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ware moved from the ungainly and delicate world of vacuum tubes and
paper tape to the reliable and efficient world of transistors and magnetic
storage. The 1950s sawthe development of key technical underpinnings
for widespread. computing: cheap and reliable transistors available in
large quantities, rotating magnetic drum and disk storage, magnetic core
memory, and beginning work in semiconductor packaging andminiatur-
ization, particularly for missiles. In telecommunications, American Tele-
phone and Telegraph (AT&T) introduced nationwide dialing and the first
electronic switching systems at the end of the decade. A fledgling com-
mercial computer industry emerged, led by International Business Ma-
chines UBM) Owhich built its electronic computer capability internally)
and Remington Rand (later Sperry Rand), which purchased Eckert-
Mauchly Computer Corporation in 1950 and Engineering Research Asso-
clates in 1952. Other important participants included Bendix, Burroughs,
General Electric (GE), Honeywell, Philco, Raytheon, and Radio Corpora-
tion of America (RCA).

In computing, the technical cutting edge, however, was usually
pushed forward in governmentfacilities, at government-funded research
centers, or at private contractors doing government work. Government
funding accounted for roughly three-quarters of the total computer field.
A survey performed by the Army Ballistics Research Laboratoryin 1957,
1959, and 1961lists every electronic stored-programcomputer in use in
the country (the very possibility of compiling sucha list says a great deal
about the community of computing at the time). The surveys reveal the
large proportion of machines in use for government purposes, either by
federal contractors or in government facilities.

The Government's Early Role

(From pp. 87-88): Before 1960, governrnent—as a funder and as a
customer—dominated electronic computing. Federal support had no
broad, coherent approach, however, arising somewhat ad hoe in indi-
vidual federal agencies. The period was one of experimentation, both
with the technology itself and with diverse mechanismsfor federal sup-
port. From the panoplyof solutions, distinct successes andfailures can be
discerned, from bothscientific and economic points of view. After 1960,
computing was more prominently recognized as an issue for fecleral
policy. The National Science Foundation and the National Academyof
Sciences issued surveys and reports on thefield.

if government was the main driver for computing research and de-
velopment (R&D) during this period, the main driver for government
was the defense needs of the Cold War. Events such as the explosion of a
Soviet atomic bomb in 1949 and the Korean War in the 1930s heightened
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international tensions and called for critical defense applications, espe-
cially command-and-control and weapons design. Itis worth noting, how-
ever, that suchforces did not exert a strong influence on telecommunica-
tions, ar. area in which most R&D was performed within AT&Tfor civillan
purposes. Long-distance transmission remained analog, althoughdigital
systems were in development at AT&T's Bell Laboratories. Still, the newly
emergent field of semiconductors was largely supported by defense in its
early years. During the 1950s, the Department of Defense (DOD) sup-
ported about 25 percent of transistor research at Bell Laboratories.

However much the Cold War generated computer funding, during
the 1950s dollars andscale remained relatively small comparedto other
fields, such as aerospace applications, missile programs, aril the Navy's
Polaris prograrn (although manvof these programs had significant com-
puting components, especially for operations research and advanced man-
agement techniques). By 1950, government investment in computing
amounted to $15 million te $20 million per year.

All of the major computer companies during the 1950s hadsignificant
components of their R&D supported by government contracts of some
type. At IBM, for example, federal contracts supported more than half of
the R&D and about 35 percent of R&D as late as 1963 (onlyin the late
1960s did this proportionof support trail off significantly, although abso-
lute amounts still increased). The federal government supported projects
and ideas the private sector would not fund, either for national security,
to build up human capital, or to explore the capabilities of a complex,
expensive technology whose long-term impact and use was uncertain.
Manyfederally supported projects put in place prototype hardware on
which researchers could do exploratory work.

Establishment of Organizations

(From pp. 88-95): The successful development projects of World War
I, particularly radar and the atomic bomb,left policvmakers asking how
to maintain the technological momentum in peacetime. Numerous new
government organizations arose, attempting to sustain the creative atmo-
sphere of the famous wartime research projects and to enhance national
leadership in science and technology. Despite Vannevar Bush's efforts to
establish a new national research foundation to support research in the
nation’s universities, political difficulties prevented the bill from passing
until 1950, and the National Science Foundation (NSF) did not become a
significant player in computing until later in that decade. During the 15
years immediately after World War I, research in computing and com-
mitumications was supported by mission agencies of the federal govern-
merit, such as DOD, the Department of Energy (DOE), and NASA. In
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retrospect, it seems that the nation was experimenting withdifferent mocl-
els for supporting this intriguing newtechnology that required a subtle
mix of scientific and engineering skill.

Military Research Offices

Continuity in basic science was provided primarily by the Office of
Naval Research (ONR), created in 1946 explicitly to perpetuate the contri-
butions scientists made to military problems during World War IL In
computing, the agency took a variety of approaches simultaneously.First,
it supported basic intellectual and mathematical work, particularly in
numerical analysis. These projects proved instrumental in establishing a
sound mathematical basis for computer design and computer processing.
Second, ONR supported intellectual infrastructure in the infant fleld of
computing, sponsoring conferences and publications for informationdis-
semination. Merbers of ONR participated in founding the Association
for Computing Machineryin 1947,

ONR’s third approach to computing was to sponsor machine design
arc construction. It ordered a computer for missile testing through the
National Bureau of Standards from Raytheon, which became known as
the Raydac machine, installed in 1932. ONR supported Whirlwind, MIT’s
first digital computer and progenitor of real-time command-and-control
systems. John von Neumann built a machine with support from ONRand
other agencies at Princeton’s Institute for Advanced Study, known as the
DAS camputer. The project produced significant advances in computer
architecture, and the design was widely copied by both government and
industrial organizations.

Other military services created offices on a model similar to that of
ONR. The Air Force Office of Scientific Research was establishedin 1950

to manage U.S. Air Force R&D activities. Similarly, the U.S. Armyestab-
lished the ArmyResearch Office to manage and prornote Army programs
in science and technology.

National Bureau of Standards

Arising out of its role as arbiter of weights and measures, the Na-
tional Bureau of Standards (NBS) had long hadits own laboratories and
technical expertise and had long served as a technical advisor to other
government agencies. In the immediate postwar years, NBS sought to
expand Its advisory role and help U.S. industry develop wartime technol-
ogy for commercial purposes. NBS, through its National Applied Math-
ematics Laboratory, acted as a kind of expert agent for other government
agencies, selecting suppliers and overseeing construction and delivery of
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new computers. For example, NBS contracted for the three initial Univac
machines—the first commercial, electronic, digital, stored-program com-
puters-—-one for the Census Bureau and two for the Air Materiel Com-
mand.

NBS also got into the business of building machines. Whenthe Univac
order was plagued by technical delays, NBS built its own computer in-
house. The Standards Eastern Automatic Computer (SEAC) was built for
the Air Force and dedicated in 1950, the first operational, electronic,
stored-program computer in this country. NBS built a similar machine,
the Standards Western Automatic Computer (SWAC) for the Navy onthe
West Coast. Numerous problems were run on SEAC, andthe computer
also served as a central facility for diffusing expertise in programming to
other government agencies. Despite this significant hardware, however,
NBS’sbid to be a government center for computing expertise ended in the
mid-1950s, Caught up in postwar debates over science policy and a con-
troversy over battery additives, NBS research funding was radically re-
duced, and NBS lost its momentum in the fieid of computing.

 

Atomic Energy Commission

Nuclear weapons design and research have from the beginning pro-
vided impetus to advances in large-scale computation. The first atomic
bombs were designed only with desktop caiculators and punched-card
equipment, but continued work on nuclear weapons provided some of
the earliest applications for the newelectronic machines as they evolved.
The first computation job run on the ENIAC in 1945 was an early calcula-
tion for the hydrogen bomb project “Super.” In the late 1940s, the Los
Alamos National Laboratory built its own computer, MANIAC, based on
von Neumann’s design for the Institute for Advanced Study computer at
Princeton, and the Atomic Energy Cormmission (AEC) funded similar
machines at Argonne National Laboratory and Oak Ridge National Labo-
ratory.

in addition to building their own computers, the AEC laboratories
were significant customers for supercomputers. The demand created by
AEC laboratories for computing power provided companies with an in-
centive to design more powerful computers with new designs. In the
early 1950s, IBM built its 701, the Defense Calculator, partly with the
assurance that Los Alamos and Livermore would each buyat least one. In
1955, the AEC laboratory at Livermore, California, commissioned
Remington Randto design and build the Livermore Automatic Research
Computer (LARC), the first supercomputer. The mere specification for
LARC advanced the state of the art, as the bidding competition required
the use of transistors instead of vacuumtubes. IBM developed improved
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ferrite-core memories and supercomputer designs with funding fromthe
National Security Agency, and designed and built the Stretch
supercomputer for the Los Alamos Scientific Laboratory, beginning it in
1956 and installing it in 1961. Seven more Stretch supercomputers were
built. Half of the Stretch supercomputers sold were used for nuclear
weaponresearch anddesign.

The AEC continued to specify and buy newer and faster
supercomputers, including the Control Data 6600, the STAR 100, and the
Cray 1 (although developed without AEC funds}, practically ensuring a
market for continued advancements. AEC and DOE laboratories also

developed much of the software used in high-performance computing
including operating systems, numerical analysis software, and matrix
evaluation routines. In addition to stimulating R&D in industry, theAEC
laboratories also developed a large talent pool on which the computer
industry and academia could draw. In fact, the head of IBM’s Applied
science Department, Cuthbert Hurd, came directly to IBM in 1949 from
the AEC’s Oak Ridge National Laboratory. Physicists worked on national
security problems with government support providing demand, specifi-
cations, and technical input, as well as dollars, for industry to makesig-
nificant advances in cormputing technology.

Private Organizations

Not all the neworganizations created by the government to support
computing were public. A number of new private organizations also
sprang up with innovative newcharters and government encouragement
that held prospects of initial funding support. In 1956,at the request of the
Air Force, the Massachusetts Institute of Technology (MIT) created Project
Lincoln, now known as the Lincoln. Laboratory, with a broad charter to
study problems in air defense to protect the nation from nuclearattack.
The Lincoln Laboratory then oversawthe construction of the Semi-Auito-
matic Ground Environment (SAGE) air-defense system. In 1946, the Air
Force and Dougias Aircraft created a joint venture, Project RAND, to
study intercontinental warfare. In the following year RAND separated
from Douglas and became the independent, nonprofit RAND Corpora-
ton.

RAND worked only for the Air Force until 1956, when it began to
diversify to other defense and defense-related contractors, such as the
Advanced Research Projects Agency and the Atomic Energy Commis-
sion, and provided, for a time, what one researcher called “in some sense
the world’s largest installation for scientific computing [in 1950].” RAND
specialized in developing computer systems, such as the Johnniac, based
on the IAS computer, which made RANDthe logical source for the pro-
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gramming on SAGE. While working on SAGE, RAND trained hundreds
of programmers, eventually leading to the spin-off of RAND's Systems
Development Division and Systems Training Program into the Systems
Development Corporation. Computers made a major impact on the sys-
tems analysis and game theoretic approaches thatRAND andother simi-
lar think tanks used in attempts to model nuclear and conventional
warfighting strategies.

Engineering Research Associates (RA) represented yet another form
of government support: the private contractor growing out of a single
government agency. With ERA, the Navyeffectively privatizedits war-
time cryptographyorganization and was able to maintain civilian exper-
tise throughthe radical postwar demobilization. ERA was founcledin St.
Paul, Minnesota, in January 1946 by two engineers who had done cryp-
tography for the Navyand their business partners. The Navy movedits
Naval Computing Machine Laboratory from Daytonto St. Paul, and ERA
essentially became the laboratory. ERA did some research, but if prima-
rily worked on task-oriented, cost-plus contracts. As one participant re-
called, “Tt was not a university atmosphere. It was “Build stuff. Make it
work. Howdo you package it? Howdo youfix it? Howdo you document
i?" ERA built a community of engineering skill, which became the
foundation of the Minnesota computerindustry. In 1931, for example, the
company hired Seymour Cray for his first job out of the University of
Minnesota.

As noted earlier, the RAND Corporation had contracted in 1955 to
write much of the software for SAGE owing to its earlier experience in alr
defense and its large pool of programmers. By 1936, the Systems Training
Program of the RAND Corporation, the division assigned to SAGE, was
larger than the rest of the corporation combined, and it spun off into the
nonprofit Systems Development Corporation (SDC). SDCplayed a sig-
nificant role in cornputertraining. As described by one of the participanis,
“Part of 5DC’s nonprofit role was to be a university for programmers.
Hence our policy in those days was not to oppose the recruiting of our
personnel and not to match higher salary offers with an SDC raise.” By
1963, SDC had trained taore than 10,000 employees in the field of cam-
puter systems. Of those, 6,000 had moved to other businesses across the
COuUMry,

Observations

(From pp. 95-96): In retrospect, the 1950s appear to have been a pe-
riod of institutional and technological experimentation. This diversity of
approaches, while it brought the fleld and the industry from virtually
nothing to a tentative stability, was opento criticisms of waste, duplica-
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tion of effort, and ineffectiveness caused byrivalries among organizations
and their funding sources. The Held was also driven largely by the needs
of government agencies, with relatively litde input from computer-ori-
ented scientists at the highest levels. Criticism remained muted during
the decade when the military imperatives of the Cold War seemed to
dominate all others, but one event late in the decade opened the entire
system of federal research support to scrutiny: the launch of Sputnik in
1957. Attacks mounted that the system of R&D needed to be changed, and
they came not only fromthe press and the politicians but also from scien-
tists themselves.

1960-1970: Supporting a Continuing Revolution

(From p. 96): Several significant events occurred to mark a transition
from the infancy of information technology to a period of diffusion and
growth. Most important of these was the launching of Sputnik in 1957,
which sent convulsions through the U.S. science and engineering world
and redoubled efforts to develop newtechnology. President Eisenhower
elevated scientists and engineers to the highest levels of policy making.
Thus was Inaugurated what some have called the golden age of U.S.
research policy. Government support for informationtechnologytook off
in the 1960s and assumedits modern form. The Kennedy administration
brought a spirit of technocratic reform to the Pentagon and the introduc-
tion of systems analysis and computer-based management toall aspects
of running the military. Manyof the visions that set the research agendas
for the following 15 years (and whose influence remains today} were set
in the early years of the decade.

Maturing of a Commercial Industry

(From pp. 96-97): Perhaps most important, the early 1960s can be
defined as the time when the commercial computer industry became sig-
nificant on its own, independent of government funding and procure-
ment. Computerized reservation systems began to proliferate, particu-
larly the IBM/American Airlines SABRE system, based in part on prior
experience with military command-and-control systems (such as SAGE).
The introduction of the IBM System/360 in 1964 solidified computer ap-
plications in business, and the industryitself, as significant components
of the economy.

This newlyvital industry, dominated by “Snow White” (BM) and the
“Seven Dwarfs” (Burroughs, Control Data, GE, Honeywell, NCR, RCA,
andSperry Rand}, came to have several effects on government-supported
R&D. First, and most obvious, some companies (mostly IBM} became
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large enough to conduct their own in-house research. IBM’s ThomasJ.
Watson Research Center was dedicated In 1961. Its director, Emanuel

Piore, was recruited from ONR, and he emphasizedbasic research. Such
laboratories not only expancledthe poolof researchers in computing and
cormmunications but also supplied a source of applied research that al-
lowed or, conversely, pushed federal support to focus increasingly on the
longest-term, riskiest ideas and on problems unique to government. Sec-
ond, the industry became a growing employer of computer professionals,
providing impetus to educational programs at universities and making
computer science and engineering increasinglyattractive career paths to
talented young people.

These years saw turning poirits in telecommunications as well. In
1962, AT&T launched the first active cormmunications satellite, Telstar,

which transmitted the first satellite-relay telephone call and the first live
transatlantic television signal. That same year, a less-noticed but equally
significant event occurred when AT&T installed thefirst commercial digi-
tal-transmission. system. Twenty-four digital speech channels were time
multiplexed onto a repeatered digital transmission line operating at 1.5
megabits per second. In 1963, the first Stored Program Control electronic
switching system was placed into service, inaugurating the use of digital
computer technology for mainstream switching.

The 1960s also saw the emergence of the field called computer sci-
ence, arid several important university departments were founded during
the decade, at Stanford and Carnegie Mellon in 1965 and at MIT in1968.
Hardware platforms had stabilized enough to support a community of
researchers who attacked a commonset of problems. New languages
proliferated, offen initlated by government and buoyed by the needs of
commercial industry. The Navy had sponsored Grace Hopper and others
during the 1950s to develop automatic programming techniques that be-
eame the first compilers. John Backus and a group at IBM developed
FORTRAN, which was distributed to IBM users in 1957. A team led by
fohn McCarthy at MIT (with zovernment support) began implementing
LISP in 1958, and the language became widely used, particularly for arti-
ficial inteligence programming, in the early 1960s. In 1959, the Pentagon
began convening a group of computer experts from government,
academia, and industry to define common. business languages for com-
puters. The group published a specification in 1959, and by 1960 RCA and
Remington Rand Univac had produced the first COBOL cornpilers. By
the beginning of the 1960s, a number of computer languages, standard
across numerous hardware platforms, were beginning to define program-
ming as a task, as a profession, and as a challenging and legitimate subject
of intellectual inquiry.
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The Changing Federal Role

(From pp. 98-107): The forces driving government support changed
during the 1960s. The Cold War remained a paramount concern, but toit
were added the difficult conflict in Vietnam, the Great Society programs,
and the Apollo program, inaugurated by President Kennedy’s 1961 chai-
lenge. Newpolitical goals, newtechnologies, and newmissions provoked
changes in the federal agency population. Among these, two agencies
becameparticularly important in computing: the new AdvancedResearch
Projects Agency and the National Science Foundation.

The Advanced Research Projects Agency3 a

The founding of the Advanced Research Projects Agency (ARPA) in
1958, a direct outgrowth of the Sputnik scare, had immeasurable impact
on computing and communications.ARPA, specifically charged with pre-
venting technological surprises like Sputnik, began conducting long-
range, high-risk research. It was originally conceived as the DOLY’s own
space agency, reporting directly to the Secretary of Defense in order to
avoid interservice rivalry. Space, like computing, did not seem to fit Into
the existing military service structure. ARPA’s independent status riot
only insulated it from established service interests but also tended to
foster radical ideas and keep the agency tuned to basic research ques-
tions: when the agency-supported work became too much like systems
development, it ran the risk of treading on the territory of a specific ser-
vice.

ARPA’s status as the DOD space agencydid not last long. Soon after
NASA’s creation in 1958, ARPA retained essentially no role as a space
agency. ARPA instead focused its energies on ballistic missile defense,
nuclear test detection, propellants, and materials. [t also established a
critical organizational infrastructure and managementstyle: a small, high-
qtiality managerial staff, supported by scientists and engineers on rota-
tion from industry and academia, successfully employing existing DOD
laboratories and contracting procedures (rather than creating its own. re-
searchfacilities) to build solid programs in new, complex fields. ARPA
also emerged as an agency extremely sensitive to the personality and
vision of its director.

ARPA’s decline as a space agency raised questions aboutits role and
character. A newdirector, Jack Ruina, answered the questions in no un-
certain terms by cementing the agency’s reputation as an elite, scientifi-
cally respected institution devoted to basic, long-term research projects.
Ruina, ARPA‘s first scientisi-directer, took office at the same time as

Kermedy and McNamara in 1961, and brought a similar spirit to the
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agency. Ruina decentralized management at ARPA and began the traci-
tion of relying heavily on independent office directors and program man-
agers to run research programs. Ruina also valued scientific andtechnical
merit above immediate relevance to the military. Ruina believed both of
these characteristics—independence and intellectual quality—werecriti-
cal to attracting the best people, both to ARPA as an organization andto
ARPA-sponsored research. Interestingly,ARPA’s managerial success did
not rely on innovative managerial techniques per se (such as the comput-
erized project scheduling typical of the Navy’s Polaris project} but rather
on. the creative use of existing mechanisms such as “no-year money,”
unsolicited proposals, sole-source procurement, and multiyear forward
funding.

ARPA and Information Technology. From the point of view of comput-
ing, the rmost important event at ARPAin the early 1960s, incleed! in all of
ARPA’s history, was the establishment of the Information Processing
Techniques Office,PTO, in 1962. The impetus for this move came from
several directions, Including Kernedy’s call a year earlier for improve-
ments in command-and-control systems to make them “more flexible,
miore selective, more deliberate, better protected, and under ultimate ci-
vilian authority at all times.” Computing as applied to command and
control was the idealARPA program—it had no clearly established ser-
vice affinity; it was “a new area withrelatively little established service
interest ancl entailed far less constraint on ARPA’s freedom of action,”

than more familiar technologies. Ruina established IPTOto be devoted
not fo command and control but to the more fundamental problems in
computing that would, eventually, contribute solutions.

Consistent with his philosophyof strong, independent, andscientific
office managers, Ruina appointed [-C.R. Licklider to head PTO. The
Harvard-trained psychologist came to ARPA in October 1962, primarily
to run its Command and Control Group. Licklider split that group into
two discipline-oriented offices: Behavioral Sciences Office and IPTO.
Licklider had had extensive exposure to the computer research of the time
and had clearly detined his own vision of “rman-cormputer symbiosis,”
which he had published in a landmark paper of 1960 by the same name.
He saw human-computer interaction as the key, not only to command
and control, but also to bringing together the then-clisparate techniques of
electronic computing to form a unified science of computers as tools for
augmenting human thought andcreativity. Licklider formed IPTOinthis
image, working largely independently of any direction from Ruina, who
spent the majority of his time on higher-profile and higher-funded missile
defense issues. Licklider’s timing was opportune: the 1950s had produced
a stable technology of digital computer hardware, and the big systems

Capyright G National Academyof Sciences. All rights reserved.

Page 1010 of 1714



Page 1011 of 1714

Innovation in Information Technalagy
http /Avww. nep.edu/catalog/10798. html

62 INNOVATION IN INFORMATION TECHNOLOGY

projects had shownthat programming these machines was a difficult but
interesting problem in its own right. Nowthe pertinent questions con-
cerned howto use “this tremendous power... for other than purely
numerical scientific calculations.” Licklider not only brought this vision
to IPTO itself, but he also promoted it with missionaryzeal to the research
community at large. Licklider’s and IPTO’s success derived in large part
from their skills at “selling the visior” in addition to “buying the re-
search.”

Another remarkabie feature of IPTO, particularly during the 1960s,
wasits ability to maintain the coherent vision over a long period of time;
the office director was able to handpick his successor. Licklider chose
ivan Sutherland, a dynamic young researcher he had encountered as a
graduate student at MIT and the Lincoln Laboratory, to succeed him in
1964. Sutherland carried on Licklider’s basic ideas and made his own

impact by emphasizing computer graphics. Sutherland's own successor,
Robert Taylor, carne in 1966 frorn a job as a program officer at NASA and
recalled, “I became heartily subscribedto the Licklider vision of interac-
tive computing.” While at IPTO, Taylor emphasized networking. The last
IPTO director of the 1960s, Lawrence Roberts, came, ike Sutherland, from

MIT and Lincoln Laboratory, where he had worked on the early transis-
torized computers and had conducted ARPAresearch in both graphics
and communications.

During the 1960s, ARPA and [PTO had more effect on the science and
technology of computing thanany other single government agency, some-
times raising concern that the research agenda for computing was being
directed by military needs. JPTO’s sheer size, $15 million in 1965, dwarfed
other agencies such as ONR.Still, it is important to note,ONR and ARPA
workedclosely together; ONR wouldoften let srnall contracts to research-
ers andserve as a talent agent for ARPA, which wouldthen fund promis-
ing projects at larger scale. ARPA combined the best features of existing
military research support with a new, lean administrative structure and
innovative managementstyle to fund high-risk projects consistently. The
agency had the freedom to administer large block grants as well as mul-
tiple-year contracts, allowing it the buxury of a long-term vision to foster
technologies, disciplines, and institutions. Further, the national defense
motivation allowed IPTOto concentrate its resources on centers of scien-

tific and engineering excellence (such as MIT, Carnegie Mellon Univer-
sity, and Stanford University) without regard for geographical distribu-
tion questions with which NSF had to be concerned. Such an approach
helped to create university-basedresearch groups with the critical mass
and stability of funding needed to create significant advances in particu-
lar technical areas. But althoughit trained generations of young research-
ers in those areas,ARPA‘s fundingstyledid little to help them pursue the
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sare lines of work at other universities. As an indirect and possibly unin-
tended consequence, the research approaches and tools and the generic
technologies developed under ARPA’s patronage were disseminated
more rapidly and widely, and so came to be applied in new nonmilitary
contexts by the young M.S. and Ph.D. graduates who had been trained in
that environment but could not expect to make their research careers
withinit.

ARPA’s Management Style. To evaluate research proposals, IPTOdid not
employ the peer-review process like NSF, but rather relied on internal
reviews and the discretion of program managers as did ONR. These pro-
gram managers, working under office managers such as Licklider,
Sutherland, Taylor, and Roberts, came to have enormous influence over
their areas of responsibility and became familiar withthe entire field both
personally and intellectually. They had the freedom and the resources to
shape multiple R&D contracts into a larger vision and to stimulate new
areas of inquiry. The education, recruiting, and responsibilities of these
program managers thus became a critical parameter in the character and
success of ARPA programs. ARPA frequently chose people who hadtrain-
ing and research experience in the fields they would fund, and thus who
had insight and opinions on where those Helds should go.

To have such effects, the program managers were given enoughfunds
to let a large enough number of contracts and to shape a coherent research
program, with minimal responsibilities for managing staffs. Program bud-
gets usually required only two levels of approval above the program
manager: the director of IPTOandthe director of ARPA, One IPTO mem-
ber described what he called “the joy of ARPA... . You know,if a pro-
gram manager has a good idea, he has got two people to convince that
that is a good idea before the guy goes to work. He has got the director of
his office and the director of ARPA, and that is it. It is such a short chain
of command.”

Part of ARPA’s philosophyinvolved aiming at radical change rather
than incremental improvement. As Robert Taylor put it, for example,
incremental innovation wouldbe taken care of by the services and their
contractors, but,ARPA‘s aim was “an order of magnitude difference.”
ARPAidentified good ideas and magnified them. This strategy oftenne-
cessitated funding large, group-oriented projects and institutions rather
than individuals. Taylor recalled, “I don’t remember a single case where
we ever funded a single individual’s work. ... The individual researcher
who is just looking for support for his own individual work could[poten-
tially] find many homes to support that work. So we tended not to fund
those, because wefelt that they were already pretty well covered. Instead,
we funded larger groups—teams.” NSP’s peer-review process worked
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well for individual projects, but was not likely to support large, team-
oriented research projects. Nor did it, at this point in history, support
entire institutions and research centers, like the Laboratory for Computer
Science at MIT. IPTO’s style meshed with its emphasis on human-ma-
chine interaction, which it saw as fundamentally a systems problem and
hence fundamentally team oriented. In Taylor’s view, the university re-
ward structure was much more oriented toward individual projects, so
“systems research is most difficult to fund and manage in a university.”
This philosophy was apparent in ARPA’s support of Project MAC, an
MiT-led effort on time-shared computing. ...

ARPA, with its clearly defined mission to support DODtechnology,
could aiso afford to be elitist in a waythat NSP, with a breader charterto
support the country’s scientific research, could not. “ARPA had no com-
mitment, for example, to take geography into consideration when it
funded work.” Another important feature of ARPA’s multiyear contracts
wastheir stability, which provedcritical tor graduate students who could
rely on funding to get them throughtheir Ph.D. program. ARPAalso paid
particular attention to building communities of researchers and dissemi-
nating the results of its research, even beyond traditional publications.
IPTO would hold annual meetings for its contract researchers at which
results would be presented and debated. These meetings proved effective
not only at advancing the research itself but also at providing valuable
feedback for the programmanagers and helping to forge relationships
between researchers in related areas. Similar conferences were convened

for graduate students only, thus building a longer-term community of
researchers. ARPA also put significant effort into getting the results ofits
research programs commercialized so that DOD could benefit from the
development and expansion of a commercial industry for information
technology. ARPA sponsored conferences that brought togetherresearch-
ers and managers from academia ard industry on topics such as time-
sharing, for example.

Muchhas been made of ARPA’s managementstyle, but it would bea
mistake to conclude that management per se provided the keys to the
agency's successes in computing. The key point about the style, in fact,
wasits light touch. Red tape was kept to a minimum, and project propos-
ais were turnedaround quickly, frequently into multiple-year contracts.
Typical DOD research contracts involved close monitoring and careful
adherence to requirements and specifications. ARPA avoided this ap-
proachby hiring technically educated program managers who had con-
tinulng research interests in. the flelds they were managing. This reality
counters the myth that government bureaucrats heavy-handedlyselected
R&D problems and managed the grants and contracts. Especially during
the 1960s and 1970s, program managers and office directors were not
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bureaucrats but were usually academics on a 2-year tour of duty. They
saw ARPA as a pulpit from which to preach their visions, with moneyto
help them realize those visions. The entire system displayed something of
a self-organizing, self-managing nature. As Ivan Sutherland recalled,
“Good research comes from the researchers themselves rather than from

the outside.”

National Science Foundation

While ARPA was focusing on large projects and systems, the Na-
tional Science Foundation played alarge role in legitimizing basic com-
puter science research as an academic discipline and in funding incdi-
vidual researchers at a wide range of institutions. Its programs in
computing have evolvedconsiderablysince its founding in 1950, but have
tended to balance support for research, education, and computing infra-
structure. Although early programs tendedto focus on the use of comput-
ingin other acadernic disciplines, NSF subsequently emergedas the lead-
ing federal funder of basic research in computer science.

NSF was formed before computing became a clearly defined research
area, and it established divisions for chemistry, physics, and biology, but
not computing. NSFdid provide supportfor computinginits early years,
but this support derived more from a desire to promote computer-related
activities in other disciplines than to expand computer science as a disci-
pline, and as such was weighted toward support for computing infra-
structure. For example, NSF poured millions of dollars into university
computing centers so that researchers in other disciplines, such as physics
and chemistry, could have access to computing power. NSF noted that
little computing power was available to researchers at American univer-
sities who were not involved in defense-related research andthat “many
scientists feel strongly that further progress in their feld will be seriously
affected by lack of access to the techniques and facilities of electronic
computation.” As a result, NSF began supporting computing centers at
universities In 1956 and, in 1959, allocated a budget specifically for com-

puter equipment purchases. Recognizing that computing technology was
expensive, became obsolete rapidly, and entailed significant costs for on-
going support, NSF decided that it would, in effect, pay for American
campuses to enter the computer age. In 1962,it established its first office
devoted to computing, the program for Computers and Computing Science
within the Mathematical Sciences Division. By 1970, the Institutional
Computing Services (or Facilities) program had obligated $66 million touniversity computing centers across the country. NSE interided that use
of the newfacilities would result in trained personnel to fulfill increasing
needs for computer proficiency in industry, government, and academia.
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NSFprovicied some funding for computer-related researchinits early
years. Originally, such funding came out of the mathematics division in
the 1950s and grewout of an interest in numerical analysis. By 1955, NSF
beganto fund basic research in computer science theory with Its first
grants for the research of recursion theory and one grant to develop an
analytical computer program under the Mathematical Sciences Program.
Although these projects constituted less than 10 percent of the mathemat-
ics budget, they resulted in significant research.

In 1967, NSF united all the facets of its computing support into a
single office, the Office of Computing Activities (OCA). The new office
incorporated elements from the directorates of mathematics and engi-
neering and fromthe Facilities program, unifying NSF’s research and
infrastructure efforts in computing. It also Incorporated an educational
element that was intended to help meet the radically increasing demand
for instruction in computer science. The OCA was headed by Milton
Rose, the former head of the Mathematical Sciences Section, and reported
directly to the director of NSF.

Originally, the OCA’s main focus was improving university comput-
ing services. In 1967, $11.3 million of the office’s $12.8 million total budget
went toward institutional support. Because not all universities were large
enough to support their own computing centers but would benefit from
access to computing time at other universities, the OCA also began to
support regional networks linking many universities together. In 1968,
the OCAspent $5.3 million, or 18.6 percent of its budget, to provide links
between computers in the same geographic region. In the 1970s, the
computer center projects were canceled, however, in favor of shifting
emphasis toward education and research.

Beginning in 1968, through the Education and Training program, the
OCA began funding the inauguration of university-level computer sci-
ence programs. NSF furcded several conferences and stuclies to develop
computer science curricula. The Education and Training program obli-
gated $12.3 million between 1966 and 1970 for training, curricula devel-
opment, and support of computer-assisted Instruction.

Although the majority of the OCA’s funding was spent on infrastruc-
ture and education, the office also supported a broad range of basic com-
puter science research programs. These included compiler and language
development, theoretical computer science, computation theory, numeri-
cal analysis, and algorithms. The Computer Systerns Design program con-
centrated on computer architecture and systems analysis. Other programs
focused on topics in artificial intelligence, including pattern recognition
and automatic theory proving.
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1970-1990: Retrenching and International Competition

(From p. 107): Despite previous successes, the 1970s opened with
computing at a critical but fragile point. Although produced bya large
and established industry, commercial computers remained the expensive,
relatively esoteric tools of large corporations, research institutions, and
government. Comptiting had not yet made its way to the common tser,
much less the man in the street. This movement would begin in the mid-
1970s with the introduction of the microprocessor and then unfold in the
1980s with even greater drama andforce. If the era before 1960 was one of
experimentation and the 1960s one of consolidation and diffusion in com-
puting, the two decades between 1970 and 1990 were characterized by
explosive growth. Still, this course of events was far from clear in the
early 1970s.

Accomplishing Federal Missions

(From pp. 141-142): In addition te supporting Industrial innovation
and the economic benefits that it brings, federal support for computing
researchhas enabled government agencies to accomplish their missions.
investments in computing research by the Departrnent of Energy (DOE),
the National Aeronautics and Space Administration (NASA), and the
National Institutes of Health (NIM), as well as the Department of Defense
(DOD), are ultimately basedon agency needs. Manyof the missions these
agencies must fulfil depend on computing technologies. DOD, for ex-
ample, has maintained a policy of achieving military superiority over
potential adversaries not through numerical superiority (Le., having more
soidiers) but through better technology, Computing has become a central
part of information gathering, management, and analysis for cormmand-
ers and soldiers alike.

Similarly,DOE andits predecessors would have been unable to sup-
port their mission of designing nuclear weapons without the simulation
capabilities of large supercomputers. Such computers have retained their
value to DOE asits mission has shifted toward stewardship of the nuclear
stockpile in an era of restricted nuclear testing. Its Accelerated Strategic
Computing Initiative builds on DOE’s earlier success by attempting to
support developmentof sirnulation techinologies needed to assess nuclear
weapons, analyze their performance, predict their safety andreliability,
and certify their functionality without testing them. In addition, NASA
could not have accomplished its space exploration or its Earth observa-
tion and monitoring missions without reliable computers for controlling
spacecraft and managing cata. New computing capabilities, including
the World Wide Web, have enabled the National Library of Medicine to
expand access to medical inforrnation and have provided tools for re-
searchers who are sequencing the humangenome.
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EVOLVING THE HIGH PERFORMANCE COMPUTING AND

COMMUNICATIONS INITIATIVE TO SUPPORT THE NATION'S

INFORMATIONINFRASTRUCTURE (1995)

CITATION: Computer Science and Telecommunications Board (CSTB),
National Research Council. 1995. Evolving the High Performance Comput-
ing and Communications Initiative to Support the Nation's Information infra-
structure. National Academy Press, Washington, D.C.

Continued Federal Investment Is Necessary to Sustain Our Lead

(From pp. 23-25): What must be done to sustain the innovation and
growth needed for enhancing the information infrastructure and main-
taining US. leadership in information technology? Rapid and continuing
change in the technology, a 10- to 15-year cycle from idea to commercial
success, and successive waves of new companies are characteristics of the
informationindustrythat point to the need for a stable source of expertise
and some roomfor a long-term approach. Three observations seem perti-
nent,

1. industrial RED cannot replace government investment 1basic research.
Very few companies are able to invest for a payoff that is 10 years away.
Moreover, many advances are broad in their applicability and complex
enough to take several engineering iterations to get right, and so the key
insights become “public” and a single company carmot recoup the re-
search investment. Public investment in research that creates a reservoir

of newideas and trained people is repaid manytimes over by jobs and
taxes in the information industry, more innovation and productivity in
other industries, and Improvements in the daily lives of citizens. This
investmentis essential to maintain U.S. international competitiveness. ...

Because of the long time scales invelved in research, the full effect of
decreasing investment in research may not be evident for a decade, but by
then, it may be too late to reverse an erosion of research capability. Thus,
even though manyprivate-sector organizations that have weighed in on
one er more policy areas relating to the enhancement of information in-
frastructure typically argue for a minimal government role in commer-
cialization, they tend to support a continuing federal presence in relevant
basic research.

2. itis hard to predict which new ideas and approaches will succeed. Over
he years, federal support of computing and communications research in

universities has helped make possible an environment for exploration
and experimentation, leading to a broad range of diverse ideas fromwhich
the marketplace ultimately has selected winners and losers... . {I]t is
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difficult to knowin advance the outcome or final value of a particular line
of inquiry. But the history of development in computing and communica-
tions suggesis that innovation arises from a diversity of ideas and some
freedom to take a long-range view. It is notoriously difficult to place a
specific value on the generation of knowledge and experience, but such
benefits are muchbroader than sales of specific systems.

3. Research and development in information technology cun mutke good use
ofequipment that is 10 years in advanceofcurrent “commodity” practice.When
it is first used for research, such a piece of equipment is often a
supercomputer. By the time that research makes its way to commercial
use, computers of equal power are no longer expensive or rare... .

The large-scale systems problems presented both by massive parallel-
ism and by massive information infrastructure are additional distinguish-
ing characteristics of information systems R&D, because they imply a
need for scale in the research effort itself. In principle, collaborative ef-
forts might help to overcome the problem of attaining critical mass and
scale, yet history suggests that there are relatively few collaborations in
basic research within any industry, and purely industrial (and increas-
ingly industry-university or incustry-government) collaborations tend to
disseminate results more slowly than university-based research.

The government-supportedresearch program ... is small compared
to industrialR&D... but it constitutes a significant portion of the research
component, andit is a critical factor because it supports the exploratory
workthat is difficult for industry to afford, allows the pursuit of ideas
that maylead to success in unexpected ways, and nourishes the industry
of the future, creating jobs and benefits for ourselves and our children.
The industrial R&D investment, though larger in dollars, is different in
nature: it focuses onthe near term—increasinglyso, as noted earlier—and
is thus vulnerable to major opportunity costs. The increasing tencency to
focus on the near term is affecting the bodyof the nation’s overall R&D.
Despite economic studies showing that the United States leads the world
in reaping benefits from basic research, pressures in all sectors appear to

e promoting a shift in universities toward near-term efforts, resulting in
a decline in basic research even as a share of university research. Thus, a
general reduction. in support for basic research appears to be taking place.

It is critical to understand that there are dramatic new opportunities
that still can be developed by fundamental research in information tech-
nology--opportunities on which the nation must capitalize. These in-
clude high-performance systems and applications for science and engi-
neering; high-confidence systems for applications suchas heaith care, law
enforcement, and finance; building blocks for global-scale information
utilities (e.g., electronic payment); interactive environments for applica-
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tions ranging from telemedicine to entertainment; improved tser inter-
faces to allowthe creation and use of ever more sophisticated applications
by ever broadercross sections of the population; and the creation of the
human capital on whichthe next generation’s information Industries will
be based. Fundamental research in computing and communicationsis the
key to unlocking the potential of these newapplications.

How muchfederal research support is proper for the foreseeable fu-
ture and to what aspects of information technology should it be devoted?
Answering this question is part of a larger process of considering howto
reorient overall federal spending on R&D froma context dominated by
national security to one driven more by other economic and social goals.
it is harder to achieve the kind of consensus needed to sustain federal

research programs associated with these goals than it was under the
national security aegis. Nevertheless, the fundamental rationale for fed-
eral programs remains:

That R&D can enhance the nation’s economic weltare is not, by itselt,
sufficient reasonto justify a prominent role for the federal government
in financing it. Economists have developed a further rationale for gov-
ernment subsidies. Their consensus is that most of the benefits of inno-

vation accrue not to innovators but to consumers through products that
are better or less expensive, or both. Because the benefits of technologi-
cal progress are broadly shared, innovators lack the financial incentive
to inmprove technologies as muuch as is socially desirable. Therefore, the
government can improve the performance of the economy by adopting
policies that facilitate and increase investments in research. [Linda R.
Cohen and Roger G. Noll. 1994. “Privatizing Public Research,” Scientific
American 27403): 73]
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WhatIs CSTB?

As a part of the National Research Council, the Computer Science and
Telecommunications Board (CSTR) was established in 1986 to provide
independent advice to the federal government on technical and public
policy issues relating to computing and communications. Composed of
leaders from industry and academia, CSTB conducts studies of critical
national issues and makes recommendations to government, industry,
and academia. CSTB also provides a neutral meeting ground for consid-
eration of complex issues where resolution and action may be premature.
it convenes discussions that bring together principals from the public and
private sectors, assuring consideration of key perspectives. The majority
of CSTB’s work is requested by federal agencies and Congress, consistent
with its National Academies context.

A pioneer In framing and analyzing Internet policy issues, CSTB is
unique in its comprehensive scope and effective, interdisciplinary ap-
praisal of technical, economic, social, and policy issues. Beginning with
early work in computer and communications security, cyber-assurance
and information systems trustworthiness have been a cross-cutting theme
in CSTB’s work. CSTB has producedseveral reports knownasclassics in
the field, and it continues to address these topics as they growin impor-
tance,

To do its work, CSTB draws onsome of the best minds in the country
and from around the world, inviting experts to participate in its projects
as a public service. Studies are conducted by balanced committees with-
out direct financial interests in the topics they are addressing. Those

 

7]
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committees meet, confer electronically, and build analyses throughtheir
deliberations. Additional expertise is tapped in a rigorous process of
review and critique, further enhancing the quality of CSTB reports. By
engaging groups of principals, CSTB gets the facts and insights critical to
assessing key issues.

The mission of CSTB is to

® Respond to requests from the government, nonprofit organizations,
and private industry for advice om computer and telecommiunications
issues andfrom the government for advice on computer and telecommiu-

nications systems planning, utilization, andmodernization;
« Monitor and promote the health of the fields of computer scierice and

telecommumications, with attention to issues of hurnan resources, infor-

mation infrastructure, and societal impacts;
« Initiate and conduct studies involving computer science, technology,

and telecommunications as critical resources; and
® Foster interaction arnongthe disciplines underlying computing and

telecommunications technologies andother fields, at large and within the
National Academies.

CSTB projects address a diverse range of topics affected by the evolu-
tion of information technology. Recently completed reports include
Beyond Productroity: information Technology, Innovation, and Creativity;
Cybersecurity Today and Tomorrow: Pay Now or Pay Later; Youth, Pornogra-
phy, and the internet; Broadband: Bringing Homethe bits; The Digital Ouenvma:

Intellectual Property in the Information Age; IDs—Not That Easy: QuestionsAbout Nationwide identity Systenis; The Duternet Under Crisis Conditions:
Learning from September 11; and IT Roadmap to a Geospatial Future. Por
further information about CSTB reports and active projects, see <http: //
estb.crg>.

Capyright G National Academyof Sciences. All rights reserved.

Page 1021 of 1714



Page 1022 of 1714

HULY 22-26 Volume 19, Mumber 3, 1945

Issues and Techniques inq

Touch-Sensitive Tablet Input
Willlam Buxton

Ralph Hilk
Peter Rowley

Cemputer Gystems Research Inistibate
University of Toronto

Toronto, Qntarie
Canads MSS 1A4

(418) 978-8320

Sbhsiract

Touch-sensitive tablets and their use in hurnan-
computer interaction are disoussed. itis shown
thai such devices have some important properties
that differentiate them from other input devices
(such ag mice and joysticks). The analysis serves
twe purposes: (1) it sheds light on touch tablets,
and {2} it demonstrates how olher devices might be
approached, Three specific distincticus belween
touch tablets and one bution mice are drawn. These
concern the signaling of events, multiple point
sensing and ihe use of ternplates. These distine-
Mons are reinforced, and possible uses of Louch
tablets are ibastrated, in an example application.
Polential enhancernents to teuch tablets and other

inpui devices are discuased, as are some inherent
probleins. The paper concludes with recommenda-
tions for future work.

OR Categories and Subjeet Descriptors: 13.1 [Come
puter Graphics]: Hardware Architecture: Input Dev-
ices. 1.5.6 [Computer Graphies |: Methodolegy and
Techniques: Devices Independence, Erponomics,
Interaction Techniques,

General Terris: Design, HumanFactors.

Additional Keywords and Phrases: touch sensitive
input devices.

Permission to copy without fee all ar part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the aile of the
publication and its date appear, and notice is giver that copying i by
permission of the Association for Computing Machinery. Ta copy
otherwise, or to republish, requires a fee andar specific permission,

© 1985 ACM 0-89791-166-O/85/007/02 15 $00.75

Page 1022 of 1714

i. introduction

Increasingly, research in human-computer boterac-
tion is locusing on problems of input [Foley, Wallace
& Chan 1984; Guxton 1953; Buyion 1985). Much of
thig attention is directed towards input Loshnalo-
gies. The ubiquitous Sholes keyhoard is being
replaced and/or complemented by alternative tech-
nologies. For example, a major focus of the market-
ing strategy for Lwo recent persanal computers, the
Apple Macintosh and Hewleti-Packard 150, has been
on the input devices that they employ (the rouse
and touch-sereen, respactively}.

Now that the range of available devices ig expand:
ing, how does one select the best technology for a
partioular applicalion? And ones a Lechnology is
chosen, how can it be used most effectively? These
questions are important, for ae Buxton [1983] has
argued, lhe wavs in which the user physically
inberacts with an input device have a marked effect
on the type of user Interface thal can be effectively
supported.

in the general sense, the objective of this paper is
Lo help in the selection process and assist in
effective age of e specific class al devices. Gur
approach is Lo investigate a specific lass af dev-
ices: Louch-sersitive tablets. We will identify touch
tablets, emumerate their important properties, and
compare them to a more common input device, the
mouse. We then go on Lo give examples of transac-
tions where touch tablets can be used effectively.
There are two intended benefiis for this approach.
Hirat, the reader will acquire an understanding of
Louch tablet issues. Second, the reader will have a
conerete example of how the technology can be
investigated, and can utilize the approachas a
tInodel for investigating olher classes of devices.

2. Touch-Sensitive Tablets

A touch-sensitive lablel (Louch tabiel for short) iso
flat aurface, usually mounted horizontally or nearly
herigontally, that can sense the location of a finger
pressing onit. That is, itis 4 tablet that can sense
that itis being touched, and where it is being

$55 oeuw



Page 1023 of 1714

 
touched. Touch tablets can vary greatly in size,
frer afewinches on a side ta several feet on a side.
The most critical requirement is that the user is
not required point with some manually held device
such as a siylus or pucs,

What we have described in the previous paragraph
is astmagle touch tablet. Only one point of contact
is sensed, and then only in a binary, iouch/no touch,
rnode. One way to extend the potential of o sirnple
touchtablet is te sense the degree, or pressure, of
contact. Anather is Le sense muulliple points of con-
tact. In this case, the location (and possibly pres-
sure} of several points of contact would be
reported. Most tablets currently on the market are
of the ‘simuple” variety. However, Lea, Buxton aud
Srnith [1985], and NakaLani [private communica
tion] have developed prototypes of multi-touch,
muli-pressure sensing tablets.

We wish to stress that we will restrict our discus-
sion of touch techaolagies Lo Louch lablels, which
ean and should be used in ways Lhat are diferent
from touch screans. Readers interested in teuch-
sergen Lechuology are referred ta Herot & Weinsap-
fel [1978], Nakalani & Rohrlich [1984] and Minsky
[1984]. We acknowledge that a flat touch screen
rogunted horizontally is a touch tablet as defined
above. This is mot a contradiction, ag a touch screen
has exactly the properties of Louch tablets we
desoribe below, as iong as there is no altempt to
raaunt a display below Cor behind) it or to make it
the wenter of the user's visual focus.

Sorne sources of touch tablets are ligicd in Appen-
dix A.

3. Properties of Touch-Sengitive Tabicis

Asking “Which input device is best?’ is much like
asking “How long should a piece of string be?’ The
answer to both is: it depends on what youwantto
ese itfor. With inpul devices, however, we are lim-
ited in our understanding of the relalionship
between device properties and the demands of a
specific application. We will investigate touch
tablets from the perspective of improving our
understanding af this relationship. Our claim is
thet other technologies warrant similar, or ever
more detailed, investigation.

Touch tablets have a muraber of properties that dia-
tinguish them from olher devices:

* They have noe mechanical interroediate device
fsuch as stylus or puck}, Hence theyare useful
in haslile environments (e.2., classrooms, public
access terminals) where such intermediate dev-
ices can get lost, stolen, ar damaged.

» Having na puck to slide or get bumped, the track-
ing symbol “slays put” once placed, thus making
therm well suited for pointing tasks in environ-
ments subject to vibration or motion (ag., fac-
tories, cockpits}.

» They present no mechanical or kinesthetic res-
trictions on our ahilily to indicate more than one
point ati. time. That is, we can use two hands or
tnore than one finger simultaneously on a single
tablet. (Remember, we can manually camtral at
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miogt two mice at a time: ane in each hand. Given

that we have ten fingers, it is conceivable that we
may wish to indicale more than twe points simul-
taneously. An examyple of such an application
appears below}

e Unlike jaystioks and trackhalls, they have a very
low profile and can be integrated into other
equipment such as desks and low-profile key-
boards fe.g., the Key Tronie Touch Pad, see
Appendix A}. This has potential benefita in port-
able systeras, and, according te the Keystroke
model of Card, Newell and Moran [1980], reduces
homing time froxrthe keyboard ta the pointing
device.

« They can be molded ints one-piece constructions
thus eliminating cracks and grooves where dirt
tan collect. This makes them well suited for very
clean environments (eg. hospiisls) or very dirty
ones (eg., factories).

s Their simple constraction, wilh mo maving parts,
leads Lo reliable and long-lived operation, making
thers suitable for environments where they will
be subjected to intense use or where reliability
is critical.

They do, of course, have sore inherent disadvan-
tages, which will be discussed at the close of the
paper,

In the next section we will make three important
distinelions belween touch tableis and mice. These
are!

® Mice and touch tablets vary inthe number and
types of events that they can tranamit. The
difference is especially pronounced when com-
paring to simple touch tablets.

* TJouch tablets can te made that can sease rmnulti-

ple peinis of contact. There is ne analogous pro-
perty for mice.

s "The surface of a tablet can be parlilioned inte
regions representing a oallection of independent
“virbaal’ devices. This is analogous Lo Lhe parli-
ticoing of a screen inte “windows" cr virtual
displays. Mice, and other devices that transrait
“relelive change" information, do not lend Lherm-
selves Lo Lhis rnede of interaction without con-

sumiag display real estate for visual feedback.
Wilh conventional tablets and teuch tablets,
graphical, physical or virtual Lernplates can be
placed over the input device to delimdt regions.
This allows valuable screen realestate to be
preserved, Physical templates. when combined
with tauch sensing, permit the operator to sense
the regions without diverting the eyes from the
primary diaplay during visually demanding tasks,

After hese properties are discussed, a simple
finger painting prograns is used to ilustrate them
inthe context of a concrete example, We wish to
stress thal we da uot pretend that the program
represents a viable paint program or an optimal
interface. IL is siraply a vehicle ta illustrate a
variety of transactions in an easily understandable
eontert.
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Finally, we discuss improvements that mustbe
made to current louch tablet technology, many of
which we have dernonstrated in prototype form.
Ales, we suggest potential improvements to other
devices, motivated by our experience wilh touch
technology.

4. Three Distinctions Between Touch Tablets and
Bice!

The distinctions we make in this section have to do
with suitability of devices fer cerLain tasks or use
in certain configurations. We are only interested in
showing that there are some uses for which touch
tablets are mot suitable, but other devices are, and
vice versa. We make no quantitative claims or com-
parisons regarding performance.

Sigmahing

Consider a rubber-band line drawing task with a one
button mouse. The user wouldfirst position the
tracking symbol at ihe desired starting point of the
line by moving the mouse with the button released.
The button would then be depressed, to signal the
start of the line, and the user would manipulate the
line by moving the mouse until the desired length
and orientalion was achieved. The completion of the
line could then be signaled by releasing the button?

Figure lis a state diagram thal represents this
interface. Notice that the button press and release
are used to signal the beginning and end of the
rubber-band drawing task. Also note that in states
{and 2 beth motion and signaling (by pressing or
releasing the buiion, as appropriate) are possible.

release
fanchor_ end}EN,
ee mm 

 
 

press kutton
{start rubbe~

banding)

Starting point end gaint

state I - button upatate @ ~ button don

  
Figure 1. State diagram for rubber-banding with

a one-button mouse.

