# Part 1: Fundamentals of Projected-Capacitive Touch Technology

Geoff Walker
Senior Touch Technologist
Intel Corporation



June 1, 2014



File Download: www.walkermobile.com/Touch\_Technologies\_Tutorial\_Latest\_Version.pdf

## **Agenda**

- Introduction
- Basic Principles
- Controllers
- Sensors
- ITO-Replacement Materials
- Modules
- Embedded
- Large-Format
- Stylus
- Software
- Conclusions
- Appendix A: Historical Embedded Touch



## Introduction

- P-Cap History
- ❖ P-Cap Penetration
- P-Cap by Application
- ❖ Touch User-Experience



File Download: www.walkermobile.com/Touch\_Technologies\_Tutorial\_Latest\_Version.pdf



## **P-Cap History**

| Company                                                         | Significance                                                                                                         | Year |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|
| UK Royal Radar                                                  | First published application of transparent                                                                           | 1965 |
| Establishment                                                   | touchscreen (mutual-capacitance p-cap on                                                                             |      |
| (E.A. Johnson)                                                  | CRT air-traffic control terminals)                                                                                   |      |
| CERN (Bent Stumpe)                                              | Second published application of mutual-<br>capacitance p-cap (in the control room of<br>the CERN proton synchrotron) | 1977 |
| Dynapro Thin Films<br>(acquired by 3M Touch<br>Systems in 2000) | First commercialization of mutual-<br>capacitive p-cap (renamed as Near-Field<br>Imaging by 3M)                      | 1995 |
| Zytronic (first license from Ronald Binstead, an                | First commercialization of large-format self-capacitive p-cap;                                                       | 1998 |
| inventor in the UK)                                             | first commercialization of large-format mutual-capacitive p-cap                                                      | 2012 |
| Visual Planet (second license from Ronald Binstead)             | Second commercialization of large-format self-capacitive p-cap                                                       | 2003 |
| Apple                                                           | First use of mutual-capacitive p-cap in a consumer electronics product (the iPhone)                                  | 2007 |



## P-Cap Penetration



Source: DisplaySearch Touch-Panel Market Analysis Reports 2008-2014



## P-Cap Forecast by Application...1 (Consumer)



Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014



# P-Cap Forecast by Application...2 (Commercial)



SID DISPLAY WEEK '14

(intel)

# P-Cap Defines the Standard for Touch User-Experience

- Smartphones and tablets have set the standard for touch in SEVERAL BILLION consumers' minds
  - Multiple simultaneous touches (robust multi-touch)
  - Extremely light touch (zero force)
  - Flush surface ("zero-bezel" or "edge-to-edge")
  - ◆ Excellent optical performance
  - Very smooth & fast scrolling
  - Reliable and durable
  - An integral part of the device user experience





Source: AP / NBC News



## **Basic Principles**

- Self Capacitive
- Mutual Capacitive
- Mutual Capacitive Electrode Patterns



## **Self-Capacitance**

### Capacitance of a <u>single</u> electrode to ground

- Human body capacitance <u>increases</u> the capacitance of the electrode to ground
- In a self-capacitance sensor, each electrode is measured individually



Source: The author

## The Problem with Self-Capacitance

- Touches that are diagonally separated produce two maximums on each axis (real points & ghost points)
  - ◆ Ghost points = False touches positionally related to real touches



# Self-Capacitance and Pinch/Zoom Gestures

Use the direction of movement of the points rather than the ambiguous locations



Source: The author

## Self-Capacitance Electrode Variations



20 measurements



Source: 3M

20 measurements

- → Multiple separate pads in a single layer
- ◆ Each pad is scanned individually

- Rows and columns of electrodes. in two layers
- Row & column electrodes are scanned in sequence

# Self-Capacitance Advantages & Disadvantages

| Self-Capacitive Advantages     | Self-Capacitive Disadvantages           |
|--------------------------------|-----------------------------------------|
| Simpler, lower-cost sensor     | Limited to 1 or 2 touches with ghosting |
| Can be a single layer          | Lower immunity to LCD noise             |
| Long-distance field projection | Lower touch accuracy                    |
| Can be used with active guard  | Harder to maximize SNR                  |
| Fast measurement               |                                         |

#### Where it's used

- ◆ Lower-end smartphones and feature-phones with touch
  - Becoming much less common due to single-layer p-cap
- ◆ In combination with mutual capacitance to increase capability



## **Self-Capacitance for Hover**

- Self-capacitance is used to produce "hover" behavior in some smartphones (in addition to mutual-capacitance for contact-touch location)
  - ◆ Also used for automatically detecting glove vs. fingernail vs. skin, and for dealing with water on the screen







Source: Cypress

# Multi-Touch Self-Capacitance Using Active Guard Concept...1

Guarding is a well-known technique for reducing the effects of electrical current leakage



# Multi-Touch Self-Capacitance Using Active Guard Concept...2

#### Another contender: zRRo



3D single-touch for smartphones



Source: zRRo

3D multi-touch

and tablets

for smartphones

## **Mutual Capacitance**

### Capacitance between two electrodes

- Human body capacitance "steals charge" which <u>decreases</u> the capacitance between the electrodes
- In a mutual-capacitance sensor, each electrode <u>intersection</u> is measured individually



Source: The author



# Rows and columns of electrodes in two layers



 $11 \times 9 = 99$  measurements

#### ❖ In the real world...

 "Bar and stripe", also called "Manhattan" or "Flooded-X" (LCD noise self-shielding)



 $4 \times 10 = 40$  measurements

Source: 3M

Interlocking diamond pattern with ITO in "one layer" with bridges





Source: The author

## More On Mutual Capacitance...1

\* BTW, there isn't just one mutual capacitance...





