,ez'z.ti8e':’ :4 g:_;()(! €,‘]iI.'>.',c'3I’ (iI1c1'ie;:: {ed

V 5: Ci”(7.’¢E‘ can {}'7€- g1‘.'ap-['1 , aI.ra'1'L_=; .::0I1sI'1'I':1€I1r'p52{izs c01‘r9::p.:2mz’. The 191‘: subzzee c'c2nZ'a1'm'I}g 2'0 paths, [M2

a_ppr0Xi12mf:?!'_j.’ I 0 pa fl'7,~:, one M7122 ¢?az::"7 gesfI.'i‘(§), if Wnziid /'73 Vt? i7-srén r7m7ciI1r3'c?(i fhaf all fizree pa fhs offrfir:

ciasp 4 “Hire a1”.-—? £11’ 1% 7-17:. m’I‘_h {be cnrmspmjding paths gfv(—‘12 ti)-9 gnaw‘ c1z:.st?rs. As it {mapper ‘a’, no

de.<,:(.‘e1'1a'.az;'t of ii;-6 left .s'ubZI'ee ~.'»L’a5 a good 1:]iJ.§£81”, so z'."1':.: <70/2z:]udea’ thaf ism 0f.f,*’2r:- pafh.-5 w1't'hI'n ti, 7 clasp

gestlwer are sizz;-ila I; aim’ Wil.’ (has be 4763 fed as e,\"aznpiss rjfmie .S'1'1}'.4:7,/€?—li}éi'{)l‘i <:I“5.s,

1di'(;a fss (Z15 .s'_i112Uea;‘i1}-' 0,/',i{s gm.'.zp.s:, I01/ve,/' 1,im.:’es .bei,r1g 1120 .s‘imi.’a;, 1'\r’u.f'.se ff}?/fl,’ file 1‘:'-‘(iii :sub.',a‘.s%:a 01"

Page 1259 of 1714

92 :‘:HL-4lPI]E71{’ A/1ULJi"»-Z31lIH YURE RECOGi"t»HYO1‘\/

common for Sensor Frame gestures that are performed by moving the elbow and shoulder while

keeping; the wrist and lingers rigidi For these paths, it is just as likely that the two paths of same

example he grouped together as it is that COF(t?S13tZ)tl(llllg paths oll tllliererit examples be grouped

together. Tlitis, instead of a histogram that shows one path from each example, ideally there will he

a node with a histogram containing two paths per exaniple. This is the ease in figure 5.4.

Call a node which has a histogram iiidicating an equal (or almost equal) number oi" paths from

each example a good cluster. The search for good clusters proceeds top down. The root node is

surely a good cluster; given exaniples from a three path gesture class, the root node histogram

will indicate three paths from each example gesture. ll no descendants of the root node are good

clrs, that indicates that all the paths of the gesture are similar. llowever, if there are goorl clusters

helow the root {with fewer examples per path than the root), that indicates that not all the paths of

the gesture are sirriilar to each other. in the three path example, if, one suhnorle of the root node

was a good cluster with one path per exaniple, these paths form a distinct path different than

the other path in the gesture class. The other suhnodc of the root will also he good cluster,

with two paths per example. if there does not exist a descendant of that node which is a good cluster

with one path per example, that intlicates that the two gesture paths classes are similar. Otherwise,

good clusters below that norle (there will likely be two) indicate that each path class in the

class is <;lil'l'erent,. The cluster analysis. soniewh-at like the path sorting, intlicates which paths in each

example of a given gesture class correspontl. (Good clusters indicated by circles in Figure 5.4.)

Occasiona.ll§a there are srragginrs, paths which are not in any of the good clusters irlentified

by the analysis. An attei pt is made to the stragglcrs in an appropriate group. lf an cxaniplc

contains a single straggler it can easily be placed in the group which is lacking an example from

this if an exarnple contains more than one straggler, they are currently ignored. ll‘ desired, a

path classifier‘ to discriminate between the good clusters could he created and then used to classity

the straggglers. This was not done in the current irnplementation since there was never a signiiicant

numher of stragglers.

Once the path classes in each gesture cl ass have been identified using the clustering technique, a

path classifier is trained which can rlistinguish hetween every path of every gesture class. ote

that it is possible for a path class to he formed from two or more paths from each example oi’ a

gesture class, it" the cluster analysis ii1(l.liZ'.al€(l the two paths were similar. If analogy techniques were

used to separate such a class into multiple “one path per exairiple” classes. the resulting classifier

would ainhiguously classify such paths. ln any case. ariihignities are still possible since ditfereiit

gestureclmay have similar gesture paths. As in Section 5.4. the aiiihigtiities are removed lrom

classifier by eornhining ainhiguous classes into a single class. "Each (new unambiguous) class

which is recogni:I.ed hy the path classifier is riumheretl so to establish a canonical order for sorting

path class sequences (luring training and recognition.

5.7.4 Creating the decision tree

After the sin gle-path anrl glohal classifiers have heen trained, the decision tree mast constructed.

As ‘ore. in the class phase, for each multi- path gesture class, the (now uiiaiiibiguoii classes of

eacli constituent path are enumerated. Since two paths in a single gesture class may be similar.

this enumeration ot‘ classes may list a single class more than once, and thus may he considered a

Page 1260 of 1714

58 DISCUSSION

1’)’t‘dlli The list of is sequenced into canonical order, the global feature class appentlcrl. and

the resulting seqtienee is used to add the nttilti-path class to the decision tree. As before, a eonliiet,

due to the tact that two =;lit‘.l'et'ent. gesture classes have the same ntuiti set ol"path classes, is tatai.

Next comes the example phase. The paths of each exarnple gesture are elztssltietl hy the single

path classifier, and the resulting scqucr :0 (in canonical ortler with the global feature class appciitletl)

is to add the elass of the example to the decision tree. Usually no work needs to he done,

the same sequence has airearly heen used to add this class (usually in the class However. if

one of the paths in the sequence has been niiselassified, adding it to the decision tree can improve

iecognition. since this tniselassitieatioit may occur again future. Conliiets here are not fatal,

but are simply ignored on the assumption that the sequences added in the class phase are more

intpottant than those added. in the t3>;Bl’l1plt: phase.

5.8 Bisetissioti

Two rnulti—path gesture recognition algorithms have been tlest:iiht:tl, which are refertetl to the

“path sorting" and the “path clustering" trtethotls. in situations where there is no tincettainty as to

the path index irtfortnation (eg. a Dataiilo ve, since the sensors are attached to the harni) then the

path~sortin method certainly superior: However, with input devices such the Sensor Prairie.

the path sottittg has to he done lteuristically, which increases the lilcelihootl of recognition error.

The p-ath—elustering method avoids path sorting; and its associated errors. Howeve r, other sources

of niisclassification are ll’l[.l‘0(iU¢.T£’)4;lt One singlepath elassltier to discrirninate between all the

path classes in the system, so will have to recognize a large number of classes. Since the error rate

of a elassitler increases with the nntrther of classes}, the path classifier in a path~clnstering algoritltni

will never perforrn as well as those in a path~sorting algorithm. A source of error is in the

clustering itselt"; errors there cause errors in the classifier‘ trainin data, whi<;th cause the performance

of the path classifier to degrade. One V 'ay around this is to cluster the paths by hand rather than

by having a computer perform it automatically. needed to he done with some

lrotn the Sensor Frame, which, because oi glitches in the traeiting hanlware, eoulrl not be clustered

reli ahl y.

In practice, the patl:-sorting rnethotl always pertorttted better The poor perforrnance of the

path-clustering method was generally one to noisy Sensor Fratrte data. it is however dilficult to

reach a general conclusion, as all the gesture sets upon which the ntethods were tested were designed

with the path sorting algorithm in mind. it it easy to design a set of gestures that would perform

poorly using sorted paths. One possibility for future worlt is to have a parameterizahle algorithm

for sorting paths, and choose the parameters based on the gesture set.

The Sensor l31‘£t1’l’tt) itselfwas significant source or" classification errors. Sornetirnes, the knuckles

of lingers curletil so not to he sensed would inadvertently hr talc the sensing; plane, causing extra

paths in the gesture (which would typica‘tl.y then he rejected). Also, three in the sensing

plane can easily occlude each other with respect to the sensors. matting it difficult for the Sensor

Frame to determine each tin§._zer’s location. The Sensor Frame harclware usually l<t‘tt3W from recent

history that there were irttleeti three lingers present, and (lid its best to estlinate the positions ii:-l" each.

lloweveri the resulting data often liaul glitches that tlegradetl classitlcatiori. srnnetirnes hy cunfnsirtg

Page 1261 of 1714

94 :‘:HL-4iPI]E71i’ it/1ULJi"»-ZZIXIH YURE RECOGi"t»HYO1‘\/

tracking aigorithni. It is likely that additional preproeessing of the paths before recognition

would iriiprove a<;euraeyi Aiso. the Sensor Eratiie jtseif is stiii under devetepiheiit, and it possihie

that such glitches 5». it} he eiiriiinated hy the hardware in the. i'utu:re.

Another area for future Work is to apply the singiepath eager recognition Vvtirk described in

Chapter‘ 4 to the eager recognition of mu ii»-path gestures. Presiiiiisibty this is simpty a matter of

eageriy recognizing path? and combining the results using the (i€CiSilOt‘i tree. Haw well this
works reriiains to be seen.

It would also be possible to apply the niuiti-path aigorithrn to the recognition of niidti-stroke

The path sorting in this wouid sinipiy he the order that the strokes arrive. To
this has not been tried.

5.9 Ceiiehtsien

in this chapter., two tnethtids ftiifni1iiti~path recognition were discussed and txinipared. Each

etassities the paths of the gesture in.dividua1iy. U a decision tree to eoinhiiie the results, and uses

giobai features to resolve any iingering ambiguities. hrst method, path sorting. buiids a separate

etassiiier for each path in a niuiti-path gesture. in order to deterinitie which path to sutwtiiit to which

etassiiier. either the physical input device needs to be ahie to tell which finger corresponds to which

path, or path sorting aigorithni nitmhers the paths. second method, path eiustering, avoids

path sorting; {which arbitrary component) by using one eiassifier to ciassify all the paths in a

gesture.

in general, the path sorting method prtwed superior: Iiowevei; when the details of the path

sorting aigorithin are hnowii it is possibie to design a set of gestures which wiii be poorly recognized

due to errors in the path sorting. That same knowledge can also he used to design gesture sets that

will not run into path sorting prohieins.

Page 1262 of 1714

Chahter e

mi Arehgiteettire the r t r snihtitatien

This chapter tleseiihes the GEQANDMA system. GRANDMA stands for “Gesture Reeognizers

Atitmnated in :1 Novel Direct Manipulation Architecture.” This ehapter concentrates solel 7 on the

ai‘ehiteetui‘e of the system, without reference to gesture reeogn ition. The design and inipleinentation

of gesture recognizers in t3}?tAi‘~1DJ\/1A is the siihjeet of the next chapter.

GRANDMA is an object-oriented toolkit sirnihtt to those discussed in Section 2.4.1. Lilte those

toolkits, is it based on the rhodetview»ct>ntmller (MVC3 parttdigm. (}RAl\’=D1‘\/,iA alsoho1'i'owsideas

front eventhasetluser—intert':1ce systems such as Squeak [23], ALGAE [36], arid Sasstttras [54].

{3}-E.Ai‘\IE_)MA is iniplenicnted in Objective C {E8} on 3 DEC MicroVax-H running UNRX and the

X10 window

6.} Mntivatien

Building an ni>jet:t—0riei1ted user interface toolkit is a rather large task, net to he uiidertakeii lightly.

Fuithei‘i1it.n'e, such toolldts are only pe riphetally related to the topic at hand, namely gestut‘e—haset‘l

systems. Thus. the decision to ttteate GRANDIVEA requires soi1ie_iustitit'ati Ill

A single idea motivtitetl the author to use 0h_ject—0riented teolldts to construct gestut'e—hasetl

systems: gestures should he associated with objects on the screen. Just as an 0l:sjeet’s class

determines the messages it understands, the author believed the class could and should he used

to determine which gestures an object understands. The ideas of inheritance and overriding then

naturally apply to gestures. The analogy of gestures and inessages is the central idea of the “systems”

portion of the current work.

It wtzuld have been desirable to integrate gestures into an existing object oriented toolkit.

t”;1thtE:i' than build one from scrtttch. However, at the time the work hegttn, the only small toelkits

available were Snialitttlk-8t)’s MVC {'70} and the I’as<;a‘t-hased MaeApp [1 15], neither of which ran

on the UNlX/‘C environment available to (and preferred by) the author. Thus? the author created
GRANDMA.

The existing ohjeet--oriented user interface systems tend to have Very low--level input motlels,

with device dependencies spread throttghout the system. Fer Ef);EiI11pit3, some systems require views

to respond to messages such as micidleButi:c>nDown [28]: others use event structures that can

9:7

Page 1263 of 1714

96 t;’.7ii}4t13‘"L7'I€ 6 AN1-’lRCHIIECI ;l'L!RE FOR DJRECI'1\d’/~h“vQ’PULA2Q’OW’

only represent input from a fixed small of devices [ltl2]. ln general, the output mode] of eitisting

systems seem to have rec-eivetl niueli more attention than the input niodels. One goal of Gl{Al\l 1) M A

was to inves=.‘igate new ‘cl}.’{}llill.t3ClttK“S loi“ input pii:.=eess:iitg.

6.2 Architectural Qverview

Figure 6.1 shows a general oveiview of the §it'Cllltt’_‘.CEtll‘¢ of GRAl\l‘DiV-A system. In order to

intioduce the a.i'ehiteetui‘e to the reader. the response to at typical input event traced. But first,

brief description of the system components is in order.

Gl~i/—\l"-lDl‘vflA is based on the lVlodel--View--Controller (l\«l\/Ci) paradigin. Models are application

objects. They are coneernetl only with the semantics of the application. and not with the ttset

itttertace. Views are concerned with displaying the state of models. When a tiiodel changes, it is the

responsihiiity of the niotlel‘s view(s) to relay that change to the user. Crirttrtillers are objects which

handle input. ln Gl3€ANl')l\'lA, controllers talze the form of etr'e,nz'hana’ier.s.] A single passive event

handler may be associated with many view objects; when input is first initiated toward at view, one

of the passive event handlers may activate ta copy of} itself to hand} e fuifthei' input.

{$.21 An example: pressing a switch

Consider a display consisting of several toggle switches. Eatzli toggle switch has a motlel. which is

likely to he an object containing a hoolean variable. The model has messages to set and retrieve the

value oi" the vaiinhle. which are used hy the view to display the state of the toggle switch. and hy

event handler to change the state of the toggle.

When the mouse cursor is ntovetl over one of the st'itel'1es and, say, the left mouse hntton is

pt‘CSSC(.l, the winttlow niantager infornis GRAN_l'JlVlA, which raises an input Pick event. The event

is an object which groups together all the int'orrna.ti on about the event: the fact it was a. mouse

event, which hntton was pressed. and. most Sigllil’lC2l1'itly. the cooi‘d.inates of the mouse cursor.

Raising an event causes the active event izeizidjei‘ list to be searched for a hantllei for this

event. ln tum. eacli event handler on the list is asked it" it wishes to hantlle the event. Asstnning
none of the other hantllets will be interested in the event. the last hantiler in the list. ealletl the

XYEve:t'1t:}+1aI1r:lle1*, handles the event. This is what happens in the ease of pressing the toggle
switch.

The X't’Eve:t1."i:.}ta.nd1 er is able to process any event at it location (:2 events with —‘a’ coordi-

nates). The handler first searches the w’t—:-W database and eonstruets a list of views which are “under”

the event. in other wortls. vi that are at the given event location. The search si mple; each vi ew

has a teetangtilar region in which it is inelnt:led; if the event location is in the rectangle, the view

is atldetl to the list. in the switch eytaniple, the list of views consists ol‘ the ll1(l.l{'8tC4;l toggle svviteh

view followed the view representing the window in which the toggle switch is tlrawn.

"Tile dis . on between «:0 . .x‘olle:‘s and event handlers in the we._v each ittter2:el.s with the untlerlying layer that
generates input even-'.s. Once aetivateti, t:ontrc-llers loop. continually eallirig ‘he input layer let all input events until
the interaction completes. In other Words. eonti'olle:‘s take control, forcing the to complete one interaction before
initial.in_; the next. In contrast, eventhandl.ers are an .. ,y ealleti by the input layer whenever input ocettts. It is thus
possible to iiiteinct sinttiltaiicously vith multiple event lisndlcrs. for example vie. multiple devices,

Page 1264 of 1714

5 2. ARC ’IYL3'CTU1'~3,4L' 0 VE1? E/IE W

MOD ELS

Figurs 6.1: GR/XNDMAE‘, Archiiczcturs

In €3‘—,i‘3/'—"-."\J,r','}‘z".r,.”x=“1, usz?;‘e1(r1}'ar.v:»: (.'<’il1:§P z>\/5:‘ is In be z‘ai:.:z=,(i ,/1'15. pr':%.s.5;iI1g :1 .mm1.s‘e bi:/f'cm raises a T9 1', Ck €?V8l‘ii}.
liars}? ha r.u'sz‘ an rifle Eff.‘-{IVS E!/£’.Y.'l }ia,rzdI%_-1']1'.s't is 2isi<é=a', in r_zm'et; 11 It wi:a1'1ss in 1’1zmc2’I<.> lbs z.>w:t21. U16

XYEV: :r1t}[aI1dl»::r, gas! :21] [12-:?11's£, is as‘~3d c2221_3-'i1‘J1012s:‘- crfflze pI“€-vicrus ac{1'V-5? jzancilers 11;‘: we (70.i15zz112-5'11’

Elm .::-W111; F01‘ gm E‘/011;‘ with 3 5C;"t"'61I [0621 {£012 (3.6. 21 HIUUSE‘ €Vc12:.‘}, U18 XYE Ve111:.Heu'1d_le:‘ uses the 1/few

(1'.aiabasc* L’-:2 (1'c=l€1'I11iI1c* [E19 views a! U16 gj V611 .sc'I'cc:r1 1~:2ce2zj0I1, and asiis eaciz \v"I't‘W .C'}::2I.r1 190111’ [-12 back} 1T1‘!

Wisfzes to handle the evezit. L75 answer, v1'eW Cmisults its ;’ist0fpas51'Vz—? evemhei-11dIe1“5, some as.9cn:1'a I‘-5-d W1‘ If;

the w‘eW1'{5e1'f: otjz-ers assaciaz‘-5-d Wm’: .:‘,1'2e V:'(—>Wf9 class and super-::]as5e5, to see 1'f0ne off};-:95(—> is ime1'e.sr.+:

in the svflzf. l'fs(i. that passive ha.'m’ie.*' inay aztrivaie _v".’.<~:¢-911*’: I}-pirfaa Hy b;/_;)ia.<’ir;g a cnjyy rif‘i.'A:elf'af The frmvi

nf'tr'1s f.’£?f'ii’€ ex/517.! }2ar2riI49." list’. Y}2i.s' enabie Sz:1')5eqz.'er:t event's in be }2a11e'.’14m’ effitieryfiy, s:iJr,2rf—(.’1n‘z/ir‘irI,gI the
3

e]ab()z“ale:seaiIt}i fi)i'ai }ie1,rzdIE:r'ini.fia z"er(z' lg}/[f;.s% 3\’Tx'Eve:n.:: . 3' -11.6 r"'i.r.' everyrf 1'1an:.1:?r‘ c>n,:’:./' (‘()fI.‘§11iL'E‘.S£ av:-_r1{s:

in m’1i'(;,iz 11’ i,i]lt’?l‘(’?:Sl‘(?(I'7 a]1’o-./ytixiig rJ!1'z<a1’.s%1/912115‘ In pz‘q,i2ag ' in at./182‘ l?Vt??}{ !ia,r1r,-’/61:5‘.

Page 1265 of 1714

CH/iPi’”Ei’€ 6. Ai".Ult'€C‘HI2’}E'tC‘ i’"t']1'-SE FUR Di’KE:C T M/iN1P {fl/i I'1'0N

The views are then queried starting with the foreground view. First. a view is asked if the event

location is incleeti over the view; this gives an oppottiinity for 3. non~,teeta.ngular View to tespontl

only to events tliectly over it. ll the event is ititieed over the view, the view is then §;‘tl'il§.Cl.l it it

Wishes to handle the input event. The search ptoeeetls until a View wishes to handle the event, oi‘ all

the views tlt)(lt3!‘ the event have declined. in the exatnple, the toggle switch view iandles the event,

xv iieh would then not be propagated to the window view.

A view does not tespond directly to a query as to whether it will handle an input event. instead,

that request is passed to the views pa=s's}'Ve even! hantfiers‘. Associated with each view is a list of

event handlers that handle input for the view; a single passive event liandlei is often shared ainoiig

many views in the The passive event hancilets are each asked shout the input in turn; the

stops when one c.leeitles to handle the input. in the Cxatnplo, the toggle switch has a toggle

svvit it event liandler iirst on its list of passive handlers that would handle the event.

A passive event handler that has decided to handle an event may a(rt’it-'a1e£t copy or instance of

itself, 0. place the copy or instance in the active event handler list. Oi‘, it may not, choosing to do

all the work associated with the event when it gets the event. For example, a toggle switch may

either state iniinetliately when the mouse hittton is pressed over the switch, or it may simply

higl'1ligi'it itself, changing only if the hutton is ieleasetl over the switch. ln the torttier case,

there is no need to activate an event handle t; the passive handler itself can ehazige the state of the
switch.

in the latter case. the passive han-cllci‘ activates a copy of itself which titst highlights the switch,

and then monitors sobseqttent input to watch if the Cut'S0t' ieniains over the view. if the etttsoi"

moves away froth the view, the active event hantller will tom off the highlighting of the switch, and

may ttlepencling, on the kind of interaction VVal'1ii<3-Ll) deactivate itself. liiiially, if the mouse button

is released over the switeli. the active event handler will, through the view, toggle the state oi" the

switch {and assoeiatetl niotlel), and then deactivate itself.

As noted above, active hand.let's are asltetl about events hefoie the view database is seaiehed and

any passive handlers qneiietl. Thus. in switch example. subsequent mouse inovenients inatie

while the hutton is held down, or the telease oi‘ the mouse button. will he handled very ellieientiy
since the active liantller is at the head of the active event handler list.

5.2.2 Tools

'l‘he too] is one component of Gl{ANDi\/lA‘s architecture not tnentionetl in the above example. A

tool is an object that raises events, and it is through such events that tools operate on views {and thus

inodels) in the system. An event handler may be eonsitleied the ineeliaiiisni through which a tool

operates upon a view. lhe interaction is by no means uniilireetional: some event handlers cause

views to operate upon tools well. ln addition to operating on views directly, event hantllers inay
themselves iuise events, as will seen.

Eveijv event has an associated tool which typically iefers to device that generated the event.

For example, a system with two niiee would have two l»touseTool objects. and the appropriate

one would be used to itlentily vvliieli inouse tzausetl a given event. When asked to handle an

event, an active liantller typically checks that the event‘s tool is the same one that eaitsetl the handler

Page 1266 of 1714

‘)9

to be activated in the first place. In this manner, the active event handler ignores events not intended
for it.

'l‘uni,s are also lIlV~'{JlvC-Ll when one device einui ates another. For example, 3. Sensor Frame may

emulate 8 rneuse by having an active handler that ccnisnines events whcrse tool is a Senso1‘Frame

ehjeet, raising events whose that is a tviou:3eTe3oIl_ in response. That Moi,iseeToc:3.l_ (lees nan

C01’l'CSpDt‘.tLl to a real iiirnise; rather, it ailo ws the Sensor Frarne to I11aSqllCl'£l£lC a niouse.

Tdols do not necessarily refer to hardware devices. Virtual tools are software dhjeets (typically

Views) that act like input hardware in that they may generate events. For example, tile views (icons)

would he virtual tools when inipleinenting a Maeintesli-like Finder in GRANl)i\/IA. Draggiiig

tile View would cause events to he raised in which the tool was the file View. A passive l'l2.tl1(liBl'

assoeiated with folder (<lii'eetery) Views Wollltl he prngianimed to activate whenever an event wh use

tool is tile View dragged ever a folder: Thus, in GRAl\ll)MA the same meelianisin is used when

the innnse C‘t;l1'Sifi1' is dragged over views as w ten the inause is used to drag {E116 Vl€W over other
Views.

The typical -Case, in which a tool has a semantic action which operates upon views that the tool

is dropped upon, is handled. gracefully in (}RAl‘{DlVlA. Ass0e:iated with every V'i€‘W is the passive

GeneridroolOI1ViewEvet1t}{aI1ciler. When a trial is dragged ever a View wliicli responds to
the tools action. the GenericToolOnV'iewEventHandler associated with the View activates

itself, highligjhtiiig the View. Dreppiiig the tool on the View causes the action to 00013112 Thus,
seniantie feedhaelr is to achieve using Vi mint tools (see section 6.7.7).

'l‘ 1lS concludes the brief overview of the GRANDMA arehiteetiii'e. A discussion of the details

of the GRAl\lDl\«lA systern now follows. A reader wishing to avoid the details rnay proceed directly

to section 6.8., whi-sh siininiarizes the main points while eeiiiparing }RANl)i‘vlA te snnie existiiig
systeiiis.

6.3 Ghjeetive-=C Nntatieri

As mentioned, GRANDi‘v‘EA is Writteii Objective C {Z8}, a language which augments C with

Object--oriented. prograinniing eoristruets. In this part of the dissertatiian, pragrani fragnients will be

written in Objective C.

in tffihjeetive C. variables and llinetions Wli0S€ values are ohjeets are all declared type id, in
id aset;

Vaiiahles {if type id are really p<iinters, and ean refer to any Ohjeetive C cihjeet, or have the

Value L Lil<:e all p0inters7 such variables need to be initialized befme they refer to any object:

a:3€—.i: [Set new} ,- ,4 CI‘8s3fE'& Set c.=bjeCt>:«/

The e>;pressis:>ii [<3 niessagensnnel is used to send. the message ine:3sagenarr.e to the object

referred to by 0. lhis object is termed the mtreivei‘, and messageriaine the seIe.r:tor. A message

send is similar td a liinetiriii call, and returns a value whdse type depends on the selector.

Objective C eernes supplied with a nuinhei" of f%1c‘i0zjyeh_ieets, also known as as gasses. Set is

an exaniple of a factory object, and like most factory objects, respentls to the message new with

, ‘ . agge ever a View that sets upon the toe] (ag. the trash can), is handled by the
Bu-3.‘/re“;Ev'errt;Ha.rrdler‘.

Page 1267 of 1714

lllll EH/lPl’”El’€ 6. A]‘J;1ll€C‘HI2’}E'C N11’-;’E FUR BIKE}? T MAft’1Pl.F£/lT1'0i’V

newly allocated instance of itself.

Messages may also have paraineters, as in

id ahect {Rect;.ar1gle C-l‘ig'iI1:10:1O corne1*:20

[aSei: acid : attest} ;

The message selector’ is the concatenation oi’ all the parameter labels (origin: : carrier: 2

in the first ease,: in the second). hi all eases, there is one parameter after each colon.

A far:tni"_y"s fields and methods are declared as in the t‘nllowiitg example:

= Re-ct :0bfE ect. { int 2.1 , , x2 , y2,-

+ origin: l,il'l‘C,‘___}:1 : (int) :__y1 lii'it:)__x2 : (int ,3 __y2
self = [self new];

2:1 . __xl , yl
IETel;U.1C‘l'1 eel. 1E ;

E

— shiftlaji: (int) X :(.i.nt) y

{ X1 += X; yl += y; X2 += 2:; y2 += y; .'E’_";'-3’i;‘.,’lI‘1'1 self; }

This declares the factory Real: to he a suhclass of the factory Obj eat, the rent of the cla.ss

hierarchy. Note that the taetory rleelaiation hegins with the tol<en. A method declared with

“+” rletines a message which is sent directly ta) a factory -abject; SUCl1 rnethnrls often allocate and

return an instance of the factory. A method declared with “~” defines a niessa tie that is sent tlireetly
to instances of the class. The variable self is accessible in all method declarations: it refers

to the object to which the message was sent {the receiver). When self is set to an instance of

the ohjeet class being defined, the fields in the object can he referenced clireetly. Thus, in the

origin: 2 corner: 2 nietliorl. the tirst step old a factory rnethotl is olten to reassign eel f to he an

i. stance of the fa.etory, then to initialize the fields of the instance. The usage [seitf new} rather

than [Rest new] allows the method to work even when applied to a. suhclass of Real: (since in

that case If would refer to the factory ohject of the subclass). When the types of methods and

argiinients are left unspeeifietl, they are assumed to he id, and typically inetlieds return when

they have nothing; better to return (rather than void, 1'. 5: not returning anything).

When describing a 11l€:tl’1()Cl()l a class, the fields and other i'lit’3i’llO(lS are often omitted, in
: Eiect . . .

(int) return < »'< —---y'1)) ,- }

in Objective C, messages selectors are lirst class objects, which can he assigned and passed as

parameters and then later sent tn objects. The eonstnmt @se.l.ect0r (messageseiectaz‘) returns

an ohjeet of type SEL, which is a ruritirne representation of the message selector:

areeet {Race o1:igi.n:1O : 5 corner : 40 : 35

SEL op = flag @s.—;=lecto:c' (areal : @s

("%d\n", [attectt perfoifinzopi) ;

The rectangle aRe<:t will he sent the area or height message depending on the state of

flag. The perform: message sends tlie message indicated by the passed SEL to an object.

Variants of the form perform : with ; with: allow additional parameters to he sent well.

i

actor (height) ;

‘I.4
-.

The lirst elass nature of message selectors distinguishes Objective C l'r<:n'n more siatie oh_j;eei--

oriented languages. notably t"»+—:~—. As hey are analogous to pointers to ftinctioris in C, BEL values

Page 1268 of 1714

5 TV/'0 HIE1?.xl1?CH1E5 ltll

may he considered “pointers” to Objective C includes functions for converting between

SEL Values anal strings, and 3. niethod for inquiring at rttntinfte whether an ohjeet responcls to

an a:thitr;;ti'y ntessage selector. As will be seen, these Objective C l'eatnres are olten usetl in the

GRANl)MA iinplenientation.

in the interest of siitnplieity, debugging code and niernoiy 1‘_(t.’;ttifigt:1’lTt€i’lt code have heen removed

from most of the code fraginents shown helow, though they are of course needed in practice. Also,

the code is explainetl in the text. rnany of the eominents have been removed for brevity.

6,4 The Twn E-lierareliies

Thus far, two intportant liieinrchies in objeet—orientet.i user interface EOOll{li’Si1flV(‘. been hintetl at,

and it seems ptnclent to forestall eoiilnsion hy further cliseuissing then} here. The first one is known

the 51.3253 }11'eI‘ar;ri‘1_y. class hierarehy the tree of snhelass/s'npel'elass relationships that one

has in a single~iilheritance system such Eis Objective C. in Objective C, the Class Obj eat: is at the

root oi‘ the class hierarchy; in GRANDMA like I‘/l<:>del. View. and Eventfiaridler are

stthclasses of eat; each of these l'1£tS snhelzlsses of its own leg. Bt.ti:t.on‘LJ‘:Lew is a subclass of

viewj), and so on. The entire tree referred to as the class hierarchy, and particular stihtrees are

referred to by qualifying this term with 3 class tlalfflt‘. ln p‘c1l,‘llCUl§Jtt‘, the V.i_ew elsss hiernrelty is the
tree with the class View at the root, with sithei of View suhnotles of the root, and so on.

The second hierarchy is reteiretl to the View izieranzliytii" View tree. A View object typically

controls 21 rectangular region oi” the display Wlll<l0W. ',l'he View inay have stzbtiieti/5 which eorttrol

suhareas of the parent Vie‘. v”s rectangle. For example, (at dialogue box View may have sul>vievt.'s

some radio buttons. Snhviews are usually more to the -‘oregronntl than their parent views; in other

words, a subview usually obscures part of its parents view. Qt‘ course, suhviews themselves niight

have suhviews, and so on, the entire strttctttre being known as the View tree. ln GRANDMz—\, the

root of the view tree is El View eorrespoiirling to a particular wintltwtr on the display; a progrzlrn with

nniltiple windows will have a View tree for each. It is inipoitant: not to confuse the View liierznehy

with the View hierarchy; the lorriter relers to the superview/suhxriew relation, the latter to the

sttperelass/stthclass relation.

6.5 Models

Being a Model,/View:’Controllenhasetl system. naturally the three most important -classes in

Gl?3ANl)l\«lA are Model, View; and Eve:t1t;:Hancil.or (the l.atter heing; {jl»3Al\ll)lVlA’s tent: for
C€)l1lI0llt.’.l'). discussion of GRANli)lt/,lA is tlivitletl into three sections, one for eziclt of
classes. Class Mode .1 is eonsittered first.

Models are objects which contain applieation—speeii’ie data. Model ohjeets enctzipselate the data

and computation of the task tloniain. The l‘vl‘v’C paradigm specifies that the methods of models

shonltl not contain any uSt3l'--li1lt3l'fEi{7€ specific code. ltlowever, a motiei will typically respond to

messages inquiring about its state. in this manner, a View object may gain itillorinatititn about the

nioclel in ortler to display Et1”€pl'€S'ellt21liOi"l of the model.

Page 1269 of 1714

102 CH/iPi’”E;’€ 6. A]‘.7A}€C‘HI2’}E'C i’"t']1'-SE FUR D!KE:C T1LfAN1Plf£/EHON

In at number of MVC-like systems, there is no specific class named “Model” {Z8}. Instead,

any object may not a iiitidei. i‘i()‘VV&3Vt’.’.i‘, in GRAND MA, as in Sinai1ta.ik-8i)§7Qj, there is 3 singie

eiass natneti Made .1, which is suheinssed to iinpieiiiem, ;;tppiic;1tinn objects. This has the obvious

tiisatiwntteage that eaiteatiy existing cannot direetiy serve motieis. The titivaiitagcz is the

eamzofinnnennnnafinn,andtheifintnytneasfiythsnngnfihtnoddstinnyonnnwflfiecm.

Om0flmHwmMfimeMVCpmmmmmsmmmmkl0Mwmmem&@m®m0flmflvmws

ihennenfisthmtheuserhnefiecenftheappheadonshoukibemfletohechangedtvfihoutnnxhfwng

themnflnmnonsmnmnms.TheefiemxnthwdegnfibrnmdmafigfisnwtaModelsnbdamiswnnen
without reference to its Views.

However, when the state of made} changes, 3. mechanism is needed to in:"<n*ni the Views of

the mntiei to update the display iiceordingiy. The way this is ilC,COtI1}3iiSh€{i is for each nmdel,

to have :1 iist of dependents. Objects, such as Views, that wish to he inthnfned a made],

changes state register theinseives as tiepencients of the inotiet. By eotiveiititm, Model abject sends

imefithemodified1ne%ageVWmnitdmngmxfinsnmuhshiafiimtkmendmnsgmfingsmnthe

modelMOdifiedtnauagaatwhnhtnnedmyeanactmxenhngfi.

The heart of the iinpienientation of the Model eiass in GR/XNTDMA is simpie and instructive:

: Object id dependents; }

atid13eper1dent:<i

iftdependents == nil) dependents = Eordcltn new];

1;t'<iependen,t.,3 ado". : d

return self,-

removebependent :

ifiidependente 7 - {dependents remove:d_e;
retturn self;

modifieci {

if idependerits nil) ,»1e< send at]! deperzdentis 11';r_)(ieiMc;diI3ed >s< /

[dependents e].ementsPerform ; @se."i.ector (mode1Modifi_efi)-J ;
r:-gt‘-urn self,-

11

Thus, {it Model is a suheitiss of Obj eel: with one additional! field, degaendents. When

{it Model is Eirst created, its dependen-..,e field is auE()I§1fl1i{:E1iiy set to n:i.l The first time a

Liepentient is added (hy sending the Inessage ac1dL‘-ependent z), the dependents fieid. is set to

new iiistanee of C’1.’<3lC.i.‘tZ1'1, a class for representing lists of ohjec ,. The dependent is then added

to the list: it -can iater be removed by the reznovebependieniz. message.

Model is an abs!Ia(:i'ciass; it is not intended to he iristantiateti directly, but instead only he

suheiassed. A simpie exzirnpie of £1 Model might hooienn variahie (whose View mi a tnggie
SWii’Ci'i)I

= Boolean : Mode
1 { BOOB; state;

{BOOL)<3'et:Sta‘te 3*

‘I
.>

eturn state; }

Page 1270 of 1714

— setstate: (BOt)L)_st:ate

{ state := state; ret.urn [self modi. ..i.edl ; }

toggle tate Estate; x‘ei:.urn [self moclifiedi ;

Notice that whenever it Boolean 0hject’s state cimnges, it sends itsel F the modi f ied atmssage,

wl'1icl'1results in all of its tlcpcndents getting sent the moc3Le].MQc1i.f ied mcssagci

656? Views

The abstra ;t class V1'.ew, as mcnti0m:d7 handles the tlispiay of Node it is easily the most complex

class in the {RRANDMA systein; it over till) lines {hf code, and it cuirently iniplements l() factory

niethods and 67 instaiice methods (not in-:.:ludingtl1-:>se inherited front Obj F01" hrevity., most

of the inethotls will not he mentiened. or are only mentiuned in passing.

Views liave it nuinher hf instance vtuiables (fields):

View : Qbj act 3‘
" model;

parent, children;

p.i.cI:.ur.r:e , highl.i.jjl1t;

, ylo-3;
box;

state;

}
The model vatiable is the ‘views ccrithectioii with its model. Sonie views have no ntoclelg in this

case will nil“ The fields parent and children implenient the View tree; parent

heing, the superview Of the view, children being 3. list (:OrdClt1'.=) of the suhviews hi this view.

The fields picture and highlight refer to the grapltics usetl to draw and highlight the view;

respectively. The graphics are drawn with respect to the migin specified hy txloc , ylocl , and

are constrained to he within the Rectangl e object The state Eichl is set of hits intlieating

both the current state of the View (set hy the GRAN'Di\/EA systrzni) and the desired state of the View

(eon tmllable by the View user).

To illustrate same of Views methods, here is a toggle switch View whose motlel is the class
B001-can (l.est:i'ibt:tl. above.

= Swit;ch‘v'iew: View { }

To create fl toggle switch VlCWf
id aBoolean

id aswiizetwisaw = ltnvitchview createviewof : atlmoleanj ;

The creat:eVi.ew<Z)f : method of class View allocates 3. new View object (in this an
instance of Sv _l.tc:h*-flew). sets the instance Variable, anti, tn add itself to the models

dependents, does [model acidaependerit :

The grapliics for the switch are implemented as:
= Switc:h'v'iew . . .

— upciatePic:ture {

p [self Vbegi:nP2i.ctu1‘e] ,-

Page 1271 of 1714

t;’.7ii}4;t13‘”'L7R 6 AN1-’lRCI-IITEE) ILJRE FOR DJREC;7'1\/1'/~l¢“vl'PL7LA2’i’C)1\/'

ljp rectangle 0:0 :lCl:1G];

if (lmodel. getfstatei)

lp rectangle 2:2 28:8];

{self "\7eridP:Lctt:-.re];

return self;

l

The il1i’Cl1i’,lu’J11 is to tlifaw an empty rectangle ll) hy ll) pixels in size for a. switch whose ih0<lel’s

state is PALS t but put 3. sttiallet rectangle within the switch when the :h10t'lel"s slate is

Views \7l;s»egin?ic?;u:Ce and Vendfilieture methods deal with the piCt:u::;‘e iiistatiee

variable. (The V prefix iii the hiethotl names is El eoiiveittioit indicating that these messages are

ihteiitletl only to be sent by subclasses of View.) Vbeg irtPic:tu1'e creates Oi‘ initializes the

E-IangingPict.t.1re ohjeet which it retttms. The graphics are then direetetl at the picture, which

is in essence display list of graphics Ct)Il’1l1l{;tl’l(lS. Note how the 1h0del’s state is Lttteried the

model instance V3l"i£1i’)l€) inheritetl fmm class view. This is dime for effittiettey purposes; a more

}ft}0Cilui81’ls’) accomplish the same thing Woultlhe if (E {self model} getffitatej }.

The iiiethttcl upda t.ePic't tire eal ed ittdireetly froiii View’s mode 1Me-dif iecl method;
= View ...

— modellvtodified {

[setf upclalcei ;

if {state & ‘t7»__l\.Tt‘Ifl“I FY'_»_CHZ[II.-DREZl\’i) /t propagate made]1'\./z'odifed {'0 kids /’
[children elemeni::3Pe1"form:@select.or ttttoelelt/Iodifiedli ;

returrt self;

l

— update { Ireturn [self u.pclai:eE>.i.<:i:.1.zre] ; }

The state hit V__NGT1 FYMCHI LDREN is settahle by the creator of :1 view; it tleteihiittes wlietlier

modelltodified messages will be propagated to stthviews, Often when this hit is turtietl off.

the suhel m”V:i_et.~: overrides the upcla as method in m'<iei' tn propagate mode1tvlod:l_ if ied only

to certain of its stthviews. (For cxaiiiple, a View ‘vVl’l0SC mode a list might’ have a suhview hit‘

each element in the list displayed left to right, and when (me element is deleted froiii the list the

View could arrange that only the suhviews to the right of the deleted one he redrawn.) lit the more

typical ease. the suhclass only impl,ements the upc1atePict.ure method Wl‘1lt'_‘l'1 redtaws the View
to reileet the state 0 the ttiotlel.

For the switch to be displayed, it needs to he a stihview {or a deseehclaht) of a Wal1V Class

Wallvi is the ahsti'actl-::s11 Of a window on the display. Ah instance of We-.2=. 1V iew is created for

each Vv’ll1(lt‘)‘»’V a pregi'ahi requires, iii:

id awallview = [wallview name ; "gclga" Il ;

iiawallview addséubview: {aSwit:ch‘view at : SO :3 0]} 1 ;

This fragthetit creates a wi11<iowtia.metl “gap? The stting “gdp” is looked up in a database (in

this case. the Jédefaults tile as achitiiiistetetl by the X wihtlew system) to detetiiiihe the initial size

and location til" the wiritlowt Tlie switch atltletl as at subs./iew to the Wall View and displayed. at

1300f£l‘il1{lt€S (i.*"3t)-.30} iii the newly cteatetl wiiitlow.

Page 1272 of 1714

5 7 jE7l/‘E,/\/TH-‘ti }£7L.»i'1x’S 105

This ends the discussion of the major methods of class ‘View. As the need arises, additional

methods will discussed. it is ,iiietite how in this dissertation, ,la-rgely concerned with inputt

mtieh effort was e>q3e:rttled on 0ut__hut.. Tiie initial intentiott was to keep the eutput eotle as s:iniple

possible While still heiiig usable. Unfortun ateiy, thousands of lines of code were ifequitetl to get to

that point“

6.7 Event Handlers

ht GRANDMA, the analogue of MVC controllers are event handlers, When input occurs, it is

repiresentetl as an event which is iaiseti. Raising event results in a seaireh for an active event

harttller that will harttlle the event. For many events, the last handler in the active list is a eatch—all

hantller whose fitrtetion is to Search fer any views at the event's location. Fzzteli stitch \’i6W is

if it wishes to handle the event; the View then each of its passive event handlers if it x

to handle the event. As mentiened, a single passive event handler may be associated with many

tiittereiit Views. A passive event handler may activate a copy or instance of itself in response to

input.

Wanting to readers: due to this disserttttiotfs focus on input, this is tteeessatily a Veiy long
S€13Ei0E‘l.

6.’7.'l EV/elltfifi

Before event handlctrs can he discussed in detail, it is ‘helpful to make concrete exactly what is meant

by “§.‘\./Gill," All events are instances of some stthelass of Event:

Event : Obj ect { id .i.ns1:..i‘_gato1:; }

iristigator return inst: i-gator; }

— .i'_nst 1'.ga.t.oir: __1'.nst:.i'.gato1.' "I
{ inst igator _i:1stigat;or; return 3:-«;_f_: }

The instigator of at; event is the ohjeet posting the event. All wintiow rnanaget events are

instiga.te<i by an instance of class t‘Ja1.]..3

Figure shows the Event class hierarchy. {Like irtstigator in class Event, each

instance variahle shown has a method to set and a method to retrieve its value.) The most inipoitant

subclass is Wal3.Eve1’i':, which an event associated with a window, and thus usually raised by

(the G'RANDM.L“\ interface to) the window manager. A }<eyEvent: is generated when a character

is typed hy the user. A P3.ef:<‘esh}E3Vent is genei‘a.teci when the window inatiager requests that a

pai‘tiettla:r window tedrawii.

The subclasses of the abstract DragEver1t:, when raised hy the window iiiartager, indicate
El htifiuse lit these cases, the tool tiehil is an instance of GertericV0useTool or one of

its When a mouse button is pressed, a Pi<:kEver1t: is generated. The field loc: is a

”The instigate}: is mostly used for tracing and debugging Oeeasioriztiljy, it is used for a quiels ciieelx by an active ttwttt
handler that wishes to insure it only handling evertts raised by the same object that raised the event which activated the
handler in the first place. Most active handlers (it) not l:~other with this cheeky being content to simply check that the 100}
:Trather than the instigator) is Llic same.

Page 1273 of 1714

C7iiAF"'L7T€ E3 ANARCHIT.E‘C ILJRE FOR DJREC;7'1\d?1LI“vQ'PL7LA2’2’C)1\/'

Figura‘: 6.2: Thf: Event Hierarchy

Point 0‘b_§eci, indicatin {ha i<,>cati<,m of the mouse cursor.4 The rnouse Oiaject referred to by the

tool fie}-fl indicates which button J“-.33 been pressed. When the nmuse is moved (currently maiy

when 2: mouse button is pressed), Movefilvent is g<T11C1‘§£1ft;’.(i. When the nmuseb11ti:0:1is relcaseci,

:1 Drogflvent is genemt£d..

T116 Classes G;—:si:u:c'eT:“.VeI1t and TimeoutEve:1i: will be discusstsd in Clxapter 7.

{i."f.2 Raising an Event

A Wallview objecii i}'1<:: rout of the View [T66 of 2: given wimiuw. Associated with «such

Wallview (abject is :1 Wall object which actually implements the interfaca betwxzen GRANDMA

and the xxxindmv m:»111ag-er. :5\,J,s<:: associareal with each Wa1._1\7i.ew object (_1'. e. window) is an

EventHanv:i1 erLj. st: object.

= ‘-.'r-;-’al1view : View id ‘nandlers; viewdatabase; id wall; }

+ name (STE) name {
f = [self cjreateviewofmilj ;

[Wa1.“.=_ create zname wa1.].vi.ew:se1.-"C1 _;

115-;I1dle1‘s EveI1tHar1dle3:Li at new'] ,-

viewdatabase = [Xydb new} ;

i_.han.di1_».r:3 add: {>:yEventHa:t1d1.e:t.* wallviewz szselfj] ,-
returrl self;

raise:eveni: { return [handlers raise:ev:21‘_-t]; }

v1‘_ewda.i:abase { return v.1'_ewdatabase_: }

. ‘U: . ly wo1t}<:'}\ave he 1 wiser either 10 zfiwavs refireseni points and recrinngles as C s1.ruc"mres, or as4"

scparazc oomdinatcs. instead cifusing P01? and Rectangle abject: and flzcir associated overhead.

Page 1274 of 1714

5 7 IE1/‘E,/‘\/1’"H-’tJ }£7LE1'x’S

Wall : Object tGRANDMA,Geometry)

{ Win win; id pictures; id wallview;

~ raisezevent {
iE([event isKindOf:EefreshEvent1)

{ [self redraw}; return; }
return [wallview raisezeventl;

l

E?’ rents are raised within a particular wittdow using the raise message. Reciraw events are

l1a.titll,etl within the wall; since eaeli wall niaititaihs a list til" §?::i.ct.1.t:r€—: objects ctttre1‘ttl_v hung on it,

1'ettt:tW is easily aL?(:()mpllSl1(2(l. The Redraw sptieiat <::tse is really old cutie; it would he simple

to replace this mde with a t“ed.r-aw event ht1tirl.let: All other events are passed. l’tom the WaIl_il. to the
Wallview to the Event'Hat1c'tle1‘Li:s tr

: Ever1tHand1erList : Ordcltn {

raise : e { int i ,-
for (i = (self lastoffsetfll; i >=

ift I. [Self at : iji event. : es])

break;

return self;
1
J

An EventHaI1c‘ilerLi is just an D1'd.C’lth, thus add: and remove : rncssa can he

sent to it to add or remove active event l’l3.I1<ll€1“S. The add: rnessage adds handlers to the end

of the list; raise iterates tlttough the list bztclowztrtis, each element of the list in 0I“€lEt' if it

wishes to handle the event. Titus, handlers metivatetl most tecently are asked about events: before

those E.lCE,lVE.tlt3(l earlier. (It is possible to install active event handler at an arbitrary posititm in

the Evet?-.tHand].erLi.st by using; some of <)rdC.l_t.n"s other methods, but this has never been

needeti in GRAt\"l‘)l\/IA.) Note that the first thin ti Wail. .1_v.~:.ew object does created is activtate

an XyEvent.Ha.r1d1e1:; this hahtllef, since it is first in the list, will he tried ttnly after the other

hanajlets have declinetl to prtieess the event.

6.7.3 Active Event Haiidlers

Every active event handler must respond te:: the event: hiessaget retuming a boolean value

indicating whether it has handled the event.

= Eventfiamdlez‘ : Obj eat; { }
(BOOL) event : e

{ return (BOOL) [self stlbclassltesponsibility

The event : rttethod hers: is at pl£tCt§l’)0l€.lC1'l7G1‘ the actual tttethotl, wliitzli would he i;'nplt:n'tenteti

{lift}: rently in catth sttb<:l_ass Of Event.1—Ia:n.d.1.er. The 3'-n.}:>-:lassRes:ponsi.13ility method is

inhetitecl from Obj ect. Tile method simply prints an error ntessage stati 11 g that the subcmss of the

receiver Sl10t)l{l have iltiplementetl the tnethud.

Note that the event : niessage sent to the 3ItCll\/E‘. event harttllers has no reference to any views.

When the event harttller is first activated. it generally stares the view and tool which eztusetl its

Page 1275 of 1714

MES :f.—'H}4i13‘"}E'I€ 6 /~i.z’\/L-’iRti7HI1”ECI ILJRE FOR DIRECI'1\d?1h“\/1'PULA2’i’O1\/'

activations: it can then refer to these to decide whether to handle an event. When hantih n g an event,

active event handler typicaiiy sends the View ntiessages, if miiy to find out the rnndei to which
View refers.

previously mentioned the East active event handler tried is the XyEveI1t:Handler. This

event i1En‘1(iii3£'iS rather atypical} in that it never exists in ii passive state.

Ziyflrentfiandlei‘ : Everittlaiidler { id wallview; }

+ wal1view;_wallview self = [self new] ,-

wa‘i lvi ezzw ; '-‘i‘et‘-.titf‘it1 See if ; }

(EOOL) event :5 -1 id views, seq, v, tool,-

(E is respQndsTo:@seZLeci:or (lac) E 3 return. NO;

views = [{w:~;l1view vi.~;=wdai::~;base] at: [e lo<:]} ;

tool [e to-:31];

E01‘-(S-eq {views eaChE1emen1:] ; v = [seq tiext ; }

if (V i: tool && [V event: : e1}) return

return NO;

i

An I(yEventHand."i.er is instantiated and activated when 9. Wa].1’v‘iew is created (sec Scctinii

£3,723-. The 'v\Tall‘\fiew is f€COId.€d in the handler so that it can access the izurreiit database of views

(th-zjise vii:-.ws in the View suhtree of the W:.-":2il‘.7ie3w). (in i‘eti'0spe:;tt, it would have been more

eiihtieiit for the XyEveritHandler to state a handle to the database ciireetiy. rather than aiwnys

asking, the wal 1Vi saw for it.)

When an X3/Eventtt5and.1e1.' asked to handle an event (via the event: niessage) it

first checks to see if that event resptinds to the inessage 1.-3c. Ci1r,rei1tiy, oniy (:~;ubcJ,asses of)

Drz.-1.g*Events respond to lac, but that could conceivably change in the future so the haiidler is

written as geiieraiiy as possible. This points to one of the niaj-ctr benefits of Objective C; one can

inquire as to whether an object i‘esp«:3rids to a iiiessage hefere attentptirig to send it the message.

Another exampie of this wiii be seen in Sesstion h.'7.7. Since the Xyfilventfiandler is going; to

inch up views at the incatien of an event. it obviously cannot deai with events without iocaticns,

returns YO (the Objective C term fer FALS‘t—E or O’) in this case.

The View database is then consulted, i”Ci13I1’tii1g all the views whose hounding hex contains the

given paint. The views returned are sorted frnrn fnreniost to most background, Le. according to

their depth in the View tree, deepest first. in this order. each View is queried as to whether it

wishes to haritiie the event, stepping when a View YES. (The etiiginzttic test V 1: tool

wiii he explained in section 6.7.7; suffice it to say here that in the typiezti case, tool is 21 kind of

Generictv’louseT0ol and thus never be equal tn (-1 View.)

if no found that to handle the event, the XyEveI1t.Hanc‘ila1' returns NO. Since

this handler is the last active event handicr to be tried, when it says NO, the event is ignored. if

desired, it is El sinipie matter to activate EtC£ltCht1ii handier (to he tried after the Xyflveritflandlerp),

the purpose of which to hai'tciie aii events, printing a inessage to the effect that events are heing

ignored.

. give eve . ,z\n<i1e2‘s are asked to handle events via the event. :view: 1’\’::'.. stage, one
pa1'an1ctci' being the event (frmn which the handler gets the tool), and the other the View.

Page 1276 of 1714

5 7 1571/‘E,/\/TH-’t’ }£7L,»i'1'x’ " 109

Another exampie event handler is given in Section 6.7.6; more will be about active event
ha:1dh:a‘s then.

6.7.4 The View Darabaee

'%emmmm0HmwkwdmwmmsmQmmmwmewufiwwmmugwnmwmmmuwmmw

in many ohjeet—0riemed U1’ mofkiis, this funetinr: has been emnhined with event prepagan'm1, in

that events propagate down the ViL‘.W tree [105] {or a corresponding (:0nt1'o1E,e1' tree [70, 63]) (ii rcetiy.

The idea for separate View database comes from G‘W'UIMS{l 18}. By separating out the View

database into its own data structure, efficieiu algorithms for looking up Views at a given point,

such as Be11i1ey’s dual range trees {'7}, may be appiied. Unfofiunaizelyg this optimization was never

COIIIDISLCKIL andin 1'eL1'0spe4:Ehaving10 keep the View databzxse synchronized with the View hierarchy
was more eflhrt {ham it was w01'EI'.=.

= Xydb : Set { }

— enter:object at;rectangle {

return i if replace: {Xydbe abjectcobject

at:reCtang1e

depthziobject depth]]};

depthcmp(o1, 02) id *0},

{ return [*o2 depth]

at:aPoin {

id seq, e, array MAXAT}, result = EOrdCltn new]; int n;

forén = 0, seq = Eselfi eachfilement];

(e = [Seq next]? 1: nil;)

if([e contains:aPoint1) array[n++] : 3;

qs0rt(array, n, sizeof{id), depthcmp);

for{i = 0; i < n; i++) [result add:[array[i] object]];

return result;

: Re-rstangle id object; unsigned depth;

+ objectzo atzrect depth: -'0-.1ns1gr1ed)ci

[self new] object C.-,~ depth = d;

return [iiself origirlz [react origilil] corner: [react corner]] ;

}

— object { return object; }

(unsignemciepth { ret .rn degth;

— (unsigr.-er) hash return [object hash}; }

(BOOL)iSE-;_{U.al:O { object 0-—->c.-bject; }

Page 1277 of 1714

i ll) C.7HA13‘"}E'I€ E3 /»l.Z\/L-’lRCHI1’}E‘CI ;l'L./RE FOR DJRECI'1\d’/~h“vl’PULA2’YC)1\/'

Ari X3/db a set of Xydbe ohjects (“e” for “ele1'he-at”). each of which is a rectangle, an

associated object (always a kiiicl of V:i.ew in Gl{ANl,)l\/IA‘), and 3. depth. View objects ‘Wl1lCl1mOV’t3

or grow must sure to E'CglSlC]‘ their new iocatioris iii the view tl=’1i£itb‘ciS¢.’. fer the wall on which =.lliey

hie. This is currently alone auto:n1aticall,y in the ___s:ync metlitisl of class View which is i'espoiisil3le

for llp(l£il'l‘.’ig the display when :1 ‘\,7:i_ew changes. The l1£;":Sl"i atitil :i_:3‘E‘.qii.a1 : ‘metltorls are used hy

Set; here they deline twaii Xydbe Ol‘tjt3CiS to he equal when their respective obj eat fields are

equal.

&%5 3hePa%hwlhwntHandkrSemwhfimhfinufi

Eaeli View object has a list of passive haridlers associziteci with it. The EtSS(J13lEtEl0l1 often implicit:

passive hzmdlers can be associated with the View directly, or with the class of the view, or any of

of the Views class. For tiX3.Yl’lplé3_ the C§eneriC'I‘QolO1'1"\fiewflventflandler

is directly associated with class View; it thus appears on every views list of passive event handlers.
\?’i.ew . . .

— (BC-CL) avenue { id seq, h,-
(E {self i.~3Over: [e 1001]) return NO,-

forise-:1 [self eael1}«iai1cl_le1'l = [seq 2:12] ;)

if ([11 event sea view: S V ‘ return YES;
return NO;

eachfiandler { id r = [ordflltn new}; ‘d class;

Er addContentsQf:lself passivehandlersll;

fortclass : [self class};

class E: Object; class = [class superclassll

[r addContentsOf;[c1ass passivehandlersll;

return Er eachElement];

l
+

pass-ivehandlers

{ retiirn ltllprop getvalue : self propstr:"ha1'1dlers"l ;
— pass:i.=.reh..=.im_11.ers:

{ return Ujlprop getvalue ; self pr-Qpstr: "ha:c1c1J_e::7s"l ; }
When a View is asked it it wishes to handle an event it rirsts 3.Sl£S if the events location is

indeed over the View The iihpleiriehtatiori of the isov-er: method in class View simply’ returns

EC. Noirreetatiguhtr subclasses of View Linefirawirigview. see Section fill) UVt:lIl‘il6 this
iriethod.

Assumirig the event location over the view, each passive event liamller associated with the

View is sent the event :v:'tew: rncssage, which asks lillfil passive handler t 'ishi:s to handle the

event. The seartth stops soon one -(if the haiiclleis says YES or all the handlers have been tried.

The metimd eaCi1Hand1.e1r returns an ortlerecl sequence of handlers a.ssoeia.te<l with a View.

'l'he sequence is the COll{7€il€{l3.il0l1 of the haridlers directly 3518-iIiCl&‘t‘<3d with the View object, those

tiireetly associated with the views class, those ass<:seiate(l. with the views S!.Ept3£'CiEES.‘E~. arid so 021.

up to and includirig those associateil with class View. The associatloiis themselves are stored in El

Page 1278 of 1714

5 7 1371/‘E,/‘\/TH-’ti’ }£7LE1'x’S Ill

global property iist. The passive event handler is associated with a View object or ctass under the

" hand 1 23 IS " property.

Herein lies another atlvatitage Of Objective C An objectk supereiasses may be travet‘seCt at

tttntime, in this enahiing the simttlatiort of itiheritance of passive event hattttiers. This effect

would he diftl-gttilt to achieve had it not been possible to access the class hierarchy at rtintitne.

6.7.6 ?assEve Event Ha,miiet"s

A passive event handler returns YES tn the everit zview: thessage if it wishes to handle the

event directed at the given view. As a side effect, the passive event hantiier may activate (a copy

or instance of) itself to handie addition at input without incurring the cost of the Search for a passive

haiidtet again.

in Ohjetttive C, classes ate themselves iltst class objects in the SyE>tS,I11,l\;11OV~’i1 as t"aet<:try objects

A i"ttertnry object that is a sttbctass et"Eve:1tHandl er may play the role 0f 21 passive event h éitiiiletié
To activate such :1 handtet; the factory would irtstttntiate itself and place the new instance on the
active «:\/cnt list.

= E\iet‘tt;He5tn<Elle:‘ . . .

+ (BOOL) event : e View : V

{ :ret::t:.rn CBOOL} [set if ;"st1.Tt:sc1a:3sRespon:33ibi.1it; _

As an example, consittcr the fohtitving hatttiict fat‘ the toggle switch discttssctt carhcr:

ToggleSwitchEvent.Handler : E'vt=:nt.Hat1Cller id view‘, tool ; }

+ (BOOL) even‘; : e View : v
.i.sKi.ndOf 2 t?ickT-Iventz]) rettirn NO;

tocl] isK:L tact“ :t~'t<:LtseToc:>i]) retr-.3:'n NO,-

activate : self];

“ w hlqhtiqhtl;
return YES;

:3 - L if new]; View V; to-31 ie tool];

[

[

(BOOL) event : e

EOOL isover;

ift i[e isKindOf:DragEvent} H [e tool} I:
return NO;

'.Lver = [view pointInIboxAndOver:[e loci ;

.(!isOver H [e isKindOf:DropEvent } {

[view unhighlight];

[[view wallview] deactivate;self ,

ifttisoverl [[view model] toggle];

}-

fificewever, using factory £)l)jGClS for passive event handlers restrictive, as there is eniy Gilt‘, instance of the faetoiy
object for :1 given c‘ This makes cttstt>nti2,atit>n at a factery p . 5-. event hztndter tiifficttlt. Section 6,7,8 explains
how rcgular (nt)n—factcry) chjccts niay he used passive event hattdlcts.

Page 1279 of 1714

3-""1';’It’ 6 AN141€£THIIECILJRE FOR DJRECI'1\d?1h“vQ’PULA2’l’O1\/'

Assuming this event handler is associated with a Swit «::h'v' iew, when the mouse is pressed over
such a. View the handle,t’s event. :v.i.ew: method is called. which instantiates and then activates

this handler, and then highlights the view. Other events, such as typing a character or moving

llltjttst: (with the l‘tulttJl1 already pressed) over the view, will he ignored by this passive handler, Most

handlers for mouse events. including this one, only respond to tools of l~;'ll1(l t/Iousefijool. where

MoueeTcJol is a subclass oi’ GeIieri::l~’toi.teeTot'>l. The reason "for this explainetl in Section
6.7.7.

Once the handler is activated, it gets tirst priority at all ltlCOl1‘iil1g events. The beginning oi‘ the

event: : method insures that it only responds to mouse events generated hy the same mouse tool

that initially caused the handler to he activated. For valid even ts, the handler checlcs it" the location

of the event (tie. the mouse cursor) is over the View using \}’_i'.ew’s poirtt.ZljnZ[.boxAnclOver:

method. Note that during passive event Ciispatch, the more cftleient i. ElC}'\/'61.’: nictltod was used,

since by that point, the event location was already known to he the hounding has of the View

The point InIi3o:»;A.t1<itO'<.rt=:I does both the l3-tIli).ti1(l.il'lg ho); checl: and the i :::Over : method, since

active event haticl.lets see events before it is d€lt31'l11ii1€{i which views they are ovet.

if the mouse is no longer over the switch, or the mouse htitton has heen released. the higliliglitiitg
of the View is turned off, and the handler deactivatetl. hi the case where the inouse is over the ‘./iCW

when the hutton was released, [[view model] toggle} is executed. The clause [view

model] returns the model associated with the switch, presurnahly of class Boolean. which gets

sent the toggle message. This will of course result in the switch’s picture getting cliaitged to
tellect the tnot’lel"s new state.

in any lay returning YES the active event hantller indicates it has handled the event, so

there will he no attempt to propagate it futtliet.

Typically, the Tc:gg_"t.eSwit;chEv'en tttiazriclleztr would get associated with the Swi tzoliview
as follows:

Swi t chview

+ initialize

{ ret'ui‘n [S-elf stathaticller:ToggleSwit:cl'iEvei11:Handlerl ;

The initialize factory method is involted for eveiy class in the pic-grant (which has

such a tncthod) hy the Objective C ttitniinc system when the prograni is tirst staitecl. in this

case, the eethandler factory method would create a list ('OrdC'l 'E:1’1:) containing the single ele-

ment To-ggleswit:c:l1Everit:HaI1dler and associate it with the class Swit:c:hView un<;lei' the

" liattdtl ere “ ptopeity.

Note that some simple elianges to the "l"ogg1eSw' tchfiventllandler could radically al-

ter the hehavior of the switch. For exaniplc, if 1: {view model} toggle] is also executed

when the switch is tirst pressed tie. in the event ;v.i.ew; method), the switch becomes a ino~

iinentaiy ptishbtitton tathet than a toggle switch. Similarly. by ehaiiglng the initial cliecl<; to [e

iSI*CinclGf : DragE'\.rentl ., once the ins:-use moves oft‘ the switch (thus deactivating the handler).

moving the mouse hack on the switch with the hutton still pressed. (or onto another instance ol'

the switch) would trejlactivate the handler. if the handler is changed only to t’leac/tivate when a

Page 1280 of 1714

5 7 1571/‘E,/‘\/TH-‘tr }£7Lii'1't’S ll3

Drop}:-Event: is raised, the button now grabs the mouse, rneaning no other objects would receive

mouse events as long as hutton is lt is clear iiinny different behaviors are possible

siitnpty hy ehanging the event handler.

While t’il{A.NDi\/i/X easily allows initeii tlexibility in prograrniniiig the behavior of inclividual

widgets, interaction techniques that control multiple widgets in tandem are more difficult to progratn.

For CXi3tH"ipl€, radio buttons (in w lit? 1 eliekiiig one of set of buttons causes it to he turned on and

the rest the set to he turned off) might inipleinented by having the indivitlual huttons to he

subviews of a new parent view, and a new hartcller for the parent View could take care oi’ the mutual

exclusion. (Alteiiiativeiy. the parent View could handle the mutual, exclusion by providing a method

for the indiviriuai buttons to call when piesserl; in this the parent neeessariiy provides the radio

button inte rfaee to the rest of the prograrn.)

6.7.7 Semantie Feetihaek

Seniantic feerll:-ac}; is a response to user's input which requires specialized information about the

application objects {9t3l. For exainple, in the Macintosh Fintici‘ {Q1}, tlragging a tile icoii over :1 folder

icon causes the foidei' icon to highlight, sinee dropping the icon in the folder icon will cause the

file to he moved to the foidett, Dragging a tile i-con over Et110iif‘it3l'iilt3 icon causes no such highlighting.

since dropping a file on another file has no effect The highlighting is thus seiiiantie feeclbat;-,i<,

GRANDMA has a general inetsfhztnisin for inipleinenting (views oi‘) ohjeets which react when

(Views oi) other objects are dropped on them, highlighting themselves whenever such objects are

dragged over them. Such views are called imc}tci;s in GRAt\li’)l\/IA. Any View may he made into

hiteket sintpiy hy associating it with a BucketEventHan<:"iler (which expects the View

to respond to the actsttpoii ; anti a.cttUpon: .: tiiscussed helow). Once View i”tflr':1

B1ic:ket:EventI~Ianc11.er, the seniantie feedback. described above will happen automatiea.lly.

Whereas a bucket is a View which causes an action when another View dropped in it the

Maczintosh trash can is a hncl<et)t, a Tool is an object which Causes an action when it is dropped on

L1 View (a “tlelete eui'soi'"" thus it tool). As nientionetl above, at tool corresponds to a pliysieal input

device (eg. Ger1erictvIouse":c><31). but it is also possible for Et View to he a tool. in the itttter case.
the View is referred to a tzirrizai’ ma}.

Buckets and tools are quite similar, the main diflerenec being that in buckets the action is

associated with st.attio=.iary Views, while in tools the action is associated with the View being rltaggett.

Zlhe implementation of tools is considered next. sintitnr impieineiitatioii of buelcets will not he
described.

