133 Patemt Climm Limgurge	183 Pirlent Support
	circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuity drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.) the following three methods may be used to increase the output of the switchincrease the oscillator's regulated supply voltage, increase the resistance of resistor 416 , and use a 40 higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41.
a microcontroller using the periodic output signal from the oscillator. the microcontroller selectively providing signal oufput freguencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;	See Figures 4, 11; and Claims 8, 12, 16, 27. The ' 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin olls and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch temmals in a physical close array such as a keyboard." Col. 5:49-57. The ' 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The " 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adiacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending

13.3 Patent Climm lamguage	153 Patent Support
	upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. The ' 183 Patent discloses " Y pon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460, a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6 . Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8 . Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The ' 183 Patent discloses "As will be apparent to those skilled in the art, the values of the

\begin{tabular}{|c|c|}
\hline 183 Patent Clitim Language \& 183 Pritent Suppo \\

\hline \& | resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. |
| :--- |
| The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIC. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FlG. 4 are designated with the same references numerals and will not be discussed in detal. The multiple touch pad circuit is a variation of the first embodiment in that it includes an amay of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the aray with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed drectly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col, 18:34-59. | \\

\hline the first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and \& See Claim 27. \\
\hline
\end{tabular}

183 Palent Climm lingurige	\$83 Prient Support
a detector circuit coupled to said oscillator for receiving said periodic outpat signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator yia said microcontroller and the] \underline{a} presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by [an] the operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	See Figures 4, 11; and Claims 8, 12, 16, 27. The " 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460, a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave outpat from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discossed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 tupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8 . Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 50 , which is preferably a two way optical coupling bus." Col. 12:6-33. The " 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to

133 Patent Climmlangurte	\$83 Patent Suppurl
	those in the first embodiment in FGG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in PGS. 4 and 8 and the input touch terminalpad 451 (FlG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 m by providing the signal from oscllator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentilly activate the towch cirouit rows and associate the received inputs from the columns of the array with the activated tonch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldah, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed drectly against the sufface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.

J. New Clam 38

	\$83 Priemi Sumpuly
38. The capacitive responsive electronic switching circuit as defned in claim 37, wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.	See Claims 27, 32. The ' 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDS or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is reguired before an action occurs. The teedback

\begin{tabular}{|c|c|}
\hline 133 Patemt Climm limgurte \& 183 Prilent Suppuri

\hline \& | to the operator provided by a visual or audio indicator activated by the microprocessor in response to intemediate touches in a reguired sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. |
| :--- |
| The ` 183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator, Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been suceesstully activated to cue the operator that it is time to move to button 2202 . Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDS to provide feedback to the operator." Col. 23:1-12. |
| The ' 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of output relay 2310." Col. 23:28-30. |

\hline
\end{tabular}

K. New Claim 39

113. Finlint Climm limgurge	\$33 Pixent Sumpumi
39. The capacitive responsive electronic switching circuit as defined in claim 37,	Clam 27.
wherein said detector circuit compares a sensed body capacitance change caused by the body capacitance	See Figure 11; and Claims 1, 12, 16, 18, 27, 28 . The "183 Patent discloses "Another method for

153 Patent Clinm linguase	\$33 Pintent Suppum
decreasing a second touch terminal signal on the detector to ground when proximate to the second touch terminal to a threshold level to generate the control output signal, and	implementing capacitive touch switches relies on the change in capacitive coupling between a towh teminal and ground. Systems utlizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. अat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pomp. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. The ' 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin olls and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. The ' 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27.

18.) Fatent Clirm lirmgurge	\#83 Pirient Support
	The ' 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 453 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The " 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25.
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch temmal.	See Claims 27, 32 . The ' 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDS or amunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partal touches or wrong actuations from touching the wrong pad in a given required sequence or combination of towehes." Col, 6:31-42. The ' 183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible amunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to buton 2202. Where required a second $L E D$ with a different color than the first (yellow for the first LED and red for the second)

183 Patent Clim Language	
	can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be ased in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12.
The "183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step twm-on and activation of output relay $2310 . " ~ C o l .2328-30 . ~$	

Y. Conchusion

In view of the above, Fatent Owner submits that the clams are in condition for allowance. No new matter has been added by this submission. If Examiner should have any questions, please contact Patent Owner's Attomey, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

November 19, 2012
Date

SLATER \& MATSIL, L.L.P.
17950 Preston Rd., Suite 1000
Dallas, Texas 75252
Tel.: 972-732-1001
Fax: 972-732-9218

Brian A. Carison/
Brian A. Carlson
Attomey for Patent Owner
Reg. No. 37,793

Po. Ecx 1450
wwownsplogove virgia 22313-1450

Please find below andor attached an Offec communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached commonication,

Notice of mrent to ssue	Control No. 901012.439	Patent Uncjer Reexamination 5796163
Ex Parte Reexammation centhcate	Examiner LINH M NGUYEN	Art Unit 3992

- The MALLING DATE of this communication appears on the cover sheet with the correspondence address --
\uparrow. \square Prosecution on the merits is (or remains) closed in this ex parte reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Of. 37 CFR $1.313(\mathrm{a})$. A Certificate will be issued in view of
(a) \boxtimes Patent owner's communication(s) hed: 19 November 2012.
(b) \square Patent owner's fallure to file an appropriate timely response to the Office action mailed: \qquad $-$
(c) \square Patent owners fallure to timely file an Appeal Brief (37 CFR 41.31).
(d) \square The decision on appeal by the \square Board of Patent Appeals and Interferences \square Court dated \qquad
(e) \qquad Other: \qquad .

2. The Reexamination Certificate will indicate the following:
(a) Change in the Specification: \square Yes \square No
(b) Change in the Drawing(s): $\quad \square$ Yes \mathbb{N} No
(o) Status of the Clam(s):
(1) Patent claim(s) confirmed: \qquad .
(2) Patent claim(s) amended (including dependent on amended claim(s)): 18.27 .28 and 92
(3) Patent claim(s) canceled: \qquad ㄴ..
(4) Newly presented claim(s) patentable: 33-39.
(5) Newly presented canceled claims: \qquad .
(6) Patent clam(s) \square previously \square currently disclamed: \qquad
(7) Patent clam(s) not subject to reexamination: $1-17,1926$ and 2931.
3. \triangle Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary by patent owner regarding reasons for patentabitty andior conimation must be submitted prompty to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability andor Confimation."
4. \square Note attached NOTICE OF REFERENCES CITED (PTO-892).
5.Note attached LIST OF REFERENOES CTED (PTOISP/O8 or PTO/SB/O8 substute).
5. \square The drawing correction request flled on \qquad is:approved \square disapproved.
6. \square Acknowledgment is made of the prority clam under 35 U.S.C. § 119(a)-(d) or (f).

\qquad None
of the certified copies have been received. Inot been received. \square been filed in Application No. \qquad .
\square been flled in reexamination Control No. \qquad \square been received by the International Bureau in PCT Application No. \qquad .

* Certifed copies not received: \qquad \cdots.
8.Note attached Examiner's Amendment.
$3 .[$Note attached Interview Summary (PTO-474).

10. \square Other: \qquad
All correspondence relating to this reexamination proceeding should be directed to the Central Feexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

Notice of intent to Issue Reexamunation Cerificate

This is a reexamination of United States Patent Number 5,796, 183 ("the 183' patent"). In the reexamination request filed 08/17/2012 ("Request"), by Patent Owner, a substantial new question (SNQ) of patentability was raised as to chams 18 and 27. Those claims are thus reexamined herein. Reexamination was not requested of clams $1-17,19-26$ and $28-32$. Therefore, claims 1-17, 19-26, and 27-31 will not be reexamined. See MPEP 2243. However, clams 28 and 32 will be reexamined, as futher explained below.

A Patent Owner Statement was filed $11 / 19 / 2012$, in which claims 18 and 27 were amended, as well as claims 28 and 32 due to their dependencies from clam 27. Furthemore, new claims $33-39$ were added.

Within the examiner's discretion, the newly added claims $33-39$ and the non-requested amended claims 28 and 32 are now subject to reexamination.

References

Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1996 ("Boie '388").

Statement of Reaxsons for Patentability andior Confimation

Clams 18,27, amended non-requested clams 28, 32 and newly added clams 33-39 are patentable.

The examiner has no opinion as to the claims that were not reexamined. The following is an examiner's statement of reasons for patentability of the claims found patentable in this reexamination proceeding:

There is not taught or disclosed in the prior art a capacitive responsive electronic switching circuil having a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad, as called for in independent claim 18; nor a capacitive responsive electronic switching circuit having a microcontroller using the periodic ontput signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch temmals comprising firs and second mput touch terminals, as called for in independent claims 27 and 37 . The examiner agrees with the discussion articnlated by Patent Owner in the Statement that Boie does not teach or suggest these claim elements. Kather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "Tthe effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous

Page 514 of 1714

Art Unit: 3992
capacitances are minimized by driving all clectrodes and guard plane 411 in unison with the same RF signal from RF oscilator 408." Id. at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components. Accordingly, clams 18,27 , mended non-requested claims 28,32 , and newly added clams 33-39 are patentable.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confimation" and will be placed in the reexamination file.

Page 515 of 1714

Correspondence

Registered users of EFS-Web may alternatively submit such correspondence via the electronic fing system EFS-Web, at https://efs, uspto.gov/efile/myportalefs-registered EFS-Web offers the beneft of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft scanned" (i.e, electronically uploaded) directly int the official file for the reexamination proceeding, which offers parties the oppotunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry conceming this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272 7705.
/Linh M. Nguyen/
Primary Examiner, Art Unit 3992

Conferess:

IJames Menefee/
Primary Examiner, Art Unit 3992

Daniel Ryman'
Supervisory Patent Examiner, Art Unit 3992

(12) EX PARTE REEXAMENATION CERTEICATE (9614th) United States atent
 (10) Number: US $5,796,183 \mathrm{Cl}$
 Hoummand et al.
 (45) Certincate Issued: Apr. 29, 2013

 SWIRE及सNG CTREUK
(75) Inventors:

Byron Hourmand, Hersey, MI (US): Fobum. Wesshelesht, Cadilac, MK (US); Stephen R. W. Cosper, Fowlerville. MI (US)
(73)

Assignee:
Nartron Corporation, Recd City, MI (US)

Reexamination Request:
No. 90612,439, Aug. 17, 2012
Reexamination Certificate for:

Datent No.:	$5,796,383$
Issued:	Ang. 18,1998
Appl. No::	68603,268
Filed:	$\xi_{3 n,} 31,1996$

Certifate of Correction issued May 11, 1999
Certifate of Correction issued Oct. 11, 2011
(51) Int. Cl.

F103 $517 / 96$
HOSK $17 / 94$
(2006.0])
(2006.01)
(52) U.S. Cl.

USPC 307/316; 307/125; 307/139; 361/181
(58) Field at Classixication Search

None
See application file for complete search history
References Cited
To view the complete listing of prior an documents cited during the proceeding for Reexamination Control Number $90 / 012,439$, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.
Primary Examiner - Lin M. Nguyen

ABSTRACT

A capacitive responsive electonic swithing circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic ouput signal from the oscilator, and coupled to the imput towh terminal. The detectorcicuit beng responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or tonched by an operatorto provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of tonch teminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputing a signal having a frequency of 50 kHz or greater.

EX PARTE
REEXAMMNTION CERTIFICATE ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets $\}$ appeared in the patent, but has been deleted and is no longer a part of the patent; matter primed in talics indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMIRED THAT:

Clams $18,27,28$ and 32 are detemined to be patentable as amended.

New claims 33-39 are added and detemined to be patentable.

Clams 1-17, 19-26 and 29-31 were not reexamined.
18. A capacitive responsive electronic switohing circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic ontput signal from the oscillator, the microcontroller selectively providing sigral outpat frequencies to a piurality of small sized imput touch terminals of a keppad;
[a] the plurality of small sized input touch teminals definme adjacent areas on a dielectric stbstrate for an operator to provide inputs by proximivy and towh; and
a detector circuit coupled to said oscillator for receiving waid periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and the a presence of an operator's body capacitance to ground coupled to said tonch terminals when proximal or touched by [an\} the operator to provide a control output signal,
wherein said predefined frequency of said oschlator 【is $\$$ and said signal output frequencies are selected to decrease द्दthel a first impedance of said dielectric substate relative to the a second impedance of any contaminate that may create an elcetrical path on said dielectric substrate between said adjacent areas defmed by the plarality of small sized input tonch terminais, and wherein said detector circuit compares the] a sensed body capacitance change to ground proximate an input touch teminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled bopad device comprising:
an oscillator providing a periodic output signal having a 55 predefined frequency;
a microcontroller using the periodic owthut signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals 6 comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an onerator to noyide an ingut by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscilator, and compled to said first and second tonch teminals, said said periodic output signal from soid oscillator and compled to said first and second tonch terminals, said detector circuit being responsive to signais from said oscillator via said micmocontroller and a presence of an operator's body copacitance to gronud coupled to said first and second tonch tarminals when proximat or towched by the operator to provide a control output signal for achation of the controlled device, said detecwh circuit being configured to generate sald control output signal when the operator is proximal or touches sad second towch terminal after the operator is proximal or touches said first totich terminal.
38. The capacitive responsive electronic switching circuit as defned in claim 37 , wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terninal.
39. The capacive responsive electronic switching cirait 5 as debhed in clam 3 ?,
wherein said detector circuit compares a sensed body capacitance change caused by the body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch ter- 10 minal to a threshold level to generate the control ont ant signal, and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.

EXHIBIT C

Page 520 of 1714

United States Patent
Boic ef al.
[54] COMYPUTEX MOUSE OR XEY DEVICE URYLXZNG CABACTTTVE SENG@RS
 W. Ruedisweli, Berkeley Heights; Exic 2. Wagrer, Sonth Plainfield, all of N.J.
[73] Assignee: AT\&T EMM Corpa, Coral Gables, Ha.
[*] Notice:
The portion of the term of this patent subsequent to May 12, 2009, has been disclaimed.
[21] Appi. No.: 1x, 3 iab
(22) Flea: 马am. 29, 1993
[51] Int. CI. ${ }^{6}$ \qquad H183K $17 / 94$
(52) U.S. Cl \qquad 341/33; 345/174
58) Field of Search \qquad 341/33; 178/18, 178/19; 345/174

Referexces Cited

U.S. PATENT DOCUMENTS

4,733,222	371988	Exans 341/33
4,737,758	411988	Lewiner et al. 341/33
4,772,874	$9 / 1988$	Hasegawa 341/33
$4,806,709$	210989	Bvans $178 / 19$
4,352,443	$8 / 1989$	Dumean et al.an...........mana.e. 84/1.04
4,893,071	$1 / 1990$	Miller 324/660
4,972,496	$11 / 1990$	Sklarew 17818 X

5,012,124	41991	Hollaway 341/33
5,015,008	$5 / 1991$	Gruaz et al. 341/33
5,113,041	$5 / 1992$	Blonder er al. i78/88
5,122,623	611902	Zank et bi, 178/19
	OTH	P PUBLICATIONS

"The Ant of Electronics," Second Edition, Horowitz and Hill, p. 889, Cambridge University Fress (1989).
Primary Examiner-Brent Swarthout
Assisicme Exaniner-Thomas 3. Mullen, Ir.
Attomey, Agent, or Firm-Geoffey D. Green
[57]

AESTRACT

A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an amay of clectrodes. Such electrotes are aranged in a grid pattern and can be connected in columns and rows. Each colum and row is comected to circuity for measuring the capacitance seen by each colum and row. The position of an object, such as a finger or handheld stylus, with respect to the array is detemined from the centrond of such capacitance values, which is calculated in a miorocontroller. For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. Por applicatums in which the ingut device is used as a keyboard, the microcompnter identines a key from the position of the touching object and forwards such key identity to the compurer.

10 Chims, 6 Drewing Sheets

U.S. Patent Oct. $31,1995 \quad$ Sheet 2 of $6 \quad 5,463,388$ FIG. 2

FIG. 3

FIG. 7

U.S. Patent

FIG. 8

COMPYTER MOUSE OR KEYBOAED INYUE DEYICE UTEEZNG CAPACDTINE SENSORS

FIELD OF THE RNVENTION

This invention relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface.

BACKGROUND OF THE INVENTMON

Numerous devices are known for sensing the position of objects on surfaces, many of which relate to computer mput tablets, For example, U.S. Pat. No. 5,113,041 to Greg E. Blonder et al. discioses a computer input tablet for use with a stylus in which the position of the sytus can be detemined from signals transmitted to the stylus from a grid of signal lines mmbedded in the tablet, and U.S. Pat. No. 4, 806,709 to Blair Evans discloses a touch-screen having a resistive bayer with a number of point electrodes spaced thereon such that the position of a finger towhing the sereen can be determinet from the relative values of the currents drawn trom the point electrodes. The first such device requires means for the stylus itself to transmit information, such as a direct electrical comection. The second such device, and other kinds of tablets that sense the pressure of a friger or stylus, do not reguire such information-transmitting means.
Computer input teblets can be used for input of texual or graphical information. Various systems are known in the art which process handwriten text as if it were entered on a keybobrd. Graphical infomation can also be captured by means of such tablets.

Other input devices such as computer "mice", joysticks and trackbals can be used with computers to conmot the postion of a cursor on a display screen, suel as a video terminal, for input of graphical information and for interactive programs such as compurer games and programe using "windows" for display of information. Movement of a mouse in a particular direction on a surface causes a conrespoxding moyement of the cursor or other object on the screen, Similarly, movement of a joystick or trackball in a particular direction causes such movement.
Gnput devices such as mice, joysticks and tackballs can be cumbersome because of their size and shape and, particularly with mice, the room needed for use. These drawbacks are more ayparent with respect to poriable computers, such as the so-calied "notebook" computers It is deskable, therefore, to fumish such control capabilities in an mput device that can be incorporated in a small space, but without sacrificing ease of use. It is also desirable to be able to use such a device for multiple functions, for example, a particuLar area of a computer keyboard that can abso be used as a mouse without losing its functionality as a keyboand. Further, it is desirable that such an input device be capable of operation by a fuger or handheld styhus that does not require an clectrical connection or other means for transmitheng information.

SUMMARY OF TKE INVENTION

The capacitive sensor of the invention comprises a thin, inswlating strace covering a phuality of eloctrodes. The posxtion of an object, such as a finger or hand-held stylus, with respect to the electrodes, is determined from the centwid of capacitance values measured at the electrodes. The electrodes can be arranged in onc or two dimensions. In a two-dimensional amay, the capaciance for each electrode
can be measured separately or the electrodes carr be divided into separate elements connected in columms and rows and the capacitances measwed for each column and row. The x and y coordinates of the centroid are calculated in a microcontroller from the measured capacitances. For aphications in which the semsor is used to embiate a mouse or tackball, the microcontroller forwards position change information to utiling means. For applications in which the sersor is used to emulate a keyboard, the microcontroller identifes a key from the position of the touching object and forwards such key identifcation to utlizing means.

These and ober aspects of the invention will become apparent from the attached drawings and detailed description.

BRIEF DESCRIPTION OF THE DRAWING

FxG. 1 is a graphic diagram showing the telationship between the position of a user's finger and capactances at electrodes in a two-dimensional sensor constructed in accordance with the invention.
DG. 2 is a more detailed representation of itherdigitated electrode components at the intersections of rows and columas in a wo-dimensional sensor.
FIG. 3 is an altemate arrangenent for electrodes in the array.

FCG 4 is an overall block diagram of a two-dimensiomal capacitive position sensor in accordance with the invention.

FlG. 5 is a diagram of an integrating amplifier and bootstrap circuit associated with the electrodes.
FIG. ξ_{9} is a How chart showing operation of the capacitive position sensor of the invention as a computer mouse or tackbal.

FIG. 7 is a dhagram showing use of the capacitive position sensor of the invention as a keyboard.
FGG 8 is a flow char showitg operation of the capacitive position sensor of the invention as a keyboard.

DETAKXD DESCRIPTKON

The invention will be described in terms of a exemplary two-dimensional embodiment abapted to emulate a computer mouse or keybord for use with a personal compuer. However, it will be clear to those skilled in the ant that the principtes of the invention can be utilized in other applications jo which it is converient to sense position of an object capacitively in one or more dixnensions.
The operational princible of the capactive position sensor of the invention is shown in Fr. . B. Electrode array YWe is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an amay of thes. A 4×4 aray is shown, which we have found adegoate for emulating a computer mouse by inger strokes on the array. However, the invention can be used with arrays of other sizes, if desired. The electrodes are covered with at thin layer of insulating material (not shown). Finger 1 B\% is shown positioned with respect to array $\mathbf{1} 9 \mathrm{~h}$. Electrode array 160 can be one-dimensional for applications in which position in only one dimension is to be sensed.
Histogram 110 shows the capacitances for electrodes 1 ha in array 1803 with respet to finger 102. Such cagectiances ate a two- dimensional sampling of the distribution of capacitance between array 100 and finger 102 . The centroid (center of gravity or hrst moment) ll of such distribution will correspond to the position of finger 192, or some oher object touching aray 100, if suitable sampling criteria are
net; that is, by choosing electrodes of sufficienty smiall size when compared to the extent of the distribution. Such criteria are discoused in the Blonder el al. patent refered to aboye.

The x and y coondinates of the centroid can be determined by directy measuring the capacitance at each electrode 101 and calculating such x and y coordinates from such measured capacitances. Thus, for the 4×4 aray 100 , sixteen capacitance measurements would be needed. The mmber ot measurements can be reduced, however, by taking advantage of the fact that the one-dimensional centroids of the projections of the distribution onto the x and y axes also correspond to the finger position. Such projections can be formed by subdividing each electrode 101 into two elements, as shown in FIG. 2

FIG. 2 shows four such subdivided electrodes in more detal at an intersection of two tows and two columns in array 1168 . As can be seen from $F \mathrm{~F}$. 2 , a borizontal element 261 and a verical element 202 are situated at each intersection of a row and columa. Horizontal elements 201 are meroonteted by leads 243 and vertical elements 202 are interconnected by leads 204 . Elenments 201 and 202 can be interdigitated as shown. It is advantageous for the conducting areas of elements 261 and 232 to cover the sutace of array 100 as compietely as possible. For finger strokes, we have used interdigitated elements 201 and 202 that are approximately 0.37" square Smaler electrodes 18 E or elements 201 and 202 be desirable for use with a hand-held stylus having a smaller cross-section than a finger.

As will be clear to those skiled in the att, clenents 201 and 202 can be fabricated in one plane of a multi-layer printed circuit boad together with one set of intercomections, for example, the honzontal tow conmections 2l33. The vertical row connections 204 can then be fabricated in another plane of the circsit board with appropriate via connections berween the planes.

Other electrode array configutions can be used, if desired. For example, FlG. 3 shows horizontal strip electodes 263 overlapping vertical strip electrodes 264'. Elecnodes 203 and 204 are separated by a thin insulating layer (not shown) and covered by another thin insulating layer (not shown). In such a confuguation, areas of electrodes 244' must be keft umasked by electrodes 283 ' so that electrodes 204 can still "see" the capacitance of an object touching the surface in which such electroden ate embedded. A similat confguration of electrodes is shown in the Blonder et at. patent. However, the structure of FIG. 2 is preferred because the interdigitate elerbents 201 and 202 do not overiap and the capacitance values measured can be higher for a given area of amay 100 , thus providing greater noise immunity.

FTG. 4 is an overall block diagram of a capacitive sensor 4Bb in acordance with the invention. Electrode amay 100 comprises rows and columns of electrodes, for example, rows and colums of comected horizontal and vertical elemerts as shown in FlG. 2. Refering again to FIG. A, each row and column of electrodes from array $\$ 00$ is connected to an integrating amplifer and bootstrap circuit 443, which is shown in more detail in FlG. 5 and will be described below. Each of the outputs from circuits 408 can be selected by multiplexer 402 under control of microcontroller 406. The seleoted output is then forwarded to summing circut 483 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and fiter 404 convert the output from summing crowit 493 to a signal related to the capacitance of the row or column selccted by multiplexer 402. RE oscilhator 408 provides an FF signal,
for example, 100 kjohertz, to circuits 401 , synchronous decetor and filct 404 yia invorter 410 , and guard plane 41. Guard plane 4 is is a wbstantialy continmous plane paralle to array 16 and associated connections, did serves to isolate array lof from extraneous signals. The operation of ynchonous detector and fiter 404 is well hnown in the ant, for example, see page 889 of "The Ant of Eiectronics," Second Edition, by Korowitz and Hill, Cambnidge University fress (1989). A capacitive proximity detector having a single electrode, a guard plane and similar circuity is disclosed in co-pending Application No. 07/861,667 for F. A. Boie et al. fied Apr. 1,1992 , now U.S. Pat. No. 5,337,353.

Apparaus similar to that shown in FIG. 4 can also be used for applications in winch it is desired to measure separate oapacitance values for each eleotrode in array 1 bB instead of the collective capacitances of subdivided eleotroie elements connected in rows and columus. To measure such capacitances separately, a circuit 4 is is provided for each electrode in array ${ }^{\text {B }}$ (6 and multiplexer 482 is enlarged to accommodete the outputs from all circuits 401.

The outpu of synchronous detector and flter 4 bl is converted to digital form by analog-to-digitai converter 465 and formarded to microcontsoler 466. Thus, microcontroller 4 46 can obain a digut vabe representig the capaciance seen by any row or column of electrade elements (or electrode if measured separately) selected by multiplexer 462. Buttons 4B7, which can be aukihary pusibuttons or swithes situated near array A08, are also connected to merocontroller 406 . Buttons 407 can be used, for cxample, for the same purposes as the buttons on a compurer mouse. Microcontroller 466 sends chata 60 uthang meats, such as a personal computer (not shown) over lead 426. A particular device that cax be used for A / D converter fibs and miorocontoller 466 is the 876552 cirouit mate by Gntel Corporation, which includes both an A / D converter and a microprocessor.

FlG. 5 is a circut diagram of each integrating amplifer and bootstrap circuit 401. The RF signal from $R \mathrm{RH}$ oscilator 468 drives the base of transistor $(21$ and the bootstrap citcuit comprised of tesistor 501 arid capactior 592 Ciment source 5th provides a constant DC bias current chrough transistor Q3. Au eleotrode in arcay 3 sf is commeted to the embter of transistor O. The Re cument to an eketrode is determined by the camacitance seen by the slectrode; thus, an increase in capacitance caused by the proximity of an object, such as a finger, causes in increase in such curcht. Such an increase is reffected as a change in the RF current flowing from the collector of transistor Qu. The collector of unasistor Q1 is connected to the imput node of integrathag ampibter 565 via coupling capacitor 56 . For a change in capacitance,,$-C$, at the electrote, the change in the amplitude of the oupout
 where A is the amphtude of the RF signal from oscillator 4 GS and C_{7} is the value of integrating capacitor 507 . Resistor 508 provides a bias current for amplifier 505 and resistor 504 provides bias current for transistor 01.

The effects of eleotrode-to-electrode sapacitances, wining capaciances and other extaneous capaciances are minimized by driving all electrodes and guard plane 4 fl in unison with the same EF signal from EF oscillator 408 . The bootstrap circuit serves to minimize any signal due to the finite impedance of the biasing circuit of transistor Qx. The base-to-collector capacitance of transistors Ql and othor stray capacitatces in the circuit can be compensated for by adjusting trim resistor $\mathbf{3 6} 9$ shown in HG .1 .

In using the position sensor of the invention as a computer
mouse or trackball to contulal a cursor, movement of the mouse or trackball is emulated by tonching aray 100 with finger 102, or some other object, and stroking finger 102 over array 16 ff to move the cursor. Changes in position of the finger with respect to array 150 are reflected in corresponding changes in position of the cursor Thus, for such an applicaion, micocontroller 306 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontrollet 406 in such an application.
kefering to RIG. 6, microcomputer 466 reads the initial capacitance values for all the elements in array 104 and sores such values (step 601). Such initial values should reflect the state of army 10 without a finger or othet object being nearby, accordingly, it may be desirable to repeat step 601 a number of tumes and then to select the minimum capacitance values read as the intial values, thereby compensating for the effect of any objects moving close to array 500 during the initialization step. After inicialization, all capacitance values are periodically read and the inxtital values subtracted to yield a remainder value for each element (step 6(12). If one or more of the remainders exceeds a preser theshold (step ghbs), indicating that an oblect is close to or touching array 3 mp, then the x and y coordinates of the centroid of capacitance for such object can be calculated from such remainders (step $6(44$). For applications in which the eloctrodes of array 1804 are comnected in rows and columus, as shown in FJG. 2 and EJG. 3, such calculation can be perfomed as follows:

where:
u_{x} is the number of columns, $V\left(n_{x}\right)$ is the remander value for columm n_{n}, u_{y} is the number of rows and $V\left(n_{y}\right)$ is the remainder value for row n_{y}. To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The throshold can be set to some percentage of the tange of A/D converter 305, for example $10-15 \%$ of such range. Note that the value of x ean nether be less than 1 nor more than u_{x} and the value of y can neither be less than I nor more than u_{y}.

For applications in which the capactance values for the electrode 101 in array 100 are measured separately, the x and y values of the centroid can also be calculated using equations (1) and (2) by adding all the capacitances measured for a row or column 10 oblain the value of V for such row or colmm. Such addition has the same effect as if the electrodes were connected together in a row of column.

When set, the "T" flag indicates that remainders were above the thesthold during the previous iteration through step 603. Swh flag is set during step 6月6f and cleared during step 607. Thus, after the first iteration through step 6033 , inchoating a new stroke of finger 102 on aray $\mathbf{1 0 0}$, the "T" flag is set and the x and y vahues just calculated are stored. During each subsequent iteration during such stroke, the changes in x and $y(d x$ and dy) are calculated (step 688) as follows:

$$
\begin{equation*}
d x=x_{i}-x_{p} \tag{3}
\end{equation*}
$$

where x_{c} and y_{c} are the values just calculated in step 605 and x_{p} and y_{p} are the values calculated and stored (step 610) during the previous iteration.
It may be desimble to remove jiter from the leastsignificant bit in the values of dx and dy calculated (step 609). This can be accomplished by incrementing negative values by 1 and decrementing positive values by 1 , leaving zero values witiout change.
The values calculated for x and y are stored (step 616) for use in calculating dx and dy during the next iteration. Then, if other inputs, such as butkms 487 , are comnected to
). Finally, if x and y have changed (dx*if or dy $\neq 0$) or the state of buttons 407 has chenged (step 612), bata relating to such changes is sent over line 426 to the computer or other utilizing means to which serisor 400 is connected (step 613). Such cata typically includes $d x$, dy and the cument state of the buttons, which comesponds to that sent to a computer by a conventional computer mouse or trackball. Finally the states of such oher inputs are stored (step 614) for use during the next iteration.

Typically the cycle time through the above-described steps will be about 20 milliseconds, depending on the time constant of the fleer in circuit 884 . Aher each change of multiplexer 402, microcontroller 406 is programmed to wait approxinately 2 milliseconds for the output of circuit 404 to settle.
It will be clear that the absolute yalues of x and y can be inciuded in the data sent over hine 420 to utilizing theans, if tesired. For example, capacitive inpm sensor 4 bol can be adapted for use as a gencral puraose ingut pad for entering handwritten intormation. For such an application, it may be deskable to inorease the number of electrodes to improve definition, but even a 4×4 matrix for use with fuger inpur can produce uscful input data because of the interpolating effect of the centroid-finding calculations performed in step 604.

