Receipt date: 12/24/2013
INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number	90013106 ~ GAU:3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

Application Number	9013106 ~ GAU: 3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

INFORMATION DISCLOSURE STATEMENT BY APPLICANT
(Not for submission under 37 CFR 1.99)

Application Number	90013106 ~ GAU: 3992	
Filing Date		
First Named Inventor	Byron Hourmand	
Art Unit		
Examiner Name		
Attorney Docket Number	5796183 RX	

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification after making reasonable inquiry, no item of information contained in the information disclosure statement was known to any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure statement. See 37 CFR 1.97(e)(2).See attached certification statement.
The fee set forth in 37 CFR 1.17 (p) has been submitted herewith.
A certification statement is not submitted herewith.

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR $1.33,10.18$. Please see CFR 1.4(d) for the form of the signature.

Signature	/Brian A. Carlson/	Date (YYYY-MM-DD)	2013-12-24
Name/Print	Brian A. Carlson	Registration Number	37,793

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record s.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspections or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Litigation Search Report CRU 3999

TO: Henry Tran	From: Shanette Brown
Location: CRU	Location: CRU 3999
Art Unit: 3992	MDE 05D10
Date: 01/27/2014	Phone: (571) 272-6632
	Shanett.Brown@uspto.gov

Sears

RE: 90/013,106-Litigation was found for US Patent Number: 5,796,183

Patent	Class	Subclass	Description	Court	Docket Number	Filed	Date Retrieved
5,796,183	307	116	QRG, Ltd, A/K/A Quantum Research Group, Ltd v. Nartron Corporatio	US-DISPAMD	$\begin{aligned} & 1: 06 \mathrm{cv} 1777 \\ & \text { CLOSED } \end{aligned}$	9/12/2006	5/7/2008
5,796.183	307	116	Narlon Copporation el al IHamand	ISTIS. MW1	$\begin{aligned} & \text { 1Hcro91 } \\ & \text { Mrs! } \end{aligned}$	712012010	10129120110
5,796,183	307	116	Nartron Corp v. Gen Elec, et al	US-DIS- MIED	$\begin{aligned} & \text { 2:03cv75169 } \\ & \text { CLOSED } \end{aligned}$	12/24/2003	1/5/2012
5,790,183	307	\%10			$\begin{aligned} & \text { Meysung } \\ & \text { MMSIH. } \end{aligned}$	4131200\%	$5112008 .$

Sources:

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

Westlaw Delivery Summary Report for BROWN,SHANETTE L

Date/Time of Request:
Client Identifier:
Database:
Citation Text:
Service:
Lines:
Documents:
Images:

Sunday, January 26, 2014 14:47 Central SB
KEYCITE-HIST
US PAT 5796183
KeyCite
369
1
0

The material accompanying this summary is subject to copyright. Usage is governed by contract with Thomson Reuters, West and their affiliates.

Westlank

KEYCITE

\& US PAT 5796183 CAPACITVVE RESPONSIVE ELECTRONTC SWTTCHING CIRCUIT, Assignee: Nartron Corporation (Aug 18, 1998)

History

Direct History
=> I CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT, US PAT 5796183, 1998 WL 1463338 (U.S. PTO Utility Aug 18, 1998)

Patent Family
2 CAPACITIVE REACTION ELECTRONIC SWITCH FOR ZERO FORCE APPLICATION CONTAINS OSCILLATOR SUPPLYING FREQUENCY OF 50 KHZ OR HIGHER, AND INPUT TOUCH TERMINAL, Derwent World Patents Legal 1997-394976+

Assignments

3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Aug 17, 2012)
4 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Aug 17, 2012)
5 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETALLS). Number of Pages: 011, (DATE RECORDED: Dec 22, 2009)
6 ASSIGNEE(S): NARTRON CORPORATION, (DATE RECORDED: Feb 04, 1997)
7 Assignee(s): NARTRON CORPORATION, (DATE RECORDED: Jan 31, 1996)
Patent Status Files
.. Re-Examination Certificate, (OG DATE: May 07, 2013)
.. Request for Re-Examination, (OG DATE: Oct 02, 2012)
.. Certificate of Correction, (OG DATE: Nov 01, 2011)
.. Certificate of Correction, (OG DATE: May 11, 1999)

Docket Summaries

12 NARTRON CORPORATION ET AL v. HOURMAND, (W.D.MICH. Jul 20, 2010) (NO. 1:10CV00691), (28 USC 1338 PATENT INFRINGEMENT)
13 "QRG, LTD. v. NARTRON CORPORATION", (M.D.PA. Sep 12, 2006) (NO. 1:06CV01777), (28 USC 2201 DECLARATORY JUDGEMENT)
© 2014 Thomson Reuters. All rights reserved.

14 "NARTRON CORP v. GEN ELEC, ET AL", (E.D.MICH. Dec 24, 2003) (NO. 2:03CV75169)

Litigation Alert

15 Derwent LitAlert P2010-30-63 (Jul 20, 2010) Action Taken: complaint for PATENT INFRINGEMENT
16 Derwent LitAlert P2007-35-68 (Sep 12, 2006) Action Taken: A complaint was filed 17 Derwent LitAlert P2007-02-10 (Apr 13, 2006) Action Taken: Order of court - Ordered that motion to dismiss by defendant is denied. Further ordered that the case is to be transferred to the US District Court for the Middle Dist of Pennsylvania

Prior Art (Coverage Begins 1976)

* 18 CAPACITIVE PRESS CONTROL ACTUATION SYSTEM, US PAT 5235217Assignee: ISB Ltd., (U.S. PTO Utility 1993)
* 19 CAPACITIVE SENSOR CONTROL SYSTEM, US PAT 4323829Assignee: Fish, Barry M., (U.S. PTO Utility 1982)

20 CAPACITY RESPONSIVE CONTROL CIRCUIT, US PAT 4831279Assignee: Nartron Corporation, (U.S. PTO Utility 1989)

* 21 CAPACITY RESPONSIVE KEYBOARD, US PAT 5087825Assignee: Nartron Corporation, (U.S. PTO Utility 1992)
* 22 CHARGE SENSITIVE SWITCH, US PAT 4159473Assignee: Johnson-Lazare Canada Limited, (U.S. PTO Utility 1979)
(23 CONTROL-SAFE CAPACITIVE SWITCH, US PAT 5233231Assignee: Pepperl + Fuchs, Inc., (U.S. PTO Utility 1993)
* 24 DC TOUCH CONTROL SWITCH CIRCUIT, US PAT 4758735Assignee: Nartron Corporation, (U.S. PTO Utility 1988)
« 25 DISCRIMINATING CONTACT SENSOR, US PAT 3911215Assignee: ELOGRAPHICS, INC., (U.S. PTO Utility 1975)
* 26 DISPLAY DEVICE HAVING UNPATTERNED TOUCH DETECTION, US PAT 4476463Assignee: Interaction Systems, Inc., (U.S. PTO Utility 1984)
* 27 ELECTROGRAPHIC SENSOR FOR DETERMINING PLANAR COORDINATES, US PAT 3798370Assignee: ELOGRAPHICS, INC., (U.S. PTO Utility 1974)
* 28 ELECTRONIC SWITCH ARRANGEMENTS, US PAT 3651391Assignee: BLACK \$\#amp;amp; DECKER INC., (U.S. PTO Utility 1972)
* 29 ELECTRONIC WATCH WITH TOUCH-SENSITIVE KEYS, US PAT 4257117Assignee: Ebauches S.A., (U.S. PTO Utility 1981)
* 30 ELECTRONICALLY ACTUATED ELECTRIC SWITCH, US PAT 4213061 (U.S. PTO Utility 1980)
\% 31 HAND SANITIZING STATION, US PAT 4942631Assignee: Barry Robertson; Rosa, Rudy, (U.S. PTO Utility 1990)

6 32 INDUCTION COOK-TOP WITH IMPROVED TOUCH CONTROL, US PAT 4308443Assignee:

```
        Rangaire Corporation, (U.S. PTO Utility 1981)
** 33 KEYBOARD SWITCH, US PAT 4503294Assignee: Nippon Mektron Ltd., (U.S. PTO Utility
    1985)
* 48 TOUCH CONTROL SWITCH, US PAT 4289972 (U.S. PTO Utility 1981)
*
```

* 52 TOUCH CONTROL SYSTEM, US PAT 5572205Assignee: Donnelly Technology, Inc., (U.S. PTO Utility 1996)
< 53 TOUCH CONTROLLED DISPLAY DEVICE, US PAT 4910504Assignee: Touch Display Systems AB, (U.S. PTO Utility 1990)
*. 54 TOUCH CONTROLLED ELECTRIC LIGHT SOCKET WITH HIGH CURRENT TOLERANCE, US PAT 5208516 (U.S. PTO Utility 1993)

[^0]
US District Court Civil Docket

 (soskhern Division :)

1:10cv691

Nartron Corporation et al F . Hoummand

This case was retrieved from the court on Sunday, January 26, 2014

Sais Fies: 07/20/2010			
Assignes ro: Judge Robert Holmes Bell Fererres fo:		Class Cose: CLOSED	
		Cosse: 09/08/2010	
Natwre of sust: Patent (830)		Starute: 28:1338	
Cassse: Patent Infringement		Swyy Pemasms: None	
Esas Docket: None		Wemanc Amount \$0	
Orher Docke: None		Nos Besmrssam: Patent	
Wrisciesiom: Federal Question			
Enigants		Ancmeys	
Nartron Corporation Plaintiff		Robert C.J. Tuttle ATTORNEY TO BE NOTICED Brooks Kushman PC 1000 Town Ctr., 22nd Fl. Southfield, MI 48075-1238 USA (248) 358-4400 Fax: (248) 358-3351 Email:Rtuttle@brookskushman.Com	
Uusi, LIc Plaintiff		Robert C.J. Tuttle ATTORNEY TO BE NOTICED Brooks Kushman PC 1000 Town Ctr., 22nd Fl. Southfield, MI 48075-1238 USA (248) 358-4400 Fax: (248) 358-3351 Email:Rtuttle@brookskushman.Com	
Byron Hourmand Defendant			
Wate	\% Frococole	adimeg Text	Source
07/20/2010	1 COMPLAINT against Byron Hourmand filed by Nartron Corporation, UUSI, LLC (Attachments: \# 1 Exhibit A, \# 2 Exhibit B, \# 3 Exhibit C, \# 4 Exhibit D, \# 5 Exhibit E, \# 6 Exhibit F, \# 7 Exhibit G, \# 8 Exhibit H, \# 9 Exhibit I \# 10 Exhibit J, \# 11 Exhibit K, \# 12 Civil Cover Sheet)(rmw) (Entered: 07/21/2010)		

07/20/2010		RECEIPT: in the amount of $\$ 350.00$, receipt number GR020949; for filing fees (rmw) (Entered: 07/21/2010)
07/20/2010		SUMMONS ISSUED as to defendant Byron Hourmand (rmw) (Entered: $07 / 21 / 2010)$
07/20/2010	2	CORPORATE DISCLOSURE STATEMENT by Nartron Corporation (rmw) (Entered: 07/21/2010)
07/20/2010	3	CORPORATE DISCLOSURE STATEMENT by UUSI, LLC (rmw) (Entered: $07 / 21 / 2010)$
07/21/2010	4	REPORT from the Clerk, WDMI, to the Director of the U.S. Patent and Trademark Office on the filing of a PATENT ACTION (rmw) (Entered: 07/21/2010)
08/16/2010	5	SUMMONS returned executed; Byron Hourmand served on 8/4/2010, answer due 8/25/2010 (Brandenburg, Robert) (Entered: 08/16/2010)
08/16/2010	6	SUMMONS returned executed; Byron Hourmand served on $7 / 27 / 2010$, answer due 8/25/2010 (Brandenburg, Robert) (Entered: 08/16/2010)
09/01/2010	7	UNOPPOSED MOTION to approve consent judgment by plaintiffs Nartron Corporation, UUSI, LLC; (Tuttle, Robert) (Entered: 09/01/2010)
09/08/2010	8	ORDER granting 7 motion to approve consent judgment ; signed by Judge Robert Holmes Bell (Judge Robert Holmes Bell, kcb) (Entered: $09 / 08 / 2010)$
09/09/2010	9	REPORT from the Clerk, WDMI, to the Director of the U.S. Patent and Trademark Office on the determination of a PATENT ACTION (gjf) (Entered: 09/09/2010)

[^1]
US District Court Civil Docket

(Hasciscksws

1:06cv1777

Qrg. Itd., A/ki Quantum Research Group, Lid. v. Narton Corporation
This case was retrieved from the court on Sunday, January 26, 2014

```
        Ox`s: Fses: 09/12/2006
    Assignes Fo: Honorable Sylvia H. Rambo
    foserres ro:
        Na\&re of
            sss:: Patent (830)
            Qasse: Declaratory Judgement
&.eas Ooske:: None
            Osher U.S. District Court, Western
            bocket: District of PA, 2:06-CV-500
    surssesesom: Federal Question
```

 Eitgants
 Qrg, Ltd.
a/k/a Quantum Research Group, Ltd.
Plaintiff
surssission: Federal Question

kitgants

Qrg, Ltd. Plaintiff

```
        Cisss Evs<: CLOSED
            Cosses: 11/28/2007
            Svaisis: 28:2201
        Sury Oemand: Both
O*mans Amscums:$0
Nos Peseripion: Patent
```

Athorneys
Andrew E. Falsetti
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
[Term: 10/23/2007]
Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3844
Email: Afalsetti@reedsmith.Com
Clay P. Hughes
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Reed Smith
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412.288.3008

Email:Chughes@reedsmith.Com
Gene A. Tabachnick
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3258
Email: Gtabachnick@reedsmith.Com
Robert B. Hoffman

	LEAD ATTORNEY; ATTORNEY TO BE NOTICED Eckert Seamans Cherin \& Mellott, LLC 213 Market Street, 8th Floor Harrisburg, PA 17101 USA (717) 237-7182 Email:Rhoffman@eckertseamans.Com
Nartron Corporation Defendant	Mark D. Chuey LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA 248-358-4400 Email:Mchuey@brookskushman.Com
	Mark A. Grace LEAD ATTORNEY; ATTORNEY TO BE NOTICED Cohen \& Grigsby PC 11 Stanwix Street 15th Floor Pittsburgh, PA 15222-1319 USA 412-297-4900 Email:Mgrace@cohenlaw.Com
	Robert C.J. Tuttle LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA 248-358-4400 Email: Rtuttle@brookskushman.Com
	Thomas C. Wettach LEAD ATTORNEY; ATTORNEY TO BE NOTICED Cohen \& Grigsby, PC 11 Stanwix Street 15th Floor Pittsburgh, PA 15222 USA 412-297-4900 Email:Twettach@cohenlaw.Com
	Jill L. Bradley ATTORNEY TO BE NOTICED Cohen \& Grigsby, P.C. 625 Liberty Avenue Pittsburgh, PA 15222-3152 USA $412-297-4707$ Email:Jbradley@cohenlaw.Com
Nartron Corporation Counterclaim Plaintiff	Mark D. Chuey LEAD ATTORNEY; ATTORNEY TO BE NOTICED Brooks Kushman P.C. 1000 Town Center 22nd Floor Southfield, MI 48075-1238 USA

```
248-358-4400
Email:Mchuey@brookskushman.Com
Mark A. Grace
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Cohen & Grigsby PC
11 Stanwix Street 15th Floor
Pittsburgh, PA 15222-1319
USA
412-297-4900
Email:Mgrace@cohenlaw.Com
Robert C.J. Tuttle
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman P.C.
1000 Town Center 22nd Floor
Southfield, MI 48075-1238
USA
248-358-4400
Email:Rtuttle@brookskushman.Com
Thomas C. Wettach
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Cohen & Grigsby, PC
11 Stanwix Street 15th Floor
Pittsburgh, PA }1522
USA
412-297-4900
Email:Twettach@cohenlaw.Com
Jill L. Bradley
ATTORNEY TO BE NOTICED
Cohen & Grigsby, P.C.
6 2 5 \text { Liberty Avenue}
Pittsburgh, PA 15222-3152
USA
412-297-4707
Email:Jbradley@cohenlaw.Com
Andrew E. Falsetti
LEAD ATTORNEY;ATTORNEY TO BE NOTICED
[Term: 10/23/2007]
Reed Smith LLP
4 3 5 \text { Sixth Avenue}
Pittsburgh, PA 15219
USA
412-288-3844
Email:Afalsetti@reedsmith.Com
Clay P. Hughes
LEAD ATTORNEY;ATTORNEY TO BE NOTICED
Reed Smith
4 3 5 \text { Sixth Avenue}
Pittsburgh, PA 15219
USA
412.288.3008
Email:Chughes@reedsmith.Com
Gene A. Tabachnick
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
```

Qrg, Ltd
Counterclaim Defendant

Reed Smith LLP
435 Sixth Avenue
Pittsburgh, PA 15219
USA
412-288-3258
Email:Gtabachnick@reedsmith.Com
Robert B. Hoffman
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Eckert Seamans Cherin \& Mellott, LLC
213 Market Street, 8th Floor
Harrisburg, PA 17101
USA
(717) 237-7182
Email:Rhoffman@eckertseamans.Com

■xte	\#	Pracearng Tex
09/12/2006	1	Case transferred in from District of Western District of Pennsylvania; Case Number 2:06-CV-500. Original file with documents numbered 1-17, certified copy of transfer order and docket sheet received., filed by QRG, LTD.. (Attachments: \# 1 Civil Cover Sheet \# 2 Receipt\# 3 Doc. 2Disclosure Statement\# 4 Doc. 3-Summons\# 5 Doc. 4- Motion to Dismiss\# 6 Proposed Order to Motion to Dismiss\# 7 Doc. 5- Brief in Support to Motion to Dismiss\# 8 Exhibit A\# 9 Exhibit B\# 10 Exhibit C\# 11 Doc. 6- Notice of Appearance by Thomas C. Wettach\# 12 Doc. 7-Notice; Response to Motion to Dismiss\# 13 Doc. 8- Motion for Discovery\# 14 Proposed Order for Motion for Discovery\# 15 Exhibit 1\# 16 Exhibit 2\# 17 Exhibit 3\# 18 Exhibit 4\# 19 Exhibit 6\# 20 Exhibit 7\# 21 Exhibit 8\# 22 Exhibit 9\# 23 Exhibit 5 (Motion for Discovery)\# 24 Doc. 9- Notice: Response to Motion for Discovery\# 25 Doc. 10- Brief in Opp. to Motion for Discovery\# 26 Exhibit A (Brief in Opp. to Discovery)\# 27 Exhibit B (Brief in Opp. to Discovery)\# 28 Exhibit C (Brief in Opp. for Discovery)\# 29 Exhibit D- (Brief in Opp. to Discovery)\# 30 Doc. 11- Order Granting Motion for Discovery\# 31 Doc. 12- Brief in Opp. to Motion to Dismiss\# 32 Exhibit A (Brief in Opp. to Motion to Dismiss)\# 33 Exhibit B (Brief in Opp. to Motion to Dismiss)\# 34 Exhibit C (Brief in Opp. to Motion to Dismiss)\# 35 Declaration of Richard T. Ting\# 36 Declaration of Andrew E. Falsetti\# 37 Declaration of Harald Philipp\# 38 Declaration of Chris Bede\# 39 Doc. 3 - Motion for Leave to File a Brief in Reply\# 40 Exhibit A (Motion to File Brief in Reply)\# 41 Doc. 14-Response to Motion for Leave to File a Brief in Reply\# 42 Supplemental Declaration of Richard Ting\# 43 Doc. 15-Order Granting Motion to File Brief in Reply\# 44 Doc. 16- Brief in Reply\# 45 Exhibit A (Brief in Reply)\# 46 Doc. 17-Order Denying Motion to Dismiss. ADDITIONAL ATTACHMENTS ADDED-TRANSFER LETTER AND DOCKET FROM WESTERN DISTRICT OF PA(s) added on 9/13/2006 (crh,). (Entered: 09/13/2006)
09/13/2006		SPECIAL ADMISSION FORM SENT to Andrew E. Falsetti, Mark A. Grace \& Thomas C. Wettach (crh,) (Entered: 09/13/2006)
09/13/2006	2	Transfer Letter to Counsel (crh,) (Entered: 09/13/2006)
09/20/2006	3	NOTICE: A Case Mgmnt Conf has been set for 10/24/2006@9:15 AM before Honorable Sylvia H. Rambo. This conference is by phone and the call is to initiated by the pltf. unless otherwise agreed upon. A joint case mgmnt plan is to be filed $\mathrm{n} / \mathrm{/} / \mathrm{t} 10 / 17 / 06$.(ma,) (Entered: 09/20/2006)
09/21/2006	4	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Andrew E. Falsetti on behalf of QRG, LTD. Attorney Andrew E. Falsetti is seeking special admission. Filing Fee: 25.00 Receipt Number: 111146455 (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006)

2 Transfer Letter to Counsel (crh,) (Entered: 09/13/2006) before Honorable Sylvia H. Rambo. This conference is by phone and the call is to initiated by the pltf. unless otherwise agreed upon. A joint case mgmnt plan is to be filed $\mathrm{n} / \mathrm{l} / \mathrm{t} 10 / 17 / 06 .(\mathrm{ma}$,) (Entered: 09/20/2006) (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006)

09/21/2006	5	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Gene A. Tabachnick on behalf of QRG, LTD. Attorney Gene A. Tabachnick is seeking special admission. Filing Fee: 25.00 Receipt Number: 111146455 (Attachments: \# 1 Receipt) (jc) (Entered: 09/21/2006)
09/21/2006	6	NOTICE of Appearance by Robert B. Hoffman on behalf of QRG, LTD. (Hoffman, Robert) (Entered: 09/21/2006)
09/22/2006	7	SPECIAL ADMISSIONS FORM APPROVED as to Andrew Falsetti, Esq. on behalf of ORG, LTDSigned by Judge Sylvia H. Rambo on 09/22/06. (ma,) (Entered: 09/22/2006)
09/22/2006	8	SPECIAL ADMISSIONS FORM APPROVED as to Gene Tabachnick, Esq. on behalf of QRG, LTDSigned by Judge Sylvia H. Rambo on 09/22/06. (ma,) (Entered: 09/22/2006)
09/29/2006	9	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Mark D. Chuey on behalf of NARTRON CORPORATION Attorney Mark D. Chuey is seeking special admission. Filing Fee: 25.00 Receipt Number: 111146486 (crh,) (Entered: 09/29/2006)
09/29/2006	10	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Robert C.J. Tuttle on behalf of NARTRON CORPORATION Attorney Robert C.J. Tuttle is seeking special admission. Filing Fee: 25.00 Receipt Number: 111146485. (crh,) (Entered: 09/29/2006)
10/02/2006	11	SPECIAL ADMISSIONS FORM APPROVED as to Mark D. Chuey, Esq. on behalf of Nartron/Signed by Judge Sylvia H. Rambo on 10/02/06. (ma,) (Entered: 10/02/2006)
10/02/2006	12	SPECIAL ADMISSIONS FORM APPROVED as to Robert Tuttle, Esq. on behalf of Nartron. Signed by Judge Sylvia H. Rambo on 10/02/06. (ma,) (Entered: 10/02/2006)
10/06/2006	13	ANSWER to Complaint by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A\# 2 Exhibit(s) B)(Bradley, Jill) (Entered: 10/06/2006)
10/17/2006	14	CASE MANAGEMENT PLAN by QRG, LTD.. (Falsetti, Andrew) (Entered: 10/17/2006)
10/18/2006	15	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Mark A. Grace on behalf of NARTRON CORPORATION Attorney Mark A. Grace is seeking special admission. Filing Fee: 25.00 Receipt Number: 111 146621. (crh,) (Entered: 10/18/2006)
10/18/2006	16	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Thomas C. Wettach on behalf of NARTRON CORPORATION Attorney Thomas C. Wettach is seeking special admission. Filing Fee: 25.00 Receipt Number: 111 146621. (crh,) (Entered: 10/18/2006)
10/19/2006	17	SPECIAL ADMISSIONS FORM APPROVED as to Mark Grace, Esq. on behalf of NartronSigned by Judge Sylvia H. Rambo on 10/19/06. (ma,) (Entered: 10/19/2006)
10/19/2006	18	SPECIAL ADMISSIONS FORM APPROVED as to Thomas Wettach, Esq. on behalf of NartronSigned by Judge Sylvia H. Rambo on 10/19/06. (ma,) (Entered: 10/19/2006)
10/24/2006	20	ORDER - STANDARD CASE MANAGEMENT TRACK Case placed on the $08 / 2007$ trial list. Cases on this list are scheduled to begin on 9/4/2007 following all j/s's starting at 9:30 AM. A date certain may be discussed at the PTC which is set for 8/17/2007@1:30 PM; Discovery due by 2/28/2007. Dispositive Mtns due by 6/20/2007. PTMs due by 8/10/2007. See order for other ddls. Signed by Judge Sylvia H. Rambo on 10/24/06. (ma,) (Entered: 10/24/2006)
11/01/2006	21	MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(1) by NARTRON CORPORATION. (Attachments: \# 1 Certificate of Compliance With Local Rule 7.1\# 2 Proposed Order)(Grace, Mark) (Entered: 11/01/2006)