Tool : Obj {

(SEL) action ret:ur11 (SE1.-) D; }

act iO1'1PaI‘at‘.1€i:€I‘ { reiturn nil; }

— (BOOL) actstlpon : v retturn {V 3:esponds'.t.‘c>: {self ac-i:.i'_on] It ,2

— acttipon ; v event : e {

[V perfiorm ;
with; . nPa1ramet,eri

w i

with: —»

Page 1281 of 1714

C}£UTYH€6 AAUH%Yfl7ECIURE1%1?£HRECIfi@MWPL1A]fiEV

return self;

7:

Evmytoulfimpmuhtotheactsupon: amiaotUpon:: nmsagea inthedefimhinqfie

memaiian above, a £001 an action (which is the runmne encoding of 3 message selector) and an

aCti01‘1pa1'ame1eI (an arbitrary object}. For example, one way to ueaie a too} for deleting objecis

: De1eteTool ; Tool { }

— (SEL)actiQn { return @se1ector(delete); }

i%eactsUpon: meflmdchuksKnxeflfihewewpawedasapmunwwrmmpomkiofimamkm

nfflmtmfifintmsemedelete.TheactUpon:: memodamuflfiqmflbnnsmeamkm,pmflng

thcacfiongnuannxcnthcevcnI7andthctoulimelfasaddhjonalpannncnxs(wflfichzueignorcdinthc

deletecafia

TheGene1.cToo1OnViewEventHand1exisa%0damd\Mfi)mmg/vmwrvmihcview
emsa

17 i €387

initialize

{ [self sethandler2GenericToo1OnViewEventHandler]; }

GeneriCToolOnviewfiventflandler : Eventflandler

{ id tool, view; }

+ {BOGL} eventze View:v {

if(» [E isKindOf:DragEven

[[9 tool] actsUpon;v

[self new];

[a tool]; View =

wallviewi activatezselffi;

YES;

— (BOOL)event:e {

if(E [e isKindOf:DragEvent3; return NS;

if({e tool} I: tool) return NO;

if({view pointInIboxAndOver:[e 100]]) {

if([e isK*nd0f;DIopEvent {

[view unhighlight];

[iview wa11vie*] deactivate:sel.};

[tool actUpon:view event:e];

1‘
return YES;

}

{view unhighlight]; [[view wallview] deactivate.
return NO;

Page 1282 of 1714

5 7 jE7l/‘E,/‘\/"I"H-‘ti’ }£7L.»i'1'x’S ll5

Passively, Generic‘I‘oc>1QnViewfirentliandlez‘ operates by simply eheelcing if the too}

over the View acts npon the View. if so, the View is highligltted t’_ the setnemtie teetihaek) and the

liantilet‘ at:tiva.tes an i11st.ant,iat:it;n‘tol‘:itseli'. Subsequent events will be elteektéd by the atttivatetl

handler to see if they are made by the same tool. so, and if the tool still over the View, the event

is hantlleel, and if it is a Dre:-p‘E‘.ve‘nt: then the tool will act upon the view. if the tool has moved

off the View, the highlighting is turnetl off, and the handler deactivates itself and 1‘€lt1t’l1S ND so that

other l1EL1’t£ll€l'S may handle this event.

The test v 1: tool in the XYEver1tHa11dler (see Section 6.7.3) prevents a View that is a

Virtual tool froth ever atteniptino to operate upon itself.

6.7.? Generic Event Handlers

ll‘ you have heen following the story so far. you know that all the event handlers shown have

the passive handler intplernentetl lay a factory (class) object which responds to event: zviewz

When necessary, such a handler activates an instantiation of itsel. The tltawhaek

of having factory objects as passive event handlers is that they cannot be tthangtéd at nxntirne. For

e.\:an1ple. the Togg1.eSw.1'.tchEvetfttHandl.er only passively responds to Pj.c2]~:Eve:nts. if one

wanted to 1/nalge a Toggl i:.-:‘nEven*"Ha.ndle3:‘ that passively responde-j to any Dx‘agEvent ,

one could either change the implementation of Toggle§SwitchEventHandler (thus affecting

the lieliztviorollevery toggle switch view), or one COttlCl subclass Toggl e Swi 3: chEventH5;I1Cll er.

Doing the latter, it would be necessary to duplicate nnttsh of the evt=.-I15: :view: tnethotl, or change

'I‘ogg1eSwitchfiventl-landler hy putting the event zviewz method in another method. so

that it can he used hy suhelasses. any case, changing simple item (the kind of event a hantlleti

pa.ssively respoittls to) more difficult than it need he.

in order to make event handlers more paratneten zahle, the passive eVe=.tt handlers should be

regular objects (Let not factory objects}. In response to this problem. tnost event hand.leis are
subclasses of GenericEven'L'Hanc'lle1”.

= G§3I1‘e‘:riCEV{3I1CHéi1'id.l{3I‘ : Everxtllantiiler
BOOL shou1<iAc:t:ivate;

id startp, handlep, stopp;

viet , walT.., too]. , env;

}

+ passive return [selflri new}; }

sltoulcmctivat.-3 { sho’u1<i.Act.ivate YES; r==o=t’ur:n sell‘;

staz‘i:p:_st:az‘?:p startp _star1:p; return self; }

start { ret:n.~:n startp;

(}3OC>L)evalstart:env { retttrn [ijstartp eval;envj} asl-3C>{)i_.}; }

s:topp:____si:.-opp { stopp = sto‘-pp: return self, }
shot;-p J return stopp;

eralstopzenv return Elstopp evalzenvl asBOOL];

1.’

Page 1283 of 1714

C7iiAF"'L7T€ E3 ANARCHIT.E‘C ILJRE FOR DJREC;7'1\d?1LI“vQ'PL7LA2’2’C)1\/'

handlep:_handlep { handlep _handlep; return Séif; }

handiep { return handlep; }
(BOOL)evalhandle:env

{ return iihandlep evalzenvj asBOCL]; }

(BOOL) eventce view:v {
env = {{[Env new} str:”event" valuezefi

str:”view” value:v];

if([se1f eva1start:env])

{ {selfi startOnVi&w:v]; return YES; }
return NO;

$tartQnView:v eventze {
if(shouldActivate)

Self = [self copy], [[view wallview] activate:self];

View = v; wall = {view wallview}; tool = [e tool};

[self passiveflandlerze];

return self;

(BOOL)event:e {
if(tool 1: nil && [e tool} i= tool) return NO;

env = [[[Env new] str:”event" valueze

Str:”view“ value:view];

avalstopzenvj)

activeTerminator a}, [wall deactivatezself];

else return NO;

return YES;

passiveHandler:e { return self; }

aCt1veHandler:e { raturn self; }

activeTerminator:e { return self; }

AnswpaMh@hamflefiscmamdbysmnfingakmd0fGeneriCEventHandlerihepassive

nmsagc.AggmcficcvmfiEmnmcrdficmiuwscudflcpmflmamsstartp,handlep,andstopp

’i‘he.sc: pjfeaiicates are Qxpression objects, essentially nmtime raprescntations of almost arbitxfary

Obje«;:t,iVe C cxpressioxas. (flxct Objcattiwt C int::rp1'ete1” built 311m GRANDMA is discussed in stscrizion

7.73.) By convemi-::s11, these predicates are evaluatszd in an environment W xere ev-ant bound E0
the event un<;h—3r c0nside1°;1lion arid View bound to 6 View at 1311:‘: location of the evem. Of courstz.

the result of evaluagting a predicate is a bCb0iti5afiVEL1Ll6.

Page 1284 of 1714

5 7 151/'El\/TH-’li’ DLE1'x’S l 17

The passive method is typically overri<l<leii by subclasses of C+enericI<Jver1tl-Ianciler

in order to provide default Values for sztartp, hand.l.ep, and stc-pp. The ptetlieate startp

eoiitmis what events the liantller reacts to. Tlie Eve:t1t;:E.xpr allaws easy specitieation

of simple prerlieates, tag. the call

[self startp: E [lE§vent'Ei:><pr new] eve1'1i:.]-{ind:Pir:}:iE:ver1t:l

toolimnct;t»tcau.s:eToo1,]] ;

sets the start pretiiisate to cheek that the event is a kitirl oi’ Pi<:kEve11t: and that the tool is a

tVIouseTool. This results in the same passive event checls; that was liard-cetletl into the fa-zztery

TQggleSw'itchfilveittttanciler, hut new such a check may be easily motlifietl at iuiitime.

message shou.l_clACt ivate tells the passive event héllltllel‘ to activate itself wlieitever

its Startp predicate is satisfied. Note that it is a clone of the handler‘ that is activated, due to

the stateiheciit self [self Copy] : it is thus ipttssihle for a single passive event haticller to

acti'»;ate multiple instances of itself simultaneously. The active hahtllei' tespehels to any message

wliittli satisfies its handlep or donep predicates. in the lE1tt6l'1;7£iS¢iE, the active event liaridler is
tleaetivate .

When the s‘i:,art:p. h.am“1_l.ep, or donep predicates are satistietl, the event hairtttler

itself the ivefiandler :, act ivella.t'.tdl er: or act i.ve'.t‘erm.i_nat:o1.' : tessage,

i'espeetively; lllhe main woirl: Qfsubclasses oft:-ettteri cfitvetitfiandl er are clone in these methods.

The St£5t3CtO:t‘1ViE3\nJ : event : allows £1 passive hantller to be activated externally (ii ll’1Sl€£i£l

of the typical way ofhayirig its startp satisfied in the event. zview: metliod). lit this ease, the

event parameter usually nil. lief example, application that wishes to force the user to type

some text into a dialogue has hefoi7e proeeetliitg mi glut activate a text handler this maiiri at.

The ptirpose of gE)t’ltI*.t'l{t event harttllers in GEKANEIPMA is similar to that of iI1{61”fl£‘ZCiIS iii Garnet

[95, 91] and ;)1u5g'2if)i’e t/is-its in Sitialltztlk-St) [70]. Since GRANlI>lVlA comes with a rturhlier of

generally useful generic event liaritllers, application programmers often need not wiite their own.

lustead, they may customize one of the genetic l1’ctl1(ll<3l‘S hy setting up the parameters to suit their

purposes. The only patarheters every gestetie event l”13.l‘1(,ll<3l" lll coriiirioii the predicates. and

indeed these are the ones must otter) irititlilietl. GRANDl\/l'A has a subsyst.em which allows these-1

parartteters to he mottitied at iuiitime by the user.’

65.7.9 The Drag llaiitllei"

As an of a event handler, eoiisitler the Drag!-landler. W ten associated with

View. the DragI~Iat'1d.l.er allows View to he mtwetl (clraggetl) with the mouse. if desired,

moving the View will result new events being raise<l This allows the View to he used as tool, as

diseussetl in section 6.7.7. Also parahieteiizable are whether the View is moved using absolute or

relative coordinates, whether the View is copied and then the copy is movetl, and the messages that

are sent to actually itiove the view. lteasehalile defaults are supplied fol‘ all paraitieters.

D1.’agHam"1.l.e:c : Generi.CEventHand1.er {

EQOL cs<3g)yv'3’t ezew, gertievent 5: , :i¢eIl.a.t:.i.ve:s ,-
whenmoved, whendone ;

y, it would he the irlterlacc designer, rather mail the end user, who would use this facility.

Page 1285 of 1714

C7iiAF"'L7T€ E3 ANARCHIT.E‘C ILJRE FOR DJREC;7'1\d?1LI“vQ'PL7LA2’2’C)1\/'

deactivate;

savedx, savedy;

+ pasgive {

self = {super passive];

shQuldActivate};

startp:[[{EventExpr new} eventkind:DragEvent
toolkind:MouseToQ1}

handlep:[{EventExpr new]

h‘elf stopp:[[E

copyview = NO; genevents = YES; relative = N0;
whenmoved = @se1eCtor(at: = whenfione = (BEL)

return self;

~ Chzizzgjngdefi1z3ii'pai‘an;r3{et:9.' /

’ (:opyv;='6wONCauses the View to be (fOp.i(:‘a’ aim’ :’;i1(.-1’; fine (:0 to be d1’aIgge(,! 2': /’

copyviewQN { copyview = YES; xeturn self;

~ ge12E1./en:’5OFF rz;=a}(9.s‘ {fie he n(.*'ic::‘r no .1: .r:«1i5e a1;=y events /

genEventsOFF { genevents = NO; return self; }

A tale: iii/eO1"\7 ;=.3,’«—:.<; I129 h;1n(i1eI‘5ena'1' z"he:1n(m2,‘.' nleswge, p.3.93ing

rejza l’1'V5= ca a1‘d1'112i [ES (Heiress f"0m £526 zrurrezzi ,'_.>0:;1'f1'0.r1} >:< /

relativeON { relative = YES;
whenmoved = @selector(mQve::); ;

1

wi2(—*na'()12<—‘.' srets {fie n2es;s‘,~1gr:.>sr:?1‘1f on the f?\,’E?J’.ii’ fhar Immizea ms {/29 drag /'

whend0ne:{SEL)se1 { whendone = gel; return self; }

' Wh:3n;n0Ved.' sets {I79 message senffor eve-r_jy'p0iz7€,in the Klrag /

whenmoved:(SEL)sel { whenmoved = sel; return selfi; }

passiveHandler:e {
id 1 = [5 100};

if(relative) savedx = El x], savedy = [1 y];

else savedx : [view xlocjmil x],

savedy = [view ylacjwil y];

if(c0pyview) View = [view viewcepg];
Lview flash}-

Page 1286 of 1714

57 EVENThMJEiERS

return self;

activeHandler:e {

int x, y;

:.r:=:re1at:ve> {

K = {[5 100] X], y m {[5 100] y];

{view performzwhenmoved

with:(x — savedx> with;{y — savedy)};

savedx = X, savedy = y;

L = {Ea lac] X] + savedx, y = i ‘ + savedy;

[view performzwhenmoved withzx with;y -

s‘

if(geneven:s)
[wall rais&:[[e class] toolsview loc:newloc

wal1:wal1 instigator:self time:Le timejfii;

ret'xn self;

activeTerminator:e {

'(genevents)
[wall raise:{[e clasa] toolzview loC:[e lee]

wa1l:wal1 instigatoxzself timezie timejil;

whendone) {view perform:whendone};

1.
J

'HK2passive fiwuuyxnmhmicmawsaxflragflandler wHhinmanm:VafiaMss$eiu)me

(mfimhpamflmmn.1%0m;mmnmmnHmnbecmmgmiwmumestartpz,handlep,Stoppg

C0pyviewGN,genEventsOFF,relativeON,whendone:,amiwhenmoved: me%agw.

Gfleaserefixtotheconnnenwnnthaabovecodefbradfiscfipflongfikhcfuncfion<fiWhcsepannne&xs)

fbrexmnpk,aDragHandlerxngfiubea%0cfimxiwfihchmsLabelViewzmibflowy
= Labelview ...

+ initialize {
[self sethanfiler:

[[[DragHandler passive]

startp:{E[EventExpI new]
eventkind:PickEvent] toc1kind;Mou5eTool]}

genEventsOFF}];

Fr

AnyLabelView(anihusbedfiggedaunnxiwfihihenxnmebychdfiugdhBcfly0nfi($nec

the start pE'6diC&'(i3 was changced to Pic}:E:ver1t). A Labelview will rim geneizate evems as it is

Page 1287 of 1714

l2t) C.7HA13‘"}E'I€ 6 AN141€£THITEL’) 2'L./RE FOR DJRECI'll/1’/~h“vQ’PL7LA2’YC)1\/'

dragged since genhlvenlcsot-‘I«‘ was sent to the handler: thus Label‘-Jiews in general would not

be used as tools or items that can he deposited in bueltetsi Of Course, subclasses and instances of

Labe3lV;i.ew may have their own passive event ha:ndlers to override this behavior:

When a passive D1*agl-Iaiadler an event that satisfies its start predicate, the

pass.i.ve}+Ia.r1d1e.i.*: tnethod is invol:.ed. For a Dragittaridler, some location information is

saved, the vi is copied it need he? and the View is flashed (rapidly highlighted and unhightighted)
user teedhaeh.

Any subsequent event that satisfies the stop predicate will eause the aCtive'l‘ermi11at:or:

method to he involged. Other events that satisfy the handle predicate will cause act ivettandler :

to he invol<ed. in Dragfiandler, act iveHar1d.l.er: first moves the View (typically by sending

it the at : : message with the new eooidinates arguments) then possibly raises a new event with

the View playing the role of tool in the event. if the View is indeed a tool, raising this event might

result in the GenericToolO1‘.iView handler being activated. as previously discussed.

Note that the event to he raised is ereated hy first determining the object (factory) of the

passed event (given the det'ault predicates, in this case the class will either he I»t-ovehvent. or

DropEvent_)i, and then asking the class to create a new event, w iieh will thus he the same class

as the passed event. Most of the new event attributes are copied verhatini from the old attributes;

only the tool and irist igator changed. A more sophisticated DragHar1c'tle1* might also

change the event lo-;'ation to he at some designated hot spot of the View being moved. rather than

sirnply use the location oi‘ the passed event. For simplicity. this was not shown here.

The iveTerminator: method also possibly raises a new event, and possibly sends the

View the message stored in the wt"-.e:t1c'io:n»:3 variable. As an exatnple, whe:nc'to:ns3 might he set to

Ceselector (delete) when <:c:>pyview is set. When the mouse button is pressed over a view, a

copy of the View is created. Moviiig the mouse drugs the copy. and when the mouse button is tinall

released, the copy is deleted.

Creating, a new drag liatidler and associating it with a View or view -class is all that is ietguired to

tnalte that View “drag_gahle" {since every View inherits the at : : message}. As shown in the next

chapter, GR/—\l\lDt‘vl/—\.. has a taeility for creating handlers and snaking the association at rnnti me.

6.8 Surnrnary of GRANBMA

This concludes the detailed discussion of KBRANDEVIAV As the discussion has eoneentrated on the

features which distinguish GRANDMA from other MVC-like systems. much of the system has not

been discussed. it should he mentioned that the facilities described are sutlieieritly powerful to build

a number of uselul view and controller classes. in particular. standard items such popup views,

menus, sliders, ‘mittens. switches. text fields. and list views have all been itriplernented. Chapter 8

shows how some of these are used in applications.

GRANDEVIA’ innovations come from its input inodel. Here is a summary of the main points of

the input areliiteeture:

l. input events are lull-vblowii objects. The Event; hierarchy iinposes structure on events without

irnposing device dependencies.

Page 1288 of 1714

8 Slffi/fly’ /-'lRY(JP GR/~’l]VLUfvZ2i

' . Raised events are propagated down an active event list.

. Otherwise uiiliantileél events with seieen locations are atitiisiiiatieally t'0ut€(l to views at those
locations.

. A View tahjeet may have any number tifpassive event liantllers EtSS()ClEtl€d with itself, its class,

or superciass, eir. l?vents are automatically rented to the npprnpii ate handler.

A passive event handler may sharecl by many views? and ea.n activate a copy of itself to

deal with events tinned at any particular view.

. Event handlers have pretliczites that describe the events to which they respontl.

». The generic event hen-flier simplifies the creatinn of dyntimieztlly pnrai‘netei‘i7.ahle event hen-—
tllers.

Because of the input ztrchitecture, GRANDMA has a number of novel features. They are listed

here, and COIllpEtl'€£l to other systems when zippropztiate.

GRAN'E),l‘t/l A eati StE§)§l€)l‘i many diE'i'eretit input tleviees slmnltaneniisiy. Due to itein l above,

GR.Al\lDl\/lA can support niany different input tleviees in atlditlon to just single lteyboard

and mouse. Fzach device needs to. integrate the set of event classes wlileh it niises into

C:'RAl\lDl\«li ’s Event hierarchy. lvftueh flexibility is possible; for fitxfllllple, ti Sensor Frame

device might raise a single SenscirFrameEv-ant describing the eurrt-.nt set 4::-f fingers in the

plane of the fraine, er separate DragE!verits for each finger, the tool in this case being :1

SensorY:="raineF ll_1‘.\§_§EI‘TOOl. Because of iteni 6, it is possible to write event l1£ii‘i£ll6i‘S for

any new device wl’1iel’ietitiies along.

By eniitrttst, inust oi” the existing user iiiterfaee toulltits have hardwired limitations in the kinds

of devices they suppnrt. For exztniple. rnost systems (the NeXT 1\ppKit [M2]. the Macintosh

'l‘nnilnox [E], the X library [4-L) have a tlxeti stnictttre which describes input events, and

eannnt he easily altered. Sonic: systems go so far as to advocate huiltling device tlepeittleneies

into the views themselves; for example, ll,ypei,"tal,k event handlers E45} are lahele-rl with event

tleseiiptors such as mouseUp and Cox’s system [28] views that respniici to messages like

r.i.ght:But.tonI3<:-wn. Similarly. systems with a. single eontroll.er per View g’_7t'l] cannot deal

with input events lroni tl.iil'erent devices. On the other hand, t’_iWUli\/lS [1181 seems to have

a gerieinl nhjeet classiticaitioti seheine for tleseribing input events.

ERANDMA §ii§J§BtH"'KS the einttlittinn nf GHQ device with ztnnther. ln GRAN’l‘)MA, to get the ninst

out of CE.tCl1(.lt)V'i(:C it is necessary to i'1E.t‘v’C event handlers which can respond to events from that

tteviee tisstteinted with eveiy View that needs them. those e.vent li andiers are tint avztilahley it

is still possible to wiite an event hantller that emulates one device by another. For exnniple, an

active handler inight catch all SenSorF1“ameEvei1t;s and raise Dre“-.gEvei".-ts whose tool

is a Mousetool in respeiise. The rest oi‘ the prngraiii cannt:at tell that it is not getting real

mouse (lain; it responds as if it is getting actual nioiise input.

Page 1289 of 1714

i22 C7ii}4t13”'L7T€ 6 /~l.Z\/L-’lRti7HI1’}E‘CI ILJRE FOR DJREC;7'1\d’/~h“vQ’PL7LAIYO1\/'

Gl'€.fil‘éll}l\"lA ean handle niuitiple input threads siinnltaneousiy. Because passive handlers aeti-

vate copies of themselves, even views that refer to same handler can get input simul-

taneously. The input events are siutply piopagateti tlown the active event haticller list. and

eaeh active handle)‘ only handles the events it expects. In GRANl)l\/lA, a. system that had

two mice U9} would simply have two Mou:seTooil. ohjeets, which could easily interlea.ve

events. Normally, a passive hantller would only activate itself to receive input fro-in a single

tool (inonse, in this case}, allowirig input from the two mice to he handled independently

(even when tllii'€ClC(i at the same view’). It would also be possible to write an event handler

that explicitly dealt with events t"rorn hoth tniee, it" that was desired.1

"Event-basetl systems, such as Sassafras and Squeatq [25], are also able to deal with multi-

threaded dialogues, lndeed. it is GR.AN[)MA’s siniilaiity to those systems which gives it a

similar power. Tiiis is in contrast to systems sueh as Sltlal,ilEtll{ l'7(,lj where. once a controller

is activated it loops polling for events, and thus does not allow other eontrollers to receive
events nntil it is tleaetivated

Gl€‘.Al\l,l}l\’lA ptrovitles virtual tools. Given the general sttueture of input events, there is no require-

ment for theni only to be generated by the wintlow manager. Event handlers theinselves

raise other events. lvlany events have tools associated with them; for exaniple. niouse events

are assoeiatetl witltMot1:3eToo1s. The tools may thentsel he views or other objects. By

responding to inossages such action, a tool iiiakos litlfiwtl its effect on which it

is dragged over. The GenericTQol()r1'view handler, whic t associated with the View

el {and thus every view in the system) will handle the interaction when a tool which has a

certain action is draggetl over an object which accepts that action. The tools are virtual. in the

sense that they do not Ctftl‘l'€SpOl1tl tlireetly to any input hartlw are, and they tnay semi ar‘oitra:ry

to views with which they interact.

ERAN DJVIA supports seniantie feetlhaek. Handlers like Gene:ricToo.l.OnV:L.-ew can test at run

ti the if an a=.‘h,itraiy tool is able to operate upon an arhi.traty view which it is draggetl over, and

if so highlight the view ’:!1’ttl/or tool. No speeial cotle reqnii'etl in either the tool or the View

to make this work. A tool and the views upon which it operates often inake no reference to

each other. The sole connection between the two is that one is ahle to send :1 i that the
other is ahle to receive.

Qt’ course, the det‘nnlt behavior niay be easily overridden. A tool can tnake nr'bitr'ary enquiri

into the view and its model in order to decide if it does indeed wish to operate upon the view.

Event hantiling in GRANl)h’lA is huth general and efficient. The generalityeonies from the event

dispatch, where, if no other active handler handles event, the Eventtlandler can

query the views at the location of the event. The views consult their own list of passive

event hantllers, which potentially may handle many different lrinds of events. There is space

efficiency in that a single passive event handler may he shared by many views. eliminating

the overhead of a controller object per view. There is time eitieieitey. in that once a passive

handler handl ’ an event, it may activate itself, after which it receives events itntnedlately.

without going through the elaborate dispateli of the XYE:ver1t:Ha1'1dler.

Page 1290 of 1714

8 SU1‘vl’Z‘v' /-‘lI\’YBF GR/1l]VLUZ‘vZ2l 12.;

Artkit [52] has a priority list of dispatch agents that is similar to Gl{A'NDl\rlA’s active event

handler list. Such agents receive l0w—le-vel events i’_e.9'. front the window manage-rjg and

attempt to translate thein i:nt<:s higher level events to he i'eeeivet'l by interaetor rihjeets (which

seem tn he VieWsj‘;. lnteraetor agents register the gh—leVel events in which they are inte restetl.

Artl<it’s architecture is so similar to GRANl‘Jl\/'l'A’s that it is rliffieult to precisely characterize

the rliffereiiee. The hi gh ~level events in Artkit play a rule similar to htith that of rnessages that

a View may reeeive and events that 'iew"s passive event l1El.i’tf.ll,€tS expect. GR. . Dl\/lA,

the registerino is iinpliiztitg because of the Objective--C runtiine iinpleiiieiitatioii, the messages

understood by a given object need not be specified explicitly or limited to a small set. lnsteatl,

one ehjeet may ask arietlier ill it recognizes a given message helere sending it.

Because of the translation frern law-'—leVel to high—l,eVel events. it does not seem that Ai'tl<it

can, for example. emulate one device with another. ln pafli-;:'ular, it does not seem possible to
translate low--level events front one device into those of anntlier. (i:RANlf.3lVlA (lees not hiake

a tlistlnetien hetween loiw-level and high-level events. Instead, GRANDMA distinguishes

between events and messages; events are propagated down the active event hanrller list; when

accepted hy an event handler. the handler may raise new events and/or send messages te Views
or their ntetlels.

GRANll')MA su§1§3m‘ts gestures. GRANDl\/_lA‘s general input niechanisinhatl the rnajortlesign goal

of heing able tr: support gestural input. As will he seen in the next eh-apter, the gestures are

recognized by Gt-3S1:ureEver11:Handl ers; these collect mouse (or other) events, determine

a set of gestures which they reeogrii depending on the Vl6V\/S at the initial point or" the gesture,

and once recognized, can translate the gesture into messages to models er views, or into new
events.

Artlgit also handles gestural input. anal. suntewhat lilte GRANDMA.h gesture event handlers

wliieli capture luw»-level events and produce higli-le vel events. The designers clainttl1atArtl«;it.

because of its nl>jeet—0rlented strucxture. can use a number of dltlererit gesture recognition

algnri thins, and thus tailnr the recognizer tn the applieatien, or even bits of the application.

'l‘he same is title for GRANDl.\«lA, of course, though the intention that the algorithms

tieserihetl in the first of thesis are of siiffieient generality and accuracy that other

recegiiition algorithms are not typically required. Artlritls claim that Iran}/i‘ee0g1iizeifs can he

used seems like an excuse net to prsj:-Vide any. One {if the driviiig f-iiil‘Ct3S behind the present

work is the heliel that gesture ree0gni.:ers are sullleiently (lllll{‘tlll to build that requiring

application programmers to hantl cede such recugnizers for each gesture set is a tnajur reason

that hardly any applications use gestures. Thus, it is necessary to provide a general, trainahle

reeegriizcr in tirrler for gesti,tre~hasetl interl’ati-es to he C}(1.*.-l0.‘t‘C.{.l. llnw such a recognizer is

integrated into an ehjeet—0rientetl t0til,l~:it is the subject of the chapter.

Of cnurse. Gl~2.Al\ll)l\/lA does have its disadvantages. Like other lVl\/C systems, GRANDl‘vlA

provides a multitude of classes. and the prograninler needs to he familiar with tlliiist of then} before he

can tleeitle how to best iinplenient his particular" task. The elaborate input architecture esatrerhates

the prnhleni: a large number at pesslble CifJIlll3il’1€ill0l'lS of views. event handlers, and tools nntst he

Page 1291 of 1714

124 :;77ii}4i13‘"L7R 6 /~i.z’\/L4.Rii7I7‘I1’}‘E‘CI IL./RE FOR DJREC;7'1\d?1LM’PULAIYO1\/'

coiisicicr-ed by the programmer of a new iiitcractioii technique. Also, GRANDMA does nothing

toward soivizig a common pmbicm faced whim using any M\/C sysmn: decidi :1 g wh f13tic.:t,i<J11ai§ty

gocs inter a View and what goes ink: 21 iiiodci. Anoiiici pi‘0bie:m is that 8‘/éltl though ihc pi'01i:s<.:o1

bctwcczzi <iV€;:1’ElE hanailczifs arid Vi€WS is meant to 13¢: Vt:-ry general} (the Want i1E31’E{UkI}TS are initialized

with ivbiizrary rnc—:<sa.ge seieciors to use when cominunicating with (ha Viswjn in pracéiics the views

are wrifien with the inteiitioii that they will commuiiiczitie with psmicular event iiandiers, so that it is

not ireaiiy righi to claim that specifics of input have truly been factoied out iiif views.

Page 1292 of 1714

flesttire ..eeegttisers hi GMAN -

This chapter tliscnsses how gesture recognition may he i‘i’]C(,‘)t”;’)t)1'£ll't3(l into systems for huiltiing

direct mantpulatiert interfaces. ‘in particular, the and hnpiementation of gesture. handlers in

GRANDMA is shown. liven though the emphasis on the GRf\NDl\’lA system. the methods are

intended to be generally applicable to any object--oriented user interface construction tool.

‘ii A Nete en ’l‘ernts

Before heginning the disenssieti. sortie explatnatiert is neetletl to help EiV<.?l(l. etsrtfusion between

terms. As discttssetl in Section 6.4, it is trnpertartt net to cenfuse the View hierarchy, which is

the tree tietetininetl by the stthview reltttitsnship, arttl the View class hierztt'chy. which is the tree

determined by the suhel relationship. In GRANlI‘\«lA, the View hierarchy has a Wallview

object {corresponding to an X window) at its root, while the View class hierarchy has the class View
at its mot.

Another‘ potentially ambiguous term is “"eisss.” Usually. the term used in the object-orierttetl

sense. and refers to the type (lotssely spealiitig) of the ehj eet. lltawever, the term “gestttre class" refers

to the result tn’ the gesture recognition process. ltl ether ‘«V()l"£lS. El gesture reeognwer tifilfm l<1’EO\V1’l

as :1 gesture elassilier) (llS-(31‘lmil“lEllE5S hetween gesture classes. Ftisr exzimple, ()t’fi1’3Sl(l,€r Ell1ili1(lWl’ll'ltlg

recognizer able to diserirnitiate hetween the written digits 0, l, 2. 3. 4. 5, K3. 7, 8, and 9. in this

example. each digit represents at class; presumably, the recognizer was trained using a number of

examples of each class.

To titake matters tittitre eortlusing. in GRANDMA there is a class (in the ehjeet--ti:-rierited sense)

nained. an object if this i.7li:lSS represents at particulatr gesture instance, the list of

points which tnske up 21 single gesture. There is alsts a class nztrned GestuI‘eCle:sS: ehjects of

this class refer to intilivitlttzil gesture class 55; for exntrtple, El digit rectisgni;{.er would reference ll‘:

dillerezit Ge Sl.‘.11IE3ClaSS objects.

Sometimes the term “gesture” is used to refer to an entire gesture class; other times it refers

to at single instartee of gesture. Fer example. when it is said a recsj:-gnizer discriminates between a

set oi’ gestures. what is meant is that the reeogriizet‘ tliscritiiitiates between at set 01' gesture classes.

Conversely. “the user enters 3. gesture” refers te tEp23ll'llCtiii1l“lIlSl&1'1C8. hi all cases which follow. the

125

Page 1293 of 1714

l26 CHAPTER 7 G£52"UIrZERECUGNIZERSIf‘t7'Gf?/le\D1l/Bl

intent should be obvious from the context.

7.2 Gestures in WVC systems

As discussed in Chaptei's 2 and 6, object-oriented user interface systems typically cnnsist of models

(application objects). Views -(responsible for displaying the state ot" models on the screen), and

euntrollers (responsible for responding to input by sending to Views and models). typical

lVlt'J(lCl/ViCW/Cottttoller systems, such as that in f:%titalltall<[7't)], have a View Object and controller

object for each model object to displayed on the screen.

This section describes how gestures are integrated into tIlRANDlt/lA. providing an exantple of

how gestures might be integrated into other MVC-basetl systems.

7.2.} Gestures and the View Class Hietvareliy

(_‘.entral to all the variations ul’ object-orientetl user intertace tools is the View class. in all such

systems, View objects handle the display of models. Since the notion of Views is central to all

o'l3ject«oriented user interface tools, views provide a focal point for adding gestures to such tools.

Sintply stated, the idea for integrating gestures into direct manipulation interfaces is this: ea ct};

View re-spomfs [0 :3 part:I'cuiar sr,-I of gestures. intuitively, it seems obvious that, for‘ example, a

switclt should be controlled by a different set of gestures than dial. The ability to simply and easily

specify a of gestures and their associated semantics, and to easily associate the set of

with particular views. was the piiniary design goal in adding gestures to (_il§.ANl)l‘v’lA.

Of course, it is unlilrely that every View will resnotttl to a iilistiriet set of gestures. in general, the

user will expect similar views to l'CSpt)1’§ttl to similar sets of gestures. Fortunately, object-orieiited user

interfaces already have the concept of sitnilarity built into the View class hierarchy. in particular,

it usually makes the most sense for all View objects of the same class to respond to the same set of

Sirnilarly, it is intuitively appealing for View subclass to respond to all the gestures of its

parent class, while possibly ifespontlittg to some new gestures speeitie to the subclass.

The above intuitiuns essentially apply the notions ot" class identity and inb_eritanee[l l] (in the

rshjeet-erientetl sense) tn gestures. lt is seen that gestures are analogous to messages. All objects of

a given respond to the same set of messages, just as they respond to the same set of gestures.

An object in subclass inherits nietlietls from its superclass; similarly such an object should respond

to all gestures to which its superelass responds. Ctintinuing the analogy, a subclass may ovenide

existing metliuds or add new tn-ethods nut utiderstnnrl by its supereiass; similarly, a subclass may

overt'itle tthe interpretation til) gestures, or recognize atltlitional gestures. St:-lite object-

orlented languages allow a subclass to disable certain messages understood by its superelass tthougli

it is not eoinnien), and analogously, it possible that a St3l}£€l£tSS- may wish to disable a gesture class

t'eeogrtizetl hy its superclass.

Given the close parallel between gesture and messages, one possible way to iniplerneiit

gesture semantics would he for each kllld or View to itnpleinent a method fer each gesture class it

expects, tllassilying an input gesture would result in class’s particular message to be sent to the

view, which itnplernents it as it sees tit. A subclass inherits the methods at’ its superclass, and may

Page 1294 of 1714

772 GiE‘5'}l'tUI{E'S'II\7 ft/Ii/"C' S‘/S1’lE'fv;v'5 l27

override some of these methods. Th us. in this scheme a understands all the gestures that

its superclass understaruls. hut ntay change the interpretation of some of these gestures.

This close assuciatmn tit’ gestures messages was not done in GRANIJMA since it lelt to

be tuo constricting. Since in Olcajective C all niethcds have to be specified at compile time, adding

new gesture classes wnuld require program recotnpilatituis. Since it is quite easy to add new gesture

classes at runtiine. it w-;iuld he unfortunate if such atltlitiens required recunlpilations. One of the

of GRANDi‘vlA is to permit the rapid e>;plurati0n of different tures sets and their sernanti-es;

forcing reeenipilatiens would rnal:;e the whole. system much niore ted-inns to use fur experitnentation.

instead, the solution adnpted was to have a small interpreter built into GR,/3\Nl)l\!lA. A piece

of interpreted code is associated with each gesture class; this code is executed when the gesture is

rectignired. Since the code interprete-:1, it straiglitr”urwa1‘<l to add new crude at the ti me a new

class is specified. as well as to rnt>dit‘y existing code, all at nnttiine. While at llI‘Sl glance huilding

an interg::reter illltft GRi’—‘tl\7Dl\/ A seems quite difficult and expensive, Objective C nial<es the task

siinplc, explained in Scctien 7.7.3..

7.2.2 Gestures and the View Tree

Consider a nurnher of views being displayed in a wiritluw. ln GR/»’il\ll)l‘vlz—\. as in many other systems.

pressing a mouse button while pointing at a particular View (usually) directs input at that view. in

other Wt)1"(lS. View that input is usually determined at the time uf the initial button press.

Due to the View tree, views rnay overlap on the screen, and thus the initial ninuse location nriay point

at a number tit" views simultaneously. Typically the Views are uerietl in order, frum furetunst tn

hacl<.grtiui1d, to determine which one gets to handle the input.

A siinilar appre:-ach may be taken for gestures. The first point of the gesture determines the Vii:-.ws

at which the gesture rnight be dit'eeted. l*l<:tWever., tleterniining which til" the overlapping views the

target of the gesture is usually impossible when _i ust the first point has been seen. What is usually

desirable is that the entire gesture he collected helcre the determination inade.

tfl‘0risit_ler' at sirnplificatiun uf GDP. The wall View, behind all other views. has at set of gestures

for creating graphic objects. A straight strnlte “—“" gesture creates a line, and an “‘l.:" gesture creates a

rectangle. The graphic object Views respond to a different set at" gestures; an deletes graphic

object, whilea copies a graphic object. When a gesture is niatle ever, say, an existing rectangle,

it is not innnediately clear whether it is directed at the rectangle itself or at the haclcground. it

depends on the gesture: an directed at the existing rectanglet an “L” at the wall view. Clearly

tl determination cannot he made when just the first point of the gesture has been seen.

Actually. this is net quite true. lt is cunceivalile that the graphic uhjeut views cuuld handle

gestures themselves that ncnnally would he directed at the wall view. There is some practical value

in this. For exattirile, creating new graphic object over an existing one might include lining up

the veitices of the two uhjects. However, while it is nice to have the uptiun, in general it seems

bad idea to force each Vit.’.‘s 7 to explicitly handle any gestures that might he directed at any Views it
covers.

Chapter 3 addressed the problem uf classifying a gesture as one ed’ a given set a. ‘ gesttue classes.

lt is seen here that this set oi‘ gestures is not necessarily the set associated with single view. but

instead is the union of gesture sets rectignized liy all views under the initial point. There are some

Page 1295 of 1714

l2§§ CHAPTER 7 G55}lUItZE.' I\?EC'OG]VIZ.E-"RS IN GfZ¢h\D1’t/I/l

technical difficulties involved in doing this. It would in general be quite inefficient to have to

constiiiet elassiiiei‘ fur every possible union cf View gestures lrlowever, it necessary that

classiliers be constructed for the unions which do occur. The current iinplenlentatien dynamically

consti"u<:ts a classifier for a given set of gesture classes the first time the appears; this classifier is
then cached for future use.

lt is possible that more than one View under the initial point respctids to a given gesture class.

in these cases. preference is given to the topmost view. The result is a kind of dynamic scoping.

Similarly, the way a subclass can overritle a gesture class recognized. by its superelass may he

eonsitleretl a lrintl of static scupirig.

7.3 The GRANEMVEA Gesture Subsystem

in GR./—\l\ll)lVlA. gestural input is handled lay objects of class Geet;trreEver1tHanrZtler. Class

Gestt1reEveI1tl-Ianeller. a subclass oi G'ene:c'iCEve;r1t1~+IaI1dler, is easily the most curnplex

event handler in the GRAN1’)1‘vlA system. in adtlition to the live huntlretl lines of code which

directly implement various rnethotls. GestureEvent:}-handler is the sole user of rnnny other

Gl§,Al\lDl\/lA suhsysterns. These. include the gesture classification subsystem, the inteiT"aee wliicli

allows the user to niodiiy gesture handlers (by, fO1’CXal‘(}pl(), adding new gesture classes) at runtime.

the Ohjeetive C iriteipreter used for seinanties and its user interface. as well as some classes

Ge:3‘tu1*eEvent, TimeoutEvet1t;) used solely hy the gesture handler.

Before getting into details, an overvi.eW of GRAl\lDl\zlA’s various gestut'e—related components is

presented. Figure 7.l shows the relations between ohjeets and elasses associated with gestu res in
GRANDIVIA. The main t‘-ziscus is the Gas t.urei3ver1tHarte‘ller. Like all event hanrllers, when acti-

vated it has a View ohject., which itself a {ElO(l€lEt1’ld€i‘vV£tllVlt3W.1 A Ge str-.3:'eEventHar1dler

uses the wall View to activate itself, raise Gessturel-hrertts, set up timeouts and their haritllers, and

draw the gesture as it is heing made.

Asseelated with a gesture event handler is a set of Semclass objects. A Semclass object

groups together a gesture class object (class Gest:ureClass_) with three expressions (suhelasses

of Exp 1?). The Gest1.tretI?J_ass objects represent the particular gesture classes recogni;ze<.l directly

by this event handler. he three comprise the semantics associated with the gesturecl

by this event handler. The first expression is evaluate(l when the gesture is reeogni7,ed, the second

on each subsequent input event handled by thé gesture handler after recognition (tire nianipulation

phase, see Se«;:‘tia:iri l.l), and the third when the nianipulation phase entls.

Asseciatetl with Gest.u_1:eClass object is a set of Gesture objects. 'l,‘hese are the

exaniples of gestures in the class and are tised in the training of el,assitiers that recognize the

A Gesst u3:eCla:=3s object contains aggregate information ahtiut its ertaniples, sueli as the

estimated. mean vector and Ce-variance matrix of the eitainples‘ features, both of which are used in
the construction of classifiers.

When a Gestt'Lr1‘eEventHari.dI1_».r‘ {leterrnines which gesture classes it must aliscriminate

among (according tn the rules cleseiihed in the previous section), it the Classifier‘ class

‘Recall that a wall view is the rout of the View . ‘cc and represents a window on screen.

Page 1296 of 1714

773 II-IE G}€¢L”x1)z\/E-4. GEST 7135 S'LC.Ea’S}'f§YJE'Z‘v;7

E GestuIeEven* audle-

Smal1GestureClassView

Gestureflandlervxew

Sma1lGsstureV1ew “'7

GestureC1assView»

F5g11:‘c 7.1: GR/\Nl)MA“:2 gssmn: subsystcm

/E passive *§tureEv»::I1tHa11dl»::r is a5s0C1'aZ9.:’ with a 5/jaw or ‘view dass; izu e;x:p.s-cz'5 gesiuzai z'npu£..
1OI]-i,‘(,‘ gcstura mpuz begins, zihc !1aI1a’Icr acziva mi’ and rcfiérs d1Lr'c.:‘::1fj/ to {[10 View at w}11'(:h gesture was

3'1‘ mr,f<—~n’, as she W1} 1'12 the figzzm. 'I”'_:'1(—~ i,mn*:edi at e P C. 121,"-.re 0.5- his men’ 1331“ tint: znking aft 1.: 111“: ,.

liazydiez" [ISL a Ijmez:-L1tmeChani_~:m to 1'ndica ze Vv'h(—>12 to cijange fhjm the COUE?-zTfiO12 to 1313 271'pzzfa lion Sta: ta. A

ge.9Z:/rt: C,

and .'f':e,z. are View 0l)_j<s(‘E;s far 6361‘ of the ex:mip]e:s [Sma_1.1.Ges CU. ,. L, as

as wtfzole 4 ‘ ;’t:u.reC Z3LESS\,7i€3!W, Smea].1G u:reC1a_s View) wizfith afiow 1;’zesr—,~ to be dr'spZ:¢ye«.{ and

cdmra’. Thar gcszurs scrjnazztirgs ar" ‘epic:-scnzcd by Expr -:>bjc-iris, am!’ n'1¢z_y be edited in zihc Iriterpvieaw
wt’ min ma

Page 1297 of 1714

CHAPTER 7 G552"L’IvZ£' R1i‘C'£?G]VIZ]E-‘RS IN GfZ¢iJmD1’\/I/i

hmwmmfimofiamwmmkohbmgmwfimmmmmmrNmmflWsmfiad%fl&rmHmmMy

exist; in this case, the existing classifier is simply rrzturnsld. it is possible that one of the gesmrc:

eiasses in ihe set has Lshangedg in this the exisding ciassi tierlxas to iI?E.: re1,i'ained (i. i‘ecait;ulair:(l).

O::<;a.sitina1l,y, this set of gesture has never l3L—:en seen before; in this crass: a new classifier is
erezilied for this set, returned” and cached for iiitiire use.

ThecanmonmnsflfimcdnjmcgcflmwcvmnhmxflmwhnmghGestureflandlerviewzneafl

ermceriied with eriabiiiig the user to see and alter various facets of the event handler: The predicates

for staiting, haiiriling. and stopping the collection of gesture input rnay be altered by the user. in

addition, gesture may he created, deleted. or cripied {mm oti‘.-er gesture event hasidiers. The

rsxampies of :1 given class may he exatitiricd, and :ine'iivie'iuai exa:mpies 111:1}/' be arlclced or L1-tieteei.

finfl@JhcwmmHEs%mwmmdWfihagwmmgfimfiemwnmyhemwmdflmnghflmhfimfiwem

the ()bjective C intcz'pre1:er.

7.4 Gesture: Eveiit Hamtilers

details of the GestureEvent}-Ianciler are new tiescrihed, hegilming with its instance
Variables.

static I-BOOL masterswficzh
er_1'.CEvent:~Iar.- ‘ler= GestureEventHand1ex : Gen“

STR name;

‘d gesture

picture.

classes_
env;

timeval,

timeouteh;

lastx, lasty;

sclass;

gassoc { id sclass, view; } igassoc;
ngassocs;

c1ass_set;

manip_phase;

classify;

ignoring;
mousetool;

The mas3te::.‘Sw.1'. tch, settabic: Via the ma s1:erSw1'.t ch ; factory methoct enablrts and disables

all gesture hzmdiers in an appiictatiou. This provides a simple method for an ripplicaition to provide

two ii1i€1'faC€Sq one gesture--based, the other not Every gesture handler wilt igns:-re all evrsiits when

mast erSwi is NO‘ It will be as if the appliasation liar! no gesture event handlers Typi-sally. the

remairiing i3'\.'€1’1ll1Emdi€i'S would provide 21 mere '(1”21<liti(31’i3.l click and drag invariance to the zippllcaiion.

Page 1298 of 1714

77 4 GE5}fUI€_E' E '\/EN]"HANDLERS

A particular handler can he turned oft’ by setting its ignoring instance variable Via the

ignoxfe : message. Gi{ANDi‘vlA can thus be used to eempare, say, two completely rliffereiit ges-

tural interliaee.s 5.4) a given app} ieatiun, switching between them at runtime by turning the appropdate
handlers um and off.

The instance vari able name is the name of the gesture haiicllcr, A handler is named so that it -can

he saved. along with its gesture classes, their and examples, a file. This is obviously

necessary to avoid having the user en ter examples of each gesture class each time an application is

started. The name is passed to the passive ; method which creates a. passive gesture handler:
C3~estu1'eEventHar1d.l_er

+ passive: (STR) __na=.ne {
FILE sf;

self 2 [super passive];

classes [OrdCltn new];

[self instantiateofi];

[self etartp:[[{EventExpr new] eventkind:PiekEvent]

too1kind:MouseToo1]];

[self handlep:[{EventExpr new] eventkind:DragEvent]];

[self etopp: [EventExpr new] eVentkind:DrQpEvent]];

[self name: name];

timeval : ..aultTimeval;

classify

if((f : " openfi1e:“r"]) . - [self readzfi];
return se..,

i
J

The typical gesture handler activates itself in response to mouse Pickflvents, hantlles all

subsequent mouse events. aml (leaetivates itself when the mouse button is released. 01” course, being

a kind of generic event haiidier. this default behavim can be easily overzidtten, as was dime to the

Drag’E:ventI~Iar).<iT.er discussed in Section 6.7.9.

By default, the gesture ev nt handler plans to classify any gestures directed at it (Classify :

This cliangerl in those gesture event handlers that collect TO!‘ training ether gesture
event handlers.

The default timeval is 2%, nieaning 2.00 iniliisecari-cls. or two tenths of a second. This is

the tluiatiorl that intisuse input must cease (the intsuse must remain still) for the end, of a gesture to

he rceogriimd. The user may change the Llefault, thus affecting every gesture event’ handler‘. The

timeout interval may also changed on a per hancller a feature useful inairily for coiriparing
the feel of different intervals.

When an event satislies the hartdlefs start predicate. the haitdler activates itself, anal its

iveHatr1dle1‘ is called.
Geetu1*eEventI—1andle1‘

— passive}-Eancllerze

gesture E [Gest new] 11ewevent:e] ;

Page 1299 of 1714

CHAPTER 7 G552"L’IvZ£' R1i‘C'£?G]VIZ]E-‘RS IN Gfiri/\D1’\/I/i

gicture {ImmediatePicture create};

[view _hang:picture at:O:O];

lastx = [[e loo} xi; lasty = [[e lac] yj;

env : {Env new];

[env str:"gesture" valuezgesture];

stI:"startEvent" value:[e Copyi];

str:“currentEvent” value:[e copyji;

str:“handler“ valuezselfj;..M.
—;~e,

[[Time<:>u1:EventHandler 3-.c!tive3]

rec:se.1f sel -@:—:e.1ecto:r (timedoizt. :) :1 ;

[wall ac!1:i‘ve"-.‘tr:: t.ime<3u'i:eh] ,-

iwall timeoiit : itimeval] ;

if(classify) {

class_s&t = [Set new];

gassoc = (struct gassoc xi

mal1oc(MAXCLASSES $ sizeof(struct gassoC));

ngassocs : 0;

{{wall handlers]

raise:[GestureEvent instigator:5elf eventze

env; [gE§nv new] st1‘:“event“ va1ue:e}]] _;

}
return self;

}

The passive handler aiiocates a new Ge sture ohject which wiii he sent the input cvems rh Cy

arrive. The initial event is sent ihimediately.

ihcpictureahowsfimgefiwehamfimwoimimegefiuwimihedmpmyasfiishfinghmde

CkwsImmediatePictureiswmdhnpnfimeswmehmedmpmymhmfimyannhawhgaflwrdmn

then0finaLHangingPicture daaiwhkhiequhesphnmestoheconqfldedhefinetheyaanbe
¢nwm

The env variable holds the erwiharmiem in which the gesture semantics will he executed.

Vfififinihfisnwhnnmwnatheinmqnemrvaflflflesgesture,startEvent,currentEvent,

and handler are 33€)Li1’lLi appropriaieiy (see Secfition 7 .'7.l‘;.

The boohran manip__phas-22 true if and only if the cmire gesture has been i:0hea;(cd. and Chi‘.

handler is new in the manipulation phase (see Section 1.1),
A'FimeoutEventHandlerisenmuflzmdzwfivamd.VVhmiaTimeoutEvent Biecdved

the hamdier, the hzmdieif will send an arbitrary lT:€SS§;ig€ (with the timeout evem as 3 param—

em'_‘; to an aifhitifary object. in the currerit cases the timedc-ut : message is sent to the active

GestureEventHandler. in nflnmpem, fix genmni humhhnflhy of the

Time0utEventHandlerishoinmfledhmenheGestureEventHandlereomdimefieafih

receive and process Timeoutfivents <;Eii'ecEiy. without ihe overhead ofa. Timeout Eveni:I—Iar1dler.

Page 1300 of 1714

77 4 GE5'}lUI{E' 1371/']E71‘v’I"H}4it/\«DL.E3‘RS

The code [wall tinteout :t:imevall causes wall to raise a Timeoixthlvent if there

has heen nu input to wall in I: .:3.meva.l rnillisecontis. A t imeva 1. of zero disables the ra,isin,g of

TJl.Yi’t€3!-13'tl‘L.E'\.7EEE1’1lZiE3. As previously iiientionetl, a gesture is consicleretl ctunplete even the niouse

button is hehi down” as long the mouse has nut been fi]()Vt.’.(l in timeval nmllisecenitis. The

T:l_mee3u.‘i:.Evezndt. used to iniplemerit this hehavior.

if the gesture being eriilected is intended to he classitied, the set of possible gesture must

be constrnctetl, and a Set. object allocated for this purpose. Recall from Section 7.2.2 that there

may be multiple views at the location of the start gesture each s::-i‘ which accepts certain gestures. An

array ui‘ gastaoc structures is allocated tn associate each of the possible gesture classes expected

with its corresporlcliiig view. A GestureEvent is then raised. with the instigator being the current

gesture handler, and havirs the current event an additional field.

Raising the Gest:u1‘eEven‘r: initiates the search for the possible gesture classes given the initial

event. Recall titnin Sections 7 .2.l and 7 that each View under the initial point cunsiderecl from

top to bottom. and lur each view, the gestures associated directly with the View itself, and with

its class and supereiassest are in tirtier. Note that this is exactly the same search sequence

as that used to find passive event handlers for events that no active handler wants Section

6.7). The Ge:=,=tu1‘eEvent. hantllctl by the saline passive event handler incchanisni, will thus he

propagated to other Gezst ureEvent in the correct order. Each passive gesture lianizller

that would have handled the initial event sends a message tn the gesture handler which E'2llS€d the

Ges:t;’u1'eEve.=1t; indicatiiig the set of gesture classes it recogtiizes and the View with which it is
associated.

Note that unly views untler the first point of the gesture are queried. The case where a gesture

is mere naturally expressed hy not hcginniiig on the View at which it is targctctl nut lianrllccl hf;

GRANl')l‘vl'A. For example. it would he desirable for a knob turning gesture to go around the l{}'l0l’§,

rather than directly over it. in GRANMDA either the knob view area would have to be larger than

the actual kiioh graphic to insure that the starting point of the gesture is 0Vt3f the knob View, or 3.

ha.cl<,gruuntl View that includes the knob as a snhview must haiidle the l<noh—tu:ming gesture. in the

latter case, the gesture semantics are coniplicated heeause the hacl;gt'ouni:l View needs tn explicitly

determine at which l<‘.’tt"il‘i, any, the gesture is dit'eeterl.. Henry etc at. also notes the pmhlern,

and that one gesture hantllcr might hand off a gesture in progress to another hanrllcr it" it

determines that the initial paint of the _,<_z_esture was misleading, hut €>l€iCll:y’ how such a tletertnination
would he made is unclear.

: Gesturejventfiandler ...

vm (BOOL)event:e viewzv {

if((classify && masterSwitch==NO) H ijnQring==YBS)
return NO;

[e isKindOf:GestureEvent] D {

iftclassify

' :[[e euvl str:“view” valuesvl)

ator] classeszclasses view:v];

Page 1301 of 1714

CHAPTER 7 GE52"UR_E R1i‘C'£?G]VIZ]E-‘RS IN'GfZ¢l‘\D1l/L’l

return [super event : e View : v] ;

l
The stureEv-entfiandl-er ajiverrides Geri-ericE2ver1tHandler’s zvi-aw:

method to eheclr rlireetly for Gest‘u1*eEverits. (A check for Gesturs-3Eve11ts could have

been included in the delatilt start pret:licate, but this would require pl'0g1‘alllS whie:l1 rrludify the

start predicate to always include siieli a 13ll€Cl<, an unnecessary «:un'iplicati0ii.j= First the state of

the iuaste1‘Swil:ch arid ignorixtg switches is eheclgedi so that this handler will nut ape/rate if

explicitly turned eff. (The reason classify is eheeketl is ta allow gesture hantllers wl'1iel'1 do not

classify gestures, tie. those used to erilleet gesture examples for training purposes, to operate even

thtiugjh gestures are disabled thraughout the system.)

When a Gesturelivent is seen, the handler checks that it indeed classifies gestures and that it

would itself handled start event {see Section 6.7.8,). The envirtmnient use’ for evaluating

the start pretlieate is eunstruetetl so that “eVeI1t" and " view" are bound to what they would ltave

heen had the handler actually been aslqeti to handle the initial event. If the handler would have

hantlletl the event? the set of gesture classes assaeiatetl with the handlers well as the view, are

passed to the haritiller which iristigatetl the GestureEv-:3:rit.

Note that no special ease is needed for the handler which actually raised the Gestu."ce}33ven.t..

This handler will he the first tu receive and respoiitl tn the -Céesl:.u.reEvenl:.., which it will then

propagate to any Oll1t3l' haritllerst The propagation ottetirs simply because the ev-3I1t;:view:
lIlt:lllt.l€.l returns NO, if it ditl n<.stl1arit_lle the everit at all.

: GeStureEvenl:Har1dler . . .

classes:gest.tire__c!lasses vieww

seq [gesititremclasses eachlélleinentl;

C = next])

[Cl€tSS__stEt.: aCtdl\TTeSt:-3]) /l< addeziizew efer11e11l?>i:/’

g'asso»r_:lnga.szsocsl .sc:1as3s C;

gassoclngassecsl .view = v,-
I1g£3Si3OCfES+»l-_,'

}
return self,-

l

iaeh gesture handler that could have handled the initial event sends the gesture handler that did

handle the initial event the claases ; view; message. 'lhe latter handler then adds each gesture

elass to its c.l.a.s:.s___$set. the gesture class was hut previuusly there, it is assueiaterl with the

passed View via the gasses array This ihemhei'sliip test assures that when a given gesture class is

exfiecte-:1 hy mrrre than one View (_at the initial point), the tripninst View will he assneiated with the

gesture class.

By the time the Gesturfefilvent has finished propagating. the c.lass____set Variable of

iristigatnr will have as eleiiierits the gesture classes (SemC‘las.~3 objects, actually) that are valid

given the initial event. The gassoc variable a::-l‘ the instigatur will assneiale such gesture tzlass

with the View that will be affected if the gesture being €lll€l'€£l turns nut to he that class.

Page 1302 of 1714

74 GE5'}fUI{E' 1371/']E71‘v’I"H}4tl/\«DL.E3‘RS

The search for the set of valid gesture classes may be relatively expensive. especially if there are

a signitieatit number‘ of views under the initial event and each View has 3. number of event hancllers

assueiat,e=;l with it. substantial, lraetion til," seeuntl euirsuitie.<l hy the search had an uitl,'0t'tunate

imammmwflnmhmmfiwdwmmmhwwyflmwwmmmwwmflmwfimmmmnmwgmwn

ernns.VVhmiquefled,fluehuV4eveiudndoawnanagersnfnwanenuurnscnlythelauwtniouseevenn

diseartiing any intertnetilate mouse events that neeurrerl since it last queried. The time interval

between the first and second point of the gesture was often inany times larger than the interval

hmwemimmhfiuaupmwtfipmnm.Nmnfinmenmnfignwasnnwhlmgmmhmtflmtm%heflmtmm

seeuntl points nf the gesture examples used to train the classifier. Details at the beginning of

would he last, and some teatur'es, such the initial angle, would he signilicantly clifferezrt. 'l'he

suhmenfialdehnrhtsmnphngtheseenndixnntufthegesuuethuseausedthetflashfierpefibhnanee

to degrade.

There are a number ofpossible solutions to this pnjrhleint, The window nianager software could he

set to not discard interniediate mouse events, thus resulting in similar data in the actual and training

gestures. This would result in :1 large Eltllilltlfiilal number 01' ntouse events, and a correspuntling

increase in pi'0cessingg costs. riialdttg the systerti appear to the user it events could nut he

processed fast they arrived. Or, the Search for gesture classes euultl he pnstpnnetl until after

the gesture was C0il,BC1'€{l. This would result in a substantial delay after the gesture was eelleetecl,

again inaking the system appear slu to the user‘ The s0l,ution finally adopted was to poll the

xmndewdnmmgerdunngthermfingefGestuxeEvents.(hifiwinmnfitnfehufiytheeodein

XyEventHandlerandEventHandlerList whmhdhhhepmhngwmsnmfihown)lafimfihfi

momhemkm.nmnmgGeStureEventHandlersrmmhedinmnevmusatmesmnermeasfim

GeStureEventHandlersteedhhflrmnhg,nmmowngnxogmunnpedbnnmmeeonhdmahb.

ThepmhngmmflmdinnawnmufixwemshflngnmmdhfihmtheGestureEventxwefinfihmi

being prtupagated. Tile result was a lcinrl of pseudo-rnulti~threadecl operation. with many of the

typmafihuhmnmtflfiehansenhenennmnmnwyisaposflbuhy Gestureflventflandlemswem

euri_tplieatet'l somewhat, since, lur ewrnpie, they liatl to explicitly tleal, with the pussihil:ity that

the end of the gesture mi ght he seen hefore the set of possible ,gestut'e classes was traieuiatetl.

AkeJheevmnhamflhgtnmhmkthrGeStureEventHandlershadtohenmdenmnwmuiThe

coniplieatiaisns have been omitted froth the code shown here, since they tend to in-alre the program
much more ttiftieult t-:3 understand.

'flemdmeg%ww$hflmmmwMwHyanmflmmwmflmhmmgmatmmdmm:nw%@e

hmngsmntuthefiesturefiventflandleri nrhythesunrpmdkamlxfingsaufimdtmnmung

intheactiveTerminator: nmmagehfingsmutethehanMefi_lhethndahmnmh@,e%fir

recognition (Chapter -4), has not yet been integrated into the GRANDMA gesture handle: though it

has heen tested in nun~GRANl*}MA a.ppl,iea.ti0ns (see Section ‘}P.2‘1).
: GestureEventHandler ...

»~ timedout:e { if(1 {self gesturezgesturel)‘I

[self cieactivatei, return nil;

— act: iveTe3:mi.r1ator : e {

[eriv SEX‘:"CLl1E‘lC‘tE1’1lI.E‘V'eI1EI." value: -Jopyl] ,-

Page 1303 of 1714

CHAPTER 7 G552"L’IvZ£' R1i‘C'£?G]VIZ]E-‘RS IN Gfifii/\D1’\/I/i

if(£ manip_phase) [self gesturezgestureig
return self;

}

Both methods result in the gas t Lire : being saint when flue gr:-stare has been coniplstei ’

atoiiecied. The r_.ges,=tu1‘e: message rei:uri1s mil the gesture has no semaritics to be evaluated

during the i'i1ariipui3.ii0i1 phase, This is Ci‘i€1;1i<€d. by ihcs timedout: method., and in this

the hzandisr simpiy dceaictivates itse/if il‘I1i1‘1i3(ii23.i?c‘/iy. This is typically used by gesuarsa classes whose

recognifiiiozi seniamics chem the: 1'm.>use§'0ui{e.g'. a deiete gesture 1}'1a1<:h3.11ges mmise cursor :0

a delete tool); a iir11s0uLdeacai‘v'ates the gesture hemdier imnietiiateiy, aiiowing the mouse to funciion

asatooiasiongastheinousebufionisheki

TheGenericEv&ntHandler(odeaflmgfisfinwhedeactivateine%agM0besmuhnHm—

(hawk; afier fix: activeTerminator: nwsxge, so {has is no ikfd {hr fix

aCtiveTerminator: nwflmdtosxphdflysemideactivate.Théenvfiomnmfiischmged

sothmihc:wnmnficexpms§0nev$um£dinLmsdeactivate nwdmfl<wwcuwsinlhec0nem

anvhUnnwnL'Fhsgestuxe: nmihodiscdlmiflfihehandkwissfiflinihsgesunecufiecfionphasa

0. if the gesture and indicated by raieasing the mmxse button r3.r‘r1e1‘i:ha.n timaout.
= GestureEventHandler ...

m deactivate {
id 3'.“ ;

if(manip_phase && sclass}

eval({sclass done_exprj, env, Typeld, gr);

return [super deactivate];

}

'Fm:gestuIe: nuxhodscmthcsclass fiddt0thcSemClass 0bmci0ffin:mm0gnmcd

gesiurs. T116 done ‘L’X_;71"€SSiC?I1, the 15151 of three semantic expmssions, is evaiuatfid iniinedmteiy

beforcs the gestixre handler is deactivated.
= GestureEventHandleI ...

— (£%OQi[..)eveni:.:e reirurn i_g1'1o1ring ? NC: : {super eventze]; }

activefiaricllezcze { /4* 119W1I1<)i1s8_p()1'11i'*/

[env 51:1‘;"currentfiivent" va_1.u,e: [e copyji ;

if(m5anip_phase)

if (sclass) evaji. -\ [sclass mamLp____expr] , env, Typeld, &1:) ;

id 3;‘; /»':< in ma Izipuia L='011}:.=1'1a5;e #1 /’I

}

E31 Be { ,4< 3.‘/':’.’ in caviizécfianpharo /

int K = {e [lac x]}, y = {e [lac y] ;

Igasture neweveni: 2e] ; ,4? 1.'pdTf:? flea {£1123 veaimr >r /

{view updatePicture:

{picture 1ine:1astx zlasty :. :y]}; Aink*/

lastx = x; lasty = y;
1
J

urn Self ,-

Page 1304 of 1714

77 4 GE5'}fUI{E' E '\/']E71\:’I"H'/L/\«Gi3L.E3‘Rf§

}

(mute :1c=.i\.'a.1ed, the t.L=.reEve:1t.Ha:1dl functions just like any -zjiher

Gene1‘iCE'v'eI1t.Har1dler exccpi {heat it wifi not hamdle any events if ignoring flag is

set. The active even: h;1n(iie:' does diz"fe:'em things depending on whether the gesture haridier is in

the <;:ofle<:ii<isri phase or the manipisizition phase. in the former case, the current evem i,0CELii<'fi1’}

added to the gesmre, and 3. line connecting the previous location to the cumin: one is drawn on the

dispiay. In the latter case, the mzmipula {ion e){;)re<;.sion associated with the gesture (the second of

the three semantic expixzssiavns) is evaluated.
= GeetureEventHandler ...

— gesture : g { /5% Caiied when gi?S{.',lfz? <?a]1’e:,".ri0z2 phase in C0m_,n1'eIe =+< /'
double a, d;

if}. 1‘;

id claesifier;

register struct gassoc saga;
id 0, class;

cu1‘eve1‘1i; ;

manip_phaee = YES;
[wall ti1eQut:G[; [wall deactivateztimeouteh];

[vi ew _unhang : 3) i C t Lire] ,- /+= erase :'m'k:'11g‘ ,2’

[picture discard]; picture = nil;

/i< ir1f01‘iI1i:21et‘esie<} Mews ._/0r1,’yr;se(}jI1 51 irzniriiizg sess,i(2I.=) :a< /'

if([view reepondsTo;@selector(gesture:)1)

[view geeturezgi;

. {

.4 find a (:r’a5si'fi.r:-1‘ for Jae sez,‘ tree is _iZ1'f1'zec‘e5sesijy =:< _/

[Classifier 1ookup0rCteate:clase set];

.' assffiej‘ on the fees lure i/ecizo.“ ofihe C0]ieCEedg'e5iu1"e >:< /

[caaesifier claeeify:[g fv}

ambigprob;&a distance:&d];

= nil ;

if(claes == nil H a < AmbigPrQb H d > Maxaist)

return [self reject]; Auefiwmd*/

find tile Ciass off}1€geSfu1'5= 1'11 the gasses? a:1m_,V'>:< /

foréga = gasses; ga < &gaseoc[ngaesocsj; ga++)

if([ga—>sc1aes gclass} :2 class)
break;

if(ga 2: &gaes0c[ngaesoCS])

return [self error:”gaeeoCe?”};

Page 1305 of 1714

CHAPTER 7 G552"L’IvZ£' R1i‘C'£?G]VIZ]E-‘RS IN Gf?.¢L‘\D1’t/1r’t

/it the gmismt oiitiygives the be fit the View at Whisk the gr:-smn? /i

is tiiiffiiiféd and the 5t.°.I72é?I3Ut? eXpre5s1'or5 ofthe gesture >.¥ A,-"

Selene : ga~>selass;

{env str: "view“ ‘value :ga.—- >view] ,-
stI;"endEvent”

value : cureve1‘1t= Eezw ;tStr: “c:u1<‘1‘e1'1tEve11t “E ;

tisclase recog_expr], env, Typeld, &r};

= [selass manip_ex§ri) I: nil &&
val} E: nil)

evaltc, env, Typeld, gr);

else { A1ebeewmn*/
i£(cure'e

gnoring = YES;

ftmousetool) [curevent toolzmousetooljg

wall raieezeurevent];

i

i

E

{sclass cione_expr]‘) == nil

}
return Self;

I
J

The gesture ; tnethod is -salted when the entire gesture has heen collected. It the variable

manip__phase to indicate the handler is new in the manipulation phase of the gestural cycle.

cieaetivates the timeout event hantiier, and erases the ggesture front the disptay. if the View associated

with the hetntiiei‘ responds to gestulte: it is sent that with the eohecteti gesture

argunient. This is the nftechanistn hy which example gestures are collected chmng-1, training: one

handler collects the gesture; sends its View (typically it kind of tntallview devoted to training) the

exaitipie gesture, which adds it to the Gve3tu1*eC'la;";=s heing trained.

in the typical case, the gesture is to c1assitied., the Classifier factory ntethod narned

looku};-OI‘Create: is etttied to find 3:1 gesture etetssitier which diseiiininated between elements

of the elass_set:. if no such eiassihei“ is found. this method ezttetttzttes one and Caches it hit‘

future use (This iookup and creation eouid possihiy have been done in the pseutio—thread that was

spawned during the tirst point of the gesture; hut x not, since most of the timtfi the iookup firtds the

ctassifi-er in the cache, and it was not woith the additional compiizsatton and loss of nioduiztrity to add

potting to the classifier creation code.) The returned eiassifier is then used to etassify the gesture.

in addition to the class, the probability that the eiasmieation was anthiguous and the distance of

the exatitple gesture to the mean of the caicuiatetj! class are t'etu.i'ned. These ate compared against

thresholds to check for possible rejection of the gesture (see Section 3.6).