Instead of using buttons 407 for additional input when array sensor 1 bth is used as a omputer mouse, it may be desirable to gense different finger pressures. For example, to perform a "click and dage" operation, a typical use of a computer monse, a hedvier fuger pressure can be used on array 1689 than when an ordinary cussor movement is desired. Clearly finger pressures can be sensed by olectromechanical or other means, but diferences in the capacitances sensed by sensor 400 can also be used for this purpose.

The magnioudes of the capacitance vakues sensed by amay 106 are somewibat related to hinger pressure because of the compressibility of the fingertip when contacting array 1 the. Higher finger pressure will cause higher capacitasce vahes to be sexsed. This effect can be enfanced by rephacing the insulating layer (not shown) on array 180 with a compress-
ible insulating laver. Dierent foxger pressures can be set by defining one or more additional thresholds for use in step 603. An ordinary touch would cause the remanders to exceed only the first threshold; a beavier touch would cause at least one remainder to excead a higher thresbold, which could then be used to indicate a different button state.

FIG. 7 is a diagram chowing bow an aray 106 can be used as a keyboard in mecotdance with the invention. Again, array 100 is shown as a 4×4 matrix of clectrodes, but with a keybond pattem overlay superimposed on the matrix. The dotted lines indicate such matrix. Such a keyboard patem can be printed on the insulating layer covering the clectrodes. Note that the individual "keys" in the keyboard do
not necessarily correspond to the underlying electrodes. The x and y coondinates are shown for refrenoo purposes. Since the vaiues obtaned for x and y in a 4×4 matix using equations (1) and (2) will range from 1 to 4 , this xange is shown on the coordinates.

The identity of a key touched is determined from the x ank y values computed for the centroid of capactance resulting from the touch For example, using the x and y coordinates shown in FIG. 7, a " 5 " can be defined as a touch with $[1.7 \leqq x \leqq 2.3,23 \leqq y \leqq 2.7] ;$ a ${ }^{50} 0$ " can be defined as a touch with $[1 \leq x \leq 2.3,1 \leq y \leq 1.3]$; and a " + " can be defined as a touch with $\{3.7 \leq x \leq 4,2.4 \leq y \leq 35]$. These ranges are chosen to leave gumd bads between adjacent keys. Such a range for each key on the keyooard is stored in microprocessor 48%.

XIG. is a flow ohat showing operation of microcontroller 48 when the caracitive position sensor of the invention is used as a keyboard. Steps $801,802,803$ and 806 are similar to steps $6(51,682,663$ and 6944 , respectively, in FIG. 6. In step 805, the identity of the key touched is determined from the stored ranges and the values of x and y calculated in step 806 . In step 887 , the identity of the key touched is sent to utilizing means. The " T " flag is set in step 808 , cleared in step 809 and tested in step 804. Suoh flag asoures that the key identity is sent to watiang means only once.

It should be clear that the varions ways described above of using the capacitive position sensor of the invention can be combined. For example, a combination mouse-keyboard can be implemented in which one portion of aray 100 is used as a mouse responsive to finger strokes and a second portion is used as a keyboard responsive to finger towhes. Alternatively, array 100 can be adapted to operate in different modes: the first mode as a xoouse, the second as a koyboad. Swithting between modes can be accomplished, for exarmple, with one of buttons 467 , or with extra pressure in a specifed region of array 108 . Thus, where space is at a premium, such as in a potable computer, the capacitive position sensor of the invention can be used as part of the keyboard and also as a mouse.
The invention bas been shown and described with reference to particular embodinents. However, it will be understood by those skilled in the ant that various changes may be made therein without departing from the spint and scope of the invention.

What is clamed is:

1. A sensor for capacitively semsing the postion in a continuous range of positions of an object on a surface of an input device, which comprises:
an array of electrodes on said surface;
an insuating layer covering said electrodes;
means connocted to said clectrodes for measuring a capactance walue for each said electrode;
means responsive to said measuring means for comparing said capacitance values with a first preset threshold and, if at least one of said canacitance values exceeds said frst preset threshold, for calculating the position of a centroid of capacitance for said array from sad measured capacitance values, sad first preset threshold being set at a capacitance value that is exceeded for a given electrode only when said object is close to or tonching saik given electrode, said centroid of capacitance being the first moment of the distribution of said capacitance values in said array and representing substantially the position of said object on said surface; and
means responsive to siad calculating means and con-
an array of electrodes on a surface of said input device, said electrodes being arranged in rows and columns;
an insulating layer covering said electrodes; means connected to said electrodes for measuring a capacitance value for cach said electrote;
means responsive to said measuning means for comparing said capacitance values with a first preset threshold che, if at least one of said capacitance values exceeds said first preset threshold, for calculating the coordinates of a centroid of capacikatoe for sad array from said measured capacitane values, sabd centrod of capacitance corresponding to the position of a finger or ${ }^{10}$ other object tonching said surface, said first preset threshold being set at a cagsitance value that is exceeded for a given electrode only when said finger or

Oher object is close to or touching said surace in the vicinity of said given ciectrode, said centroid of capacitance being the frst moment of the distribution of said capacitance values in said array and representing substantially the position of sad obeet in a contimous range of positions on said surface, and
means responsive to said calculating means and connected to said computer for sending infommanion to said computer indicative of or derived from said calculated comordinates.

EXHIBIT D

Page 533 of 1714

United States Patent
Gerpheide et ak.

US005565658A
[1] Patent Number: $5,565,658$
[45] Date of Patent: Oct. 15, 1996
[54] CAPACTRANCE-BASBD PRQXEMYBY WYGH חNTERFEKENCE KEHECTHON APBARATES ANB NETHGMG
[75] Inventors: Gearge E. Gerpheide; Michuel D.
kaytom, both of Sall Lake City, Uah:
[73] Assignee: Cirque Corporation, Salt Lake City, Uth
[21] Appl. Nō.: 351,098
[22] Flled:
Bee. 7, 1994

Related U.S. Application Data

163] Continuation-in-pat of Ser. No. 193,275, Feh. 8, 1994 , Pat. No. $5,478,170$, which is a contination of Ser No. 914,043 , Jul. 13, 1992, Pat. No. 5,305,017.
[51] Int. C. ${ }^{5}$ \qquad 608C 21/00
[52] U.5. Cl, ... 178/19; 345/174
(58) Field mf Searcha 178/18, 19. 20; $3451168,173,174 ; 328 / 5 ; 342116$
[56]
Referemees Cited
U.S. PATENT DOCUMENTS
$4,237,421 \quad 121988$ Wadron \qquad $325 / 5$

4,371,746	$2 / 1983$	
4,476,463	101984	Ng et al. 178/187
4,845,682	711989	Boozer et al. 342n6 X
5,053,757	10109	Meadows 178118 X
5,305,017	$4 / 1994$	Gcrpheide 345

Primary Examiner-Stephen Chin
Assistont Examiner-Paul Loomis
Athomey, Agent, or Fim Thorpe, North \& Westem

[57]

ABSTRACT

Apparatus and method for a capacitancebased proximity sensor with interterence rejection. A pair of electrode arrays establish a capacitance on a touch detection pad, the capacitance varying with movement of a condhotive object near the pad. The casacitance variations are measured synchonously with a reference frequency signal to thes provide a measure of the position of the object. Blectrical interference is rejected by producing a reference frequency signal which is not coherent with the interference.

U.S. Patent

Fig. $2 a$

Fig. $2 b$

Fig. $3 a$

Fig. $3 b$

Page 539 of 1714

Fig. 6a

Fig. 6 b

Fig. 6 c

Fig. 6d

Fig. 7
U.S. Patent Oct. 15,1996 Sheet 8 of 8 5,565,658

Fig. 8

CAPACTANCE-RASED PROXIMTY WTTH GNTEREEREACE RESECTGN APPARATES AND METHODS

The following patent is a continuation-in-part patent of 5 U.S. patent application Ser. No. 081193,275, fied Feb. 8, 1094, now U.S. Pat. No. $5,478,170$, which is a contimation of Ser. No. 914,043 , Bied Ju. 13, 1992, mow U.S. Pat. No. 5,306,017.

This invention relates generally to apparatus and meth- in ods for touch sensitive input devices, and more partioularly, to apparatus and methods for capacitanee based touch detection wherein eiectrical interference is effectively rejected from the detection system.

BACKGROUND OF THE INVENTION

Numerous prior at devices and systems exist by which tactile sensing is used to provide data input to a data processor. Sich devices are used in place of common pointing devices (such as a "mouse" or syyus) to provide data impur by fager positioning on a pad or duplay device. These devices sense finger position by a capacitive touch pad wherein scaming signals are applied to the pad and vartations in capacitance caused by a finger touching or approaching the pad are detected. By sensing the finger position at successive times, the motion of the finger can be delected. This sensing apparams has application for controlling a computer screen cursor. More generally it can provide a variety of electrical eguipment with information corresponding to finger movements, gestures, positions, writing, signatures and drawing mothons.

In U.S. Pat No. 4,698,463, Meadows et al., a touch surface is coyered with a layer of invariant resistivity. Panel scanuing sigxals are applied to excite selected touch surface edges so as to extablish an altemating cument volage gradiont across the panel surface. When the surface is touched, a wuch current flows from each excited edge through the resistive surface and is then coupled to a wer's finger (by onpacitance or combuction), through a user's bocy, and fnally coupled by the user's body capacitance to earth ground potential, Different seanning sequences and modes of voltage are appled to the edges, and in each case the curents are measured. It is possible to detemine the lacation of touch by measuring these corrents, In particular, the physical panameter which indicates touch location is the resistance from the edges to the point of touch on the surface. This resistance varies as the touch point is closer or farther from each edge. For this system, the term "capactive twoh pad" may be a misnomer because capacitance is involved as a means of coupting current from the surface twach point through the user${ }^{2}$ s gnger but is not the parameter indicative of ninger position. A disadvantage of this inventhon is that accurate touch location measurement deperads on unform resitivity of the sufface Fabricating such a uniformly resintive surface layor can be dibicuit and expersive, and tequire special fabrication methods and equipmeth.

The panel of the Meadows ' 461 patent also inchdes circuitry for "nulling", or offseting to zero, the towh currents which are present when the panel is not touched. This nuling can be accompliched while the panel operates, and allows woches which generate a relatively weak signal, such as from a gloved finger, to be more accurately determined. The Meadows '461 panel also includes circuitry for antomatically shifung the frequency of pane scaming signals away from spectra of spurious signals, such as those developed by cathode-ray tube transfomers, which may be
present in the enviromment. The panel seeks to avoid interference from the spurious sigosals, which could happen if the frequency of scanming was neary equal to that of the spurious signals. A microcontroller detemines whether the scaming frequency should be shifted by monitoning the take at which adjustments are required in muling of the touch currents, as described above. The only means described for generating frequency control signals is based on this mulling adjustrem.
U.S. Pat. No. $4,922,061$, Meadows ef al., is similar to the Meadows ' 461 patent in that the touch panel detemines touch location based on variations in resistance, not capacitance. This is particularly evident from ElG. 2 where the resistances from edge to touch point are shown as Kx times Rx , where Kx is corresponds to the distance incicated by 76 A . The apparatus uses a measurement signal of a frequency that varies in a substantially random mamer, thus reducing suseeptbibity to interference from sparious dectromagnetic spectra.
U.S. Pat. No. 4,700,022, Savador, describes an artay of \}etectug conduotive strips, each laid between resistive emitting strips. The finger actually makes electrical contact from an emiting strip to derecting strip. Touch location is detemined from resistance variation (as with Meadows' 461 and '061 above) in the strip contacted by the finger. Averages are taken of a certain rumber of symbronous sampies. A design formula is mresented to choose a sampling freguency so that it is not a multiple of the most undesired predetermined interfering signal, No suggestion is made that sampling frequency is adusted or adapts automatically.

In U.S. Pat. No. 5,305,017, Gerpheide, touch location is determined by true capacitance variation, instead of resistance variation, issing a plutality of electrode strins forming virtual electrodes. This approach eliminates the necessity of a coating having uniform resistance across a display screen. However, such a capacitance-based detection device may suffer from electrical background interference from its surroundings, which is compled onto the sensing electrodes and interferes with position detection. These spurious signals cause troubiesome interterence with the detcction of Enger positioning. The device operator may even act as an antenna for electical interference which may cause a false charge injection or depletion from the detecting electrodes.

Accordingly, there is a need for a touch detection system which bas the following characteristics:
(1) the touch location is cetermined without the need of resistance variation so as to avoid the high cost of mpuring unifom tosistance dining fabncation;
(2) the touch location is measmred in a manmer independent of resistance of the electrodes or their comncting wiring, thus broadening the range of materials and processes which may be used for fabrication; and
(3) electrical interferenee signals are rejected and ehminated from the detection system regardless of their frequency and without reçuring possibly expensive nulling apparatus.

SUMMARY OF THE INVENTION

The present invention employs a touch location devioe having true capacitance variation by using inswlated electrode arrays to form virtual clectrodes, The capacitance variation is measured by means independent of the resistance of the electrodes, so as to climinate that patameter as a fabrication consideration. The electrical interference is eliminated regardless of frequency to provide a clear detec-
tion signal.
An illustative embodmeat of the present invention inchdes an electrode aray for developing capacitances which vary with movement of an object (such as finger, other body part, conductive stylus, ete.) near the array, a 5 synchronous capactance measurement element which measures variation in the capacitances, such measurements being syachronized with a reference frequency signal, and a reternoe fequency signal generator for generaing a reference freguency signal which is not coherent with electrical interference which could oherwise interfere with capacitance measurenens and thas position location.

Interiercnce rejection is carried out by generating a reference frequency signal whose frequency is different from the interfence fequency. Altemately, the reference signal is generated with random frequencies so as not to be coherent with the interference frequencies and thus the electical interterence is effecively rejected

BRIEF DESCRIPTION OR THE DRAWINGS

FIG. 1 is a block diagram of a capacitance variation position measuring device made in accordance with the principles of the present invention;

FlG. 2 A is a plan view of one illustrative cmbodiment of the electrode aray shown in $F I G$. x;

FIG. 28 is a side, cross-sectional view of one illustrative embodiment of the electrode anay of FlG. 2A;

FIG. 3A is a side, cross-sectional view of amother embodiment of the electrode array of FIG. 3 ;

FIG. 33 is a plan view of the clectrode array of FIG. 3 A ;
FIG. 4 is a schematic of one embodiment of the synchronous electrode capacitance measurement device of FIG. 1;

FIG. 5 is a schematic of another embodiment of the synchronous electrode capacitance measurement device of EIG. 1;

FIGS. $6 \mathrm{~A}-6 \mathrm{D}$ are circuit diagrams of alternative embodiments of the capacitance measurement elements shown it riGS. 4 and 5 ;
FIG. γ is a block diagtam of one embodiment of the reference trequency generator shown in FC . 1 ; and

FIG. 8 is a block diagram showing an altemative embodiment of the referewe frequency generator shown in FIG. I.

DETALLED DESCRIPTON OF PRERERRED EMBODTMENTS

FIG. I shows the essential elements of a capacitance variation hinger (or other conductive body or non-body par) position sensing system 10 , made in accordance with the invention. An electrode aray 12 includes a pluality of layers of conductive electode strips. The electrodes and the wiring oonnecting them to the device may have substantial resistance, which permits a variety of materials and processes to be used for fabrioaing them. The electodes are electrically insulated from one another. Mutwal capacitance exisis between each two of the electrodes, and stray capacikance exists between each of the electrodes and ground. A fuger positioned in proximity to the array alters these motual and stray capacitance values. The degree of alteration depents on the position of the finger with respect to ciectrodes. In general, the ateration is greater when the inger is closer to the electrode in question.

A synchronous electrode caracitance measurement unit 14 is connected to the electrode array 12 and determines selected matual andor stray copacinance values associated with the electrodes. To minimize interference, a number of measurements are performed by unit 14 with tming sytchromzed to a refercnce froquency signal provided by reference fropuency generator 16 . The desired capacitance value is determined by integrating, averaging, or in more general tems, by fhering the individua measurements made by unit 14. In this way, interference in the measurement is substantially rejected except for spurious signals having strong frequenoy spectra near the reference frequency.
The refetence frequency generator 16 attempts to antomatically select and generate a reference frequency which is not coherent with the most undesirable frequency of spurious stgnals. This appoach substantally eliminates interference even though its frequoncy is likely to be initially unknown and may even change during operation.
A position locator 18 processes the capacitarce measurement signat from the synchronous electrode capacitance measurement unit 14 and provides position signals for use by a host computer, for example, and to the reference frequency generator $\mathbf{1 6}$. The position locator unit 18 determines finger position signals based on the capacitance measurements. Several different systems ate commonly known in the aft for determining inger postion based on measurements of capacitance associated with electrodes in an array. Position locators may provide one-dimensional sexsitg (such as for a volume slider control), two-dimensional sensing with contact detemination (such as for computer cursor control), or full three dimensional sensing (such as for games and three-dimensionai computer graphics.) An example of a prior ant position locator unt is shown in the Gerpheide '017 patent mentioned above, as units 40 and 50 of FIG .1 of the patent.

Electrode Array

FIG. 2A ilustrates the electrodes in a prefermed electrode array 12 , together witi a coordinate axes defining X and Y directions. Onc cmbodiment includes sixteen X electrodes and welve Y electrodes, but for clanty of illustration, only six X electrodes 206 and four Y electrodes 22 are shown. It is apparent to one skilled in the ant how to extend the mumber of clectrodes. The array is preferably fabricated as a mululayer printed circuit board 24. The electrodes are etched electrically conductive strips, connected to vias 26 which in fum comect hem to other layess in the array Mustratively, the amtay 12 is approximately 65 millimeters in the X directon and 49 millimeters in the Y direction. The X electodes are approximately 0.7 milmmeters wide on 3.3 minmeter centers. The Y electrodes are approximately three milimeters wide on 3.3 millimeter centers.

FlG. $2 b$ mustates the eleotode array 12 from a side, cross-sectional view. An insulating overlay 21 is an approximately 0.2 milhmeters thick olear polycarbonate sheet with a texture on the top side which is comfortable to wuch. Wear resistance may be enhanced by adding a textured cleat hard coating over the top surface. The overlay bottom surface may be sib-screened with ink to provide graphics designs and colors.

The X clectrodes 233, Y electrodes 22 , ground plane 25 and component traces 27 are etchec copper uaces within a multhayer printed circuit board. The ground plane 23 covers the cntire amay area and shields the clectrodes from elec-
trical interference which may be generated by the parts of the circutry. The componemi traces 27 comect the vias 28 and bence the slectrodes 20,22 , to oher circuit components of FIG. 1. Insulator 31, insulator 32 and insulator 33 are fiberglassepoxy layers within the promed cirenit board 24 . They have respective thicknesses of approximately 1.0 millimeter, 0.2 millimeters and 0.1 millimeters. Dimensions may be vaned considerably as long as consistency is maintained. However, all X electodes 20 must be the same size, as must all Y electrodes 22.
One skilled in the art will realize that a variety of fectniques and matenals can be used to form the electrode array For example, FIG. 3A illustrates an alternative embodiment in which the electrode array includes an insulathe oventay 48 as described above. Alternate layers of conductive ink 42 and insulating ink 43 are applied to the reverse surface by a silk screen process. The X electrodes 45 are positioned beween the insulatig overlay 40 and X clectrode conductive ink layer 42. Another insulating ink layer 43 is applied below layer 42. The Y electrodes 46 are pontioned benween ansulathe ink layer 43 and conductive ink layer 44. Another insulating ink layer 47 is applied below conductive ink layer 44 , and ground plane 48 is athxed to Y electrode conductive ink layer d7. Each layer is approximately 0.01 millimeters thick.

The resubing array is thin and fexibie, whon allows it to be formed moto curved surfaces. In use it wouk be laid over a strong, solid support. In other examples, the clectrode aray may uribe a fexible printed circuit board, such as a Rex circuit, or stampings of sheet metal or metal foll.
A vatiety of electrode geometries and amangements are possible for inger position sexsing. One example is shown in FIG. 36 . This is an array of garalle electrode strips 30 for one-dimensional postion sensing which could be useful as a "slider volume control" or "ioaster darkness control". Other examples incude a grid of dimonds, or sectors of a dist.

It is desired that the electrode array of the present inventhon be eastly fabrionted by eonomical and widely available printed circuit board processes, It is also desired to allow use of various overlay materials selected for texture and low fiction, upon which logo ant work and coloration can be economically printed A futher preference is that the overlay may be custom printed separately from fabrication of the clectrode-containing part of the array. This allows an economical stardardized mass production of that part of the amay, and later affixing of the custom printed overlay.

Synchronous Electrode Capacitance Measurement

FGG. 4 shows one embodiment of the synchronous clectrode capacitance measurement unit 14 in more detail. The key elements of the synchronous electrode capacitance moasurcment unit 3 a are (a) an element for producing a voldage change in the electode array synchronously with a reference signal, (b) an clement producing a signal indicative of the displacement charge thereby coupied between electrodes on the clecrode arny, (c) ar element for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode amay, preferably though a muliplexor or switches. The capactiances to be moasured in this onbodiment are mutual capacitances benween clectodes but coud be stray capactances of clectrodes to ground or algebraic sums (hat is sums and differences) of such mutual or stray capacitances.

FIG. 4 shows one specific embodiment of a syachronous electrode capacitance measurement unit 14 connected to the electote array 12 , in which algebraic sums of mutual capacitances between electrodes are measured. The components are grouped into four main functional blocks. A virual electrode syruhesis block 70 comects each of the X electrodes to one of the wires CP or CN , and each of the Y electrodes to one of the wires RP or RN. The electrodes are selectively connected to the wites by switches, preferably CMOS switches under control of the position locator apparatus 38 (FIG. ह) to select appropriate electrodes for capacitance measurenent. (Gee Gerphede '077 which describes such electrode selection by signal $\$$ of $F G .1$ of the patert.) All electrodes connected to the CP wire at any one time are considered to form a single "positive virtual X electrode". Similaty, the electrodes comeded io CN, RP, and RN fom a "negative vitual X electrode", a "positive virtual Y electrode", and a "negative virual Y electrode", respectively.

The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (IIG. 1). The feference frecuency signa is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplicd by the reference frequency generator 16 (P1G. 1). The AND gate mutput feeds through inverter 74 and monnverting buffer 76 to wires $R P$ and $R N$ respectively which are part of a capacitive measurement element 78. In the preferred embodiment, the drive enable signal is always दRUE, wo pass the reference freguency signal. In futher prefered embodiments, it is asserted FALSE by the reference frequency generator when interfernce evaluation is to be performed as described later. When the drive enable signal is FALSE, the drive signal stays at a constant voltage level. When the drive signal is TRUE, is is a copy of the xeference frequency signal.
The capacitance measuremont element 78 contans a differential charge transfer circuit 80 as imustrated in FIS. 4 of Gerpheide, U.S. Pat. 5,349,303, incorporated herein by reference. Capaciors Csl and Cs2 of FX. 4 of that patent orrespord to the stray capacitances of the positive and negative virtual electrodes to ground. The CHOP signal of that FIG. 4 is conveniently supplied in the present invention as a scuare wave signal haying half the frequency of the reference frequency signal, as generaied by the divide-by- 2 circuit 81 shown herein. As described in the Gerpheide "303 patent, the circuit mamains CP and CN (lines 68 and 72 therein) at a constant virtal ground voltage.
The capocitance measurement clement 78 also contains a non-inverting dive buffer 76 which drives $R M$ and negative virtual Y electrodes to change woltage levels copying the drive enable signal transitions. The inverting bulfer 74 drives RP and the positive virtual Y electrodes to change voltage levels opposite the drive enable signal tansitions. Since CP and CN are maintained at vithal ground, these voltage changes are the net voltage changes across the mutwal capactamecs which exist between virtual Y and virtual X electrodes. Charges proportional to these volage changes mutiphied by the appropriate capacitance values are theroby couphed onto nodes CF and CN (he "coupled charges"). The charge tansfer circuit therefore supphes a proportional diferential charees at outputs Qok and Qoz, which are proportional to the coupled charges and thus to the capactances.

In short, this differential charge is a proportionality factor K times the "balance" L, which is a combination of these capacitances given by the equation:
where $M(a, b)$ is the notation for the mutual capacitance between virtual clectrode " a " and virtual clectrode " b ". Changes in balance are indicative of finger position relative to virtul clectrode position as described in Gerpheide, U.S. Pat. No. 5,305,017. The proportionality factor K has a sign which is the same as the drive cnable signal transition dixection.
Referring again to FIG. 4, the synchronous electrode capacitance measurement element 78 is connected via lines carrying charges Qol and Qoz to a synchronous demodilator 82 which may be a double-pole duuble-throw CMOS switch 84 controlled by the reference frequency signal. The synchronous demodulator 82 , which among other things functions to rectify the charges Qol and Qo 2 , is comented 1 to a low-pass filer 86 which may be a pair of capacions C1, E2 configured as an integrator for differential charges. (An integrator ilustratively is a low pass filter with 6 db per octave frequency roll ofe) Charges (ol and Qo2 me integrated onto capacitors Cl and C ?, respectively, when the reference frequency signa has just trasitioned positive, and K is positive. The charges are integrated onto opposite capacitors when \mathbb{K} is negaive. In this way, a differential charge proportional to the balance L is accumulated on $C l$ and C2.
FIG. 5 shows another embodiment of the synchronous alectrode capacitance measurement unit 14 . In this embodiment, eap electrode in an electrode array sis is connected to a dedicated capacitance measurement element 92 , each of which is comected to a synchronous demodulator 94 and then to a low pass filter 96 . This confguration has the advantage of continuously providing capacitance measurements for each clectrode, whereas the prior preferred embodinent measures a single configuration of eiectrodes at any one time. The disadvantage of the embodiment of FlG. 5 is the greater expense which may be aswowiated with the duplicated elements. This is a common tradeoff between poviding multipie elements to process meatarements at the same time versus multiplexing a single element to process measurements seguentially. There is obviously a wide spectrum of variations applying this tade off.

Also, many of the elements can be implemented in digital from using analog-digital converters and digital signal processing. While the prefered embociments currently use substankial analog processing, future digital processing costs may be expected wo become relatively cheaper.
EIG. 6 provides a number of prefered alkematives tor the chpacitamee measurement element 78 (FIG. 4) or 92 (FIG. 5). FIGS §A and 6R show circuits adapted for measuring mutual capacitanees berween electrodes (which may be physical or virtual electrodes), represented by Cmp, Cmn, and Cm. FIGS. $6 C$ and 6 D show circuits adapted for measuring electrode capactance to ground represented by Cg. Each of these provides an output voltage change indicative of the capactiance being measured. These voltage changes are gjven by the following formmas:

For FG. $6 A$:

For FIG. 6B:

AVers=AVarivexCm/Cr
For FIG. 6C:

For HG .6 D :

AVout $=A$ Varives $(C T+C) / C g$

The formulas depend on a known reference capacitance represented by Cr and a known drive voltage change represched by Δ Vdnve. Futher capachance measuxement ciements may be based on charge balance techniques as described in Meyer, U.S. Pat. No. $3,857,092$. Synchronous dernodulators may be implemented using an analog or digital multiphier, or a "double balanced mixer" integrated circuit (such as part number MM1496) from Nationa Semicondwot Cotmpany, There are different imphementations known in the ant for low pass filter elements, such as switched capactor integrators and nitters, high-order analog flters, and digital fiters.

Reference Frequency Generator

FG. 7 illuatates a preferrec embodiment of reference frequency generator 16 (FIG. 1). The generator observes position sigwals to evaluate the extent of interference at some reference freguncy. Th the event that substattial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference freguency away from frequencies which have been found to result in measurement interference, as described below.

The generator 16 incindes an oscillator 16 whin is, for example, set at four MHz, driving a microcontroler 102 and a divide-by- $(\mathrm{M}+\mathrm{N})$ circuit Th . Value N is a fixed constant, apgroximately 50 . Viue M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102.
The microcuntroller 102 perfoms the functions of interference evaluation 366 and frequency selection 188 . It may perform other functions associated with the system such as position location. The prefered interterence evaluation function lifer produces a measure of the interference in the position signals generated by the position location unit 18 (FIG, 1). This is based on the principle that interference produces a spurious, relatively large magnitude high-frequency component of a position signal, and operates according to the following code description. It assumes position data points X, Y, and Z occur approximately every ten miliseconds. in brief, it calculates an interference measure, M, as the sum of the absolute values of the second diterences of X and Y together whth the absolute values of the first differences of Z over 32 data points. Differencing a stream of chata has the effect of applying a high-pass fiter to it.

In detail, for each data point the interference evaluation function 106 executes the following steps, where ABSO means the absolute vaike function:

[^0]-continued
XLAST-X \quad move curtent vaibes to last
$Y L A S T=Y$
XLAST $-Z$.
XDLAST $=X D$
$Y D L A S T=Y D$

In another embodinent, the interferewoe evaluation function 386 is not based on position signals. Instead the function assents the dive enable signal described above to a FALSE state and reads a resulting symbononous capacitance measurement. This measures charge coupled to the elemurades When no voltage is beng driven across the electrodes by the apparatus. Sinch charge must be the result of interference, and so this interference (from spunious signals) is directy measured. This is another way to generate the interference measure, M .
'She pretored freguency select function 108 generates a table of historical interference measuremerts for each frequency which may be selected. On system initialization, eaich entry is set to zero. Thereafter, the frequency select function is activated approximately every 32 data points by the interference evaluation function 1B6. The current interference moasure, M, is entered as the entry for the cumenty selected frequency th the table Then all table enues are 2 scanned. The frequency having the lowest interference measure entry is selected as the new curent frequency, and the corresponding M value is sent to the divite-by-(Mt+N) element 1 R. Approximately every 80 seconds, every entry in the table is decrmented by an mmount corxesponding to 30 approximately 0.05 mm of position change. In this way, if a Frequency is flagged as "bad" by having strong interference one time, it will not be dagged as "bad" permanenty.

The functions described above for the different embodiments could be caried out by a microprocessor such as part 3 ro. MC 68 HC705P6 manafactured by Moturola, Inc. serving as the micocontoluer 182 .

FIG. 8 shows an altemate preferred embodiment of the reference frequency gencrator 16 (rig. I). It gemerateg a reference frequency signal that varies randomly, Each oycle of the signal has a different and substantially random period. It is extrenely undisely that a spurious signal would coherently follow the same sequence of random variation. Henoe the spurious signal is substantally rejected by capacitance measurements synchomous to the reference frequency. The degree of rejection is not as great as in the fomer embudiment, but the gencrator is simpler because interference cvaluation and freguency selection functions are not necded.

The generator of FrS. B includes an oschlator lif and a divide-by- $(\mathrm{N}+\mathrm{M})$ circuit 112 . The value M supplied to the divider comes from a pseudo-random number generator (PRMG) 114 which generates numbers in the sange 0 to 15 . Each cycie of the reference frequency clocks the PRNG 114 to produce a new mumber. PRivGs are well known in the art.
 for H in retation to the value of N can be increased or decreased to give a greater or lesser range of possible frequencios. The value of M or the oscillator froquency can be adjusted to change the maximum possible frequency. A phase-bocked Frequency syrthesizer such as the Mowrola M6145:51-2, or a voltage controlled osciltabr diven by a DiA converter, could also preferably be employed instead of the divide-by- $M 4 \mathrm{~N}$) circuit.