Now consider a simple touch tablet. It can be used
te position the tracking symbol at the starting
point of the line, but it cannot generate the signal
needed to initiate rubber-banding. Figure 2is a
state diagrarn representation of the capabilities of
asimple touch tablel. fn state 0, there is no contact
with the tablei.° in this state only one action is pos-

1 Aihough we are comparing touch tablets Lo ane but-
ton sice throughout this section, most of Lhe comments
apply equally fo tablets with one-button pucks or (with
some caveats} tablets with styli.

®% This assumes that the interface is designed so that
the button is held down during drawing. Alternatively,
the button can be released during drawing, and pressed
again, to signe the completion of the ne.

2 We use state 0 to represent a state in which no loca-
tien information is transmitted. There no analogous
state for mice, and hence ne state O in the diagrams fer
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sible: the user maytouch the tablet. This causes a
change to state i. Ingetatle 1, the user is pressing on
the tablet, and as a consequence position reports
are gent toe the host. There is no way to signal a
change ta some other state, other than to release
{assuming the exclusion of ternporal or spatial cues,
which tend to be clumsy and difficult tolearn). This
returns the system to state G, This signal could not
be used to initiate rubber-banding, as it could also
mean that the user is pausing to think, or wishes io
initiate some other activity.

~~ release
aae

{ g }AL

ee,

 
state 0 = no contact a
state 1 - contest we"

Figure 2. Diagramfor showing states af
simple Louch-Labiet.

This inability to signal while pointing is a severe
limitation with current touch tablets, that is,
tablets that da not report pressure in addition to
location. {itis also a property of trackballs, and
joysticks without “fire” buttons), Ik renders them
unsuitable for use in many common interaction
techniques for which rnice are well adapted (¢.g.,
selecting and dragging objects into position,
rubber-band line drawing, and pop-up menu selec~
tion}: techniques that are especially characteristic
af interfaces based on Mrect Manipulation [Shneid-
erman 19831,

One selution to the probiem is to use a separate
Punetion button on the keyboard. However, this
usually means two-handed input where one could
do, or, awkward co-ordination in controlling the
button and pointing device with a single hand. An
alternative solution when using a touch tablet is to
provide some level of pressure sensing. For exam-
ple, U the tablet could report two levels of contact
pressure (i.e. hard and soft), then the transition
fromsoft to hard pressure, and vice versa, could be
used lor signaling. In effect, pressing hard is
equivatent to pressing the button on the mouse. The
state diagram showing the rubber-band line draw-
ing Lask with this form of touch tablet is shown in
Figure a4

As an agide, using this pressure sensing scheme
would permii us to select options froma memu, ox

mice. With ecanventional tablets, this corresponds te
“out of range’ state.
4i this point the alert reader will wonder about difficulty
in distinguishing between hard and soft pressure, and
friction (especially when pressing hard). Taking the last
first, hard is a relative term. In practice friction need
not be a problem (see Inherent Probiems, below}.

4One would conjecture thal in the absence of button
clicks or other feedback, pressure would be difleult ta
regulate accurately, We have found bwe levels of pres-
sure to be easily distinguished, bul this is a ripe aree for
research. Fer example, Stu Card [private communica-
tion] hes suggested that the threshold belween saft and
hard should be reduced (become “'softer") while hard
pressure is being maintained. This suggestion, and oth
ers, warrant formal experimentation.

2t7



Page 1025 of 1714

 

 
Right

release fanchox. ord)
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Figure 3. State diagram for rubber-banding with
pressure sensing touch tablet.

activate light buttons by positioning the tracking
aymbol over the itern and “pushing”. This is corn-
sistent with the gesiure used with a mouse, and the
model of “pushing” bultens. With current simple
Louch tablets, one does just the oppasite: position
over the itern and then Hft off, or “pull” the button,

From the perspective of the signals sent to the host
computer, this touch tablet is capable of duplicat-
ing the behaviour of a one-button mouse, This is net
to say that these devises are equivalent or inter-
changeable. They are not. They are physically and
kinesthetically very different, and should be used in
ways thal make use of the unique properties of
each. Furthermore, such a touch tablet can gen-
erate one pair of signals that the one-button mouse
eamnol — specifically, press and release (transition
Lo and from state 0 in the above diagrarns). These
signals (which are alse available with many conven:
tiomal tablets} are very useful in implementing cer-
tain types of transactions, such as those based on
character recognition.

An obvious extension of the pressures sensing con-
eeptis to allow continuous pressure sensing. That
is, pressure sensing where some large number of
different levels of pressure rnay be reported. This
extends the eapabllityof the touch tablet beyond
that of a traditional one button mouse. An example
of the use of this feature is presented below.

Mullinle Position Sensing

With a traditional mouse or tablet, only one position
can he reported per device. Qne can imagine using
two mice or possibly two transducers on a tablet,
but this inersases costs, and lwois the practical
Hmit on the number of mice or tablets that ean be

operated by asingle user (without using feet}. How-
ever, while we have only two hands, we have ten
fingers. As playing the piano Dlustrates, there are
some contexts where we might want to use several,
or even all of them, at once.

Touch tablets need not restrict us imthis regard.
Given a large enough surface of the appropriate
Lechnology, one could use all fingers of both hands
simultaneously, thus providing ten separate units
of input. Clearly, this is well beyond the demands af
many applications and the capacity of rnany people,
however, Unere sre exceptions. Exanaples include
chording on bultons or switches, operating a set of
slide potenLiorneters, and simple key rall-ever when
touch typing. Qne example (using a set of slide
potentiometers) will be illustrated below.

218
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Multiple Virtual Devices and Templates

The power of modern graphics displays has been
enhanced by partitioning one physical dieplay inte a
number of virtual displays. To support this, display
window managers have been developed. We claim
(see Brown, Buxton and Murtagh [1985)) that similar
benefits can te gained by developing an input win-
dow manager that permits a single physical input
devices to be partitioned into 4 number of virtual
input devices. Furthermore, we claim that multi-
touch tablets are well suiled to supporting this
approach.

Figure 4a shows a thick cardboard sheet thal has
holes cut in specific places. When it is placed over a
touch tablel as shown in Figure 4b, the user is res-
ricted to touching only certain parts of the tablet.

More importantly, the user can feel the parts that
are touchabie, and their shape. Each of the ‘touch-
able” regions represents a separate virtual devices.
The distinction between this template andiradi-
tional Lablet mounted menus (such as seer in many
CAD syslems) is important.

Traditionally, the options have been:

a} Save display real estate by mounting the menu
on the tablet surface. The cest of this option is
eye diversion from the display ta the tablet, the
inability to ‘touch type”, and Lime consuming
menn changes.

b) Avoid eye diversion by placing the menus on the
display. This also make it easier to change
menus, bul still does not allow “touch typing”,
and consumes display space,

 

Touch tablets allow a new option:

o} Save display apace and avoid eye diversion by
using templates that can be fell, and hence, allow
“touch typing’ ona variely of virtual inpul dev~
jiees. The cost of this option is time consuming
menu (Lemplate) changes.

It must be remembered that for each of these

options, thers is an application for which it is best.
We have contributed a new option, which makes pas-
sible mew interfaces. The new possibililies include
more elaborate virtual devices because the

improved kinesthetic feedback allows the user to
concentrate on providing input, instead of staying
in the assigned region. We will also shew (below)
that ils main cost (lime consuming menu changes}
can be reduced in some applications by eliminating
the templates.

5. Examples of Transactions Where Touch Tablets
Can Be Used Bifectively
In order to reinforce the distinctions discussed in

the previous section, and to demonstrate the use of
Louch Lableis, we will mow work Lhrough some exam-
ples based on a toy paint system. We wish to stress
again that we make no claims about the qualily of
the exaniple as a paint system. A paint system is &
common and easily understood application, and
thus, we have chosen to use ii simply as a vehicle
for discussing interaction techniques that use
touch tablets,
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Figure 4b. Sample template in use.

The exarmple paint pregram allows the creation of
simnple fuger paintings. The layout of the main
display for the program is ¢hown in Figure 5. On the
left is a large drawing area where the user can draw
simple free-hand figures. On the right is a set of
menu iterns. When the lowest item is selected, the
user enters a colour mixing mode. in switching ta
this mode, the user is presented with a different
display that is discussed below. The remaining
menu items are “paint pots”. They are used te
select the colour that the user will be painting with.

in eachof the following versions of the program, the
inpul requirements are slightly different. In all
cases an 8cm x &cm touch tablet is used (Figure 6},
but the pressure sensing requirements vary. These
are noted in each derneonstration.

5.1. Painting Without. Pressure Sensing

This version of the paint programillustrates the
limitation of having ne pressure sensing. Consider
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Figure & Touch tablet used in demonstrations.

the paint program described above, where the anly
input device is a touch tablet without pressure
sensing. Menu selections could be made by pressing
down somewhere in the menu area, moving the
Lracking symbol to the desired menu itemand then
selecting by releasing. To paint, the user would
simply press down in the drawing areca and move
(see Figure 7 for a representation of the signals
used for painting with this pregram).

xelease
{stop painting}

SONE aa

of YL)S Bma

i,
press

(start painting}

nove while
Painting

Figure 7. State diagram for drawing portion
of siraple paint program.
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There are several problems with this prograra. The
most obvious is in trying to do detailed drawings.
The user does not know where the paint will appear
untilit appears. This is Hkely to be too late. Some
form of feedback, that shows the user where the
brush is, wilhout painting, is needed. Unfor-
tunately, this camnot be done with this input device,
as itis not possible to signal the change from track-
ing Lo painting and vice versa.

The simplest solution io this problem is to use a
button (e.g., a function key on the keyboard) to sig-
nal state changes. The problem wilh this solution is
the need to use two hands on two different devices
to do one task. This is awkward and requires prac-
tice to develop the co-ordination needed to make
small rapid strokes in the painting. Itis also
inefficienl inils use of two hands where one could

{and normally should} de.

Alternatively, approaches using mulliple taps or
timing cues for signalling could be tried, however,
we have found that these invariably lead to other
problems. It is better to find a direct solution using
the properlies of the device itself.

§.2. Painting with Twe Levels of Pressure

This version of the pragram uses atablel that
reporis twe levels of contact pressure to provide a
galisfactory solution to Lhe signaling problem. A
low pressure level (a Hight touch by the user) is used
for general tracking. 4 heavier Louch is used to
make menu selections, or to enable painting (see
Figure &for the tablet states used to control paint-
ing with this program). The two levels of contact
pressure allow us to make a siewple bul practical
one finger paint pragram.

aatabease aajee we
OTE SDa oFekMe — «

press { } hard { }ed \ewe
nove {ho rove while

starting point) painting

Figure & State diagram for painting portion of
simple paint prograrn using pressure

sensing touch tablet.

This version is very much like using the one bulton
mouse on the Apple Macintosh with MacPaint [Willl-
ams, 1984]. Thus, a simple touch tablet is not very
useful, bul one that reports two levels of pressure
is similar in power (but not feel or applicability} to
aone button mouse®

5.9. Painting with Continuous Pressure Sensing

In the previous dernonstrations, we have only imple-
mented interaction Lechriiques that are common
using existing technology. We now introduce a tech~
nique that provides functionality beyond that
obtainable using most conventional input technolo-

§ Also, there is the prablemof friction, te be discussed
below under ‘inherent Preblema’’.

220
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gies.

In this technique, we utilize a tablet capable of
sensing a continuous range of touch pressure. With
this additional signal, the user can control both the
width of the paint trail and its path, using only one
finger. The new signal, pressure, is used to contro}
width. This is a technique that cannot be used with
any hiouse that we are aware of, and to our
knowledge, is available on only one conventional
tablet (the GTCO Dipipad with pressure pen [GTCO
q9ee]}.

We have found thal using current pressure sensing
tablets, the user can accurately supply two to three
bits of pressure inforrnation, afler aboul 15
minutes practice. This is sufficient for simple doo-
ding and many other applications, but impraved
pressure resolution is requiredfor high quality
painting.

5.4. “Wireiows”on the Tablet: Colour Selection

We now dernonslrate how the surface of the touch
tablet can be dynamicadly partilioned inte “win-
dows’ onte virtual input devices. We use the same
basic techniques as discussed under templates
{above), but show how to use them without tem-
qilates. We do this in the context of a colour selec-
tion rnadule for our paint program. This module
introduces a new display, shown in Figure &.

 
Figure 8. Colourmixing display.

In this display, the large left side consists of a
colour patch surrounded by a neutral grey border.
This is the pateh of colour the user is working on.
The right side of the display coniainms three bar
graphs with two light buttons underneath. The pri-
tnary function of the bar graphs is to provide faed-
back, representing relative proportions of red,
preen and blue in the colour pateh. Along with the
light buttens below, they also serve to remind the
user of the current layout of the touch tablet.

in this rocdule, the touch tablet is used as a “virtual
operating console’. Its layout is shown {io scale) in
Figure 10. There are 3 valuators {corresponding te
the bar graphs on the screen} used to contro}
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eoleur, and two buitons: one, om the right, to bring
Up & pop-up menu used to select the colour te be
modified, and another, on the left, to exit.

 

 
be. om x 8 omtablet suxsface

2 push buttons

Figure 10. Layout of virtual devices on Louch tablet.

The single mast important point to be made in this
example is that a single plystcaf device is being
used to implement § virtual devices (9 valuators
and @ buttons}, This is analogous to the use of a
display window system, in its goals, and ils iniple-
mentation.

The second main point is that there is nething on
the tablei to delimit the regions. Phis differs from
the use of physical templates as previously dis~
cussed, and shows how, in the absence of the need
ior a physical template, we can instantiy change the
“windowson the tablet, without sacrificing the
ability to Louch type.

We have found that when the tablet surface is srnall,
and the pariioning of the surfaces is net tos com-
plex, the users very quickly (typically in one or two
minutes) learn the positions of Lhe virtual devices
relative tothe edges of the tablet. More inaper-
tantiy, they can use the viriual devices, practically
error free, wilhout diverting attention from the
display. (We have repeatedly observed this
behaviour in the use of an application that uses a iO
erm square tablet that is divided into 3 sliders with a
single button across the top).

Because no template is needed, there is no need for
ithe user to pause to change a template when enter-
ing the colour mixing module. Also, al ne point is
the user's attention diverted from lhe display.
These advantages cannot be achieved with any other
device we know of, withoul consuming display real
estate.

The colour of the eclour patel is manipulated by
dragging the red, green and blue values up and
down with the valuators on the touch tablet. The

vahiators ere implernented in relative mode fi.e.,
they are sensitive to changes in position, mol abso-
lute position), and are manipulated like one dimen:
Sional mice, For example, to make the patch more
red, the user presses mear the left side cf the
tablet, about half way to the top, and slides the
finger up (see Figure 11). For larger changes, the
device can be repeatedly stroked (much like strok-
ing a mouse). Feedback is provided by changing the
level in the bar graph on the screen and the colour
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of the patch,

 
Figure 11. Increasing red content, by pressing on

red valuator and sliding up.

Using a mouse, the above interaction could be
approximated by placing the tracking symbol over
the bars of colour, and dragging themup or down.
However, ifthe bars are narrow, this takes acuity
and concertration that distracts allention from the

primary task — rmoriloring the colour of the pateh.
Farthermore, note that the touch tablet implemen-
tation does not meed the bars to be displayed at all,
they are only a convenience to the user. There are
interfaces where, in the interests of maximizing
available display area, there will be no items on ihe
display analogous to these bars. That is, there
would be nothing om the display to support an
interaction technique that allows values Lo be mani-
pulated by a rouse.

 

Finally, we can take the example one step further by
introducing the use of a Louch tablet thal can sense
multiple points of contact fe.g., [Lee, et al. 19859}.
With this Lechnology, all three colour values could
be changed at the same Lime (for example, fading to
black by drawing all Lhree sliders down together
with three fingers of one hand). This simultaneous
adjustment of colours could mof be supported by a
rymouse, nor any single commercially available input
device we know of. Controlling several valuators
with one handis common in many operating con-
soles, for example: studio lighi contral, audio
ynixers, and throttles far multi-engine vehicles (e.g.,
aireraft and boats}. Hence, this example demoan-
strates a cost effective method for providing func-
tionality that is currently unavailable (ar available
only at great cost, in the form of a custom fabri-
cated console), bul has wide applicability.

$6.5. Summery of Ezampics

Through these sirnpie examples, we have demon-
strated several things:

» The ability to sense al least two levels of pres-
gure is a virtual necessity for touch tablets, as
without il, auxiliary devices must be used for
signaling, and “direct manipulation” interfaces
eannot be effectively supported.

* The extension to continucus pressure sensing
opens up new possibilities in hurnan-computer
interaction.
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® Touch tablets are superior to mice and tablets

when many simple devices are to be simulated.
This is because: (a) there is no need for a
mechanical intermediary between the fingers
and the Lablet surface, (b} Lhey allow the use of
templates (including the edges of the tablet,
which is a trivial but useful ternplate), and {cs}
there is no need for positional feedback that
would consume valuable display space.

= The ability to sense mulliple points of contact
radically changes the way in which users may
interact with the system. The concept of multi-
ple points of contact does not exist for, nor is it
applicable to, current commercially available
mice and tablets.

§. Inherent Problems with Touch Tablets

A problemwith touch tablets that is annoying in the
long term is friction belween the user's finger and
the tablet surface. This can be a pariicularly severe
problem if a pressure sensitive tablet is used, and
the user must make long motions at high pressure.
This problem can be alleviated by careful selection
ef materials and care in the fabrication andcalibra~
tien of the tablet.® Also, the user interface can be
designed to avoid extended periods of high pres-
sure,

Perhaps the most difficult preblemis providing
good feedback to the user when using touch tablets.
For example, if a set of push-on/push-off buttons
are being simulated, the traditional forms of feed-
back (luminated butlons or different button
heighis} cannot be used. Also, buttons and other
controls implemented on touch tablets lack the
kinesthetic feel associated with real switches and
knobs. As aresull, users must be more attentive to
visual and audio feedback, and interface designers
rust be freer in providing this feedback. (As an
example af how this rnight be encouraged, the input
“window manager” could autermatically provide
audible clicks as feedback fer button presses).

7. Potential Exhancements Lo Pouch Tablels (and
other devices)

The first prablemthat one notices when using Louch
tablets is ‘jitter’ when the finger is removed from
the tablet. That is, the last few locations reported
by the tablet, before it senges loss of contact, tend
to be very unreliable.

This problem can be eliminated by modifying the
firmware of the touch tablel controller so thatif

keeps a short FIFO queue of the samples that have
reost recently be sent to the host. When the user
releases pressure, Lhe oldest sarople is re-
transmitted, and the queue is emptied. The length
of the queue depends on the properties of the touch
tablet (e.g., sensitivity, sampling rate). We have
found thet determining @ suitable value requires

® as a bad example, one commercial “touch” tablet re-
quires se much pressure for reliable sensing thet the
finger cannot be smeothly dragged across the surface.
Instesd, x wooden or plostie stylus must be used, thus
loosing many af the advantages of touch sensing.
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only afew minutes of experimentation.

Arelated problem with mast current tablet con-~
trollers (not just Louch tablets) is that they de nat
inform the host camputer when the user has ceased
pressing on the tablet (or moved the puck out of
range}. This information is essential Lo Lhe develop-
rent of certain types of interfaces. (As already
rnentioned, Lhis signal is not available from mice}.
Currently, one is reduced to deducing this event by
timing the interval between samples sent by the
tablet. Since the tablet controller can easily deter-
mine when pressure is removed {and musiif iL is Lo
apply a de-jittering algorithm as above, it should
share this information with the host.

Clearly, pressure sensing is ar area open io
development. Two pressure sensilive Lablets have
been developed at the University of Toronto [Sasaki,
et al. 1901; Lee, et al. 1985]. One has been used to
develop several experimental interfaces and was
found to be a very powerful tacl. They have recently
become available from Hlographics and Big Briar
(see Appendix 4}. Pressure sensing is net only for
touch tablets. Mice, tablet pucks and styli could all
benefit by augmenting switches with strain gauges,
or other pressure sensing instruments. GTCO, for
example, manufactures astylus with a pressure
sensing tip [GTCO 1982], and this, like our pressure
sensing touch tablets, has proven very useful.

8B. Conchuisions

We have shown thal there are environments for
which some devices are better adapted than others.
in particular, touch tablets have advantages in
rmmeny hostile environments. For this reason, we
suggest that there are environments and applica-
tions where touch tablets may be the most
appropriate input technology.

This being the case, we have enumerated three
major distinctions between touch tablets and one
button mice (although similar distinctions exist for
mulili-button mice and conventional tablets}. These
assist in identifying environments and applications
where touch tablets would be most appropriate.
These distinctions concern:

e limitation in the abllity to signal events,

» guitahbility for mulliple paint sensing, and

« the applicability of tactile templates.

These distinctions have been reinforced, arid some
suggestions on how touch tablets may be used have
been given, by discussing a simple user interface.
Framthis example, and the discussion of the dis-
Linctions, we have identified some enhancements
that can be made te touch tablets and other input
devices. The most boypertant of these are pressure
sensing and the abilily to sense multiple points of
contact,

We hope that ihis paper molivales interface
designers to consider the use of touch tablets and
shows some ways to use them effectively, Also, we
hope it encourages designers and manufacturers of
input devices te develop and market inpui devices
with the enhancements that we have discussed,
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The challenge for the future is to develop touch
tablets that sense continuous pressure al multiple
points of contact and incorporate them in practical
interfaces. We believe Lhal we have shown that this
is worthwhile and have shown some practical ways
to use teuch tablets. However, interface designers
must still do a great deal of work ta determine
where a mouse is better than a touch tablet and
vice versa.

Finally, we have Ulustrated, by example, an
approach to the study of input devices, surmmarized
by the credo: “Know the interactions « device is
intended to participate in, and the strengths and
weaknesses af the device.” This approach stresses
that there is nea such thing as a “geod input device,”
only good interaction lask /device combinations.
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Appendix A: Touch Tablet Sources

Big Briar: 3 by 3 inch continusus pressure sensing Louchtablet

Big Briar, Inc.
Leicester, NC
RBA

Chali Board Inca “Power Pad", large touch table for
micro-computers
Chalk Beard Inc.
3772 Pleasantdale Rd.,
Atlanta, GA 30340

Blographics: various sizes of touch tablets, including
pressure sensing

Hlographics, Inc.
105 Randolph Toad
Sak Ridge, Tennessee
37640

(815)-482-4100

22a
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Key Tronic: Keyboard with touch pad.

Keytronic
PG. Box 14687
Spokane, WA $9214
(509)-926-8000

KoalaPad Technologies: Approx. 5 by 7? inch touch tablet
for mioro-computers

Koala Technologies
3100 Patrick Henry Drive
Santa Clara, California
85050

Spiral Systenss: Trazor Touch Panel, 3 by 3 inch toach
tablet

Spiral System Instrumemts, Inc.
4853 Cordell Avenue, Suite 4-16
Bethesda, Maryland
ZOG1S

TASA: 4 by 4 inch touch tablet {relative sensing only}

Toneh Activated Switch Arrays Inc.
1276 Lawrengs Stn, Read, Suite G
Sunnyvale, Ceilfornia
84.089

224
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Lexical and Pragmatic Considerations of Input Structures

William Buxton
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Tatroduetion The conceptual level incorporates the main conceptsthe system as seen by the user. Thetefore, Foley and
Increased access to Her-based tools has made Van Damsee it as being ivalent to the |user madel, r ability to produce The senaatic level incorporates the functionality of the

what can be expressed. The syargetic level
nes the grammatical structure of the tokens used to

j a semantic concept. Finally, the /exica/

only too clear the deicieiet
effective user interfaces Many of our current
problems are rooted in our lack of sufficiently powerful
theories and methodologies. User interface design

  
  

   

  
   

  
 

remains more of a creative art than a hard science, component defines the structure of these tokens.
Following an age-old technique, the point of Gne ofthe benefits of such a taxonomyis that it can

departure for much recent work has been ta attempt is serve as the basis for systems analysis in the design
impose some setts on theproven domain. Perhaps process. It also helps us categorize variaus userthe most significant difference between this work and imierface studios so as to avoid “apples and bananas”
earlicr ciforei8“he weight nlaced on considerations fab type Mcomparisons. For example, the studies of Led-
ling outside the scope of conventional computer science, gard, Whiteside, Singer and Seymour [16] and Barnard,

jonai problem-reduction paradigm is being re- Hammond, &Morton and Longe Bi both address issues at
placed by a holistic approach wlich views ihe probleim ihe syntactic level. They can, therefore, be cornpared
a i ration of issues from computer science, elec- Gwhich is quite interesting since they give highly contra-trical enginesring, industrial design, vognitive psycholo- dictory results}, On the other hand, byrecognizing the
ay, psychophysics, linguistics, and kinesthetics, “keystroke” madel of Card, Moran and Newell [7] as

In the main body of this paper, we examinefone of addressing the lexical level, we have a good way of
the taxonomies w have been proposcd and illustrate understanding its limitations and enbat ing it to relatedhow they can serye as useful structures for hhaing shidies (such as Embley, Lan, Le ugh and Nagy,studies in user interface problems. in so doing, we i8]}, or relating it to studies which “dees different lev-
allempl to augment the power of these structures by els (such as the two studies in syntax mentioned above).

developing their abilityta take into account the effect of While the taxonomy presented by Foley and Van 

  
gestural and positional factors on the overall effect of the Dam has proven to be a useful tool, our opinion ig that it
user interfacs. has one major shortcoming. Ts he grain of the

lexica 5 too coarse to perm e
model to be” derived. dePnod, the authors lump topetherissues as diver

 
spelt (for example “add” vs “append”
graphical icon}

Two Taxonomies  
a

Jne structure for viewing the prooblern demain of
e user interface is provided by Foiey and Van Dam
2]. They describe the space in terms of the following  Barnard ec af invalidate Ledgard ef ai's main thesis that the

syntax of natural language is necessarily ihe best suited for
cornamand languages. They demonstrate cases where fixed-field
format is Jess prone to user error than the direct object ~- indirect i

‘t syntax of natural language. A major problem of the paper
of Ledgard ef af is that they did not test many of the imeresting

nen drew conc

 

® conceptual  
 ® Semantic    

  
@ syntactic

 

 ons that went beyond what their results Cases ar

@ lexical suppor 

i

i

i

benefit of the

i
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incorporates the structure
the semantic

nies the user’s
sicalactions [a the» conventions of the interac
dialogue. The spatial leve! then encompasses

 
 is are placed spatially on the spies¢the layout and number of windows, andithe

 
 

 
layout of data within thase windows)

7

the type of physical gesture (as determined by the
transducer employed) used to articulate a token
(pointing with a joystick ys a lightpen vs a tablet vs a
mouse, for cxample}

related to how information is Jaid out on the uswhile the ¢

devices are uscd anc thei ‘properti cs (for exan
elfect on user perfe f the locator used is a mousvs an isometric sovstick ys step-keys}). (A representative
discussion of such issues can be found in Card, English
and Burr, [§].3

One sublle but important emphasis in Moran's
paper is on the point that it is the effect of the user
interface as a whole (that js, all levels combined) which
constitutes the users model The other main difference

of his taxenorny, when compared to that of Foley and
Yan Dam, is his emphasis on the importance of the phy-

sical Component. A shortcoming, however, lies in the
absence of a slot which encapsulates the Icxical level aswe have defined it above. Like the lexical ‘evel (as
defined by Foley and Van Dam), the interaction level of

Moran appears a Hillee too broad in scope when
compared to the other levels in the taxonomy,

&

 

8 where devices are placed in the work station
q

 
These issues are sufficiently different io warrant
separate treatment. Grouping them under a single
hoading has the danger of generating confusion compar-
able to that which could result if no difference was made

between the semantic and syntactic levels, Therefore,
taking our cue from wark in language understanding
research in the Al community, we chose to subdivide Fo-

ley and Van Dam’s lexical level into the following twocomponents

  

@ lexical: issues having to do with spelling of tokens G.e.,
the ordering of lexemes and the nature of the alphabet
used — symbolic or iconic, for example).

 
 

® pragmatic: issues of gesture, space and devices.  

 ction, in the Keystroke model thenumber of key pusheswould be a function of the lexical
structure while the horaing time and pointing time would
be a function of pragmatics.

Factoring out these two icvels helos us focus on the
fact i the issues affecting cach are different, as is
their influence on the overall effect of the ‘interface.

This is ihustrated in examples which are presented later
in this paper,

It should be pointed out that our isolation of what
we havecalled pragmaticissucsis not especially PinelWe sec a similar view in the Command Langua
Grammar of Moran [18], which is the second main
taxonomy which we present. Moran represents the
dormain of the user interface in terms of three

divided into two levels.

Pragmatics

in examining the two studies discussed above, one

quickly recognizes that the effect of the pragmauclevel
on the user interface, and therefore on the user model, js

given very little attention. Moran, for example, points
out that the physical component exists and that it is
important, but does not discuss it further. Foley and
Yan Damburythese issues within the lexieal level. Gur

main thesis is that Since thee primarylevel of contact with
an interactive system is at the level of pragmatics, this

level Aas one of the strongest effects on the user's
perception of the sysrem. Consequently, the models

whNigh we adopt in order to spect|design, implement,
compare and eval i i i
ciently rich te
properties at this level. This is clearly not the case with
most models, and this should be cause for concern.
illustrate this, Jet us examine a few case studies which

relate the effect of pragmatics to:

  
 components, each of which is

These are as follows:  

 
 

eSinnnennnnnnnneerrerrra:Sanninarmen
© Conceptual Component plureSand:communicate the system's

~ task level

“semantic level

@ Communication Camponent

 

 

—syntactic level @ pen ! lory languages i
~tnteraction level i # ease of use with respect to action language grammars' t

@ Physical Component i @ device independence
i |

—spitial level

—device level ‘ :
, Peneii-and-Paper Tests

The task fevel encompasses the set of tasks which the

user brings to the system and for which it is Intended to As an aid to the dosign of effective faa base queryserve as a tool The semantic level lays out the | languages, Reisner [19] has proposed the use of pencil-conceptual entities of the system and the conceptual and-paper tests. Subjects were taught 22 query language |i : Soak a 1 :
i operations upon them. As with the Foley and Van Darn in a class-room environment and then tested aa to their

32/Computer Graphics © danuary 1983
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and under

taught different
abiliy ¢
control

o formulate

groups  were languages. 
comparing the test results of the different groups, Reis-

ner drew conclusions as to the relative eeeeofsucture and ease of learning of Lhe differcne le
She then made the argument that the techniqt

used to find weaknesses in new languages before t
nented, thereby shortening their developme

  
 

  
 

important poinis, it
nat point out the limi

The approach does tell us
iuve burden involved in the

makes some

has a serious defect in that it does
tations of the

something about uh
learning of a query la nguage,
everything. in particular. the technique is totally
pable of taking into account the effect that the means
and medium of doing something hus on our ability to
remember how ta doit, To paraphrase McLuhan, the
mediumdocs affect the message.

issucs of syntax are not independent of pragmatics,
icil-and-paper 0 take such

dependencies into account. mple, consider the
f “muscle ne how to perform

various tasks. S iisnllluence can |
in my ability to type quit
incapable of telling you w

on my QWERTY i
lack whose combination {cannot recite.

will never show up ir a i-and-paper test.

example is scen in the techniqne’s nail
account the contribution that a ppropri
help mechanisms can provide in develo
and other memory and learning aids.

We are not trying to claim thai such pencila

 

  
But tt does not tell us

inca-
  

wtGO  

  
 
 
 
 
 

 

 

 
n be seen

Bh iamnS are
  ,rin myabilityfo open a

Yot. this effect

Another

 

  
s are not of use falihough Barnard er al, a,

important dangers in using such 

We are simply trying to ily

itatians, and demons
 

  
  
 

 
 (and

ns from
ik a {

consi

conjecture

 
authors} dra
theic werk,

srapmatics were ts
such as that of Folcy

less iikely to be ignored

 Purthermore,

lated as & Separate icvel in a taxon

We

 
 

 and Van Dara, they would be

Complexity and Chunking

, Reisner (20] makes an important

contribution by shosving how the 2 of the
grammar of the “action language _imeractive

temcan provide |valuable metri the

fn another stu

 
Or an

  

 
 

 
 

 an important tool for system design
comparison is introduced.

bbasis af the technique is that the complexity af
road metric forthe ¢
the system.

cognilive burden of
srammar complexity is
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measured in terms of nurnber af productions and produc
tion fength, is a probiem, however, whieh hav
our ability ¢ ofits of the lechoigne.
This has to do with the technique’s current inability to
take j ount what we call chunking. By this we

oor more actions fuse

AlOBOUS CO
language). tn

burden of the resulting
gale may be the equivalent of 4 single token. Ip

terms of formal language theery, a non-terminal when
effected by an appropriate compound gesture tay carry
the cognitive burden of a single terminal.

Such chunking may beeither sequential, parallel or

both, 5 equenti ‘, it should he recognized that some.clions others.

For <example, take is to be
triggered by the change of s Wad

 

 
 

 

 cases, the voatitve I
 

 

 

 
 

grees of closiene
Ot

  switch the high low beam switch in same cars
is used, the down action of a down/up gesture triggers
each cvent. The point to note ‘s that there is no

kinesthetic connection betweenone the gesture that triggers
that which trigger Each ac-

is complete in itself and, as with ing a the
rator ig free ta initiate other actions bef

the state of the switch again,
On the other hand, the same binary funetion could

be controlled by a foot pedal which functions like the

in pedal of a In thisEase, one state changeHere, the
isa direel

< is imphleit,
what lo do

 event and

 
Car.car,

  ore chan ing
 

  

  
 

mitive burden of remembering +
the first action is minimal.

There are many cases where this type of kinesthetic
connectivity can be bound to a sequence of tokons which

are logically connected. One cxample given by Buxton
ecting an ifere from a graphics menu and

g . it into position in a work space. A button:
action Gvhile bointing at am item) “picks it up.’

For as long as the button is depressed, the tem tracks
the motion of the pointing device. When the button is
relcased, the item is anchored in its current position,
Henee, the interface is designed to force the user to
follow proper syntax: select then position.

y for syntactic error, and cognitive resources are
consumed in tryimg io remember

Thus, by recagnivd

 
 

 
 

 
 

  
dawn

  

There is no 

posstbili
rot

 Shoe de j
what do 1 do 
  

   S “Bees can be constructed which are atural™learn.

hete is a similar type of chunking which can take 
 

en two or more gestures are articulated at one
Again we can take an exaraple from driving a car,

where in changing gears the acuons on the clutch,
accelerator and gearshift reinforce

 

  one another and are

coordinated into a single gesture. Choosing appropriate

Js succh Poord:naicd: actions can accelerateasthinks of as a single act,
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thereby frecing up cognitive resourecs to be applied tc A Taxonomy of Devices
more important tasks, What we are arguing here is (hat
by roatching appropriate gestures with tasks, we can
help render complex skills routine and gain benefits
similar to those seen at different level in Card, Moran

and Newell [6].
In sumrnary, there are three main points which we

wish to make with this example:

In view of the preceding discussion, we hav
attempted to develop a taxonomy which helps isolate
relevant characteristics of input devices. The tableau
shown in Figure | summarizes this effort in a two dimen-
sional representation. The remainder of ihis section
presents the details and motivation for this tableau’s
organization.

 

® there is an important interplay between the syntactic-
lexical levels and the pragmatic level ;

preg * Figure 1. Tableau of Continuous Input Devices
® that this interplay can be exploited to reduce the

cognitive burden of learning and using a system Number of Dinuctsions

@ that thie cannot be accomplished without a better
understanding of pragraatic issues such as chunking
and closure.
 
   po 

 
 
 fee.
|

 Trackball Mechsns!

TASA,KY Bad Couch Seesitne

We began by declaring the importance of being able
io Incorporate pragmatic issues into the models which we  
usé to specify, design, compare and evaluate systems.
The examples which followed then illustrated some of   

os

ons for this belief. Wheo we view the CORE
33S 2 0] go pe.

 
13, 14] from this perspective, however, we see

several problems. The basis of haw the COREsystem
terms of

ous hand-contralled devices.Peddals, for example, are
not included for simplicity’s sake.) Therefore the firstapproaches input is to deal with user actions |
(but implicit} questions in our structure are:

 

abstractions, or logical devices (such as “locators” and
“valuators”), he intention is to facilitate software

{‘

portability. If ail “locators,” for example, utilized a
® continuous vs discrete?

seant of o al tha ot Ce \9

common protocol, then user A Gvho only had a mouse) ® agent of contral (hand, feot, voice, ...}
could easily implernent software leveloped by B Gvho
only had a tablet}, Fromthe application programmer's
perspective, this is a valuable feature. However, for the
purposes of specifying systems from the user’s point of
view, these abstractions are of very limited benefit. As

Baecker [2] has pointed oul, the effectiveness of a partic-
ular user interface is often duc to the use of a particular

device, and that ofiectiveness will be lost if that device
were replaced by sore other of tessame logical class.For example, we have a system [10] whose interface
depends on the simultaneous manipulation of four
joyssticks. Nowin spite of tablets and joysticks both be-
ing “locator” devices, it is clear that they are not

reable in this situation. Wecannot simultane-

ipulate four abeis, Thus, for the full poten-
ual of device independence to be realized, such pragmic considerations must be inneon. rated into our overall
specification model so that appropriale equivalencies can
be determined in a methodological way. (That is, in
specifying a generic device, we must also include the
required pragmatic attribuics. But to do so, we must
develop 2 taxonorny of such attributes, just as we have
developed a taxonomy of virtual devices.)

The table is divided into a matrix whose rows and
cohimnas delimit

@ what is being serised (position, motion or pressure},
and

@ the number af dimensions being sensed (1, 2 or 3),

respectively. These primary partitions of the maAtrix are
delimited by solid lines, Hence, both the r i

sliding potentiometer fall into the box associa 1
one-dimensional position-sensitive devices (top ieft-hand
corner},

Note that the primary rows and columns of the
matrix are sub-divided, as indicated by the dottedlines,
The sub-columns exist io isolate devices whose control

motion is roughly similar. These groupings can be seen
in examining the two-dimensional devices. Here the
tableau implies that tablets and mice utilize similar

types of hand control and that this control is different
from that shared in using a Jight-pen or touch-screen.
Furthermore, it is shown that joysticks and trackballs
share a coramen control motion which is, in turn,
different than the other sub-classes of two-dimensional
devices.

ro
ppva mo

oS
mn.

 
 

 

  
 

1

| |

||Pragmatics and Device Independence

To begin with, the tableau deals only with centinu-

-f

i
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o
 The rows fur position aad sroton sens

 are subdivided in order to differentiate between trans
ducers which sense poraltial wa mechanical ys touchwe see that the light-pen and

related, except that the light-

al transducer. Similarly, we
TASA touch-pad® provide

ivable gestures (the 4" by
2 compare toa 34/2"

sensitive
toueh-scrs

pen employs a necha
see that trac kball

Means.

 

 
and

omparable signals from compe

 

  +" diniensions of TASA devics
diameter trackbaHHThe tabiieau is useful for many purposes by virtue of

structure which it imposes on the domain of input
st. iL helps in) finding appropri
This is important in terms of dealing with

1 i s¢ in Gur discussion of

example, We saw a CASE
replacing

¢ sec that four

the
\A

 

  Le

 

  
For

nol be suliable lor
device ind ope ndence.

where four fables would
four joystic
irackballs wi

Phe table

in terms of

 

the tableau, \ 

prrbly— 

metaphor. r example, a tablet is to a
Uo Furthermore, if

he taxonomy de
transducers in a manner ¢

af Mendeloey predicting nmore confidence in nderlying i
this claim for the tableau and vite “torque
one-dimensional pressure-sensilive transducer as
xample. To our knowledge. ne such device exists com-

mercially, Nevertheless it is a potentially useful device,
an approximation of which hes been demonstt
Herot and Weinzaphet {15}

Finally, the tableau is useful in helpiag quantify the
‘tous physical devices. In cases where

limited fo one or two input devices,
ets inferest to choose the least

Por reason, ruany people
lots are the preferred device since they can

many of the other transducers (asis clornanstrat-

Tanner and Wein, [9]}). The tableau ts
in deterraining the degree of this generality By

the squares which can be adequately covered
lablet.

pore feaving the
commenting on why a
devices was whether
Lon oF pressure. is that

very strong effect on the nature of thesystem Can support with any degree ofan nH
example, let us compare the user interface of an
instrumentation console can be affected by

yhether motion or position sensitive transducers are

used. Tor such conasoles, one design philosophy follows
the traditional mode: that for every function there shouid

be a device. Ome of the rationales behind this approach
is to avoid the use of “modes” which result when a stugic
device must serve for more than one function. Another

philosephy takes the point of view that the number of

 

 

sensing”
ar

 
  

 
 

 

 
 
 

generality ot
ne work station  

   
this

  
cvane,

io:
aS a. it is worth

grouping
ition, ma-

is sensed has a
that the

As an

topic of the tablea

pray Criterion for 
 

 
 

iy

  
nOWw

 
 

 

the chajee of

 

 

devices required ina corssole need only be in the arder of

 

  

the control bandwidth of the human opcrator. Here,

the rationale ts 4vehi ¢design can minimize the
“mode” problem, the resulting simple consolesare more costelfestive“and ess prone to breakdown
{sinee they have fewer devices),

One consequence of the second philosophy

the same transducer musi be made to control di
neu ar parameters, at different times.

context switching introduces something Known as theify te 6 make
od if the

than position

The point which we are Boingig that this problem
question

can be completely avoid
Is motion rather

why.

vou haye a sliding potentiometer

parameter A. Both the potent pineter
are at Cheiy miaimuimvalues. You

~IS SC

 
  
and the

then raise A to its maximum valuc by pushing up the’
para mnelerA,

s handle, You now want

er B. Before you can do
weter, the handle of the

 
position of the potentiamete
io change the value of paramete
so using the same potentiom

 
 

potentiometer must be repositioned fo oa ition
corresponding to the current value of parameter B. Phe
necessity of having to perform

is (he palingpropienContrast the difficully of performing the
Loteraction us a position-sensitive device with the ease
of doing so using one which senses motion. Tf a thumb-
wheel or a treadraill-like device was used, the moment

that the transducer is connected to the parameter it can
ush” the value up or “pull” it down.

same transducer \

this normalizing function

above

 

 can be used fo

tancously change the value of a group of parame
ters, all af whose instantaneous values are different.

Horizontal ve Yortical Strata

up one important point:
& taxonomies af Foley and Van

Damor of Moran are not orthogonal. By describing the
uscr interface in terms of a horizontal atrueture, itis very
casy 10 Fall.into the trap of believing that the effect of
modifications at one level will be isclatcd. This is clcar-

ly not true as the above example demonst rated thechoice of transducer type had a strong cffe syntax.

Tho example sanot iso! In fact, just as slrong
arargument could b jopting a model based

or a vertic iructare gonial ones which wehave discussed, Models based on interaction techniquics
i those descr ibed in Martin {17} and Foley,Wa Hace a iil} are examples. With them, the

primary gestalt is the transaction, or interaction. The
user model is describe style of

 

 oan

 
 
 
 

 
sd in terras of the set and

 TASA X-Y 360 is a 4" by 4% touch sensitive d
gives GO unitsofdelia modulation in 4 t of travel, ’

1 » Ave, Santa Clara CA,
     

95083 is available from TASA, 2346 Wa

 ye GeVEe 
AIM

Comparer Graphics © dariuary 1983/35

Page 1036 of 1714



Page 1037 of 1714

the interactions which take place over time. Syntactic,
Jexical and prapmatic questions became sub-issucs.

Neither the horizontal or vertical view is “eorrect.”

The point is that 407% must be kept in mind during the
design process, A major challenge is to adapt sur
models so that this is dome in a well structured way.
That we still have problems in doing so can be seen in
Moran’s taxcnorny. Much of the difficuity in under-

standing the model is due to problems in his apprroach in
Hegre vertically orieented concepts (the interactiontevel) into an otherwise horizonial structure.

such difficuities, both views must be

 

 in spite of
considered, This is an important cautionary bell to ming

 give:» the current trend towards delegating personal
responsibilities according to horizontal stratification.
The design of a system’s clata-base, for example, has a 

 

very strong effect on the semantics of the interactions
that can be supported. [f the cornpuiing environment is

selected by one person, the data-base managed byaanoth-
er, the semantics or functional capability by another, and
the “set interface” by yet another, there is an sakeerent
danger that the decisions of one will adversely affect
another,
structure

aware of the

This is not to say that such an organizavional
cannot work. Tt is just imperative that we be

pitfalls so that they can be avoided. Deci-gions made at all levels affect one another and afi deci-

sions potentially have an effect on the user model,

Summary and Conclusions

of heuser: interface were dose:ek“tn thediscussion
it was pointed out that the cuter levels of the strata,
those concerning lexical, spatial, and physical issues 

The notion of pragmatics was intro-
facilitate focusing aitention on these

issucs. Several examples were then examined which

illustrated why ihis was important. In so doing, it was

seen that the pawe carious existing models could beextended if we hac‘ a better understanding of pragmatic
AS @ step towards such an understanding, a
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siep. While there is a great deal oof work still to be done
right at the device level, perhaps the biggest challengeis
io develop a beiter understandingof the interplay among
the different fevels in the strata of a system. When we
have developed a methodology which allows us to
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determine the gesture that best sults the xpressian OT aparticular concept, then we will be able ta build the user
interfaces which today are only a dream,
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Light Beam Matrix Input Terminal

This display and computer input device consists of a
rectangular matrix of light beams 10 and associated photosensitive
devices 12 overlaying document 14. Mount 16 contains a pair of light
sources 18 at right angles to each other. Beams 10 are formed by
holes in frame 20 and image on optical fibers 12 opposite sources 18.
Thus, a light beam matrix is formed. The frame assembly is spaced

slightly above document 14 by thin, clear screen 22 having response
holes 24 at each intersection of bearms 70. When probe 26 or the
finger is placed in a hole of screen 22, intersecting beams are
interrupied. Fibers 12 are merged to moving belt 28 having light
detectors 32 at its underside. Fibers 12 are so arranged that siots
30 scan themserially. Document 14 can be one of a plurality on a
roll
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Microsoft Research

Original: Jan. 12, 2007
Version: March 21st, 2011

ey vos RoeWavreeawike § Qeresweds Saws eg
KSVYWOTES § SSAYEN SSMS

Multi-touch, multitouch, input, interaction, touch screen, touch tablet, multi-finger input, multi-hand input, bi- manual
input, two-handed input, multi-person input, interactive surfaces, soft machine, hand gesture, gesture recognition .

aCThis pageis also available in Belorussian, thanks to the translation by Martha Ruszkowski.

Since the announcementsof the ‘Phone and Microsoft's Surface (both in 2007), an especially large number of peaple have
asked me about multi-touch. The reason is largely because they know that | have been involved in the topic for a numberof
years. The problem is, | can't take the time to give a detailed reply to each question. So | have done the next best thing(I
hope). Thatis, start compiling my would-be answer in this document. The assumption is that ultimately it is less work to give
one reasonable answer than many unsatisfactory ones.

Sg
g

Multi-touch technologies have a long history. To put it in perspective, my group at the University of Toronto was working on
multi-touchin 1984 (Lee, Buxton & Srnith, 1985), the same year that the first Macintosh computer was released, and we were
not the first. Furthermore, during the developmentof the iPhone, Apple was very much aware ofthe history of multi-touch,
dating at least back to 1982, and the use of the pinch gesture, dating back to 1983. This is clearly demonstrated by the
bibliography of the PhD thesis of Wayne Westerman, co-founderof FingerWorks, a companythat Apple acquired early in
2005, and now an Apple employee

Westerman, Wayne (1999). Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface. U
of Delaware PhD Dissertation: htt:Awww. ee.udel edu/"westerma/main. pdf

In making this statement about their awarenessof past work, | am notcriticizing Westerman, the iPhone,or Apple. It is
simply gocdpractice and good scholarship to know the literature and do one's homework when embarking on a new product.
What | am pointing out, however, is that "new" technologies- like multi-touch - do net grow out of a vacuum. While
marketing tendsto like the "great invention"story, real innovation rarely works that way. In short, the evolution of multi-
touch is a text-book example of what | call "the long-nose of innovation."

So, to shed somelight on the back story of this particular technology, | offer this brief and incomplete summary of some of the
landmark examples that | have been involved with, known about and/or encountered over the years. As | said, it is
incomplete and a work in progress(so if you comeback a second time, chances are there will be more and better
information). | apologize to those that | have missed. | have erred on theside of timeliness vs thoroughness. Other work can
be foundin the references to the papers that | do include.

Note: for those note used to searching the HCI literature, the primary portal where you can search for and download the
relevant literature, including a great deal relating to this topic (including the citations in the Westerman thesis), is the ACM
Digital Library: Ktto://sartalacm.org/dicfm, One other relevant source of interest, should you be interested in an example of
the kind of work that has been done studying gestures in interaction, see the thesis by Hummels:

htto://id-dock. com/pases/overigfearo/publcaro.htm

While not the only source on the topic by any means,it is a good example to help gauge what might be considered new or
obvious.

Please do not be shy in terms of sending me photos, updates, etc. | will do my best to integrate them.

For more background on input, see also the incomplete draft manuscript for my book on input tools, theories and techniques:

httos/Awww. biDuxton.com/inputManuscrigt. htm!

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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For more background on input devices, including touch screens and tablets, see my directory at:

e bree / pnwbilbuxton conv inoutSources hrm   

Soussn en TReaee
SepME Lag
Thereis a | ot of confusion around touch technologies, and despite a 25 year history, verylittle information or experience with
multi-touch interaction. | have three commentsto set up whatis to follow:

1. Remember thatit took 30 years between when the mouse was invented by Engelbart and English in 1965 to when it
became ubiquitous, on the release of Windows 95. Yes, it was released commercially on the Xerox Star and PERO
workstations in 1982, and | used myfirst one in 1972 at the National Research Council of Canada. But statistically,
that doesn’t matter. It took 30 years to hit the tipping point. So, by that measure, multi-touch technologies have 5
years to go before theyfall behind.

2. Keepin mind one of my primary axioms: Everything is best for something and worstfor something else. The trick is
knowing whatis what, for what, when, for whom, where, and most importantly, why. Those whotry the replace the
mouseplay a fool’s game. The mouseis great for many things. Just not everything. The challenge with new inputis
to find devices that work together, simultaneously with the mouse(such as in the other hand), or things that are
strong where the mouseis weak, thereby complimentingit.

3. To significantly improve a product by a given amount, it probably takes about two more orders of magnitude ofcost,
time and effort to improve the display as to get the same amount of improvement on input. Why? Because we are
ocular centric, and displays are therefore much more mature. Input is still primitive, and wide open for improvement.
So it is a good thing that you are looking at this stuff. What took you so long?

| don’t have time to write a treatise, tutorial or history. What | can do is warn you about a few traps that seem to

cloud a lot of thinking and discussion around this stuff. The approach that | will take is to draw some distinctions

that | see as meaningful and relevant. These are largely in the form of contrasts:

« Touch-tablets vs Touch screens: In some ways these are two extremes of a continuum. If, for example, you

have paper graphics on your tablet, is that a display (albeit more-or-less static) or not? What if the “display”

on the touch tablet is a tactile display rather than visual? There are similarities, but there are real differences

between touch-sensitive display surfaces, vs touch padsor tablets.It is a difference of directness. If you touch

exactly where the thing you are interacting with is, let’s call it a touch screen or touch display. If your hand is

touching a surface that is not overlaid on the screen,let's call it a touch tablet or touch pad.

* Discrete vs Continuous: The nature of interaction with multi-touch input is highly dependent on the nature of

discrete vs continuous actions supported. Many conventional touch-screen interfaces are based discrete items

such as pushing so-called "light buttons", for example. An example of a multi-touch interface using such

discrete actions would be using a soft graphical QWERTY keyboard, where onefinger holds the shift key and

another pushes the key for the upper-case character that one wants to enter. An example of two fingers

doing a coordinated continuous action would be where they are stretching the diagonally opposed corners of

a rectangle, for example. Between the two is a continuous/discrete situation, such as where one emulates a

mouse, for example, using one finger for indicating continuous position, and other fingers, when in contact,

indicate mouse button pushes, for example.

e Degrees of Freedom: Therichness of interaction is highly related to the richness/numbers of degrees of

freedom (DOF), and in particular, continuous degrees of freedom, supported by the technology. The

conventional GUI is largely based on moving around a single 2D cursor, using a mouse, for example. This

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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results in 2DOF. If | am sensing the location of two fingers, | have 4DOF, and so on. When used

appropriately, these technologies offer the potential to begin to capture the type of richness of input that we

encounter in the everyday world, and do so in a manner that exploits the everydayskills that we have

acquired living in it. This point is tightly related to the previous one.

e Size matters: Size largely determines what muscle groups are used, how many fingers/hands can be active on

the surface, and what types of gestures are suited for the device.

e Orientation Matters - Horizontal vs Vertical: Large touch surfaces have traditionally had problems because

they could only sense one point of contact. So, if you rest your hand on the surface, as well as the finger that

you want to point with, you confuse the poor thing. This tends not to occur with vertically mounted surfaces.

Hencelarge electronic whiteboards frequently use single touch sensing technologies without a problem.

* There is more to touch-sensing than contact and position: Historically, most touch sensitive devices only

report that the surface has been touched, and where. This is true for both single and multi touch devices.