Page 1306 of 1714

775 GE5'IUR_ECL- “SI 71C/5t'HON/h’\1)H\iAZz“\/Q’MC?

The elements of the gassoc array are searched to had the one whose gesture class is the cl

returned by the elassttier. this determines hnth the setiranttes of the recngtitzett gesture and the View

at which the gest re was directed. The s<:1.asr;: tieltl to the SetnC.lass object asst‘te:iatetl

with the reeogrtizetl ,gesture, and then the re, gnition express/‘O23, the first of the three semantic

e>:pt'essinns, is evaltiatetl in an envir<innient in which "zst £3titf‘t.E‘.?'€‘.1’!‘t " , “cit: r1‘etttt::Ev~e:t11: " ,

"L==ndi3vent. " and "view" are all appraittniately hottrtti.

if ‘t exists, the niartipnlation e>tpressi<:tii evaluated iihnietliately after evaluating the recognition

expression. ll there no ttianipttlation expression. the ettrrent event is reraiseti (ill the asstnn-_:3ti0n

that its tool may wish to operate on a view. The igrtoring flag is set that the active handler does

not attempt to handle the event it is ahntit to raise. Furtiiernttire, the semantics of the gesture may

have ehangetl the current mouse trial. if so, the tool tieltl or" the current event would be incorrect, and

is ehartged to the new tool before the event is raised in order for this to work? any gesture semantics

that wish to etiaitge current t'fi(TtlSf: tool must do so by serttitng the t'rtC-t1s»e‘-so-:31 : inessage to

the gesture handler instead of directly to the wallviev./i
Gestu1'eEven*:Hartd].e:i:

— 'mo'tt:3et.»::>o1.:___mou5et:3o1 {

rrtoustetool ___Vmouset:eo."t.,-

rretnrn [super mouset.-:30].:___Vm<:>ueetool];
tJ

The gesture : tnethoti returns itj.1. if there are no inaitipuiatinn or done sentarttics associated

with the l'€{70gI1lL€Ci gesture As seen, this a signal for the harttller ts) he tteaetivatetl

itrtrnediately after the gesture is retttwgtiizeti.

7.5 Gesture Etassitieattnn and 't‘raining

in this section the irtipiementation of classes which support the gesture elttssitttxtttitin and training

al§_{orit‘nms of Chapter 3 is diSC‘tlSSC(.i.

At the lowest level is the C%est1.trt=.. A Gesttire nhjeet represents a single example

of a gesture. nhjeets are created and nianipttlatetl by Geetureflventflancltlers. both

during the normal g€.?Stt1F(?t€<?flgt1iti0ltti1at0CCU.lTS when an a.ppltt:a.tion is being used, and ttuiing the

speeifiea.ti0n of gesture when training c.iasstfiers,

75.1 Class Gesture

internally, a gesture object is an array at points, each consisting til’ an x, y, and time eoortlinate.

Another instance Variable is the -:T~:est:ttre<31.a object of this example ggestuie is n0n~:n .11].

if this exainpte was specified during training. intermediate Values used in the ealeuttititin of the

e>;arnple‘s feature vector, as well as the feat‘-he vecter itself, are also stored, Also, an arhitrary string

of text may be asseciatetl with a Gestttri-3 object.

For brevity, detailed listing of the code fer the Gesture class is avoided. The interesting part,

namely the teature vector caleulatiott, has already been specihetl in detail in Chapter 3 and C code is

Page 1307 of 1714

l-tit) CHAPTER 7 G552":’JI~;’_£' REC’C?G]VIZIE-‘RS IN 'L1'fZ¢L/\D1’t/I/i

shown in Appendix A. instead of listing more code here, an explan atiun of each C-3E3S'C1.1rE3

objects pond to is given.

A new gesture is allneated and initiaiized via «:3; = {Gesture new} . Adding a point. to a

Gesture objects is done by sending it the newevent: niessagez [g neweveni: : e}, which

simpiy iestitts in the cail: [g I [e loc] X] y: [[e 1.43:2} Y] 1:. : [:3 time} 14

x.:y;t:; method adds the new paint to the ‘tist of points, and it1C1.’~i)t}‘tC1’1tE1ii,y <'.‘.£.liC13i§;tit.’.S the VE1l‘~

ious coiiiponents of the ieatute vectsitt t Seiction 3i3_)c The caii [g fv] returns the iztaicuiated

feature Vector. The I11€ii10dS Class : 9 class, text : . and text respectively set and get the class
anti text instamce varitahles.

A Gesture obi-cct can dump itscifto a tile Via [g Save : f] tgivt-.11 a tile sttcani pointer FILE

*'f) and can also initiziiize itself from El file dump using [g read : f] . Using save :, Li nurnhei'

of gesture objects {nay tiurnp thetriseives uentialiy into a single tiie. and could then he reati haclt

one at El time using :. Ail-3}i£l1'J1pl€S of :1 giveii gesture chess are stored in a single tile via these
tnethuds.

The call [:3 cor‘.-tairis 2X : y} returns 21 hoeieziti value indicttting if the gesture 9:, when closed

hy connecting its East point to its tirst point, contains the point (X, 3;) . This is useful for testing,

for example, if 21 given View has been encircied by the gesture. enabling the gesture to indicate the

scope of 3. cnminand. (The atguifithm for testing if a. point is V. ithin a given gesture is ttesctibcd at

end of section 7.7.3.)

.53; Ciasg Gestureclass

class Gestureclass represents a gesture class. A gesture class is simply a set 01’ exatnpie

gestures; pi'esutnnhly alike, that are to be considered the saline for the }T?lll‘p0.'~,‘-£33 of elasisificatinn.

The input to the gesture. ciassificr training method is a set of <3est1:-.:t."ea’.I?.1ass nhjcets; the result of

classifying gesture is: Gestureclass object.

= Ge:—:t:ureC1ass: Namedtvtodel

id exattiples;

Vestal“ S‘-.,‘lm,. an-'ex‘e=.ge;

Matrix sumcov;

i'_nt: state;

STR text ,'

}
Gestur'eCl-ass is 21 suheltiss Ufi\.TaYt‘:{3dl\’iG(3.€:l, itselfu subclass of Model.

is 21 modei so that it can have views, enabling new gesture classes to be created and manipulated

at runtime. Please do not confuse Gesturefflass with Gesturetflirenttiandler objects;

{it Céestlire-f.‘"la.ss serves only an represent a class of gesttires; and itseit" handles 110 input. A

Nantecltttodel. augitnents the capabilities of a I»’=.-able]. by adding functions. that faeiiitate reading and

Wtiting the mode}, tn a tile. Also, models read this way are Léacheti, so that at niotiei, asked tn be

input in-Cite than once only read once. This is inipottant for gesture class objects, since a single

Gezst u;/‘eCla:ss object inay he :1 iconstituent of inatiy dii'l'etent ciassiiiets, and it necessary that

every classifier t'ei:0gnizing :1 particular class i'et'ei“ to the Santa Gestureclass ohjesst.

Page 1308 of 1714

775 G£‘5'}fUR_E'CL- "SI 7iCA1’YOi“\/'.¢lf\1.7 'i"R.x'~l.z'.I“\;"1"_/“‘~iC? léll

The Gestureclass instance variable examples a Flat: of examples which rnake up the

class. lite iield sum is the Vector that the sum of all feature Veeto rs (if every example in the class;

average is sum divitled by the number oi" tfxalttplttit. Tiie em/a.tia.ni;e niatijx ler this elass may he

found by dividing the niatrix s1.trn-iiov by one less than the number of examples. The <:aiz:11iati<)ii

of ciassifiers is siightly more etiieieiit given zsurncov matrices. rather than cmrarianee ‘matrices. as

input (see Chapter 3). C ca:-de tai:- calculate the sunicov matrices incrementally is town in Aptftetliiix
A.

The instance Variahle is a efhit fields indicating whetherthe averages and sumcov

v;:triabies are up to date. The text tield aliews an arbitrary text string to be associated with a gesture
class.

addExa.mpIt e : rnethnd adds a Gesture to the set of examples in the gjestuife class, incre-

mentally updating the sum field. re1noveExarnple: inethaiid deletes the passed Gestttre

from the class, updating sum accordingly. The ezxzaniples method returns the set of examples

of this class, average returns the estimated mean of the feature Vector of all the exariiples in

this class, riexan“-pies i'etun'is the niirnher of eztarnpies, and su:n<:::>v i'etun'is the unn0rn'iali;:ed
estimated covariance matrix.

153 ChmsGestureSemClass

Namedhodel {

gelass;

recog, manip, done;

Gest.ureSemClass objects are named models, enabling them to he referred to by name

in: reading or writing to disk. and in: being auteniaticaiiy cached when read. The pttrpiiise of

Gesi:LiI‘eSetiiCl.-sass olajects is to associate a given gesture with a set of semantics. it is

necessary to have a separate class far this heeatise a given Gesizureclass may have more than
one set of semantics associated with it.

in addition to methods for setting and gettirig eaeli field, there are metheds for readirig and

writing C—‘esttireSemClass nhjeets to disk. Gestt:-.reSeinC’lass uses Objective Ci. Filer

class to read and write of the three semantic expressiens trecog nianip, and done). The

availability of the F:i.."i.er is another advantage of rising Oitijeetive C [’...8l. in a. typical interpreter,

a substantial amount of ending wnuld he required to read and write the intermediate tree fnnh of

the prngra.n1 to and froin disk tiles. The Fj. 1651’, which aiiows the wntiiig to and from disk of any

Cibjeet (at least these having no C painters besides strings and ids as instance Variables), made it

trivial to save interpreter e>;pressia:slts to disli.

Along with the semantics, the disk of a Gestu17eSemC.lass enittains oniy the name

Of geStureClas:s object i‘eterred. to by gclass. When reading in a Gest.tireSeniClasS,
the name is used to read the associated Geetu:t‘eClaa.s. Since Ge:‘5t;ureClass is at

Natnedtvlodel, there will he only one Gestureclass object fer each distinct gesture class.

Page 1309 of 1714

142 CHAPTER 7 GE52"URERECUGNIZERS Ii"‘t7iGfZ¢L/\D1i/L’t

7.54 Ciass Classifier

Classifier class eiicapsttiates the gesture reeognititm capabilities in GRANDMA.

Eaeit Classifier abject a (actttaiiy an Ordcltn) of gesture eiasses between whieit it

t’iise1‘i:min;1tes. ,‘€atti_t C1.as,=5it":;i.er abject contains the linear evai,ttat,itm htntttion for e;;tt:J'1 Class (as

(i@SL?i‘tiOt3(i Chapter 3), and the itive tse of the average: ct,tVa.11'artee matrix, which is used to mieuiete
the (hS{iE’ti’tttl’E{i(i()E} ftttietiiorts, as wet} as to ezticuiate the Mahaianohis distance hetweeti two of the

comporteiit gesture classes, or at given gesture example and {me of the gesture

: Classifier : Obj ect: {

id jgestureclasses;

int nclasses , nfeatures;

Vetst: Otis ' , :+<t ‘; />':< diserimiiia:io11[ii1ic2:i013s >i-‘ /'

Matrix irivavgcjov;

int. hashva].t.te;

}

[CI-ta.k3Si i-er lOol«;;ttpOrCi‘eate : Classes] returtis a ciassitier which disctitttitiates he-

tweert the gesture classes in the passed coiieetiott "i‘heii1eth0ti for loo}§upOrCi”eate 2

caches all eiassiiier objects which it creates; thus, if it is sttbsettttentiy passed 21 set U1"-gt?/St‘-Lilfii

which it has seen ‘eefote, it retttms the ciassifier for t ittt set without itaviiig to reccmipttte it. The

search for am existing eiatssitiet' for at given set of gestures faeiiitated hy the haslrivaltte iiistzmee

variable, which is ealeuiateti by Okiitg” together the 0‘-rsjcet ids of the partiettiar Gesitureifl ass

objects the

When necessary, the L].oQ]<.upOrCreai:e : method creates a new eiassifier object, initializes

its i:.ureclasst=,=s instance Variable and then sends itself the train message. The train

tttethoti inipietttettts the ttahxing algtiifiihlll oi’ chatptet 3.

train {

register i, j ,-

int denote 0;

id C, seq;

register Matrix S, avgcov;

\>'eCtC>r avg;

double det;

/is €]I1I1.iI1<‘i re a1z_tIge:;IuIe classes with no exeampli-5 4< /'

[self elimir1at:eEttiptyClasseS1 ;

ca,icuia re the average cawariazicfe ma m’XI’i‘0,zn the (umzarniaiized/‘

c./,;v;a1'i‘:me:'e r.Y:;.=r'r*:’r:-r>,'~; of the gesfzmé ::];s.s‘,s(:s. /

avgcov = ttewtvtatrixtnfeatures, 1‘.-features) ;

Zerottlatrix (avgcc>v> ;

f-3r(seq {gestt1i‘e<:J..asses eachE].emetit] ;

C Hseq next} gclasst];)

Ctenom += [0 rtexatttp-less] 1;

Page 1310 of 1714

GE5'}fUI€_E' CL ”SII71C/1l’YOP\UL’\Z) 1"Rx'~1.Zz“vQ"_/MC?

S = {C sumcov];

for-\’i O; i < nf-aatureas; 1++)

for(j = _ <; nfeatures; _++)

&V9COv[’E[j] += s[i]Ej];

if(denom == 0) [self erz‘<3r:"r1o examples?’ ,-

<: nfeatures; 1+-s-)

1; < r1featL=.res; j

avgc<:>v[j] [i] = (avgc0v[] [j] /= denombg

/5k 1’nverii I136 .31/€'.".fi‘ zic-W2 r1'a1.=Ce znairix ,/

im;avg'co'v Newlviatrix(nfeatures, mfeatures);

(13 = Ir1ve3:tl\'Iat:rix(avgcov, invavgcov);

self 13 ixfflassif ier : avgrmvi ;

,+'1< (:a](:u]a‘Le {I29 dis"1'1m111a {Ian {i:‘11Cu’a').rzs.'
on

vV[.f]i] is flue Wezgilf filejfll f2%afz1re 0ffhe1‘r'i7 C1353.

zrrzsflrif is the z:cmsfaz_r1I ze1:rnf0_r' the 1' if; Ciass. * ,/

w allocatemclassseas, Vector);

cnst NewVec:tor(I1classes) ;

for(2i. 0; i < nclasses; i++) {

[[ijges-tureclasses atzi] gclassii average];