It should be understood that other variabions of the os profered embodiments described above fall within the scope of this invention. Suwh variations include diferent
electrode array geometry, such as a grid of strips, a grid of diamonds, panalle strips and various other simapes. Abso inofuded are different variabions of electrode array fabriostion, such as printed circuit board ($P C B$), flex PCB, silk screen, sheet or foil motal stampings. Vaniations of the kinds of eapachance unifed are included, such as full balance (sce Gerpheide '017), stray, mutua, half balance.

The above description has provided cortam prefered embociments in acoordence with this invention. It is apparent by those skilled in the art that various modifications can be made within the spitit and scope of the invention, which are imobuded within the soope of the following clams.

What is clamed is:

1. A capacitance-based proxinity sensor for locating the posifion of an object white rejeting a fretuency of electrict interterence, omprising:
(8) an electrode array for forming capacitances which Vary with movernents of the obyent,
(b) measurement means coupled to the enectrocte aray for moasuring the capacilances synchonously with a ref. erence signal, and
(c) generator means for supplying a reference signal to the measurement means, sad reference signal having a frequency which is not coherent with the frequency of electrical irterfereace, wherein the generator meates comprises means for evaluating the electrical interference and for producing the refornce sfigna, and wherein the evaiunting means includes means for storing a table of frequencies of selected reference signals and measures of ciectical interference Mifor each of these frequencios, atd for groducing a reference signal whose frequency bas the lowest IM associated therewith.
2. A capacitance-based proximity sensor for locating the position of an object while rejecting electical interference, comprising:
(a) an elecuode array for forming capacitances winch vary with novements of the object.
(b) theasurethent means coupled to the eleotroude aray for measuring the capactances synchonously with a reterence signal,
(c) object locator means responsive to the rnoasurement means for producing a position signal, baving a kigh frequency component, indicating the position of the obien relaxive to the electrode array,
(d) generator means for supplying a reterence signal to the measurement means, said reference signal having a freguency which is not coherent wikh the frequency of the ejectrowa interference, and wherein seide generator means comprises
Evaluation means responsive to the object locator means for cetmmining the magnitude of the kigh frequency component of the position signal, ard
means responaive to the evaination means for changing the frectuency of the reference signal when the matnitude of the high frequency component of the position signal exceeds a prederermined value.
3. A capacitance-based proximity sensor for locating the position of an object while rejecting electrical interference, comprising:
(a) an elecmode array for forming capacitaness when vary with movements of the object,
(b) measurement means coupled to the electrode array for measuring the capacianoces symehormsly with a reterence signal, wherein said measurement means comprises
driver means for developing, synchronously with the reference signal, vollage changes on the electrode aray,
charge measuring means for measuring, syachromously whith the reference signal, charges coupled to the s electrode aray and thus cepactance,
means for selectively inhibiting the driver means from developing voltage changes, the coupled charge measurenems made durnge inhbition of the driver means representing the interference measure M, and
(c) generator remans for supplying a reforence signal of the measurement means, said zefernce signal having a frequency which is not coherent with the frequency of the electrical interlerence, wherein said generator means incudes means for changing the frequency of the reference signal when the interference measure 1 M exceeds a predetermined level.
4. The proximity sensor as in clam 3 wherein the generator means further includes means for storing a table of frequencies of reference signals and associated interference measures [M made for reference siguals with eacin of such frequencies, and for producing a teference signal whose frequency has the lowest interference measure IM associated therewith.
5. A capacitance-based proximity sensor for locating the 25 position of an object while rejecting electrical interference, comprising:
(a) an electrode array for forming capacitances which vary with movements of the object, wherein the electrode acray comprises a plurahty of first electrode strips spaced apart from exch other in a frat array, and a plurality of second electrode strips spaced apart from each other and in close proximity with the first electrode strips;
(b) measurement means coupled to the electrode anay for measuriag the capactmaces symohronously with a reference signal, and
(c) generator neans for supplying a reference signal to the measurement means, said reference signa having a so frequency which is not coherent with the frequency of the electrical interference.
6. The proximity sensor of ciams wheren the measurement means includes
driver means for developing, synchronously with the 45 reference signal, voltage changes on the clectrode array,
a charge transfer means coupled to the electrode array for producing synchronomsly with the frequency of the rcference signal, measurement signads representing charges complect onto the electrode atray as a result of the voltage changes,
10,
(a) generating capacitances on the aray which vary with movement of the object,
(b) measuring the capacitances on the artay synchronously with the frequency of a reference signal, axd
(c) generatitg a reference signal baving a fuequency which is not coherent with the frequenctes of the electrical interference affecting the capacitances by evaluaing the dectical interfermen, storing a table of frequencies of selected seference signals and measues of electrical interierence $h \mathrm{M}$ for each of these frequendies, and for producing a reference signal whose frequency has the lowest IN associated therewith.
7. The method of claim 13 and further including producing a signat indicating the position of the object retative to fie electrode array.

EXHIIBIT E

Finger-write your figures on the watch face.

 0×8.
 4nse $\$ 868.8$

Thm

 si ham
 $0 \% \% \% \% \%$.

 $0 \mathrm{~m} \times \mathrm{m} \times \mathrm{m}=0$

>0

 3)

* Wh

 skxexiskrk

 $1 \times \mathrm{m}:$

 We womay mbelob

 3% \%

 800-437-4385

OnTheRun

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

U.S. Patent No.:	$5,796,183 \mathrm{~B} 1$	\S	Docket No.:	5796183RX2
Issued:	August 18, 1998	\S	Inventors:	Hourmand et al.
Filed:	January 31, 1996	\S	Patent Owner:	UUSI, LLC
Control No.	TBD	\S	Examiner:	TBD

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

AMENDMENT ACCOMPANYING REQUEST FOR EX PARTE REEXAMINATION UNDER 35 U.S.C. $\$ \$$ 302-307

Dear Sir:
Patent Owner UUSI, LLC respectfully submits the following amendments and remarks in conjunction with its contemporaneous request for Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. §§ 302-307 (2002), of claims 18 and 27 of United States Patent No. 5,796, 183 C1 (the " 183 Patent"). The Patent Owner respectfully requests the following amendments and remarks be entered and respectfully requests consideration of amended claims 18 and 27 and newly added claims 40-105.

I. LISTING OF THE `183 PATENT CLAIMS UNDER REEXAMINATION

A listing of each claim for which reexamination has been requested is provided below. Reexamination of claims 18 and 27 is requested contemporaneously with this amendment. Accordingly, please amend claims 18 and 27 and cancel claim 35 as provided below. In addition, please add new claims 40-105 as follows.
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad; the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an

Page 2 of 142
input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. (Amended) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
35. (Cancelled) [[The capacitive responsive electronic switching circuit as defined in claim 27, wherein when the second touch terminal is not touched on its defining area by the operator to provide input, the control output signal is prevented.]]
40. (New) The capacitive responsive electronic switching circuit as defined in claim 18, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
41. (New) The capacitive responsive electronic switching circuit as defined in claim 18 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
42. (New) The capacitive responsive electronic switching circuit as defined in claim 41. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
43. (New) The capacitive responsive electronic switching circuit as defined in claim 41 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
44. (New) The capacitive responsive electronic switching circuit as defined in claim 41. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
45. (New) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from
said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
46. (New) The capacitive responsive electronic switching circuit as defined in claim 45. wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
47. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
48. (New) The capacitive responsive electronic switching circuit as defined in claim 45. wherein the signal output frequencies have a same Hertz value.
49. (New) The capacitive responsive electronic switching circuit as defined in claim 45. wherein each signal output frequency is selected from a plurality of Hertz values.
50. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
51. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
52. (New) The capacitive responsive electronic switching circuit as defined in claim 49. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
53. (New) The capacitive responsive electronic switching circuit as defined in claim 45, wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
54. (New) The capacitive responsive electronic switching circuit as defined in claim 53. wherein the supply voltage is a battery supply voltage.
55. (New) The capacitive responsive electronic switching circuit as defined in claim 53. wherein the supply voltage is a voltage regulator supply voltage.
56. (New) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,
wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
57. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
58. (New) The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground is compared to a second threshold level to generate the control output signal.
59. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.
60. (New) The capacitive responsive electronic switching circuit as defined in claim 56, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.
61. (New) The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
62. (New) The capacitive responsive electronic switching circuit as defined in claim 60 . wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
63. (New) The capacitive responsive electronic switching circuit as defined in claim 60 . wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
64. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the supply voltage is a battery supply voltage.
65. (New) The capacitive responsive electronic switching circuit as defined in claim 56. wherein the supply voltage is a voltage regulator supply voltage.
66. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
67. (New) The capacitive responsive electronic switching circuit as defined in claim 27, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
68. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
69. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
70. (New) The capacitive responsive electronic switching circuit as defined in claim 67. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
71. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
72. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals:
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
73. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein the signal output frequencies have a same Hertz value.
74. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values.
75. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
76. (New) The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
77. (New) The capacitive responsive electronic switching circuit as defined in claim 74. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz . 78. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
79. (New) The capacitive responsive electronic switching circuit as defined in claim 72. further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
80. (New) The capacitive responsive electronic switching circuit as defined in claim 72, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
81. (New) The capacitive responsive electronic switching circuit as defined in claim 72. wherein a peak voltage of the signal output frequencies is greater than a supply voltage.
82. (New) The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a battery supply voltage.
83. (New) The capacitive responsive electronic switching circuit as defined in claim 81, wherein the supply voltage is a voltage regulator supply voltage.
84. (New) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
85. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the signal output frequencies have a same Hertz value.
86. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein each signal output frequency is selected from a plurality of Hertz values.
87. (New) The capacitive responsive electronic switching circuit as defined in claim 86. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz . 88. (New) The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
89. (New) The capacitive responsive electronic switching circuit as defined in claim 86 , wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
90. (New) The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a battery supply voltage.
91. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the supply voltage is a voltage regulator supply voltage.
92. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
93. (New) The capacitive responsive electronic switching circuit as defined in claim 84, further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
94. (New) The capacitive responsive electronic switching circuit as defined in claim 84, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.

95. (New) A capacitive responsive electronic switching circuit for a controlled keypad

 device comprising:an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad
device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
96. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.
97. (New) The capacitive responsive electronic switching circuit as defined in claim 95, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.
98. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .
99. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .
100. (New) The capacitive responsive electronic switching circuit as defined in claim 97. wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .
101. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the supply voltage is a battery supply voltage.
102. (New) The capacitive responsive electronic switching circuit as defined in claim 95. wherein the supply voltage is a voltage regulator supply voltage.
103. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , wherein said detector circuit is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
104. (New) The capacitive responsive electronic switching circuit as defined in claim 95 , further comprising an indicator for indicating the detector circuit has determined that the operator is proximal or touches said second touch terminal.
105. (New) The capacitive responsive electronic switching circuit as defined in claim 95. wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.

II. STATUS OF THE CLAIMS

Claims 1-17, 19-26, 28-34, and 36-39 are unamended with respect to the first Ex Parte Reexamination Certificate No. 5,796,183 C1 issued April 29, 2013. Claim 35 has been cancelled herein. Claims 18 and 27 have been amended, and claims 40-105 are newly added. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter.

III. DISCUSSION OF CLAIMS AND PRIOR ART REFERENCES

Patent Owner has filed a Request for Ex Parte Reexamination contemporaneously with this amendment submitting that a substantial new question of patentability of claim 18 is raised by the combination of U.S. Patent No. 5,463,388 ("Boie") and U.S. Patent No. 5,565,658 ("Gerpheide") and a substantial new question of patentability of claim 27 is raised by the combination of Boie, Gerpheide and the advertisement entitled "Now...The Invisible Casio Calculator Watch" ("Casio").

Patent Owner is amending claims 18 and 27, canceling claim 35, and adding new claims 40-105 in this amendment. Accordingly, Patent Owner respectfully requests consideration of amended claims 18 and 27 and new claims 40-105. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter.

A. REFERENCES OF INTEREST

Reference 1: Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1995 ("Boie"), which qualifies as 35 U.S.C. § 102(a)-type prior art.

Reference 2: Gerpheide et al., U.S. Patent No. 5,565,658, filed on December 7, 1994 and issued on October 15, 1996 ("Gerpheide"), which qualifies as 35 U.S.C. § 102(e)-type prior art.

Reference 3: Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which qualifies as 35 U.S.C. § 102(b)-type prior art.

Reference 4: Lee, thesis entitled "A Fast Multiple-Touch-Sensitive Input Device," and published October 1984 ("Lee"), which qualifies as 35 U.S.C. § 102(b)type prior art.

References 1-3 above are discussed in detail in the Request for Ex Parte Reexamination filed herewith, which discussion is incorporated herein by reference. A discussion of reference 4 (Lee) follows.

Lee generally relates to "the design and implementation of a fast-scanning multiple-touch-sensitive input device." See, e.g., Lee, Abstract. Lee describes the hardware of his device as consisting of a sensor matrix board, row and column selection registers, A/D converting circuits and a dedicated CPU. See id. Figure 3.4, reproduced below, illustrates a block diagram of the hardware.

FES. 3.4 Elach siagran or the hardwaye.

Lee, Figure 3.4

Page 18 of 142

Lee describes the operation of the row and column selection registers as follows:
The design of the sensor matrix is based on the technique of capacitance measurement between a finger tip and a metal plate. The row selection registers select one or more rows by setting the corresponding bits to a high state in order to charge up the sensors while the column selection registers select one or more columns by turn on corresponding analog switches to discharge the sensors through timing resistors. The intersecting region of the selected rows and the selected columns represents the selected sensors as a unit.

Id. at 3-1. Figure 3.1(a) shows a model of a selected sensor in the sensor matrix and Figure
3.1(b) shows the timing diagram for discharging time measurement of a selected sensor as shown in Figure 3.1(a). Figure 3.2 illustrates a small section of a sensor matrix according to Lee.

Lee, Figure 3.1(a)

Lee, Figure 3.1(b)

Page 19 of 142

Lee, Figure 3.2

Lee describes the interface between the CPU and the sensor matrix as follows:
The CPU selects the row or rows of a sensor group, initiating charging of all the associated sensors. After a charging interval, the CPU discharges the selected column or columns corresponding to a sensor group by connecting a group of discharge resistors whose current is summed via a high slew rate operational amplifier.

Id. at 3-10. As illustrated by the data bus of Figure 3.4, Lee teaches the CPU selects or deselects the row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. Lee does not disclose sending frequencies to the selected rows.

B. DISCUSSION OF CLAIMS

Independent Claim 18

Independent claim 18 as amended herein recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " $[t]$ he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest a microcontroller providing signal output frequencies to these components, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Neither Gerpheide nor Lee cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate $72 \ldots$. The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive
measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 18 recites selectively providing a signal output frequency to each row of the touch terminals.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 18, and therefore claim 18 is patentable over these references.

New claims 40-44 depend from claim 18 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 27

Independent claim 27 as amended herein recites "the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " $[t]$ he effects of electrode-to-electrode
capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals.

None of Gerpheide, Lee or Casio cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies selectively to each row of the input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the "reference frequency signal is supplied to unit 14 via an AND gate $72 \ldots$. The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." See id. at col. 6:19-26; Fig. 4. Thus, the output of AND gate 72 is sent to every row of electrode array 12 via one of inverter 74 and noninverting buffer 76 at the same time. Therefore, Gerpheide does not disclose a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad.

Likewise, Lee does not teach or suggest that a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See,
e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 27 recites selectively providing a signal output frequency to each row of the touch terminals.

Casio discloses input touch terminals comprising first and second input touch terminals, see, e.g., Figure, but fails to provide any teaching with respect to the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 27, and therefore claim 27 is patentable over these references.

New claims 66-71 depend from claim 27 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 45

Independent claim 45 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[$[\mathrm{t}]$ he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal sent from oscillator 408. Therefore, Boie does not
teach or suggest a microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad.

Neither Gerpheide nor Lee cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies directly to a plurality of small sized input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the microprocessor provides value M , i.e., a selected frequency, to a divide-by- $(\mathrm{M}+\mathrm{N})$ circuit 104 which then outputs the reference frequency signal to AND gate 72. See, e.g., id. at col. 8:31-38; col. 6:1926; Figs. 4 and 7. Thereafter, the output of AND gate 72 is sent to electrode array 12 via one of inverter 74 and noninverting buffer 76. See, e.g., id. at col. 6:19-26; Fig. 4. Therefore, Gerpheide does not disclose the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad.

Lee does not teach or suggest that signal output frequencies are directly provided from a microcontroller to the plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 45 recites a microcontroller selectively provides signal output frequencies directly to the touch terminals.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 45, and therefore claim 45 is patentable over these references.

New claims $46-55$ depend from claim 45 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 56

Independent claim 56 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claims 18 and 27, the cited references, either alone or in combination, fail to teach or suggest the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad. Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide and/or Lee does not disclose all of the elements of claim 56 , and therefore claim 56 is patentable over these references.

New claims 57-65 depend from claim 56 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 72

Independent claim 72 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." None of the cited references, alone or in combination, teaches or suggests these limitations.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that " $[t]$ he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60; see id. at Fig. 4. Thus, Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal sent from oscillator 408. Therefore, Boie does not teach or suggest a microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

None of Gerpheide, Lee or Casio cures the deficiencies of Boie. While Gerpheide teaches a reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency" and that in "the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements," Gerpheide does not teach that a microcontroller provides these frequencies directly to a closely spaced array of input touch terminals. See, e.g., id. at col. 8:22-30; Fig. 7. Rather, in Gerpheide, the microprocessor provides value M , i.e., a selected frequency, to a divide-by-(M+N) circuit 104 which then outputs the reference frequency signal to AND gate 72. See, e.g., id. at col. 8:31-38;
col. 6:19-26; Figs. 4 and 7. Thereafter, the output of AND gate 72 is sent to electrode array 12 via one of inverter 74 and noninverting buffer 76. See, e.g., id. at col. 6:19-26; Fig. 4. Therefore, Gerpheide does not disclose the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

Lee does not teach or suggest that signal output frequencies are directly provided from a microcontroller to the plurality of small sized input touch terminals of a keypad. Rather, Lee teaches the CPU selects or deselects row(s) by sending binary signals to the selected row(s). See, e.g., id. at Figs. 3.1(a), 3.1(b), and 3.4. In contrast, claim 72 recites a microcontroller selectively provides signal output frequencies directly to the touch terminals.

Casio discloses input touch terminals comprising first and second input touch terminals, see, e.g., Figure, but fails to provide any teaching with respect to the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad.

Accordingly, Boie in combination with Gerpheide, Lee and/or Casio does not disclose all of the elements of claim 72, and therefore claim 72 is patentable over these references.

New claims 73-83 depend from claim 72 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 84

Independent claim 84 recites "the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage."

None of the cited references, alone or in combination, teaches or suggests at least wherein a peak voltage of the signal output frequencies is greater than a supply voltage. Accordingly, Boie in combination with Gerpheide, Casio and/or Lee does not disclose all of the elements of claim 84, and therefore claim 84 is patentable over these references.

New claims 85-94 depend from claim 84 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

Independent Claim 95

Independent claim 95 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage." None of the cited references, alone or in combination, teaches or suggests these limitations.

As discussed above with respect to claims 18,27 and 56 , the cited references, either alone or in combination, fail to teach or suggest a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad. Moreover, none of the cited references teaches or suggests wherein a peak voltage of the signal output frequencies is greater than a supply voltage.

Accordingly, Boie in combination with Gerpheide, Casio and/or Lee does not disclose all of the elements of claim 95 , and therefore claim 95 is patentable over these references.

New claims 96-105 depend from claim 95 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

IV. SUPPORT FOR CLAIM AMENDMENTS AND NEW CLAIMS

Support for each of the amendments to claims 18 and 27 and for each of the new claims 40-105 may be found throughout the ` 183 Patent, and particular support may be found, for example, as set forth in the charts below.

A. Amended Claim 18

I83 Patent Claim Language	--		
18. A capacitive responsive electronic switching circuit comprising:	--		
an oscillator providing a periodic output signal having a predefined frequency;	a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively		
provided to each row of a plurality of small sized input touch terminals of a keypad;	The `183 Patent discloses "The touch detection \\ circuit of the present invention features operation \\ at frequencies at or above 50kHz and preferably \\ at or above 800 kHz to minimize the effects of \\ surface contamination from materials such a \\ [sic] skin oils and water. It also offers \\ improvements in detection sensitivity that allow \\ close control of the degree of proximity (ideally \\ very close proximity) that is required for \\ actuation and to enable employment of a \\ multiplicity of small sized touch terminals in a \\ physically close array such as a keyboard." Col. \\ \(5: 49-57\). \end{tabular} \\ & \begin{tabular}{l} The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3.		
	The `183 Patent discloses "Although the \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline Patent Claim Language & \begin{tabular}{l} preferred frequency is at or above 100 kHz , and \\ more preferably at or above 800 kHz , it is \\ conceivable that frequencies as low as 50 kHz \\ could be used provided the frequency creates a \\ difference in the impedance paths of adjacent \\ pads that is sufficient enough to accurately \\ distinguish between an intended touch and the \\ touch of an adjacent pad. Use of frequencies as \\ low as 50 kHz may also be possible depending \\ upon the type of glass or covering or the \\ thickness thereof used for the touch pad." Col. \\ \(11: 19-27\). \\ The `183 Patent discloses "Upon being powered
by voltage regulator 100, oscillator 200			
generates a square wave with a frequency of 50			
kHz, and preferably greater than 800 kHz, and			
having an amplitude of 26 V peak. The square			
wave generated by oscillator 200 is supplied via			
line 201 to a floating common generator 300, a			
touch pad shield plate 460, a touch circuit 400,			
and a microcontroller 500. Oscillator 200 is			
described below with reference to FIG. 6.		 	

Floating common generator 300 receives the 26

V peak square wave from oscillator 200 and

outputs a regulated floating common that is 5

volts below the square wave output from

oscillator 200 and has the same phase and

frequency as the received square wave. This

floating common output is supplied to touch

circuit 400 and microcontroller 500 via line 301

such that the output square wave from oscillator

200 and floating common output from floating

common generator 300 provide power to touch

circuit 400 and microcontroller 500. Details of

floating common generator 300 are discussed

below with reference to FIG. 7.

Touch circuit 400 senses capacitance from a

touch pad 450 via line 451 and outputs a signal

to microcontroller 500 via line 401 upon

detecting a capacitance to ground at touch pad

450 that exceeds a threshold value. The details

of touch circuit 400 are described below with

reference to FIG. 8.
\end{tabular}

183 Patent Claim Language	183 Patent Support
	Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900_{nm}, which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface

	183 Patent Claim Language (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input	--
touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	
a detector circuit coupled to said	--
oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,	
wherein said predefined frequency	

B. Amended Claim 27

183 Patent Claim Language		
27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	- Support	

183 Patent Claim Language	183 Patent Support
an oscillator providing a periodic output signal having a predefined frequency;	--
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively provided to each row of a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals;	See Figures 4, 11; and Claims 8, 12, 16. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The `183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via

183 Patent Claim Language	183 Patent Support
	line 201 to a floating common generator 300, a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components

183 Patent Claim Language	183 Patent Support
	similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and	--
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by	--

| 183 Patent Claim Language | |
| :--- | :--- | :--- |
| the operator to provide a control output | |
| signal for actuation of the controlled | |
| keypad device, said detector circuit being | |
| configured to generate said control output | |
| signal when the operator is proximal or | |
| touches said second touch terminal after | |
| the operator is proximal or touches said | |
| first touch terminal. | |

C. New Claim 40

183 Patent Claim Language	183 Patent Support
40. The capacitive responsive electronic switching circuit as defined in claim 18 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the

183 Patent Claim Language	183 Patent Support
	preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

D. New Claim 41

183 Patent Claim Language	183 Patent Support
41. The capacitive responsive electronic switching circuit as defined in claim 18, wherein each signal output frequency selectively provided to each row of the plurality of small sized input touch terminals of the keypad is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or

183 Patent Claim Language	183 Patent Support
	above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

E. New Claim 42

183 Patent Claim Language	183 Patent Support
42. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance

$\left.\begin{array}{|c|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { of the path to ground for pad 59 being twice that } \\ \text { of the touched pad 57. For cases where } \\ \text { background noise and temperature drifts are } \\ \text { comparatively small, a 100 kHz oscillator } \\ \text { frequency would allow a sufficiently low } \\ \text { detection threshold to be set to differentiate } \\ \text { between the signal changes induced at both pads } \\ \text { by a human touch opposite a single pad. At } 800 \\ \text { kHz, the impedance of the glass drops to 200 k } \Omega \\ \text { or lower giving a ratio of a greater than 5 to 1 } \\ \text { impedance difference between the paths to } \\ \text { ground of the touched pad 57 and adjacent pads } \\ 59 . \text { In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ 10 \text { kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The `183 Patent discloses "As will be apparent }\end{array}\right\}$

183 Patent Claim Language	I83 Patent Support
	to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.	

F. New Claim 43

/183 Patent Clam language	\$183 Patent Support
43. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads

Patent Claim Language	59. In fact, the impedance ratio may exceed 10 to 1, as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz, and more preferably at or above 800 kHz, it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27.
The 183 Patent discloses "As will be apparent	
to those skilled in the art, the values of the	
resistors and capacitors utilized in oscillator 200	
may be varied from those disclosed above to	
provide for different oscillator output	
frequencies. As discussed above, however,	
oscillator 200 is preferably constructed so as to	
output a square wave having a frequency of 50	
kHz or greater, and more preferably, of 800 kHz	
or greater. Col. 14:22-28.	

. 183 Patent Claim Language	P. 183 Patent Support
	bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

G. New Claim 44

183 Patent Claim Language	183 Patent Support
44. The capacitive responsive electronic switching circuit as defined in claim 41, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the

183 Patent Claim Language	183 Patent Support
	frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

H. New Claim 45

For ease of analysis, new independent claim 45 is shown below with pseudo-amendments illustrating the differences between new claim 45 and claim 18 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language A capacitive responsive electronic 45. switching circuit comprising: See Claim 18.	
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 18.
a microcontroller using the	See Figures 4, 11; and Claims 8, 12, 16.

183 Patent Claim Language	183 Patent Support
periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a plurality of small sized input touch terminals of a keypad;	The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The`183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6.

183 Patent Claim Language	183 Patent Support
	Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of

183 Patent Claim Language	183 Patent Support
	the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900_{nm}, which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	See Claim 18.
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,	See Claim 18.
wherein said predefined frequency of said oscillator and said signal output	See Claim 18.

183 Patent Claim Language	
frequencies are selected to decrease a first	
impedance of said dielectric substrate	
relative to a second impedance of any	
contaminate that may create an electrical	
path on said dielectric substrate between	
said adjacent areas defined by the	
plurality of small sized input touch	
terminals, and wherein said detector	
circuit compares a sensed body	
capacitance change to ground proximate	
an input touch terminal to a threshold	
level to prevent inadvertent generation of	
the control output signal.	

I. New Claim 46

For ease of analysis, new dependent claim 46 is shown below with pseudo-amendments illustrating the differences between new claim 46 and claim 33 of the $` 183$ Patent following the
first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
46. The capacitive responsive electronic switching circuit as defined in claim 45 , futher comprising wherein said detector eirevitcompares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input fouch terminal is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 33. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold

183 Patent Claim Language	183 Patent Support
	value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The` 183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not

183 Patent Claim Language	183 Patent Support
	touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

J. New Claim 47

For ease of analysis, new dependent claim 47 is shown below with pseudo-amendments
illustrating the differences between new claim 47 and claim 34 of the $` 183$ Patent following the
first reexamination proceeding.

183 Patent Claim Language	It Suppo				
47. The capacitive responsive electronic switching circuit as defined in claim 45 , further comprising wherein said detector eireuit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input toueh terminal is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 34. The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. \(5,087,825\). With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} The "183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & \begin{tabular}{l} or lower giving a ratio of a greater than 5 to 1 \\ impedance difference between the paths to \\ ground of the touched pad 57 and adjacent pads \\ 59. In fact, the impedance ratio may exceed 10 \\ to 1, as illustrated in the calculation below. This \\ allows the detection threshold for the touched \\ pad to be set well below that of an adjacent pad \\ resulting in a much lower incidence of \\ inadvertent actuation of adjacent touch pads to \\ that of the touched pad. Col. 10:54 - Col. 11:9. \end{tabular} \\ \begin{tabular}{l} The`183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF. The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

K. New Claim 48

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 48. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein the signal output \& | See Figure 11. |
| :--- |
| The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably |

\hline
\end{tabular}

Page 53 of 142

183 Patent Claim Language	183 Patent Support		
frequencies have a same Hertz value.	at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & Is3 Patent Support \\ \hline & \begin{tabular}{l} touch and the touch of an adjacent pad. Use of \\ frequencies as low as 50 kHz may also be \\ possible depending upon the type of glass or \\ covering or the thickness thereof used for the \\ touch pad. Col. 10:60 - Col. 11:27. \\ The`183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.			

L. New Claim 49

183 Patent Clatm language	183 Patent Support
49. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low

Page 55 of 142

Patent Claim Language	detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz, the impedance of the glass drops to 200 k Ω or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1, as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at
10 kHz and below, the impedance of the glass	
becomes much greater than that of likely water	
bridges between pads resulting in adjacent pads	
being effected as much by a touch as the touched	
pad itself. Although the preferred frequency is at	
or above 100 kHz, and more preferably at or	
above 800 kHz, it is conceivable that frequencies	
as low as 50 kHz could be used provided the	
frequency creates a difference in the impedance	
paths of adjacent pads that is sufficient enough	
to accurately distinguish between an intended	
touch and the touch of an adjacent pad. Use of	
frequencies as low as 50 kHz may also be	
possible depending upon the type of glass or	
covering or the thickness thereof used for the	
touch pad. Col. 10:60 - Col. 11:27.	

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

M. New Claim 50

183 Patent Claim Language	183 Patent Support
50. The capacitive responsive electronic switching circuit as defined in claim 49, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

N. New Claim 51

183 Patent Claim I anguage	183 Patent Support
51. The capacitive responsive electronic switching circuit as defined in claim 49, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

O. New Claim 52

183 Patent Claim language	\$183 Patent Support
52. The capacitive responsive electronic switching circuit as defined in claim 49, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support \\
\hline \& \begin{tabular}{l}
giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\
The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support \\
\hline \& The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. \\
\hline
\end{tabular}

P. New Claim 53

183 Patent Clam lianguage	I83 Patenl Support
53. The capacitive responsive electronic switching circuit as defined in claim 45 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage.	See Figures 4, 5; Claims 27 and 37. The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\ Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. \\ The `183 Patent discloses "Microcontroller 500 selects each row of the touch circuits 900_{1} to 900 nm by providing the signal from oscillator

183 Patent Claim Language	183 Patent Support
	200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The ` 183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuitry drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41.