However, there are other aspects of touch that have been exploited in some systems, and havethe potential

to enrich the user experience:

1. Degree of touch / pressure sensitivity: A touch surfaces that that can independently and continuously

sense the degree of contact for each toouch point has a far higher potential for rich interaction. Note

that | use “degree of contact” rather than pressure since frequently/usually, what passes for pressure is

actually a side effect — as you push harder, your finger tip spreads wider over the point of contact, and

whatis actually sensed is amount/area of contact, not pressure, per se. Either is richer than just binary

touch/no touch, but there are even subtle differences in the affordances of pressure vs degree.

2. Angle of approach: A few systems have demonstrated the ability to sense the angle that the finger

relative to the screen surface. See, for example, McAvinney's Sensor Frame, below. In effect, this lgives

the finger the capability to function more-or-less as a virtual joystick at the point of contact, for

example. It also lets the finger specify a vector that can be projected into the virtual 3D space behind

the screen from the point of contact - something that could be relevant in games or 3D applications.

3. Force vectors: Unlike a mouse, once in contact with the screen, the user can exploit the friction

between the finger and the screen in order to apply various force vectors. For example, without moving

the finger, one can apply a force along any vectorparallel to the screen surface, including a rotational

one. These techniques were described as early as 1978, as shown below, by Herot, C. & Weinzapfel, G.

(1978). Manipulating Simulated Objects with Real-World Gestures Using a Force and Position Sensitive

Screen, Computer Graphics, 18(3), 195-203.].

Suchhistorical examples are important reminders that it is human capability, not technology, that should be

front and centre in our considerations. While making such capabilities accessible at reasonable costs may be

a challenge, it is worth remembering further that the same thing was also said about multi-touch.

Furthermore, note that multi-touch dates from about the same time as these other touch innovations.

* Size matters II: The ability of to sense the size of the area being touched can be as important as the size of the

touch surface. See the Synaptics example, below, where the device can sense the difference between the

touch of a finger (small) vs that of the cheek (large area), so that, for example, you can answer the phone by

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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holding it to the cheek.

e Single-finger vs multi-finger: Although multi-touch has been knownsince at least 1982, the vast majority of

touch surfaces deployed are single touch. If you can only manipulate one point, regardless of with a mouse,

touch screen, joystick, trackball, etc., you are restricted to the gestural vocabulary of a fruit fly. We were

given multiple limbs for a reason.It is nice to be able to take advantage of them.

* Multi-point vs multi-touch: It is really important in thinking about the kinds of gestures and interactive

techniquesusedif it is peculiar to the technology or not. Many,if not most, of the so-called “multi-touch”

techniquesthat | have seen, are actually “multi-point”. Think of it this way: you don’t think of yourself of

using a different technique in operating your laptop just because you are using the track pad on your laptop

(a single-touch device) instead of your mouse. Double clicking, dragging, or working pull-down menus, for

example, are the same interaction technique, independent of whether a touch pad, trackball, mouse, joystick
or touch screen are used.

e Multi-hand vs multi-finger: For much of this space, the control can not only come from different fingers or

different devices, but different hands working on the sameor different devices. A lot of this depends on the

scale of the input device. Here is my analogy to explain this, again referring back to the traditional GUI. | can

point at an icon with my mouse,click down, drag it, then release the button to drop it. Or, | can point with

my mouse, and use a foot pedal to do the clicking. It is the same dragging technique, even thoughit is split

over two limbs and two devices. So a lot of the history here comes from a tradition that goes far beyond just
multi-touch.

* Multi-person vs multi-touch: If two points are being sensed, for example, it makes a huge difference if they

are two fingers of the same hand from oneuser vs one finger from the right hand of each of two different

users. With most multi-touch techniques, you do not want twocursors, for example (despite that being one

of the first thing people seem to do). But with two people working on the same surface, this may be exactly

what you do want. And, insofar as multi-touch technologies are concerned, it may be valuable to be able to

sense which person that touch comes from, such as can be done by the Diamond Touch system from MERL

(see below).

¢ Points vs Gesture: Much of the early relevant work, such as Krueger (see below) has to do with sensing the

pose (and its dynamics) of the hand, for example, as well as position. That means it goes way beyond the task

of sensing multiple points.

e Stylus and/or finger: Some people speak as if one must make a choice betweenstylus vs finger. It certainly is

the case that many stylus systemswill not work with a finger, but many touch sensors work with a stylus or

finger. It need not be an either or question (although that might be the correct decision — it depends on the

context and design). But any user of the Palm Pilot knows that there is the potential to use either. Each has

its own strengths and weaknesses. Just keep this in mind: if the finger was the ultimate device, why didn’t

Picasso and Rembrandtrestrict themselves to finger painting? On the other hand, if you want to sense the

temperature of water, your finger is a better tool than your pencil.

e Hands andfingers vs Objects: The stylus is just one object that might be used in multi-point interaction.

Some multi-point / multi-touch systems can not only sense various different objects on them, but what object

it is, where it is, and whatits orientation is. See Andy Wilson’s work, below, for example. And, the objects,

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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stylus or otherwise, may or may not be used in conjunction and simultaneously with fingers.

e Different vs The Same: When is something the same, different or obvious? In one way, the answer depends

on if you are a user, programmer, scientist or lawyer. From the perspective of the user interface literature,|

can make three points that would be known and assumedby anyoneskilled in the art:

1. Device-Independent Graphics: This states that the same technique implemented with an alternative

input deviceis still the same technique. For example, you can work your GUI with a stylus, touch screen,

mouse,joystick, touchpad, or trackball, and one would still consider techniques such as double-clicking,

dragging, dialogue boxes as being “the same” technique;

2. The Interchange of devices is not neutral from the perspective of the user: While the skill of using a GUI

with a mousetransfers to using a touchpad, and the user will consider the interface as using the same

techniques, nevertheless, the various devices have their own idiomatic strengths and weaknesses. So,

while the user will consider the techniques the “same”, their performance (speed, accuracy, comfort,

preference, etc.) will be different from device to device. Hence, the interactive experience is not the

same from device to device, despite using the same techniques. Consequently, it is the norm for users

and researchersalike to swap one device for another to control a particular technique.

As | stated above, my general rule is that everything is best for something and worst for something else. The more

diverse the population is, the places and contexts where they interact, and the nature of the information that they

are passing back in forth in those interactions, the more there is room for technologies tailored to the idiosyncrasies
of those tasks.

The potential problem with this, is that it can lead to us having to carry around a collection of devices, each with a

distinct purpose, and consequently, a distinct style of interaction. This has the potential of getting out of hand and

our becoming overwhelmedby a proliferation of gadgets — gadgets that are on their own are simple and effective,

but collectively do little to reduce the complexity of functioning in the world. Yet, traditionally our better tools

have followed this approach. Just think of the different knives in your kitchen, or screwdrivers in your workshop.

Yes there are a great number of them, but they are the “right ones”, leading to an interesting variation on an old

theme, namely, “moreis less”, i.e., more (of the right) technology results is less (not more) complexity. But there

are no guarantees here.

What touch screen based “soft machines” offer is the opposite alternative, “less is more”. Less, but more generally

applicable technology results in less overall complexity. Hence, there is the prospect of the multi-touch soft

machine becoming a kind of chameleon that provides a single device that can transform itself into whatever

interface that is appropriate for the specific task at hand. The risk here is a kind of "jack of all trades, master of

nothing" compromise.

One path offered by touch-screen driven appliancesis this: instead of making a device with different buttons and

dials mounted onit, soft machines just draw a picture of the devices, and let you interact with them. So, ideally,

you get far moreflexibility out of a single device. Sometimes, this can be really good. It can be especially goodif,

like physical devices, you can touch or operate more than one button,or virtual device at a time. For an example of

where using more than one button or device at a time is important in the physical world, just think of having to type

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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without being able to push the SHIFT key at the same time as the character that you want to appear in uppercase.
There are a number of cases where this can be of use in touch interfaces.

Likewise, multi-touch greatly expands the types of gestures that we can usein interaction. We can go beyond

simple pointing, button pushing and dragging that has dominated our interaction with computers in the past. The

best way that | can relate this to the everyday world is to have you imagine eating Chinese food with only one

chopstick, trying to pinch someonewith only one fingertip, or giving someone a hug with — again — the tip of one

finger or a mouse. In terms of pointing devices like mice and joysticks are concerned, we do everything by

manipulating just one point around the screen — something that gives us the gestural vocabulary of a fruit fly. One

suspects that we can not only do better, but as users, deserve better. Multi-touch is one approach to accomplishing

this — but by no meansthe only one, or even the best. (How can it be, when | keep saying, everything is best for

something, but worst for something else).

e Feelings: The adaptability of touch screens in general, and multi-touch screens especially comesat a price.

Besides the potential accumulation of complexity in a single device, the main source of the downside stems

from the fact that you are interacting with a picture of the ideal device, rather than the ideal deviceitself.

While this maystill enable certain skills from the specialized physical device transfer to operating the virtual

one,it is simply not the same. Anyone whohas typed on a graphical QWERTY keyboard knowsthis.

User interfaces are about look and feel. The following is a graphic illustration of how this generally should be

written when discussing most touch-screen based systems:

Lo O k and Fee!

Kind of ironic, given that they are "touch" screens. Solet's look at some of the consequences in our next

points.

* If you are blind you are simply out of luck. p.s., we are all blind at times - such as when lights are out, or our

eyes are occupied elsewhere — such as on the road). On their own, soft touch screen interfaces are nearlyall

“eyes on”. You cannot “touch type”, so to speak, while your eyes are occupied elsewhere (one exceptionis so-

called “heads-up” touch entry using single stroke gestures such as Graffiti that are location independent).

With an all touch-screen interface you generally cannot start, stop, or pause your MP3 player, for example, by

reaching into your pocket/purse/briefcase. Likewise, unless you augment the touch screen with speech

recognition for all functions, you risk a serious accident trying to operate it while driving. On the other hand,

MP3 players and mobile phones mechanical keys can to a certain degree be operated eyes free — the extreme

case being some 12-17 year old kids who can text without looking!

e Handhelds that rely on touch screensfor input virtually all require two hands to operate: one to hold the device
and the other to operateit. Thus, operating them generally requires both eyes and both hands.

e Your finger is not transparent: The smaller the touch screen the more the finger(s) obscure what is being pointedat.
Fingers do not shrink in the same waythat chips and displays do. That is one reason a stylus is sometimes of value: it
is a proxy for the finger that is very skinny, and therefore does not obscure the screen.
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e There is a reason we don’t rely on finger painting: Even on large surfaces, writing or drawing with the finger is
generally not as effective as it is with a brush or stylus. On small format devicesit is virtually useless to try and take
notes or make drawingsusing a finger rather than a stylus. If one supports good digital ink and an appropriate stylus
and design, one can take notes aboutas fluently as one can with paper. Note taking/scribble functions are notably
absent from virtually all finger-only touch devices.

e Sunshine: Wehaveall suffered trying to read the colour LCD display on our MP3 player, mobile phone anddigital
camera when weare outside in the sun. At least with these devices, there are mechanical controls for some
functions. For example, even if you can’t see whatis on the screen,you can still point the camera in the appropriate
direction and push the shutter button. With interfaces that rely exclusively on touch screens,this is not the case.
Unless the device has an outstanding reflective display, the device risks being unusable in bright sunlight.

Does this property make touch-devices a bad thing? No,not at all. It just means that they are distinct devices with their own
set of strengths and weaknesses. The ability to completely reconfigure the interface on thefly (so-called “soft interfaces”) has
been long known, respected and exploited. But there is no free lunch and no general panacea. As | have said, everythingis
best for something and worst for something else. Understanding and weighing therelative implications on use of such
properties is necessary in order to make an informed decision. The problem is that most people, especially consumers(but
including too many designers) do not have enough experience to understand manyof these issues. This is an area where we
could all use some additional work. Hopefully some of what | have written here will help.

In the beginning ..... Typing & N-Key Rollover (IBM and others).

While it may seem a long way from multi-touch screens, the story of multi-touch starts
with keyboards.
Yes they are mechanical devices, "hard" rather than "soft" machines. But they do involve
multi-touch of a sort.

First, most obviously, we see sequences, such as the SHIFT, Control, Fn or ALT keysin
combination with others. These are cases where we want multi-touch.

Second, there are the cases of unintentional, but inevitable, multiple simultaneous key
presses which we want to makepropersenseof, the so-called question of n-key rollover
(where you push the next key before releasing the previous one).

Electroacoustic Music: The Early Days of Electronic Touch Sensors (Hugh LeCaine , Don
Buchla & Bob Moog).
httas/ www nughieca

The history of touch-sensitive control devices pre-dates the age of the PC
A numberof early synthesizer and electronic music instrument makers used
touch-sensitive capacitance-sensors to control the sound and music being made.
These were touch pads, rather than touch screens
The tradition of innovating on touch controls for musical purposes
continued/continues, and was theoriginal basis for the University of Toronto
multitouch surface, as well as the CMU Sensor Frame.

 
1972: PLATO IV Touch Screen Terminal (Computer-based Education Research Laboratory,
University of Illinois, Uroana-Champain)
hiro fen wikipedia ore/wiki/Plato comouter     

* Touch screensstarted to be developed in the second half of the 1960s.
« Early work was done at the IBM,the UniversityofIllinois, and Ottawa Canada.
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By 1971 a number of different techniques had been disclosed
* All were single-touch and none were pressure-sensitive
e Oneofthe first to be generally known was the terminal for the PLATO IV computer

assisted education system, deployed in 1972. 5
e As well as its use of touch, it was remarkable for its use of real-time random-access A

audio playback, and the invention of the flat panel plasma display.

* the touch technology used was a precursorto the infrared technologystill available
today from & i
The initial implementation had a 16 x 16 array of touch-sensitive locations

 
 

  
 

1978: One-Point Touch Input of Vector Information (Chris Herot & Guy Weinzapfel,
Architecture Machine Group, MIT).

The screen demonstrated by Herot & Weinzapfel could sense 8 different signals
from a single touch paint: position in X & Y, force in X,Y, & Z (i.e., sheer in X &
Y & Pressure in Z), and torquein X, Y & Z.
While we celebrate how clever we are to have multi-touch sensors,it is nice to
have this reminder that there are many other dimensions of touch screens that

can be exploited in order to provide rich interactione-Point

For similar work, ssee also: Minsky, M. (1984). Miith Real-Wor! a5 a Force ang Position
Computer Graphics, 18(3), 195-503,

: Tactile Array Sensor for Robotics (Jack Rebman, Lord Corporation).

A multi-touch sensor designed for robotics to enable sensing of shape, orientation, etc.
Consisted of an 8 x 8 array of sensors in a 4" x 4" square pad
Usage described in: Wolfeld, Jeffrey A. (1981). Aga! Time Contral of a Robot Tactile Sensor.
MScThesis. Philadelphia: Moore School of Electrical Engineering.
The figure to the right shows a computer display of the tactile impression of placing a
round object on the tactile sensor, shown in the foreground. Groover, M.P., Weiss, M.,
Nagel, R.N. & Odrey, N. (1986). industrial Robots. New York: McGraw-Hill, p.152.)
A US patent (4,521,685) was issued for this work to Rebman in 1985.
 
1982: Flexible Machine Interface (Nimish Mehta , University of Toronto).

« The first multi-touch system that | am aware of designed for human input to a
computer system.

* Consisted of a frosted-glass panel whoselocal optical properties were such that

bite: /wwe.bilboxton.com/maltiiouchOverviewhimi[8/8/20 11] 2:29:30 PM]

Page 1048 of 1714



Page 1049 of 1714

when viewed behind with a camera a black spot whosesize dependedon finger
pressure appeared onan otherwise white background. This with simple image
processing allowed multitouch input picture drawing, etc. At the time we
discussed the notion of a projector for defining the context both for the camera
and the human viewer.

« Mehta, Nimish (1982), A Flexible Machine Interface, M.A.Sc. Thesis, Department
of Electrical Engineering, University of Toronto supervised by Professor K.C.
Smith.

 
: Soft Machines(Bell Labs, Murray Hill)

This is the first paper that |am aware of in the user interface literature that attempts to provide a comprehensive
discussion the properties of touch-screen based user interfaces, what they call “soft machines”.
While not about multi-touch specifically, this paper outlined manyof the attributes that make this class of system
attractive for certain contexts and applications.
Nakatani, L. H. & Rohrlich, John A. (1983). Soft Machines: A Philosophy of User-Computer Interface Design.
Proceedings of the ACM Conference on HumanFactors in Computing Systems (CHI’83), 12-15.

: Video Place / Video Desk (Myron Krueger)

A vision based system that tracked the hands and enabled multiple fingers, hands,
and people to interact using a rich set of gestures.
Implemented in a numberof configurations, including table and wall.
Didn’t sense touch,perse, so largely relied on dwell time to trigger events intended
by the pose.
On the other hand, in the horizontal desktop configuration, it inherently was touch
based, from the user's perspective.
Essentially “wrote the book” in terms of unencumbered(i.e., no gloves, mice,styli,
etc.) rich gestural interaction.
Work that was more than a decade aheadofits time and hugely influential, yet not
as acknowledged asit should be. ENN
His use of many of the hand gestures that are now starting to emergecan beclearly

seen in the following 1988 video, including using the pinch gestureto scale and Myron’s work had a staggeringly
translate objects: Atta.) fyoutube com/warch fvedmimyVASwha rich repertoire of gestures, muti-
There are many other videos that demonstrate this system. Anyonein thefield finger, multi-hand and multi-
should view them, as well as read his books: person interaction.
Krueger, Myron, W. (1983). Artificial Reality. Reading, MA:Addison-Wesley.
Krueger, Myron, W. (1991). Artificial Reality I]. Reading, MA: Addison-Wesley.
Krueger, Myron, W., Gionfriddo, Thomas., &Hinrichsen, Katrin (1985). VIDEOPLACE-
An Artificial Reality, Proceedings of the ACM Conference on HumanFactorsin
Computing Systems (CHI’85), 35 - 40.

 
1984: Multi-Touch Screen (Bob Boie, Bell Labs, Murray Hill NJ)

e A multi-touch touch screen, not tablet.
¢ The first muti-touch screen that |am awareof.

« Usedatransparent capacitive array of touch sensors overlaid ona CRT. Could manipulate graphical objects with
fingers with excellent response time

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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« Developed by Bob Boie, but was shown to me by Lloyd Nakatani (see above), who invited meto visit Bell Labs to see
it after he saw the presentation of our work at SIGCHI in 1985

* Since Boie's technology was transparent and faster than ours, when | saw it, my view was that they were ahead of
us, SO we stopped working on hardware (expecting that we would get access to theirs), and focus on the software
and the interaction side, which was our strength. Our assumption (false, as it turned out) was that the Boie
technology would becomeavailable to us in the near future.

e Around 1990 | took a group from Xerox to see this technologyit since | felt that it would be appropriate for the user
interface of our large documentprocessors. This did not work out.

« There was other multi-touch work at Bell Labs around the time of Boie's. See the 1984 work by Leonard Kasday,(
3), which used optical techniques 

1985: Multi-Touch Tablet (Input Research Group, University of Toronto):
hito fwwwbillbustoncomoanershtmiganchori4399g7s

e Developed a touch tablet capable of sensing an arbitrary numberof
simultaneous touch inputs, reporting both location and degree of touch
for each.

* To put things in historical perspective, this work was done in 1984, the
same year the first Macintosh computer was introduced.

« Used capacitance, rather than optical sensing so was thinner and much
simpler than camera-based systems.

° AMut-Touch Three Dimnensinnal Touch -Sensitive Tablet (1985). Video at:
hrtos/ yawns|

1985: Sensor Frame (Carnegie Mellon University)

e This is work done by Paul McAvinney at Carengie-Mellon University
« The device used optical sensors in the corners of the frame to detect fingers.
* At the time that this was done, miniature cameras were essentially unavailable. Hence, the

device used DRAM IC's with glass (as opposed to opaque) covers for imaging.
* It could sense up to three fingers at a time fairly reliably (but due to optical technique used,

there was potential for misreadings due to shadows.
e Ina later prototype variation built with NASA funding, the Sensor Cube, the device could also

could detect the angle that the finger came in to the screen.

McAvinney,P. (1986). The Sensor Frame - A Gesture-Based Device for the Manipulation
of Graphic Objects. Carnegie-Mellon University.
McAvinney, P. (1990). Telltale Gstures: 3D applications need 3D input. Byte Magazine,
15(7), 237-240.
httns//otrsnasa cov/archive/nasa/cas ates nasa cov/i9GdSIAL P994NO2I GTnlf

 
1986: Bi-Manual Input (University of Toronto)

« In 1985 we did a study, published the following year, which examined the

benefits of two different compound bi-manual tasks that involved
continuous control with each hand

e The first was a positioning/scaling task. That is, one had to move a shapeto
a particular location on the screen with onehand, while adjusting its size to
match a particular target with the other.
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 The second was a selection/navigation task. That is, one had to navigate to

a particular location in a document that was currently off-screen, with one \~
hand, then select it with the other.

* Since bi-manual continuous control wasstill not easy to do (the ADB had
not yet been released - see below), we emulated the Macintosh with
another computer, a PERQ.

* The results demonstrated that such continuous bi-manual control was both

easy for users, and resulted in significant improvements in performance
and learning.

* See Buxton, W. & Myers, B. (1986). Astuely
Proceedings of CHI '86, 321-326.[yideo]
Despite this capability being technologically and economically viable since
1986 (with the advent of the ADB - see below - and later USB), there are
still no mainstream systems that take advantageofthis basic capability.
Too bad.

* This is an example of techniques developed for multi-device and multi-hand
that can easily transfer to multi-touch devices.

  
  

  
  
  
  
  
   
  
 

 

 

  
  
 

  
  

 
SS FES GR Goadiew Sant sigue1986: Apple Desktop Bus (ADB) and the Trackball Scroller Init (Apple Computer/

University of Toronto)
 

 
 « The Macintosh Il and Macintosh SE were released with the Apple Desktop

Bus. This can be thoughtof as an early version of the USB.

« It supported plug-and-play, and also enabled multiple input devices
(keyboards, trackballs, joysticks, mice, etc.) to be plugged into the same
computer simultaneously.

* The only downside was that if you plugged in two pointing devices, by
default, the software did not distinguish them. They both did the same
thing, and if a mouse and a trackball were operate at the same time (which
they could be) a kind of tug-of-war resulted for the tracking symbol on the
screen.

« My group at the University of Toronto wanted to take advantage ofthis
multi-device capability and contacted friends at Apple's Advanced
Technology Group for help.

« Dueto the efforts of Gina Venolia and Michael Chen, they produced a simple
"init" that could be droppedinto the systemsfolder called the
trackballscroller init.

« |t enabled the mouse, for example, to be designated the pointing device, and
a trackball, for example, to control scrolling independently in X and Y. See,
for example, Buxton, W. (1990). The Natural Language of Interaction: A
Fersoective on Non-Verhal Slalogues In Laurel, B. (Ed.). The Art of Human-
ComputerInterface Design, Reading, MA: Addison-Wesley. 405-416.

* They also provided another init that enabled us to grab the signals from the
second device and useit to control a range of other functions. See fr example,
Kabbash, P., Buxton, W.& Sellen, A. (1994). Two-Handed Input ina
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Campound Task. Proceedings of CH!'94, 417-423.

« In short, with this technology, we were able to deliver the benefits
demonstrated by Buxton & Myers (see above) on standard hardware, without
changesto the operating system, and largely, with out changes even to the
applications.

¢ This is the closest that we came, without actually getting there, of supporting
multi-point input - such as all of the two-point stretching, etc. that is getting
so much attention now, 20 yearslater. It was technologically and
economically viable then.

* To our disappointment, Apple never took advantage ofthis - one of their
most interesting - innovations.

 

: Bidirectional Displays (Bill Buxton & Colleagues , Xerox PARC)

First discussions about the feasibility of making an LCD display that was also an input device, i.e., where pixels
were input as well as output devices. Led to twoinitiatives. (Think of the paper-cup and string “walkie-talkies”
that we all made as kids: the cups were bidirectional and functioned simultaneously as both a speaker and a
microphone.)
Took the high res 2D a-Si scanner technology used in our scanners and adding layers to make them displays. The
bi-direc on gotlost in the process, but the result was the dpix display
(i on fAw : ak ] 1);
The Liveboard project. The rear projection Liveboard wasinitially conceived as a quick prototype ofa large flat
panelversion that used a tiled array of bi-directional dpix displays.

: Digital Desk(Pierre Wellner, Rank Xerox EuroPARC, Cambridge)

A classic paper in the literature on augmentedreality. Ppansosaee |
Wellner, P. (1991). The Digital Desk Calculator: Tactile manipulation on a desktop
display. Proceedings of the Fourth Annual Symposium on UserInterface Software and
Technology (UIST '91), 27-33.
An early front projection tablet top system that used optical and acoustic techniques to
sense both hands/fingers as well as certain objects, in particular, paper-based controls
and data.

Clearly demonstrated multi-touch concepts such as twofinger scaling and translation of
graphical objects, using either a pinching gesture or a finger from each hand, among other
things.
For example, see segmentstarting at 6:30 in the following 1991 video demo:
hitos/fvideogooglecom/videoolay Fdocid=S7725408788 1 Gre245 

1992: Flip Keyboard(Bill Buxton, Xerox PARC): waywbiilbuxton. cam

e A multi-touch pad integrated into the bottom of a keyboard. Youflip the keyboard to
gain access to the multi-touch pad for rich gestural control of applications.

Combined keyboard (touch tablet input device (1994). Click here for video ( from
2002 in conjunction with Tactex Controls).
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Graphics on multi-touch
surface defining controls for

variousvirtual devices.

: Simon (IBM & Bell South)

IBM and Bell South release what was arguably the world's first smart phone, the Simon.
Whatis of historical interest is that the Simon,like the iPhone, relied on a touch-screen driven
“soft machine” user interface.

While only a single-touch device, the Simon foreshadows a numberof aspects of what we are
seeing in some of the touch-driven mobile devices that we see today.
Sidebar: my two working Simons are amongthe mostprized pieces in my collection of input
devices.

: Wacom (Japan)

e In 1992 Wacom introduced their UD series of digitizing tablets. These were special in
that they had mutli-device / multi-point sensing capability. They could sense the
position of the stylus and tip pressure, as well as simultaneously sense the position of
a mouse-like puck. This enabled bimanual input.

*« Working with Wacom, my lab at the University of Toronto developed a numberof
ways to exploit this technology to far beyond just the stylus and puck. See the work on
Graspable/Tangible interfaces, below.

« Their next two generationsof tablets, the Intuos 1 (1998) and Intuos 2 (2001) series
extended the multi-point capability. It enabled the sensing of the location of the
stylus in x andy, plus tilt in x and tilt in y (making the stylus a location-sensitive
joystick, in effect), tip pressure, and value from a side-mounteddial on their airbrush
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stylus. As well, one could simultaneously sense the position and rotation of the puck,
as well as the rotation of a wheel on its side. In total, one was able to have control of

10 degrees of freedom using two hands.
While this may seem extravagant and hard to control, that all depended on how it
was used. For example,all of these signals, coupled with bimanual input, are needed
to implement any digital airbrush worthy of the name. With these technologies we
were able to do just that with my groupat Alias| Wavefront, again, with the
cooperation of Wacom.

Twe-Handed Input: An Exserimental Study. Transactions on Human-Computer
Interaction, 5(4), 326-359.

Starfire (Bruce Tognazinni, SUN Microsystems)

e Bruce Tognazinni produced an future envisionment film, Starfire, that included a
numberof multi-hand, multi-finger interactions, including pinching, etc.

1994-2002: Bimanual Research (Alias| Wavefront, Toronto)

Developed a numberof innovative techniques for multi-point / multi-
handedinputfor rich manipulation of graphics and other visually
represented objects.
Only some are mentioned specifically on this page.
There are a numberof videos can be seen which illustrate these

techniques, along with others:
btto www.bilbuxtoncon /buxtanAlasVideshtrnl

Also see papers on two-handed input to see examples of multi-point
manipulation of objects at:
bttoudwww.bilbuxton com/oapers nimibanchorl44 280?

1995: Graspable/Tangible Interfaces (Input Research Group, University
of Toronto)

e Demonstrated concept and later implementation of sensing the
identity, location and even rotation of multiple physical devices
onadigital desk-top display and using them to control graphical |
objects.

By meansof the resulting article and associated thesis
introduced the notion of what has come to be known as

“sraspable” or “tangible” computing.

Fitzmaurice, G.W., Ishii, H. & Buxton, W. (1995). Bricks: Laying
the foundationsfor graspable user interfaces. Proceedings of
the ACMSIGCHI Canference on Human Factors in Computing
Systems (CHI'95), 442-449.
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1995: DSI Datotech (Vancouver BC)

@ In1995 this company made a touch tablet, the HandGear, capable of multipoint sensing. They also developed a
software package, Gesture Recognition Technolagy (GRT), for recognizing hand gestures captured with the tablet.

@ The company went out of business around 2002

1995/97: Active Desk (Input Research Group / Ontario Telepresence Project,University
of Toronto)

« Around 1992 we madeadrafting table size desk that had a rear-projection data
display, where the rear projection screen/table top was a translucentstylus
controlled digital graphics tablet (Scriptel). The stylus was operated with the
dominant hand. Prior to 1995 we mounted a camera bovethetable top.It
tracked the position of the non-dominant hand on the tablet surface, as well as
the pose (open angle) between the thumb andindex finger. The non-dominant
hand could grasp and manipulate objects based on whatit was over and opening
and closing the grip on the virtual object. This vision work was done bya
student, Yuyan Liu.
Buxton,W. (1997). Living in Auemented Reality: Uiicul “dia and Reactive _ =
Environments, In K. Finn, A. Sellen & S. Wilber (Eds.). Vid diated Simultaneous bimanual and multi-
Communication.Hillsdale, N.J.: Erlbaum, 363-384. An earlier version of this finger interaction on large
chapter also appears in Proceedings of Imagina '95, 215-229. interactive display surface

 
   
  
  
  
  
  
  
  
  
  
  
  
  
  

 

 

: T3 (Alias | Wavefront, Toronto)

* 73 was a bimanual tablet-based system that utilized a number of techniques that
work equally well on multi-touch devices, and have been used thus.
Theseinclude, but are not restricted to grabbing the drawing surface itself from two
points and scalingitssize (i.e., zooming in/out) by moving the hands apart or towards
each other (respectively). Likewise the same could be done with individual graphical
objects that lay on the background. (Note, this was simply a multi-point
implementation of a concept seen in Ivan Sutherland’s Sketchpad system.)

« Likewise, one could grab the background or an object and rotateit using two points,
thereby controlling both the pivot point and degreeof the rotation simultaneously.
Ditto for translating (moving) the object or page.

* Of interest is that one could combine these primitives, such as translate andscale,
simultaneously (ideas foreshadowedby Fitzmaurice’s graspable interface work —
above).

« Kurtenbach, G., Fitzmaurice, G., Baudel, T. & Buxton, W. (1997). The design and
evaluation of a GU! paradiom based on tabets, two-hands and transparency.

Proceedings of the 1997 ACM Conference on Human Factors in Computing Systems,
CHI '97, 35-42. [ Video].
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1997: The Haptic Lens (Mike Sinclair, Georgia Tech / Microsoft
Research)

The Haptic Lens, a multi-touch sensor that had the feel
of clay, in that it deformed the harder you pushed, and
resumedit basic form when released. A novel and very
interesting approachto this class of device.
Sinclair, Mike (1997). The Haptic Lens. ACM SIGGRAPH
97 Visual Proceedings: The art and interdisciplinary
programsofSIGGRAPH '97, Page: 179

Tactex Controls (Victoria BC) nite:Awwwtactex.coms
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Kinotex controller developed in 1998 and shipped in Music Touch Controller, the MTC Express in 2000.
See video at: hittin: /wewwbilibuxton.com/flio keyboard s mov

~1998: Fingerworks (Newark, Delaware).

Madea range oftouch tablets with multi-touch
sensing capabilities, including the iGesture Pad. They
supported a fairly rich library of multi-point / multi-
finger gestures.
Founded by two University of Delaware academics,
John Elias and Wayne Westerman
Product largely based on Westerman’s thesis:
Westerman, Wayne (1999). Hand Tracking, Finger
Identification, and Chordic Manipulation an a Multi-
Touch Surface. U of Delaware PhD Dissertation:
btto.Awww.eeudel ecui/owesterma/main nd

Note that Westerman's work was solidly built on the
above work. His thesis cites Matha's 1982 work

which introduced multi-touch, as well as Krueger's
work, which introduced - among other things - the
pinch gesture. Of the 172 publications cited, 34
(20%) are authored or co-authored by me an/or my
students.

The company was acquired in early 2005 by Apple
Computer.
Elias and Westerman moved to Apple.
Fingerworks ceased operations as an independent
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company.

« However,it left a lot of fans, and documentation,
including tutorials and manualsarestill
downloadable from:

bito. wwwfingerworks com fdownloads htmi   

: Portfolio Wall(Alias | Wavefront,Toronto On, Canada)

A product that wasa digital cork-board on which images could be presented as a group
or individually. Allowed images to be sorted, annotated, and presented in sequence.
Dueto available sensor technology, did not us multi-touch; however, its interface was
entirely based on finger touch gestures that went well beyond whattypical touch screen
interfaces were doing at the time, and which are only now starting to appear on some
touch-based mobile devices.

For example, to advance to the nextslide in a sequence,oneflicked to the right. To go
back to the previous image, one flickedleft.
The gestures were much richer than just left-right flicks. One could instigate different
behaviours, depending on which direction you moved your finger. Touch to open/close image
In this system, there were eight options, corresponding to the 8 main points of the Flick right = next
compass. For example, a downward gesture over a video meant "stop". Agestureup to [lick left = previous
the right enabled annotation. Downto the right launched the application associated with Portfolio Wall (1999)
the image. etc.
They wereself-revealing, could be done eyesfree, and leveraged previous work on
“marking menus.”
See a numberof demosat: htte://www.bulbuocon.com/buxtonAliasVideashtml

2001: Diamond Touch (Mitsubishi Research Labs, Cambridge MA}
httev/www.emerl conf

example capable of distinguishing which person's fingers/hands are
which, as well as location and pressure
various gestures and rich gestures.
bitovAvwwdiamondspace, ime 

2002: Jun Rekimoto Sony ComputerScienceLa boratories (Tokyo)
http. {francs sony.co in/nerson/frekimoto/smartskin/       

ga
 

* SmartSkin: an architecture for making interactive surfaces that are sensitive to
human hand andfinger gestures. This sensor recognizes multiple hand positions
and their shapes as well as calculates the distances between the hands and the
surface by using capacitive sensing and a mesh-shaped antenna.In contrast to
camera-based gesture recognition systems,all sensing elements can be
integrated within the surface, and this method does not suffer from lighting and
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  Kentaro Fukuchi and Jun Rekimoto, Interaction Techniques for SmartSkin, ACM
UIST2002 demonstration, 2002.
SmartSkin demo at Entertainment Commuting 2003 (27ONet lenan} 

2002: Andrew Fentem (UK) itte://

States that he has been working on multi-touch for music and general
applications since 2002
However, appears notto have published any technical information or
details on this work in the technical or scientific literature.

Hence, the work from this period is not generally known,and- given
the absence of publications - has not been cited.
Therefore it has had little impact on the larger evolution ofthefield.
This is one example where | am citing work that | have not known and
loved for the simple reason that it took place below the radar of normal
scientific and technical exchange.
lam sure that there are several similar instances of this. Hence|

include this as an example representing the general case.

2003: University of Toronto (Toronto) Freeform

: rotation. (a)
paperoutlining a numberof techniques for multi-finger,

multi-hand, and multi-user onasingle interactive touch A
display surface. Ac NA|are used to
Many simpler and previously used techniques are ASS ‘ rotate an

omitted since they were known and obvious. NS object. (b)

Twofingers

Mike Wu, Mike & Balakrishnan, Ravin (2003). Multi-
Finger and Whole Hand Gestural Interaction Techniques
for Multi-User Tabletop Displays. CH/ Letters

Though the

pivot finger is

lifted, the

second finger
can continue

the rotation.

This

parameter

adjustment

widget allows

two-fingered

manipulation.
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2003: Jazz Mutant (Bordeaux France) bite: /wanwJazemutant.corn/
Stantum: Atto://stantum.com!

Make oneofthefirst transparent multi-touch, one that became — to the best
of my knowledge — the first to be offered in a commercial product.
The product for which the technology was used was the Lemur,a music
controller with a true multi-touch screen interface.

An early version of the Lemur wasfirst shown in public in LAin August of
2004.

Jazz Mutant is the companythat sells the music product, while Stantum is the
sibling companyset up to sell the underlying multi-touch technology to other

TouchLight (Andy Wilson, Microsoft Research): Ritu: ffresearch microsaft.com/vawilsoen/

Toauchlieht (2004). A touch screen display system employing a rear projection display and digital image
processing that transforms an otherwise normal sheetofacrylic plastic into a high bandwidth input/output
surface suitable for gesture-based interaction. Video demonstration on website.
Capable of sensing multiple fingers and hands, of one or more users.
Since the acrylic sheet is transparent, the cameras behind have the potential to be used to scan and display paper
documentsthat are held up against the screen .

2005: Blaské and Steven Feiner (Columbia University):
httoy/anandcs columbia edu/~sblaskos

Using pressure to access virtual devices accessible below top layer devices
Gabor Blask6é and Steven Feiner (2004). Si
MultinlePressureSensitiveStrips,
Proc. ACM Conference on Human Factors in Computing Systems (CHI 2004) Extended
Abstracts, 1461-1464

2005: PlayAnywhere (Andy Wilson, Microsoft Research):

Contribution: sensing and identifying of objects as well as touch.
A front-projected computer vision-based interactive table system.
Addressesinstallation, calibration, and portability issues that are typical of most
vision-based table systems.
Uses an improved shadow-based touch detection algorithm for sensing both fingers
and hands, as well as objects.
Object can be identified and tracked using a fast, simple visual bar code scheme.
Hence,in addition to manual mult-touch, the desk supports interaction using various
physical objects, thereby also supporting graspable/tangible style interfaces.
It can also sense particular objects, such as a piece of paper or a mobile phone, and
deliver appropriate and desired functionality depending on which..

2005: Jeff Han (NYU):
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2006: (Perceptive Pixel: hito://www.perceptivenike!.com/)

e Very elegant implementation of a numberof techniques and applications on a table
format rear projection surface.
  e ffiuiti-Fouch Sensing throuch Frustrated Total internal Reflection (2005). Video on
website.

e Formed ixel in 2006 in order to further develop the technology in the private 
sector

e See the more recentvideos at the Perceptive Pixel site:
hitos/ /wewewperceptivegixel coms

 
   

2005: Tactiva (Palo Alto) hito://wavw.tactiva.cor/

Have announced and shown video demos of a productcalled the TactaPad.
It uses optics to capture hand shadows and superimpose on computer screen,providing a :
kind of immersive experience, that echoes back to Krueger (see above)
Is multi-hand and multi-touch

Is tactile touch tablet, i.e., the tablet surface feels different depending on whatvirtual
object/control you are touching

2005: Toshiba Matsusita Display Technology (Tokyo)

Announce and demonstrate LCD display with “Finger Shadow Sensing Input”
capability

Oneof the first examples of what | referred to above in the 1991 Xerox PARC
discussions. It will not be the last.

The significance is that there is no separate touch sensing transducer. Just as there
are RGB pixels that can producelight at any location on the screen, so can pixels
detect shadowsat any location on the screen, thereby enabling multi-touch ina
waythat is hard for any separate touch technology to match in performanceor,
eventually, in price.
bitewwwtoshiba cois/im dey

_

2005: Tomer Moscovich & collaborators (Brown University)

* anumberof papers on web site: http://www.cs.brown.edu/people/tm/
e T. Moscovich, T. Igarashi, J. Rekimoto, K. Fukuchi, J. F. Hughes. "A Miulti-fineer

: ines." Demonstration at
U Symposium on UserInterface Software and Technology, Seattle, WA,
October 2005. (yicecs)
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: Benko & collaborators (Columbia University & Microsoft Research)

Some techniques for precise pointing and selection on muti-touch screens
Benko, H., Wilson, A. D., and Baudisch, P. (2006). Pre: a!
Muki-Toucn Screens. Proc. ACM CHI 2006 (CHI'06: Human Factors in Computing
Systems, 1263-1272
video

: Plastic Logic (Cambridge UK)

A flexible e-ink display mounted over a multi-point touch pad, thereby
creating an interactive multi-touch display.
Was an early prototype oftheir ill-fated QUE e-reader

 

: Synaptics & Pilotfish (San Jose)

Jointly developed Onyx, a soft multi-touch mobile phone concept using
transparent Synaptics touch sensor. Can sense difference of size of contact.
Hence, the difference betweenfinger (small) and cheek (large), so you can
answer the phonejust by holding to cheek, for example.f
hitte:/ Avww. synaoticscon fonyx/

: Apple iPhone btta://wwewaonlecom/iphoneftechnolcgy!

Like the 1992 Simon (see above), a mobile phone with a soft touch-based interface.
Outstanding industrial design and very smooth interaction.
Employed multi-touch capability to a limited degree
Usesit, for example, to support the "pinching" technique introduced by Krueger,i.e., using the
thumb and index finger of one hand to zoom in or out of a map or photo.
Works especially well with web pages in the browser
Uses Alias Portfolio Wall type gestures to flick forward and backward through a sequence of
images.

Did notinitially enable use of multi-touch to hold shift key with one finger in order to type an
upper case character with another with the soft virtual keyboard. This did not get implemented
until about a year after its release.

 
 2007: Microsoft Surface Computing &300:/

http://wwwblTbaxton.com/maltitouchOverviewhtmlf8/8/20 11 2:19:30 PM]
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« Interactive table surface

« Capable of sensing multiple fingers and hands
* Capable of identifying various objects and their position on the surface
* Commercial manifestation of internal research begun in 2001 by Andy

Wilson (see above) and Steve Bathiche
* Imageis displayed by rear-projection and input is captured opticaly via

cameras

« A key indication of this technology making the transition from research,
development and demo to mainstream commercial applications.

* See also Thinsizht and Surface 2.0tating

 
2007: ThinSight, (Microsoft Research Cambridge,UK)
hitos/ Awww.billbucton com/Uistthinsight df

Thin profile multi-touch technology that can be used with LCD displays.
Hence, can be accommodatedby laptops, for example
Optical technology, therefore capable of sensing both fingers and objects
Therefore, can accommodate both touch and tangible styles of interaction
Research undertaken and published by Microsoft Research
see also Surface 2.0

?

:N-trig bitesAwwwuttriscom
Sica RRR

Commercially multi-touch sensor
Can sense finger and stylus simultaneously
unlike most touch sensors that support a stylus, this incorporates
specialized stylus sensor
result is much higher quality digital ink from stylus
Incorporated into some recent Tablet-PCs
Technologyscales to larger formats, such as table-topsize

 

: Surface 2.0 (Microsoft & Samsung) fete:

4" thick version of Surface

Rear projection and projectors replaced by augmented LCD technology
builds on research such as ThinSight

result is more that just a multi-touch surface
since pixels have integrated optical sensors, the whole display is also an
imager

hence, device can "see" what is placed on it, including shapes, bar-codes,
text, drawings, etc. - and yes- fingers
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One-Point Touch Input of Vector Information for Computer Displays

Christopher F. Herot*
Guy Weinzapfel

Architecture Machine Group
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

The finger as a graphical stylus enjoys a coefficient of friction with glass sufficient
to provide input of direction and torque as well as position from a single point. This
report describes a pressure-sensitive digitizer (PSD) capable of accepting these force
inputs, and discusses a set of five simple input applications used to assess the
Capabilities of this device. These applications include techniques for specifying
vectors, and pushing, pulling, dispersing and reorienting objects with a single touch.
Experience gained from these applications demonstrates that touch and pressure sensing
open a rich channel for immediate and multi-~dimensional interaction.

Key Words: Touch Input, Pressure Sensing, Force Input, Tactile Input, Kinesthetic Input,
Pressure Sensitive Digitizer, Touch Sensitive Digitizer.

1.0 INTRODUCTION

It is a central thesis of the Architecture
Machine Group, that work places as opposed
to work stations, are a necessary
ingredient for the amplification of
creativity. (1) Work places are defined as
having a multiplicity of interactive media
which encourage a high degree of motor
involvement - tactile participation. By
austere comparison, work stations are
characterized by the all-too-prevalent
black and white CRT with its keyboard and
occasional light pen or other stylus. The
 

need for multimedia is based on the
assertion that; regardless of task;
information relatin to creative

performance is best perceived through a The excitement generated by TSDs derives
variety of senses including at the least directly | from pneie abi ity fe provide3
sight, sound, and touch. While several of The umbilical cord. attached to theour current projects explore the i . :
integration of multiple media (2,3-4), conventional stylus is removed; in fact
this paper reports on one effort to the entire notion of a physical stylus is
develop a channel of tactile input. voided. Alsa, dislocations caused byseparate input and presentation surfaces

Recently, interest has grown around a can be circumvented by superimposing
class of instruments known as touch transparent TSDs directly over display
sensitive digitizers (TSDs). Using a surfaces.
variety of technologies (5), these devices
are capable of determining the X, Y While the potentials for more natural;
position of a finger’s touch without coincident and even multi-finger input are
resorting to an intermediate physical obvious and are being developed by other
stylus. ‘programs(6), little exploration has been

undertakea in the area of
_. multi-dimensional input - the sensing of

The work reported herein was conducted pressure as well as lecation
between July 1, 1977, and October 31, parameters(7,8,9). Yet this domain offers
1977, under Army Research Institute Grant a rich potential for man-machine
number DAHC19-77-G-0014, Nicholas interaction. The work described in the
Negroponte, principal investigator. following pages was designed to explore

that potential - to test the ability of

* Mr. Herot’s current address: Computer the human finger to input variable
Corporation of America, 575 Technolegy pressure and direction from a single
Square, Cambridge, Massachusetts. touch.
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1-1 OUR LABORATORY“S TSD.

In April, 1976, the Architecture Machine
Group acquired a TSD from Instronics, Ltd.
of Ontario, Canada. This device consists
of a sheet of clear glass with
piezoelectric transducers mounted on two
adjacent edges. The glass is doubly curved
to match the face of a display tube(10).
The transducers are used to induce
acoustic waves in the surface of the
giass. These Waves are reflected back to
theiz source by fingers touched to the
giass surface. The Location of the touch
is determined by ranging those echos({1ll).

It was
users sweep
display surface,

hoped that the TSD would enable
their fingers over the

thus drawing, even
“fingerpainting," with the computer. It
was found, however, that in order to
insure proper input readings, users had to
press the TSD with a force that generated
friction between finger and glass
sufficient to prevent smooth, sweeping
gestures. As a result, the device seemed

better suited to pointing than to drawing
Ox painting.

to

opened the
finger-glass
Namely, the

This reality, however,
possibility ef using the
friction to unique advantage.
TSD could be mounted on the display with
strain gauges such that forces induced by
the finger could be used to input
pressures both normal to and parallel with
the input surface. In this way, the device
could become a pressure-(as well as
touch~) sensitive digitizer - a TSD/PSD.

Such a configuration was implemented (as
described in Section 3.0) and provided the
basis for a four month research program
designed to evaluate the characteristics
of pressure sensitive input. The following
section discusses the methods used to
conduct that evaluation.

2.0 APPLICATIONS.

Five input routines were developed to
assess the input characteristics of the
PSD. These included:

1. Force Cursor,
2. Vector History,
3. Pushing/Pulling,
4. Dispersion, and
5. Rotation

In addition, an attempt was made ta
utilize the xX and Y torques to determine
the position of the finger, so as to
eliminate the need for a TSD altogether.

Due to the short duration of the project,
evaluation of the device was limited to

informal use of the five input routines by
a diverse user population, consisting of
the laboratory staff and the many visitors
which the laboratory attracts from
computer science, the arts and various
industries. No attempt was made to
quantify improvements in throughput,
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productivity, or task enjoyment resulting
from use of the device. However, all users
agreed that improvements were indicated in
each of these areas.

 
2.1 FORCE CURSOR.

The
sensing

initial routine provides the pressure
equivalent of a conventional

cursor <- that is, a graphic feedback
mechanism which shows the user what is
being input. The routine does this by
displaying a vector, or arrow, whose
origin coincides with the touch point,
whose head lies in the direction of the
force being exerted by the finger, and
whose length is proportional to that
force. At the same time, the z force
(pressure normal to the face of the
screen) is reported as a square, whose
size is proportional to that force.

Use of the force cursor has produced some
Surprising results. While its function is
obvious to all who observe it, many people
experience initial difficulty making it
behave as they expect. Most notably,
novice users have difficlty making the
vector point in the directions they
desire. This difficulty derives not from
the equipment, but from the fact that
people do not always press in the
direction which their finger appears to
indicate. Typically, this problem is
encountered with the user’s first vector.
The novice will press the surface of the
device, causing an arrow to appear in
proper alignment with the finger; but as
the finger is rotated, the direction of
the vector often fails to follow. Close
observation has revealed that this results
from the fact that the user actually
maintains pressure in the original
direction though the finger changesorientation.
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Portunately, the learning curve with this
routine Ls quite steep. This most
certainly has ta do with the faet that the
devics takes advantage of the user’s
existing eyerhand coordination skills.
Pollowing some initial difficulty, meat
users are able to control the direction of
their vecters with Less than a minute’s
practice. In fact, many users, realizing
that the orientation of theix fingers is
iyxyelevant to the direction of the veotor,
are able to manipulate the carsor from a
single, aatural hand position.

initial
was more

Beyond
there

placing
acceptable

this training problem,
ehronie difficulty:

thea tip ef the arrow with
accuracy. This was expecially

true as yreater extensions (and hence
larger farces} were attempted. This
problem is similar to that of using a leng
pointer at a blackboard: the vector bobbed
and wobbled at its greatest extension. To
counteract this drawback, a damping effect
was added to the cursor coutine to fllter
out minor prassure fluctuetons. This
filter proved a sufficient solution. as
users are now able toe point at gpenifiec
targets {e.g.,; the manu labels) from
exigins well acress the screen. The force

a

fursor demonstrates that the PSD can be
used for reasonably accurate inputs of
direction and magnitude.

 
2.2 VECTOR HISTORY.

The second routina was designed to
evaluate she potential fox guiding a
eaxyrser From a stationary input position.

the curser seribed a path as
control of the finger’s
routine underwent two

implementations. In the first, the speed
of the curser was constant: only its
@irention was controlled through the PSD.
KR later implementation allowed thea speed
to be controlled as well.

In this case,
it moved under

pressure, This

Most users, having trained with the force
vector, encountered Little ditfienlity in
@ixecting the mobile cursor. For example,
many people were able to write their names
on theix first attempt.
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though, the variable-speed
mare diffienlt to use. This

results from the fact that as the cursor
deviates from an intended path- most
people’s reaction is to press harder on
the input surface. Since this does nat
necessarily change the cursor’s dixection
but does increase its spead, "arrors” are
exaggerated.

Surprisingly:
varsion was

Nouetheless, the process of contxolling a
mobile cursor from a single point on the
screen appears to be an engaging and
successful use of the device. Real world
applications (such as nevigating ahbuut a
map display} tan @asily be imagined for
its use.

2.3 PUSHING/S PULLING.

fo explore the PED’ s potential for moving
ebjects ather than a cursor, a routine was
implemented which allows users to mave

ars

objects about the sgearean. This routine
aiffers from the previous capability, as a
specific object Ls indicated
Simultaneously with the input of force.
Here; the user points to an obieet and
gives it a push. The touch is used to
identify the object, the pressure to
impart a direction and speed. Thereafter,
the user does not need to track the object
with the finger but can direct ites
movement fram a static position. Use has
demonstrated this routine to he a viable

means for Girecting the movement of
selected objects, as users ars abla to
reposition objects with considerable ease,

ie was hoped that this routine might also
provide users with a sense for the
rélative "weights" of displayed obieects.
fo test this potential, the routine was
elaborated ta incerparate paramstars for
differentially weighted objects. That is,
the routine would cause a “Lighter” object
to move in vesponse to Lighter touch

a

than that required for a “heavier*

the routine failed to provide the
desired perception of weighted abjects.
This failure was attributed to the absence
of an essential mode of feedback from the

However;

input device ” namely- the
tactile/skinesthetic sensation of the
objeet”’s physical displacement. When a
persen pushes an object in the natural
environment, the weight of the object is

ported nat only by the pressure returned
to the Finger, but the movement which is
both seen by the eyes and felt by the
finger. 3 short, several faedhack
channels aiesce to impart a coharent
perception ot the object’ s physical
preperties{12). In thea fase of the
pressure-sensitive device, there a
couflict between the kinesthetic res
of the real object (the glass surf
which the finger reports as statia
and the virtual which the
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report ag moving. This conflict is
sufficient to impair the appraisal of the
ebject’s weight reported by the
finger-sensed pressure. This is not to say
that usSE@xS ga ined no perception of
weightings, fer it was clear to all users
that some objects moved more easily than
others. But no ane was able to say that
Gne abject was “twice as heavy" as
another.