$11 / 01 / 2006$	22	
	BRIEF IN SUPPORT re 21 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12	
	(b)(1) filed by NARTRON CORPORATION. (Attachments: \# 1 Declaration of	
	John E. Nemazi\# 2 Exhibit(s) A - G) (Grace, Mark) (Entered: 11/01/2006)	

03/29/2007	37	CERTIFICATE of of Compliance by NARTRON CORPORATION re 36 Reply Brief,. (Grace, Mark) (Entered: 03/29/2007)
04/12/2007	38	REPLY BRIEF re 34 MOTION to Strike Counterclaim filed by QRG, LTD.. (Falsetti, Andrew) (Entered: 04/12/2007)
04/23/2007	39	MEMORANDUM AND ORDER denying pltf's Motion to Strike 34 . Signed by Judge Sylvia H. Rambo on 04/23/07 (ma,) (Entered: 04/23/2007)
04/23/2007	40	NOTICE: A scheduling Conference has been scheduled for 5/10/2007 @ 9:00 AM before Honorable Sylvia H. Rambo. This conference is by phone with the call to be initiated by the pltf. Signed by Judge Sylvia H. Rambo on 04/23/07. (ma,) (Entered: 04/23/2007)
05/07/2007	41	REPLY/ ANSWER to Counterclaim for Patent Infringement by QRG, LTD.. (Falsetti, Andrew) (Entered: 05/07/2007)
05/07/2007	42	MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit by NARTRON CORPORATION.(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	43	STATEMENT OF FACTS re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit filed by NARTRON CORPORATION. (Attachments: \# 1 Index of Exhibits\# 2 Exhibit(s) A\# 3 Exhibit(s) B\# 4 Exhibit(s) C) (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	44	BRIEF IN SUPPORT re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit filed by NARTRON CORPORATION. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	45	EXHIBIT A to Brief in Support by NARTRON CORPORATION re 44 Brief in Support. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	46	EXHIBIT PROPOSED ORDER by NARTRON CORPORATION re 42 MOTION for Partial Summary Judgment on Plaintiff QRG's Declaratory Judgment Claim for Unenforceability of The Five Nartron Patents-In-Suit. (Grace, Mark) (Entered: 05/07/2007)
05/07/2007	47	MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid by NARTRON CORPORATION. (Attachments: \# 1 Proposed Order)(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	48	STATEMENT OF FACTS re 47 MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid filed by NARTRON CORPORATION. (Attachments: \# 1 Index\# 2 Exhibit(s) A\# 3 Exhibit(s) B\# 4 Exhibit(s) C\# 5 Exhibit(s) D\# 6 Exhibit(s) E)(Grace, Mark) (Entered: 05/07/2007)
05/07/2007	49	BRIEF IN SUPPORT re 47 MOTION for Partial Summary Judgment that the Nartron Patents-In-Suit Are Not Invalid filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A)(Grace, Mark) (Entered: 05/07/2007)
05/08/2007	50	CERTIFICATE of Compliance with Word-Count Limit by NARTRON CORPORATION re 44 Brief in Support. (Grace, Mark) (Entered: $05 / 08 / 2007)$
05/08/2007	51	CERTIFICATE of Compliance with Word-Count Limit by NARTRON CORPORATION re 49 Brief in Support. (Grace, Mark) (Entered: 05/08/2007)
05/08/2007		Pursuant to the Local Rules and ECF User Manual, all motions and briefs should be filed simultaneously with their corresponding proposed orders, exhibits and any certificates as attachments to the main documents and not as individual documents. (dfm) (Entered: 05/08/2007)
05/10/2007	54	ORDER: 1) The fact discovery ddl shall be ext'd to (90) daysfrom the date of this order;2) W/i (30) days of this order, the parties shall depose

		Mr.Ingraham, an inventor;3) $\mathrm{W} / \mathrm{i}(30)$ days of this order, the parties shall jointlydetermine whether the issues and patents involved in this case can be narrowed;4) A telephonic status conference shall take place on 6/26/07, at 9:30 a.m. Pltf shall initiate the call; 5) Briefing of Nartrons two partial mtns for sum jgm (Docs. 42 and 47) is STAYED until 8/17/07. On or before that date, Nartron shall notify the crt and QRG whether it intends to rely upon the mtnsas they are, or withdraw the mtns and file a new dispositive mtn. If Nartronelects to file a new dispositive mtn, it must do so by $8 / 17 / 07$. If Nartronleaves the mtns as they are, briefing will resume in accord w/LRs and QRGs responses will be due on or before $9 / 4 / 07 ; 6$) The case management deadlines are amended as follows: Jury Selection/Trial Date December 3, 2007@ 9:30 AMFact Discovery Ddl 8/10/07; Amended Dispositive Mtns \& amp; Brsups 08/17/07; Pltfs Expert Reports 08/24/07; Dfts Expert Reports 09/7/07; Supplemental Reports 09/21/07; Mtns in Limine \& Brsups 10/09/07; Mts in Limine Response 10/19/07; Mtns in Limine Reply 10/26/07; P-T Conference 11/16/07@ 11:00 AM; P-T Memoranda 11/9/07; Signed by Judge Sylvia H. Rambo on 05/10/07. (ma,) (Entered: 05/10/2007)
06/14/2007	55	STATUS REPORT to the Court on Narrowing of Issues and Patents Involved, and Request for Order for Mandatory Rule 26(a)(1) Disclosures by the Parties by NARTRON CORPORATION. (Attachments: \# 1 Exhibit(s) A\# 2 Exhibit(s) B\# 3 Exhibit(s) C\# 4 Exhibit(s) D)(Grace, Mark) (Entered: 06/14/2007)
06/19/2007	56	ORDER: Pltf QRG, Ltd. a/k/a Quantum Research Group, Ltd. shall respond to thepoints and proposals set forth in Nartrons status report 55 and proposed order no later thanJuly 9, 2007. Signed by Judge Sylvia H. Rambo on 06/19/07. (ma,) (Entered: 06/19/2007)
07/09/2007	58	NOTICE by QRG, LTD. in Response to Nartron's Report and Proposed Order (Attachments: \# 1 Word-Count Certificate\# 2 Proposed Order \# 3 Exhibit(s) 1\# 4 Exhibit(s) 2\# 5 Exhibit(s) 3\# 6 Exhibit(s) 4\# 7 Exhibit(s) 5\# 8 Exhibit(s) 6\# 9 Exhibit(s) 8\# 10 Exhibit(s) 9\# 11 Exhibit(s) 10\# 12 Exhibit(s) 11\# 13 Exhibit(s) 12\# 14 Exhibit(s) 7)(Falsetti, Andrew) (Entered: 07/09/2007)
07/13/2007	59	RESPONSE by NARTRON CORPORATION to 58 Notice,. (Attachments: \# 1 Exhibit(s) 1-4)(Grace, Mark) (Entered: 07/13/2007)
07/27/2007	60	Joint MOTION for Extension of Time to Complete Discovery by QRG, LTD.. (Attachments: \# 1 Proposed Order)(Falsetti, Andrew) (Entered: 07/27/2007)
08/01/2007	61	MEMORANDUM AND ORDER: 1) The claims and counterclaim in the captioned case are limited tothose involving QRGs QProx E2SR, QT110, QT113, QT9701, and QT1106products, and Nartrons patents U.S. patents: $4,731,548 ; 4,758,735 ; 4,831,279 ; 5,087,825 ; 5,796,183$. All other claims are DISMISSED for lack of subject matterjurisdiction.2) Defendant Nartron Corporations Motion for Partial Summary Judgment on Plaintiff QRGs Declaratory Judgment Claim for Unenforceability ofthe Five Nartron Patents-in-Suit 42 and Motion for Partial SummaryJudgment that the Nartron Patents-in-Suit are not Invalid 47 areSTRICKEN.3) Disposition of the parties Joint Motion to Revise Case ManagementOrder 60 is deferred pending the outcome of mediation.4) The parties shall notify the court no later than August 10, 2007, whether they intend to obtain their own mediator or request the court to appoint amediator.5) Mediation shall be completed no later than September 14, 2007. Signed by Judge Sylvia H. Rambo on 08/01/07 (ma,) (Entered: 08/01/2007)
08/10/2007	62	NOTICE by QRG, LTD. and Nartron Corporation Regarding Mediator Selection (Falsetti, Andrew) (Entered: 08/10/2007)
09/26/2007	63	STATUS REPORT by NARTRON CORPORATION. (Grace, Mark) (Entered: 09/26/2007)

10/22/2007	64	STATUS REPORT (Joint) by NARTRON CORPORATION. (Grace, Mark) (Entered: 10/22/2007)
10/23/2007	65	PETITION FOR SPECIAL ADMISSION (PRO HAC VICE) by Clay P. Hughes on behalf of QRG, LTD. Attorney Clay Hughes is seeking special admission. Filing fee \$ 25, receipt number 1136392.. (Hughes, Clay) (Entered: 10/23/2007)
10/23/2007	66	ATTORNEY SUBSTITUTION - Withdrawal and Entry of Attorney Appearance. Attorney Andrew E. Falsetti terminated. Attorney Clay P. Hughes and Clay P. Hughes for QRG, LTD. added. (Hughes, Clay) (Entered: 10/23/2007)
10/23/2007	67	SPECIAL ADMISSIONS FORM APPROVED as to Clay Hughes, Esq. on behalf of QRGSigned by Judge Sylvia H. Rambo on 10/23/07. (ma,) (Entered: 10/23/2007)
11/28/2007	68	STIPULATION of Dismissal with Prejudice by NARTRON CORPORATION. (Grace, Mark) (Entered: 11/28/2007)
11/28/2007	69	ORDER APPROVING STIPULATION OF DISMISSAL. Signed by all parties. Case termed.Signed by Judge Sylvia H. Rambo on 11/28/07. (ma,) (Entered: 11/28/2007)

Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved.
*** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

US District Court Civil Docket

(Fissemsrsh)

2:06cv500

Qrg. Ald. V. Namen Corporation

This case was retrieved from the court on Sunday, January 26, 2014

4/13/2006	1	COMPLAINT against NARTRON CORPORATION (Filing fee \$ 350 receipt number 3312.) filed by QRG, LTD.. (Attachments: \# 1 Civil Cover Sheet \# 2 Receipt \# 3312)(jsp) (Entered: 04/14/2006)
04/13/2006	2	Disclosure Statement by QRG, LTD. (jsp) (Entered: 04/14/2006)
04/14/2006		Summons Issued as to NARTRON CORPORATION. (jsp) (Entered: 04/14/2006)
04/14/2006		Remark: E-mail notification to the U.S. Patent and Trademark Office with complaint and docket entries attached sent this date. (jsp,) (Entered: 04/14/2006)
04/24/2006	3	SUMMONS/Return of Service Returned Executed by QRG, LTD.. NARTRON CORPORATION served on $4 / 18 / 2006$, answer due $5 / 8 / 2006$. (Tabachnick, Gene) (Entered: 04/24/2006)
05/08/2006	4	MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(2) by NARTRON CORPORATION. (Attachments: \# 1 Proposed Order (Grace, Mark) (Entered: 05/08/2006)
05/08/2006	5	BRIEF in Support re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b) (2) filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C)(Grace, Mark) (Entered: 05/08/2006)
05/09/2006	6	NOTICE of Appearance by Thomas C. Wettach on behalf of NARTRON CORPORATION (Wettach, Thomas) (Entered: 05/09/2006)
05/09/2006	7	NOTICE: Response to Defendant's Motion to Dismiss (Docket No. 4) due by $5 / 30 / 2006$. (jlh) (Entered: 05/09/2006)
05/12/2006	8	MOTION for Discovery on Personal Jurisdiction by QRG, LTD.. (Attachments: \# 1 Proposed Order \# 2 Exhibit 1\# 3 Exhibit 2\# 4 Exhibit 3\# 5 Exhibit 4\# 6 Exhibit 5\# 7 Exhibit 6\# 8 Exhibit 7\# 9 Exhibit 8\# 10 Exhibit 9)(Falsetti, Andrew) (Entered: 05/12/2006)
05/22/2006	9	NOTICE: Response to Plaintiff's Motion for Leave to Take Discovery on the Personal Jurisdiction Issue Raised by Defendant's Motion to Dismiss shall be due by $5 / 29 / 2006$. In addition, the Plaintiff's response to the Defendant's Motion to Dismiss shall be continued from May 30, 2006 until a date set forth in a future order of this court. (jlh) (Entered: 05/22/2006)
05/26/2006	10	BRIEF in Opposition re 8 MOTION for Discovery on Personal Jurisdiction filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C\# 4 Exhibit D)(Grace, Mark) (Entered: 05/26/2006)
05/30/2006	11	ORDER granting 8 Motion for Discovery (as stated more fully in order). Signed by Judge Donetta W. Ambrose on 5/30/06. (jlh) (Entered: 05/30/2006)
05/30/2006		Response to Motion to Dismiss due by 7/30/2006. (jlh) (Entered: 05/30/2006)
07/31/2006	12	BRIEF in Opposition re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12 (b)(2) filed by QRG, LTD.. (Attachments: \# 1 Exhibit A\# 2 Exhibit B\# 3 Exhibit C\# 4 Affidavit / Declaration of Richard T. Ting in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 5 Affidavit / Declaration of Andrew E. Falsetti in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 6 Affidavit / Declaration of Harald Philipp in Support of Qrg's Oppostion to Defendant's Motion to Dismiss\# 7 Affidavit / Declaration of Chris Bede in Support of QRG's Oppostion to Defendant's Motion to Dismiss)(Falsetti, Andrew) (Entered: 07/31/2006)
08/04/2006	13	MOTION for Leave to File A Brief in Reply to Plaintiff QRG's Opposition to Defendant's Motion to Dismiss by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A)(Grace, Mark) (Entered: 08/04/2006)
08/07/2006	14	RESPONSE to Motion re 13 MOTION for Leave to File A Brief in Reply to Plaintiff QRG's Opposition to Defendant's Motion to Dismiss filed by QRG,

		LTD.. (Attachments: \# 1 Affidavit / Supplemental Declaration of Richard T. Ting)(Falsetti, Andrew) (Entered: 08/07/2006)
08/09/2006	15	ORDER granting 13 Motion for Leave to File Reply Brief. Signed by Judge Donetta W. Ambrose on 8/8/06. (jlh) (Entered: 08/09/2006)
08/09/2006	16	BRIEF IN REPLY to Response to Motion re 4 MOTION to Dismiss Pursuant to Fed.R.Civ.P. 12(b)(2) filed by NARTRON CORPORATION. (Attachments: \# 1 Exhibit A)(Grace, Mark) Modified text to reflect title of document on 8/10/2006 (jsp,). (Entered: 08/09/2006)
09/07/2006	17	ORDER denying 4 Motion to Dismiss, as set forth more fully in the Opinion accompanying this Order; It is further ORDERED that the within case is transferred to the United States District Court for the Middle District of Pennsylvania. The Clerk of Court is directed to transfer this case forthwith to the U.S. District Court for the Middle District of Pennsylvania. Signed by Judge Donetta W. Ambrose, Chief Judge, on 09/07/2006. (adb) (Entered: 09/07/2006)
09/07/2006		Case transferred to District of USDC Middle District of PA. Original file, certified copy of transfer order, retrieval instructions and docket sheet sent. (jsp) (Entered: 09/07/2006)
09/07/2006		Remark: E-mail notification to the U.S. Patent and Trademark Office with copy of order transferring this action to the USDC for the Middle District of Pennsylvania sent on September 7, 2006. (jsp) (Entered: 09/07/2006)

[^2]
US District Court Civil Docket

(Sorsor)

2:03cv75169

Nartron Corp v. Gen Elec, et al
This case was retrieved from the court on Sunday, January 26, 2014

```
        Oat* Fisec: 12/24/2003
Fe\s%res To: Magistrate Judge Virginia M.
                    Morgan
        Nature os
                susf: Patent (830)
```



```
Ne&< bockes: None
            Osmas
        bockes: None
```



```
```

 Eves Gode: CLOSED
    ```
```

 Eves Gode: CLOSED
 C*osed:02/14/2005
 C*osed:02/14/2005
 Sta{use:
 Sta{use:
 Sury Bamsams: Both
 Sury Bamsams: Both
 Demama&mosms:$0
 Demama&mosms:$0
 Nos O*scrgovions: Patent
    ```
```

 Nos O*scrgovions: Patent
    ```
```

घitiganis
Nartron Corporation Plaintiff

Nartron Corporation

```
Assignes To: District Judge Nancy G.
```

Assignes To: District Judge Nancy G.
Edmunds

```
            Edmunds
```

Atcomeys

```
Ernie L. Brooks - INACTIVE
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, Ml 48075
USA
248-358-4400
John E. Nemazi
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Jnemazi@brookskushman.Com
Sangeeta G. Shah
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Sshah@brookskushman.Com
Thomas W. Cunningham
```

| | LEAD ATTORNEY;ATTORNEY TO BE NOTICED
 Brooks Kushman
 1000 Town Center 22nd Floor
 Southfield, MI 48075
 USA
 248-358-4400
 Email:Tcunningham@brookskushman.Com |
| :---: | :---: |
| General Electric Defendant | J. Michael Huget |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED Honigman Miller Schwartz and Cohn LLP |
| | 130 South First Street 4th Floor |
| | Ann Arbor, MI 48104-1386 |
| | USA |
| | 734-418-4254 |
| | Fax: 734-418-4255 |
| | Email:Mhuget@honigman.Com |
| | James W. Stuart |
| | LEAD ATTORNEY |
| | [Term: 03/10/2004] |
| | Ogne, Alberts, |
| | 1869 E. Maple Road Suite 100 |
| | Troy, MI 48083 |
| | USA |
| | 248-362-3707 |
| | Fax: 248-382-0422 |
| | Email: Jstuart@oaspc.Com |
| | Laurie J. Michelson |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Butzel Long |
| | 150 W. Jefferson Suite 100 |
| | Detroit, MI 48226-4430 |
| | USA |
| | 313-225-7000 |
| | Email: Orlowski@butzel.Com |
| | Marshall J. Schmitt |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Jenner and Block |
| | 330 N. Wabash Avenue |
| | One Ibm Plaza |
| | Chicago, IL 60611 |
| | USA |
| | 312-923-2759 |
| | Philip J. Kessler |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Thompson \& Knight LLP |
| | 2000 Town Center, Suite 1900 |
| | Southfield, MI 48075 |
| | USA |
| | 248-233-0852 |
| | Fax: 214-999-1576 |
| | Email:Philip.Kessler@tklaw.Com |
| | Stanley A. Schlitter |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | One IBM Plaza |

| | Suite 4700
 Chicago, IL 60611-7603 USA $312-222-9350$ |
| :---: | :---: |
| Maytag Corporation Defendant | J. Michael Huget |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Honigman Miller Schwartz and Cohn LLP |
| | 130 South First Street 4th Floor |
| | Ann Arbor, MI 48104-1386 |
| | USA |
| | 734-418-4254 |
| | Fax: 734-418-4255 |
| | Email:Mhuget@honigman.Com |
| | James W. Stuart |
| | LEAD ATTORNEY |
| | [Term: 03/10/2004] |
| | Ogne, Alberts, |
| | 1869 E. Maple Road Suite 100 |
| | Troy, MI 48083 |
| | USA |
| | 248-362-3707 |
| | Fax: 248-382-0422 |
| | Email: Jstuart@oaspc.Com |
| | Laurie J. Michelson |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Butzel Long |
| | 150 W. Jefferson Suite 100 |
| | Detroit, MI 48226-4430 |
| | USA |
| | 313-225-7000 |
| | Email: Orlowski@butzel.Com |
| | Marshall J. Schmitt |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Jenner and Block |
| | 330 N. Wabash Avenue |
| | One Ibm Plaza |
| | Chicago, IL 60611 |
| | USA |
| | 312-923-2759 |
| | Philip J. Kessler |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Thompson \& Knight LLP |
| | 2000 Town Center, Suite 1900 |
| | Southfield, MI 48075 |
| | USA |
| | 248-233-0852 |
| | Fax: 214-999-1576 |
| | Email:Philip.Kessler@tklaw.Com |
| | Stanley A. Schlitter |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | One IBM Plaza |
| | Suite 4700 |
| | Chicago, IL 60611-7603 |
| | USA |

| | 312-222-9350 |
| :---: | :---: |
| Touchsensor Technologies, L. L. C. Defendant | J. Michael Huget |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Honigman Miller Schwartz and Cohn LLP |
| | 130 South First Street 4th Floor |
| | Ann Arbor, MI 48104-1386 |
| | USA |
| | 734-418-4254 |
| | Fax: 734-418-4255 |
| | Email:Mhuget@honigman.Com |
| | James W. Stuart |
| | LEAD ATTORNEY |
| | [Term: 03/10/2004] |
| | Ogne, Alberts, |
| | 1869 E. Maple Road Suite 100 |
| | Troy, MI 48083 |
| | USA |
| | 248-362-3707 |
| | Fax: 248-382-0422 |
| | Email: Jstuart@oaspc.Com |
| | Laurie J. Michelson |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Butzel Long |
| | 150 W. Jefferson Suite 100 |
| | Detroit, MI 48226-4430 |
| | USA |
| | 313-225-7000 |
| | Email:Orlowski@butzel.Com |
| | Marshall J. Schmitt |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Jenner and Block |
| | 330 N. Wabash Avenue |
| | One Ibm Plaza |
| | Chicago, IL 60611 |
| | USA |
| | 312-923-2759 |
| | Philip J. Kessler |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | Thompson \& Knight LLP |
| | 2000 Town Center, Suite 1900 |
| | Southfield, MI 48075 |
| | USA |
| | 248-233-0852 |
| | Fax: 214-999-1576 |
| | Email:Philip.Kessler@tklaw.Com |
| | Stanley A. Schlitter |
| | LEAD ATTORNEY; ATTORNEY TO BE NOTICED |
| | One IBM Plaza |
| | Suite 4700 |
| | Chicago, IL 60611-7603 |
| | USA |
| | 312-222-9350 |