Q. New Claim 54

183 Patent Claim Language	
54. The capacitive responsive electronic switching circuit as defined in claim 53, wherein the supply voltage is a battery supply voltage.	The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC
183 Patent Claim Language	183 Patent Support
:---	:---
	60 Hz commercial power line, a transformer may
be added to convert the 100 V AC power to 24 V	
	AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

R. New Claim 55

\begin{tabular}{|c|c|}
\hline 183 Patent Clam language \& (183 Patent Support

\hline 55. The capacitive responsive electronic switching circuit as defined in claim 53 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received $A C$ voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106 . The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31. |

\hline
\end{tabular}

S. New Claim 56

For ease of analysis, new independent claim 56 is shown below with pseudo-amendments illustrating the differences between new claim 56 and claim 18 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
56. A capacitive responsive electronic switching circuit comprising:	See Claim 18.
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 18.
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing	See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline signal output frequencies, wherein a signal output frequency is selectively provided to each row of a plurality of small sized input touch terminals of a keypad, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage; \& | The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. |
| :--- |
| The '183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. |
| The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
	voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12.33.

'183 Patent Claím Language	183 Patent Support
	The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\ The `183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of

183 Patent Claim Language	183 Patent Support
	the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900_{nm}, which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and	See Claim 18.
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal,	See Claim 18.
wherein said predefined frequency of said oscillator and said signal output	See Claim 18.

183 Patent Claim Language	
frequencies are selected to decrease a first	
impedance of said dielectric substrate	
relative to a second impedance of any	
contaminate that may create an electrical	
path on said dielectric substrate between	
said adjacent areas defined by the	
plurality of small sized input touch	
terminals, and wherein said detector	
circuit compares a sensed body	
capacitance change to ground proximate	
an input touch terminal to a threshold	
level to prevent inadvertent generation of	
the control output signal.	

T. New Claim 57

For ease of analysis, new dependent claim 57 is shown below with pseudo-amendments
illustrating the differences between new claim 57 and claim 33 of the $` 183$ Patent following the
first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
57. The capacitive responsive electronic switching circuit as defined in claim 56, futher comprising wherein srid detector eirevitcompares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the input touch terminal is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 33. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The`183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold

183 Patent Claim Language	183 Patent Support
	value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Col. 10:54-Col. 11:9. \\ The` 183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not

183 Patent Claim Language	183 Patent Support
	touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

U. New Claim 58

For ease of analysis, new dependent claim 58 is shown below with pseudo-amendments
illustrating the differences between new claim 58 and claim 34 of the $` 183$ Patent following the
first reexamination proceeding.

183 Patent Claim Language	183 Patent Support				
58. The capacitive responsive electronic switching circuit as defined in claim 56 , futher comprising wherein said detector eireuit compares the sensed body capacitance change to ground proximate the input touch terminal is caused by the operator's body capacitance decreasing an input touch terminal signal amplitude on the detector circuit, and wherein the sensed body capacitance change to ground when proximate to the imput fouch terminat is compared to a second threshold level to generate the control output signal.	See Claims 1, 18, 28, and 34. The `183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. \(4,758,735\) and U.S. Pat. No. \(5,087,825\). With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} The "183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The `183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28. The `183 Patent discloses "As can be seen, at 1 kHz , the capacitive impedance of the glass is much greater than the nominal \(1 \mathrm{M} \Omega\) of the water bridge across the pads. As a result, at 1 kHz , there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	l	} \hline Patent Claim Language & \begin{tabular}{l} or lower giving a ratio of a greater than 5 to 1 \\ impedance difference between the paths to \\ ground of the touched pad 57 and adjacent pads \\ 59. In fact, the impedance ratio may exceed 10 \\ to 1, as illustrated in the calculation below. This \\ allows the detection threshold for the touched \\ pad to be set well below that of an adjacent pad \\ resulting in a much lower incidence of \\ inadvertent actuation of adjacent touch pads to \\ that of the touched pad. Col. 10:54 - Col. 11:9. \end{tabular} \\ \begin{tabular}{l} The`183 Patent discloses "As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF. The base terminal of transistor 410 is coupled to it's [sic] emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450, transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When, however, a person touches the touch pad 450, that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413, thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor 410 to clamp the base emitter reverse bias voltage to -0.7V and also reduce the forward recovery and turn-on time. Col. 15:29-47.

V. New Claim 59

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 59. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein each signal output frequency selectively provided to each row of the plurality of small sized input \& | See Figure 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably |

\hline
\end{tabular}

Page 73 of 142

183 Patent Claim Language	183 Patent Support		
touch terminals of the keypad has a same Hertz value.	at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & Is3 Patent Support \\ \hline & \begin{tabular}{l} touch and the touch of an adjacent pad. Use of \\ frequencies as low as 50 kHz may also be \\ possible depending upon the type of glass or \\ covering or the thickness thereof used for the \\ touch pad. Col. 10:60 - Col. 11:27. \\ The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.			

W. New Claim 60

| 183 Patent Claim Language | The capacitive responsive |
| :--- | :--- | See Figure 11.

Page 75 of 142
$\left.\begin{array}{|l|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { detection threshold to be set to differentiate } \\ \text { between the signal changes induced at both pads } \\ \text { by a human touch opposite a single pad. At } 800 \\ \text { kHz, the impedance of the glass drops to 200 k } \Omega \\ \text { or lower giving a ratio of a greater than 5 to 1 } \\ \text { impedance difference between the paths to } \\ \text { ground of the touched pad 57 and adjacent pads } \\ \text { 59. In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ \text { 10 kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The `183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, }\end{array}\right\}$

183 Patent Claim Language	183 Patent Support
	oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.	

X. New Claim 61

183 Patent Claim language	183 Patent Support
61. The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

Y. New Claim 62

183 Patent Claim Language	183 Patent Support
62. The capacitive responsive electronic switching circuit as defined in claim 60 , wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

Z. New Claim 63

183 Patent Claim Language	183 Patent Support
63. The capacitive responsive electronic switching circuit as defined in claim 60, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower

Page 80 of 142

183 Patent Claim Language	183 Patent Support		
	giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & Isu Patent Support \\ \hline & \begin{tabular}{l} The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

AA. New Claim 64

183 Patent Claim language	183 Patent Support
64. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the supply voltage is a battery supply voltage.	The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200 . For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

BB. New Claim 65

\begin{tabular}{|c|c|}
\hline 183 Patent Claím Language \& 183 Patent Support

\hline 65. The capacitive responsive electronic switching circuit as defined in claim 56 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31. |

\hline
\end{tabular}

CC. New Claim 66

183 Patent Claim Language	183 Patent Support
66. The capacitive responsive electronic switching circuit as defined in claim 27, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57 . For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

DD. New Claim 67

183 Patent Claim language	\$183 Patent Support
67. The capacitive responsive electronic switching circuit as defined in claim 27, wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to

183 Patent Claim Language	I83 Patent Support
	The `183 Patent discloses "As will be apparent \\ to those skilled in the art, the values of the \\ resistors and capacitors utilized in oscillator 200 \\ may be varied from those disclosed above to \\ provide for different oscillator output \\ frequencies. As discussed above, however, \\ oscillator 200 is preferably constructed so as to \\ output a square wave having a frequency of 50 \\ kHz or greater, and more preferably, of 800 kHz \\ or greater. Col. 14:22-28. \end{tabular} \\ \begin{tabular}{l} The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

EE. New Claim 68

183 Patent Claim Language	183 Patent Support
68. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to

$\left.\begin{array}{|l|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { ground of the touched pad 57 and adjacent pads } \\ 59 . \text { In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ 10 \text { kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The `183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, } \\ \text { oscillator 200 is preferably constructed so as to } \\ \text { output a square wave having a frequency of 50 } \\ \text { kHz or greater, and more preferably, of 800 kHz } \\ \text { or greater. Col. 14:22-28. } \\ \text { The 183 Patent disclosed "The combination of }\end{array}\right\}$

'183 Patent Claim Language	183 Patent Support
	oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

FF. New Claim 69

183 Patent Clam language	183 Patent Support
69. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components

183 Patent Claim Language	183 Patent Support
	and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

GG. New Claim 70

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 70. The capacitive responsive electronic switching circuit as defined in claim 67, wherein the plurality of Hertz \& | See Fig. 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection |

\hline
\end{tabular}

Page 89 of 142

183 Patent Claim Language	183 Patent Support
values comprises Hertz values greater than 800 kHz .	circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. \\ The`183 Patent discloses "As will be apparent to those skilled in the art, the values of the

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

HH. New Claim 71

183 Patent Claim Language	183 Patent Support
71. The capacitive responsive electronic switching circuit as defined in claim 27 , wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	See Figures 19, 20A-C; and Claims 28 and 35. The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202, and an indicator light 2205 . Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\ The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar

183 Patent Claim Language	183 Patent Support
	side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

II. New Claim 72

For ease of analysis, new independent claim 72 is shown below with pseudo-amendments
illustrating the differences between new claim 72 and claim 27 of the $` 183$ Patent following the
first reexamination proceeding.

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 72. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: \& See Claim 27.

\hline an oscillator providing a periodic output signal having a predefined frequency; \& See Claim 27.

\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies directly to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; \& | See Figures 4, 11; and Claims 8, 12, 16. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. |

\hline
\end{tabular}

Page 92 of 142

183 Patent Claim Language	183 Patent Support
	5:49-57.
	The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\ \hline & The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27.
	The ` 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed

183 Patent Claim Language	183 Patent Support
	below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\ The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to 900_{nm} by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between

183 Patent Claim Language	the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch	See Claim 27.
a detector circuit coupled to said terminals defining areas for an operator to and an input by proximity and touch;	See Claim 27.
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	

JJ. New Claim 73

183 Patent Claim language	183 Patent Support		
73. The capacitive responsive electronic switching circuit as defined in claim 72, wherein the signal output	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline frequencies have a same Hertz value. & \begin{tabular}{l} at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended

183 Patent Claim Language	{I83 Patent Supporttouch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent \\ to those skilled in the art, the values of the \\ resistors and capacitors utilized in oscillator 200 \\ may be varied from those disclosed above to \\ provide for different oscillator output \\ frequencies. As discussed above, however, \\ oscillator 200 is preferably constructed so as to \\ output a square wave having a frequency of 50 \\ kHz or greater, and more preferably, of 800 kHz \\ or greater. Col. 14:22-28. \end{tabular}} \\ \begin{tabular}{l} The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

KK. New Claim 74

183 Patent Clatm language	183 Patent Support
74. The capacitive responsive electronic switching circuit as defined in claim 72, wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low

Page 97 of 142
$\left.\begin{array}{|l|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { detection threshold to be set to differentiate } \\ \text { between the signal changes induced at both pads } \\ \text { by a human touch opposite a single pad. At } 800 \\ \text { kHz, the impedance of the glass drops to 200 k } \Omega \\ \text { or lower giving a ratio of a greater than 5 to 1 } \\ \text { impedance difference between the paths to } \\ \text { ground of the touched pad 57 and adjacent pads } \\ \text { 59. In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ \text { 10 kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The `183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, }\end{array}\right\}$

\begin{tabular}{|l|l|}
\hline 183 Patent Claim Language \& \multicolumn{1}{c|}{183 Patent Support }

\hline \& | oscillator 200 is preferably constructed so as to |
| :--- |
| output a square wave having a frequency of 50 |
| kHz or greater, and more preferably, of 800 kHz |
| or greater. Col. 14:22-28. |
| The `183 Patent disclosed "The combination of |
| oscillator voltage, frequency and transistor gain |
| bandwidth product that is used will necessarily |
| vary with the cost, safety and reliability |
| requirements of a given application." Col. 14:65 |
| - Col. 15:1. |

\hline
\end{tabular}

LL. New Claim 75

183 Patent Claim Language	183 Patent Support
75. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The ` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

MM. New Claim 76

183 Patent Claim Language	183 Patent Support
76. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at

183 Patent Claim Language	183 Patent Support
	or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

NN. New Claim 77

183 Patent Claim language	183 Patent Support
77. The capacitive responsive electronic switching circuit as defined in claim 74, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower

Page 102 of 142

183 Patent Claim Language	183 Patent Support		
	giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & . \\ \hline & \begin{tabular}{l} The`183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

OO. New Claim 78

For ease of analysis, new dependent claim 78 is shown below with pseudo-amendments illustrating the differences between new claim 78 and claim 28 of the $` 183$ Patent following the first reexamination proceeding.

183 Patent Claim Language	183 Patent Support
78. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein said detector circuit generates is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.	See Claims 27 and 28.

PP. New Claim 79

For ease of analysis, new dependent claim 79 is shown below with pseudo-amendments illustrating the differences between new claim 79 and claim 36 of the ` 183 Patent following the first reexamination proceeding.

\begin{tabular}{|c|c|}
\hline 183 Patent Claím Language \& 183 Patent Support

\hline 79. The capacitive responsive electronic switching circuit as defined in claim 72, and-further ineluding comprising an indicator for indicating when said the detector circuit determines has determined that the operator is \& | See Claims 32 and 36. |
| :--- |
| The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given |

\hline
\end{tabular}

183 Patent Claim Language	183 Patent Support
proximal or touches said second touch terminal.	touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\ The ` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.

QQ. New Claim 80

183 Patent Claim language	183 Patent Support		
80. The capacitive responsive electronic switching circuit as defined in claim 72, wherein the detector circuit is configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after	See Figures 19, 20A-C; and Claims 28 and 35. The `183 Patent discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline the operator is proximal or touches said first touch terminal. & \begin{tabular}{l} first palm button 2201, a second palm button 2202 , and an indicator light 2205 . Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\ The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

RR. New Claim 81

\begin{tabular}{|c|c|}
\hline 183 Patent Claim language \& 183 Patent Support

\hline 81. The capacitive responsive electronic switching circuit as defined in claim 72 , wherein a peak voltage of the signal output frequencies is greater than a supply voltage. \& | See Figures 4, 5; Claims 27 and 37. |
| :--- |
| The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage |

\hline
\end{tabular}

Page 106 of 142

183 Patent Claim Language	183 Patent Support
	regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. Upon being powered by voltage regulator 100, oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6." Col. 11:60-Col. 12:13. The `183 Patent discloses "Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s)." Col. 18:4349. \\ The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . $\mathrm{AC} / \mathrm{DC}$ convertor 110 includes diodes $112,114,116$, and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31.

183 Patent Claim Language	183 Patent Support
	The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of $-40^{\circ} \mathrm{C}$. to $105^{\circ} \mathrm{C}$. The output of the touch switch circuitry drops at a rate of approximately $40 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. when temperature falls below $0^{\circ} \mathrm{C}$. If application requires operation at low temperatures $\left(-40^{\circ} \mathrm{C}\right.$.), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41.

SS. New Claim 82

183 Patent Claim Language	183 Patent Support
82. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a battery supply voltage.	The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

TT. New Claim 83

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 83. The capacitive responsive electronic switching circuit as defined in claim 81 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. |

\hline
\end{tabular}

183 Patent Claím Language	183 Patent Support
	Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31.

UU. New Claim 84

For ease of analysis, new independent claim 84 is shown below with pseudo-amendments
illustrating the differences between new claim 84 and claim 27 of the ' 183 Patent following the
first reexamination proceeding.

183 Patent Claim Language	\$183 Patent Support
84. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, wherein a peak voltage of the signal output frequencies is greater than a supply voltage;	See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37 . The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. \\ The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3.

183 Patent Claim Language	183 Patent Support
	The `183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\ The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5

183 Patent Claim Language	183 Patent Support
	volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in FIG. 5. Voltage regulator 100 preferably includes an AC/DC convertor 110 for generating 29 V to 36 V unregulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130. AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power lines 101 and 102." Col. 12:50-57; see also Col. 12:57-Col. 13:31. \\ The` 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output

183 Patent Claim Language	183 Patent Support
	frequencies." Col. 14:22-25.
	The `183 Patent discloses "The oscillator circuitry shown in FIG. 6 is very stable over the temperature range of \(-40^{\circ} \mathrm{C}\). to \(105^{\circ} \mathrm{C}\). The output of the touch switch circuitry drops at a rate of approximately \(40 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperature falls below \(0^{\circ} \mathrm{C}\). If application requires operation at low temperatures \(\left(-40^{\circ} \mathrm{C}\right.\).), the following three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 416, and use a higher gain transistor 410. All of these methods would increase sensitivity at high temperatures." Col. 16:33-41. \\ \hline & \begin{tabular}{l} The`183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 900_{1} through 900 nm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4).

\hline
\end{tabular}

183 Patent Claim Language	can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and	See Claim 27.
a detector circuit coupled to said	See Claim 27.
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.	

VV. New Claim 85

183 Patent Claim Language	183 Patent Support
85. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the signal output frequencies have a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to

Page 113 of 142

183 Patent Claím Language	183 Patent Support
	The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

WW. New Claim 86

183 Patent Claim Language	183 Patent Support
86. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein each signal output frequency is selected from a plurality of Hertz values.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to

Page 115 of 142

183 Patent Claim Language	183 Patent Support
	ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of

183 Patent Claim Language	183 Patent Support
	oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

XX. New Claim 87

183 Patent Clam language	183 Patent Support
87. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The`183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components

Page 117 of 142

183 Patent Claim Language	183 Patent Support
	and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60-Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The ` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

YY. New Claim 88

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 88. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz \& | See Figure 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection |

\hline
\end{tabular}

Page 118 of 142

183 Patent Claim Language	183 Patent Support		
values comprises Hertz values greater than 100 kHz .	circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately \(1 \mathrm{M} \Omega\) resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to \(200 \mathrm{k} \Omega\) or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & \begin{tabular}{l} paths of adjacent pads that is sufficient enough \\ to accurately distinguish between an intended \\ touch and the touch of an adjacent pad. Use of \\ frequencies as low as 50 kHz may also be \\ possible depending upon the type of glass or \\ covering or the thickness thereof used for the \\ touch pad. Col. 10:60 - Col. 11:27. \\ \\ The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28.
The `183 Patent disclosed "The combination of			
oscillator voltage, frequency and transistor gain			
bandwidth product that is used will necessarily			
vary with the cost, safety and reliability			
requirements of a given application." Col. 14:65			
- Col. 15:1.			

ZZ. New Claim 89

183 Patent Clam language	183 Patent Support
89. The capacitive responsive electronic switching circuit as defined in claim 86, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The ` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59 . In fact, the impedance ratio may exceed 10 to 1 , as

Page 120 of 142
$\left.\begin{array}{|l|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { illustrated in the calculation below. This allows } \\ \text { the detection threshold for the touched pad to be } \\ \text { set well below that of an adjacent pad resulting } \\ \text { in a much lower incidence of inadvertent } \\ \text { actuation of adjacent touch pads to that of the } \\ \text { touched pad. Ideally, the frequency of operation } \\ \text { would be kept at the 800 kHz of the preferred } \\ \text { embodiment or even higher. However, as noted } \\ \text { earlier, higher frequency operation forces the use } \\ \text { of more expensive components and designs. For } \\ \text { applications where thermal drift and electronic } \\ \text { noise levels are low, operation at or near 100 } \\ \text { kHz may be possible. However, at 10 kHz and } \\ \text { below, the impedance of the glass becomes } \\ \text { much greater than that of likely water bridges } \\ \text { between pads resulting in adjacent pads being } \\ \text { effected as much by a touch as the touched pad } \\ \text { itself. Although the preferred frequency is at or } \\ \text { above 100 kHz, and more preferably at or above } \\ 800 \text { kHz, it is conceivable that frequencies as }\end{array} \\ \text { low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 11:1-27. } \\ \text { The `183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, } \\ \text { oscillator 200 is preferably constructed so as to } \\ \text { output a square wave having a frequency of 50 } \\ \text { kHz or greater, and more preferably, of 800 kHz } \\ \text { or greater. Col. 14:22-28. } \\ \text { The `183 Patent disclosed "The combination of } \\ \text { oscillator voltage, frequency and transistor gain } \\ \text { bandwidth product that is used will necessarily }\end{array}\right\}$

.183 Patent Claim Language	n.
	vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

AAA. New Claim 90

183 Patent Claim Language	183 Patent Support
90. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a battery supply voltage.	The ` 183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

BBB. New Claim 91

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 91. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein the supply voltage is a voltage regulator supply voltage. \& | Figures 4, 5, 11, and 12. |
| :--- |
| The ` 183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64-Col. 12:5; see also Col. 12:50 - Col. 13:31. |

\hline
\end{tabular}

CCC. New Claim 92

For ease of analysis, new dependent claim 92 is shown below with pseudo-amendments illustrating the differences between new claim 92 and claim 28 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Clam Language	183 Patent Support
92. The capacitive responsive electronic switching circuit as defined in claim 84 , wherein said detector circuit generates is configured to generate said control output signal only when the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.	See Claims 27 and 28.

DDD. New Claim 93

For ease of analysis, new dependent claim 93 is shown below with pseudo-amendments illustrating the differences between new claim 93 and claim 36 of the ' 183 Patent following the first reexamination proceeding.

183 Patent Claim I Anguage	183 Patent Support		
93. The capacitive responsive electronic switching circuit as defined in claim 84 , and-further ineluding comprising an indicator for indicating when said the detector circuit determines has determined that the operator is proximal or touches said second touch terminal.	See Claims 32 and 36. The `183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|l	l	} \hline 183 Patent Claim Language & \begin{tabular}{l} given required sequence or combination of \\ touches." Col. 6:31-42. \\ The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12.
The `183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.			

EEE. New Claim 94

| 183 Patent Claim Language | The capacitive responsive |
| :--- | :--- | See Figures 19, 20A-C; and Claims 28 and 35.

183 Patent Claim Language	lider Support
	used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310, is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.

FFF. New Claim 95

For ease of analysis, new independent claim 95 is shown below with pseudo-amendments
illustrating the differences between new claim 95 and claim 27 of the ` 183 Patent following the
first reexamination proceeding.

183 Patent Claim Language	Support		
95. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:	See Claim 27.		
an oscillator providing a periodic output signal having a predefined frequency;	See Claim 27.		
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies, wherein a signal output frequency is selectively	See Figures 4, 5, 11; and Claims 8, 12, 16, 27 and 37. provided to each row of a closely spaced		The ‘183 Patent discloses "The touch detection
:---			
circuit of the present invention features operation			
at frequencies at or above 50 kHz and preferably			

Page 125 of 142

183 Patent Claim Language	183 Patent Support		
array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals, and wherein a peak voltage of the signal output frequencies is greater than a supply voltage;	at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard." Col. 5:49-57. The `183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\ The ` 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. The `183 Patent discloses "Having provided a basis for the use of higher frequencies, the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. \\ Voltage regulator also supplies oscillator 200 \end{tabular} \\ \hline \end{tabular} \begin{tabular}{\|c	c	} \hline 183 Patent Claim Language & 183 Patent Support \\ \hline & \begin{tabular}{l} with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5. \\ Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300, a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. \\ Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500. Details of floating common generator 300 are discussed below with reference to FIG. 7. \\ Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. \\ Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 11:60-12:33. \\ The `183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is

183 Patent Claim Language	circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900 to 900 sign by providing the from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
the first and second input touch	See Claim 27. a detector circuit coupled to said
terminals defining areas for an operator to provide an input by proximity and touch; and	See Claim 27. oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said

183 Patent Claim Language	§183 Patent Support
first touch terminal.	

GGG. New Claim 96

183 Patent Claím Language	183 Patent Support
96. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad has a same Hertz value.	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. |
| :--- |
| The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| The '183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

HHH. New Claim 97

\begin{tabular}{|c|c|}
\hline 183 Patent Claim language \& 183 Patent Support

\hline 97. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein each signal output frequency selectively provided to each row of the closely spaced array of input touch terminals of the keypad is selected \& | See Figure 11. |
| :--- |
| The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a |

\hline
\end{tabular}

Page 131 of 142

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline from a plurality of Hertz values. \& | [sic] skin oils and water. Col. 5:49-53. |
| :--- |
| The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be |

\hline
\end{tabular}

183 Patent Claím Language	183 Patent Support
	possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. Col. 10:60 - Col. 11:27. The `183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator 200 is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. \\ The` 183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

III. New Claim 98

183 Patent Claim Language	183 Patent Support
98. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 50 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate

$\left.\begin{array}{|c|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { by a human touch opposite a single pad. At } 800 \\ \text { kHz, the impedance of the glass drops to 200 k } \Omega \\ \text { or lower giving a ratio of a greater than 5 to } 1 \\ \text { impedance difference between the paths to } \\ \text { ground of the touched pad 57 and adjacent pads } \\ 59 . \text { In fact, the impedance ratio may exceed 10 } \\ \text { to 1, as illustrated in the calculation below. This } \\ \text { allows the detection threshold for the touched } \\ \text { pad to be set well below that of an adjacent pad } \\ \text { resulting in a much lower incidence of } \\ \text { inadvertent actuation of adjacent touch pads to } \\ \text { that of the touched pad. Ideally, the frequency of } \\ \text { operation would be kept at the 800 kHz of the } \\ \text { preferred embodiment or even higher. However, } \\ \text { as noted earlier, higher frequency operation } \\ \text { forces the use of more expensive components } \\ \text { and designs. For applications where thermal drift } \\ \text { and electronic noise levels are low, operation at } \\ \text { or near 100 kHz may be possible. However, at } \\ \text { 10 kHz and below, the impedance of the glass } \\ \text { becomes much greater than that of likely water } \\ \text { bridges between pads resulting in adjacent pads } \\ \text { being effected as much by a touch as the touched } \\ \text { pad itself. Although the preferred frequency is at } \\ \text { or above 100 kHz, and more preferably at or } \\ \text { above 800 kHz, it is conceivable that frequencies } \\ \text { as low as 50 kHz could be used provided the } \\ \text { frequency creates a difference in the impedance } \\ \text { paths of adjacent pads that is sufficient enough } \\ \text { to accurately distinguish between an intended } \\ \text { touch and the touch of an adjacent pad. Use of } \\ \text { frequencies as low as 50 kHz may also be } \\ \text { possible depending upon the type of glass or } \\ \text { covering or the thickness thereof used for the } \\ \text { touch pad. Col. 10:60 - Col. 11:27. }\end{array} \\ \text { The 183 Patent discloses "As will be apparent } \\ \text { to those skilled in the art, the values of the } \\ \text { resistors and capacitors utilized in oscillator 200 } \\ \text { may be varied from those disclosed above to } \\ \text { provide for different oscillator output } \\ \text { frequencies. As discussed above, however, } \\ \text { oscillator 200 is preferably constructed so as to } \\ \text { output a square wave having a frequency of 50 }\end{array}\right\}$

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline \& | kHz or greater, and more preferably, of 800 kHz or greater. Col. 14:22-28. |
| :--- |
| The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1. |

\hline
\end{tabular}

JJJ. New Claim 99

183 Patent Claim language	\ת/ת183 Patent Support
99. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 100 kHz .	See Figure 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The `183 Patent discloses "Conversely, at 100 kHz , the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a single pad. At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of

\(\left.$$
\begin{array}{|c|l|}\hline \text { Patent Claim Language } & \begin{array}{l}\text { operation would be kept at the } 800 \mathrm{kHz} \text { of the } \\
\text { preferred embodiment or even higher. However, } \\
\text { as noted earlier, higher frequency operation } \\
\text { forces the use of more expensive components } \\
\text { and designs. For applications where thermal drift } \\
\text { and electronic noise levels are low, operation at } \\
\text { or near 100 kHz may be possible. However, at } \\
10 \text { kHz and below, the impedance of the glass } \\
\text { becomes much greater than that of likely water } \\
\text { bridges between pads resulting in adjacent pads } \\
\text { being effected as much by a touch as the touched } \\
\text { pad itself. Although the preferred frequency is at } \\
\text { or above 100 kHz, and more preferably at or } \\
\text { above 800 kHz, it is conceivable that frequencies } \\
\text { as low as 50 kHz could be used provided the } \\
\text { frequency creates a difference in the impedance } \\
\text { paths of adjacent pads that is sufficient enough } \\
\text { to accurately distinguish between an intended } \\
\text { touch and the touch of an adjacent pad. Use of } \\
\text { frequencies as low as 50 kHz may also be } \\
\text { possible depending upon the type of glass or } \\
\text { covering or the thickness thereof used for the } \\
\text { touch pad. Col. 10:60 - Col. 11:27. }\end{array}
$$

The `183 Patent discloses "As will be apparent\end{array}\right\}\)| to those skilled in the art, the values of the |
| :--- |
| resistors and capacitors utilized in oscillator 200 |
| may be varied from those disclosed above to |
| provide for different oscillator output |
| frequencies. As discussed above, however, |
| oscillator 200 is preferably constructed so as to |
| output a square wave having a frequency of 50 |
| kHz or greater, and more preferably, of 800 kHz |
| or greater. Col. 14:22-28. |

KKK. New Claim 100

183 Patent Claim Language	183 Patent Support
100. The capacitive responsive electronic switching circuit as defined in claim 97, wherein the plurality of Hertz values comprises Hertz values greater than 800 kHz .	See Fig. 11. The `183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a [sic] skin oils and water. Col. 5:49-53. \\ The` 183 Patent discloses "At 800 kHz , the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 , as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below, the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the

183 Patent Claim Language	I83 Patent Support
	touch pad. Col. 11:1-27. The `183 Patent discloses "As will be apparent \\ to those skilled in the art, the values of the \\ resistors and capacitors utilized in oscillator 200 \\ may be varied from those disclosed above to \\ provide for different oscillator output \\ frequencies. As discussed above, however, \\ oscillator 200 is preferably constructed so as to \\ output a square wave having a frequency of 50 \\ kHz or greater, and more preferably, of 800 kHz \\ or greater. Col. 14:22-28. \end{tabular} \\ & \begin{tabular}{l} The `183 Patent disclosed "The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost, safety and reliability requirements of a given application." Col. 14:65 - Col. 15:1.

LLL. New Claim 101

183 Patent Claim Language	Is3 Patent Support
101. The capacitive responsive electronic switching circuit as defined in claim 95, wherein the supply voltage is a battery supply voltage.	The `183 Patent discloses "It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC
	60 Hz commercial power line, a transformer may be added to convert the 100 V AC power to 24 V
	AC. Alternatively, if a DC batter is used, the AC/DC convertor among other components may be eliminated." Col 13:23-31.

MMM. New Claim 102

183 Patent Claim Language	Patent Support
102. electronic switching circuit as defined in claim 95, wherein the supply voltage is a	Figures 4, 5, 11, and 12. The `183 Patent discloses "The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for
183 Patent Claim Language	183 Patent Support
:---	:---
voltage regulator supply voltage.	receiving a 24 V AC line voltage and a line 103 for grounding the circuit. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106. The details of voltage regulator 100 are discussed below with reference to FIG. 5." Col. 11:64 - Col. 12:5; see also Col. 12:50 - Col. 13:31.

NNN. New Claim 103

For ease of analysis, new dependent claim 103 is shown below with pseudo-amendments illustrating the differences between new claim 103 and claim 28 of the ` 183 Patent following the first reexamination proceeding.

183 Patent Claim Language	Ren Support
103. The capacitive responsive electronic switching circuit as defined in claim 95, wherein said detector circuit generates is configured to generate said	See Claims 27 and 28.
control output signal only when the	
operator is proximal or touches said	
second touch terminal within a	
predetermined time period after the	
operator is proximal or touches said first	
touch terminal.	