Nonetheless, it should be emphasized thet
the limited perceptions of weight did not
impair the user’s ability to manipulate
the objects. Most usexs were egually
comfortable using either routine to
xelocate objects.

3
2>4 |a ohISPERSTOos: re

in
PSD

gallery"
ability

perhaps the most engaging of ali the
applications, a graphic “shooting

was davised to test the device's
te accommodate inputs which

disperse numbers of elements in various
directions. This routine causes small,
BReLike circles to emanate from the user’ s
finger tip as ait is pressed on the
screen’ s suxrfece. The number, speed, and
@Gixraction of the BB*s is contrelled by the
pregsuxre of the usex’s finger. A
procession of maving targets (in fact:
small ducks) ais played acress the top of
the sereen to test the accuracy of the
users “shots.”

who had
the

Interestingly
experienced
previous
requirements
gsapidly. In

enough, even users
some difficulties with

routines adaptad to the
of this application quite

fact, some “hunters” advanced
to the point where selected ducks could be
felle@a@ with single shots. This calis for
very accurate control indeed.

 
2.5 ROTATION.

The £ifth routine wag designed to evaluate
the PSDs ability to measure torque inputs
and to us@ these méasurements to advantage
in interaction. For this purpose, a simple
knob ais displayed .on the screen with an
arrow indieating its angular position. It
was hoped that torque about the 3s axis
eould be measured with suffielent
Sensitivity that even minute twists of 4
Single finger could be used to tarn the
Qisplayed knob. However, when tne device
Was tuned te a level sensitive enough te
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measure these subtle inputs, the user’s
intentions were overshadowed by vibrations
in the xvoom and in the equipment itself.
Onee the sensitivity of the 2 torque
pickup was lowered, it became possible for
users to turn the knob with two fingers.
In fact, the pesition of the knob can be
adjusted to within 5 degrees of rotation
with little diffieulty. Further tuning of
the algerithm and the hardware might
permit even greater accuracy.

sizeable knob wasThough a single, rather
used for this application, the success
achieved opens nmumexroug additional

For example, speeific
in a complex display could
and reoriented via simple,

dixrect manipulation, thus obviating the
nee for multiple cemmands for ecbject
selection and action specification.

possibilities.
machine parts
be identified

2.6 POSITION DETECTION.

in addition to the more elaborate
capabilities described above, it was haped
that «4 means of detecting the position of
a surface touch could be arcomplished
directly by the PSD without using the echo
vanging of the Instronics device. The
algoxithm used fox this measurament
divided the X and Y wtorgues by the 4
forea. The results ef this funetion were
normalized fer the direction of forces
parallel ta the input surface and
amplified te produce the lecation of the
finger. This approach produced a
caiculated touch point with a resolution
equal to that of the PSD, but the locus of
the point wag influenced by the force and
@ixection of the touch. The seurce of this
infduence was never adaquately understood,
ang no selutien wags conceived in the
caurge of the atudy (13}.

2.7 EXTENSIBILITY.

it should be neted that the applications
described above were selected because they
eould all be accomplished in the time
available. Ti was clear from the onset how
gach capability should work, and the
amount of pregrauming required for each
was quite Limited. In short, the routines
were appropriately matched to the four
month @Qaration ef the research,

 

It ds not diffLeualt,
of more slaberate
sensitive device. For example, a three
dimeusionsl dynamic modeling system could
use the PSD fox tactile manipulation of
machine parts, building volumes, and the
Like, It is easy to imagine turning a
machine part by twisting its
representation on the sereens or retating
@ building display by pushing on a corner.

concel ve
pressure

however, 0
for aUses

In shorter the potentials for tactile
involvement. and physical feedback from
such a devices were only hinted at by this
beief exploratory work.
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9.0 PRINCIPLES OF OPERATION.

The PSD employs eight strain gauges, two
each secured to mounting rings centered on
the four sides of the TSD. Of the two
gauges secured to gach ring, one measures
force perpendicular to the glass and the
ether MOSSUrTeS Shear parallel toa the
giass. These eight measurements are then
used to derive the three force and three
torque scutputs which are used by the
routines described in the previcussection.

3.3 MOUNTENG AND STRAIN GAUGES.

The TSD is secured to the CRE by means of
four specially machined, eetagonal,
aluminum rings. All forces exerted on the
TSH are transmitted to these rings, thus
causing deformations which in turn flex
the strain gauges gecured te them. the two
gauges aré cemented to each ring as shown
in the adjacent figure. Theixy placement
insures that the ferces which they sense
axe orthogonal to one another.

t Sheaxy Sensing Guage

 

Force Sensing Guage

ft happans that the thickness,
flexibility

and hence

of these rings is critical te
the sensitivity of the gauge’ s
Measurements. Unfortunately; the rings
machined for this implementation were
designed ta accommodate vary subtia
pressures: the fact that the Sh

necessitates high finger pressures was not
taken into account in their sesign. Nox
was the vibration from nearby machinery
foreseen as ai problem. As a result.
development of the five input routines wag
somewhat hampered by vibration axed
pressures which exceaded the output range
of the gauges and related circuitry. Were
the equipment to be rebuilt, heavier rings
would greatly improve its performance.
Alternatively, dead cells, rather than
strain gauges might be used. Load cells
measure pressures without deformation.
However,

these devices are siqnificantly
more expensive than the strain gauges used
for this implementation. °
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3.2 ELECTRICAL DESCRIPTION.

(SPBI=3595 06)
Semiconductor

The PSD utilized nine BLH
samiconductor strain gauges.
gauges were selected because of their
sensitivity to miniseule strains. Howevers
as semiconductor devices, they are also
very sensitive to changes in temperature.
Accordingly, a uinth gauge mounted such
that no strain could be exerted upon it is
amployed to provide a reference sutput to
which all other gauges can be compared.
The gaugea outputs, which vary batween plus
and minus 10 miliivalts peak to peak, are
each comnactad ta preamplifiers which
impart a gain of 50; the resultant “raw*
output is .3 volts peak to peak.

The "“wraw" -
preamplifiers
adi tference

vyaltaqges from the strain gauge
are combined by sum and

networks to produce outputs
which correspond to X force, ¥ force, XX
moment. Yo moment; and % moment. The sums
of oppasite tergqus gauges are used to
Provide the torques about each axis.

IN [Ne
~ { ~

i i { %erque

_— | X-Force SS aboot X Axis}“S| mk
is P
, oY ~
\ ¥~Force i Y-Torque{Bbout ¥ Axie)i

//L—-

o>/ _/ pentfo
B-Force 2-Torquefv {About 2 Aig}A,fbem

The six force and torque outputs are
canverted ca digital signals by a
Burr-Brown SDM853 data acquisition system
{OAS}. Yhe inputs to the DAS are limited
to 6.2 volts to prevent overloading the
A/D canverters., The DAS produces a4 12 bit
output for each of the 6@ analogue inputs.

3.3 DIGITAL INTERFACE.

The outputs From the DAS are stored in a
buffer, allowing the BAS to assemble the
next sample while waiting for the computer
to read the current values.

The computer interface allows program
selection of elther byte or halfword mode.
in byte mode, anly @ most significant bits
of eaen force and orqug are used,
allowing fast and easy access to the data.
In halfword made, the programing ig a bit
more complicated, but all of the data bits
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ar Due to the influence of
vibration on low order bits, the device
Was operated primarily in byte mede far
the experiments degseribed here.

&avallable.

3-4 SYSTEMS SOFTWARE.

The PSh is equipped to interrupt the
computer when data is available. However,
since the PSD is always used in
eenjunction with the TSD, the interrupt
eireuitery of that device was ased. When
the TSP detects the finger touch, the
program xvéeads the position from the TSD
and the forces and torques from the PSD.
Since hysteresis of the strain rings and
uncompensated temperatre drift often canse
the untouched BSD to produce non-zero
veadings, it is additenaliy important that
the TSH interrupt be used. When the
software detects that the device is not

it reads the values of the
30 as to use them as zero

next time the PSD is

being touched,
forces/torques
references the
touched,

Deift due te Lempexrature changes generated
problems for the initial input routines.
This was overcome by adding software to
sample the force and torque readings when
the TSD was not being touched. The latest
readings, then, were used as offsets for
subsequent inputs. However, this software
campensation was made at the expense of
the system’s overall response range: the
offsets blased the device unpredictably. A
zeroing circuit was designed to correct
for temperature drift in hardware. This
circuit was not installed due toa the short
duration £ the study and the anticipated
eost aggoclated with its installation.

4.0 CONCLUSIONS.

Development
routines
Getermine
First, we

of the PSD and related input
WAS undertaken in order to

answers to several questions.
wished to know if it was

technically feasible to measure finger
pressures on a sheet of glass and to
decompose those pressures inta their KX. ¥-
a force and torgue components. That
question has been answered in the
affirmative.

Second, the wo rk was conducted ta
determine if foree and torgue inputs could
be applied with sufficient accuracy and
cantrol tao be usefal for manemachine
cammunication. All of the input routines
indicate that accuracy presents no serious
problem, especially where continucus,
xG@aletime, graphic feedback is provided
fas in the Foree Cursor and Rotation
routines}. Vectar History indicates that
flexible, easily controlled intexaction is
pessible as well. However, this routine
@iso shows that force input is more suited
to the modulation of velocities than for
the control af accelerations.
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routines were used to
determine if a pressure~sansitive device
could convey more natural parceptions of
virtual abjects. While limited success was
athieved in conveying the differential
weights of ebjects, the quality af such
parceptions is only marginally improved by
the use of the PED. It would be misleading
to rely upen the device as a mechanism for
providing passive foree Feedback.

Third, the input

Pinally,
developed to
heneFits which
implementation of
definite
Pirst,
angaging

the FSD and its routines were
explore any unforeseen
might acerue fErom the
such a device. Here, two

advantages can be identified.
the PSB/TSD combination affords

and facile interaction which
attracts and maintains the participation
ef ali whe witness its usé. Second, the
device has proven innately gimple to use.
By capitalizing on natural skills, the FED
enables users to take advantage of
virtually ali its capabilities within
minutes. At a recent open house it was
astounding to see four-and five~year~old
children pointing at words with thea
VECtors turning the knob about and
shooting ducks with obvious glee.

Of course, the PSD’ s ultimate advantage is
its ability to collapse activities which
otherwise require geveral aistoint
commands into single, natural, tactile
actions.
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MastersThesis

REAL TIME CONTROL OF A ROBOT TACTILE SENSOR

Jeffrey A. Wolfeld

Philadelphia, Pennsylvania

August 1981

Abstract

The goal of the Experimental Sensory ‘Processor project is to

build a system which employs both visual and tactile senses,

and then explore their interaction in a robotic environment.

Here we describe the software involved in the low level

control of the tactile branch of this system, and present

results of some simple experiments performed with a

prototype tactile sensor.
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Chapter 1: Introduction

L.1l Metivation

Artificial Intelligence researchers have worked

extensively with vision systems in an attempt to give

somputers, and eventually rebots, a sense of sight. A great

deal of this research has heen directed toward overcoming

certain basic inadequacies in our current technology. For

example; imperfect light sensors dictate that noise must be

eliminated or tolerated. Insuffielent spatial resolution

requires routines which will interpolate below the pixel
Level.

One of the most important problems is that a camera

produces a two-dimensional image of a three-dimensional

scene. This invalidates an assumption which ene would Like

to rely upon -- that two adjacent points in the image are

adjacent in the scene. Therefore, substantial effort has

been devoted to reproducing 3-D data from one or several

visual images. Tactile sensors can be used to aid the

process.

An imaging tactile sensor, by its very nature, dees not

have the problem. Since it produces a two-dimensional image
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ef a two-dimensional scene, it does not provide as much

information, but it yields useful information clearly,

without the need for complicated heuristics.

We can take this one step further. Suppose a tactile

sensor is mounted on some kind of computer controlled 3-5

pesitioning device. Then, by moving the sensor to different

Points on a target object, the computer can actually obtain

3-D data directly, and much more selectively. T£ this

information is used to supplement and augment visual data; a

great deal of processing may be avoided.

One can come up with many other uses for varying kinds of

tactile sensors. Briot [BRIOT-79] demonstrated that tactile

sensors mounted on the fingers of a robot hand can be used

to determine the position, orientation, and perhaps even the

identity of an object which it has grasped. He also showed

that a grid of pressure sensitive sites on a table can tell

@ vobot the location, orientation, and again, the identity

of a part. It should be possible with multi-valued pressure

S€ngOrgs, as opposed to binary sensors, to determine the mass

ef the object. When the angle is small, a tactile senser

ean be used to compute the angle between it and the object

being grasped, possibly with a view toward improving the

grip. Also, if the device is sensitive enough, it can be an

invaluable aid te a rebot attempting to grasp a fragile

abject without breaking it. Finally, a-tactile sensor makes

it possible to incorporate the properties of surface texture
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and resilience inte the object recognition process.

1.2 Project Overview

fhe design and development of the tactile system has

proceeded with two086GT fferenk sensors in mind.

Unfortunately, there are so many disparities between the two

that we had difficulty keeping the system general enough te

handle both. het this serve as a demonstration of the

variety of characteristics that must be considered for a

given application.

The first sensor is about five inches long, with an

octagonal cross section about 3/4 inches in diameter. Each

of the eight rectangular faces is cennected te a tapered

plece, which is in turn connected to a common tip piece.

There are a total of 133 sensitive sites -- 16 on each main

face, one on each alternate taper, and one oan the tins.

Because of the the vague resemblance, we will refer to this

sensor as the Finger.

fhe second sensor, the Pad, is a Flat rubber square

about two and one half inches en a side. An 8 x & grid of

cenical protrusions identify the 64 pressure sensitive

sites. The pad is mounted on 8 square metal piece, about

three and one half inches on a Side, which is in turn

sommected to another similar piece by four metal posts.

These posts have strain gauges on them which measure the

ferce parallel to the object's surface.
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Initially, we only considered the finger. Because of

its shape and organization, the sensor is best suited to

applications involving probing and tracing. This includes

testing for resiliency, examining surface texture; and

tracing cross-sections of an object. In cur view, texture

would be thought of as a kind of microseapic contour, while

the cross-section tracings would yield & macroscopic

contour. Taken together, we would be able to acquire an

extremely detailed description of very selective parts of

the object in question.

Unfortunately, this rather vague idea has net been

developed. We have instead dealt with the two deseriptions

independently with the assumption that they can both be

inecerporated into a general object recognition system.

For his Master's Thesis, David Brown [BROWN-SO]

developed a three-dimensionail positioning device for the

finger. Basically, itis a square horizontal metal frame

mounted on feur legs. Moving forward and backward on this

is a@ second, vertical square frame. A vertical track rides

left to right on that, and a rod moves up and down in the

track. The finger would be mounted with its tip downward at

the bottom of the rad.

Thus, we have three degrees ef freedom -~ the ZX, ¥ and

Z axes -~ gach positioned by a stepper motor driving a lead

screw. This gives us the capability of examining, from the

top, any object or objects placed ona table below the
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herizontal frame, in a tetal working volume of about 18

ecubie inches. Since the degrees of freedom are strictly

positional, as opposed to rotational, we are not capable of

reaching under an overhanging Lip, or sideways below a

-eovering section. This places certain restrictions on the

Rind of object we can exXamine. If we think of che

horizontal axes as X and ¥, then the obiect must ke

describable as a strict funetion of those two variables.

Needless to say, this is net a robot arm, but we felt it

would suffices, temporarily at least, for aur research.

fhe positioning device and tactile senser are directly

eontrolled by a pair eof 280 microprecessors, which are in

turn under the command of a PDP-11/60 minicomputer. Of the

2860's, one (the Motor Control Processor, MCP) is responsible

for driving and positioning the stepper moters, and the

other (the Tactile Sensing Processor, TSP) is dedicated to

tactile data acquisition and compression. ‘The MCP and TSP

communicate with each other via a 14-bit wide parallel data

path. The PDP-11/66 issues high level commands, and

receives positional information, through a serial connection

to the MCP. Finally, tactile dats is passed to the 11/68

through a DMA Link from the TSB.’

One of the aforementioned high level commands would

request the microprocessors to trace the cross-section af an

object in any arbitrary plane in space, passing the sequence

ef 3-2 coordinates back to the host computer. A great deal
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of thought went inte the implementation of this command, and

it is, te  gome extent, responsible fer the architecture

described above. The procedure will be described in detail

in a later ssetion. It is a good example sof how tactile

sensory feedback can be used in a real time, closed loop

fashion.

fhe finger was desiqned and fabricated at L.A.A.S., the

major rebotics establishment of the French government.

Because of a severe lack of communication, many of the

finger's details were not known to us when the saftware was

being designed. This had a positive affect in that we were

forced to be as general as possible. However, due to a

mumber of unexpected delays, we still do not have the finger

in Gur possession.

We arranged to borrow the pad sensor from Lord

Corporation in Erie, Penna.*® They traditionally deal with

blending cubbers and bending rubber to metal. This sensor,

Still in the prototype stage, is an attempt to expand their
business.

At any rate, we had the pad sensor in our possession

for three very long days. In preparation for that ordeal,

we planned a number of different experiments. The Lord

people were very helpful in this, and they provided us with

the appropriate wooden test objects.

‘BO 00! AO ONe <OOt NOE 200;aN0 OD AAC 10OE-.2GO! DBC GOD G00 .G0E MIN 1OOE IO SAN JAR CODE ADO OS O00 SAN JOE JOE JOO BBO UE O00 s000 TCE 200! JOE YD GOD COD AU ADE 2000 SAO SOC GOR GOD GOP KEIO OE FOO 2 JOO, UO YE OO. GUD GUE OUP OO SIDE RIE ANIL ARK JOO, HE WK GOR) 4/0 GUD GUO..600 Up G00 GUE

® Lord has since moved to Cary, South Carolina.
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The characteristics of the pad sensor are very

@ifferent than those of the finger. In particular, there is

eniy one sensitive face. This makes the pad much less

suited te contour tracing. We therefore decided ta

concentrate on some of the ether aspects of tactile

sensing -~ dynamic texture analysis; static pattern

gecognition, and measurement of small angles between the

ebject and sensor surfaces.

The ensuing sections will describe in detail the work

performed.
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Chapter 2: The Proposed Microprocessor Software

In anticipation of the arrival of the finger, a great

deal of software was planned. Then, when the delays became

apparent, work on those aspects not directly applicable to

the pad sensor screeched to a halt. As a rasult, some of

the desion described here has not yet been implemented. In

a later section we will diseuss in detail exactly what the

axisting software does.

One of the important features of the Experimental

Sensor Processor is its delegation of lew level tasks tea

ether processors. This helps to diminish the computational

Load on the host pdp-11/60. The tactile branch, in keeping

with this principle, would have a set of commands which

could be invoked by the hast to perform various T/O and

timing intensive operations, or functions involving real

time feedback. Following are some of the commands that were

considered:

1. Reset the machine.

2. Move to absolute coordinates (x, ¥, Zh, Stop on
collision with an abject. This can be used ag a
*find something in this direction” command.
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3. Sean Cross-section -- Trace the contour of an

ebject in an arbitrary plane in 3-space.
Returns ta the hest a list cE step vectors

- @escribing the finger's path. . .

4, Local Texture -- Trace around a small circle on

the surface of an object and produce a
description of the texture. This could be in
terms of degree of roughness, degree at
compliance, Or something as crude as a list of
Pressure values for each point in the path.

5S. Search (in an as yet unspecified manner) for
either a concave ora convex edge. Ye is
assumed that the finger is already in contact
with a surface.

&. Follow the contour of a concave or convex edge.
Passes a list of step vectors to the hest
describing the finger's path.

The first command, Reset, is trivial. Tt simply

invelves the reinitializatien sof variables. The move

command, due to its fundamental nature, has been implemented

for use with the pad senser. The croes-gectional scan

command has received a great deal of attercion, but has not

been completely implemented hecause of its incompatibility

with a single~face sensor. The Einal three commands, Local

Pexture, Find Edge, and Follow Edge, have to date received

very little serious consideration. They are quite

tentative, and may never be implemented.

2.1L Processors

As described in other sections of this thesis, the

tactile branch consists of two microprocessors, the Tactile

Sensing Processor (TSP), and the Moter Control Pracessor

{MCP}. A different program runs in the firmware of cach

LO
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processor. Both are entirely interrupt driven using the

Z-80 vectored interrupt system. From the host computer's

point of view, the TSP provides data for texture analysis,

and the MCP provides data fer contour analysis.

Zai.i Tactile Sensing Processor

The TSP program consists of a single loop in which each

ef the sensors is interrogated for its 8-—bit pressure value.

Each value ig thrown into one of three categories with

respect to ai low and a high threshold. the category
indicates whether the sensor is not touching anything, is in
ecentact with an object, ar is pressing the object tom hard.*

The sensors are then grouped by finger face, anda face

status is computed for each face using the following rules:

TE any sensor .s ever range, the face is over range;
If all sensors are below range, the face is below range;
Otherwise, the face ig within range.

If there were any face status changes since the last pass,

the Moter Control Processor is informed.

It is worth noticing that this condensation algorithm

is independent of the particular organization of the finger.

The number of faces, the faces’ orientations, and even the

* We hope that the sensors have enough compliance of their
'OWn SO we can arrange the thresholds successfully. We

would like te quarantee that for any movement toward an
object, there is at least one position in which the
leading sensor is “in sontact® before it exceeds the upper
threshold.

il
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mapping of sensor number to face number are stored in

tabular form, and may be altered according to the parameters

ef a different sensor. Tt will be obvicus later that the

more €aces we have, the easier it is to keep in contact with

an object. In the ideal case, we would Like a hemispherical

finger with many sensers, each on its own face. Such an

erganigation can be accommodated just as well as the current

finger.

In addition to providing this condensed status

information for the sister processor, the TSP must send some

data to the hest, for the texture analysis. . How much. data
does the host need? If we send it all we can ~~ 133 8<bit

bytes per step, 125 steps per second -=- we would need the

equivalent of 20 9600 baud serial communication lines te

handle the lead! The bottleneck is removed by using a Direct

Memory Access {DMA} interface. But even so, we cannot

expect the EDP~11/60 to analyze data arriving at such an

incredible rate, and still be able to keep up with the other

sensory branches, and perform the higher level recognition.

tasks at the same time. Tt simply does not have the

gsamputational power.

The answer, of course, is to filter er eondense the

data before sending it. We have several pessibilities in

mind. First, a sensor is only considered valid if its

pressure value is "within range™. This filter is always in

effect. Other possibilities include averaging sensor

12
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readings over time and only reporting after a fixed number

of steps, or combining somehow the readings from all sensors

on each face which is “within range" to preduce a single

face pressure value. A final possibility is to arrive at

some kind of measure of roughness for the surface under

consideration, and only pass that number back ta the hast

computer. This decision has not been made. o

2.1.2 Motor Control Processor

The Moter Control Processor's basic job is to control

and coordinate the three stepping motors which position the

finger. When it is necessary that the hest computer know

the path that the finger follows during the execution of a

command, the MCP provides it.

Steps are taken in a synchronous fashion. That is, if

the step rate is set to 125 steps per second {the default

ease), the processor is interrupted every eight milliseconds

to determine which meteors are to be stepped, and in which

direction.

Se, after each interval, the MCP may pulse any

cembination of the three motors, and each can be in one of

two directions. This leads to 26 possible directions in

which a single step can move (ignoring the case where no

step is taken at all}. We represent this direction as a

i3
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G-bit “step vector", organized as follows:

bir 5 4 3 Z i g

i a i { ¥ i ¥ : x $ oO: i

i divection | step { direction | step i direction 1 step 1!27008 200F GH COONS EO OE {U0 [ON GOT SOR ESO. GO EID {000 TDD 300" SA GOS ANF GOO INTE INE TOS AE BOF ON OAT ONE AD RE WR IW EE Soy A OTE ONY RS KER WD WAR CORE UR EEO CUD AD LY ITE RR AR SW EN VR WA

Since this fits easily in an 8-bit byte, it is very

convenient now for the MCP to give a path to the host

computer. It simply sends a one-byte step vector over the

serial line fer each step taken. The khest collects the

sequence of step vectors in a buffer, and the exact path can

be reconstructed very quickly at any time.

Phere are, of course, situations in which it is

mecessary to give an absolute coordinate. For example, when

the absolute move command is aberted due to collision with

an object, it is necessary to inform the best what the new

position is. A mechanism is provided for this, toa.

Notice that the MCP returns (effectively) a sequence of

points. Tt does not try to Fit them to curves, surface

patches, generalized cylinders, etc. This is left to the

hest computer. ft dis unreasonable to expect an &8-bit

microprocesser which lacks even a multiply instruction to do

these in real time.

When moving from one position to another in 3-space, it

is desirable to do so in a straight Line. This requires

varying the speeds of the individual motors so that they all

arrive at their destinations simultaneously. The following

14
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example shows how we would like to arrange the steps in a

sample situation.

AR 8

steps desired time between steps

x 1? 9.88 milliseconds

¥ al $.00 milliseconds
2 5 33.6 milliseconds

fhe values in column Bwere arrived at by dividing the

eolumn A values inte the qreatest column A value, and

multiplying the result by & millisecs. (8 millisecs is the

apeed at which we would like the fastest motor te operate).

This is a let of work for an 8-bit microprocessor to

perform. Also, if the precision of these calculations is

not great enough, it becomes virtually impossible to predict

exactly where the finger will be at any given point in time.

Fortunately, the synchronous stepping scheme makes

matters much simpler. The overall line of motion is a Line

in 3-space. This is described and stored in terms of three

G@irection components. There are also two accumulating

eounters, one for the mid direction, and one for the min

direction. (The mid direction is the dimension which has

the second-largest number of steps to take. Min direction

is defined similarly.} Both are preset to zero.

After each 8-millisecond interval, a step vector is

ereated, and the motors are stepped accordingly. The max

@irection is always stepped. For each of the other two

15
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directions, the accumulating counter is ineremented by the

corresponding direction component value, and the result is

taken modulo the max direction component. If an overflow

eccured, a step is-taken.

Applying the algorithm to the above example results in

the following sequence of steps.

Step & ¥ & 3 Step x F &
SSS Se SE SE SSSaES SE SA SEEeaeee | Se Ss SESESSe SH SERSEeeeS

i * g il #
4 e & i 12 *
3 & & i 43 & & *
4 *& #8 “3 a4 & €
5 & * «& i 1S e 8
6 * g 16 *
4 Rf f 1? * *« #&

a & & i 18 &  ¢#
9 z *« «€ i 49 *& *

19 * * i 29 e #

i 24 *« &

When a step is taken, two cercllary actions occur.
First, 1£ the MCP is providing path information, the step
vector is sent to the host. Second, a termination test is

made . For the absolute move command, termination occurs

when the Einger reaches its destination.

fhis command also terminates if the Tactile Sensing

Processor indicates that the finger has come in contact with

an object. Primarily, this is to protect the finger from

damage. However, it also maxes it possible for the host to

say, "Look in this direction for an object." In that sense,

this command can be used as an object finder.

ee 16
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2.2 Cross-Sectional Scan Command

This command is inveked by the host te trace the

eontour of an object's cross-section in any arbitrary plane

in 3-space.* The arguments include the coefficients a, b and

¢ in the equation of the plane ax + by + cz = 0, and a pair

ef special 3-B peints which define the search volume. ‘The

finger must already be touching an object, and the plane is

assumed to pass through the finger's current position.

Consider a conical object and a slicing plane parallel

to the x-y plane. The MCP will drive the finger in the

Plane such that it remains in contact with the surface of

the cone. ALL the while, it passes its path back to the

host. hater, the host will analyze the path, and discover

that it describes a circle.

The search volume is included to limit the finger's

range of motion. Suppose, for example, the host wanted to

construct a 3-D bicubic surface patch. Tt could de this by

requesting four cross-sectional scans using vertical planes

whose yez projection is a rectangle. Then it could fit

curves to each of the four point sequences, and perhaps fit

& Patch to these four curves.

* My terms willl be very confusing unless f define them at
the outset. "Plane* generally refers to the arbitrary
eresg~sectional plane given by the hest. "Surface" is the
(possibly curved) surface of the object. "Pace" refera to
one of the faces of the finger on which sensors are
mounted . "Gearch volume” means the physical volume in
which the finger is allowed to move.

i?
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Unless we provide some mechanism for limiting the

search space, there is no way to prevent the finger from

doing a complete scan of the object's cross-section, when

only a small portion ef that scan is needed.

The search volume is a rectangular parallelepiped with

diagonally opposed corners defined by two arbitrary points

in 3-space. The arbitrary points are chosen by the host

computer and passed to the MCP as arguments to this command.

Yery often, the points may contain special coordinate values

of ® or ‘max’. These may be used to effectively leave one

or more dimensions completely unconstrained.

In the surface patch example, we would like to

constrain the x and y position to the projection of the four

Slicing planes onto the x-y plane. The 2 position should

not be constrained at all. ‘Thus, the two arbitrary points

might be (x1, ¥1,8) and (*2, ¥2, max}.*

The scan will terminate when the finger either exceeds
one of the bounds, or returns to its initial position. This

second termination condition is useful if the host is

interested in producing a contour map of the object. ft

eould do this by requesting a series of scans, using

cross-section planes parallel to the x-y plane, but at

varying @ values. In this case we would like the finger to

YOU IO AE NRO UNO FU RR SAR AIO: IO AYE RAR AIA INN LARD AR AAA AR ARAL AAI AR ARAN IIT SARS AA RAR AIIR ARO OAR AAT AAA UY SAR AY ARAL ORA OAR EN ANA II IRAE AAR RAY AREY AnD: ADT A ORD ete SAE AN A amine aot ORY AAA A AAD MAN wan

* In addition to this constraint, there is an implicit
maximum search volume given by the dimensions of the
device.
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sompletely circumseribe the object, sontinuing until it

returns to its starting point.

A problem which has not yet been mentioned is that of

keeping in contact with the surface of an object. ft turns

eut that in most situations, this is relatively simple. ‘The

method requires three kinds of information.

As described earlier, the finger has a number of

@istinet faces. The present structure of the positioning

device dees not allow for rotation or re-orlentation of any

kind. Hence, except for possible translation, these faces

are fixed. Their equations, as well as those of the planes

perpendicular to them, are predefined as constants in the

MCP program.

Second, we have the equation of the cross-sectioning

Plane. All motion of the finger is to be restricted to that

Plane. By intersecting this plane with either the plane of

@ face of the plane perpendicular to a face, we san
calculate a dine of motion. This can then be fed to the

absolutes move routine to effect the movement.

Finally, there is the data from the Tactile Sensing

Processor. This indicates whether each face is below range,

within range, or above range. ‘Yypically, there will be only

ene face which is within range. This is labelled the

"active face,” because it is the one which is in contact

with the surface. There are exceptions, and we will see

9
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shortly how we can account for them.

The objective in keeping in contact with a surface is

to keep the active face within range. Recalling that by

Gefinition of the command, the active face is initially

within cange, we have the fellewing cases:

{1} Active face is within range;
{2} Active face is below range:
(3) Active face is above range; and
(4) B&B second face comes within or above range.

In case (1), the finger is in centact with the surface.

Our best estimate of the shape of the cbject at this point

is a plane parallel to the active face. Calculate the line

o£ motion (Lf it has net been calculated already} as the

intersection between the active face and the

erass-sectioning plane. Send the current position to the

host; and take a step.

In cases (2) and (3}, the finger either has Lost

contact, or is pressing the surface too hard. Calculate a

Line Of motion as the intersection between the

eress-sectioning plane and the plane perpendicular te the

active face. Then take a step along it away from or toward

the finger’s cente., respectively. Boa not send this step

vector to the host, because it is not part of the surface

seontour.

Case (4) could Fesult from _ several different

situations. Take the scenario in which the finger hit a

20
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concave corner. In this case, the appropriate actian is to

make the new face the active face, and then act according to

its status.

Another scenario in which case (4) could occur invelves

reaching either a convex corner, or a point at which the

surface curves away from the currently active face. Again,

the appropriate action is to declare the new face as the

active face, and act according to its status.

There are a number of ether situations in which a

second face could zome within or above range. The

appropriate action is not always the same as above. In

fact, one could imagine situations in which a third and

perhaps a fourth face must be considered. Though these

cases have not yet been adequately resolved, we da aot

expect them to be overly troublesome.

2d
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Chapter 3: The Implemented Software

We noted earlier that aithough the software was

designed for the finger, it was eventually implemented for

the pad sensor. The most notable difference batween design

and implementation was the fact that in the end, we only

used one microprocessor. All those commands which required

multiple face sensing -- trace contour, follew edge, etc.

== were eliminated because the pad sensor in fact has only

one face. Tt happened that these commands coincided with

the ones which required real time feedback. Therefore, the

requirements of the tactile data acquisition software became

almost trivial, and could be handled easily and much more

simply by the Motor Control Processor.

3.1 Environmental Details

The microprocessor software is written in 280 assembly

Language. It resides on the PDP«11/60, which runs under the

RSX~-LIM operating system. We use a primitive Z80 assembler,
written in ¢, which produces Intel hex-format object code.

This we download to the microprocessor via the 1200 baud

serial line which connects the two systems. As it turned

22
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eut, 1200 baud was as fast as the 11/60 could reliably

receive and stere data.

The microprocessor system is made up of a California

Computer Systems 8-100 bus and mainframe, 8K of RAM, and a

Cromemco Single Card Computer (SCC} with 1K RAM and room for
BK of PROM, 1K of which is taken up by a modified form of

Cromemco's power-on monitor. The SCC has five timers, three

parallel ports (input/output), and a gerial pert. Since the

A/D converter built into the pad sensor produced CMOS output

Levels, we decided to temporarily add our own converter, a

Cromemce DTA board.

in the following sections we give a complete

description of the software as it currently stands.

3.2 Command Format and Interpretation

The command Language was to be a permanent part of the
software. It would be used initially by a human user to

control the pad senser‘'s movement and data acquisition.

Eventually, however, it would become the Experimental

Sensory Processor's way of driving its tactile branch.

Thus we had three qoais in mind. First, the command

language should be versatile. It should be able to handle

the commands described in the previcus chapter as well as

the simple placement and data acquisition commands we needed

for the pad sensor experiments. Second, it should be
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concise enough, and easy enough to interpret, to be used for

interprocessor communication. Finally, it had ta be

legible, so that the user could issue commands from his

keyhoard.

We settled on a syntax with mnemonic, single character

commands, optionally preceded by an ascii-coded positive or

negative integer which defaults to +1 if omitted, and

eptionally followed by any special arguments required by the

command. The preceding integer is decoded by the parser.

Et generally refers to the multiplicity, though its

interpretation is up to the individual command routines.

Fhe trailing arguments are parsed and interpreted completely

by the individual command routines.

Commands may be strung together to ferm a command

sequence. Execution will not begin until a carriage return

is received. The sequence is, of course, stored in a buffer

until execution is complete. A key advantage to this is

that it makes loops possible. In the syntax, a subsequence

may be grouped by parentheses, which in turn may optionally

be preceded by a multiplicity M. The entire subsequence

WLLL be repeated M times. Subsequences may be nested to any

reasonable depth.

There ls one more rather important feature. While the

command sequence is incomplete, the Motor Control Processor

completely disables interrupts. Since the motors are driven

by periodic timer interrupts, all mevement must stop.

re)
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Similarly; characterscoming from the serial line during

command execution are ignored. This generally dees ast

Matter, because execution will have terminated before a new

command sequence arrives. However, should it become

necessary for the host computer (or user) to abort

execution, it {he} may send an ESCape character. . This

causes a non~local subroutine return to the command sequence

input routine, which immediately disables interrupts.

fhe following is a list cf the commands currently available.

H Home ~- returm to inner, upper left corner,
and reset the current position to (6,0,0).

nx Move n steps in the X direction (mn may be
positive or negative, and defaults te +1 if
omitted).

ny Move nm steps in the ¥ direction.
ng Move n steps in the 2 direction.
@x-¥,2 Move to absolute position (x,y,2}.
nf Begin nest.
) End nest.
= Return current position as Beek

coordinates, ascii-ended decimal values
separated by commas.

Q Quit the program -=-= return to power-on
monitor. .

is Take a snapshot of the sensor, store data in
menory, increment frame count.

~is Yake aS many snapshots as possible until the
completion of the current motor step.

os Clear the frame memory.
G Send the contents of the frame memory to the

host, beginning with the frame count. ALL
data is in ascli-coded hexadecimal. Then

@lear the frame memory.
space Null operation.

These commands are obviously very simple. However,

they can be very powerful when grouped together. For

example, the sequence

100,106,100 50( 3{ 20% 20% S$ ~202) 20¥ -60x)}) SG
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takes 150 snapshots, in a 508 by 3 grid, beginning at

(106,100,108), then sends all the collected data te the host

computer. Since optical limit switches prevent the motors

from moving past the ends of travel, one could find the

maximum limits in all directions by issuing

@10000,10000,10000 =

{the actual range is roughly 1206. steps per axis). This

would move the sensor to the corner opposite the home

position and report the actual coordinates.

This list will eventually be enhanced to include the

commands Gescribed in the previous chapter. We expect to be

able to continue to denete each command with one mnemonic

character.

3.3 Motor Control

It is not surprising that the most complicated task

performed by the Motor Control Processor is, in facet, motor

control. The complexity arises for two reagons. Pirst, it

is intended to be a permanent part of the MCP software, and

is therefore very general in desian. Second and most

important, the step service routines effectively and

sompletely insulate the higher’ level command execution

processes From the hardware.

At the tep level, an individual command routine uses
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the step services in the following fashion:

Set the direction components in LINE
Call SCFILL to Fill the step control table
Bo until termination-condition:

Call STEP to initiate a step when ready
Call NEWPOS to update current position
Call NEXTPO to prepare the next step

End

Note that it does not concern itself with timing in any

way, nor does it have to take inte account the physical

limits of the device. The STEP reutine guarantees a minimum

pulse width (maximum step rate}, and even modifies the step

request if such an action would drive a motor past its end

of travel.

Alse note that the routine must actively request that a

step be taken. If, for some reason, the evaluation of the

termination conditicn is very time consuming, the motors

will simply run slower. This has anether advantage. Should

the program be damaged by an unusually high incidence of

cosmic rays, the motors will not go out of control. They

will simply stop, because nothing is calling the STEP

routine.

Before we take a closer look at these routines, we must

discuss the data structures involved. The first one that

was mentioned is LINE. It takes three numbers to define the

direction of a line in G-space: delta~x, delta-y, and

delta-z. These are the line's direction components. Simply

put, when we take delta~x steps in the x direction, we must
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also take delta-~y steps in the y direction, and delta~z

steps in the z direction. Within the MCP, these values are

stored and manipulated as unrestricted i16-bit integers.

However, should it later become necessary to csompare Line
directions, these may have te he restricted ta relatively

peime integers. LINE is a three word array which defines

the desired path to the step routines.*

A commonly accepted canonical form for these values is

a list of direction cosines. This requires that the values

be real mumbers, and that the sum of thelr squares equal

unity. Fortunately, we have not found this form necessary.

The second data structure is the Step Control Table

(SCTAB). This iS=<byte table is basic to the operation of

the step service routines. Following is a layout of its

contents.

SCTAB+ OG: fbyte} Next port image
L: (byte} Port image skeleton (direction bits}
2: {word} Max direction component
4: (word) Mid direction component
6: (word) Min direction component
8: (word) Mid accumulating counter

10: (word) Min accumulating counter
i2: (byte) Max direction's motor pulse and power bits
13: (byte) Mid direction's motor pulse and power bits
14: (byte) Min direction’s motor pulse and power bits

Let us digress amoment before we explain SCTAB.

Instructions are passed to the stepper motors via an @-bit
[RGR GUO OUD Ae AS FRR UV UD UR EL JOO YOU UR. AOU OD KOU (OUR GR AKER GOR GUD. UG O00 ARIE AIOE AOL AR SOO VO AO So RIDE AG VOL RRA U0 G0 G0 AR AA OU AO OE IO QUE AR OL RK RA ARR SOG GOO QOS OO AE S00 ANE AIG OU ARE JKR INI MRD GU QUO OU ALE 6 Ug OE

* The 280, of course, does not really have any distinct
concept of a "word." However, being an old PDP-ll man, I
always have and always will refer to a gd-byte quantity as
a word.
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output port, which looks like this:

bit 7 6 5 4 3 2 L G

i 2 ! @ § ¥@ i ¥ !§ ¥ $ © § HX £ XK #

i dic istep lpower! dir {step ipower! dir istep i8See ROW Oa UF ARR nt Cn ane RY OF OARS KE WAAR CORRE OUD ANY AIM An SARI AI UU IK KIUU WD AIO AAI IOC JOD JKR CUD) 610 JUD COU U0 AIT RIUY JUTE RRR JOC JOO. JOO! ODO A? LOD SD.

The three direction bits indicate which direction the

corresponding motor is to move. One implies the negative
direction, zero implies the positive. The step bits, when

pulsed, cause their corresponding motors to take a step in

the indicated direction. Due to a low-pass filter which is

applied to these bits for noise immunization purposes, there

is a minimum pulse width. The MCP uses a separate timer for

this, as will be described later.

Finally, the power bits, when on, cause drive power to

be applied to the corresponding motors. For now, the reader

need only understand that a motor must have power in order

to operate.

Now we should be able to make sense out of the Step

Control Table. The first item, the “next port image* is

exactly that -- the 8~bit quantity that is te be sent by the

STEP subroutine te the motor drive output port at the next

opportunity. It is very important to note that this value

is; in general, calculated concurrently with the previous

step, by a call to NEXTPO.

The second item, the "port image skeleton,” contains

the three direction bits. These bits are applied with every
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step. ‘The SCFILL routine ssts them accarding to the signs

ef the three direction components in LINE, and they do not

change again until a new line is chosen.

The next three items, the Max, Mid and Min direction

components, are actually the magnitudes of the numbers that

appeared in the LINE array, but in serted order. These are

used in conjunction with the Mid and Min accumulating

seunters to determine which moters to step at the next

timing interval.

Finally, the mapping from the sorted order to the x-y~-z

order is given by the last three items. Each of these bytes

has exactly two bits set, corresponding to the appropriate

motor’s step and power bits.

The NEXTPO routine first decides which motors are to be

stepped, and then adds together the corresponding mapping

bytes, along with the direction bits from the skeleton. The

resulting value is the next motor port image.

Let us mow return to the high level control leop given

at the beginning of this section. First ef all, nete that

the values passed in the LINE array indicate a direction

only. They do not completely describe a line segment in

3-space. It is assumed that the line of motion will beqin

at the current position, and the control loop is responsible

for knowing when to stop.

Once the LINE table is set, SCFIEL is called to fill
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the Step Control Table. All values are calculated

independent of the previous contents. The NEXTPO routine is

then called automatically to use the new table to compute

the first port image and place it in the geroth location.

Since a step is never taken unless specifically

requested by the control loop, it is-perfectly reasonable to

completely change direction at amy time by simply changing

LINE and calling SCFILL, before calling STEP again. one

need not be concerned with the timing considerations.

Within the control loop itself, the first action is a

call to the STEP routine. This routine waits, if necessary,

for the previous step to complete. Then it calls CHECK to

check the optical end-of-travel limit switches and, if

necessary, modify the candidate port image. Finally, the

routine outputs the image to the motor port and returns to

the calling control loop.

Internally, one of the five on-beard timers is also set

te cause an interrupt after a time equal to half the minimum
step pulse width has elapsed. The routine which handles

that interrupt will clear the moter step bits and set the

timer to interrupt again after another equal interval. At

that point, an entire step has completed. The STEP routine,

if it is waiting, is allowed to proceed with another step.

In this way, something like an open ended square wave is

generated on the moter pulse bits.
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This brings us to the other subroutine calls in the

main control deep. During the timing delays, the CPU is

free to do quite a substantial amount of processing. Recall

that the STEP routine has the power to modify the candidate

port image. This modified image is returned to the control

leop, where it is passed again to the NEWPCS routine.

NEWPOS, based on the direction and step bits which were

actually sent, updates the current coordinate counters.

The calenlation of the next port image is then

accomplished by a call te NEXTPO, which proceeds as follows.

iL. Begin with the motor port skeleton, which
defines the direction bits.

2. Add in the Max direction’'s pulse and power bits.
That moter is to move at the maximum rate, and
will therefore always take a step.

3. Add the Mid direction component to the Mid
accumulating counter, and take the result modulse
the Max direction component. Tf there was an
overflow, we want to step the Mid moter. Add in
its pulse and power bits.

&. Repeat step 3 for the Min direction.

The resulting value is placed in the first byte of the Step

Control Table. An example cf this algorithm in operation

was given in chapter 2.

There is one final item ts discuss. Conceptually, a

stepper motor has a series of magnetic coils arranged in a

Circle around an iron core. As steps are taken, each coil

in succession ig energized, drawing the core around the

circle. During normal operation, a given coil is only
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energized far a brief period before its successor takes

ever. However, when the motor is standing still, one coil

is energized continuously for a leng pericd of time. It can

generate quite a bit eof heat -~ snough, perhaps, to burn

deself oukt.*

To solve this problem we implemented the following

soheme. Every time a motor is stepped, its power is

automatically turned one At the game time ; its

corresponding usage counter is reset to some constant.

Periodically, another of the on-board timers interrupts the

processor to decrement all the usage counters. When any one

reaches zero, the corresponding power bit is turned of £.

The effect of this is te power down any motor that has

net been stepped in the last two seconds. The actien is so

completely transparent to the higher level control software

that we refer to it as the “burnout protection demon.”

3.4 Tactile Data Acquisition

Due to its temporary . status, the tactile data

acquisition is perhaps the least important part of the

software. As soon ar the finger arrives, these routines

will be removed from the Motor Centrol Processor and

cewritten completely for the Tactile Sensing Processor,

I _AXS.O00F O90) OO TOC JOE SEF JOO GED O80 JF JOR JO OG OEY KOO GS AOC JE SOE SORE G00 JOE COD (000 SE KE JOE SUR! 90) COG CEG oS OE OY GUD Cnn CGS OED GE GOCE Jey GEE GOS Gn GED REE AGE FCSN ERE GOES GE GEE EEE! GOD GEE OUP OE SOUR SEE SKK GOCE GEO! OERP GEEY CER OED En One

* T don’t know whether motors would actually burn out, But
when I found I could fry eqgs on them, TIT did not want to
take chances.
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according to the plans given in chapter 2. Therefore, as

might be expected, the current code is far from general. [ft

is entirely driven by the S and G commands described

earlier. Nothing haprens asynchronously.

The entire unused portion of the MCP's memory beard is

used as a buffer for tactile data. Upoen MCP initialization,

the frame count is reset to Zero. Then, each ‘time a

snapshot is requested, the data record ig placed in the next

position in the buffer, and the frame count is incremented.

When the readout is requested (via the G command), the

program simply types it all out; one line per record,

beginning with a line consisting solely of the frame count.

The information is transmitted in ascii coded hexadecimal,

8S an optimization cf both transmission time ané soding

time.
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Chapter 4: Experiments and Results

in this chapter we will discuss the experiments which

were actually performed using the pad sensor. We will

consider the methods, the goals, the problems, and the

results. When possible and appropriate, we will refer te

figures which illustrate the results.

4.1 Calibration

The pad sensor consists cf an & x 8 array of sensitive

sites whose analog output values re fed into an analog

multiplexer, and finally inte an analog to digital

converter. All this circuitry is part of the sensing

device. Unfortunately, since the A/D converter emits CMOS

yoltage levels, and our parallel ports use TTL inputs, we

had to bypass the internal A/D and use our own. This

resolved the incompatibility, but gave vent to another

problem. The pressure signals coming out of the multiplexer

ranged roughly from +2.0 to +2.5 volts, and our A/D

eonverter expected a range of -2.5 te 4+2.5. As a result,

the digital pressure readings never went below about 235,

out of a maximum 255.

In other words, the fact that we can exhibit only a
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Little over four bits of precision is not a reflection on

the device, but on the interface. With the right interface,

we would estimate upwards of six bits of valid data.

Each of the 64 pressure sensitive sites puts out a

slightly different range of voltage levels. They therefore

required individual calibration. The most straightforward

way of doing this is to press the senser down hard on a flat

surface, take a snapshot, release the sansor entirely, and

take another snapshot. This yields a matrix of minimum and

Maximum pressure values, to which all subsequent data would

be scaled in a linear transformation.

Of course, nothing is ever soa simple. Each pressure

Sensitive site requires roughly 1.3 pounds of pressure to

completely depress it. Multiplying that by 64 sites, we

find that we need over 80 pounds of Pressure to acquire the

maximum ceadings. Our Z-axis motor is not capable of this.

The solution was to depress each site individually, and
then combine the data into a single matrix of maximum

pressure values. Fortunately, the Motor Contrel Precesser's

sammand language was flexible and powerful enough to do this

painlessly in one command sequence, with two loops for X and

¥ positioning.

Once the minima and maxima were obtained, it was a

simple matter to map all input data into a uniform range of

O- 255. It is worth mentioning here that throughout the
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entire testing period, these ranges never changed more than

ene unit. In addition, we never had any problem with

spurious data being generated where there was no contact.

Those points always mapped to wero. We were quite impressed

with the robustness of the pad sensor.

4.2 Static Tactile Image Analysis

&.2.1 Single Image

The obvious £irst step in analyzing tactile images is

to lay the sensor down on a known object, take a Snapshot,

and see whether it is recognizable. This we did, and the

results are depicted in fig. 1.

In fig. Tf we used a one inch square, sat off-center,

but oriented orthegenally with the sensor's grid axes.

There is no question as to the identity of that object. A

Simple threshold operation would clearly distinguish it from

the background.

Fig. de and fig. Id show the same square rotated

counterclockwise 30 degrees and 45 degrees, respectively.

Fig. le shows an equilateral triangle, point downward, and

fig. lb depicts the same triangle rotated clockwise about 75

degrees. Netice how some pixels are much lLighter than

ethers in the images with nen-orthegenal edges. This

phenomenon arises when the object covers less than half the
area Of a site. Since the site is canical in shape, the
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edge must be pressing on the wall of the cone. It cannot

depress the cone as far as it could 1f it were pressing on

the apex.

In theory, it should be possible in some cases ta

determine exactly how much of the cone is actually covered

by the object. However, We must assume the following:

1} that the object surface, particularly the edge in

guestion, is smooth, 2) that the object surface is in a

Plane parallel to that of the pad sensor, 3) that the

individual sites on the sensor are in fact conical, with

bases that meet the bases of their neighbors, and 4) that we

know how to calculate the actual depression as a function of

output pressure value.

Unfortunately, neither of the last two assumptions are

valid in our case. The cones are actually cut off before

they reach the apex,* and we do not have the data to perform

the depression calculation.

Finally, fig. la shows a one inch diameter circle.

Netice that Lt appears to be identical te the square in

fig. ie. This is a question of resolution. Clearly, if the

spatial resolution were doubled er quadrupled, the

d&istinetion would be obvious.

(0 SE AE SE EE ED EE OEY SOR WO “OD ATE ROR AER SR AA EEE RT ONEIER SE EE EYEE KY GU ANE? FED AER SE TEA GE ZC HID RED OSE RIN CLR SSD WEE AE AIL ATOR OE AE IO A A EO GUO REP AIED COU ARIE AY AE ZTE IRENE ECO aUO 4H COD GOR ED

* My office-mate tells me that the technical term for this
shape is "“frustum.”
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4.2.2 Spatial Resolution

How do variations in sensor resolution effect the

image? The simplest way to tackle this question is to vary

the size of the features on the test objects. We used a set

of disks with raised concentric circles projecting from them

in relief. The variations consisted of two amplitudes and

three Frequencies, totalling six disks.

Fig. 2 shows the images obtained. As might be

expected, those disks in which the spacing between the

circles approach the spacing between the sensitive sites

{figs. Za and 24) are clear. .Age the. frequency. increases,

the shape becomes Iess obvicus, until it is completely

unintelligible at the highest frequency.

The effect of amplitude is also fairiy predictable. At

low amplitude, the circles are wider, and therefore more

sites are in contact with the surface. This can be seen

most clearly (again) in figs. 2a and 28. Also, the inner

circle is more distinet in fig. 3e than in fig. 2b. This is

because at the lower amplitude, the depth of a trough is

considerably less than the height of a conical site, and

therefore some trough sites cone in contact with the
surface.

Theoretically, it should he possible to compare

pressure values and determine where the troughs and crests

eceur. However, here we run into the limitation in our 3-5
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positioning device which we alluded to in the Calibration

Section. The @-axis moter, which supplies the normal force,

is a bit toe weak for this pad sensor. Each sensitive site

yequires a certain amount of force to depress it, and the

motor must be able to exert the sum of these forces in order

to obtain a reliable reading. Therefore, as more sites

sontact the surface, each one receives less pressure.

Furthermore, if the surface is not uniform, neither are the

reductions in pressure.

4.2.3 Multiple Images

Bow can we improve the spatial resolution with the

equipment available to us? Gne simple way to double the

number of data points on each dimension is to take a reading

at each of the four corners of a small scare, whose sides

are half the length of the distance between sites. This we

aid, using the same six disks, and the results are visible

in fig. 3.