## More On Mutual Capacitance...2

### **❖** And there are more capacitors than just the C<sub>m</sub>'s...





## More On Mutual Capacitance...3

| Mutual-Capacitive Advantages       | Mutual-Capacitive Disadvantages         |
|------------------------------------|-----------------------------------------|
| 2 or more unambiguous touches      | More complex, higher-cost controller    |
| Higher immunity to LCD noise       | 2 layers (or 1 with bridges) for >3 pts |
| Higher touch accuracy              |                                         |
| More flexibility in pattern design |                                         |
| Easier to maximize SNR             |                                         |

#### Where it's used

- Mid & high-end smartphones, tablets, Ultrabooks, AiOs, commercial products
  - Standalone self-capacitive is becoming increasingly rare in consumer electronics (except for buttons)
- ♦ With "true single-layer" sensors in low-end smartphones



Bars & stripes require bridges too...



Source: Synaptics

#### And so does this unusual diamond pattern...



- **102, 106, 108, 210** 
  - Drive (X) electrodes
- **114 & 202** 
  - Sense (Y) electrodes
- **+** 110
  - Bridges
- 120 & 230
  - Dummy (floating) ITO
- **200 & 206** 
  - Optional dummy ITO
- **+** 212
  - Blank (no ITO)



### Claimed advantages of this particular pattern over traditional interlocking diamond

- ◆ Reduction in sense electrode area reduces LCD noise pickup
- ◆ "Finger projections" (0.1 0.2 mm) increase the perimeter of interaction between drive and sense electrodes, which increases sensitivity
- Linearity is improved due to more uniform coupling across channels
- Floating separators aid in increasing the fringing fields, which increases sensitivity



Holy Grail: True single-layer mutual capacitance sensor



### "Caterpillar" pattern

- Everybody's singlelayer patterns are proprietary
- Requires fine patterning, low sheet resistance & low visibility
- ◆ Benefits: Narrow borders, thin stackups, lower cost, can reliably handle 2-3 touches

#### ELAN's caterpillar pattern





### An alternative true single-layer pattern from ELAN

 This is a very small portion of a much larger sensor



Source: ELAN



## **Controllers**

- Architecture
- Touch Image Processing
- Key Characteristics
- Signal-to-Noise Ratio
- Noise Management
- Innovation Areas
- Suppliers



## Mutual Capacitance Touch System Architecture



- Making X\*Y measurements is OK, but it's better to measure the columns simultaneously
- Controllers can be ganged (operate in a master-slave relationship) for larger screens



## **Touch Image Processing**



Source: Apple Patent Application #2006/0097991

## **Key Controller Characteristics...1**

#### Node count (x channels + y channels)

◆ Given typical electrode spacing of 4.5 to 5 mm, this determines how large a touchscreen the controller can support (w/o ganging)

#### Scan rate

- ◆ Frames per second (fps) faster reduces latency for a better UX
- Windows logo requires 100 fps; Android is unspecified

#### Signal-to-noise ratio (SNR)

More info on upcoming slides

### Operating voltage & current

- ◆ OEMs continue to request lower-power touchscreen systems
- ♦ Win8 "Connected Standby" is a significant influence

#### Internal core (micro/DSP)

◆ Varies from small 8-bit micro to ARM-7 or higher



## **Key Controller Characteristics...2**

#### Number of simultaneous touches

- ◆ Windows Logo requires 5 (except AiO = 2); Android is unspecified
- Market trend is 10 for tablets and notebooks.

#### Support for unintended touches

- ◆ "Palm rejection", "grip suppression", etc.
- ◆ Rarely specified, but critically important
- ◆ For a 22" screen, even 50 touches isn't too many in this regard

### Amount of "tuning" required

◆ Never specified – more info on upcoming slide



## Signal-to-Noise Ratio (SNR)...1

### SNR = Industry-standard performance metric for p-cap touchscreen systems

- However, no standard methodologies exist for measuring, calculating, and reporting SNR
- The two components (signal & noise) depend heavily on the device under test
- Noise from displays (LCDs & OLEDs) and from USB chargers is spiky – it doesn't have a normal (Gaussian) distribution – and spikes create jitter
  - Yet marketers typically specify SNR in the absence of noise, using the RMS noise (standard deviation) of analog-to-digital convertors (ADCs)
  - ♦ With Gaussian noise, you can multiply the RMS noise by 6 to calculate the peak-to-peak noise with 99.7% confidence



## Signal-to-Noise Ratio (SNR)...2

### Typical system (raw ADC data, no digital filters applied)



# Signal-to-Noise Ratio (SNR)...3

#### SNR of system in previous slide

- ◆ C<sub>Finger</sub> = Mean (Finger) Mean (NoFinger)
- ◆ C<sub>Finger</sub> = 1850 813 = 1037
- ◆ C<sub>NS</sub> (Standard Deviation) = 20.6 counts
- ◆ C<sub>NS</sub> (Peak-to-Peak) = Max (NoFinger) Min (NoFinger) +1
- $\bullet$  C<sub>NS</sub> = 900 746 +1 = 155 counts
- ◆ SNR (Peak-to-Peak) = 1037/155 = 6.7
- ◆ SNR (Standard Deviation) = 1037/20.6 = 49.9
- → Highest SNR currently reported by marketer = 70 dB (3,162\*)

<sup>\*</sup> Signal amplitude ratio in dB =  $20\log_{10} (A_1 / A_0)$ 



#### Charger noise is common-mode

- ◆ A smartphone on a desk (not handheld) isn't grounded, so the entire phone moves relative to earth ground as it follows the noise
- A touching finger provides an alternative path to ground, which is equivalent to injecting the noise at the finger location
- The noise signal can be 10X to 100X that of the signal generated by the touching finger