OOO. New Claim 104

For ease of analysis, new dependent claim 104 is shown below with pseudo-amendments illustrating the differences between new claim 104 and claim 36 of the ` 183 Patent following the first reexamination proceeding.

| 183 Patent Claim Language | 183 Patent Support |
| :--- | :--- | :--- |
| 104. The capacitive responsive
 electronic switching circuit as defined in
 claim 95, and-further ineluding | See Claims 32 and 36. |

Page 139 of 142

183 Patent Claim Language	183 Patent Support
comprising an indicator for indicating the detector circuit determines has determined that the operator is proximal or touches said second touch terminal.	also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. The `183 Patent discloses "A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator." Col. 23:1-12. \\ The` 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310." Col. 23:28-30.

PPP. New Claim 105

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline 105. The capacitive responsive electronic switching circuit as defined in claim 95 , wherein the detector circuit is \& | See Figures 19, 20A-C; and Claims 28 and 35. |
| :--- |
| The `183 Patent discloses "In another |

\hline
\end{tabular}

Page 140 of 142

\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language \& 183 Patent Support

\hline configured to inhibit the control output signal unless the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. \& | embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202, and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. |
| :--- |
| The ` 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36. |

\hline
\end{tabular}

v. CONCLUSION

In view of the above, the Patent Owner submits that the claims are in condition for allowance. The present amendment neither enlarges the scope of the claims of the patent nor introduces new matter. If the Examiner should have any questions, please contact the Patent Owner's Attorney, Brian A. Carlson, at 972-732-1001. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

December 24, 2013
Date
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

[54] CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT

[75] Inventor: Byron Hourmand. Hersey, Mich.
Assignee: Nartron Corporation. Reed City. Mich.

Jan. 31, 1996
[51] Int. Cl. ${ }^{6}$ \qquad H01H 35/00
[52] U.S. Cl. \qquad 307/116; 361/181; 307/125; 307/139
[58] Field of Search \qquad 307/112. 113
307/116. 125, 139. 140. 157; 361/181

References Cited

U.S. PATENT DOCUMENTS

| $3,549,909$ | $12 / 1970$ | Adelson et al. . |
| :--- | ---: | :--- | :--- |
| $3,641,410$ | $2 / 1972$ | Vogelsberg . |
| $3,651,391$ | $3 / 1972$ | Vogelsberg . |
| $3,666,988$ | $5 / 1972$ | Bellis . |
| $3,798,370$ | $3 / 1974$ | Hurst. |
| $3,879,618$ | $4 / 1975$ | Larson $307 / 116$ |
| $3,899,713$ | $8 / 1975$ | Barkan et al. . |
| $3,911,215$ | $10 / 1975$ | Hurst et al. . |
| $3,919,596$ | $11 / 1975$ | Bellis . |
| $3,965,465$ | $6 / 1976$ | Alexander . |
| $3,984,757$ | $10 / 1976$ | Gotet et al. . |
| $4,016,453$ | $4 / 1977$ | Moennig . |
| $4,031,408$ | $6 / 1977$ | Holz . |
| $4,071,689$ | $1 / 1978$ | Talmage et al. . |
| $4,101,805$ | $7 / 1978$ | Stone. |
| $4,119,864$ | $10 / 1978$ | Petrizio . |
| $4,152,629$ | $5 / 1979$ | Raupp . |
| $4,159,473$ | $6 / 1979$ | Senk. |
| $4,210,822$ | $7 / 1980$ | Wern. |
| $4,211,959$ | $7 / 1980$ | Deavenport et al. . |
| $4,213,061$ | $7 / 1980$ | Conner. |
| $4,220,815$ | $9 / 1980$ | Gibson et al. . |
| $4,237,421$ | $12 / 1980$ | Waldron . |
| $4,246,533$ | $1 / 1981$ | Chiang . |
| $4,257,117$ | $3 / 1981$ | Besson. |
| $4,264,831$ | $4 / 1981$ | Wern. |
| $4,289,972$ | $9 / 1981$ | Wern. |
| $4,289,980$ | $9 / 1981$ | McLaughlin . |

4.308.443	12/1981	Tucker et al.
4.323.829	4/1982	Witney et al.
4,352,141	9/1982	Kent 363/181
4,360.737	11/1982	Leopold
4,374,381	2/1983	Ng et al.
4,476.463	10/1984	Ng et al.
4,503,294	3/1985	Matsumaru 200/5 A
4.731 .548	3/1988	Ingraham
4.758,735	7/1988	Ingraham
4,831,279	5/1989	Ingraham
4.910,504	3/1990	Eriksson
4,939,382	$7 / 1990$	Gruodis
4,942,631	7/1990	Rosa 4/623
5,012,124	4/1991	Hollaway
5,066,898	11/1991	Miller et al. .
5,087,825	2/1992	Ingraham
5,208,516	5/1993	Saidian
5,233,231	8/1993	Wieth et al. .
5,235,217	8/1993	Kirton 307/326
5,386,219	1/1995	Greanias et al.
5,453,644	9/1995	Yap et al. .
5,572,205	11/1996	Caldwell et al. 341/33

Primary Examiner-William M. Shoop. Jr.
Assistant Examiner-Jonathan Kaplan
Attomey, Agent, or Firm-Price. Heneveld. Cooper. DeWitt \& Litton
[57]

ABSTRACT

A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.

32 Claims, 13 Drawing Sheets

Fig. 2

Fig. 8

Fig. 3A

Fig. 9

Fig. 10

Page 700 of 1714

Fig. 12

Fig. 15C

Fig. 15B

Fig. 16

U.S. Patent

Aug. 18, 1998
Sheet 13 of 13
5,796,183

Fig. 20B ${ }_{2304}$

CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT

BACKGROUND OF THE INVENTION

The present invention relates to an electrical circuit and particularly a capacitive responsive electronic switching circuit used to make possible a "zero force" manual electronic switch.
Manual switches are well known in the art existing in the familiar forms of the common toggle light switch. pull cord switches, push button switches, and keyboard switches among others. The majority of such switches employ a mechanical contact that "makes" and "breaks" the circuit to be switched as the switch is moved to a closed or an open condition.
Switches that operate by a mechanical contact have a number of well known problems. First, mechanical movements of components within any mechanism make those components susceptible to wear, fatigue, and loosening. This is a progressive problem that occurs with use and leads to eventual failure when a sufficient amount of movement has occurred.
Second, a sudden "make" or "break" between conductive contacts typically produces an electrical arc as the contacts come into close proximity. This arcing action generates both radio frequency emissions and high frequency noise on the line that is switched.

Third, the separation between contacts that occurs on each break. exposes the contact surfaces to corrosion and contamination. A particular problem occurs when the arc associated with a "make" or "break" occurs in an oxidizing atmosphere. The heat of the arc in the presence of oxygen facilitates the formation of oxides on the contact surfaces. Once exposed, the contact surfaces of mechanical switches are also vulnerable to contaminants. Water borne contaminants such as oils and salts can be a particular problem on the contact surfaces of switches. A related problem occurs in that the repeated arcing of mechanical contact can result in a migration of contact materials away from the area of the mechanical contact. Corrosion, contamination, and migration operating independently or in combination often lead to eventual switch failure where the switch seizes in a closed or opened condition.

An additional problem results from the mechanical force required in operating a mechanical switch. This problem occurs in systems where a human operator is required to repetitively operate a given switch or a number of switches. Such repetitive motions commonly occur in the operation of electronic keyboards such as those used with computers and in industrial switches such as used in forming and assembly equipment among other applications. A common type of industrial switch is the palm button seen in pressing and insertion equipment. For safety purposes, the operator must press the switch before an insertion or pressing can occur. This ensures that the operators hand(s) is(are) on the button (s) and not in the field of motion of the associated machinery. It also ensures that the mechanical motion occurs at a desired and controllable point in time. The difficulty arises from the motion and force required of the operator. In recent years, it has been noted that repeated human motions can result in debilitating and painful wear on joints and soft tissues yielding arthritis like symptoms. Such repetitive motion may result in swelling and cramping in muscle tissues associated with conditions such as Carpal Tunnel Syndrome. Equipment designers combat these Repetitive Motion or Cumu-
lative Trauma Disorders by adopting ergonomic designs that more favorably control the range. angle. number, and force of motions required of an operator as well as the number of the operator's muscle groups involved in the required 5 motions. Prosthetics and tests are used as well to provide strain relief for the operator's muscles. joints, and tendons.

In mechanical switches. the force required to actuate the switch may be minimized by reducing spring forces and frictional forces between moving parts. However, reducing such forces makes such switches more vulnerable to failure. For instance. weaker springs typically lower the pressure between contacts in a "make" condition. This lower contact pressure increases the resistance in the switch which can lead to fatal heating in the switch and/or loss of voltage applied to the switched load. Reducing frictional forces in the switch by increasing the use of lubricants is undesirable because the lubricants can migrate and contaminate the contact surfaces. A switch designer may also reduce friction by providing looser fits between moving parts. However, looser fits tend to increase wear and contribute to earlier switch failure. A designer can also reduce friction by using higher quality, higher cost. surface finishes on the parts. Thus, as apparent from the foregoing description. measures taken to reduce actuator force in mechanical switch parts generally reduce the reliability and performance of the switch and/or increase the cost of the switch.
In applications such as computer keyboards or appliance controls. the electric load switched by a given switch can be quite low in terms of current and/or voltage. In such cases 30 it is possible to use low force membrane switches such as described in U.S. Pat. No. 4.503.294. Such switches can relieve operator strain and are not as susceptible to arcing problems because they switch small loads. However, the flexible membrane remains susceptible to wear, corrosion. 35 and contamination. Although such switches require very low actuation force, they are still mechanically based and thus suffer from the same problems as any other mechanical switch.

A more recent innovation is the development of "zero force" touch switches. These switches have no moving parts and no contact surfaces that directly switch loads. Rather. these switches operate by detecting the operator's touch and then use solid state electronics to switch the loads or activate mechanical relays or triacs to switch even larger loads. 45 Approaches include optical proximity or motion detectors to detect the presence or motion of a body part such as in the automatic controls used in urinals in some public rest rooms or as disclosed in U.S. Pat. No. 4,942,631. Although these non-contact switches are by their very nature truly zero 50 force, they are not practical where a multiplicity of switches are required in a small area such as a keyboard. Among other problems, these non-contact switches suffer from the comparatively high cost of electro-optics and from false detections when the operator's hand or other body part uninten55 tionally comes close to the switch's area of detection. Some optical touch keyboards have been proposed. but none have enjoyed commercial success due to performance and/or cost considerations.

A further solution has been to detect the operator's touch 60 via the electrical conductivity of the operator's skin. Such a system is described in U.S. Pat. No. 3.879,618. Problems with this system result from variations in the electrical conductivity of different operators due to variations in sweat. skin oils. or dryness, and from variable ambient conditions 5 such as humidity. A further problem arises in that the touch surface of the switch that the operator touches must remain clean enough to provide an electrical conductivity path to
the operator. Such surfaces can be susceptible to contamination. corrosion, and/or a wearing away of the conductive material. Also, these switches do not work if the operator is wearing a glove. Safety considerations also arise by virtue of the operators placing their body in electrical contact with the switch electronics. A further problem arises in that such systems are vulnerable to contact with materials that are equally or more conductive than human skin. For instance, water condensation can provide a conductive path as good as that of an operator's skin. resulting in a false activation.

A common solution used to achieve a zero force touch switch has been to make use of the capacitance of the human operator. Such switches, which are hereinafter referred to as capacitive touch switches, utilize one of at least three different methodologies. The first method involves detecting RF or other high frequency noise that a human operator can capacitively couple to a touch terminal when the operator makes contact such as is disclosed in U.S. Pat. No. 5.066. 898. One common source of noise is 60 Hz noise radiated from commercial power lines. A drawback of this approach is that radiated electrical noise can vary in intensity from locale to locale and thereby cause variations in switch sensitivity. In some cases. devices implemented using this first method, rely on conductive contact between the operator and the touch terminal of the switch. As stated. such surfaces are subject to contamination. corrosion. and wear and will not work with gloved hands. An additional problem can arise in the presence of moisture when multiple switches are employed in a dense array such as a keyboard. In such instances, the operator may touch one touch terminal, but end up inadvertently activating others through the path of conduction caused by the moisture contamination.

A second method for implementing capacitive touch switches is to couple the capacitance of the operator into a variable oscillator circuit that outputs a signal having a frequency that varies with the capacitance seen at a touch terminal. An example of such a system is described in U.S. Pat. No. $5,235,217$. Problems with such a system can arise where conductive contact with the operator is required and where the frequency change caused by a touch is close to the frequency changes that would result from unintentionally coming into contact with the touch terminal.

Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. $4,758,735$ and U.S. Pat. No. 5,087.825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to ground via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal. A major advantage of this methodology is that the operator need not come in conductive contact with the touch terminal but rather only in close proximity to it. A further advantage arises in that the system does not rely upon radiated emissions picked up by the operator's body which can vary with locale. but relies instead upon the human body's capacitance, which can vary over an acceptable range of 20 pF to 300 pF .

An additional consideration in using zero force switches resides in the difficulties that arise in trying to employ dense arrays of such switches. Touch switches that do not require physical contact with the operator but rather rely on the
operator's close proximity can result in unintended actuations as an operator's hand or other body part passes in close proximity to the touch terminals. Above-mentioned U.S. Pat. No. 5.087 .825 employs conductive guard rings around the conductive pad of each touch terminal in an effort to decouple adjacent touch pads and prevent multiple actuations where only a single one is desired. In conjunction with the guard rings, it is also possible to adjust the detection sensitivity by adjusting the threshold voltage to which the sensed voltage is compared. The sensitivity may be adjusted in this manner to a point where the operator's body part, for instance, a finger. has to entirely overlap a touch terminal and come into contact with its dielectric facing plate before actuation occurs. Although these methods (guard rings and sensitivity adjustment) have gone a considerable way in allowing touch switches to be spaced in comparatively close proximity, a susceptibility to surface contamination remains as a problem. Skin oils, water, and other contaminants can form conductive films that overlay and capacitively couple adjacent or multiple touch pads. An operator making contact with the film can then couple multiple touch pads to his or her body capacitance and it's capacitive coupling to ground. This can result in multiple actuations where only one is desired. Small touch terminals placed in close proximity by necessity require sensitive detection circuits that in some cases are preferably isolated from interference with the associated load switching circuits that they activate.

As mentioned, in industrial controls, switches can be used to control actuation time and to ensure that the operator's hand(s) or other body part(s) are out of the field of motion of associated machinery. A common type of switch used in this application is the palm button. The button is large enough so that the operator can rapidly bring his or her hand into contact with the button without having to lose the time that would be taken in acquiring and lining up a finger with a smaller switch. Zero force touch switches are also desirable in this application as Repetitive Motion or Cumulative Trauma Disorders have been a problem with operator's utilizing palm buttons-especially those palm buttons that must be actuated against a spring resistance. In this area capacitive touch switches have also been employed. U.S. Pat. No. 5,233,231 is an example of such an implementation. Due to the proximity of machinery with the potential to cause injury, false actuations are a particular liability in such applications. Capacitive touch switches that exhibit vulnerability to radiated electromagnetic noise or that operate off operator proximity have the potential to actuate when the operator's hand(s) is not at the desired location on the palm button(s). In general. this is addressed by the use of redundancies. In U.S. Pat. No. 5.233.231, a separate detector is used to measure RF noise and disable the system to a safe state if excessive RF noise is present. Other systems such as UltraTouch vended by Pinnacle Systems. Inc. use redundant sensing methodologies. In UltraTouch, both optical and capacitive sensors are used and actuation occurs only when both sensor types detect the operator's hand at the desired location. These implementations have a number of disadvantages. In the case of the RF noise detection system, the system is unusable in the presence of RF noise. This forces the user to employ a backup mechanical switch system or accept the loss of function when RF noise is present. The second system is less reliable and more expensive because it requires two sensor systems to accomplish the same task. i.e.. detect the operator. Such system may also suffer from problems inherent in any optical system. namely. susceptibility to blockages in the optical path and the need to achieve and maintain specific optical alignments. A further problem
is that this system considerably constrains the angle and direction of motion that the operator must use in activating the switch.
Currently, there are several zero force palm buttons in the market. These products utilize optical and/or capacitive coupling to activate a normally closed (NC) or a normally open (NO) relay, and thereby switching $110 \mathrm{~V} \mathrm{AC}, 220 \mathrm{~V}$ AC. or 24 V DC to machine controllers. The UltraTouch by Pinnacle Systems Inc. uses two sensors (infrared \& capacitive) with isolated circuits to activate a relay when a machine operator inserts his hand into a U -shaped sensor actuation tunnel. The company claims that by permitting the machine operator to activate the machine with no force or pressure and with the operator's hand and wrist in the ergonomic neutral position (i.e. 0° wrist joint angle and 100% hand power positions as shown in FIG. 1.0-1), hand. wrist, and arm stresses are minimized and contributing elements to Carpal Tunnel Syndrome are negated. After a machine cycle is initiated. the operator must maintain an initial posture until the cycle is completed. A typical cycle time lasts approximately one to two seconds and is repeated about 3000 times daily. This adds up to about one hour to one hour and a half per day while the operator is in the posture. While this module reduces stress on wrist and hand, it strains the muscles in the forearm. Also, because of limited space permitted for the operator to insert his hand, it stresses the operator mentally and reduces productivity by causing fatigue. Furthermore, the infrared emitters and detectors rely on a clean path between the transmitter and receiver and will not operate properly if contaminants block the beam of light.

SUMMARY OF THE INVENTION

The present invention overcomes the above problems by using the method of sensing body capacitance to ground in conjunction with redundant detection circuits. Additional improvements are offered in the construction of the touch terminal (palm button) itself and in the regime of body capacitance to ground detection which minimizes sensitivity to skin oils and other contaminants. The invention also allows the operator to utilize the system with or without gloves which is a particular advantage in the industrial setting.

The specific touch detection method of the present invention has similarities to the devices of U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. However, significant improvements are offered in the means of detection and in the development of an overall system to employ the touch switches in a dense array and in an improved zero force palm button. The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination from materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. The circuitry of the present invention minimizes the force required in human operator motions and eliminates awkward angles and other constraints required in those motions. The outer surface of the touch switch typically consists of a continuous dielectric layer such as glass or polycarbonate with no mechanical or electrical feed-throughs. The surface can be shaped to have no recesses that would trap or hold organic material. As a result it is easily cleaned and kept clean and so is ideal for hygienic applications such as medical or food processing equipment.

In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads. Susceptibility to variations in supply voltage and noise are minimized by use of a floating common and supply that follow the oscillator signal to power the detection circuit. The enhanced sensitivity allows the use of a 26 V or lower amplitude oscillator signal applied to the touch terminal and detection circuit. This lower voltage (as compared to the device of U.S. Pat. No. 4.758. 735) obviates the need for expensive UL listed higher voltage construction measures and testing to handle what would otherwise be large enough voltages to cause safety concerns. A further advantage of the present invention is seen in the manner in which the touch terminal detection circuit is interfaced to the touch terminals and to external control systems. A dedicated microprocessor referenced to the floating supply and floating common of the detection circuit maybe used to cost effectively multiplex a number of touch terminal detection circuits and multiplex the associated touch terminal output signals over a two line optical bus to a dedicated microprocessor referenced to a fixed supply and ground. An additional advantage of the microprocessor is an expanded ability to detect faults, i.e. a pad that is touched for an excessive amount of time that is known a priori to be an unlikely mode of operation or two or more pads touched at the same time or in an improper order. Additionally, the microprocessor can be used to distinguish desired multiple pad touches in simultaneous or sequential modes. i.e. two or more switches touched in a given order within a given amount of time. The microprocessor can be used to perform system diagnostics as well. The microprocessor also allows the use of visual indicators such as LEDs or annunciators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches. The second microprocessor may be used to communicate with the user's control system. Additional features include a "sleep mode" to minimize power consumption during periods of non-use or power brown outs, and redundant control circuits to facilitate "fail to safe" operation. Another improvement is offered in a means to move much of the cost of the system into simplified custom integrated circuits that allow ease of sensitivity adjustment and assembly.

In a second preferred embodiment. an improved palm button is featured. Through the use of a dielectric cover, a large metallic touch terminal can be used that differentiates between the touch of a finger or partial touch and the full touch of a palm. In this way the system avoids false triggers due to inadvertent finger touches or brushing contact with the palm prior or after an intended touch. The second embodiment also features redundant control circuits to facilitate "fail to safe" operation.

To achieve these and other advantages. and in accordance with the purpose of the invention as embodied and described herein, the capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater. an input touch 5 terminal defining an area for an operator to provide an input by touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and
coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater.

These and other features. objects. and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the written description and claims hereof, as well as by the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an electrical schematic of a testing circuit used to measure the impedance of the human body;

FIG. 2 is an electrical schematic of a testing circuit used to measure the impedance of water;

FIG. 3 is an electrical schematic of an equivalent circuit model for analyzing a human body in contact with glass covered with water;

FIG. 4 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a first embodiment of the present invention;

FIG. 5 is an electrical schematic of a preferred voltage regulator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 6 is an electrical schematic of a preferred oscillator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 7 is an electrical schematic of a preferred floating common generator circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 8 is an electrical schematic of a preferred touch circuit for use in the capacitive responsive electronic switching circuit shown in FIG. 4;

FIG. 9 is a three dimensional bar graph illustrating signal-to-noise ratio vs. body capacitance at $\mathrm{T}=105^{\circ} \mathrm{C}$.;

FIG. 10 is a three dimensional bar graph illustrating signal-to-noise ratio vs. body capacitance at $\mathrm{T}=22^{\circ} \mathrm{C}$.;

FIG. 11 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a second embodiment of the present invention;

FIG. 12 is a block diagram of a capacitive responsive electronic switching circuit constructed in accordance with a third embodiment of the present invention;

FIG. 13 is an electrical schematic of a preferred voltage regulator, oscillator, and touch circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 12;

FIG. 14 is an electrical schematic of preferred driver circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 12;

FIGS. 15A-C are top, side, and front views, respectively. of an example of a flat palm button constructed in accordance with the present invention;

FIG. 16 is a cross-sectional view of an example of a dome-shaped palm button constructed in accordance with the present invention;

FIG. 17 is an electrical schematic of a touch circuit of the present invention implemented in a custom integrated circuit;

FIG. 18 is an electrical schematic of an oscillator having a sleeper circuit for use in the capacitive responsive electronic switching circuits of the present invention; invention operates at a higher frequency than prio present invention operates at a higher frequency than prior
touch sensing circuits. A move to high frequency operation (>50 to 800 kHz) is not a benign choice relative to the lower frequency (60 to 1000 Hz) operation seen in existing art such as U.S. Pat. No. 4.758.735 and U.S. Pat. No. 5,087.825. 5 Higher frequencies require generally more costly, higher speed parts, and often results in the added cost of special design measures to minimize electronic emissions and the introduction of high frequency noise on power supply lines. The preference for using such higher frequencies is based on 0 a study performed to determine if high frequency operation would allow a touch of an operator and conduction via surface contamination films. such as moisture. providing a conductive path from a non-touched area to the touched area. The study also determined whether a high frequency 25 touch circuit could operate over a sufficiently wide temperature range, an assortment of overlying dielectric layer thicknesses and materials, and in the presence of likely power supply fluctuations. The following calculations and measurements are the results of this study. The results summa0 rize the investigation conducted to reduce crosstalk due to condensation of water on the dielectric member (glass). By increasing the frequency of operation, the impedance of the body-glass combination is reduced as compared to the impedance of water between the touch pads.
The equivalent circuit of body impedance was measured using the testing circuit 10 shown in FIG. 1. Testing circuit 10 includes an oscillator 20 coupled between ground plate and a $100 \mathrm{k} \Omega$ series resistor 22 and in parallel with a $10 \mathrm{M} \Omega$ resistor 24 , a 20 pF capacitor 26 , and contacts for connecting 40 to a human body identified in the figure as an impedance load 15 having an impedance Z_{B} representing the body's impedance.

Two types of measurements were taken: one with the person under test standing on a large ground plane i.e.. concrete slab; and another while standing on a subfloor. The subfloor was used to simulate a typical northern home, i.e., wood joists with plywood sheeting. Carpeting was used as an added insulation layer. Table 1 below shows the measured body resistance and capacitance for five individuals.

TABLE 1

CONCRETE SLAB	CONCRETE SLAB	SUBFLOOR	SUBFLOOR
$1.4 \mathrm{k} \Omega$	100 pF	$1.7 \mathrm{k} \Omega$	73 pF
$1.4 \mathrm{k} \Omega$	217 pF	$1.9 \mathrm{k} \Omega$	78 pF
$1.3 \mathrm{k} \Omega$	174 pF	$1.9 \mathrm{k} \Omega$	93 pF
$1.2 \mathrm{k} \Omega$	160 pF	$1.6 \mathrm{k} \Omega$	85 pF
$1.0 \mathrm{k} \Omega$	107 pF	$1.4 \mathrm{k} \Omega$	75 pF

60 As apparent from Table 1 above and the discussion to follow, a human body's impedance may be represented by the series combination of a $20-300 \mathrm{pF}$ capacitor and a $1 \mathrm{k}-2 \mathrm{k} \Omega$ resistor.

The impedance of water, which is mainly resistive, was 65 measured using the testing circuit 30 shown in FIG. 2. Testing circuit 30 includes an oscillator 40 coupled in series with a $1 \mathrm{M} \Omega$ resistor 42 and contacts across which water is
applied to define an impedance load 35 having an impedance Z_{w} representing the impedance of water. A true RMS voltage meter 45 is connected across the contacts of the impedance load 35.

The resistance of tap water over a 1×1 inch area and $1 / 32$ inch deep, was measured to be around $160 \mathrm{k} \Omega$.

The following calculation is for resistance of rain water where c is the conductivity for rain:

$$
R=\left(\frac{1}{\operatorname{cin}}\right) \times\left(\frac{L}{A}\right)
$$

where.

$$
\begin{aligned}
& c=128 \times 10^{-6}(\Omega-\mathrm{cm})^{-1} \\
& \operatorname{cin}=c\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)\left(\frac{.0254 \mathrm{~m}}{\mathrm{~m}}\right) \\
& L=1.0 \mathrm{in} \\
& A=(1.0) \times\left(\frac{1}{32}\right)=\frac{1}{32} \mathrm{in}^{2} \\
& \text { therefore, }
\end{aligned}
$$

$$
R=\left(\frac{1}{325.12 \times 10^{-6}}\right) \times\left(\frac{1.0 \mathrm{in}}{\frac{1}{32} \mathrm{in}^{2}}\right)=98.43 \mathrm{k} \Omega
$$

However, the thickness of a layer of water condensed on the surface of glass is much less than $1 / 32$ inch and it's resistance is higher than that of tap water. For design purposes, a resistance value of $1 \mathrm{M} \Omega$ was used to simulate water.

The capacitance of a piece of glass measuring $1 / 2^{11} \times 1 / 2^{11} \times$ $1 / 4^{\prime \prime}$, is approximately 2 pF .
where,

$$
\begin{aligned}
& C=K_{\text {duass }} K_{c} \frac{A\left(\mathrm{~cm}^{2}\right)}{L(\mathrm{~cm})}(\mu F) \\
& K_{a}=0.08842 \times 10^{-6} \text { for vacuum } \\
& 6.0<K_{g \text { gass }}<10 \\
& A=0.25 \mathrm{in}^{2} \\
& L=0.25 \text { in }
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& \mathrm{C}_{\max }=10 \times 0.08842 \times 10^{-6} \times 2.54 \times 10^{-6}=2.25 \mathrm{pF} \\
& \mathrm{C}_{\min }=6 \times 0.08842 \times 10^{-6} \times 2.54 \times 10^{-6}=1.35 \mathrm{pF}
\end{aligned}
$$

Table 2 below shows the dielectric constant for several 50 types of glass:

TABLE 2

TABLE 2	
TYPE OF GLASS	Dielectric Constant (K)
Corning 0010	6.32
Corning 0080	6.75
Coring 0120	6.65
Corning 8870	9.5

The equivalent circuit 50 of body touching the glass with the presence of water is shown in FIG. 3. As shown, the equivalent circuit 50 includes a polycarbon (PCB) plate 55 having at least two pads 57 and 59 formed thereon, a glass plate 60 adjacent to PCB plate 55 , water 65 on glass plate 60 spanning at least two touch pad areas. and a body 70 in

35
Eq. 2
body is represented by a $20-300 \mathrm{pF}$ capacitor 72 coupled at one end to water resistor 68 and glass plate capacitor 62 , and by a $1-2 \mathrm{k} \Omega$ resistor 74 coupled between the other end of capacitor 72 and ground.
Referring to FIG. 3, it can be seen that a human touch opposite pad 57 will couple pad 57 to ground through the capacitance of glass 62 and the series contact with the human body impedance provided by the $20-300 \mathrm{pF}$ capacitance and the $1 \mathrm{k}-2 \mathrm{k} \Omega$ resistance of a typical human body.
15 This will have the effect of pulling any voltage on the pad towards ground. Pad 59 will be similarly effected, however it's coupling to ground will not only be through capacitance 64. and the series capacitance and resistance of the human body, but will also be through the ohmic resistance of water 20 on the glass cover between the proximate location of pad 59 and the touched pad 57. Because the human capacitance is considerably greater than the 2 pF capacitance of the glass. the impedance of the path to ground for pads 57 and 59 will be dominated by the glass and water impedances. If the 25 impedance of the water path is significant compared to that of the glass, then the effect of a touch will be more significant at pad 57 than at pad 59. To overcome the effect of condensation or possible water spills, the impedance of the glass is preferably made as small as is practical com30 pared to the impedance of the water. This allows discrimination between touched and adjacent pads. As the water impedance is primarily resistive and the glass impedance is primarily capacitive, the impedance of the glass will drop with frequency. . 3A shows the maximum and minimum glass impedance as a function of frequency. The maximum and minimum glass impedances shown were computed as follows:

$$
\begin{aligned}
& e_{o}=8.854 \times 10^{-12} C^{2} /\left(\mathrm{nm}^{2}\right) \\
& K_{\text {smin }}=6 \\
& K_{\text {gmax }}=10 \\
& A=0.25 \mathrm{in}^{2} \\
& L=0.25 \mathrm{in} \\
& C_{\text {max }}=K_{g \max } e_{0} A / L C_{\max }=2.249 \mathrm{pF} \\
& C_{\min }=K_{g m i n} e_{0} A / L \quad C_{\text {minn }}=1.349 \mathrm{pF} \\
& Z_{8 \text { min }_{\text {frequency }}}=1 /\left(2 \pi C_{\text {max }} \text { frequency }\right) \\
& Z_{g \text { max frequency }}=1 /\left(2 \pi C_{\text {min }} \text { frequency }\right)
\end{aligned}
$$

As can be seen, at 1 kHz , the capacitive impedance of the 55 glass is much greater than the nominal $1 \mathrm{M} \Omega$ of the water bridge between the pads. As a result, at 1 kHz . there would be little difference in the impedance paths to ground of the two adjacent pads when either is touched. This would result in the voltage on both pads being pulled towards ground by comparable amounts. Conversely. at 100 kHz . the glass impedance drops to approximately $1 \mathrm{M} \Omega$ resulting in the impedance of the path to ground for pad 59 being twice that of the touched pad 57. For cases where background noise and temperature drifts are comparatively small, a 100 kHz oscillator frequency would allow a sufficiently low detection threshold to be set to differentiate between the signal changes induced at both pads by a human touch opposite a
single pad. At 800 kHz . the impedance of the glass drops to $200 \mathrm{k} \Omega$ or lower giving a ratio of a greater than 5 to 1 impedance difference between the paths to ground of the touched pad 57 and adjacent pads 59. In fact, the impedance ratio may exceed 10 to 1 . as illustrated in the calculation below. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidence of inadvertent actuation of adjacent touch pads to that of the touched pad. Ideally, the frequency of operation would be kept at the 800 kHz of the preferred embodiment or even higher. However, as noted earlier, higher frequency operation forces the use of more expensive components and designs. For applications where thermal drift and electronic noise levels are low, operation at or near 100 kHz may be possible. However, at 10 kHz and below. the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the touched pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz . it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Use of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad. However, in cases where there is little or no surface contamination, the frequency of operation can go well below 50 kHz . Ultimately, the frequency chosen will be a tradeoff between the likelihood of surface contamination and the cost of going to higher frequencies to prevent cross talk due to such contamination. The following analysis illustrates one example of how a frequency may be calculated based on the typical parameters used to construct a touch switch and the typical impedance of a contaminant, such as rain water. In the analysis below a 10 to 1 ratio of water to glass impedance is sought.
To eliminate crosstalk due to condensation of water on the glass. the impedance of body $\left(\mathrm{Z}_{B}\right)$ and glass $\left(\mathrm{Z}_{g}\right)$ combination must be much lower than impedance of water (Z_{W}). Since the impedance of glass is much higher than body impedance, Z_{g} will be considered only. Therefore,

$$
10\left|Z_{z}\right|<\left|Z_{W}\right|
$$

where,

$$
\begin{aligned}
& C_{\text {slass }}=2 \mathrm{pF} \mathrm{Z}_{W}=1 \mathrm{M} \Omega \\
& \mathrm{Z}_{\mathrm{g}}=\frac{1}{2 \pi f C_{g}}=\frac{7.96 \times 10^{10}}{f} \\
& 10 \times\left(\frac{7.96 \times 10^{10}}{f}\right)<1 \mathrm{M} \Omega
\end{aligned}
$$

Therefore,

$f>796 \mathrm{kHz}$

Having provided a basis for the use of higher frequencies. the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 V $A C$ line voltage and a line 103 for grounding the circuit. Voltage regulator $\mathbf{1 0 0}$ converts the received $A C$ voltage to a 116. and 118 are preferably diodes having part no. 1N4002
available from LITEON. AC/DC convertor 110 also preferably includes a capacitor 115 for filtering the rectified output of the diodes. Capacitor 115 is preferably a $1000 \mu \mathrm{~F}$ capacitor coupled between output line 119 and ground via line 103.
The 5 V regulator 120 preferably includes a 500Ω resistor 122 coupled between line 119 and 5 V output line 104, and a zener diode 124. a first capacitor 126, and second capacitor 128 all connected and parallel between output power lines 104 and 105. Preferably, zener diode 124 is a 5.1 V zener diode having part no. 1N4733A available from LITEON. first capacitor 126 has a capacitance of $10 \mu \mathrm{~F}$, and second capacitor 128 has a capacitance of $0.1 \mu \mathrm{~F}$.
The 26 V regulator 130 preferably includes a transistor 134 having a collector connected to line 119 via a first resistor 132. a base connected to line 119 via a second resistor 136. and an emitter coupled to the regulated 26 V output power line $\mathbf{1 0 6}$. The 26 V regulator $\mathbf{1 3 0}$ also preferably includes a capacitor 137 and zener diode 138 connected in parallel between the base of transistor 134 and ground line 103. Preferably, first resistor 132 is a $20 \Omega, 0.5 \mathrm{~W}$ resistor, second resistor 136 is a $1 \mathrm{k} \Omega .0 .5 \mathrm{~W}$ resistor, capacitor 137 is a $0.1 \mu \mathrm{~F}$ capacitor, and zener diode 138 is a 27 V .0 .5 W diode having part no. 1N5254B available from LITEON. It will be apparent to those skilled in the art, that various components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the oscillator 200. For example, if the available power is a 110 V AC 60 Hz commercial power line, a transformer may be added to convert the 110 V AC power to 24 V AC. Alternatively, if a DC battery is used, the AC/DC convertor among other components may be eliminated.