The images are slightiy clearer, but not as much as we

had hoped. Again, the disappointment is indirectly caused

by the deficient @~axis motor. When taking a Snapshot, we

try to depress the sensitive cones as much as possible,

since we are not capable ef depressing any ef them

completely. To do this, we simply instruct the Motor

Control Processor to lower the Z-axis moter until it won't

go any further.
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This works quite well in general. However, consider

the following hypothetical case. Suppose the test object is

a single sine wave and the sensor is a single cone. First,

we lower the cone onto the crest of the wave as far as it

will go, and take a snapshet. Then we move the cone to the

trough and repeat the operation. The two images lcok

identical! In both cases, the cone was depressed as far as

it would go, and it is in fact the cone depression which

determines the image. This, we believe, is the root of the

multiple image problem.*

fhe solution, of course, is to strengthen the Z-axis

motor. Then, instead of simply lowering the sensor until it

stops, we would lower it to a censistent Z-coordinate. The

resulting set of images would be much clearer.

4.2.4 Large Objects

Can we examine. objects which are much Larder than the
sensor? For this experiment we used a flat surface about 12

inches long and three inches wide -- slightly wider than the

Sensor pad itself. A set of eight greoves were cut into

this surface in order to form a pattern of diverging lines

{see f£ig. 4a}. BY taking a series of snapshots at

successive lengthwise positions, we should be able to

reconstruct the entire image, in spite of the fact that it

Det cn et RO TORE REF GFF GUO AOE TORE JOKE JOE GU QODCOD XTOE RIDE JOO. OG: GUL DOD CUE OD OUR ITE JOKE JUL YUE: JUD OUD JED OD ID JOU 200 JOR DL 2D OUD KJUE {ORD 0G 200 9oeF OUEE-20R QU JOD 0G KIDD UE YORE SUE GOR: COU OO GOP JOP QUO COR 2000 J00P JPOC J0E GOK GOUE GOR GUE GO OO AUP Ep CUD 200
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‘is much longer than the sensor.

The Motor Control Processor's command language again

made this a simple task. We took fifty images, stepping

about five millimeters between each. The reconstruction,

shown in fig. 4b, was accomplished by superimposing the

images in the appropriate positions relative to each other.

As before, when the distance between features approaches the

@istance between sensitive sites, the pattern becomes

Slearer.

Can we use our multiple image trick to improve the

resolution? We repeated the same procedure, except that this

time we took three snapshets, feur millimeters apart

widthwise, for each of the fifty steps lengthwise. The

reconstruction, fig. 4c, shows the angled edges much more
Glearliy at lower frequencies than does fig. 4b. At higher

frequencies, however, beth reconstructions are equally

unintelligible. Once again, we blame the failure on the

Z-axis motor, and our method of maximiging pressure.

4.2.5 Small Angle Measurement

When a robot hand grasps an object, does it have a gaod

grip? Very often, a "good grip" is one in which the flat

surfaces of the object are wholly in contact with the flat

faces of the fingers. The question can then he answered

very simply by measuring, for each finger, the angle between

these two planes.

&2
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This experiment preved to be extremely successful.

Using the one inch square as our test object, we took four

snapshots. In the first image we layed the pad sensor flat

on the square, as usual, giving us a tere degree standard.

For the three subsequent images, we lowered the left end of

the table by 1.0, 1.25, and 1.5 inches respectively,

producing angles of 3.3, 4.1, and 4.3 degrees.

The results are shown in table 1. For each image we

arcived at a single number describing the slant. The number

Was calculated simply by averaging all the pressure

differences between horizontally adjacent sites. In theory

the ratio of the third slant value to the second should be

23.25,* and the fourth to the the second should be 1.5. This

was not the case.

However, the first image, whose slant should have been

gera, did exhibit a small slant value. If we take this as

aM BYrOr, We can produce a correction factor by dividing it

by the slant value for the second frame. When that

percentage is subtracted from each of the two ratios arrived

at earlier, we get remarkable results. The corrected ratios

differ from the expected values by less than two percent!

ARB 8D1000 BDO ANF 2D 90 OE ORE INE 208! G00. EO IIE AOL J0EE I JOR OD OD 00D S00 HEL GOOF GID GIO GF OOK OOP IRE JOO JOE OF J0 GUD IO WTO UF RK GD GUD GOD 000 08 COU AIK OE SAK JOU! YOO ONO JOR GOR 9A FOOD FOIE RIOD JOR JOO: YOU SUR GOD) JUD 20D IR OD 90D «HD KD AI AEN SKK GOO

* Proof is obvicus from the geometry, as long as we assume a
Linear relationship between depression distance and output
value.
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4.3 Dynamic Texture Analysis

We believe that until tactile sensors can be fabricated

with extremely fine resolution, infermation about the

texture of a surface would best be obtained by moving the

gsenser along the surface, and examining the changes in

Bressure readings, as opposed to the pressure readings

themselves.

foward this end, we tried several times to make the

positioning device drag the pad sensor along different

surfaces, but failed each time. The sensitive cones,

because they -were designed te grasp an object without

allowing it to slip, were made out of “high friction rubber.

This, of course, directly hindered the experiment. The

stepper moters were not powerful enough to pull the sensor

and still maintain enough contact sressure to yield a

Significant reading.

In the end we performed a singularly unscientific
experiment. We dismounted the pad sensor from the

positioning device and dragged it by hand along a flat

wooden surface, taking 100 snapshots over a period of about

five seconds. This may not have been so bad, except that we

neglected to measure the exact distance traversed, or

anything that could directiy or indirectly give us the

velocity.

The analysis is interesting, though quite inconclusive.

&4
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The sensor is made up of an 8 by 8 grid of sensitive cones.
Let us define a column as the ssries of cones lined up in

the x-direction, anda rew as the cones Lined up in the

Yedirection. Given that the sensor was dragged in the

positive X-direction, wa contend that there should be some

aspect of the data which is consistent down a column, but.

different across a row. Furthermere, there ahould be a

small but constant time delay between the features exhibited

by one site and those exhibited by the next site down the

column.

The motivation for this hypothesis is as fellows.

Picture a textured surface as a terrain of bumps and ridges.

As the sensor grid passes over this terrain, the eones

across a row will collect enticely unrelated data. However,

those down a columr will encounter the exact same bumps and

tidges that were +nceuntered by their predecessors, but a

Little bit later. Thus we have eight instances of

eight<-fold redundant data. We should be able to £ind same

consistency somewhere.

Initially, we pletted the raw pressure data from each

ef the 64 cones as a funetion of time. Fig. 5 dis a

geproduction of this, with each plot placed in the same grid

position as the corresponding cone. We expect to be able te

look down a column and see some consistency that does nat

occur across a row. Unfortunately, no such consistencies
were immediately obvious.
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The next step was te try te heme in on the changes in

pressure, aS opposed to the pressures themselves. However,

a simple pairwise difference derivative (see fig. 6) was no

more enlightening than the raw data.

Well, what about the Fourier transform? Surely the

frequency domain is closer to our geal than the time domain.

Unfortunately, applying this transform meant giving up our

time delay information, which we needed for comparing

SULVES «

What we really needed was some smoscth measure of

frequency as a funetion of time. A colleague*® suggested the

following procedure. First, take the pairwise difference

derivative. Then, pass a window along the time axis. For

each point in time, count the number of gero crossings in

the window, and divide by the width of the window. A window

mn units wide would have a maximum of n ero erossings, and

thus the ratio would be unity. Neo crossings would produce a

ratio of gers. Note that the operster is valid, and

produces the same range of values, independent of the window

size. The only difference is in the precision.

We used a window with an odd number of points, sa it

could be symmetric about the point under consideration. I£

the distance to one margin or the other was smaller than

half the window size, the window was shrunk accordingly, so

(9 BUD UO AL AAD WR WAAR QAI AAI IN tw GOP ARB SOI SOD 200: OA OD ERE SAN NORE AOD SEAT AR AAD BAM Gun COO OE AOE SY SOME OD OD C0O ORD LOOT WOON IDO SOR BOR OOD O28 EOt ONE SOO SBA ON GOR GOO GOO aod OD REO TOO JOSE Od SOR Gn SO GEE OO SOE BOO ONS A200 MEE AOE WOOL SORE ao ante A OE

* Thank you, Gerry Radack.
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that symmetry was maintained. We tried various window sizes

im arder te obtain the smoothest curve possible without

desing too many features. The optimal gize was about 25

units feur of $100}, shown in fig. 7a. A iS unit window is

shown in fig. 7b for comparison.

There are (finally) some definitely visible

Similarities among the resultant eurves of fig. Ta.

Examine, for example, the troughs in rows 6, 7Tand 8 of

eolumn i. Notice hew similar they are, and how a4 small,

constant time delay occurs between each curve and its

successor. The same phenomenon is visible in rows 1, 3, 5

ang 6 af the third column, and in rows 1 and 3 of eolumn 7.

As ene looks up and down a column, there seems to be

some kind of topological similarity. This is exactly what

we want to find. However, identifying it mathematically is

no simple task. The obviaus operator to apply would be the

eross correlation. This compares two graphs and produces a

number deseribing the closeness of the mateh, then shifts

ene draph relative to the other and repeats the calculation.

Ome cerrelation value is generated for each possible shift.

The resulting curve shows not only how well the two graphs

match, but at what time delay value the match is optimal.

Unfortunately, the results were very disapgointing. Nea

Matter which pair of graphs we compared, the cross

correlation never went substantially higher than gero, and

the best match always occured at zero shift. Needless ta

a7
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Say, at least one more level of processing is called for.

4.4 Conclusions

First, it is clear that an 8 by 8 grid of pressure sensitive

Sites is generally net encugh for pattern recognition of

Single static images. In most real applications, either the

objects will be Larger than the pad, or the features will be

below the pad's resolution.

With reasonably geod positioning equipment, the

resolution can be significantly improved, and the size of

the area under consideration considerably increased, by

taking multiple images. However, this is often too time

consuming, and therefere infeasible.

fhe straightforward solution 48 to increase the spatia
resolution, the number of sites, or both We have shown

that when feature dimensions are comparable toa resolution,

shape recognition can be quite simple. This has also been

demonstrated by Hillis [HILLIS-81], using a sensor recently

developed at the MIT A.I. Laboratory, and of course by Briot

[BRIOT-79], who used an array of binary sensors. One

typical application for this might be the table sensor which

was described in the introduction.

A more novel approach might be to build multijointed

fingers for the robot gripper, such as the three fingered

hand developed by Ken Salisbury [SALISBURY-31] at the

48
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Stanford A.I. Laboratory. This would enable the robot to

manipulate the object while transperting it, in such a way

that it becomes net only feasible, but a matter of course to

take multiple tactile images.

In the experiment concerning measurement of small

‘angles, we obtsined impressive results. The computed values

were eVen more accurate than we had hoped. From this we

wenclude that a tactile sensor with properties similar to

these of the pad sensor is eminently suited ta applications

involving small angle measurement, such as grip improvement.

As far as texture analysis is concerned, we believe our

approach is a good one. Visually, it is apparent that we

are on the right track. However, the experiment must be

repeated in a muck more controlled fashion, and different

surfaces must be examined and compared. Then, we hope we

will eventually be able to manipulate the data in such a way

that we can use it to identify the surface.
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Chapter S$: Further Work

As was mentioned earlier, the pad sensor was in sur

possession for only a shert time, by no means lend enough

fer exhaustive experimentation. In fact, many of the more

interesting ideas secured to us after the sensor was

returned, when we began te analyze the data.

It should be possible to calculate the coefficient of

Erietion between various surfaces and the rubber face of the

sensor. First, one must know the force as a function of

@igital output for each sensitive site, as well as for the

strain gauges on the metal posts. Then, one would drag the

sensor along the surface in question, and take forces

measurements. The normal force N is simply the sum of the
forces on all the sites, and the frictional force F is

derived from the kerizgontal forces given by the strain

gauges. By plugging these numbers inte the equation

Fos uN one can calculate u, the coefficient of friction.

This might be usable as a distinguishing characteristic

between surfaces.

It might also be useful to measure granularity. This

could be done simply by placing the sensor onto the surface

56
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and counting the number of sensitive sites which exhibit

significant pressure. Of course, the grains in the test

surfaces must be comparable in size toe the resolution of the

S@nsor.

Certainly the dynamic texture analysis tests should be

repeated and extended. Once that data has been hashed out,

it should bé possible to identify surfaces based on pressure

response to friction.

Finally, there are two aspects of tactile sensing which

we have not experimented with because they are better suited

to the finger than the pad sensor. First, the finger should

be capable of poking a surface and comparing predicted

pressure with actual pressure in order to measure of surface

resilience. Second, there is the whole question of tracing

cross sections and preducing, essentially, « 3-D deseription

of the contour of an object.

Thus we have “ghape based on both static images and
contour descriptions, dranularity, ceeffiecient of friction,

and surface resilience and texture. These features, when

they are hetter understeoed, sheuld be incorporated as

G@istinguishing characteristics into the Experimental Sensory

Processor.
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Fig. ha.
Drawing of the
Large Test Object 
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fig. 4e
Using 3 x 530 matrix of frames

Fig. 4b
Using 50 successive frames
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TABLE 1 -- Measurement of Small AnglesBRS RRRBRASREEA AASARRS RA A RR RR

Table Horigz. Avg.
Slant Data Difference DLft. Ratio*

o* 45 64 280 19 «686 12.625

42 48 64 6 16
48 66 75 12 is
34 586 451 22 =§

i* 15 64 166 &9 36 78 1.09

28 89 192 §2 112

16 75 195 89 120

1? 685 «153 6& 68

1.45" 48 166 Liz 1i4 1.23

48 192 344
68 180 126

$6 136 BO

1.5% 48 160 112 142 1.53
48 240 182

6O 2235 165

Ti L7G 99

* Ratio is calculated as the vertical average divided by the
vertical average at 1" slant, multiplied by cone minus the
ratio of the 1” slant to the OO” slant. The closer this
value is to the table slant, the better the results. As
the reader can see, the results are exceedingly gocd.
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USABILITY EVALUATION: THE SION STORY 

James K, Lewwig

JEM Humas Pastors Grous
BLO. Box 1328

Boca Raton, PL 33429-1928
Tell +f (407) 445-1066
Fax: *4 (407) 443-2778

E-mad: HMLEWIS@VNET BBM COM

product usability, usability evaluation methods: personal carmmunicators

Simon (TM-BeilSounh Caro.) is a ccemmorcially avaiable personal communicates (PO),
combming feghures ofa PDA (personal digital assistant} with a Aud sume of comenunications
features. This pager Jeseribes the involvement ofhuman faotors engmeering in the
cevelopnmed of Sinan, and sururiarizes the various approaches to usability evaluation
employed dunn rs developroies. Simeon has reserved a cunsiderable amount ofpraise from
ibe industry acd weom several indugery awards, with reccemtion both for ite inmaverty
engineering aad Re usabrliry.

INTRODUCTION

The Sirnon is 2 cellular telephone, designed with = 36 « 115 nem touch seram (COA resolution} renlaeme
the standard telepbone key area. Research in the usability of collular wlephones (Tsoi, 19893) hag shown
Rat many of the proclems people have aang cellulas telephones are ths result of infleble contro! labeling
and linuted feedback. Replacing the standard key/dieglay area avth a touch screen allowed the Simon
developers tc creste a simpler user interface for oallular telephone tasks. Tt also allowed the davelonmend of
3 suite ofapplicauens ie addition to the cellular telephone, inchuding an appoimment calendar, an address
book, a to-ds Let, a world clock, a note pad, 4 sketch pad, sending amd receiving electronic mall, seni
axed receiving faxes, reception ofpayes, fle management, a caleulater, acess to system settings, and
securiy,

My first contact with the Simon development group cares as 8 request to answer an appararaly simple
queston: How smail cana touch acreen butter be, and otill be disable? Forumaiely, | had just completed s
literatura review covering the resulta of human factors studies of tauch sorans from 1980 16 1992 (Lewis,
1902}, sof wag able te conveyte Sinan development that the answer to dds sinmle question was actually
scmmmenat complex and depended on the toch selection stratery (Sear? ated Schneiderman, [SYG) From
this stast, [ spant the naxt hwo years as a part ofthe Skrion taam, conducting studies and providing usauility
guidance, The approuches to usability engmeenng and assessment aoplied during Sunon develoment
illustrate the broad spectrum of modem usability methods, and the resulting prealuct demangimies che
eflectivencas of these modemmethods. ‘The deucriynons appear in rough order ofoccurrence, bat the
actoriieg overlapped consideratly,
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APPROACHES TO USABILITY ENGINEERING AND ASSESSAIENT IN THE
DEVELOPMENT OF SIRPOR

Focus Grougs

ey Adter preliminary dengn work, an independsat agency condhntad several focus groups with differant Res
of cellular telechene and computer users to help define the appropriate gosis Tor the preduct.

Daily Gegive Msgtiaga

Bafore writmy any significant amount ofcods, the sefbware team (ineluding a burnan factors engineer and
graphic designer) worked out more specific datails about howta ackieve the desion goals. Theas meciuags
lasted for several hours every morning over a penied of several months. After each meeting, the indivicual
esigners worked on their assignments, which typically involved detaded functional and task analyses,

Guring the mesungs, ihe designers presented iheanalyses and the nist ofthe team propcent! seenerios TOY
testing the task flows, Dkternunation of problema with task flows in these meetigs fedto addynonal
refinemen of task analyses, swhich fed to refinement of design cancepts.

Literature Reviews

Literature reviews of humnen factors studies of touch screeis (Levis, 1902) anc cellular teleshone usabiliry
provided early, valuable guidances to Simon development. if is offen temphug to skip uie tedium nneTenl Ww
2 Hrerature review, bat kesp in cund thet i would be foolish to spend three months in the laboratory ta
ablain nfeemation available with an investment of three hours in a Library.

Expert Evadeations af Competitwe Products
 

Using an sgproach similar to Nielsen's (1992) heuristic evaluations, 1 conducted several expert evaluations
; of compenitive products, both defining che sequence of steps remmirad to perform key tasks and making note

of probable problem arees. These evaluations revealed opportunities for improve design in such diverse
areas as battery metalation and rernovel, display contrast adjustment, key definition as a function af aod,
seeting calendar alarms, effective setting and removal of repeating mectings, aud clear procedures for
settme passwords and locking units.

iad

iE

of Develppmesst of Test Seengriss
3 a

Considering the fous erowps, daily design meeaigs, and expert evaluations of competitive products, the
team developed an intial sex af 25 test scenarios. By the ond of Kerative tesung, there were 34 SOTHENIOS.
As suggested by Lewas, Henry, and fvluck (1900), some scanarios focused on taska wathin a single
application. while others evaluated work thal erassed application Goundaries. We used the scenarios for
both gatherng commetstive performance and satizfaenon benchmarks and for iterntive problem discovery

64 studies with developrmect-level versions of Siren.
i

' Competitive Usability Benchmarking

inv One agnlication of the test aconarios waa the determination ofeormpetitive usability benchmarks for both
user gerformance (scenario completion times and success rates) and satisfaction. We used the Afer-
Saenarp Quesunnnaire (ASO) to assess user satighherion following each sconand, and the Post-Study
System Usability Questionnaire (PSSUCp to assess more global usability ssucikenc: follownag the
completion of all scanariog (Lewis, 1995}. Figuse 1 shows the PESUQ beiehmarks established durmg the
compentive usability benchmarking. We cullected data from thive products regarded as the mowt likely
competitors of Simon. Analysis ofthe problems discovered during those evaiuations provided additional
ooportuniies far improved design in Simon.
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erative Usabslity Stucses
 

We condvetad time Gunly expmaive protlers discovery stucies at differant slages ducing Sinton
davelopment laarty 1292 preeetyna, first design with reasonably comprehensive fesotios, ancl the desics
variediately preseding the fimal design}, Qur ghilosogly far these stadses was that Ineaiarement of
gumario gerfurmaces and orafersnes variables were iniportant, bul thar problera diasovery was reore
important, As long 23 you have competitive beactmarks, scemmmic mearnmernunts give you an idea about
where you are relays to your competition, bat prewide ne meal guidance about what ta do when your
product fails to sigagare op. Analysis of usability problems, an the other baud, provides snradig guidance
for product redegion. We used the methods described as Lewis (1 994i) to determine aponypriate sample
siwes for these snulies. As a oonstquencs ofdus process of tenmave problem idecufieation and design
imgievement, each Werktion showed cigmifieant Guprovernend In beth user performance and aanefscdon.
Figure | cheave the PSEMUG scale ratings for die final Weration (showing means and 97% confidences
intervaie}, wih the cempotitive FESUC benctunarks for reference, (A kawer PSSUQ scum is better than a
higher one.) As Fieure i shows, Simeon significantly eseoelad as benchmarks for all PSSUQ scales,

 

ARRASTOTeea
JeonAsgesement

Moat isems thar appear on Simon include o desertutive label. There ase four iocus, hoseaver, that appear on
every Simon scmean, Rocanse these icons appear on svery seresn, we had a design gaal to prowide small
honeg Tho shied ot veruice labels (oomserving valuable screen snace). We amessad theses icons usmig a
batlery of icon assésnment methods imchuding 3 muteling and confidence tush, icon production task, anda
gemumntie didierecial GLewis, 1988: Lin, 19973. Tha owtecme ofthe cticdy indicated a groblem with
reeogiition ofthe iow representing aseses to the noa-phane office tocla, and iad to soorearesemtagon of the
fonetion with e focus of gs sucess to a mobile office.

 a eedAuiomat 

Ag often neplocted ares ofusability deviga and evaluation is that of bowmesoe. Even modem, othereise
usable, systens odhes cemtain comelisated terme fer which these are much more common names, On-loe
menages and other cacumentation comiain numerous seaieness in the passive votea that mswouk! be easy to
recast in achive voice, Thesecomsiderations mught seem trivial, except that peycholingustin researchhas
shoen that (1) frequency of cccurmmes of a word in 2 imguage significantly affgess tha speed ofman
lexical access (Porstar, 1990} aud (2) iis harder ta exback mieaning Crows 4 Passive sunlenoe relative to RS
active counterpart (Bailey, 1999), To promote clarty and comeasteney im termineingy, | provicled the
Sistem devoloners with « set of language guvieimnes, and Rersrively renewed moysaues and documentation
against the guidelines, Ger sonrce book tor deteuxiniag the beat word to use when congidermy severa)
synoriyms was ‘TheLivingWord Vocabulary (Dale and GQ Rourke, 1927). [alse selected random:text
samgies form competitors’ documents and daveloged competitive readability benchmarks fer text
cloudiases {a measure Ogaed on the manber of specifically identified abswact words and passivieed verbs in
a passages divided by the number ofwordy in the passage), Ag the end of Simon develcament,
measurements taken Gorn a radon samele oftewts from Simon's desumeentation showed that the Sunes
texts bad a significantly lower Gower is better) text cloudiness than any offs commetators. Furthermore,
using dete collectx] dersig carpetithvs usabiling dexchmarking axl Kerative usability snudies, Simon had a
sigunficantly better POSUO laformnation Quality catme (Lewis, lob) then any of Re companions,

BeeneeceeeeeeeeeaseeeeenceaeeeoTe
 
a

Statistics) Modeliag

Secanse Simon bad a relatively enall display area, & was necessary ky pravide seine shauls statistical
modeling for the size ofcalenilar entries (Lewie, 1903) anc sans lengths (Lewis, 19930) to provide
wuitiancs to the calendar and address book devsiopers, The calewdar entry research Indicated thar: (1)
munagers use conmater cakuuirs more than uaumauazers, (2) managers have more aries per day then

EREESRaSeCOERPGEESIRRaTSEaU
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calendar-using nonmemagers; and (3) for wier-generated entries, the 84th pereentde tor the number of
charasters in an entry wae 253. ‘Ths name length research showerl that the mean name length in the United
States was about 14 characters, and that a touch-screen button that could show 20 characters would show

4 # fersen’s complete name 90,2% of the time fin the United Seates).

Devgiened Experiments

Gn occasiog, it was necessary to conduct designed experiments 10 answer questions that areas during
dsvegiaen, One such oxpertiment (Lewis, 10945) explored difeesnt screen designs for setting cixtas ancl
times. Ahhough such setnngs seem straightforward, users have ogaflicting direction stereotypes that
abhear to prechide the uss of arrows alone for sate times arxl dates. Two other expenments (Lewis,
Allard, and Hudson, 1994: Laviz, 19949) evalusted differem aancets of Siaon’s predictive keyboard. A
predictive keyhourd is an on-screen keyhoord that contains fewer buttons than a stancdand keyboard, and
uses linguists probabilities to predict which leters a user will mom likely want to type nest. These most~
Rkely letters appaar in the keybosrd’s butteds. Lears, Allsrd, and Hudson (1994) studied the effects of
differnet word populations, nucder of divglayad letters, and aumber oftrigragh tables on the lkellhood that
the desired next loteer would appesr on the prodictive keyboard. Lewis (1995) srucliad input rates and user
preterancs for the thrae Siren data input metheds (lapping on a small on-screen standard keyboard,
tapping on the pradicive keyooard, and handwriting on the sketch padi. The reaults shawed that the most

j slfentive and preferred input methed yea tapping ou the standard keyboard, in condasting these
Experiments, ile experunical dasigns described am Lewia (199030) were quite useful,

&
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Sigure 1. PSSUG seale scores for Simon and competitions
8

2 INBUSTRY RECUIMNTTEHON

A Oe incicztios of the eucosss of Simen’s design is that rt won the Best of Show award at Comdex ‘93, won
ea . an Award of Distinction in the 1004 BYTE swarde GAYTE, January 1905), and was a Grand Award

waner in ihe 7th Annual Beat ofWhat's New awards (Popular Science, December, 1994). The isilewing
quotanions from: rewigee of Sirnen in crads joumals also reflect the success of the usability effort,

“Tt Jogks ane feala like 8 protiuet you already know heaw to usa, rather than a new religion you snust
inimerse penersalf te." (O'Malley, 1994}

a “YT hope that Semen is the first im a long series ofpersonal communications taal, but ever as a first
generation product, Soman is a joy to use.” (leleoa, 1905)
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“Simon is net the first personal communicator product [ve daroed, but it is by far the most
cormrshensi ye, well-denensd, and easiest to use.” (Carter-Lome, 1904)

DISCLSSION

This paper has described the broad rangeof usability evaluation methods applied to the development of
Simon, The mdustry recognition for Simon stands as evidence for the success of the application of modern
usability evaluation metheds in this case. The breadth of methods ais suggests that professional usability
praciitioners need to be Auert with a wide array of usability techniques because different development
situations demand the application of differen: usability methods. Some ofthese methods coms from
traditional experimental psychology (statistical modeling, designed expenments, iiteramare reviews), and
others ara more recent techniques (heuristic evaluations, compatiive usability benchmarking, scenario-
based usabibry problem discovery studies). Ali ofthese techniques have potential appli¢stion m product
development, and deserve a clace in the toolbox of the professional usability practtioner.
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soft Machines:

A Philosephy of User-Computer Interface Design

Lioyd H. Nakatani
Self Laboratories, Murray Hill, New fersey 07974

John A. Rohrhich

Bell Labaratories, Whippany, New fersey 87981

ABSTRACT

Machines and camputer systems differ in many
characteristics that have important consequences for the
user. Machines are special-purpose, have forms suggestive
of their functions, are operated with controls in obvious
one-to-one correspondence with their actions, and the
conseguences af the actions on visible objects are
immediately and readily apparent. By contrast, computer
Systems are general-purpose, have inscrutable farm, are
operated symbolically via a keyhoard with no obvious
correspondence between keys and actions, and typically
operate on Invisible objects with consequences that are nat
immediately or readily apparent. The characteristics
possessed by machines, but typically abseat in computer
systems, aid learning, use and transfer among machines.
Bui "hard," physical machines have limitations: they are
fnflexible, and their complexity can overwhelm us. We
have bullt in our laboratery “soft machine” interfaces for
computer systems to capitalize on the good characteristics
of machines and overcome their Nmitations. A soft
machine is implemented using the synergistic combination
of real-time computer graphics to display “soft controls,”
and a touch screen to make soft controls operable like
conventional hard controls.

 

INTRODUCTION

The juxtaposition of the terms "soft" and “machine”
connotes the essence of a philosophy for the design of user-
computer interfaces io interactive computer systems.
“Machine” connotes an interface which is machine-like in

appearance and operation. Such interfaces, we believe, can
make computer systems as obvious, casy and efficient to use
as well-designed conventional machines. "Soft" connotes a
machine realized through computer generated images of
controls on a high resolution color display with a touch-
sensitive screen for actuating the controls. This software
realization gives us the Hexibility and power to overcome
the limitations of conventional machines.

 

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACMcopyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. Ts copy
otherwise, or to republish, requires a fee and/or specific permission.

® $983 ACM 0-89791-121-0/83/G12/0019 $60.75
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From our experience in building protatypes of soft
machines in our laboratory, we have become aware of
principles underlying the design and use of machines. We
hope here to make some of these principles explicit, and to
indicate how soft machines based on these principles can
fead iG better user-computer interfaces. We conclude with
thoughts on how 2 collection of soft machines might be
organized.

MACHINES AND COMPUTERS

We are struck by how sasy most conventional machines—
stoves, tape recorders and calculators—are to use, and how
troublesome computer systems are to use by comparison.
Machines and computers seem to contrast most sharply on
ithe following aspects of their use!:

& Learning ~ We can learn how ito use many
machines by “playing around" and seeing what
happens; learning is usually casual and easy. By
contrast, we learn computer systems by reading
instruction manuals and seeking help; learning is
deliberate and often effortful. The recent flowering
of human factors is reflective of this fact.

* Transfer — Having mastered a machine, say a
copier, we can usually switch to another copier in a
matter of minutes. Transfer between machines is

generally so easy that we take ft for granted and are
surprised when it is hard. Having mastered a
computer system, say a text editor, we Gnd it
relatively hard to learn another text editor. Transfer
between computer systems can be so troublesome
that ads for word processing personnel specify
brands of equipment.

® Efficiency —~ Machines have specialized controls
optimized for efficient operation, multi-purpose
computers have unspecialized keyboards. We are

1. What follows are bread generalizations. Exceptions and
counterexamples can be found, but we feel that the generalizations
capture important differences between machines and computer
systems which heip explain why specialized computer systems are
usually more machine-like in design and operation than general-
purpose computer systems, and why microprocessor-based consumer
products retain their machine-like character.
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seeing, however, thal as computer systerns become
more specialized, they acquire specialized, machine-
like controls optimized for the functions they
perform, For example, dedicated word processors
have special function keys, and home computers
used for games have joysticks or trackbails that are
superior for pointing (Card, Enghsh & Burr, 1978;
Albert, 19823. And, we observe that damb
machines thai acquire microprocessor brains
continue io be operated hike machines rather than
computers. These trends suggest that typical user
interfaces to computer sysiems represent a step
backward in interface design compared ta the
control panel of machines,

For ease of learning, transfer of knowledge and efficiency of
operation well-designed hard machines seem better than
computers. True, any single machine is not asked to do the
wide variety of tasks that we perform with computers, but
the superior usability of machines for their intended task is
attributable to sore intrinsic characteristics of machines

that can exploited even for computers intended for multiple
functions. What are these intrinsic characteristics?

HARD MACHINES ANT HARD CONTROLS

By “hard” machines and controls, we mean conventional
machines such as stoves, radios and copiers operated with
knobs, switches, keys, pushbuttons and other familiar
controls. Hard machines have many characteristics that
make for ease of learning, efficiency of operation and ease
of transfer, but they are ultimately limited by their
“hardness.”

Modularity

The modularity of hard machines, most typically
mechanical machines, is a natural consequence of design
constrained by size, complexity and cost. Modularity is
obvious in the kitchen where different machines perform
different functions: a stove for cooking, a mixer for mixing,
and oso on. Modularity keeps complexity within
manageable limits, and also provides a "big picture” for
organizing the bite of knowledge in Jearning and using a
machine.

Form Follows Function -

Tn machine design, form follows function; in its use, insight
follows form. Form encompasses the overall shape of the
machine, the control panel, and the individual controls with
their labels and markings. Serutiny of the form leads to
conjectures about what the machine does and how it is
operated. The conjectures are tested by operating the
controls and observing what happens. By “playing around,”
we discover the what and howof the machine.

One-to-One Mapping of Controls and Operations

The success of “playing around" depends critically on the
mapping between the controls on a machine’s panel and
operations or actions thai the machine performs. Ideally,
the mapping is one-to-one; that is, corresponding to each
machine operation is a contro! which causes the operation
to happen. Then if a machine has N controls, we know
that the machine is capable of N and only N operations.
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This Hmits the possible conjectures to a reasonable number,
and testing each conjecture is a trivial matter of actuating
a control and observing what happens. Contrast this with
the case where two controls have to be actuated in sequence
to get each machine operation to happen. Now there are
NXN possible things the machine could de, and NxN
possitle control sequences. We are unlikely to discover
such a machine hy playing around because the possibilities
are too numerous and testing too tedious. Tape recorders
turn this fact inte 4 safety feature by requiring two controls
to be actuated in sequence to make a recording. The
improbability of discovering the proper sequence makes
accidental erasure unlikely by 4 naive user.

Manual Operation

Machines are operated manually rather than synbolically.
Manual operatians conform to a universal language based
on physical laws that govern the interactions between
physical objects. Knowledge of this language enables us to
cope with novel situations and tasks, usually without
instruction or training. For example, if we want to toast
bread, from the nature of the bread, toaster and the
toasting process, it skould be discoverable-if not
immediately, then eventually after some trial-and-error—a
procedure that will accomplish the task. By contrasi,
symbolic operations require languages which by definition
are human inventions. The existence of English and
Chinese, FORTRAN and Pascal, and different command
languages makes clear that there is no universal language
for symbolic operations. The multitude of languages and
their arbitrariness is bound to render us illiterate and

helpless when faced with a computer that speaks a
language we do not know. Suppose, for example, that the
toaster was operated by an anknown command langnage.
We are nilikely to discover by trial-and-error how to
operate such 2 toaster.

Inunediate Feedback

It goes almost without saying that being able to observe
immediately the consequences of our actions is important
for evaluating whether our conjectures were correct or noi,
and for stimulating further conjectures.

The Language of Contras

Over centuries of machine design, a subtle language of
controls (Chapanis, 1972) has evolved that we learn from
our experience with machines. Designers of machines can
use this language to tell us what the machine does and how
io use H, Of course, the existence of this language does not
guaranties good design, but we believe that a design which
does not speak this language is likely to be bad. Some of
the important messages in this language follow:

® Presence — The presence and absence of controls
tell us what the machine can and cannot do. For

example, ihe presence of controls labeled
"LIGHTER® and "DARKER" on a copier tell us
that we can. make copies lighter or darker than the
original, ‘

® Labels — Good labels, whether text or symbols, tell
us what the controls do and thereby what the
machine as a whale can do.
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s Yype — The type of control suggests the nature of
the thing contralled. For example, a toggle switch
controls something with only two states, and a knob
controls something that varies continuously.

* Clustering — Distinct clusters of controls often
corresporid to the distinet subfunctions of a machine.
A copier may have, for example, a cluster of
controls to specify the number of copies, and another
to start and stop copying.

© Arrangement - The proper arrangement of
controls can make labels superflucus. In a sar, for
example, a rectangular arrangement of power
window switches on the center console makes

obvious without labels the correspondence between
switches and windows.

@ Movement — Controls operate according to well-
established conventions. Por example, we flip a light
switch up to turn the lights on, and turn the volume
knob clockwise to make the music louder.

© Status ~ The seitings of the contrals cam tell us
what the machine is doing and what state it is in.
On a toaster, for example, the position of the lever
tells us that bread is toasting.

* Graphics — Graphic cues such as a frame around a
group of controls or lines connecting controls can
indicate the relationship between controis. On a
conteat panel for a model train layout, for example,
a Ume connects switches controlling points on a
common section of track.

Limitations of Hard Controis

Yhe physical and mechanical properties of hard controls
make them mice to use. They can be felt and operated
without looking, their distinctive movements provide
kinesthetic feedback, and their sounds confirm their
actnation, Unfortunately, the “hardness” of hard controls is
also the source of many limitations,

® Jaflexibility — The inflexibility of hard controls is
the root of other limitations. Hard controls can’t

appear ar disappear, move around, or change their
appearance. inflexible hard controls make for
infloxible machines. We are now im an awkward

situation where the functionality of machines is
easily changed by software, but the inflexibility of
hard controls severely limits the changes that can be
accommodated without changing the hardware or
compromising the operability of the machine. For
example, if a keyboard does not provide special
cursor positioning keys, we have io make do with
controls intended for other uses; most likely, cursor
positioning will be more awkward as a consequence.

® Management of complexity ~ Some machines are
already toa complex for many people, and the use of
microprocessors which allow the easy addition of
"bells and whistles” will lead to more complexity.
The complex electronic calculator compared to the
simple mechanical adding machine is an example of
this trend. With bard controls it is dificult to keep
ihe complexity from overwhelming us because the
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progressive disclosure of controls is difficult to
achieve. Some machines, television sets for example,
hide infrequently used controls behind panels to
simplify their appearance and use. The problem of
teo many controls is aggravated by the compactness
made possible by microelectronics, There may be no
room. on compact machines for controls which are
large enough and spaced widely enough to be easily
operable. Digital watches indicate the prablem.
The inflexibility of hard controls limit the
complexity that can be easily managed with
machines to far below their potential promised by
microelectronics.

SOFT MACHINES AND SOFT CONTROLS

Definition and Antecedents

A soft machine can have practically all the advantages of
hard machines without the disadvantages that accrue from
hardware implementations. A soft machine is implemented
by sofiware which simulates hard machines in two
important respects. First, a soft machine is made te look
like a hard machine by graphics software that generates
images of controls such as keys, pushbutton switches, and
slide potentiometers on the screen of a color video display.
The sereen serves as a tabula rasa upon which computer
systems are visually represented as soft machines through
images of their control panels. Second, a soft machine is
made to operate like a hard machine by covering the
display screen with a touch-sensitive position sensor, or
touch screen for short. The touch sereen enables us ico

touch and operate the controls in the display as if they were
physical controls. And we are not Himited to pointing. We
can, for example, drag our finger to activate “slide“
switches, and forthcoming force-discriminating touch
screens will make possible soft controls regulated by
pressure. This mode of direct operation of controls by
touch rather than through some intermediary pointing
device such as a Hght pen or mouse gives soft machine
users a sense of immediacy they would otherwise not have.

The basic ideas underlying soft machines were first
articulated by Ken Knowlton (1977) who explored howthe
inflexibility of hard contrals could b¢ overcome partially oy
optically superimposing computer-generated labels on hard
keys. Keys were made to disappear visually and logically
by climinating labels and voiding their operations.
Computer graphics and color were used to indicate the
clusters of related keys and their proper sequencing.
The first commercial realization of a soft machine to cur

knowledge is the NEROX 5700 Electronic Printing System
(Schuyten, 1986). AH the controls for the 3700 appear on
a black-and-white video display with a touch sereen for
operating the controls,

More recently, Schmandt (1981) described a soft machine
for editing speech recordings. Like us, Schmandt used
color graphics and a touch screen to implement his soft
machine. Mirrer (1982} developed in our laboratory a
similar but more elaborate soft machine for making hybrid
speech documents consisting of a speech recording and
associated text outline. We have also developed soft
machines for displaying colored speech spectrograms, and
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for spreadsheet analysis.

 

A Calculated Example

An example should make clearer how a soft machine
retains the attributes of hard machines that lead to ease in

learning and transfer while taking advantage of the power
and flexibility of computers to manage complexity.

Our example will be a calculator. The forerunner of the
calculator is the adding machine, a hard machine with one
purpose and a form suggestive of that purpose. A simple
adding machine has few keys, and a complex one has many
more. Thore is a one-to-one correspondence between keys
and functions. The clase resemblance of an electronic

calculator to the adding machine enables us to use a
caleulator for simple calculations with a bit of exploration
and without reading a manual.

In design, today’s complex, multifunction calculator is no
tore than a shrunken adding machine with extra
capabilities, It offers some aids to help us manage
complexity, but its appearance, except for more tabels,
reveals littl about ns added capabiliues. [te operation is
obscured by keys with nmltiple labels and mede-dependent
actions that require many-to-one mapping of cantrals onic
functions, and by invisible stacks and mernory registers that
hide their contents.

A calewlator implemented as a soft machine makes obvious
much more of its functionality and current state while
maintaining a simple appearance. The “soft calculator"
appears on the screen as a simple four function calculator
augmented with keys to access the more complex functions,
memory registers and on-line instructions. The placement
of the extra keys off to one side and their labels hint at
their purpose. Touching one of these keys labeled
“STATISTICAL FUNCTIONS?causes it to light up and
another group of keys te appear. These new keys enable us
to do statistical calculations casily. Touching the
“STATISTICAL FUNCTIONS” key again causes it io go
dim and the evoked keys to disappear, We can achieve the
ideal of a one-to-one mapping between keys and functions
regardless af the number of functions the calculator may
have because there is ample room on the screen, and keys
can disappear when no longer needed. Additional displays
are created on demand to store and show intermediate
results and useful constants. Such numbers are entered

into further calculations simply by touching the
corresponding displays. Touching 4 key labeled
"MEMORY" evokes keys to store, recall and accumulate
numpers in memory registers with corresponding displays
showing their contents.

The calculator is troublesome to represent as a computer
system using other interface designs. A calculator operated
with a command language could not be learned without
consulting a manual. A menu interface would be extremely
tedious. Rapid entry of numbers would be difficult by
selecting soft keys with a mouse in see-and-point interfaces
like those of the KERGX Star (Smith, Irby, Kimball &
Verplank, 1982) and Apple Lisa! (Ehardt, 1983)
professional workstations. Of course, such interfaces will
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be ideal in other situations and applications. We hope that
this calculator example shows clearly and convincingly that
a soft machine interface is qualitatively different from
command languages, menus and see-and-point interfaces,
and that there are circumsiances where a soft machine

offers obvious advantages.

 

Operability with Flexibility

A soft machine, properly designed, preserves the essential
properties of hard machines that make them easy to use:
the global properties modularity, revealing form, a one-
to-one mapping between controls and operations, ete.—and
the local properties—presence, labels, type, etc.—-that are
the Janguage of contrals.

A soft machine, furthermore, is flexible. Graphics software
enables soft controls to appear and disappear on demand,to
move about the screen, and to change appearance so that
the form of the machine acquires a dynamic character
indicative of the ever changing state of the soft machine.
This flexibility gives the designer of soft machines the
power to manage the complexity of computer systems to
keep us from being overwhelmed. A complex. soft machine
can be composed of raany simpler soft machines, each
serving one of the subfunctions of the whole machine.
Then to accomplish the overall function, we need deal with
only one simple machine at a time. This strategy for
managing complexity is essentially identical to the notion of
progressive disclosure that characterizes the XEROX? Star
interface (Smith et al, 1982). This layered approach also
overcomes the problem of overcrowding of controls on
complex hard machines. Since only those controls relevant
to a subfunction seed be present at any given time, the
Himited space on the display screen can be shared among
many controls. Hence the space available for contrals on a
soft machine is practically limitless.

Primitive Operations: Sew’s Ears and Silk Purses

A well-designed machine, hard or soft, is comprised of
primitive operations which are comprehensible and
complete. By comprehensible, we mean that the nature of
the operations themselves and how they should be combined
and sequenced to accomplish some larger task are easily
understood, learned and remembered. By camplete, we
mean that the operations are sufficient io do all the tasks
we demand of the machine. Soft machines represent a way
io organize, present and actuate the primitive operations,
but leave unanswered an important question in machine
design: How do we determine a goad set of primitive
operations, and rales for combining and sequencing dhe
operations? A sow’s ear of a design will not yield a silk
purse of a machine—hard or soft. Soft machines are no
panacea for bad design, but they do give the designer the
flexibility and power to make a goad design even better.

a registered trademark, and Lisa a trademark, of Apple
Camputer.

2. XEROX is a registered trademark of the Xerox Corporation.
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ORGANIZING 4 COLLECTION OF SOFT MACHINES

Work on any substantial project will entail working with a
callection of soft machines. We want the collection

organized so that we have easy access to all the machines
needed for the project with no unneeded machines
cluttering our work environment. We propose that our
work envircament be organized into parallel three-level
structures of tools @ soft machine is an instance of a tood
and data (e.g., documents, spreadshects and databases.}

For tools, the three levels are tool bin, workshep and
workbench, The too! bin is the entire collection of tools

available on a particular computer. The workshop is a
work environment specialized for a particular type of work
or task such as document preparation or programming, and
containing all and only those tools needed to accomplish the
task. The tools in the workshop are simply copies to those
found in the tool bin. The workbench is analogous to a
work surface or counter in the workshop where the actual
work is done. Om the workbench are tools needed just for
the current task. These toals are temporary copies which
are “put away” when the work is done. These three levels
correspond naturally to a houseware store, kitchen, and
Kitchen counter.

For data, the three levels are file, folder and paper as in the
Star and Lisa systems. As in our traditional office
environment, files contain relatively inactive data, folders
contain data for an active project, and papers represent the
aspect of the project that is being actively worked on. Files
reside in some independent space, but folders reside in
workshops, and papers on workbenches, The analogy to the
traditional office environment is clear.

Gur houses have evolved special work environments such as
the kitchen, bathroom and woodshop to make activities
more efficient and to eliminate unwanted interference

between activities. We believe that computers should be
organized for similar reasons into specialized work
environments with both the tools and data needed for

particular tasks conveniently and simultaneously on hand.
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Abstract

Gesture-based interfaces, in which the user specifies commands by simple freehand drawings,
offer an alternative to traditional keyboard, menu, and direct manipulation interfaces. The ability
to specify objects, an operation, and additional parameters with a single intuitive gesturc makes
gestere-based systems appealing to both novice and experienced users.

Unfortunately, the ditiiculty in building gesture-based systems has prevented such systems from
being adequately explored. This dissertation presents work that attempts to alleviate two of the
major diuficulties: the construction of gesture classifiers and the integration of gestures ito direct-

manipulation interfaces. Three example gesture-based applications were built to demonstrate this
wark.

Gesture-based systems reqaire classifiers to distinguish between the possible gestures a user
tay enter. In the past, classrficrs have often becn hand-coded for cach new application, making

themdifficult to build, change, and maintain. This dissertation apphes elementary statistical pattern
recognition techniquesto produce gesture classifiers that are trained by example, greatly simplifying

their creation and maintenance. Both single-path gestures (drawn with a mouse or stylus) and
niultiple-paih gestures (consisting of the simultaneous paths ol multiple fingers) may be classilied.

On a 1 MIPS workstation, a 30-class singie-path recognizer takes 175 milliseconds to train (once
the examples have been entered), and classification takes 9 milliseconds, typically achieving 97%
accuracy. A method for classifying a gesture as scon as it is unambiguous is also presented.

This dissertation also describes GRANDMA,a toolkit for building gesture-based applications
based on Smailtalk’s Model/View/Controller paradigm. Using GRANDMA, one associates sets of

gesture classes with individual views or entire view classes. A gesture class can be specified at

 

nuntime by entering afew examples ofthe class, typically 15. ‘Phe semantics of a gesture class can be

specifiedat runtimevia a simple programming interiace. Besides allowing for casy experimentation
with gesture-based interfaces, GRANDMAsports a novel input architecture, capable of supporting
rouftiple input devices and multi-threaded dialogues. The notion of virtual tools and semantic
fecdback arc shown ta arisc naturally from GRANDMA’s approach.
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Chapter 1

Introduction

People naturally use hand motions to commumicate with other people. This dissertation explores the

use of human gestures to communicate withcomputers,
Random House [122] defines “gesture” as “the movement of the body, head, arms, hands, or

face that is expressive of an idea, opinion, emotion, etc.” This is a rather general definition, which
characterizes well what is generally thought of as gesture. If might eventually be possible through

computer vision for machines to interpret gestures, as defined above, in real time. Currently such
an approach is well beyond the state oftheart in computer science.

Because of this, the term “gesture” usually hasa restricted connotation when usedin the context

of human-computer interaction. There, gesture refers to hand markings, entered with a stylus or
mouse, which function to indicate scope and commands [109]. Buxton [14] gives a fine example,

reproduced here as figure 1.1. In this dissertation, such gestures are referred to as single-path
gestures.

Recently, impat devices able to track the paths of multiple fingers have come into use. The

Sensor Frame [84] and the DataGlove[32, 130] are two examples. The human-computer interaction
cornmunity has naturally extended the use of the term “gesture” to refer to hand motions used fo

indicate commands and scope, entered via such omltiple finger input devices. These are referred to
here as mi/d-path gestures.

Rather than defining gesture more precisely at this point, the following section describes an

is@ally, wewant2one-io-one mapping betwee

\goncepts and gestures}User interfaces should be
Sesigned with a clear objEee thea mentalmodel we ara trying to seuPhrasing can
reinforce the chunks or structura of the modal.

Figure 1.1: Proofreader’s Gesture (from Buxton [75}}
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(co) 

Figere 1.2: GDP, a gestare-based drawing program

example application with a gestural interface. A more technical definition of gesture will be

presented in section 1.6.

li An Example Gesture-based Application

GRANDMAis a toolkit uscd to create gcsturc-based systems. It was built by the author and is

described in detail in the pages that follow. GRANDMA was used to create GDP, a gestore-based
drawing editor loosely based on DP [42]. GDP provides for the creation and manipulationoflines,

rectangles, ellipses. and text. in this section, GDPis used as an example gesture-based system.
GDP’s operationis presented first, followed by a description of how GRANDMAwasused Lo creale

GDP’s gestural interface.

14.1 GDP fram the user’s perspective

GDP’s operation froma user’s point of view will now be deseribed. (GDP’s design and implemen-

tation is presented in detail in Section 6.1.) The intent is to give the reader a concrete example of
a gesture-based system before embarking on a general discussion of such systems. Purthermore,

the description of GDP serves ta dhustrates many of GRANDMA’s capabilities. A new interaction
technique, which combines gesture and direct manipulation in a single mieraction,ts also introdeced

in the description.
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Figure 1.2 shows some snapshots of GDP in action. When first started, GDP presents the user
with a blank window. Panel (a) shows the rectangle gesture being entered. ‘This gesture is drawn
like an “L.”! The user begins the gesture by positioning the mouse cursor and pressing a piouse
button. The user then draws the gesture by moving the mouse.

The gesture is shown on the screen as is being entered. This technique is called inking [109],
and provides valuable feedback to the user In the figure, inking is shown with dotted lines so that

the gesture may be distinguished from the objects im the drawing. In GDP, the inking is done with
solid lines, and disappears as soon as the gesture has been recognized.

The end of the rectangle gesture is indicated in one of two ways. If the user simply releases
the mouse button immediately after drawing “L” a rectangle is created, one corner of whichis at
the start of the gesture Gvhere the button was first pressed}, with the opposite comerat the end of

the gesture Qwhere the button was released). Another wayto end the gesture is to stop roving the
mouse for a given amount of time (0.2 seconds works well}, while still pressing the mouse button.
Tn this case, a rectangle is created with one comerat the start of the gesture, and the opposite comer
at the current mouse location. As long as the button is held, that comer is dragecd by the mouse,

enabling the size and shape of the rectangle to be determined interactively.

Panel (5) of figure 1.2 shows the rectangle that has been created and the ellipse gesture. This
gesture creates an ellipse with its centerat the start of the gesture. A point on the ellipse tracks the
mouse after the gesture has been recognized; this gives the user interactive control over the size and
eccentricity of the ellipse.

Panel (c) showsthe createdellipse, and a line gesture. Similar to the rectangle and the ellipse, the
start of the gesture determines one endpoint of the newly created line, and the mouse position after
the gesture has been recognized determines the other endpoint, allowing the line to be rubberbanded.

Panel (d) showsall three shapes being encircled by a pack gesture. This gesture packs (groups)
all the objects which it encluses into a single composite object, which can then be manipulated as
aurt. Panel (2) shows a copy gestare being made; the cornposite object is copied and the copy is
dragged bythe mouse.

Panel (£) shows the rotate-and-scale gesture. ‘The object is made to rotate around the starting
point ofthe gesture; a point onthe object is dragged by the mouse, allowing the user to interactively
determine the size and orientation of the object.

Panel (g) shows the delete gesture, essentially an “X” drawn with a single stroke. The object at
the gesture start is deleted, as shown in panel (h).

This brief description of GDPillustrates a numberof features af gesturc-based systems. Perhaps
the most striking feature is that cach gesture corresponds to a high-level operation. The class of the

gesture determines the operation; attributes of the gesture determine its scope (the operands) and
any additional parameters. Por exampic, the delete gesture specifies the object to be deleted, the
pack gesture specifies the objects to be combined, and the line gesture specilies the endpoints of
the line. 

 
 "Tis often convenient to describe single-path gesiures as if they were handwrilienleliers. This is nol meant io imply

that gesture-based systems can only recognize alphabetic symbols, or eventhat they usually recognize alphabetic symbols.
The many ways in which gesture-hased systems are distinct from handwriting-recognition systems will he enumerated tn7
section 1.8.
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A period jucdicates the firsé point of each gesture.

It is possible fo contral more than positional pararncters with gestural attributes. For example,
one version of GPP uses the length Gn pixels) of the fine gestere to control the thickness of the new
line.