#### Examples of charger noise spectra

◆ Effect of noise is false or no touches, or excessive jitter



Variation in common-mode noise spectra in 2 different chargers at 3 different loads



Source: Cypress

#### Techniques to combat charger noise

- Multiple linear and non-linear filters
- Adaptive selection of the best operating frequency (hopping)
- ◆ Increased drive-electrode voltage
  - Going from 2.7 V to 10 V increases SNR by 4X
- Many proprietary methods

#### Display noise

- ◆ LCD noise is similar across the display; the high correlation of noise signals across all sensor signals allows relatively easy removal
- Very high noise in embedded touch can require synchronization of the touch controller with the LCD driver (TCON)



#### **Controller Innovation Areas**

#### More information in upcoming slides

- Finger-hover
- ◆ Glove-touch
- Pressure sensing
- ◆ Other touch-objects
- Faster response (reduced latency)
- Adaptive behavior
- ◆ Water resistance
- ◆ Software integration
- Automated tuning

#### More information later in this course

◆ Passive and active stylus support



# Finger-Hover...1

- There are two ways of emulating "mouseover" on a p-cap touchscreen
  - ♦ Hover over something to see it change, then touch to select
  - Press lightly on something to see it change, then press harder to select
- The industry is moving towards hover because nobody has been able to implement pressure-sensing in a way that works well and that OEMs are willing to implement
  - ◆ Startup: NextInput
    - Force-sensing using an array of organic transistors where pressure changes the gate current
  - ◆ Startup: zRRo
    - Multi-finger hover detection



# Finger-Hover...2

#### What can you do with hover?

- Enlarge small links when you hover over them
- ◆ Make a passive stylus seem to hover like an active stylus
- Magnify an onscreen-keyboard key as you approach rather than after you've touched it, or even use a "Swipe" keyboard without touching it
- Preview interactive objects such as an array of thumbnails
- ◆ Use as an alternative to standard proximity detection
- ◆ Use multi-finger gestures for more complex operations
- ◆ And more...



#### Glove-Touch

- Can be accomplished by adding self-capacitive to existing mutual-capacitive
  - ◆ Mutual-capacitive provides touch location
  - Self-capacitive provides proximity sensing
  - Glove-touch causes the finger to remain a constant distance above the screen; proximity sensing can detect that without the user manually switching modes

#### Gloves





Source: FLAN





**Pass** 

**Pass** 





**Pass** 

**Pass** 





Pass

Pass







# **Pressure Sensing**

#### Pressure-sensing is an alternative selection method

- ◆ True absolute pressure-sensing in p-cap doesn't exist today
- ◆ Some (including Microsoft) believe that "touch lightly to view choices then press to select" is more intuitive than hover
  - It has never been implemented successfully in a mobile device
    - ➤ Blackberry Storm (2 models!) failed due to terrible implementation
    - > Nissha/Peratech (QTC) collaboration never made it into mass-production
- Multiple startups are working on smartphone pressure-sensing
  - NextInput
    - Uses an array of pressure-sensitive organic transistors under the LCD
  - FloatingTouch
    - Mounts the LCD on pressure-sensing capacitors made using a 3M material



# **Other Touch Objects**

- You will soon be able to touch with a <u>fine-tipped</u> (2 mm) passive stylus, long fingernails, a ballpoint pen, a #2 pencil, and maybe other objects
  - This is being accomplished through higher signal-to-noise (SNR) ratios
    - Much of this improvement may come from enhancing the controller analog front-end in addition to focusing on the digital algorithms
  - ◆ This enhancement to the UX will be the end of "finger-only" p-cap



## **Faster Response**

#### Make touch more natural by reducing latency

- ◆ The shorter the time is between a touch and the response, the better the user feels about the touch system
  - If an object lags behind your finger when you drag it, or ink lags behind a stylus when you're drawing, it doesn't feel real
- ◆ Latency today is typically 75-100 ms; studies have shown that humans need less than 10 ms for comfort
  - Synaptics has addressed the problem by creating a direct path between the touch controller and the TCON to allow limited instant screen updates
  - Tactual Labs (startup) has a method of reducing latency to just a few milliseconds



Source: Gigaom.com



# **Adaptive Behavior: Noise Immunity**

#### Adaptive noise-management by N-Trig





### Water Resistance...1

The basic concept is combining self-capacitive and mutual-capacitive sensing (again)



### Water Resistance...2

#### \* A large amount of water with single-touch





### Water Resistance...3

#### **❖** A large amount of water with two touches





# **Software Integration**

#### Make more resources available to the touch controller

- ◆ Run touch algorithms on the GPU instead of the controller micro
  - Algorithm-writers can take advantage of much larger resources on the host device (MIPS and memory)
    - This can support higher frame-rate, reduced latency, reduced power consumption, easier support of different sensor designs, etc.
  - Algorithmic code is easier and faster to change when it's in a "driver" than when it's in firmware in an ASIC
    - Most touch-controller suppliers never change the firmware in the touch controller once it ships in a device; N-Trig is the sole exception
  - Cost-reduction by elimination of one micro
    - Even more cost reduction for large screens by elimination of slave chips
- ◆ Something similar to this has already been done in NVIDIA's "Direct Touch", but it hasn't been widely used in actual devices



# **Automated Tuning**

- For true "touch everywhere", p-cap has to become like resistive: Just slap it on and you're done
  - ◆ We're far from that point today
  - ◆ Atmel says that the typical first integration of a p-cap touch-panel into a new product takes one full day of tweaking up to 200 individual parameters
  - That badly needs to be automated so that small commercial product-makers have easier access to p-cap