A preferred example of an 800 kHz oscillator is shown in FIG. 6. Oscillator 200 preferably includes a square wave generator 210 , which is powered by 5 V regulator 120 via lines 104 and 105 , for generating a 5 V peak square wave having the desired frequency, and a buffer circuit 230 powered by 26 V regulator 130 via line 106 for buffering the output of square wave generator 210 and boosting its peak from 5 V to 26 V while maintaining the preferred frequency. Square wave generator 210 is preferably an astable multivibrator constructed with at least two serially connected invertor gates 212 and 214, and optionally, a third serially connected invertor gate 216. Invertor gates 212. 214 and 216 are preferably provided in a single integrated circuit designated as part 74HC04 available from National Semiconductor. The output of the first invertor gate 212 is coupled to it's input via resistors 218 and 222 and is coupled to the output of the second invertor gate 214 via a capacitor 224 . The input of the second invertor gate 214 is directly connected to the output of the first invertor gate 212 and the output of the second invertor gate 214 is directly connected to the input of the optional third invertor gate 216. To provide an 800 kHz output, resistor 218 preferably has a $10.0 \mathrm{k} \Omega$ value, resistor 222 preferably has a $1.78 \mathrm{k} \Omega$ value, and capacitor 224 is preferably a 220 pF capacitor.

The 5 V peak square wave generated by square wave generator 210 is supplied from either the output of invertor gate 214 or the output of optional invertor gate 216 to the base of a first transistor $\mathbf{2 3 8}$ via a first resistor $\mathbf{2 3 2}$ connected and parallel a capacitor 234. The base of first transistor 238 is connected to the 26 V regulated DC power line 106 via a second resistor 236. The collector of first transistor 238 is connected to 26 V power line 106 via a third resistor 240 and to the base of a second transistor 244. The emitter of first transistor 238 is coupled to ground and to it's own collector and the base of second transistor 244 via a fourth resistor 242. The collector of the second transistor 244 is connected
directly to 26 V power line 106 and the emitter of second transistor 244 is connected to ground via a fifth resistor 246. Second transistor 244 provides the 26 V peak square wave on output line 201, which is connected to it's emitter. In operation, the square wave signal applied to the base of transistor $\mathbf{2 3 8}$ causes the collector of transistor $\mathbf{2 3 8}$ to swing between near to the DC supply 106 voltage and the collector-emitter saturation voltage. Capacitor 234 is provided to improve the turning off of transistor 238. Transistor 244 along with resistors 242 and 246 are used to buffer the square wave signal generated by transistor 238 . In a preferred embodiment. the values of the resistors and capacitor are as follows: first resistor 232 is $5.1 \mathrm{k} \Omega$. capacitor 234 is $0.0047 \mu \mathrm{~F}$, second resistor 236 is $1 \mathrm{M} \Omega$, third resistor 240 is $1.6 \mathrm{k} \Omega$. fourth resistor 242 is $100 \mathrm{k} \Omega$, and fifth resistor 246 is $4.7 \mathrm{k} \Omega$. Preferably. transistors 238 and 244 are those identified as part no. ZTX600 available from ZETEX. In this configuration, the oscillator 200 sources 80 mA to the floating common generator 300 such that together they supply a floating 5 V DC to power touch circuit(s) 400. microcontroller 500, and Schmitt triggered gates 420 (FIG. 8). As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator $\mathbf{2 0 0}$ may be varied from those disclosed above to provide for different oscillator output frequencies. As discussed above, however, oscillator $\mathbf{2 0 0}$ is preferably constructed so as to output a square wave having a frequency of 50 kHz or greater, and more preferably, of 800 kHz or greater. In some cases it may be necessary to use lower gain bandwidth product transistors or filtration to achieve a softer roll-off of the square edges to reduce high frequency noise emissions. When this is done the amplitude of the oscillator voltage can be increased to compensate.

The preferred construction of floating ground generator 300 is shown in FIG. 7 includes a zener diode 310 having a cathode connected to the oscillator output on line 201 and an anode connected to floating ground output line 301 and to ground via resistor 316 and diode 318. Floating ground generator 300 also preferably includes a first capacitor 312 and a second capacitor 314 connected in parallel with zener diode 310. In the preferred embodiment, zener diode $\mathbf{3 1 0}$ is a 5.1 V zener diode identified by part no. 1N4733A available from LITEON, capacitor 312 is a $47 \mu \mathrm{~F}$ tantalum capacitor, capacitor 314 is a $0.1 \mu \mathrm{~F}$ capacitor, resistor 316 is a 270Ω resistor, and diode 318 is a diode identified as part no. 1N914B available from LITEON.

Touch circuit 400, as shown in FIG. 8, preferably includes a transistor 410 having a base connected to touch pad 450 via resistor 413 and line 451, an emitter coupled to oscillator output line 201, and a collector coupled to floating ground line 301 via a pulse stretcher circuit 417 , which includes a resistor 416 and a capacitor 418 connected in parallel. To minimize susceptibility to noise. the physical length of the path between the touch pad 450 and the base of the transistor 410, must be held to a minimum. Additionally, RC filters can be placed in line 401 between the output of the touch circuit 400 and the input of the microcontroller 500 to give additional EMI/RFI immunity. Additionally, the higher the frequency, the higher the gain bandwidth product that is required in transistor 410. The gain bandwidth product must be sufficient to guarantee that the oscillator turns on during oscillator High pulses. A further trade-off is to use higher gain bandwidth product to allow lower oscillator voltages or higher oscillator voltages to all allow a lower gain bandwidth product transistor to be used. The combination of oscillator voltage, frequency and transistor gain bandwidth product that is used will necessarily vary with the cost,
safety and reliability requirements of a given application. The present combination was chosen to keep the oscillator voltage down and allow operation at 800 kHz to minimize cross talk. At higher frequencies a higher gain bandwidth product transistor would be required in both the oscillator 200 and detection 400 circuits. Touch circuit 400 also preferably includes resistor 412 and a diode 414 having an anode connected to the base of transistor 410 and to resistor 413. and a cathode connected to the emitter of transistor 410 and to a resistor 412 connected in parallel with diode 414 between the base and emitter of transistor 410 . The pulse stretcher circuit 417 is identified as such because the sensitivity of the touch circuit may be increased or decreased by varying the resistance of resistor 416. The base of transistor 410 is connected via resistor 413 to line 451 connected to touch pad 450.
Additionally, touch circuit 400 may include at least one Schmitt triggered gate 420 powered by the voltage difference existing between oscillator line 201 and 301, and having an input terminal coupled to the collector of transistor 410 and an output coupled to microcontroller 500 via output line 401. Schmitt triggered invertor gate $\mathbf{4 2 0}$ is optionally provided to improve the rise time of the touch switch output and to buffer the output. Preferably, transistor 410 is part no. BC858CL available from Motorola, resistor 412 is a $12 \mathrm{M} \Omega$ resistor, diode 414 is part no. 1 N 914 B available from Diodes. Inc., resistor 416 is a $470 \mathrm{k} \Omega$ resistor. capacitor 418 is a $0.001 \mu \mathrm{~F}$ capacitor, and resistor 413 is a $10 \mathrm{k} \Omega$ resistor.
As stated above, the operator's body includes a capacitance to ground, which may range in a typical person from between 20 to 300 pF . The base terminal of transistor 410 is coupled to it's emitter by resistor 412 such that unless capacitance is present by the user touching the touch pad 450. transistor 410 will not be forward biased and will not conduct. Thus, when touch pad 450 is not touched, the output signal at the collector terminal of transistor 410 and across pulse stretcher circuit 417 will be zero volts. When. however, a person touches the touch pad 450. that person's body capacitance to ground couples the base of transistor 410 to ground 103 through resistor 413 . thereby forward biasing transistor 410 into conduction. This charges capacitor 418 providing a positive DC voltage with respect to the line 301 and causes the output of the Schmitt trigger 420 to go low. Diode 414 is coupled across the base to emitter junction of transistor $\mathbf{4 1 0}$ to clamp the base emitter reverse bias voltage to -0.7 V and also reduce the forward recovery and turn-on time.

Touch pad 450 includes a substrate on which a plurality of electrically conductive plate members are mounted on one surface thereof. The substrate is an insulator and the plates are spaced apart in order to insulate the plates from one another and from ground. Also, positioned on the substrate is a guard band. generally shown as 460. Guard band $\mathbf{4 6 0}$ is a grid of conductor segments extending between adjacent pairs of plate members. All conductor segments are physically interconnected to define a plurality of spaces with one plate member positioned centrally within each space. Components of the touch circuit may be positioned on the side of substrate opposite plate members and guard band 460.

A planar dielectric member is spaced from the substrate facing plate members. The dielectric member is made from a non-porous insulating material such as polycarbonate or glass. A plurality of electrically conductive spring contacts are sandwiched between the inner surface of the dielectric member and the substrate. An indicia layer may be adhered to the inner surface of the dielectric member to provide an indication of the function of each input portion. glass. water resistance, and body capacitance. The following two conditions were simulated and tested:

1-The maximum body capacitance that does not cause crosswalk when:
Temperature $=105^{\circ} \mathrm{C}$.
Supply Voltage $=36 \mathrm{VDC}$
Glass Capacitance $=2 \mathrm{pF}$
Water Resistance $=330 \mathrm{k}$ to $1 \mathrm{M} \Omega$
2-The minimum capacitance to turn on a switch when:
Temperature $=0^{\circ} \mathrm{C}$.
Supply Voltage $=29 \mathrm{VDC}$
Glass Capacitance $=2 \mathrm{pF}$
3-Operation at room temperature.
Table 4 below shows the signal and noise voltages at the switch output for different values of body capacitance and contamination resistance.

TABLE 4

$\begin{aligned} & \text { CONTAM- } \\ & \text { INATION } \\ & \text { RE- } \end{aligned}$	BODY CAPACIIANCE				
SISTANCE	20 pF	220 pF	330 pF	550 pF	1230 pF
$330 \mathrm{k} \Omega$	$\mathrm{S}: 5.1 \mathrm{~V}$	S: 5.1 V	S: 5.1 V	S: 5.1 V	S: 5.1 V
	N: 2.0 V	N: 4.0 V	N: 4.5 V	N: 4.9 V	N: 5.0 V
$500 \mathrm{k} \Omega$	S: 5.1 V				
	N: 0.2 V	N: 0.6 V	$\mathrm{N}: 0.7 \mathrm{~V}$	N: 0.8 V	N: 0.8 V
$1 \mathrm{M} \Omega$	$\mathrm{S}: 5.1 \mathrm{~V}$	S: 5.1 V	S: 5.1 V	S: 5.1 V	S: 5.1 V
(Condensed Water)	N: 0.1 V	N: 0.1 V	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V	N: 0.1 V
NONE	S: 5.1 V				
	$\mathrm{N}: 10 \mathrm{mV}$				

$\mathrm{S}=$ Signal (TOUCH)
$\mathbf{N}=$ Noise (NO TOUCH)
supply voltage $=36 \mathrm{VDC}$
temperature $=105^{\circ} \mathrm{C}$.
With contamination resistance of $1 \mathrm{M} \Omega$ or more, the circuit is insensitive to body capacitance variations and has a minimum signal-to-noise ratio of -34 dB . With no contamination, signal-to-noise ratio is approximately -54 dB. The graph in FIG. 9 shows the signal-to-noise ratio versus body capacitance. for different values of contamination resistance at $105^{\circ} \mathrm{C}$. The minimum body capacitance to turn on a switch is 20 pF .

At room temperature, crosstalk decreases because of gain drop of transistor 410 . Table 5 below shows that at room temperature, the circuit rejects $250 \mathrm{k} \Omega$ of contamination. independent of body capacitance. Below $250 \mathrm{k} \Omega$, body capacitance will affect crosstalk.

TABLE 5

CONTAM- INATION RE-	BODY CAPACITANCE				
SISTANCE	20 pF	220 pF	330 pF	550 pF	1230 pF
$200 \mathrm{k} \Omega$	S 5.1 V	S: 5.1 V	S: 5.1 V	S: 5.1 V	S: 5.1 V
	$\mathrm{N}: 0.2 \mathrm{~V}$	$\mathrm{N}: 1.0 \mathrm{~V}$	N: 1.2 V	$\mathrm{N}: 1.8 \mathrm{~V}$	N: 2.2 V
$250 \mathrm{k} \Omega$	S: 5.1 V				
	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V	N: 0.5 V	$\mathrm{N}: 0.5 \mathrm{~V}$	N: 0.5 V
$330 \mathrm{k} \Omega$	S: 5.1 V				
	$\mathrm{N}: 0.1 \mathrm{~V}$	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V
$1 \mathrm{M} \Omega$	S: 5.1 V				
(Condensed Water)	$\mathrm{N}: 0.1 \mathrm{~V}$	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V	$\mathrm{N}: 0.1 \mathrm{~V}$	N: 0.1 V
$\mathrm{S}=$ Signal (TOUCH) $\mathrm{N}=$ Noise (NO TOUCH) supply voltage $=36$ VDC temperature $=25^{\circ} \mathrm{C}$.					

The graph of FIG. 10 shows the measured signal-to-noise ratio versus body capacitance, for different contamination resistance values at room temperature. second embodiment of FIG. 11. components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as $\mathbf{9 0 0}_{1}$ through $\mathbf{9 0 0}_{n m}$. which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 900_{1} to $900_{n m}$ by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner. microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 50 between the touch pad $\mathbf{4 5 0}$ and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl. Inc. or Circuit Etching Technics, Inc. can be used 55 for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps.

For this second embodiment, the oscillator $\mathbf{2 0 0}$ of the first embodiment may be slightly modified from that shown in FIG. 6 to include a transistor (not shown) coupled between the oscillator output and ground with it's base connected to microcontroller 600 such that microcontroller 600 may 5 selectively disable the output of oscillator 200 .

The use of a high frequency in accordance with the present invention provides distinct advantages for circuits
such as the multiple touch pad circuit of the present invention due to the manner in which crosstalk is substantially reduced without requiring any physical structure to isolate the touch terminals. Further, the reduction in crosstalk afforded by the present invention, allows the touch terminals in the array to be more closely spaced together.

A third embodiment of the present invention, which provides touch circuit redundancy. is described below with reference to FIGS. 12-14. As shown in FIG. 12. the switching circuit according to the third embodiment includes a voltage regulator 1100 for regulating power supplied by 24 V DC power lines 1101 and 1102 with ground connection 1103. for supplying the regulated power to an oscillator 1200 via lines 1104 and 1107.

Oscillator 1200 supplies a continuous and periodic signal to touch circuits $1400 a$ and $1400 b$ via line 1201. Preferably, the frequency of the oscillator output signal is at least 100 kHz , and more preferably, at least 800 kHz . The two touch circuits $1400 a$ and $1400 b$ are identical in construction and both receive the output of touch terminal 1450 via line 1451. A detailed description of the preferred voltage regulator circuit 1100. oscillator 1200. and touch circuits $1400 a$ and $1400 b$ is provided below with reference to FIG. 13 following the description of the remaining portion of the third embodiment.

The output of the first touch circuit $1406 a$ is supplied to a first driver circuit 1500 via line $1401 a$ while the output of the second touch circuit $1400 b$ is supplied to a second driver circuit 1600 via line 1401b. The two driver circuits 1500 and 1600 are provided to drive first and second serially connected switching transistors 1700 and $\mathbf{1 7 1 0}$. The switching transistors 1700 and 1710 must both be conducting to supply power to a relay switch 1800 . Thus, if one of touch circuits $1400 a$ and $1400 b$ does not detect a touch of touch terminal 1450, one of switching transistors 1700 and 1710 will not conduct and power will not be supplied to relay switch 1800. The preferred construction of driver circuits 1500 and 1600 and relay switch 1800 are described below with reference to FIG. 14.

As shown in FIG. 13. voltage regulator 1100 may be constructed by providing a first capacitor 1110 and a varistor 1112 connected in parallel across input power terminals 1101 and 1102. Preferably, return power terminal 1102 is connected via line 1103 to ground. Varistor 1112 is used to protect the circuit for over-voltage conditions. Also connected in parallel with first capacitor 1110 and varistor 1112. are the serially connected combination of a fuse 1114. a diode 1116, a resistor 1118 and two parallel connected capacitors 1120 and 1122. The voltage regulator 1100 is reverse polarity protected by diode 1116 and current limited by resistor 1118. Capacitors $\mathbf{1 1 2 0}$ and $\mathbf{1 1 2 2}$ provide filtering.

Voltage regulator 1100 further includes a zener diode 1128 having it's cathode connected to a node between resistor 1118 and capacitors 1120 and 1122 and to output power line 1104. The anode of zener diode 1128 is coupled to output power common line 1107 and to ground line 1103 via two serially connected resistors 1124 and 1126. Zener diode 1128 and resistors 1124 and 1126 generate regulated 15 V DC. Two capacitors 1130 and 1132 are connected in parallel with zener diode 1128 between power lines 1104 and 1107. Capacitors 1130 and 1132 provide filtering and decoupling. respectively. Preferably, capacitor 1110 has a capacitance of $1000 \mathrm{pF}, 1000 \mathrm{~V}$, varistor 1112 is part no. S14K25 available from Siemens, fuse 1114 is a $1 / 4 \mathrm{~A}$ fuse, diode 1116 is part no. 1N4002 available from LITEON. resistor 1118 has a resistance of $10 \Omega, 1 / 2 \mathrm{~W}$, capacitor 1120 has a capacitance of $22 \mu \mathrm{~F}, 35 \mathrm{~V}$, capacitor 1122 has a terminal of operational amplifier 1514 is connected to line 1502. which runs between first and second driver circuits

1500 and 1600 and is connected to power line 1104 via a resistor 1626. The output of op amp 1514 is connected to power line 1104 via a resistor 1518 and to the input of a Schmitt trigger invertor gate 1516. The output of Schmitt trigger invertor gate 1516 is connected to the input of a second Schmitt trigger invertor gate 1526 via a resistor 1520. A diode 1522 is connected in parallel with resistor 1520 with it's cathode connected to the output of invertor gate 1516 and it's anode connected to the input of invertor gate 1526 and to power common line 1107 via capacitor 1524. The output of invertor gate 1526 is connected to the base of bipolar PNP switching transistor 1700 via a resistor 1528. The base of transistor 1700 is also connected to power common line 1107 via a capacitor 1532 and to power line 1104 and it's emitter via a resistor 1530.

Preferably. resistor 1510 has a resistance of $10 \mathrm{M} \Omega$, capacitor 1512 has a capacitance of $0.01 \mu \mathrm{~F}$, op amp comparator 1514 is part no. LM393 available from National Semiconductor, invertor gate 1516 is part no. CD40106B available from Harris, resistor 1518 has a resistance of 10 $\mathrm{k} \Omega$. resistor 1520 has a resistance of $1 \mathrm{M} \Omega$. diode 1522 is part no. RLS4448 available from LITEON, capacitor 1524 has a capacitance of $0.22 \mu \mathrm{~F}$. invertor gate 1526 is part no. CD40106 available from Harris, resistor 1528 has a resistance of $12 \mathrm{k} \Omega$, resistor 1530 has a resistance of $100 \mathrm{k} \Omega$. capacitor 1532 has a capacitance of $0.01 \mu \mathrm{~F}$, and transistor 1700 is part no. MMBTA56L available from Motorola.

In second driver circuit 1600, the output line $1401 b$ of second touch circuit $1400 b$ is connected to power common line 1107 via a resistor 1610 and also via a capacitor 1612 connected in parallel therewith. The output line $1401 b$ is also connected to the inverting input terminal of an operational amplifier 1614. The non-inverting input terminal of operational amplifier 1614 is connected to line 1502 , which is connected to power line 1104 via resistor 1626 . The non-inverting input terminal of op amp 1614 is also connected to power common line 1107 via a capacitor 1616 and a resistor 1618, which are connected in parallel. The output of op amp 1614 is connected to power line 1104 via a resistor 1630 and to the coupled inputs of a Schmitt trigger invertor gate 1628. The output of op amp 1614 is also connected to it's non-inverting input terminal via a resistor 1624. The output of Schmitt trigger invertor NAND gate 1628 is connected to the input of a second Schmitt trigger invertor gate 1638 via a resistor 1632. A diode 1634 is connected in parallel with resistor 1632 with it's cathode connected to the output of invertor NAND gate 1628 and it's anode connected to the input of invertor NAND gate 1638 and to power common line 1107 via a capacitor 1636. The output of invertor gate 1638 is connected to the base of switching bipolar PNP transistor 1710 via a resistor 1640. The base of transistor 1710 is also connected to power common line 1107 via a capacitor 1642 and to power line 1104 via a resistor 1644. Second driver circuit 1600 also preferably includes capacitors 1620 and 1622 connected in parallel 55 between it's connections to power lines 1104 and 1107.

Preferably, resistor 1610 has a resistance of $10 \mathrm{M} \Omega$. capacitor 1612 has a capacitance of $0.01 \mu \mathrm{~F}$. op amp comparator 1614 is part no. LM393 available from National Semiconductor, capacitor 1616 has a capacitance of $0.01 \mu \mathrm{~F}$. resistor 1618 has a resistance of $20 \mathrm{k} \mathrm{\Omega}$, capacitor 1620 has a capacitance of $0.1 \mu \mathrm{~F}$, capacitor 1622 has a capacitance of $0.1 \mu \mathrm{~F}$. resistor 1624 has a resistance of $100 \mathrm{k} \Omega$. resistor 1626 has a resistance of $10 \mathrm{k} \Omega$. invertor NAND gate 1628 is part no. CD4093B available from Harris, resistor 1630 has a resistance of $10 \mathrm{k} \Omega$. resistor 1632 has a resistance of 1 $\mathrm{M} \Omega$. diode 1634 is part no. RLS4448 available from
actuation occurs. A further option is to provide one or more LEDs 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the first (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDs to provide feedback to the operator. In industrial or other challenging settings. the housing is made of high strength polycarbonate (or other high strength non-metallic material) to meet high impact and vibration requirements. preferably NEMA 4. A further option is to provide lighting for the switches to allow operation in the dark.

In a variation of the multi-step process. two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step turn-on. Referring to FIGS. 20A-C, the first step to actuate the output relay 2310, is initiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successful completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step turn-on and activation of output relay 2310. The flipping action of the hand in the second step causes the forearm muscles to flex. thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step turn-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated. In this proposed embodiment, the second step provides an added stimulus and reduces operator errors due to mental and physical fatigue. The top cover prevents actuation of two devices by the use of one hand and elbow of the same arm, as required by ANSI Standard B11.19-1990. The enclosure must be a high strength polycarbonate module to meet the high impact and vibration requirements of the industry, preferably NEMA 4. In both embodiments, high frequency switching is used to desensitize the unit against moisture and contaminants that could generate a path between the button and grounded chassis. The palm button may be formed as the flat palm button shown in FIGS. 15A-C or as a dome-shaped palm button shown in FIG. 16. The button is made of a brass plate 1910 (1930) and can be covered with a plastic or glass 1925 (1933) cover or membrane to desensitize the unit even more against contaminants and other inadvertent actuation. The plastic cover 1925 (1933) acts as a dielectric and capacitance is varied as a function of the area of the plastic being touched. Therefore, if button is touched by finger. a much smaller series capacitance is generated as opposed to button being touched by the palm of a hand. This capacitance is placed in series with the capacitance of the body to ground when the button is touched. Since the capacitance of the body to ground is much larger than the capacitance generated by the button, the functionality of the unit is independent of the variations in body capacitance to ground from person to person. The other factor that needs to be considered here is body resistance. If the button is not covered with an insulator such as plastic. the unit would become sensitive to body resistance. Body resistance to ground. changes as a function of moisture in the work area.
skin dryness. floor structure, and shoes. By using a plastic cover. the unit is made insensitive to variations of body resistance and capacitance. The shape of the button is also a factor in sensitivity. If the button is flat. less of the button area would be covered by the palm of the hand as opposed to a dome shape button that matches the contour of the palm. Therefore. if the button is dome-shaped. the unit can be even more desensitized against inadvertent operation.

By providing a large space for hand insertion and switch activation and a flat or dome shape button where the palm of the hand rests while machine cycle is in process. stress on the forearms is ergonomically reduced. The palm button of the present invention can be activated with or without gloves. The zero force palm button of the present invention may be used to activate electric. pneumatic, air clutch, and hydraulic equipment such as punch presses. molding machines, etc.

As shown in FIGS. 15A-C. the flat palm button may include a plastic housing 1917 having an optional metallic enclosure 1922 for surface mounting. The button also may include a flush mount surface 1915 and optional guarding 1920.

The circuit board 1935 used with the palm button of the present invention may be packaged on two printed circuit boards. One board for power and relay and the other for touch switches and relay drivers. The touch circuit on the touch switch board is interfaced to the button through a screw that also holds the button in place. The power/relay board is interfaced to the touch switch board through a three pin right angle connector. Wiring to the unit is done through a seven position terminal block on the power/relay board. The power/relay board is designed for 24 V DC input power and provides two double-throw relay contacts. However, it can be modified to accommodate different power inputs and switch outputs. For example, a transformer may be added to the power board so that the unit is powered $110 \mathrm{VAC} /$ 220 VAC instead of 24 V DC . Also, the relays may be replaced with other outputs such as digital or $4-20 \mathrm{~mA}$ outputs.

The touch circuit components can be integrated in a custom IC 2000, as shown in FIG. 17, to facilitate manufacturing and to reduce cost. Components $413,412,414$, 410,418 , and 420 are similar to those of circuit 400 shown in FIG. 8. Preferably, resistor 2004 has a resistance of 470 $\mathrm{k} \Omega$ and diode 2002 has characteristics similar to part no. 1N4148 available from LITEON. Resistors 2008 and 2006 are used to adjust the sensitivity. Diode 2002 at the output of 420, allows the IC to be used in applications where several touch circuit IC's are multiplexed.
As shown in FIG. 18, a sleep circuit 2100 may be added to the oscillator circuit 200 (FIG. 6) to allow microcontroller 600 to turn off the oscillator circuit 200. The disabling of oscillator circuit 200 is done to reduce drainage of capacitor 126 in the regulator circuit 120 during brown outs. The circuit diagram shown in FIG. 18 is a modified version of circuit 200 in FIG. 6. During normal operation microcontroller 600 pulls the input of gate 2116 to ground and causes the output of gate 2116 to go high (power line 104). Therefore, transistor 2110 is biased on and oscillator $\mathbf{2 0 0}$ is functional. When in a sleep mode. microcontroller 600 sources the input to gate 2116 high and causes the output of gate 2116 to go low which turns off transistor 2110 and pulls the input of gate 212 low. Therefore, the oscillator will stop oscillating and drainage on capacitor $\mathbf{1 2 6}$ decreases considerably.