—- avg'>:<111vaVg;‘(tc2\/ >i< /

invavgcov, w[ij 5 ,-

~~~O.':"a >=< I:1:r1e:c'Product (w[i] , ‘vg) ;

}

ell. .1'.m.1'.n.a1: eEn1§tyCL1.a. szses incthod 1‘c—:m0v<:s any gesture from the set which

have no examples. The ('<2stima.ted) average <:m'ari:mce mam‘): is then computsxi. and an attc:n1pt is

n1ade to iflvtlii ii. if ii singulai; its f ixC‘.l¢“-.sSif ier: llltifihiiéd is (tailed, which creates usable

irwcrsct cov:cu'ia11cc 1I1:cttri>;: as dasciibed in Stsction 3.5.2. (C code for fixiilg {hit Lt‘1assifia:1‘is shown in

Appendix A.)
G1’ van the inverse cuvari a11<:e, I11éi§’YiK, 1111:: discriminaiiorx functimxs for each class are calculatcd as

Sp-f)Cifi(’)d in Secttion 3.9 weights on the fczaizures for a givma class are computed by multiplying

the i11Vers<: avexfage covariance matrix by the rivcrags: ffiatllféf Vestal‘ -Of the ciass. while the constant

term is computxxi as negative 011c—ha1i’ of the weighi:s applied ‘E0 the class awjragec This constant

e0111pui3.(ion gives op1i111aic1assi£ir;:1's under the EiSSl.ifllp1iO£1E»‘ of that all classes are sq ually likely and

the misclassifications between classes have equal cosi (also assunied is muitivariate normzality and a



Page 1311 of 1714

144 CHAPTER 7 GE52"URERECOGJVIZERS If‘»7VGfZ¢L/\D1’t/L’t

emnnwncewnmmxthafixyTheClassifierohmspnwhmsaclasszincrconst: memed

W’hi£?h atiows the emtstattt terms for 3 given to adjusted if the a.pphea.t§0n so desires.

Thetmh 'Tlassifier trainallzclasses] emmesah Classifier‘0h$em whose

sctofgemunxindndesahthegefiuhxinthescteiassesteixxhxrmned(hysemfingthmnthe

train: message). Tltis is tiuseftti whehe 'er train:in_:g examples are added or deleted, since all

eiassifiers depe1'1dihg on this class can then he recalculated at Once. '3'ene1‘a.1ly' :1 classifier may be

retrained in less than a q'ua1'ter second; Section 9,1,7 presents training times in detaii.

(fimmflflngaghmuexmnflegefiumzmakmehythec1assify:amb: prob:distance:

h3efly3d. Ties rnefl10d is passed the feature veeter of the exaenple gesture? and evzduzues the

discriminatihn function for each class, choosing the ma>;imum. If desired, the probability that the

gesture is unambiguous, as well the Ivlahalzmohis distance of the example gesture from the its

calculated class are aim eomputeti; this ailow the eaiiers of the ciassificatitm method to impiement

njeetknlupfiunsifthey:M)ehu0se

~» classify:tVect0r)fv

ambigprob:(double *‘ap distance:(

double maxdisc, disc[MAXCLASSES];

register in: i, maxclass;

double denom, exp(};

id class;

forti = O; 1 < nclasses; i++)

I 0disc .11} = In:n.erPr ciuct.(w[j_}, fv} + on

maxclass = O;

forti 1; i <. nclasses; i++)

if (disc [i] > disc Emaxclassfi)

maxcl-tass 21;

[[ge:3tu1“ecla:‘;se:s gclass ,:

/4% C8 [Eula re pmba bi,ii2jV OfIIOI}— a zyzbigui at /

denom 0, i 0; i < nclasses; :i_++)

exp(d.1'.sc:i_:L.] — c'iisc[ma2«:c.1ass]);

/’ denom;

1'. f (tip) ,4’. Irula re (fi3ta_m:e 1'0 me..a1J of Chas-'e1;‘ (‘lass rk /'

[class <12 Ev: fv S igmainv: ixlvavggcofl ;

return class;



Page 1312 of 1714

776 fl/;€!h’\Yf’ULl4l;7Ir'\7G G-ES'I[./‘RE £'lz’Ei']\/Y'1Lr’zl./"vY}LER5'/lY"RU1\/"HA/IE 145

Classifier objects respond to numerous messages not yet mentioned. The evaluates

message the example gestures of each to he classitied, so that the t'eeognit,ion rate of the

classilier may he cstitna.te<l. Oil course, the procedure of testing the classi tier on the very examples it

was trained upon results in an overoptirnistie e.va.lua.tiori, but it nonetheless is useful. By sentli ng the

particular gesture classes and examples t: : rnessages, result of the evaluation is feel haek

to the user, who can then see w iieh exainples of titéliffll class were classified incorrectly. A high rate

of rnisclassification usually points to an ainhiguity, indicating a poor design or" the set of gestures to

he recognized. The arnhiguity typically fixed by ritodilfyirtg the gesture examples of one or more

of the classes. Tl‘.-e incorrectly classified examples indicate to the gesture designer which

gesture classes need to he revised.

Clazssifier objects also respond to messages whieh save and restore tzlassitiers to files, as

well messages which cause the internal state of a classifier to he printed on the terminal for

debugging purposes, and a matrix of the Mahalartohis distanizes hetvveen class pairs to be printed

{so that the gesture designer can get a measure of how eonfusahle the of gestures is).

"/id Manipulating Gesture Event Handlers at Runtinie

One goal of this work t to provide a platform that allows experimentation with different gestural

interfaces to a given application. To this end, GR1—\Nl)l\/IA was tlesigrted to allow gesture i'eeognizers

to he manipulated at runtime. Gesture classes may he added or deleted, training exarrtples for each

class may also he added or deleted, and the semantics of a gesture elass (with respect to a particular

handler) may all he specified at runtime. in atltlition. as a whole. or particular gesture event

handlers, may be tumeri on and off at runtime, allowing;, for example. easy comparison hetween

gesture--haserl and eliclr--drag intertlmes to the same appl ieation prograrn. This section discusses the

interface Gl{ANl)l\/IA presents to the user that faeilitates the manipulation of gesture handlers at
runtime.

The View class iniplernents the editl-landlers method. When sent eclitl-landlers.

view creates a new wintlow (if one does not already exist.) as shown in ligure The top row a

of pull down menus. Each stilisettuent row li the passive event lian-zllers for the view, its class,

its superclass, arid. so on up the class hierarchy until the View elass, The event handlers are listed

in the order that they are queried for events. from top to bottom, and within a row, from left to right.

The ‘”Mouse mode” menu item controls which mouse cursor is currently active in the window.

With the normal mouse (indicated by an arrow). user is able to drag the individual event handler

boxes so as to rearrange order. (The other mode, “edit handler,” will discussed sliorrly.) A

handler may also be dragged into the trash box, in which case it is rernoverl from the list of handler

associated with a view or View class“ A handler may be dragged. into the r:la::-cl<; anything in the dock

will remain visible when the handler lists for a different view accessed. A handler‘ dragged into

the dock reappears on its original list well; thus the doel: allows the same event handlers to he

shared between tlilterent objects and hetween different classes.

lhe “create handler” menu itern results in a pull-down menu of all classes w itch respond to the

passive message. Thus. at runtirne new handlers may i;:reated. and associated with any View

object or class. For example. a drag handler rnay he created and attached to an object. which can



Page 1313 of 1714

CHAPTER 7 G552"L’IrZE R1i‘C'£?G]VIZ]E-‘RS IN GfZ¢L‘\D1’t/I/l

vteiiu-et'iEVei1t Ham‘! 1 er 1 3.133 L‘. C;

r

Ges':ur~3Haru:’l1er_83}:-DO Dza.-;yI-Ian-:’l1er_l0Gb0DL

Figure Passive Event Handler Lists

then he dragged around with the mouse. New gesture handlers may also be created this way.

The other mouse cursor, “edit handler”, may be elicited upon any passive event handler. lt

results in at new window being created which shows the details of a parttcttlar edit handler. Figure

7.3 shows the winciow for a typical gesture handler.

At the top left of the wlntlow is the "‘l\/lottse htode" pull (town rrterut, used. in the unlikely event

that one wishes to examine the hantllers any of the views in this window. To the right is the name

of this event lltltltflletf, constructed by eoncateriating the class of the hzintlier with its internal address.

The three rows show three Event ohjeets; these are the starting precitmte, handling

predicate and stopping pretheate of the gesture handler. item in the predicate display a

button that shows a pop--up menu; it thus a simple matter to change the predicates at runtime.

For e>taii1ple, the start prerlieate may he ehauget'll'i'ot11 matching only Pi-:kEvents to matching all

Dre=.gEvertt:s. The kintl of tool expeetetl may also he ehatigttd at runtiine, as well as attrihu.tes of

the tool (t').g. a particular mouse huttoti may spet;-hfied). if desired, the entire predicate expression

may he replueerl by a completely new expression. in all cases, chart effect irnrnediately.
The window contents thus far discussed are common to all Generi.cEventHar1dlers.

t"oll,owing ones are particular to Gestu1reE3ventHa:oc1L].ears. First there are set of buttons (“new

class". “train”, “’evaluate", “’saVe”). Below this are some squares. each representing a gesture

recognized hy this hantller. In each square a rniniaturhgecl exatnple gesture, some text associated

with the class, and ti small rectangle which names the class. The text typically shows the result of

the evaluation of the particular gesture t'eeogni7.er for this set ot" classes when run on the exaniples

tisetl to train it. The stnall reetartgles may he tlraggeti (copied) into the duel»; Each such rectangle

represents at particular gesture class. Any rectangles in the (loci: will remain there when another

gesture handler is edited. Eaeli then may be dragged into any gesture elass square, where it replaces

the existing class 'l'ypically. a rectangle from the clock is dragged into empty class square {created

by the “new huttozr); this is the way multiple gesture handlers can recognize the same class.

(flicking on one of the gesture class squares {but not in the class name rectangle) brings up the



Page 1314 of 1714

77 6 .7‘/;€!L’\YPULAII1\7G G-E3171./‘RE§«EY\fl”'h?L"\;EDL£‘R_S'AY"RU1\/"HA/IE

Figure 7.3: A Géstufit Event Handler

' ; ‘v’v'ind.ow of examples of a gesture class



Page 1315 of 1714

i-tilt CHAPTER 7 G55}lURE.' I\?EC'OG]VIZ.E-"RS IN GEZAL/\D1l/L’l

window of example gestures. shown in Figure 7 Batch square in this window contains a single,

ntinlnturi exaifnpl,e of a gesture in this class. 'lhese examples are usetl for training the classifier.

A example iriay ndclecl shnply hy gesturing in this wiindow. An esattiple may tleletetl hy

clicking the delete button on the left (which changes the mouse ctlrsor to at tlelete t:ut's<n') and then

clicking on the exazntple. A user wishing to change a gesture to something more to his liking simply

has to delete all the examples of the clsss (_easily (lone using the “Delete ALL” button) and then enter

new example gestures. The “tr2tin°' button will cause El new classifier‘ to he built, and the “ev2tluztte”

button will cause the exainples to run throu the newly built classifier. Any incorrectly classified

examples will be indicated by olisplaying the mistaken class name in the example square; the user

can then examine the example to if it was tnnlionnetl or otherwise atnhiguous.

The “semantics” hutton in the window er" exaniples causes the semantics of the gesture class to

he displayed. This the snhjeet of the next section.

7.7 fiestnre Setnnnttles

{_lRANDl\/lA contains a simple Objective-C interpreter that allows the setnztnties of gestures to he

specified runtinte. ln GR/‘&N‘l)L‘vlz\, the semzlnties of a gesture are (l€l'€t1’lll1’1<3-ti hy three program

frngnlents per gesture class (per handler). The first prngrnni i’rngn'ient, labeled recog, is executed

when the gesture is first recognized to he in at particular class. The second fragincitt, m.3.n.i.p, is

executed 011 every input event handled hy the ncttvaterl gesture hatidlet after the gest re has been

recognized The third frngntent, clone, exeettted. just hefore the hancller denctivates ltselft The

exact sequence of executions was described in detail in section 7,4; this section concerned with

the contents ztntl specification of the progtnxn iragiriettts themselves.

,. . files nre . emztn ies lint e'77} ( t S t € 1

As nrenttoned, the sentanttcs of :1 gesture are defined hy three expressiotts. trecog, and

done. The ktl11(lSt)f expressions found in practice lllfly he loosely gr-zisugietl according to the level of

the GRANDl‘vflA system that they access.

Some semantic expressions (leal directly with niodels, 1'.e. directly with application objects.

these are typically the easiest to code and unricrstantl. An exarnple front the GSCORE. application

discussed in section 8.2 is the sharp gesture. (jSC()l€l3 is an editor for musical scores. in GSCURE,

tnnking an gesture over a note in the score causes the note to he “sharped", which is indicated

in musical notation by placing the sharp sign “#" hefore the note‘ The class Note is it model in the

,lSC()Rl3 nppliention, and one at" its ntethotls is act: : which sets the accitlcntal of El note to of
DOLTEELEFLAT, FLAT, NATURAL, SHARP, D()UBl,ESl'lARl3, or N()AC(?lDl3NTz—\Lt

The sharp gesture, perforinetl ntaking an over a Not e“\7_t'.ew. has the semantics:

recog = I {view model] ac-C : SHARP l ;

manip nil ;

done = nil;

in these setnantics, the btote object (the inotlel oi the Noteview ohjeet) tliteetly sent the

ace: message when the Shaft‘) gesture is t'eeogni2:ed. The model then Cl]{il’lgé3SltSll1'(El’1'1Etl state to



Page 1316 of 1714

77 7 GE.S'}lUf€_£' Sfijl/fx'»h“\/Y1’ "S lit‘)

retlect the new accidental, and then calls inodif ied] which will eventually result in the

display updated to add at sharp on the note.

Note the semantic expressions are evaluated in a context in which certain nanies are assumed

to he bound. in the above example. obviously v'ie=,=w and SHARP must bound to their correct
values for the code to work. Section 7.4 described how the Ge3tureEv'entI-Ia. idler creates an

environnient where View is hound to the view at which the gesture is directed. st;art.Eve11t; is

bound to the initial event or the gesture, enr.lEvent: is bound to the last event oi the gesture tie. the

event just before the ture was classified), and ettrreiitt Event. is bound to the most recent event,

typically a I~’IoveEvent during the manipulation phase. A particular application may glolaally hind

application-specific symbols (such E? in the above exaniple) in order to facilitate the wri ting

of semantic expressions.

instead oi" dealing directly with the model, the seinanties oi’ a gesture inay send messages directly

to the View object. hi the score editor, for ttxziriiple, the delete gesture (in the han-;ller associated

with a Scor‘eEvet1t) might have the semantics

reeog = {view delete] ,-

manip nil;

done hit,-

(The actual S€l'ilEll’ltlt3S are slightly more eoinplicated since they also change the mouse cursor;

Section for details.) The delete method for the typical view just sends delete to its

inodel. perhaps alter doing some liouselteeping.

The semantic expressions of a gesture are invoked from a Ctestttrefiivrentliaiidler, and the

sending of messages to models and views seen so far is typical, of many difi"erent kinds of event

ha.ntll,er. . Another thing that event handlers often do (see in particular‘ section 6.7.9 for :5. discussion

of the Dragltandler) is raise events oi their own. There are many reasons a handler might wish

to do this. A D1‘agHai'tclle3r‘ raises events in order‘ to ntalte the view being tlragged he coiisid.ered a

virtual tool. As mentioned previously, it handler might so rnise events in order to sitrtulnte one input

device with another. {For exainple, iiriagine El Senso:rF “:.:me1\'toi.tseEmt.ilator which responds

to Se:1soI‘FrattteEvents. raising Dragiivertts whose tool is the current Ge:1eri<:l\'tottseTr_>ol

so as to simulate a mouse with a Sensor Franie.) One of the main of having an active

event handler list and a list of passive events handlers associated with each view is to allow this kind

of ilexihility. ln the Sinalltalk MVC system, the pairing of a single controller with a view really

constrains the view to deal only with a single kind oi" input, namely :nioose input. tjl~?..Al\7l)l\/lA,

a View can have a number of different event handlers, and thus inay be able to deal with many

different input devices and methods.

ln GRANl)l\/IA. gesture-hased applications are typically hrst written and debugged with a more

traditional menu driven, click-and-d direct manipulation interface. Given that gestures are added

on top of this existing structure. there is another level at which gesture semantics may be written.

At this level. the gesture semantics emulate. for exarnple, the mouse input that would give the

appropriate behavior. in other words, the gesture translated into clic.l{—and—di'ag interaction

which gives the dos’ ‘ed result.

An exaniple oi‘ this lroni the score editor is the placernent oi’ a note into a score. ln the click-

anddrag interface. adding :1 note to the s-;;wore involves dragging a note oi" appropriate duration from



Page 1317 of 1714

l5() CHAPTER 7 GE52"l’JI~;’_E.' REC’C?G]Vi'Z.E”RS IN 'L1'fZ¢L‘\D1l/I/l

a palette of notes to its desired location in a rntisieal staff. This is iinplenientetl by having the

txTot.e‘i7.i.ew a virtual tool which sends a. iitessage to which Staf fview objects respond. While

note is heing tlraggetl, 3. r3.g}+Za.n<.:lle:t.‘ raises an event whose tool is a Not:e\7;iew which will

be processed hy the Geneir1'.oTQol.C)nVj.ew handler when the note is over the Staffvi aw.

in the gesture»-ha.sei:l itilt3t'f’i-136, there is a gesture class ii":-2' possihle note duration ret-.ogni7.e<i

by hantller associated with the Staffview The semantics for the gesture which gives

to an eighth note are

recog = l l lnotevitatreup viewcopy] at : startlgoevl
reraise : Curr-ent.Ever1t] ,-

tnan.i.p - n:'t..l. ;
clone nil;

The syntliol inotevi eewsup is hottnd to the View of one of the notes in the palette: it is copied

and moved to the sttiitiiig location of the g€Sllll'€t The C’-.,lZL"li‘tEE1’15IZ.EVEB1’ll1 (either tvlc.-veiivent or

Dropfiivertt which ended the gesture) is copied, its tool field is set to the copy of the note view. and

the resulting event is raised. The moving of the note and the raising of anew event is exactly what a

l_?1ragl-Iancller does; the effect to sirnttlate the dragging of a note to particular location. Note

that the note is moved to st.artLot;. the starting, point of the gesture. whi-eh necessarily is over a

Staf fview {ollierwise this gesture handler wonltl never have heen ll’l\i<I)l<ié3ti). Thus, the handlers
for Staf fview will handle the event, and use the location of the note vie‘. I to deteriniiie the new

note”s pitch tnitl location in the score,

It wonltl have hccn possible in the scinanties to simulate the mouse hcing clicltetl on the

appropriate note in the palette and then being tlraggeti onto the appt'opriate place in the staff. In this

case. that was not done as it would he needlessly coniplex. The point is that. due to the flexibility

of GRANDl\~'lA’s input arttliiteeture, the writer of gesture semantics can address the system at niany

levels oi‘ abstraction, irorn simulated input to directly dealing with application objects.

The exaniple semantics seen thus far have only hail recog expressions. which are evaluated

at recognition time. The following exatnple, which implements the semtinties of a. gesture which

creates line and then allows the line to he ruhherhantletl, illustrates the use of man ip:

recog = [ [view ereat.eLine] enc'lpoint.Oat : s1:art;Loel ;

tnanip = {recc-g enetpointlat: ; cur::ent:Lc>c] ;

done = nil;

in this example, View is assuinetl to he a hacltground view. typically a Wet" lview of a

drawing editor progrtnn (Section 8.l Gilli’, a gestttrehased drawing editor). Sentlin it the

createLir1e message results in E1 new line heing created in the window, whose first endpoint is

the start of the gesture. The other endpoint of the line moves with the mouse after the gesture has

been reeognizetl; this is the etteet of the rttar11'.p expression. Note the use of reeog as at variable

to hold the newly created line object. if desitetl, the seinanti-gs pr-itgrarnnier they create other local

variables to eoinntunieate hetween tlifferent {or even the same) seinaiitie expressions.

7 17;’; The User interface

(irRANDl\/IA allows the speeilittation of gesture semantics to he done at tuntinie. in the t;7Ufi’t3l1l

iniplernentation, the semantics must be specified at rttntiine; there is no facility for hardwiting the



Page 1318 of 1714

77 7 GE_S'}lUft’_E SE1\/1'/»h“vYY"S 151

semantic expressions of a given gesture into an application. Currently, the semantics of a gesture

class are read in from a lile (_ examples of the gesture class) each time an application started.

The semantics oi’ a gesture may only be created or nloclilied using the user interlace lacilities
discussed this section.

Gesture sernantics are currently specified using a limited. set of e>;pressions. An expression may

he a constant expression (‘integer or string), a variable reference. an assignment, or a niessage send.

Each expression has its obvious effect: a constant evaluates to itseit] a variable evaluates to its

value in the current environment, an assignment evaluates to the evaluation of its rijlit hand side

(_with the side effect of setting the variable on the left hand side), and a message send first evaluates

the receiver expression and each argument expression, and then sends the specified inessage and

resulting arguntents to the ver. The value of a message expression is the Value that the receiver”s

method returns. For" prograinrning convenience, integer, string, and ohjeets are converted as needed

that the types of the arguments and receiver of a message send match what is ~E)‘*(pt;’.CE€)(i by the

message selector.

Figure '7 shows the wi t‘l(lOW activated w ten the “Sent-ant lcs" button of a "restore class is pressed.

At the top of the window are row of hnttons used in the creation of various of expressions.

They worlr as follows:

new message The new message button creates a template of a message send, with a slot for the

receiver and the message selector. Any expression may then be dragged into the receiver

(“l%3EC‘?”) slot. Clicking on the “‘SEl,lEC’I'OR‘2”’ box causes a dial,ogue box to he displayed

(figure 7.6). Users can then browse through the class hierachy until they find the message

selector they desire. which can then be selected. The “+" and “’--” buttons may he used to

switch between ory and instance rnethodsi The startling point in the browsing is set to the

class of the receiver, when it can he determined. Once the selector has he okayed, the template

chan to have a slot for each argument expected by the selector, shown into figure

Any expression may then be <;lragg«:ti into the £it”gult’l=‘3t'1‘1 slots. In particular‘, gesture attributes

(see below) are often used.

new int ',lhis button ereates a box into which an integer may he typed,

new string This button creates a box into which a string may he type-zl.

new Variahle button creates a template I for assigning a variahle into which
the name of a variable may he typed. Arty expression may then dragged into the “VALl,.TE‘?”

slot. The entire assignment expression may he dragged around hy the “z” sign. Attempting to

drag the Variable name on the left hand side actual ly copies the Variable name before allowing

it to rlraggeti; this resulting expression (sirnply the name of the variable) may he used

anywhere the value of the variable is neetlerl.

factor}; This hutton generates a constant expression which is the object iclentitier of an Objective

C class (also known as a “l'ac=.ory”). Pressing the button pops up a browser which allows the

user to walls: through the class hierarchy to select the desired class.



Page 1319 of 1714

CHAPTER 7 G552"L’IvZ£' REC'£?G]VIZ]E7RS IN Gfifii/\D1’\/IA

new SL 1 ing H new varxable

:., Lundler mouset:--3;: ': ' vteE€e<:t/rect.bm,’1~iouse'I‘c-01:2 ]

' [to}:rv‘iew -:rea‘:eRe-:t I transiatefindpvointz
X2
V74_,4

lnani 1;:

"iguw .._: " ;é. —. e .w ‘< 6" '3 <1 u‘e:~1—, 1; it.EH; 1<‘”"i H10 "Et(‘1’piCI!” n 0 hr Jxtngg at: (‘n ‘am 0,



Page 1320 of 1714

77 7 GE5'}fUR_£' SE1\/1'/»LI“\/"1? "S

[View * Choose Selector

EventExprV1ew

Wflxprview

Edit

editmpointnmoved:
gstEndpuint:fx:Ev:

fimehuview getEndpc;nt:x:y:
Ngrifyview 1SCOfitalE€d
Pot:/,i SW .1 SOVG Y :

-— .- isReal1*ContainedIn:
Slxderfllew J - -

Figure 7.6: An empty Iriessazgc and it s<—:1ecto1'b1‘0wsa—: '



Page 1321 of 1714

CHAPTER /"1 GE?2"L’I~:’_E I\?EC’C?G]VIZIE"RS IN GfZ4JmD1’\/IA

view

via]. " }3bo:><.Di agiarxg le

handler StartEndLength

startflvent CosStartEndAngle

SfartLOC sinstartflndkngle

fltartx pathLength
start?

endEvent

emdLoc

currentLoc

curremtx

currentY

enclosed

gesture
duration

cosInitialAng1e

Figua“ 7.7: Attriiiuirnzs to use in gestural SE:E}1?lI1i§CS



Page 1322 of 1714

77 7 GE5'}lUR_£' Sfijl/1'/»h“\/Y? "S

attribute Clicking this button generates a menu of useful suhexpressions that are often used in

gesture setiianties. (Figure 7.7 shows hoth pages of attributes}. "the expressions are either

variable names, or named messages. As expressions, uaiuerl messages are tlist:ingu-isiiahle

frtini Variable names by the angle hi'a.t'kets and the small hex hethre the name. Clielting in the

host reveals the unrlerlying exprrissioii to which the 2 nine refers. the angle hrael<'ets and

box are not shown in the list of attributes hut a;:i§3eai' once an attrihute selected. Figure 75

contains some exariiples of such attributes.)

Most attributes in the list refer to eharaeteri sties of the eurrent gesture (i. the gesture which

causes the semantics to evaluatecl). Gther attributes refer to the eurrent view, wall, event

handler, events, and of objects enclosed by the gesture. lvlany of using attributes

in gesture semantics are covered in the next chapter.

Having the attrihutes of a gesture available when writing the semantics of the gesture is the

etiihotliinent of one eentral idea of idea of this thesis. The idea is that the nieaning of a gesture.

may tlepentl not o uly upon its el,assilieatioti, hut also on the lieatures o the particular :instanee

of the gesture. For exa.n1ple, in the thawing program it a simple matter to tie the length of

the line gesture to the thieltness of the resulting line. Tliis is in addition to "using the starting

point of the gesture one entlpoint of the line, another example of how gesture attributes are

useful in gesture semantics.

eursor This hutton displays a menu of the available curse-rsr The cursors are almost always a ltintl
of Ge.-:1erit31\'tot.ts e'1"ool., and consists of art icon that has heen read in frotrt 21 file, and the

message that the tool sends. The eursors are useful, for exartiple, in semantic expressions that

wish to provide some feetlbaek to the user hy ehangin g the cursor after the gesture has heen

reeognizetl.

'l'raee On This hutton turns on traeing of the interpreter evaluation loop, which prints the values

of all expressions and suhexpressions they are evaluated. This helps the writer of gesture

semantics to debug his code.

The middle inouse hutton hrings up a menu of useful o}:=erations. “Norrnal” restores the eursor

to the default eursor which drags expressions. “Copy” ehariges the cursor to the eopy eursor, which

when used. to drag expressions causes them to he eopie-rl tirst. “llirle” hides the semantics window,

which is so large that it typically obscures the application Wl1‘t(i0W. The Vari ous remaining ettitirtg

eoinittands are useful for eiraniining the event handlers associated with various objects in the user

interfaeer and are not really of general interest to the writer of gesture serttanties. They would he of

interest it one attemptetl to acid a gestural interface to the interpreter itself.

An expressioti dragged into n “DOCI-(” slot remains there even when the gesture elass is ehangetl.

The dock provides a useful rneehanisin for sharing eotle hetween different gesture elasses, orhetween

the same gesture class in different handlers. Any expression dragged into the trash of course,
deleted.

The above--cleserihe-cl interface to the semantics usually slower to use than a more straight-

forwar-;l textual interllaee, A strai-itl1tl‘orwai'tl. textual interface would require a parser but would

still he simpler and hetter that the current eliel:-antl.—tli'ag irttertaee. On the other hand. with the



Page 1323 of 1714

15 6 CHAPTER 7 GE52"UIrZ£' I\?EC'OG]VIZ.E-"RS IN GfZ¢L‘\D1’t/Bi

eiiek~and—ctrag interface it is not possible to a syntax error. The main reason such an in terfaee

huiit was to exercise the faeiiities of the Gi{,~’XN,1_)[Vl A system. Before project hegan

author suspected that a eEie}<~;mti~drag interiaee to a13l‘€)gF3.]}}1‘:jti)(=.g iarnguage would he awkward, and

he was not sui‘prise<i. did, however; consider the possibility of huiidiiig a gest1ire—hase<i interfawe

to the interpreter; one which might have heen sigitifiearitly more etfirtietit to use than the current

CiiCi~;-vélflii drag interface, It should he possible at the present time to add a gesture--haseai interface to

the interpreter without even recompiiirig, thou;_z_h to date the author has not rnade the attempt

’?.”i.3 interpreter impiementation

The interpreter internals are irnpternented. in a most straightforward rnttnner. The Ci ass Expre S 5 on

is a stthelass of Model and has a suhetass for each type of e>;pt'essi<im: Vaz‘Expr, Assigrflxpr,

l‘Itessage}I-Irzzpif, and C'O1’lStEi1’1tE.X}._')3f‘ (and sorrie 1’10l{.iiSCLtSSC(.i3 Cha1rEver1tiE.x};>r, Event

and F111‘1CtiO1”lI€X}§}I‘). Assigrmlxpn: and tvtessagehxpr objects have fieids which hold their

respective suhexpressions, while (3onst:ant:E:><p3: and VarE:x:pr objects have fieids which hotd

the constant object and name of the Variable, respeetiVe_ty.

Expressiort Ewaiuatiota

Ah etqnressions are evahtated in an 61’1V'i1”t’31’il’ll|3I‘tt, which is simply an association of names with

vaiues (which are ohjects). Evahtating Va r}:-1:/“pr ohjcets is done hy loolcing up the Variahie in an

errvirorirnerit and returning its Value; Assignfiizpr objects are evaluated by adding or rnociifyirig
an environment so as to assoei ate the named Variable with its Vatue. in addition to the environifnmt

that is passed whenever an expression is evahiated. there is a globe} environment. If a name is not

fouriti in passed envi rontiient. it then iooked up in the giohai environment.

The interpreter‘ ias a nurnher or" types with which it can deal. Each type is represented by

:1 suheiass of class Type. An instance of one of these suhciasses is it value of that type. The

commonly used type classes are Typefihar, Typeld, Typtélnt. Ty;3eS1'1c>i‘t, TypeSTR.,

Typeflnsigtiecl, and 'I‘ypeVoi'i. The Typelcl represents an arbitrary Objective-C object;

the others represent their eorrespondin C type.

Consider the impietnehtatioii of Type In t:

= Int : Tvpe { int: _int:;

+ initialize {_ [super register: "int "1 ;

{super 1.'egist:er:'‘long‘‘] ; }

3et._"ir1t: (int) v return [Sui new} set__ini:. :v] ;
“oici >:<‘)fromO13je<:t::o resL=.it;: (void =2‘)

{ (int. *3 I = [0 asinti; rettirn 3:; }

tc-C-1:-jecttz (void *) r { ret"_.u:m {self set:___i.nt : (int. at) r] ,-

Set_ir1i;: (int.)v { _i11t: V,‘ 1‘e?;.urii self;

(int)as1nt {_ returra _ir1t:,-

(short) asshort { return (s‘nort)__'

(cha.r)as<'3ha17 { return t’c:har)

{u11:si9'r1eet) aisfinsigriect { J1‘-;E3‘tI‘-JII1 (ur1sigried}__ir1t ;

J



Page 1324 of 1714

77 7 GE_S'IUf€_E SEA4’/»h“\/"1? "S 157

¢"'1‘R)s { sprintfis, "%d", __ir1t.); return 5:; }

23 { return _in-t + b;

)b { return _int — b; }

lb return int 95 b; }

: (int

: (int

'videdBy: (.1'.nt.)b { return b 0 “.9

self e:c1‘ox‘:“divisior1 by zercfli,

(.i‘_nt.)tvloo1:(ii1’:)‘s3 { return. 2) i) ?

self error:"mocZ by zero‘‘], 0 :

(1.ntDC :.p: (i:t1t;)-‘:0 2 (:i.nt:.}c

return _'11t <. 1) ? b : _i:n_t > (3 '?

— (.i.:m:) Times: (i.nt:.)b Plus: (ir1t)c { 1.‘e1:urn ____ii?.t . - t.-

The iiiitiaiize method declares that this type reptesetits the C types “int” anti “‘s0iig.” This

iiifontiatitin used when reading in the tiles that the Ob_iectivt:—C compiler writes to cieseiihe the

a1'gun’ients anti retum types of tiiessetge selectors. A sample line from one of these fiies is:

(1o1)at:: : , int, int,-

This tine says that the at : : method {aSi111{I?i€111€I’1i€di'iy Viegw, for exainpie) takes two integers

aigtitiients, and tetums an 1'. 9. an -abject. (hi Uhjective C. the type 01” sigrtature -of a selector

such as at : : must he the same hi allcl that provide CUIIBS-pU1’idi1'1gIllfiiiltlds.) The intc;srpi'eter

reads this Eine and creates £1 Selector object which recertis the fact that at : : expects its first

zirgument to he Int, its second argument to be Typelnt, ariti returns 3 ’1"ypeId. This

Selects-1: object is iiseti when :1 Mess.ageE:»t.p1:“ whose selector is at : : is e,Vaiu:«1te/d; it assures

that the arguments are -1:0IlV’~‘3E"(~‘.”d to mast"-.ine integers bei‘m'e the 2 ; method is i]'tVOi<:C-d.

The lgttowiedge of how to do conversitms is eiiihcadied in the f :c‘0mObj ect: :re:3ult : and

tOObj ect: : methods. The intent is to freely convert hetweeri the values represented tiiaeiiine

integers, 01” <:hs.i'acte1's, etc. and the values represented as objects. Given int 1: ,~ =

T3/paint set»_i'.n.t:.3} ;, the call ["1_‘ype:t.nt fromtfibject: zanlnt resii_"t_t:&r] sets it

to 3. C0nVc.1'sc1y, 1‘ : 4; a1')Int [Typeint toflbj act :&r] ,- sets anlnt to a newly

C1”€8.E€d object of class T3/“paint whtxse ___int field is 4'3».

Note that the abiiity to do arithmetic is embodied in Typelrlt, is the abiiity to co:'tvet“t

hetween Typeints and the other integer types (and siting type).

F.vahiatittg an expressioti made in 3 given envirotiment is done hy eahiiig evail:

(expr, env, type, rcestiltp)

id expr, env, type; void Hresultpg

The eva 1. function takes as zirgtiment an expressiora object, an ettvimnmertt nhje-ct, a type

object, and a pOi:‘1[Ci' to a place to put the tmuit. The cvai function takes care of pthiting gut

tracing iitforrtizttiert, it’i1e4;-.essary., arid. then simply sends expr the eval : reSultType : result :

Each expression class is 1‘€Sp0nSii3i'c‘ for knowing how to evaluate itself, and is able to

cortveri its retum Vaiue into the appropriate type.

The most interesting is the evttlutttioti of ii Meszsagefiixpr:

MessageExpr: Expression {

id 5231 ; A 55:‘/5‘-mar (}iy"e(:i:=t- / I

i (i re (3 ; /4% ((11;-ex/a1ua z't-94;’? 1‘ece1’i/er 0 ')ject‘ >t< ,'



Page 1325 of 1714

CHAPTER 7 G552"L’IrZE R1i‘C'£?G]VIZ]E-‘RS IN GfZ¢iJ‘tD1’t/I/i

arg {1‘/l;Z‘=,.XARG:’3] ; /it uyrzevaitia tea’ a1gun7e.r1Ls 4< /

(void*):».=val:env result:Type:rt result: (void *)r {
id V;

id _rec, _arg[:-'3};
int i;

int: marge = {eel nargs};

SEL = [sel eel};

:r*ei:.t:y'pe [Se]. Iretttypei;

Type I at. , C ) I

nargs; i++)

env, [eel argtypeai], &_arg[i]);

. _arg»: i0} , [iii ,

Marg [2] ,— [3] , Warg {4} ) ;

t zfettypei { ,4 114312680’ [0 Ca,t2Ve1‘H< /

>:< (id >k) 1‘ = V; fir heacir, as'sumes'id or eqz.za1' .s1';3t,- ,/
return r;

1J

return [rt £romObject:[rettype t0Object:&vi result:r];
1J

There some poi tlt€t':2l‘tE).CtE ing going on re, as the arguments wh ich are to he sent to the receiver

ohieet are S.t01‘C(l in an array of iris, even though they are not necessarily objects. This relies on the

fact that. at ieast on the hardware this cutie runs upon ta MieroVax Ii), pointers, long integers, short

integers, and characters are all represented as founhyte Values when to functions.

The sel variable is the S-elector object, and usetl to get the number and types oi‘ the

argttrtierits and the return ‘vahte of this seiector. First eval is called recursively to evaluate the

receiver of the message; the result type is necessarily Typefli since a receiver of a message must

he an Objective C object. Eaeli of the srgurnent expressions evaiuateti, the result being stored in

_a3:g array. The type of the returned result is that which is expected for this argument in the

message about to be sent. The function _msg is the low—ievel message sending function that ties at

the heart of Objective C; it is passed a receiver. a selector, and any arguments, and returns the result

of sending the messagge speciiietl by the selector and the argun‘-gents to the specitie-:1 i’¢.’.Ct;’.lVt;’.t'. This

result then er:-nvertetl to the correct type. If this triessage selector‘ is alreatly knrtwri tu return the

same type as desired. then no conversion is necessary, and the Value is simply copied into the correct

place. Otiherwi the returnetl vahie is tirst ea"tiwert:e.i:l to an object (hy invoking the toCJbj »;3C!t'. :

rrrethuti of the hnown return type) and then eonverted from an object to the desired return type (via

the fremflbj eat :res3ult : methodj). in the typical case, either rt or rettype is Typeld, so

one of the conversions to or from an object dues no significant work.

The reason iorpassiiig the return type to eval, rather than having e val always return an obj eat,

and then convertiitg returneti objects to machine integers, characters. and strings when needetl. is



Page 1326 of 1714

77 7 GE_S'}fUI{£' SE1\/1'/»h“\/"1? "S 159

effieieney. In the current scheme. nested message expressions, where the inner expression returns,

say, an integer which is the expected argument type of outer expression, there is he overhead

convert,iitg the intermediate resiiit te an -‘{j.=i3jL’.Ci and then iiiiinediateiy haeit to an integer.

Note that the automatic conversion to objects ailows arithinetie to be done relatively painlessly.

For example, to add it) to the x coordinate of it View,
{ {view xloc] P1uS:l£)]

The [view aloe] returns a iitaehine integer; since this is the intended receiver of the Plus:

message it must be convened to a Type Id, Le, an object, which in this case will he an instance of

Typelnt. The ; iiieth-ed espeets its argaiiient to he a machine integer; since the interpreter

wiii represent the constant 10 by at Type Int object, it is converted to a machine integer {by ceiling

eval with a restiit type ai'gtiirnent of Typelnt). The E11‘-as: method is then invoked, and it

returns a machine. integer. ‘Ni'1iL‘.i1iY1i~3.§/ or may not he etiriverte.t.i ta 2: '}_‘ypeInt: object depending en

the eontext in which the shove prograni fragrneitt is

above exariipie could be specified more et'tieie11tJ,y in the gesture semantics as [10

[view X100} 1 . in this case, 211} the eonversions are avoided, since 10 is already rep-

resented an object oi" 'I'y'peI11t., and Plus: e>;.pea;'ts a machine integer argument, which

exactly’ what is returned by {view X100] .

One thing not shown in the above iinpiernentation is eoiieetien. During t3X}3]‘BSSi011

evniuatien, objects are freeiy being 'L‘.i‘t3£it’t‘.{.i and discarded? and it is important that the i'nernory

associated with thern ‘oz reieased when they are discarded. The CU.}'1‘f)1’it impiement:a.tion of the

interpreter does not do this Very it ’eii, since there not much point given the attitude toward

memory tnanagenient threughout GRANILDEVEA.

In terfaee Em pieiineii tatinn

Ail the expression nodes are subclasses of Model? and each one has a eorresptmding subclass of

View to dispiay it or: the screen. The expression views act as viituai teeis; these tools on

empty argument and receiver siots. well as the docks and the trash“ inipiernenting the interpreter

interface in GRANELWEA was a good exercise of the {JRANDMA faciiities, but is not espeeiaiiy

interesting so will not be ceyered. in detail here.

Certtmfl tfnnstmets

The only control eonstruet eurrentiy intpiemented is Seq. which allows a iist of expressions to

be evahiated in ordeiz Seq, it turns out, intpieiriented. without any extra nieehanisin in the

ii1teipretei'; all was required was the creation of a Seq eiasst, whose class methods sinipiy

returned their last arguirient:

Seq; Obj eat (GR.Ai‘.*DMA, E?rim.t.t.i.ve} { }

+ :a1 return at;

+ :a.1:‘ return 5.2; }

+ :a1:i .- :a3 { return a3; }

:a1:: «: .3:a-it { return a4;

:e:1::= :a3:a~1:a5 { :c‘etu1‘r1 a5; }



Page 1327 of 1714

16(1) CHAPTER 7 GE52"UIrZE I\?EC'OG]VIZIE-"RS I[‘t7'Gf?.4JtD1l/1r’t

Since arguments are evaluated in order. this has the desired effect.

()thet'ct)t1trol curistt'ucts, sueh as Whi la and I f ., have hot heeri impieriiettted, hut ctnuiti easily be

impletriented if the need artsse. One simple intplementation teehriiqne wcsuld to make Whi lefilxpr

and If beth subclasses at 1‘/IessageExpr, and then I’)’1£tl(€ While and I f which have

irtethetls that have the right nttrtiher of argurnettts, For sirhpticity, the neritiai expression

display code could he used to display If and Whi. le expressions; the only new code to he added

would be new avail. : resuL].t.Type ; reg‘-etltz methods in Whi1.eExpr and 1”.fExpr which
h3.V’L’ the desired effect.

Attrihtites and Cnrsers

Ari impertant ermsideratiert in allowing gesture semantics to he specified at mritirne is e3v;ttetly what

the a.ppi,i«:.a.tien pmgramrner visible to the gesture seriianties pregramhier. Theife are a rtumber

of means by v’htt'_‘.i} the applieatitm pi‘0grarm:rieif earl rnake a feature available to the semantics

pregrztmmerz all (if these hinge on making visihte objects which ea.n be the receivers of relevant
tiiessages.

The “Attributes” lists provides at way of giving the St3l”:'t£t1’lliCS writer easy access to application

objects and fCflfu}’CS. This is done by creating expressions for Ciilcil attribute. GRANlJl‘viA already

supplies entries for all aeeessihle gesture .2tttrihtttes and t‘ea.tures.

an ilhtstrative example of how attributes are specified and irtipietttented. corisitiet the two

attirihutes handler and enczlesed. The handler attribute simply refers to the gesture handler

that currently exeeutirig. The ztttrihute refers to the list of View objects ertctosed

by the C‘t1t"l"’.t1l gesture. Selecting-_j enclosed from the attribute list results in named message;

clicking on its hex reveals that the message [handler enclosed] .

Intentall y.

h.and1.erVar [ [VaI.'EXp]C‘ stir: ”hand."t.er"]

vclass ;Gestureflventtlanciler] ,-

,/5t: 1715 350 Vt‘ state121e12t' adds "handler" is) the list zJfai'.Lr‘ibuZ'e5 to be displayed

in the intrtrprefer I/w'.*.vdz7i/L; rind z7‘r:-claret} 1‘.’mt'."ts Va /no is :7f‘{mr:- t'}z:-.srr1rz?Et/rérlrlnatiriirtun

Its value is at ::{ua]t~*se{ by the C85.’LireE1/eiziffij m.?1'r'3z" bezcare am/ge5iiz11’e
sernantics are er/311.125 ted. >t: /

-e1*1ciosedE:zpr : [ [ [MeseageExpr eel ;@selec:tor tericlosedfl

: handlervarl

st17:"enc].osed"]

velasszordcltnl ,-

/5+: 1715abovestate121e12tadd§ "enclosed" to the amjbutelisz; i/lfzeji eveiltaa ted

in gesture .serm11{1’e:$, the "e11Cl0seci" ai{,ribi1!e mi} ft'3.S11[1’fI’1

[ha‘1'1d1'eI‘ eI1c'1cts<:=d’_,l beirig mt;-cured. >1< /

Both ham-dl-3rVar and eticlosecmxpr are added to the list 0f interpreter attributes, and

show up in the list as “hanriiei'” and “erielosed” respectively. Each 01' these expressions evaltsates

to an t".thjeetive C object; the </“class: message 1'€C0£'(iS the e>;pe<;'/ted class of the «abject. The



Page 1328 of 1714

77 7 GE_S'}lUf{£' SE1\d'/»h“\/"1Y"S l6l

recorded class is used by the selector browser it starting point when choosing :1 message to send
tn an atttibute.

The “handler" £ttET‘ll)tl'(t3, heing :1 Va 1/‘Ex_ 1', is evzilttzited by looking up the string “harts;ller" in the

current ertvirortment. Section 7.4 described how the envirortment in which semantic expressions are

evultiatetl is lnitlétliztffil sc the hind handler to the cttrreiit event handler. Evaltiating en-t‘:.“t.osecl

thus results in the enclosed being sent to the current handler:
= Gesturetiventfiandler . . .

ein-:::.1osec'l id 0, e , seq; :_. . ymziri , :»<:m'":2=::, yma><_,-

[gest:.ti.re : &:><:m.i.n ytiti ; 52-.yitt.1'.n : 5:X.m£3.?s". ymax ; 8.-.ymaX] ;
Q = E [wall viewdatabasel

part: la 1 1.yInt<?.ect :Xt“ft."i.1’1 :ymi.r1 : xmax zymaxl ;

for (seq : [Q eactfilettientl ; e : {seq nextzl ,: )

.i.f (I [e .i.sCfontaine<iIri:ges3ture] ) to remove ; e] ;
return 0;

Jr.

The interpreters evaluation of the enclosed attri hute thus results in a call to the ahove niethod.

This method determines the houiirling box of the current and consults the View tlatuhase

for list Views contained within this hound. Each object is polled tr; see it enclosed by the

gesture. and is ife:tiim/ed l'ri:tm the list ilit is l"E(tl,. The list is thet1i‘etum-ed.

The default irnplemerttution of iscontaineclln :, in the View class, sirnply tests if each

corner of the houn<.liri_g ‘box is enclosed within the gesture. This test rnay he cverridtiert hy ncn—

rectangular views, or reetarigttlar Views that wish to ensure its each edge is entirely contained within

the gesture.
V:3.e*w'

(BOOL) iSCC)1“‘tt.Eii1’ledII1:

irit , 3/“IL , X2 , 322

[box left] - - _‘*><3x to};-l;

2:2 [box {box bot;.t:om] ;

return {g contains :x;. ;*y*1] &&: lg conta:;n:—:.:x1:y*2] Stat

contains::=:;2:y1] && lg contains:;=:2:y2];

- !'_se.tfI __c.a.1,c___maw____box];

1‘.

The Gesture class irnpletrteiits the contains ; : message. which tests it" a point is enclosed

within the gesture. The current irnpletrteiitetioii first closes the gesture by cottceptualiy eoiirtectirig

the ending point: to the stattittg point, and then counts the nurnher of times 3. line froin the point to a

known point outside the gesture crosses the gesture. An odd number cf crossings indicates that the

point is indeed ettclesetl by the gesture.

Other attributes ‘vV{Et'lt’ similarly, zilthough their eerie tends to he rnuch simpler than that of

ertclosecil. in particular, there are attributes for catch feztture discussed in Section 3.3: the at-

tributes are named rnessages implemented as {handler gesture] ifvi :N] , where N is the

currespontiiiig index in to the feature Vector.

Cursors are adtied t0 the list cl’ cursors available for use in sentarttic exprtsssiotis simply by

sending them the publ i c inessage. The applicatiott prograntrner should create and l‘Il3l(6 available



Page 1329 of 1714

162 CHAPTER 7 GE52"UI~;’_£' REC’OG]VIZ.E-‘RS IN GfZ¢L/\D1’\/I/¥

any cursor that might prove useful to the semantics writer.

7.8 C°£§EE€i§il§i€}IE

subsystem of GRANDMA consists of the event haradier, the law lave}, gesnmz

recogn£El<:>11 modules, the usrér interface w xich allows (hr: modification of gesture handlers. g&s1'ure

examples, and gesture classes, atxd ‘(hrs i11I€‘.1'p1”t31€1‘ for evaluating the seinamics of gestures. Each of

these parts has been discussed in detaii. Thti r1e;xtchapier s;E<3m011sti'z:1es how GRANDMA is used to

build gesture—ba1se<E apphcaiiajns.



Page 1330 of 1714

Chaeter 8

Amiliieatiotts

This eliapter discusses three gesture-based applications built by the author. The lirst, GDP, in 3

simple thfawing editor hased on the drawing prograrn ll)?‘ [_~’l2.j. The secoiitl, GSCOl€E., is an editor

for musical scores. The third, l‘v’ll}l‘, an implenientation of the GD}? drawing editor that uses

niulti -finger gestures.

GDP and GSCORE are both written in Objective C. and run on a DEC MioroVAX ll. They are

both gesturehased applications: built using the GRANDl\/1'/‘\ systern, discussed in Chapters 6 and '7.

As such. the gestures used are all single—path gestures tlrawn with at mouse. GRANTDTVIA interfaces

to the X10 Wll’1(.l0W system g'll3‘g through the GDl%‘.V intoifl'aeo wri tten hy the author. GlJl§L\/ runs

on several (titlerent processors (l\«licroVAX ll, SUN—;?., lBM PC-R'l‘), and several tlitferent window

managers (X10. Xll, Andrew). C:'RAi\TDl‘vlA, however, only runs on the i‘viiei'oVa>~;, which for

years was the only system available to the author that ran Objective C. lt should. be relatively

sti‘aigl1tfs::-rwarttto port GRANDMA to any UNLX--basetl environnient that ran Objective--C, though-
to date this not been done.

i‘~/ll')P written in C (not Objective C‘), and runs on a Silicon Grapliies lRlS 4T) ‘Personal

Workstation. Mli)l" respontls to n1u‘ttiple~finger gestures input Via the Sensor l3ratne. Unlike Gl3*l‘

and GSCOEQE, Ml)? is not huilt on top of GR/XNl'Jl\’l A. The re.as.on for this is th at the only funeti oning

Sensor Fraine attached to the above-n1entioned.lRlS, for which no Objective C eoinpiler exists. it

would be desirable and interesting to integrate Sensor lilraine input and rnulti-vpath gesture recognition

into {,lRANDl\/lA (see Section l().2).

8.1 GB?

GDP, gesture-based drawing program, ljasetl on DP [42]. ln DP there is always {'i1I‘i‘(?I’}{J’1?{;'(I’€‘,

wl'1icl'1 tloterrninen the rrtoaning of mouse clicks in the drawing window. Single letter l(C§,’l30El1'(l

eorntnantls or popup menu may he used to change current mode. current mode is

displayed at the bottom of the drawing wiitdow. are the actions of the three mouse buttons. Ho-if

exatnple. when the current mode is “line“, the left iiiouse button is used. for drawing horizontal

and vertical lines. the tuitldle button for at"oltt'ary lines. and the right button for lines which have

no gravity. Sonie DP cotnniands cause dialogue boxes to he displayed: this is useful for elianging



Page 1331 of 1714

i6-'1 CH!iP'L":"R 8 APPLIC/~11YOr’\/35

parameters such as the current thickness to use for lines, the current font to use for text. and so on.

With the gesture handiers turned oft‘, GDP (loosely) emulates UP. The current mode is indicated

hy the cursor. For example, when the “line” cursor dispiayed, clicking mouse hutton in

drawing winrtow eauses a new line to he created and one eiidpoiiit to he fixed at the position of the

rnouse. As long as the mouse button is held down, the other end of the line follows any suhsequent
rnotion of the rnouse. in a “ruhberhand” fashion. user releases the mouse button when the

second endpoint of the hue is at the desired location.

Roth DP and GDP support sr>rs, whereby tnuitiple graphic objects may be grouped together

anti suhsequentl I function as a single ohject. Once created, a is translated, rotated., copied. and

deleted as a unit. A set may include one or more sets as eornponents, allowing the hierarchical

construction of drawings. in DP, there is the “pack” command. which creates a new from a

group of objects selected by the user, and the “unpack” cotnrnand, whereby a seieeteci set object is

ti'aits,lorir1ed into its eornponents. G,l')l" t’unctiuns s:iin:il,arly, though the selection niethod dillers
from ‘Di’.

GDP rnakes no attempt to emulate €V'f3E'y' aspect of ll}? in particular? the Various treatments of

the chfferent mouse ‘outtons are not supported. These and other features were not i ntpiemented since

doing so would he tangentiai to the purpose of the author, whieh was to demonstrate the use of

gestures. As unirnpieniented features present no conceptual prohlenis for iinpieinentation in

ERANDIVEA, the author chose not to expend the effort.

8.3.1 GDi"’s gestural iraterfaee

GDP’s gesture--based operation already been briefly described in Section Li. That description

wiil he expanded upon. hut not repeated, here

Figures 1,221, h, e., and rl show the rectangle, eilipse, line, and pack gestures. ail of which are

rlireeted at the GDP window, rather than at graphic ohjer;-ts. Also in this -class is the text gesture, a

cursive “t”, and the dot gesture, entered hy pressing the mouse hutton with no suhsequent mouse

motion. The text gesture -causes a text cursor to be displayed at the initial point of the gesture. The

user may then enter text Via the keyboard. '1 he dot gesture causes the last eornrnand ( indicated by

the current rnotlel to be repeated. For exarrrpie, alter a delete gesture, a dot gesture over an e:\'isting

object wilt cause that ohjeet to he deleted.

Figttres L26, f, and g show the copy, rotate, and delete gestures, all of which act directly on

graphic objects. The move gesturt; a simpie arrow (figure 8.,l). is similar. Ail of these gestures act

upon the graphic object at the initial point of the gesture, These gestures are aiso recognized by the

GDP window when not begun over a graphic object. in this case, the cursor is changed to inrl.ir;:ate

the corr'esponding mode. and the underlying DP interface takes over. in particular. dragging one of

these cursors over a grapliie ohjeet causes the corresponding operation to occur.

33.15’; EDP implementation

Since GDP was built on top of (i'i?rANiLti\/iz4it the ititpienieritation followed the M'\«’C paratiigni.

Figure 8.2 shows the position in the ciass hierarchy for the new classes defined in GDP.



Page 1332 of 1714

8 1. GDP

53
Gobjview gestures I

delete

Figum 8.1 2 GD!’ gestures

: a4’wa_;:s', rfz’1epez:i0a’ ,i1:ia'i(:a{43.s t1’::e:s£a;.'. 0f.i!:e g:.>s~:1':1z‘e.

M//7
er1cEVentHand1er Notifyview // fllb

9..

Pointvlew Sliderview
DragHandler

Ellipse

GobjTextView G0b]SEtVleW Line: wlngvlew
TwoPointEvent

Figure 82: GDP’s class hiemrch§,r



Page 1333 of 1714

l66 CH!lP'L":"R 8 APPLEC/»i1YO.7\/3§

8.143 Models

implementation of GDP centers on the class Graphicobj eat. a subclass of Moclel. Each

eomptartent of the tl.t'awing is a 1‘-apliicobj eat. The entire drawing is also iniplementetl as

8 graphic object. Graphicobj eats are either Text: objects, L-ineDrawing ohjee/ts (lines.

rectangles, and eliipsesy), or G01<3jSet objects, which implertient the concept.

A ect two instance Variables: parent, the Gobj object of w rich this

object is a nieniher, and traits, a transforrnation matrix [_l(}ll for rnapping the object into the

drawing . Every Graphicobj tact: is a rnernher of exactly one set, be it the set which represents the

entire drawing {these are top level objects), or a nteniher of a set which itsellpart oi‘ the drawing.

T..-j.neDraw1'.ng objects have a single instance variable, t:.h:i.cknests, that controls the thick-

ness of the lines used in the line tlrawirtg. The three of LineDraw'ii1g', namely

Line, Rectzangle, and Ellipse, represent all graphics in the clrawiiig. Associated with each

Lineiire-;wir1g stihelass is a list of points which specify a setguerice or" line segments for drawing

the object. The points in the list are rtorniaiized that one signitieartt point of the object lies on the

on gin and another sight lieantpoint is at point. ( l ,i). For Lines, one entlpointt is at (It)-,i)) and the other

at (1.1). The point list for Rectangl specifies a with comers at (0,0), (tllil, {Li J. and

ti .0). The Ell ipse is represented ‘by in line segments that approxirnate a circle with center (f(i,t'))

and that through the point (l ,l). The transforntation matrix in each L_i_net:>iiawii1g object

is U.SC(.i to map the list of points in each Li.neDraw.i_rig ohjeet into drawing (window) cootrlihatcs.

A Gobj object contains a Set of objects that ntake up the in order to display a se ,

the trartsl‘otmation matrix of the set is composed with (inultipl led by) that of each oi‘ the constituent

objects. This composition happens recursively, so that deeply nested objects are displayed correctly.

Teaxt: ohjects contain a ‘font reierence and text string to he tlisplayeti.

8.1.4 views

Each of the iinniediate subclasses ol"G:t:‘ap11i cObj eel: has a corresponditig suheiass of Gobj V ew

associated with it. Each Lit1eDrawi:1g\7iew object is responsible for tlisplayirtg the

Linetfirawing object which is its nioclel on the Similarly, GQbj'l‘extViews display

Text objects, and Ctobj Setviews display Ctobj Sets.

All Gobjviews respond to the Ltpcla t.taE>ict' message in order to redraw their picture

appropriately. A Lir1eDrawingV‘iew siniply asks its niotlel for the lists of points (suitably

transformed} which it proceeds to connect via lines. The model also provitles the appropriate

thiclcness of the lines as well. (Note that it is not to provide View classes for the three

subclasses of Li:'1eI)I awing all three classes are takes’: care of hy Lixietfasatxririgview.)

Gobj Textviews draw their models one character at a time in order to acconiihodate the

Ei":iliSf()tTI]E1ti(7tl of the tiiodel. Transformations which have :1 unit scale factor (no or

tiilation) and no rotation cornponent the text to he drawn horizontally, with the characters

spacing determined by heir widths in the current font. In the current implementation, scaling or
rotation does not effect the character size or orientations 10 will not rotate or scale charactersi).

hut (lees effect the character positions.

GobjSet:Views have the views of the" model's cornponent objects as snhviews.



Page 1334 of 1714

8 1. GDP l67

the iipdate method for View will automatically propagate update ntessages to suhviews, no

u;QdateP.i.ctti.re method is ieuui red for Setvi aw.

The Gobj View class ovetii ties the l1’tOV'€ : : inethotl (oi V.i.ew). R.Ct.7El.ll lrotn ;‘:«7ect:ioii (3.6 that

this method siinply changes the location of the view, thus translating the View in two {:1ifinQI1SiOflS:

This method is used, for example, by the drag handler (seetiion t3.'7.‘9) to cause Views to move with

the mouse cursor. The purpose of oVei’tidii'ig the default me/thoel is that clraggiiig any Gobj View

causes its model to he changed so to reflect the new coordinates of the ohjeet in the drawing.

The model is changed by first sending it the message -;;etLocatlTx‘ar1s, which returns the inodels

transfoiniation niatiix, then calling a function which modifies the matrix to refiect the additional

translation, and then sending the model a setLQCal'.t‘:c'ans: which the new
traiisfonnation matrix to he reeortleti in the model. Of course the tnotlel then sen-zls itself the

mod.i_f ted message which causes the model’s View to redraw the model at its new location.

Got;-jview also implements the delete niessage, by first sending itself the free 11168--

sage (which, among other things. removes it front its parents suhview list), and then send-

iiig its model the delete message. Geubjview also overrides the de’i’ault isOver: and

iscoxttairieelln: rnethods (Sections 6.7.5 and 7.7.3) so that they always return NO for ohjee "

not at the top~l,evel of the drawing. iflaeli suhelass oi’ Golajview itiipleineuts isReallyOVer:

and it—:-Reallycontainedln : , which are involtetl when the ohjeet is indeed top—level.

outermost window is itseli" a View. it is an instance of Gdp’.I.‘opView, which is 3 subclass

of G<:lpE3et:.V i saw. The GdpT-t>pV.i.ew representing the entire drawing.

8.1.5 Eveint Handlers

(EDP required the addition of one new event handlei; TwoPoint EventHaI1c'ile1‘, which is of

sutli-cieiit utility and generality to be incorporated into the standard set of GRANDIVIA e vent handlers.

The purpose of the TwoPoirttEventHa:1d1e1‘ is to inipleiiient the typical “nthlierhaiiding”

interaction. For exai'nple_ eliciting the “line” cursor in the dtawiiig window causes a new line to he

created. one endpoint of which is constrained to he at the loeatioii of the click, the other endpoint of

which stays attached to the eursor until the mouse hutton released. A TWQPQintfiventt-Iandler

can he used to prodiiee this behavior.

As a Gener.i.c!Ei.rent'+-‘tancller, a TwQPo.i.ntEve=ni:.H. has a. parameterizabl,e start-

ing predicate. handling ineciicate, and stopping predicate (Section 6.18), in order for a passive

TwoPointEvet1tHandler to he activated, the tool of the activating event must operate on the

View to which the handler is attached tililfifi a GeneriCToolO;riVewlflandltar, section 5.7.7). ll

the tool operates on the View and the event satisfies the starting predieate, the hantllet is aetivatetl.

Wlien aetivatetl. the tool is allowed to operate on the view, and the operation is expected to return

an object which is to he the receiver oi" subsequent messages. in the above example, the “line” tool

operates upon the drawing window View (a Gdp’.t“opV.i.ew) the result of which is a newly ereatetl

Line object. The haiiciier then sends the new object a message whose paraineteis are the starting

event location eooidinates. The actual message sent is a paifatneter to the event handler; in

the eztaniple the message is so ‘Endpoint O : ; . Each subsequent event handled results in the new

object being sent another message eontaining the coordinates oi’ the event {s,!et.E:1dpoint.l : : in

the e>tarnple,}.



Page 1335 of 1714

l6§§ CH!lP'L":"R 8 AFPLIC;:11YON:§

8.116 Gestures in Gill’

',l’his section clescrihes the E3.(l-1LllilOE‘l of gestures to the implementation described above. The gesture

handlers, gesture eXa111pl,e gestures, and gesture semantics were all added at runtime,

allowing them to he tested irnr11ediately. l sliould admit that in se‘ve1‘al cases it was necessary to

add some features directly to the existing (T code and reeonipile. This was partly due to tl1e fact

that (.lRAl\lDV,’l1— °s gesture suhsystein was heing developed at the same time as this application, and

partly due to the gesture semantics wanting to access models and views tltrougli methods other than

ones already provided, for reasons such as readability and eflicieney.

Figure 8.1 shows the gesture classes recognized by each of the two GIJP gesture handlers.

ote that the gestures expected. by a Gobj View are a subset oi‘ those expected hy a G-clp"3opView.

Allowing one class to he 1'eeogr1izetl'oy multiple iaridlers allows the setnanties of the gesture

to depend upon the View at which it is directed.

Several gestures (line. reel, ellipse, and text) cause graphie ohjcets to he ereated. These gestures

are only recognized hy the top level View, which covers the entire window, a GC1p’I‘opView. When,

tor exarnple, line gesture (a straight strol<:e) is inarlet line is created, first enclpoint of which

is at the gesture stair, while the second endpeintt1‘ael<.s the mouse in a l'ulC.‘lI.‘€t'l().‘il1(llC€iSl{lll()E‘l.

The seirianties for the line gesture are:

trecteg = {Seq : lhanoller me-usetool :oreateit.ineW_Ivtot1se']Tool]

: [ ltopview ereatelntnel t:rans1ateEr1c'ipoir1t:O

x:«:st:art:X:.~ y:<Sta:r‘r,\:.~.{l

rtianip - [ire-:::og s:Ca1.eXTt.’I<1:i1t:lpcz _1'.:nt; ; 1 X ; <cu:r:1CentK> y: =:cu:rrent:Y>

ox : <st:az*i:X> Cy: <.st:.ar1:Y>l ;

(The dorae expression is assumed to he ni. .1.) "When the line gesture is reeognized, the

gesture handler is sent tl‘.-e ntousetool : passing the c3:eateLi.r1eml‘vtc>use’I.‘ool a

paraineter. The handler sends a message to its vievfs wall, and cu rsor shape eh-an (lnternally,

the handler ehanges its to-:31 instance Variable to the new tool. well.) Then, a line is ereatetl (Via

the <:r‘eal:eI.-ine niessage sent to the top view), and the line is sent a message which translates

one endpoint to the starting point of the gesture. (The identiliers enelosed in angle laraeltets are

gestural attrihutes, as discussed in Section 7.7.3.) The : : n'1essage to Seq, which is used evaluate

two expressions sequentially, returns its last pararneter, in this the newly created line, which is

assigned to receg.

Upon each subsequent mouse input manip ex ression is evaluated. lt sends the new

line (1‘efei'red to through recog/') a message to scale itself. keeping the “‘ceni:e1“’ point tstartx,

Sta:rtY) in the same location. inapping the other endpoint to (Ci:-.r1‘ei1tX, cur1'ei1tY).

The seinantics for the rest and ellipse gestures are similar to those of line, the only difference

being the resultant cursor shape and the creation message sent to topview. The start of the

rectangle gesture controls one corner of the rectangle and subsequent mouse events control the

other corner. The start of the ellipse gesture -rletertnines the center of the ellipse? and the sealing

guarantees that the mouse rnanipulates a point on the ellipse. The rectangle is so that its

sides are parallel to the window. Siniilarly. the ellipse is Created so that its axes are horizontal and

vertiealt Maitipulations alter any of the creation gestures is recognizetl never elleet the orientation

of the created object. With only a sir1gle rnouse position for continuous control (two degrees of



Page 1336 of 1714

8 1. GDP 169

freetiuni) it is impossible to independeiitly alter the orientation angle, and aspect ratio of the

g_t::1ph,ie object. 'lhe tlesi gn eheiee was made to inodity (inly the size and aspect ratio in the 1/(‘E‘ti3.llOl)

gesture; a rotate gesture may sulisequeiitly he usetl ttgs :ntuti:il,'y the ueientatiuti angle.

it is still possible, however, to use other fezitures of the gesture to eeritrul t1(l(ii1l4f)l’li1l attrihutes of

the graphic ehjeet. Clizingirig the reeog seirtanties of line gesture to

= [Seq : [handler ittottsetool : <.e:r:eat;:—;=Li:1e.>l

: [[[topv.i.ew c17eat:eLJ'_ne] transla1:.eE:n.<ipo.1'.nt : (3

x:<startX> y:<startY>}

t:,hi.cl»r.nes.3: l mathltengtli Di.vicledBy;ett)l

Clip:l :9} l l;

causes the thickness of the line tr: he the length of the gesture (liVl(l£‘.(l. hy 40 and eonstrriirted

ta) he between 1 and 9 (pixels) inclusive. The length of the gesture determines the thickness of the

newly created line, which Cari suhsequeiitly be continuously manipulated into any length.

The dot gesture (where the user simply the mouse without moving it) has the null

seiiitmties. When it is recognized, the gesture han-zllei‘ turns itself tiff immediately, enabling events

to pi'opegate past it, arttl thus allowing Wliatever (21;i1‘St.i1‘lS heirig tlisplayetl to he usetl at tool. Thus

(STDP, like DP, has the iii?-tier; of as eutreiit in-056., accessible via the dot gesture,

The pack gesture has semantics:

receg = {Seq : lliaridler ntousetool :pac:}:_Meuse'I‘ool]

: [topview paekwlist:<e:nc2t0secl>]l ,-
The attribute <enc.l.0seel> is an alias for [handler eraclesecll. fruit: Seetitm

'7 that this returns 3. list of objects tiUCi0SS3Ll by the This list is passed to the

’c.Qpv.i.ew, whieli creates the As long the mouse button is helcl (town, the pack tool, will

cause the pack message tti be sent to any object it touches; tliese objects will execute [parent

: self ] {llltif iiiipleiiientatieri oi" the geek iiiethiistlj to adtl tlietiiselves to the eurtent set,

The Copy, mm/£3, rotate, edit, and delete gestures simply bring up their emrespunding cursors

wlien aimed at the haekgruuntl (_'GdpTop\7iew) view. lhey have there interesting semaiitics when

asseeiated with .31 <;Ob’:i.‘N7x-1‘-Q'\KTé The eepy gesture, for exaim".-l,e, eauses:

reeog = : {handler mousetool :vieweopy_t~t0useTee-1l

zcopy = [ {view viewcopy]
move : <:endX:> : <end‘:i’>}

zlastx <endX>

:.l.as3tY - <end'i,’>j

: [copy move: [-<.eurrer1tX> Minus : lastxl
: {<c:ti.r17ent:.Y:> l‘v’limts:.l.astY]]

:lastZ = <endX>

:.l.as3t'.Y : <end’i,’>j

illustrates that the gesture semarities can iiiiiiiie the essential t‘e2ttures of the Dragflazidlez‘

(Section 6.19). The seriiarities of the move gesture are almost identical, except that no copy is

matte. A simpler way to do this kind of tliing (by reraising events) shown wl‘.-en the semantics of

the GSCORE pregraiu are {llS(:tlSSL‘A‘.l.

The delete gesture has seniarities



Page 1337 of 1714

CH4P'iTE}§’ 8 A1:-’I>LIC;:11YO.N':§

Figilre 8.3: GSCGRES cursmf mar-.u

recog = {S-ac; : [handler mt;-use':‘t0ol t-a_M<3u:‘5e*;.ool]
: {view delete} E;

The edii gesture seinantics are similar.

The restate gesture has semantics:

recog = nil ,-

manip {Seq : {handler mouasetool : rotate_Mc»useTool]

: [view rotateAndScaleE11dpoint:0
X : <curJ:‘en?;>:>

y: <c11rrentY>
CX : <:S*.'.£:"-.;L”tX>

Cy: <startY>] ] ;

The rotat eA11CiSca1eE11c1p<:-iI1t: imssage causes one point’ of the \'i€W to be rnapped

to the coordirmte imiicmed by 2:: mid y: which kaepiiig thfi poim iridicziiéid by ex: arid Cy:

coustaiit. This gcsiurc always drags endpoint O of a graphic object. It would be bcttm 10 be abic to

drag an arbitrary point. as is done by MDP, discussed Eater.

3.2 GSCQRE1

GSCORE 21 gesIu1‘c—:~f3a:~:.ed miisical scm‘c—: e-:11’ mi‘. its ciesigii um based on particular program,

hm its gestiire sea was irifiuenced by the SSS? score--editirig tools [18] and the N0t:.‘.wi‘ii:(—:r H score
ti-.d.itOi'.

8.2.1 A iwiei‘ de§c1"ipt§9n {if the iizterface

GSCORE1 has two interfaces, one gesture--based, the othar mm, Figure 8.3 siifiws Eilfi‘. i10n--ges(ure--

based interface in ax;-/iion. Initially. a staff (the fivs limss) is presemed to the user. The user may Cali



Page 1338 of 1714

‘ ’§Acei-:l-ental ’

3 $513511‘. Mind.1 .1, 'CleEi

82 GSCC?1'€E

Figure GSCORES palette tnenu

up additional staves by accessing the staff tool in the “Cursors” menu (which is shown in the figure).

in figure the user has displayed. a nuinher of palettes from whieh he can drag musical symbols

onto the As can he seen, the user has already placed a number of symbols on the staff. The

user has also used the down-tie tool to indicate two phrases and the beam tool to arid beams so as to

connect some notes} Both tools work by clickirig the mouse on a starting; note. then touching other
notes. The tie tool adds a tie between the initial note and the last one touched, while the beam tool

heanis togetlter all the notes touched during the interaction.

Dragging a note onto the staff tleterrnines its starting time as fol,lows: if note is dragged to

approximately the same location as another note, the two are made to start at the same time (and

are made into a chord‘). Otherwise, the note begins at the ending time of the note (or rest or barline)

just hefore it Other score objects are positioned like notes.

The palettes are accessed Via the palette menu, shown in iigure 3.4. 'l'he palettes themselves

may be dragged around so to he convenient for the user. The “Pi” button hides the palette; once
hidden it must he retrieved from menu.

The delete cursor deletes score events. When the mouse hutton is presserl, dragging the delete

button over olttjeets which may be deleted causes them to be highlighted. Releasing the hutton over

sueh a highlighted object causes it to be deleted. ll’ltIllVltIll.l3,liZ7l10l"(l notes may he deleted by elieleing

on their note heads; an entire chord by eiiekitig on its stem. ‘When a l)€3.l1’i is deleted, the notes revert
to their u.r1heanietl state.

The gestural interface provides an alternative to the palette Figure 8.5 shows the three

sets or" gestures recognized by GSCORE ohjeets. The largest set. assoeiatetl with staff. all result

‘Note to readers unfainiliar wiL'=i common music notation: A tie is curved line connecting two adjacent notes the
same pitch. A tie indicates that the two connected notes are to he pert7.>.'rnetl as a singtc, note Whose dunititm equals the
sum of those of the connected notes. A curved line between adjacent differently pitched notes is a slur, performed by
connecting the Sir:-;?&).‘.‘1t‘lB(.ilv3 to the fltst with no iutemiediat.e hteath or break. }3e1.weei) nonatljaceut notes, the cuweti line
is a phrase maria, which iiidiczttes a group of notes that makes up :1 musical phrase, as shown in figure 8.21. In GSCORE,
die tie tool can be used to enter ties, slurs, and phrase marks, A beam is a thick line that connects the stems of adjacent
notes (again . ee figure $44?‘ By grtsiiping multiple short notes together, beams serve to emphasize the metrical (rh.ythmic)
structure of the music.



Page 1339 of 1714

fZ7H4P'L73}§’ 8 A1:-’I>LIC;:11YO.N':§

Nate gege;-._u~e5 Score event gestures

§,""igu1”c:. GSCORJZ gestures



Page 1340 of 1714

82 GSCC?1'€E

in staff events heing created. There are two gestures, move and delete, that operate upon existing

score events. Seven additional gestures are for rnanniuiating notes.

A gesture at staff creates either note. rest, clef, bait line, time signature, or key signature

object. The object crcatcrl will he placed on the staff at (or near) the initial point of the gesture.

For notes. the 2; coordinate determines the starting time while ii1¢3”3/'C00l'di1lEili3 deterniines the pitch

class. gesture ciass deterniines the actual note duration (whole note. half note. quarter note.

eight note. sixteenth note. or thirtyseeond note) and the direction of the stein.

like note gestures, the remaining stjati’ gestures use initial .\"CO()t”(l‘il‘t8tB to (leterinine the staff

position of the created ohject. The five rest gestures generate rests of various durations. The two

elet’ gestures generate the F and G clefs (C elefs rnay only he dragged from the palette). The timesig

gesture generates a time signature. After the gesture is recognized. the controls the numerator

of the time signature by changes in the coordinate of the mouse, and the denominator by changes

in y. Similarly, alter the key gesture is t‘ecogni',aed, the user controls the numhet'ot sharps or Elats hy

moving the mouse up or down. When a bar gesture is recognized, line is placed in the

and the cursor to the hat cursor. While the mouse button is held, the newly created liar line

extenrls to any staff touched hy the men cursor.

T ie note-specific gestures all manipulate notes. Aceidentals are placed on the note using the

sharp, flat, and natural gestures. The beam gesture causes the notes to be beamed together. The

note on which the heani gesture hegins is one of the heanietl notes: the beam is extended to other

notes they are touched after the gesture is recognized. The Llptie and dowrltie gestures operate

similarly. The dot gesture causes the duration of the note to he nniltipled hy , typically resuhin
in a dot being added to a note.

Since a note is score event, and always on a staff, ~: ’ esture which begins on a note may

either he note specific tag, sharp), seoreevent specific: (e.g1 delete), or directed the staff (e.g.

one of the note gestures}. The time a gesture is rnade at a note, the three gesture sets are unioned
and 3 classifier created that can discriminate between each of them, as described in Section 7.2.

Figure 8.6 shows an exatnpie session with GSCORE.

8.2.2 Design and impleinentation

Figure 8.7 shows where the defined by GSCOR.E {it into Gl'{ANl.)Mz’t’s class hierarchy. in

general, each model class Created has a corresponding View class for displaying it. No new event

handlers needed to be created for GSCOl~i}3; GRANDi\/l[—\’s existing proved adequate.

Generally tiseful views

Two new views of general utility. Pt.’-3..lbownltowview and Pa.1.et:l:e\7.i.et.v, were irnplen'tented

during the development of GSCORIL. A P111. .1DC-wnRowVi ew a row of buttons, each ofwhich a.eti~

Vates a popup menu. it provides iimetionality si milar to the Maciiitosh menu bar. A Palettev

implements a palette of oh_iet:*ts. of which is copied W ten dragged. i-aw instantiates

a single Dre"-.gI~It-iticll (Section 5.7.9) that it associates with every object on a palette, The drag

handler has been sent the message copyviewolxr, which gives the palette its ftirietioiittlity.



Page 1341 of 1714

"' ER 8 A1:-PLIC/»11YON:§

Figun: 8.6: A USCEJRE sessiaun

t" 181' sizowsa b]a1z1’<:~:f;a.fi’"z1p<)t1which£heGCiefge.s:zz1z2eh.asbeerienzered. Pane1’(’Iz}sf_I{It/xzfie :r'e.af'e.=(z’ £z‘eZ>,ie

(‘r'r—‘.-‘J .=m:f 3 key .{'ke}r'.s'igna?':ir.<=j‘ grxs'fz1rr:- /-3 1"/(.>r rrvrzgnifiory, fhrs i7.’i.’:“i1')a"‘I' r2.*"i7a!'s or '~:./7;ir‘m‘ can he ma niprz/;m’.>d by

the djsiezzrce {fie mazase mm/es zzbove {hair-:;z'a1Tor bus:-}0w[1'2e gran’: I‘ '1‘ Edi 5/e1fy: Pa13£:I' ('0) si1c>w.:; rim created kqv

sigma izjre {one Hat), and a timesig {£1228 sigma izm:-) gesziire. ,-’—1fIte1‘r.€-cogzfition, the 1101 3017121’ distazzce fmm

2:"?-::‘ z‘ez:0g131't1'0n point detz—?J‘122inr:-5 12ume—?1“a :01‘ of the fim-:—? signa ture, and the Vezflefal distant-:2 det“—1‘1m'z7es

./far: a1eu<;I.'ii,'Ia[m'.' Pails] fa)’ .‘>}1U\«’vL‘Z {fie 1's.sLzI£iz1g .(i/11c- sigz’;.a'i,i1,'"r,-, 3:2.-(1 the 4U (Vqz1a/‘tar z1r)!¢j) ges».'./arc-, a _si1,--

\/erzz'(ra,7 sKz‘0:’<'e. Since this an up5r§z"o1’<'e. lbs Haze W1"!I be me an u;7weaz‘d.s'ler12. The 1ni2fiaIp<)1nz oftize g'e.s'lu;‘e

c2’eZ'e,/trnineas both fie pI'z'r.:iz (,=ff:ize I7./,;i’e (via v<31‘£ic’a1p0siZio1z) aim’ Lire :;far1iz'r,ig £1’,/ne of€f1e,>I.>o1.e' {via }Ic>,t:i'z:'at1.rz2]

pasiii-an , Pam.-I {r} sfzmvs .iZ:<.= (‘rt-afar’ 27.12 (1. and zhc SJ (}.:ég.{1.*f:,r201‘c:,} ,g;r_r.s'lu,z‘r_:. l,z‘I<c .',h(.= qa1.3ri'<::z‘ .’/(REC gcsfiaznx.

Z126 geslztrrs Class .:i£‘!ermz'1'1e5 the nofés (lzzlzxfion. and (<7 Him] aZm“bz1[es der‘ermir,:e.:; #29 no Siam djrecz3‘0n.

sfzzri dine and pita‘). Pane] (1? size W5 {W0 1 Su (S‘j,>a‘eeI11"'1 noie) gs?-5£li1“8S (/Comb1'131'ng two steps 1'12r’(2 and. Panel

.{'.-53;/‘ izo W5 a beam gesmre. This gt-sturc* begins on a r¢24:.I'2(.=r dzan fJ'_:ege;~:z‘11It)s mezztionc-.53’ thus fin‘; which

b-ragin on a .9tafi‘.' /W91’ z{2ege.~3rz,:1‘e is 1'sc‘0g1‘izea’, I12-:3 user touclles CatI2e1‘120te51'11 order‘ to beat]; E]1t?]I? togefjlez;

1"'aI1c‘;' (J1) s_:"10Ws lbs‘ b8{:*II1(:‘(] 11-1)££‘.S, alui er fiat g(:'s!u1I:‘ z,l1'aw11 U1! a ]'I()£(:?. "aria;-I 5314.114/5 £I.1e1'e.su1U'11g 1%:

.5‘/91’? addea’ beféare Ihe riots. and an 8:’ {eig/'2f]2 rest) gesfzzre (flaw/2 on fize .s?z;-if)". Pazyei (j, shows the zeszliitirzg‘

/‘es; and a deiete ge:;IA11“e 1)e5'iI3nir1g'0r1 ffz-9 resz. Pane] (R) sI70ws' a 4L! (L{gI1a1‘Ze,"!3e)z'e,/’ gastzj/‘e dra W12 over an/