# P-Cap Controller Suppliers

#### In order by estimated 2013 revenue

| Company          | Country        |
|------------------|----------------|
| Broadcom (Apple) | USA            |
| Atmel            | USA            |
| Synaptics        | USA            |
| TI               | USA            |
| FocalTech        | China & Taiwan |
| Melfas           | Korea          |
| Cypress          | USA            |
| Goodix           | China          |
| ELAN             | Taiwan         |
| Mstar            | Taiwan         |
| EETI             | Taiwan         |
| Zinitix          | Korea          |
| SiS              | Taiwan         |
| llitek           | Taiwan         |
| Imagis           | Korea          |
| Sentelic         | Taiwan         |
| Weida            | Taiwan         |
| Sitronix         | Taiwan         |

Top 7 (30%) account for about 85% of total revenue

#### And a few others...

- **◆** AMT
- ◆ Avago
- ◆ Pixcir
- ♦ Silicon Labs
- ◆ STMicro
- ♦ Weltrend



### Sensors

- Substrates
- Structures
- Sheet vs. Piece Method
- More on OGS
- Glass Strengthening
- Surface Treatments
- ITO Index Matching
- Suppliers



## Sensor Substrates...1

#### ❖ ITO film substrates are usually PET¹ or COP²

- ◆ Thickness has dropped from 100 μm to 50 μm
- Lowest practical ITO sheet resistivity is currently ~100 Ω/□

#### ITO glass substrates

- ◆ Standard thickness for GG is 0.33 mm and 0.4 mm
- Some makers have developed a thinning process (like for LCDs) that reduces glass thickness to 0.2 mm
- Corning and AGC have developed 0.1 mm glass but it hasn't been used in volume sensor production yet
- Lowest practical ITO sheet resistivity on glass is ~50 Ω/□

1 = Polyethylene Terephthalate

2 = Cyclic Olefin Polymer



## Sensor Substrates...2

#### ❖ PET film versus glass

|                              | PET                                     | Glass                        |
|------------------------------|-----------------------------------------|------------------------------|
| Glass Transition Temperature | 70°C                                    | 570°C                        |
| Aging Effects                | Yellowing, curling, surface deformation | No known effect              |
| Transparency                 | 85%                                     | =>90%                        |
| Resolution Capability        | 10-30 μm                                | 1 μm                         |
| Stackup                      | Thinner                                 | Thicker                      |
| Weight                       | Lighter                                 | Heavier                      |
| Moisture Resistance          | Good                                    | Excellent                    |
| Lamination Yield             | Excellent                               | Good                         |
| Mechanical Strengthening     | None                                    | Chemical, heat, ion-exchange |
| Cost                         | \$\$ (was < glass)                      | \$                           |



### Sensor structure abbreviations (for reference)

| Symbol | Meaning                                                  |
|--------|----------------------------------------------------------|
| (G)    | Cover-glass (or plastic or sapphire)                     |
| G      | Cover-glass, or sensor-glass with ITO on one side, or    |
|        | plain glass for film lamination                          |
| GG     | Cover-glass + one sensor-glass (without ITO location)    |
| GGG    | Cover-glass + two sheets of sensor-glass (rare)          |
| G#     | # = Number of ITO layers on one side of sensor-glass     |
|        | (G2 = "One Glass Solution" = OGS = SOC = SOL, etc.)      |
| G1F    | F = Sensor-film with ITO on one side, laminated to glass |
| GFF    | FF = Two sensor-films, laminated to glass                |
| GF#    | 1 = Two ITO layers on one side of sensor-film,           |
|        | laminated to glass (also called GF-Single)               |
|        | 2 = One ITO layer on each side of sensor-film,           |
|        | laminated to glass (also called GFxy with metal mesh)    |
| SITO   | ITO on one side of substrate (single-sided);             |
|        | usually includes metal bridges for Y to cross X          |
| DITO   | ITO on both sides of substrate (double-sided)            |
| F1T    | F1 = Single-sided sensor-film on top of CF glass;        |
|        | T = Transmit (drive) electrodes on TFT glass             |
|        | (LG Display's hybrid in-cell/on-cell)                    |

#### Glass-only structures

| Structure Names  | GGG                  | GG or G-SITO     | GG , G-DITO or G1G      | OGS or SOC        |
|------------------|----------------------|------------------|-------------------------|-------------------|
| Comments         | Single ITO layer on  | Single ITO layer | ITO layer on each       | Single ITO layer  |
|                  | each piece of glass; | with bridges     | side of 1 glass; or ITO | with bridges      |
|                  | Obsolete             | 10000            | on one side of 2 glass  | Sec. of           |
| Example Products | None                 | Kindle Fire,     | iPhone-1; iPad-1        | Google Nexus 4/7; |
|                  |                      | B&N Nook;        | (GG); Lenovo AiOs       | Xiaomi 2;         |
|                  |                      | Nokia Lumia 800  | (G1G)                   | Nokia Lumia 920   |

| Cover Glass      | Cover Glass   | Cover Glass      | Cover Glass   |
|------------------|---------------|------------------|---------------|
| Sense Electrodes | Drive & Sense | Sense Electrodes | Drive & Sense |
| Glass            | Glass         | Glass            |               |
| Adhesive         |               | Drive Electrodes |               |
| Drive Electrodes |               |                  |               |
| Glass            |               |                  |               |

- ➤ SITO = Single-sided ITO layer; usually means there's a bridge
- DITO = Double-sided ITO layer (Apple patent)
- OGS = One Glass Solution (sensor on cover-glass)
- SSG = Simple Sensor Glass (OGS without cover-glass shaping & finishing)



#### Glass-and-film structures

| Structure Names  | G1F                 |
|------------------|---------------------|
| Comments         | Single ITO layer on |
|                  | glass; single ITO   |
|                  | layer on film       |
| Example Products | Many Samsung        |
| 908e*            | products in 2013;   |
|                  | Microsoft           |
|                  | Surface RT          |