The above described embodiments were chosen for purposes of describing but one application of the present
invention. It will be understood by those who practice the invention and by those skilled in the art, that various modifications and improvements may be made to the invention without departing from the spirit or scope of the invention as defined by the appended claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal having a dielectric cover defining an area for an operator to provide an input by proximity and touch, an operator's body capacitance to ground as sensed through said input touch terminal varying as a function of the area of said input touch terminal that is proximate the operator's body; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal. wherein said detector circuit includes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent proximity and touch with said input touch terminal.
2. The switching circuit as defined in claim 1, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
3. The switching circuit as defined in claim 1 and further including a DC power supply for supplying power to said oscillator and a ground.
4. The switching circuit as defined in claim 1. wherein said periodic output signal provided by said oscillator is a square wave output signal, said oscillator includes a square wave generator for generating a square wave, and a plurality of active elements coupled to an output of said square wave generator to buffer and improve the shape of the square wave output therefrom.
5. The switching circuit as defined in claim 1, wherein said detector circuit includes a microcontroller and a charge pump circuit coupled between said input touch terminal and said microcontroller.
6. The switching circuit as defined in claim 1, wherein said detector circuit includes a microcontroller and a touch circuit coupled between said input touch terminal and said microcontroller.
7. The switching circuit as defined in claim 6 and further including a plurality of said input touch terminals and a plurality of said touch circuits respectively associated with said input touch terminals.
8. The switching circuit as defined in claim 7. wherein said microcontroller selectively applies said periodic output signals received from said oscillator to each of said touch circuits to separately activate each touch circuit.
9. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal defining an area for an operator to provide an input by proximity and touch;
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and
coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal; and
a floating common generator coupled to said oscillator for receiving said square wave output signal, said floating common generator generating a floating common reference for said detector circuit that is set at a fixed voltage below and tracks the square wave output signal.
10. The switching circuit as defined in claim 9. wherein said detector circuit is powered by said square wave output signal provided by said oscillator and by said floating common reference provided by said floating common generator thereby increasing the sensitivity of said detector circuit to proximity and touching of said touch terminal by an operator's body.
11. The switching circuit as defined in claim 10. wherein said detector circuit includes a microcontroller and a charge pump circuit coupled between said input touch terminal and said microcontroller. by an operator's body. wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance at said touch terminal for higher frequencies.
12. A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or greater;
a touch terminal having a dielectric cover defining an input terminal for coupling to an operator's body capacitance to ground; and
a charge pump circuit coupled to said oscillator for receiving said square wave output signal, and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body, the voltage of said output signal varies as a function of the area of said touch terminal that is proximal or touched by an operator,
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal. for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
13. The proximity and touch controlled circuit as defined in claim 12 and further including a DC power supply for supplying power to said oscillator and a ground.
14. The proximity and touch controlled circuit as defined in claim 12. wherein said oscillator includes a square wave generator for generating a square wave, and a plurality of active elements coupled to an output of said square wave generator to buffer and improve the shape of the square wave output therefrom.
15. The proximity and touch controlled circuit as defined in claim 12, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
16. A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or greater;
a touch terminal defining an input terminal for coupling to an operator's body capacitance to ground;
a charge pump circuit coupled to said oscillator for receiving said square wave output signal. and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body; and
a floating common generator coupled to said oscillator for receiving said square wave output signal, said floating common generator generating a floating common reference for said charge pump circuit that is set at a fixed voltage below and tracks said square wave output signal.
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
17. The proximity and touch controlled circuit as defined in claim 16. Wherein said charge pump circuit is powered by said square wave output signal provided by said oscillator and by said floating common reference provided by said floating common generator thereby increasing the sensitivity of said charge pump circuit to proximity and touching of said touch terminal by an operator's body.
18. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
19. The switching circuit as defined in claim 18, wherein said oscillator provides a periodic output signal having a frequency of 800 kHz or greater.
20. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a dome-shaped touch terminal defining an area for an operator to provide an input by proximity and touch. wherein the dome shape of the touch terminal is constructed to ergonomically fit the palm of a human hand; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground
coupled to said touch terminal when proximal or touched by an operator to provide a control output signal. said detector circuit including means for discriminating between a proximity and touch of said dome-shaped touch terminal by the paim of a human hand and a proximity and touch by a human finger.
21. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a touch terminal defining an area for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal. said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including discriminating means for discriminating between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal.
22. The switching circuit as defined in claim 21, wherein said touch terminal includes a dome-shaped dielectric cover.
23. The switching circuit as defined in claim 21. wherein said touch terminal includes a palm-sized dielectric cover.
24. The switching circuit as defined in claim 23 , wherein said discriminating means determines that a proximity and touch of said touch terminal covers substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with the palm of an operator's hand and determines that a proximity or touch covers less than substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with one of an operator's fingers.
25. The switching circuit as defined in claim 21, wherein said discriminating means discriminates between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal based upon a sensed level of body capacitance to ground proximate said touch terminal.
26. The switching circuit as defined in claim 21, wherein said coupling of capacitance to ground occurs when an operator's body is proximate, but not touching, said touch terminal.
27. A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device. said detector circuit being con-
figured to generate said control output signal when said an operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
28. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when an operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
29. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said first and second touch terminals are adapted to be mounted on different surfaces of the controlled device.
30. The capacitive responsive electronic switching circuit as defined in claim 27, wherein said first and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled device.
31. The capacitive responsive electronic switching circuit as defined in claim 27. Wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled device.
32. The capacitive responsive electronic switching circuit 10 as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that an operator is proximal or touches said first touch terminal.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 5,796,183
DATED : August 18, 1998
INVENTOR(S) : Byron Hourmand

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 5, line 52, "such a" should be --such as--.
Column 9, line 31, before "water" insert --condensed--.
Column 14, line 35 , "is" should be --as--
Column 13, line 65, "it's" should be --its-- .
Column 18, line 38, "references" should be --reference--.
Column 20, line 7, "it's" should be --its-- (both occurrences).
Column 20, line 9, "it's" should be --its--.

Column 20, line 10, "it's" should be --its-- (both occurrences).
Column 20, line 13, "it's" should be --its--
Column 20, line 20, "it's" should be --its--
Column 20, line 39, "it's" should be --its--
Column 20, line 40, "it's" should be --its--.
Column 20, line 46, "it's" should be --its--
Column 20, line 47, "it's" should be --its--.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

```
PATENT NO. : 5,796,183
DATED : August 18,1998
INVENTOR(S) : Byron Hourmand
```

Page 2 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 21, line 8, "it's" should be -its--.
Column 21, line 9, "it's" should be --its--.
Column 21, line 15, "it's" should be -its--
Column 21, line 42, "it's" should be -its--.
Column 21, line 46, "it's" should be -its--.
Column 21, line 47, "it's" should be -its--.
Column 21, line 56, "it's" should be --its--.
Column 22, line 8, "it's" should be --its--.
Column 22, line 13, "schmitt" should be --Schmitt--,
Column 26, lines 22-27, after "microcontroller." delete "by an operator's body . . . higher frequencies."

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 5,796,183
Page 3 of 3
DATED : August 18, 1998
INVENTOR(S) : Byron Hourmand

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 27, line 44, after "electrical" insert --path--.
Column 27, line 45, delete "path".
Column 29, line 1, after "when" delete "said".

Signed and Sealed this

Eleventh Day of May, 1999

Attest:

Q. TODD DICKINSON

UNITED STATES PATENT AND TRADEMARK OFFICE

 CERTIFICATE OF CORRECTION

 CERTIFICATE OF CORRECTION}

PATENT NO. : 5,796,183
APPLICATION NO. : 08/601268
DATED : August 18, 1998
INVENTOR(S) : Byron Hourmand et al.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, Item (75) Inventor, should read --(75) Inventors: Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)--.

Signed and Sealed this
Eleventh Day of October, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

(12) EX PARTE REEXAMINATION CERTIFICATE (9614th) United States Patent
 (10) Number: US 5,796,183 C1
 Hourmand et al.
 (45) Certificate Issued: Apr. 29, 2013

(54) CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT
(75) Inventors: Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)
(73)

Assignee: Nartron Corporation, Reed City, MI
Reexamination Request:
No. 90/012,439, Aug. 17, 2012

Reexamination Certificate for:

Patent No.:	$\mathbf{5 , 7 9 6 , 1 8 3}$
Issued:	Aug. 18, 1998
Appl. No.:	$\mathbf{0 8 / 6 0 1 , 2 6 8}$
Filed:	Jan. 31, 1996

Certificate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) Int. Cl.

H03K 17/96
(2006.01)

H03K 17/94
(2006.01)
(52) U.S. Cl.

USPC
307/116; 307/125; 307/139; 361/181

(58) Field of Classification Search
 None
 See application file for complete search history.
 References Cited

To view the complete listing of prior art documents cited during the proceeding for Reexamination Control Number 90/012,439, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.
Primary Examiner - Linh M. Nguyen

ABSTRACT

A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a frequency of 50 kHz or greater, an input touch terminal defining an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.

EX PARTE REEXAMINATION CERTIFICATE ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the patent; matter printed in italics indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:

Claims 18,27,28 and $\mathbf{3 2}$ are determined to be patentable as amended.

New claims 33-39 are added and determined to be patentable.

Claims 1-17, 19-26 and 29-31 were not reexamined.
18. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad;
[a] the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by [an] the operator to provide a control output signal,
wherein said predefined frequency of said oscillator [is] and said signal output frequencies are selected to decrease [the] a first impedance of said dielectric substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares [the] a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a 55 predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals 60 comprising first and second input touch terminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said

a detect saidor circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
38. The capacitive responsive electronic switching circuit as defined in claim 37, wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.
39. The capacitive responsive electronic switching circuit 5 as defined in claim 37,
wherein said detector circuit compares a sensed body capacitance change caused by the body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch ter- 10 minal to a threshold level to generate the control output signal, and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
3. \square The assignee of an undivided interest in the entirety (a complete assignment from one of the joint inventors was made). The other parties, including inventors, who together own the entire right, title, and interest are:

Additional Statement(s) by the owner(s) holding the balance of the interest must be submitted to account for the entire right, title, and interest.
4. \square The recipient, via a court proceeding or the like (e.g., bankruptcy, probate), of an undivided interest in the entirety (a complete transfer of ownership interest was made). The certified document(s) showing the transfer is attached.

The interest identified in option 1,2 or 3 above (not option 4) is evidenced by either (choose one of options A or B below):
A. \square An assignment from the inventor(s) of the patent application/patent identified above. The assignment was recorded in the United States Patent and Trademark Office at Reel \qquad Frame \qquad , or for which a copy thereof is attached.
B. \checkmark A chain of title from the inventor(s), of the patent application/patent identified above, to the current assignee as follows:

1. From:

Byron Hourmand
To: Nartron Corporation
The document was recorded in the United States Patent and Trademark Office at
Reel 008254 , Frame 0496 , or for which a copy thereof is attached.
2. From:

Byron Hourmand
\qquad

The document was recorded in the United States Patent and Trademark Office at Reel 008443 , Frame 0749 , or for which a copy thereof is attached.

$$
\text { [Page } 1 \text { of } 2]
$$

This collection of information is required by 37 CFR3.73(b). The information is required toobtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentialityis governed by35 U.S.C. 122 and 37 CFR1.11 and1.14. Thiscollection is estimated to take 12 minutes to complete, including gathering, preparing, and submittingthe completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent tothe Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS.SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

STATEMENT UNDER 37 CFR 3.73(c)

The undersigned (whose title is supplied below) is authorized to act on behalf of the assignee.
/Brian A. Carlson/

Signature

Brian A. Carlson
Printed or Typed Name

December 24, 2013
Date
37,793
Title or Registration Number

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that yoube given certain informationin connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, pleasebe advised that: (1) the general authority forthe collection of thisinformation is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and(3) the principal purpose forwhich the information isused by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent applicationor patent. If you do not furnish the requested information,the U.S. Patent and Trademark Office may not be able to process and/or examineyour submission, which may result in termination of proceedings or abandonment of the applicationor expiration of the patent.

The informationprovided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the informationin order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an InternationalApplication filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, arecord may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from thissystem of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

POWER OF ATTORNEY TO PROSECUTE APPLICATIONS BEFORE THE USPTO

I hereby revoke all previous powers of attorney given in the application identified in the attached statement under 37 CFR 3.73(b).
I hereby appoint:
\square
Practitioners associated with the Customer Number:
 ORPractitioner(s) named below (if more than ten patent practitioners are to be named, then a customer number must be used):

as attorney(s) or agent(s) to represent the undersigned before the United States Patent and Trademark Office (USPTO) in connection with any and all patent applications assigned only to the undersigned according to the USPTO assignment records or assignment documents attached to this form in accordance with 37 CFR 3.73 (b).
Please change the correspondence address for the application identified in the altached statement under 37 CFR 3.73 (b) to:

Assignee Name and Address:
UUSI, LLC
5000 North US Highway 131, Twenty-Second Floor
Reed City, Michigan 49677
A copy of this form, together with a statement under 37 CFR 3.73 (b) (Form PTOISB/96 or equivalent) is required to be filed in each application in which this form is used. The statement under 37 CFR 3.73 (b) may be completed by one of the practitioners appointed in this form if the appointed practitioner is authorized to act on behalf of the assignee, and must identify the application in which this Power of Attorney is to be filed.

This collection of information is required by $37 \mathrm{GFR} 1.31,1,32$ and 1.33 . The information is required to obtain or retain a benefit by the public which is to flie (and by the USPTO to process) an application. Confidentiafity is govemed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 3 minutes to complete, including gatheting, preparing, and subniting the compteted application form to the USPTO, Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andfor suggestions for reducing this burcen, should be sent to the Chief information officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandia, VA 223131450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P, O. Box 1450 , Aloxandria, VA 22313-1450.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

U.S. Patent No.:	$5,796,183$	B1	\S	Docket No.:
Issued:	August 18, 1998	\S	Inventors:	Hourmand et al.
Filed:	January 31, 1996	\S	Patent Owner:	UUSI, LLC
Control No.	TBD	\S	Examiner:	TBD
For: \quad Capacitive Responsive Electronic Switching Circuit				
Commissioner for Patents				
P.O. Box 1450 Alexandria, VA 22313-1450				

INFORMATION DISCLOSURE STATEMENT

Dear Sir:
Patent Owner wishes to bring to the attention of the U.S. Patent and Trademark Office the information noted on the enclosed form, which may be considered material to the reexamination of the above-identified patent. Patent Owner makes no assertion that a prior art search has been made or that any of the cited references are prior art under 35 U.S.C. § 102. In some instances, publications that are not prior art under 35 U.S.C. § 102 have been cited as they may discuss prior art systems and may provide insight into the state of the art at the time of the invention.

Respectfully submitted,

December 24, 2013
Date

SLATER \& MATSIL, L.L.P. 17950 Preston Rd., Ste. 1000
Dallas, Texas 75252
Tel.: 972-732-1001
docketing@slater-matsil.com

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

U.S.PATENTS Remove						
Examiner Initial*	$\begin{aligned} & \text { Cite } \\ & \text { No } \end{aligned}$	Patent Number	Kind Code ${ }^{1}$	Issue Date	Name of Patentee or Applicant of cited Document	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear
	1	4766368		1988-08-23	Cox	
	2	4825385		1989-04-25	Dolph, et al.	
	3	5305017		1994-04-19	Gerpheide	
	4	5337353		1994-08-09	Boie, et al.	
	5	5463388		1995-10-31	Boie, et al.	
	6	5565658		1996-10-15	Gerpheide, et al.	
If you wish to add additional U.S. Patent citation information please click the Add button. Add						
U.S.PATENT APPLICATION PUBLICATIONS Remove						
Examiner Initial*	Cite No	Publication Number	Kind Code ${ }^{1}$	Publication Date	Name of Patentee or Applicant of cited Document	Pages,Columns,Lines where Relevant Passages or Relevant Figures Appear

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor ${ }^{\text {B }}$	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

6	HLADY, A.M., "A touch sensitive X-Y position encoder for computer input," Proceedings of the Fall Joint Computer Conference, November 18-20, 1969, pp. 545-551.	\square
7	SASAKI, L., et al., "A Touch-Sensitive Input Device," International Computer Music Conference Proceedings, November 1981, pp. 293-296.	\square
8	CALLAHAN, J., et al., "An Empirical Comparison of Pie vs. Linear Menus," Human Factors in Computing Systems: Chicago '88 Conference Proceedings: May 15-19, 1988, Washington DC: Special Issue of the SIGCHI Bulletin, New York, Association for Computing Machinery, pp. 95-100.	\square
9	CASIO, AT-550 Advertisement, published in Popular Science by On The Run, February 1984, p.-129.	\square
10	CASIO, "Module No. 320," AT-550 Owner's Manual, at least as early as December 1984, 14 pages.	\square
11	SMITH, S.D., et al., "Bit-slice microprocessors in h.f. digital communications," The Radio and Electronic Engineer, Vol. 51, No. 6, June 1981, pp. 299-301.	\square
12	BOIE, R.A., "Capacitive Impedance Readout Tactile Image Sensor," Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, March 1984, pp. 370-372.	\square
13	THOMPSON, C., "Clive Thompson on The Breakthrough Myth," Wired Magazine, http://www.wired.com/ magazine/2011/07/st_thompson_breakthrough, August 2011, 3 pages.	\square
14	"Innovation in Information Technology," National Research Council of the National Academies, Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, http://www.nap.edu/catalog/10795.html, 2003, 85 pages.	\square
15	BUXTON, W., et al., "Issues and Techniques in Touch-Sensitive Tablet Input," Proceedings of SIGGRAPH '85, Vol. 19 No. 3, July 22-26, 1985, pp. 215-223.	\square
16	BUXTON, W., et al., "Large Displays in Automotive Design," IEEE Computer Graphics and Applications, July/August 2000, pp. 68-75.	\square

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor ${ }^{\text {B }}$	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

17	BUXTON, W., "Lexical and Pragmatic Considerations of Input Structures," ACM SIGGRAPH Computer Graphics, Vol. 17, No. 1, January 1983, pp. 31-37.	\square
18	BETTS, P., et al., "Light Beam Matrix Input Terminal," IBM Technical Disclosure Bulletin, October 1966, pp. 493-494.	\square
19	BUXTON, B., "Multi-Touch Systems that I Have Known and Loved," downloaded from http://www.billbuxton.com/ multitouchOverview.html, January 12, 2007, 22 pages.	\square
20	HEROT, C.F., et al., "One-Point Touch Input of Vector Information for Computer Displays," Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, August 23-25, 1978, pp. 210-216.	\square
21	WOLFELD, J.A., "Real Time Control of a Robot Tacticle Sensor," University of Pennslyvania, Department of Computer \& Information Science, Technical Reports (CIS), Master Thesis, http://repository.upenn.edu/cis reports/678, August 1981, 68 pages.	\square
22	LEWIS, J.R., "Reaping the Benefits of Modern Usability Evaluation: The Simon Story," Advances in Applied Ergonomics: Proceedings of the 1st International Conference on Applied Ergonomics, ICAE May 21-24, 1996, pp. 752-755.	\square
23	NAKATANI, L.H., et al., "Soft Machines: A Philosophy of User-Computer Interface Design," Proceedings of the SIGCH Conference on Human Factors in Computing Systems, December 1983, Chicago, pp. 19-23.	\square
24	RUBINE, D.H., "The Automatic Recognition of Gestures," Carnegie Mellon University, Master Thesis, CMU-CS-91-202, December, 1991, 285 pages.	\square
25	KURTENBACH, G.P., "The Design and Evaluation of Marking Menus," University of Toronto, Graduate Department of Computer Science, Master Thesis, May 1993, 201 pages.	\square
26	HOPKINS, D., "The Design and Implementation of Pie Menus," originally published in Dr. Dobb's Journal, December 1991, lead cover story, user interface issue, reproduced at www.DonHopkins.com, 8 pages.	\square
27	BUXTON, B., "The Long Nose of Innovation," Bloomberg Businessweek, Innovation \& Design, January 2, 2008, 3 pages, downloaded from: http://www.businessweek.com/stories/2008-01-02/the-long-nose-of-innovationbusinessweek business-news-stock-market-and-financialadvice.	\square

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Not for submission under 37 CFR 1.99)	Application Number	
	Filing Date	
	First Named Inventor ${ }^{\text {B }}$	Byron Hourmand
	Art Unit	
	Examiner Name	
	Attorney Docket Number	5796183RX

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).

See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4(d) for the form of the signature.

Signature	/Brian A. Carlson/	Date (YYYY-MM-DD)	2013-12-24
Name/Print	Brian A. Carlson	Registration Number	37,793

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

31.1: Invited Paper: A Touching Story: A Personal Perspective on the History of Touch mtertaces Past and Future
 Bill Buxton
 Microsoft Research, One Microsoft Way, Redmond, WA, USA

Abstract

Absctract Towh screms have a $40+$ year history. Multi-tonch and some of the geshres associated with it, are over 25 years old. This poper aspimes to prowde some perspectue on the root of these technologies, awd whare some future-relevant maghts from those expertences. Since the scope of the article does not pernit a comprehensine sume, emphasis has been given to prolects and hanghts that are relewnt, hat less-woll hown.

1. Introduction

The amouncement of two new products in 2007, the Apple iPhome and Microsot Surface, gave a serious boost to interest in tonch intertaces -- especially those that incorporate multi-touch. Since then, touch, multi-touch, and the gesturebased interfaces that they frequently employ, have become close to "must-have" features in several market segments, including mobile devices, desktop comphers, laptops, and large format displays
What is rypically missed amongst this newfound interest -- bur also typical of vimally all "new" technologies - is how fat back these techniques and technologies go [1][2]. For example, the use of touch input as a means to interact with computers began, at least, in the mid1960s, with early work being done by IBM [3] in Othawa Canadar4], and the University of Minois [5]. By the early 1970s, a number of different technologies had been disclosed.

Figure 1: FLATO IV Terminal with touch screen and plasma Banel disphay, (Comesy of Achnves of the Coiversity of minois, Uban Chmpaign. Foud in RS: 39/2/20, Box COL 13, Foder COL 1313 Computer Ed. Research Lab / PLATO 1952-74)

By 1972, ronch screens had left the labs and computer centers and entered selected grade-school olassrooms as part ofthe PLATO IV system, illntrated in Pigure]. This was all the more remarkabe when one considers that PLATO IV not only preceded the appearance of the personal computer and local area networks, its relatively wide deployment happened when Xerox PARC was just starting wotk on the Alto computer!
Through the $1970 \mathrm{~s}-80 \mathrm{~s}$ a number of different technologies were
developed to suppont toweh (such as capacitive, resistive, hight interruption, and suriace acoustic wave), and a number of different companies were founded to commercialize these technologies. Examples inclede, Elographes, Carrob Tonch, and MicroTouch Systems.
As the options for the interface designer grew, so did the granulanty of our understanding of the affordances of the available technologies and techoiques. Nakatani and Rohrlich 16 , for example, gave voice to the notion of "soft machines", what they defined as:
---- using the synergistic combination of real-time computer graphics to display "soft controls," and a touch sereen to make soft controls operable the conventional hardicontrols.

However, as Gustave Flaubert said, "God is in the details," and getting the details wrong could make a good techology look really bad - as was the case with how cursor control was implemented on the early Apollo workstations, using an Elographics touchpad.

2. Lust Along the Way

From the time of PLATO TV to close to 2000 , the use of touchsensing screens and tablets setled into a number or more-or-less niche markets. Touchpads/ablets (touch sensors not mounted directly over a display) becarte most visible on laptops, where they were (and are) the dominant technology used for cursor control. Touch screens were largely split into three main segments, kiosks (including ATM machines), point-of-sale devices (restaurants and retail, for example), and mobile devices (starting with PDAs, but as sarly as 1993 - as we shall discuss mobile phones).
Many of these markets were not very demanding in terms of the richness of the interaction techniques employed. Kiosks, for example, adopted mainly simple towh-io-select operations. At the same time, however, there was remarkable work which is not well-known, and hence worth highlighting.

Figure 2: The PF-8000 Data Bank (1984). Characters can be entered by printing them on the touchpad with a finger.

Take, for example, the Casio PF-8000, shown in Figure 2. This was a PDA that incorporated an address book and a calculator. It was released in 1984, which is when I got mine. As can be seen in the photo, the right side of the unit consists of a touchpad.

One of the ways that you could enter numbers was to tap them out on a virtual keyboard - defined by the white grid on the touchpad. More interesting, however, was the ability to enter alphanumeric information by tracing it out on the touchpad with your finger You wrote each character on top of the previous one (segmentation was determined by the time interval between characters), so the whole touchpad surface was used for each character.

Lest one discount the relevance of this device because it used a touchpad, rather than touchscreen, in the same year, Casio released a calculator watch, the AT-550. The watch's crystal was a touch screen. Numbers and operators are "written" on the crystal, in the same manner as the PF-8000.

Figure 3: The Simon (1993). The phone's screen shows the display for setting the clock to world time. Interaction was via the touch screen, using either finger or stylus. L-R, the lower 3 images show (a) the desktop icons for accessing applications; (b) the phone dial pad; (c) the manual section for handling sketches and faxes. To place in context, there was no web browser: the World Wide Web had not yet happened yet!

Now flash forward and consider these devices in light of today's
world of texting and TWITTER. A few minutes of experience with the PF-8000 or the AT-550 make it clear that one can easily enter alphanumeric text without looking at the device. That is, the character recognition offers essentially the same eyes-free attribute that one has with touch typing on a QWERTY keyboard - something that I call "touch writing". Despite its relevance, this is something that is pretty much unavailable on any of today's mobile touch-entry devices. It is somewhat sobering to realize that Casio was able to do this in products commercially available 25 years ago - the same year that the very first Apple Macintosh computer was released!

Another important example is what I believe to be the world's first smartphone: the Simon [7], shown in Figure 3. This was developed jointly by IBM and Bell South, and first shown in 1993. How much this first smartphone anticipated the phones of today is only matched by how little it is known.

The Simon had only two physical controls: the on/off switch and the volume control. Everything else was controlled by the fullscreen touch display - which like the Palm Pilot (which appeared in 1996) - supported both finger and stylus control.
In addition to products, early innovative work was being undertaken in various research labs. Some of the most creative work is, likewise, little known. It was done by Chris Herot and Guy Weinzapfel at the Architecture Machine Group at MIT- the predecessor to MIT's Media Lab [8].
Their work is one of the first attempts to extend the range of touch sensing beyond just horizontal and vertical position. By mounting the touch-screen overlay on strain gauges, they were also able to sense vector information in six different dimensions, as illustrated in Figure 4: force in x, y, and z, as well as torque about the x, y, and z axes.

Figure 4: Multidimensional Touchscreen (1978): In addition to sensing position, this touchscreen [8] was capable of sensing 6 degrees of force vector information, including $x, y, z, x-$ torque, y-torque, and z-torque.
Of these additional dimensions, sensing force in z (pressure) is the only one that has gained any prominence, and even that is rare. But that speaks to the nature of the beast: the challenge is, the harder one pushes, the more friction there is in sliding the finger along the surface. Hence, there is an inherent conflict between forcevs. gesture articulation with touch interfaces.

This is one area where sensing technology can make a difference. Capacitive sensing has a useful attribute in this regard, as was demonstrated by Buxton, Hill and Rowley [9], among others. It goes like this: if you push hard against a surface with your finger, the force tends to cause the fingertip to spread across the surface. Hence, there is a strong correlation between pressure and surface area. Furthermore, while capacitive technologies cannot sense pressure, per se, capacitance does vary with the area of contact. Hence, the technology can sense an approximation of pressure what I call "degree of touch". Knowing this means that the user can control the degree of touch by pressing lightly and varying the contact area. Thus, the user can assert degree of touch while avoiding the friction normally associated with pressure. Yet, just like pressure, this attribute is seldom exploited by interaction designers.

Figure 5: Sensor Frame: A prototype optical touch sensor that detects not only location, but also angle of approach[11].
In terms of exploring less commonly considered dimensions of touch sensing, I want to mention a novel approach to optical sensing of touch begun at Carnegie Mellon University by McAvinney [10], and developed further by Sensor Frame [11]. What they developed by 1988 was a device that used imaging across the display surface to sense touch location. However, unlike the light interruption techniques used with PLATO IV, this system - the Sensor Cube - used what were essentially cameras to detect the finger(s) in the volume above the display, rather than just at the display surface. Hence, as is illustrated in Figure 5, the angle of approach as well of the location of the finger could be determined.

3. Multi-Touch

The Sensor Cube had one other attribute that is sufficiently important to be worth a section on its own: the ability to sense simultaneously the location of multiple points of contact - multitouch. This also has a history.

In 1984 our group at the University of Toronto developed a capacitive multi-touch tablet capable of sensing degree of touch independently for multiple points of contact [12]. Our initial goal in this work was to make a digital hand drum - a musical percussion instrument. Since this was, I believe, the first multi-touch device reported in the peer-reviewed literature, it is often given credit for being the first multi-touch device. Such is not the case.
The roots of multi-touch lie partially in attempts to construct tactile sensors in robotics. Examples include Wolfeld [13] and Boie [14]. However, to the best of my research, the first use of multi-touch technology for manual control of a digital system was performed by Nimish Metha as part of his MSc thesis at the

University of Toronto [15]. This system has additional interest since it is the first use that I have found of capturing touch by using a video camera to optically capture shadows from the underside of a translucent surface - anticipating many current multi-touch systems, including Microsoft Surface. Just to emphasize this point, Metha's system was not only used to capture the shadows of fingers, but to capture and recognize shapes of objects as well!

However, to the best of my research, the first multi-touch display - the first sensor capable of simultaneously capturing multiple touch-points on a display - grew out of the aforementioned work on tactile sensors for robotics by Bob Boie.
After presenting our multi-touch tablet at SIGCHI in 1985, I was approached by Lloyd Nakatani of Bell Labs, Murray Hill, N.J. He invited me to visit the lab to see what they were doing. What I saw when I did so was a capacitive multi-touch screen that Boie had developed. Besides being transparent (ours was an opaque tablet), the performance of this device - in terms of response time - was far beyond what we had accomplished. Seeing the superiority of their system prompted me to stop working on the hardware part of the problem, and focus on the software. My assumption, hope, and expectation was that we would soon be able to get access to the Bell Labs technology. This turned out not to be the case, which was too bad, and the Bell Labs contribution went largely unknown in the larger community although it was openly shown to me, as well as others [16].

4. A Sponge Without Water ...

Thus far, the common factor in virtually all of the work discussed is a desire to extend the range of human capability that can be captured by touch technologies. The reality is that the simple poke-to-select techniques and soft keypads seen in early systems while useful - only scratched the surface of both the possible and the desirable.

One of the pioneers at really pushing the boundaries of capturing human gesture, and thereby laying the foundation for a great deal of current work, is Myron Krueger [17][18].

Figure 6: Myron Krueger's Pioneering VIDEODESK, early work using rich gestures. A two-handed pinch gesture is used to govern the shape of the closed object.
Myron's work was all about capturing human gesture, and demonstrating how it can be effectively used. He used a video camera to sense the current pose/action of the user, and then employed digital processing to isolate the human silhouette from the background. The silhouette was then analyzed and gestures extracted. These were then interpreted appropriately to bring
about the intended response in the system. One such silhouette is illustrated in Figure 6. Here, two hands are used to control the shape of a closed object. The tips of all four extended fingers affect the shape - two from each hand in this case.

What is important to recognize in approaching Krueger's work is that the technology he used was secondary. It was a means to an end, not the end itself. The underlying point was all about the gesture, not the specifics of how it was captured. Hence, while his work did not sense touch, per se, it is relevant nevertheless.
The primary thing that does differentiate Krueger's work from touch systems is that contact with the physical device was not sensed. Hence, proximity, gesture, and/or dwell time - rather than physical contact - was required to initiate or terminate events. However major or minor one views the consequences of such differences, the fact remains that anyone practiced in the art of touch systems, and familiar with Krueger's work, was able to immediately adapt his work to this technology - and he explicitly wrote about its applicability to touch systems [18].
There is yet another class of gesture that has early roots, and which is also having significant impact on touch-based systems It is that class of gestures where the resulting action is a function of both where one touches, and what direction(s) one strokes/moves, once having made contact. A common example of this found in many of today's mobile phones is the ability to move forward or backward from one image to another by touching the image and quickly sliding the finger left or right on the screen.