6.=x.='.9/flag {1':'!.»’:If.7'6.‘:"Il(7I’:? (ail .<:J.»7'r.7./>.'.n’,<; in ('7S'C(}.'?F fI?i{r'.‘? .*‘er*.‘s3r:gz:lai‘ irlfiiil re?gian.sj}’, fize f‘f?.<£iIii' Imirig ('2 r:h0.*‘d, ax‘;

size wn in pam:-I



Page 1342 of 1714

82 GSCC?1'€E

4/”f-—— Sq >,;; \p1_v
If,’ \OTelopVJ91

Srafifview

Pullflownfiowview SCOYEEV€EtVlEW

»/S \
»”” Chorflview Dutmodview \\EeamView

StaffEven:View Tieview

/ 2 i . 7 _V
/’ Cle+-View /,’3.]o1_-,e*\,r;'_ew Titties;-;{‘J1.2-:<w

:

ACCidenta1Vi9W Keysigview Eestview

Figure 1'7: (“aSCt73Ri'£°s ciass iiieiarchy

Bach paiette iniplement an aiiwitimy action when one of the ttiaggeci objects is dinppett. For

niost palettes of SC€)l‘t) events (notes. rests, elefs, anal so 011), no S13€’3LTl’cil, ziction is taken. The copied

View hecnines 3 suhviei I of 2-1 St.affView when tiiaggeci onto {:1 staff. However; accitieiitais and

dtimtion niodiliers (dots and triplets) are tools w iich send messages to Not: eview nhjeets when

dragged over them: the Not-eview takes care of updating its state and crcatiiig any aceitientais or

Cllifiliioii iniiidifiers it needs. The copies that are dragged from the palette thus never become part of

the score, and so are eutmiiaticaliy deleted when dropped.

GSCORE Modeis

With the exizeptieri of lDowriRow'\fiew and Palet tevi saw, the new created (luring

tilt?ii‘l1pl€fi‘i1€I1‘i3iii0I10f GSCORE are speciiie to score ettitiiig. A Score object represents 21 nitisical

score. it contains a list 01’ Staff ebjeets and ‘:1 (i.01li'3i:~l4iii”!l&{t:tl list (class I311) oi" ;€§C:oreEve11t

objects. Each Sc:oreE3vent 3. time field iiidieating where in the score it begins; the tiouhigw
linked iist is maintained in time order.

The subclass Staff }3Ve1‘1”i‘, includes aii classes that car; oniy be associated with EL singie staff.

A }3a:-CL-ii“.-e is not 3 Staf fEvent since it may connect more than one staii", and thus n’iaint:»3.ins 2:

iii" stnves in an lElSl,’ctR£{}€ v.'i.ria-hie. Siiiiihiiiy, a rd. may eoiitnin notes imiii kEii:lt3l‘Ci1i, sieves,

nieay :1 Ti iilftéi Beam. A Durai: .1‘. oniviocii f .i.er not attimlieti ttiretstiy to ‘ct Stat? f, hut iiistead
with 3. Note or Beam, so it is not it St::af’:ffEve:t11:: either.

The resptmsibiiityof niztppiiig time to Xcooiiiiiiate in a rests tnai my with the Score object.

it has two methods t.i.ineOf : and xposéhf : which map X ctoiiiidinates to times, and times to X

coordiiiaies. respectively. Score has the method ad-;iEveI11: : for adding events to the list and

delta : anti : for deleting aiiift ei'as'i1g events. Erase a ltinti oi" “stilt” delete; the tshjeet

is reiniiweci from the list of score events, hut it is not deaiiocated er in any other way disturbed. A



Page 1343 of 1714

l"/'6 CH!iP'L":"R 8 APPLIC/~l1YOl"v3§

typical use vveuld he to erase an object. change its time tieltl. and then add it to the score. thus

tittiving it in time.

Each SCZO].”E3E'Vt3I1lI1 suhelass iinplettnents the ;i.eb:tieal<.e:t.' message; this nrtleis seote events

that oeeur siinttltanenusly. This is important for determining the position of store events; hat lines

tnust mine hetore elets, which must eome hetnre key signattites. and so on. liesi-rles tletetmining

the order events will appear on the staff, tiehrettlters are important heeause they maintain a canonical

0l”(lEl’lt‘lg tat" score events which can be relied upen througheut the code.

Particular Scoreflvent classes have straiglitforward implenientations. Note has instance

variables that contain its pitch, rat ' tlutatien (excluding tluratinit 1]’1()dlll€l“S)., actual duration, stein

tlit'eeti.tin, haelt pointers to any Ch-:3:rd. or Beam that contain it, anti pointers tn Ac:Cicle:t1t:a.l. and

Du1.'at..i.OnlVlo<:iif .i.e17 objects that apply to it. lt has for setting most of those, and

maintains etmsistieney hetween tlefientlent vtniables. Notes are able to delete themselves gracefully,

tirst hy removing themselves from any beams or chords in which they participate, and tleleting any

aecicleiitals or t;lui'ati0n modifiers attached to them, then finally deleting themselves from the score.

Other score events hehave similarly.

Sending a Scorefiivent the time : whichelianges its start time, results its Score

heing infntinetl. The same to move the 53t;‘£OI'E3EVe1'lt to the correct place in its list of

events. This is aetxnnplishetl hy first erasing the event fnnin the strere, and atltling it again.

While the internal tepreseittatioit of scores for use in editing is quite an interesting topic in its

own right [20, 83 29} it tangential to the main topic, gesture-hased systems. T representation

has now been described in ene-ugh detail so that the itnplenientation of the user llltt3I'ft"1CC:, as well as

the gesture semantics. can he appreciated. These are new clesenhed.

GSCURE Views

As expected from the lvl‘v’C paradigin. there is a Vi ew subclass corresponding to each of the Mode is

£llSCLlSS€tLl above. S-coreview provides a l)2lCl((li”<Jp. Not surprisingly. instances til Staffview

ate snhviews ef Scoreview. Perhaps more stttprisittgly, all Sc<3reEverttV:Lew objects are

alsti snhviews of Sco1*e‘v' iew. For sitnplieity, the various StaffEvent't>'iew are not

suhviews of the Staffview upon which they are drawn. This siniplities screen update, since the

SCo1“e‘J.i.ew need not traverse a nested stn.tett.tre to search for t,tl:sjet:ts that need updating.

it is often necessary for a View to access related iews; for example a }3eamV.i.ew needs to

coinniutiitzate with the NC-teViev.r or Cht;-rdview objects being heainetl together, One alternative

is tot‘ the views to keeps pointers tn the related views in instance vatiahles. This is very eonnnen in

l‘vlVC»hase<l systettis: -_:nlintei's between views explicitly tniinie relations between the eottesptiiitling

tnetlels. lt is the taslc of the pregrztnitrter to lteep these pointers consistent as the tnetlel objects are
atltietl. deleted, or inntlitietl.

in one sense; this is one of the vests associated with the MVC pttratligitt. l"-‘er reasnns of

tnodulatity, lt/IVC tlictates that views and inotiels be separate, and that rnotlels niake no i‘efe1'enee

to their views (except tntliteetly, through a ntetlelfs list of clepeiideittsl. The benefit is that models

may he wtitten cleanly, and each may have multiple views. Uniiottunately. the separation results

teduntlatiey at best (since the structure is ntaintainetl as both pointers between tnotiels and pointers

between views), and inconsistency at worse (:Sltl4;’€ the two structures can get “ettt tn’ syt1e"). Als-3,



Page 1344 of 1714

82 GSCC?1'€E

any changes to a rnodefs relationship to other models requi parallel Chan in the corresponding

Views. 'l'his duplication, noticed (hiring, the initial eoiistmetioii of GSCQRE, seemed to be contrary

to the itleals oi," object-otientetl p:mgrati,iiiiiii.g. where teeliniques sueli inheritance are utiliiseti to

avoitl <lnpliea.tion of effort.

GRANDIVIA attempts to address this prohlem of it/IVGC‘ in a general way. The problem is caused

by the taboo which prevents a niotlel from explicitly referencing its viewts). GRANL‘l‘vlA maintains

this taboo, but provides a nieehanisni tor inquiiing as to the View oil a model. ln ortler to

retain the possihility of multiple views of a single model. the query is sent to a {some-Xt object; within

the context, model has at most one View. The iinplementation requires that a context he a kind of

Vi. ew o bjeet:
View ...

— set:IVlOcle1.0f'V‘ie'v;‘ ; V 4: /3+‘ a.s.s'<,-ttiates v wilds _."t'1nor_fei] ~+- /
I

getViewOflVlod<3l sm /4% 1"€lLl1’I1.S vi'ewassoCial':*d Wit}: :1 >t-'/

The itnpietnentation is done using an assoeiation list per eoiitext: given a context, the message

set!‘/lodelOf‘View: associates a View with its model in the context. Objective C's association

list ohieel uses hashing internally, so getviewfifmodelz typically operates in constant time

inclepeiitlent of the ntimher of associations. The result is a ltintl of inverted index? mapping models
to Views.

In GS(?()l{E., only a single eontext ': used (since there is only one View per model). which,

for convenience, is the parent of all .3coz*eE<.-*t§:1tt.\7iew objects, a Scoreview. The various

suhclasses of 3coreEveti‘r:‘v‘iew no longer have to keep consistent a set of pointers to related ob-

jects. l"'or example, a Beainview needs only to query its model for the list of Note anti./or Chord

models that it is to l3e:«itn together; it can then each of those models in for its view Via {parent

getVi.ewOfMo-‘jel ;tr-.3 . 'l‘he instance variable parent here refers to the Scoi.'eV.i.ew ofwhieh

the F3eamV:iie:—:w is a. stihyiew. "l’hus, the problem oi" keepiiig parallel Sl.l'UCl,LJ(t.’.E% ttoiisisleiil, is el:iini~

nated. One {l1‘&W'l’.)a3.Cl<. however, is that it is now necessary to maintain the inverted; index as views
are created and deleted.

Now that the problern or" how views access their related views has heen solved, retiisplay-

ing a View is sti‘aiglit,i‘orwarti. Recall (Section (3.5) that when a model is inotlilietl, it sends

itself modified which results in all its tlepentlents Cin particular its View) get~

ting the message inodelWo:i.i.f.i_ed. The <iet'a.ult implementation at model-Mod." ..1eo' results

in upda‘-:ePicture being sent to the View antl all of its snbviews (Section 6.6). Norinally,

Lipclat ePict tire the niethorl that i:lireetly responsible for querying the model and updating

the graphics. SCo1‘eEventView overricles tipela lI.éEPiC‘lI axe, and theof actually producing

the grapliies for a score event is relegated to a new niethotl, c:reat;ePic:t;u:c'e. inipleinenteti by

each oi’ Sco1‘eEventVi.—;=w’s subclasses. S::oreEveIitView’s upc"iatePi<:':ure itsell"

CZ’€3Eitt§PiClZ‘J.1”e, hut also tloes some additional work to be discussed shortly.

As an example, consider what happens when the pitch of note is changed. When a. NC-be

is sent the absp.i.tc:h; niessage. which changes its piteht it updates its inteinal state and sends

itself the ntoclified niessagei (Chaiiging the pitch niight result in A-Jciciental objects being

a(l{lt3(l. or (leletetl item the score, a possibility ignore-:l lot now.) This I\TOte”s No i:.e'\7i will get

sent createPioture. and query its model (and the Score and Staff objects of the model) to



Page 1345 of 1714

l7" CH!lP'L":"R 8 APPLEC/~i1YOz’\/35

determine the kind and position of the note read. as well as the stern direction, if needed. The proper

note head is selecterl froth the music font, and drawn on the staff (with ledger lines it itecessa,ty) at
detemitinerl location.

One reason for See‘-_“eEvent:"s upC1a§tePic:l:ure sending Crea1:ePic'l.:ure is to test in

single place the possibility that the View J, have nftoved since the last time it was drawn. In

particular. if the coordinate of the right of View’s bounding has has changed, this is an

indication that the sc.ore events after the this rnight have to he repositioned. if so, the —.‘3<:°C.-re object

is sent a message to this effect, and takes care of changing the 3: position of any affected niodels.

Another reason for the extra step in e::i'eating pictures is to stop a recursive rnessage that attempts to

create a picture currently being created. a possibility in certain

Adding or deleting a Sco:CeEvor1t. causes the Score ohject to send itself the modified

tnessage. Before doing so, it creates a record indicating exactly what was changed. When notified, its

Scoreview ohject will reqttest that record, creating or deleting ScoreE§ver1t;\7ie’ws as required.
Sooreview uses an association list to associate View classes with model classes; it can thus send

the area‘-:e'v'iewOf : to the appropriate factory.

Sct3reE:ver1t‘t/"iews function as virtual tools, perforruing the action Sr:oreevertt:view:.

(This default is overiiddcnhy Accview, DurEv1o<5tView., BarLirteView, and Tie:'v’i:~3w, as these

do not operate on Staffviews.) The only class that handles scoreeventview; tnessages
is Staffvi-aw. A version of Generic'i‘oolOnV:Lewfiventl-Iandler dit"l’erent than the one

discussed in Section 6.7.7 is associated with class Sc:oreEveni:.View. This Version is a loud of

Ge:t1e:r:i.cEve:t1t;:}Iand1.er. and thus inure pai‘ariiet,er'iz.al>le than the one discussed earlier. The

instance associated with fviews has its paraineters set so that it per"-fornis its operatic-11

initnediately (as soon as a tool is dragged over a View which accepts its action), rather than the

normal behavior of providing ininrediate sent-antic feedback and perforniing the action when the

tool is dropped on the view.

Thus, when Scor‘-:aEventView whose action is scoreeveritzview: is dragged over a

. iv the Staffiview irurnediately gets sent the message score-a'=.rent.view;, with

the tool (;i.e. the Sc:o3:‘eEve1'1t'v’iew} a parameter‘. The first step is to erase: the model

or the Sco1‘eEver1tVi.~;=w troin the score. it" possible. The Staffview then sends its rhodel’s

Score the t,ime{)f 2 rnessage. with paraineter the coordinate of the StaffEvent‘View being

dragged. Tl‘.-e time returned made the time of the .icoreEventViev.*”s model, which is then

added to the score. When a subsequent drag event of the SCO}.”eEVE1’1tVIl.EE‘. results in the

sCo1‘eeventv.i_ew: message to he sent to the Si:aff.V:iew, the process is repeated again. Thus

as the user drags around the Scox‘eE2ve:i:tt\7i-aw, the score is continuously updated, and the effect

of the drag irninediately reflected on the display;

Though they have different actions. Actcview. Ti eviewi 3?-ttrMoc'iV i. ew. and Bart; ineV:L.ew

tools operate siinilarly to the other S-Jor-aEver11:V i-aws. Rather than explain their functionality

the non--gesture-leased interface, the nest section discusses the semantics oi‘ the -' estural interiace to
GSCORE.



Page 1346 of 1714

82 GSCC?1'€E

GSCf}RE’s gesture semantics

The gesture seinanties rely heaviiy en the paiette iiiterfaee tieserihed above. When the palettes are

first created, every View placed in the palette is t’:lEi.iT1C-‘Ll and made neeessihie via the “Atti‘ihutes’"

button in the gesture semantics window (sec Sections 7.7.2 antl 7.7.3). It is then a simple matter in

the semantics to simulate dragging a copy of the \'i€\V onto the staff Section 77.1). For

exaniple, consider’ the seinanties of the 8U gesture, which creates an eighth note with an up stem:

recog l [ [n.ot1ev:i.ew8up viewer-spy] alt. :<.€:ta1*t.L-:>c:>]

re}'iaise:<currer1tEven;: >1 ;

The name not-eviewaup refers to the View of the eighth note with the up stern placed in the

palette durin pregr:n'n initialization. That ‘.il€‘W is copied {which results in the model heing copied

well), nieved to the staitiiig location of the gesture (another “‘Atti‘ihute"’). arid the eurirentiiventz

(a.nethei* “Atttihute"’) is reraised using this View the tent antci its location as the event location.

Ihis simulates the actions of the D1‘agI~Eaiir1ler, and since starthoc is guaranteed to he ever

the staff (otherwise these semantics would never have been executed) the effect is to place an eighth

note into the score. Similar senianties (‘the C-fliy difference the View being eopietl) are used fer all

other note gestures, as well all rest gestures and clef gestures.

The semantics of the bar gesture is similar to that of the note gestures, the difference being that

a mouse tool is used rather than a virtual (view) tool.

ireeog Ehatftdleir motisetoolz

[barl i1’1E3EVE3I1f.___i~’iO1lSeTQOl
r-eRai Se : < eurrentt-Event: >

at : <st:~:rtLoc>]} ;

The timesig gesture for creating time signatures is more interesting. After it recognized, it

and y of the mouse eontrol the nuri1et'atot'arn;l the deneruinator of the time signature, respectively:

reccag [Seq ;sx -— <cu.r1:entX:>

: = <Cu1:re:r1i:‘.c‘>

: [[ iir..j_mesi.gvi.ew4m4 viewco}§>Yl at:<start.I..oe>}
Se : <c:ur1‘ent.'Ev:~;=11t>]

manip [ [recog model]

tiinesig: l [ [<ctir::ent:X> Minus:sx]

IZ3i'v;i.(i€—:t:l.Ey ; 10] Cf.l.i;:2 :1 2100]

: [ I {<:ct117rer1'r.Y> Ms'_rius : 5337}

Divided‘;<y: 10:} Clip :1 :ZLt'.‘:-Gil

Note that the recog expression is similar‘ to the others: a View from the palette is copied. moved

to the staff, and usetl a lOOl in the reraising of an event. The manip expression, contrast,

does not operate on the level er" sirnuiatetl drags. instead? it accesses the rnotiei er" the newly

erea.te<i '.t‘.i.meSi.gvi.ew directly, sending it the imesig; : message which sets its numerator and

denoininatei: The tlivision lay it) means that the mouse has to move it) pixels in order to change one

unit. The ip: ; message ensures the result will between 1 and ltltl, inclusive. For musical

purposes. it is probably better to only powers of two fer the tlentnninateiz, hut uriiettuiiateiy no

t:oThe 2 message has been iiirplenientetl in Typelrit (though it would he simple to tie).



Page 1347 of 1714

18(1) CH!tP'L":"R 8 APPLICz11IYOz’\/35

The key signature gesture (key) works sirnitztrly, except that only the yeoerdinate of the mouse

is used (to ecguttret the ft‘tl}.l1}bt;?t'-t71L,':‘atC:Ct entats in the signattirej:

reccg = Seq :sy = <.-current:'t’_>

:, [ [keysigviewitshatrps viewcopy]

at : <. sits-;rtLoc>]

1t.’eR£i.Zt.E3e : =:cu:rre;t1t';Event;>} ]

manip = [ [recog model]

1:. E [ [sy tVti1'1us:<C:u1frent:T£>}

Divic'£edBy';10] Clip: [0 Minue : 6} 2o

A pesitive vat ue for key signature indicates the number et‘ sharps, negative one the (negation

of the) number of ti The awkwetrd [Ct Minus : 6 ] is used because the author failed to ahmv the

creation of negative numbers with the “new int" button,

The above gestures are rrzeugttized W1C1’t ntatte on the staff. The detete and move gestures are

only reeogrmzed when they begin on Scc:>reEver1t:Views. The semztnties of the delete gesture
are:

= {Seq : ittartdler‘ me-ttseteeolt :<;telei:e_tvt<3'u:3eTool]
: {View delete} it ,-

This changes the cursor. and deletes the View that the gesture began on, The latter effect could

raise) have been achieved using 1‘eRaise : , but the above code is simpler:

The mauve gesture stritpty restores the normal CuISD}C and reruises it at the starting location of

the gesture. relying en the fact that in the nen—gesture~httset1interface, seere events Itliiy be dragged
with the mouse:

recog = I {handler mousetool ;norma1__lvtouseTool[}
Se : st:artEv-ant] ;

In ttttdttion to the gestures that apply to uny Sco1‘eEven‘:'v'iew, Noteview r'eeegtu2'_es a few

of its own. The three for adding aeeidentais to notes (Sharp, fiat, and t1aiut‘ai) the

Note object directty. For exarrtnte, the semantics ef the Sharp gesture are:

recog I {view moctelfi a<:c:SHAR13] ;

The beam gesture chart the eu rset to the heath eurser amt st E)1Ui3.i,CS et:iek:'tng the heattt Ct1t'SOt‘

on the 1\I<:>1:eV.i.ew at the tni.titttp0it1t:

Irecog = ij {handler mottsetool :beam:Qc>1._t»'Iou.se't‘oc>13
: st:ar1:Evet1t:] ;

The tie gestures (uptie and dewntie) eeuttl heen iihpterhented sirttituity. htstead. £1 vurtatieit
of the above seihtttrties the mouse eurser tie revert to the nurrriat eurser when the rnuuse button

is t‘€i€)iiS€d after the gesture is ever:

recczg = Seq ; {handler mou:—:et:ool : t.ieUpE2vent__lvtouseToc>l[3

: itieUpEvent.__l‘«touseTool reRaise : st:a1‘tEvent} ] ] ;

manip — : itieUp'E:vent:mtvto1ts3e'I‘oo1. trettaise:eu1rre:r1t:.Event] ] E ;

done [Seq [l::3_e='JpEvent VeuseT-30.1. re—:R.a.t.se:currentEven.t]

tttartcilex‘ tt‘tO‘-.;tE3etOOl:i’1O]i‘EE1al___MOL1StETOOl] ] ;



Page 1348 of 1714

83 K‘/JCDP l til

Tlie clot gesture the t\l’ote’s raw duration, multiplies it by :9 and changes the duration

to the result. The note will add the appr0pria.te dot in the score when it receives its new duration

recog = {Seq = {view model}

: [tn dttr: [Elm rawdur} Times:3] DivicledBy:2} 1] ;

memip rer-0 ;

The tr-.art:i.p rec:-zsg statetnent :it,sell' tloes nothing ol’itsel,l‘, hut hy virtue otiit being nen—nil,

the gesture hantller does not relinquish control until the mouse button is released, Without this

statementi the mouse cursor tool (wtatever it ltanpens to he) would operate on any View it was

dragged across after the clot gesture was recognized.

8.3 it/ll)?‘

MD? is gesture--based tlrawing prograiii that taltes ii1ulti—iinger Sensor Frame gestures as input.

Theugli primarily a demonstration of n'iulti~path gesture reeegnition. Ml)? also shows how gestures

can he irteonporated cheaply and q1tiel<ly into it rton—0hjeet—0iiented system. This is in contrast to

Gl€ANl’)lVlA. whieh. whatever its merits, t"L‘.g1,Ei1'CS a great deal, of i'neel‘.-anisni (an 0i)jCCl=Ot‘lL‘.!1fL‘.{.l

user iitteifaee toolkit with appropriate l100l(S) hefore gestures can be incorporated.

The user inteifaizte to MD? is similar to that of GDP. The user maltes gestures. which results

in various geometric ohjeets being created and manipulated. The main dillerenees are clue to the

different input devices. in atitlititnt to elf ' ‘flying multiple fiii;get' gestures. VII)? uses multiple lingers

in the inanipulation phase. This allows, for example, (1 grapltie ohjeet l0 he retatetl. tittnslatetl. and

sealed nutl t aneousi y.

lligure shows an example Milli‘ session. Note that how. once a gesture has ‘seen recognized,

a<itlii:ional ringers may he hrought in and out of the pieture to manipulate various parameters.

Multiple linger traelting imhues the two-phase interaction with even inure power than the single-

path twu~phase interaction.

8.3.} internals

Figure 8.9 shows the internal atehiteeture of MDE’. The lines inrlicate the main data paths

through the various rnotlules.

Lilte the gesture~hased systems huilt using GRANDMA, when MD? first startecl, a set of

gesture training examples is read from a tile. These are used to train the muiti~path classifier as

deseriheti in Chapter 5. Mill’ itself provides no facility for creating or rtteilityirtg the training

exaitiples. instead, a separate p:mgran,t is used for this purpose.

The Sensor Fratne is not integrated with the wirttlnw manager on the lRlS, ittakirtg the handling

of its input more difficult than the hantrlling of mouse input. in particular; eoortlinates returneiil by

the Sensor‘ Frame ahsolute screen C001“4;lll‘l{it'CS in an arbitrary seale. while the window manager

generally expects window-relative eorirdinates to be Furtttnateiy, the IRIS windowing system

supports general coonlinate transformations on :1 per-winrlow ‘basis, which l‘vIl)l* uses as follows.

When started, MD? creates a win-‘slow on the screen, and reads an a1igr.=I11em’ 176 to tleterinine

the eeorclinate trartsferrnation for mapping window coordinates to screen C0Oi"£;lll‘t{iteS that rnalres the



Page 1349 of 1714

"' ER 8 A1:-PLIC/»11YON:§

Figure 88: An exanlpls MDE? session

71121.9 _/1:guz‘C consists of 512.3 pshois mica? ofan M'DP 50.551011. S'on:rc pamtls have bcz:-H I‘CfDlJC/Icd to mm’-(C

ihe inkilig :‘7).’.7f”-f? app:r7I“em‘. 37778} shows fh-9 5.I'ng:'r—> finger WEE g‘esfz1rr::. W/'7:'c"h is :?~:,~:e1"u‘ia.a’[,v' r‘/7:? sganpe

(3'l)P'.s' 8 gesfzzre. /13 1'17 (IJH the 5i,'a,':f’ of the ge5ifz:',*‘r:- gives‘ one 9z7d_pojz':1 of hire iine, WI He the atfzer

et2dp0ir7.*I1'.s s;"t'ag,_<;ea' I;-_y The g~;’€5f.LI1’iI7g J"[13{;;€-,*' aflfet‘ the gesture is t‘e(?z)gnized. As;"(:1;'1;"4ma1 1‘I1'1ge;‘s .rna_y be used

z?01:r.f1"0," file Iii;-efs ¢:'0io1‘ (ma £'[;~1‘¢:k12e.i.s'. Pane} s[;~0Ws file <71’ea1'ed1i,r2e, and file rectargie ge.s'z'z.'1‘e. .ag;a,a
£()

1113 551 flit‘ as {_§,I)4“’.s‘, /U/Lear‘ £!1<sge.s;{:,iz’¢' is I’c'3(;!,?5,:‘1]‘5é3(l‘, .add1'1i(.!Iia,I 1‘ir1gc'aI’:=‘ I1.Ia_y be bz0.',Ig}1!, intu I'.li1tE?‘E1:'?Il‘S,:"1’,ig piazza

/.0 (;r,2r_:zm1 {he z‘e¢:z‘arjgie3’s crofoz: .'fijc:1<,rzess. and filieci pmpez:f_v; as .s:¢‘2r,;w:2 ,z'r,e pane} (1.9. Pane," (E1) .s‘iz<ms the

xsircie gesfzzre, wh1'c['2 M-nzsrics a2I1a]c>g(2us1}: Pane:-I (5) sriaows 5125- {W0 finger‘ paraiieiQgs‘an1 e r-' urea. A,-"ic~1“ zize. 1'

gcsazrc is gI11'zc-ti, [W0 gcsZ'1r1-1g 1Lf1g"IS (‘0I'!iI0] [WC3 C-:2rI1cr5 crfihc Itzezraifcgram. A ddiiilfollaf fivgcr



Page 1350 of 1714

83 JMDP

Fig; (COf1tiI1li€f(i:}

1'12 the 56-1'2“1'ng plane wj./1' £11317 rsoziizoj :1’ i1'1z'1'd -';<f.-4“I}5L’ alicrmhg an ei1”£:if1zLry;12z 'a1'1c:-1 Cgazn be e11i7r;:tai

Pamgzf (1‘, :;}2r;>1./as edit CQEOE” gészfuz cc b(:z'11g11'Hc1'€ at z';:'23 1J::m’_c.:a2£é£i;,u12u'1é;’<7s_1z22j21 ./—'1!ie1‘ ijzis g::~'::LLn;a is

ecognimi Lhe graralidogzmylb Color a1)a’[fi1ériprz);13r§V1n3_}/Z)s (.'_l1}-I1>3I71‘-:ZaZ.!:\,/[YEiI7i})LI.(}af€{3’. Pand {g/‘ shzaws

fiie 1}711«.g(—::r pack gr-::4.zp} g-€}SIL7l‘€: DLi1:I‘1g & 3 pack 1'nt<—::racI1'011 5:1I Dauchm’ €11}/Voft/3e !}'};;<—: S

areg,z‘oe‘1pec1'1:75:35: s1'zjg_»’e set H—a'1e: Jim; JrE4’{“&1Ijk;, e and-::1'rcIe aregn-:3z.:;:>z—3:i I ,3-€L:+3r &)m31<ea Cart Peitiej

rs

and Iii ’ . ‘iy ofi':‘2:‘:* ,2» ~ ‘ _/ , ' ‘ 5h:::v.q'1 in 1i1‘e’il“(3I

Circle 431751’ recfiangie gzszssixzzes; (£x>2‘f;- /1:. '«/x:.>wr';§' wr:2rr:? z‘f’;c£r ,2; 1' to czaat ,o.'z‘;:~ac1'c:{i2ii:_24,u! 5.’2ap:es;, Paj::.r:>j {1'<_/\

it is 1‘cvL¥,xC;n1':g'cLi cad; ' [U155 two flag-521's bzgvczoriga azL'£a2cfK3d to Limit‘

4

s'11v\/as the LE/1-01311:;/{C?1' rotate gc'sLLz1é': A/—L’?_

rssyxstrljve ;x)1‘i2zs vmcre abs; E'<><;zc:hr;a:1' cicsigrgzial c>£je:::£. 3/ IrDw'r;g:f1'2e fifigars apart’ Iogeziixg‘

romz‘i13g szhand azfimovfng [land {he o.b,"a*t1n3_yE»3 sinL'1'£2_.r>r—x)L.z9F_Vs-::3I<—>c.Z z‘0t:7ta3’, anti z‘re311~3Jate3a’a.s

shown in pancj (7}1c fingcrs art: not .f0LiaE:z'11g tbs »: fir :t due to z1’C[a_y in gcmng the irgzxar (E33 and

z"efiz:e3."1i1;r;tl‘1ek een.) .D,?3_YK-‘.‘!7 ., 1: . , ' J foa IH‘l'at1g;’e ;’\/(>.f.s7}2rf)v.zf15u'P

zrzare (T59 ' ‘ ' ' s:*a?.'es,‘1:2LW2i.*1;:2=zneI (H). Panel (13) .350!/:vrr1<=

«»<astun3 U]i1»'3' t‘€iit'),£3T)i?.iC)1’i. the 17rr;t1H,e1?:‘. <.‘rP»;-tz'o1'z oz’ ale, jorz is 24113133 J,AV'.ii;7'\/L’;
('1

(3 1;’)1‘ee .r£rig “ LHWCEO

ihesfil zgr ~; i§£)(,‘zZi(.1’:§’r;‘S /Iz;2(‘ez'1r,ir,1'.*1z:217—2 qLH2=ztir'2«"Ls: IO be u/;\cz'o,' 5:; wfziie nr_.>vf ;; l;‘2<3‘fi(2gz:2/S z:z'owr,i;:21'I(M-5 u11donr:%

«>3: arr.-: UC.?fA‘>' Lu Ex:?1'<x1<)nE2, I'M a1;I.i'.«raA’J;' .-"'.4:1.rz<:Z (Q) s.4s(>‘.-$5 a sslaira dLzz‘z'ng; the .",t1i.c':'Ia(:.£i<);,: \-M’,ieI,r:a Im.'1y()}_.E:I2:I_i<)Ia5;

haw: [Em-1’) undorze, In :ff)is1'.'r;:1’c:-tr£'z'1z:zfic>n CI‘€:Ei?jCZT1S and Lmdixable, but ;x;1s1'Z1" 1'1 r,:h5u*":€5: are

not THS e-- gains‘ wI'7_}.:' 1‘n‘;:zzna/ (0), onlyzfle (1 :1’£5:-ms mnm'1*2 ('u1cz’c>E)a‘C1< z'op;2n-cf ), bu: 1:hose1':'eIi5 are

1' F7 fhr? pOsif1'v:7t7 5’7eyas<,11.'n?a’ :'17pan(—>/ ("H").



Page 1351 of 1714

fZ7H4P'L73}§’ 8 A1:-’I>LIC;:11YO.N':§

‘ . _ Calculate Features

Read Training Ezampies giggle Path Classifier

Decision Tree

Action Tab e

Action Routines

Sensor Frame Input
Graphics Output

i"ig11re 8.9: }‘\«i'DP internal structure



Page 1352 of 1714

8. 3. M1? P

window coordinate system identical with the Sensor lirarne coordinate system. if the given window

size and position has not heen seen hefore ( indicated by the aligntnent tile) the user is t'orcerl

to go through an alignment dialogue ltielore proceeding (th:is also occurs when the window occurs

rnovett or resizeti). 'l,'Wo dots are displayed, one in each corner of the Window, arid the user is aslred

to touch each (lot The data read used to nial<e window coordinates exactly match Sensor Frante

coorrlinates. The translbrrnation for window coordinates to screen coordinates is done hy the IRIS

software, and does not have to he eonsideretl hy the rest of the program. The parameters are saved

in the aligrnnent file to avoid having to repeat the procedure each time l\/ID? is started.3

Once in itiatizeil, the it/,ll)l" hegi ns to read data from the Sensor Franie. '1 ‘he current Sensor Fraine

scftware works by polling. and typically returns data at the rate of appr‘ox;irrlately 30 snapshots

per second. The “Receive Data” tnorlule pert"orn1s the path traclting (see section Ski‘? and returns

snapshot records consisting of the current time, number of fntgers hy the frame, and tuples

(X,y,1') f0l'-3/ElCl1 linger, (X, yf) heiiig the linger’s location in the frame. The 1' is the path identiti-gr,

deterrninerl hy the path tracker. The intent is that a given value of i represents the same finger in

successive snapshots.

Normally. MD? in its WAIT state, w tere the polling indicates that there are no lingers in the

plane of the frame. 1”Ence one or more lingers enter the lield of View of the frarne, the t:oi.L1~;(:'l‘ state

is entered. Eaeli successive snapshot is passed to the “calculate 'l‘eatut'es’" rnorlule, which perlortris

the incremental feature calculation. The CO] CT ends when the user removes all lingers front

the frame riewtield or stops moving for l50 milliseconds, (The timeout interval is settahle hy the

user, but l5tP rnillisecontls has heen found to work well.) Unlike £1 mouse user, it is difficult for

Sensor Fratite to hold their fingers perfectly still. so a threshold is used to decide when the
user has not moved. in other we rds. the threshold deterrnines the amount of tnovernent allowahle

between sutjcessive snapshots that is to count as “not riiot-"irtg.°’ This (lone hy cornparing the

threshold to the error nietric calculated during the path traclring (sunt of squared distances between

corresponding points in successive snapshots).

Once the gesture has been eollectetls its feature vectors are passed to the ntulti—path classifier,

which returns the gestures class. Then the recognition action associated with the class is looked

up in the action table and ertectited, As long at least one linger remains in the held of t/iewr the

manipulation action oi" the class is e>;ea;tuted.

Many of GRAl\ll')MA’s ideas for specit"ying gesture semantics are used in l\/ll")? Although-

l\/llfjl,’ does not have a full-blown interpreter, there is a table spccifyi ng the recognition action and

manipulation action for each class‘ While it would he possible for the tables to he eonstnictetl at

iuntinie. -currently the cornpiled into EVIDP. Each row in the entry for a class eonsists of a

linger specification. the name of a C function to call to execute the row, and a constant argument

to pass to the function. The linger specilieation deterntines which linger coordinates to pass as

additional argttrrtents to the function.

Consider the table entri for the Mill) line gesture“ similar to the GDP line gesture:

ACTION (__1iItxne:recog)

Blt11CI‘eEt ‘» (ir1‘:}Lir1e, } ,

/:in_; the W ndow often requires the alignment procedure to be repeated, at prohlern that would ofcourse
a produetiori Version ol’ the program.have to be hxed in



Page 1353 of 1714

("HAP2' 8. /EPPLICA i"i’01‘\J5

{ START(O>, B1tnSetPoint, },

Enn_ACTIon

ACTI ON . .1\TEn1an ip }

{ CURRENT(O), BltnSetPoint,

{ CURRENT(l), BltnThickness,

{ CURRENTCB), BltnColorFill,
EBTI3 ACTIC}l\l'

When a tine gesture is recognized, the __LI1\1"Erec:-Qg action is executed. its that iine results in

the call B.l.tnCrea (1..-ine) being executed. The .F1i,I.JN'AYS means that this row not associated

with any particular finger, thus no finger eoorttina.tes are passed to B1.tnC31feate. The next line

results in B1 t:nSet:PoiI1t: (O , X05, ,,T>/its} being ttalletl, where (X95, yes) is the initial point of the iirst

finger (finger it) in the gesture.

For eaeli snapshot after the line gest re has heen recognized, the __‘LINEmani,p action is

e.xe-sated. The first line causes Bltriset Point (1 ,. Xg(,_}’{)_r-5 to he ¢I'€ilit3d. where (39,, y_q,;,‘- is the

current location of first finger (ringer 0). The next line causes 81 t.nThickr1e:ss {O ,. X1,.;,_y1L—}

to he calletl, tfX1,,,_y'-1 C) being the enrrent location of the seeontl tingert Similarly, the third line «causes

BltI1Col<:>rFill (O , ,t';(.,‘/tgc) to he eaileti.

If any of the fingers nanietl in a line of the action are not actually in the field of View of the

frarne, that line ignored. For example, the tine gesture in i‘viDR as in GDP, is a straight

stroire. lninietliately after recognition there wiii only he one finger seen hy the fratne, namely finger

ztero, so the lines beginning CU-EtREt\IT(l) and CURRENT (2) will not he executed. lf a second

iinger now insertetl into the viewileltl, both the CT.)'R1+‘<EN'i‘ ( O) and CUE-3REN"I" (1) lines wiil be

executed every snapshot. if the ini ti ai finger is now removed, the C'U1'?.REN’l‘ ( Df line wiii no longer

he executed, until another finger is placed in the viewiieid.

The assignment of finger numbers is done follows: when the gesture tirst recognized, each

finger is assigned its index in the path sorting Section 5 .2). During the manipulation phase,

when a finger is removed, its number is tieea’, but nnnihers of the reinnining stay

same? When a. iinger enters, it is assigned the smallest free nuinher.

The sernantic routines (eg. Blt:11ColorFi1l) communicate with each other (anti successive

calis to themselves) Via shared variables. All these functions are defined in a single tile with the sh aretl

Variables declared at the top. When there are no fingers in the Viewi‘iele;l, the eail B.i.tnR.esei:. C )- is
made; its function is to initiai the shared Variables. in i\/iDi’. all shared Variables are initialized

hy Blt'.t1R€S'8 t: t ) ; froiri this it follows that the interface rziadeiess. Another system might have

some state retained across calls to B t: ' I} ; for eztarnpie, the {torrent selection might be

maintained this way.

The Bltn. . _ functions inanipulate the drawing eiernents through a package of routines.

act’-aal irnpiernentation of those routines is similar to the iniplenientation of the GDP objects. Rather

than go into detail, the underlying routines are St!l’l]£l'i&iiZ€d. MD? declares the foiiowing types:

typedef enum Nothing, Line , Elect ,

Cirtsle, Sei:OfObjeci:s } Tvpe;
.4



Page 1354 of 1714

8. 3. M1? P

typedef Str1lCt ,4. ac /' ir-}3leme1”lt ,-

typedef struct /'~:< / } $Trans;

Assuins the tlilimviiig d€i.?1i11"ci€i0i’ES for exposiiimiai purposes:

Element e; _/-3:< 3 g*1"a‘,r)i;1':: zzigjerrt /’

Type type ; /-‘§< the 2772:? Ufa gzuapiiic :3bj6z?f>é= /

int; X, y ; /4:: zraoxdjna fies =¢= ,/

int. 13; /4< 21 pafzjlrzuizibezi‘ 0. 1, f).T'2, .3’-i</'
int. thickness, Color;

BQOL b;

Trarla tr ; /it 3 1ran'.s?f0rI;Ja ticmmamx :4< /'

Tbs: Element is a poimer to a smicture l‘=';ipI‘€Sf:Uli1’1g an eieinent of a cirawing, which is eithcr 3

Line, React” Ci.1.‘c.":.e oi Setxflfcbj acts. The Element structuife inciudces an array of points

J,'0i'Ei1osc aleiiiant types which need them. A I..-.1'.:t1e h twn pm‘ ms (Gus €11{ip()i]1iS), :1 Rest has U'1}‘¢:)C

paints (relfiresenting Ehftltt comma, thus a Beat. is aictuaiiy 3 parailaiograni), and a Circle has

two points (the, center and 3. point on the circle). A Se'i:.OfObj ea-Ctzs cniitsains a list oi‘ component

elements which inakc up 8. single csimipositc cicmcmi

Element Si:1\i‘ewC}bj (type) adds 3 new element at" the passsd type to the drawing. and

mtuifns :51 hzmdie. ifiiiifiiiy, all the p(1iHtSi11thi? eleinent are riimkcci uni,t1iii.a]ized. Any eienient

with uiiiiiitializcci paints ii iii not be drawn, with the (iXCCpi‘.iO1’1 of Rect obiscts, which will

be drawn paiaiiei to the axes ifpoini 1 is uniiiitiaiized.

StUpdatePoint {e , p, x, y) chaiiges point p ofeiement <3 :0 be (X, 3;) . Retums FALSE

iff ;~: has no point p.

S1:GetPoir1t (5 , p , Sac, £432) X and y to point p of element e. Returns FALS‘i:'i iff e has

no point :3 or point p is uninitialized.

t,De.1ei:.e (E5) dcictcs <::bjcct e from the drawing.

(:3 , 1:2) makes object e filied if b is TRUE, otiienvise anakies e unfiilcti. This mily applies

in circles and rectangies. which will be only have Eheir borders drawn if unfilled, otherwirse
will be “colored in."

StThickr1ess (5 , 5 the thickness of borders to 3:. Only i1ppii6F~.idf3 circles, rectzingles,
anti lines.

Sttfolor (e , color) changes the coiorm’ e :0 color, which is cm index into 3 standard mini

map. if e is a set, ail inemners of e are changed.

St'.E.‘1'ansf-arm (e , tr) §ipp,Ut)S the tt:msfom1a.ti0n 1:3.” tn in gi:ncra.1, tr can <::iu.'~;c: tr3.i1si,a—

ti0}’1S,}’0Ii3.€'iO1'iS9 and scaliiigs in zmy<:mnE:ai1ir.tion.

void St Novea ( e , x ,. y) 3. special crass <:r1'StTransform wiiiczii translates by the vecttar

(X, y) .



Page 1355 of 1714

l CH/if’2' 8. /iPPLIt,"A fiI01‘\J5

Stflopyhllen“-.e1*.-t (e) adds an identical copy of e to the drawing. which is also returned. if e is

a set, its elemertts will be recursively eopied.

St 13 i ck ( x , y) returns the element in the drawing at point (x , 3;) , or NULL if there is no eieirieiit

there. The topmost element at (x , y) is returned, where elements created later considered

to on top of elements created earlier. The thicltness and “tilled-ness” of an element are

eortsitieheci when determining if an elernent is a.t (X, y} .

Stl-Iigtilight (e, 19) turns on highlighting of e if b is TRUE, off otherwise. Highlighting is

currently iniplertiented hy i:=lini<ing the object.

Si:Ui1HighlightA1l if ) turns off higiiiigiitiiig on all ohjeets in the drawing.

void S‘i:Redr.‘aw ( ) draws the entire picture on the display. Dtitrhle buft”eijug is used to ensure

stitajtoth changes.

S‘i’.CheCk‘pC>i1’1t ()2 the eurrertt state or" the drawirig, which can he iater restored Via
St:.Ur1cioI\/tore.

Sr,Ur1d0t~’Iore (10) changes the drawing to its previously Ci"i€Ciq’)0il1it3(,l state (if b ‘I‘RUE). iflaeh

successive eaii to Sttjndotvloiie (_ ‘I'RUiEi) returns to a previous state of the picture until the

state of the picture when the program was started in reached. Si2U1’1CtDiViQ2.‘€s(FAI.=SE)

pt;’.l'f0I‘l’11S a ratio, undoing the effect of the last S3tUndoMore ('.t‘RUE)- . Sutscessive calls to

St;Ut’.tdoI\/tore (FAI.lSE) wi it eventually restore a drawing to its latest eheel<pointed

’t"ra:r1s 2?x.].1.Qc:’_t’rart() alioetttestttrunsfemizttion,whichinitializedtetheidentity trenst"orma-
tion.

Segtt1entTrai1 (tr, :~;O , yo, x1,yl, X0 , YO , , Y1) sets tr to {H trttnsforniation con-

sisting of ti rotation, followed by :1 seaiiiig, followed hy transhnion, the net effect of which

would he to map E‘. line segriient with endpoints (xi) , yd) and (X1 , 7,-"Zt.} to one with end-

points (X0 , Y 0) and , Y1) . Other tifanstbrmatioit ereatiou furtetions exist, hut this is

only one used directly by the gesture serrranties.

Jotf,‘ (Color, y, text) draws the passed text stririg on the sereen iii the passed eoior, at

the point. ( 7., y) . The text will be erased at the next eztll to St:.R‘ed1faw.

8.3.2 3/EDP gestures and their serriztiities

that the hrisitt primitives used by MD? have been rleseij bed. the actual gestures u sed, a.rtd their

eiieet and itripietitentaitioii are discussed‘ Figure ééfttl shows typical exaiitples of the MD? gestures
used. Each is deserihed in turn.

Line The line gesture creates a line with ejtne endpoint being the start of the gesture, the other

trzicliing iitiger 0 sitter the gesture has been recognized“ Finger 1 (which must he hrougiit in

after the gesture hats heen recognized) controls the thickness of the line as follows: the point



Page 1356 of 1714

f

L»-”37‘~=-«-

Pa ral le1.ogram

Undo

Figure 8.10: MD? gestures

where finger I first enters is (i‘iSfTii£Ey€(i on the screen; ihe 1’hi(€i{I1€SS of the line is §)i'op<:ir1'iem11

to me c;Eiffei'enee in _g./ 4;',00X"£;§ii1£‘.i’C of finger Y3 eui'ren=. point am! initial point. Finger 2 csimirels

the color of the line in 3 similar manner. (I Iere a color is represented siniply by an index into

a color niap.)

The action table entry for line has already been listed in the previous seetimi. The C routines
eaiied listed here:

(airg) {

= StNewO1:>j {a1:'g) ;

szh-ouJ.o'iCheckpei.nt TRUE;

}

B1t11SetE»‘oin%;.(ax‘g, gx, gy)

if (E) StL;E};>datePo111t (E,

}

B1tnThiCkness(arg, gx, gy) { int
if(t:>< = »»-1) tx :

if(iE) return;

X = arg==O ? abs(tx~gx) : abs(ty~gy);

t = Scale(x, 1, 2, 1, 100);

StThickness{E, t);

Jo‘tC'<REI-D, tx, ty, ? "T2<.’.%d"



Page 1357 of 1714

("HAP2' 8. /EPPLICA .T1’01‘\J5

JotC(RED, gx, gy+lO, "t">;

}

BltnC0lorFill(arg, gx, gy) { int color, fill;
if(1E) return;

if(cfx == M1) cfx = gx, cfy = gy;

fill : Scaletefx — gx, 1, 10, -1,

E3t}'~‘ill(I-E5, fill >= 0);

color = Scale(cfy — gy, 1, 25, -15,

ieicolor < 0) color : wcolor;

else if(eQlor == 0 "

StColor(E, color);

JotC(GREEN, cfx, cfv,

J0tC(GREEN, gx, gy+10,

) color = L;

I1um,. den, low, high)

3; = i #1 num;

int k ~ j >= 0 ? j/den : «(<—j)/den};

return k < low low : > ‘nigh ? high : 1:;

}

The BltnReset () function E to NULL, and sets txe ty, Cfx, and cfy all to -1.

B1t.n,Reset () calls aeckpoint. () if shou1dCheci~<:po.1'.nt TRUE and then sets

shou.1tc‘aCheckpo:i.ni:. to

The futtetitms BltnTh1'.ck.ness and B].t1"-.Cc>1orFi..“1.l provide fee,db:«1c}»: to the user by

jetting some text (‘"TX.’" and “C{-’’’, respectively) that fmdiea.tes the iocation that the finger first

entered the Viewfield. Lower ease text (“t” and "ef”) is drawn at the appropriate tingets,

indicating t0 the use: w xieh finger is eonttollmg which parameter.

Rectangle The reetangie gesture wmks. siniiiarly to the tine gesture, V fter the gesture is recog-

nized, a xfeetangie is -created, one <:<_m1er at the starting point of the gesture, the opposite comer

traekittg finger 0. Fingers 1 and 2 control the thickness and eoior as with the fine gesture.

Finger 2 also Controls VVh€fl1€[ at not the rectangle is filled; if it is to the left Of where it

initially t311it31‘C4;L the teetattgie filled, 0ihC1“\/v’iSt3110i.

ACTION(_RECTrecog)

{ ALWAYS, B1tnCreate,

{ START(G), B1tnSetPoint,

ENDMACTIQN

ACTION( RECTmanip>

{ Cfieafimeto), B1tnSetP0int,
{ CURRENT(1), B1tnThickness,

{ CURRENT(2), B1tnCQloIFi11,

END_ACTEON



Page 1358 of 1714

8. 3. MDP 191

‘Circle The eireie gesture causes a circle to he created, the stalting point of the gesture being the

center, and a point on the circle etmttoiied by finger 0. Fingers 1 and ‘.2, npetnte they do in

reetangie gesture. its semantics of the t';iI't‘;Ee gesture are a} meet. identieai that :31," the line

gesture; and are thus not .':;h0wn here.

Edit mint‘ This gesture Eets the user edit the C0301‘ and “fiEEed—ness” of an existing object. Beginnirtg

the gesture cm an object edits that object. Otherwise, the us<:t'n1<:3v-es firtg-31' (3 until he touches

an object to edit. Once selected, finger 0 determines the eoior and hi! properties of the object

as finger 2 did in the previous gestures.

ACTIGN(_COLORreCOg)

{ sTARTtO), BltnPick, 0, },

END_ACTION

ACTIGEG ( HCOLORma:r1ip)

{ CURRENT(O), BltnPickIfNull,

{ CURRENTCG), BltnCol0rFill,

END_ACTION

mick gy);
px = 9x, py = gy;

}

Bltn?iCkIfNull(aIg, gx, gy) {

ittae) B1tnPiCk(arg, gx, gy);

}

Copy The copy gesture picks an element to be copied in the same manner as the e=dEt~c0ior gesture

above. Once e0pied,1inget‘G drags the new Copy around, while finger 1 can he used to adjust

the eoiur and thickness Of the cepy.

ACTI=’)t\E (____-CC)PY1:ecog}

{ sTART<0>, Bltnpick, , },

ENDMACTION

ACTION (_“C‘OPYmanip}

{ CURRENTCG), BltnPickIfNull,

{ CURRENT(O), Bltncopy,

{ CURRENT(O), Bltnmove,

{ CURRENT(1), B1tnColorFi11,
END ACTION

in the interest othtevity the (7 routines will ne longer be listed; since they are very sh11ItaIt<::

those already seen.



Page 1359 of 1714

192 [HAP2' 8. /EPPLICA fi'1’01‘\J5

I\’l(>ve Move is :1 two-finger “pi11chi11g” gesture. An objeci’ is picked as in the previous gestures,

and then tracks finger? U.

ACT:oN(mM0vErecog)

{ sTART<0),

ENDWACTION

ACTION(mMGVEmanip)

{ CURRENT(D), BltnPickIfNu11,

{ CURRENT(O), Bltnmove,

END_ACTION

Deiete The deieie gesiuras picks an Obj€CEjLESE1ik¢i5€h€ previous gaisstures, and than daisies it.

ACTIoN(_DELETErecog)

{ START{O), - - ::t 0

END_ACTEON

},
1

ACTI ON (_DELETTjmanip)

{ CURREN?(0), BltnPickIfNull:

{ CURRENT(O), BltnDelete,

ENDWACTION

Faafliieiugram The parailemgram gcs.m1'c is twcwfizlgcx‘ gesture. (D119, comm‘ of the paraliciog ram

is dCE€)ITl1i§’if?d by $516 initial, iociition of fingers 0; an §.idj§;iCf.’.E}t corner tracks 0., and

opp-Jsiie comstr tracks finger 1. Addino a ‘third finger (finger 2) moves the initial point of the

pa1‘a£1el0gmm.

ACTION (__PARAreCog‘)

{ ALWAYS, BltnCreate,

> START (O) , Bli:nSet.P<:>in‘t ,

END’ACTION

ACT I ON (_PARArn5a11 ip )

{ CURRENT(O), BltnSetPoint,

{ CURREN?(1), BltnSetP0int,

{ CURREN?(2), BltnSet?0int,

END_ACTION

Rmme Roiate is a aw<)—fi1ager gesaura. An <>‘§7je-1:1 is picksd with either finger. At the time of the

pick, each firagcr bcconics attached to :1 point on the picked niajcm. Each finger than drags its

1"esp<:<étiw:p<3int; the object (£3.11 €211.18 be mtatcd by rotairing the firatgersy scaled by naovirag

fmgrztrs apart or together, or transiaéed by m0‘vi11g1hc fmgstrs in parallel‘

ACT1oN(_aoTATErecog)

{ STARTCO), BltnPick, 0, },

{ STARTC1), BltnPickIfNull, 0, },

END_ACTEON



Page 1360 of 1714

ACTION (_RO’I‘ATEIma11ip)

{ CURRENT(0), BltnPiCkIfNull,

{ CURRENT(1), B1tnPickIfNul1,

{ CURRENT(G), BltnRotate,

{ CURRENT(l), BltnRotate,

ENDMACTION

Pack The pack gesture is 3. three--tihget gesture, Any objects touched by the any of the fingers are

added to at iiewiy created Scztofffibj eat :3.

ACTIGN(WPACKreCOg)

END_ACTION

ACTION (__PACKmariip }

{ CURRENT(O), B1tnPiCk,

{ ALWAXS, B1tnAddTQSet,

{ CURRENT(l), B1tnPick,

{ ALWAYS, BltnAddToSet,

{ CURRENT(2), B1tnPiCk,

{ ALWAYS, BltnAddTQSet,

sNamAcTIoh

Undo The undo gesture is aiso a thi‘ee--finger gest'tii“e, hzisieaiiy a “Z” made with three fingers

moving in pamiiei. After it is i'eeogrii;:ed, iitovihg finger 0 up causes more and. more of the

edits to be undone, and nioviiig finger‘ 0- down causes those edits to be redone.

ACTIoh(,hNDoxecog}

{ CURRENT(O), B1tnUndo,

END_ACTlGN

ACTI ON t__UNDOma:1 ip )

{ CURRENTCD), B1tnUndQ,

Eho_ACTIoh

3.3.3 Biseussioii

MD? is the only system imowii to the author which uses rioi1—DataGiove muhipie fii1gei' gestures.

Thus, £ih1“‘ie‘f discussion of the gestures themseives is \7~/EtI‘E'£mt€£i.

MDI”s single finger gestures are taken directly froth GDP: After recognition, additionat tirigers

may he hrought into the sensing piahe to eoirttroi acittitioiiai p3.i‘a.metei's. Wherever an additioitat

fiitget is first brought into the sensing pttme becomes the position that gives the cuireiit Vaiue of

the pamiiietet which that finger controls; the position of the tinge: relative to this initial position

deteiiiiines the new vai-.ae oi’ the paraiiietei. This ietative eoiitroi was felt by the {1lEi.i10i' to be

awkward than other possible schemes, though this of coui'se needs to he studied more thoroughly.



Page 1361 of 1714

l94 CH/lP2' 8. /lPP.l.ICA .T1’01‘\J5

The multiple linger gestures are designed to be intuitive. The parallelogram gesture is, for

example, two lingers making the rectangle gesture in paiallel. move nesture is meant to

a pinch, wlterehy the object lotielietl is grabbetl and then tlraggetl arounci. Tlie two linger rotate

gesture allows two -zlistirict points on an ol3jet;t to he seleetetl ttarefiilly. During the manipulation

phase, eaclt of these points tracks a tinger. allowing for very intiiitive translation. rotation, and

scaling of the object. three linger Lmtio gesture ititetided to simulate the use of an eraser on
blaelchoarrl.

The Sensor Fraine is not a perfect device for gestural input. One problem with the Sensor Frairie

is that the plane is sliglitly above the surface of the screen. it is tliflicult to precisely pull a

linger out \ Iithout changing its position. 'l'l’1is often results in parameters that were earel’uil}/ adj usted

tluring the inanipuiation phase of the interaction being changed aeeitientally the interaction ends.

is problein happens more often in multiple finger gestures, u/here? due to problems with the Sensor

i:l“31ll’l-5.‘, removing one finger may change the reported position of other ‘ringers even though those

lingers ltave not moved. Also, it more tllfllC‘Ulll to pull out one tiiiger carefully’ when other lingers

niust be kept still in the sensing plane. Finally, it does not take very long for a gesturer’s “rm to get

tired when using a Sensor Prairie attachetl to a Vertically mounted display.

in MDP. the two~phase llllt':l‘€‘:1l3ll0l'l tecliiiique is applied in the izontext of multiple lingers. As

each iinger’s position represents two degrees o l‘ lreetioni, niuiti—path interactions allow many more

parameters to he rnanipulateti than (in singlepath interactions. Also. since people are used to

gesturing with mo re than one finger, multiple fingers potentially allows for more natural gestures.

Even though sometimes only one or two fingers used to enter the recognized of the gesture,

additional fingers can then he utilized in the nianipulation phase. result is a new interaction

technique that needs to studied further.

8.4 Conclusion

This ehapter described the triayrsr applications which were built to Cl€lll()l'lSll”l1l€ the itleas of this

thesis, Two, GDP and GSCORE were built on top of GRAl_\ll‘)l\/EA, and show how single—path

gestures nlay be integrated into '3/lVC—haserl applications. The tliird, l\rll'}l’, dernonstrates the of

rnulti~path gestures, and sltows how gestures may be integrated in a quick and dirty fashion in a

non—objectetl~oriente<i context.



Page 1362 of 1714

Qhsptet‘ 9

EVt&iEEfifi%§§

The previous etiapters repeit on some algorithms and systems used in the construction of gesture-

hased applications. This chapter attempts to evnhtnte how well these algorithms and systems work.

When possible. quaiititzttive evzthizitions are made. When not. subjective or anecdotal evidence is

presented.

9.}, Basie singte-«path reeegiiitieit

Chapter presents an algorithm fat‘ chissflyirig siiigie-path gestures. In this section the p£3t’f(31”1’l1Et1’tCC

of the algorithm is 1’t1C£tSu!”t3d in at variety of ways. First, the recognition rate of the Cii;1SSififtt‘

is measured, 21 function of the iittniher of eiasses and the nurhher of training examples. By

exaininiiig the gestures that were ntisetassitied, vaiions sources 01' t31‘E'0fifS utieoveteti. Next, the

effect of the rejection paranieters on eiassitiei' petftnnnaiitx. is studied. Theii, the etassifier is tested

on ti ritmihet of different gesture Firiaity. tests are made tr» detietmine he-w welt a etassitier

trained by one person recognizes the gestures of another.

9.1.} Reeoghititiri Rate

The zmirigrtitian rate of 21 eiassitier is the fraction of exztmpte inputs that it correctly eiassities. In this

section. the r=‘,eogiiitioii rates of a num of etassifiers trained using the algorithm of Ch aptei‘ 3 are

measured. The gesture etasses used are drawn from those used in GSCORE (Section There are

two reasons for testing on this set oi’ gestures rather than ethers discussed in this dissertation. First,

it eortsists of ti faitiy tnrge set of gestures (30) used in :1 real application. Seeoriti, the GSCORE. set

was not used in the developrnent -:31‘ the debugging of the ehissiticatiort software, and so is unbiased

in this respect.

SRAN DMA pmvides a t'a.v:iti ty through which the ex aifopies used to trai n a etassitier are classified

by the classifier. Wh tie running the training examples th rough the classifier is useful for diseoveriiig

ariihiguttns gestures and cteterininiiig 2tppi'0xiiiiate1y how well the classifier‘ can expected to

pertmiii, it is not a good way to irieasure recognition rates. Any trnirrahie eiassiiier will be biased

toward recognizing its training exanipies C0tT€CEiy. Thus in at} the tests described heiow, one set of

195



Page 1363 of 1714

CD’-I1-iF2’}E'R £2 E l/ELI U/1 IJV

7;___::=

‘Jpti’: dowrttie

Figure 9.1: GSCORE gesture classes used liar" evaluatirm

example gestures is used to train the classifier, while aitether, erttirely distinct, set of examples is

usetl to evaluate its f)(’,1'f0iT11EiIlt.?t’)i

Figure 9.} Sl1()WS examples of the gesture used in the t’it'st test. All were €:t‘1let'€£l hy the

author, ttsirig the mrtuse and computer system eleserihetl in Chapter 3, First, l00 examples of each

class were entered; these formed the training set. the author entered 100 more examples of

each class; these forrrierl the t'es{1'ng' ye./,. For both gets, no special attempt to was made to gesture

carefully. and obviously peer‘ examples were not eEimiha.tetl.

There w I10 elassiiieatieti 01' the test exaiirples they were entered; in etl1et'w0r'(ls, no ieeclbael;

was providetl as to the eerreetitess of each example immediately after it was i3I1'iEl'€d. Given such

feedhaelt, a user would tend to adapt to the system :11'Kl improve the reeogrtitiott of future input. The

test was tlesignetl to eliminate the effect of this atlaptatirm en the recognition rate.

The performance of the statistical gesture I‘t1COgi}lZ(’)l' depetttls on number of factors. Chief

among these re the number ef ‘(G be discriminated be-tween” and the number of training

examples per class. The effect of the rttiriiher of elasses is studierl by building recognizers that use

only a subset of eltitsses. ht the experiiiierit, a class Slit? 01' C relets te a -classifier that attempts te

discriminate between the first C classes iii figure ‘ll. Sithilarly. the effect of the trairiihg set size is

studied hy Varying E, the nttttther of examples pet A given value of means the classifies‘

was trairietl on examples l thr0ugi1Eef the training data for each Gf Celasses.

Flgttre 9.2 plots the reeogrtitieh rate against the number of classes Cf()l'Val”lO11S traittirig set sizes

E. Each point the result of elztssifyiitg ltltl examples of each of the first C classes. irt the testing

set, The rturitber of eerreazt elassiiieatiohs is -divided by the tetal nttrtiher of elassilicatioris attempted

(lllt) C; to give the reet:-gmitioix rate. (Rejection has been turned ell‘ for this e_xper'ime1tt.) Figure 9.3

shews the results of the same experimertt plotted as reeegriitioii rate versus E for various values of



Page 1364 of 1714

BA SIC SIN £.;’:':'»-PA H1’ 13560 G JWTIOJV

95

97¢ correct :

94

number of classes

‘Figure 19.2: R_ec0gniti<m rate vs. raumhczr of

5 (:}aszses —
classes

11 ciasses
15 Clasases -
20 classes
30 classcs -

30 40 SD 60 70

training exaxnples per class

Figure 9.3: Recognition rate VS. {mining set size

5 exampkts
10 cx;1ta:pi,<t:;
15 cxzampgas
20 exaxnpies
30 -
50c—)xampies - ‘ ~



Page 1365 of 1714

Cjiflllifiil-E1“.R 9 Elf/lLi’Jz5lIYO1\/'

L,.

lri general. the data are not too surprising. As expeetetl. recognition rate increases as the training
set size increases. and tleereases the number of classes increases. For C 2 30 -classes, anal E 2 alt}

examples per the recognition rate is ‘}6.‘}‘%. For C 2 30 and lit the rate 95.6%. C l0

and 40 gives a rate of 99.3%, while for C ll) and E ll} the rate is 9'7. %.

Of practical significance tot‘ C=R/—xNl)i‘vlA users is the riumher of training examples neetletl to

give good results. Using 2 l5 examples per class gives good results. even for a large nurnher of

R.eeogniti<)n rate can he rnarginally improved by using E 49 examples per class, above

which no significant iniprovement occurs. 5 2 it) results in poor perloriiianee for more than C ll)

lt eoinfeiting; to know that GllANDi\/IA, a system tlesigrietl to allow experimeritation

with gesture—baser.l iiiterfaees. perfornts well giveii only l5 examples per elass. This is in iiiarketl

contrast to many tr-ainahle classifiers, which often require huiirlretls or tliousanrls of examples per

class, precluding their use for casual experimentation {l25. 47].

Analysis of errurs

lr is enlightening to examine the test examples that were miselassitletl in the ahove experiments.

Figure 9.4 shows examples of all the lrinds of miselassifieations by the C 30. E 40 classifier.

ot every rniselassitieation is shown in the figure. but there is a representative of every A elassilied

as B, for all A B. The label "A as B (K H)” indicates that the exaniple laheletl as class A in the

test set, but ciassilietl as B by the eiassiiier. The 1.: iritlieates the number of times an A was eiassilietl
as a B, when it is more than once.

The following types errors can he ohservetl in the figure. Many of the miselassitieations are

the result of a e0t11hinali<:i1i of two of the

Poorly tlrawn gestures. Some of the mistakes simply the result of ball drawing on the part of

the user. This may be due to carelessness. or to the awltwartlness oi‘ using a mouse to draw.

Examples irieliule uptie." “Zr as sharp." “Sr as Er,” aml “delete as ltjtl." "Felef as dot”
was due to an accidental mouse eliel<. and in “tlelete as 8d" the mouse button was released

prematurely. The exainple “key as delete” was likely an error eausetl hy the mouse hall not

rolling properly on the tahle. “4u as 81:” and “l Eatl as clelet-3” each have extraneous points at

the end of the gesture that are outside the range normally eliminated by the preproeessing.

‘”4r llir” is drawn so that the llrst comer in the stroice is looped (figure 9.5): this causes the

3.€:LI11l1ll1lEilCf.l~§;lfl gle features fg, fgp, and 1"; j to be far from their expeetetl value (see Section
33).

Poor mouse trashing. Many of the errors are due to poor traelong of the mouse. Typically, the

problem is a long time hetween the first mouse point of ti gesture and the second. This occurs

when the lust mouse point causes the system to page in the process eolleetiiig the gesture; this

may take a substantial amount of time. The untlerlyi ng window mariager interface queues up

every mouse event involving the press or release of a button. but does not queue successive

thouse--movement events, choosing instead to keep only the most recent. Beeause oi’ this,

mouse movements missed while the process is paged in.



Page 1366 of 1714

9 1. BASIC SING-LE»I3<UH I€E'C7OGN1’2'}’ON

4d[x5) 2d as timesig 4u as Bu
Su as uptle

ti esig as 2d(x2)

{K
‘ i
uptie as 8u(x83 « ' I

delete as 32d

key as 16d(x7}

//-~1 r””W' \

uptle Q3 gr uptie as Zr
K

uptie as move(12)
downtie as Bd(X3)

Figu re 9.4: Mi zissificrd GSCORE gé3S§1l1”€S



Page 1367 of 1714

C}.{r4'tPl’E-‘R 9 E $5/lLU/12’l’O1\/'

Figure 9.5: A looped corner

1’he left figure is a nzagniflca it/on afa nzfscia ssiflr:-d " /Zr as 1 C1” " she W17 1'17 thepr-r:-V1'au5 figure. The portion ofthe

gesture e12a:1'c-sea’ in the z“eCIaI2gie1'3as been Copied ancz’ 1' ts aspect ratio ciiajiged, 1"esz:1'I1‘13g in I12-3 figure on the

z’ight. .45, r:.'«:r1.i.reet1see.=;, the u).me1; tw';ic,"1si;w1iu’1.rea sirzl-9Ie.a.U(t,n-'e, :'.s1u(.r_,'}eu'. Il‘u'ste.sz1,’tetfi11ii1eaz;gIe—l.raset1

.r'z1/‘es’ I;-a viz;-g Va itzes 51‘gt)i!',3'cantZv di1?‘ete,r2f fkmn the a verage 4 l“ ('11/‘e, .t;'2u.s‘ the 12;-1‘; tiassifica Ki013-.

la “Zu -4-ti,” “Ell as /-lcl,” as 4d," ‘"81’ ltd,” and “timesig 2d” there no point lsetween

the initial point and the first corner, probably due t0 the paging. This interacts badly with

the features I’; and f2, the cosine and at initial angle. Features ft and .1”; are eoiiiputecl

from the first and thi.ru’p0ii1t; this usually results in a hetter nteasuremerlt than the tirst

anal second point. lu these cases, however. this results in a peer measurement, since the third

point is after the earner.

“$1” hat” was the result of a vety long page in, during which the author got impatient and

jiggletl the mouse.

Amhigtwtis classes. Some classes are very similar to each other. and are thus liltely to he mistakeit

tot’ each other. The l4 miselassitleatiohs cal" “l‘*'elel‘ 81'” are an t3}tEEl‘llpl€. Actually. thes

may also he censitlered examples of peer mouse traehiitg. since points lost item the atitrniall

rountlecl top of the Fclet" gesture caused the confusion. The mi stakes “uptie as Ru," and “taptie

as llclef” are also examples tn" ambiguity.

B

V

lcleally, the gesture classes of an application sheuld he designed so as te he unambiguous

as possible. Given nearly ambiguous cl asses, it is essential that the input device he reliable

and ergtmumically sound possible, that the features be able to express the differences.

and that the tleelder be able to discriminate between them. Wltheut all of these pmperties, it
is inev:ital:>l,e that tliete will he substantial eenlusion between the classes.

lnatlequaey of the feature set. The examples where the S~EiCO11(lU’1(JttS€ puizitis the first corner show

one way in which the features inadequately represent the classes. For ertamplc, the “Er as

slial'p” examples appear to the system as simple left strokes. Sometimes, a small entry‘ in

cltawing results in a large error in a feattire. This occurs most often when a stroke doubles

heel: on itself; a small change results in a large t’liil‘erer1ee in the angle features fg, flu, antl

1'“ (see iigute 9.5). The mistalses “4-r as lht” and “lfatl delete" are ill this categt:-rye “lets

as 813°‘ and “lfiu as 321.1” point to other places where the features may be imprevetl.



Page 1368 of 1714

9 1. BASIC SINC—LE~B<lIH Is’_E'COG]\/1’3!'l’L’)J‘~J Etll

mapping from gestures to features is certainly not invertible; many tlifterent gestures

might have the same feature Vector in the current sehenie. Zlhis results in ambiguities not

tine entirt-ly to siin:ilarities between classes, hut tlue to a ieature set unable to represent the

tilfitlttlnlfti. Exainple loo” is an iilustifati on of this, albeit not a great one.

lnatlerinaey of linear, statistical classification. Given that the tlitferenees between classes can he

expressed in the feature Vector, it still may he possible that the classes cannot separatetl

Well linear ths-eriiriiitation functions. This typically comes about when a class has a feature

Vector with a severely non--muttivariate--normal distribution. hi the current feature setr this

most otiteri liappens in a elass where the gesture folds hack on itself (as (liseussed earlier‘).

eausing ft), and thus the entire feature vector. to have 3. hiruotlal tlistriliution.

averaging of the covariance matrix in essence implies that a given feature is equally

important in a.ll classes. in the above class. the initial angle teatuifes are tleeineri iinportant by

Cl3.SSiiilt3l'. When eornpoundetl with errors in the traeitirigr this leads to bail perl'ot'rita:nee

on examples such as “uptie as beam“ and “uptie as move." it is possible for a linear elassitier

to express the perelass importance of features in a linear classitier; in this is what

is done by the neni'al~netwoi'l<-like training proeetiui'es (a.!t:a hack propagation, stochastic

gratlient. proportional increment. or pereeptron training).

lnatleuuate training tiata. Drawing and trat::l<ing errors occur in the training set as well as the

testing set. {ilveii enough good exaiiiples, the effect of bail examples on the estimates the

average eovuriariee matrix and the mean feature vectors is negligible. This is not the ease

when the nuinher of examples per -class is very small. Bad or instttiicient training tiara causes

hail estimates for the elassilier parameters, which in turn causes classification errors. Tire

gestures elassitietl correctly hy the C 30, E 40 classifier? but ineorret*.tly hy the :17 30,

: ll} eiassitier are examples of this.

Analyzing errors in this llisliion leads to a number suggestions for easy improvernents to the

classifier. Timing or distance information can be to decide whether to eornpttte ft and f2 using

the lirst two points or the lirst and third. points of the gesture. l\/louse events could be queued up

to improve pei't'ornia.nce in the presence of paging. Some new features can he atltletl to improve

recognition even in the Iaee of other errors; in particular, the eosine and sine oi‘ the iinal angle oi‘

the Gesture stroke WOt)l{i help avoid a number of errors. These Il10(llfl{'8[lO1"i are left for future work,

as the author, at the present time” no desire to redo the ahove evaluation using t3(lOt) €)1'>(:3tiTl]’?l€S

froin a different gesture set.

One error not revealecl in these tests, but seen in practice. is rniselassification due to a premature

timeout in the two-phase interaction. This results in a gesture heing classified before it is eornpletely
enteretl.

9.1.2 Rejeetinii parameters

Section 3.6 considered. the possibility of rejecting a gesture, i'.e. choosing not to classify it. 'l‘Wo

paramete " potentially useful for rejection were tleveloperl. An estimate oi" the pI<Iil)Ell3lllt}' that

a gesture is classitieti unambiguously. P. is derived frorn the values of the _per—elass evaluation



Page 1369 of 1714

C}.{r4'1f7fi’E-‘R 9 EV/4tLL7z51IYO1\/'

fromclassmean
isdistance
lane“fij
IIP34
2

Figure 9.6: Rejection parameters

t"u1teti01ts. An estimate of the M;the.]a11obis distance, (13, is used to tletemtine how close 3. g€S[Ll‘{'* is
to the norm of its chosen class.

it would he nlee if tht'eshelds on the rejer.:ti<.m patrameters eeultl he used to neatly sepatttte eotreetly

classified example tram iheet't'eetly classltted exarttples. It is clear that it would be impossible to

(lift zt perfect job; as “delete SS1” illu,strtttes, the system weuld need to read the user’s trlihd. The

hope is that most {sf the incorrectly clztssltled gestttres can be rejected, without rej-sctihg too many

correctly classified gestures.

A little theught shows that any rejection rule based solely 011 the ambiguity metric :E"wtli on the
average reject at least many C(3I‘l‘L‘,Clly elassllied gestttres as lIl(fOl'l‘t3Cll}' elassilled gestures. This

folloxvs fmrtt the reastarleble troltjeetute that the average atnhiguous gesture is at least as likely to

he classified ctarreetly as not“ (This assumes that the gesture is not equally elnse to three or more

classes. ltt }’)fE)£$El£i€, this EESSLI3”1]§)liOi‘l almost always true.)

Figttre 9.6 is a. scatter plot that shows the Value for? hath 1'ejeetitm parameters for all the gestures

in the GSCORE test set. A plus Sign indicates a gesture classified correctly; a. main indicates each

gesture classified incorrectly. Le. those represented in figure 9.4. Mast of the correctly classified

ttxatltples have an estimated ttt1a111higu.lty pl'0hal>lhty of very close its one. thus aecoulttiltg lot“

the dark mass -3f points at the right of the graph. Of the cclrrectly classified examples hacl



Page 1370 of 1714

BASIC SING-LE»I3<UH I€_E'£7OGN1’YYON

v....:.«...,.~¢cJe»b:c
":3T.‘SE:5>—.rL4

Ambiguity rejection threshold

Figure .7: (“ouming correct and i11c?0rrec.t1'ejech<>ns



Page 1371 of 1714

CH‘U7jE}3 9 EV/4iLL7z51IYO1\/'

\

s ,3baréo

Figure 9.8: C<.arr'e«.rtiy classified. gestures with dz’ :5: 90

*awa+ac~ .u
C“‘““"’ Qe;eCe33

Figure 9}): C0i'i'eet1y classified gestures with N’ < 135

i’ 0.99. However, the satne interval eotitairted 33.7% of the itieurreetiy ei,eassit‘3e<i examples.
Figure 9.7 shows how many eorre<:tiy ciassifietl and how mzmy tne0n?ectiy classified gestures wouid

be rejected as 3 functiori of the threshold on 13:’.

Examitiizig exactly which of the ineoirect exaihpies have }?_ (3.99 is iiiteresting. The garbled
“Sr as net” and the left stroke “Zr as si1zirp” have ii’: 1.0 within decimal} places. In retrospect this
is not suipfisiirg; those gestures are far ‘froth ev*e1j/ciziss. but itappen to uriambiguousiy closest to

£1 singie class. This is home out in the (12 for those gestures, wiiich is 380 (off the graph) for “8r as

hat” and at least 70 for each “2r as sharp” gesture. Other mistakes have 173 >» .999 but d2 < 28. in
this eategttry are “Feief St,” “uptie Feief,” “deiete Sat,” and “411 as 811"; these go

beyontl aiiibigu:it.y to look iike t,heii'<;i1ose11 classes so couid not be expeeteti to be rejected.

Aistr interesting are thase c0ri‘e4:‘t1y classified test examples that are eai1d.it:iates for rejection based

on their P and d2 values. Figure 9,8 shows some GSCORE gestures whcrse I and {.72 2? 90.
Examples “movei2” and “i>eam63” are abtietriiai oitiy by virtue of the fact that they are target than



Page 1372 of 1714

9 I. 15>’./il.S‘I<C‘ SING1;;E‘»B<li'l‘-I I€E'COG]\/1’2'i’L’).«"v’ 205

normal. The two bar examples have their endpoints in funny places, among other things. while

the three Grief examples are fairly unrecognj the algorithni does liowever classify all of

these ct telly; and it would he too liatl to reject thetii. Figtii‘e 9.9 Si1OWS gestures whose aitibigtiity

prohahil ity less that .95. la many of the examples this is causetl hy at least Ollt) corner being made

by two mouse points rather than one. in ‘“delete’3'3" one corner looped. gestu res l-fl,i"ii~;' so

much lilte their prototypes it would he too had to reject them.

'l'he Mahalanoliis estimate is mainly useful for rejecting gestures that were deliberately entered

poorly. This not as silly as it sounds; a user may decide during the Course of a gesture not to

go through with the operation, anti at that time extend the gesture into gihherisli so that it will he

rejected.

Gite possihle irnproveihent would he to use the penclass covariance matrix of the chosen class

in the lvlahalanohis distance calculation. Coinparerl to using the average covariance matrix, this

wtgiuhi presutitably result in a more aceumte 1iieasut'enient oi‘ i1(’)W much the input gesture tlilfe.i‘s for
the noun of its chosen class.

9;l.3 Ctwerage

Figure 9. ll} Sll(3WS the perlloriitante of the sirigle--path gesture recognition algorithrn on live (lifferertt

gesture t'lassifier' for each was trairterl on fifteen examples per class and tested on an

arltlitional t‘lt’teei'i examples per class. The first set, haserl on (7ulenian’s €(lit()t” [25], had a suhstantial

ariiount of variation within each class, both in the training and the testing exarnplesc The reniainirig

sets had. much variation with each the (lernonstrate, the single-path gesture

recognition alfgorithni performs quite satisfactorily on a riurnher of different gesture sets.

9.1.4 Varying arleritatitin and size

One feature that distinguishes gesture from handwriting is that the orientation or size of a gesture in a

given class may he used an app} ication parameter. For this to work, gestures of such classes must

he recognized as such intlepenrient of their orientation or size. ltloweveif, the recogriition aigori thin

should not be made oontpletely orientation and size indepentient, as some other classes may depend

on orientation and size to tlistinguislt tlietnselves.

lt is straiglitimwartl to indicate those classes whose gestures will vary in size or orientation:

simply vary the size or orientation of the training exatrtples. The goal of the gesture recogriizer is to

nialte irrelevant those features in classes for whitzh they do not matter, while using those feature in

for which they do.

Tlieoreticaliy, havin some classes that vary in and orientation, while other that depend on

size or oricntatioii for correct classification should he a prohlern for any statistical classifier based on

the assumptions of a multivariate normal tlistrihution of fea.tut'es per class, with the having
a cornrnon covariance matrix. A class whose size is variable is sure to have at tlifferent covaii ance

matrix than one whose size remains relatively constant; the same may he said of Ol‘lt3lll;3tll<Itl1. 'l'l1us,

we would suspect the classitier of Chapter 3 to perlorrn poorly in this situation. Surprisiiigly, this
does not seem to he the case.



Page 1373 of 1714

C}.{r4'1f7fi’E-‘R 9 EV/4;LL7z51IYO1\/'

1\':=.1:'-.13<:e:‘ of Recognition
Clas Ralze

Li=':let:': insert /’/4 V
I

I

' i I/‘n _{'’F‘. I
SE-"’iC€=‘r"\ S:Q:1C€B

-\_»v -

Figxare 9.10: RE5COg1’iiEiOil1'{iE€S ‘f01'van‘ous ge/snare sets

Far]? SP1‘ was frainen’ with .75 EXP) n?p/r:~: gt.-er zt!a,~:,~: and fPsr‘_+7-d 027 an :r?n’0’ffi0I7.a.7 }5:?Xan3plr?,~: pm‘ r"l.a5~:



Page 1374 of 1714

91 BAfiCSfl%HEiMH¥RECOGNHflEV

Sma1lRight

Smallfiown ‘

Sma11Left

Sma1lUp

BigRight

:; 1

Bigflown 1 1
Big-

Figurc 9.1 1: Classes used to study variable size and orientation



Page 1375 of 1714

C}.{r4'1f7fi’E-‘R 9 E if/»lLU/12’l’L')1\/'

(3U1

9 am; 5 7
example:

LL
1
2
2
3 C?\.)‘|13U1

Figure 9. l 2: Recognition r-tire fer S€EC()1'Y[i1l1’llElg classes that vary

Figure 911 shows 16 classes, some of W1lCi‘1 Vary in size, some 4::-f which Vary in erieritatiori,

others of which depend. on size or orieiitatioh to be distiiigiiishabie. "ihe ffiiilllilg set consists -31'" thirty

exaiiiples of each class; variations in size 01' erientatiori were reflected in the trairiiiig exaiiiplesr as

shewri in the iigure. A testing set with thirty or so examples per class was similarly p.re;:~3.i‘ed.

Figiire 9.12 shows the recognition rate plotted agai the miiiibeif oi" for vari ous mimbeifs

of examples per class in the training set. As can be seen. the perfomianee good; 96. 9'70 correct

an 16 classes trained with 30 exaiiipies per class. Using only l5 examples per class results in a

reeugnitiori rate of 96/7

Figure 9913 slmws all the mist.aik.es amide by the classifier. Ne-iie of mistakes :ippea.i' to be a

result {if the size or orientation of a gesture being confused. Rather, the iiiistakes are quite similar to

those seen previously. Tlie -1)0i’lClLESl{i11lIl that the gesture classifier does surprisingly well on gesture
sets in which seine classes have vari;2il>ie er orientzitien, while ethers are cliseiiriiiriated on the
basis of their sire or (3Fl€1’1t£l[l()1’E.

33.1 5 in term ser Vmrialsiiity



Page 1376 of 1714

9 1. BASIC SING-LE»I3<UH I€E'C7OGN1’2'}’ON

sma.1].EJp2’I sIr1a.l1[.7p as sma111'<;i.gh'c

(V.

-mallUj3 as smallgoght \\
LCCWl6 LCCW 39 C

]',.cw?i) Law as 'Eéack(‘

‘>r
Lcw as smallaigbt =-/

_ Lcwl-3 Law ' a.ckC Lem/12:2 Law as BackciLr:wI/:4 Lcw .‘E’:a:.'K.C

Figure 9.13: Mistakes in the V'§1i'iab}¢3 class issi

(mistaken for lsci}

Figure 914: "I‘e,st111gp1‘ogram (13ser’s gesmr’% not Shawn)



Page 1377 of 1714

2lt) C}.£4iPi’E7R 9 E ll.’/~iL U/12’i’Oi\/'

All the gestures shown thus far have been those of the author. it was deernetl necessary to show

valitlity of the tsurrent Wurlt by tlenionstratingg that gestures oi’ at least one other person could

be teetigitiiceti. Two questions con‘-.e to iniiitl: what i'eeognitiun rate can he achieved when a p€l‘5t".=1l

other than the author gestures at a elassiiier trained with the authtifs gesturesi and can this rate he

iniprovetl. hy allowing the person tn train the classifies‘ using his other own gestures‘?

Setup

As preparatleirn for s-zjuneone besides the author actually using the GSCORE i1p§:)llCf:iilCrll(:Sl€t3 Section

9.42, helevv). the GSC()RE gesture set (figure 9.l) was used in the evaluation. The hartlware used

was the same l'iar<lware used in the itiajerity of this wurlt, 21 DEC Miet'uVAX ll running UNIX anti
Xltl.

A simple testing pr05;r’zt1ri was prepared for training and evaluation (Figure 9.l-4). in a trial, a

prototype gesture of a given class is randontly chosen and displayed on the screen. with the start point

indicated. The user attempts to enter a gesture of the same Tliat gesture is then classified, and

the results fed haelt tn the user. in training matte, if the system makes an error, the trial is repeated.

in evaluation mode, each trial is inalependent.

Subject PV is a rn1isiepi'0fesser, a prni'essien:tl musician, and an experienced music. copyist.

is also experienced euinputer user, familiar with Macintush computers, among others.

Prueeeiure

The subject was given one half hour of practice with the testing prtigrani in training motle. He was

also given a copy oftigtire ‘9.l and instructed ta": take notes at his own tliseretiinn. .~'\t"ter the halfhour,

the tester was put in evaluation inualei anti two l’lt11lClt'€tl trials run. The test was t'€§ftt)al'€-:,l one week

later, with-::sut any watniup. The subject was then iristructctl to create his own gesture set, horrnwing

from the set he ltnew as much as he liked. Thirty examples of each gesture class were recorded, and
two hundred evaluation trials run on the new

Results

During the initial training there was some confusion on the suhjeet’s part regarding which hand to

use. The subject normally his right hantl for mousing, hut, left handed, always writes

music with his left. After ahnut ten minutes, the subject opted to use his left hand for gesturing.

in the initial evaluatitui trial the system classified cnri“eetly i out of 200 gestures. 'l‘he subject

felt he eoultl do better and was ailowetl seeuntl tun, tluring which l79 out of 200 gestures were

correctly classitietl. By his own admission, he V mere “ctielty” tinting the second run, generally

nialting the Gestures faster than during the first. The average recognitien rate is ‘)l 8%.

After the test, the subject commented that he felt mueli of his tliffieuity was due to the fact

that was not used to using the men with his left hantli, and that the particular mouse felt very

tlill'erettt than the tale he was used. to (NeXT’s). He felt his perlttrliiatice would l'urtl1eriu1pi'0ve with

atltiitional practice.



Page 1378 of 1714

9 1. BASIC SINGL;E‘»I3<ti'i‘-I I€E'C7OGN1’2'l’ON