```
Ann Arbor, Ml 48104-1386
USA
734-418-4254
Fax: 734-418-4255
Email:Mhuget@honigman.Com
Laurie J. Michelson
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Butzel Long
150 W. Jefferson Suite 100
Detroit, Ml 48226-4430
USA
313-225-7000
Email:Orlowski@butzel.Com
Marshall J. Schmitt
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Jenner and Block
330 N. Wabash Avenue
One Ibm Plaza
Chicago,IL 60611
USA
312-923-2759
Philip J. Kessler
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Thompson & Knight LLP
2000 Town Center, Suite 1900
Southfield, Ml 48075
USA
248-233-0852
Fax: 214-999-1576
Email:Philip.Kessler@tklaw.Com
Stanley A. Schlitter
LEAD ATTORNEY;ATTORNEY TO BE NOTICED
One IBM Plaza
Suite 4700
Chicago,IL 60611-7603
USA
312-222-9350

Sangeeta G. Shah
ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Sshah@brookskushman.Com
```

J. Michael Huget

```
J. Michael Huget
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Honigman Miller Schwartz and Cohn LLP
Honigman Miller Schwartz and Cohn LLP
130 South First Street 4th Floor
130 South First Street 4th Floor
Ann Arbor, Ml 48104-1386
Ann Arbor, Ml 48104-1386
USA
USA
734-418-4254
734-418-4254
Fax: 734-418-4255
```

```
Fax: 734-418-4255
```

```

Nartron Corporation
Counter Defendant

General Electric
Counter Claimant
Email:Mhuget@honigman.Com
Laurie J. Michelson
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Butzel Long
150 W. Jefferson Suite 100
Detroit, MI 48226-4430
USA
313-225-7000
Email:Orlowski@butzel.Com
Marshall J. Schmitt
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Jenner and Block
330 N. Wabash Avenue
One Ibm Plaza
Chicago, IL 60611
USA
312-923-2759
Philip J. Kessler
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
Thompson \& Knight LLP
2000 Town Center, Suite 1900
Southfield, MI 48075
USA
248-233-0852
Fax: 214-999-1576
Email:Philip.Kessler@tklaw.Com
Stanley A. Schlitter
LEAD ATTORNEY; ATTORNEY TO BE NOTICED
One IBM Plaza
Suite 4700
Chicago, IL 60611-7603
USA
312-222-9350
Nartron Corporation
Counter Defendant
Sangeeta G. Shah Counter Defendant
ATTORNEY TO BE NOTICED
Brooks Kushman
1000 Town Center 22nd Floor
Southfield, MI 48075
USA
248-358-4400
Email:Sshah@brookskushman.Com
\begin{tabular}{|c|c|c|c|}
\hline Фate & m & Froceedimy Text & Source \\
\hline 12/24/2003 & 1 & COMPLAINT for patent infringement and jury demand - Receipt \# 36294Date Fee Received: 12/24/03 with attachments A-C (DT) (Entered: 12/29/2003) & \\
\hline 12/24/2003 & & REPORT sent to Washington (DT) (Entered: 12/29/2003) & \\
\hline 12/24/2003 & 2 & STATEMENT of disclosure of corporate affiliations and financial interests by plaintiff Nartron Corp (DT) (Entered: 12/29/2003) & \\
\hline 01/08/2004 & 3 & AMENDED complaint by plaintiff Nartron Corp for patent infringement, with jury, exhibits A-C and proof of service. demand (RH) (Entered:
\[
01 / 09 / 2004)
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 01/14/2004 & 4 & SUMMONS Returned Executed. General Electric served on 1/12/2004, answer due 2/2/2004 (NHoll,) (Entered: 02/03/2004) \\
\hline 01/30/2004 & 7 & SUMMONS Returned Executed. Touchsensor Technologies, L. L. C. served on \(1 / 15 / 2004\), answer due 2/4/2004 (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/02/2004 & 5 & ATTORNEY APPEARANCE: James W. Stuart appearing on behalf of General Electric, Maytag Corporation. (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/02/2004 & 6 & SUMMONS Returned Executed. Maytag Corporation served on 1/16/2004, answer due 2/5/2004. (NHoll, ) (Entered: 02/11/2004) \\
\hline 02/04/2004 & 8 & ATTORNEY APPEARANCE: James \(W\). Stuart appearing on behalf of Touchsensor Technologies, L. L. C. (NHoll, ) (Entered: 02/12/2004) \\
\hline 02/11/2004 & 9 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by Touchsensor Technologies, L. L. C. against Nartron Corporation (NHoll, ) (Entered: 02/17/2004) \\
\hline 02/11/2004 & 10 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by Maytag Corporation against Nartron Corporation (NHoll, ) (Entered: 02/17/2004) \\
\hline 02/11/2004 & 11 & ANSWER to Amended Complaint with Affirmative Defenses, COUNTERCLAIM filed by General Electric against Nartron Corporation (NHoll,) (Entered: 02/17/2004) \\
\hline 02/18/2004 & 12 & ANSWER to 9 Counterclaim by Nartron Corporation. (NHoll, ) Modified on 2/23/2004 (NHoll, ). (Entered: 02/23/2004) \\
\hline 02/18/2004 & 13 & ANSWER to 11 Counterclaim by Nartron Corporation. (NHoll, ) (Entered: 02/23/2004) \\
\hline 02/18/2004 & 14 & ANSWER to 10 Counterclaim by Nartron Corporation.(NHoll, ) (Entered: 02/24/2004) \\
\hline 03/03/2004 & 16 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by General Electric (DTyle,) (Entered: 03/16/2004) \\
\hline 03/03/2004 & 17 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by Maytag Corporation (DTyle, ) (Entered: 03/16/2004) \\
\hline 03/03/2004 & 18 & STATEMENT of DISCLOSURE of CORPORATE AFFILIATIONS and FINANCIAL INTEREST by Touchsensor Technologies, L. L. C. (DTyle, ) (Entered: 03/16/2004) \\
\hline 03/04/2004 & 15 & NOTICE TO APPEAR: Scheduling Conference set for 4/1/2004 02:00 PM before Honorable Nancy G Edmunds. (CHem, ) (Entered: 03/04/2004) \\
\hline 03/10/2004 & 19 & STIPULATED ORDER substituting attorneys Philip J. Kessler, J. Michael Huget and Laurie J. Michelson for Maytag Corporation, Touchsensor Technologies, L. L. C. and General Electric in place of attorney James W. Stuart Signed by Judge Nancy G Edmunds. (DTyle, ) (Entered: 03/23/2004) \\
\hline 03/30/2004 & 21 & DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f) (NHoll,) (Entered: 04/14/2004) \\
\hline 03/31/2004 & 22 & REVISED DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f) (NHoll, ) (Entered: 04/14/2004) \\
\hline 04/06/2004 & & Minute Entry -Scheduling Conference held on 4/6/2004 before Honorable Nancy G Edmunds. Status Conference set for 7/13/2004 02:00 PM before Honorable Nancy G Edmunds. (CHem, ) (Entered: 04/07/2004) \\
\hline 04/06/2004 & 27 & SCHEDULING ORDER: Status Conference set for 7/13/2004 02:00 PM before Honorable Nancy G Edmunds. Signed by Honorable Nancy G Edmunds. (Refer to image for additional dates)(CHem,) (Entered: 06/10/2004) \\
\hline 04/08/2004 & 23 & \begin{tabular}{l}
STIPULATED PROTECTIVE ORDER Signed by Judge Nancy G Edmunds. \\
(DTyle, ) (Entered: 04/22/2004)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 05/04/2004 & 24 & NOTICE of Appearance by Marshall J. Schmitt, Stanley A. Schlitter on behalf of General Electric, Maytag Corporation, Touchsensor Technologies, L. L. C. (DTyle, ) (Entered: 05/06/2004) \\
\hline 06/07/2004 & & (STICKEN 6/10/04) Ex Parte MOTION to Amend/Correct 20 Scheduling Conference, Set Scheduling Order Deadlines by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit 6/4/04 letter regarding mediation\# 3 Exhibit 6/4/04 letter regarding document production)(Shah, Sangeeta) Modified on 6/10/2004 (CHem, ). (Entered: 06/07/2004) \\
\hline 06/10/2004 & 26 & ORDER to Strike 25 Ex Parte MOTION to Amend/Correct 20 Scheduling Conference, Set Scheduling Order Deadlines filed by Nartron Corporation. Signed by Honorable Nancy G Edmunds. (CHem,) (Entered: 06/10/2004) \\
\hline 06/14/2004 & 28 & MOTION to Amend/ Correct 27 Scheduling Order by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit 6/4/04 letter regarding mediator\# 3 Exhibit 6/4/04 letter regarding document production)(Shah, Sangeeta) (Entered: 06/14/2004) \\
\hline 06/24/2004 & 29 & RESPONSE to 28 Motion to amend scheduling order filed by General Electric, Maytag Corporation and Touchsensor Technologies, L. L. C.; with exhibit A. (DPer, ) (Entered: 06/30/2004) \\
\hline 07/01/2004 & 30 & REPLY to Response re 28 MOTION to Amend/Correct 27 Scheduling Order filed by Nartron Corporation. (Shah, Sangeeta) (Entered: 07/01/2004) \\
\hline 07/13/2004 & & Minute Entry -Status Conference held on \(7 / 13 / 2004\), parties agreed to special master, before Honorable Nancy G Edmunds. (CHem, ) (Entered:
\[
07 / 21 / 2004)
\] \\
\hline 07/27/2004 & 31 & DECLARATION of compliance by John Robinson Thomas (DTyle,) (Entered: 08/02/2004) \\
\hline 07/27/2004 & 32 & AFFIDAVIT of John R. Thomas (DTyle, ) (Entered: 08/02/2004) \\
\hline 07/29/2004 & 33 & AMENDED SCHEDULING ORDER: Signed by Honorable Nancy G Edmunds. (Refer to image for dates)(DTyle, ) (Entered: 08/05/2004) \\
\hline 07/29/2004 & 34 & APPOINTMENT AND ORDER of reference to Special Master Signed by Honorable Nancy G Edmunds. (DTyle, ) (Entered: 08/05/2004) \\
\hline 08/13/2004 & 35 & MOTION to Amend the scheduling order and MOTION to Compel Discovery by Nartron Corporation. (Attachments: \# 1 Document Continuation \# 2 Document Continuation \# 3 Document Continuation \# 4 Document Continuation)(DTyle,) (Entered: 08/16/2004) \\
\hline 08/19/2004 & 36 & RESPONSE to 35 Motion to Amend scheduling order and Motion to Compel discovery filed by defendants. (DTyle, ) (Entered: 08/23/2004) \\
\hline 08/31/2004 & 37 & ORDER REFERRING MOTION to Magistrate Judge Komives: 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation. Signed by Honorable Nancy G Edmunds. (CHem,) (Entered: 08/31/2004) \\
\hline 08/31/2004 & 39 & REPLY to Response re 35 MOTION to Amend Scheduling Order and MOTION to Compel filed by Nartron Corporation. (CMul, ) (Entered: 09/02/2004) \\
\hline 09/02/2004 & 38 & NOTICE of hearing on 35 MOTION to Amend/Correct MOTION to Compel. Motion Hearing set for 9/15/2004 11:00 AM before Honorable Paul J Komives. (SJef, ) (Entered: 09/02/2004) \\
\hline 09/16/2004 & & Minute Entry -Motion Hearing held on 9/16/2004 re 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation before Honorable Paul J Komives. Disposition: TAKEN UNDER ADVISEMENT (Tape \#04-010) (SJef, ) (Entered: 09/16/2004) \\
\hline 09/23/2004 & 40 & ORDER of DISQUALIFICATION and REASSIGNING CASE from Magistrate Judge Paul J Komives to Magistrte Judge Virginia M Morgan Signed by Honorable Paul J Komives. (SSchoe, ) (Entered: 09/24/2004) \\
\hline 09/27/2004 & 41 & TRANSCRIPT of Proceedings held on 9/15/04 of plaintiff's motion to amend \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & scheduling order and motion to compel discovery (DTyle, ) (Entered:
09/28/2004) \\
\hline 09/29/2004 & 42 & ORDER Referring Pretrial Matters to Magistrate Judge Virginia M Morgan. Signed by Honorable Nancy G Edmunds. (CHem, ) (Entered: 09/29/2004) \\
\hline 10/08/2004 & 43 & AMENDED DISCOVERY plan jointly filed pursuant to Federal Rules of Civil Procedure 26(f); with exhibit A. (Attachments: \# 1 Document Continuation)(DPer, ) (Entered: 10/13/2004) \\
\hline 10/27/2004 & 44 & NOTICE of hearing on 35 MOTION to Amend/Correct MOTION to Compel. Resolved/Unresolved Issues due by 11/8/2004. Motion Hearing set for 11/15/2004 10:30 AM before Honorable Virginia M Morgan. (JOwe, ) (Entered: 10/27/2004) \\
\hline 10/29/2004 & 45 & STATEMENT of Claim Construction Statement by Nartron Corporation. (Attachments: \# 1 Index of Exhibits \# 2 Exhibit A - Table with Parties' Proposed Constructions)(Shah, Sangeeta) (Entered: 10/29/2004) \\
\hline 10/29/2004 & 46 & STATEMENT regarding claim construction by General Electric, Maytag Corporation, Touchsensor Technologies, L. L. C.. (Attachments: \# 1 Document Continuation \# 2 Document Continuation)(DTyle, ) (Entered: 11/01/2004) \\
\hline 11/15/2004 & & Minute Entry -Motion Hearing not held on 11/15/2004 re 35 MOTION to Amend/Correct MOTION to Compel filed by Nartron Corporation before Honorable Virginia M Morgan. Disposition: WITHDRAWN; CASE SETTLED (JOwe, ) (Entered: 11/15/2004) \\
\hline 11/15/2004 & 47 & ORDER withdrawing 35 Motion to Amend/Correct, withdrawing 35 Motion to Compel- Signed by Honorable Virginia M Morgan. (JOwe, ) (Entered: 11/16/2004) \\
\hline 11/30/2004 & 48 & STIPULATED ORDER STAYING CASE. Signed by Honorable Nancy G Edmunds. (LBeh,) (Entered: 12/07/2004) \\
\hline 02/14/2005 & 49 & STIPULATED ORDER DISMISSING CASE with prejudice Signed by Honorable Nancy G Edmunds. (DTyle, ) (Entered: 02/15/2005) \\
\hline
\end{tabular}

\section*{Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved. *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***}

\section*{Lexis:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sy kexis \({ }^{\text {m }}\) & Seays & Get a moasmant & Shspard's & Mare & History & Alercs \\
\hline A! \({ }^{\text {a }}\) & \multicolumn{6}{|c|}{Accedt subtak} \\
\hline
\end{tabular}

 Copyrght 2044 Lexishexis, a digign of Reed Elsevier Inc. All rights ysserved

\author{
5,796,193 Apr. 29, 2013 Hourmand, et. al. §.79め, 3 3 EX PARTE REEXAMMATON CERTIGOATE CI (OB14th) \\ Apr. 29, 2010 \\ Capachive Responsive Electronto Swithing Circuit
}

Cone tepms: touch, termina, oscllator, mput, output signal, detecto, responsive, second touch, electronto switching, capacilive...

Source: Command Searching > Untay, Designand Plant Fatents is
Terms: pannom 5756383 (Sugees Tems for My Gearoh) Vew: KMC
Dateline: Sunday, Januay 26, 2014-3:57 FM EST

\footnotetext{
Laxshext: About LexisNexis Pivacy Poicy Terms \& Conditone Conact Us Copyight 2014 Lexishexis, a division of Reed Elseifer mo All rights reserved.
}

\section*{Lexis:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ay kexis'* & Seares & Cet a mocismmat & Shspards \({ }^{\text {e }}\) & More & Mistory & Aerts \\
\hline A \(3^{\text {a }}\) & & & & & & \\
\hline
\end{tabular}

 Copright 2044 Lexishemis, a divign of Reod Elsevier Iro Al rights reserved

... Ines do not infinge U.S. patents: 4,731,548; 4,758,735; 4,831,273; 5,087,825; \(5,7 \$ 6,783\) ("patents") Natror asento a counterclam that some of ORGS OProx
... products, and Natron's patents .-. U.S patents: 4,731,543: 4,758,735; \(4,837,279 ; 5,087,825 ; 3,79,8,83\). Al other clams are DISMISSED for lack of subject matter ...
\# * ORG, Mo. V. Natron COP, CVII NO \(1: 06-\mathrm{OV}-777\), UNITED STATES DISTEICT OOURT FOR THE MODLE DISTRICT OF FENNSYLVANI A, 2007 U.S. DISL. WXIS 29725, April 23, 2007, Decided, Apri 23, 2007, Fled, Clam dismiseed by QRG, Ltd. \(v\). Nartror Corp. 2007 U.S. Dist LEXIS 55848 (MO. Pa., Aug, 1, 2007)

Gozz Bumbs: oomtercam, discovery, amend, deaarabory woment, inexasable deay, infringement, bad iath, futhty, patent, product lines ...
... not volate Nartron's patents (u.S. patents: 4,731,548; 4,758,735; 4,831,279; \(5,087,825 ; 5,796,38 \$\) ("patents"), Nartron has fled an answer to ORG's amended decaratory ...
\# 3. QAG, LO. V Nartron Corp, OVILNO. \(106-\mathrm{OV}-1777\), UNITED STATES DIGTRIOT COUFT FOR THE MODLE OISTPIOT OF PENNSYUANIA, 513 F. Supp. 2d 49 ; 2007 U.S. Dist. LEXIS 14782, March 2, 2007, Deciod, March 2, 2007, Filed, Motion to sume denied by ORQ, Ld v. Nartron Oorp., 2007 U. 5 Dist LEXS 29725 (MD. Pe., Apt. 23, 2007)

OVEpylew : Cout reserved ruhe on the holder's moton to demise in part, because the competitor's attempt to identify other allegedly infringing products was insulficient to satisty the second prong of the patent infrigement decaratory jugment test; ramely, thas undear what products and components the competitor was referring.

CokE TERKM: patent, apprehension, infingement, deolaratory jugment, patent
intringement, prong, patentee's, matter furdictor, actual controversy, caption ...
 \(5,087,825 ; 5,795,383\) ("patents")). Natron has fied this motion to diemiss pursuant to Federal Fule of Civi Procedure \(12(b)(1)\)...
4. Nartron Gorp. v. Quantum Researh Group, Ld, Case Number 06-13792, UNIED STATES DISTACT OOUFT FOQ THE EASTEPN DISTRIOT OF MOHGAN, SOUTHEAN DIVISION, 473 F. Supp. 2d 790; 2007 U.S. Dist LEXIS 12373, February 12, 2007, Decided, Felated proceeding at ORG, Lid. v. Nartron Coro. 2007 U.S. Dist LEXIS 14732 (M.D. Pa, Mar. 2, 2007)

OVERVIEW: Company's motion to dimmiss was granted becase a prior lawsuit in Pennsylvana involmg the same gams between the same partee was thed in a federal court of equalrank and the matier should proceed there. Noreover, the cour did not have personal jurtediction over the company on the basis of Fed. R Civ. P. \(4(k)(2)\).

Cofe TEfMas: patent, persona jurisciction, enty, inmmement, webste, aprox, declaratory, technology, lawsut, replles ...
... reads as follows: Re: U8 patents 4,781,548; 4,758,735; 4,831,279; 5,087,825; 5,798, 783 Dear Mr. Phillp: We have recently been made aware of ...
* 5. ORG, Mo. v Nentron Cotp, Cwil ACton No. 06-500, UnTED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF PENSYLVANA, 2006 U.S. DIBE. LEXIS 64124, September 7, 2008, Decided, September 7, 2008, Fled, Related proceedng at Nartron Corp. w. Quantum Pesearch Group, hid, 2007 U.S Dist. LEXIS 12373 (ED. Mich. Feb. I2, 2007 )

OVERYI mbs The fact that Mohgan patent holder weekly shipped goods to Pennsy:vania rendered it subject lo genera persona jurisdiction in Pennsylvania. Cont sua sponte exercised ms discreton under 28 US.S.S. \(81406(a)\) and transiemed patent declaratory juggment sut to Midole District of Fennsylvaria, which was proper venue under 28 U.S. \(\mathrm{C} .5 . \$ 1391(\mathrm{c})\).

Cobe fembs: personal fursoiction, contimuos, systematic, venue, general jurisdiction, fudialdistrict, reside, asserting, patents, sua sponte...
... Paten Nos 4,73t, 548 ("the 543 Patent"), \(4,753,795\) ("he " 735 Patent"), 5,796,7\&3 ("The '183 Fment"), 4,831,278 ("the'279 Patent"), and 5, 087,825 ("the'825 Patent ...

Source: Command Searchmg Pakent Casestrom Federal Courts and Admimistrabive Materiass :
Tems: 5796383 or \(5,796,183\) (Suggest Tems for My Search)
Vew: Cite
Date/Tme: Sunday, danuary 26, 2014-3:58 PMEST
* Signal Legend:
* Warning: Negative teatment is indoated
7. Questioned: Valldity questioned by citing refs
\& - Caution Passble negative treatment
* - Positive treatment is indicated
* Citing Fefs. With Analysis Available
- Gtaton miomation ava!able
* Cick on any Shepara's signal to Shepardizeb that case.
 Copyright 2014 LexisNexis, a division of Read Esevier lne All rights reserved.

\section*{Lexis:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline By kexis \({ }^{\text {m }}\) & Seares & Ge: \({ }^{\text {a }}\) Doasmmm & Shspara's \({ }^{\text {e }}\) & 30re & History & Alerts \\
\hline A! & & & & & & \\
\hline
\end{tabular}

 Copyrght 2044 Lexishexis, a digign of Reed Elsevier Inc. All rights ysserved
```

Mo Wocumerits Fourd
No documents were found for your search terms

```

```

 Click "Save this search as an Atert" to schedule yout search to run in the foture
 - OR
 Chok "Search Using Natural Language" to run your search as Natural Language searoh
 . OR
 Click "Edit Search" to return to the search form and modity your search
 suggestions
* Check for spethng errors.
* Remove some search terms
* Use more common search terms, such as those listed in "Suggested Words and
Concepts."
* Use a iess restrictive date range.
* Use "OR" in between terms to search for one term or the other
Save this Search as an Alert Search Using Natural Language Edit Search

```

\section*{Lexis:}

 Copright 2044 Lexishemis, a divign of Reod Elsevier Iro Al rights reserved


Vew Tutoria
```

Souroe: Command searonme $>$ Aß Enghash Language kews p
Terms: $5796\{83$ of $5,756,183$ (Suggest Terms for My Search)

```

Qumberiand Fharmaceuthais Roports \(59 \%\) horease in Net Fevenue whth Third Guarter aoog Fhancial Results; - Oadolor \((\mathrm{F})\) begins genetating revenue; - \(20 \%\) increase in revenue for
 Newswire Nowember 10,2009 Tuesday 7.30 AM EST

Opyright 2009 PR Newswire Assochation Lle
Al Righis Feserved
PA Newswire
November 10, 2009 Tuescay 7.30 AM EST

EENGTH: 5124 words
HEADM NE: Cumberiand Phamacentioais Feporis \(58 \%\) Increase in Net Revenue Win Third Quarter 2009 Enanoial Results;
- Cadolor(R) begins generatng revenua;
- \(20 \%\) morease in revemue for Aceiadote(f) and Kistaiose(P);
- Probtabiny mannaned hrough Cadolor(a) aumoh

BATEMBE: NASHVIEETONO. NOV. TO
BOOY:
 vasdaq: CplX wi a specialy pharmaceution company focused on the hosptat acute ate and gastroenterology markets, today announced third quarter 2009 financial results.
"With an earlier-inan-antipated Galdolor awnch, we were able to dramatcally exceed our earnings expectatons in the thiro quanter," sat A. J. Kazim, Onief Executve Ohber of Qumberland Phamaceuticals. "Additionaty, the completion of our intial publio offering in August provides us with the strongest balanes sheat in the history of the Company We Whend to put that oapitat to good use not only by suppoting the Gatolor launch, but abo by adding select new products to our portolio that can benefit patente and enhance shareholder value."