An early (1999) example of this technique was in a product called PortfolioWall [19], shown in Figure 7. What is important is that this gesture is a specific instance of a broader class of interaction techniques known generically as radial menus. Simply stated, radial menus characterize a class of interaction where the response to an action is a function of both where you touched, and the direction that you move in the gesture after that touch. The options used in viewing images using the PortfolioWall are shown in Figure 8.

Figure 7: The PortfolioWall (1999). A sliding gesture to the left or right on top of the image moved to the next or previous image, respectively.

In addition to the left and right strokes, the radial menu shown supported the following gestures. A stroke up to the right enabled annotation, while a stroke down to the right enabled one to scale or crop the image. A stroke down closed the image and brought one back to the thumbnail view, while down to the left toggled between Play and Pause as a slideshow viewer. The menu was only displayed if one touched and held, without
moving. Since the actions were easily learned, they were normally articulated without any graphical feedback - thereby illustrating the tight relationship between radial menus and their (in this case), associated eyes-free gestures.

Figure 8: Radial Menu in PortfolioWall. The options when viewing a full sized image are shown by the menu.
Radial menus have a long history, beginning with the PIXIE system of Wiseman, Lemke and Hiles [20]. After a period of neglect, they were brought back into practice by Callahan, Hopkins, Weiser and Shneiderman [21], Hopkins [22], and Kurtenbach [23], for example. The key attribute that distinguishes them from conventional linear menus is that selection of action is determined by direction not distance. As human beings, we are not "wired" to make fine judgments of linear distance without looking. Yet, we are wired to be able to easily articulate gestures, eyes free, in any one of the eight primary and secondary directions of the compass. Therein lays the key to understanding that one should not think about radial menus as "just" menus. They also define a class of direction-based gestural interaction. And to emphasize this point, the work of Hopkins and Kurtenbach, cited above, and the PortfolioWall, makes clear that they work even if there is no menu displayed during their use.
The use of stroke direction to control the direction and type of scrolling on some current mobile devices (such as scrolling vertically, horizontally, or bi-dimensional dragging, depending on the direction of the stroke), is a good example of this, and demonstrates the relevance of radial menus to systems today.

5. Moving Forward: Touch is a Means, Not an End

Touch technologies are going to continue to evolve in terms of what they can sense and how they are used. Among other things, we are going to see ever more integration of the sensing technology with the display [24]. But while the technologies will continue to evolve, what must not get lost along the way is that it is just that, a technology, a means to an end. As I have discussed elsewhere [25], the conceptual model of the user interface is more important than the technology, and by that measure, two interfaces using different technologies (only one of which is touch) may have more in common than two where both do use touch.
Furthermore, while touch sensing can bring great value to an interface, even greater value can often be gained when it is used in combination, even simultaneously, with other technologies such as a stylus [26]. Again: everything is best for something and worst for something else.

6. Conclusions

From beginnings such as these have emerged the touch technologies which are having such strong impact today these and a lot of outstanding work from a number of other researchers, designers and engineers whose work I had to neglect in this brief summary. Withen this history lie important lessons and contributions that have the potential to inform our current decisions and thinking about these techologies, and their effective use going forward.

Finally, there is something in this history that can help shed light in our woderstanding of the nature of imovation. The length of time that it has taken for these tecimologies to reach "prime time" is the nom, not the exception. Jnovation in our industry is almost always characterized by such a "long nose" - with $20+$ years being the norm [1][2]. Hence, this paper serves a second function as a reminder that the foundation of the next ten years of innovation were almost certainly planted over the past ten yeas, and are just waiting there to be cultivated.

7. References

[1] Computer Science and Telecommunications Board of the National Research Counci, banovath in fobomotion Fecholooy. (The National Academies Press, Washington DC, 2003).
[2] B. Buxton "The Long Nose of momation." Business Week con (January 2nd, 2008)
htre:/www.businessweek.con/imovate/content/an2008/id2 008012297369 hm
[3] P. Bett, C.I. Brown, M. Lynot, G.F. Martio, "Light Beam Matrix Gpu Terminal," IBM Technical Disclosure Journal, 9(5), 493-494, (1965).
[4] A.M. Hady, "A Touch Sensitive X-Y Position Enooder for Computer huput," Proceedings of the APDPS Fall koint Computer Conterence, Vol. 35, 545, (1969).
[5] F.A. Ebeling, R.S. Goldhor, R.L. Johnson, "A Scamed Enfrared Light Beam Touch Enry System." Proceedings of Sociery of Turomation Displays," 134-135, (1972)
[6] L.H. Nakatani, S.A. Rohohich, "Soft Machines: A Philosophy of User-Computer Snterface Design," Procedings of the ACMConference on Human Factors in Compuing Systerns (CHI'83), 12-15, (1983)
[7] S.R. Lewis, "Reaping the benefits of noodern usability evaluation: The Simon story," Advances in Applied Ergonomics: Proceedings of the Ist International Conference On Applied Ergonomics -- ICAE 96, 752-757, (1996).
[8] C. Herot, G. Weinzapfel, "One-Point Tonch Inpur of Vector Eformation from Computer Displays," Computer Graphics, 12(3), 210-216, (1978).
[9] W. Buxton, R. Hill, P. Rowley, "Issues and Techages is Touch-Sensitive Tablet Zmot," Computer Graphics, 19(3), 215-224, (1985).
[10] P. McAvinney, "The Sensor Frame - A Gesture-Based Device for the Manipulation of Grapbic Objects," CamegieMellon University, (1086).
[11] Sensor Frame, "The Sensor Frame Graphic Manipulator Final Report," NASA-CR-194243, (1992) hutw/htrs nasa.gov/archive/nasa/casintrs nasagovic 9400032611994003261 pdf.
[12] S.K. Lee, W. Buxton, K.C. Smith, "A molitouch huee Gimensional towh-sensive toblet" Froceedings of the ACM Conference on Human Factors in Computing Systems (CHI'85), 21-27, (1985).
13] A. Wolfeld, "Real Time Control of a Robot Tactie Sensor," MSc Thesis. Philadelphia: Moore School of Electrical Engineering (1081).
[14] R.A Boie, "Capactive Impedance Readon Tactice Koaze Sensor," Proceedings of the IEEE International Conference on Robotics, 370-378, (1984)
[15] M. Metha, "A Flexble Machine berface," MSc. Thesis, Department of Electrical Engineering, University of Toronto, (1982).

161 B.H. Rwbine, "The Automatic Recognition of Gestures," MSc Thesis, Camegie Mellon University, (1991).
[17] M.W. Krueger, Arificial Reality, (Addison-Weslay, Reading, MA, 1983).
[18] M.W. Kneger, T. Gionfriddo, K. Hinrichsen, "VDOEOPLACE - AB Arthcia Reahty," Proceedings of the ACM Conference on Human Factors in Computing Systems (CHP'85), $35-40$, (1985).
[19] W. Buxton, G. Fitmaurice, R. Balakrishnan, G. Kurtenbach, "Large Displays in Amomotye Design," IEEE Computer Graphics and Applications, 20(4), 68-75, (2000).
[20] N. W. Weman, H.U. Lemke, JO. Hiles, "PXXE: A New Approach to Graphical Man-Machine Communication," Proceedings of 1969 CAD Conterence Southampton, IEEE Confereme Publication 51, 463 --471, (1969).
[21] J. Callaban, D. Hopkins, M. Weiser, B. Sbeiderman, "An empirical comparison of pie vs. linear memus," Proceedings of the ACM Conference on Hunan Factors in Computing Systems (CH1'88), 95-100, (1988).
[22] D. Hopkins,"The Design and Implementation of Fie Menus," Br. Dobb's Jommal, 16-26, (December 1991)
[23] G. Kurtenbach, "The Desige and Evoleaton of Making Memus," Ph.D. Thesis, Department of Computer Science, University of Toronto, (1993).
[24] S. Izadi, S. Hodges, A Butler, D. West, A. Rrustemi, W
 Tebnolos." Communications of the ACM, 52(12), 90-98, (2009).

25] D. Buxton, "The Mad Den Townde Touch Techology" BusinessWeek.com, October 21, 2009. hthe//www.busbessweek.com/movate/contentoct2009/id2 0091021629186 htmphan innovation imovation $+0 \% 28+d$ esign tootstories
[26] K. Hinclley, M. Pahud, B. Buaton, "Deed Diselay
 Society for haformation Display (SD) Symposium Digest of Technical Papers, May 2010, Volume 41(1), Session 38, $537-540,(2010)$.

38.2: Direct Display Interaction via Simultaneous Pen + Multi-touch Input

Ken Hinckley, Michel Pahud, and Bill Buxton Microsoft Research, Redmond, WA 98052

Abstract

Current developments hint at a rapidly approaching future where simultaneous pen + multi-touch input becomes the gold standard for direct interaction on displays. We are motivated by a desire to extend pen and multi-touch input modalities, including their use in concert, to enable users to take better advantage of each.

1. Introduction

We are witnessing a shift towards displays that unify input and output on surfaces that sense as well as emit. In such systems the user interacts through direct manual input, that is, directly on the display with his hands. By contrast, traditional graphical interfaces employ indirect manual input [5] using a relative pointing device (mouse) and a cursor. This shift has led to renewed interest in both touch and pen input. When integrated with a display, both pen and touch are direct input modalities, albeit through a physical intermediary in the case of the pen. In what shall become a theme here, this is both a strength and a weakness for the pen- as is the lack of an intermediary for touch Having two opposing sides makes a coin no less valuable.

Despite rapture with the iPhone (and now iPad), multi-touch is not the whole story. Every modality, including touch, is best for something and worst for something else. The tasks demanded of knowledge workers are rich and highly varied [1,13]. As such one device cannot suit all tasks equally well. Your finger is no more suited for signing a contract, or drawing a sketch on a napkin, than is a pen for turning the page in a book, or holding your place in a manuscript. With the impetus to do everything with touch, we must underscore this point. The pen has a role to play as well.

But why the pen? Can't one type faster than one can handwrite? Yes, but only if our metric for creative output is in the cold calculus of words-per-minute. What is it that you wish to write? Are you making high-level comments on a manuscript? If so, composing your thoughts is likely to devolve into minutiae with a keyboard, whereas with a pen, brief annotations in context implicitly emphasize the important points. Likewise, if a pen is a poor choice to compose a business memo, then a keyboard is an equally poor choice to generate a breadth of design sketches [4,16]. That one form of work output is often valued more than the other in professional life is a deeper reflection on our society than it is on the effectiveness of the pen as an imput device

The transition to direct input is manifest in form factors ranging from hand-helds, slates, desktops, table-tops, and wall-mounted devices. The iPhone, Tablet PC, Wacom Cintiq, Microsoft Surface, and Smartboard are, respectively, examples of each These examples include both pen and touch devices, but seldom does the same system support both. Even more seldom can one use both together [2,18,19], as with a stylus in the preferred hand and touch with the nonpreferred hand (Fig. 1). Here, we pursue pen and touch as complementary rather than competitive inputs.

Our research is based on the premise that pen+touch systems present new challenges and opportunities for the designer. Our hypothesis is that the combination of pen and touch yields a richer design space of natural gestures than multi-touch input alone. When a system does not have to provide coverage of all possible
functions with a single input modality, implicitly this leads one to ask where each modality should be used to best advantage, where a particular modality should not be used, and in what cases modalities should perhaps be treated interchangeably. To explore these issues, we prototyped a digital drafting table on the Microsoft Surface, using multi-touch and an IR-emitting pen. We developed an application for note-taking and mark-up that supports the key functions of writing, annotation, selection, copying, arrangement, and aggregation of objects [9,12,18]

Figure 1. The roles of pen, touch, and multimodal pen+touch. An earlier generation of devices, such as the Palm Pilot (1996), supported both pen and touch. Users could punch the on-screen calculator with their fingers, or enter Graffiti script with the stylus. Clear lessons were that the best input modality depended on the task, and that this made a significant difference to the user. However, these devices were not pen AND touch, but rather pen exclusive-or (XOR) touch. They sensed only a single point of contact, and could not distinguish touch from pen inputs. Hence we lost an opportunity for meaningful exploration of multimodal interface approaches that combine pen and touch. But a new generation of digitizers is now emerging [7] that can sense multitouch inputs while simultaneously distinguishing pen from touch.
Why is any of this important and not just a technological quibble? The answer lies not in technology, but in the human mechanism itself, how we are wired, and how our motor, sensory, and cognitive skills have evolved. These are the underpinnings of a natural user experience, not any particular technology or device.
We have multiple fingers for a reason. We do not just point, but we also grasp and manipulate. Furthermore, our nonpreferred hand is not a poor approximation of our preferred hand; rather, it is as skilled at the specialized role that it performs as the preferred hand is at its own role [8]. For a wide class of everyday actions, our hands have evolved to complement one another. People are also predisposed to manipulate physical objects and employ manual tools. Once again, handedness plays an important role. As a simple example, when writing, we hold the pencil in our preferred hand and manipulate the paper with our nonpreferred hand. If we translate this example to a computer screen, we might write on a tablet, electronic whiteboard, or desk with a stylus, and directly manipulate the underlying virtual document, map, or photo with our nonpreferred hand using touch input.

The leap of faith we ask, and believe is justified, is to assume that the richness of such examples that exist in the physical world is matched by analogous transactions in the digital domain. By building on human behaviors and perceptual mechanisms, a
foundation of physically-grounded interactions enables natural, engaging, and novel non-physical interactions to be designed. It is the implications of this leap that motivate our research, and the purpose of this paper is to share the insights that we have gained.

2. Asymmetric Division of Labor

Let's proceed by pushing a bit harder on our pencil and paper example, by asking you to consider the following question: Which hand do you write with, your right or your left? Now, whether you answer "right" or "left," you are wrong. The answer is "Yes!" This is not a trick question. Rather the question is ill-posed. People write with both hands, as demonstrated by Guiard:

Figure 2. Guiard - transfer paper experiment [8]
What the above figure shows is the result of taking dictation on a sheet of paper. But on the right, we see the impressions left by the pen on a sheet of transfer paper surreptitiously left underneath. That is, it records the movements of the pen relative to the desk. This reveals that the nonpreferred hand sets the frame of reference for the action of the preferred hand; the nonpreferred hand repeatedly repositions and reorients the page so as to optimize the working space of the preferred hand [8]. This further implies that the nonpreferred hand precedes the preferred hand in its action.
Guiard's key insight was to turn the classic question asked in the study of handedness upside-down. Rather than asking which hand was best for a task- right or left- Guiard observed that most, if not all, manual interactions fundamentally involve both hands, with a differentiation of the roles between the hands. The correct question to ask then becomes: "What is the logic of the division of labor between the preferred and nonpreferred hands?"

Likewise, if in interface design we find ourselves asking which is best- touch or pen- then once again we must recognize an illposed question. The question is not which is best, but rather, What should be the division of labor between pen and touch in interface design? To begin to answer this question, we must consider the design properties of pen and touch as input modalities.

3. Properties Shared by Pen and Touch

We stated above that every input modality is best for something and worst for something else. Ultimately it is the designer's job to know what to use when, for whom, for what, and why. From a technology standpoint much of this turns on a nuanced understanding of the properties of an input modality. To offer insight into the main issues, the following tableau summarizes interaction properties shared by pen and touch. We do not characterize these properties as "pros" and "cons," as has been attempted elsewhere [2], to accentuate our belief that almost any property of a device can be advantageous in interaction design.
This limited survey shows that pen and touch, while sharing common ground as direct input modalities, also exhibit many important differences, and these again differ substantially from
the properties of indirect pointing devices such as the mouse. Indeed, this calls into serious question the commonplace strategy of operating systems to treat all pointing devices as "mice"- that is, interchangeable "virtual devices" [5]. Consider yourself, armed with this tableau, as licensed to fire on the spot anyone in your organization who refers to pen and touch inputs as "the mouse"or at least to deliver a well-deserved tongue-lashing.

PROPERTY	PEN	
Contacts	upoint A single welldefine d point	1 10\% © ontact rifions with shape information IG)
Occlusion	Small (pen tip) But hand mochluce screar:	Moderate / for finger'I $1 \geqslant$ II larselinch, mom whourhom
Precision	High Tripod grip / lever arm affords precision, writing, sketching.	Moderate Nominal target width for rapid pointing is $\sim 15 \mathrm{~mm}$ [17]).
Hand	Preferred hand	Either hand / Both hands
Elementary Inputs	Tap, Drag, Draw Path	Tap, Hold, Drag Finger, Pinch
Inter: mediary	Mechanical Intermediary Takes time to unstieathe the Men Pen con be forgotten	None: Bare-Handed Input Nothing to unsheathe nothing to los e Mo tever om
Acquisition	High (firstuse: unsheathe pen)	Low
Tilime	Moderale on subsequent uses. on tucked between, fogers:	No mechonicalminmedialyo ocquite:
Buttons	Barrel Button (somepens)	None
Activation Force	Non-Zero Tip switch/ minimum pressure.	Zero (capacitive touch) Resistive touch requires force.
False Positive Inputs	Palm Rejection (while writing) Palm triggers accidental inputs, fingers drag on screen, etc.	"Midas Touch Problem" Fingers brush screen, finger on screen while holding device, etc.

Figure 3. Tableau of design properties for pen and touch.

4. Graceful Degradation

We now consider stationary versus mobile usage contexts. Desktop, table, and wall displays are necessarily stationary, but form-factors such as slates transition between mobile and stationary use. To design a consistent user experience spanning all of these form factors, we seek a conceptual model that supports graceful degradation between stationary and mobile usage. For the latter the nonpreferred hand is largely occupied by holding the device itself, whereas for the former we wish to support efficient bimanual interactions that leverage the full potential of human hands, as well as simultaneous pen + touch input.
For example, with physical notebooks we have observed that people deftly tuck the pen between the fingers of the preferred hand while flipping pages or grasping scraps of paper [11]. Hence, users can effectively perform multi-touch gestures, such as pinching, while holding the pen tucked between the fingers, and thereby derive significant value even from unimanual interactions that interleave pen and touch inputs as needed. It is important to observe here that a mobile usage model, which assigns core operations to unimanual touch with the preferred hand, also serves a stationary usage model that instead assigns these tasks to touch with the nonpreferred hand. Bimanual pen + touch gestures can then be articulated in cooperation with the preferred hand to support more efficient interaction as well as advanced gestures.

5. Recognition and Modes

The next distinction we draw is that of ink vs. command input. The specter of recognition arises as soon as one contemplates marking a virtual sheet of paper. Does drawing a mark leave an
ink stroke, is it immediately converted to text, or is it perhaps recognized as a command, such as a gesture to make copies, move objects, or turn the page? Ascribing intent to the motions of an input device is a fundamental problem. People often seem to assume that recognition can overcome this problem. In our view, it does not and will not. But let's back up a moment. Who is it that must do the recognition, and why? Rarely does a user say "I wish this sheet of paper could understand what is written on it." Notes in a notebook are for oneself. Annotations on a document are offered as feedback to another person. Significant value arises from experiences where it is a human who recognizes the marks.

Let's say that we do wish to recognize some strokes as gestures Implicit in this statement is the need to distinguish a command mode for gestures as distinct from ink mode for leaving marks on the digital paper. Holding a button on the pen, or tapping on a lasso-selection icon, for example, are classic ways of mode switching between ink and commands in pen interfaces [15]. One often hears that "modes are bad," but modes are necessary to provide rich interfaces [10] that don't depend on the success of brittle recognition techniques. The key is to rapidly switch modes in a manner that is minimally demanding of the user's cognitive resources. Here, pen + touch has much to offer.

If we assign pen to ink mode and touch to command mode, the design then puts the mode switch in the user's hands. For example, in our prototype the user can jot notes with the pen, but then pinch with two fingers to zoom, swipe across the margin to flip pages, or use a single finger to drag objects such as photos That is, when considered as unimodal inputs, the logic of the division of labor between pen and touch is that the pen writes, and touch manipulates. The mode switch occurs implicitly depending on whether the user interacts with pen or touch. As a desirable side-benefit, this strategy also can dispense with many ancillary interface widgets, such as toolbars stuffed with icons. This leaves more display space for the user's work, while reducing the distraction of secondary controls.

Drawing on all that has preceded, we now see how our approach falls into place along the dimensions that we have identified:

- Pen vs. touch modalities have differentiated effects in the interface. Ink mode is assigned to the pen, while multi-touch articulates commands: the pen writes, and touch manipulates.
- The user can efficiently interleave pen and touch inputs with the preferred hand for mobile, unimanual usage scenarios;
- Designing core tasks for unimanual touch serves mobility while also enabling stationary bimanual interaction that instead assigns these tasks to the nonpreferred hand;
- These benefits are derived while leaving open the possibility of bimanual manipulations with simultaneous pen and touch.

It is in the consideration of this final point, where some of the most novel possibilities may lie, that we now turn our discussion.

6. From Elementary Inputs to Phrases

The preceding interactions that interleave pen and touch may suffice to justify further investment in pen+touch displays However, we now consider creative ways for interaction designs to leverage simultaneous pen and multi-touch interactions to support new capabilities for multimodal bimanual interaction Let's consider a typical direct-manipulation pen interface for copying an object such as a photo on a digital notebook page [12]. To copy the photo and place it at a desired position, the user must:

1. Switch the pen from ink mode to command mode;
2. Select a photo by tapping or lassoing it with the pen,
3. Invoke Copy by selecting a command from a context menu associated with the selected photo;
4. Invoke the Paste command to place the copy onto the page;
5. Drag the copy to the desired location on the page,
6. Return the pen to ink mode.

Now, let's contrast this with how our system implements a simultaneous pen + touch gesture for copying a photo. All the steps required by the canonical direct-manipulation approach can be phrased into a single pen + touch bimanual gesture as follows:

1. Hold photo and drag off a copy with the pen (Fig. 1, right).

Is this really just one step? Our observations of users suggest that this dedicated pen+touch gesture corresponds closely to the user's mental model of the common use case where one wants to create and place a copy of an object [14]. Hence, the gesture feels like a unitary action to the user, despite invocation of multiple input events on the devices. Consistent with Guiard [8], holding touch precedes the action of the pen, and frames the context of subsequent actions of the pen held in the preferred hand.

Not only does this approach have fewer steps, but by its very nature it encapsulates all the steps into a single gestural phrase. It is syntactically simpler and precludes many types of errors, including mode errors, that can occur with a traditional approach.

Where does the syntactical simplification come from? First, note that holding a finger on the photo integrates object selection with the transition to gesture mode. This combines two steps. Once the photo is held with a finger, dragging off a copy with the pen embeds three different pieces of information: the Copy command (verb), what is to be copied (direct object), and where it is to be copied to (indirect object) [14]. Finally, closure is inherent in the means used to introduce the phrase: simply releasing the nonpreferred hand from the screen returns the system to its default state (ink mode), where the pen once again writes. The muscular tension from maintaining touch on the photo is the glue that holds all of these steps together. The muscular tension also has the virtue that it provides continuous proprioceptive feedback to the user that the system is in a temporary state, or mode, where the action of the pen will be interpreted differently.

We focus on the copy gesture above, but our system implements many pen+touch gestures. For example, users can employ the pen to slice photos by holding a photo with a finger, and then crossing the photo with the pen to define a freeform cut path. Or one may draw a straightedge by holding a photo and stroking the pen along its edge. One may even combine these actions into compound phrases, such as by holding an object and then slicing along the straightedge thus defined (Fig. 4). This illustrates the richness of the vocabulary that users may articulate with our approach.

Figure 4. A pen+touch phrase: slice photo along a straightedge.
Earlier in the discussion above we stated a principle: the division of labor between pen and touch for unimodal inputs is that the pen writes, and touch manipulates. Now, we can articulate how our
system interprets multimodal pen + touch inputs: the combination of pen + touch yields new tools, such as the aforementioned copy, shice, and straighteige tools. If pentronch yields new tools, implicity this means that in some contexts we must violate the original principle: the pen does not always write, nor does touch always manipulate Our explorations convince us that if a system strictly limits irself so that the pen ONLX writes, and touch ONLY manmulates, this leads to a simple and consistent but artifially orippled system.

By treating multimodal pen + touch inguts differently, our system opens up a design space of new gestures that also have the virtue of leveraging how people naturally use their preferred and nompreferred hands together. We emphasize the strengths of pen and tonch as inpot modalties, while then use in congunction allows us to simultaneously sidestep many of their weaknesses.

7. Incidental Contact (Palm Rejection)

Despite the advantages emumerated above, stmitmenoms pen and touch suffers a serious limitation in that if one rests the palro of the hand on the screen while writing, this represents a "touch" to the computer. The result may be false mputs such as accidentally panning or zooming the page. Our work partially addresses this problem, but to be clear, we do not clam to have solved it
A simple form of palm rejection goes a long way: one just discards touches with a large contact area. However, large touches start small as the hand moves into contact with the display. Furthermore, the knuckles or side of the hand may precede the pen as it comes into contact with the display. Hence, deciding whether a touch is a true ntentomal manipulation is not an instantaneous binary decision, but rather is a real-time assessment that varies as the articulation of a combined pen and touch movement plays out over time.
Likewise, in reference to the tablean of Fig. 3, we must recognize that since many touch technologies regure zero contact foree to trigger an imput, false positive imputs will remain an inherent property of multi-touch interaction, including its combination whi pen imput. As such, dever interaction technique designs that take advantage of this fact [3], as well as mote sophisticated "accidental touch" fitering algorithms, will be integral to a rewarding pentonch user experience. These are fundanental issues that ugenty need futher research.

8. Conclusion

People have multiple fingers, two bands, and bighly developed skills for handling physical objects: we have shown how all of these are defining characteristics of natural pen and tonch meraction. Ekewise we have shown how our design caref̂thy considers mobile vs. stationary use, ink vs, command imput, and the phasing of elementary actions into higher-level constructs that suit the user's mental model. The map of issues that we have laid out in this manuscript should help the reader to navigate through this thicket of interrelated issues and considerations

We have advocated a division of labor between pen and touch where the pen writes, touch manipulates, and the combination of pentouch yields new tools. This articulates how our system interprets unimodal pen, mimodal touch, and multimodal pen + touch inputs, respectively. We have contibuted novel pen + touch gestores, whate also raising, by way of examples, design issues and questions for the reader to ponder. How should the roles of pen and touch be differentiated (or not) in your own user interface
designs? The answers may differ for users of your system, but the design issues we have identified here will arise again and again.

Widespread enthusiasm for moli-touch interaces belies an ot ovelooked troth: without careful design and a deep understanding of the strengths and weaknesses of touch as an interaction modality, a batural interface a touch-screen does not make. It has to be kept in mind that there is a difference between an input technology and either an interaction techniwue or a concepinal model- much less a banal wer experience. Hence, whoh and pen input technologies only lead to a naturat experience when lots of hard work meets a thorough and nuanced understanding of these modahties, their strenghs and weaknesses, when to use them, and when not to use then. Our goal here has been to impart a sence of these issues, as well as to provide example techniques that illuminate the design space. Our hope is that this can help to spur the further excitement and investment necessary for the emerging area of pen touch moput to flourish as the future of displays

9. References

1] Adler, A, Gujar, A, Harmon, B.L., OHara, K., Sellen, A A dary stuay of work whated reandng design implications for dugital reating devecs. CHI98.
2] Brand, P., Forines, C. Wigdor, D., Haller, M. wud Shen, C. Combining mhd measning the benents of bimanual pen and diveci-tonch interaction
 154-61.
3] Brand, P, Leitner, J., Seified, T., Haller, M., Doray, B., To, P. Occusion-üware menu destgn for dighal tabletops. CHI 2009 Extonded Abstracts
4] Buxton, B, Skething Cser Experiences: Getting the Design Right and the Right Desigh. 2007, San Francisco. Morgan Kauman.
5] Buxton, W, Towh Goture we Mortux in Readings in HumanComputer Interaction. Toward the Year 2000 , R. Baecker, et al., Ediors. 1995, Morgan Kaufmann Publishers. p. 469-82.
[6] Gao, X. Whson, A.D., Bamkrhan, R, Backey, K. and Radson, SE Shaperouch: Leveraging contact shape on interactwe sufaces. DEEE TARLETOP 2008 Intemational Workshop on Horizontal Interactive Atuman Computer Systems p. 129-36
7] Engelhate, I. Natwe Dual Mohe Digitizers: Supporthe Pet, Touch and Multi-Tonch Inpus in One Device on any LCD. Socicty for fr formation Display SD 08 Digest. p. 1306-09

 Behavior, 1987 19(4): p. 486-517.
97 Bincidey, K., Dixon, M., Sarit, R, Guimbetiete, R, and Palarishtan, R. Godex: a dud soren tapiet compther. CHI 09. p. 1933-42

101 Hinckley, K., Guimbretiere, F., Bandiseh, P., Sarin, R., Agrawala, M.
 Cownel Cu 06
[11] Kinckley, K, Yatani, K., Dahud, M., Codhngton, N., Rodenhouse, I., Wilson, A., Benko, H. and Buton, B. Monwdestory.An
 2010 Extended Abstracts (won-archiva pubication). [vide]
12〕 Hinckley, K., Thao, S., Sarin, R., Baudisch, P., Cutrell, E., Shiman, M,

131 Kidd, A. The marks ape on the knowlode worker. CHI 94. p. 186-91.
 Mmpuhton Wechoigus. UST91. p. 137-44.
15 Li, Y., Hnckley, K., Guan, Z, Inday, J. Ewhowhth Snolowoingode

16) Oviatt, B., Cohen, A. O., Manta, A.J., Designing haterfaces that Stimulate Jdeational Super-fluency in Scrence, Commurications of the ACM.
17) Vogel, D. and Bandisch. P. Siff A Technivue for Operating Pen-Basea Interfacer Using Towch. CHI 2007.
18 Wu, M., Shen, C., Ryall, K., Forlines, C. and Balasrishnan, R., Gestwve Registration. Reluration, and Reuse for Mifti-point Dipect-Touch Sirfaces, in MEEE hntenationd Workinop on Horizontal Intoractive Human-Computer Systems. 2006. p. 185-92.
$19]$ Yee, K.-P. Two-Handed Interaction on a Tablet Display. CHI 2004

Abstract

 not for yathacketion.

[^0]: $\mathrm{XD}=\mathrm{X}-\mathrm{XL} \mathrm{AST} \quad$;ompates first differnces
 YD=Y-YLAST
 ZD=Z.-ZR.AST
 $\mathrm{XDO}=\mathrm{XD}-\mathrm{XDLAST} \quad$;omputes seond difetences
 $\mathrm{WDD}=\mathrm{YD}-\mathrm{YLAST}$
 $\mathbb{M}=M \mathrm{M}+\mathrm{ABS}(\mathrm{KDD})+\mathrm{ABS}(Y D D)+A E S(2) \quad$; Sum
 EF EVERY 32ND SAMPLE
 \{EXECUTE FREOUENCY SELECR XXINCRON 10 E
 (Sce description below)
 $\mathrm{IM}=0\}$