.,\\kj§
;7..de1ete—as—key

lie..deleCe~as~key

4 _.
J 201..whoie—ae~4d

l85.rdelete~as—hut2

88.,sharp—as—2d

,_,.x

Figure 9.15: i’V’s misclassiiieti gestures (a.uth0r's set)

Ills notes are interesting. Although the subject had he particular kriowledge of the recegnitiori

at gurithm being used, in many his notes refer tu the particular features used in the 2.llfg<)‘t“iE.i'1‘m.

For whuie and sharp he wrute “start up” and “don't begin tuu Veitiealiy” respectively,

noting the iitip.mta11<:e of the correct initial angle. For ‘it wrote “matte short.” for bar he wrote

“make large," and for delete wrote “ms-tl<e quickly.” For 2&3 and 2d wrote “sharp angle."

The subject commenter! on places where the gesture classes used did not conform L0 standard

eepyist strokes. For example, he stated the loop in fiat goes the wrung way. He explained that

many music. symbols are written with two strokes, and d that he might prefer at system that euuid

recognize muitipl e~stt'okc symbols.

When the test was repeated a week later‘, the subject, without any wtmmip, achieved a score of

ES3 out of 200, 9l.5‘}¥u Figure 9.15 shows the misciassificd gestures. The subject again unsure

of which hand to use, hut his left ilfiflii at the urging of the author.

subject then created his own gesture examples of which are shown in figure 916, A

training set eorisistirig of 30 examples of each class was entered. Running the training set through

the resulting classifier resulted in the rather low recognition rate of 94.7% (by comparison, running

the authur’s training set tlueugh the classifier it was use to train yielded 97 9%‘; The iuw rate was

due to the suiue aititiiguity iu the classes tag. “hat” and “‘l6<i” were frequently eontuseci‘; well

many classes where the euriiers were looped {as seen before in sectioii. 9.} .1); eausiug a bimodal

distributions for fg, fig, and ft;

The problems in the new gesture set ‘i’lOYlWiliiSt£1I1<;iltig, PV ran two hundred trials of the tester onA

the new set. He was able to get a score of 1,86 out of 200. 93%.

At the time of this writing, PVl1as not yet made the attempt to remove the ambiguities {min the

new gesture set and to he more cai'ei’ul on the sharp comers.



Page 1379 of 1714

CH‘U7jE}3 9 E if/1tLLI’/12’l’C)1\/'

ts.~~-----~-

\ E_ ,..-___,__\ t_____,

uptie downtie

Figure 9.16: PV’s gesture set

Ctmeiusiuti

it is difticuit to draw a eerteiusiuh given data froth ortiy one stahject. The author expected the

reeugnitimt rate to be higher when PV trained the system on his own gestures than when he used

autt'1er"s The aetuai rate was siightty higher, hut not enough to make a convincing atgumertt

that people do hetter on their uwn g"*sttu:res (sortie stigiitiy more eurtvinei E} g evicteuee is preseitted in

section 9.4521 below). ht ifetmspecrt, PV should have ereateti a training set that eupie-:1 the attthufls

gestures !3ef0re attempting to significantly mmiify that gesture set. The authufs gesture yet turned

out ta::- he better designed thah PV ’s, in the sense having less inherent airihiguities; this tended te

COHlpCii1StiC for any advantage PV gained frtjrm using his own gestures.

Ho ever’, PV’s new gesture set not without merit: oh the eeittraty, it has a number of irtterestirig

gestures. The new ttetate gesture, a quick, ieng, leftward stroke, gives the user the impressiott of

throwing objects off the side of the screen. The new move gesture is like at detete feitewed by a

iast minute change of minti. The fiat gesture is much closer to the way PV writes the symbol, as are

the ieftwatd whole half tests gestures ‘it’ ahtt Zr? the stylized “‘4’’ ti; “ timesig is eieverg as is the

way it t'eiates to key. i?V"s bar gesture is ruueh titer > eeunumiea] that the attthur"s.

The experitneitts indicate that a person can use a eiassitier trained. on another persoifs gesture

with 1110¢LitZ‘.i'EEt€i}' goud resttits. Also indicated. is that peepie create iiiterestitig gesture sets on

their ewri. Sertie inedifieatieti t0 the feature set aise seems desirable. mainly te irtai<e the t"eatui’es



Page 1380 of 1714

9 1. BASIC SING-LE»I3<iIH I€E'COG]\/1’3!'l’C)J‘\J

sensitive to “looped” corners. it would be useful to give more feedback to the gesture design as

tn which classes are eonfusahle. should. be simple to (it) simply by examining the i\/l:th3.lait<)his

t'l:ista.nee between every pair elf classes.

9.1.6 Reeu<gnitEnn Sgieed

it is well known that a user interface must respond quickly in order to satisfy users; thus for gesture»

based systems the speed of reténgjiiition an important teeter‘ in the usability of the system. This

section repo rts on measurernents of the speed of the components of the recognition process.

statistical gesture recognizer tiescrihetl in Chapter 3 was designed with speed in mind. Each

feature is ineretnentslly calculated in constant time; thus 0(_F) work must be done per mouse point,

where F is the nurnber of features. Given a gesture of P mouse points, it thus takes O{13?) time to

compute featur'e vector. The CiEtSS-lfiCEitiOi’lCOl1lpul€S £1ilI1CEtl'€\iEtit££iElOi1fuililtiflll overtlie features

for each of (7 classes; tlius classifieatitrn trike Ct CF) tirne.

Featttre eniettiatinn

The abstract ciatatype FV is used to encapsulate the tettrure calculation fellows:

FV FvAlloc { ) allocates an object of type FV. A classifier will generally call Fvhlloc ( ) only

once, (luring, pr'ngi*an1 irtititfiization.

FvZEIr1:i.t: tfv) initiniirres Ev, nit object of type rev. Fvl n i (fv) once per gesture, before

any points are added.

FvAdcEiP0int (ft/', 2:, y, t:) adds the point (_’X,_,V) which necttrs time t to the gesture.

vhctr Point performs the incremental feature <:3.lculati0n. it is called for every mouse

paint the prngranft receives. There are thirteen features cnleirittted (F : 13}.

Vector FvCalc (fv) returns the feature vector as an array of tioubie pressisiori floating point

numbers. It performs necessary calculations needed to trartsferru the increnterttully

eaieuietted auxiliary features int-u the feature set used for elstssiiicatinn. it is Ciili€Li once per

gesture.

T re funetioii CalcFeat:ures (g) represents the entire work of cnrrrpnting the feat’-tare Vector

for E! gesture that is in ineinoryz

Fv fv ; ,4? alimizitr-r1’ FvAiioc() eisewizere =;< /'
Vector

Ca1cFeatures(~g)

register Gesture g;
r1

register Point p;
FVInit(fv);

f0r(p = gw>point; p < &gw>point{g~>npointsi; p++)

FvAddP0intffv, p~>x, pw>y, pm>t);



Page 1381 of 1714

C}.{r4'1Pfi"E-‘R 9 EV/4tLL7z51IYO1\/'

Time(sec:) Q Relative Speed

227.95 : ow
172.20 1.0
60.97 : 2.3
11.7%) "

Micr0VAX H I . .

MicmvAxiii .. .,»
13‘MAX~3‘iUt) 0.029 4;-.040 3

Table 9.2: Speed of feature eaicuiatioh

return Fvcalc ifv) ;

i

"Eh obtain the timings, the testing set of Section 9.1.] was read into memory, and then each

gesture was passed to CalcFea1:u.res. Three processors were used: the DEC MiemVAX I} that

was used for the majority of the work reported in this dissertation, 3 DEC MECIOVAX Hi, and £1 DEC

i’i\/{AX-Shit) (‘to get an idea of the ;)ei'f0m1ah:;:e on :1 more inodem system,‘-. ie UNIX profiling tool

was used to obtain the times. in ah eases, the times are virtual times, 119, the time spent executiiig

the pmgraih by the piueessor. All tests were run on uiiioaded systems, and the real times were never
more th an 10% more than the virtual times.

Beth re timing code rehited to gesture reeoghitimi, the fofhiwiiig cede fmgmeht (<:mhpi,1e(,i

with “cc. -0”) was tiihcd on :1 number of processors, 1Viicr0\/A‘X H. VAX H/789, Mier0\/AX HI,

and PMAX-Shit), in order to e-trmpare the speed of the processors used in the following tests t-tr that
of a VAX ii/780:

register int i, n = 1000000;
double 8, a £115] , b E15];

f-C)3.’(i Q; .‘i_ <: 15; i++) -E1

do
S -‘ O . O ;

fcartfi = - ' .\ ': : aii] >:<b[i]_:

} w‘m'. -(~—n) ;

The times for the above fi'8g1I1t311E shown in table 901.

Note that on this code ttzigmeht the P]\«iAX-3 E04,’) runs about 21') times faster than the MiemVAX

it. 011 more typical code, it usually runs ohiy 104,5 times faster.

The testing set averaged 13.4 points per gesture. Tine timings for the routines that eaicul ate
tkratures ate slmwit in table 9.3.

The cost per mouse point to i1“1(f1'€I11€I1iEEHy process 3. mouse ptaiht is a siiiati fraction of a

miiiiseeend, even on the slowest p1“{3C€sS0i’. Sir:-;:e meuse points typieahy come no faster than 40



Page 1382 of 1714

9 1. BASIC SING-LE»I3<lIH I€E'C7OG]\/H'l’ON

Computation time (rnilliseeonals)
max V‘ P ' :13

“” MieroVAX it
Micmviix in

_ r>s«iA.><—’: 1 no

Tahie 9.3: Speed of Classification

per second. only a small fraction of the processor consumed incrernentiilly eaiculatin the feature

Vector. indeed, suhstantialiy more of the processor is consumed coinniiinicating with the Will‘:i(.i0W

rnantiger to receive the mouse point and pf.‘i'f0fIl1 the inking"

Classification

Once the feature veetor is calculated it must be classified. This involves conrpiiting a linear

evaluation hntction V5 on F ieatnres (F : l3) for each et" C classes. If the reieeztien narairietei's are

desired, it taltes an additional Cl C) worlt to estimate the ambiguity lb and Ct_F2) worl; to estimate

the l‘»/iahalariohis tlistttnee cf). The computation times for each oi‘ these is shown in table 9.3.
To get these times. four runs were rnacie. i3Ver:v' gesture in the testing set was classified in every

l'tll’l. The tirst run did not calculate either rejection parameter. The average to classify a gesture

as one thirty classes is reported the znaxt/5 eohiinn; the E’? eolurnn is eornpnteti as of that ti me.
{The V‘ column thus gives the time to compute the ‘Valuation function for n single tlass; multiply

this by the rtuniber of classes to estimate the class ication time of a particular elas sii’ier.} The seeortrl

nin eornputetl P after each elassiiieation; the tliffet'enee between that ‘time and the max V7‘ time is

reported in the column. The third nan computed and is reported siiriilarly. The fourth run
computed both P and (T2; the average time per gesture is reported in the “total” column.

For a 3{)—cltiss rliscriniination with hoth rejection ptirarrieters heing used, after the last mouse

point of a gesture is entered it takes a MieroVAX ll l3 rniiiiseeonrls to finish calculating the feature

V'L‘.Ci€11‘(FVC.3lC) and then el,assit‘y it. This aceeptahlc; albeit not fantastic, performance. if the

end or" the gesture is inriieated by no mouse motion for a. timeout interval, th e classification can begi n

before the timeout inte ‘val e;t<pires., and the result be ignored if the user moves the mouse before the

interval is up

Currently. all arithmetic is done using ch?-uhle precision iloating point nnnihers. Tliere is no

eonceptu3.l reason that the evaluzitittn fttnetioris could not eorriptitetl using; integer atithtnetic,

after suitably rescaling the features so as not too lose niuch precision. The resulting classifier would

then run much faster (on most processors). This has not been tried in the present work.

if eager recognition is running, classification innst oecur at every mouse point, and the number

of classes is This puts a ceiling on the number of the classes that the eager recognizer

cart disctiinina.te between in real~tirne. On a MicroVAX ii. the cost per mouse point includes

FvAddPoint (0.22 iiisec) plus Fvcalc (0.34 insec) plus the per class evaluation of BC classes,

0.54 C. H rnouse pa:-ints come at a irtaxiinuni rate oione every 25 niillisecontis. C : 4-5 classes wonltl

eonstnne the entire processor. l3‘ractic:1lly. since there is other worl: to do inking), C 2 20 is



Page 1383 of 1714

216 CHAPLER 9 E if/»iL U25 HON

probably the maxmtunt that can he reasonably expected froth an eager recognizer on a l\«iierr3\’.A.X ll.

On t0tlay"s processors, instead of entnputation time, the lintiti rig fractal‘ will be the lower recognition

rate when given 3. large number all classes.

One approach tried to increase tl1€t1'l11“11bCI'{tf classes in eager recognizers was to use only a stthset

of features, W tile this irnprovetl the response time of the system, the p€I'fO.t‘l1’lal1C€ clegraclecl

significantly, so the itlea was £il£S.i1l’1(iOrlt3(i. There is no point getting the wrong answer quickly.

9.1.?’ Training Time

The stated goal of the thesis work is to prrwitle tools that allow user interface designers to experiment

with gesture-based systems. One factor impacting on usahility of such tnatlls is the arneunt of

time it taltes for gesture recognizers to retrain themselves after changes have been made to the

training exatnples. in almost all trainahle character recognizers, deleting; even a single training

example requires that the training be redone t"rr)i'n scratch. For some technologies, notably neural

networks, this retraintttg, may inintttes or even hours. Suelt a system would not he C(Jl’;t(lLtClV'<3 to

eXperimentin._<:; with different gesture sets.

By eontrast, statistical classifiers of the kind described in Chapter 3 can he trainecl very rapidly.

ifrainittg the classifier from scratch requires (XE?) to compute the rnean feature vectors, £llt'_EF") time

to calculate the pepclass e0Varianeernat1’ices, Ot CF2} to average them, OCFS) to in vert the average,

and QCP2) to eentpttte the weights used in the evaluatien functions. ll" the average covariance

rnatrix is singgttlar, an O(Fl) algorithni is run to deal with the problem.

Often, a fair amnunt of work. can be reused in retrainin after a -ch ange to some training examples.

Atlrling or deleting an example (if a class requires HF; wtnfl: tn incrementally update its per~elass

class mean Vector, and t’3(F3') well: to ineretnentaliy update its per-el,ass covariance rnatrix H37].

Retrttiniiig then invelves repeating the steps starting front enniputirig the average eovarianee matrix.

'i‘ln1s, for retraining, the dependency a::-n E, the ta:-tEtltt1tfi1b€1‘0f exantples, is elitninatetl. The retraining

time is instead a function of the number of exarnples adrietl, ctr rleletetl.

The Objective C itnplernentatinn tines not attempt to ineretnentaily update the per—elass e0vart-

ance matrix when an example is atltied. htstead. Only the are kept incrementally, and the

per—class cnVaria.nce matrix is reeontputed from scratch. This involves t’}‘,I:Tf"F3) work for each class
(T changed, Where 5 is the nurnher nf training exatnples for class C. results in worse peiT”0r--
rnance when a small number nfcxaiitples are changed. hut better pcfiormanee when all the examples

of a class are deleted. and a new set entered. "ilhe latter nperatisjn is continon when experirnenting

with gesture--hase<:l sy stems.

The author has implemented hntlt C and Objective t‘ versions nf the single path classifier.

Besides maintaining the per-cl covariance matrices incrementally, the C Version (litters in that it

times not stare the list of exantples that have heeri used to train it. (l t is not necessary to store the list to

add and remove examples, since the naean Vector‘ and eovari anee matrix are nptiateri ineifementally.)

it is thus more eftieient since it does net need to rrtaintain the lists of examples. (Objective C Set:

class, iniplentented via hashing, used to rnaintain the lists in that V€7l”SiOl’l.l it also does not have

the overlteatl oi‘ separate {thjeets for eaatitples, classes and elassiliers that the ()hje«;:tive ‘U version

has (see Section /.5).



Page 1384 of 1714

9 1. BASIC SL“v"GLE»I3<iIH I€E'COG]\/1’3!'i’ON

meesser '1‘ime (ihiiiiseeonds per call)

sAddExample § eliemove Example sDQne.?-‘tdding sflotzezltdtiing

' (10 classes) (50 classes)

Mics-oVA.X it 3.7 :30 234
Mit:-,r0VAX H} t),9t) ; t).9t) 43 7s

PMAX-33 ()0 {b.0243 f {L026 14 22

Table 9.4: Speed of eittssitier trttihirig

Since only the C version could he ported to the PMz—\X—3iOG., it was used tot‘ the timings. (C

versions eithe feature eornputatitm and gesture reeogriitieti were used for the timin above; however

in these the Objective C Il’1€iil0{iS are straigiitforward transiatimis of their t:G),’I"t:Sp0;“‘i(i.i1’lg C

‘t'tm<:ti<ms. in some cases, the methods merely caii the emresperttii F} g C funetitm.) feiiowirt C

ftrhctitms eneapsu} the process of training a eiassit'ie.r:

stflassif ier s1\TewClass if ier ( ) aiieeates and returns ahamiie to a ciassi tier. htitiaiiy

it has no classes and he examples. The “s” at the i3CgiEH1i}'tg of the type and ftmetiori

names refers tn “sihgie—pttth”:, ‘there are eorrespohdin types tmd functions for the nmiti
ttiassifiers.

S2’-\C1d}3Xa1’l“:pl€ tsclassifier sc, char *classr1ame, 'v‘ec:t.or e) adds the training

example (feature Vector e) to the named Ltiass cslasssnamee in the passed ciassitier. The
eiass is e,rea.teci it has not been seen i3eths'e. Liiteat seztrch is used to find the name;

however, it is optimized fut‘ sueagessive calls with the sazihe name. The :sAddE2xatt=.pI:.e

f'tlf‘tCEiO11it1I3fCfl1€1’i{(iiiy maintains the per——c1ass meah vectors and <;:ov;:tria11ce matrices.

sRemoveEx._a.mp1e (s:C1ass.i ier SC, char *c1ass:name, Vect:or e} removes ex—

ahtple e, assumed. to have heeh added eariier, from named class. The per-class mean

Vector anti covariance matrix are ihcrehieritaily updated.

s1'J0t1eA(ldi1‘1gistflaseiiier SC) trains the c1assitiet' on its current set at exampies. it

computes the ave1'a.ge etwaIiaiit:L—: matrix, inverts it (fixing it if singular), anti computes the

stflass sclassifytsclassifier SC, \i’ec:i:.m." e, dr_mb].e *d.2) actually

performs the ciassifieatieri of e. If p is non-NULL the prohabiiity of ambiguity is esti~

mated; if <12 is n0n—1\TULI.a the estimated i\(iahaia.im-his distance of e to its computed class is

retumeti. This is the t"urta;:ti<mtir,*-.1e-:1 in the previous seetimt.

The ftmetitms \ ere exercised first hy adding every example in the training set, training the

classifier, ii11Ciih€.?t1i0OpiUg9 removing and then re~atitiihg 10 consecutive examples he,-th1'e mtraihiitg.

Ne siirguiarttovaii ant-e matrix was eicieotmted, due to the Large number of ex ampies. Table 9.4- shows

the performer;-ce of the various rottthtes.

Even 011 :1 M'it::t'0‘\/AX 11, training a 30 classifier ortee ah the exahipies have been entered

takes iess than it quarter second. Thus GRANDMA is ahie to pr-seduce a eiassitier' imrhediateiy the



Page 1385 of 1714

2 l CHAPLER 9 E if/»tL U25 HON

first time a ture is rriatle over a set of Views whose cornhined gesture set has not been encountered7"‘
before t_ Sections 1.4.2 and 7.4). The user has to wait, hut does not have to wait long.

9.2 Eagerreeugnition

This section eVa.h1a.tes the effectiveness of the eager recognition algorithm on several single—strnke

gesture Re-cait that eager recognition is the recognition of gesture while it is being ntade,

without any explicit indication of the end of the gesture. Ecieaily. the eager recognizer classifies a

gesture as soon as enough of it has been seen to do so unanthiguousiy {see Chapter 4).

in order to rleterniine how weil the eager recognition aigorithrn works, an eager recognizer was

created to classify the eight gestures classes shown in 9.} '7. F.ach ciass named for the tlirectiun of

its two segments? (Lg. ur nieans “up, right.” Each of these gestures ambiguous along its initial

segment, and becomes unatnhi guous once the corner tumed and the second segment begun.

The €£tg€1"l‘€t30gl’IliZt31' was trained. with ten exarnpies of each of the eight classes. and tested on

thirty exatiiples of earth class. The ligure shows ten of the thirty exatrtples for each class, and

inchtties ah exarnpies that were this-classified.

Two comparisons are of interest for the gesture set: the eager recognition Versus the

recognition rate of the full classifier, and the eagerness of the recognizer versus the rnaxiinutn

possible The eager recognizer eiassiiied 97.0% of the gestures COETt3C‘ii§,’, curnpared to

992% correct for the full classifier. Most of the eager recognizers errors were due to a corner

tocpi rig 270 ttegrees rather than being a sharp 90 degrees. so appeared to the eager recognizer the

second stroke was going in the opposite direction than intendetl. in the figure, “E” inolieates a

tnisclassitied hy the eager recognizer, and “F” indicates a rnisclassihcation hy the fuli ciassifier.

On the average, the eager recognizer exaniineti ti‘7,9% of the mouse points of each gesture hefore

de-ciciiitg the gesture was unambiguous. By h arid, the author determineti for each gesture the nurnher

of mouse points from the start through the corner turn. and coueiuderl that on the average 59.4%

of the niouse points of each gesture needed to he hefure the gesture could he unanrhiguousiy

ctassified. The parts of each gesture at which unarnhiguuus classification euuid have occurred hut

did not are indicated in the figure by thick lines.

Figu re 9.} Si10\"$ the pert"m'mance at" the eager t'ecogni;r.er on GDP gestures. The eager

recognizer was traineri with 10 examples of each of ll gesture and tested on 39 examples

of each class, five of which are shown in the figure. The GDP gesture set was slightly altered to

increase eagerness: the group gesture was trained clockwise because when it was counterclockwise

it prevented the copy gesture from ever being eageriy recogni;-zetl. Ftir GDP gestures. the fut}

ciassitier hat! a 99.7% correct :ret:ognition rate eotitpared V‘. ith for the eager recognizer‘.

On the average (29.5% of each gesture was exaniiineti by the eager recugiiizer heftne ciassificatiuii

oceriirred. For this set no attempt was made to determine ntinimum gesture percentage

that neetie-:1 to be seen for unatnhlguous ciassitieation.

i7'roi'n tests we can conclude that the trainahie eager recognition algorithm perforrns ae-

ceptahiy but there is plenty of t‘00I‘tl t"orimproVen’1ent, both in the recognition rate and the amount

(if ea.gerness.

fftitttnutritirsnaliy, eager recognition is quite traetahle on rnottest hardwttre. A fixed arnount of



Page 1386 of 1714

92 EAGERREC1 J2 3'1’ON

hetmn
a7T\bi.gL1O11S paw
geszure ~

of mrznse pair
that need d ‘.

infll- tea the 635;‘
I recognize:

Figure 9.17: The p€['fO1’}‘[}3.11CL’. of the recogmz-er an easily 1xnde.a'sm0fi.data



Page 1387 of 1714

CHAPLz’E-‘R 9 E E.’/»ELL/35 2'2’ "fV'

12/17
muVc2

._;1’""""'fin/za
€1l1pse2

29/45 1
—.,S_:(1iC,:_~: . : , r(J‘:aLC\"§(:E1A

">........5: 1». . 12/4; ,3/£1 E
g1'oug>4

dotd

W_»—

L..._.,_.1e/25 12/16
copy; ;Upy5

Figuxws 9.18: ‘lbs perf0n11ance at the eager r&c<:gni;~:e1' on GDP gestuws

H26 z‘Te11;-."}'{1'0ns from flair) to f1.iC;l{ fines ind1‘e:a Is Where (eager1"e€0gnftfonacczjrred



Page 1388 of 1714

9 3 ii/1’L"L II»-F1'N«2rER RECOil‘-M"71''ON 22 l

computation needs to occur on each mouse point: lirst the feature vector must be updated (taking

0.5 msec on a l)l3C lvlicro ’A,X ll). and then Vector must he class_itied by the AUC {taking 0.2.7

rnsee per class? oi‘ 6 inset: in the oi" GDP).

9.3 Multimfingerrecognition

Multi—linge:r gestural input is a gnitlcant in novation of this woi‘l<r. Un,l'ort,nnately, circumstances

have conspired to l’I1;"1l<€ the evaluation of n1ulti—tinger recognition hoth impossible and irrelevant.

The Sensor Frame is the only input device upon which the ‘ntulti<t"inger recognition algorithm

tested, Unfortunately. there is only one functioning Sensor Frarne in existence, and that was

damaged sotnetitne after the tnulti-linger recognition was running. but hefore formal testing could

hegirt. (Fortunatel a videotape of lvllil? in action was made while the Sensor Frairte was worl«:ing.}

No progress was ntatle repairing the Sensor l~’rai'ne for over year; testing was thus impossible.

l5iventually the Sensor llrarue repairetl, hut Sensor llralne, inc. went out of business shortly

afterward, inalting any detailed evaluation irrelevant. The owner of the Sensor Fratne has left the

country, taking the device with him.

An irrtortital estimate of the lIltllli~ll1’1gC1” recognition accuracy rnay l c estirriatccl from ten minutes

of videotape of the author using l‘vftl')l’. 'l"his version of it'll’)? the path sorting rnulti-linger

recognition algorithm (Section 5.2). As shown in figure till"), IVIDP recognizes l l gestures (6 one

finger gestures, 3 two linger gestures, anti 2 three finger gestures). lit the videotape, the author made

30 gestures, ". oi‘ which appear? to have heen :ntiscla.ssilie<l, and one oi‘ which was t'ejeetetl. resulting

in a correct recognition rate of 90% The processing time appears to be negligible.

All three inisclassifications are the l‘L‘,S1llt of the Sensor Frantc seeing more lingers in the gesture

than were intended. This was due to knuckles of fingers curled up (so as not to he used in the

gesture) accidentally penetrating the sensing plane and heing counted as atlditional lingers. As there

are distinct elassitlers for single linger, two finger, and tl linger gestures, an incorrect number of

lingers inevitably leads to a inisclassilieation. Wliile it is possible to imagine methotls for tlealing

with such errors (luring recognition, tlre main cause of this problem is the t.’.l'_g0Il<.l1’Ilii:S of the Sensor
Frame.

For the small gesture set exarninerl, the recognition rate is lt}0% once the errors due to ‘”extra

fingers” are elitninatetlt This to he expecteel. given the small number of gestures for each number

of lingers. lt is expeeterl that the intilti--path classifier operating on one linger gestures would perform

about as well as the single--path classifier, as the algorithms are essentially identical. 'lhe single--path

classifier; when given only six classes to tliscriminate anrong, has been shown (on mouse tlata) to

perlorrn at l0l)% in almost all cases. When operating on two linger gestures, it is expectetl that

the oen”orn'1ance of the recognition algorithm would he Slmlltlt‘ to that of the single-hath classifier

on rwi'r:e the numhcr or" classes. Actually, it is possihle that some of the paths in the two-finger

gestures will be similar to other paths in the set, anti be merged into a single elass the training

algorithm (Section 5 .4). Thus. when the number of unique paths will be less than twice number

of two--linger gesture classes, perlormance may he expected to llllpl'0Vt3 accortliiigly. Similarly, the

three linger gesture elassilier may he expectetl to perlortn as well as a single--path classilier the

recognizes hetween one and three times the number or” three finger gesture classes, depending on



Page 1389 of 1714

222 CH4PLi"E-‘R 9 E i/‘Z/’i.LL’}i‘{it'.>[:’.’L’).l\./r

number of unique paths in the class set.

One more factor to eonsitler is that mouse data tends to he much less noisy than Sensor Frame

data. The tifiangulatioii by the Sensor Frame is erratic, especially when multiple fiiigeis are being

traitlted. For example, l)OiZl1llOl’iZOI1i’3l segineiits of the Parailelogram gesture oftigure 8.10 should

be straight lines. Until this problem can be solved, it is expected that recognition rates for Sensor

Fraiiie gesture will suffer.

9.4 {§~R/§NDh'lA

Evaluatiiig GRAl\lDMA is much more subjective than evaluating the low-level I'€t30gililiO1’1 rates.

_lRANDl\/iA may be evaluated on several levels: the effort required to build new interaction

techniques, to huiid new applications, to acid gestures to an application, to an applieationh

gestures. or to use an s.pplie3.i.ioii to periiomi a task.

No attempt was made to ibrifnatly evaluate any of these, in order to get Valid results,

it would have been necessary to run carefully designett expeiinients on a. nurnher of users. sonieth ing

the author had. neither the time, space. ineiiiiation, or qiialiiieations to do liliirtiieriiiore. the author

does not wish to claim that {.ll{ANDi\!lA is superior to existing object--oriented toolkits for any

particular task GRANDIVIA is simply the platiottn through which some ideas for input processing

lit(3b_i€CE~4fJI'l€1’ll€dlOOil{ilS were explored. GRANl)MA's sigriiiicance, any, will be its influence on

future toolkits, rather than any more direct results.

Nonetheless, this section intorniaiiy reports on authoi’s experience buiirling gf.?S{11E"C—i3EiS€€i

systetus with GRANDIVEA. (No one hesitles the author tried to progi‘a.rii with GRANMl)A.) Also,

in order to eonfirni that GRANDMA can be used hy sotneone other than the author, this section also

t'epm“ts on ohservatioiis of a subject trying to use }S(:'()RF, and GRANHNVEA to due some tasks‘

gfigtfi, The atitiiui'°s €X}§£E"l€E1Q§3 with {IRAN {EMA

GRANDIVEA took approxiniately seven months to design and develop. it consists of approximately

l;ZU{3O lines of Objective eode. There are an additional 5000 lines of C code which implement

a graphics layer as well as the feature Vector calculation. GDP i00i{ an atiditional 2000 lines of

Objective C code to ioipieiuent. GD?’ was (ieveioped at the sari ie time. as GRANl3MA. it was the

priinary application used to test €iRANDl\/l/it

initially, only two GDP gestures were used to test GRANDMAE gesture hantller and associated

utilities. Once these were wori:ing well, it took four (lays to add the reniainiiig gestures to GDP.

Most of this time was spent writing Objective (1 methods to use in sernantic expressions. These

were methods that were not needed for the existing direct nianipulutiori interliaee.

GSCUl{ifi consists of 6000 lines of Objective C code. it took. six weeks to design aiici imp‘ieifoent

GSC/ORE, iiiclutiing its palette-based interface. Much of this time was spent on the details of

representing eoniinon inusic notation, inechanisins for displaying inusic notation. and proclueing

usable niusie EOIHESA The palette, an intet'a-zztion technique that did not yet exist in GRANDMA.

took about eight hours to iinpleinent. it tool; two weeks to add the gestural interface to GSCOREE,



Page 1390 of 1714

9 4 GR/t1”‘fi)fvz?t

Figui‘e 9.20: P‘v'”s resuit

including writing some additional methods. Much of this time was spent €Xp€t‘il‘1'1t3t1tii1g with

dilterent sen1ant,ies tor the gestures.

Section 10.1.3 lists features of GRANDl\’lA that will be important to incorporate into future

tooikits that support gestures.

9.4.2 A user uses GSCORE and GRANDR/[A

This sections infonnaiiy reports on subject P‘./"s (see Section 9.1.5) attenipts to use the GSCORE
program

The task was to enter the music shown in figure 9.19. The music was chosen to exercise many

of the (}SC()RE gestures. PV is an experienced rnusie eopyist, and it took him itltlt seconds to write

out the music as shown. copying it frotri an earlier attempt.

Using gestures, the author was to enter the ahove score in 280 seconds (atrnost five minutes).

He made a total of 53 gestures, four of which did not give the desired results and were innnediately

undorie. Only two of those were miseiassifieations: the other two were notes gestures where the note

was created having the wrong pitch, due to inispiaeenient of the cursor at start of the gesture.

Turning off gestures and using only the palette interface, it took the author 670 seconds {eleven

minutes). 0 mistakes needed. to be undone in the latter triah

PV first attempt was at using the GSCORE pr-ugratn trained with the authors gestures. PV

had aheady gained experienced with this set of gestures during the study of interuser variation.

PV practiced for one half hour with the GSCORE program hefore attempting the The author

coached PV during this time, no other doeurricntation or help was available.

PV too}: éfltt seconds (10 rninutes} to eoinpiete the ‘tie made a total of 73 gestures, to of

which were irnrnediately undone. it appeared to the author, who we siiently ohservi ng, that each

ndo was used. to recover from a t11lSCiaSSlfl{T€itlO.tlr Figure 9.20 shows the product of his labor. P‘~.~’

then turned off gestures, and used the paiette itttertaee to enter the exraniple. He ttorrrpletetl the

in 680 seconds (ll minutes).



Page 1391 of 1714

224 CHAPLER 9 E if/»iLU)5 HON

PV then entered his own gestures in place of some of the atitiitifs. hi particular, he substituted

his own gestures tlitr the nine classes: deiete, move, beam, ‘it, 2t‘, 8t‘, 16!", keyeig, and hat‘,

entering 15 or tiime examples tiieaeh. The Leta! time to do this, :ineiudirtg itieiemeiitai testing of the

new gestures and peiiedie to disk. was 25 minutes. PV did net attempt to emulate the aiithm"'s

gestures; iuste:1d.. he used. the t"m'ms he had Ci't):1I€(i eariiei‘ (see Seetirm ‘J. i :5)“

Once done, P‘\J' repeated the exgietiiiieiit. It took him 3 it) seconds (5 minutes) te enter the iiiusie.

He made 5 gestures, 4 et‘ which were undone.

PV was it1[€.t‘\,'it3Vv’€<Li after the tests, and made the feiiowing comments: The pruhiein,

he stated, that mouse traekiiig in the GSCORE program was much incite stuggish

the recorder and testei: (This is zteeutate, the time requii'eL:t fut‘ GSCOi~1E events to he eteated

and eousumeti adds sigiiii'ieai1t tiveitheati to the tneuse t1‘a.ekihg. Much of this is t,iVerhe'o:tl due to

GR/\Ni)I‘y'iA.) PV eharaeterizeti the system as “shiggish." Bat! ttsekiiig, espeeiaiiy at the start of

the gesture, eerittihuted sigiiitiezintiy t0 the ittiiiihet of Hl_iSi3iElSSii'iCEtii01’iSi

PV stated that he thought the system “intuitive” for eriteting notes. He £iCSCi'ii3{'.£i the gesture-

hased interface “e>:eei1ent" compared to the palette--hased S}7Si€1IL but when asked how the

gesture-hased iiiterfaee emnpai'ed to writing on paper, he replied “it sucks.” He hot hke using

the mouse for g€S~tL1i‘i1‘lg. and believed that 21 stylus and tablet wouid he mtteii better.

It i again di iiieuit to draw etmehisiuris imiii an iiifertiiai study tiiene user. Did i3'V"’s perikmiiance

iitiprtwe because he tailored the gestures to his iikiiig. or heeause he had been practicing‘? This is

iinkhtiwn. Some things are clear: GRANi7M,»"x makes it easy to experiment with new gesture sets,

and, in GSCGRE, with mocierate practice the gesture-h:—ised ihtetthee iI11pt‘OV’{3(itt1Si{p€)If0]Ti'fiat‘tC€ by

a factor of two ever the palette--based interface. Whether gesture--based iriterfaees g€i1CI'3.iiyifl1pi‘0V't3

task pei'fomiai'i-3e over 11011-gesture--based interfaces is a question that requires {mach further study,



Page 1392 of 1714

iihaeter Eh

€enehtsi?en anet Fntare Efiiteetiens

This chapter suintnartres the contributions of this thesis and indicates some directions for future
work.

13.} Centrihtttiens

This thesis makes conttlhutitms in tout‘ areas:

w iineraction teehtii q mes

New recognitioirreiated aigotithnts

iritegratin estates it1tointei"faces
U UC? (5?

input in object-oriented toeikits

Each of these wit! be discussed in tum.

16.1.1 N ew interactiens techitiqttes

A major contributions of this work has been the inveinteit and expiorati-::ti1 of three new nttetaetion

techniques.

The ttwrphase sitig§e—sErehe itnteraetiun The Ewtrphase interaction enables gesture and direct ma»

nipuiatien to be imegrated in {E single interaction that cetnhities the power of each. The fast

phase eeiiection, during which the points that make up the gesture are collected. In the

simplest case, the end of the coiietttien phase is indicated by a 1’n01'i()t’1 timeout, classification

occurs, and the seeend phase? manipulatien, is entered. in the maitipuhttion phase, the user

moves the mouse to manipulate some parameters in the appiicattett. The partieuiat parameters

manipulated depend on the classification of the eelieeted gesture. The cctilection phase is like

character einty inhan(i.w1'itinginterfacgres; the inaiiipuiation phase like a drag interaction in

ihteet—tnanipuEati0n interfaces. Generailyt the operation, operands. and setne parameters are



Page 1393 of 1714

CH;-4iP2’]E71i’ it? C .‘eZ\/‘CL '5IL’)1‘\Ui.x’\Z.7 ELIYLTRE DIIrZE.'C1YOi’\/39

rleterrninetl at the phase transition (when the gesture is l‘€C0gl1l;Z.E3Ql). and then the manipulation

phase allnws additional paranieters to be set in the presence of application feed

Eager 1'eceg§nitien Eager ressognitiian is a niediti-cation ef the two-phase single--strolre interaction

in which the phase transition lreru gesturing to inanipuiation occurs as seen as eneugh of the

gesture has been seen so that it may he elassilieil uuarnhigueusly. The result is an interaction

that C()’l’lll3l1’li3S gesturing and direct manipulation in a single, smooth interaction.

The twr}—phase raiult,iple—iirager iuteraetiim Gesture anclllirect :niani.pulali<')n may he C0l)ll)ll’lt3(l {er

niultiple path inputs in a way similar tn the tw-:i—~phase single--str<:il;;e iiileraelieii. With ninltiple

finger inrauti, e"spportt;inities exist for expantling the nmtver of each phase of the interaction.

By allowing nniltiplc lingers in the -‘J/0llCC[i0l‘l phase, the I'CpCl'lOll'C of possible gestures is

greatly 'n4:.i'ease<;l, and a multiple finger gesture allows many paranieters to he specified

simultaneously when the gesture is recognized. Similarly, even when only one linger is used

fer the gesture. aclditional lingers may he hruught in during the nianipulatiun phase.

the tw0—p‘nase r,nulliple—linger :interaetiun allows a large nuniher of parameters to he specilietl

and interactively riianipnlated.

ltlil.2 Recegriltian'l‘eehnulagy

This thesis discloses live new algeiitliiiis of general utility in the construction and use ul gesture

recegiiizers.

Autuniatii: generatiun at‘ single~stmlie gesture recugnizers frurn training examples A practical

anrl efficient alguritlirn for generating gesture recognizers has been ileveloped and tested. in it,

gesture is represented as a. vecter of rea.l-Valued features? and a stariclarrl pattern recognition

technique is used to generate a linear elassitler that rliscrirninates between the Vectors of

different gesture classes. The training algejrithrn depends on aggregate statistics of each

gesture class. and empirically it has heen shown that usually only lifteen examples er‘ each

class are needed te produce accurate recognizers. lt is simple to incorporate tlyn arnic attributes,

such as the average speed of the gesture, into the feature set. The algorithm has heen sliewn

to work even when some classes vary in and orientalieii while nthers depend on sire or

orientation to he recognirxerl. The recognizer size is l11{.lt§pt3ll(lL‘.!1t’ of the nnnihcr of training

exarriples, and both the recognition and training times have heen shown to he small. A features

set that is both meaningful and v‘3Xlt;’,1lSll)l€ potentially allews the algorfithrn to be adapted to

future input devices and requireinents.

incremental feature calculatiun The calculation used tn generate features from the input points of

a gesture is increnierital, meaning that it takes constant time to update the features given a new

input puint. Tliis allows arbitrarily large to he prucessed with no delay in processing.

Rejeetiun algerithrns lwe algorithms for rejecting ill»-formed gestures have been develii-perl and

tested. One estimates the probability eleorrect elassitieatiiian, enabling input gestures that are

ainhigueus with respect in a set of gesture classes to he rejected. The other uses a normalized



Page 1394 of 1714

163? Z. C£)i"J2’Yt1’B£/'YY{)]‘7S 227

distance metric to tleterniine how close an input gesture is to the typical gesture of the its

coinputetl class, allowing outliers to he rejected.

Antornatic generation of eager recognizers from training esainples An eager recognizer classi-

fies a gesture as soon as it is uiiarnhiguous, alleviating the need for the end of the gesture to he

explicitly indicated. An algorithrn for generating eager recognizers froin training exaniples

has heen developed anti tested. The algorithrn prorluces a two-class classifier which is run on

every input point and used to determine if the gesture heing entered is unairihiguous.

Auturnatic generation of multi~path gestn re recognizers The siugle—strol<e recognition work has

been extended so that a number of single—strol<e recognizers inay he C()!’lll3l1’l€(l into a niulti~

finger gesttire recognizes: The tlescrihed algorithrn prorluces a multi—patli recognizer given

ti'ainin_g exaniples. l~2e.latiVe path ti nii ng info-rniation is considered (luring the recognitiori,

and global classirication is attempted when the intlivitlual path classifications do not uniquely

t“leternnne the class of the inulti--path gesture. For dealing with the prohleins that arise

mm niultipath input devices that do not 53 1:tr‘i'r)ri' tleterinine “which path is which." two

approaches. path sorting and path clustering. have been explored. The resulting algorithm has

been clenionstrated using the Sensor l5-'rarne as a rnulti-finger input device.

16.1.3 integrating gestures into iiiterfaees

A paradigm for integrating gestures into ohjeet---zarieiited interfaces has been (level-apecl and demon-

strated. The key points are:

A gesture set is associated with a View or View class. Each class of object in the user interface

potentially respontls to at different set of gestures. Thus, for tfxfilllpiii, notes respond to £1

(lii"1"'erent set of gestures than staves in the GSCORF; rnusie editor.

The gesture set is elynaniically tletermlned. l'*roni the first point of a gesture, the system dynam-

ically deterniines the set of gestures possible. The first point determines the possible views

at which the gesture is directed. For each of Views, inheritance up tlie class hierarchy

determines the set of gestures it haritlles. These sets are coirthineai, and if need he, classifier

for the resulting union is dynainieally createrl.

The gesture class and attributes map to an application operation, operands. and paianieters.

Gestures are powerful because they contain atltiitional inforrnation beyond the class the

gesture. The attributes of 21 gesture, such orientation. leiigtli, speed, ‘first point, and

enclosed area, can all be mapped to paranieters (including operantls) oi" application routines.

ln the twovphuse interaction. after the gesture is recognized there is an opportunity to map

subsequent input to application parameters in the presence or" application feetlhaelt.

Gesture liansilers rntay he nianipulateti at runtirne. in order to encourage exploration of gesture

hasetl systems, all aspects of the gestural intertace can he specilied while the application is

running. A new gesture hantller truly be createtl at runtirne and assotziatetl with one or more

views or view classes. Gesture classes may he zteltletl. deleted. or copied from other handlers.



Page 1395 of 1714

CH;-4tP2’]E71i’ it? C .‘eZ\/‘CL ':?IO1\Uh’\Z)i3‘UYL7RE DII<ZE.'C1YO2\/39

Exatttples of each gesture can he entered and modified at tuntinte. l"‘inall_y, the semantics

of the gttstutie class can be entered and niodiiieci at nintime. 'l'lit‘ee sentan ’c expressiotis

are specitiatde: one evaluated when the gesture is litst reel: ized, one evaiuatetl on each

suhsequeiit mouse point, and one evaluated when the interaction completes.

ltltlxlt input in £}h§et:t—t)riented User litterface Toolltits

A nnniber of new ideas in the area of input in ohjectv-oriented user interface ikltlllills arose in the
course of this work.

Passive and active event handlers A single passive event handler may be associated with multiple

views. When input occurs on one such view, the handler usually activates a copy of itself.

Tlitts, the activelpassive dichotomy eliminates the need to have a controller object instantiated

for each V'lCW that expects input, a titajoi“ e..\tpe.nse in many l\zlV’C sy stenis.

Event handlers may he associated with View classes lnsteati olltaviiig to associate altandlet with

every instance of a view, the handler tnay‘ he associated with one or more View classes. A

view may have multiple handlers associated with it, and liarttllers are queried in a specific

order‘ to determine which handler will handle pal'ElCtEla)(“ input.

Unified tnnttse input and virtual tools All input devices are tools, hut when tlesircd a single input

device may at tithes be different tools. one way to intpletnent modes in the interface. Tools

may also he software objects, and some views are indeed such virtual tools. Tools often have

an action, which a.lloW‘:2 them to operate on any Views that respond to that action. The test of

whetliet a given view responds to a given tool is made by an event handler associated with

every view; this allows seinantic feedback to occur automatically without any explicit actia:-n

on the past of the View or the tool.

Automatic semantic feetlliaclt Asjttst ntentionetil, the feedhaclt as to whether it given tool operates

upen a view over which it is hccn draggctl happens automatically. For cxantpl-3, objects

that respond to the delete message will automatically higtiligllt when a delete tool is dragged

over them. if desired, an object can do more elaborate processing to deterniine if it truly

responds to a given toot, eg. an object may check that the user permission to delete it

helo re intlica.ti ng it responds to the delete tool.

i?;ttntitne creation and ntatiipulation of eveiit hant:llet's Event liaitdleis may he created and asso-

ciated with views or View classes at rnntiine. For example, a drag handler may be associated

with an ohject, allowing that ohject to he dragged (i have its position ch-angett). in atlriitiion,

such handletcs may he tnodificd at ntntinic, for example, to change the predicate that activates
the liandlert

lllti’; Future. Directinns

in this section, tiitectlcns lot t'nttn‘e woilc are tliscnssedt Tltese dnections include renietlies fol“
deficiencies of the cunent work as well extensions.



Page 1396 of 1714

I 1'-7 '"i'UI{E' DII\ZE:C’1'1'C?[‘JC’

The sin gle-stroke training and recognition algorithm the most robust and well-tested part of

the eutrent work, and even in current forrn it prolsahly suitable for eomttttereial applieationst

Howevee a l1L1E)tl3L)I o E‘ siinple niorlilie.ations Sl1(’)tll(lllIlpI~1jt\,/£3 performance. Seetioiis ‘;l.l .l and 9.1.5

contain suggestions for atltlitional features as Well inotlitieatioiis to existirtg features; these should

he iinplententetl. Tracking the mouse in the presence oi’ psiging proved to he a. rnohletn, and a

significant iinprti:-venient in recognition would he aenievetl if real--tirne response to mouse events

eoultl he guaranteerl.

it should be simple to extend the algoritlnn to three tliinensional gestures. All that would he

require<‘l would to atitl several more features to eapture motion in the extra dimension, The

training algorithm and linear elassilier wonlrl he untouelied hy this extension.

Alternatives for rejection should be explored further. The estitnatetl probability of ambiguity

is useful, though using it will always result in rejections of about as many gestures that would

have been correctly elassirietl riot. estimated Mahalanohis distance ‘oaserl on the common

eovari anee rnatrix is really only useful for rejecting tieliherately garhleri gestures. The l\/lahalanohis

distance based on the per—elass covariance matrix soniewhat hetter, but reqttires significantly

more training examples to work well.

Given the olwious false assumption of equal, ner—el,ass covariance ntatriees, it that the

statistieal classifier should not perform well on gesture sets, some elasses of which vary in size and

orientation, others of which do not. ln practice? when the gesture classes unambiguous? the

elassitiers have tended to jpeitorni adinirahl.y. Presuniahly this would not he the ease for all such

gesture sets. One area for exploration is a l11t3ll10{l for calculating the cornnion covariance matrix

(lillerently, in particular; by not weighing the per elass C{tlllCll)U.llOllS by the nuniher oi‘ exaniples oi’
that class.

Another challenge would he to handle such gesture sets without giving up linear classification

with 3. elosed form training formula. There seems to he only one eantiirlate, which relies on the

maltiel ass iinini:nitnn squarecl error‘ and the pseut'lo:inve:rse ol" the i'natri:<. oi" t.’.X'rlIllplt3El l_'3=Ll,l. It shoultl

be explored as a potential alternative to classifiers that rely on estimates of a ronnnon covariance
‘matrix,

it would he interesting to explore the possibility of allowing the user to inclieate tleelaratively

that a given gesture Will Vary in size a.ntl./or orientation. ',l'his might be liandleal simply

by ge.nerati=.ig 8.L'l{llllOt1€il training exainples hy varying the usemupplierl exantples aeeorrlingly.

Alternatively, it may l‘tE) possible to augment the training algorithm so that the evaluation functions

for eertain classes are constrained to ignore eertain features.

Relaxing the requirement that a closed form exist for the per—elass feature Weights allows

iterative training rnethotls to he considered. They have been ignored in this dissertation since they

are expensive in training ti me and tenrl to require many training exarnples. However, processor

speed increases, iterative methods heeorne more practical for use in a tool for experimenting with

gesture--laaseel interfaces.

Similarly, the requirement that the classifier he a linear rliseritninator opens the door

for many other possibilities. Quadratic rliserirnination, and various 1‘t011~]’)éllTEt1’l’1t)ll'lC diserirnination

algorithms are but These too are expensive and require l‘t}3.l1y training examples.

Perhaps recognition teelniologies that require expensive training may he used in a proeluetiori



Page 1397 of 1714

i:H;-4rP2’]E7R JO CCNCL ':'>'1’t’).t‘\fA.i’\1.7 EUYURE DIIrZE.'C1YOz’\/39

system while the cheaper technology developed here used for prototyping. This is analogous to

using fast compiler for tlevelopment and an opti tnizi ng compiler for production. At the ti me of this

writing it seems likely that neural networlgxs will soon he in eoirinion use, and gesture recognition is

but one applieati on.

Adtlitional attention should he %Vt;’.ll to the problem of detecting ambiguous sets of gesture

classes and useless features. The triangular matri>:; of Mahalanohis tlistance between each pair of

gesture classes is a useful starting point for determining similar gesture classes. lvlultivariate analysis

of variance techniques [74] can tletermine which features contribute to the -classification and which

features are irrelevant. These techniques can he used to srtpport the design new features.

recognition neerls to he expltared :l‘urther. The classifiers generated liy the algorithm of

Chapter 4 are less eager than they coultl possibly he, due to the conservative choices heing made.

llantl labeling or" amlsi ancl unambiguous suhgestures should be explored more fully; it is not

diftieult to imagine an interface that makes such labeling relatively painless, anti it is lilcely to give

better results than the current automatic labeling. Another possible iniproveinent comes from the

observation that, (luring eager recognition. the full classitier is being used to classify suhgestures,

upon which it was not trainetl. it might be worth trying to retrain the full classifier on the complete

suhgestures. Even hetter, perhaps a I163’ classifier. trained on the rieiviiyeoitiplete suhgestures (12 e.

those made complete hy their last point), should he suhstituterl for the full classifier: Also, eager

recognition neetls to be (:);lCl’ltlCL'l to rnulti-path gestures.

Al gotith ms for automatically tieterniining the start of a gesture woulrl also he useful, especially

for (leviees witlnottt any discrete gnaling eapahility (most notably the DataGl,uve). in the -current

work, gestures are consiclered atomic, essentially having no tliscernihle structure. lt is easy to

imagine separate gestures such as select, Copy. move, and delete that are concatenated to

single interactions: select and move. select and delete. This the segmentation question: when

does one gesture end next hegin? Speeifyiitg allowable eon1hina.tions of gestures opens up

possibility of gesture graniiriars, an :int.eifesting area lot future study.

This dissertation coneentratecl on single—path gestures that are restricted to be single strolres,

for reasons explaiiietl previously. The utility oi" inultiple--strolxe gestures neetls to he exatninetl more

tliuroughly. ln a multiple--strolre gesture, tlues the r‘ela>;ation between strolres ruin the correspon-

dence hetween mental and physical tension that iiiakes for goorl interaction‘? Does the neerl for

segmentation rnalre the system less responsive than it otherwise might he‘? Can a manipulation

phase and eager recognition be incorporated into a system hasctl on multiple-strolcc gestures‘? These

questions require further research.

Due to the interest multiple strol<e recognition, the question arises as to whether the single-

strelqe algorithm can he extenrlecl to handle multiple stroke gestures. First, the segmentation prchlein

(grouping strol<es into gestures) needs to he addressed. One way this might he (lone is to and large

timeout to determine the entl of a gesture The distance of a strolze froin the previous stroke might

he used. A sequence of strultes (lt’:it’.’.t‘l'llit)®<i to he a gesture inight then he treated a

single stroke, with the e.>:;eeption of an atltlitional feature which records the number of strokes in the

gesture. The single-—str0l<e recognition algorithm may then be applied.

Multi--path (¢3CO”I1lilOll is really still in its infancy. While the recognition algoritlnns of Chapter 5

seem to WOl'li well, there is not much to compare them against. Many others rnethotls for nriulti—path



Page 1398 of 1714

192 r7 truss" 1:i11t?,’~;‘c*rrcw.<: ’7'“~l

recognition need to explored. That said, the author is somewhat wary that multiple finger input

devices are so seductive that gesture research will concentrate on such devices to exclusion of

singl.e—patl.t devices. Tltis would unl'ot'tunate, as it seems likely that single-path tlevices 5». ill he

rnuch more prevalent for the fttreseeahle future, and thus inure users will putentially henelit from

the availability of sirigle»~path gesturing. /\lSt"t, a. thorough understanding cat" the issues involved. in

single--gtiath gesturing will lilreiy aitf use in solving the inure difficult problems enceuntererl in the

rnuiti-path case.

The achtent tti’ pen-based computers leads to the question of how the single--stroke recognition

tlescrihetl here may he ctiunhinetl with hantlwriting recognition. One approach is to pass input to the

gesture recognizer‘ utter it has been rejected hy the liandwriting recognizer. The cuntextt in which the

stroke has heen made (eg. drawing wirttltsw tar text window) can also he used to determine whether

to invoke handwriting recognition or stroke recognition first.

The start of a single—strol<e gesture is used tn deternnne the set of pessihle gestures hy looking

at pussihle objects at which the gesture is directed. it rnay be desirable to explore the possibility

that the gesture is directed at an uhject other than one intlieatetl by the tirst puint, object

may indicated by :1 hot point of the gesture the intersection point of delete gesture). A

similar ambiguity occurs when the input is a rnultiple—i'in,ger gesture; which at the rs should he

used to determine the ohjectts) at which the gesture is tiirectcd? hi this case, a unimi oi’ the gestures

recognized by nhjeets indicated hy each linger could. he used, but the possibility of contiict remains,

One prohletu with gesture-hasetl systems that there is usually no irttlicatiuii of the possible

gestu res accepted hy the system.‘ '1his a tlii't'icul.ty that will potentially prevent novices from usiiig

the system. One artmoartli would he to use a.niinatimi{_tii to indicate the possible gestures and their

effects aith-éiugh how the user asks tn see the animation remains an open question,

Also daunting to beginners is the timeout interval“ where “‘stiliness”’ is used. to indicate that

collection is over and tnanipulation tn Typically, a heginner presses a mouse button and

then ii1lILhS about what to do next; by that time the system has already classilied the gesture a clot.

The timeout cannot be totally disabled, since it is the only way to enter the rtianipulatiurt phase fer

some gestures. l-"erhaps some scheme where the timeouts are long ((3.75 seconds) for novices and

decrease with use is desirable. Another pessihility is t:lintinati1ig the timeout totally at the heginniiig

of the gestures, thus clisallewing dz)? gestures.
The current work suffers front a lack of l’orn1al user evuluatiert. Additional stutlies are needed

to determine classifier performance a function of training examples, and whether one user can

use a classifier trained by another. In general, the costs and the benefits or" fixed verses truinuhle

recognition strategies need to he studied. The usability of recngni;-cers is also of interest.

Recognizers that gradually adapt to users need to he studied as well. Such a recognizer requires

the to S011‘l<3l'1()VIV‘ii“l(liC:£i‘E<i when a gesture is inisclassitied by the system. Lerner {7 8} tleirtonstrated

a potentially applicable scheme in which the system monitored subsequent actions te see it the user

was satisfied with the result uf an applied heuristic. 'l.'here are dangers inherent in <l0uhl.y—a<laptiVe

SySl<?lTGS——lf the system adapts to the user and the user to the system, hath are niniing at moving

targets. and thras ring is possible. The current £t}ft§fi1'0£tt3i1 requires the user explicitly to replace the

]Kui"ter\hach et .. . 17. V .t gesture—‘nttsed inttarfzaces are “non—reVetalingj' and presentan interesting sultttion tfnat
unifies gesturing and pic--tncnu selection.



Page 1399 of 1714

CH;-4iP2’]E71i’ it? C .‘eZ\/‘CL ':3'r’L’)1\Ulf\Z.7 ELIYLTRE DII<ZE.'C1YO2\/39

existing training examples with his own—a workable, if not glamorous. solution

The low—leVel recognition worl: in this thesis is quite usable in its current state, and may be

directly incorporated into systems as warranted. {iRANDlVilA, however, is not useful a for

future development. It is purely a research system, built as a platfo rni for experimenting with input in

user interface toolltits. its output facilities are totally inadequate for real applications. ‘Gl{Al\ll)lVl A

was built solely by and for the author. who has no plans to rhaintain it. Norietheless, GRANDl\viA

embodies some important concepts of how gestures are to be integrated into object-oriented. user
interface tools‘

The obvious next step is to integrate gestures into some existing user interface construction tools.

of technical sui tahility are important, but not paramount. in deciding which system to work on.

Any system must be well supported and lllt1ll’llE]ll’l€(,i, so that there a reasonable assurance

that the system will suwive. l7urtherinore, any chosen system must be widely distributed, order

to make the technology or’ gesture recognition available to as rnany experimenters as possible.

A number of existing systems are candidates for the incorporation of gestures. The l\'eXT Ap-

plication Kit is technically the ideal plati’on'n—it is even prograrnnred in Objective C. The appropriate

hoolts seem to be there to capture input at the right level in order to associate gestures with View

classes. lt is prt. hably not worth the effort to implement an entire interpreter for entering gesture

sernantics at runtline, this not something a user will typically inanipulate. A graphical interi'ace

to control semantics, based on constraints, would be an interesting addition. ln general, a simpler

way for mapping gestural attributes to application parameters needs to he rletermined.

The Andrew Toollgit (ATK) is another system into which gestures may he inc-arporatetl. ATl‘§.

uses its own objecnorientetl prograrnining language on top of (7. so runtiine representation of the

class hierarchy, it" not already present, should be stt'aiglitt"orwarrl to add. ATK has iniplemented

dynamic loarlin of objects into running prograrns—this should rnal<_c. it possible to compile gesture

semantics and load them into a running program without restartin the program. Unfortunately, due

to their overhead, Views tend to be large objects in A'l“K (e.g. individual notes in a score editor

would not be separate Views in A'l‘l(.) iiiaking it difticult to associate different gestures v. ith the

srnaller objects ol interest in the interface. Scott Irlassani in a dilleretit approach, has addetl the

author’s gesture recognizer to the A'l‘l{. teztt object, creating an interface that allows text editing Via

prool'reader’s n‘tarl<s.

lntegrating gestures into Garnet another possibility. What would be required a gesture in-

teractor, analogous to the gesture event handler in {lRANDl‘s/lA. Garnet interactors routinely specify

their semantics via constraints, with an escape into Lisp available for unusual cases. Specityiitg

titre semantics should therefore be no problem in Garnet. laines Lantlay has begun worl: integrating

the author’s recognizer into Garnet.

Gestures co ulcl also he added to l\/tacApp. lliesitles being widely used, MacApp has the advantage

that it runs on a Macintosh; which historically has run only one process at a time and has no virtual

memory (this has changed with a recent system software release). While these points sound like

disadvantages. the real-time operation needed to traclr. the mouse rel iahly should be easy to achieve

because of them. Because lvlaczkpp irnpleniented in Object Pascal, ntiniinal nieta-inforrnation

about objects is available at runtirne. in particular, message selectors are not llféll class objects in

(1=b_iectPascal. it is not possible to ask if a given object responds to a message at runtime. and there



Page 1400 of 1714

10 3 1'-71;’\L’/ti; Riift/i’4}€[t'S

is no runtitne representation of the class hierarchy. Many things that happen automatically hecattse

GRANIJ l\«iA is Written in =Ohjeetive C Witt need to be explicitly cocietl in t‘v_lae/Xpp.

it would he desirable to have a(ltli.tia:iiia.l att:rihtttes oi‘ the gesture available for in gesture

semantics. Notahiy rtiissing fmrn the eurretit set are l0t:a.ti0ns where the path intersects itself and

lt"t-.’:Ett',l0l’tS of sharp earners hi’ the stmlte. Both kinds (sf atjtrilintes can he used for painting with a

gesture, and allow f01'1T11titi}fti€ paitints tail be indicated with one single-“path gesture. Also, having the

numerical attributes also avztiiahie in E1 sealed form (eg. hetween zero and tine} would siinpiify their

use as parameters to application ftm-cations.

19.3 Final Rettiarhs

The utility of gestu-re~hased iritetffaces derives frerti the ahiiity to communicate an entire primitive

application transaction with single gesture. For this to be pnssihie, the gestu re iieecis to he classified

to tletermine the tipetatioti ti’) he pert'.tti'ifneti, :m<i attributes of the gesture must he ntttppeti to the

paraitteters of the operatittii. Some parameters may be culled at the time the gesture is recognized,

while others are hest manipulated in the presence of ieedback train the applicatien. This is the

justitieatitin fer the twtt-phase Etpp1'0EECi1., where gesture recognition is hallowed by a inaiiipnlatiott

phase, which ztliows for the coiitittuotas atljttstment of pataiiieters in the presence of appiieatiott
t’eetlhac7k_

Frottt the outset, the goat of this work was to provide tools to allow the easy Ci‘€EliiOi1 of gesture—

based a.ppiiea.ti0ns. This research has led to prototypes of tools, and thus iaid much at the

grouiidwo rl< ftti‘ buiidittg such tools in the future. ,li0W‘CV(')1”, the goal wiil not have been aettievetl uittii

gestures ate integratetl into existing user intetface construction toois that are both welt maintained

and highly available. This involves more develepmeiit and niarlceting than it -does i'esearch. but it is

vitally iinpotrtartt to the iutuire a::-I gesture-haset}. systems.



Page 1401 of 1714

CH;-4J72’]E71-E’ JO C<C.‘a7\?CL4’J':3'1’C)1\/’/§..x’\Z)FUYURE DII{£.'C1YOEvZ§



Page 1402 of 1714

Agpgpeiidix A

€aae the Siii§le=-~§ti°el{e @esttii*e

eeagiiitien aha leaihing

This appentlira; contains the actual C eode 11 sed E0 recognize single--stroke gestures. The feature Vector

calculation, classifier training algorithm, and the linear classitiei' are all presented. The code may

he obtained tree of charge via anoriynions ftp to emsworth.andrew.<:iiin.e:l.n (subdii'eettiry gestures)

and is also available part of the Andrew contribution to the Xi lR5 distriliution.

A.l Feature {Taieulatiinn

The lowest level of the code deals with eemputi ng feature vector from a seq‘-.ien.ce ()fl’,00L1S<_’.p(}lIlES

that iiiake up a gesture. Type FV is a 3-irinter t0 2: structure that holds a feature vector well as
interiiieciiate results used in the calculation of the featiaies. The function FVAJ. lac allocates an FR/’.v

which is initialized before processing the points Of a gesture Via Fvliii FvAdc1Poj_i1t is Called

for eaeli input point or" the gesture. and FVC-ale returns the feature Vector fol‘ the gesture once all

the pciiiits have been entered.

The fellnwinfg £1 sample code fragi'nen1' ciernonstratirig the use of these funetimis:

ainclude “matr1x.h"

alnclude “fv h”

vectc;-I‘

InputAGesi:L‘-.:c*e (II

it
FV fv;

X, y; leng 1:; Vectcnr V;

A Fv£'«.I1r3z7{§’ is ajVg_7z"Ca3iiy<:a!i<5-<1’0125/once-perpmgrammvocazfian. at /’
if (fv NULL) Ev FvAlloC 5,);



Page 1403 of 1714

36 APPENDIXA :fT“?I_)£'FOR 51MC?L£'»-SYROKE GESTUREI»iE'COG]\&’1YOz“\/AMY) lTRz'~1]'z’V1’f\7J

A A p1’‘0£c21g..pi(: ,7 loop to C()tr,;r)z1re a fza 1111?: Vr:?CII)I" fimn 3 gesf,z.z1'€

beirgg 1631513121113 m'I1cJow;1;.:I1e:ge1 ;’ >r= /
FvII1it(fv) ;

wh1' T..e ((3et.Next Point (8:X,. END___‘()R‘___'GESTLTRE)
FVAdC'EPOini.'. (fv,

V = Fvfialc Cfv) ,:

1."e1:,u.rn V ;

The mtumed veci:e:ar V might now he passed to sClassi:Cy to classify’ {he gesuzra.

This remaindtsr of this seciion shows lhfi header file, fvli. which dsfinss the FV Lypa and the

fmture vector imerface. TE‘.-is imwface is ‘§1’)’i{)E€!ri]€r1t€d in fvxc, shown nexi.

fiziz — Crea {:3 at féaInna Ve<:'.fz)1; usefir.’ fbz‘ ,qesa‘u.'E 0 .3ssiflca0'0; 1

fi"0.rn a sequen(:e 01"p01'n£5 (9. :7)’. mouse ;:20_i‘I1.ts).
‘4<4=>9<».-=k>k€<#<>4<*>><=§<=§<>§<>%<*?4<**>k€<*r§<>><=§<*i<>%<4=*>§<-<é<#<4<rk=G<=k>H<>f<**=§<>i<>k>%<r4<*=?<>k€<*r4<*=§<*>H<*r4<>§<=k>k€<4<r§<*=§<>H</’

A: .... .» M. M M. .... .» .... .... ... (',g[Up_/‘jg [1'}'!}-(gt S(:g[:]}3b_,’(:_;- }a[}3n}L:«g,(:(I[‘s .... ... .... .» .... ... .... .» :4: //

/it some oflfjaese can also be set at . m.f1'me, fire * /’

itundef
’ £96312? USE: '27.l‘\/if to enable .*.";e dziration and nzafidmum 4c /’

‘1'fy[cea£uir;. 1 W961} not Li’-2u’%1L:‘{J,. Oznay be paswd * ,/

ificiefine DIST $Q TI-IRESI-{OLE} 3>l<3)

/kc paizzfs W1" ti;-in 5(.}!‘f(/.D1T5;’: SQ_ TI’1??z'?\S7*7_'{3[,D) * /’

, will be1'g72()Im’ to €1iI'I}fI1&l’6)IH()LlS0_ji£i€I‘ —:< /'

ine SE___TH___ROLLC'FF

A 1’Hr: SE__Y}';11E‘I}{iT3aru1r3.s {(:L:2:s 32110’ sin of 4< /'

/4< a ragle berv/een ffr.-31‘ ana’]aS:fg_701'I‘zt} W771 x /
ha’? e(r;31(*d c1’0W.'7 1' f‘:‘}':.') (iiSi)’: ?’i(.‘(? ix-m'::z*rr’: fix: >+< ,/

:i3?FF) + //5+’ paims is 1’523.9 f;‘1._=m 3qz"!.._"'SE_ H'f_.ROLI_v
1

. _"~[1ILl‘(:n['j"ég(/‘,6 .... ... .... ... .... .... ... .... .... ... * If

t ypecief struct. >i<FV;

/5% DLzr'ingges'1,wE- COIIe(iI‘1'on, an FV1’zo1'cIs is /'

/fir ah’ inI"r:1‘1nea’,"ate i‘s?su{f5 used 1' .72 the /'

/~%< caIcuJem'01:: Ufa s1’13gIefeazuIE= vector /



Page 1404 of 1714

A. 1. FE/'1]DRE CALCUL/¥3’"1'Of\"

FV FvA11oc<); Aw¥/

void FvFree (3 ,= ,4: Fa/{W< /’

voi «:1 FVII] i 1: ( ) ; ,é'4< /

voicfi 1?vA<:1dPoint ( ) ; A FVfs«; jntx, )3 long L'1'In::.“ >:c /"

Vector LF'VCa.lC () .: ,x’+'= F1/fs«r * ,/

/er. ~~~~~~~~~~~~~~~~~~~» 1'n{@1‘na_I‘ (2'5_.f;3 sI1‘114:7{un<3 ~~~~~~~~~~~~~~~~~~~-->k /'
i"v'1Z§.f/$.33"’fé§A'I"Ul:7{£§I 3 2

,

A‘-' maX2’mwz21‘1u121[’)e1‘ of - :2 i1ll’E‘S, occasionally useful as an a.r2‘a_ V bound 2: ,/A
; .

/* .''.Yi(fi(.‘(‘,'F irifn the fiianjm %a"rnr re-tz1rrs<?r.f’ FvC3."c =+< /’

-‘ififiefine PF INIT C F; ,4: 1'ni'U'a1a.ngIe ."Cos,I' ,1’

#de f inea PF___II.\I IN fc jm"U'a1 a12g]e (I9,i.';-/‘ /’

f ine PF_BB_LEN ‘ /4% Iergifz ofboumiing bcsx diagcsrzezl * /

itde f ins PF___BB___TH ,4} azvgie L)i‘i)()t.v12(1’.ing'.")())<' (fiag'()1}.,=zi >:< /
1‘ ine PF SE LEN -" 1eI3,(.zt:’2 Z)»=3tw'een st; 1' an-Q’ end ;:)o1'12:'5 >:< /

f ine PF SE COS = (‘:19 ofa11g1’£,= b€£‘,W‘~‘3E3!’! .s£a_r"t (311:-:1’ c-11a'p01'n‘i;s * ,/

# d e f i 116 P I N . ' ' sin ofaizgie bez‘.Ween srari‘ and era’poiniis 4< /'

imeif. ,- PF_LE‘:\.T . ;3177Ie*r/;-gffh:t:f‘gi2;3t1’H</

iédef ins PF__T}-3 iota} az‘2g1:;%1I‘a‘;«'r31‘;s‘r::\r1'.4~ /

iéde 1? i. :19 . sum ofabs V315 ofangies versed * /'

#61:-3f ine PF_SQTH ,4‘ 5L1r1;u;"":~:qL1e:z'I—:s 01' 'aI1g.’<—:s [1 ‘ea v.9I'se(.z' +< /

S311‘ ifndef UsE_T:ME
define NFEATURES

(D_ I--1 6’) m

,4< a'uI'a£1'01'1(), pa ih >+ /

A maximum spee(} rk _/"it43!:itit
A SIT‘-UCHIII‘: w'?‘;ir‘i’: .I’r.=r7in’.-3‘ in.*.(i*."i;'3z:(.ii;3t:r> a‘zi:s‘L1I:i<; (z’u.r."ng fha E/..'.'r> ';v'.r)r'l'n.r' C:7'iCui;3t1"0r: >r: ,/

s t ruC ‘C. ifv {

14% I129 1”E)i10vn'rrg 53 re z1.se(! in caicuia {mg the .f"(;-a 11.3135 /

éioubl e tartx , S t ; /$< 5t’:ir'U’12gpc)inz' >:< /'

S tart t ime ; ,4? sf,aI'11'rzg!‘1'n'1e >% /

' points: and t11enIe1'i alone * /



Page 1405 of 1714

231‘ APPEJVDIXA. :f.".7D1E'FOR S1MI?L£'»-SYROKE GE52'UREI{E'COG]\&’1YOz“\/ANLD Hf/»1]'z’\f1’N’.3

double initial_sin, initialmcosg z'ni[jaI;JI7g."e{0Xax:i.S*/

/§e< these are up::1'a1:ad 1';1r:rem£2rJi2,=J $./ Lzpczn every p0_I'nt =r ,/

in t npo 1311.“. S ,: A :2z_Imbe,r ofpoi12.f5 inpaI12 * /

double dx2 , dy.2 ; ,4+< e1’i1‘fi—3i‘s3;2(:'e:*5.‘ <:31':e1'.rx;—;)1s:w:; e3n(}y— 1z:e.r‘e3\/V‘;/2'< /

-tlouble magsqz ; A e1’¥3m'X2+ ajvéim}/2>z /'

Clzimlale ea“.-c1_\:, e1’ld._"; ,4 ."asl.'p{)irJl'ada’ed /‘H.
1011: enagime;

-tiouole xi‘:-.x. maxx, miny, maxy; /5:< fmzznciirighawwc,’

double path_r, pa§th__th _: /5k £012.11 Iength az‘1(1'z"otaii(2r {in raa:7i'an5) >+< /

d-imb 1. e ab s__vt h ; ,4 sum <7,1“..=zbsa."uz‘,e V..=a1ue.-3 17f}:-53:?) ang1' -st /

daub1 e 8harpne s S ; A sum ofgquanes csf;:s;2z}2 ar2g,’e+=5 =:= /

doub1 e maxv ,: /4< m>1.xdmum V81’0:71’(V >2 /'

/¥ Aclu.-ai fee rune V8!.“IOI‘ >r /'

,4<~‘m.b.=r>:<>:< :z+<1<w=r>rx: :<ww>+ *#<*%<=%'>1<x11<*$<>§*>k* :x+<M=rx: *#<*»<*'>k>i<#<*$*-=+'>¥ * +4<.~‘<=¢<=k>:< :<+<M*>r zx

fv. C Cnsa 1193 3 11.11%, 'eCi;(;z: useful for ,_L'.;‘€3.‘5[Z,iFE3 Clea 5'01).

£1912’) a sequezmre o1"po1'nt's (fig: mouse pojrztsj‘.
**>9<>9<=k>k>k>€<**$>€<>k>H<*>4<>é<=K*>k*?§<¥>€<>ki<>f<*>9<>9<=k*>?<**=?<=k>H<***>k>k>k>k>4<>><>?<*>k>f<?4<*>€<>k>H<*?4<>9<=k>k>k**>€6>€<>k*,/'

#include <stdio.h>

#include <math.h>

# inc lude " matrix . 1:1“ ,ri’%< ct 1r2:a1'n5 \/.=’3c‘('or' andassczciateci [w:ict1‘on5 >:< /'
#include ‘“fv.h”

/+< i‘iJ?’ifi?’iki! ,<;(:."T;3i)l:ir ;’;;3:‘;3 r;'20itz7.':<: an /

double di st.__sqm\:hre shale: 13: S'r_SQ_'1‘I-ERESHOLD;

cioub 1. es 5 e___t h____1:o Ii. .1 of f SE____TH___ROI_.L()-FF ;

itdef ine (1.0-e.~4>

/3< 22110-Ca tr: 21nF I/"st.r‘uc£' in-c1'Lz-riing 1”-:>atLz1r: Vaduz‘ ,/

FV



Page 1406 of 1714

A. 1. FE/'1]DRE CALCUL/¥3’"1'Of\"

vAlloc()
r
1

register FV fv = (FV) ma11ocOrDie(si:e0f(struct fv));

fv—>y : New7ector(NFEATURES);

FvInit(fv);

return fv;

/+:< SW39 zm:-mor_fy' .a.~;s(,=C1'a {er} W1’ iii: FV.9{rziC.:‘ /
void

FvFree(fV)

FV fv;
r
1

FreeVector(fv—>y);

free(<char *) fv);

2..

kzmflflkwm}W@Emim;mmm?firmawmggmammmm$*/
void

FvInit(fv)

register FV fv;

{

register int i;

fv~>npoints = 0;

fvm>initial sin = fv~>initial_cos :
fv—>mazv

fv—>pathmr

fv~>path_th

fv—>abs_th

£vw>3harpneS3
fvw>maxv =

fOr(i O; i < NFEAT?JE.ES;

fv~>y[i] : Una;

/Ir updaze 9111 19"ix’5£1'uc'a’, zo mflzci a new izipui pain! =r ,/
void

FVAddPoint(fv, H, y, t)

register EV fv; int X, y; long t;
I\.

double dxl, dyl, magsql;



Page 1407 of 1714

x¥¥¥flVCiX}& CEZZEFKEQSHVS’"1SIRC%i§GES1EH%3REKI}3fiIIHlW}9%3YEQVAENE

double th, absth, d;

#iEdEf PF_MAXV

long lasttime;
ifenrjif

++fv—>npoint$;

if{fv—>npoints =2 1} { A:fi$rp0hfi,HHflfl&m5onm1@rs*/
fv~>starttime = fvw>endtime = t;
fv~>startx - fv—>endx = fv—>minx : fv—>maxx

fVw>starty = fv~>endy = fvw>miny = fv~>maxy

fvw>endx = X; fvw>endy = y;
return;

— fr—>endx; dyl = y —

Qxl * dxl + dyl : dy ;

(magsql <= dist_sq_thresh0ld) {
fv~>npoints »»»»»>4

ret11rn ,: ignore a point dose to the iasvpoimx /

ifi{x fv—>m1nx> fv—>minx

if(x ~ fvw>maxx) fvw>maxx

if(y - fv~>miny) fv~>miny

if(y fvm>maxy) fv~>maxy

,1: de 3? P 3.:*____MAxv
lasttime = fv~>endtime;

#endif

fvm>endtime = t;

d = sqrt(magsq1‘;

fv~>path_r += d; A:¢mampamimyyhfimfinw$/

AcakmamufimfldmmtWmnmemfldpmhHs&%n*/

if(fv~>npoints = 3) {
double magsq, dx, dy, reclp;

dx : x m fv~>startx; dy = y W fvw>starty;

magsq = dx * dx + dy x dy;

if(magsq > dist sq threshold)

/4% fiza’ angle wjnt. p-051'z'1":/ex 22/His sag.



Page 1408 of 1714

A J. P}EL~’UL7}%7£}'3LC'LD‘1YIU’\J

recip = 1 / sqrt(magsq);

£vw>initial_cos = dx w recip;

fvw>initial sin = dy * recip;

if(fv—>npoints >= 7 { A<qmkneamfle—ba&%f%anuE5*/

th : absth 2 atan2(dx1 * fvw>dy2 ~ fvw>dx2 * dyl,

cixl $2 fv~>-5.12:2 + ciyl $2 fv~>-Cly2);

i£(absth , O) absth = wabsth;

fvw>path_th += th;

fJ~>abs_:h ~= absth;

fvw>sharpness += th*th;

#i.def PF MAXV A=aumnMemaXwfimfi@*/
if(fvw>endtime > lasttime &&

d / (fv—>endtime — lasttimei) > fv—>maxv)

,¥+< prepa re for U(:‘X{ iziera firm :4: /

fv—>emdx = X; fv—>endy

fV~>dX2 = dxl; fvw>dy2

fv~>magsq2 = magsql;

return;

,&rflrmamandmmwnafimnnfiVmfln*/
Vector

FVCalc(fv)

register FV fv;f
‘1

double bblen, selen,

if(fv»>np0ints <= i)

return fv~>v; _%afhHumi@Cmr0faU3mns*/

fv-» >y {PF_Il\IIT__COS] = £v»» >i11it :La1_cos,-

fV—>y[}?F___INIT___SI1\T] == f.v—>i.nii:..1'.al.___sr£.n;



Page 1409 of 1714

242 A£3’1'—’Ef\D")§”/L CODE FOR JSLUVEE ’ N»-5l'RC'KE' REC£7CL’\7H'I£17‘J}~ ’\ZD TI?/iL‘2’\z1E’\/E7

A zL‘(.7I?‘,’pl1.’.'?,‘ the fang 1]‘: of {he Imzitjdi box diagrmal >+~ /

E;-blen hypot {fv--« —-- fv---->min:x;:, fv--— --— >miny1‘;;

fV— >y[PF____BB____I..-EN] lflblr’-311;

,4: the l)0u1‘1d1'ngimX.ang}e um; 10 Ofhr sma/'.I‘ g(—.\s‘i'z1z’(—>5 /

if {Io};-len '—k bblen > di:3t._sq_thresho1d)

fv-»~ >3; [PF_BB_TH} = atanz (fv»» >maxy fv >miny,

fv— >ma}<.x — fv—:>1ni,11x.) ,-

/4.< e?(1I?‘)pl1f.?,‘ this length and angle £[}(:‘f‘W(:‘?}I.1 L f1}'5f,anz'1' last p(;-infgs ,2’

S-:;'=l€1’l ‘nypot {fv--« >endx —-- fv——-~ >star1::»;,

fv— >endy — fv—;>s1‘:arty) ;

f"v'— >y[PF____SE____I..-EN] selen;

,4: whm I,/is first and lasi:ps')im's are V(i‘1“f,"C.i{.7.€(:‘, .f,l1<:‘ 3n,_L;3'i(—.‘ .i'z1ms‘

are 31:33:35? 50 €225! z’1ey'5'z;{i52f}¢ {I28 512 hi]! fry’ £137 {'5.=1“1'm1 >:< /'

factor = sealer: selen ,/ se__t‘r1_rQlloff;

i.f(fac!tor :> 1.9) . 1.0;

factor = selen > : ’. facitox‘/selen : 0.0;

fv-—>y[PFm_SE__COS] (fv—>-endx — fv—>s-tartx)

fv——- >12‘ [PF_SE_SIN] =~ _fv—-- Tzélldy —- fv~-- >sta1“L' y)

/fi< (‘he 1‘ema1’,m'ng fee 1‘u1‘es 113 V8‘ a/rea been mmputed /

fv——— >y [PF_LEN] = fvw >pat‘:1_r;

fv— :>y [PF___'I.‘H] fv— :>path____th;

Ev-~ ->‘y [PF_ATH] 2 fv—- >a}:-;3_th ;

fv— >37 [Pl?‘mSI;'Q’I‘H} = fv—>sharpness;

(fv—>endtj_me — fv—>st.:.rt.ti.me)$¢0].,-

" PF_E‘/IAXV

fv———>y[PF_Ev‘IAX\7} = fv———>maxv >:< 10000;
#endi,f

3:et:urn fV— >y;



Page 1410 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

A2 Deriving and Using the Linear Ciasfifier

Typesclassifiex‘pohneatm1omcmwhmicpfifimfisackmaflerflficiodficfinfiuacbcuwmxxa

set of gesture classes, Each gesture class is represented by an sC1assDope type. The functions
sRead2nKiswritesfiadand\whk:achmfifi6rK>affie ThefundknasNewClassifer'meams

21 new {empty} ciassifier. A training example is added using sAc1dExan*-pie. There is :10 function

to exp! iciiiy add a new ciass to 21 ciassifimi. VVht'3!'l an -axaxnpic of a msxv class is added, the J'1€:VV class

is ca'eate<i mmnnaticaiiy. To train the classifier beascxi on the added cxaanpiccs, cal] sI3QneA(id

(hmcnnfimd,sClassifyandsClassifyADzueuufitockmsfiyafmfimexmcumasoneofme

dewe$sClaseifyADopfimumyemnmnanheKfimflenflfimflmflmx

1E<:r<: is an exampie fragment for creating a new ciassifier, eniierin new training exarzlpies, and

wfifingweflmumngdamfikroumeafik.Someofwexnhnmkmsm€finwdfimdfmflmr¢xcfibafl
in section 9.1.7.

#include <etdio.h>

fiinclude <math.h>

#include "bitveCtor.h“

#1 ,1ude "matrix h"

fiinclude "ec.h"

#define NEXAMPLES 15

sclassifier

1vEake.AC1ass:.1‘.f_1'.er ()
I3,

s«:3].aesi.fie1: sc: sNewC1assi.fi.e1r(),-

Vectar InputAGes'tu:c'e <7.) ;

name [1001 ;

int i;

for(;;) {

printf(”Enter class name, newline to exit: ");

if(getS(name) = NULL H nameiflj == ’\G’)
break;

for(i = i <= N"E3}{A1\'E?L}3S,: :;++) {

print’("Enter %e example %fi\n", name, i);

sAddExample(sc, name, InputAGesture());

Ir

sflonezmding (Sc) ,-

5-Nrite (fopen { "classj.fier.<:=uIt” _,
retugrl SC,‘



Page 1411 of 1714