- Why would a touch-module maker use a sensor structure that requires having both glass- and film-handling equipment?
  - » One reason is that there was a shortage of ITO film in 2013



#### Film-only structures

| Structure Names  | GFF                                                                                | GF2 or DITO-Film                                | GF1                                                                                      | GF Triangle                                                                              |
|------------------|------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Comments         | Bare glass and two<br>single-sided ITO films;<br>performance is better<br>than GF1 | Bare glass and one<br>double-sided<br>ITO film  | Bare glass with true<br>single-layer complex<br>pattern on film<br>(e.g., "caterpillar") | Bare glass with true<br>single-layer triangle<br>pattern on film<br>(e.g., "backgammon") |
| Example Products | Samsung Galaxy Tabs                                                                | Apple iPads; next                               | Many low-end                                                                             | Low-end products with                                                                    |
|                  | and Notes; Google<br>Nexus 10                                                      | iPhone if Apple can't get good yield on in-cell | smartphones, especially in China                                                         | "gesture touch", not<br>multi-touch                                                      |

| Cover Glass      | Cover Glass      | Cover Glass   | Cover Glass      |
|------------------|------------------|---------------|------------------|
| Sense Electrodes | Sense Electrodes | Drive & Sense | Sense Electrodes |
| Film             | Film             | Film          | Film             |
| Adhesive         | Drive Electrodes |               |                  |
| Drive Electrodes |                  |               |                  |
| Film             |                  |               |                  |

- ➤ Single-layer caterpillar pattern is used to support "real" multi-touch with 2-3 touches, typically in a smartphone (that's not enough touches for a tablet)
- ➤ Single-layer backgammon pattern is used to support "gesture touch" on low-end devices, i.e., the ability to detect pairs of moving fingers but not always resolve two stationary touches



# Why do touch-module makers choose one structure over another?

- ◆ Transmissivity
- ◆ Thickness & weight
- Border width due to routing
- Cost & availability of ITO film or deposition
- ◆ Lamination experience & yields
- Existing equipment and/or method experience



# **Sensor Structure by Application**

#### **Smartphones**

| Structure        | Share |
|------------------|-------|
| GFF              | 42%   |
| OGS/G2           | 16%   |
| GF1/Single-Layer | 12%   |
| GG SITO          | 11%   |
| GF Triangle      | 5%    |
| GG DITO          | 5%    |
| G1F              | 4%    |
| PF               | 3%    |
| PFF              | 2%    |

Tablets & Notebooks

| Structure        | Share |
|------------------|-------|
| GFF              | 44%   |
| GF2/DITO Film    | 19%   |
| OGS/G2           | 18%   |
| GG DITO          | 11%   |
| GG SITO          | 3%    |
| G1F              | 2%    |
| GF1/Single-Layer | 1%    |
| SSG              | 1%    |

All-in-Ones

| Structure | Share |
|-----------|-------|
| GG SITO   | 81%   |
| GFF       | 13%   |
| SSG       | 6%    |

Data based on DisplaySearch's "Q1-2014 Quarterly Touch-Panel Market Analysis Report", with adjustments by the author

# Sheet vs. Piece Method...1 (Wintek Sheet Example - OGS)



Source: Wintek



# Sheet vs. Piece Method...2 (Wintek Piece Example - Discrete)



Source: Wintek



### More On OGS

#### One-Glass Solution (OGS)

- ◆ Also called "touch on lens" (TOL), "sensor on cover" (SOC), "direct patterned window" (DPW) and many other names
- Advantages
  - Eliminates a fourth sheet of glass (G-DITO), making the end-product thinner and lighter
  - Competitive weapon against embedded touch from LCD suppliers
- Disadvantages
  - Requires close cooperation with cover-glass makers, or increased vertical integration (preferable)
  - Yields are lower (more complex operations)
  - Bendable cover glass can affect touch performance
  - Harder to shield touchscreen from LCD noise
- Note: There is no generic name (yet) for touch sensors built on the cover-glass without direct ITO deposition ("OGS-type")



# **Glass Strengthening**

#### Heat strengthened

 Less-rigorous version of fully tempered; does not "dice" when broken; 2X as strong as standard glass

#### Fully tempered

◆ Uses heat; requires glass > 3 mm, so not used for consumer touchscreens; glass "dices" when broken (think auto windows); 4X to 6X as strong as standard glass

#### Chemical strengthened (CS)

◆ Uses ion-exchange in a salt bath; best for glass < 3mm; glass does NOT "dice" when broken; 6X to 8X as strong as standard glass

#### High ion-exchange aluminosilicate glass

- ♦ 6X to 8X as strong as standard glass (same as CS glass)
- ◆ Corning Gorilla®, Asahi Dragontrail™, Schott Xensation™



## Sensor Surface Treatments...1

#### Historically most common treatment is anti-glare (AG)

- Changes specular reflection into diffuse reflection
- ◆ Used mostly for commercial & enterprise, not consumer ("glossy")
- ◆ Three methods, roughly equal cost
  - Chemical etching
  - Application of sol-gel containing silica particles
  - Mechanical abrasion
- ◆ Level of anti-glare can be very little to a lot

#### Anti-fingerprint (AF) treatment is rapidly growing

- Many different forms (spray-on, rub-on, sputter, etc.); also called "anti-smudge" (AS)
- Demand is increasing
- ◆ Cost is dropping (currently ~\$8.50/m²)