Net Fevenue: Fon the three months onded September 30,2009 , net revenue was \(\$ 13.6\) millom, up \(58 \%\) from the correspondng petod in 200 . The growth was attrbutabie to hitiat revenue Irom Gadotor (buproten) Indection, the Company's recenty appoved IV treatment for pain and
 treatment lor acetaminophen overdose. Net revenue tor the nine months ended September 30 , 2009, was \(\$ 2.8\) million, up \(30 \%\) from \(\$ 25.3\) milion for the same period in 2008 , aso primarly due to the Gadotor hamon and Acetadote sales growth.

Operating Expenses: Tota operating expenses for the thre months ended Sepiember 30, 2003, were sti 2 millon, compared to \(\$ 6.5\) millon for the ame perioc in 2008 . This norease was due primanty to sales and markeling expense assoctated with the Gadolor bunch, higher cost of prodects sold resultng from sales grow in and a change in product mix, as well as a signticant, non-recuring payroll tax expense of \(\$ 1.0\) millon related to the exercise of non-qualfied optons. For the nine-month period ended September 30,2009 , totaloperating expenses were \(\$ 27.7\) millon, compared with \(\$ 13.5\) millon for the corresponding period in 2008 . This increase primaily reflected Cadolor milestone obligations related to FDA approval, the atorementoned payrolt tax expense, costs incurred in connection with the Company's hospital sales force expansion, and moreased matketng and adverting costs assocated with the Caldolor launch.

Net Moome: Net noome for the three months ended September 30,2009 , grew 10 \$ 1.3 mmon, or \(\$ 0.07\) per diuted share, compared to \(\$ 1.2\) millon, \(\$ \$ 0.07\) per diluted share, for the same period in 2008 . Excluding the non-recurring payrol tax expense, net income tor the the months endec September 30, 2003, would have increased \(54 \%\) to \(\$ 1.3 \mathrm{mmlim}\) or \(\$ 0.10\) per diluted share.

Net income for the nine months ended 5 eptember 30,2009 , was 32.8 millon, of 30.18 per diluted share, compared to \(\$ 3.7\) milion, or \(\$ 0.22\) per diluted share, for the corresponding period in 200e. The decrease is due primarily to milestone obligations triggered by FDA approva of Caldotor the second quarter of 2009 , as well as the atorementioned saies force expansion and option-retated payrol tax. Excuding Cabolor milestone payments and the non-recurring payrol tax expense, net income for thenne months ended September 30,2009 would have grown \(25 \%\) \(10 \$ 4.6\) milion, or \(\$ 0.27\) per dilued share.

Cash and Cash Equvalents: As of September 30,2009 . Cumbertand had \(\$ 79.5\) milion in cash and cash equivalents, a \(\$ 67.7\) millon increase from June 30,2009 . The increase was targely due to the Company's mitial public offering in August. At quarter's end, Cumbetand had totaldebt of \(\$ 19.8\) milhon, including \(\$ 4.5\) milion in current labblities. The Company had net acounts recelvable and inventories of \(\$ 7.3\) mhlion and \(\$ 1.7\) million, respectively, at September 30,2009 .

\section*{Third Quarter Hghlights}

Cadolor Launch
In September 2003. Ombertand sucoesstuly launched Caldot in the U.S., and he Company's hospial and feld sales torces complised of 113 experienced sales protessionats are now promoting the product, Caldolor is fulty stocked at whotesalers serving hospltals nationwide, and is avalabie in both 400 mg and 800 mg vais. The Company is wornng to mtroduce Caldolor and secure formblary approval nationally. The product is now stocked in a number of medical tacilties across the country, In addition to personat sales promotion Cumberiand is supporing the product Through a mult-faceted campaign, indudig intemet and media advertising, medical socety and convention presence, joumal publicatons, and its medical information oal center, among othey metatives.

Inita publa Oftering
In August 2009, Cumberiand completed tis intial public oftering of \(5,000,000\) shares of common stock at a price to the public of 17.00 per share, raisma \(\$ 85.0\) millon in gross proceeds. Net proceeds to the Company were \(\$ 74.8\) millon after commissions and offering expenses. The proceeds from this offering are being used primarly for potential acquisitions, the launch of Cadolor, expansion of the Company's hospial sates force, product development, debt repayment and general corporate purposes. Cumberland's common stock began trading on the NASDAQ Global Select Market on August 11,2009 , under the trading symbol "CPIX"

Recent Events
Intemalional markets

In October 2003, the Company anounced that has entered into an exolusive agrement win Phebra Ply Lid., an Austalan-based specialty phamaceutical company, for the commercialiation of Cadolor in Australia ano New Zealand. Bhebra will be responsble for obtaining any regulatory approva for the product, and for handing ongong regulatory requirements, product markeing. distribution and sales in the territories. Cumberiand will mantan responsibilty for product tomulation, development and manufacturing, and wil provide finished product to Phebra Under the terms of the agreement, Cumbentand will receive uptront and milestone payments as well as a transter price, and will also recelve ryaties on any future sales of Caldolor in those teritories.

New Intellectual Froperty Intiative for Caldolor
In addition to Cumberland's sued patent for Cadolor, the Company has fied the frist of several expected new patent applicatons tor the product. Cumberfand's dincal research uncovered several new product-retaled discoveries, for wheh the Company fled severat provisional patent applications. Part of an ongoing intiative to protect the Company's intellectual property, this new patent application addresses Cumbertands proprietary method of dosing intravenous buprofen.

\section*{Supplemental Financial Information}

The following tables provide a reconcilition of Cumberland's reported (GAAP) statement of income to adusted (non-GAAP) statemenis of ncome for the three and nie-month periods onded September 30,2003 . The adusted statements excluce certain non-recurng tems, and are provided by management to asabt investors in avabatng Cumberiands operaing results. The adusted statements should not be consideted a subathte or Cumbenands reported statements of income.


```

statement of income:
J. To exciuce mjuestone expences associated with the FDA amptoval of
Caldolor.
2. To enchude payxol]-related taxed assocjated whtr the enerodise at
aOn-quainfied options in 200g.
3. To include the taz impact of adjustments.

```

Conference Call and Webcast
A conterence call and live webeast will be hed on Tuesday, November 10,2009 , at \(10.00 \mathrm{a} . \mathrm{m}\). Eastem Time to discuss the Company's third quarter 2003 financial resuls. To participate on the cal, pease dial 888-447-846e (for U.S, caters) or \(719-457-2552\) (for intemetional callers) A rebroadcast of the teleconference will be avalable for one week and can be accessed by daling 388-203-11t2 (for U.S callers) or 713-457-0820 (for intemational callers). The passcode for the rebroadcast is 9695493 . The tve webcast and rebroadoast can be aocessed via Cumberand Pharmaceuticals webste at htip://mvestor shareholder. com/opi/events.m.

About Ombentand Pharmaceutioals
Omberland Pharmaceuticals inc wis a Tennessee-based specaty phamaceutical company fooused on the acquition, development and commereializaton of branded preseription products. The Company's primary target makets incude hospita: acute care and gastroenterology. Cumberlands product ponfolo includes Acetadoted (betyloysteine) Injection for the treatment of acetaminophen poisoning and Kristalosef (actulose) for Onal Bolution, a prescription laxative. The Compeny also :ecently launched Calobore (buprofen) Inection, the first mectable teatment for pain and fever avaliable the United States. Cumbertand is dedicated to providige innovative products which inprove guality of care for patents. The Conpany completed the initial puble offerng of its common stock in August 2009 . For more intomathon on Cumberland Pharmaceulicals, please visit ww. cumberlandphama.com.

About Caldolor
Cadotor is indicated for the management of mild to moderate pain and management of moderate to severe pan as an adjumot to opioid anagesios, as well as the reduction of fever in aduts. it is the first FDA-approved intravenous therapy for fever. Cadolor is contraindicated in patents with known hypersensituity to buproten or other NGADS, patients with asthma, untcara, of allergio type roations atter taking aspirin or other NSADS. Caldolor is contraindoated for use during the peri-operatve period n the settng of ooronary artery bypass grat (CAEC) surgery Cadolo: should be used with cauton in patients wh prior history of uloer disease or g bleedrg, in patients wh fluid retention or heart falure, in the ederly, those with rena mpamment, heart fallure, liver imparment, and those taking duretios or AcE inhbitors. Biood pressure should be montored during treatment with Galdor. For fult prescribing information, including boxed warning, vist www. caldolor com,

\section*{Abou: Acetadote}

Acetadote is used in the emergenoy deparment to prevent or iessen potential lver danage resulting fron an overdose of acetaminophen, a common ingredient m many over ihe counte: pankhers. It is the only approved injectable procuct in the Unted States tor the treatment of acetaminophen overdose, the leading cause of poisonings presenting in emergency depariments in the country(1). Acetacote is contrandicated in patients whthypersensitiviy or prevous anaphylactod reactions to acetyoysteme or any components of the preparation. Sertous anaphylactoid reactions, including death in a patient with asthma, have been reported in patients administered acetyloystene intravenously. Acetadote should be used with caution in patients with asthma, or where there is a history of bronchospasm. The total volume administered should be
adjusted for patents less than 40 kg and for those requing thid restriction. To avoid flud overload, the wolum of dhent should be reduced as needed. If wome is not adusted, hud overload can occur, potentaly resting in mponatemia, seizure, and deah. For full prescribing mormation, visit wwo aceladotenet.

About Kristaiose
Kriatase is indicated for the treatment of acute and chronic constpation. it is a unique, proptetary, crystatine form of lactulose, with no restrictions on length of therapy or patient age. Initial dosing may produce flatulence and intestinat cramps, which are usualy transient. Excessive dosage can lead to diamhea with potential complications such as loss of fuids, fypokatemia and hypernatrema. Nausea and vomitng have been ropored. Use with authon in diabetws Kristabese is contraindicated in patients who require a low galactose dict. Elerly, cebiltated patients who recelve lactulose tor more than six monhos should have serum electolytes (potassium, chionde. carbon doxide measured pertodically. For ful prescribing intormation, visit www kristase com.

Forward Looking Statements
This press release contans "forward-loking statements", including statements regarding estmated results of operations in future periods. These statements are subject to the thalization of Cumberland's quarterly financial and acounting procedures and reffect Cumberland's ourrent vews with respect to future events, based on what it belfeves are reasonable assumptions No assurance can be given that these events will ocour. As with any business, all phases of Cumberfand's operations are subject to mituences outside ts control. Any one or a combination of these tactors coud matenally afect the esums of Cumberands operatons. These factors mode, among oher things, market conditons, commerciazaton of Gadolor, compettion from exibing and new products, which could diminish the commercia potentia of Cumberland's products, an mabitty of manufacturers to produce Cumberbad's products on a timely basis or a falure of manufacturers to comply with stringent regulations applcabie to pharmaceutical manuacturers, maintaining and bulding an effedve sales and marketing infrasiructure, Cumberland ability to identify and acquire rights to products, govermment regulation, the possibity that Cumbertand's marketing exclusivity and patent rights may provide limied protecton from competition, and other facors discussed m the Company's Registration Statement deolared offectre by the SEC on August 10, 2003. There can be mo assurance that the results of developments anticipated by the Company will be realzed or, even if aubstantally realized, that they will have the expected elfects on the Company's business and operaions. Feaders are cauloned not to place undue relance on these torward-looking atatements, which speak only as of the date hereo. The Company does not undertake any obligation to release publicly any revisions to these statements to retlect events or crommstances after the date hereot or to reflect the ocourrence of unantipated events.
(1) Nationa Poison Oata System, American Association of Poison Control Centers

SOURCE: Cumbernand Fharmaceutiols inc *
```

CUMBERLAND PRARMACEUTMCALS TNC. * CONDEDSED COMBODTDATED RALAMCE BUEETS (USEUDTTED)

| December 31, September 30, | |
| :---: | :---: |
| 2008 | 2009 |

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Ascecs} \\
\hline \multicolumn{3}{|l|}{Current assets:} \\
\hline Cash and cash equivalents & \$13, 829,551 & 979,541,274 \\
\hline Acoonnts receivabie, net of & & \\
\hline allowances & \(3,229,347\) & 7.282 .372 \\
\hline
\end{tabular}
```

 Tnventories
 Frepaid ard other ourrent ascets
 Deferred tax assets
 Total cuxment assets
 Property and egulpment, net
Intargible assets, net
De:erred tax acsets
Other assets
Total aseets
JTARTLTTJES AND EOUTTY
Current lambjutjess:
Current portion of long-uterm debt
Curent portion of other long-temm
obligations
Accounts payable
ocher acorued liabilitjes
Wotal mareat jabbutates
Revolving line of merit
Long-ierm debt, exoduding curcent
portion
Othex lonc-term obu gacioos, excludErg
current portion
Total LiabuLuties

| 2.762,776 | 2,687,591. |
| :---: | :---: |
| 481,312 | $2,586,202$ |
| 507.212 | 505.617 |
| 17.710.198 | 92,553,055 |
| 432,413 | 59\%,238 |
| 5,528,732 | 8,099,612 |
| 1,000,032 | 990,663 |
| 3,447,813 | 415.170 |
| 531.119 .187 | 8101.655,736 |
| | |

\$1,250,000 \$4,500,000
457.915
204,027
3,257,]64 5,797,596
2,640,855 3,056,915
-- -- -- -- -.-..-......
7,605,934 53,553,538
2.825.951 2.825,951
3,750,000
382,487
..............-...
13,564,372
29,065,142
.- -. -- -- .- .- -.........
-- -- -.- - - - - -
Commements ard contingenctes
Rodeबmable common stock - - , 0.0.000
Gharemoldexs' equity:
Cumberland pharmaceuticais Inc. *
ghatebolders' gunity:
Convextible preferred stock -
no par value; 3,000,000 shares
Euthorimed; 842,749 and 0 shaxes
issued and outstanding
2,604,070
3s of necember 31, 2008 ard
September 30, 200%, respectivety
Common stook -. no par value;
100,000,000 sharea authowj2ed;
9,903,047 and 20,129,791(1) shexes
jesued and ontstardjog as of
December 31, 200e and
September 30, 2009, respectively
13,500,034
66,434,206
Retained earnangs
13,500,034
4,252,809

```

```

 attrjbutable to
 moncontroinum jotereats - 5,725 - 26,420
    ```
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

 26,420
 Net Erocme attrhbutable to
common shaxeholders \$1,209,009 \$1,288,137 53,662,682 \$2,002,098

```

```

Barnirics per ahare
attrabatakie to oommon
shareholders -- basic \$0.12 \$0.0g \$0.36 \$0.23
Warnjrgs per share
attributable to common
shareholders -- dinuted \$0.07 \$0.07 \$0.22 \$0.16
Wकghted-average shames
outstanding -- basio
10,165,024 15,745,069 10,128,235 12,197,976
Wejchted-average sbares
outstending - dinuted 26,644,395 19,203,606 16,501,005 17,143,348
CONDENSEL CONGOJTDATED STATEMENTS OF CABH FTONS
(OMNODITED)
Nine Months Ended September 30,
--
2008 2009
-.....--- .-........
Cash Elows from opemstixu aotivities:
Net income
33,662,682
\$2,775,678
Adjustmente to reconcile met income
to net cash flowe from operating
activities:
Gan on Early extinguasmmex of other
long-term obliggtions
(38,577)
580.721 605.514
Depreciation and amortization expense
Nonemptoyee stook grarted Eor servioes
received
104.716 205.693
Nonemployee stock option grant experise - e.t0,499
Stock-bjsed compensation - emoloyee
stods ortions
274.584 455,502
Excess bax benefit derjved from
exercise of stock options
254,681
(2,842,025)
Woncash interest expense
67,523
83,420
Net changes in assets and luabilities
affecting operating activities:
Agoourts receivable (828,880) (4,054,720)
Inventory (849,460) 75,155
Brepaid, other curremt asaets
and other assets 849,062 936,286

```
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
accouts pavabie and otber accued liabluties \\
Other iong term obligations
\end{tabular} & \[
\begin{array}{r}
613,983 \\
49,651
\end{array}
\] & \[
\begin{array}{r}
3,299,235 \\
(455,723)
\end{array}
\] \\
\hline Net cash provided by opexating activities & \(4,239,354\) & 1.923.754 \\
\hline Cash flows from investing activities: Addtions to property and equmment Additions to patents & \[
\begin{aligned}
& (60,996) \\
& (62,671)
\end{aligned}
\] & \[
\begin{array}{r}
(190,312) \\
(71,358)
\end{array}
\] \\
\hline Wet cash used in investment activibies & (123.667) & (270,670) \\
\hline ```
Cash flows from Einancing activities:
    proceeds from initial pubiic offering
        of common atock
``` & - \(\cdots\) & 85,000,000 \\
\hline Costs of initial public offering proceeds from borrowings on long-term debt & (445,562) & \((7,385,224)\)
\(28,000,000\) \\
\hline Frincipal payments on note payable & (1,375,002) & (5,000,000) \\
\hline Net borromings on line of creaje Payment of onhex long-tem obligations & \[
\begin{aligned}
& 500,000 \\
& (2,760,000)
\end{aligned}
\] & - - \\
\hline ```
Costs of Emencing for long-term
 debt and oredit facility
froceeds from exercise of stock
 oprions
``` & 59,09? & \((189,660)\)
64,275 \\
\hline Ercess tax benefit derived from exercise of stock options Fayments made in connection with repurchase of common shares & 254,68 & \(2.842,825\)
\((27.273 .677\) \\
\hline Wer cash (used in) provided by financinc activities & \((3,766,735)\) & 66,058,639 \\
\hline Net increase in cash and cash gadvalents & 348.902 & 67,71.,723 \\
\hline Cash and cash equabients at beginning of period & 10,814,518 & 11,829,551 \\
\hline Cash and cash equivients at end of period & 811,263.419 & 579,541,274 \\
\hline
\end{tabular}
```

OONTAGT:nvestors, \&ngea Novak, Corporate Relatons of Cumbenand Pmarmaceuboals :nc, w