244 Ai3’1'—’Ef\D")§”./4‘; CODE FOR :SL"\/E3-LE»-S'H€OKE' REC£XL’\7HYC7f‘J}~ ’\ZD 171%/iL‘2’\z1E’\/53-

(hmxwmgmmhfibwnmamdfimnmuwdmcm$mmg%mmM$@&m&

TestAClassifier(sc)

sClassifier SC;

Vector v;

sclassflope sad;

double punambig, distance;

{

*tf(“Enter a gesture\n");

inputAGesture();

sad = sC1assi£yAD{sc, v, &punambig, &distance);

§rintf(”Gesture classified as %s ”, sod >name);

printf("Probabi1ity of unambiguous classification: %g\n",

punambig); cw

printf(”Distance from class mean: ag\n", distarce ;

What follmvs is the header file and code to irnpiement the statistica.1c1.aissifier.

saxiz area 19 7'19 pa 1}} z,‘1'eiss1‘fi3r5 Hon] fees iure 1/r.=c1or.s 0fa=Xa1n_pies,

w'eU as (:/a Vfug mp1'.+;> lure V(:‘C{(PfS.

>f==Y>Et>!<'#<I»+<=5<‘«*=>k>k>H<*I<I4<a‘=>t~>r'*'$<I4<=5<>k=>r>?wkt¥a‘==r'>H<'#<=#>~=a*=>H<'+<I%<*>k=}'>H<I4<=¥:*=>%'>%<>E<I4<=5<*>F>?iwk4<A‘=>f=a"*'#<I#<=5<a*=>F*i<i+<=¥4/

#<ief_ine MAXSCL-AS812 100 /§¥,I?,78.X'1'!3'}I.II?,? m1.mb&1‘af<"1a.5:5e5*/

typedef struct salassifier *sClassifier;

typedef int sClassIndex; #}K¥—CMSSHfikX*/

typedef struct sclassdope *sClassDope; A;mr~cmasHHbnnafinn*/

struct sC1.aS.'3do‘_Qe ,5k per ge.sfi1,1"e Ciass iz7fc>r117ari0,i7 mrizin a Cias.9ifi?1‘ 4c /'
Char >mame; /e‘< I}.~'iIL'{:‘ 01):: m’az.ss -¢< /’

Sfilassindex number; ,4unmuehmax@HmHinmgm90fa€mss*/

int nexampl ; /$< 11uI12be1‘ of _f1‘z21'11i12' ?'€XEiI.Y1p]L“S :+< ,/

Vecitor average ; 5 E1 verage of£’1‘.:,z1'Lu"ng 8Xéi!IIp1{:‘S x /

Matri...‘-; sumc:-Qv; /-.v C.r)va1:i.a race ma fl‘/.Y of eXa121p]es * ,1’



Page 1412 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

siruct sclassifier { flwjdaxdfiyxf
t I1feai:L‘-.re 3 ; /'a< L=uI_r1b9_r‘ of m{'(::<; in 1"eazu;“e vez:zi0_i' a< /’

nclassees ; mi1m‘)er ofciasses known by this rias,§i.f%r /
fit

‘C'la;":'SD<3g>e >:<ClasSCio;_;:-ca ; /at 0fp01‘m'e1'5 to per C5355 deiia —+< ,"

Vac: tor cnst ; An c0,n.9{;anf term of dfSCI‘iI7Ii113 (ion fu,nc2‘1‘(m * /'

V53131101‘ *W; /5% éi!'i‘a y «:2frrae1fi7[e_r3[ Lixejgfjfs * /

Matrix invavgcev; fir inVr—3r.s?(—.‘ C:)v.ar1‘ane:‘e ma igrfx /

sclassifier sNewClassifier();

sclassifier sR&ad();

void swritei);

void sFreeClassifier();

void sAddExamp1e();

void sDoneAdding()

sC1assDope sClassify();

sClaSL'—:~DOpe :3ClaSSif.yAD {) ,- I 5(:, )4. dmzbie *a‘}),‘ dz..=ub1'-:3 >:<u'p 4< /

sclassnope sC1assNameLookup
double Mahalanofiismista

I

<1) ; _-'. . 9s5_name4</'

nae U ; ’>:< V3::'rnr V, :2; ,{‘\v$: rrix .s'igma >:< /

56.4" £TI'L’éI[L’S u’a.sm"fi—.‘1'.<; {#0111 Iéalujs vc{;lo_:"5 (,P[(:‘.3;'£iI{1‘[.P1'8.§', ‘./!’{:.‘H as

r:ias.*;z,€/1'ng‘ axa mpie .'.'m'(—> V.+3ci(Jrs:,

'—i<>%<#4>k>?<**>1<H<>v<>f:>k*>i<*>i<>%<>}i>E<**>i<>f<>f==F**>i<>%<#4>k>?<3r<4<>i<>§<>F>k*>$<:5<>%<>f->§<>i<9r<*>%<>}:>k**>5<#<>f:=F**>i<>5<>%<>k>?<**>i<>§<>f:>k>k4</i

#include <stdio.h>

#include <math.h>

#include "bitvector.h”

fiinclude "matr1x.h"

#include “sC.h"

iatdefine (1 W 08-6} ,4 1371‘ singr1}ar .rna!,r1'X«;

/11 {Jamie 111511101" y‘ a_5r3Uz,‘1'2.:' led W1‘ I1 new .r;!.»:: * /

sclassifier

sNewClassifier()
I\.

register sciassifier SC :



Page 1413 of 1714

246 14E¥¥iNIH3¥}1 CI)£E§F(E?£Jfi&3’"1S2FflQRI§CHSS1EH%§ffl5CI}3fiflYY£EV}~Ni?Y$&iflVH%3

{sClassifier) mallocOrDie(sizeof(struct sclassifier));

sc~>nfeatures = ml;

sew>nc1asses = O;

ec—>c1asedope 2 (eclassflope *)

ma1l0cOrDie(MAXSCLAsSES * si2eof(sC1essDope));
SC—>'w = NULL;

return SC;

,4: free 111e11101‘y «:is,_<:ocjz: ted W1" U1 a new c1a5s'1'fL31‘ >4= ,/
V0 id

eFreeClaesifier€sc)

register sclaesifier sc;

{

eclassnope sad;

'; i < sc~>nclasses; i++) {

sc»>classdope{i];

if(scd—>name) free(scd—>name);

free(sCfi);

if(sc—>w && ec—>w{i]} FreeVector(sc—>w[ij);

if(sCd—>sumcov) FreeMatrix{scd—>sumcov);

if(scdw>average) FreeVect0r(scdw>average);1
J

free(sc~>classfi0pe};

if(sc—>w) free(sc~>w);

if{sc—>cnst) FreeVector(ec—>cnst);

if(scw>invavgcov) FreeMatrix{sc~>invavgcov);

freeésc);

A given 3 swing zixfa C/ass, F9{i1i"I?fESp.'3Z‘— C1355 I',nf'arm3z‘i01H< /'

sclassaope

sClassNameLookup(sc, classname)

register eclaseifier sc;

register char *classname;

a‘

register int i;

register eClassDope sad;

static eclassifier lastsc;

static Sclassaope laetscd;



Page 1414 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

'21'1'as( (.']£iSé>' 11111115 :4< /'

so && STREQ(lastscd~>name, classname))

,4< ii!1e3,3:‘3.+3a1‘Ci2 iiimug 1 a/1' c']a.s5r3.s'fi7.r;2a1n¢3 >+~ /'

for(i = O; i < sc—>nclasses; i++) {

sad = scw>classdope[i];

if(STREQ(scd—>name, classname))

retuxn lastsc = SC, lastscd = scdg

.4‘
retuifll N-TJT.1}:; ,'

add a new ge5fi1,1‘e Class to a ::l.a5s,i.I/fE3,:' /'

static sClassDope

sAddClass(sc, classname)

register sclassifier SC;
Phar $classname;

{
register sclassnope sod;

sC—>cla$sdope[sc—>nClasses] = scd = (sclassflope)

mallocOrDie(sizeof(struct sclassdope));

scdw>name = scQpy(classname>;
scd~>number : sc~>nclasses;

scd—>nexamples = G;

scd—>sumcov = NULL;

++sc~>nclasses;

return sad;

30'1",’ 3 new .f,ra,i/zing eXa1np,l:3 to a a?1ass_z‘f:E9,r ,/
vO:i.d

sAddExample(sc, classname, y)

register sclassifiar SC;

char *classname;

Vector y;f
1

register sClassDope sad;

register int i, j;
double nfv[50} I



Page 1415 of 1714

248 14E¥¥iNIH3¥}§ CI3£E3E(E?£¥fi&3’"1S2FflQRI§CHSS1EH%§ffl§CI}3fiflYY£EV}~Ni?Y$&iflVH%3

double nmlon, recipn;

sC1assNameLookup(sc, elassname);

classname);

if{sc—>nfeatuxes
sc~>nfeatures

if(sCdw>nexamp1es ~= 3 {

scd~>average = NewVector(scw>nfeatures>;

Zerovector(5cdw>average);

scd«>sumcov : NewMatrix(scw>nEeatures,S w»nfeatures);

ZeroMatrix(scd—>sumcov);

if(scw>nfeatures ._ NROWS(y)) {

PrintVectGr(y, "sAddExampla: funny Vector nrowsi=%d",

sc—>nfeatures3;

return;

sCd~>nexamples++;

nmlon = ((double} scdw>nexamples~

recipn = 1 U/3Cdm>nexamplas;

/qcd~>nexamp1es;

1';2c1“ea122em£a11'_y' .',!p{1’é¥ is mV.:a.r‘ja1M::9 173.53‘ zfrix /’
for(i = D; i < SC >nfeatures; i++)

nfv[i] = y[i] — scd—>average[i];

/$:< 13111}-' upp(,.=r £1"ia:2g‘uia1“pa11'c‘e3i11pz,zZed * /
for(i = O; 1 < sc—>nfeatures; i++)

f0r(j = 1; 3 < SC >nfieatures; j++)

scd—>sumcov[i][j] : nmlon * nfviij x nfv[j];

/* i11L‘i%:111<:‘I1ia1Iyupdalernearz V(:‘Cfi)1' 4< /'
for(i = G; 1 < scm>nfeatures; i++)

scdw>average[i =

nmlon * scd~>average[i] + recipn x y[i];



Page 1416 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

I

/4*: 11.211 [he (1'2u'111'1.'g 2s1,g'u1‘1'(1'1111 (211 (he c1a:eLs.i2r?}1' »'= ,/
void

sDoneAfiding(sc)

register sclassifier SC;

{

register int i, j;

in‘: C ;

int ne, denom;

double oneoverdenom;

register Matrix 5;

register Matrix avgcov;
double deb;

register sClassDope sod;

SC >nclasses == 0)

error("sDoneAdding: No c1assee\n");

A G1've11 ca ‘iE1!}(.'i,’!I1Ei5I‘iCE?SIb1“ 8;: Ci} 2:1’ i1z,zmb(..=I c21”(::m111;21ea" 1/‘

cmnmumtmanemgeéwmnmmemwwmna,maHw*/

avgcev : NewMatrix(sc—>nfeatures, sc—>nieatures);

ZeroMatrix(avgcov};
me = O;

for(C = O; C < sc~>nclasses; c++) {

sad = scm>classfiope[c];

ne += scd—>nexamples;

S = ecd—>eumcov;

for(i = 0; i < SC >nfeatures; i++)

for(j : i; j sc—>nfeatures;

eW:aC0v'[i] -' an: H};

aenom = me ~ scw>nc1asses;

if(denom <2 0) {

printf(”no examples, denom=%'\n", dencm);
return;

csneoverdenom = 1.0 /' denom;

< sc—>nfeaturee; i++)

< scw>nfeatures; j++)



Page 1417 of 1714

25() fiE¥¥iNIH3¥}1 CI)£E3F(2?£JP&3’"1S?FflQRI§CHSS1EH%§ffl5CZ}3fiflYY£EV}~WE?Y$&iflVHfi3

‘E = avqcov{ij[j} *= oneoverdenom;

#nwmfmeawcamHmmemamm*/

scm>invavgc0v = NewMatrix(sc~>nfeatures, scm>nfieatures);

det = InvertMatrix(avgcQv, sc~>invavgcov);
if{€abs(det) <= EPS}

FixClassifi&r(sc, avgcov);

/%< 120 W croxnpute .r1isC1'i1m'1:eai'1'o11 fLI11C’UOI}S nu /'
sc~>w = (vectox *)

ma11ocOrDie(sc~>nclasses * ; zeof(VectQr));

sc~>cnst : New7ector(scw>nc1asses);

for(c = Q; c < sc—>nclasses; c++) {

sod = sc—>classdope[c];

so >wEC] = NewVector(sc~>nfeatures);

VectorTimesMatrix(sCd—>average, sc—>invavgcov,

A;uodm3::*/ scw>w[c});
sc~>cnst[C} = ~G.5 *

InnerProduCt(sC—>w[c], scd—>average);

A (‘mild :4./in’ .’0gCm'i‘nrpmI) (Z'is':S.S’ C} in rr:,<;f[a:,»’ an /

FreeMatriz(aVgcov);
return;

,4‘ cIa.9,si,»fya fa; .r‘u1‘e v'r:-Cfar /

sClassDope

sClassify(sc.

return sClassifyAD(sc, fv, NULL, NULL);

fv)

/+< r7:’a.s',<:ia fine .r"r:r(> wérxmr; p().¢,<;i«’):’_'yrtvrzmmrfi/zg l'(j'),"(?C'/1'1’??? mc7."r:'r?.s' >é< /

sclassnope

sClassifyAD($c, fv, ap, dp)

sClassifier SC;

Vector fv;

double xap;

double *dp;

{
double disc[MAXSCLASSES};



Page 1418 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

register int i, maxclassg

double denom, ex§();

register sClassDope sad;
double d;

%x no trained classifier”, so);

sc—>nclasses; i++)

InnerProduct(scm>w[i], fv) + sc~>cnst[i];

scm>nclasses; i++}

disc[maxclass])

sC—>classd0pe[maxclassj;

(ap) ,»§< 522151113I:2‘,z)1‘mfrabiij(V0f110i1»»-aznbjgujfiy>é< /
forfdenom = O, i = D; i < sc—>nclasses; i++)

/>':< q.'.r/'::'i< ('hc)('i{' in 3 L-'m‘.'i mrzzpsjririg rmg.’.v'gi.hf(= farm /’
if((d = discii] — d1sc[mazclass}) > »7.0)

denom += exp(d);

1 . O /’ derlom;

.r:a1'e':zu'a.fr—.‘ difiazice to ,'T}(:‘éi!7 ofztliosen C1.3.‘§S >k /

= MahalanQbisDistance(fv, scd—>average,

ecw>invavgcov);

return sad;

A Caz7:pa/rm fr".-(3 ,«,"\4‘a ha.v';i/zrzbis di.s'f'3m:'r> :‘_2(/rxiveréri fwn vm'?,"e7z“.s V and (I >e.- /
double

MahalanobiSDistance(v, u, sigma)

register Vector V, u;

register Matrix sigma;f
1

register i;

static vector space;
double result;



Page 1419 of 1714

x¥¥¥flVCiX}& CEZZEFKEQSHVS’"1SIRC%i§GES1EH%3REKI}3fiIIHlW}9%3YEQVAENE

if{space u= NULL H NROWS(space)

iffispace) FreeVector(space};

space : NewVector(NRQWS(v});

}
for(i = O; ' < NROWS(V); i++)

spaceii : vii] — uii];

result = Qu;draticForm(space, sigma);
return result;

Aimndmfm?amnnfasflgymramvngcmnwrmncnmaWh4gvwm0Wqgfimfmws*/

FixC1assifier(sc, avgcov)

register sclassifier sc;

Matrix avgcov;

{
iflt 1;

double det;

Bitvector bv;

Matrix m, r;

/fijustaddihelkanyvsznxsfiyane,dficanihgfaqyibatcause
menmfiiVmZmn0n—mw%fiMe*/

CLEAR_BIT_vECToR(bv);
for(i = 0; 1 < sc~>nfeatures; i++)

BIT_SET{i, bv);

m = SliceMatrix(avgcoV, bv, bv);

r = NewMatrix{NROWS(m), NCoLs(m));

det = InvertMatrix(m, r);

i£(fabs(det} <: EPS)

BIT_CLEAR{i, bv);
FreeMatrix(m);\s
FreeMatrix(r,;

m = SliceMatrix(avgcov, bv, bv);

r = NewMatrix(NROWS(m), NCOLS(m));

det : InvertMatrix(m, I);

if(fabs(det) <= EPS)

error(”Can't fix classifieri");

D&SliceMatrix(r, 0.0, bv, bv, scm>invavgCOv);



Page 1420 of 1714

A2 D.E7R[‘i/L"\n’C}' /~‘a]\’:') USLNK? YHE ]_L"\£E§L¢§R’ C.L’&SSIF1’CE1R

write 5? cia.9\§f.i'i9r to 3 .1"'}’e /
void

swrite(cutfile, Sc)

FILE *outfi1e;

sclassifier SC;
5
1

ifit i;

register sClassDope sod;

fprintf(outf le, "%d Classes\n", sCw>nclasse3);

for(i = 0; ' sc—>nclasses; i++) {

.m>classd0pe[i];

”%s\n“, scdw>name);

SC >nclasses; i++) {

sad = sc—>classflope[i};

OutputVector(outfi1e, scd—>average);

GutputVector(outfile, sc~>w[i});

QutputVector(outfile, sc—>cnst};

Qutputmatrixioutfile, sC—>invavgcov);

/§:< read’ a ztizzssifiér 1'ir*0m 2: 36 >+< /’
sclassifier

sRead(infile)

FILE *infi1e;

i, n;

register sclassifier SC;

register sClassDope sad;

Char buf E100} ,-

print'(“Reading classifier "), fflush(stdOut};



Page 1421 of 1714

254 14E¥¥iNIH3¥}i CI3£E3E(E?£¥fi&3’"1S2FflQRI§CHSS1EH%§ffl§CI}3fiflYY£EV}~Ni?Y$&iflVH%3

sNewClassifier();

'-(bu*, 100, infile)-

can (bufi, "%d”, ’ 3 1) error(”sRead ’">;

(“ d classes ", W _ fflush(stdout);

i ==u; :L<:1; i++)

fscanf(infile, ”%s”, buf);

sod m sAddC1ass(sc, buf);

scopy(huf);

", scd—>name), fflush(stdout);

allocate(scw>nclasses, vector);

0; i < scm>nc1asses; i++) {

sod : scw»classdope{i];

scd—>axerage = InputVector(infile);

sc—>w{K} = InputVector{infile);

}

sc—>cnst = Inputvectoriinfile);

sc~>invavgcov = InputMatrix(infile);

printf("\n");
return SC;

A<mHwumpaUWbed$Mna5bemmw2dafiaaamfivmffiecmxfitmmx

a clue as [U wixidi gesizJ1'e c'."a5.s'<:.=».'x'a1'(:* (.’m"1fi1s.ab!8 +< /'

sDistances(sc, nclosest)

register sfilassifier sc;

1‘

register Matrix d = NewMatrix(scw>nc1asses, scw>nciasses);

register int i, j;

double min, max = 0;

int n, mi, mj;

pnumf(W~w~~~~~m~~w\n”h

nc1osest>;

NR.owS(.'); 1+-+-) {

j < NCQLS-(d); j++) »{
Mahalanobisbistance

scm>classdape[i

I
K\

~>average,

»»>average,sc~>classdope[j}

sc—>invavgcQV);

> max) max = dEi][j};



Page 1422 of 1714

A3 U]\aDEFL/MED FL7Z\'CTIC1/\E§

i <. 1\1‘ROWS("); i++} A
( ).r1+1; j < NCOL

'" T} [j] < min)

min = Liimizii [mj =j};

p:c‘ir1t:f{"%2*i) %10.10s to 9510.103 r2si:d=%g‘\r:“ ,
11,

sc—>classciQpe [mi] — >name,

sc—>cla.ssdQ1_oe [mj] — >name,

agmij [mj].

sq1¢1:(d[mi

Agfi ijnfiefinefiihnefians

The above code uses some functicms wJ'10s=: ciefmitiams are not included in this appendix. These faii

itliifi sian(la1"d fibmry [unastisixam (imtiuciing Eh: math library‘), utility §‘unc=.lim1s, biLw:¢:ioI

funaions, and vcs:t:)i/'n1a.t1'iX ftlimstimls, 'I’i1¢: steamiard iibrary calls will rm: be (iiscussmi.

"Th? uiiiiity filnctions uaed are

(S1. , 32) returns Eff strings 5:1 and 2:2 are equal.

sr:C>py (S) rcmms a czapy of she swing S.
\

error (fcrmait , argl . . . ; prints 21 message: and causes the program to exit.

mallo-30rDie (nbyt.-as) Calls 111ai1a:sc, dying with an arm: xixessage if the 111a—:111o;'y csannot be
Qbminsd.



Page 1423 of 1714

256 A.i3’1'—’EI\D"){./41“ CODE FL}? JSLUVEE ’ ‘"»-S'H€‘LZIKE' REC£7C}'NHY£17‘J}~ ’\ZD 'II{/iL‘?\z1U\/{'5-

The bit vector operations are an efiiciexifii set of functions for accessing an array of bits.

CT_:EAR,,EIT_,VECTOR {lav} resets an enfliir-e hit vectm‘ bv to 31} 71$?’-:'sS,

BIT (i , bv) sets the Jfh bit of bv to one, and

BITQLEAR ( i , bv) sets the id‘ bi: of bv to zero.

The vee;tE0r/’n1a1trix functions are dzscizmtd in 1'n2Linx.h. Objects of type Vec tor and Matrix may

be like one and twodi111cnsi<3naiar1‘ays, respecli ve} y. but aim cmliain additional in1'nr1naEim1

as to {ht} diIn::nsi0naEity of {hc:<)b_§t:ct(accessib1:: Via Inacrns NROWS. NCOLS, and NDIM. it
sh011E(ii3e obvious from nanrxes and the 11515: of most of the functions (_1\Te\».rVN:1? i

F1fee"x7ecto1i. Freematrix, }2Sero\i’eCt.or, Zerofviaiclrix, Printvector, Pri.ntMa¥:.rix,

InvertMatrix, Inputvector, InputMatrix, Ou1;pu\:'x7e<:t or, Outputlviat ri:.~:,

Vectr:>rT2i. me sEv'1at.1*ix, and II1nerPrc-duvst) what ihey do. As for the mmaining functions,

double QuaclraticForm(Vector ‘if, Matrix M) c<>n‘1pu1«es the quantity I/’.M‘-/, whats

the prime dsnmes the m1nsp0se<)pemti(>n.

Matrix SliceMatIix (I»1at:‘i:»;; m, Bitvectcar rowmas]/-;, Bitvectox‘ colmask)

creates a new inzalrix, coxmisting only of those rows and 490115111115 in H1 whogxze c0rre;~:p0ndiI1g

are: set it rowtnask and colmask. respectively.

Ma1:.r.1'.:»<. D9551 i.ceMat.::7ix (Matrix. m, double 1}. , ":3.1'.tVector rowmaszk ,-

B."i.tVector colmask; Matrix. 1:esu.1.t)- first sets every eie1ne.11ti11 result to i 1.1.,

and then, Every elamlent in rest-.1 t whose row number is on in Iowmazsk and whose colulnn

number on in colrtxask, is sei1':<:u11 the -aopmsponding elexixmi in [hit inpu=;1nai:'i>; m, which is
smalierihzan 1:. The result of S 1 icewat rix (Desi i cematrix , f l 1, r<_w7m_a:3 ,

colmask, result) , rown1ask, colmasli) is a -mpy oftn, given iegai Values for {EU

parz=.r11ctcr;~L

These auxiliary functj<:>a1s, as weal}, as :1 C—b3.Sf.?(i X3 1R5 Versizm nf GDP, are 311 avaiiabic pan

of the ftp (iiS€1'f’)L£{i\3IL111t:11Ei011C4;§



Page 1424 of 1714

ébiifigmpéiy

Apple. Inside: J‘\/iar:1'nia.si2. As:Edis0.=1~Wes1ey. 1985.

Apple. .1'\.fici12.t‘e:sz': .f3y.9i*r,=,s22 S0fm'a.re L‘s:r:a1‘}; Guide. Eéz‘:;1'0n 60 Apple Computcm l‘}.P88.

H. Ai'zil»:awzi, Okadzi, and J. Masada. Cm»-iirle i'e<:0gIai=.iLm of hii1'1d\’s’I"ii{BI1 cEi:;a.i'zict<:i's:

Amfiziiiuiiierics. Hiiagaria, Kaizdiana, In R"csces\r1'iI1gs afxize 1nre1'12az1'0r1a1 _.b.='m

G:)nfE—7.r‘(.=nc€: {PI} F§af{{—7.r‘n Rf-c(2g171'iian,pageS 810-81 197 8.

R. Baecker. 'I0wai'd.s a cliaracterizaiiairii of graphical interaction. In iiuedj, R. A... ea. 2:1,,

editor. .Ms%fi’2c>dc21ogy ofZ'12('erac't;'o12, pages 121-147. North Holland, 1980.

R. B-aecker and W. A. S. BL1xtim. R£3.adiI1g.siI1 ..HiJ1r1aIi—C0iIi;)z11GI‘ fz’1l.+3z'ai.‘i.i<.In ~ A .:%I]iz'tI'1'5—

aiipiinar/Appmacli. Morgan K.a.ugma1m Readings Serias. Morgan Kaufzfnann, L05 Aims,
Caiifm*ni:i, 1987.

4 RV

Ronziid Baécksr, Ear: Small, and Richard Mander. Briixging icons to life. In CHE" 91 L.anf(:=ret1(.’€

Pmr:.reerf1'ng's'. E—6. ACM, Aprii 199}.

J. L. Bentley. 1‘w’ha1ii<;1ii1iei1sioriai binary SCEl.fC11 trees used I0: associative s€ari:11i11g. C:211111H_z~

n1'ca[1’a;1501"l}1e AC]‘v,‘.' 18(9), 1975.

M. Beifihad and .3’. P. Manny. Learning in syntactic recogiiition of syrnbols drawn on a graphic

tablfit. Canzpmer Gr‘a_p,.’21'c.§ Imsa F3mz?e531'n_g, 9:166----182, 1979.

7 J. Block and R. Damieribeig. Poiyphonic accompzmimerit in reai tiine. In Izztiz-:‘,v‘;.»:zi1'cmei_:’

C})_r1zpz.:.r'e_r' fvizsja‘ C‘a1.:fia1‘er1c'c, Cziinbridge, Mass.. 1985. Cariiiiputer Music Associastimi.

R. Boie. 13321730111161 communicatiaii. 1987.

R. Boic, M. Mathews, and A. Schioss. The Radio Drum 21 syr11}1csiz«:1' controiicr. in 19%?

Irm3z“na{jar2a1 G'nnpz1.’er Fi/iisir: .“rocer3(}1’ng's, 42—45. Cmnputszr Music /—‘\sso<;iau'<m,
Novernber E989.

R. A. B011. E5159 HQIIMI1 L'1z'e1'1'."2L'e.‘ wizere peupie 2211-(J L‘UII1pI_.’li31'é«' 11:551. Lifeiiiiie Laariiing
Puhlicatioris. 1984.



Page 1425 of 1714

BIBLICZGRAPHY

Ra<i1'ni}0 ’.=\/'1. Bozinovic. Rr'3c'z')gni {'1' (:17 01‘ <’3z‘"f~ii.I2e Cur.~';1'Vr—r .Ha17dwr;'./;'ng.' A 1?1fJ'1\/i§J:Ii'.1H(lf3‘»":‘3/

}\/;{i:i}z1',a2e .Pe1'c-c:'p.t'i012. Phi) thesis, State U n,iVe,rsity of New Yo rk at Buffalo, March 1985.

W. A. BHXEO‘-.‘l. Chunking and phrzasiiig and the design of hm/liar;-computer dialogues. In

.1'n/£'H'r:.r.>; ./1'01; PI'aca=s.si1ig North Holiand, 1986. Elsevier Puibiisiiern B.\/.

W. A. Buxton. There's more to imeractinn ihan meets ihe eye: Some issues in manual input.

In D. A. Nomizm and W. Draper, editors, €'..?*;(:*1‘ Ce12ie1'(:d Svszezns Desigzj.‘ 1‘\£:wP€1‘3pecfiVe5.,

an I-1’z1n’:.3 n— -mn_pr1rr:."‘ In.f.I.‘rar:.*inn, 3 E 9-3?/'. Lawreiice ¥~’..i":haum Associates, Hiiisdaie,
NIL 1986.

W. Buxion. Smolge Elfld mimisrs. 5/vf.~:%, i5(7):2€)5—210, July 199%.

W. A. Bnxmn. A tliree-state model of graphicail inpui. P;':2c'eea’j11_,r,_r.:i o1"InteI’ac‘z' S‘L'2Aug1:sit
1990.

W. A. S. Buxton, R. Hiil, and P. Rowicy. Issues and tcchn iqucs in t0uch—scnsitivc tablet input.

Cbznpulzlz‘ G1'gip1'11'cs. 19:’331215»--224, 1985.

W. A. S. Buxtmi aiici B. Myers. A study in tw0—i1a:raLied input. in Pnvireedings ofCfiz’7 'c‘.'f5

pages ACM. 1986.

W. A. Buxum. W. R. Baecker. a11dL. M-ezei. The user of hierarchy and instance in

a. data stmctu re for cmnputer music. in (Tums Roads and 303111 Strawn, eciitms, .F0u.m;’a tiaezz; of

C::z:1pz1(cn" .7\/.§1.s'i(:, cJ'1:1p=.er2.<i-, pages 4~«iE3---46:3. IVIIT Press, Canibmigr , Massachuseiis. 1985.

W. A. S. Buxmn, R. SIf!id€II!l’c111. W. Reeves, 8. Patel, and R. Baecker. The evoiuiinn Oi Lhe

SSS? SC()I"é3~<;tdi§'.i1”l £0015. In Curtis Roads and John Strawn, edimrs. Fazmda .f.faI.r.~'; r)i"¢3an:;.rui'er

z\45zsie?, ch3.p‘{ei‘ 387---392, MIT Press. Cimihridge, i‘v’i8.SS£iCh1!S€US, 3985.

S. K. Card, Moran. T. P., and A. Neweii. The keystmke—leveE mode! for Lister per:"m’rn;mce

time with inieraciive systems. C.r21;nmm.=1'r7a L='rm.9 n!‘a‘he ACA/1;’ 23('7):6{Jl—6i E980.

L. Canilelli and R. Pike. Squezak: A language for c::>mmunicz1Eing with mice. 5Y(7}(37RAPH '85

.Pm(,‘e.a=ding.s. 19(3), April 1985.

R. M. Can‘. The point ofihe pen. EYES, 16(2):211»»221,February 1991.

Michael Cnicmaii. '1“-ext <‘.(.ii‘[iE1g on 3 graphic dispiay device !}£i1’1’l}_’5,i'lE)1’ll'.i~(.i]‘?!‘A/'1’! p1fnofrcad.c.i'T'~:.

syinbnls. In M. Faiman and J. Nievergrzit, editors. PeH'1'm=ntCanceptsin Cornpizter‘ Grapizjcs,<‘,,.
Hr‘octeed1'12g5 of the .1». 0130’ UI'11'v'e1"51' 1:}/' 0f’17i1'1;-015 C—'0121'e1‘em:6 on Computer“ G1“ap]n’Cs, pages

283-290. Uriiversity of lliinois Press, Urbana, (§IE1icag0,L0r1d0:1, 1969.

P. W. Cooper. Hyperplanes, hyperspheres. and hy perqiiadrics as decision boundaries. in J.

Tom and R. H. Wiltzox. editors, C0111/.2u£e1' 2a11ci1111’E)1'1;:alju.r1 S(ff€I1L‘€b, pages 111-J38. Spartazi.

.VaSi1iIlgfOi1, D.{‘.., £964.



Page 1426 of 1714

B131]Cit‘?-}€1§£7}-IY

Brad 1. Cox. Message/object progranmting: An evoiuttonary change in progranitning tech—

noiogy. Sr_2ftWare:-. 1(1):5t}---61, Jattttaty 1984.

Brad .3. Cox. C3i’)j(3€{ Pi=‘.r.‘gréi_r.Y1;r11'.'.=g‘.’ /in Es/:u':,zl1'0na' .*_';/ 1'-‘;_,0pra21('}2. A4;Edison~‘Wcs1ey,
1986.

R. B. Darmertberg. A structure fot't'ep1‘ese1'1tirtg, displaying. and editing music. In Pmc'ee=a’1’11g:5

rpfri’.-(2 }§X§‘3:TI?«".f*I‘r:e3{'i(m:3i C0 mp.v.'i'r>r .¥"\/1?1.<;it't C.r;r:f‘r;ro;2(‘o, pages 1534 60, Francisco, 3985.

Computer Music Associzttimt.

R. ‘Dude. alld P. Hart. Patiezin CYemsif17,°a£2’(:12 and f'r:e.-He AI1a]y.siis. ‘wiitty Ente:rs<:iem:-3., 1973.

’ Th<:i'3.co1tm'nist. Digital quiii. ‘Die .::.r:c.>nmni5:’,, 31667 6'.72,):2"~'§8, September 15 1990.

_ H. Eglowstein, Reach out and touch your data. Byte. 15('7):283———2.9(). July 1990.

W. Ettgtisit. D. Engelhatt. and M. L. Barman. DispJ.a.y—seiecti0n techniques for text manipu-

tatiotl. .iJ.se1z:I1'0n.9 cm Hjazzasy Fa c2‘m‘s in E1'r3c1‘,:‘m1i::.§, HFE—8(1):7.1v---3 1, 1967.

S. S. and Geoffrey E. Hinton. Buildixig adaptive interfaces with neural netwmks: The

glove-talk pilot study. 'Fechniea£ Report CR8-TR.-90—i. U11iversit§,r of Toronto, Toronto,
Cattatta. 1990.

R. FtS}1t3i'_ The use of multiple tttettsttretrtetits in i'E1X01’}O1‘fliC ptfehteme. Annals; (sftfzzgtrnics,

'79—1S;8, 1936.

Fietrchia and Nergeram. Specifying t:0n1p1ex dia.1<:gsit1AL(3*AE. SIGCJ-L'{+ G1 «5>“'.7Pmc'.s9e(z'1'ng‘s,

April E987.

K. F11. SV11fa Cfic ReC0g,n1'.ts‘r_2n,i17 C4‘7arac.fe1‘ R’ee:0g,'2."t1'011. volume 112 of tbema tics in

Sciemte and E:2gji2eea‘i;2g. Attacietmc Press, 197-4.

7 S. F11. ‘Hybrid apmztches to pattern recognition. In K. Fu 5. Kittler and L. F. Pztu,

editors, .F’.attern R6:-Cr;-g1;U':’,:'on I',71r3mfiV aim’ Appi1'(:ati(m.s:, NATO Advattced Study Institute.

pages 139-—-155.13. Reiciei. 1981.

K. Ft). Syntactic P322 I'lm“n I\’.9c:2gI11':"i(;n arm’ A,*),*,.>].='(‘(:2 (£0115. Pi'S1’t1'i£;€e Hall, 1981.

K. S, Pu and T. Ytt. Sle:1jslj::;1I}3%:(le1'1: Cfleissifira £11211 ussiizgg Curztsxluai L'.=[E)1'I11;:£1'Lt1i. Pztttetn
R¢.’.cIL3"I1i{i0I1 anti Ema-Xe Pr<_t:;essint:' Series. Resea1'ti11 Studies Press, New York. 1980.5;: 5: KM

_ J. Gettys. Nttwman, and R. W. Schiefier. ib — C122 nguage Inferféa CS .XI Massachusetts

Institute of Tecbnotngy. 1988.

‘Dario Ginsu. DP conimtmd set. 'Tt:chnicaE Report Ci‘s/EU—}\{1—TR~82~H, Cttmcgic Metkm

University Robotics institute, October 1982.

[43] R. Giititiiltl. Stztrtup reatiies 43—p-ouud stylus PC ‘é/We 7(34):17«i8. Augttgt 27 1990.



Page 1427 of 1714

26(1)

H4}

[45]

[46]

BIBLz’C?€?RA{’HY

Adele Goldberg and David Robson. Sn.=.a/Ira/’{<~&3’ T:'.:e .I2mguage and its Iznpleznemejiion.

A:l<iis0n~\‘\/esley in Cnanputer Science. Arldisonflwesley,

D. Goodlrlan. 17119 cz..=111_p1ez'e I15-f;)e1‘C.}31‘a' izgazzzfbcrok. Bantani B«:3<,~l;s. l988.

G. H. Granluncl. Fourier preprcrcessing for hand print character recegnition. IEEE 2’Ir‘.a115ac--

iiuils on C:')IH[JUl(:‘I‘.§', 2l:l"5—2Ul.l7ebru:1ry 1972.

E. Qiuyon, P. Albreurlil. Y. Le (fun, 3. Denlsel; and W. Hu‘0bai'd. Design 01' a neural rieiwiiarli.

eli;1l'2ia.~Ie.l' recognizer for 2: ta;-uch ternlirlal. P«:2t'[e1'1;- Re(?ogn1‘z2'0;1, 24(2): l05———l l9, l99l.

D. J. Hand. .Ke,z‘.Ue] .If)z'5crimf,r7a/it .A'lna]y51'5. l’3.ltem R.<€C()gnill€.l11 and Image Pr<)c:essing

Resesarch SE1l{llf)S Research Studies Press (A Division nfjohn ‘Wiley aml Sons, l.1:d.),
New ‘:('m'l{, 1982.

A. G. Hauplrnaran. Speech and gestures fer graplaic lineage nianipulation. in CH? Pm-

z?eedings, pages 214-1----2='-15. ACIVI, May W89.

Frank llayes. True r1mc:lwool< computing arrives. 1%-'£e. pages 94—95, likeernber 1989.

P. l. Hayes. I’. A, Szekely, and R. A. Lcrrier. Design alternatives for user irncrfaec rnzlnagcinem

systems based on experience with COUSFN. in C}-17 '8L‘3Proce-e(.’z'ng‘5., pages l6‘7)—l,".7 ACW,

April l 985.

T. R. Henry. Hudson, and G. L. Newell. lntegratiiig gesture and snapping into :1 user

imerface toolkit. in UJ'5Y"'E1L?pages ll2—l22. ACl\«l., l99().

C. A. Higgins and R. Wliitrow. On--line cursive script reeegnition. in B. Sl'li1Cl{€l. editor,

Hu111.:.:11»CuH1pu(e1"I11lr:1‘a(k:fiun » L7./<—.'1'e1c£ ’84; IFH3, pages l3)—l43. Nertli-llollarld, 1985.
Elsevier Science Publishers BV.

R. Hill. Suppolling i:0rn:ul'l‘eney, a;0r11lr1u11ic;:ti0l1, and sylicliroliizatiori in hunlar1—eonlpulei'

interaction. ACJX/I }’?-a ma (.'rir;.n.<; an Gr';a_pi.v:'r:.s*. 5(3): 179-210, July 3986.

' J. lelnllan. R ieh . W’. Hill, I). W'ra'slilew’sT<i , W. WU ner, K. Wittenherg, J. Grudin. and Members

of the Human lnterface Lnboramry. An lfll1'O(l'L1Cl'lOf1 to HHS: Human interface tool suite.

Technical Report ACA--Hl—406--S8, lvlierocleetr-::snies and Coniputer Tcehnc-logy Cnrporaliorl,

Austin, l988.

Bruce L. Horn. Ari imrodnctiorl to objeet ajrrienled progranlming, inheritance and niethe-d

eornbiriation, Tecliiiiuzal Report CIVEU-CS--87--l27., Carrlrzgie. Mellon UniVel'sii:y ¢C0n1pule.r

Science Deparurient, 1988.

A. B. llussain. G. '1‘. 'l‘0ussninl. and R. W. Donalrlsc-n. Results obtained using a sim-

ple eliaracler i'e<;:ognili<)rr proeerlure on l‘vlunson’s lianrlprirned slain. {BEE Tf'a115'ear.:£1‘c2I1.:s on

Cz,.=1npz1Ie1's. Zl :2()l—2l)5, Fi3l)l“-.l:1l'y l972.



Page 1428 of 1714

B131]CDC-}€1§£7}-IY

F58]

' _ Dan R. Olsen 31'. Syiigrapli: A g[';:Lphi1.f’:ii iIl€CIfL1Ci;‘ gCXit.’.i'-‘:E{0£'.

261

Hu§tc}1in;~;. J. D. Hollan, and D. A. Nomian. Dire<;1 manipulation iiiterfaces. 121 D. A.

rman and W. Drapézr, €ditOE‘E1, U551‘ (.7ea.r1..*a2re:;’ ..‘>j/.9rez72 Design, pages 1,18--—133. Lawrenccc
Eribaum Assoa:i;;m:.s, H.iif,s<ial»;3, .J.. 1986.

Pericept Inc. §0f=.ware control at iha stroke of a pen. in Si'GC?.I'\’_/¥'i.1"’}'-I Eider: Rm/1'ew, voiums

Issue 18: Edited Cmnpiiations frmn CHI . ACM, 1935 .

F. itakura. Minimum prad.i(tti<in residuai prinoipie applied 1:0 apeach recngiiition. 'I'i‘s3r:,<.

_4rz..=:z.s11'-.r,‘.s, £{.0e(}ch, Sigrzai Pr'z,.=ces'5i11g, ASSI’~231/K37), £975.

5. C. Jaziksoii aiid Renate J. Rosige-H0[‘st:raixd. Circiiiigz A iiieiiiod of i)i<)use-Eaaseci sei6:L:1.ion

wiihoutbutten presses. in 'é~’§P1‘oc?@e(ij12g‘s.pages l61———1€3f§.[\CI\/I, May 1989.

’ Rriike James. C1ass1'fi:af.f0,n A/gon'l’i1:n5. ‘\r‘i/'i1ey-Iiitersciezice. John Wilcy 311d-S0118, Inc., New
York, 1985.

R. E. Johiison. Modal,’ 7icw,"C0iitm1lc£ Novcinbcr 1987 (uripubiisiicci iiiaiiuscripi).

Campuzer‘ pizics,

17(3):43r~5(}, Juiy 1983.

Morse Jr. In an upsczdé: wmiid. Eyre, 14(8). August 1989.

B. W. Keriiighsm and D. .\/I. Ritchie. '.i}"°.e C R*':agra.*.r2.:r1i1;g' {1:r2gz1.s2gr3. P£'¢E51’!EiC€—Hi1ii, New

Jxzrsezy, 1978.

.F0<.:nr11«:i Kim. (}ctstui'c I"r3C<.?g11i3Zi0I1 by fitatum aiiaiysis. Teashiiiczil Report RCi24'72, IBM
Research, December ‘.:986.

' Nancy T. Knolls. \/ariations ofi1i<.id<:l—View—<:0ntroilcr. Jo:.srn.a} 0fC1¥'9_jecrf—C?.rie17fer’ P1‘ .gram—

ming, 2:4vL?----I-16, Septs.:inE3c{./October I989.

Kaiziay. Feature €XE1“:1CYi0!1 in an opu’-3.3.‘: character recognition machines. Y?m2sa(:.€'ian.<;

on C'oi:rzpr1ter5;, Z0: i,063—HP6'.7, 197 1.

Hemi Kmsner and Stephen T. Papa. A glescripiion of the 1\/{ode}-View—C()rm'<)1Eer user

iri1'eri’;1ce psmidigm iri ihe Sma1},1aH<~8() system. .]E,su1“Ii3i (if (J%’)_j:w:7{ C}‘1‘eI;tea’ Pragra1um,i.rzg.

i(3):26—49, August 1988.

_ M. W. iémtxgw, /hz‘I1'fi'1‘a1 1(":6?€31i1'Lf/E/L Addis0ii—'v Gcsley, Readiiig. MA, 1983.

M. W. Kmuger. T. Gionfriddo, and Hi1ii*ic.hs(—:n. Vidc0pia.ce: An artificiai maiity. in

F‘1"r_>ceed,ings of(_7ffl’p:1g<ts 35----4i}. ACTVI. 1985.

1 5?
‘E. Krcyszig. .4312’:-'2iI2{‘ea ;_.r;git2(—*ez“1'ng]\/éihemaiics. W'i}Cy, 1979. F01ii1'h Editimx.

W. 3. Krzazio wish, ()2cf0rd

Statistical Sciatica Series. {‘,1ai':3ndoi1 Press, {)>;1"0i"s;E. 1988.
1’-’1'1'11c'1’1:.».’es of 1“vfiz1'£1'vza1'.v"2z' iv _/-'§I1(':.I'__v.:s.’:»'.‘ A U:sL+1':s' Ps1*>pc.=clivc.



Page 1429 of 1714

262 BIBXJCZGRAPHY

['75] G. Kuriienbach and W. A. Buxtuii. Cifidii: A test bed for editing by contiguous gestures.

SXGCHI .5'i1]Iefi,:2, paees 1991.

[7 6} Maiiiii Lamb and Veronica Buckley. New teehriiques for gesture--baseii dialog. in B. Siiackei,

editor. .Hz2111a11--Cbinpizle1'1k2£e1'zz(‘i'imi -— In-ze1‘ac'." 1'F1'P, pages 135438, North-Hoiianei,
1985. Eisevier Science Publishers B.V.

C. G. Leeaihairi, A. C. Dowiifiieii, C. P. B1"Oi)i{.S, and A. Neweii. O11-iilltt acquisition ef

pim1an’:iiiaridvvritten Si’§0i"ii'1£i1’!(i£iS a iriearis of rapid data entry. in B. Siiaekei, editor. f'2’z1mau—

Cbzizprjrer Inferacrjmi — I/iferac.f [F273; £45--150, Noi“ri’i~Hoiiaiid, 1985. Eisevier
Science Pubii shers

Barbara Siauili Leiiier. Aazluzriaied Cuszviziigas (1011 cf Leer" I1i!e1'[é:r'es. PhD thesis. Carnegie

Meiiori Uiiiversity. 1989.

A. Linteii, J. M. Viissides, and i’. R. Calder. Composing user interfaces with interV'iews.

{BEE CO1??p(I{'rZ‘1‘, 22(2._‘;:8---'?1'2.. February 3989.

James Lipscomb. A trainabie gesiure recognizer Pa item Recognj31211. 1991. Also available

IBM Tech Reparai RC ‘E 6448 <T#'73€}7E<}.

D. I. Lyniis. Ge Carp. ground in pen—s0f§'war-e race. PC i/‘ea’. '7('29):i35, Juiv 23 199:’).
./

Gale Martin, Jarnea Pittman, iiemr ‘Witten burg, Richard Coheii, and Tome Parish. Sign here.

please. Byte, i5(7):iZ43-53.51, Juiy IEPEPG.

J. '1'. Ma.wveii. Muekiiigbird: An interactive eeiiiposefs aid. Masiefs thesis. MM’, 1981.

P. i‘v1'eAvii1ne§,r. The Senwr Frai'rie—a gesture-based device i"<,ii* the riiarsipuiatioii of granitic

objects. Avaiiabie from Sensor Frame, ‘hie, i*ittsburgh, Pa, Deeeiriher 3986.

P. MeAviiiiiey. Teiiiaie gestures. Byze. i5(7):237»»24-0. July i€?9().

Marbaret R. Mirisiw Manipulating siriiuiated objects with real-woiid g<:s1'ui'<3s using a force

and position sensitive seieeii. Computer Graphic-5., i8(i3‘;:19;7—2€)3. Juiy 1984.

F. M<)i"rei—Sa1faueis. Ciarifyirig the disti E](3Ii01’i iietv.-’een iexieai an-:1 gestural commanais. Jim:-,1‘-
173 {£0123} four/1.3] :3f‘i“»fii'i—f\/iiizfiiine S..*i1:;’z‘e.S, $90, 1996.

(3. Muiiei' and R. Giulieiti. High quadiity music iiotatioii: Iiitei'aetive editing and input by

piano keyboard. Iii Pieceed."1;igs ofz./ie 1&8/'1’11le‘i ’ai1'01iaiCz)mpr,z{e;'fvizsic‘Ca1;&1‘em:e. pages

333-340. San Fi'2iHCiSl;'O, 1987. {:0!'l1pu‘i€1'i\4uSiC Associaiioii.

Hiroshi Muiiase and Toru Wakahara. Oniine iriariii—sE-ceteiied figure 1‘€C0g1‘1i1i{,31’}. F’.a.i:iem

Reefagiriifizsn, ]9(’.?,‘;:i-47--160. 1988.

B. Myers and W. A. Biixmii. Creating highly--iiiieiaeiive and graphical user iii1ei'i'aeess by

s;ieiri0risti'a1i<:3ri. Cz.=111purer' Grapiurs, 2413(3) :249—25 1



Page 1430 of 1714

B131]C)G}€1§Ff-{Y 26.)

[91] B. A. Myers. A new rmxlei for hamciiizig input. AC/“-/Icrjons on .Z'r.:far'mation Sys.Iem.s‘.,
1990.

B. A. Myers, 1). Giuse. R. B. Dzmnenherg, B. Vaiider D. Kosbie, E. Pervin, Andrew

Mickish, and Philiippe J\/iarehai. Garnet: e0ii1prehem:iV'e stapprm for graphical, highly-

i1‘EtCt§1CtiV’€ user interfaces. C'o.rnpu.fer. 23%] }):7l—-85. Nov 1990.

B. A. Mvers, H. Vander Zanden, and R. B. Daniieriisergv. C i‘eati1'i<>; ,C;i‘a’?i1iC3.i interactive.« -:3 C‘ .,

application objects by Ci-t3E1’i-ifi!11Sti'2EtiO1l. in Ll’L‘ST '5i’~) P'mt'eedi1ig5 of the AC-Z14 Si'GC.5RAPh"

5}/1'n].205]u1H an U5:e1‘L'1te1‘f2zc'e Stiffi-’-/£3I'z'3 and 'l'ét'I21101'0gj43/. pages 95»»l()4. ACM, November
1939.

Brad. A. Myers. A taxonomy of user interfaces for window managers. JEEE Computer‘

G1“2z,1:.~1'L='r::»: 21r2(Iz1‘:;2p1icatiUr25'. 8(5,):é.‘3—84. 1988.

Brad A. Myers. Efiiiéipslliéitiflg interactive behaviors. In Hurnar.- Faczars in Canzputmg

S3./5101125, pages 31,.—324, Austin, TX, April 1989. Proceedings SIGCIH89.

Brad A. Myers. U irtierfaee tools: 1r11r'0<iiueti0i1and survey. [BEE Safi’wza.rr.=. 6(_i):i5—23.

Jantrary 1989.

Brad A. Myers. Demoristratiori iirteifaces: A step beyond direct rrrariipuiatiori. Teehriicai

Report C1\'TU~C:S-9G~‘r62, Camegie Mellon Schooi of Computer Science, Piatsbtirgii. PA,

August 1990.

’ Brad A. Myers. 'Faxm1omies of visual prrugrzmirnizig and program visuaiization. -l'mz‘nai 0:"

Msrzai Za17g‘zIage.§ smr.’ Cavmprzrfng", i(1):97---123,I\«i:«1reh 1990.

L. Nakatzmi. Pe1‘sm1a..i C()E11)T)1!1’Ei£.‘§i§i€}11, §:‘ae.i1 I...aboratofies. Murreay Hiii. NJ. Januagry 1987.

i T. Netieiidrjrfier. x'5h7'ew Reffirsncrz .:“w$z1;ru.aI. Inforrrration Technology Center, Pittsburgh. PA.
1989.

W’. M. Newark-m and R. F. Sprouii. Prizicipfes of.1'.'zterac2‘.iVe Computer Graphics. MCCx1”aW—
Hiii, .{‘_5J’79.

Wye .NeXTSy.€re,zr1 Refererire A/Lfmziai. NCXT, Inc... 198533.

i... Nortorrwayne. A coding appi‘0ach to reasognirimi. in J, Kirtier, . S. Fu, and L. F.

P311, editors‘. Pa ffcrn Rrtc:r2gnir."m2 Y7mnI‘y mm’ /‘app/iris finns, NATO Advanced Study. pages
93»-102. D. Reidei, 1981.

K. ffibermeier and J. J. Barron. Time to get tired up. Eyre, 14(8). August 198%).

A. J. Paiay. W. J. Hansen, M. L. Kazar. M. Shermzm. M. G. Wadiow. P. Neuendoiffer.

Z. Stern. M, Bad.er, and T. Peters. The Andrew toolkit: An overview. in PI‘ut'eea‘j1.I;;s an/'z'he

US£i'7\Z1;X:<€’t‘f!.'ii(‘a} C0rz1"er'(:m:e. pages ii—23,D£EiiElS.F€iJI1Ei1i'§,.’ £988.



Page 1431 of 1714

264

[l06}

{l0'7}

[N38]

H09}

BI '?Lz’C?%C?R/~lPHY

PC Coniputing. Ten other contenders in the featherweight division. PC <;1>n:pui’ing. 2(l 2):89—
E50, lhéeeinbei‘ 1989.

J. A. Piolcering. T0l1Cl’1~S<3I1Sl§l‘.’§) screens: the teenologies and their application. Inzrg-171.3 zfirm;)i
-.r7n1rn;ii (:f1“\/fan—.:“l/fr) .’,‘}'7fI7(.‘ Siiirfirzs, 25:24‘}—2i59. W86.

R. Probst. Blueprints for building usei'ir1ter"faces: Upon Look toollcits. Teclmlazal report, Sun

Techriology, August l98l§.

lzimes R. liiliyne and Catherine G. Wolf. i3es‘.‘i'ur;1i interfaces for information processing ap-

plications. T¢3Ch1’1lC£ilRi3p0I‘E RCE 2179, IBM TJ. Watson Researcli Center, IBM Cor-gaoratioii.

PO. Box 218. YOfl(f0Wi‘l llelghts, NY l€Llr7<)8. September £986.

3. Rosenberg, R. Hill. J. Miller‘. A. Sc iulcit, and D. Sliewmalm. UEMSS: Threat or nicriace‘?

In CI'£" ’8:Spages l97—2l2. ACM, £988.

1). Rubiiie ancl l’. McAviriney. The \/ldeoharp. in .Z&‘L>i5;’1)1£e1‘12azj011ai Co;11p-titer L 11316

Pl'or_:eecii11gs. Co111putei' Music ASSOi;il;EtliiZi11, Sepie111bei' l988.

D. Ru hi tie and P. MC/3iVi rmey, Prograrnmahl e finger-traekin in stmmenteontroll em, C'.wn7p.',zfer

,z‘\4;z51‘:“. Joiirzml, 14-(1 ,‘;:26---4 l, l9€?'D.

R. W. Scheiller and J. Gettys. The X window system. AC}’"\/.7 7?’an5ar:I‘irJn.:a on Graphje:.~;,

5(2):79v---lO9, April 1986.

K. J. Sehrnuekei". Maefiipp: An application frameworlz. By:‘i6-, 11(8):} 8§'—l93, August 1985.

Kurt 3. Schmuolcer. O’g,ier‘t»C,3"ir.=Iii'rsd P1‘r,J;;r'za1Ii1I1jr1g H21“ (I26 z71'I.:t.',>5I2. H21y<lei1 Boole‘ Coin-

pany. 1986.

A. C. Shaw. Parsing of graph-vrepreseiiiable pictures. J/‘-‘iC_.7_/“vf l7{3):-453. l97=I}.

Slme:iale:(11ian. Direct (]lEl.fi'.’ElpUl;:tllOE1I A step beyond pi'og1".aii;iming languages. Com-

p:_zz'e1'.pages 57———62, August 1983.

lohii l... Sll’)(‘.1T, ‘William D. l‘l1ll‘iL".‘_‘y‘, aiid 'l‘o1'osa W. Blesor. An obj<:et~oric:ritod USC1’i1’liC}f'f§iCC

immagemeirit system. in SIGGRAPH pages 259---2.68. AClVl, Augus1t l9S6.

lack Sklaiiksy and Gustav Wassel. H3 iT(:‘i‘]2 Cfa.s3'.ffi9rx and I’?‘.3;'.r1a {E118 Z‘v'Z’a esiiiness. Springer-

\/’el'lag,, York, l92%l.

‘W. W. Stallings. Recogriitlon of printed ohiriese characters by autoniatie pzittem analysis.

Crainpzirer Graphirrsc aim’ {Image Pr’(am:?.9sJ'r2g, l :4'7—(i5. l9’.72.

Marl: Stetik and Daniel G. l3olii'ow. {lbject-orierited programming: Themes and variatioris.

AI'z“v;Eagaz1ne. 6(4A):40—62. Wiriter l986.

' J Stein, eelitor. file Rr:u1r_.>'o1.r1 hlmse I)1'L'(1'UI1éiIy ofliie E1zg1js';’1 Darigtza Rai1(l.Ofl1 House,

C&lYll3l'l{lg€. Mass., l.%9.



Page 1432 of 1714

B131]Ol‘3‘—}€1§F‘f-13"’ 265

Martin L. A. Steruberg. AI“n.+'2,ricat1 Langziage.’ A Campre=r'1en.s.i W3 Dictionary. Harper and
Row, New ‘1"0_r};, 1981.

M. D. Stone. T0uch—scre<:us fur iuuutive input. PC A«%;ga2jn:=, pages 383492, August i987.

C. Suein. M. Berthod. and S. Muri. Auwmatig: rec<:gi1iti0r1ofhandprinted «.:har::4cte1‘s: The

state of the any P1mreed.v‘11gs affize IEEE, (38(4):4ES9./V487, April 1980.

Sun. Sun W'ht.r'r2w'.<; .Pmg.r'an.:met's’ Gu.r'o’9. Sun Jwiscrosystertis, Inc., Mountain View, Ca.,
1984».

-.u'. . 3 » ‘_~.=‘e.i_rniI.=arV ’.€sc.1.r11't‘211 -'eI'v.I‘.r3v/. Cu 1 is C s. ., u xi; «few. T .,9‘-11’\LVi.E>77" 4 If '00 ‘an’\/I310 {in Hue M0 nt'a"1"i (.1
E986.

Shinichi Tamara and Shiuoo Kawasalki. Rem mitioh of sign Eauo iiasze 1T10{iOi1i111fi£2€S. Pa item1*: 3:: V a: |—’ .,

[€5?z7(.jgI1jt,ic>n, 21(:4:):343—353, 1988.

C. C. Tappcst, C. Y. Suen, and ibru ‘Wakaha. The state of the art in OE}',UE}Ci13Hd\Vfitillg

reeognitiuri. 1'i=aI1.5ac'ti'012s cm Pa Item Aneilysis and ./\'.’='2tc'h1’116 111te1.I'.i‘ge11c'e. i2(8):787———

808, August 1990.

R. Telio. Between man and machine. ..Byte. 13(9):288---L293. September 1988.

A. Tevzmiau. MACH: A basis for future UNIX deveiognnetit. Technicaj Report CMU-(‘Sw

8'?’-139. Carnegie Melton University Computer Science Dept, Pittsburgh, PA, 1987'.

D. S. Tuui'etzi<y arid A. P<.:1’r1ei'ieu11. What's hidden in the hiddeti layers‘? Byte. 14(8).

August E989.

V. M. \/ciichko and N. G. Zugoruyko. Automatic recognition uf ‘.200 words. Int. ./7. .7‘w'§an—

,M’2z:i2j::e $Uj1’1'ie5, 2,(I.7.):2.L7.’3. 3970.

’ A. Waibei and J . Hampshire. B uiiding blocks for speech. I-3_yte. i4(t )-:235—242, August 3989.

. _ A. 1. Wassei'=n::.11, Exterldirtg state trarrsitiurt d.iugr:cu'i1s for the specii’ieati<.2n of iiutnarr--e0ri1p13ter'

Eritemctirm. [BEE }’27';j.rz.s';1(‘i'inr1.<; (Hi S{)fi'W.=3 rt: 1'f,‘fEgii7(3(?i'i'fEg, SF: 1 I ($:):699—7 i 3, A ugust W85 .

Watimet‘ and S. K. Gaiiapathy. A synthetic Visual environment with hand gesturittg and

voice input. In ’8g1T';i"()(TEEi1,.’"!1‘.f.{b'. 235»-2/IE0. Afifivi, 1989.

B». P. ‘vVe.lf0rd. Note on a method for calculating corrected sums of squares and products.

'E::']2.'2o.r72etr1‘ CS. 4(3):4 19--4'.Z'.G. August I SW2.

A. P. "Witiegita. Sc£=.le—spaCe filtering. L1 Prm:(.=(3(fi.'.:g.s‘ (if the 1}3."n1'n;aIim7;.ii .,.}’0i’rir Ciiiwiiri‘-:'>r;c(3 on

A="ti1‘};='z; l Inicsiiig‘.-r',=17ce, pages 1019-1022. 1983.

C. G. Wolf. A xgtaurparaiive study 01' gestrual and keyb<:sa.r:;E iiiterfaces. P1'(_.>c'eedi11g5 u./tfze

1Lft.'!HEI115' Pa stars ety, 32nd Armu ai Meetin 2, 2 273—277. 19 8 8.
1s.



Page 1433 of 1714

266 B] '?Lz’C?%C?Ix’z'~EPHY

{HO} C. G. Woif anal J. R. Rhyme. A iiaxo=.1omic approach to und-erstan<ling direct manipulation.

Pi‘0c5-eziizzgs 0ft}2r3 Fz’E11Iae2 11 Facfnzis: ..‘$:7z:‘1‘r:‘t}/, 31$: Anmlai i‘\tT€cti,r1g,:5 76---5 89, 1987.

{R41} Caiherine (Sc Wolf. Can pegpie gesture comiliandsf’ Tea;-,hnic-31 Report RC118f37~ EBM

Research, April 1986.

{M2} Xerox C.m'p()ration. JUNO. in SI'<;?(}RAPf1"i4"z1’eaReviewIssue IQ CZ’:{I' Cr_>mpi1az‘I’o,r1.
ACM, 1985.



Page 1434 of 1714

THE DESIGN AND EVALUATION OF

MARKING MENUS

Gordon Paul Kurtenbach

A thesis submitted in conformity with the requirements

of the Degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto



Page 1435 of 1714

Copyright © 1993 Gordon Paul Kurtenbach



Page 1436 of 1714



Page 1437 of 1714



Page 1438 of 1714

Abstract

This research focuses on the use of hand drawn marks as a human-computer input

technique. Drawing a mark is an efficient command input technique in many

situations. However, marks are not intrinsically self—explanatory as are other

interactive techniques such as buttons and menus. This research develops and

evaluates an interaction technique called marking menus which integrates menus

and marks such that both self-explanation and efficient interaction can be provided.

A marking menu allows a user to perform a menu selection by either popping up a

radial menu and then selecting an item, or by drawing a straight mark in the

direction of the desired menu item. Drawing a mark avoids popping up the menu.

Marking menus can also be hierarchic. In this case, hierarchic radial menus and

”zig-zag” marks are used. Marking menus are based on three design principles:

self—revelation, guidance and rehearsal. Self—revelation means a marking menu

reveals to a user what functions or items are available. Guidance means a marking

menu guides a user in selecting an item. Rehearsal means that the guidance

provided by the marking menu is a rehearsal of making the mark needed to select

an item. Self—revelation helps a novice determine what functions are available, while

guidance and rehearsal train a novice to use the marks like an expert. The intention

is to allow a user to make a smooth and efficient transition from novice to expert

behavior.

This research evaluates marking menus through empirical experiments, a case

study, and a design study. Results shows that (1) 4, 8 and 12 item menus are

advantageous when selecting using marks, (2) marks can be used to reliably select

from four-item menus that are up to four levels deep or from eight-item menus that

are up to two levels deep, (3) marks can be performed more accurately with a pen

than a mouse, but the difference is not large, (4) in a practical application, users

tended towards using the marks 100% of the time, (5) using a mark, in this

application, was 3.5 times faster than selection using the menu, (6) the design

principles of marking menus can be generalized to other types of marks.



Page 1439 of 1714



Page 1440 of 1714

THE DESIGN AND EVALUATION OF MARKING MENUS

Gordon Paul Kurtenbach

Degree of Doctor of Philosophy

Graduate Department of Computer Science, University of Toronto, 1993

abstract

This research focuses on the use of hand drawn marks as a human—computer input

technique. Drawing a mark is an efficient command input technique in many

situations. However, marks are not intrinsically self-explanatory as are other

interactive techniques such as buttons and menus. This research develops and

evaluates an interaction technique called marking menus which integrates menus

and marks such that both self-explanation and efficient interaction can be provided.

A marking menu allows a user to perform a menu selection by either popping up a

radial menu and then selecting an item, or by drawing a straight mark in the

direction of the desired menu item. Drawing a mark avoids popping up the menu.

Marking menus can also be hierarchic. In this case, hierarchic radial menus and

”zig—zag” marks are used. Marking menus are based on three design principles:

self—revelation, guidance and rehearsal. Self-revelation means a marking menu

reveals to a user what functions or items are available. Guidance means a marking

menu guides a user in selecting an item. Rehearsal means that the guidance

provided by the marking menu is a rehearsal of making the mark needed to select

an item. Self-revelation helps a novice determine what functions are available, while

guidance and rehearsal train a novice to use the marks like an expert. The intention

is to allow a user to make a smooth and efficient transition from novice to expert

behavior.

This research evaluates marking menus through empirical experiments, a case

study, and a design study. Results shows that (1) 4, 8 and 12 item menus are

advantageous when selecting using marks, (2) marks can be used to reliably select

from four-item menus that are up to four levels deep or from eight-item menus that

are up to two levels deep, (3) marks can be performed more accurately with a pen

than a mouse, but the difference is not large, (4) in a practical application, users

tended towards using the marks 100% of the time, (5) using a mark, in this

application, was 3.5 times faster than selection using the menu, (6) the design

principles of marking menus can be generalized to other types of marks.



Page 1441 of 1714



Page 1442 of 1714

Acknowledgments

Many years ago when I was in high school my classmates and I spent three days

writing occupation aptitude tests. Months later the computer graded tests were

returned to us. I remember my friends’ and my own excitement as we ripped open

the envelopes to see what the computer had recommended. My friends cheered as

they read out their long list of possibilities: doctor! lawyer! pilot! writer! scientist!

With great anticipation I opened my computer recommendation. There, before my

eyes, was one lonely recommendation: pre—cast concrete worker.

Although I have failed to fulfill my destiny as pre—cast concrete worker, I have

created this thesis with the support of many people. In particular, I would like to

thank:

° My supervisor and friend, Bill Buxton. Bill's creativity, intellect, and humor

inspired me to pursue research and make bad jokes.

' The members of my committee: Ron Baecker, Mark Chignell, Marilyn Mantei,

Ken Sevcik, and Cathy Wolf. Each contributed in helping me polish my research

into a doctoral thesis.

0 Great researchers and friends. Abigail Sellen greatly helped by designing

experiments, writing, and putting on excellent parties; Tom Moran, Stuart Card,

and Ken Pier provided creative insights and guidance; George Fitzmaurice and

Beverly Harrison waded through treacherous drafts of my thesis, helped me make it

a better document, and listened to my concerns over many a cappuccino; Gary

Hardock utilized my work in his research and put up with my kidding; George

Drettakis and Dimitri Nastos kept the lab systems running, humored me, and

organized the most delicious Greek barbecues; Tim Brecht advised me, made me

laugh way too loud and long, yet still managed to keep me sane.



Page 1443 of 1714

I don't think I'll thank the computer that graded the aptitude tests...



Page 1444 of 1714



Page 1445 of 1714



Page 1446 of 1714

To my parents, Helen and Leo,

and my brother and sisters,

Robert, Beverly, Donna, Carole, and Tammy:

”My thesis is done, you can probably reach me at home now"



Page 1447 of 1714



Page 1448 of 1714

Table of Contents

Chapter 1: Introduction .................................................................................................. .. 1
1.1. General area and definitions .................................................................... ..3

1.2. Why use marks? ......................................................................................... ..4

1.2.1. Symbolic nature ......................................................................... ..5

1.2.2. Intrinsic advantages .................................................................. ..7

1.3. Self-revelation, guidance and rehearsal .................................................. ..7

1.3.1. The problem: learning and using marks ................................ ..8
Self-revelation ..................................................................... .. 10

Guidance ............................................................................. ..12

Rehearsal ............................................................................. .. 12

1.3.2. Unfolding interfaces .................................................................. ..13

1.3.3. Solution: ways of learning and using marks ......................... .. 14
Off—linc documentation ..................................................... ..14

On-line documentation ..................................................... .. 15

On-line interactive methods ............................................. .. 16

On-line interactive rehearsal methods ............................ ..18

1.4. Thesis statement ......................................................................................... ..20

1.5 Summary ..................................................................................................... ..21

Chapter 2: Marking menus ............................................................................................ ..23
2.1. Definition..................................................................................................... ..23

2.2. Motivation for study .................................................................................. ..26

2.2.1. Advantages over traditional menus ....................................... ..26

Keyboardless acceleration ................................................ ..26
Acceleration on all items ................................................... ..27

Menu selection mimics acceleration................................ ..27

Combining pointing and selecting .................................. ..27

Spatial mnemonics ............................................................. ..28

Ease of drawing and recognition............................................. ..28
Marks when no obvious marks exists .................................... ..29

Compatibility with unfolding interfaces ................................ .. 29

Compatibility with existing interfaces.................................... .. 29

Novices, experts, and rehearsal ............................................... ..30

i



Page 1449 of 1714

2.2.7. Utilizing motor skills ................................................................. ..31

2.2.8. ”Eyes-free" selection ................................................................. ..31

2.3. Related work and open problems ........................................................... ..31
2.3.1. Pie menus .................................................................................... ..32

2.3.2. Command compass ................................................................... ..34
2.4. Research Issues ........................................................................................... ..35

2.4.1. Articulation ................................................................................. ..35

2.4.2. Memory ....................................................................................... ..36

2.4.3. Hierarchic structuring ............................................................... ..38

2.4.4. Command parameters and design rationale ......................... ..41

2.4.5. Generalizing self-revelation, guidance and rehearsal .......... ..42

2.5. Design rationale ......................................................................................... ..42

2.5.1. Fundamental design goals ....................................................... ..42

2.5.2. The design space ........................................................................ ..43
2.5.3. Discrimination method ............................................................. ..44

2.5.4. Control methods ........................................................................ ..46

2.5.5. Selection events: preview, confirm and terminate ................ ..47

2.5.6. Mark ambiguities ....................................................................... ..50

2.5.7. Display methods ........................................................................ .. 54

2.5.8. Backing-up the hierarchy ......................................................... ..54

2.5.9. Aborting selection...................................................................... ..56

2.5.10. Graphic designs and layout ..................................................... ..57

2.5.11. Summary of design.................................................................... ..58

2.6. Summary ..................................................................................................... ..59

Chapter 3: An empirical evaluation of non-hierarchic marking menus ................. .. 61

3.1. The experiment ........................................................................................... .. 62

3.1.1. Design .......................................................................................... .. 62

3.1.2. Hypotheses ................................................................................. ..63
3.1.3. Method ........................................................................................ ..64

3.2. Results and discussion .............................................................................. ..68

3.2.1. Effects due to number of items per menu .............................. .. 68
3.2.2. Device effects .............................................................................. .. 70

3.2.3. Mark analysis ............................................................................. .. 72

3.2.4. Learning effects .......................................................................... .. 74
3.3. Conclusions ................................................................................................. .. 75

3.4. Summary ..................................................................................................... ..79

Chapter 4: A case study of marking menus ................................................................ ..81

4.1. Description of the test application........................................................... ..81

4.2. How marking menus were used.............................................................. ..83

4.2.1. The design................................................................................... ..83

4.2.2. Discussion of design.................................................................. ..86
Menu item choice ............................................................... .. 86

ii



Page 1450 of 1714

Spatial aspects ..................................................................... .. 86

Temporal aspects ............................................................... .. 87

Inverting semantics of menu items ................................. ..88
The role of command feedback ........................................ ..88

4.3. Analysis of use ............................................................................................ ..89

4.3.1. Issues of use and hypotheses ................................................... ..90
4.3.2. Results ......................................................................................... ..91

Menu versus mark usage .................................................. ..91
Mark confirmation and reselection ................................. ..94

Reselection .......................................................................... .. 96

Selection time and length of mark ................................... .. 96

Users’ perceptions .............................................................. .. 98

Marking menus Versus linear menus .............................. ..99

4.4. Summary ..................................................................................................... ..101

Chapter 5: An empirical evaluation of hierarchic marking menus ......................... .. 103

5.1. The experiment ........................................................................................... ..105

5.1.1. Design .......................................................................................... ..105

5.1.2. Hypotheses ................................................................................. ..107
5.1.3. Method ........................................................................................ ..109

5.2. Results and discussion .............................................................................. ..112

5.3. Conclusions ................................................................................................. ..119

5.4. Summary ..................................................................................................... ..121

Chapter 6: Generalizing the concepts of marking menus ......................................... ..123
6.1. Introduction ................................................................................................ .. 123

6.2. Integrating marking menus into a pen—based interface ....................... .. 126

6.2.1. Adapting to drawing and editing modes ............................... .. 127

6.2.2. Avoiding ambiguity .................................................................. .. 128

6.2.3. Dealing with screen limits ........................................................ ..134

6.3. Applying the principles to iconic markings ........................................... .. 137

6.3.1. Problems with the marking menu approach ......................... .. 139

Overlap ................................................................................ ..139

Not enough information ................................................... ..139
6.3.2. Solutions ...................................................................................... .. 140

Crib—sheets ........................................................................... .. 140

Animated, annotated demonstrations ............................ ..142

6.4. Usage experiences ...................................................................................... .. 150

6.5. Summary ..................................................................................................... ..151

Chapter 7: Conclusions .................................................................................................. ..155

7.1. Summary ..................................................................................................... ..155
7.2. Contributions .............................................................................................. ..157

7.2.1. Marking menus .......................................................................... ..157

iii



Page 1451 of 1714

7.2.2. Issues of human computer interaction. .................................. .. 158
7.3. Future Research .......................................................................................... ..160

7.4. Final Remarks ............................................................................................. ..161

References ........................................................................................................................ .. 163

Appendix A: Statistical Methods .................................................................................. .. 171



Page 1452 of 1714



Page 1453 of 1714



Page 1454 of 1714

Chapter 1: Introduction

Research in the last forty years has brought great improvements in the quality of

human-computer interactions. In the past, human-computer dialogs were

optimized for the computer; humans communicated with computers using protocols

that were easy for the computer to understand but were hard for a human to

understand and use, for example, machine languages. Advances in human-

computer interaction have changed this situation. Controlling a computer no longer

requires memorizing obtuse, cryptic codes or an intimate understanding of the

internal workings of the computer. In well-designed systems, human-computer

interactions are optimized for the human. Interfaces now make use of sophisticated

graphics, sound, and pointing devices to make the human's job easier.

The major advances in human-computer interaction have been in making computers

easier to use. Specifically, research on methods to reduce the amount of training a

person needs before being able to operate a computer has come a long way. For

example, the Apple Macintosh has set standards for the minimal amount of

instruction that a person needs before operating a computer. Because of these

advances, the world of computers opened up for people who otherwise would not

have invested the time in training to operate a computer system.

Given these advances in human-computer interaction, we can think of the interface

as currently being optimized for the human, specifically, the novice computer user.

Clearly, this is of great value, but we can consider another important class of user-

the expert. Human capacity for the development of skills is great. Virtuoso pianists

are proof of this. Virtuosos invest a great deal of time in practicing their skills-

eight hours of practice a day is not uncommon. Now consider expert computer

users. It is not uncommon for an expert computer user to spend eight hours a day

working on the computer. Therefore, there is untapped potential for human skill

1



Page 1455 of 1714

development in human-computer interactions. A good interface should take

advantage of this potential and not limit the efficiency of a skilled user.

In order for this skill potential to be tapped, an interface must have certain

properties. First, the interface must provide interaction methods that are suitable for

an expert. Experts require efficient interactions. As a result, interactions may be

terse and unprompted. Second, and most critically, the interface must also provide

support for a novice to become expert. We look at the interface design not so much

as making the interface easier to use but rather as accelerating the rate at which novices

begin to perform like experts. This goal demands three components: support for the

novice, support for the expert, and an efficient mechanism to support the transition

from novice to expert (see Figure 1.1).

Novice component Transition component Expert component

(recognition) (recognition and recall) (recall)

Skill development >

Figure 1.1: The components required to accelerate the rate at which users begin to

perform like experts. The novice component allows a user to issue commands by

searching for them and recognizing them. The expert component allows a user to

efliciently issue commands by recalling the action associated with the command

The transition component allows a user to efliciently switch between these two

methods to learn andpractice command action associations.

In this dissertation, we focus on an interaction technique that is intended to take

advantage of this skill potential and support the development of skill. We propose

an interaction technique which has a two modes. In the first mode, the style of

interaction is intended to facilitate novice use. In the second mode, the style of

interaction is intended for skilled expert behavior. The first mode is also designed to

allow a novice to practice the skills required in the second mode. A user can switch

to the second mode by operating the technique quickly. One can think of this in

metaphorical terms. When you are learning to drive a car, its suitable to have a car

2



Page 1456 of 1714

that is designed for a student driver. However, as your driving skills improve, the

car incrementally transforms into a Ferrari.

1.1. GENERAL AREA AND DEFINITIONS

To support the expert component described in the previous section, we focus on a

style of human computer interaction in which a user ”writes" on the display surface.

This style of interaction is similar to writing or drawing with a pen on ordinary

paper. Writing on a display, however, is accomplished with a special pen and the

computer simulates the appearance of ink."

We define a mark as the series of pixels that are changed to a special ”ink" color

when the pen is pressed and then moved across the display. The pixels that are

changed to an ink color are those which lay directly under the tip of the pen as it is

moved across the display. Free hand drawings, ranging from meaningless scribbles

to meaningful line drawings and symbols, including handwriting, are examples of

marks. The act of drawing a mark is referred to as marking.

Marks can be created not only with a pen but also with other types of input devices.

For example, a mouse can leave a trail of ink (commonly referred to as an ink-trail)

behind the tracking symbol when the mouse button is pressed and the mouse is

dragged. Some systems use a pen and tablet. In this case, marks are made on the

display by writing on the tablet instead of the display.

From a user's point of view, these interfaces allow one to make marks and then have

the system interpret those marks. There are, however, systems in which marks can

be made but not recognized by the system. They are interpreted strictly as

annotations, for example, Freestyle (Perkins, Blatt, Workman, & Ehrlich, 1989). The

focus of this dissertation, however, is on systems in which marks are interpreted as

commands and parameters.

Much of the literature refers to marks as gestures. However, the term gesture is

inappropriate in this context. Indeed creating a mark does involve a physical

1 The pen, in these types of systems, is sometimes referred to as a stylus.

3



Page 1457 of 1714

gesture but the real object of interpretation is the mark itself? For example, the ”X"

mark requires a completely different physical gesture if performed with a pen

instead of a mouse. Gesture is an important aspect of mark because some marks

may require awkward physical gestures with the input device. However, the two

terms should be distinguished. The term gesture is more appropriate for systems in

which the gestures leave no marks, for example, VideoPlace (Krueger, Giofriddo &

Hinrichsen, 1985). The term mark is more appropriate for pen—based computer

systems or applications that emulate paper and pen.

1.2. WHY USE MARKS?

Current human-computer interfaces are asymmetric in terms of input and output

capabilities. There a number of computer output modes: visual, audio and tactile.

Most computers extensively utilize the visual mode; high resolution images which

use thousands of colors of can be displayed quickly and in meaningful ways to a

user. In contrast, a computer's ability to sense user input is limited. Humans have a

wide range of communication skills such as speech and touch, but most computers

sense only a small subset of these. For example, keyboards only sense finger presses

(but not pressure) and mice only sense very simple arm or wrist movements.

Therefore, we believe the advent of the pen as a computer input device provides the

opportunity to increase input bandwidth through the use of marks.3

There are two major motivations for using marks. The first addresses the problem

of efficiently accessing the increasing number of functions in applications. The

second motivation is that there are some intrinsic qualities that marks have which

can provide a more ”natural" way to articulate otherwise difficult or awkward

concepts (such as spatial or temporal information). Both of these motivations will

now be examined in more detail.

2 There are systems where interpretation depends not only on what is drawn but also how it is drawn. For
example, an "X" drawn quickly may have a different interpretation from a "X" that is drawn slowly. By this
dissertation‘s terminology, these systems would contain a combination of marking and gesture recognition.

3 It is ironic that one of the first input devices for graphics was a light pen which wrote directly on the display
surface (Sutherland, 1963).



Page 1458 of 1714

1.2.1. Symbolic nature

The inadequacy of mouse and keyboard interfaces is exemplified by applications

that are controlled through button presses and position information.4 Buttons must

be accessible and thus require physical space. Problems occur when an application

has more functions than can be mapped to buttons or reasonably managed on the

display. Other problems also exist: arbitrary mappings between functions and

buttons can be confusing, and user management of the display and removal of

graphical buttons can be tedious.

Expert users of these types of systems find the interface inadequate because button

interfaces are inefficient. The existence of interaction techniques that override

buttons for the sake of efficiency is evidence of this. Experts, having great

familiarity with the interface, are aware of the set of available commands. Menus

are no longer needed to remind them of available commands and invoking

commands through menu display becomes very tedious.

Designers have addressed this problem in several ways. One solution is accelerators

keys which allow experts direct access to commands. An accelerator key is a key on

the keyboard which, when pressed, immediately executes a function associated with

a menu item or button. The intention is that using an accelerator key saves the user

the time required to display and select a menu item or button. Many systems

display the names of accelerator keys next to menu items or buttons to help users

learn and recall the associations between accelerator keys and functions.

Another way of supporting an expert is by supplying a command line interface in

addition to a direct manipulation interface. Commodore's command line interface,

CH, and graphical user interface, Intuition, are an example of this approach.

Both these approaches have their problems. In the case of accelerator keys, arbitrary

mappings between functions and keys can be hard to learn and remember.

Sometimes mnemonics can be established between accelerator key and function

(e.g., control-o for ”open"), but mnemonics quickly run out as the number of

accelerator keys increases. Further confusion can be caused by different applications

4 The term buttons is used as a generic way of describing menus items, dialog box items, icons, keys on a
keyboard, etc., which are typical of direct manipulation interfaces.

5



Page 1459 of 1714

using a common key for different functions or by different applications using

different keys for a common function. Experts must then remember arbitrary or

complex mappings between keys and functions depending on application.

Command line interfaces are problematic because they are radically different from

direct manipulation interfaces. To become an expert, a novice must learn another

entirely different interface.

Marks, because of their symbolic nature, can make functions more immediately

accessible. Rather than triggering a function by a button press, a mark can signal a

command. For example, a symbolic mark can be associated with a function and a

user can invoke the function by drawing the symbol. In theory, because marks can

be used to draw any symbol or series of symbols, marks can provide a quicker

method of choosing a command than searching for a physical or graphical button

and pressing it. In practice, the number of marks is limited by the system's ability to

recognize symbols and a human's ability to remember the set of symbols.

Nevertheless, even if only a small set of marks are used, a user can invoke the

associated functions immediately.

Marks can also be used to hide functions because they are user generated symbols.

For example, researchers at Xerox PARC made use of this property when faced with

a dilemma during the design of a pen-based application. This application runs on a

wall sized display where a user can write on the display using an electric pen (Elrod

et. al., 1992). There were two major design requirements. First, the designers

wanted the application to look and operate like a whiteboard and maximize the size

of the area where drawing could take place. Second, they wanted to provide

additional functions commonly found in computer drawing programs. This second

requirement meant that many graphical buttons would need to appear on the

screen. This, however, violated the first design requirement because the numerous

graphical buttons would consume too much of the drawing area and make the

interface look complicated.

The design solution was to assign many of the drawing functions to marks. Marks

provided a way to hide additional functionality from novices while expert users

could use the marks to access additional functions. This design also avoided using

buttons for these functions and, in many cases, marks were a much more effective

way of articulating a function.



Page 1460 of 1714

1.2.2. Intrinsic advantages

The advantages of pen input and marks have been expressed in the literature (Bush,

1945; Licklider 1960; Ellis 8: Sibley, 1967; Hornbuckle, 1967; Coleman, 1969; Ward 8:

Blesser, 1985; Rhyne & Wolf, 1986; Wolf, 1986; Buxton, 1986; Welbourn & Whitrow,

1988; Wolf, Rhyne, & Ellozy, 1989; Morrel-Samuels, 1990; Kurtenbach & Hulteen,

1990). Specifically, marks provide the ability to:

° embed many command attributes into a single mark;

° reduce learning time due to the mnemonic nature of marks and users’ existing

knowledge of pen and paper marks;

° capture and recognize handwriting and drawing;

° enter different types of data without switching input device. For example, text,

menu selections, button presses, and screen locations can be entered without

changing input device;5

° replace the computer keyboard, thus making computers smaller and more

portable;

' maintain a visible audit trail of operations;

° maintain a clear figure/ground relationship (Hardock, 1991). For example, marks

written over formatted text can be distinguished from the text.

1.3. SELF-REVELATION, GUIDANCE AND REHEARSAL

Despite all of these advantages, pen input and marks have not been widely used.

Pen—based interfaces have many difficult technological requirements. Historically,

hardware for pen—based systems was too expensive and recognition was not reliable

(Sibert, Buffa, Crane, Doster, Rhyne, 8: Ward, 1987). Given these limitations pen-

based applications presented no advantage (in reality, more of a disadvantage) over

a mouse-based version of the application.

9 This eliminates homing time between physical input devices but it does not eliminate homing time between
graphical devices such as graphical buttons, sliders, etc.

7



Page 1461 of 1714

This situation is changing and this change is clearly evident in the marketplace

(Normile & Johnson, 1990; Rebello, 1990). Several companies such as Go, Grid, IBM,

Apple, Microsoft, and NCR are introducing pen-based systems. Hardware and

recognition has improved to the point where pen-based systems are technically

possible. Applications such as portable notebook computers and large whiteboard

size computer screens make the pen an attractive input device (Goldberg &

Goodisman, 1991; Weiser, 1991).

On the surface, it appears that once the recognition and hardware problems are

solved, pen-based systems will be successful. However, there is still a serious

interface problem when using marks.

1.3.1. The problem: learning and using marks

An intrinsic problem with marks is that they are not selfirevealing. In contrast,

menus and buttons are self-revealing; the set of available commands and how to

invoke a command is readily visible as a byproduct of the way commands are

invoked. An interface which uses only marks as a means of command entry cannot

support walk—up—and—use situations. A first time user has no way of finding out

interactively from the system what marks/commands are available. This situation is

reminiscent of command line interfaces such as the UNIX shell or MS-DOS where

the only information presented by the system is a command line prompt. Some

source of information distinct from the process of making a mark must be consulted

before commands can be generated.

The problem is even more acute. Not only do users need to know what marks can

be made but also when or where these marks can be made. In menu and button

interfaces, one can find out when and where a command can be invoked by which

buttons or menu items appear active when an interface object is selected. Marks do

not have this property.

Is there a problem? Aren't the existing pen-driven systems easy to use and self-

revealing? Hybrid interfaces which use both direct manipulation and marks (eg.,

the P31/zP0int or Moments: interfaces (Go, 1991; Momenta, 1991)) may be somewhat

capable of walk—up—and—use. However, only the direct manipulation components of



Page 1462 of 1714

the interface can be used without external instruction.6 Manuals must still be used to

find out about marks. Hence these system do not solve the self—revealing/ marks

problem.

The motivation for creating walk-up-and-use interfaces is strong. Successful

computer interfaces such as the Macintosh are based on the notion that ”nobody

reads manuals". These types of interfaces are designed to help a user learn and

remember how to operate the interface without explicit external help such as on—line

help or manuals (Sellen, & Nicol, 1990). This situation can be viewed practically: a

user wants to get a certain task done; this task can be accomplished using a

computer tool; the shortest path between the user and task completion is using the

tool; a manual will be consulted only if the tool cannot be used directly.

If we expect a worker in the information age to utilize many different applications, a

huge amount of training for each application is an unrealistic demand. Users expect

interfaces that are consistent and permit transfer of skills from other applications.

They also expect interfaces to be self-explanatory and to guide a user in the

operation of the application. Thus, the motivation for walk—up—and—use self-

revealing interfaces is paramount.