## **Sensor Surface Treatments...2**

#### Anti-reflection (AR) treatment is still a problem

- ◆ Reduces specular reflection to range of 2% to 0.4%
- ◆ Durability is typically < 1 year</p>
- → It's expensive (currently ~\$34.50/m²)
- ◆ Yet it's really important for outdoor viewing, particularly of consumers' glossy screens (ideal is AF+AR = ~\$43/m²)

#### Other coatings are available but less common

- Anti-corruption (allows permanent Sharpie ink to be wiped off)
- ◆ Anti-microbial/anti-bacterial (AM/AB, for healthcare applications)
- ◆ Hard coating (can be made up to 9H for glass-like anti-scratch)
- Anti-stiction (reduces finger-sticking friction)
- ◆ Anti-crack coating (increases durability at lower cost than Gorilla glass; uses atomic layer deposition [ALD])



# **ITO Refractive-Index Matching**

- Reduce the reflectivity of ITO by compensating for the difference in index of refraction of ITO vs. glass/PET
- Limited to 2 layers on PET; more can be used on glass
  - ◆ Alternating layers of material with low and high refractive index
  - ◆ Layer thicknesses (typically between ¼ and ½ of the wavelength of light) are chosen to produce destructive interference in reflected light, and constructive interference in transmitted light

```
ITO (RI = \sim 2.0)

TiO<sub>2</sub> (RI = 2.48)

SiO<sub>2</sub> (RI = 1.45)

Glass (RI = 1.52)
or PET (RI = 1.65)
```

Source: The author



# **Sensor Suppliers**

# Many touch-module makers manufacture their own sensors

◆ The remainder are made by the following companies, in order by estimated 2013 revenue

| Company               | Country |
|-----------------------|---------|
| Nissha Printing       | Japan   |
| HannsTouch            | Taiwan  |
| Dongwoo Fine Chemical | Korea   |
| Cando                 | Taiwan  |
| Innolux               | Taiwan  |
| CSG                   | China   |
| Token                 | China   |
| CPT                   | Taiwan  |
| DNP                   | Japan   |
| Young Fast            | Taiwan  |
| AimCore               | Taiwan  |

#### And at least one more...

◆ Laibao (China)



## **ITO-Replacement Materials**

- ◆ ITO
- Metal Mesh
- Silver Nanowires
- Carbon Nanotubes
- Conductive Polymers
- Graphene
- Summary



# ITO Replacements...1

#### ❖ Why replace ITO?

- ◆ Costly to pattern & needs high temperature processing
- → Highly reflective (IR = 2.6) & tinted yellow; brittle & inflexible
- NOT because we're going to run out of it!

#### Replacement material objectives

- **♦** Solution processing (no vacuum, no converted LCD fab)
- ◆ Better performance than ITO (transmissivity & resistivity)
- ◆ Lower material & process cost than ITO

#### Five replacement candidates

- ♦ Metal mesh
- Silver nanowires
- Carbon nanotubes
- Conductive polymers
- Graphene



## ITO Replacements...2

- ITO-replacement materials are having a definite market impact – 11% in 2014!
  - ◆ See the latest IHS market report on non-ITO films



◆ Ag halide is simply another method of making a silver mesh, so the mesh total is 85% vs. 15% for nanowire

- ◆ The value is performance and cost
  - Both unit cost and CAPEX

- Metal mesh is shipping in touchscreens, and it's looking very promising!
- Brief history of first-movers
  - ◆ MNTech in Korea was the first to ship metal-mesh at the end of 2012 – but their factory burned down
  - ◆ Atmel (partnered with CIT in the UK) was the second to ship metalmesh (XSense™) for a smartphone and a 7" tablet in 1H-2013
  - FujiFilm started production of their silver-halide-based metal-mesh product in 2Q-2013





#### Metal mesh has significant advantages

- ◆ Patterning via roll-to-roll printing allows both operating and capex cost to be very low – it's going to beat both litho and laser!
  - Electrodes and border connections are printed simultaneously,
     which allows borders as narrow as 3 mm (typically 9 mm with ITO)
- ◆ Sheet resistivity is much lower than ITO (under 10 ohms/square)
  - Reduces p-cap charge time, which allows larger touchscreens
- ◆ Transparency is better than ITO
- ◆ Mesh pattern creates electrical redundancy, which improves yields
- → Highly flexible bend radius typically 4 mm



#### ❖ O-film is the "800-pound gorilla" of metal mesh!

- ◆ Largest touch-module maker in China, #3 globally
- ◆ Like "the TPK of film"; innovative and aggressive

#### New roll-to-roll printing method

"Hybrid printing" or "micro-imprinting"



Cross-section of embedded metal line



PET

Source: O-film





Source: The author



#### O-film technical details

- Additive process with little waste
- ♦ < 2 µm line width
  </p>
- < 10 Ω/□
  </p>
- ◆ Randomized mesh design (one method of eliminating moirés)
- ◆ Top surface of embedded metal line is blackened & sealed
- ◆ Embedded metal reduces haze and eliminates peel-off
- ◆ Producing > 1.5M touch sensors per month (size not stated)

#### O-film's success makes visible a developing aspect of the ITO-replacement business

◆ A vertically-integrated sensor & module-maker is in a much better position to profit from ITO-replacements than a film-only supplier, or (even worse), an ink-only supplier



# Synaptics' Opinion of Sheet Resistivity Requirements



Source: Synaptics (unmodified)



# An Interesting Variation on Silver Mesh...1

#### Cima NanoTech

- ◆ "Self-assembling" silver mesh
- ◆ Starts with an opaque liquid coated on film with standard equipment
- ◆ 30 seconds later it dries into a random-pattern silver mesh



Drying sequence

Source: Cima NanoTech

- → Pros: Simple, standard wet-coating process; no moiré (due to randomness); very good for large-format touch
- Cons: It's just a uniformly-coated film that must be patterned with a laser or other method



# An Interesting Variation on Silver Mesh...2

#### Cima NanoTech continued...



Source: Cima NanoTech



## Silver Nanowires...1

#### Cambrios is the first-mover and clear leader

◆ Other suppliers include Carestream, Blue Nano, Poly IC, etc.