+ 1-615-255-0065, amovak@oumberamdphamma.com; or Kathy Walar of Fmancial Relatuns
Board; + 1-312-543-6708; or Media, Paula Lovellol Lovell Commumoations, + 1-615-297-7766,
both lor Gumberlano Pharmaceuticals /nc.*
3\&k: http://www.prnewswire.com
BOADDATE:November 11,2009
Source: Command Searching = Abt Engbsh Language News S.
Terms: 5796103 or 5,796,\83 (Suggest Terms for My Seamon)
V最: Full
OalemTme: Sumday, Jamuay 26, 2014 - 4:00 PM EST

```

\begin{tabular}{|c|c|c|}
\hline REEXAM CONTROL NUMBER & FILING OR 371 (c) DATE & PATENT NUMBER \\
\hline \multirow[t]{2}{*}{90/013,106} & 12/24/2013 & 5796183 \\
\hline & & CONFIRMATION NO \\
\hline \multicolumn{2}{|l|}{25962} & REEXAMINATION REQ \\
\hline \multicolumn{2}{|l|}{SLATER \& MATSIL, L.L.P.} & \\
\hline \multicolumn{2}{|l|}{17950 PRESTON RD, SUITE 1000} & \\
\hline \multicolumn{2}{|l|}{DALLAS, TX 75252-5793} & ||||||||||||||||||||||||||| \\
\hline
\end{tabular}

Date Mailed: 01/15/2014

\section*{NOTICE OF REEXAMINATION REQUEST FILING DATE \\ (Patent Owner Requester)}

Requester is hereby notified that the filing date of the request for reexamination is \(12 / 24 / 2013\), the date the required fee of \(\$ 2,520\) was received. (See CFR 1.510(d)).
A decision on the request for reexamination will be mailed within three months from the filing date of the request for reexamination. (See 37 CFR 1.515(a)).

Pursuant to 37 CFR 1.33(c), future correspondence in this reexamination proceeding will be with the latest attorney or agent of the record in the patent file.

The paragraphs checked below are part of this communication:
\(\qquad\) 1. The party receiving the courtesy copy is the latest attorney or agent of record in the patent file.
__ 2. The person named to receive the correspondence in this proceeding has not been made the latest attorney or agent of record in the patent file because:
\(\qquad\) A. Requester's claim of ownership of the patent is not verified by the record.
\(\qquad\) B. The request papers are not signed with a real or apparent binding signature.
C. The mere naming of a correspondence addressee does not result in that person being appointed as the latest attorney or agent of record in the patent file.
\(\qquad\) 3. Addressee is the latest attorney or agent of record in the patent file.
4. Other \(\qquad\)
/rbell/
Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900


\section*{NOTICE OF ASSIGNMENT OF REEXAMINATION REQUEST}

The above-identified request for reexamination has been assigned to Art Unit 3992. All future correspondence to the proceeding should be identified by the control number listed above and directed to the assigned Art Unit.

A copy of this Notice is being sent to the latest attorney or agent of record in the patent file or to all owners of record. (See 37 CFR 1.33(c)). If the addressee is not, or does not represent, the current owner, he or she is required to forward all communications regarding this proceeding to the current owner(s). An attorney or agent receiving this communication who does not represent the current owner(s) may wish to seek to withdraw pursuant to 37 CFR 1.36 in order to avoid receiving future communications. If the address of the current owner(s) is unknown, this communication should be returned within the request to withdraw pursuant to Section 1.36.

\section*{/rbell/}

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

\title{
Patent Assignment Abstract of Title
}

Total Assignments: 5
Application \#: 08601268
Filing Dt: 01/31/1996 PCT \#: NONE
Inventors: JOHN M. WASHELESKI, STEPHEN R. W. COOPER, BYRON HOURMAND Title: CAPACITIVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT

\section*{Assignment: 1}

Reel/Frame: 008254/0496 Received: 02/10/1997 Recorded: 01/31/1996
Mailed: 02/12/1997
Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: HOURMAND, BYRON
Exec Dt: 01/31/1996
Assignee: NARTRON CORPORATION
5000 NORTH U.S. 131
REED CITY, MICHIGAN 49677
Correspondent: PRICE, HENEVELD, COOPER, DEWITT \& LITTON TERRY S. CALLAGHAN, ESQ.
P.O. BOX 2567

GRAND RAPIDS, MI 49501

\section*{Assignment: 2}

Reel/Frame: 008443/0749 Received: 04/17/1997 Recorded: 02/04/1997
Mailed: 05/28/1997
Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: HOURMAND, BYRON
Exec Dt: 01/31/1996
Assignee: NARTRON CORPORATION
5000 NORTH US 131
REED CITY, MICHIGAN 49677
Correspondent: PRICE, HENEVELD, COOPER, ET AL
TERRY S. CALLAGHAN, ESQ.
P.O. BOX 2567

GRAND RAPIDS, MI 49501
Assignment: 3
Reel/Frame: \(023679 / 0803\) Received: 12/22/2009 Recorded: 12/22/2009 Mailed: 12/23/2009 Pages: 11
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: NARTRON CORPORATION
Exec Dt: 12/17/2009
Assignee: UUSI. LLC
5000 NORTH US HIGHWAY 131
REED CITY, MICHIGAN 49677
Correspondent: TAROLLI, SUNDHEIM, COVELL \& TUMMINO LLP
1300 EAST NINTH STREET
SUITE 1700
CLEVELAND, OH 44114

\section*{Assignment: 4}

Reel/Frame: 028804/0075 Received: 08/17/2012 Recorded: 08/17/2012 Mailed: 08/20/2012 Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: WASHELESKI, JOHN M.
Exec Dt: 04/14/2010
Assignee: NARTRON CORPORATION
5000 NORTH US-131
REED CITY, MICHIGAN 49677
Correspondent: SLATER \& MATSIL, L.L.P.
17950 PRESTON RD.
SUITE 1000
DALLAS, TX 75252

\section*{Assignment: 5}

Reel/Frame: \(028804 / 0137\) Received: 08/17/2012 Recorded: 08/17/2012
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: COOPER, STEPHEN R.W.
Exec Dt: 04/14/2010
Assignee: NARTRON CORPORATION
5000 NORTH US-131
REED CITY, MICHIGAN 49677
Correspondent: SLATER \& MATSIL, L.L.P.
17950 PRESTON RD.
SUITE 1000
DALLAS, TX 75252

Under the Paperwork Reduction Act of 1935 , no persons are requred to respond to a collection of informaton uniess i dispiays a valid ORAB controinumber.

[Page 1 of 2]
This oolection of information is required by 37 CFP 1.510 . The infometion is requite to obtan or retain a beneit by the pubite which is to file (and by the uspto to process) an application. Confidentiaty is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14 . This colection is estimated to take 19 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time wili vary depending upon the individual case. Any comments on the amoun of time you require to complete this form andioy suggestions for reduche this burden, should be sent to the Chier infomaton Officer, U. Patent and Trademark Office, U.S. Deparment of Commerce, P.O. Box 1450 , Aexandra, VA 22343-1450. DO NOT SEND FEES OR COMPLETED FORAS TO THS ADDRESS. SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, YA \(22313=1450\).

If you need assistance in oompleting the fom, all 1-800-pro-9199 and select option 2.


\section*{Privacy Act Statement}

The privacy Act of 1974 ( \(P\). \(. .93-579\) ) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. \(2(\mathrm{~b})(2)\); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark office is to process andor examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:
1. The infomation on this form will be treated conidentally to the extent allowed under the freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a count, magistrate, or administrative tribunal, including disclosures to opposing counse in the course of settement negotations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individua, to whom the record pertains, when the individua has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contack. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. \(552 \mathrm{a}(\mathrm{m})\).
5. A record related to an Intemational Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routne use, to the international Bureau of the Worid Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review ( 35 U.S.C. 18 亿) and for review pursuant to the Atomic Energy Act (42 U.S.C. \(218(c)\).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or hisher designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA reguations governing inspection of records for this purpose, and any other reievant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14 , as a routine use, to the public if the record was fled in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No.: & \(5,796,183 \mathrm{~B} 1\) & \(\S\) & Docket No.: & 5796183 RX 2 \\
Issued: & August 18, 1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\S\) & Examiner: & TBD
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{REQUEST FOR EX PARTE REEXAMINATION UNDER 35 U.S.C. \(\$ \$\) 302-307}

Dear Sir:
Patent Owner UUSI, LLC respectfully requests Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. §§ 302-307 (2002), of claims 18 and 27 of United States Patent No. 5,796,183 C1 (the " 183 Patent"). This patent is still enforceable.

As set forth below, some of the prior art references submitted herewith were not previously before the Office, and the combination of these references with previously considered references presents new, non-cumulative technological teachings not considered during the `183 Patent prosecution history including the first reexamination proceeding having control number 90/012,439.

\section*{I. OVERVIEW OF THE `183 PATENT AND ITS PROSECUTION HISTORY}

Section I.A below provides an overview of the subject matter of the ` 183 Patent, while Section I.B provides an overview of its prosecution history.

\section*{A. The ` 183 Patent}

The ` 183 Patent, a copy of which is provided as Exhibit A, issued on August 18, 1998 from an application filed on January 31, 1996. Ex Parte Reexamination Certification Number \(5,796,183 \mathrm{C} 1\) was issued for the ` 183 Patent on April 29, 2013. The ` 183 Patent generally relates to a capacitive responsive electronic switching circuit including an oscillator providing a periodic output signal, an input touch terminal defining an area for an operator to provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. See, e.g., ` 183 Patent, Abstract.

The ` 183 Patent as reexamined contains 39 total claims, with claims \(1,9,12,16,18,20\), 24,27 , and 37 being independent. Claims 18 and 27, which are the subject of this reexam request, require an oscillator, a microcontroller, a plurality of touch terminals, and a detector circuit.

An embodiment with a single touch terminal is shown in Figure 4, and an embodiment with multiple touch terminals is shown in Figure 11, both of which are reproduced below:


Fig. 4 of the ` 183 Patent


Fig. 11 of the 183 Patent
Page 3 of 34

The multiple touch pad circuit of Figure 11 is a variation of the embodiment shown in Figure 4, but with an array of touch circuits designated as \(900_{1}\) through \(900_{\mathrm{nm}}\). See, e.g., id. at col. 18:34-43. The touch detection circuit offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. See, e.g., id. at col. 5:53-57.

Microcontroller 500 selects each row of the touch circuits \(900_{1}\) to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. See, e.g., id. at col. 18:43-46. The values of the resistors and capacitors utilized in oscillator 200 may be varied to provide for different oscillator output frequencies. See, e.g., id. at col. 14:22-25. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. See, e.g., id. at col. 11:19-25.

Microcontroller 500 sequentially activates the touch circuit rows and associates the received inputs from the columns of the array with the activated touch circuit(s). See, e.g., id. at col. 18:46-49. The detector circuit is responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. See, e.g., id. at Abstract. Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. See, e.g., id. at col. 3:44-46.

\section*{B. The Prosecution History of the ` \(\mathbf{1 8 3}\) Patent}

A copy of selected portions of the prosecution history of the ` 183 Patent is provided in Exhibit B.

The `183 Patent issued from U.S. Patent Application Serial No. 08/601,268 ("the `268 application"), filed on January 31, 1996, and naming Byron Hourmand as the sole inventor. A request for ex parte reexamination of the `183 Patent was filed on August 17, 2012 and assigned control number 90/012,439. Ex Parte Reexamination Certificate No. 5,796,183 C1 was thereafter issued on April 29, 2013.

The `268 application was filed with 20 total claims, of which four were independent.
Claims 21-32 were added by subsequent amendment. A cross-reference between the originally issued claims and the application claims from which they issued is provided below for convenience.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Issued Claim & Appl. Claim & Issued Claim & \begin{tabular}{l}
Appl. \\
Claim
\end{tabular} & Issued Claim & Appl. Claim & Issued Claim & Appl. Claim \\
\hline 1 & 1 & 9 & 5 & 17 & 16 & 25 & 25 \\
\hline 2 & 2 & 10 & 6 & 18 & 18 & 26 & 26 \\
\hline 3 & 3 & 11 & 7 & 19 & 19 & 27 & 27 \\
\hline 4 & 4 & 12 & 12 & 20 & 20 & 28 & 28 \\
\hline 5 & 8 & 13 & 13 & 21 & 21 & 29 & 29 \\
\hline 6 & 9 & 14 & 14 & 22 & 22 & 30 & 30 \\
\hline 7 & 10 & 15 & 17 & 23 & 23 & 31 & 31 \\
\hline 8 & 11 & 16 & 15 & 24 & 24 & 32 & 32 \\
\hline
\end{tabular}

In an Office Action dated April 22, 1997, the Examiner rejected application claims 6, 7 and 16 under 35 U.S.C. § 112, second paragraph, as being indefinite. See Ex. B, ` 183 Patent File History, Office Action, p. 2 (Apr. 22, 1997). Claims 6,7 and 16 would be allowable if rewritten to overcome the section 112 rejection, and to include all of the limitations of the base claim and any intervening claims. See id. at p. 5.

Claims 1-4 and 12-14 were rejected under 35 U.S.C. § 102(b) as being anticipated by U.S. Patent No. 4,352,141 to Kent ("Kent). See id. Claims 8-11, 18, and 19 were rejected under 35 § U.S.C. 103(a) as being unpatentable over Kent in view of U.S. Patent No. \(5,087,825\) to Ingraham ("Ingraham"), see id. at p. 3, and claims 8-11, 18 and 19 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Kent in view of U.S. Patent No. 5,235,217 to Kirton ("Kirton"). See id. at p. 4. Lastly, claims 5 and 15 were objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all the limitations of the base claim and any intervening claims. See id. at p. 5 .

In response, the Applicant filed an amendment on August 22, 1997, amending claims 1, 3, 5, 6, 12-18 and 20, and adding new claims 21-32. In particular, the Applicant amended independent claim 18 as follows:
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.

Ex. B, `183 Patent File History, Amendment, p. 11 (Aug. 22, 1997). The Applicant argued that the Kent and Ingraham patents both fail to teach or suggest a capacitive responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch terminal to a threshold level in order to prevent inadvertent generation
of a control output signal. See id. at p. 19. The Applicant further argued that the Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminating between a full intentional touch of a touch terminal and an inadvertent touch of a portion of the surface of the touch terminal. See id.

With respect to new independent claim 27, the Applicant argued none of the cited references teaches or suggests a switching circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch terminal. See id. at pp. 20-21.

The Examiner issued a Notice of Allowance on October 27, 1997, allowing all of the pending claims. See Ex. B, `183 Patent File History, Notice of Allowance, p. 2 (Oct. 27, 1997). The Applicant then filed a section 312 amendment on November 3, 1997 to delete the word "said" after the word "when" in claim 27, line 11. See Ex. B, `183 Patent File History, Amendment Under 37 C.F.R. § 1.312, p. 1 (Nov. 3, 1997). The issue fee was paid on January 26, 1998, see Ex. B, `183 Patent File History, Issue Fee Transmittal, p. 1 (Jan. 26, 1998), and the `183 Patent subsequently issued on August 18, 1998.

The Applicant filed a certificate of correction on January 20, 1999, which was accepted by the patent office on May 11, 1999. In claim 18, the word "path" was inserted after the word "electrical" in column 27, line 44 of the ` 183 Patent, and the word "path" was deleted from column 27, line 45 of the `183 Patent. See Ex. B, `183 Patent File History, Cert. of Correction, p. 3 (May 11, 1999). In claim 27, the word "said" was deleted after the word "when." See id.

The Patent Owner subsequently made several attempts to correct the inventorship of the patent, which resulted in the inventorship being changed to be Byron Hourmand, John M.

Washeleski and Stephen R. W. Cooper. See Ex. B, `183 Patent File History, Petition Decision (Aug. 25, 2011); see also Corrected Filing Receipt, p. 1 (Aug. 25, 2011); Certificate of Correction (Oct. 11, 2011).

On August 17, 2012, the Patent Owner filed a request for ex parte reexamination of claims 18 and 27 of the \(` 183\) Patent. See Ex. B, `183 Patent File History, Request for Ex Parte Reexamination under 35 U.S.C. §§ 302-307 (Aug. 17, 2012). The reexamination request was granted on September 20, 2012 and assigned control number 90/012,439. See Ex. B, '183 Patent File History, Order Granting / Denying Request for Ex Parte Reexamination (Sep. 20, 2012). Thereafter, the Patent Owner filed a Patent Owner Statement amending claims 18, 27, 28, and 32 and adding claims 33-39. See Ex. B, `183 Patent File History, Patent Owner Statement (Nov. 19, 2012).

In the Patent Owner Statement, claim 18 was amended to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad." See id. at p. 2. Claim 27 was amended to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." See id. at p. 3. New independent claim 37 recited "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." See id. at p. 5. The Patent Owner argued that the cited art, U.S. Patent No. 5,463,388 ("Boie"), does not teach or suggest these claim elements. See id. at pp. 7-9.

In the Statement of Reasons for Patentability and/or Confirmation, the Examiner agreed with the Patent Owner that Boie does not teach or suggest these elements. See Ex. B, `183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate (Apr. 10, 2013), pp. 3-4. The Examiner stated, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See id. at p. 4.

The Ex Parte Reexamination Certificate thereafter issued on April 29, 2013. See Ex. A, Ex Parte Reexamination Certificate (Apr. 29, 2013).

\section*{II. SUBSTANTIAL NEW OUESTION ("SNQ") OF PATENTABILITY}

Section II.A below provides a list of the prior art references relied upon in the present request. Section II.B provides an overview of the prior art references. Section II.C provides a statement regarding an SNQ of patentability for claims 18 and 27 of the \(\begin{gathered} \\ 183 \text { Patent with respect }\end{gathered}\) to the new references.

\section*{A. Listing of Prior Art Patents and Publications}

Reexamination of claims 18 and 27 of the ` 183 Patent is requested in view of the following references:

Exhibit C Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1995 ("Boie"), which qualifies as 35 U.S.C. § 102(a)-type prior art.

Exhibit D Gerpheide et al., U.S. Patent No. 5,565,658, filed on December 7, 1994 and issued on October 15, 1996 ("Gerpheide"), which qualifies as 35 U.S.C. § 102(e)-type prior art.

Exhibit E Casio advertisement entitled "Now... The Invisible Casio Calculator Watch," published in Popular Science by On the Run in 1984 ("Casio"), which qualifies as 35 U.S.C. § 102(b)-type prior art.

\section*{B. Overview of Prior Art Patents and Publications}

As discussed in more detail below, combinations of Boie, Gerpheide, and Casio present new, non-cumulative technological teachings not considered during the `183 Patent prosecution history.

\section*{1. Boie}

Boie generally relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface. See, e.g., Boie, col. 1:6-8. A computer input device comprises a thin, insulating surface covering an array of electrodes arranged in a grid pattern and connected in columns and rows. See, e.g., id. at Abstract. Each column and row is connected to
circuitry for measuring the capacitance seen by each column and row. See, e.g., id. The position of an object with respect to the array is determined from the centroid of such capacitance values, which is calculated in a microcontroller. See, e.g., id. Figure 4, reproduced below, illustrates a block diagram of a two-dimensional capacitive position sensor.

FIG. 4


Fig. 4 of Boie
Each row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401 , each of which can be selected by multiplexer 402 under control of microcontroller 406. See, e.g., id. at col. 3:56-61. The selected output is forwarded to summing circuit 403 , the output of which is converted by synchronous detector and filter 404 to a signal related to the capacitance of the row or column selected by multiplexer 402. See, e.g., \(i d\). at col. 3:62-67. RF oscillator 408 provides an RF signal of, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411, which is a substantially continuous plane parallel to array 100 and associated connections, and serves to isolate array 100 from extraneous signals. See, e.g., id. at col. 3:67-col. 4:5.

To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements connected in rows and columns, a circuit 401 is provided for each electrode in array 100 and multiplexer 402 is enlarged to accommodate the outputs from all circuits 401. See, e.g., id. at col. 4:14-21. The output of synchronous detector and filter 404 is converted to digital form by analog-to-digital converter 405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See, e.g., id. at col. 4:22-28.

\section*{2. Gerpheide}

Gerpheide generally relates to the rejection of electrical interference in capacitance-based touch detection apparatuses and methods. See, e.g., Gerpheide, col. 1:12-14. In discussing the shortcomings of the prior art, Gerpheide states
> [A] capacitance-based detection device may suffer from electrical background interference from its surroundings, which is coupled onto the sensing electrodes and interferes with position detection. These spurious signals cause troublesome interference with the detection of finger positioning. The device operator may even act as an antenna for electrical interference which may cause a false charge injection or depletion from the detecting electrodes. Accordingly, there is a need for a touch detection system which has the following characteristics: ... (3) electrical interference signals are rejected and eliminated from the detection system regardless of their frequency and without requiring possibly expensive nulling apparatus.

Id. at col. 2:37-57.
Figure 1 of Gerpheide (reproduced below) illustrates a capacitance variation finger (or other conductive body or non-body part) position sensing system 10 that includes an electrode array 12 , a synchronous electrode capacitance measurement unit 14 , a reference frequency generator 16, and a position locator 18. See id. at col. 3:52-col. 4:26.


Fig. 1

\section*{Gerpheide, Figure 1}

The electrode array 12 is described in relation to Figures 2a and 2b. See generally id. at col. 4:41 - col. 5:48; Figs. 2a and 2b. In Gerpheide, electrode array 12 consists of multiple X electrodes 20 and Y electrodes 22 and is preferably fabricated as a multi-layer printed circuit board 24. See id. at col. 4:41-48.

The synchronous electrode capacitance measurement unit 14 is connected to the electrode array 12 and one embodiment is further described with reference to Figure 4, reproduced below.


Gerpheide, Figure 4
According to Gerpheide,
The key elements of the synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal.

See id. at col. 5:52-63; Fig. 4.
The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78.

See id. at col. 6:19-26; Fig. 4. The reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial
interference is detected, the generator 16 selects a different frequency for further measurements.
The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference." See id. at col. 8:22-30; Fig. 7. Reference frequency generator 16 is further illustrated with respect to Figure 7, reproduced below.


Fig. 7

\section*{Gerpheide, Figure 7}

The generator 16 includes an oscillator 100. See id. at col. 8:31. The oscillator 100 drives a microcontroller 102 and a divide-by-(M+N) circuit 104. See id. at col. 8:31-33. Value N is a fixed constant, for example, approximately 50. See id. at col. 8:33-34. Microcontroller 102 specifies value M to be, for example, one of four values in the range 61 KHz to 80 KHz . See id. at col. 8:34-36. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108. See id. at col. 8:37-38.

\section*{3. Casio}

Casio generally relates to a timepiece product employing electro-touch technology. See, e.g., Casio, col. 1. The watch works by reading finger-strokes traced across its face. See id. The transparent touch panel construction includes a fiberglass panel having a transparent conductor film pattern (first layer) and a dielectric layer (second layer) overlying the fiberglass. See id. at col. 2; see also Figure in col. 2 (reproduced below).


Id., col. 2.
The touch panel determines figure and math symbols outlined with finger-strokes traced across the face. See id. at col. 1. As shown in the figure above, the touch panel senses the input, and then digitizes it to extract features of the figure or math symbol. See id. at col. 2. The watch then outputs the corresponding figure or math symbol on the screen. See id. The advertisement states

This ... timepiece has a transparent crystal that reads finger-strokes you trace across its face. Each figure and math symbol you outline appears on the background digital display. Take your finger across twice ( \(=\) ) and the answer presents itself like magic.

No keys, no keyboards, no need to use stylus or pen. Even the broadest fingers will work. Add, subtract, multiply, divide - perform chain and mixed calculations
to eight places, plus decimal. There's even an indicator telling you which function is being performed.

See id. at col. 1.

\section*{C. Statement Pointing Out Each SNQ of Patentability}

Boie was not cited during the original patent prosecution of the ` 183 Patent and was cited as an anticipatory reference in the first reexamination proceeding. The combination of Boie with Gerpheide and/or Casio presents new, non-cumulative technological teachings with respect to claims 18 and 27 of the \(\begin{aligned} & \\ & 183 \text { Patent. }\end{aligned}\)

\section*{1. Claim 18}

During the first reexamination prosecution, the Patent Owner amended independent claim 18 to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad," and argued that the cited art did not teach or suggest these limitations. After the Patent Owner made this amendment, the Examiner allowed claim 18 stating, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See Ex. B, `183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate, p. 4 (Apr. 10, 2013).

Gerpheide discloses,
[A reference frequency generator 16] observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50. Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102 .

The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108.

Gerpheide, col. 8:22-38; Fig. 7. Thus, Gerpheide discloses selectively providing signal output frequencies.

It would have been obvious to one of ordinary skill in the art at the time of the invention to determine the single RF signal of Boie by evaluating the extent of interference at a given signal frequency and selecting a different frequency when substantial interference is detected as taught by Gerpheide. See, e.g., Gerpheide, col. 8:22-38; Fig. 7.