An argument can be made that walk-up-and-use interfaces are not efficient, but this

argument misses the point. The reason to make marks self-revealing is so a user can

graduate from using the walk—up—and—use techniques to the more efficient marks.

Once this graduation has taken place, the user can benefit from the advantages of

marks such as efficient articulation and conservation of screen space. The key to the

success of this scheme is in how easily a novice can acquire expert skills.

It can be argued that if marks are mnemonic, then no self-revealing mechanism is

needed. However, this argument is analogous to using mnemonic names for

commands in command line interfaces. This technique relies on the user "being a

good guesser" and it has been shown that they are not; command naming behavior

of individuals is extremely variable (Furnas, et al., 1982; Carroll, 1985; Iorgensen et

al. 1983; Wixon et al., 1983). The more fail-safe approach is to provide an explicit

mechanism which explains the command set (Barnard & Grudin, 1988). On the

6 Of course, even some of the direct manipulation components may require instruction.

9



Page 1463 of 1714

other hand, other researchers have shown or argued that users commonly agree on

certain marks for certain operations (Wolf, 1986; Wolf & Morrel—Samuels; Gould, &

Salaun, 1987; Buxton, 1990). Nevertheless, if we wish to use marks for operations

which do not have commonly agreed upon marks, a mechanism must be provided

for learning about these marks.

We define three design principles to support learning and using marks. We do not

claim that these principles are unique. Other researchers have described similar

general principles, and many systems have interactions which obey these general

principles. However, we define specific design principles for two reasons. First, our

application of the general design principles to marks is novel, and second, our own

specific definitions help us to explain and discuss the details of the application.

The three design principles to support learning and using marks are self—revelation,

guidance, and rehearsal.

Self-revelation

The system should interactively provide information about what commands

are available and how to invoke those commands.

When an interface provides information to a user about what commands are

available and how to invoke those commands, we refer to this as self—revelation or

the system being self—revealing. Menus and buttons, for example, are self—revealing.

The available commands and how to invoke those commands can be inferred from

the display of menus or buttons. Marks, on the other hand, are not self-revealing

because they must be generated by the user.

To ensure that every aspect of a system is self—revealing is a difficult task. For

example, displaying menu items may help a user understand what functions are

available but does not guarantee that the user will understand, from the display, the

mechanics of selecting a menu item.

A common approach to interface design, and the approach that we adopt in this

dissertation, is to rely on a user receiving a small amount instruction before starting

to use the system. These instructions explain the basic mechanics and semantics of

operating the interface. For example, pointing, dragging, double clicking, and the

meaning of these actions may be explained. The Macintosh computer uses this

10



Page 1464 of 1714

technique. The intention is that with this small set of skills a user can start

interactively exploring and learning about the remainder of the system.

The interaction technique developed in this dissertation uses this type of design. A

user must be informed, a priori, that in order to display a menu the pen must be

pressed against the display and held still for a fraction of second. We call this ”press

and wait for more information”. Once users have this bit of information, however,

they receive further instructions interactively from the system. In our model of the

interface, users can interactively learn about what functions can be applied to

various displayed objects by ”pressing and waiting" on the objects for menus.

The principle of self—revelation is based on interface design principles and

psychological mechanisms proposed by others. Norman and Draper (1986) propose

a design principle to ”bridge the gulfs of execution and evaluation". Specifically, a

designer should make interface objects visible so users can see what actions are

possible, how actions can be done, and the effects of their actions. Shneiderman

(1987) proposes a similar principle: ”offer informative feedback”. The principle

states that objects and actions of interest should be made visible to the user.

Shneiderman Claims that this design principle is the basis of direct manipulation

interfaces.

The principle of self—revelation is distinct from affordance theory (Gibson, 1979;

Gibson 1982). Self—revelation is concerned with absence/presence of information

about what functions are available and how to invoke those functions. Affordance

theory, in human computer interaction, is concerned with an interface object's

appearance suggesting its function (Gaver, 1991). These two notions, however, are

related. For example, consider the display of a pop-up menu. The principle of self-

revelation dictates, first, that function names or icons must be displayed, and,

second, that they are displayed in a menu so that a user knows by convention how

to invoke them. Affordance theory, on the other hand, dictates that the name or icon

for an item accurately suggests its function, and that the appearance of the menu

suggest items are selectable. Correct use of affordances may help reduce the amount

of 11 priori instruction a user requires. For example, items in a menu may ”look”

selectable (they ”afford" selection) and therefore the user does not have to be

explicitly taught these mechanics.

Guidance



Page 1465 of 1714

The way in which self—reUelation occurs should guide a user through invoking

a command.

If an interface actually assists a user in the articulation of commands we refer to this

as guidance. For example, in the editor emacs, by hitting a ”command completion

key" while typing a command, emacs will display all the command names that

match the partially completed command. In effect, emacs ” guides" a user in

completion of the command, as opposed to waiting for the command to be

completely typed before examining its validity. Another example is selection from a

hierarchic menu. In this case, selection of an item guides a user to the next menu.

Guidance does not necessarily have to be triggered by the user. Some on—line help

systems prompt the user with information to guide them through a command. The

critical point is that in these systems getting or receiving helpful information on how

to invoke a command (guidance) does not interrupt the articulation of a command.

On the other hand, a system like the on-line manual pages in UNIX violates the

principle of guidance. In this case, in order to receive information about what

commands are available and how to invoke those commands, a user must terminate

or at least suspend the act of invoking a Command.

Rehearsal

Guidance should be a physical rehearsal of the way an expert would issue the

command.

Rehearsal is the notion of designing interactions such that the physical actions made

by a novice in articulating a command are a rehearsal of the actions an expert would

make invoking the same command. The goal of rehearsal is to develop skills in a

novice that transfer to expert behavior. It is hoped that this leads to an efficient

transition from novice to expert.

Many interaction techniques support rehearsal. When the basic action of the novice

and the expert are the same for a particular function we can say that rehearsal takes

place. For example, novices may draw lines, move icons, or select from menus using

the same actions as an expert when there is one and only one way of issuing the

command. In many cases, the single way of issuing the command may be suitable

for both the novice and expert.



Page 1466 of 1714

There are also many situations, however, where a single method for invoking a

command is not sufficient. The popularity of accelerator techniques is proof of this.

Typically, good interfaces provide two modes of operation. The first mode, designed

for novices, is self-revealing. Conventional menu-driven interactions are an

example of this. The self-revealing component of this mode is emphasized over

efficiency of interaction because novices are more concerned with how to do things

rather than how quickly things can be done. The second mode, designed for

experts, typically allows terse, non—prompted interactions. Command line

interfaces and accelerator keys are examples of this mode. However, usually there is

a dramatic difference between novice and expert behavior at the level of physical

action. For example, a novice uses the mouse to select from a menu whereas an

expert presses an accelerator key.

The intention of the three design principles is to reduce this discrepancy in action

without reducing the efficiency of the expert and ease of learning for the novice.

The basic actions of the novice and expert should be the same. It is hoped that as

novice performance develops the skills that lead to expert performance will develop

in a smooth and direct manner.

1.3.2. Unfolding interfaces

The principles of self-revelation, guidance and rehearsal support the notion of an

unfolding interface. An unfolding interface works as follows. Initially, a novice is

provided with a small amount of information about how to get information on parts

of the interface. For example, double clicking on an object may open it up or

”unfold" it to reveal additional functions. Thus, given this key to unfolding objects,

a user can explore the interface, learning and using new functions. The intention is

that, with experience, exploration and use leads to expert knowledge of the system.

There are other schemes which control the number and types of functions available

to a user, for example, Training I/\/heels (Carroll & Carrithers, 1984). These types of

systems provide explicit novice/expert modes in which the novice mode has fewer

functions than the expert mode. The intention is to avoid confusing a novice with a

large set of complex functions. Once the reduced set of functions is mastered, the

novice can switch to the larger ”expert" set of functions. The major difference

between this approach and the notion of an unfolding interface is that an unfolding



Page 1467 of 1714

interface has no explicit novice and expert modes. An unfolding interface allows

users to incrementally add functions to their repertoire.

Marks, self-revelation, guidance and rehearsal can play important roles in an

unfolding interface. Unfolding is essentially an inefficient operation. As suggested

earlier, by associating marks with ”hidden" functions, unfolding can be avoided.

For example, rather than double clicking on an object to unfold it and then clicking

on a function button, a mark can be made on the object to invoke the function. To

help users learn the marks associated with functions, it would be beneficial if

unfolding a function also revealed its mark. This is an application of the principle of

self-revelation. Ideally, we want the principles of guidance and rehearsal to hold as

well; we want to design an interface such that exploration is equivalent to invoking

commands, and exploration allows a novice to practice skills that lead to expert

behavior.

1.3.3. Solution: ways of learning and using marks

The concerns of this research are interfaces that use marks but are also self-

revealing. Therefore, solutions for making marks self—revealing can be classified by

how tightly coupled the act of marking is with the act of getting information about

command/mark associations.

Interfaces that use marks and only supply information about these marks through

off—line manuals are considered to be at one end of a self-revelation continuum.

These interfaces are not interactively self—revealing. Interfaces which supply

information about marks as a command is actually being articulated can be

considered the other end of the self-revelation continuum. These would be

considered interactively self—revealing interfaces.

In the following sections we classify solutions based on this criterion. Since

interfaces that use marks are still in their infancy there are few pre-existing

examples.

Off-line documentation

Off-line documentation consists of manuals which provide information about how

marks are used in an interface. Examples of the marks are displayed and text or

graphics provides information on their usage. Although this type of scheme is not

self—revealing it is of interest because, first, it is the status quo for pen—based

14



Page 1468 of 1714

products and, second, it demonstrates the type of information needed for a user to

understand marks.

Figure 1.2 shows a section from a pen-based system's manual. Clearly this type of

scheme is not interactively self-revealing. However, if the mark set is small, the

documentation could be placed directly on the computer in the form of a ”cheat

sheet". This scheme would be partially self—revealing.

Cross ou; 9/

DClC[L‘S a word or selection In text orally
uliju.-Lt tlireuly lJL’llL':ll’lI the X.

[ Bracket. left X Pigtail
Deletes .1 :h.u'actcr In a VVl‘l[
L‘l"l:1I".\C[€I hox.or.1n individ
in Kuxt.] Brackat, right

I Onc blackcl Sk‘lL‘L,l§ a word l-J its lull Ul
right.I A xrmnd but krr fVT€‘|1(l\ rlir srln rinn.

Y Frees
I Begi n» .1 mm r.
I Begim :1 drug through s‘

A Caryl;

I In text. pops up A small writing pad [0lJ‘ht‘It .1 Vmlxl.
I In |l1.'>llI1l’7ll'lll ( lmlrlllx, pups up llll’

Flirk up

Crcznc menu to t,rc;\tt- .1 new document.

\/ Clwult

l_)isplnyx optimum for \('lCFlL'Ll IN‘. nlvjt-mllculls. tluctnnutx, intl tools.

’ Fl cl: dawn

s.—.t.II. llntnmrnrs Iigwr. lrir rl(i\’-.’l1,4'lI up.I On the Jnctmlun in c line, flick lcll -
or right 7 to tum to the ntxt or pm iom
page.
I On ow-rl,1ppt>t“ mhx. llltl-: up i or clown’
in move ll)L lab up or down l liclx left — to
(li.sp|.iy' all mln 1t<rm'c.

.7 W
5Cll:Cr5 or :ICtlv1m:s wlur yul
rhr pm.I In tcxl. sclccls me char.)

_? Tap ;;r‘e55
Begins 21 copy.

C) ! Hb6|"E ‘JPEICC

Figure 1.2: 7:1/pica] ojj’-Zine documentation for mark commands (PenP0mt system,

Go, 1991)

On-line documentation

This class is essentially the ”on-screen" Version of off-line documentation. A user

can display manual pages on-screen while the application in question is running.

Note that this does constrain the user into suspending the real task of issuing a

command while obtaining command information.

Sometimes command information can be found in the application used to train the

software module that recognizes marks. Figure 1.3 shows one such example.



Page 1469 of 1714

Gesr_'.;r:e.‘~Zan:i;¢::_1065OO

EVE-'1?-K‘-Ed: '!'a:lI'<ind: _!"lo\.'seToo'_
Eve.-1:K.'.:'.<:': TcolI<.J..~.d: nil.
Even:Kl:d'

new class

Figure 1.3: Gesture handler window allows inspection of marks associated with a

View in Rubine's system. This window is, however, intended for the system

programmer. The window shows ten classes of marks but does not shows the

semantics associated with each mark. (from Rubine, I990).

Unfortunately, training interfaces are not designed specifically to deliver this type of

information, and the information can be very minimal and confusing to the user.

Microsoft's Windows for Pen Computing uses on-line documentation. A special

application provides a tutorial which features animations demonstrating marks and

editing operations. A user can also practice using the marks on sample text. While

the tutorial is effective, a user still has to change context (i.e., switch from the

working application to the tutorial application) in order to get information on

marks.

On-line interactive methods

On-line interactive methods supply information about marks as one issues a

command. Figure 1.4 shows an example where sample marks are displayed beside

menu items. Windows for Pen Computing using this technique to a limited degree.

This technique relies initially on another interaction method such as menus or

buttons to invoke commands. In Figure 1.4, the interaction technique initially relied

on is a menu. As the menu is used, it reveals the marks that can be used. Once a

user remembers the mark associated with a command, the revealing technique (the

16



Page 1470 of 1714

menu) can be bypassed and a more efficient mark can be used. Figure 1.5 shows a

system called XButt0ns which also uses this method. In contrast to on—line

documentation, an on—line interactive method does not constrain the user into

suspending the real task of issuing a command, while obtaining command

information.

This method is similar to accelerator keys. Every time a user uses a menu item or

button, the mark is seen. Like accelerator keys, the mark can be memorized and

used as a shortcut in calling the command. Note that ”accelerator marks" are more

powerful that accelerator keys because they are not limited to characters on the

keyboard, they indicate the object of the requested action by the location of the

mark, and they can contain command attributes, such as destinations or modifiers.

Show Clipboard

Figure 1.4.‘ An example of "accelerator marks” which allow quick access to menu

items similar to accelerator keys.



Page 1471 of 1714

Phone:

( Click - Get phone :1 J

Flick Right - Dial phone fl

Comment

Copy
Delete
Edit

Help
Mail

Figure 1.5: XButtons provides a menu which shows what commands are available

from a button and the associated marks. A command can be invoked by either a

menu selection or by making the mark on the button (Robertson, et al, I991).

On-line interactive rehearsal methods

This category is similar to on—line interactive methods except invoking a command

using the self-revealing technique (i.e., a menu) makes the user physically rehearse

making the corresponding mark. In contrast, when using on-line interactive

methods, the user does not physically rehearse making the mark (e.g., selecting

”copy” from the menu in Figure 1.4 requires a vertical movement, not a hand drawn

"C" movement).

Marking menus, the technique focused on in this dissertation, is an example of this

class (Kurtenbach & Buxton, 1991). The complete definition of this technique is

given in Chapter 2. Figure 1.6 illustrates this technique in the context of creating

three simple objects. An expert uses simple shorthand marks to create and place

circles, square, or triangles.



Page 1472 of 1714

If a user is unsure of what marks can be made, the user presses the pen against the

display and waits for approximately 1/3 of a second. This signals to the system that

no mark is being made and it then prompts the user with a radial menu of the

available commands, which appears directly under the cursor. The user may then

select a command from the radial menu by keeping the pen tip pressed and making

a stroke towards the desired menu item. This results in the item being highlighted

(see Figure 1.7). The selection is confirmed when the pen is lifted from the display.

Figure 1.6: An example of the technique using three simple shorthand marks. Three

objects can be defined: a circle, square and triangle. A mark which is a simple

straight line (shown here with an arrowhead to indicate drawing direction) defines

the type ofobject created, and its placement.



Page 1473 of 1714

Figure 1.7: A radial (or “pie”) menu can also be popped up if the user does not

know what commands or marks are available. Rather than drawing a mark as in

Figure 1.6 a novice keeps the pen pressed and a menu appears. An object can then

be selectedfrom the menu.

The important point is that the physical movement involved in selecting a command

is identical to the physical movement required to make the mark corresponding to

that command. For example, a command that requires an up—and—to—the—right

movement for selection from the pie menu, requires an up—and—to—the—right mark in

order to invoke that command. The intention is that selection from the menu is a

rehearsal of making a mark.

Other menu layouts can be used for interactive rehearsal methods besides radial

menus. Another possibility is a ”bull's eye menu” which is a menu that is divided

into concentric circles rather than sectors, where each concentric circle corresponds

to a different command (Figure 1.8).7 The corresponding marks are therefore

discriminated by length rather than angle. Many more exotic schemes have been

proposed and are as of yet unexplored.8 Chapter 2 presents the motivation for

choosing radial menus, and describes in detail the design of marking menus.

7 VVe thank Professor Iohn Ml. Senders for this suggestion originally called "donut menus". Professor l/Villiam
Buxton later took great exception to the use of the word ”donut” and suggested the more dramatic name of
”buH's eye menu".

8 Dr. Tom Moran has proposed a combination of donut and pie menus. Dr. Stuart Card has proposed a
continuous version of hierarchical marking menus.

20



Page 1474 of 1714

b)

Figure 1.8 Examples of alternate menu styles in which selection will result in a

unique marks. a) is a “bull ’s eye ” menu which discriminates by mark length rather

than angle. b) is a “dart board” menu which discriminates by length and angle.

1.4. THESIS STATEMENT

This dissertation is an in—depth investigation of marking menus. We present the

thesis that marking menus are a valuable interaction technique. When used in the

proper situation, marking menus are easy and efficient to use, can be used with

different input devices, and integrate well with existing interface techniques.

Furthermore, marking menus allow a user to take advantage of writing skills with a

pen and attain levels of performance not possible with other interaction techniques.

To support this thesis, we present a design for marking menus, evaluate marking

menus by means of user behavior experiments, and provide a case study of marking

menus in practice. We conclude our investigation by showing how the design

concepts of marking menus, self-revelation, guidance, and rehearsal, can be

generalized to other situations.

The intention of this investigation is to provide practical guidelines for interface

designers interested in using marking menus. With this in mind, we describe when

and where marking menus would be an effective technique, and the limitations and

properties that must be observed and maintained for marking menus to work well

in an interface. We also describe the design principles behind marking menus and

give examples of how these principles can be applied to other contexts.

21



Page 1475 of 1714

1.5 SUMMARY

This chapter has provided motivation for marks as an interaction technique,

described a basic interface problem with marks, set out design principles to solve

this problem and introduced an approach, marking menus, which observes these

design principles. In Chapter 2 we expand on our motivation for using marking

menus and explain in detail the design and design rationale behind marking menus.

Chapter 3 reports on an empirical study of the non—hierarchic marking menus.

Chapter 3 is a condensed version of a paper that appears in Human Computer

Interaction (Kurtenbach, Sellen, & Buxton, 1993). Chapter 4 is a case study which

reports on how marking menus can be designed into an application and investigates

user behavior with marking menus in an ”everyday work" situation. Chapter 5

presents an empirical study on the limits of user performance with hierarchic

marking menus. Chapter 5 is an expanded version of a paper published in The

Proceedings of InterCHI '93 (Kurtenbach & Buxton, 1993). Chapter 6 describes how

we integrated marking menus into a pen-based application and applied the notions

of self-revelation, guidance and rehearsal to this application. Chapter 7 summarizes

this dissertation and its contributions, and proposes future research.



Page 1476 of 1714

Chapter 2: Marking menus

In this chapter we expand on our description of marking menus. First, we present a

definition of marking menus and the motives for investigation. Next, we describe

previous research that is related to marking menus and we identify open research

questions and the issues pursued in this dissertation. Finally, we complete our

description of marking menus by providing the Complete rationale behind our

design.

2.1. DEFINITION

A marking menu is an interaction technique that allows a user to select from a menu

of items. There are two basic ways (or modes) in which a selection can be

performed:

menu mode In this mode a user makes a selection by displaying a menu. A user

enters this mode by pressing the pen against the display and waiting for

approximately 1/3 of a second. We refer to this action as press-and-wait. A radial

menu of items is then displayed centered around the pen tip. A radial menu is a

menu where the menu items are positioned in a circle surrounding the cursor and

each item is associated with a certain sector of the circle. A user can select a menu

item by moving the pen tip into the sector of the desired item. The selected item is

highlighted and the selection is confirmed when the pen is lifted from the display.

(See Figure 2.1)

mark mode In this mode, a user makes a selection by drawing a mark. A user enters

this mode by pressing the pen against the display and immediately moving in the

direction of the desired menu item. Rather than displaying a menu, the system

23



Page 1477 of 1714

draws an ink-trail following the pen tip. When the pen is lifted, the item that

corresponds to the direction of movement is selected. (See Figure 2.1)

Clipboard

selection using selection using
menu mode mark mode

Figure 2.] .' The two basic ways ofselectingfi‘0m a marking menu.

The key concept of marking menus is that the physical movement involved in

selecting an item in menu mode mimics the physical movement required to select an

item using a mark.

Marking menus may also be hierarchic. In menu mode, if a menu item has a

subitem associated with it, rather than lifting the pen to select the item, the user

waits with the pen pressed to trigger the display of the submenu. The submenu is

also a radial menu. The user can then select an item from the submenu in the

manner previously described. In mark mode, a user makes a selection by drawing a

mark where changes in direction correspond to selections from submenus. Figure

2.1 show an example of selecting from hierarchic menus using menu mode and

mark mode.

Using radial menus in this way produces a set of mark which consist of a series of

line segments at various angles (”zig-zag" marks). Marking menus which have no

hierarchic items produce strictly straight line segments. Figure 2.2 shows an

example of a menu hierarchy and the associated marks.



Page 1478 of 1714

1:a

\J
22a 22b

|/ A _/
3:c

Kih“

menu hierarchy mark set

Figure 2.2.‘ An example ofa radial menu hierarchy and the marks that select fiom

it. Each item in the numeric menu has a submenu consisting of the items a, b, c and

d. A mark's label indicates the menu items it selects. A dot indicates the starting

point afa mark.

It is also possible to verify the items associated with a mark or a portion of a mark.

We refer to this as mark confirmation. In this case a user draws a mark but presses-

and-waits at the end of drawing the mark. The system then displays radial menus

along the mark ” as if” the selection were being performed in menu mode. Figure 2.3

shows an example of this.

Other types of behavior can occur when selecting from a marking menu such as

backing-up in a menu hierarchy or reselecting an item in menu mode. Details of the

behavior are discussed in Section 2.5.



Page 1479 of 1714

(1) (2)

Figure 2.3: An example of mark-confirmation in a menu with three levels of

hierarchy. In (1), the user draws the first part of the mark then waits with the pen

pressedfor the system to recognize the selection so ‘far. In (2), the system then

displays its interpretation ofthe mark and goes into menu modefor completion ofthe
selection.

2.2. MOTIVATION FOR STUDY

We have many motives for studying marking menus; they have advantages over

traditional menus; they use marks that are easy to draw and that are easy for

computer to recognize; they can be used for functions that have no intuitive mark;

they are compatible with different interface styles; and they exploit human motor

skills. In this section, we expand on these motivations.

2.2.1. Advantages over traditional menus

One motivation for studying marking menus is that they have many differences and

potential advantages over the traditional menus used in current practice. Examples

of the current practice in menu design are the pop—up menus or pull—down menus

on the Macintosh. With these types of menus, selection is performed by popping up

the menu and selecting items by pointing with the mouse. Menu items can also be

selected by pressing an accelerator key associated with a menu item. There are

several specific advantages marking menus have over these traditional menus:

Keyboardless acceleration

Marking menus allow menu selection acceleration without a keyboard. With

traditional linear menus, keypresses must be used to accelerate selection. Marking

26



Page 1480 of 1714

menus provide a method of accelerating menu selections when no keyboard is

available. This is extremely important for portable, keyboardless, pen—based

computers.

Acceleration on all items

Marking menus, if configured accordingly, can permit acceleration on all menu

items. With traditional menus, it is common for the application developer to assign

accelerator keys to the most frequently used menu items. This assumes that the

application designer is able to predict the most frequently used menu items. In

many cases, however, it is not possible to accurately predict which menu items will

be frequently used, if there is a large variance in the way an application may be

used. In contrast, with marking menus, the selection of all items can be accelerated

by the user making a mark. The designer does not have to predict, :1 priori, which

items will be the most frequently used.

Menu selection mimics acceleration

Marking menus minimize the difference between the menu selection and accelerated

selection. Selecting a menu item from a marking menu physically mimics the act of

making the accelerating mark. The design intention is to help users become skilled

at the movements required for accelerated menu selection. This is dramatically

different from traditional menus and accelerator keys where menu selection is

performed with the mouse and accelerated selection is performed with the

keyboard. In this case selection from the menu in no way physically mimics

selection using an accelerator key.

Combining pointing and selecting

Marking menus permit pointing and menu selection acceleration with the same

input device. This is an intrinsic property of marks and has been utilized by other

researchers (e.g., Coleman, 1969; Rhyne 1987; Wolf «S: Morrel-Samuels, 1987). In

mouse-based direct manipulation interfaces it is very common to point to an object

and then select a menu item. If accelerator keys are used, this operation requires

coordinating pointing with the mouse and pressing on the keyboard. With a

marking menu, not requiring a hand to be on the keyboard frees the hand to control

other input devices or perform auxiliary tasks such as controlling a VCR transport or

turning the pages of a book.



Page 1481 of 1714

Spatial mnemonics

Marking menus use a spatial method for learning and remembering the association

between menu items and marks. In contrast, traditional menus and accelerator keys,

rely on symbolic mnemonics to help users remember the associations between menu

items and keys. Due the limited number of symbols on a keyboard, mnemonics

often cannot be established between all menu items and their accelerators keys. This

results in menu item/key associations that may be arbitrary or inconsistent.

Marking menus avoid this problem by relying on a consistent method to establish

mnemonics: the shape of a mark corresponds to the spatial layout of a menu item in

the menu hierarchy.

2.2.2. Ease of drawing and recognition

Marking menus use a very simple set of marks consisting of straight and zig-zag

marks. This simple set of marks has three advantages. First, these types of marks

are easy and fast to draw and are therefore suitable for accelerated performance.

Ease of drawing is especially important when drawing precision is hampered by

imperfect pen/ display technology. Second, computer recognition of these types of

marks can be reliable, fast and user independent. The recognizer requires little

processing power and no training. Third, any interface designer, by using marking

menus, can make use of some of the advantages of marks without having to design

their own mark symbols. Of course, it is still necessary to design the layout of the
TTIEUUS.

The single contiguous marks in marking menus have several advantages. Other

types of marks which require multiple non-contiguous pen strokes create many

problems. Recognizer design is more complicated when groups of strokes must be

recognized. This is referred to as the segmentation problem. Sometimes groups of

strokes are distinguished by constraining the user to put all the strokes associated

with a mark in a certain region. Alternatively, strokes may be grouped by time.

This constrains the user to momentarily pause between making different marks.

With a marking menu mark, a user is not constrained by timing, size of mark, or

location. Recognition takes places the moment the pen is lifted.

The marking menu mark set does have disadvantages. First, a designer has no

choice in the shape of the marks (besides what can be controlled through the layout

of the menus). Fortunately, marking menus do not prohibit the use of other mark

28



Page 1482 of 1714

sets and mark recognition techniques (see Chapter 6 for a detailed discussion of this

issue). Second, the size of the mark set is limited by a user's accuracy at drawing

lines at various angles. Third, the mark set is not particularly expressive. The angle

at which the stroke is drawn is used to define the type of mark. The line must also

be somewhat straight. This leaves starting point, ending point and temporal

information about how the line was drawn to be used as additional information

encoding parameters. In contrast, other mark vocabularies permit many more

parameters to be controlled by the shape of the mark (Makuni, 1986). Nevertheless,

we have discovered that the limited set of parameters of a marking menu mark can

be quite useful (see Chapter 4).

2.2.3. Marks when no obvious marks exists

Researchers have shown or argued that users commonly agree on certain marks for

certain functions (Wolf, 1986; Gould, & Salaun, 1987; Morrel-Samuels, 1990; Buxton,

1990). However, we believe that there are many situations where invoking a

function with a mark could be beneficial but no commonly agreed upon mark exists

for the function. This is similar to icon design where some functions have no

intuitive icon. For example, there is no "natural mark" for "change pen width to

thin”. Marking menus might work well in these types of situations because the

menu can provide textual or pictorial explanations of functions while the mark for

the menu item provides a quick way to invoke the function.

2.2.4. Compatibility with unfolding interfaces

Marking menus are compatible with unfolding interfaces (described in Section

1.3.2). The intention is that menus pop up to self-reveal or unfold functions and the

marks provide way to efficiently invoke the functionality. Guidance and rehearsal

are intended to help a novice learn the efficient way of invoking a function.

2.2.5. Compatibility with existing interfaces

Marking menus are compatible with popular input devices and interface paradigms.

First, the type of marks used can be reasonably drawn with a mouse (Chapters 3 and

5 explore this issue in detail). Second, since traditional menus are Created by the

application calling library routines, by replacing the library routines, marking

menus could be used in place of pop-up menus without changing a single line of

application code or changing application functionality. Finally, marking menus can

29



Page 1483 of 1714

extend existing dialogue styles without major changes to an interface paradigm. An

example of this is H]/perMarI<s, developed by the author (Kurtenbach & Baudel,

1992), which is a H]/percard xcommand that supports marking menus in Hypercard

(Apple Computer, 1992). When a marking menu is used from a Hypercard button,

the Hypercard button still retains its single function when pressed. However, if the

button is kept pressed, a marking menu pops up with more commands. A user can

select from the marking menu using menu mode or marks. In this way, the function

of a button can be extended.

Marking menus can be effective because they are a pop-up interaction technique.

When displays become small or very large, marking menus can be effective. On

large displays, a mark or a menu selection can be made at a user's current location

without a long trip to a menu bar or tool pallet. On small screens, since both the

menu and mark ”go-away” once performed, no valuable screen space is consumed.

2.2.6. Novices, experts, and rehearsal

Marking menus are intended to support both the novice and expert user. The

intention is that a novice uses menu mode and an expert uses the marks. Menu

mode can provide the self-revelation and guidance needed for a novice to invoke a

command. The marks can provide efficient interactions for experts.

Marking menus are also intended to support the transition between novice and

expert. Selection in menu mode provides the user with rehearsal for making a mark.

In essence, using the menu trains a novice to use marks. We believe that rehearsal

helps in learning the association between mark and command.

There are other menuing schemes which support the novice and expert and the

transition between the two. For example, the Macintosh supports novices by

providing menus and supports experts by providing menu accelerator keys. The

transition between novice and user is supported by the user being reminded of the

keystrokes associated with particular menu items every time a menu is displayed.

This is done by having the names of the accelerator keys appear next to menu items

in the menu. However, actually using an accelerator key is avoidable. The user can

always just select from the menu. Furthermore, this is easiest because the user is

already displaying the menu. The end result is that accelerator keys are sometimes

not used even after extensive exposure to the menu. With marking menus the user

is not only reminded, but rehearses the physical movement involved in making the

30



Page 1484 of 1714

mark every time a selection from the menu is made. What makes marking menus

unique from the accelerator key scheme is that rehearsal is unavoidable. We believe

this helps in learning the association between mark and Command.

2.2.7. Utilizing motor skills

The idea of using physical rehearsal to train novices to become experts is a unique

concept and is worth investigating for pedagogical reasons. Marking menus

purport to reduce the cognitive load of memorizing mark/command association by

relying on muscle memory (since each mark/command is a distinct physical

movement). This technique is similar to the approach used in the Information

Visualizer Project (Card et al, 1991). The Information Visualizer relies on low level

sensory input processing such as depth or motion perception to reduce the burden

on higher cognitive processes in visualizing information. Marking menus can be

thought of in a similar manner. It is believed that low level sensory output

processes (muscle memory) are used to reduce the load on higher level cognitive

processes. We explore this issue in this dissertation.

2.2.8. "Eyes-free” selection

Selection by a distinct physical movement with a marking menu lends itself to

”eyes-free" selection. For example, most of us can draw the eight directions of a

compass without looking. Eyes—free selection is useful in situations where a user's

visual attention must be on something other than the selection process, for example,

selecting commands while watching a video tape. An eyes-free selection technique

is also extremely valuable to the visually impaired.

2.3. RELATED WORK AND OPEN PROBLEMS

This dissertation develops and explores the use of marking menus. There is no

previous research on this technique, per se, however, marking menus are based on

radial menus (see Section 2.1 for the definition of radial menus). Therefore, research

on radial menus is relevant. The most widely used instance of a radial menu is the

pie menu (Hopkins, 1991). A pie menu is a radial menu where the visual

representation of the menu resembles a sliced pie. Other types of visual

representations are possible, for example, we have developed an alternative

representation for a radial menu which does not look like a pie (see Figure 2.12).

31



Page 1485 of 1714

Two instances of radial menus are pie menus and command compasses. We now

describe these two techniques, contrast them with marking menus, and report on the

current state of research on their design and usage.

2.3.1. Pie menus

To date, there is little research on pie menus. The origin of pie menus can be traced

back to radial menus proposed by Wiseman, Lemke, & Hiles (1969). Since then,

research on pie menus has mainly been concerned with menu layout and suitable

applications (Hopkins, 1991; Hopkins, 1987). The only empirical study of pie menus

investigated menu item selection time and error rates for 8-item menus but

concentrated on comparing them to linear menus (Callahan, Hopkins, Weiser, &

Shneiderman, 1988). It was found that selection from pie menus was significantly

faster (15%) and produced marginally significant fewer errors (42%) than linear

menus. The experiment also investigated the effect of using menu items with a

natural linear ordering (i.e., ”First”, ”Second”, ”Third”, etc.), with a natural radial

ordering (i.e., ”North", ”North-east", ”East", etc.), and with an unclassifiable

ordering (i.e., ”Center”, ’’Bold'’, ’’Italic’’, etc.). Callahan et al. hypothesized that

certain types of menus (pie or linear) would perform better with items that have a

certain type of natural ordering (radial, linear, or unclassified). A marginally

significant correlation was found between menu types and types of orderings. The

weak correlation occurred because selection time means for the pie menus were

lower even on items with natural linear orderings. Results also showed that

unclassified menu items produced significantly slower selections than ordered

menu items regardless of menu type.

What has not been extensively studied is the claim that muscle memory for different

gestures plays a helpful role in menu selection. Anecdotal evidence from designers

of pie menu systems suggest that item selection from a menu hierarchy is possible

without displaying the menus after practice (Hopkins, 1987). Not only was

unprompted selection possible but it was also desirable for efficiency reasons.

Unprompted selection is supported in pie menus by a technique called mousing-

ahead. Mousing—ahead means the user does not have to wait for the system to

display the menu before moving the cursor to make a selection. As the user moves

the cursor, the input system buffers cursor location data. When the menu is finally

displayed, the system reads the buffered data and analyzes it as if it were generated

32



Page 1486 of 1714

with the menu displayed. The system then immediately selects a menu item and

removes the menu. In this way a user can make a selection without waiting for the

menu to display (in effect, the mouse is being operated "ahead" of the display,

hence the term mousing-ahead). Hopkins’ implementation is slightly more

sophisticated than just described. Menu display is suppressed until the user stops

moving the cursor.

On the surface, it appears as if a marking menu is a pie menu with an ink-trail

added to cursor. However, there is a major difference in the way the two techniques

behave. Marking menus, depending on the context, may use sophisticated

recognition. Marking menus analyze the path of a cursor as a mark, looking for

certain features. If the interface recognizes other types of marks, a mark has to ”look

like” a marking menu mark before it can select from the menu. For example,

suppose an interface recognizes a ”C" mark (e.g., "C" triggers the copy command)

and also marking menu marks (i.e., zig-zag marks). If mousing-ahead was used, the

”C" would select the bottom item of a menu (assuming the user started drawing

from the top of the ”C"). With marking menus, the recognizer identifies the mark as

a ”C" and not as a zig-zag mark. Chapter 6 discusses in more detail, issues of

integrating marking menu marks with other types of marks.

As a consequence of mark recognition, marking menu marks can be performed more

casually than mousing-ahead movements with pie menus, especially with hierarchic

menus. Mousing—ahead on pie menus must be an exact imitation of cursor

movement used when selecting with the menu displayed. Marking menus, on the

other hand, recognize the shape of the mark, independent of size and therefore the

user can be more casual when drawing marks as opposed to mousing-ahead. There

are designs where mousing-ahead can be made independent of movement size but,

in general, this is not possible. See Section 2.5.6 for a detailed discussion of these
issues.

The visual difference between marking and mousing-ahead is that marking leaves

an ink-trail after the cursor, whereas mousing-ahead does not. We believe that,

without an ink-trail during selection, a user must visualize selection from the menu.

With an ink-trail, the user does not have to visualize selection, but rather remember

the mark associated with a menu item and then correctly draw the mark. We believe

the ink trial provides feedback which helps the user to correctly draw the mark.

33



Page 1487 of 1714

2.3.2. Command compass

An interface mechanism very similar to a marking menu is the command compass

used in the Momenta pen-based computer. Figure 2.3 shows how the command

compass is used to move text.

Using the Command Cumgass

to Menu a Piece of Taxt

. Sel'a::Izrtn5:sn-uvuLCoa9a.uicnl 2. Tauaésfirfc-n-t§lvnt5t£ux.apcn£ag
qzpuainaxur. tic-nnqln.

. Sr:-nkeiptnl-rfphiticwnlxfit, inubingd»: 4. bfiflcpaofduxnmuudngnwtu
p-cum:-nnnddlcuautinsnlctru-|':nglc'x¢ kpaucdinnscvtpaa
nmbenurjunwuntfittadnoxd.

Figure 2.3.‘ The Momenta Command Compass (Momenta, 1991).

There are several differences between the command compass and marking menus.

First, the command compass does not permit reselection. Once the pen is moved in

the direction of a command, that command is immediately selected. Second, an

explicit unprompted selection mode is not provided. No ink-trail is provided and

unprompted selection relies on mousing-ahead (or ”penning-ahead", since

Momenta is a pen-based computer). While the Momenta interface uses marks, the



Page 1488 of 1714

command compass does not utilize marks. Finally, only one type and size of

command compass is used. No hierarchic command compasses are supported.

The subtle difference in the way selection is done with a command compass versus

selection with a marking menu affects the type of interactions each technique can

support. With marking menus command selection occurs after a sector has been

moved into and the pen lifted. With the command compass, command selection is

done the moment a sector is moved into. Thus when selection occurs, the user is

still in a physical mode (keeping the pen pressed). This physical mode can be used

to express more parameters for the command, hence, physically pairing a command

verb and its parameters. This is, of course, at the expense of not permitting
reselection.

2.4. RESEARCH ISSUES

The ultimate goal of this research is to create a useful interaction technique. To

attain this goal, several things must be accomplished. First, we must create a design

for marking menus. Next, this design must be evaluated to determine its limitations

and possible applications. From these evaluations, we can refine our design and

develop recommendations for interface designers about when, where, and how

marking menus can be beneficial. Given these goals, research issues surround the

following question: what characteristics of marking menus do we need to

understand to effectively incorporate this mechanism into the interface?

The most immediate question about marking menus is: how many items can be

placed in the menus before it becomes too difficult to make selections using marks?

Common sense tell us that parameters governing this aspect are articulation

accuracy (i.e., how precisely can a human draw directional strokes), and human

memory limitations (i.e., how quickly can a human learn and remember associations

between menu items and marks). Other issues concern how hierarchic structure

affects selection performance, how command parameters can be attached to marks,

and how the design can be varied to accommodate the constraints of an interface.

The following sections expand on these issues.



Page 1489 of 1714

2.4.1. Articulation

Accuracy in selecting menu items and in marking is limited by the human motor

system and the input device being used. This constrains the number of items that

can be placed in a marking menu. Articulation refers to the motor system activities

associated with selecting from a menu or making a mark, not memory activities like

recalling the mark associated with a menu item. For example, suppose a user

remembers the mark for a desired menu item. Can the user draw the mark

accurately enough to select the menu item? In other words, can the user successfully

articulate the mark once it is remembered?

Many factors may affect the success of articulation:

The type and characteristics of the input device. While the pen appears to be a

natural input device for marks, operating marking menus with other types of input

devices is also desirable. Thus, it is of interest to study users’ performance not only

with a pen but also with other popular types of input devices.

The number of items in a menu. As the number of items in a menu increases, the

size of the menu items decreases and therefore pointing to them will become more

error-prone and slower. Using a mark for selection should behave in a similar

fashion. Precision of marking must increase as the number of items increases.

The type of articulation feedback provided. Feedback helps a user verify that a

selection is being successfully articulated. For example, highlighting a menu item

provides feedback. Supplying an ink-trail is another form of feedback, but is

perhaps less salient. Finally no ink-trail (i.e., just the pen's or cursor's movement)

provides even less feedback.

Chapters 3 and 5 investigate the effect of these factors through empirical

experiments which measure speed and accuracy of selection when using marking

menus. The results from these experiments are then interpreted to produce design

guidelines.

2.4.2. Memory

Another aspect of marking menus concerns human memory. Using a mark to select

from a marking menu involves, first, learning the association between menu item

and mark, and then, recalling the association from memory before articulating the

36



Page 1490 of 1714

mark. There are several ways in which learning and recall can occur. For example,

a user can memorize the association by rote memory (”this mark invokes this

command"), or a user can reconstruct a mental image of the spatial layout of the

menu or process of selection.

There are other factors affecting learning and recall. Differences in the angles

between items must be memorable enough so the angle can be reproduced in

drawing the mark. For example, a user may remember an item was the third from

the top in a very densely packed menu, but the angular difference between items

may be so small that it cannot be remembered precisely enough.

Whatever technique is used to remember the mark/ item association, the exact

limitations of marking menus relative to the limitations of human memory is a very

complex question. Human memory in some situations can be considered almost

infinite. For example, humans are capable of memorizing many complex symbol

systems such as languages. With enough practice, the paths through extremely

complex hierarchies of menus could be memorized and recalled. The question of

how quickly one ”learns the marks” depends on many variables: frequency of use,

presence or absence of mnemonics or metaphors, menu layout, intelligence,

motivation, application, etc.

Determining hard figures for ”learning time" or ”maximum number of items"

relative to human memory is not possible. These measures depend largely on the

user and the application. The intent of this research is to come up with guidelines

that help designers exploit aspects such as frequency of use, metaphors, and menu

layout to help make marking menus easier to learn.

In the case of marking menus note that training time is not as critical as with other

interface techniques because a user ”trains on the job”. A user of marking menus

does not have to spend time training before the selections can be performed. A

novice can use the menus while a forgetful expert may occasionally have to use the

menu. In either case, the user will still be performing ”training on the job".

Do users learn and use marking menus the way the design suggests? The three

modes of interacting with a marking menu (menu, mark—confirmation and mark

modes) are intended to support the transition from problem solving to skilled

behavior in a user. Card, Moran and Newell (1983) suggest that novices exhibit

problem solving behavior (”how do I do this?") and experts exhibit skilled behavior

37



Page 1491 of 1714

(an expert knows how to solve the problem and does it efficiently). Rasmussen

(1984) further refines this notion to include a middle step called rule—based behavior.

lnformally, rule—based behavior can be thought of as the user explicitly thinking ”in

order to do this I must do this". As Figure 2.3 shows, these stages of behavior can be

mapped to the three modes of marking menus. The intention is that these modes are

designed such that use of one mode builds the skills for the next mode and this

assists in making the transition between modes. Do users actually behave this way

with marking menus? If not, what sort of behavior is occurring and why?

We examine these issues of learning and remembering through empirical

experiments (Chapter 3 and 5), and user behavior case studies (Chapter 4). The

empirical experiments reveal learning curves and insights into the sort of menu

structures that assist in learning and remembering menu layout and marks. A case

study of user behavior using marking menus in a real application investigates

learning and behavior patterns when marking menus are used in ”everyday work"

situations.

Behavior '

with marking
menus

Menu mode Mark confirmation Mark mode

Stage.“ Problem solving Rule basedbehavior

Intermediate

 

Expertise

Figure 2.3: The relationship between stages of behavior, zjvpe ofuser, a user's

behavior with a marking menu and expertise.



Page 1492 of 1714

2.4.3. Hierarchic structuring

Another question concerns the effect that the structure of the menu hierarchy has on

user performance. Specifically, how is user performance affected when breadth or

depth is increased? (Depth is the number of levels in a hierarchy of menus; breadth

is the number of items in a menu.)

Most of the research on hierarchic structuring of traditional menu systems focuses

on depth versus breadth. This research can be divided into two types of studies: (1)

theoretical models describing menu structure and user performance, and (2)

empirical studies of menu usage. The theoretical studies concern models that

describe menu search performance based on structure. From these models,

structures that optimize search—time can be produced. The empirical studies

attempt to verify the theoretical models, and estimate search time and error rates.

These research efforts have addressed some basic issues concerning depth versus

breadth.

The navigation problem (getting lost or using an inefficient path to find a menu item)

becomes more likely as depth increases. Snowberry, Parkinson and Sission (1983)

showed that error rates increased from 4% to 34% as menu depth increases from one

to six levels.

Despite the problem of errors, there are several reasons to increase menu depth:

crowding, insulation and funneling. Crowding refers to the problem of not having

enough space on the screen to simultaneously display all the menu items. Insulation

refers to the hiding information in deeper menus to protect a user from information

overload. Funneling refers to the structuring of menus such that the hierarchy helps

a user ”narrow down" the choice and access items more quickly than using a flat
menu structure.

Lee and MacGregor (1985) examine the tradeoff between funneling and response-

execution time. Assuming all items were viewed before a selection is made, they

found that optimal breadth was between 3 to 8 items per menu level depending on

user response time and computer processing response time. Depth was effective

when user response times were fast and computer processing time per option was

slow. If it is assumed that the search terminates on average halfway through the

items, then the optimal breadth is between 3 to 13 items at each level. These results

39



Page 1493 of 1714

should be tempered by the fact that they are based on a theoretical model and not on

empirical user tests.

If meaningful groupings of items are used, Paap and Roske-Hofstrand (1988) show

that optimal breadth at any level tends to be in the range of 16 to 36 and sometimes

as high as 78 for traditional menu systems depending on human and computer

response time. In terms of marking menus, these ranges are well outside the

maximum number of items that can be selected with a mark. This raises the issue

that reduction of breadth in a marking menu may increase the performance of

marking but degrade the efficiency of menu selection in the menu mode.

Menu search time increases monotonically with depth (Landauer & Nachbar, 1985).

This produces a log—linear relationship between search time and number of menu

items. Kiger (1984) also found that performance (time and accuracy) decreased as

depth increased further confirming that depth presents navigation problems to
11S€1'S.

Kiger also included error recovery in his analysis. This increased the variance in

search time from 6 seconds to 20 seconds. Since error recovery occurs in the real

world, this study more realistically characterizes the costs associated with

hierarchical structuring. Kiger tested five types of hierarchical structures varying

the depth from two to six levels and the breadth from two to eight items.

Performance can vary at different levels of the hierarchy. Snowberry, ‘Parkinson and

Sission (1983) report on error rate versus hierarchy level in a six level hierarchy. A

higher proportion of errors occurred at the top two levels of the hierarchy than at

the bottom two despite the fact that every level was a binary choice. The

explanation for this is that higher level items are more abstract and therefore more

subject to misinterpretation. Kiger also found that search times gradually become

faster as a user came closer to the goal item. Other studies have revealed opposite

results—better performance occurred at top levels (Allen, 1983). The explanation

offered for the differences is that users were much more familiar with the top level

items than the lower level items. This lends support to the notion that performance,

structure, and item semantics in menus are intimately related.

Paap and Roske-Hofs trand (1986) point out that users restrict navigation because the

menu structure has semantics or because they have experience with the menu. Both

Card (1982), and McDonald, Stone, & Liebelt (1983) report that effects of

40



Page 1494 of 1714

organization disappear with practice. In other words, with practice, users navigate

directly to the desired menu item. With experience, users move from a state of great

uncertainty to one of total certainty. This lends support to the hypothesis that

marking menu users will use marks with practice.

The previous research on depth versus breadth in menus indicates two important

points relative to marking menus. First, users need to explore to make selections

from menus with which they are not familiar, and the semantics associated with the

structure has an effect on human performance. Marking menus behave somewhat

like traditional menu systems when used in the menu mode (i.e., users can see item

names and navigate through the hierarchy). Therefore, we can assume that the

research findings mentioned above are applicable in menu mode. Second, once

familiar with the menu structure, users of traditional menu systems want to directly

select an item. In other words, users no longer require a menu. This behavior bodes

well with using a mark to select from a marking menu.

Since the previous research in this area is somewhat applicable to the menuing

mode of marking menus, the open research issues concern using mark mode to

access hierarchic marking menus. The main issue is the effect of breadth and depth

on user performance when using marks. Specifically, how deep and how wide can

menus be made before marking becomes too slow or error prone? What sort of

structuring makes mark articulation easier? For example, selection using marks

from a menu with 16 items seems difficult. Selection from a menu with two levels of

four item menus (16 items in total) seems more reasonable. ln Chapter 5, we

examine the effect of breadth and depth on marking by means of an empirical

experiment on human performance using marks to select items from hierarchic

marking menus.

2.4.4. Command parameters and design rationale

Besides the angle of a mark specifying the command verb, other aspects of a mark

can express command parameters. For example, a mark’s starting point, ending

point and size can all contribute to command semantics. The question is how can

these aspects of a mark be exploited in an interface? Issues of this type are examined

in a case study which involved implementing marking menus in a real application

(Chapter 4).



Page 1495 of 1714

Subtle differences in design may have a profound effect on the way in which

marking menus can be used. For example, a design that uses selection upon sector

entry (e. g., the Momenta command compass) must be used differently than a design

that uses selection on pen release (e. g., marking menus). These small design details

can have a large impact on a design's ability to support hierarchic menus,

command/ parameter pairing, and reselection. In section 2.5, we describe this

design space and present a design rationale for marking menus.

2.4.5. Generalizing self-revelation, guidance and rehearsal

Marking menus provide self-revelation, guidance, and rehearsal for the particular

class of mark. Specifically, this is the type of mark that is created as a byproduct in

selecting from directional menus. We referred to this class of marks as ”zig—zag"

marks. A pen-based application may also use other types of marks (e.g., editing

symbols). There are two issues concerning the relationship of marking menus and

other types of marks. First, can marking menu marks be integrated with other types

of marks? Second, can a mechanism be developed to provide self-revelation,

guidance and rehearsal for other types of marks?

A major advantage of marks is the ability to use features of a mark as additional

command parameters. For example, a copy mark not only specifies that a copy

command should be executed but also specifies what should be copied and to where

it should be copied. How self-revelation, guidance and rehearsal can be provided

for this type of information is an open question. Chapter 6 addresses this question.

2.5. DESIGN RATIONALE

This section presents the design rationale behind marking menus. First, the

fundamental goals and the space of the design are defined. Next, an explanation and

taxonomy of design options is presented. Finally, the rationale for choosing a

particular set of options for the design of marking menus is given.

2.5.1. Fundamental design goals

The fundamental design goals of marking menus are:



Page 1496 of 1714

° in the mark mode, speed of selection is emphasized over the self-revealing

features.

° in the menu mode, self-revelation and guidance are emphasized over speed of

selection

0 in menu mode movement must be as close as possible to a rehearsal of marking.

Ultimately, using the menu must facilitate learning the marks.

The last goal dictates that marking must mimic selecting in menu mode.

Furthermore, marks must be distinguishable from one another. This provides a

further goal for the design:

° selection in menu mode must create a unique path which can be reliably

recognized by a computer.

We next examine the types of designs that address these goals.

2.5.2. The design space

In the most general sense, the design space can be described as: ”discriminating

selections from menus by cursor movements". Linear menus, array menus, and

radial menus all fall into this design space. Linear menus are menus where the

items are laid out in sequential linear fashion (top to bottom, or left to right). Array

menus are menus where the items are laid out in both a top to bottom and left to

right fashion. Radial menus are menus where the items are laid out in a circle. In

these types of menus, the position of the cursor ultimately determines the item

selected. A design that does not fit in this class would be menu selection based on

time. In this case, the computer cyclically displays each menu item and the user

presses a button when the desired item appears. This type of menu selection is often

used in interfaces for handicapped users.

In this space, selection is performed relative to a starting point and the amount and

direction of movement determines the selection being made. For example, in a linear

menu, when the cursor is initially placed on the first item in the list, selection is

determined by how far the cursor is moved down the menu.

Within this design space we are only considering designs in which menu selection is

a physical rehearsal of marking. We want each movement path traced by a menu

selection to be unique relative to the other movement paths involved in selecting

43



Page 1497 of 1714

from the menu. This will result in an unambiguous language of movements (or

marks when the cursor leaves an inl<—trail).

Within this design space we can identify several important design issues. These

issues are discrimination, control, selection, display, backing up, and aborting.

2.5.3. Discrimination method

Discrimination method is defined as the type of movement used to discriminate

selections. This can be either angle, length, or a combination of the two. Figure 1.8

shows a menu that uses length, and another menu that uses the combination of

length and angle. Whether humans are better at discrimination by length or by

angle is an open question.9 In our context, discrimination by angle is preferable to

discrimination by length for two reasons: efficiency, and scaling and rotation issues.

Under certain conditions, discrimination by angle (radial menus and angular marks)

(a) discrimination by angle (b) discrimination by length

Figure 2.4: An example where discrimination by angle makes selection faster than

discrimination by length. The lines with arrow heads show the movement needed to

select an item. In the discrimination by angle case, selection of any item requires a

movement ofdistance d. In the discrimination by length case, assuming all items are

accessed with the same frequency and distance is equivalent to movement time, the

average selection time will be 2L, where L is the height ofa menu item. Assuming d

is 0.5L, selection is four timesfaster with discrimination by angle.



Page 1498 of 1714

allow faster selection than discrimination by length (linear menus and linear marks).

First, because all the menu items are equidistant from the center of the menu in a

radial menu, selection time is approximately the same for any item in the menu. In

contrast, with linear menus, the first item can be selected more quickly than the last

item in the menu. Figure 2.4 shows an example which compares a four-item radial

menu and a four item linear menu. As described in Section 2.3.1, Callahan,

Hopkins, Wieser, & Shneiderman (1988) have empirical evidence that eight—item

radial menus are 15% faster and produce 42% fewer errors than eight—item linear

menus. Treating selection from a radial menus as a one dimensional pointing task,

and assuming that the amount of area used by a radial menu and a linear menu are

the same, it can be shown that target size in a radial menu will always be larger than

target size in a linear menu. For example, in Figure 2.4, the target size in the radial

menu is the diagonal of an item. In contrast, target size in the linear menu is the

height of an item. However, as the number of items increase in a radial menu,

pointing to the narrow slices will become more difficult. To compensate for this,

users will have to move farther away from the center, thus slowing their selection

time. Determining the point where performance with a radial menu will degrade to

the performance level of a linear menu is an open problem. Current research on two

dimensional pointing (Mackenzie & Buxton, 1992) only deals with rectangular

targets and therefore cannot be directly applied to radial menu slices.

There are also issues related to mark-based interfaces that make discrimination by

angle preferable. Angular marks are preferred over linear marks because an angular

mark can be scaled without changing its meaning (or, rather, changing the item the

mark selects). In terms of a mark-based interface this means that a user is not

restricted to draw the marks at a prescribed size. For example, a small ”L" shaped

mark would have the same meaning as a large ”L" shaped mark. This is not the case

with marks that are discriminated by length.

However, the meaning of angular marks changes if the mark is rotated. Rotating a

horizontal to the right mark 45 degrees will cause it to be interpreted as a down to-

9 It should be noted that discrimination can be performed at the reading or at the writing level (i.e., perception
versus production of marks). These are significantly different problems. This dissertation examines production
of angular marks. See Westheimer &: McKee (1977) for a discussion of the perception of angle and length.

45



Page 1499 of 1714

the-right mark by the system. In contrast, linear marks are not affected by rotation

(i.e., a bull's eye menu. See Figure 1.8).

Discrimination by angle better reflects the way marks are interpreted in everyday

life. Marks are generally insensitive to scaling but sensitive to rotation. For
/1 IIIexample, a small has the same meaning as a large ”l" but if it is rotated 90

degrees it perhaps takes on the meaning of ”dash”.

There is also the issue of C:D ratio. C2D ratio is defined as the ratio between the

amount of movement of the input device (Control) and the amount of movement

this imparts to the cursor (Display). On a pen-based system, the CD ratio is

constant and one to one because the cursor follows directly under the pen tip. For

example, a one inch movement of the pen corresponds to a 1 inch mark. Therefore,

with pen-based systems, C2D ratio is not an issue. However, with input devices that

do not write directly on the display, (i.e., the mouse), C2D ratio is an issue. A one

inch movement of the mouse may result in different lengths of marks on different

computers if they have different C:D ratios. C:D ratios that vary depending on the

speed of the movement (referred to as cursor acceleration) complicate this situation

even further. A one inch movement made quickly can generate a much longer mark

than the same movement made slowly, for example. Therefore, under these

conditions, discrimination by length may be unreliable. However, discrimination by

angle is not affected by varying C2D ratios. For example, a 45 degree mark is a 45

degree mark whether or not it is one or two inches long. Since it is desirable that our

technique be usable with other input devices besides the pen, discrimination by

angle is a better choice.

2.5.4. Control methods

Selection from a menu with a pointing device is generally accomplished by dragging,

by tapping, or a Combination of the two. We refer to these as the control methods.

When dragging is the control method, pressing the pen down on the screen (”pen-

down") displays the menu; moving the pen while it pressed against the screen

(”dragging”) selects different items; lifting the pen from the screen (”pen-up”)

confirms the selection. When menus are hierarchic, dragging into certain areas may

cause submenus to be displayed for selection. When tapping is the control method,

a pen-down followed quickly by a pen-up (a ”tap") causes the menu to be



Page 1500 of 1714

displayed; a ”tap" over an item confirms its selection. If the menu is hierarchic, the

selection will result in another menu being displayed.

Dragging is preferred because selection in menu mode must be a rehearsal of the

movement needed to make the mark. Marks are created by dragging the pen across

the display surface and therefore dragging is a more accurate rehearsal of marking

than tapping.

Marking menus use an action called press-and-wait to allow the user to switch into

menu mode. We elected to use this action for several reasons. First, it deviates very

slightly from the act of marking (the wait is only 1/3 of second). Thus the principle

of rehearsal is not dramatically violated. For example, an action such as holding

down a special key or making a special movement to invoke the menu would be a

much more dramatic violation of rehearsal. Second, when a user wants to avoid

menu mode, it usually means one wants to articulate the command quickly. Press-

and-wait is easily avoided by quick articulation and avoiding it also makes selection

faster. Third, according to our design goals, we assume that novices are not

concerned with fast selection and therefore a slight delay in selection is a minor

inconvenience. However, as users become more experienced with the menus and

desires faster selection, the delay may also provide incentive to use marks.

There are other reasons why delaying the pop-up of the menu is valuable: it can be

distracting; it can obliterate part of the screen; and it takes time. For a novice user

these may not be problem since displaying the menu is desirable. For expert users,

however, a delayed menu pop-up allows the creation of marks and avoids the

negative side effects of the menu's display.

2.5.5. Selection events: preview, confirm and terminate

There are several events that occur when making a selection. Selection from a menu

generally involves some sort of feedback indicating which item is about to be

selected, for example, an item highlights. We refer to this capability as selection

preview. Selection also involves an action which indicates to the system that it

should actually carry out the selection. We refer to this as selection confirmation.

In the non-hierarchic case, selection confirmation results in the termination of the

entire selection process. In the hierarchic case, selection confirmation will not

necessarily terminate the selection process if the item selected has a sub-menu. We

47