## Silver Nanowires...2

Density determines sheet resistance, independent of coating throughput



Source: Cambrios

### Silver Nanowires...3

#### Advantages

- ♦ High conductivity (10  $\Omega$ / $\Box$  at 94% transmission)
- High transparency
- ◆ Can be spin-coated or slit-coated (printing is under development)
  - TPK + Cambrios + Nissha joint venture
- ◆ Nano-scale, so no visibility or moiré issues
- Shipping in products from phones to all-in-ones
  - Same sensor for different pixel densities (unlike metal-mesh)
- ◆ Established supply chain
  - Film makers: Okura, Hitachi Chemical, Toray, DIC, ShinEtsu, LGE, etc.
  - Module makers: eTurboTouch, LGE, Nissha, CNi, ShinEtsu, etc.

#### Disadvantages

- Increased haze at < 30 Ω/□</p>
- ◆ Cambrios' positioning as an ink supplier (far down the food chain)



# An Interesting Variation on Silver Nano-Particles

#### ClearJet (Israel)

- ◆ Inkjet-printing silver nano-particle drops < 10 µm thick</p>
- ♦ Ink dries from center outward, leaving "coffee rings" ~100 μm
- ◆ 95% transparency, 4 ohms/square resistivity



#### **Carbon Nanotubes**

#### **❖** Carbon NanoBuds<sup>™</sup> by Canatu (Finland)

- ◆ "NanoBud" = nanotubes + bucky-balls (C<sub>60</sub> fullereens)
- Probably the best current bet on CNTs, with moderate-volume production by the end of 2014
  - Better optical performance than silver nanowires
    - Very low reflectivity and lower haze
  - More flexible (bend radius 0.5 mm!)
  - Note that the "NanoBud Reactor" is a multi-step process that includes (1) deposition of CNTs, and (2) laser patterning





Raw Materials (Carbon Gases) Additional Coatings

IN IN

NanoBud<sup>Th</sup> Reactor

Flexible
Transparent
Substrate
IN

OUT

Source: Canatu

# **Conductive Polymers & Graphene**

#### Conductive Polymers (PEDOT:PSS)

- Kodak (partnered with Heraeus) is the leader; AGFA is trailing
- ◆ First shipments of actual sensors began in 1H-2014
- Resistivity isn't much different from ITO, but it's easy to apply (e.g., with screen printing)
  - White-goods manufacturers can use it to make their own touch control panels in appliances (for example)

#### Graphene – it hasn't started in touchscreens yet

- ◆ Like unrolled carbon nanotubes, a one-atom thick sheet
  - Promising strength, transparency, and conductivity, but development is still in its infancy – and there are so many other hot applications for the material than touchscreens!
- ◆ Resistivity, transparency, manufacturability just aren't there yet



# ITO Replacements Summary...1

#### Current realities

- ◆ It's about the ITO in touchscreens, not in LCDs
  - ITO used in LCDs is 1-2% of cost (~\$4 for a 40" display)
  - LCD makers are extremely reluctant to make changes in fabs
- ♦ It's not really about flexible displays, at least not yet...
- ♦ It's not really about the indium supply or cost
- ♦ It's about the <u>processes</u> that ITO requires, not about ITO itself
  - The dominance of patterned-ITO touchscreens (p-cap) over uniform-ITO touchscreens (resistive) has drastically changed the picture
- Mesh and silver nanowires are the main competitors, and mesh seems to be taking a strong lead
- This entire market has come alive exceptionally quickly!



# ITO Replacements Summary...2

#### Predictions

- ◆ Most current capital-intensive, glass (fab)-based, p-cap module suppliers are going to be in a world of hurt because they have to maintain a targeted return on their LARGE invested capital
- Film-based module suppliers (formerly second-class citizens) will become the leaders of the touchscreen industry
- ◆ Five years from now, more than 50% of p-cap sensors will be made using an ITO-replacement material
- ◆ 10 years from now, p-cap fabs will be like many passive-LCD fabs today (fully depreciated and unused)



#### **Modules**

- Routing Traces
- ❖ Tail & ACF
- Cover Glass
- Lamination & Bonding
- Integration Into a Device
- Commercial Markets
- Touch System
- Advantages & Disadvantages
- Suppliers



# **Routing Traces**

#### Sensor electrode connection traces

- Narrow borders are the driving force
- ◆ Glass sensors use photolithography to pattern the connection traces; "double routing" (stacking) makes even narrower borders
- ◆ Film sensors historically used screen-printing for both the electrodes and the connection traces; many film sensor-makers are buying photolithography equipment for the traces



## Tail & ACF

#### FPC with controller and ACF





### Cover Glass...1

#### Cover-glass types

- ◆ Soda-lime
- Chemically strengthened (CS)
- ◆ lon-exchange strengthened (e.g., alumino-silicate)
- Minimum cover-glass thickness (0.4 mm today) is driven by two factors
  - ◆ Durability (resistance to damage, especially with bezel-less design)
  - ◆ Capacitive-sensing limitations when the device is ungrounded



#### Cover Glass...2

#### Cover-glass processing

- Forming
- Decorating
- ◆ Coating (AR, AG, AF, AC, AB…)

#### Plastic cover-glass

- ◆ It hasn't really happened yet
- ◆ Deformability is a big problem (bigger than scratching)