The combination of Boie with Gerpheide thus presents new, non-cumulative technological teachings related to the elements of claim 18 added by amendment, and such teachings were not considered in the cited art during the ` 183 Patent prosecution history including the reexamination proceeding. If the original Examiners had known of each of these references, the Examiners likely would have considered them relevant, and likely would have cited them during the respective prosecution/proceeding. Boie in view of Gerpheide therefore raises an SNQ of patentability with respect to independent claim 18.

\section*{2. Claim 27}

During the first reexamination prosecution, the Patent Owner amended independent claim 27 to recite "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals," and argued that the cited art did not teach or suggest these limitations. After the Patent Owner made this amendment, the Examiner allowed claim 27 stating, "Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components." See Ex. B,
`183 Patent File History, Notice of Intent to Issue Ex Parte Reexamination Certificate (Apr. 10,
2013), p. 4.

Gerpheide discloses,
[A reference frequency generator 16] observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by- \((\mathrm{M}+\mathrm{N})\) circuit 104 . Value N is a fixed constant, approximately 50. Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108.

Gerpheide, col. 8:22-38; Fig. 7. Thus, Gerpheide discloses selectively providing signal output frequencies.

It would have been obvious to one of ordinary skill in the art at the time of the invention to determine the single RF signal of Boie by evaluating the extent of interference at a given signal frequency and selecting a different frequency when substantial interference is detected as taught by Gerpheide. See, e.g., Gerpheide, col. 8:22-38; Fig. 7.

Casio discloses first and second input touch terminals. See, e.g., Casio, figure at col. 2, reproduced below. Specifically, the finger drawn 6 in the box in the lower left hand corner includes two black portions illustrating first and second input touch terminals.


It would have been obvious to one of ordinary skill in the art at the time of the invention to modify the apparatus of Boie to sense first and second input touch terminals (electrodes) as taught by Casio in order to provide finger-stroke or finger-trace recognition capability. See, e.g., Casio, col. 1, fourth paragraph and col. 3, third paragraph; figure (reproduced above).

The combination of Boie with Gerpheide and Casio thus presents new, non-cumulative technological teachings related to the elements of claim 27 added by amendment, and such teachings were not considered in the cited art during the ` 183 Patent prosecution history including the reexamination proceeding. If the original Examiners had known of each of these references, the Examiners likely would have considered them relevant, and likely would have cited them during the respective prosecution/proceeding. Boie in view of Gerpheide and Casio therefore raises an SNQ of patentability with respect to independent claim 27.

\section*{III. DETAILED EXPLANATION OF THE RELEVANCY AND MANNER OF APPLYING THE PRIOR ART REFERENCES TO EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED}

A detailed explanation pointing out the relevance and application of the prior art references to each of claims 18 and 27 is provided below. The charts below indicate what the Patent Owner believes are the portions of the cited art most relevant to the elements of the claims for which reexamination is requested. The Patent Owner, however, reserves the right to take positions asserting and submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

\section*{A. Claim 18}
\begin{tabular}{|l|l|}
\hline Is3 Patent Claim Language & Boie in viev of Cerpheiden \\
\hline \begin{tabular}{l} 
18. A capacitive responsive electronic \\
switching circuit comprising:
\end{tabular} & \begin{tabular}{l} 
"The capacitive sensor of the invention \\
comprises a thin, insulating surface covering a \\
plurality of electrodes. The position of an object, \\
such as a finger or hand-held stylus, with respect \\
to the electrodes, is determined from the centroid \\
of capacitance values measured at the electrodes. \\
_ . The x and y coordinates of the centroid are \\
calculated in a microcontroller from the \\
measured capacitances." Boie, col. 1:61-col. \\
2:5, Fig. 4.
\end{tabular} \\
\hline \begin{tabular}{l} 
an oscillator providing a periodic output \\
signal having a predefined frequency;
\end{tabular} & \begin{tabular}{l} 
"RF oscillator 408 provides an RF signal, for \\
example, 100 kilohertz, to circuits 401, \\
synchronous detector and filter 404 via inverter \\
410, and guard plane 411." Boie, col. 3:67-col. \\
4:2, Fig. 4.
\end{tabular} \\
\hline \begin{tabular}{l} 
a microcontroller using the periodic \\
output signal from the oscillator, the \\
microcontroller selectively providing \\
signal output frequencies to a plurality of \\
small sized input touch terminals of a \\
keypad;
\end{tabular} & \begin{tabular}{l} 
A reference frequency generator 16 "observes \\
position signals to evaluate the extent of \\
interference at some reference frequency. In the \\
event that substantial interference is detected, the \\
generator 16 selects a different frequency for \\
further measurements. The generator 16 seeks to \\
always select a reference frequency away from \\
frequencies which have been found to result in \\
measurement interference, as described below.
\end{tabular} \\
\hline
\end{tabular}

Page 21 of 34
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102 . The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7. \\
"FIG. 2A illustrates the electrodes in a preferred electrode array 12 , together with a coordinate axes defining X and Y directions. One embodiment includes sixteen \(X\) electrodes and twelve Y electrodes, but for clarity of illustration, only six X electrodes 20 and four Y electrodes 22 are shown. It is apparent to one skilled in the art how to extend the number of electrodes. The array is preferably fabricated as a multilayer printed circuit board 24 . The electrodes are etched electrically conductive strips, connected to vias 26 which in turn connect them to other layers in the array. Illustratively, the array 12 is approximately 65 millimeters in the X direction and 49 millimeters in the Y direction. The X electrodes are approximately 0.7 millimeters wide on 3.3 millimeter centers. The Y electrodes are approximately three millimeters wide on 3.3 millimeter centers." Gerpheide, col. 4:41-55; Fig. 2A. \\
"FIG. 4 shows one embodiment of the synchronous electrode capacitance measurement unit 14 in more detail. The key elements of the synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode array, preferably through a multiplexor or switches." Gerpheide, col. 5:52-63; Fig. 4. \\
"The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." Gerpheide, col. 6:1926; Fig. 4. \\
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger 102." Boie, col. 2:49-62, Fig. 1. \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100. As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board
\end{tabular} \\
\hline
\end{tabular}
U.S. Patent No. 5,796,183
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2. \\
\hline the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & \begin{tabular}{l}
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger \(102 . "\) Boie, col. 2:49-62, Fig. 1 . \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." Boie, col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by the operator to provide a control output signal, & "[E]ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit \(401, \ldots\). Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an RF signal, for \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:53-col. 4:2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. . . . Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown) over lead 420." Boie, col. 4:21-32, Fig. 4.
\end{tabular} \\
\hline wherein said predefined frequency of said oscillator and said signal output frequencies are selected to decrease a first impedance of said dielectric substrate relative to a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and & \begin{tabular}{l}
"RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2, Fig. 4. \\
"The effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Boie, col. 4:58-61. \\
"[A] capacitance-based detection device may suffer from electrical background interference from its surroundings, which is coupled onto the sensing electrodes and interferes with position detection. These spurious signals cause troublesome interference with the detection of finger positioning. The device operator may even act as an antenna for electrical interference which may cause a false charge injection or depletion from the detecting electrodes. Accordingly, there is a need for a touch detection system which has the following characteristics: ... (3) electrical interference signals are rejected and eliminated from the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & \begin{tabular}{l}
detection system regardless of their frequency and without requiring possibly expensive nulling apparatus." Gerpheide, col. 2:37-57. \\
A reference frequency generator 16 "observes position signals to evaluate the extent of interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104. Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7.
\end{tabular} \\
\hline wherein said detector circuit compares a sensed body capacitance change to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal. & "Referring to FIG. 6, microcomputer 406 reads the initial capacitance values for all the elements in array 100 and stores such values (step 601). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the initial values, thereby compensating for the effect of any objects moving close to array 100 during the initialization step. After initialization, all capacitance values are periodically read and the initial values subtracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603), indicating that an object is close to or touching array 100 , then the x and y coordinates of the centroid of capacitance for such object can be calculated from such \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide \\
\hline & remainders (step 604). . . . To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of \(A / D\) converter 405, for example \(10-15 \%\) of such range." Boie, col. 5:10-48, Fig. 6. \\
\hline
\end{tabular}

\section*{B. Claim 27}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
27. A capacitive responsive electronic \\
switching circuit for a controlled keypad \\
device comprising:
\end{tabular} & \begin{tabular}{l} 
"The capacitive sensor of the invention \\
comprises a thin, insulating surface covering a \\
plurality of electrodes. The position of an object, \\
such as a finger or hand-held stylus, with respect \\
to the electrodes, is determined from the centroid \\
of capacitance values measured at the electrodes. \\
.. The x and y coordinates of the centroid are \\
calculated in a microcontroller from the \\
measured capacitances." Boie, col. 1:61-col. \\
\(2: 5, ~ F i g . ~ 4 . ~\)
\end{tabular} \\
& \begin{tabular}{l} 
"A computer input device for use as a computer \\
mouse or keyboard comprises a thin, insulating \\
surface covering an array of electrodes. . . For \\
applications in which the input device is used as \\
a mouse, the microcontroller forwards position \\
change information to the computer. For \\
applications in which the input device is used as \\
a keyboard, the microcomputer identifies a key \\
from the position of the touching object and \\
forwards such key identity to the computer." \\
Boie, Abstract.
\end{tabular} \\
\hline \begin{tabular}{ll} 
an oscillator providing a periodic output \\
signal having a predefined frequency;
\end{tabular} & \begin{tabular}{l} 
"RF oscillator 408 provides an RF signal, for \\
example, 100 kilohertz, to circuits 401, \\
synchronous detector and filter 404 via inverter
\end{tabular} \\
410, and guard plane 411." Boie, col. 3:67-col. \\
\(4: 2\), Fig. 4.
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals; & \begin{tabular}{l}
interference at some reference frequency. In the event that substantial interference is detected, the generator 16 selects a different frequency for further measurements. The generator 16 seeks to always select a reference frequency away from frequencies which have been found to result in measurement interference, as described below. The generator 16 includes an oscillator 100 which is, for example, set at four MHz , driving a microcontroller 102 and a divide-by-(M+N) circuit 104 . Value N is a fixed constant, approximately 50 . Value M is specified by the microcontroller 102 to be, for example, one of four values in the range 61 KHz to 80 KHz as specified by the microcontroller 102. The microcontroller 102 performs the functions of interference evaluation 106 and frequency selection 108." Gerpheide, col. 8:22-38; Fig. 7. \\
"FIG. 2A illustrates the electrodes in a preferred electrode array 12 , together with a coordinate axes defining X and Y directions. One embodiment includes sixteen \(X\) electrodes and twelve Y electrodes, but for clarity of illustration, only six X electrodes 20 and four Y electrodes 22 are shown. It is apparent to one skilled in the art how to extend the number of electrodes. The array is preferably fabricated as a multilayer printed circuit board 24 . The electrodes are etched electrically conductive strips, connected to vias 26 which in turn connect them to other layers in the array. Illustratively, the array 12 is approximately 65 millimeters in the X direction and 49 millimeters in the Y direction. The X electrodes are approximately 0.7 millimeters wide on 3.3 millimeter centers. The Y electrodes are approximately three millimeters wide on 3.3 millimeter centers." Gerpheide, col. 4:41-55; Fig. 2A. \\
"FIG. 4 shows one embodiment of the synchronous electrode capacitance measurement unit 14 in more detail. The key elements of the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
synchronous electrode capacitance measurement unit 14 are (a) an element for producing a voltage change in the electrode array synchronously with a reference signal, (b) an element producing a signal indicative of the displacement charge thereby coupled between electrodes of the electrode array, (c) an element for demodulating this signal synchronously with the reference signal, and (d) an element for low pass filtering the demodulated signal. Unit 14 is coupled to the electrode array, preferably through a multiplexor or switches." Gerpheide, col. 5:52-63; Fig. 4. \\
"The reference frequency signal is preferably a digital logic signal from the reference frequency generator 16 (FIG. 1). The reference frequency signal is supplied to unit 14 via an AND gate 72 also having a "drive enable" input, supplied by the reference frequency generator 16 (FIG. 1). The AND gate output feeds through inverter 74 and noninverting buffer 76 to wires RP and RN respectively which are part of a capacitive measurement element 78." Gerpheide, col. 6:1926; Fig. 4. \\
"The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular array of electrodes 101 arranged in a grid pattern of rows and columns, as in an array of tiles. . . . The electrodes are covered with a thin layer of insulating material (not shown). . . . Histogram 110 shows the capacitances for electrodes 101 in array 100 with respect to finger 102. B Boie, col. 2:49-62, Fig. 1 . \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Boie, col. 3:16-20, Fig. 2.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Patent Claim Language & \begin{tabular}{l} 
Boie in view of Gerpheide and Casion \\
\hline elements 201 and 202 can be fabricated in one \\
plane of a multi-layer printed circuit board \\
together with one set of interconnections, for \\
example, the horizontal row connections 203. \\
The vertical row connections 204 can then be \\
fabricated in another plane of the circuit board \\
with appropriate via connections between the \\
planes." Boie, col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline \begin{tabular}{l} 
the first and second input touch terminals \\
defining areas for an operator to provide \\
an input by proximity and touch; and
\end{tabular} & \begin{tabular}{l} 
"The operational principle of the capacitive \\
position sensor of the invention is shown in FIG. \\
1. Electrode array 100 is a square or rectangular \\
array of electrodes 101 arranged in a grid pattern \\
of rows and columns, as in an array of tiles. . . \\
The electrodes are covered with a thin layer of \\
insulating material (not shown). . . Histogram
\end{tabular} \\
110 shows the capacitances for electrodes 101 in \\
array 100 with respect to finger 102." Boie, col. \\
2:49-62, Fig. 1.
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
HERES now THIS MARVEL WORKs \\
Casio, col. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control output signal for actuation of the controlled keypad device, & \begin{tabular}{l}
"[E]ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401, .... Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or column selected by multiplexer 402 . RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:53-col. \(4: 2\), Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. . . Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & Boie in view of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
over lead 420." Boie, col. 4:21-32, Fig. 4. \\
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an array of electrodes. . . . For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." Boie, Abstract. \\
HERES HOW THIS \\
MARVEX WORKS \\
Casio, col. 2.
\end{tabular} \\
\hline said detector circuit being configured to generate said control output signal when the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & "In using the position sensor of the invention as a computer mouse or trackball to control a cursor, movement of the mouse or trackball is emulated by touching array 100 with finger 102, or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontroller 406 in such an application." Boie, col. 4:67-col. 5:9, Fig. 6. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claím Language & Boie in viev of Gerpheide and Casio \\
\hline & \begin{tabular}{l}
HERES HOW THIS \\
 \\
Casio, col. 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{IV. CONCLUSION}

A substantial new question of patentability is raised based on the newly cited prior art combinations, and therefore a reexamination of claims 18 and 27 is warranted. Again, the Patent Owner reserves the right to take positions asserting and to submit arguments explaining why various claim elements are not disclosed or suggested by the cited art.

If the Office should have any questions, please contact the undersigned attorney. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

December 24, 2013
Date
/Brian A. Carlson/
Brian A. Carlson
Reg. No. 37,793

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

\section*{EXHIBIT A}

Page 347 of 1714

\section*{94] CARAC8MEFE SWITCKING CRCOTT}

Assignce: Naztron Corpmentiona. Real City. Mich.

J3x8, 31, 199\%
51] \(3 x \mathrm{xt} . \mathrm{Cx}^{6}\) \(\qquad\)

\([52]\) U.S. Cl. \(\qquad\) \(397126,361 / 181 ; 307 / 25\);
\(307 / 139\)
[58] Wield sf Seazx数 \(\qquad\) \(307 / 112.113\).
307/116. 123. 139.140. 157; 361181
zeferemees Cited
U.S. MATENT DOCUMMENTS
\begin{tabular}{|c|c|c|}
\hline 3,549,9069 & \(12 / 1970\) & Adessam et al. \\
\hline 3,641,410 & 24972 & Vogesstery \\
\hline 3,651,391 & 31972 & Vogessimerg \\
\hline 3,666,988 & 511972 & Bellis \\
\hline 3,798,370 & 3/1974 & Husse \\
\hline 3,879,618 & \(4 / 1975\) & L.arson ............................... 307/116 \\
\hline 3,399,713 & \(8 / 1975\) & Barkau et al. \\
\hline 3,911,25 & 101975 & Hurse et al. \\
\hline 3.919596 & 111975 & Gellis \\
\hline 3,965,465 & \(6 / 1976\) & Alexamder \\
\hline 3,984,753 & 101976 & Gott et al. \\
\hline 4,616,453 & 4197 & Moenmig \\
\hline 4,031,408 & 61977 & Hosiz \\
\hline 4,071,689 & 1/1978 & Talmage et \(\mathrm{n}^{\text {a }}\). \\
\hline 4,101,806 & 711978 & Stone \\
\hline 4,119,864 & 101075 & Perizio \\
\hline 4,152,629 & \(5 / 1979\) & Raupp \\
\hline \(4,159,473\) & 61979 & Senk \\
\hline 4,210,322 & \(7 / 1980\) & Wern \\
\hline 4,211,959 & 71980 & Deavergan et ail. . \\
\hline 4,213061 & 711980 & Cramer \\
\hline 4200815 & \(9 / 1980\) & Gibsou ef al. \\
\hline 4,237,421 & 12/1980 & Wadrow \\
\hline 4,246,533 & \(1 / 1981\) & Chiang \\
\hline 4,257,117 & 3/19\%: & Bersom \\
\hline 4,264,831 & 4/983 & Wem \\
\hline 4,289,972 & \(9 / 983\) & Wers \\
\hline 4,289,980 & 913¢8\% & McLaughlin \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(4,308,443\) & 271983 & Tweker ct as & \\
\hline 4,323,829 & 4/1982 & Witmey et al. . & \\
\hline 4.352 .148 & 91982 & Kent & \(363 / 81\) \\
\hline 4360,737 & 13/1982 & luepold & \\
\hline 4,374.381 & \(2 / 1983\) & Ng et \(\mathrm{al}^{\text {a }}\) & \\
\hline 4,476.463 & 10/1984 & Nget \({ }^{\text {al }}\) & \\
\hline \$503,294 & \(3 / 1985\) & Matsumax & 2005 A \\
\hline 4.731 .548 & 311988 & Magraham & \\
\hline 4.358 .735 & 711988 & lugraham & \\
\hline 4,831,279 & 51989 & Bneraham & \\
\hline 4960504 & 3/1908 & Exiksson & \\
\hline 4,939,382 & 711990 & cminodis & \\
\hline 4942,631 & 7/1900 & Rosa & 4,623 \\
\hline 5012.124 & 411991 & Hollaway & \\
\hline 5,0066.898 & [1/1991 & Miller et al. & \\
\hline 5,057,825 & \(2 / 1992\) & mupraham & \\
\hline 5208.516 & \(5 / 1993\) & Saidism & \\
\hline 5,233,231 & 811993 &  & \\
\hline 5,235,217 & \$1993 & Kirton & \(307 / 326\) \\
\hline 5,386,219 & 111995 & \(G r e a n i z s\) et 3 . & \\
\hline 5,43,644 & 91995 & Yasex \({ }^{\text {a }}\) & \\
\hline 5,572,205 & 111996 & Caldwell at x d. & 341/33 \\
\hline
\end{tabular}

Primary Examinerm-Winiam M. Sboop, St.
Assintom Examine --Ionathan Kaphan
Attomey, Agent, or Firm-Price. Heneveld. Cooper. De Wit \& Litan
[57]

\section*{ABSTRACR}

A capachtve respobsive electronic switching circuit comprises an oscilator providing a periodic oxtput signal having a frequency of 50 kHz or greater, an input touch terminal defining an ares for an operator growne an input by proximity and touch. and a detector circuit couphed to the oscillator for receiving the periodic output signal from the oscilator, and coupled to the inpat tonch terminal. The detector circuit being responsive to signads from the osciplator and the presence of ans optrator's body capacitance to ground coupled to the womch terminal when in proximity or touched by an opestor to provide a conkol outyut signal. Preferably the oscillator provides a periodic ontput signal having a frequency of 800 kHz or greater. An array of fouch terminals may be provided is close proximity due to the reduction in crosstalk that may recult from contaminants by wtijizimg an osciflator outyunting a signal baving as frequeacy of 50 k kHz or greater.




Fig. 2


Fig. 8


Fig. 3A


U.S. Patent

Aug. 18, 1998 Sheet 6 of 13
\(5,796,183\)


Fig. 9

\section*{G/N VS. BOEY CAPACTAACE} TEMPERATURE \(=25^{\circ} \mathrm{C}\)


Fig. 10



Fig. 12





Fig. 15B

Fig. 15C


Fig. 16


\section*{U.S. Patent}

Aug. 18, 1998
Sheet 13 of 13
\(5,796,183\)


Fig. 20B 2304


\section*{CAPACRERVE RESPONSYE RLECTRONX SWTTCKING CERCURE}

\section*{BACKGROUND OF THE NVENTION}

The present invertion relates to an electrical circuit and particularly a capacitive responsive electronic swithing circuit used to make possible a "zero force" manual electronic switch.

Manual switches are well known in the ant existing in the familat forms of the common toggle hght swikoh, pull cord switches. push button switehes, and keyooard switches among others. The majority of such switches employ a rmechanical contact that "makes" and "treaks" the circuit to be swithed as the switch is moved to a closed or an open condition.
Swithes that operate by a mechamical bontact have a nurnber of welk kuowt: problerms. Firss, mechanical movements of components within any mechanism make those components susceptible to weat, fatigese, and bosening. This is a progressive problem that ocours with use and leads to eventwal failure when a sublicient amount of movement has accurred.
Soonad. a subden "rnake" or "break" between conảuctive contacts typically produces an electrical arc as the contacts come into close proxinuity. This arcing action generates froth radio trequency emissions and high fegguency noise on the line that is switched.

Third, the sequaration between comacts that ocurs on each break exposes the comact surfaces to corrosion and contanimation. A particular problem occurs when the arc associated with "make" or "break" occurs in an oxidiaing athoophere. The heat of the are in the presence of oxygen facilitates the formation of oxides on the contact surfaces. Once exposed the contact smfaces of mechanical switches are also vubmerable to comaminamts. Water borne contaminants such as oils and salts can be a particular problem on the contact surfaces of switches. A related problems occus in that the repeates arcing of meohamical comact can reenlt in a migation of contact materials away from the area of the mechanical contact. Comosion, contamination, and migration operating indeperdently or in combination often lesd to eventual swisch failmre where the swith seizes in a closed or onened comdinion.

An aditional problem resubt from twe mechanical force required in operating a mechanical switch. This problexu occurs in systems where a burman operator is required so repetively ogerate a given switch or a mamber of swithes. Such repetitive motions commonly oceus in the operation of electronic keyboards such as those used with oomuputers and in industrial switches such as used in forming and assembly equipment among other applications. A common type of industrial swith is the pabm button sean in pressiag and busertion equigment Fro safefy purposes. the operator must press the switch before an insertion or pressing can occur. This ensures that the operators hand(s) is(are) on the bution (s) and not in the field of motion of the associated machinery. It also ensures that the mechanical motion occurs at a desired and controllable point in time. The dificulty arises from the motion and torce required of the operamor. In recent yeass. it has been noted that repeated human motions can result in debihtating and painful wear on joints and soft tissues yieldizg arthrivs like symptoms. Such tepetitive motion may result in swelling and cramping in moscle tissues associated with conditions such as Canpal Tunnel Symarome. Equipment designers combat these Repetitive Notion or Cuma-
lative Trauma Disorders by adogting ergonomic designs that more favorably control the range, angle, number, and force of motions requited of an operator as well as the number of the operator's muscle groups involved in the required 5 motions. Prosthetics and tests are used as well to provide stran refief for the operator's muscles. joints. and tendons.