Note how gesturing and direct manipulation are combined in a new two-phase interaction
technique. The first phase, the collection of the gesture, ends when the user stops moving the mouse
while holding the button. At that time, the gesture is recognized and a number of parameters to
the application command arc determined. After recognition, a manipulation phase is entered during

whichthe user can control additional parameters mteractively.

In addition to its gestural interlace, GDP provides a more traditional click-and-dlrag interlace.

This is mainly used to compare the two styles of interface, andis further discussedin Section 8.1.
The gestural interface is grafted on top of the click-and-drae interface, as will be explained next.a & &

Li2 Using GRANDMAto Design GDP’s Gestures

Tn the current work, the gesture designer creates a gestural interface to an application out of an
existing click-and-drag interface to the application. Both the click-and-drag interface and the

application are built using the object-oriented toolkit GRANDMA, ‘The gesture designer only
modifies the way input is handled, leaving the output mechamsms untouched,

A system built using GRANDMAutilizes the object-orienicd programming paradigm to rep-
resent windows and the graphics objects displayed in windows. For example, figure 1.3a shows
ODP’s Viewclass hierarchy.” This hierarchy showsthe relationship of the classes concerned with
output. The task of the gesture designeris to determine whichofthese classes are to have associated

gestures, and for cach such view class, to design a set of gestures Uhat intuilively expresses the
allowable operations on the view. Figure 1.26 shows the sets of gestures associated with GDP’s
GraphicObjectView and GdpTopView classes. The GraphictbjectrView collectively
 

  For expositional purposes, the hierarchy shown is a simplified version of the actual hierarchy. Some of the details
Howhave also boen simplified. Section 8.1 tells the truth in gory detail.
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3} Normal

pap
Delete ALL

 

  
Figure L.4: Manipulating gesture han- . ~ . -& Pabauing B& Figure 1.5: Adding examples of the
diers at runtime /

delete gesture

refers to the line, rectangle, and ellipse shapes, while GdoTopView represents the window im
which GDPrans.

GRANDMAis a Model/View/ControHer-like system [70]. In GRANDMA, an input event
handler (a “controller” in MVCterms) may be associated with a viewclass, and thus shared between

all instances ofthe class (including instances of subclasses}. This adds Jexibility while eliminating
a rnajor overhead of Smalltalk MVC, where one or more controller objects are associated with each
view object that expects input.

The gesture designer adds gestures to GDP’s initial click-and-drag interface at runtime. The
first step is to create a new gesture handler and associate it the GraphicObjectViewclass,

easily done using GRANDMA. Figure 1.4 shows the gesture handler windowalter a numberof
gestures have been created (using the “newclass” button), and figure 1.5 shows the window in which
exaniples of the delete gesture have been entered. Fifteen examples of each gesture class typically
soffice. Hf a gesture is to vary in size and/or orientation, the examples should reflect that.

Cheking on the “Semantics” button brings up a windewthat the designer uses to specify the

semantics of each gesture in the handler’s set. The windowis a structured editing and browsing
interface to a simple Objective-C [28] interpreter, and the designer enters three expressions: recog,
evaluated when the gesture is frst reengnized; manip, evaluated on subsequent mouse points: and
done, evaluated when the mouse button is released. In this case, the delete semantics siraply
change the mouse cursorto a delete cursor, providing feedback ta the user, and then delete the view
at which the gesture was aimed. The expressions entered are? 

%Objective C syniax is used throughout. [vi
bythe vatiable view. [handler mousetool
referred to by the variable handlerpassing the value of the variable 2
for more information on Objective C notation.

sends ihe delete message to the object referred io
sends the mousetool: message to the object

3

  

 
 

 4
 :DeleteCursor

 LebeCursor as an argument. See Section 6,
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recog = [| Seq : 
manip = nil;

done = nil;

‘The designer may now iromediately try out the delete gesture, as in figure 1.2¢.
The designer repeats the process to create a gesture handler for the set of gestures associated

with class GdpTopView, the view that refers to the window in which GDPruns. This bandler

deals with the gestures that create graphic objects, the pack gesture Gwhich creates a set out of
the enclosed graphic objecis), the dot gesture (which repeats the last conmand), and the gestures
also handied by GraphicOb] ectView's gesture handler GQvhich when made at a GcdoTopView
change the cursor without operating directly on a graphic abject}.

The attributes ofthe gesture are directly available for use in the gesture semantics. Por example,
the semantics ofthe line gestare are:

recog = [Seq ;: fhandler mousetool :LineCursor]}
if ay view createLine]

setEndooint:0 x:<startX> y:<startY>]1;

manip = [recog setEndpoint:1 x:<currentX»> y:«<currentY>];

done = nil;

The semantic expressions execute im a rich environment in which, for example, view is bound
to the viewat which the gcstare was directed (in this case a GdpTopView) and handleris bound

to the current gesture handler. Note that Seq executes its arguments sequentially, returning the
value of the last, in this case the newly created line. ‘This is bound to recag for later use in the

manip expression.

The exampic shows howthe gesture attributes, shown in angle brackets, are useful in the semantic
expressions. The attributes <startX> and <startY>, the coordinates of the first point in the

gesture, are used to determine one endpoint of the line, while <currentX> and <currentY>,
the mouse coordinates, determine the other endpoint.

Manyother gesture altribules are useful in semantics. The line sernantics could be augmented
to cantrol the thickness of the line from the maximum speed or total path iength of the gesture.
The rectangle semantics could use the initial angle of the rectangle gesture to determine the
orientation of the rectangle. The attribuic <enclosed> is cspecially noteworthy: it contains a
list of views enclosed by the gesture and is used, for example, by the pack gesture (figure 1.24).
When convenient, the semantics can simmilate input to the click-and-drag interface, rather than
communicating directly with application objects or their views, as shown above.

When the first point of a gesture is aver more than one gesture-handling view, the anion
of the set of gestures recognized by each handler is used, with priority given to the foremost
views. For cxample, any gesture made at a GDP GraphicObjectView is necessarily made
over the GdpTopView. A delete gesture made at a graphic object would be handled by
the GraphicObjectView while a line gesture at the same place would be handled by the
GdpTopView. Set union also occurs when gestures ace (conceptually) uherited via the view
chass hierarchy. For example, the gesture designer nught create a new sesiure handler for the
GobjSetview class containing an unpack gesture. The set of gestures recognized by
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Gobi SetViews would then consist of the unpack gesture as well as the five gestures handled by
sraphicObjectView.

1.2 Glossary

‘This section defines and clarthes some terms that will be used throughout the dissertation. It may
safely be skipped andreferred backto as needed. Someof the terms (click, drag) have their common

usage in the human-computer inieraction communtty, while olers (pick, move, drop) are given
technical definitions solely for use here.

class In this dissertation, “class” is used in two ways. “Gesture class” refers to a set of gestures all
ol which are ivendedto be treated the same, for‘example, the class af delete gestures. (in this
dissertation, the names of gesture classes will be shown in sans serif typeface.) Thejob of
a gesture recognizer is, given an example gesture, to determineits class (see also “gesture”.
“Class” is also used in the object-oriented sense, referring to the type (loosely speaking} of a

software object. ft should be clear from context which of these meanings is intended.

click A click consists of positioning the mouse cursor and then pressing and releasing a mouse
button, with no intervening mouse motion. Tn the Macintosh, a click is generally used to
select an object an the screen.

eHek-and-drag A click-and-drag toteriace is a direcl-nianipulation interface m which objects on

the screen are operated upon using mouse clicks, drags, and sornetimes double-clicks.

direct manipulation A direct-manipulation interface is one in which the user manipulates a graphic

representation of the underlying data by pointing at and/or moving them with an appropriate
device, such as a mouse wulb buttons.

double-click A double-click is twoclicks in rapid succession.

drag A drag consists of locating the mouse cursor and pressing the mouse button, moving the
mouse cursor while holding the mouse bitton, and then releasing the mouse button. Drag

interactions are used in click-and-drag interfaces to, for example, move objects around on the
sereen.

drop The final part of a drag (orclick) interaction in which the mouse button is released.

eager recognition A kind of gesture recognition in which gestures are often recognized without the
end ofthe gesture havimg io be exphciily signaled. Weally, an eager recogmuer will recognize
a gesture as soon as enoughof it has been seen to determineits class unambiguously.

gesture Essentially a frechand drawing used to indicate a command and all its parameters. De-

pendine on context, the ferm maybe usedto refer to an example gesture or a class of geaeeg. “a delete gesture” means an example gesture belonging to the class of delete gestures.
Usually “gesture” refers to the part of the interaction up until the input is recognized as one
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of a number of possible gestere classes, but sometimes the entire interaction (which includes
isa manipulation phase after recognition)tsreferred to as a gesture.

move The component of drag interaction during which the mouse is moved while a mouse button

is held down. [tis the presence of a movethat distinguishes a click from a drag.

multi-path A onilti-path gestare is ane made with an input device that allows more than one position
to be indicated simuultancously (multiple pointers}. Onc may make multi-path gestures with a

Sensor Prame, a multiple-linger touch pad, or a DataGlove, to name a few such devices,

off-line Considering an algorithmto be a sequence ofoperations, an off-line algorithmis one which
examines subsequent opcrations before producing output for the current operation.

on-line An on-line algorithm is one in which the output of an operation is produced before any
subsequent operations are read.

pick ‘Che initial part of a drag (or click) interaction consisting of positioning the mouse cursor at

the desired location and pressing a mouse button.

press refers to the pressing of a mouse button.

realtime A real-time algorithm is an on-line algorithm in which cach operation is proecssed in
time boundedby a constant.

release refers to the releasing of a mouse button.

segment A segment is an approximately linear portion of a stroke. Por example, the letter “L” is

two segments, one vertical and one horizontal.

single-path A single-path gesture is one drawn by an input device, such as a mouse or stylus,

capable of specifying only a single point over ime. A single-path gesture may consist of
multiple suokes dike the character “X”’).

single-stroke A single-stroke gesture is a single-path gesture that is one stroke. Thus drawing “L”
is a sitgle-stroke gesture, while “X”’ is not. In this dissertation the only single-path gestures

considered are single-stroke gestures.

stroke A stroke is an unbroken curve made bya single movementof a pen, stylus, mouse, or other

instrument. Generally, strokes begin and end with explicit user actions (e.g. , pen down/pen
up, mouse button down/mouse button up).

13 Summary of Contributions

‘This dissertation makes contributions in four areas: newinteraction techniques, newalgorithms for
gesture recognition, a new way ol integrating gestures into user interfaces, and a new architecture

for input in Ghject-oriented toolkits.
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The first newinteraction technique ts the two-phase combination of single-stroke gesture callec-

tion followed by direct manipulation, mentioned previously. In the GDP examplediscussed above,
x recogaiiion, the sec-

ond new interaction technique, eliminates this interval by recognizing the single-stroke gesture and
entering the manipulation phase as soon as enoughof the gesture has heen seen to do so unambigu-
ously, making the entire inferaction very smooth. A third new interaction techniqueis the two-phase

interaction applied to multi-path gestures: after a multi-path gesture has been recognized, individ-
ual paths (ie. fingers, possibly including additional fingers not involved in making the recognized

gesture) may be assigned to manipulate independent application parameters simultancously.

The second contribution is a new trainable, single-stroke recognition algorithm tailored for
recognizing gestures. The classification is based on meaningful features, which in addition to
being useful for recognition are also suitable for passing to application routines. The particular

 
 

the boundary between the lwo phases is an interval of motionlessness. Eage

set of features used has been shown to be suitable for many diffcrent gesture scts, and is casily

extensible. When restricted to features that can be updated incrementally in constant time per
input point, arbitrarily large gestures may be handled. The single-stroke recognition algorithm has

been extended to do eager recognition (eager recognizers are automatically generated from example
gesiures), and also to multi-path gesture recognition.

Third, a new paradigm for creating gestural interfaces is also propounded. As seen in the
example, starting from a click-and-drag implementation of an interface, geshires arc associated
with classes of views (display objects), with the set of gestures recognized at a particular screen

location dynamically determined bythe set of overlapping views at the location, and by inheritance
up the class Merarchy of each such view. Theclassification andattributes of gestures map directly to

application operaiions and parameters. The creation, deletion, and manipulation of gesture handlers,
gesture classes, gesture examples, and gesture semantics all occur at runtime, enabling quick and
easy experimentation with gestural interfaces.

Pourth, GRANDMA,as an object-oriented user interface toolkit, makes same contributions to
the area of input handling. Dvent handler objects are associated with particular views or entire view

classes. A single event handler may be shared between manydifferent objects, eliminating a major
overhead of MVCsystems. Multiple event handlers maybe associated with a single object, enabling
the object io support niultiple interaction techaiques simultaneously, including the ese af multiple

inpat devices. Furthermore, a single mechanism handles both mouse tools (e.g. a delete carsorthat
deletes clicked-apon objects} and virtual tools (c.g. a delete icon that is dragged around and dropped
upon objects ta deicte them). Additionally, GRANDMA provides support for semantic feedback,
and enables the rantime creation and manipulation of event handlers.

1.4 Motivation fer Gestures

Ai this point, the reader should have a good idea of the scope of the work to be presented in this

dissertation. Stepping back, this section begins a general discussion of gestures by examining the
motivation for using and studying gesture-based interfaces. Much of the discassion is based on that
of Buxton [14].

Computers get faster, biomapped displays produce ever increasing information rates, speech and
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Figure 1.6: Macintosh Finder, MacDraw, and MacWrite (fram Apple (2)

music can be generated in real-time, yet input fast seems to plod along with little or no improvement.
‘This is regrettable because, in Paul McAvirmey’s words [$4], niost of the useful information in the

world resides in humans, not computers. Most people who interact with computers spend most
of their time entering information [22]. Pue to this input bottleneck, the total time ta do many
tasks would hardly improve even if computers became infinitely fast. Thus, improvements im input
technologyare a majorfactor in improving the productivity of compaterusers in general.

 

OF course, progress has been made. Input has progressed from hatch data entry, to mteractive

line editors, to two-dimensional screen edilors, to mouse-based systems with bitmapped displays,
Pointing with a mouse has proved a useful interaction technique in many applications. “Click
and drag” interfaces, where the user directly manipulates graphic objects on the screen with a
mouse, are offen very intuitive to ose. Because of this, direct manipulation interfaces have become

commonplace, despite bemg rather difficult to build.

Consider the Macintosh [2], generally regardedas having a good direct-manipulation interface.
As shown in figure 1.6, the screen has on it a number of graphic objects, including file icons, folder

rcons, sliders, buttons, and pall-down mene names. Each one is generally a rectangular region,
which may be clicked, sometimes double-clicked, and sometimes dragged. The Macintosh Finder,
which maybe used to access all Macintosh applications and documents,is almast entirely controlled
via these three interaction techniques.4

The click and double-click interactions have a single object Cor location) as parameter. The drag 

‘Obviouslythis discussion ignores keyboard catry oftext and commands,
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itferaction has two parameters: an object or location where the mouse button is first pressed, and
another object or location at the release point. Having only these three interaction techniques is one
reason the Macimiosh is smuple lo operate. ‘There is, however, a cost: both the application and the
user must express all operations in termes of these three interaction techniques.

An application that provides more than three operations on any giver object (as many do) has
several design alternatives. The first, exemplified by the Finder, relies heavily on selection. In
the Finder, a click interaction selects an object, a double-click opens an object (the meaning of
which depends upon the abject’s type), and a drag moves an object (the meaning of whichis also

object-type specific). Opening an object by a double-clickis a means for invoking the most common
operation on the object, ag. opening a MacWrite document starts the MacWrite application on the
document. Dragging is used for adjusting sliders (such as those which scroll windows), changing
windowsize or position, moving files between folders, and selecting mene items.

All other operations are donein at least two steps: first the object to be operated uponis selected,

and then the desired operation is chosen from a menu. For example, to print an object, one selects
it (click) then chooses “Print” from the appropriate menu (drag); to move some text, one selects it
(drag), choases “Cut” (drag), selects an insertion point (click), and chooses “Paste” (drag). The cost
of only having dirce interaction techniquesis that some operations are necessarily performed via a
sequence of interactions. The user must adjust her mental model so that she thinks in terms of the

component operations.

Analternative to the selection-based click-and-drag approach is one based on modes. Consider

MacDraw[2], a drawing program. The user is presented with a palette offering choices suchas line,
text, rectangies, circles, and so on. Clicking on the “line” icon puts the programinto line-drawing
macde. The next drag operation in ihe drawing windowcauselines to be drawn. In MacDraw,aller

the drag operation the programreverts back to selection made. DP, the program upon which GDP
is based,is sirnilar except that if remains in its current mode unel itis explicitly changed. Mistakes
eccer when the uscr belicves he is in one modc but is actually in another. The claimthat direct
ranipulation interfaces derive their power from being modeless is not really trae. Good direct

manipulation interfaces simply make the modes very visible, which helps to alleviate the problems
of modal interfaces.

By mandating the sole use of click, double-click, and drag interactions, the Macintosh interface

paradigm necessarily causes conceptually primitive tasks to be drvided into a sequenceofprimitive
inderaciions. The intent ol gestural mierfaces is to avoid this diviston, by packing the basic interaction

with all the parameters necessary to complete the ertire transaction. Ideally, each primitive task in
the user’s mode] of the application is executed with a single gesture. Such interfaces would have
less modeness than the current so-called modcicss interfaces.

‘The Macintosh discussion in the previous section is somewhat oversimplified. Many applications
allow variations on the basic interaction techniqnes; for example “shift-click” holdingtheshift key

while clicking the mouse} adds an object to the current set of selected objects. Other computer
systems allowdifferent mouse buttons to indicated different operations. Thereis a tradeolf between

having a small number and a laree number of (consistently applied) interaction techniques. ‘The
former reselis in a system whose primitive aperations are easy to leam, perform, and recall, but 4

single natural chonk may be divided into a sequence of operations. In the latter case, the primitive
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operations are harder to learn (because there are more of them), but each one can potentially

unplement an entire nataral chunk.
The motivation lor gestural iverfaces may also apply to mterfaces which combine modalitics

(eg, speech and pointing). As with gestures, one potential benefit of multi-modal interfaces is that
diferent modalities allow many parameters ta be specified simultaneously, thus eliminating the need
for modes. The “Put-That-There” system is one cxample [12].

 

18 Primitive Interactions

The discussion thus far has been vague as to what exactly maybe considered a “primitive”interaction

technique. The Macintosh has three: click, double-click, and drag. Tt is mteresting to ask what
criteria can be used for pidging the “prinutiveness” of proposed interaction techniques.

Buxton [14] suggests physical tension as a criterion. The user, starting from a relaxed state,

begins a primilive interaction by iensing sonie oiuscles. The interaction is over when the user again
relaxes those muscles. Buxton cites evidence that “such periods of tension are accompanied by
a heightened state of attentiveness and improved performance.” The three Macintosh interaction
techniques all satisfy this concept of primitive interaction. (Presomably the user remains tense
during a double-click because the time between clicks is short.)

Buxton likens the primitive interaction to a musical phrase. Pach consists of a penod of

tension followed by a return to a state where a new phrase may be introduced. In human-computer
interaction, such a phraseis used to accoraplish a chunk of a task. ‘The goal is to make each of these

chunks a primiive task in the user’s model of the application domain, This is what a gesture-based
interface attempts to do.

1.6 The Anatomyof a Gesture

Tn this section a technical definition of gesture is developed, and the syntactic and semantic properties
of gestares are then discussed. The dictionary definition of gesture, “expressive motion,” has already
been seen. Howcan the notion of gcsturc in a formsuitable for sensing and processing by machine
be captured?

1.6.1 Gestural motion

The motion aspect of gestare is formalized as follows: a gesture consists of the paths of multiple
points over time. The points in question are (conceptually) affixed to the parts of the body which
perform the gesture. Por hand gestures, the points tracked might inclade the fingertips, knackles,
palm, and wrist of cach hand. Over the course of a gesture, cach point traces a path in space.
Assuming enough points (attached to the body in appropriate places), these paths contain the

essence of the gestural motion. A computer with appropriate hardware canrapidly sample positions
along the paths, thus conveniently capturing the gesture.

The wea of gesture as the giotion of muliple pornts over lime is a generalization of poling.

Pointing may be considered the simples! gestare: it specifies a single position at an instance of
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time. This is generalized to allow for the movement of the point over time, ie a path. A farther
generalization admits ovltiple paths, ie the movement of multiple points over time.

Curren gesture-sensing hardware Toniis bath the number of points which niay be tracked

simultancously and the dimensionality of the space in which the points travel. Gestures limitedto
the motion of a single point are referred ta here as singlcpath gestures. Most previous gestural

research has focascd upon gcaturca made with a stylus and tablet, mouse, or singlc-finger touch‘peeThe gestures which may be made with such devices are two-dimensional, single-path gesturesAn additional feature of existing hardware is that the points are not tracked at all tunes.” For
example, a touch pad can only determine finger position when the finger is touching the pad. Thus,

ihe path of the point will have a begianing Gvhen the fmeger fost makes contact) and an end Gvben
the finger is lifted). This apparent limitation of certain gesture-sensing hardware may be used
to delineate the start and possibly the end of each gesture, a necessary function in gesture-hased
systems. Mouse buttons may be usedto similar effect.®

Tn all the work reported here, a gesture Ginchiding the manipulation phase after recogmtion)is
always a primitive interaction. A gesture begins with the user going from a relaxedstate to one

of muscular tension, and ends when the user again relaxes. Tt is further assumedthat the tension
sing hardware. For mouse

gestures, the user is considered in astate of tension if and only if a mouse button is pressed. Thus,
inthe current work a double-click is not considered a gesture. ‘This is certainlya limitation, but one
that could be removed, for exaraple by having a minimumthme that the button needs to be released
before the user is considered to have relaxcd. This added carnplication has not been explored henThe space in which the points of the gesture move is typically physical space, and thus a ath
is represented by a set of points (xy, ¥,2,4 consisting of three spatial Cartesian coordinates and

 

or relaxation of the useris directly indicated by some aspect of the sen

 

tume. However, there are devices which measure non-spatial gestural parameters; hence, gestures
consisting of paths through a space where al least some of the coordinales are not lengths are

possible. For example, some touch pads can sense force, and for this hardware a gesture path might
consist of a set of points Cx, y, 68, PF being the force measurement at time £

The formalization of gesture as multiple paths iis just one arnong many possible representations.
It is a good representation becauseit coincides nicely with most of the existing gesture-sensing

hardware, and if is a useful form for efficient processing. The multiple-snapshot representation, i
which each snapshot gives the position of multiple points at a single instant, is another possibility,

and im some sense may be considered the dual of multiple paths. Such a representation might
be more suitable for gestural data derived from hardware (such as video cameras) which are not
considered in this dissertation.

1.6.2 Gestural meaning

In addition to the physical aspect of a gesture, there is the content or meaning of the gesture
to consider. Generally speaking, a gesture contains two kinds of information: categorical and
 

5A configuration of multiple points at a single instance of time may be termed posiure. Posture recognitionis
commonly used with the DatgGlove.

“Buxton [17] presents a model of the discrete signaling capabilities of various pointing devices and a list of the
signaling requirements for cormmoninteraction techniques.
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parametric. Consider the different motions between people meaning “come here” Checkoning

gestures}, “step” (prohibiting gestures), and “keep going” (encouragement gestures). ‘These are
diferent categories, or classes, ol gestures. Within each class, a gesture also can indicate parametric

data. Por example,e, 8 parameterofthe beckoning gesture is the urgencyof the request: “hurry up” or
“take your time.” In general, the category ofthe gesture rust be determined before the parameters
can be interpreted.

Parametric information itself comes m two forms. The first is the kind of information that can

be culled at the time the gesture is classitied. For example, the position, size and orientation ofthe

esture fall into this category, The second kind of parametne gestural information is manipulation
information. After the gesture is recognized, the user can usethis kind of parametric informationto
continuously conimunicate information. An example would be the directional information commru-
nicated bythe gestures of a person helping a driver to back up a truck. An exaraple from GDP (see
Section |.1)}is the mbberbanding of a line afteritis crcated, where the ascr continsously manipulates

one endpoint.

‘Che term “gesture” as used here does not exactly correspond to what is normally thought

of as gesture. Mary gestares cannot currently be processed by machine dee to lintitations of
existing gesture-sensing hardware. Also, consider what might bereferred to as “direct-manipulation

ee A person tuming a knob would not normally be considered to be gesturing. However,i similar motion used to manipulate the graphic image af a knob drawn on a computer displayis
considered to be a gesture. Actually, the difference here is more illusory than real: a person might
make the knob-tuming gesture at another person, in effect asking the latter to turn the knob. The
intent here is simplyto point out the very broad class of motions considered herein to be gesture.

While the notion of gesture developedhere is very general (multiple paths), in practice, machine
gestures have hitherto almost always been limited to finger and/or hand motions. Furthermore, the
paths have larecly been restricted to two dimensions. The concentration on two-dimensional hand
gesturing is a result of the available gesture-sensing hardware. Of ecurse, such hardware was built

because it was hehevedthat hand and fingers are capable of accurate and diverse gesturing, yet more
amenable to practical detection than facial or other body motions. With the appearance of new input
devices, three (ar more} dimensional gesturing. as well as the use of parts of the body other than the

hand, ure becorning possible. Nonetheless,this dissertation concentrates largely on two-dimensional
hand gestures, assuming that by viewing gesture simply as multiple paths, the work described may
be applied to non-hand gestures, or generalized to apply to gestures in three or more dimensions.

1.7 Gesture-hased systems

A gesture-based interface, as the term is used here, is one in which the user specifies commands
by gesturing. Typically, gesturing consists of drawing or other frechand motions. Excluded from

the class of gesture-based interfaces are those in which input is done solely via keyboard, menu,
or click-and-drag interactions. In other words, while pointing is in some sense the most basic

geesture, thase interfaces in which pointing is the only form of gesture are not considered here to be
esture-basedinterfaces. A gesiure-based systeni is a program (or set af programs) wilh whichthe

user interacts via a pesture-based interface.
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In all but the sunplest gesture-based systems, the user may enter a gesture belonging to one of

several different gesture categories or classes;the different classes refer to different commands to the
system. An important component of gesture-based systems is the gesture recogniser or classifier,
the module whose job is to classify the user’s gesture as the first step toward inferring its meaning.
This dissertation addresses the implementation of gesture mcognizers, and their incorporation inte
gesture-based systems.

1.7.4 The four states of interaction

User interaction with the gestaure-based systems considered in this disserlaiion may be described
using the following four state model. The states-WaAIl, COLLECT, MANIPULATE, EXECUTE—usually
occur in sequence for each interaction.

# The WAIT state is the quiescent state of the system. The system is waiting for the user tu
initiate a gesture

« The COLLECTstate is entered when the user begins io gesture. While in this state, the system
collects gestural data from the input hardware in anticipation of classifying the gestere. For
most gesturing hardware, an explicit start action (such as pressing a mouse button) indicates
the beginning of each gesture, and thus causes the system to enterthis state.

e The MANIPULATE state is entered once the gesture is classified. This occurs in one of three
ways:

peed ‘The end of the gesture is uvdicated explicitly, e.g, by releasing the mouse button;Ys ~ oP

2. the end of the gesture is indicated implicitly, e.g. by a timeout which indicates the userbe not moved the mouse for, say, 200 milliseconds; or
. the system initiates classification because it believes it has now seen enough of the

gesture to classify it unarnbiguously (eager recognition).

ed

When the MANIFULAIL state is entered, the system should provide feedback to the user as to
the classification of the gesture and update any screcn objects accordingly. Whilcinthis state,

the user can further manipulate the screen objects with his motions.

@ The LXLCUTLHstateis entered when the user has completed his role in the interaction, and has
indicated such (eo. by relcasing the moasc button). At this point the system performs any

final actions as implied bythe user’s gesture. Ideally, this state lasts only a very short time,
after which the display is updated to reflect the current state of the system, and the syster
reverts back to the WAIT state.

‘This model is sufficient to describe most current systems which use pointing devices. (For

simplicity, keyboard inpet is ignored.) Depending on the system, the COLLECT or MANIPULATE
state may be omuilied fram the cycle. A handwriting interface will usually omit the MANIPULATE

state, classifying the coHected characters and executing the resulting command. Conversely, a
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direct-manipulation system will omit the COLLECT state (and the attendant classification}. The

GDP example described above has both COLLECT and MANIPULATE phases. ‘The result is the new
two-phase inleraction technique mentioned cariler.

18 A Comparison with Handwriting Systems

In this section, the frequently asked question, “how do gesture-hased systems ditfer from handwriting
systems?” is addressed,

Handwriting systems may broadly be grouped into two classes: on-line and off-line. On-line
handwriting recognilion simply means characters are recognized as they are drawn. Usually, the

characters are drawn with a stylus on a tablet, thus the recognition process takea a3 mput a list
of successive points or fine segments. The problem is thus considerably different than off-line
handwriting recognition, in whichthe characters are first drawn on paper, and then optically scanned

and represented as two-dimensional rasters. Suen, Berthod, and Mori reviewthe literature of both
on-line and off-line handwriting systems [125], while Tappert, Suen, and Wakaha[129] give a recent

reviewof on-line handwriting systems. The intention here is to contrast gesture-based systems with
on-line handwriting recognition systems, as these are the mast closely related.

Gesture-based systems have much im commaon with systems which employon-line handwriting
recognition forinput. Both use frechand drawing as the primary means ofuserinput, and both depend
on recognizers to interpret that input. However, there are some important differences between the
twa classes of systems, differences that ilfastratc the merits of gesturc-based systems:

e Gestures may be motions in two, three, or more dimensions, whereas handwriting systems

are necessarily two-dimensional. Similarly, single-path and multiple-path gestures are both
possible, whereas handwriting is always a single path.

@ The alphabet used in a handwriting systemis generally well-known and fixed, and users will
generally have lifelong experience writing that alphabet. With gestures, it is less likely that

users will have preconceptions or extensive experience.

é In addition to the commanditself, a single gesture can specify parameters to the command.
The proofreader’s gesture Gigure 1.1) discussed above, is an excellent example. Another
example, also due to Buxton [21]. and used in GSCORE (Section 8.2}, is a musical score

echior, in which a single stroke indicates the location, pitch, and duration of a note to be added
to the score.

6 As stated, a commandand all its parameters may be specified with a single gesture. The phys-
joal relaxation ofthe user when she completes a gesture reinforces the conceptual completion
of a command [14].

e Gestures of a given class may vary in both size and orientation. Typical handwriting recog-

nizers expect the characters to be ofa particular size and oriented in the usual manner (though
successful systems will necessarily be able to cope with at least small variations in size and

onentation). However, some gesture cormmands may use the size and orientation to specify
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parameters; gesture recognizers must be able to recognize such gestures in whatever size and

orientation they occur. Kum(67! discusses augmenting a handwriting recognition system so
as to allow IL fo recognize some gestures jadependentiy ol them size and orientation. Chapter
3 discusses the approach taken here toward the same end.

# Gestures can have a dynamic component. Handwriting systems usually view the input
character as a static picture. In a gesture-based system, the same stroke may have different

meanings if drawnleft-to-right, right-to-left, quickly, or slowly. Gesture recognizers may use
such directional and temporal information in the recognition process.

In sumunary, gestures may potentially deal in dimensions other than the two commonly used in
handwriting, be drawn from unusual alphabets, specify entire commands, vary in size and orientation,
and have a dynamic component. Thus, while ideas from on-line handwriting recognition algorithms
may be used for gestarc recognition, handwriting recognizers generally rcly on assumptions that
make them inadequate for gesture recognition. The ideal gesture recognition algonthm should be

adaptable to new gestures, dimensions, additional features, and variations in size and ortentation,
and should produce parametric information in addition to a classification. Unfornimately, the price

lor this generalityis the likelyhoodthat a gesture recognizer, when used for haadwiiting recognition,
will be less accurate than a recognizer built and tuned specifically for handwriting recognition.

1.8 Motivation for this Research

In spite of the potential advantages of gesture-based systems, only a handful have been built.

Examples inchide Button Box [86], editing using proofreader’s symbots [25], the Char-ree note-
input tool [21], and a spreadsheet application built at 18M [100]. These and other gesturc-based
systems are discussed in section 2.2. Gesture recognition in most cxisting systems has been dene
by writing codec to recognize the particular sect of gestures uscd by the systern. This code is usually

complicated, making the systerns (and the set of gestures accepted) difficult to create, maintain, and
modify. These difficalties are the reasons more gesture-based systems have not been built.

One goal of the present workis to eluminate hand-coding as the wayto create gesture recognizers.

Instead, gesture classes are specified by giving examples of gestures in the class. From these
examples, recognizers are automatically constructed. fa particular gesture class is to be recognized
in any size or orientation, its examples of the class should reflect that. Similarly, by making all of
the cxamplies of a given class the sanic size or orientation, the systemleams that gestures in this
class must appear in the same size or orientation as the exaropies. The first half of this dissertation

is concerned with the automatic construction of gesture recognizers.

Even given gesture recognition, it is still difficult to build direct-manipelation systems which
incorporate gestures. This is the motivation for the second half of this disserlation, which describes

GRANDMA—Gestare Recognizers Antomated in a Novel Direct Manipulation Architecture.
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1.10 Criteria for Gesture-based Systems

he goal of this research was to prochice tools whichaid in the constructionof gesture-based systems.&

he efficacy of the tools may be judged by how well the tools and resulting gesture-based systems

satisfy the following criteria.

1.10.1 Meaningful gestures must be specifiable

A meaningful gesture may be rather complex, involving simmitaneous motions of a number of
points. ‘hese complex gestures orust be easily specifiable. ‘wo methods of spectication are

possible: specification by example, and specification by description. In the former, cach application
has a training session in which examples af the different gestures are submitted to the system. The
result of the training is a represertation for all gestures that the system must recognize, and this
representation is ased to drive the actual ecstere recognizer that will nm as part of the application.
Inthe latter method of specification, a description of each gesture is written in a gesture description

language, which is a formal language in which the “syntax” of each gesture is specified. Por
example, a set of gestures may be specified by a context-free grammar, in which the terminals

represent prinntive niotions (c.g. “sleaight line segment”) and gestures are aon-terminals composed
of terminalis and other non-terminals.

Allelse being equal, the author considers specification by example to be superior to specification
bydescription. In order to specify gestures by description, it will be necessary for the specificr to

leara description language. Conversely, in order to specify by example, the specifier need only be
able to gesture. Given a system in which gestures are specified by example, the possibilityarises

for end users fo train the system directly, either to replace the existing gestures with ones more to
therm liking, or to bave the system laiprove ts recogailion accuracy by adapting to the particular

ichosvancrasies of a given user’s gestures.
One potential drawback of specification by example is the difficulty in specifying the allowable

variations between gestures of a givenclass. Ina description language, it can be made straightforward
to declare that gestures of a given class maybe of anysizeor of anyorientation. The same information

might be conveyed to a specify-by-example system by having omultiple examples of a single class
vary UL Size Or orientation. The system would then have to fafer that the size or orientation ofa

given gesture class was irrelevant to the classification of the gesture. Also, training classthers may
take longer, and recognition may be less accurate, when using cxaniples as specifications, though
this is by no means necessarily sa. Similar issues arise in demonstrational mterfaces [97],

1.40.2 Accurate recognition

An important characterization of a gesture recognition system will be the frequency with which

gestures fail to be recognized or are recognized incorrectly. Obviously i is desirable that these
mumbers be made as small as possible. Questions pertaining to the amount of inaccuracy acceptable

to people are difficult to answer objectively. Vhere will likely be tradeoffs between the complexity
of gesiares, the number ofdifferent gestures to be disambiguated, the time needed Lor recognition,

and the accuracy of recognition.
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In speech recognition there is the problern that the accuracy of recognition decreases as the

user population grows. However the analogous problem in gesture recognition is not as easy to
gauge. Dillerent people speak the same words dillerenily due to imevitable differences in analomy
and upbringing. The way a person says a word is largely determined before she encounters a
speech recognition system. Py contrast, most people have few preconceptions of the way to
gesture at a machine. People will mast Hkely be able to adapt themselves to gesturing in ways

the machine understands. The recognition system may similarly adapt to each user’s gestures. It
would be interesting, though outside the scope ofthis dissertation, to study the fraction of incorrectly

recognized gestures as a fenction of a person’s experience with the system.

1.40.3 Evaluation of accuracy

lt should be possible for a gesture-based system to monitor its own performance with respect to

accuracy of recognition. ‘This is not necessarily easy, since in general it is impossible to know
which gesture the user had intended to make. A good gesture-based systeni should incorporate

some method by which the user can easily inform the system when a gesture has been classified
incorrectly. Ideally, this method should he integrated with the undo or abort features of the systems.
(Lerner [78] gives an altemative in which subscquent aser actions arc monitored to determine whe
the user is satisfied with the results of system heuristics.)

1.16.4 Wificient recognition

The goal of this work is fo enable the construction of applications that use gestures as input, the
idea being that gesture input will enhance hurman/computer interaction. Speed of recognition is very
umportant—a slow system would be frustrating to use and binderrather than enhance interaction

Speed iS a very Limnportant factor in the success or failure of user interfaces in general. Baccker
and Buxton [3] slate that one of the chief determinants of user salislaction with fateractive coniputer

systems is response time. Poor performance in a direct-manipulation system is particularly bad, as
any noticeable delay destroys the feeling of directness. Rapid recognition is essential to the success
of gostarc as a modhim for human-computer intcraction, cven if achicving it means sacrificing
certain feateres or, perhaps, a limited amount of recognition accuracy.

1.10.5 Om-line/real-time recognition

When possible, the recognition system should attempt to match partial inputs with possible gestures.
lt mayalso be desirable to informthe useras soon as possible when the input does not seem to match

any possible gesture, An on-line/real-time matching algorithm has these desirable properties. ‘The
gesture recognition algorithms discussed in Chapters 3,4, and 5 all do a small, bounded amount of

Work given each newinput point, and are thus all on-line/real-time algorithras.

1.19.6 General quantitative application interface

An application musi specily what happens when a gesture is recogmued. This will often take the

form of a callback to an application-specific routine. There is an opportunity here to relay the

Page 1186 of 1714



Page 1187 of 1714

20 CHAPTER 1 INTRODUCTION

parametric data contained in the gesture to the application. This includes the parametric data which

can be derived when the gesture is first recognized, as well as any manipulation data which follows.

1.40.7 iomediate feedback

in certain applications, it is desirable that the application be informed immediately once a gesture
is recognized but hefore if is completed. An example is the turning of a knob: once the systern
recognizes that the user is gesturing to turn a knob it can monitor the exact details of a gesture,

relaying quantitative data to the application. The application can respond by immediately and
continuously varying the parameter which the knob controls Gor example the volume of a musical
Listrument}.

LiG.8 Context restrictions

Py.
4 gesture sensing system should be able, within a single application, to sense different sets ofgestures

in different contexts. An example of a context is a particular area of the display screen. Different
areas could respond to different sets of gestures. The set of gestures to which the appheation
responds should also be variable over time—the application prograrn entering a new mode could

potentially cause a different set of gestures to be sense
‘The idea of contexts ts closely related to the idea of using gestures fo manipulate graphic objects.

Associated with each picture of an object on the screen will be an area ofthe screen within which
mestures referto the object. A good gesture recogmition system should allowthe application program

to make this association explicit.

110.9 Efficient training

An ideal system would allowthe user to cxperiment with different gcsterc classes, and also adapt to
the user's gestures to improve recognition accaracy. It would be desirable if the system responded
immediately to any changes in the gesture specifications: a systemthat took several hours to retrain

itself would not be a good platform for experimeritation.

1.40.10 Good handling of misclassifications

Miselassi fications of gestures are a fact of life in gesture-based systems. A typical system might have
a recognition rate of 95%or 99%. ‘This means one out of twenty or one ont of one hundred gestures
will be misunderstoad. A gesture-based system should be prepared to deal with the possibility of
misclassification, typically by providing casv access to abort and undofacilitics.

11011 Device independence

Certain assumptions about the formofthe input data are necessaryif gesture systems are to be built.

As previously stated, the assemption made here is that the input device will supply position as a
function of time for each input “path” (or supply data rom whichit is convenient to calculate such

positions}. (A path may be thoughtof as a contimuous corve drawnbya single finger.) This form of
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data is supplied by the Sensor Frame, and (at least for the single finger case} a mouse and a clock

can be made to supply similar data. Phe recognition systems should do their recognition based on
the posilion versus time data; in this way other input devices mayalso bene{i trora this research.

1.19.12 Bevice utilization

Each particular brand of input hardware used for gesture sensing will have characteristics that

other brands of hardware will not have. H would be unfortunate not to take advantage ofall the
special features of the hardware. For example. the Sensor Frame can compute finger angle and
finger velocity.’ While for device independenceit may be desirable that the gesture matching not
depend on the value of these inpats, there should be some facility for passing these parameters to
the application spccific cade, if the application sq desires. Bacckcr [4] states the case strongly:
“Although portabilityis facilitated by device-independence, interactivity and usability are enhancec
by device dependence.”

Lil Outhne

‘Phe following chapter describes previous related work in ge
four sections: Section 2.1 discusses various hardware devices sutiable for gestural tapul. Section

2.2 discusses existing sesture-based systems. Section 2.3 reviews the various approaches ta pattem
recognition in order to determine their potential for gesture recognition. Section 2.4 examines
existing software systems and toolkits that are used ta build direct-manipulation interfaces. Ideas

from such systems will be generalized in order to incorporate gesture recognition into such systems.

Everything after Chapter 2 focuses on various aspects of the gesture-based interface creation

tool buidt by the author. Such a tool makes it easy to 1) specify and create classitiers, and 2) associate
gestures classes arul their meanings wih graphic objects. The tormer goalis addressed in Chapters
3,4, and 4, the latter in 6 and 7.

The discussion of the implementation of gesture recognition begins in Chapter 3. Here the
probiern of classifying singlc-path, two-dimensional gestures is tackled. This chapter assumesthat

the start and endofthe gesture are known, and uses statistical pattern recognition to derive efficient
gestere classifiers. The training of such classifiers from example gestures is also covered.

Chapter 3 shows how to classily single-path gestures; Chapter 4 shows when. ‘This chapter

addresses the problem of recognizing gestures while they are being made, without any explicit
indication of the end of the gesture. The approach takenis to define and construct another classifier,
This classifier is intended salely to discriminate between ambiguous and unambiguous subgestures.

Chapter 3 extends the statistical approach to the recognition of multiple-path gestures. This
is useful for uhhzing devices that can sense the positions of multiple fingers simultancously, in

particular the Sensor Frame.

 
sture-based systems. ‘his is dividedinto

Chapter 6 presents the architecture of an object-onented toolkit for the construction of direct-
maripelation systems. Like many other systerns, this architecture is based on the Model-View- 

‘This describes the Sensor Frame as originally envisioned. The hardwareis capable of producing a fewbits of finger
velocity and angle information, although te date this has not been attempied.
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Controller paradigm. Conpared to previous toolkits, the input model is considerably generalized

in preparation for the incorporation of gesture recognition uo a direct-manipulation system. The

notion of virtual tools, through whichinput may be gencraied by soltware objecis im the same manner
as by hardware input devices, is introduced. Semantic feedback will be shown to arise naturally
fromthis appreach.

Chapter 7 shows howgesture recognizers are incorporated into the direct-manipulation archi-
tecture presented in Chapter 6. A gesture handler may be associated with a particular viewof an

object on the screen, or at any level in the view hierarchy. In this manner, different objects will
respond to ditferent sets of gestures. ‘he communication of parametric data from gesture handler

to applicationis also examined,
Chapter 8 discusses three gestare-based systems built using these techniques: GDP, GSCORE,

and MDP. The first two, GDP and GSCORE, usc mouse gestures. GDP, as already montioncd,
is the drawing editor based on DP. GSCOREis a musical score editor, based on Buxton’s SSSP

work [21]. MDPis aiso a drawing editor, but it operates using multi-path gestures made with a
Sensor Frame. The design and implementation of each system is discussed, and the gestures for
each sho

Chapter 9 evaluates a number of aspects of this work. The particular recognition algorithmsare
tested for recognition accuracy. Measurements of the performanceof the gesture classifiers used

in the applications is presented. Then, an informal user studyassessing the utility of gesture-hased
systems ts discussed.

Finally, Chapter 10 concledes this dissertation. ‘Lhe contribations of this dissertation are dis-
cussed, as are the directions for future work.

 

1.12 What Is Not Cevered

This dissertation attempts to cover many topics relevant to gesture-based systems, though by no

means all of them. In particular, the issues involved in the ergonomics and suitabulity of gesture-
based systeras applied to various task domains have not been studied. [tis the opinionofthe author

that such issues can only be studied after the tools have been made available which allow easy
creation of and experimentation with such systems. The intent of the current workis to provide
such tools. Future research is needed to determine hawto asethe tools to create the most asabic

gesture-based systems possible.

OF course, chowes have had to be made in the implementation of such tools. By avoiding
the problemof determining which kind of gesture-based systems are best, the work opens itself to

charges of possibly “throwing the baby out withthe bath-water” The claimis that the general system
producedis capable of implementing systems comparable to many existing gesture-based systems:
the example applications implermented (see Chapter 8) support this claim. Farthermore, the places
whererestrictive choices have been made (e.g. two-dimensional gestures} have been indicated, and

xtensible and scalable methods(¢.g. linear discrimination) haye been used wherever possible.

‘Vhere are two major limitations of the current work. The first is that single-path multi-stroke
westures (e.g, handwritten characters} are not handled. Most existing gesiure-based sysierns use

sirgle-path mmilu-stroke gestures. The second limitation is that the start of a gestere must be
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explicitly indicated. This rules out (at least at first glance) using devices such as the DataGlove

which lack buttons or other explicit signaling hardware. However, one result of the current work is
that these apparent Hovlations give rise to certain advantages in gestural mterlaces. Por example,
the lunitations enforce Buxton’s notion of tension and release mentioned above.

Gestural outpat, ic. generating a gesture in response to a query, is also not covered. For an
example of gestural output, ask the author why he has taken sc long to complete this dissertation.
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Chapter 2

 

This chapter discusses previous work relevant to gesture recognition. This includes hardware

devices suitable for gestural input, existing gesture-based systems, pattern recognition techniques,
and software systems tor building user interfaces.

Before delving into details, it is worth mentioning some general work that attempts to define
gesture as a technique for interacting with computers. Morre!-Samuels [87] examines the distinction
between gesteral and lexical commands, and then further discusses problems and advantages of
gesteral commands. Wolf and Rhyne (140) integrate gesture into a general taxonomy of direct
manipulation interactions. Rhyne and Wolf [109] discuss in general terms haman-factors concems

of gestural interfaces, as well as hardware and sottware issues.

Theuse of gesture as an interaction techniqueis justified in a nurnberof studies. Wolf [139] per-

formed two experiments that showed gestural interfaces compare favorably io keyboard interfaces.
Woll [141] showed that many different people naturally use the same gestures in a text-ediling

context. Hauptmann [49] demonstrated a similar result for an image manipulation task, further
showing that people prefer to combine gesture and speech rather than use either modalityalone.

2.1 Input Devices

A number of input devices are suitable for providing input to a gesture recognizer. This section
concentrates on those devices which provide the position of one or more points over time, or whose

data is easily converted into that representation. ‘The intention is to list the types of devices which
can potentially be used for gestaring. The techniques developedin ths dissertaiton can be apphed,
directly or with sore generalization, to the devices mentioned.

Ajarge variety of devices may be usedas two-dimensional, single-path gesturing devices. Some
graphical input devices, such as mice [33], tablets and atyli, light pens, joysticks, trackhaills, touch

tablets, thumb-wheels, and single-finger touch screens [107, 124], have been in common use for
years. Less common are foot controllers, knee controllers, eye trackers [12], and tongue-activated

joysticks, Each may potentially be used for gestural input, though ergonomically some are better
sunied for gesturing than others. Baecker and Buxton [5/, Buxton [14]. and Buxton, Hill and Rowley

[18] discuss the suitability of manyof the above devices for various tasks. Buxton further points out

25
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that two different joysticks, forexample, may have very different properties that must be considered

with respect to the task.

Por gesturing, as with pointing, it is useful for a device to have some signaling capability in

addition to the pointer. Por example, a mouse usually has one or more buttons, the pressing of
which can be used to indicate the start of a gesture. Similarly, tablets usually indicate when the

stylus makes or breaks contact with the tabiet (hough with a tablet it is not possible to carefally
position the screen cursor before contact), Ha device does not have this signaling capacity, it will
be necessary to simulate it somehow. Exactly how this is done can have a large impact on whether
or not the device will be suitable for gesturing.

 

The 3SPACE Tsotrack system, developed hy Pothemus Navigation Sciences Paviston of Mc-
Donnel Douglas Flectronies Company [32], is a device which measures the position and orientation

of a styhis or a one-inch cube using magnetic flelds. The Polhemus sensor, as it is often called, is a
full six-degree-of-freedomsensor, returmung x, y, and zrectangular coordinates, as well as azinouth,

alatude, and roll angles. It is potentially useful for single path gesturing in three positional dimen-
signs. By considering the angular dimensions, 4, 5, or 6 dimensional gestures may be entered. It is

also possible to use one of the angular dimensions for signaling parposes.

Bell Laboratories has produced prototypes ofa clear plate capable of detecting the position and

pressure of many fingers [10, 08]. The position information is two-dimensional, and there is a
third dimerision as well: finger pressure. The author has seen the device reliably track 10 fingers
simultaneously. The pressare detection may be used for signaling purposes, or as a third dimension
for gestoring. The inventor of the rmufti-finger touch plate has invented another device, the Radto

Drum [il], which can sense the position of omiluple antennae in three dimensions. To date, the
antennae have been embedded in the tips of drumsticks (thus the name), butit would also be possible
to make a glove containing the antenna which would make the device more suitable for detecting

hand gestures.

The Sensor Frame [84] is a frame mounted on a workstation screen Gigure 2.1). It consists of
a light source Qvhich frames the screen) and four optical sensors Cone in each comer). The Sensor

Frame conrputes the two-dimensional positions of wp to three fingeriyps in a plane parallel to. and
slightly above the screen. The net result is similar to a nrulti-linger touch screen. The author has
used the Sensor Frame to verify the multi-finger recognition algorithm described in Chapter 5. The
Sensor Cobe [85] is a device sumilar to the Sensor Frame but capable of sensing finger positions
in thece dimensions. [tis currently under construction. The VideoHarp [112, Pil] is a musical

instrament based on the same sensing technology, and is designed to capture parametric gestural
data.

The DataGlove [32, 130] is a glove worn on the hand able to produce the positions of multiple

fingers as well as other points on the handin three dimensions. Byitself tt can only outputrelative
positions. However, in combination with the Polhemus sensor, absolute finger positions can be
computed. Such a device can translate gestures as complex as American Sign Language [123] into

a multi-path form suitable for processing. The DataGilove, the similar Dexterous Hand Master from
Exos, and the Power Glove from Mattel, are shown in figure 2.2.

The DataGlove comes with hardware which may be tramed to recounive cerlain stalic conlig-

urations of the glove. For example, the DataGlove hardware might be trained to recognize afist,
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ay Terminal 
Figure 2.1: The Sensor Prame

The Sensor Frame is a frame mounted on a computcr display consisting of a rectangular light source and

four sensors, one in each corner [tis capable ofdetecting upto three fingers its held of view (Drawing hy
Paut McAvinney}

 
Figure 2.2: The DataGlove, Dexterous Hand Master, and PowerGlove (from Eglowstein [32])

the DataGlove, Dexterous Hand Master and PowerGlove are three giove-like input devices capable of& ( 'f

ineasuring the angles of various hand aud fingerjoints.
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Figure 2.3: Proofreading syrabals (irom Coleman (25))
The operations intended by each are as follows: a} deletetext (from a singleline}, bj} insert text, c} swap text,
d}) movetext, e} join (delete space}, insert space, g} scrolf up, h} scrolf dawn, and i} delete muftiple fines of

text, Many ofthe marks convey additionalparameters to the operation, e.g. the text to be moved ordeleted.

signaling the hast computer whenevera fist is made. These static hand positions are not considered

to be gestures, since they do not involve motion. The glove hardware recognizes “posture” rather
than gesture, the distinction being that posture is a static snapshot (a pose), while gestare involves

motion over time. Nonetheless, itis a rather elegant way to add signaling capability to a device
without buttons or switches.

The Videodesk [71, 72] is an input device based on a constrained form of video input. The

Videodesk consists of a translucent tablecloth over a glass top. Under the desk is a light source,
over the desk a video camera. The user’s hands are placed over the desk. The tatdecloth diffuses the

light, the net effect being that the camera receives an image ofthe silhouetie of the hands. Additional
hardware is used to detect and track the user’s fingertips.

Some researchers have investigated the attachment of point light sources to various points on

the body or hand to get position information as a function of time. The output of a camera (or pair
of cameras for three dimensional inpat) can be used as input to a gesture sensor.

2.2 Example Gesture-based Systems

‘This section describes a mumber of existing gesture-based systems that have been described in the
literature. A system niusi both classily is gesiaral inpat and use information other than the class

(Le, parametric information) to be included in this survey. The order is roughly chronological.
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Figure 2.4: Note gestures (rom Buxton [21)}

A single gesture indicates note duration (fromthe shape ofthe stroke as shown) as well as pitch and starting

tinc, both of which arc determincd fromtae position ofthestart ofthe gesture.