# **Lamination & Bonding**

- Lamination (film to glass, or film to film)
  - ◆ Yield is key
- Bonding (touch module to display)
  - Direct bonding = No air-gap, spaced filled with solid (OCA) or liquid (OCR) adhesive
  - ◆ "Air bonding" = Air-gap (gasket around periphery)



# Integrating P-Cap Into a Device

# After the mechanical & industrial design are done, it's really all about just one thing: "Tuning"

- ◆ Every new product must have the p-cap touch-screen controller "tuned" to account for all the variables in the configuration
  - Basic configuration (e.g., OGS vs. embedded)
  - Sensing pattern
  - Glass thickness
  - Adhesive thickness
  - LCD noise
  - LCD frame mechanics
  - Air-gap or direct-bonded... etc.
- ◆ All controller manufacturers either supply tools (e.g., Synaptics' "Design Studio 5") or they do it themselves for their OEM customers
- ◆ Initial tuning can take more than a full day of engineering time



### **Commercial Markets**

#### Adoption of P-Cap Into Commercial Markets (Forecast)

- ♦ Healthcare Rapid, within FDA-cycle constraints
  - Buying for the future with a very long product life
  - Zero-bezel, multi-touch, light touch are all important
- ◆ Gaming Rapid, within gaming regulation constraints
  - Casinos want to attract the Millennium Generation
  - Multi-touch is very important; zero-bezel is less so
- ◆ Point of Information Moderate
  - Software-driven; zoom gesture could be the key
- ◆ Industrial Slow
  - Multi-touch may be important; zero-bezel & light touch are less so
- ◆ Point of Sales Very slow
  - Zero-bezel is the only driver; "flat-edge resistive" is good enough



## Touch System...1





# **Touch Processing**

- Control sensor electrodes to generate raw data
  - Noise avoidance via multiple techniques: Frequency Shifting, CDM, etc...
- Process data to convert to Image data
- Derive and report data about finger touches (position, width, gestures)



- Tx signals generated
- Rx conversion via A/D
- Noise avoidance

- Collect and Scale Capacitance
- Remove Common Mode Noise
- Gain Compensate
- Apply Thresholds

- Segmentation
- Track Objects
- Classify Objects
- Calculate and Report
   Positions
   So

Source: Synaptics



# Computer Actions: Gesture Processing



#### Tap and Double Tap.

· Light touch action - selects application



#### Flick

 Next Page of Icons, Fast directory search, Next Photo etc. ..



#### Scrolling

 Slider for message forward, volume, contrast, directory search control etc..







#### Proximity detection

LCD screen wake up



#### Multi Finger gestures

- · Pinch for zoom
- 2 Finger rotate (photo rotate)
- Two finger flick
- · Bring up new menu
- Simple games





# **Human in the Loop**



# **Touch System...2**

#### Controller output data

- ◆ Windows (USB): HID packets
- ◆ Android (I2C or SPI): Vendor-defined format

#### OS processing

- ◆ Built-in gesture recognition
- Custom gestures

#### Middleware example

♦ MyScript (formerly Vision Objects) in Samsung Galaxy Notes



# P-Cap Advantages & Disadvantages

| P-Cap Advantages                                                      | P-Cap Disadvantages                                                                |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Unlimited, robust multi-touch (if properly implemented)               | Still relatively high cost, although it is dropping – especially in notebook sizes |
| Extremely light touch (zero pressure)                                 | Touch object must have some amount of capacitance to ground (or active stylus)     |
| Enables flush touch-surface (no bezel)                                | Challenging to integrate ("tuning")                                                |
| Very good optical performance (especially compared with resistive)    | Difficult to scale above 32" with invisibility                                     |
| Extremely smooth & fast scrolling (if properly implemented)           | No absolute pressure-sensing; only relative finger-contact area                    |
| Durable touch surface not affected by scratches and many contaminants |                                                                                    |
| Can be made to work with running water on the surface                 |                                                                                    |
| Can be made to work through extremely thick glass (~20 mm)            |                                                                                    |
| Can be sealed to NEMA-4 or IP65                                       |                                                                                    |

# Module Suppliers (Discrete & Embedded)

| Supplier        | Share |
|-----------------|-------|
| Samsung Display | 13.1% |
| TPK             | 8.9%  |
| O-film          | 7.8%  |
| GIS             | 5.6%  |
| ECW EELY        | 4.8%  |
| Japan Display   | 4.4%  |
| Sharp           | 4.0%  |
| Truly           | 3.0%  |
| Others          | 3.0%  |
| Melfas          | 3.0%  |
| LG Display      | 2.7%  |
| SMAC            | 2.5%  |
| Iljin Display   | 2.3%  |
| ALPS Electric   | 2.1%  |

| Supplier         | Share |
|------------------|-------|
| LG Innotek       | 2.0%  |
| Wintek           | 2.0%  |
| Laibao           | 1.7%  |
| EACH             | 1.6%  |
| Lcetron          | 1.6%  |
| Top Touch        | 1.6%  |
| Mutto Optronics  | 1.5%  |
| ELK              | 1.5%  |
| Synopex          | 1.4%  |
| Young Fast       | 1.3%  |
| Digitech Systems | 1.3%  |
| Panasonic        | 1.1%  |
| Goworld          | 1.1%  |
| JTouch           | 1.0%  |

◆ 35% of suppliers account for 88% of units

Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014



#### **Embedded Touch**

- LCD Architecture Refresher
- Embedded Terminology
- Early Embedded Failures
- On-Cell P-Cap
- ❖ Hybrid In-Cell/On-Cell P-Cap
- ❖ In-Cell P-Cap
- Summary of Sensor Locations
- Integrating the Touch Controller & Display Driver
- Discrete Touch vs. Embedded Touch



### **LCD Architecture Refresher**



### **IPS vs. Other LCD Architectures**



Source: Presentation Technology Reviews