In mechanical switches. the force reguired to actuate the switch may be minimized by reducing spring forces and frictionsal forces between moving parts. 3 fowever, reducing such forces makes such switches more vulnerable to failure. For instance. weaker springs typically lower the pressure between contars in a "make" condition. This bower comtact gressure increases the resistance in the switch which can lead to fatal heating in the switch and/or loss of voltage applied to the switched load Reducing frictional forces in the switch by increasing the use of fubricants is tadesimable because the lubricamts can migrate and contaminate the contact surfaces. A switch designer may abo rekuce friction by proving looser 解 beween moving pats. However, ors tend to increase wear and contribute to earlier switch failure. A designer can also reduce friction by using higher quality, kigher cost, surkace binuthes on the parts. Thus, as appurent from the foregoing description. measures taken to reduce actuator force in mechanical switch parts generally reduce the reliability and performance of the swith andor xacrease the cont of the switch.

In applications such as computer beybourds or appliance controls. the clectric load switched by a given switch can be quite low in terms of current andor voltage. Th such cases 0 it is possible to ase low force membrabse switches such as described in U.S. Pat. No. 4.503.294. Sweh switches can relieve sperator strain and are not as susceptible to arcing probierws because they switch small loads. Plowever the flexible membrane remains susceptible to wear, comosion. 35 and contamination. Although such switches require very low actuntions foree they are still mechanically based and thus suffer frome the same froblems as any other xrechanticat switch.

A more recent innovation is the development of "zero w force" touch switches. These switches have no saowing parts and wo contact suffaces that directly switch lowis. Rather, these switches operate by detecting the operator's touch and then use solid state electronics to switck the losds on activate mechamical relays or triacs to swith even larger laads.
45 Approaches include optical proximity or motion detectors to deteot the presessce or motion of a body part such as in the automatic controls used in urisals in some public rest rooms or as disclosed in U.S. F9t. No. 4,942.631. Abthough these non-contact swithes are by their very mature zuly zero force, they are enot practical where a multiplicity of swithes age reguired in a small area such 35 a keybonard. Amomg other problems, these non-contact switches sufer from the comparatively high cost of electro-optics and from false detections when the operator"s hand or other boody part uninken55 tionally comes close to the swith's ares of detection. Some optical touch keybords have been proposed. but none have enjoyed commercial sbccess due to perfomance and/or cost considerations.

A further solution has been to detect the operator's touch 60 via the electrical conductivity of the operator's skin. Such a system is described in U.S. Pax. No. 3.879,618. Problems with this systern result from variations in the electrical conductivity of diferent operators due to variations ia sweat. shin wis. or drymess, 3ad from vanable ambient condicions 5 such as humidity. A further probiem anises in that the touch surface of the switch thas the operator touches must remain clean enowgh to grovide an esectrical conductivity path wo
the operator. Such sunfaces can be susceptible to contamination, corrosion, andfor a wearing away of the conductive material. Aso, these swithe do mot work if the operator is wearing a glove. Safery considerations also arise by virtue of the operators placing their body in electical contark with the switck electronics. A further problert arises in that such systems are vuherable to contact with materiaks that are equally or more conductive than human skin. For instance, water condensation can provide a conductive path as good as that of an operator's skibs, resulting in a false sctivation.

A common solution wsed to achieve a zero force touch switch has been to make use of the capacitance of the human operator. Such switches. which are bereinafter referred to as capacitive touch switches, uthize one of at least three different methodologies. The first method invoives detectirg RF or other high frequency noise that a buman operator can capacitively courble to a kouch termitual when the operator makes contact such as is dischosed in U.S. Pat. No. S.06t. 898. One common source of noise is 60 Hz noise radiated from conmorecial power liaes. A drawback of this approach th that radiated electricak troise can vary in intensity from locale to locale and mereby cause variations in swith sensitivity. In some cases, devices imabomented using this frest methot, rely on conkuctive contact between the operztor and the touch terminal of the switch. As stated. such suraces are subject to contamination. corrosion, and wear and will not wok with gloved hands. Abs additional problem. can arise in the presence of moistare when multiple switches awe maxiloyed ins a dense array such as a keyboard. In such instances, the ogerator may worch one touch terminal. but end up inadvertently activatiag others through the path of conduction caused by the mosture contamination.

A second method tor implegnentrag capacitive bouch switches is to cougle the capacitance of the operator into a variable osciblator circuit that outputs a signal haviag a frequency thas yaries with the cagacitance seen at a towbs terminal. An example of such a system ss described in U.S. Pat. No \(5,235,217\). Froblems with such a system can arise where conductive contact with the operimor is required and where the frequency change cabsed by a touch is close to the frequency changes that would result from unimentionally ominng into contact wiky the bouck terminal.

Another method for implementing capacitive tonch switches relies on the change in capacitive coupling between a touch terminal and grond. Systerys millimg such a methous are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No \(5,087.825\). With this methodology the detection circuit cousists of an oscillator for AC lite voltage derivative) providing a sigual to a touch terminal whose voltage is then monitoned by a detector. The touch termimal is driven in electrical series with ofter components that function in part as a charge pump. The touch of an opesator then provides a capacitive short to ground via the operatos's own body capacifance that lowers the amplitude of osclikar voltage seen at the touch terminal. A major advantage of this methodology is that the operator need not come in conductue comace with the towch terminal but rather onfy in close proximity to it. A further advantage arises in that the system does not rely upon radiated emissions picked up by the gherabor's body which can vary with locale, bur rekes instead upon the human foody's capacitance. which can vary over an acceptable range of 20 pF to 300 pF .

An additional conskeration in using rato force switches resides in the dificulties that axise in trying to employ dense arrays of such switches. Touch switches that do not require physicat conact with the operator but rather rely on bue
ogerator's close proximity can result in unintended actuations as an operator's hamd or other body part passes in close proximity to the touch serminaks. Above-mentioned U.S. Pat. No. 5.087 .825 employs conductive guard rings around the conductive gad of each touch terminal in an effort to decouple adjacent touch pads and prevens maltiple actuathons where only a single one is desired. Ta comjunction with the guard rings. it is also possible to adjust the detection sensitivity by adiusting the threshold voltage to which the seased voltage is compared. The sensitivity may be adjusted in this manner to a point where the operakon's body gart, for instance, a finger has to entirely overlag a touch terminal and come into contact with its thelectric facing plate betore actuation coccurs. Although these methods (guard cings and sensitivity adustmen) have gone a considerable way in allowing touch switches to be spaced in comparatively clone proximity, a susceptibility to surface contanmination remains as a problem. Skite cils, water. and oher contarmanants can form conductive fitms that overliay and capacitively couple adjacent or multiple touch pads. An operator making contact wikh the film can then conple muttiple touth gads to his or her body capacitance and is's capacitive couphing to ground. This can result in multiple actuations where only one is desired. Small tonch ternimals phaced in chose proximity by becessity require sensitive detection circuits that in some cases are preferably isolated from interference with the associated load switching circuits that they activane.

As mentioned, im industial controls, switches can be used to coatrol actuation time and to ensure that the operator's hasm(s) or other body parts) are out of the feld of motion of associated machinery. A common type of switch used in this application is the palm button. The button is large cacugh to that the operater can magidy briug his or her hand into contact with the button withons having to lose the time that woudd be taken in acquaring and lining up a finger with a smaller switch. Zero force tonch switches are also desisabse in this mplication as Reperitive Moxion or Cumblative Trauna Disorders have been a problem with onerator's bstizing yalm buntons-mespecially those galm buttons that most be actuated againse is sprimg resistamce. Ka bux area capacitive touch switches have also been employed. U.S. Fat. Mo. 5.233 .231 is an examyle of such an implementations. Due to the proximaty of machuncry with the potential to cause injury, fabse actuations are a particular hability in such applications. Capacitive souch switches that exhibit vulnesability to zadiated clectromagnetis noise or that operate oti onerator froximity bave the potental to actuate when the operator's hand(s) is not at the desired location on the palm
 dancies. He U.S. But. No. 5.233 .231 , a separate detector is used to measuxe RF noise and disable the systern to a sate state if excessive kff moise is gresem. Onter systems mach as UltraTorich vended by Pinmacle Systens. Inc, use redundant seasing mothodologies. Kn Ulrajouch, both optical and capacitive sensors are used and actuation cocurs onty when both sensor types detect the operator"s hand at the desired location. These implementations have a number of disadYantages. Fin the case of the RF moise detection system, the system is musable in the presenoe of Re noise. This fores the user to employ a backup mechanical switch system or accept the loss of fuxction when RE noise is presenk. The second system is less reliable and mose expensive because it requires two sensor systems to accomplish the same task i.e. dekect the operator. Such system may also suffer frome problems inherem in any optical system. mamely. susceptibility to blockages in the optical path and the need to achieve and mantain specific optical aliguments. A further problem
is that this system considerably constrains the angle and direction of sootion that the operator must bse in activaling the switch.
Curenty, there are several zero force pabm buttons in the market. These products uthize opticat mabor capacitive coupling to activate a nommaly closed (NC) or a mommaly open (NO) relay, and thereby switching 110 V AC, 220 V \(\mathrm{AC}, 24 \mathrm{~V}\) 以C to machine controllers. The PraTouch by phancle Systems Inc, uses two sensors (intrared 8 capacitive) with isolated circuiss to activate a gelay when a machine operator insexts bis hand into a U-skaped sensor actuation tumel. The company clams that by permitting the machine operator to activate the machine with no force or pressure and with the operator's hand and wrist in the ergonomic netital position (ite, \(6^{\circ}\) whist joint angle and \(100 \%\) hand power positions as shown in FIG. 1. \(6-1\), hand. wrist, and arm stresses are minimized and contributing elements to Carpal Tumel Syndrome are meyated. Anter a machine cycle is initiated, the operator must maintain an initial posture until the cycle is completed. A typical cycle time lasts approxurnately one to two seconds and is repeated abouf 3000 thmes daily. This idds up to about one hour to one hour and a half per day while the operator is in the jostare. Whane this module reduces stess on wist and hand. it stains the muscles in the forearm. Also, because of Bimited space germited for the operator to insert his band, it stresses the operator mentally and reduces productivity by causing fatigue. Furthemore, the infrared erniticxs and detectors xely on a clean path betwecn the tramsmitter and receiver and will not operate properly if contamimants bock the beam of light

\section*{SUMMAAKY OF THE INVENTION}

The presem invertion overcomes the above probleras by using the mettod of semsing body capacitance to groumd in congunction with redundant detection circuits. Additional ingrovements are offered in the construction of the bonch termind (piakm butom) itself and in the regime of body capacitance to ground detection which minimizes sensiguvity to skin ols and obker contantinams. The invention also sillows the operator to ntilize the system with or without gloves which is a paticular advantage in the industrial setting.

The specisio trach detection method of the wresent invention has similarities to the devices of U.S. Pat No. 4.758.735 and U.S. Pat. No. 5,087.825. However, signícant improvements are ofered in the means of datection and in the development of an overall system to employ the toach switches in a dense array and in an ingroyed zero force palm buton. The towh detection chronit of the present invenkion features operation at frequencies at or thove 50 kHz and preferably at or above 800 kflz to minimize the effects of surface contarmation from reaterials such a skin onis and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (fdeally very close proximity) that is wepmired for acmation atod to enable employment of a moltiplicity of small sized touch terminals in a physically close array such as a keyboard. The circuity of the presen invertion minamizes the force required in human operator motions and eliminates awkward angles and other constraints required in those motions. The outer surface of the touch swith typreally consists of a continuous dielectric layer such as glass or polycarbonate with no mechanical or electrical feed-throughs. The surface can be shaped to have no recesses that would trap or hold organie material. As a result it is easily cleaned and kept clean and so is ideal for hygienic applications such as medical or food processing equipment. with the garpose of the invention as emboxded and described herein. the capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal
 terminal defning an area for an operator to provide an input by touch, and a detector circuit coupled to the oscillator for seceiviag the perioule output signal from the oscilator, and
coupled to the imput touch temunal. The detector circuit being responsive to signals from the oscillator and the presence of an operator's boby capacizance to ground cospled to the towch terminal when touched by an operator to provide a control ontput signal Preferably the oscillator provides a periodic output signal having a frequency of hoo krle or greater.
These and ofber fenures. objects. and adyantages of the invention may ke realized and obtained by manan of the instrumentalities and combinations particularly pointed ont in the writen description and clains hereof, as well as by the agpented drawings.

\section*{BRIEF DESCRTPGON OF TYE ORAWKNGS}

FlG. \(\}\) is an electrical schermatic of a testing circuit used to measure the inpedane of the human body;

FIG. 2 is an electrical schematic of a testing circuit ased \}o measure the ixnpedamce of water;

FIG 3 is an electrical schematic of an equivalent circuit model for analyzing a haman body in contact with glass covered with water:

FIG. 4 is a block dagram of a capacitive responsive clectronic swithing circuit constructed in accordance with af first embodiment of the presem invemenor;

ElG. is is an electrical schematic of a prefered voltage regulator circeit for use in the capacitive responsive clectronic switching circuit shown in \(\bar{F} \mathrm{G} G\). A

FIG. 6 is an electrical schematic of a prefersed oscillator circuit for use th the capacitive responsive electronic switching circosit show in FIGS. A;

FIG. 7 is an electrical schernatic of a preferred foating common gencrator circhit for use in the capacitive responsive elechomic switching circuit shown in Fra. \&

FIG. \(\&\) is an electrical schematic of a greferred tonsch circuit for use bu the capacitive responsive electromic switchma ciroux shown in FlO. 4;

FIG. 9 is a three dimensional bar graph illustrating signal-to-noise ratio vs. body cagmoitance at \(T=105^{\circ}\) C.;

Fig. E\% is a three dimensomal bar graph ifustrating signal-to-moise satio vs body capacitance at \(\mathrm{T}=22^{\circ} \mathrm{C}\).;

FIG , il is a block diagram of a canacitive responsive electronic switchang circuit conaructed in accorsance with a second embodiment of the present invention;

FlG. 12 is a block diagram of a capacitive responsive ckectrobie switching circuit constucted in accordance with a third embobiment of the presemt invention;

FIG. 13 is an electrical schematic of a greferred voltage regulator, osciblator. and touch circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 12 ;

FRG. \(\mathbb{K}_{4}\) is an electrical schematic of prefered driver circuits for use in the capacitive responsive electronic switching circuit shown in FIG. 2 ;

FROS. 13 A-C are top, side, and from views, respectively, of an example of a flat palm buton constructed in accordance with the gresent inventions

Fla. 16 is a cross-sectional view of an example of a dome-shaped pabm button constructed in accordance with the present invention;

FFG. 17 is an electrical schematic of a rouch curcuit of te present invention implemented in a castom integrated circosit;

F1G. \(1 \%\) is an electrical schernatic of an oscinator having a sleeper circait for use in the capaciave responsive elecfronic switching circuits of the present inventions; presen invention operates at a hater trequency than pram touch semsiag circuits. A move to high frequency operation
 irequency ( 60 to 1000 Hz ) operation seen in existing art such as U.S. Bat. No. 4,738,735 and U.S. Bat. No. 5,087,825. 5 figher inequencies require gencralyy more contly, higher speed parts, and often resubts in the abded cost of speciat design measares to minimaze eloctronic missions and the introubction of high frequsacy noise on gower supply lines. rohe greference for using such higher frequencies is based on a study performed to determine if high frequency operation would allow a bowch of an onerato ams conumction via striace contamixation flums, such as monstare providing a conduckive path from is non-touched arca to the touched area. The study also determined whebher ia bigh frequequy 5 fouch cheuit could operate over a suffeiemily wige temperatare rabge, an assontment of overlying dielectic layer thicknesses and materials, and in the gresemce of bikely powex
 surements are the resubs of this study. The results summa30 rize the investigation conthacted to reduce crosstaliz due to condensacion of water on the delectric nembuer \{ghass), By increasing the frequency of ogeration, the impedance of the
 grupedance of water berween the bouch pads.

The equivalent circuit of body monedamoe was measured
多 and a \(100 \mathrm{~g} \Omega\) series resistor 22 and in paralle with a 10 Ma

 load 85 having ax inoreshace \(Z_{z i}\) representing the body's inymedance.

Tho types of raeasurements whre thisent one with the gerson buder test stamuing ons a large ground plane he.

 wood joists with plywond sheeting, Carneting was used as matadeansulation layer. Table below shows the measured

\begin{tabular}{|c|c|c|c|}
\hline COMCRETE SLAE & CONCREEE SLAB & SUBxLOOR & SUBELOOR \\
\hline 1.480 & \(100 \mathrm{cF}^{2}\) & 1.7 kr & 73 kF \\
\hline 1.460 & 217 HF & 1.9 kit & 78 \\
\hline 1.3 kO & 174 pF & 1.9 kJ & 93 pF \\
\hline 1.2 ES & \(160 \mathrm{pr}^{5}\) & 1.6 kO & 8.5 w5 \\
\hline 1.083 & 107 pr & 1.4 kN & 75 w \\
\hline
\end{tabular}
(6) As aypareat from Table 1 above and the discussion to follow, a bumax body"s ingaganke nay be represested by the series combination of a \(20-300 \mathrm{pF}\) capacikom and a 3 s-2 ks resistor.

The impedance of water, which is manaly ressisive, was 65 measured using the testing circait 3 shown in F3G. 2 Testing sircuit 36 inchudes an oscillator \(4 \%\) coupled in series with a 1 MS resistor 42 and contants actoss whist water is
applied to defne an impedance load 35 having an impedance \(Z_{w}\) representing the impedance of water, A une \(R \mathrm{MS}\) vollige meter 45 is connected across the contacts of the ingredatuce load 35.

The resiskance of tap water over a \(1 \times 1\) inch area and \(1 / 32\) inch deap, was measured to be around 160 kS .

The following calculation is for resistance of rain water where \(c\) is the conductivity for rain:
\[
k=\left(\frac{1}{\operatorname{cin}}\right) \times\left(\frac{x}{A}\right)
\]
where.
\[
\begin{aligned}
& c=128 \times 10^{-5}(\mathrm{O}-c \mathrm{~cm})^{-1} \\
& c i n=c\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)\left(\frac{.0254 \mathrm{~m}}{2 \mathrm{~m}}\right) \\
& A=1.0 \mathrm{in} \\
& A=(1.0) \times\left(\frac{1}{32}\right)=\frac{1}{32} \mathrm{is} \mathrm{~m}^{2} \\
& \text { therefore, }
\end{aligned}
\]
\[
A=\left(\frac{1}{325.12 \times 10^{6}}\right) \times\left(\frac{10 \mathrm{in}}{\frac{1}{32} \mathrm{in}^{2}}\right)=08.43 \mathrm{k} 2
\]

Kowever, the thickness of a layer of water condensed on the surface of glass is masch less tham \(1 / 22\) inch and it's resistance is hugher than that of tap water. For design purposes. a xesissamee valbe of 1 Mr was used to simulate water.

The capacitance of a piece of glass measuring \(1 / 2^{n} \times 1 / 3^{n} \times\) \(1 / 2^{\prime \prime}\), is approximately 2 pF .
where.
\[
\begin{aligned}
& \delta_{a}=0.08842 \times 10^{-6} \text { for vacuives } \\
& 60<k_{\text {sios }} 10 \\
& A=0.25 \mathrm{in}^{2} \\
& i=0.25 \text { ivi }
\end{aligned}
\]
therefore,
\[
\begin{aligned}
& C_{\operatorname{smax}}=10 \times 0.08842 \times 10^{-5} \times 2.54 \times 10^{-6}=2.25 \mathrm{p} \mathrm{~F}^{\mathrm{F}} \\
& \mathrm{C}_{\sin }=5 \times 0.088 .2 \times 10^{-6} \times 2.54 \times 10^{-6}=1.35 \mathrm{p} \%
\end{aligned}
\]

Table 2 below shows the dielectric constant for several 50 types of glas:

TABBE 2
\begin{tabular}{|c|c|}
\hline TYRE OE GLASS & Bielemic Constwat (K) \\
\hline Conming 010 & 6.32 \\
\hline Conning 080 & 6.35 \\
\hline Comang 0120 & 6.65 \\
\hline Corning 8870 & 9.5 \\
\hline
\end{tabular}

The equivalent circuit 50 of body touching the glass with the presence of water is shown in FBC. 3. As shown, the equivalent circuit 50 thelbdes a golycarton (PCZ) plate 55 having at least kwo pads 57 and 59 formed thercon, a glass plate 6 spanning at least two touch pad areas, and a body 7 fa in body is represented by a \(20-300\) pF capacitor 72 coupled at one end to water resistor 68 and glass plate capacitor 62 . and by a \(1-2 \mathrm{k} \Omega\) sesistor 74 coupled between the other and of capacitor 72 and ground
Refeming to FlG. 3, it can be seen that a human touch opposte pad 57 will couple pad 57 to ground through the capacitance of glass 62 and the series contact with the human body impedance provided by the \(20-300 \mathrm{pF}\) capacitance and the \(1 \mathrm{k}-2 \mathrm{kQ}\) resistance of a typical buman body.
15 'This with have the effect of pruling any voltage on the pad towards ground. Pad 59 will be sinilarly effected, however it's coupling to ground will not only be through capacitance 64, and the series capactiance and resistance of the human body, but will also be through the ohmic resistance of water 20 on the glass coyer between the proximaze focation of pad 59 and the touchea pad 57. Becanse the buman capacitance is considerably prenter than the 2 pr capacitance of the glass. the impedance of the path to ground for pads 57 and 59 will be dominated by the glass and water impedances. If the 5 impedasce of the water gath is signibicant compared to that of the glass, then the effect of a touch will be nore significant at gad 57 than at pat 59 . To overoosme the effect of condensation or possible water spills, the imyedance os the glass is preferably made as small as is practical comgiared to the inngedance of the water, This ahows discrimaination between touched and adjacent pads. As the water impedance is primarily resistive and the glass impedance is primbarily capacitive, the impedance of the ghass will aroy with frequency. ance as a function of freguency. The maximumand manimum glass impedances shown were computed as follows:
\[
\begin{aligned}
& \pi=8.554 \times 65^{-12} C^{2} /\left(\operatorname{man}^{2}\right) \\
& K_{\operatorname{sen} \times 2}=6 \\
& x_{\text {mpax }}=10 \\
& A=0.25 \mathrm{in}^{2} \\
& \text { 20. } 25 \mathrm{in} \\
& C_{\mathrm{max}}=\mathrm{K}_{\text {gmax }} E_{\mathrm{C}} \mathrm{~A} / 2 C_{\mathrm{mank}}=2.249 \mathrm{pF}
\end{aligned}
\]

As can be seen, at 1 kHz . the capacitive impedance of the 5 glass is much greater thasa the pominak is Mn of the water bridge berween the pads. As a result, at 1 kHz . there would be little difference in the ingedance paths to ground of che wo adjacent gads whem either is tonched. This would result in the volage on both pads being pulled towards ground by comparable amounts. Conversely. at 100 kHz . the glass impedance droge to spproximately i Ma resulting in the impedance of the path to ground for pad 59 being wice that of the touched pad 57 . For cases where background noise and temperature drits axe cormparatively mall, a 1.00 kFl oscillator frequency would allow a sufficiently low detection threshold to the set to differemiate between the signak changes induces at both gads by a human touch byposite a
single pad. At \(800 \mathrm{kH} z\), the impedance of the glass drops to 200 kS or bower giving a fatio of a greater than 5 to 1 impedance difference between the path to ground of the touched pad 57 and adjacenf pads 59. Yn fact, the umpedance ratio may exceed 10 w 1 . as illustrated in the calculation behow. This allows the detection threshold for the touched pad to be set well below that of an adjacent pad resulting in a much lower incidesce of inadvertent actuation of adiacent touch pads to that of the touched pad. Koleally, the frequency of operation would be kept at the 800 kH of the preferred erubobinent or even higher. xowever. as noted earlier. higher trequency orerathon fores the use of mome expensive components and designs. For applications where thermal frift and electronic noise levels are low, operation at or near