Coleman [25] has created a text editor which used hand-drawn proofreader’s symbals ta specify

editing commands (gare 2.3). For example, a sideways “S” indicated that two sets of characters
should be interchanged, the characters themselves being delimited by the two halves of the “S.”

The imput device was a touch tablet, and the gesture classification was done by a hand-coded
discrimination net (ie. a loop-free flowchart)!

Buxton [21] has built a musical score editor with a small amount of gesture input using a mouse
(figure 2.4). His system used simple gestures to indicate note durations and scoping operations.
Buxton considered this systemto be more a character recognition system than a gesture-based system,

the characters being taken from an alphabet of musical symbols. Since information was derived nat
only fromthe classificationofthe characters, bat theirpositions as well, the author considersthis to be
a gestare-based systemin the true sense. Buxton’s technique was later incorporated into Notewriter

Uf, a commercial music scoring program. Lamb and Buckley [76] describe a gesture-based music
edilor usable by children.

Margaret Minsky [86] implemented a system called Button Box, which uses gestures for se-
lection, movement, and path specification to provide a complete Logo programming environment
Gigurc 2.5}. Her input device was a clear plate mounted in front of a display. The device sensed the

position and shear forces of a single finger touching the plate. Minksy proposed the use of multiple
fingers for gesture input, but never experimented with an actual multiple-finger input device.

in Minsky’s system, buttons for each Logo operation were displayed on the screen. ‘Lapping

a button caused it to execute; touching a button and dragging i caused it to be moved. The
classification needed to distinguish between a touch and a tap was programmed by hand. There
were buttons used for capying other buttons and for grouping sets of buttons together. A path could
be drawn through a serics of buttons--touching the cnd of a path causcd its constituent buttons to

execute sequentially

VIDEOPLACE[72] is a system based on the Videodesk. As stated above, the suhouette of the
wser’s hands are momitored. When a hand is placed in a pointing posture, the tip of the index finger 

‘Curiously, this research was done while Coleman was a graduate student at Carnegie Mellon. Colemanapparently
never received a Ph.D. from CMU, and tt would be twenty years before another CMUgraduate student (me) would go
nearthe topic of gesture recognition.
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Figure 2.5: Button Box Grom Minksy [86])

Tapping a displayed button causes it to execute tts assigned function while touching a button and dragging it
causes if to be moved.
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Figere 2. &: A gesture-based spreadsheet Grom Rhyne and Wolf [109]}
The Paper-Like interface projectproduces systems which combine gesture and handwriting. The input shown

here selects a group ofcells and requests they be moved to the cell beginning at location “GS.”
rk
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Figure 2.7: Recognizing flowchart symbols

Recognisdig Bowchart symbols Grom Murase and Wokahara [8G)). The sysien: lakes an eniiie ireehaid
drawing ofa fowchart (eft} and recognizes the individual Howchart svinbals (righti, producing an internal

representation ofthe flowchart(as nodes and edges) and a Howchart picture in which the freehand syinbols
are replaced by machine ecnerated linc-drawings drawn from the alphabet ofsymbols. This system shows a

stvle of interface in which pattern recognition is used for something other than the detectian ofgestures ar
characters.

may be used for menu selection. After selection, the fingertips may be used to manipulated graphic
objects, sach as the controlling points of a spline curve.

A group al IBMdoing research into gestural human-conipuier systems has produced a westure-

based spreadsheet application [109]. Somewhat similar to Coleman’s editor, the aser manipulates
the spreadsheet by gesturing with a styfus on a tablet (gare 2.6). For exarnple, detetion is done by
drawing an “X” overaccll, selection by an “YW”, and moving selected cells byan arrow, the tip afwhich
indicates the destination of the move. The apphieation is interesting in that it combines handwriting

recognition (isolated letters and numbers) with gesturing. Por example, by using handwriting the
user can enter numbers or text into a cell without using a keyboard. The portion of the recognizer
which classifies letters, mumbers, and gestures of a fixed size and orientation has (presumably) been

trained by example using standard handwriting recognition techniques. However, the recognition
of gestures which varyin size or orientation requires hand coding [67].

Murase and Wakahara [60] describe a systemin which [rechand-drawn fowcharis symbols are
recognized by machine (figure 2.7), Tarnura and Kawasaki [128] have a systerm which recognizes
sign-language gestures from video input (figare 2.8).

HEPES from MCC [35] and Artkit fromthe University of Anvona [52] are both systems that may

be used to construct gestere-based interfaces. The author has seen a system bailt with HITS similar
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Figure 2.4: Sign language recognition (from Tamura [128)])

This system nracesses an image fram a video camera in orderto recognize a form ofJapanesesign lanauagze.v & oO f o o G

io that of Murase: in it an entire control panel is drawn freehand, and then the freehand symbols are

segmented, classified and replaced by icons. (Similar work is discussed by Maru, ef. a/ [82], also
from MCC.) Artkit has much in common with the GRANDMAsystem describedin this dissertation,
and will he mentioned again later (Sections 4.1 and 6.8). Artkit systems tend to be similar to those
created using GRANDMA,in that gesture commiands are executed as soon as they are entered.

Kurtenback and Buxton [75] have implemented a drawing program based on single-stroke
gestures (figure 2.9). They have used the program fo study, among other things, issues of scope in
gestural systems. To the present author, GEdit’s mast interesting attribute is the use of compound
gestures, as shownin the figure. GEdit’s gesture recognizer is hand-coded.

The Glove-talk system [34] uses a DataGlove to control a speech synthesizer (figure 2.10). Like
Artkit and the work described in Chapter 4, Glove-talk performs eager recognition: a gesture is
recognized and acted upon without its end being indicated explicitly. Weimer and Ganapathy [136]
describe a system combining DataGlove gesture and speech recognition.

The use of the circling gesture as an alternative means of selection is considered in Jackson and
Roske-Hofstrand [61]. In their system, the start of the circling gesture is detected antomatically, Le.

the mouse buttons are not used. Circling is also used for selection in the JUNO system from Xerox
Corporation [142].

A mumber of computer products offer 4 stylus and tablet as their sole or primary input device.
These systema include GRID Systems Corp.’s GRIDPad [50], Active Book Company's new portabic

[431], Pencept Inc.’s computer [59], Scenario’s DynaWriter, Toshiba’s FenPC, Sony's Palmtop,
Mometa’s laptop, MicroSlate’s Datalite, DFMSystem's Travelite, Agilis Corp.’s system, and Go

Corp.’s PenPoint system [81,24]. While details ofthe interface of many of these systems are hard to
fmd Gnany of these systems have not yet been released), the author suspects that miany use gestures.

For further reading, please see [16, 106, 31].
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Tigure 2.9: Copying a group of objects in Gidit Grom Kurtenbach and Buxton [75]

Note the compound gesture the iniilal closed’ curve does sefection, anid ihe final “UCU” indicates ihe dala

should be capted rather than moved.

foot han i
word |} shapeas ' =
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Figure 2.10: GloveTalk (from Pels and Hinton [34})

Glovelalk connects a DataGlove to a speech synthesizerthrough several neural setwarks. Gestures indicate

root words (shown) and modifiers, Reversing the direction ofthe hand motion causes a word to be emitted 
vas well as indicating the start afthe next gesture.485 &fears the  

pynthes
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Figure 2.11: Basic PenPoint gestures from Carr [24])

Recently, prototypes of Goa Corporation’s PenPoint system have been demonstrated. Each
consists of a notcbook-sized computer with a flat display. The sole input device is a stylus, which

is used for gestures and handwriting on the display itself. igure 2.11] shows the basic gestures
recognized; depending on the context, additional gestures and handwriting can also be recognized.

As can be scen, PenPoint gestures may consist of multiple strokes. Although it seems that trainable
recognition algorithms are used internally, ai the present ime the user cannot add any newgestures

to the existing set. The hardware is able to sense pen proximity(hownear the stylusis to the tablet),
whichis used to help detect the end of multi-stroke gestures and characters. PenPoint applications
include a drawing program, a word processor, and a form-bascd data entry system.

Many of the above systems combine gesture and direct manipulationin the same interface. OEdit,

for example, appears to treat mouse iuput as gestural when begun on the background window, but
drags objects when niouse impul begins on the object. Almost none combine gesture and direct
manipulation in the same interaction. One exception, PenPoint, uses the dot gesture (touching the
atylus to the tablet and then not moving until recognition bas been indicated) to drag graphic objects.
Button Box docs saracthing similar for dragging objects. Artkit [52] uses cager recognition, more
or less crediting the idea to me.

2.35 Approaches for Gesture Classification

Pe {40] states that “the problemof pattern recognition usually denotes a discrimination or classifica-
tion of a sel of processes or events.” Clearly gesture recognition, m whichthe input is consideredto

bean event to be classified as one of a particular set of gestures, is a problemof pattern recognition.
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In this dissertation, known techniques of pattern recognition are applied to the problem of sensing
gestures.

The general pattern recognition problem consists of two subpreblems: pattern representation

and decision making [40]. This implies that the architecture of the general pattern recognition
consists of two main parts. First, the representer takes the rawpattern as input and outputs theinfernal representation of the pattern. Then, the deciclertakes as input the output of the representer,
and outputs a classification (and/or a description) of the pattern.

This section reviews the pattern recognition work relevant to gesture recognition. In particular,
the on-line recognition of handwritten characters is discussed whenever possible, since that is the

closest solved problem to gesture recognition. For a good overview of handwriting systems in
general, see Suen et af [125] or Tappert et af [129].

The reviewis divided into two parts: alternatives for representers and alternatives for deciders.

Rach alternative is briefly explained, usually by reference to an existing system which uses the
approach. The advantages and disadvantages of the alternative are then discussed, particularly as

they apply to single-path gesture recognition.

2.3.8 Alternatives for Representers

The represcnice modulc takes the rawdata from the input device and transforms it into a formsuitable
for classification by the decider In the case of single-path gestures, as with on-line handprint, the

raw data consists of a sequence of points. The representer outpets features of the input pattern.

Represeniers may be grouped in terms of the kinds of feateres which they output. ‘he major

kinds of features are: templates, global transformations, zones, and geometric features. weeasingle representer may combine different kinds of features, representers are discussed here aseach only outpats one kind of feature. This will makeclearer the differences between the kinds of
features. Also, in practice mast representers do depend larecly on a single kind offeaturc.

Templates.

‘lemplates are the simplest features fo compute: they are simply the input data in its raw form.
Por a path, a template would simply consist of the sequence of poinis which make up the path.

Recognition systems based on templates require the decider to do the diffienle work; namely,
matching the template of the inpat pattern to stored example templates for each class.

‘Tomplates have the obvious advantagethat the features are simple to compute. One disadvantage

is that the size of the feature data grows with the size of the input, makingthe features unsuitableas
input to certain kinds of deciders. Also, template features are very sensitive to changes in the size,

location, of orientation of the input, complicating classifiers which attempt to allowfor variations
of these wilhm a given class. Examples of ternplate systems are mentioned in the discussion of

template matching below.

Page 1202 of 1714



Page 1203 of 1714

36 CHAPTER 2 RELATED WORK

Global Transformations.

some of the problerns of template features are addressed by global transformations of the inpul

data. The transformations are often mathematically defined so as to be invariant under eg rotation,
translation, or scaling of the input data. For example, the Fourier transform will result in features
invariant with respect to rotation ofthe input pattern [46]. Globaltransformations gscacrally output
a fixed mumber of features, often smaller than the input data.

A set of fixed features allows for a greater variety in the choice of deciders, and obviouslythe
invariance properties allow for variations within a class. Unfortunately, Unere is no way to “tum

off” these invariances in order to disallowintra-class variation. Also, the global transforraations
generally take as input a two-dimensional raster, making the technique awkward to use for path
data Gt would have to first be transformed into raster data). Furthermore, the computation ofthe

transformation may be expensive, and the resulting features do not usually have a useful parametric
interpretations (in the sense of Section 1.6.2}, requiring a separate pass over the data to gather

parametric information.

FORES.

Zoning is a simple way of deriving features from a path. Space is divided into a numberof zones,
and an input path is transformed inte the sequence of zones which the path traverses [S87]. One

variation on this scheme incorporates the direction each zone is entered into the encoding [101]. As
with ternplates, the number of features are not fixed; thus only certain deciders may be used. The

major advantage of zoning schemes are their simplicity and efficiency.

It the recognition is to be size invariant, zoning schemes generally require the input to be
normalized ahead of time. Making a zoning schemerotationallyinvariant is more difficult. Such
normalizations make it impossible to compute zoncs incrementally as the input data is rcccived. Also,

stall changes to a pattern right cause zones to be missed entirely, resulting in misclassification.
And again, the features do not usually hold any aseful parametric information.

Geometric Veatures,

Geometric features are the most commonly used in handwriting recognition [125]. Some geometric
features ofa path (suchasits total length, total anole, nurabcrof times it crosses itself, ete.) represent
global properties of the path. Local properties, such as the sequence of basic strokes, may also be

represented,

TL is possible to use combinations of geometric features, each invariant under some transionua-

tions of the input pattern but not others. For example, the initial angle of a path maybe a feature, and
all other features might he invariant with respoct to rotation of the input. Tn this fashion, classifters
may potentially be creatcd which allow different variations on a per-class basis.

Geometric features often carry useful parametric information. eg the total path length, a

geometric feature, is potentially a useful parameter. Also, geometric features can be fed to deciders
which expect a fixed number offeatures Gf only global zeometric features are used), or to deciders

which expect a sequence of features Gf local features are used).
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Geometric features tend to be more complex to compute than the other types of features Hsted.

With care, however, the computation can be made efficient and incremental. Por all these reasons,
the current work concenlraies on the use of global geometrec lealures for ibe single-paih gesture
recognition in this dissertation (see Chapter 3).

2.3.2 Alternatives for Deciders

Given a vector or sequence of features output by a representer, if is the job of the decider to
determine the class of the input pattern with those features. Seven general methods for deciders may

be enumerated: template-matching, dictionary lookup, a discrimination net, statistical matching,
linguistic matching, connectionism, and ad hoc. Some of the methods are suitable to only one kind

of representer, while others are more generally applicable.

Template-matching,

A template-matching decider compares a given input template to one or more prototypical templates

of cach expected class. ‘Typically, the decider is based on a function which measures the sumuarity
(or dissinularity) between pairs of templates. The input is classified as being a member of ihe same

class as the prototype to which it is most similar Usually there is a similarity threshold, below
which the mput will he rejected as belonging to none of the passihle classes.

The similarity metric may be computed as a correlation function between the input and the

prototype [69]. Dynamic programming techniques may be used to efficiently warp the input in order
to better match up points in the input template to those in the prototype £133, 60, 9].

Template systems have the advantage that the prototypes are simiply example ternplates, making
the system easy to train. In order to accommodate large variations, for exanyple in the orientation
of a given gesture, a number of different prototypes of various orientation must be specified.
Unfortunately, a large muraber of prototypes can make the use of template matching prohibitively

expensive, since the input pattern aust be compared to every tenyplate.

Lipscomb [@0] preserits a variation on template matching usedfor recognizing gestures. in his

scheme, cach training example is considered at different resolutions, giving rise to multiple templates
per example. (The algorithm is thas similar to meltiscule algorithms used in tnage processing
[138].) Lipscomb has apphed the multiscale technique to stroke data by using an angle filter, in
which different resolutions correspond to different thresholds applied to the angles in the gestures.

‘To represent a gesture af a given resolution, points are discarded so that the remaining angles are
all below the threshold. To classify an input gesture, first its highest resolution representation is
{conceptually} compared to each template (at every resolution). Successively lower resolutions of

the input are tried in fur, until an exact match is found. Multiple matches are decidedin favor of
ihe template whose resolution is closest to the current resolution ofthe input.

Dictionarylookup.

When the input features are a sequence of tokens taken from a small alphabet, lookup techmques

tay be used. This is often haw zoning feateres are classified [101]. The advantage is cfficient
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recognition, since binary search (or sumilar algorithms) may be used to lookup patterns in the
dictionary. Often some allowance is made for non-exact matches, since otherwise classification is

senstive io small changes in the taput. Even with such allowances, dictionary systems are often
brittic, duc to the features employed (eg sequences of zones). Of course, a dicthonaryis initially
created fram example training input. Tt is also a sinmmple matter to add new entries for rejected
patterns; thus the dictionary systera can adapt to a given user.

Diserimination nets.

A discrimination net (also called a decision tree) is basically a flowchart without loops. Each
imterior node contains a boolean condition on the features, and is connected to two other nodes (a

“true” branch and a “false” branch). Each leaf node is labeled with a class name. A given feature
sct is classificd bystarting at the root notc, evaluating cach condition cncauntered and taking the

appropriate branch, stopping and outputting the classification whena leaf node is reached.

Discrimination nets may be created by hand [25], or derived from example inputs [8]. They
are more appropriate to classifying fixed-length feature vectors, rather than sequences ofarbitrary

length, and often result in accurate and efficient classifiers. However, discrimination nets tramed byc

example tend to become unwieldy as the number of examples grows.

Statistical matching.

In statistical matching, the statistics of example feature vectors are used to derive classifiers. Typi-
cally, statistical matchers operate only on feature vectors, not sequences. Some typicalstatistics used

are: average feature vector per class, per-class variances of the individual features, and per-class
correlations within features. One method of statistical matching is to compute the distance ofthe
input feature vectorto the average feature vector of each class, choosing the class whichis the clos-
cst. Another method uses thestatistics to derive per-class discrimination functions overthe features.

pectninaee functions are Hike evaluation functions: each discrimination function is applied to1¢ input feature vector, the class being determined bythe largest result. Fisher [35] showed howto
create discnimation functions which are simplylinear combinations ofthe input features, and thus

particularly eflicient. Arakawa et af[3] used slaustical classilication of Pourier leatures for on-line
handwriting recognition; Chapter 3 of the present work uses statistical classification of geometric
features.

Somestatistical classifiers, such as the Fisher classifier, make assumptions about the distributions

of features within a class (such as multivariate normality); thosc tend to perform poorly when the

assumptions are violated. Other classifiers [48] make no such assumptions, but instead attempt to
estimate the form of the distribution fromthe training examples. Such classifiers tend to require many

training examples before they function adequately. ‘he former approach is adopted in the current
work, with the feature set carefully chaser so as to not violate assumiptions about the underlying

distribution too drastically.
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Linguistic matching.

The linguistic approach attempts to apply automata and formal language theory to the problem of
pattern recognition [37]. The representer outputs a sequence of tokens which is composed of a set of
pattern primitives and composition operators representing the relation between the primitives. The

decider has a grammnarfor each possible patiern class. It takes as mput the sentence and altempts to
parse it with respect to each pattern class grammar. Edeully, exactly one of the parses ts successful
and the pattern is classified thus. A useful side effect of the syntax analysis is the parse tree (or other
parse trace) which reveals the internal structure of the pattern.

Linguistic recognizers may be classified based on the form of the representer output. If the
oulpul is a sirig thea standard language recognition technology, such as regular expressions and

context-free grammars, may be used to parse the input, An errar-carrecting parser may be usedin
order to robustly deal with errors in the input. Alternatively, the output of the representer may he a
tree or graph, in which case the decider could use graph matching algorithms to do the parse.

The token sequence could come irom a zoning representer, a representer based on local geometric
properties, or from the outpat of « lower-level classifier. The latter is a hybrid approach—where, for
examiple, statistical recognition is used to classify paths (or path segments), and linguistic recognition
is used to classify based on the relationships between paths. This approach is similar to that taken
by Fu in a number of applications [40, 39, 38].

shaw’s piclere description language (PDL, see figure 2,12) has been used successfullyto describe

and classify line drawings [116, 40]. In another system, Stallings [120, 37] ases the composition
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operators Jefl-of above, and surrounds to describe the relationships between strokes of Chinese
characters.

A major problem with linguistic recognizers is the necessity of supplying a grammar for each

pattern class. This usually represents considerably more effort than sumply supplying examples for
each class. While some research has been done on automatically deriving graramars from examples,
this research appears aot to be sufficiently advanced to be of use in a gesture recognilion systera.

Also, linguistic systems are best for patterns with substantial internal structure, while gestures tend
to be atomic (hut not always [75]).

Connectionism,

Pattern rceognition based on neural nets has received mach rescarch attention recently [65, 104,
132, 134]. A neural net is a configuration of simple processing elements, each of which is a super-

simplified version of a neuron. A number of methods exist for training a neural network pattern
recognizer from examples. Almost any ofthe different kinds of features listed above could serve

as ipul to a neural nel, though best resulis would likely be achieved with vectors of quantitative
feateres. Also, some statistical discrimination functions may be implemented as simple neural
networks.

Neeral nets have been applied successfallyto the recognition of lme drawings [55, 82], characters
[47], and DataGlovegestures [34}. Unfortunately, they tend to require a large ammount of processing
power, especially to train. Tt now appears likely that nearal networks will, in the future, he a
popelar method for gesttire recogmuion. The chief advantage is that neural nets, like termplate-based

approaches, are able to take the raw sensor data as input. A neural network can lear to extract
interesting features for use in classification. The disadvantage is that manylabeled examples (often

thousands) are neededin training.

The statistical classification method discussed in this dissertation may be considered a one-level

neural network. it has the advantage over multilayer neural networks, in that if may be trained
quickly using relatively few examples per class (typically 15). Rapid training time is tmportant in

a systemthai is ased for protalyping gesture-based systems, since il allows ihe system designer to
easily experiment with different sets of gestures for 4a given application.

Ad hoc methods.

if the set of patterns to be recognized is simple enough, a classifier may be programmed by hand.
indeed, this was the case in many of the gesture-hased systems mentioned in Section 2.2. Even
so, having fa program a recognizcr by hand can be difficult and makes the gesture set difficult to

modify. The author believes that the difficulty ofcreating recognizers is one major reason why mare
gesture-based systems have not been built, and why there is a dearth of experiments which study

the effect of varying the gestures in those systems which have been built.he major goal ofthis
dissertation is io make the building of gesture-based systenis easy by making recognivers speciliable

by example, and incorporating thern into an easy-to-use direct manipulation framework.
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24 Dbrect Manipulation Architectures

A direct manipulation system is one in which the user manipulates graphical representations of
objects in the task domain directly, usually with a mouse or other pointing device. In the wards of
Shneiderman [1i7E

ihe central ideas seemed to be visibility of the object of interest; rapid, reversible,

incremental actions: and replacement of complex command language syntax bydirect
manipulation of the object of interest-hence the term “direct manipulation.”

As examples, he mentions displayeditors, Visicaic, video games, computer-aided design, and driving
an automobile, among others.

For many application domains, the direct manipulation paradigmresulis im progranis which are

easyto learn and use. Of course there are tasks for which direct manipulation is not appropriate, duc
to the fact that the abstract nature of the task domain is not easily mapped onte concrete graphical
objects [58]. For cxarnpic, direct manipulation systeras for the abstract task of programming have
been rather difficult to design, though much progress has been made [98].

Tt is not intended here to debate the merits and drawbacks of direct manipulation systems.
Instead, it is merely noted thai direct manipulation has become an increasingly inyportant and

popular style of user interface. Purthermore, all existing gesture-based systemis may be considered
direct-manipulation systems. The reason is that graphical objects on the screen are natural targets
of gesture commands, and updating those objects is an intuitive way of feeding back to the user
the effect of his gesturing. Tn this section, existing approaches for constructing direct manipulation
systems are reviewed. Tn Chapters 6 and 7 it is shown how some of these approaches mav be

extendedto incorporate gestural input.
While direct manipulation systems are casy to use, they are among the most difficult kinds of

interface to construct. ‘Uhus, there is a great interest in software tools for creating such interfaces.
Myers [86] gives an excellent overviewof the various tools which have been proposed for this

purpose. Here, i is sufficient to divide user-interface software tools into three levels.
The lowest software level potentially seen by the direct manipulation system programmer is

usually the window manager. Example window managers include X [113], News [127], Sun
Windows [126], and Display Postseript [102]; see Myers [94] for an overview. For current purpases,

it is sufficient to consider the window manager as providing a set of routines (ia a programming
interface} for both output (textual and graphical) and input (keyboard and mouse or other device).
Programming direct manipulation interfaces at the window managerlevel is a usvally avoided, since

4 large amount of work will likely need to be redone for cach application (ee menus will have
to be implemented for each). Betlding fromscratch this way will probably result in different and
inconsistent interfaces for cach appheation, making the total systern difficult to recall and use.

The next software level is the user interface toolidt Toolkits come in two forms: non-object-

oriented and object-oriented. A toolkit provides a set of procedures or objects for constructing
meus, scroll bars, and other standard interaction techniques. Most of the toolkits come totally

disassembled, and it is up to the programmer to decide howto use the components, Some toolkits,
notably MacApp [115] and GWUIMS [LE&]. come partially assembled, making it easier for the

programmer to customize the strecture to fit the application. Forthis reason, some authors have
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referred to these systerns as User Interface Management Systems, though here they are grouped with
the othertoolkits.

A non-object-oriented toolkit is simply a set of procedures for creating and manipulating the
interaction techniques. ‘This saves the programmer the effort involved in programming these inter-

action techniques directly, and has the added benefit that all systems created using a single toofkit
will look and act similarly. One problem with non-object-oriented toolkits is that they asuaily do
not give much support for the programmer wha wishes to create newinteraction techniques. Such
a programmer typically cannot reuse any existing code and thus finds himsclf bogged down with

many low-level details of input and screen management.

Instead of procedures, object-oriented toolkits provide a class (an object type) for each of
the standard interaction techniques. To use one of the interaction techniques in an interface, the

prograrmmer creates ar instance of the appropriate class. By using the inheritance mechanism of
the object-oriented programming language, the programmer can create new classes which behave

like existing classes except for modifications specified by the programmer. This subclassing gives
the programmer a method of customizing each interaction technique for the particular application.
it also provides assistance to the programmer wishing to create newinteraction techniques—he can
almost always subclass an existing class, which is usually much casicr than programming the new
technique from scratch. One problem with object-oriented toolkits is their complexity; often the

programmer needs to be familiar with a large part of the class hierarchy before he can understand
the functionality of a single class.

User Interface Management Systems (UIMSs) form the software level above toolkits (06).
UIMSs are systems which provide a method for specifying some aspect of the user interface thatis
al a higher level (han simuply using the base progranunving language. For example, the RAPID/USE

system [135] uses state transition diagramsto specifythe structure of user input, the Syngraph system
[64] uses context-free grammers similarly, and the Cousin system [51] uses a declarative language.
Such systems cncourage or cnforce a strict separation between the uscr interface specification and
the application code. While having modularity advantages, it is becoming increasingly apparent

that such a separation may not be appropriate for direct manipulation interfaces [110].

LAMSs which employ direct graphical specifcationof interface components are becoming in-
creasingly popular In these systerns, the UEIMS is itself a direct manipulation system. The user

interface designer thus uses direct manipulation to specify the components ofthe direct manipulation
ieriace he bimself desires to build. The NeXT Interface Builder [102] and the Andrew Devel-

opment Environment Workbench (ADEW) [100] allowthe placenient and propertics of existing
inferface components to he specified via direct manipulation. However, new interface components
must be prograramed in the object-oriented toolkit provided. In addition to the direct manipulation
of existing interface components, Lapidary [93] and Peridot [90] enable new interface components

to be created bydirect graphical specification.

UIMSs are generally built on top of user interface toolkits. The UIMSs that support the con-
struction of direct manipulation interfaces, such as the ones which use direct graphical specification,

tend to be built upon object-ortented toolkits. Since object-oriented toolkits are currently the pre-
ferred vehicle for the eration of direct niampulation sysiems, this dissertation cancentrates upon

the problem of integrating gesture into such toolkirs. In preparation for this, the architectures of
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several existing object-oriented toolkits are now reviewed.

243 Object-oriented Toolkits

The object-oriented approach is olien used lor the construction of direct manipulation systems.

Using object-oriented programming techniques, graphical objects on the screen can be made to
correspond quite naturally with software objects intemal to the system. The ways in whicha graphic
object can be manipulated correspond to the messages to which the corresponding software object
responds. Tt is assumed that the reader ofthis dissertation is familiar with the concepts of object-

oriented programming. Cox [27, 28], Stefik and Bobrow [121], Horn [56], Goldberg and Robson
[44], and Schmucker [115] all present excellent overviews of the topic.

The Smaliiaik-80 system[44] was the first object-ortented systemthat ran on a personal computer
with a mouse and bitmapped display. From this system emerged the Model-View-Controller (MVC)
paradiem for developing direct manipulation interfaces. Though MVC Hierature is only now
beginning to appear in print (70, 63, G8], the MVC paradigm has directly influenced every object-

oriented user interface architecture since its creation. For this reason, the review of object-oriented
architectures for direct manipulation systerns begins with a discussion of the use of the MVC

paradigm in the Smalftalk-80system.
‘Lhe terms “model,” “view.” and “controller” refer to three different kinds of objects whichplay

arole in the representation of single graphic objectin a direct manipulation interface. A modefis an
object contaming application specific data. Model objects encapsulatethe data and computation of
the task domain, and generally make no reference to the user interface.

A viewobicct is responsible for displaying application data. Usually, a viewis associated with a

single radel, and communicates with the model in order to acquire the application data that it will
render on the screen. A single model may have multiple views, each potentially displaying different
aspects of the model, Views implement the “lock” ofa user interface.

A corrofier object handles user interaction (Ze input). Depending on the mpul, the controller
may cornmunicate directly with a model. a view, or both. A controller object 1s generally paired with
a viewobject, where the controller handles input to a model andthe view handles output. Internally,
the controller and viewobjects typically contain pointers to each other and the associated model,

and thus maydirectiv send messages to each other and the model. Controllers implement the “feel”
of a user interface.

When the application programmer codes a model object, for modulanty purposes he does not
generally include references io any particular view(s). ‘lhe result is a separation between the

application (the models) and the user interface (the views and controflers). There does however
need to be some connection from a model to a view—otherwise howcan the view be notified when

the state of the model changes? This connection is accomplished in 4 modular fashion through the
ac of dependencies.

Dependencies work as follows: Any object mayregisteritself as a dependent of any other object
Typically, a view object, whenfirst created, registers as a dependent of a model object. Generally,

there is a List of dependents associated with an object; in this way multiple views may be dependent
1a single model. When an object thai potentially has dependenis changes is state, it sends itselfthe message [Self changed]. Each dependent d ofthe object will then g sent the message fd

 &
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updatel, mforming it that an object upon whichit is dependent has changed. Thus, dependencies

allow a model to conumunicate to its views the fact that ithas changed, without referring to the views
explicitly.

Many views display rectangular regions on the screen. A view ray have subviews, each of
which typically results in an object displayed within the rectangular region of the parent view. The

subviews may themselves have subviews, and so on recursively, givingrise to the view hierarchy.
Typically, a subview’'sdisplay is clipped so as to wholly appear within the rectangular region ofiis

parent. A subviewgenerally occludespart of its parent’s view,

A common criticism of the MVC paracihem is that fvo objects he view and controller) are
needed to implement the user interface for a model where one would suffice. This, the argument

goes, is not only inefficient, but also not modular.Why implement the look and feel separately when
in practice they always go together?

Thereply to this criticism states that it is useful (often of occasionally} to control look and feel
separately [68]. Knolle discusses the usefulness of a single view having several interchangeable

controllers; implementing different user abilities Gie beginning, intermediate, and advanced) with
different controllers, and having the system adapt to the user’s ability at rintime is one example.

While Knolle’s examples may not be very persuasive, thereis an important apphieation of Separating
views from controllers, namely, the ability to handle multiple input devices. Chapters 6 and 7

explore further the benefits accrued from the separation of views and controllers.

Nonetheless, there is a simplicity to be had by combining views and controllers into a single
abject, giving tise to object-oriented toolkits based on the Data-View (?V)} paradigm. Thoogh

the terminology varies, MacApp [115, 114], the Andrew Toolkit [105], the NeWS Development
environment [108], and InterViews [79] all use the DV paradigm. In this paradigm, data objects
contain application specific data (and thus are identical to MVC models} while view objects combine

the functionality of MVCviewand controller objects. ln DV systems, the look andfeel of an object
are very tightly coupled, and detailed assuniplions about the input hardware (eg a three bulion

mouse) get built into every view.

Object-oriented toolkits also vary in the method by which they determine which controller
objects get informed of a particular input event, and also in the details of that communication.

Typically, input events (such as mouse clicks) are passed down the view hierarchy, with a view
querying its subviews (and so on recursively) to see if one of them wishesta handle the event before
deciding to handle the eventitself. Many variations on this scheme are possible.

Controllers may be written to bave methods for messages such as LleftBurtonDown. This
style, while convenient for the programuner, has the effect of wiring in details of the input hardware
all throughout the system [115, GR]. The NexTAppKit [102], passes input events to the controller
object in a more general form. This is generalized even further in Chapters 6 and 7.

Controllers are a very general mechanismforhandling input. Garnet (021, a moderm MVC-based
system, takes a different approach, called interactors{95, 01]. The key insight behindinteractors is
that there are only several different kinds of interactive behavior, and a (parameterizable) interactor
can be built foreach. The user-interface designer then needs only to choose the appropriateinteractor

for each interaction technique he creates.

Gestaral input is not currently handied by theexisting interactors. Tt would beinteresting to see
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if the interactor concept in Garnet is general enough to handle a gesture interactor. Unfortunately,

the author was largely unaware of the Garnet project at the time he began the research described in
Chapters 6 and 7. Had tt been otherwise, a rather different method lor incorporating gestures uc
direct manipulation systems than the one described here might have been created,

The Artkit system [52] has a considerably more general input mechanisyn than the MVCsysterns
discussed thus far. Like the GRANDMAsystem discussed in this dissertation, Artkit integrates

gestere into an object-oriented toolkit. Though developed sirnultaneously and independently, Artkit
and GRANDMAhave startlingly similar input architectures. The two systems will be compared in

more detail in chapter 6.
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Chapter 3

Statistical Single-Path Gesture
Lecognition 

3.1 Overview

This chapter address the problemof recognizing single-path gestures. A single-path gesture is one
that can be input with a single pointer, such as a mouse, styhus, or single-finger touch pad. It is
further assuracd that the start and ond of the input gesture are clearly dclincated. When gesturing

with a mouse, the start of a gestare might be indicated by the pressing of a mouse button, and the
end by the release of the button. Samilarly, contact of the stylus with the tablet or of a finger with
the touch screen could be used to delineate the endpoints of a gesture.

Baecker and Buxton(S} war against using a mouse as a gestural input device for ergonomic
reasons. For the research deseribed in this chapter, the author has choscn to ignore that warning.

The mouse was the only pointing device readily available when the work began. Murthermore, it was
the only pointing device that is widely available—an important consideration as ut allows others to
utilize the present work. In addition, it is probably the case that any trainable recognizer that works

well given mouse inpul could be made io work even better on devices more suitable lor gesturing,
steh as a stylus and tablet.

‘The particular mouse used is labeled DEC Model VSIOX-[A,revision A3. Tt has three buttons
on top, and a metal trackball coming out of the bottom. Moving the mouse ona flat surface causes
its trackball to roll. Inside the mouse, the trackball motion is mechanically divided into x and y

coniponents, and the mouse sends a pulse to the computer each time one af its componenis changes
by a certain amount, The windowing software on the hostaplements mouse acceleration, meaning
that the faster the mouse is moved a given distance, the farther the mouse cursor will travel on the
screen. The metal mouseball was rolled on a Formica table, resulting it what might be termed a

“hostile” systern for stadying gestural input.

All the work described in this chapter was developed on a Digital Equipment Corporation
MicroVAX TL! The software was written in C [66] and rens on top of the MACHoperating system 

'MicroVAXis trademark of Digital Equipment Corporation.

Page 1214 of 1714



Page 1215 of 1714

48 CHAPTER 3 STATISTICAL SINGLE-PATH GESTURE RECOGNITION

1 Brrrttnnnanniereinannie

pee aanil
S

Figure 3.1: Some example gestures
‘Ube periodindicates the start ofhe gesiure. fhe actual mouse potuts that make up lie gestures are lidicaled
as well.

[131], which is UNEX? 4.3 BSD corpatibic. K10 [113] was the windowsystemuscd, thoughthere
is 4 layer of software designed to make the code easy to port to other window systems.

3.2 Single-path Gestures

The gestures considered in this chapter consist of the two-dimensional path of a smgle point over

time. Each gesture is represented as an array gof Ptime-stamped sample points:

Bp = (Xp, Yan ty) O< p< Ph.

The points are time stamped (the ¢,) since the typical interface to many gestural input devices,
particularly mice, does not deliver input points at regular intervals. In this dissertation, only
two-dimensional gestures are considered, but the methods described may be generalized to the
three-dimensional case.

When an input point is very close to the previous input point, it is ignored. This simple
preprocessing of the input results in features that are mach more reliable, since nuichof the jiggle,
especiallyat the end of a gesturc, is climinated. The result is a large inercase in recognition accuracy.

Por the particular mouse used for the majority of this work, “very clase” meant within three

pixels. This threshold was empirically determined to produce an optirnal recognition rate on a
number of gesture sets.

Simtfar, but more complicated preprocessing was done by Leedham, ef a/,, in their Pittman’s
shorthand recognition system[77]. The difference in preprocessing in Leedham’s system and the
current work stems largely from the difference in input devices (Leedham used an instrumented

pen), indicating that preprocessing should be done on a per-input-device basis.

‘igure 3.1 shows some example gestures used in the GDP drawing editor. Thefirst point (gy) in

each gesture is indicated by a period. Hach subsequentpoint (g,,) is connected by a line segmentto
the previous point (gp1). The ume stamps are not shownin the ligure.

The gesture recognition problem is stated as follows: There is a set of C gesture classes,
numbered O through C— 1. The classes may be specified by deseription, or, as is done in the present

it
 

AUNEX is a trademark of Bell Laboratorics.
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work, by example gestures for each class. Given an input gesture g, the problemis to determine the

class to which g belongs(4e, the class whose members are most like 9}. Some classificrs have a
reject option: if gis sufficiently dillerent se as not to belong to aay olthe gesture classes, it should
be rejected.

3.3 Features

Statistical pesture recognition is done in twosteps. First, a set of features is extracted fromthe input
gesture. This set is represented as a feature vector, f = [4,..., fl’. (Here and throughout, the
prime denotes vector transpose.) The feature vector is then classified as one of the possible gesture
classes.

The set of features used was chosen according to the lollowing cnteria:

The namber of features should be small. In the present scheme, the amount of time i takes to
classify a gesture given the feature vector is proportional to the product of the size of the
feature vector (ie. the mumberof features) and the aumberof different gesture classes. Thus,
for efficicacy rcasons, the mumbecrof features should be kept as small as possible whilestill

being able to distinctly represent the different classes.

Each feature should be ealeulated efficiently. It is essential that the calculation of the feature
vectoritself not be too expensive: the amount of timeto update the valuc of a feature when an

input point g, is received should be bounded by a constant. In particular, features that require
all previous points to be examined for cach new input point are disallowed. In this manner,

very large gestures (those consisting of many points) are recognized as efficiently as smaller
gestures,

in practice, this incremental calculation of features is often achicved by computing auxiliary
features not used in classification. Por example, if one feature is the average x value of the

iyput points, an auxiliary feature consisting of the sumof the x values might be computed,
This would require constant time (one addition) per input point. When the feature vectoris
needed (orclassification) the average xvalue feature is computedin constant time by dividing

the above sum by the number of input points.

Each feature should have a meaningful interpretation, Unlike simple handwriting systems, the
gesture-hased systems built here use the features not only for classification, but also for

parametric information. Por example, a drawing programm night ase the initial angle of a
gesture to orfent a newly created rectangle. While it is possible to extract such gesteral
attributes independent of classification, it is potentially less efficient to do so.

Meaningful features also provide useful information to the designer of a set of gesture classes

for a particular application. By understanding the set of features, the designer has a better
idea af what kind af gestures the sysiem can and cannoi distinguish; she rs thus mare likely

to design gestures that can be classified accurately.
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individual features should have Gaussian-like distributions. The classifier described in this chap-

ter is optimal when, among other things, within a given class each feature has a Gaussian
distiibuition. This is because a class is essentially represented by its mean feature vector, and

takes place, to a first approximation, by determining the class
closest to the example’s. Classification may suffer if a given

classification of an example
ewhose mean feature vector i

for example, a bimodal distribution, whereby it tends toward onefeature in a givenclass has,
of two different values.

This requirement is satishied when the feature is sfab/c, meaning a small change in the mpnut
gestere results in a small chanee in the vabuc ofthe feature. In gencral, this rules out features
that are small integers, since presumably some small change in a gesture will cause a discrete

writ step in the feature. When possible, features that depend on thresholds shoald also be
avoided for similar reasons. Ideally, a feature is a real-valued continuous functionofthe input
points,

Note that the input preprocessing is essentially a thresholding operation, and does have the
effect that a seemingly small change in the gesture can cause big changes in the feature vector.

However, eliminating this preprocessing would allow the noise inherent in the input device
io seriously affect certain features. Thas, thresholding should not be riled oat per-se, but
the tradeoffs must be considered. Another alternative is to use multiple thresholds to achieve
a kind of multiscale representation of the input, thus avoiding problems inherent in using a

single threshold [80].

The particularset of features used here evolved over the creation of twoclassifiers, the first being

fora subset of GDP gestures, the second being a recognizer of upper-case letters, as handwritten by
the author. In the current version of the recognition program, thirteen features are employed. Figure

3.2 depicts graphically the values used in the featare calculation.
The features are:

Cosine and sine of initial angle with respect to the Xaxis:

§ =cosa=(% — m)/d
h=sinw = G9 —w)/d

where 

i
ra fe Y . at

R= Vv (Xnax — mink + (Vay — ¥min}

  

WHETE Smav, XminyVmax: Vin are the tnaximumand minimum values

for x, and vy, respeetively.

Angle of the bounding box:
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(Xin, Vinin)

Figure 3.2: Feature calculation
Ge.

used fo compute features or the features themselves where possible.

 . Vmax ~~
i, = arctan — =

Xmax — Xin

  

Distance between first and last point:
prnneccceceesnnecceece:

 by

i

Rapi

Casine and sine of angle between first and last paint:

= cos 8 = (APL ~ x)/ &
=ain@= (yp. ~ jo)&

'

Total gesture length:

Let Ax, = Xp — Xp
2

Ap ® Your ~Yp
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P-2

=p) faut ay,
pao

‘Total angle traversed (derived fromthe dot and crass product definitions)73):

ArxpAyp..1 -— Axp.. Ay
Ax,As,itAway

 
@, = arctan

P92~

pel

fly = s) |,

12> 
Path duration:

fas thin &

Peatures fiz and A, allow the gesture recognition to be based on temporalfactors; thus gestures

have a dynarnic component and are not sirnplystatic pictures.
Some features (4, 5, &, and 4} are sines or cosines of angles, while others (&, fe, 41, Az)

depend on angles directly and thus require inverse trigonometric functions to carpute. A four-

quadrant arctangent is needed tu compute #)) the arctangent function mast take the numerator and
denominatoras separate parameters, returning an angle between —m and x. For efficient recognition,
it would be desirable to use just a single feature to represent an angie, rather than both the sine and
cosine. However, the recognition algorithmrequires that cach featurc have approximately a Gaussian

distribution; this poses a problem when a small change in a gesture causes a large change in angie
measurement due to the discontinuity when near tw. This mattered for initial angle, and the angie
between the start and end point of the gesture, so cach of these angles is represented by its sine and
cosine. The bounding box angle is abways between O and #/2so there was no discontinully problem
for it.
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Por features dependent on @,, the angle between three successive iyput points, the discontinuity
onky occurs when the gesture stroke tums back upon itself. In practice, likely due ta the few gestures
used which have such changes, the recognition process has not been significantly hampered by
the potential discontinuity (but see Section 9.1.1). The feature 6 is a measure of the total angle
traversed; in a gesture consisting of two clackwise loops, this feature might have a value near 4.
Hthe gesture was a clockwise loop followed by a counterclockwise loop, 4 would be close to zere.

The feature 49 accumulates the absolute value of instantaneous angle; in both loop gestures, its
value would be near 4a. The feature 4) is a measure of the “sharpness” of gesture.

Figure 3.3 shows the value of some [features as a function ofp, ihe input point, for gestures 1 and
2 of figure 3.1. Note in particular how the value for 4, Ghe sharpness) increases at the angles of the
gesture. The feature values at the last Giehtmost) input point are the ones that are used to classify
the gesture. The intent of the graph is to shawhowthe features change with each new input point.

AW the features can be computed incrementally, with a constant amount of work being done for

each new input point. By utilizing table lookup for the square root and inverse trig functions, the
amount of computation per input point can be made quite small.

A namber of features were tried and found not to be as good as the features used. For example,

instead of the sharpness metric f;, initially a count of the number of times @, exceeded a certain
threshold was used. The idea was to count sharp angles. While this worked fairly well, the more

continuous measure of sharpness was found to give much better results. In general, features that
are discrete counts do not work as well as continuous features that attempt tc quantify the same

phenomena. ‘The reason for this is probably that continvous features more closely satisty the
normality criterion. In other words, an error or deviation in a discrete count tends to be much more

significant than an error or deviation in continuous metric.
Appendix A shows the C code for incrementally calculating the fcature vector of a gestarc.

3.4 Gesture ClassHication

Given the featurc vector x computed for an input ecsturc g, the classification algorithm is quite
simple and efficient. Associated with each gesture class is a linear evaluation function over the
features, Gesture class chas weights we forO < i< F, where Fis the memberoffeatures, currently
13. (Per-class variables will be written using superscripts with hats to indicate the class. These are
not and should not to be confused with exponentiation.) Phe evaluation functions are calculated as
follows:

New

Be

vos wht So why O<sce<€ G.1
el

The value v° is the evaluation of class ¢ The classifier simply determines the c for which visa
maximum: this cis the classification of the gesture o. The possibility ofrcjceting gis discussed in
Section 3.6.

Practitioners of pattern recognition will recognize this classifier as the classic linear discriminator

[35, 3G, 62, 74], With the correct choice of weights we, the lmear discnminator is known to be
optimal when (1) within a class the feature vectors have a multivanate normal distribution, and Q)
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Figure 3.3: Peature vector computation

These graphs shaw haw ‘ea ture vectors change with each new input point. The lef
‘M"}, the right graphs to gesture 2 fan “1” }. The final values

The instantaneous angle}, and velocity

 7 phs refer to featu 

 gesture 1 of31 f the features (p= 21 for
gesture 1, p= 12 for gesture 2) are the ones used for classification.

vp havebeen included!in the igure, although theyare nol part ofhe feature veciox
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the per class feature covariance matrices are equal. (Exactly what this means is discussed im the

next section. Other continuous distdbutions tor which linear discriminant functions are optimal are
investigated by Cooper [26].) These conditions do not bold for most sets of gesture classes given
the feature set described; thus weights calculated assuming these conditions will not be optimal,
even among Jinear classtfiers (and even the optimal linear classifier can be outperformed hy some
non-linear classifiers if the above conditions are not satisfied). However, given the above set of

features, linear discriminators computed as if the conditions are valid have been found to perform
quite acceptably in practice.

 

3.5 Classifier Training

Once the decision has been made to use lmear discrimmators, the only problemthat rernains is the

determination of the weights from example gestures of each class. This is known as the training
problem.

Two methods for computing the weights were tied. The first was the multiclass perceptron
training procedure described in Sklansky and Wassel[f 119]. The hope was that this method, which
docs not depend on the aforcrncntioncd condinons to choose weights, might performbetter than

methods that did. In this method, an initial guess of the weights was made, which are then used
to classify the first example. For each class whose evaluation fanction scored higher than the

correct class, each weight is reduced by an amount proportional to the corresponding feature of the
example, while the correct class has us weighis increased by the same amount. This is srnular ic

back-propagation learning procedures in neural nets [34]. In this manner, all the examples aretried,
multiple times if desired.

This method has the advantage of being simple, as well as needing very few example gestures

to achieve reasonable results. However, the behavior of the classifier depends on the order in which
the examples are presented for training, and good values for the initial weights and the constant

of proportionality are difficult to determine in advance but have a large effect on the success and
training efficiency of the method. The numberofiterations of the exarnples is another variable
whose optimam value is difficult to determine. Perhaps the most serious problemis that a single
bad example might seriously corrupt the classifier.

Rventually, the perceptron training method was abandoned in favor of the plug-in estima-

tion method. The phig-in estimation method usually performs approximately equally to the best
perceptron-trained classifiers, and has none of the vagueness associated with perceptrontraining. In

this method, the means of the features for each class are estimated frorn the example gestures, as is
the cornmon feature covariance matrix (all classes are assumed ic have the same onc). The estimates

are then used to approximate the linear weights that would be optimal assuming the aforementioned
condifions were ruc.

 

3.3.1 Deriving the linear classifier

The derivation of the plug-in classifier is given in detatlin James [62]. James’ explanation ofthe

derivation is particularly good, though unfortunately the derivation itselfis nddled with typos and
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other errors. Krzanowski [74] gives a similar derivation Qwith no errors), as well as a good general

description of nvuiltivariate analysis. ‘Phe derivation is summarized here for convenience.

Considerthe class of “L” gestures, drawn starting from the top-left. One example of this class
is gesture 2 in figure 3.1. Tris easy to generate many more examples of this class. Fach one gives
rise fo a feature vector, considered to be a columm vector of Freal mambers (6,..., #1).

Let f be the random vector (ie a vector of random variables) representing the feature vectors
of a given class of gestures, sav “L gestures. Assume (for now) that f has a nudtivariate norrral

distribution. ‘The multivariate normal distribution is a generalization to vectors of the normal
distribution for a single variable. A single yanable (univanate) normal distribution is specified by

Hts mean value and variance. Analogously, a multivariable normal distribution is specified byits
mean vector, ff, and covariance matrix, 3’. Tn a multivariate normal distribution, each vector element
Geature) has a unmvariate normal distribution, and the mean vector is simply a vector consisting of

the means of the individual features. The varianceof the features form the diagonal of the covariance
matrix; the off-diagonal elements represent correlations between features.

‘Che univariate normal distributionhas a density function which is the familiar bell-shaped curve.
The analog in the two vanable (bivariate) case is a dhree-domensional bell shape. In this case, the

lines of equal probability (cross sections of the bell) are concentric ellipses. The axes ofthe ellipses
are parallel to the feature axes if and onlyif the variables are uncorrelated. Byanalogy, im the higher
dimensional cases, the distribution has a hyperhell shape, and the equiprobability hypersurfaces arc
ellipsoids.

A more in-depth discussion of the properties of the nrultivariate normal distribution would take
us tootar afield here. ‘The reader untamiliar with the subject is asked to rely on the analogy with the

univariate case, orto refer fo a good text, such as Krzanowski [74].
The multivariate normal probability density function is the multivariate analog to the bell-shaped

curve. itis written here as a conditional probability density, Le the density of the probability of
getting vector x given ¥ comes from roultivariate distribution 1 with F variables, mean jf, and
covariance matrix 3,

179)Leepy StH lye iy .
Af 3 By ST x-D) G2) TEX | rD) = ay 4

Note that this expression involves both the determinant and the inverse ofthe covariance matrix.
The interested reader should verify that it reduces to the standard bell-shapedcurve in the univariate
ease (F= 1, = [o*]).

Tn the univariate case, to determine the probability that the value of a random variable will
He within a given interval, simply mtegrate the probability density function over that interval.

Analogouslyin the muliivanate case, given an interval for cach ofthe variables G.e a hypervohume)
perform a multiple integral, integrating each vartable over its interval to determine the probability a
randomvector is within the hypervolume.

All this is preparation of the derivation of the linear classifier, Assume an cxample feature
vectot ¥ to be classified is given. Let C° denote the eventthat a random feature vector X is in class
G and x, when used as an event, denote the event that the random feature vector X has valuex.

Weare interested in AC* |x), the probability that the particular feature vectorx is in group C. A
reasonable classification rule is io assign x io the class / whose probability A.C’ |x) is greater than
that of the other classes, Ae FA1C? [xy > AClix) for alij# i This role, which assigns the example
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to the class with the highest conditional probability, is known as Bayes’ rufe.
‘The problem is thus to determine FCC’|x) for all classes c. Bayes’ theoremtells us

 

eypa XY
a

ae
i >

o>. Ga Gad New’

COPRCY > Pi COACH Substituting, the assignment rule nowbecomes: assign x toclass ifAx
for all j# i.

Thetermsof the form A(C®are the a prioriprobabilities that a random example vectoris in class
c. Ina gestore recognition system, these prior probabilities would depend on the frequencythat each
gesture command is ikely to be used in an application. Lacking any better information, let us assume
that all gestares are equally likely, resulting in the rule: assign x to class Jif Ax | Cy > As | Cl)
for all fx 7.

A conditional probability of the form Pts | Cis knownas the likelihood of C* with reapect
ta x [30]; assuming equal priors essentially replaces Bayes’ mile with one that gives the maximum
likelihood.

Assume nowthat each C*is multivariate normal, with meanvector 7°, and covariance matrix
Sz. Substituting the multivariate normal density functions (equation 3.2) for the probabilities gives
the assignment rule: assign x to class jaf, for all jx Z

 

‘Vaking the natural log of both sides, canceling, and roultiplying through by —1 (hus reversing the

inequality) gives the rule: assign x to class 7if, for allje 2,

~ BYE- #9 _~ (2 a wed'(x) < d'G), where d(x) = In| 

d°(x) is the discrimination function for class c applied to x. This is quadratic diserimination,
since f(x) is quadratic in elements of x (the features). The discriminant coniputation involves the
weighted sum of the pairwise products of fcaturcs, as well as terms lincar in the features, and a
constant term.

Making the further assumption that all the per-class covariances matrices are equal, ie 23 =i

AJ; Ui, the assigument rule takes the form: assign x to class Jif, for all {# £

inf S40 —-P YETsw) <n [Sse - wyEw - BA.

Distributing the sabtractions and multiplying through by — 4 gives the rule: assign x to class /if, for
alljs i,

v(x) > v(x), where v(x) = GETx — bgnopee G.5)

Nate thai the discrimination functions v “(x} are linear in the features (ie the elements of x), the

weights being G°y£7? and the constant term being ~4Gn/y¥Nh!
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Comparing equations 3.5 <

assumptions) we take 
 

and

. 12 .
Wee 5 WBfe]

forall clasacs c. If is not possibleto knowthe 2° and Y; these nest becatimated fromthe examples
as described in the next section. The result will be that the wf will be estimates of the optimal
weights.

The possibility ofa tie> for the largest discriminant has thus far ncgleeted. Tf v"Q) = w(x) >
vis) for all j A jand j # &it is clear that the classifier mayarbitrarily choose / or Aas the class of
x. However, this ts a prime case for rejecting the gesture x altogether, since if is ambiguous. ‘This
kind of rejection is generalized in Section 3.6.

3.5.2 Estimating the parameters

The linearclassifier just derived is optima! (given all the assumptions) in the sensethat it maximizes

the probability of correct classification. However, the parameters needed to operate the classifier,
narnely the per-class rovan vectors jf° and the cormnion covariance matrix Y/, are not knowna priori,
They mrust be estimated from the training examples. The simplest approach is to use the plug-in
estimates for these statistics. Since the equations that followactually need to be programmed, the

matrix notation is discarded in favor of writing the sums out explicitly in terms of the© components.
Let & be the #feature of the ¢? example of gesture class co, v <e< E°, where E*is the

rurber of training examples of class c. The plug-in estimate of 2°, the mean feature vector per
class, is denoted £. It is simplythe averageof thefeatures in the class:

n 
gy

Erm]
eo YT pt Py pi
> BlaIMG)

e=0

(For convenience in the next step, the usual 1 /(#° — 1) factor has not been included in 3;,.) The Si
are averaged to give sy, an estimate of the common covariance matrix YU.

sce)
ea. (3.6) 
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The plug-in estimate of the common covariance matrix sj is then inverted, the result of which is
denoted (37die

The v° are estimates ofthe oplimal evaluation Lunctions x}. The wetghis wf‘are conipuled
fromthe estimates as follows:

rt if
yan

“A
t

aon! fn lA a IA hey

and

 
AS mentioned before, it is assumed that all gesture classes are equally likely to oecur. ‘he

constant terms ug may be adjusted if the 4 prior! probabilities of each gesture class are known ip
advance, though the author has not foundthis to be necessary for good results. U the derivation of
the classifier is carried out without assuming equal probabilities, the net result is, for cach class, to
add in ACto ve. A similar correction may be madc to the constant terms if differing pcr-class
costs for misclassification must be taken into account(741.

Estimating the covariancematrix involvesestimating its PU’+1)/2 elements. The matrix will besingular if, for example, less than approximately Pexamples are used inits computation. Of. a given
feature may have zero variance in every class. In these cases, the classifier is underconstrained.
Rather then give up (which scems an inappropriate response when underconstrained) an atterapt is
made fo fx a singular covariance matrix. First, any zero diagonal element is replaced by a small
positive number. ff the matrix is still singular, then a search is made to eliminate unnecessary
features.

Thesearch starts with an empty set offeatures. At each iteration, a feature jis added to the set,

and a covariance matrix based only onthe feateres in the set is constructed (bytaking the singular
Px F covariance matrix and using only the rows and columns of those features in the set) Hf the
constructed matrix is singular, feature jis removed from the set, otherwise jis kept. Each feature
is tried in tum. The result is a covariance matrix (and its inverse) of dimensionality smabler than
Px FP The inverse cavariance matrix is expanded to size FP x F by adding rows and columns of
zeros for cach feature not used. The resulting matrix is used to compute the weights.

 

Appendix A shows Ccode for training classifiers and classifying feature vectors.

3.6 Rejection

Given an input gesture ¢ the classification algorithmcalculatesthe evaluation V, for each class
Theclass Awhosc ovaluation 14is larger than all other is presumed to be the elass of ¢ However,

there are two cases that might cause us to doubt the correctness ofthe classifier. The gesture omay
be ambiguous, in that it is sim#lar to the gestures of more than one class. Also, g@may be an ouffier,

different from anyof the expected gestureclasses.
it wouldbe desirable to get an estimate of howsure the classifier is that the input gesture is

nambiguously in class £ Intuitively, one might expect that if some wv", mf / is close to +, the
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the classifier is unsure of its classification, since it almost picked mminstead of 2 This intuition is

borne out in the expression for the probabilitythat the feature vector x is in class 7. Again assuming
nomial isalures, equal covariances, and cqual prior probabilitics, substitute the multivariate normal
density function (equation 3.2) intoRaves’ Theorem (equation 3.3).

og (KpYEUeh)> 2

Piixj= on
s~ obfDO eeBD
po

 

“ ~ . we PD 1) e 1 4 . ar
rhe common factor (29y7'/4] 217? has been canceled from the numerator and denominator, We

inftymay further factor out and cancel & * and substitute equation 3.5, yielding

 
Substituting the estimates v° for the »“(x) and incorporating the numerator into the denominator
yields an estimate for the probabihtythat fis the correct class for x:

~ 1
Ril)=

mfpyhy
ded
jab

This vahic is computed after recognition and compared to a threshold Tp. If belowthe threshold,
instead of accepting gas being in class i, gis rejected. The effect of varying Tp will be evaluated
in Chapter 9. ‘Uhere is a tradeoff between wanting to reject as many ambiguous gestures as possible
and not wanting io reject unambiguous gestures. Empirically, Zp = 0.95 has been found to be a
reasonable value for a mumber of gesture sets Gee Section 9.1.2).

The expression for {7| x) bears out the intuition that if two or more classes evaluate fo near
the same result the gesture is ambiguous. In such cases the denominator will be significantly larger
than unity. Note that the denominator is always af least unity due to thej= /term im the sum. Also
note that all the other terms the exponents (~ 4) forj # iwill always be negative, because x has
beenclassified as class iby virtue of the fact that 4 > Wwforj 4 i

Pa |x) may be computed efficiently by using table-lcokup for the exponentiation. ‘The table
need not be very extensive, since any time v ~ 4is sufficiently negative ess than —6, say) the
termis negligible. In practice this will be the case for almost all j.

A linear classifier will give no indication if gis an outlier Indeed, most outliers will be
considered unambiguous by the above measure of F Totest if gis an outlier, a scparate metric is
needed to compare gto the typical gesture of class A An approximation to the Mahalanobis distance
[74] works well for this purpose.

Given a gesture with featere vector x, the Mahalanobis distance between x and class Jis defined
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Note that 6* is used in the exponentofthe nultivariate normal probability density function (equation
). [t plays the role that (y— 4) /o)* plays in the univariate sormal distribution: the Mabalanabis

distance §* essentially measures the (square of die) number of siandard deviations ihal x is away
frome the mean 7°.

f 27! happensto he the identityroatrix, the Mahalanobis distance is equivalentto the Euclidean
distance. In general, the Mahalanobis distance normalizes the effects of different scales for the
different features, since these presumably showop aa different magnitudes for the variances s,, the

diagonal elements of the common covariance matrix. The Mahalanobis distance also normalizes

 

awaythe effect of correlations between pairs of features, the off-diagonal clements of the covariance
maatdx.

As always, it is only possible to approximate the Mahalanobis distance between a feature vector
x and aclass 7, Substitating the plug-in estimators for the population statistics and writing out the
tatnix multiplications explicitly gives

Borgag

d= SS SOR Ba BD
el kei

In order to reject outliers, compute co, an approximation of the Mahalanobis distance from
the feature vector x to its computed class i If the distance is greater than a certain threshold 7’p
the gesture is rejected. Section 9.1.2 evaluates various settings of Tip; here it is noted that setting

Lie = iP is a good compromise between accepting obvious outhers and rejecting reasonable
gestures.

Now that the underlying mechanisin of repection has been explained, the question arises as
to whether ut is desirable to do rejections at all. The answer depends upon the application. In
applications with casy to use undo and abort facilities, the reject option should probably be turned
off carapictely. This is because in cither failure mode (rejection or misclassification) the user will
have to redo the gesture (probably about the samc amount of work im both cases) and turning on

rejection merely increases the number of gestares that will have to be redone.

tn applications in which it is deemed desirable to do rejection, the question arises as to howthe
interface should behave when a gesture is rejected. ‘The system may prompt the user with an error

message, possiblylisting the top possibilities for the class Gudging fromthe discriminant functions)
and asking the user to pick. Or, the system may choose to ignore the gesture and any subsequent
input wntil the user indicates the end of the interaction. The proper response presumably depends

n the application.

3.7 Discussion

One goal of the present research was to enable the iraplementor of a gesture-based systemto produce
gesture recognizers without the need foresort to hand-coding. The original plan wasto try a number

of pattern recognition techniques of increasing complexity until one powerfel enoughto recognize
gestures was found. The author was pleasantly surprised when the first technique he tried, Imear

discrimination, produced accarate and efficient classifiers.
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Figure 3.4: ‘lwo different gestures with identical feature vectors

The efficiency of Linear recognition is a great asset: gestures are recognized virtually instanta-
neously, and the systemscales well. The incremental feature calculation, with each newinput point

resulting in a bounded (and smalf) amount of computation. is also essential for efficiency, enabling
ihe systemto handle large gestures as elliciently as small ones.

3.7.1 The features

The particular feature set reported on here has workedfine discnminating betweenthe gestures used
in three sample applications: a simple drawing program, the uppercaseletters in the alphabet, and a
simple score editor. Tests using the gesture set of the score editor application are the mast significant,

since the recognizer was developed and tested on the other two. Chapter 9 studies the effect af
training set size and mumber of classes on the performance of the recognizer. A classifier which

recognizes thirty gestures classes had. a recognition rate of 96.8% when trained with 100 examples
per class, and a rate of 95.6% when trained with 10 examples perclass. ‘The misclassifications were

largely beyond the control of the recognizer: there were problerns using the mouse as a peshiring
device and problems asig a user process in a non-real-time system (INES)to collect the data.

It would be desirable to somehow show that the feature set was adequate for representing
differences between all gestures likely to be encountered in practice. The measurements in Chapter

9 show good results on a number of different gestures sets, but are by no means a proot of the
adequacy of the features. However, the mapping from gestures (sequences of points) to feature

vectors is not one-to-one. fn fact, it can easily be demonstrated that there are apparently different
gestures that give rise to the same feature vector. Figure 3.4 shows one such pair of gestures.
Since none ofthe features in the feature set depend onthe order in which the angles in the gesture
are encountercd, and the two gestures are alike in every other respect, they have identical fearurc

vectors. Obviously, any classifier based on the current feature set will findit irnpasstble to distinguish
between these gestures.

Of course, this particular deficiency ofthe feature set can be fixed by adding a feature that does
depend on the order of the angles. Even then, it would be possible to generate two gestures which
have the same angles in the sameorder, which differ, say, in the segment lengths betweenthe angles,

bat nontheless give rise to the same feature vector. A newfeature could then be addedto handle this
case, but it seems that there is still no wayof being sure that there do not exist two different gestures

giving rise to the same feature vector.

Nonetheless, adding features is a good way to deal with gesture sets containing ambiguous
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classes. Eventually, the number of features might grow to the point such that the recognizer

performs inefficiently; if this happens, one of the algorithms that chooses a good subset of features
could be apphed [62, 103]. (Though not done imthe preseat work, the coninbution of individual
features for a given classifier can be found using the statistical techniques of principle components
analysis and analysis of variance [74].) However, given the good coverage that can be had with 13
features, 20 features would make it extremely unlikelythat grossly different gestures with similar

feature vectors would be encountered in practice. Since recognition time is proportional to the
number of features, itis clear that a 20 feature recognizer does not entail a significant processing

burden on modern hardware, even for large (40 class) gesture sets. There sill may be good reason
to employ fewer Teatures when possible; for example, to reduce the numberof training examples

required,

The problem of detecting when a classifier has been trained on ambiguous classes is of great
practical significance, since it determines if the classifier will perform poorly. One method is

to run the training examples through the classifier, noting how many are classified incorrectly.
Unfortunately, this may fail to find ambiguous classes since the classifieris naturally biased toward

recognizing its training exeniples correctly, An alternative is to compute the pairwise Mahalanobis
distance betweenthe class means; potentially ambiguous classes will be near each other.

3.7.2 Training considerations

There is a potential problem in the trainmg of classifiers, even when the intended classes are

nambiguous. The problemarises when, within a class, the training examples do not have sufficient
variability in the features that are irrelevant to the recognition of that class.

For example, consider distinguishing between bwoclasses: 1) a rightward horizontal segment

and (2) an upward vertical segment. Suppose all the trating examples of the rightward segment
class are short, and all those of the upwanl segment class are long. If the resulting classifier ts asked

to classify a long rightward segment, there is a significant probability of misclassification,

This is mH surprising. Given the training examples, there was no wayfor classifier to know that
being a rightward segment was the important feature of class (1), but that the length of the segment

was irrelevant. ‘The same training examples could just as well have been used to indicate that all
elements of class (4) are short segments.

The problcrn is that, by not varying the iongth of the training examples, the trainer docs not give

the system significant information to produce the desired classifier. Ibis not clear what can be done
about this problem, except perhaps to impress upon the people dog the traming that they need to

varythe irrelevant features of a class.

3.7.3 Ve covariance matrix

An important problem of linear recognition comes from the assuraption that the covariance matrices

for each class are identical, Consider a classifier meantto distinguish betweenthree gestures classesMO

named ©, U, and { (igure 3.5). Examples of class C all look like the letier “C”, and examples

of class Uall look like the letter “UL” Assume that example C and U gestures are drawn similarly
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Figure 3.5: A potentially troublesome gesture set

This figure contains examples ofthree classes’ €, U, and 1. 1 varies in orientation whileC and U depend

upon orientation to be distinguished. Theoretically there should be a problem recognizing gestures in this

set with the current algoriifim, bul in practice this has been shown not to be ihe case.

except for the iniual ortentation. Examples of class [, however, are strokes which may occur in ary
intial orientation.

The point of this set of gesiure classes is that milial orienialion is essential for disunguishing

between C and U gestures, but must be ignored in the case of I gestures. This information is

contained in the per-class covariance matrices “. ”» and a, Tn particular, consider the variance
of the feature 4. which, for each class ©, is proportional to Sty. Since the initial angle is almost
the same for each example C gesture, s&, will be close to zero. Similarly, s¥, will also be close to
zero. However, since the exarnples of class F have different orientations, a will be significantly
nOn-ZCra.

Unfortunately, the information on the variance of 4 is lost when the per-class covariance

matrix estimates Sj are averaged to give an estimate of the common covariance matnix sy (equation
3.6). Initially, it was suspected this would cause a problerresulting in significantly lowercd
recognition rates, but in practice the effect has not been too noticeable. The classifier has no

problem disunguishing between the above gestures correctly.

A more extensive test where some gestures vary in size and oricntation while others depend on

size and orientation to be recognized is presented in Section 9.1.4. The recognition rates achieved
showthe classifier has no special difficulty handling such gesture sets. Had there been areal

problem, the plan was to experiment with improving the linear classifier, say by a few iterations
of the perceptron aiming method {119} Had this not worked, using a quadratic discnamnator

(equation 3.4) was another possible area of exploration.
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3.8 Conclusion

This chapter discussed how linearstatistical pattern recognition techrigaes can be successfully
applied to the problem ofclassifying single-path gestures. By using these techniques, implementors
of gesture-based systems no longer have to write application-specific gesture-recognition cade. It

is hoped that by making gesture recognizers easier to create and maintain, the promising field of
gesture-based systems will be more widely explored in the future.
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Chapter 4

 Eager Recognition

4.1 Istroduction

In Chapter3, an algorithm for classifying single-path gestures was presented. The algorithm assurnes

that the entire inpat gesture is known, ie that the start and end of the gesture are clearly delineated.
For some applications, this restriction is not a problern. For others, however, the need to indicate

the end ofthe gesture makes the user interface more awkward than it needbe.

Cansider the use of mouse gestures in the GDP drawing editor (Section 1.1). To create a

rectangle, the user presses a mouse button at one comer of the rectangle, enters the “L” gesture,
stops (while sull holding the button}, waits for the rectangle to appear, and then positions the other

comer. Tt would be much more natural if the user did not have to stop; ie if the system recognized
the rectangle gesture wile the user was makingit, and then created therectangle, allowing the user
to drag the carner. What beganas a gesture changes to a rubberbanding interaction with no explicit
signal or timeout.

Another example, mentioned previously, is the manipulation of the image of a knob onthe
screen. Let us suppose that the knob responds to two gestures: it may be turnedorit maybe tapped.

it would be awkward if the user, in order to turn the knob, neededto first begin fo turn the knob
(entering the turn gesture}, then stop turning it (asking the system to recognize the turn gesture),
and then continue tuming the knob, now getting feedback from the system (the image of the knob
nowrotates). Tt would be better if the system, as soon as enoughof the user’s gesture has been seen
so as to unambiguously indicate her intention of turning the knob, begins to turn the knob.

The author has comedthe term eager recognitionforthe recognition of gestures as soon as they
are anambiguous. Henry et. al. (52) mention that Artkit, a system similar to GRANDMA,can

be used to build applications that perform eager recognition of mouse gestures. There is currently
no mformation published as to how gesture recognition or cager recognition is implemented using
Artkit. GloveTalk [34] does something similar in the recognition of DataGlove gestures. GloveTalk
aticmpis to use the deecicration of the hand to indicate that the gesture in progress should be

recognized. It utihzes four neural networks: the first recognizes the deceleration, the last three
classifythe gestere when indicated to da so bythe first.

Eager recognitionis the automatic recognition of the end of a gestare. For many applications,it
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Figure 4.1: Eager recognition overview
Pager recognition works by collecting points until the gesture is unambiguous, at which point the gesture is

classifedby the techniques oftheprevious chapter andthe manipulationphase is entered The determination

as to whether the gesture seen so far is ambiguous is done by the AUC, i.e. the ambiguous dnambiquous
classifet:

is nota problemto indicate the start of a gestare explicitly, by pressing a mouse button for example.

in the present work, no attempt is made to solve the problemof determining the start of a gesture.
Recognizing the start of a gesture automatically is especially important for gesture-based systems
that use input devices without any explicit signaling capability (e.g. the Polhemms sensor or the
DataGlove). For such a device, sudden changes in speed or direction might be used to indicate the
start of a gesture. More complex techniques for determining the start of a gesture are outside the

scope of this dissertation.
There has been some work on the automatic recognition of the start of gestures. Jackson

and Roske-Holstrand’s system [61] recognizes tie start of a circling gesture without an explicit
indication. In GloveTalk, the user is always gesturing: thus the end of one gesture indicates the
atart of another. Also related is the automatic segmentation of characters in handwriting systems
}125, 13], especially the online recognition of cursive writing [53].

4.2 An Overview of the Algorithm

in order tu implernent cager recognition, a module is needed that can answer the question “has
enoughof the gesture being entered been seen so that it may be onarabigeousty classified?” (igure
4.1). The insight here is to viewthis as a classification problem: classify a given gesture in progress
(called a subgesture below) as an ambiquous or unambiquous gcsturc prefix. This is cascntially
the approach taken independently in GloveTalk. Llere, the recognition techniques developed in the
previous chapter are used to build the ambiquous/unarmbiguous classitier (AUC).

‘wo main problems need to be solved with this approach. First, training data is needed to train
the AUC. Second, theAUCmust be powerlul enough to accurately discrnummnate between amlnguous

and unambiguous subgestures.
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In GloveTalk, the training data problemwas solved by explicitlylabeling snapshots of a gesture

in progress. Each gesture was made up of an average of 47 snapshots (saraples of the DataGlove and
Polhenius sensors). Por cach of 638 gestures, the snapshot miicating the Une at which the sysiem
should recognize the gesture had to be indicated. This is clearly a significant amount of work Tor
the trainer of the systern.

tn orderto avoid such tedious tasks, the present systemconstructs training examples forthe AUC

from the gestures used to train the main gesture recognizer. The system considers cach subgesture of
each example gesture, labels it either ambiguous or not, and uses the labeled subgestures as training
data. Ht seems there is a chicken-and-ege problem here: in order to create the traning data, the

systemneeds to perform the very task for which it is trying to create a classifier, However, during
the creation of the training data, the system has access to a crucial piece of information that makes
the problera tractable: to determine if a given subgesture is ambiguous the system ean examine the
entire gesture from which the subgesture came.

Once the trainmg data has been created, a classifier must be constructed. In GloveTalk this

presented no particular difficulty, for two reasons. There, the classifier was trained to recognize
decelerations that, as indicated by the sensor data, were singlar between dillerent gesture classes.

Also, neural networks with hidden layers are better suited for recognizing classes with non-Gaussian
distriitions.

tn the present system, the training data for the AUCconsists of two sets: Unambiquous
subgestures and ambiguous subgestures. The distribution of feature vectors within the set of
unambiguous subgestures will likely be wildly non-Gaussian, since the member subgestures are
drawn from many different gesture classes. For example, in GDP the unambiguous delete subges-
tures are very different from the unambiguous pack gestures, etc., so there will be a muliimodal
distnibation of feature vectors in the unambiguous set. Similarly, the distribation of feature vectors
in the ambiguous set will also likely be non-Gaussian. Thus, a near diseriminator of the farm
developed in the previous chapter will surely not be adequate to discriminate between two classes
ambiguous and unambiquous subgestures. What must be done is to turn this two-class problem
(ambiguous or unambiguous) into a multi-class problem. This is done by breaking up the am-
biguous subgestures into multiple classes, each of which has an approximately normal distribution.
The enarmbiguous subgestures must be simmlarly partitioned.

The details of the creation of the training data and the construction of the classifier are now
presented. Pirst a failed attempt at the algorithm is considered, during which the aforementioned

problems were uncovered. Then a working version of the algorithmis presented.

4.3 Incomplete Subgestures

As in the last chapter, we arc given a set of C gesture classes, and a number of cxamples of cach
class, a. G<c< OC 8<e< E°, where E*is the number of examples of class c. The algorithm
described in this chapter produces a function P which when g
indicating whether the subgesture is unambiguous with respect to the C gesture classes. Whenthe
function indicates that the subgesiure is unarmbigeous, the recognition algorithm descnbed im the

previous chapter is used to classify the gesture.

iven a subgesture retums a boolean
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Figure 4.2: Incomplete and complete subgestures of U and BD
The character indicates the classification (by the full classifier} ofcact subgesture, Uppercase characters

indicate complete subsestures, meaningthat the subpesture andall langer subgestures are correctlyclassified.
Note that along the horizontalsegment (wherethe subgestures are ambiguous} some subgestures are complete
while others are not.

Theclassification algorithm ofthe previous chapter showed how, given a gesture g, to calculate
a feature vector x, A linear discriminator was then usedto classify x as a class c. Pormuch of this
chapter, the classifier can be considered to be a function C: c= C(g). In other words, Cg} is the
class of gas computed by theclassifier of Chapter3.

The function C was produced {romthe statistics of he example gestures of each class c, g*. The

algorithms describedin this chapter work best if only the example gestures that are in fact classified
correctly by the computed classifier are used. Thus, in this chapter it is assumed that C(g°) = cfor
all example gestures g°. In practice this is achieved by ignoring those very fewtraining examples
that are incorrectly classified by C

Denote the nuraberotpstpoints ina gesturegas|g}, and the particular points as @, = (Xp. ¥p, ip).G< p< The # subgesture af g, denoted gf/], is defined as a gesture consisting of the first
ipoinis of g. Thus, fil,ii, = gy and igfi]] = £ The subgesture gif] is simplya prefix of g, and is
undefined when i > |g The ierm °“fall gesture” will be used whenit is necessary to distinguish the
full gestare g from its proper subgestures off] for 7 < | gl. The term “full classifier” will be used to
refer to C, the classifier for full gestures.

Por cach example gesture of class c, g= go, some subgestures g[/] will beclassttied correctly
by the full classifier C, while others likely will not. A subgesture gif] is termed complete with
respect to gesture g, if, for allLi < f < le Cle) = Cig). The remaining subgestures ofgare
incoimplete. A complete subgesture is one whichis classified correctly by the full classifier, andall

larger sabgestures (of the same gesture) are also classified correctly.
Figure 4.2 shows examples of two gestures classes, U and D. Both start with a horizontal seprent,

but U gestures end with an upward segment, while D gestures end with a dawnward segment. In
this simple cxample, it is clear that the subgestures which inclade onfy the horizontal segment

are ambiguous, but subgestures which include the comer are unambiguous. In the figure, each
point in the gesture is labeled with a character indicating the classification ofthe subgesture which

ends at the point. An upper case label indicates a cormplete subgesture, lower case an incomplete
subgesture, Notice that incomplete subgestures are all ambusuous, all anambiguous subgestures are
complete, but there are coraplete subgestures that are ambiguous (along the horizontal segment of

 oF
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Figure 4.3: A first attempt at determining the ambiguity of subgestures
A two-class classifier was built to distinguish incommlete and compicte subgestunes, with the hope that thaseoD ye HE oO

classified as complete are unambiguous and those classified as incomplete are ambiguous. The characters
 indicate where the resultant classifier differed framits training examples. The horizontal segment of the D

gestures were classified as incomplete (a fortuitous error}, but the horizontal segment ofthe first U gesture
 

classified as complete. The latter is a grave mistake as the gestures
 

are ambiguous along the horizontal
a

sogmont and iC would bo promaturcfor the fall classiffer to attonaptto rccagnize the gesture at such points,at

the D examples).

4.4 A First Attempt

Por cager recognition, subgestures that are unambiguous must he recognized as the gesture is
being made. As stated above, the approachis to build an AUC, ie. a classificr which distinguishes
between ambiguous and unambiguous subgestures. Notice that the set of incomplete and complete
subgestures approximate the set of ambiguous and unambiguous subgestures, respectively. The

author’s first, rather naive attempt at cager recognition was to partition the subgestures ofall the
example gestures into two classes, incomplete and complete. A linear classitier was then produced
using the method described in Chapter 3. This classifier attempts to discruminate between complete
and incomplete subgestures. The function P(g) then sinyply returns false whenever the above
classifier reports that gis Incomplete, and true wheneverthe classifier claims gis complete.

Figure 4.3 shows the output of the computedclassifier for exarmples of U and D. Points corre-
sponding to subgestures are labeled only when the classifier has made an error, in the sense that the

classification does nai agree with the training data (@hown im figure 4.2). The worst possible error is
for the classifier to indicate a complete gesture which happensto still be incomplete, which occurred
along the right stroke ofthe first U gesture.

This approach to cager recognition was not very successful. That itis inadequate was indicated
even more strongly by its numerous errors when tried on an example containing six gesture classes.

lt does however contain the germ of a good idea: that statistical classification may be used to
determme if a gesture is ambiguous. A detailed examination of the problems of this attempt is

instnuctive, and leads to a working cager recognition algorithm.
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This first attempt at eager recognition has a number of problems:

e The distinction between meomplete and complete subgestures does not exactly correspond
with the distinction between anibiguous and unambiguous subgestures. In the U and D
example, subgestures consisting only ofpaints along the right stroke are complete for gestures
which eventually turn out to be D, and incomplete for gestures that turn out to be U. Yet, these
subgestures have essentially identical features. Training a classifier on such conflicting data

is bound to give poor results. In the example, as long as the night stroke is in progress the
gestere is ambiguous. That it happens to be a complete D gesture is an artifact of the classifier
C Gt happens to choose BD given onlya right stroke).

e All the sabgestares of examples were placed in one of only two categories: complete or
imconiplete. In the case of multiple gesture classes, within each of the two categories the
subgestures are likely to form further clusters. For example, the complete U subgestures will
cluster together, and be apart from the complete D subgestures. When more gesture classes are
used, cven more clustcring wilLoccur. Thus, the distribution ofthe compicte subgcsturcs is not
likelyto be normal. Purthermore,it is likely that incomplete subgestures will be more similar

to coraplete gestures of the same class than to incomplete subgestures of other classes. (A
Similar remark holds for complete subgestures.} [ft is thus not likely that a hnear discriminator

will give good results separaling complete and meorppiete subgestures.

@ The classifier, once computed, may make errors. The most severe error is reporting that a
gesture is comiplete when it is in fact sull ambiguous. The final classifier must be tuned
to avoid such errors, even at the cast of making the recognition process less eager than it
otherwise might be.

4.5 Constructing the Recognizer

Based on considerationofthe above problems,a fourstep approach was adopted for the canstraction
of classifiers able to distinguish unambiguous from ambiguous gcsturcs.

Compute complete and incomplete sets.

Partition the example subgestures inta 2C sels. These sets are named |-c and C-c for each
gesture class c. A complete subgesture ef/]is placed in the class C~c, where c= ((g{if) = C(e).
An incomplete subgesture el/} is placed in the class -c, where c= Cet?) (and it is likely that
e# CO). Thesets beare termed incomplete sets, and the sets O-c, complete sets. Note that
the class in cach sct’s name refers to the full classificr’s classification ofthe sct’s clements. In

the case of incomplete subgestures, this is likely not the class of the example gesture of which
the subgesture is a prefix.

Figure 4.4 shows pseudocode to performthis step. Figure 4.2, already seen, showsthe result
ofthis step, with the subgestures in class -D labeled d, class |-+U labeled u, class C-D labeled
D, and class C-U labeled u. The practice of labeling incomplete subgestures with lowercase
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far c:= 0 ta C—14/* initializethe2C sets*/
 incomplete. :

complete, := @ 1* This is the set C-c */

fer c:= 0 te C~14/* eeryclasse
for ee OG te B°- 14 2 evervirainingesampleinc/

poe lel f subgestures, langest tosmaliest*/
while p> 6 A C(gUph=Ci@S ftSet

afa

 

 camplete,, > im connlete., ,PIEgsph) eCgi
pi=p-}

f

f* Once a subgesture is nisrecognizedby the full classifier */
/* itandits subgestures are all incorrplete. */

while p > O 4

 
; ear Fest a

af (CONTENU+ or atgelp)
pizpi- ]

Neat
Neen!

Figure 4.4: Step 1: Computing complete and incomplete sets

letters and compicte subgestures with uppercase letters will be continued throughout the

Move accidentally complete elements,

Page 1240 of 1714

Measure the distance of each subgesture off] in each complete set to the mean of cach
meompiete set. Tf gis] is sufficiently close to one of the incomplete sets, itis removed fromits
complete set, and placed in the close incomplete set. Tn this manner, an example subgesture
that was accidentally considered complete (such as a right stroke of a D gesture) is grouped
together with the other incomplete right strokes (class -D in this case). Vigure 4.5 shows
pseudocode to performthis operation.

Quantifying exactly what is meant by “sufficiently close” terned oat to be rather difficult.
Using the Mahalanobis distance as a metric turns out not to work well if applied naively.
The problern is that it depends on the estimated average covariance matrix, which in tam

depends upon the covariance matrix of the individual classes. llowever, sore of the classes
are malformed, which is whythis step of moving accidentally complete elements is necessary
in the first place. For example, the C~D class has accidentally complete subgesturesinit, so its
covariance matrix will mdicate large standard deviations in a nuniber of{eatures Cotal angle,

in this case). The effect of using the inverse of this covariance matrix to measure distance is
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Tan £
that large differences between such features will map to small distances. Unfortunately,it is

these very features that are needed to decide which subpestures are accidentally complete.

Altematives exist. The average covariance matrix of the full gesture set Gwhich docs not
include any subgesteres) might be used. ft would also be possible to use only the average

covariance matrix of the incomplete classes. Or an attempt might be made to scale away
the effect of different sized units of the features, and then apply a Euclidean metric. Or,
the entire regrouping problem might be approached froma different direction, for example

by applyme a clustering algerithin to the training data [74]. The first alternative, using the
average covariance matrix of the full gesture set (he same one used in the creation of the
gestere classifier of Chapter 3) was chasen, since that matrix was easily available, and seems
to work.

Cmnee the metric has been chosen (Mahalanobis distance using the covariance matnix of the

foll gesture set), deciding when to move a subgsesture from a complete class to an incomplete
class is still difficalt. The first method tned was to measure the distance of the subgestare to
its current (complcte) class, i.e its distance from the mean of its class. The subgesture was
moved to the closest incomplete class if that distance was less than the distance to its current

class. This resulted im too few moves, as the mean of the complete class was biased since it
was computed using some accidentally complete subgestures,

Instead, a threshold is computed, and if the distance of the complete subgesture to an in-

complete class is below that threshold, the subgesture is moved. A fixed threshold does not
work well, so the threshold is computed as follows: The distance of the mean of each full

gesture class to the mean of cach incomplete subgestare class 1s cornputed, and the minimum
found. However, distances less than another threshold, £, are not included in the minimem

vlculation to avoid trouble when an incomplete subgestere looked like a full gesture of a
different class. (This is the case if, in addition to U and D, there is a third gesture class
consisting simply of a nght stroke.) The threshold used is 900 of that minimum.

‘he complete subgestures of a full gesture were tested for accidental completeness from
largesi (the [ull gesture) to smallest. Once a subgesture was determined to be accidentally
complete, it, and the remaining (smaller) complete sebgestares are moved to the appropriate
incomplete classes.

Figure 4.6 shows the classes of the subgestures in the example aiter the accidentally complete
subgestures have been moved. Note that now the incomplete subgestures Gowercase labels)

are all ambiguous.

Baiid the AUC, a classifier which attempts to discriminate between the partition sets,

Nowthat there is training data containing C complete classes, indicating unambiguous sub-oS oS >

gestures, and C incompleteclasses, indicating ambiguous subgestures, it is a simple matter to
run the algorithmin the previous chapter to create a classifier to discriminate between these
2C classes. This classifier will be used lo compute the [unction D as follows: if this classifier
places a subgesture 5 in any incomplete class, Dis) = false, otherwise the sis judged to be
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far c:=0 ta C-if
¥ @ © complete. /* each complete subgesnure */{

m= 07" nis the class ofthe incomplete set closesttag */

fori:=i te C-1{
if distance(g, inowrpletia) < distance(g, inconplete,,)

ose
7
3

if distance(g, incorrnploin,,) < threshold4
complete. = complete. — fg}
incomplete, = incomplete. igt

15

, .3

Figure 4.5: Step 2: Moving accidentally complete subgestares
dhe distance lunciion and threshold value are described fy the text Though nut apparent from ihe above

code, the distance function to an incomplete set dees not change whenelements are addedto theset.

in one of the completeclasses, in which case D(si = true. Figure 4.7 shows pseudocode for
building this classifier.

Evaluate and tweak the classifier.

itis very important that subgestures not be judged unarnbiguous wrongly. This is a case where

the cost of misclassification is unequal between classes: a subgesture erroneously classified
ambiguous will merely cause the recognition not to be as eager as it could be, whereas a

subgesbure erroncouslyclassified unambiguous will very likely result in the gesture recognizer
misclassifying the gesture (since it has not seen enough of it to classify it unambiguously).
To avoid this, the constant terms of the evaluation function of the incomplete classes 4, wp,

are incremented by a small amount, in(A,oer Adis the relative cast af two kinds ofmisclassification. A reasonable value is Ad= 5, Le misclassifications as unambiguous are fivetimes more costly than misclassifications as sabiguous. Theeffect is to bias the classifier sc
that it believes that ambiguous gesturesare five times more likely than unambiguous gestures,

so it is much more likely to choose an ambiguous class when unsure.

Each incomplete subgesture is then tested on the newclassifier. Anytime such a subgesture is
Classified as belonging tc a corapicte set (a scrious mistake), the constant termof the evaluation

function correspondingto the omeset is adjusted automatically (by just enoughplus alittle more} to keep this from happening

Figure 4.9 shows the classification bythe final classifier of the subgestures in the example. A
larger exampleof eager recognizers is presented in section 9.2.
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Figure 4.6: Accidentally complete subgestures have been moved
Comparing this to igure 42it can he scen that the subgestures along the horizantal scament ofthe D gestures 

have been made incomplete. Unlike before, after this step all ambiguous subgestures are incomplete.

si= SNewClassifier(Q

forc= 0D te C—1{
VY g € conpieie.

sAddExamplets, g,"C- "Cc
VY g@ € incorplete.

 sAddbxample(s, g,

abDoneAdding {5}

Figure 4.7: Step 3: Building the AUC
The functions called to build a classifier are sNewClassifier(), which returns a newclassifier abject,

sAddixample, which adds an example ofa class, and sDoneAdding. called to generate the per-class

evaluation functions alter all examples have beeu added. ‘Uhese functions are described In detail in apperdix

A. The notation "C-"c indicates the generation a class name by cancatenating the string "C-" vith the
value ofc.

4.6 Discussion

The algorithm just described will determine whether a given subgesture is ambiguous with respect

to a set of full gestures. Presumably, as soon as it is decided that the subgesture is unambiguous it
will be passed to the full classifier, which will recognize it, and then up to the applicationlevel of

the system, which will react accordingly.

Howwell this cager recognition works depends on a numberof things, the most critical being
the gestarc set itself’ [tis very easy to design a geshire act that docs not lend itself well to cager

recognition; for example, there would be no benefit trying to use eager recognition on Buxton’s
note gestures [21] Gigure 2.4). This is because the note gestures for longer notes are subgestures of

the note gestures for shorter notes, and thus would always be considered ambiguous by the eager
recognizer. Designing a set of gestures for a given applicationthat is both intuitive and amenable to

eager recognition is in general a hard problem.
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The training of the eager recognizer is between one and two orders of magnitude more costly
than the training of the corresponding classifier for full gestures. This is largely duc to the numberof
training examples: each full gesture example typically gives rise to ten or twenty subgestures. ‘The

amount of processing per training example is also large. In addition to computing the feature vector
of each training example, a mumber of passes must be made over the training data: first to classify
the subgestares as incomplete or complete, then to move the accidentally complete subgestures,
again to build the AUC, and again fo ensure the AUC is not over-cager. While a foll classifier takes

less than a second to train, the eager recognizer might take a substantial portion of a minute, making
it less satisfying to experiment with interactively. As will be seen (Chapter 7), a full classifier may

be trained the first time a user gestures at a display object. One possibility would be to use the full
classifier (with no eagemess)} while traming the AUCin the background, activating cager recognition

when ready.
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The running time for the eager recognizer is also more costly than the full classifier, though not

prohibitively so. A feature vector needs to be calculated for every input point; this eliminates any
benelit that using auxiliary lealures (Section 3.3) raight have bought. OF course, the AUC needs
to be run at every data point; this takes about 2CPmultiply-adds (since the AUC has 2€classes).
Since input points do not usually come faster than one every 30 milliseconds, and 2CFis typically
at most 1000, this carnputational load is not usually a problem for today’s typical workstation class

machine. In the current system, the multiply-adds are done in floating point, thoughthis is probably
not necessary for the recognition to work well.

One slight defect of the algorithmused to construct the AUCis that it reliestotally uponthe full
classifier. In particular, a subgesture will never be considered unambiguous unless it is classified

correctly by the full classifier. To see where this might be suboptimal, consider a full classifier that
recognizes two classes, GDP’s single segmentline gesture and three segment delete gesture. The
full classifier would likelyclassify any subgesture that is the initial segment of a delete asa line. It
mavalsaclassify some twa scement subgestures of delete as line gestures, cven though the presence
af twa segments implies the gesture is unambiguously delete. The resulting eager recognizer will
then not be as eager as possible, in that if will not classify the inpat gesture as unambiguouslydelete
immediately after the second segment of the gesture is began.

Twoclassifiers are used lor eager recognition: the AUC, which decides when a subgesture is
unambiguous, and the full classifier, which classifies the unambiguous subgesture. [¢ may seem
odd to use two classifiers given the implementation of the AUC, in which a subgesture is not only
classified as unambiguous, but unambiguously in a given class (Ae classified as G-cfor some ©).
Whynot fust return a classification of cwithout bothering to query the full classifier? There are two
main reasons. First, the full classifier, having only Cclasses to discriminate between, will perform
better than the AUCand its 2C classes. Second, the final tweaking step of the AUC adjusts constant
terms to assure that ambiguous gestares are neverclassified as unambiguous, but makes no attempt
to assure that when classified as unambiguously c cis the correct class. The adjustment ofthe

constant terms typically degrades the AUCin the sense that it makes it more likely that c will be
incorrect.

itis likcly that within a decade it will be practical for neural networks to be used for gesture
recognition. When this aceurs, the part of this chapter concerned with building a 2C class linear
classifier will be obsolete, since a two-class neural network could presumably do the same job.
However, the part of the chapter which shows howto construct training examples for the classifier

fromthe full gestures will still be useful, since it eliminates the hand labeling that otherwise might
be necessary.

1 4 *
4.7 Conchasion

An eager recognizer is able to classify a gesture as soon as enough of the gesture has been seen

to conclude that the gesture is unambiguous. ‘This chapter presents an algorithm for the automatic
construction of eager recognivers for single-path gestures from exaniples of the full gestures. It is

hoped that such an algorithm will make gesture-based systems more natural to use.

Page 1245 of 1714



Page 1246 of 1714

Chapter 5

 ulti-Path Gesture Recognition

Chapters 3 and 4 discussed the recognition of single-path gestures such as those made with a mouse

or stylus. This chapter addresses the problem of recognizing multi-path gestures, eg those made
using an input device, such as the DataGlove, capable of tracking the paths of multiple fingertips.

It is assurned that the start and end of the multi-path gesture are known. Eager recognition of
multi-path gestures has been left for future work.

The particular input device used totest the ideas in this chapter is the Sensor Frame. The Sensor
ame which is mounted on a CRTdisplay. The particular

Sensor Frame used was mounted on the displayof a Silicon Graphics IRIS Porsonal Workstation.
The Prame detects the XY positions of up to three fingertips in a plane approximately anc half inch

in front of the display.

Bydefining the problem as “multiple-path gesture recognition”, it is quite natural to attempt to
apply algonthms for single-path gesture recognition (ag. those developed imChapter 3). Indeed,

the recognition algorithmdescribed in this chapter combines information culled from a number of
single-path classifiers, and a “global feature” classifier in order to classify a multiple-path gesture.
Before the particular algorithm is discussed, the issuc of mapping the rawdata returned from the
particular input sensors into a form suitable for processing by the recognition algorithm must be

addressed. For the Sensor Frame, this processing consisted of two stages, path tracking and path
sorting.

 Frame, as discussed in Section 7.1, is af

§.1 Path Tracking

The Sensor Frame, as it currently operates, delivers the X and Y coordinates of all fingersinits plane
of viewcach time itis polled, at a maximumrate of 30 snapshots per second. No other information is
sepplicd: in particular the correspondence between fingers in the current and the previous snapshots

is not communicated. Dor example, when the previous snapshot indicated one Ginger and the current
snapshot two, iis left to the host program to determine which ofthe two fingers Gf any) is the same

finger as the previcusly seen one, and which has fust entered the field of view. Similarly, of both
the previous andcurrent snapshots indicate two fingers, the host program must determine which

finger in the current snapshot is the same as the frst finger in the previous snapshat, and so on. This

wd
Ss
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problern is known as path tracking, since it groups the rawinpot data into a mimber of paths which
exist over time, each path having a definite beginning and end.

"The path tracking algorithm used is quite straightforward. When a snapshot is first read, a
triangular distance matrix, contaiming the Fuclidcan distance squared between cach finger im the
current snapshot and cach in the previous, is computed. Then, for cach possible mapping between
current and previous fingers, an error metric, consisting of the sumofthe squareddistances between

corresponding fingers, is calculated. The mapping with the smallest error metric is then chosen.

For efficiency, for each possible number of fingers in the previous snapshot and the current

snapshot, a list of all the possible mappings are precomputed. Since the Sensor Frame detects Tram
zero to three fingers, only 16 lists are needed. When the symmetry between the previous and current
snapshots is considered, only eight lists are needed.

The low level tracking software labels cach finger position with a path identifier. Whenthere
are no fingers in the Sensor Prame’s field of view, the next.pathidentifier variable is set

to zero, A finger in the current snapshot which was not in the previous snapshet (as indicated by
the chosen mapping) has its path identifier set to the value of next_path_identifier whichis
then incremented. ft is thus possible for a single finger to generate multiple paths, since it will be
assigned a ncwpath identificr cach time it leaves and reenters the ficld of viewof the Sensor Frame,

and those identifiers willcrease as long as another finger remainsin the field of viewof the Mrame.

The simple tracking algorithm described here was found to work very well. The anticipated

problera of mistracking when finger paths crossed did not arrive very often in practice. (This was
partly because all gestures were made with the fingers of a single hand, making it awkward tor

finger paths to cross.) Enhancements, such as using the velocity and the acceleration of each finger
in the previous snapshot io predict where if is expected in the current snapshot, were not needed.
Examples of the tracking algorithmin operation are shown in figure 5.1. In the figure, the start of
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each path is labeled with its path index (as defined in the following section), and the points in the

path are connected by line segments. Fig
algonthni failed, causing paths | and 2 lo be switched.

1

ure 5.1d shows an uncommon case where the path tracking 

5.2 Path Sorting

The multi-path recognition algorithm, to be descnbed below, works by classifying the first path in
the gesture, then the second, and so on, then combining the results to classify the entire gesture.

Te would be possible to use a single classifier to classify all the paths; this option is discussed in
Section 3.7. However, since classifiers tend to work better with fewer classes, it makes sense to

create multiple classifiers, one for the first path of the gesture, one for the second, and so on. This
however raises the question of which path in the gestureis the first path, which is the second, ete.
This is the path sortingproblem, and the result of this sorting assigns a number to each path called

its path index.

‘The most important feature ofa path sorting technique is consistency, Belween similar multi-path
gestures, if is essential that corresponding paths havethe same index. Note that the path identifiers,
discussed in the previous section, are not adequate for this purpose, since they are assigned in the
order that the paths first appear. Consider, for example, a “pinching” gesture, in which the thumb

and forefinger of the right handare held apart horizontally and then brought together, the thumb
moving fight while the forefinger moves left. Using the Sensor lvame, the thumb path might be

assigned path identifier zero in one pinching gesture, since it entered the view plane of the Frame
first, but assigned path identifier one in another pinching gesture since in this case it entered the

view plane a fraction of a second after the forefinger. In order for multi-path gesture recognition
using of multiple classifiers to give goadresults, it is necessary that the all thimb motions be sent
to the same classifier for training and recognition, thus using path identifiers as path indices would
not give good results.

For multi-path input devices which are actually attached to the hand or body, such as the
DataGlove, there is no problem determining which path corresponds to which finger. Thus, i

would be possible to build one classifier for thunib paths, another for forefinger paths, ete. The
characteristics of the device are such that the question of path sorting does not arise.

However, the Sensar Frame (and rmultifinger tablets) cannot tell which of the fingers is the

thumb, whichis the forefinger, and so on. Thus there is no a priori soletionto the path sorting. The
solution adopted here was to impose an ordermg relation between paths. The consistency property

is required of this ordering relation: the ordering of corresponding paths in similar gestures mrust be
the same.

The primary ordering criterion used was the path starting time. However, to avoid the aforemen-
tioned timing problem, two paths which start within 200 milliseconds are considered sirmitancons,
and the sccondary ordering criteria is uscd. A path which starts morc than 200 msec before another

path will be considered “less than” the other path, and showup before the other path in the sorting.

‘The secondary ordering criterion is the initial xcoordinate. There is a windowof 150 Sensor
Frame length umis (about one inch) within which two paths will be considered io start at the same x

coordinate, causing the tertiary ordering criterion to be applied. Outside this window, the path with
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Figure 5.2: Inconsistencies in path sorting
The intention ofthe path sorting is that corresponding paths in two similar gestures should have the same

path index. Here are foursitnilar gestures for which this does oot haid: between (b) and (c) the path sarting

has changed.

the smaller initial x coordinate will appear before the other path m the sorting (assuming apparent
simulianeity}.

The tertiary ordering criterion is the initial ycoordinate. Again, a window of 130 Sensor Frume
length units is applied. Outside this window, the path whose v coordinate is less will appearearlier
in the path ordering. Finally, if both the initial xy and y coordinate differ by less than 150 units, the
coordinate whose difference is the largest is uscd for ordering, and the path whosc coordinate is
smaller appears earlier in the path ordering.

Figure 5.2 shows the sorting for some nvulti-path gestures by labeling the start of each path with
iis uvlex. Noite that the consistency crileria is not maimtained between panels (b) and (c), since

the “corresponding” paths in the two gestures have different indices. The order of the paths in (b)
was determined by the secondary ordering criterion (since the paths began almost simultaneously),
while the ordering in (c) was determined by the tertiary ordering criterion (smce the paths began

simultaneously and had close x coordinates). Generally, any set of ordering rules which depend
solely on the imtal point of each path can be made to generate inconsistent sortings.

 

In practice, the possibility of inconsistencies has not been much of a problem. The ordering rales

are set up 56 as to be stable for near-vertical and near horizontal finger configurations; they becorme
unstable whenthe angle between (the initial points of} two fingers causes the 150 unit thresholdto
be crossed.! Knowing this makes it easy to design gesture sets with consistent path orderings. A
more robust solution might be to cormpute a path ordering relation bascd on the actual gestarcs uscd

to train the system.

As stated above, same multiple finger sensing devices, such as the DataGlove, do not require any
path sorting. To use the DataGlove as iyput to the multi-path gesture recognizer described below,

one approach that could be taken is to conmpute the paths Gin three-space over time) of each fingertip,
using the measured angles of the various hand joints. This will result in five sorted paths Cone for
cach finger) which would be suitable as input inte the nrulti-path recognition algorithm. (Of course,
the lack of explicit signaling in the DataGlove suall leaves the problemof determining the start and 

“fn retrospect, the 150 unit windows make the sorting more complicated then it need be. Using the coordinate whose
ifferenceis the largest (or simultaneous paths) makes the algorithm more predictable: it will become inconsistent when

<

the initial points of two paths form an angle close to —45° frornthe horizontal.
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end of the gesture.)

3.3 Multi-path Recognition

Like the single path recognizers described in Chapter 3, the multi-path recognizer is traincd by
specifying a number of examples for each gesture class. The recognizer consists of a number

of single-path classifiers, and a global feature classifier. These classtfiers all use the statistical
classification algorithm developed in Chapter 3. The differences are mainly in the sets of features
used, as described in Section 3.5.

Each single-path classifier discriminates between gestares of a particular sorting index. Thus,
there is a classifier for the first path of a gesture, another for the second path, and another for the
third path. (The current implementation ignores all paths beyond the third, although it takes the

actual number of paths into account.) When a multi-path gesture is presented to the system for
classification, the paths are sorted (as described above) andthe first pathis classified using the first

path classifier, and so on, resulting in a sequence of single-path classes.

‘The sequence of path classes which results ts then submitted to a decision tree ‘Vhe root node

of the tree has slots painting to sebnodes for cach possible class retmedby the first path classifier,
The subnode corresponding to the class ofthe first path is chosen. This node has slots pointing to
sucbnodes for cach possible class returned by the secand path classifier, Some of these slots may be
noll, indicating that there is no cxpected gesture whose first and second path classes are the ones

cormputed. In this case the gesture is reyected. Otherwise, the subnode corresponding to the class of
the second path is chosen. The process is repeated for the third path class, if any.

Onee the entire sequence of path classes is considered there are three possibilities. {f the
sequence was unexpected, ihe maulti-path gesture is rejected smce no node corresponding to this

sequence exists in the decision tree. If the node does exist, the mrulti-path classification may be
nambiguous, meaning only one mrulti-class gesture corresponds to this particular sequence of

single-path classes. Or, there may be a number of multi-path gestures which correspond to this

sequence of path classes. In this case, a global feature vector (one which encompasses information
about all paths) is computed, and then classified by the global feature classifier. This class is used to

choose a farther subnode in the decisiontree, which will result in the multi-path gesture either being
classified individually or rejected. ‘Uhe intent is that. if needed, the globai feature class is essentially

appendedto a sequence of path classes: somie care is thus necessaryto insure that the global feature
classes are not confused with path classes.

  

Figure 5.3 shows an example of the use of a decision tree to classify multi-path gestures. The
multi-path classificr recognizes four clasacs. Each class is compased of two paths. There are only

two possible classes for the first path (path 0), since classes P,Q, and § all have similar first paths.
Similarly, Q and S have similar second paths, so there are only three distinct possibilities for path 1.

Since Q and $ have ilentical path components, the giobal classifier is used to discriminate between
these two, adding ancather level in the decisiom tree. The classilication of the exaraple inpul is

indicated by dotted lines.

Page 1250 of 1714