 the impedance of the glass becomes much greater than that of likely water bridges between pads resulting in adjacent pads being effected as much by a touch as the whehou pad itself. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kry . it is conccivable that frequencies as low as 50 k 3 h conld be ased provided the frequency creates a difference in the inupedance paths of adjacent pads that is sufficient erough to accurately distinguish between an intended touch and the wouk of an adjacent pad. Jise of hequencies as low as 50 kHz may also be possible depeadiag upon the type of glass or covering or
 cases where there is litue or mo surface comamination, the frequency of operation can go well below 50 kHz . Hamately, the frequency chonem will be a tradeoff bekween the likelinoon of surface comtamination and the cost of going to higher frequencies to prevent cross talk due to such contamination. The folkowing anasysis intustrates one example of how a frequency may be calculated based on the typical parameters used to constmet a touch switch and the typical impredance of a comamanamu. such as rajm water. In the nalysis kelow a 10 to 1 ratio of water to glast hayodatue is sought.

To eliminate crosstakk due to condomsation of water on the glass, the immedance of body \(\left(Z_{2}\right)\) and glass ( \(Z_{2}\) ) combibibation must be much lower than mpedance of water ( \(\mathcal{Z}_{W}\) ). Since the imbeedinace of glass is mack highex than brody impedance, \(Z_{y}\) will be considered only. Therefore.
\[
100 Z_{8} K Z_{W_{d}}
\]

Eq. 3
where.
\[
\begin{aligned}
& C_{\text {siow }}=2 q_{W}=1 \$ 0 \\
& X_{5}=\frac{1}{2 W_{8}}=\frac{795 \times 10^{60}}{f} \\
& 10 \times\left(\frac{790 \times 10^{10}}{7}\right)<1 \mathrm{MO}
\end{aligned}
\]

Therefore.
\[
f \geqslant 796 \mathrm{kRfz}
\]

Having provided a basis for the use of higher frequencies. the basic comstruction of the electronic swith fing cincuit constructed in accordance with a first ermbobinment of the present invention is now described with reference to FIG. 4 . The eleotronic swith hing circomit includes a voltage regutator 190 including input lines 1 維 and 182 for receiving 324 y AC line voltage and a line 343 for grounding the cincuit. Voltage regukator dan converts the received AC voltage to a

PC voltage and supplies a regulated 5 V DC power to an oscillator 209 via lines 13 a and \(\mathbf{5 9 5}\). Voltage regulator also
 The details of voltage regulator 1 leg are discussed below with reference to FIG. 5 .
 2969 gemesates a square wave with a frequency of \(50 \mathrm{kx} \chi_{\text {. }}\) and preferably greater than 800 kHz , and haviag an anmphthde of 26 V peak. The square wave generated by oscillator \(27 \%\) is supplied via hine zoti to a foating cormmon generator 34es. a touch mad shield plate \&by. a touch circuit 4yb, amd a microcontroller \$5, Oscillitor 2 \% is described below with rekerence to FRG . \(\%\).

Floating common gererator 30 receives the 26 V peak square wave from oncillator 200 and ouposts a regulated 5 foating common that is 5 volts below the square wave output from oscillator 203 and has the same phase and frequency as the received square wave. This floating common outyut is sugplied to touch circuit \$8 and microccmtroller \(\$ 3\) via line 3 gl such that the outgut square wave from oscillator \(2 \equiv 9\) and foating common ought from floating common generator 3kf provide power to tobch circuit 400 and microcontroller sph. Details of floating common generator 3 . 6 are discussed below with reference to EIG. 7 .

Touch circuix senses carnatiance frome a towch pad
 via line dall upon detecting a capzcitance to gromad at touch gad 35 bhat expeeds a theshobld valus. The details of touch


Upos receivisg an indication from touch circuit suat that a suffient capacthance to ground (yyucally at least 20 p\%)
 signai to a load-controllisg microcontroller 6 fin via line \(\$ 01\), which is preferably a two way optical coupling bus. Minomcomrohes 6\% then responts is a predetermined manner to \(s\) control a load 7\%A. Having gemerally described the basic construction of the frest cmbodibsenk, the preferred detailed construction of the depicted componemts with bow tre described with FigS. sims. In cases where the number of knes to be switched is low microcomboller sys can be replaced by addisomal orkical compling lines. The zumber of kues to be switched will dictate whether it is more cost effective to multhglex over a two bine optical brs such as line YBl and use m microconsoller to demuthylex, or to use a multiphicity of optical coupling hines. Other considerations such as reliability and gower comsumption may also affect this choice, 解 this grefexred emboument. the use of a sibge pair of optical coupling paths (line 58 ) and a microco33troller 644 , is shown to emphasize the capability to switch 3 large namber of lines.

160 is shown in FIG. S. Voltage regulator 100 greferably includes an \(A C D C\) convertor and for generaning 29 y to 36 \(V\) unregulated BE on line 119 . This unsegulated \(D C\) power is supplied to a 5 V PC regulator 120 and to a 26 V DC 5 regulator 136 . ACIDC converm 13.6 iscludes diodes \(1 / 2\), 114, 116. and 188, which rectify the supplied 24 V AC. power provided on power lines 101 and 12 . The anode of the frost diode \(5 x 2\) is congled to power hae 10 H and to the cathode of the second diode 1 l4. The cathode of the first diode 1 I 2 is 0 coupled to output line 119 . The anode of the second diode 134 is cougled to ground yia line \(\$ 63\) and to be anode of the fourth cliode 1 18. The awode of the third diode ly \& is coupled to the cantode of the fourth dione 118 and to power line 152 . The cathode of be third diode 146 is coupled to the 119 and 5 to the cathode of the first diode \(\$ 12\). The anode of the fourth diode 118 is conspled to ground via line 193 . Diodes 112 n 114 .

avanable from LITEON，AC／DC convertor 116 also grefer－ ably includes a capacitor 115 for aitering the rectified omput of the diodes．Capacitor lis is preferably a \(\{00\} \mu \mathrm{F}\) capaci－ tor coupled berween ouph line 149 and ground via line 103.
The 5 V regulator 129 preferably includes a \(500 \Omega\) resistor 122 coupled between lime 110 and 5 Y outpur lime 1as．and a zener diode 124．a furst capacitor 126．and second capacitor 128 all connected and garallel between outout power haes
 diode having gart no． 1 N4733A avallable from LTYEON． first capacitor 126 has a capacitance of \(10 \mu\) ；and secomd capacitor 120 has a conacitance of \(0.1 \mu E\) ．
The 26 V regulator 130 preferably indudes a transistor 13a having a collector connected to hine lig via a first resistor 132．a base comnected to lime 139 via a seond resistor 136 ，and an enitter coupled to the regulated 26 V ouput power kine 104 ．The 26 V regulator 134 also prefer－ ably inchudes a capacibu 137 and zener diode 138 connected in paralle between the base of transistor 134 and ground hae 103．Preferably，first resistor 132 is a \(20 \Omega .0 .5 \mathrm{~W}\) resistor， second resistor 136 is a 1 kS 0.5 W resistor，capacito 137 is a \(0 . \frac{\xi^{2} F}{}\) capacitor，and zener dioke 138 is a 27 V .0 .5 W diode having part no． 1 N5 2548 available from LIEEON．It will be apparent to those skitled in the ant that varions components of voltage regulator 100 may be added or excluded depending upon the source of power available to power the osciliator tyk．For example，if the avalible yower is a 110 V AC 60 Hz commercial power hine，a transiomer may be added to convert the \(110 \mathrm{~V} A C\) power to 24 V AC ． Altermatively，if a DC battery is used，the \(A C / D C\) convertor among other components masy be elminated．

A preferrea example of an 800 kHz oscillator is shown in FIG．\％3．Oscillator 2makeferobly includes a square wave generator 218, which is powered by 5 Y regulator 123 via lines 144 and 185 ．for generating a 5 V peak square wave having the desired trepuesby，and at buffer circuit 23 ß powered by 26 V regulator 138 via hine \(8 \%\) for whfering the outpur of square wave generator 210 and boosting its peak from 5 V to 26 V whibe matataining the grefered frequescy． Squase wave generator 210 is meferably an astable multi－ vibrator constructed with at least two serially connected invertor gates 212 and 214 ．and ogromally，a third serially connected invertor gate 216．Invertor ghtes 212.214 and 216 are preterably wovided in a single integrated circuit desig－ nated as part \(744^{3} C \mathrm{C}\) available from National Semiconduc－ tor．The outpot of the first hivertor gate \(2 \mathbf{2}\) is compled to it＇s input via resistors 218 and 232 and is coupled to the output of the second invertor gate 2llis yia a capacitor 22k．The input of the second invertor gate 214 is durectly connected to the output of the first invertor gate 212 and the output of the second invertor gate 214 is directly connected to the ingst of
 output，resistor 218 preferably has a \(10.0 \mathrm{k} \Omega\) value，resistor 222 peferably has a 1.78 kS value．and capracitor 224 is preferably a 220 pF capacitor．

The 5 V peak square wave generated by square wave geberator 21 ik is supplied from either the output of invertor gate \(2 \leq 4\) or the output of optional invertor gate 216 to the base of a first framsistor 238 via a first resistor 232 comected and garallel a capacitor 234．The base of forst transistor 238 is connected to the 26 V regulated BC power line 3 解 via a second resistor 236．The collector of first transistor 238 is connected to 26 V power line 106 via a third resistor 249 and to the base of a second tansistor 2 2n．The emitter of furst transistor 238 is coupled to ground and to it＇s own collector and the base of second transistor \(24 / 8\) wia a fourth resistor 342．5he collector of the secomi transistor 244 is connected
directly to 26 Y power line 156 and the emitter of second transistor 244 is comnected to ground via a fith resistor 246 Second mansistor 244 povides the 26 V geak suare wave on output line 203．Which is connected to it＇s emitter．In operabion，the square wave signal applied to the base of cransistor 238 causes the collector of tomsistor 238 to swine between near to the \(K C\) sumply \(10 *\) voltage and the collector－mitter saturation voltage．Cagacior 23 is pro－ vided to improve the mang of of tab3sistor 238．Transistor 244 along with resistors 232 and 246 are used to buffer the square wave signal generated by transistor \(23 \times\) ．In a gre－ ferred embodiment，the values of the resistors and capacitor are as follows：frst resistor 232 is 5.1 kS ，capacitor \(23 /\) is \(^{2}\) \(0.0047 \mu \mathrm{~F}\) ．second resistor 236 is \(1 \mathrm{M} \Omega\) ．third resistor 249 is
 is 4.7 kS ．Preferably．transistors 238 and 244 are those identified as part no．7TX 600 available from ZETEX．Ha this
 floating common geneator swoch that fogether they supply a boating 5 V BC to power touch circuit（s）6efi．
 8）．As will be apparent to those skilled in the ant，the values of the resistors and capacitors utiliced in oscillator 206 may be varied from those disclosed above to provide for differant oscillator ouqut frequencies．As discussed above，however， oscillator 20 is preferably constructed so as to output a square wave having a hrequency of 50 xHz or greater，ard more preferably，of 800 k \(\mathrm{k} / 2\) or greater 组 some cases it may be necessary to use lower gain bandwidth produch transistors or filmation to actueve a softer rofl－off of the square edges to reduce bigh freguency moise emissions．When this is done the amplitade of the oscillator voltage cam be increased to compeensate．

The preferred constraction of foating ground generator 306 is shown in FlG． 7 includes a zener diode 3 3月 having a cathode connecked to the oscillator outyut on tine 371 amd an anode connected to foatug ground output line 3 3l and to ground via resiator 336 and diode M\＆Floating ground gewerator 3 解 atso preferably includes a first capacitor 38.2 and a second canacitor 34 comected in parallel with zener diode 319．In the prefemed embodiment zener diode 316 is a 5.1 V zeaer diode ideathed by part no．1N4733A available from 1 Y8EON，camscitor 3 B2 is a 47 pF tantalum capacitor． capacitor 314 is a \(0.1 \mu F\) capacitor，resistor 336 is a \(270 \Omega\) resistor，and diode 33 is a diode idensided as part no．


Touch circuit Asta，as shown in FIG．8，preferably inclades a mansistor 419 having a base combected to touch gad sta wh resistor 413 and bine \(85{ }^{2}\) ，an emiter coupled to oscillator output line 201，and a collector coupled to floathag ground
 resistor \(4 \mathrm{~A}_{6}\) and a capacitor 4 ． minimise susceptibility to noise，the physical length of the path between the touch pad 455 and the base of the transistor \＄18．must be held to a mixambure．Adjithonally，ECC fiters can be placed in line 4 an between the output of the touch circuit

 frequency，the higher the gain bandwidth product that is required in transistor 4 ．The gain bandwidh product must be sumicient to guaransec that the oscilhaco turns on during oscillator High pulses．A further trade－off is to use higher gain bandwidth product to allow lower oscillator voltages or higher oscillator votages to all ablow a lower gain band－ width product kansistor to be used．The combination of oscillator vollage，frequency and transistor gain bandwidth groduct that is used will necessarily vary with the cost，
safety and reliability requirements of a given agplication. The present combination was chosen to keep the oscillator voltage down sad allow ogeration at 800 kBz to minimize cross takk At higher frequencies a higher gain bandwidth groduct transistor would be required in both the oscillator 236 and detection \(\}\) preferably includes resistor 412 and a diode 414 havimg an anode connected to the base of canaistor 416 and to resistor 413 and a cathode connected to the emitter of hansistor Ay and to a resistor 412 comected in parallel with diode 454 berween the base and eminter of cramsistor 4 B 繁. The pulse stretcher circuit 417 is idextined as sbeh becasuse the seasitivity of the touch circuit may be increased or decreased by varying the resistance of resistor 4lo The base of transistor 415 is connected via resistor 43 to line 461 ponnected to touch pad 45\$.
Additionally, touch circuit man may include at least one Schmitt triggered gate \(22 \%\) powered by the volage dibiesence existing between oscillator line 2t1 and 3 al, and having an input terninal coupled to the collector of transis-
 outpu line 49 x . Schmitt triggered invertor gate 420 is optionally provided to limpove the rise time of the touch swich outguk and to bufter the sutput. Freferably, transistor
 412 is a 12 MS resistor, diode 414 is part mo. 1 NO 14 B

 10 kS essistor.
As stated above. the operator's boody includes a capacitance to groumd, which may range in a typical persobs bomb berween 20 to 300 pF . The base terminal of transistor 4 3 0 is coupled to it's emitter by resistor 42 such that unless capacizanoe is present by the user townharg the fouch gad
 conduct Thuss, when touch pad 459 is mot touschen, the outpus signal at the collector texminal of cransistor 41 and across pulse stretcher circuit 417 will be zero volts. Whes. however, a person touches the touch pad 458 . that person's body capacitascee to gromad couples the base of transistor
 biasing transistor 418 into condwotion. This charges capacifor Al 8 providing a positive DC voltage with respece to the line 38 l and camses the output of the Sc chant trigger 48 k to go low. Diode 414 is coupled accoss the base to emitter jurction of trabsistor axf to clamp the base emituer reverse bias vohage to -0.7 V and also reduce the forward recovery and turm-on time.

Touch pad asishordes a substrate on which a phurality of electically conductive plate mentors are monated on one surface thereof. The substrate is an insulator and the plates are spaced apart in order so insulate the plates from one another and from ground. Abso, positioned on the substake is a guard kamd genecally shown as dow. Guard band 4 is a grid of conductor segments extending between adjacent pairs of plate mermbers. All conductor segnemts are ghysically interconnected to define a ghurahty of spaces with one plate member positioned centrally within each space. Components of the touch circuit may be positioned on the side of substrate opyosite plate members and guard hand 460.

A phanar diclectric member is spaced from the substrate facing plate members The dielectric member is made from a non-porous insulating material such as polycarbonate or glass. A plurality of electrically conductive spring contacts are subdwiched berwow the buner swnace of the dielectric member and the substrate. An indicia layer may be adhered to the inner surface of the dielectric member to provide an indication of the function of each inpat protion.

As mentioned above. interface between the dielectric member and a conductive plate is a metatlic spring contact that is atached to the back of the dielectic member. The spring contacts offer advantages at high temperature extremes. However. for sufficiently narrow temperature ranges, conductive polymer foam pads cut to the size of the touch pads are preferably used to nill the gap between conductive pad and dielectric layes. The function of the spring contacts or conductive fomm pads is to eliminate that capacitive contribution of the air flled gap between the conductive pads and the overlying dielectric layer.

A problem with capacity responsive heyboards is the condebscy of switches that are clostely powitioned in a keyboard system to inadvertently become actuated even though the user is towching an adjacent switch. Furthermore, this problera is greaty aggravated by the presence of contamiadion on the outer surface of dielectric member. Contamination such as shin oil or moisture causes erratic keyboard operation and maltiple switches will bum on oves though one switch is touched. By operating at a high frequency such as 100 kHz or 800 kHz the impedance of the series combination of boby and glass capacitames are lowered as compared to the irmpedance of contamination present on the glass thereby reducing crosstall.

Ff glass thickness is smatler than 76 inch, the towch circuit fecomes more sensitive to body capacitance. There are two ways to adjust the sensitivity so that crosstialk does not ocur: remove siode lan andor reduce the resistance of
 allow usage of thicker glass. However, this resistance prederably should wot go above \(750 \mathrm{k} \Omega\). This is becanse of the
 cument of \(1 \mu \mathrm{~A}\) at the Schmitt trigger gate 420 .

The oscillator circuitry shown in FIG. is very stable over the temperature zange of \(-30^{\circ}\) © to \(105^{\circ}\) C. The output of the touch switch circuitry drops at a rate of approximately 40 \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\). when temperame falls below \(0^{\circ} \mathrm{C}\). Tif application requires gueration at low temperatures (-40 C .). the fol lowing three methods may be used to increase the output of the switch: increase the oscillator's regulated supply voltage, increase the resistance of resistor 4 or and wase a Kigher gain transibtor Ais. All of these methods would increase sensitivity at high temperatures. Another way to correct this problem is to use a themmistor to vary khe regulated supply voltage as a funtion of termperature.

Since the imput power is regulated down to 26 V DC , variatiom of power ( 24 V ACt \(10 \%\) or 29 V DC to 36 V DC ) Goes not affect circuit operations. Tabie 3 below shows the measured obfgut voltage of the switch for various supply volkages.

TABLE 3
\begin{tabular}{|c|c|}
\hline SRPPPY VOLTACBE & SWKCH OUTMVT \\
\hline \multicolumn{2}{|l|}{} \\
\hline 36 v8x & 4.66 V \\
\hline 35 V7x & 4.96 V \\
\hline 38. VDC & 495 V \\
\hline 33 VEC & 495 V \\
\hline 32 V & 4.34 V \\
\hline 31 VDC & 4.93 V \\
\hline 3017 C & 4.93 V \\
\hline 29.308 & 4.92 V \\
\hline
\end{tabular}

\section*{\(P S A R=6 m V / V=-45 d\)}

In onder to determine the efrect of body capacitance on circoit oneration, the circuit of EGG. 3 was used to simblate glass. water resistance, and body capacitance. The following two conditions were skmulated and tested:

1--The maximum body capacitance that does not cause crosswalk when:
Temperature \(105^{\circ} \mathrm{C}\)
Supply Voltage \(=36 \mathrm{VDC}\)
Glass Capacitance \(=2\) pF
Whater Resistancem 330 k to 1 MS
2-The minmum capacitance to turn on a switch when:
Temperature \(=0^{\circ} \mathrm{C}\).
Sughly Voltage=29VDC
Glass Capacitance \(=2 \mathrm{pF}\)
3 -Operation at room temperature.
Table 4 below shows the signal and noise voltages at the switch output for diferent vabues of body capacikance and contamination resistance.

TABXX 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
CONTAM- \\
NARYON \\

\end{tabular} & \multicolumn{5}{|c|}{WODY CAEACSAMCE} \\
\hline SISTANCE & 20 pr & 220 pF & 3.30 [50 & 550 pF & \(1230 p^{2}\) \\
\hline \multirow[t]{2}{*}{\(330 \leq 88\)} & S: 5.15 & S: 5.1 y & S. 5.18 & S. 5.1 V & G: 5.1 V \\
\hline & N: 2.0 V & N: 4.0 V & N: 4.5 V & N: 4.9 V & \(\mathrm{N}: 50 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{500 kr} & S. 5.1 y & S. 5.1 V & S: 5.1 V & S: 5.1 V & S: 5.1 V \\
\hline & N: 0.2 V & N: 0.6 V & N: 0.7 Y & N: 0.8 V & N:0.8V \\
\hline 1 8 Su & S. 5.1 V & S. 5.1 V & S. S.1 \% & S: 5.1 V & S. 5.1 Y \\
\hline (Condensed Watcr) & P: 0.1 V & N:0.1V & N: 0.1 V & N: 0.1 Y & A:0.1 \({ }^{\text {y }}\) \\
\hline \multirow[t]{2}{*}{NORT} & 3: 5.1 Y & S: 5.1 V & 3: 5.1 V & S 5.19 & S: 5.1 y \\
\hline & \(N: 10 \mathrm{~m}^{\mathbf{V}}\) & \(\mathrm{N}: 10 \mathrm{mV}\) & N: 10 cos & N: 10 mv & \(\mathrm{N}: 10 \mathrm{mV}\) \\
\hline
\end{tabular}
\(S=\) Sigual (TOYCH)
\(\mathrm{N}=\mathrm{Na}\) Ne ( FO GOUCN )
sapposy woltage \(=36\) VMK
temperature \(=105^{\circ} \mathrm{C}\).
With consamimation ressance of \(1 / \mathrm{Ma}\) or more, the circuit is insensitive to body cayacitance variations abd has a minimum signal-tonoise ratio of -34 d8. With no contamination, signal-to-noise ratio is approximately -. 54 dEt. The graph in FlG. 9 shows the sigmat-to-moise ratio versus body capacitance, for different values of contamination resistance at \(105^{\circ} \mathrm{C}\). The minimum body capracitance to cum on a switck is \(20 \mathrm{pr}^{2}\).

At room temperature, crosstalk decreases beanuse of gain drop of tramsistor 4lfa Table 5 below shows that at room texuperatare, the circuit rejects 250 k 3 of comamination. independent of body capacitance. Below 250 ka , body capacitance will affect cosstalk.

TABLE 5
\begin{tabular}{|c|c|c|c|c|c|}
\hline COREAM INATEOA RE- & \multicolumn{5}{|c|}{BODY CAPACHAAYCE} \\
\hline SISTAMCE & 20 F & 220 nF & \(330{ }^{5} 5\) & \(530 \mathrm{p} \mathrm{F}^{5}\) & \(130 \mathrm{pr}^{\text {P }}\) \\
\hline \multirow[t]{2}{*}{200 k 2} & 5:5.3 V & S. \(51 . \mathrm{V}\) & S. 5.1 V & 3: 5.1 V & 5: 5.1 Y \\
\hline & M:02Y & N:10y & N: 1.2 y & N: 1.8 V & \(\mathrm{N}: 2.2 \mathrm{Y}\) \\
\hline \multirow[t]{2}{*}{26040} & \$: 3.3 V & \$: 5.1 V & S. 5.1 y & 3: 5.1 V & S: 5.15 V \\
\hline & N: 0.1 y & Reos V & N: 0.5 V & M: 0.5 V & N:0.5 Y \\
\hline \multirow[t]{2}{*}{330 ka} & S:5iv & 5:5.1 V & S:5.1 V & S: 5.1 V & S: 5.1 V \\
\hline & \(\mathrm{N}: 0.1 \mathrm{~V}\) & N:0.1 V & N: 0.1 V & N: 01 V & N:0.Y \\
\hline \(13 \% 8\) & S: 5.1 V & S. 51.1 V & 3: 5.1 V & S 5.1 y & S. 5.18 \\
\hline (Courlensed Water) & M: 0.1 y & \(\mathrm{N}: 0.1 \mathrm{~V}\) & dat 0.1 V & N:0.1 V & N: 0.1 V \\
\hline
\end{tabular}
\(\mathrm{S}=3 \mathrm{ignd}\) (Toucly
\(\mathrm{N}=\mathrm{Noise}\) (NO TOUCH)
supply voltage \(=36 \mathrm{VDC}\)
semperatare \(=25^{\circ} \mathrm{C}\).
The graph of FlG. 18 shows the measured signal-to-noise ratio versus body capacitance, for different contamisation resistance values at soom temyerature.

\section*{65}

The particular advantages of the preceding circuit over that of existing touch detection circuits such as that dischosed ins U.S. Pat. No. 4.758 .735 , are the use of diode 814 (selected for high speed) to minimize forward recovery time rather than merely provide reverse polarity potection (as with the slower gype of diode used in the existing circuits) and the omissions of a capacitor coupled across the base to emitter junction of the detection transistor to make the circuit more seasitive and operable with a lower oscillator amplitude and tigher oscillator frequency. These feanures along with appropriate choices in component values make possible operation at signifoanty higher frequencies \((>50\) to 800 kFE ) than are seen in existring art ( 60 to 1000 Hz ) At frequencies at or near 800 kHz . the \(20-300 \mathrm{gF}\) of capacitance \(\$ 0\) ground offered by the human body presents a considerably lower impedance than the primarily resistive impedance of skin oil or water shms that mayy appear on the dielectrie layer overying the conductive touch pads. "Gis allows the peak voltage of a pard that is touched to come considerably closer to ground than adjacent pads which will have a woltage drop across any contaminating fims layer that is providing a conductive gath to the area that is touched. The enkanced scasitivity offeced by the omission of any capacitor between the Gase and emitter of the detection Eransistor 10 , allows the threshold of detection to be set much closer to ground than would be the case otherwise. This allows uiscrimination between the grad that is touched and adjaceat pads that might be polled towards ground via the conductive path to the touch formed by a contaminating fim. This high froquency regine of operations offers a consiferable advanage relative to the exisking ar in terms of immunity to surface contminants such as skin oil and moisture.

A mabtiple wouch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the
 in the first embodiment in Fify, are designated with the same references numerals and will not be discussed in detail. The matityle toach pad circuit is a variation of the farst embodiment in chat it includes an array of touch circuits


 selects each row of the touch carcuits \(\$ \mathrm{Se}_{2}\) to \(\$ 4 \|_{n m}\) by providing the signal from oscillator 2 ath so selected rows of
 sequentally activate the fouch circuit rows and associate the received inputs from the columass of the atray with the activated touch circuitess. To beep the path length ats between the touch pad asb and the base to the detection
 playsiculy located directly beneash the wout pads. To simplify assembly, a flexible circuit board such as yended by Sheldah, Inc. or Cirout Etching Gechnics, Gnc. can be used for this purpose. ldeatly, the zxinted circuit whil be fixed directy against the surface (rypically gfass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam gads and spring contacts which were used so fill air gaps.

For this second embodiment, the oscibator zula of the first cmbodiment may be shightly modited from thas show3 in Fric. for include a transistor (not shown) coupled berween the oscillator outqut and ground with its's base connccted to
 selectively disable the cutput of osciliator 200 .
The use of a bigh frequency in accordance with the gresent invention provides distinct adyantages for circuits
such as the multiple touch pad circuit of the present inven－ tion due to the rananer in which crosstald is substantally reduces withon requiring any physicias sucture to isolate the touch terminals．Firther，the reduction in crosstabk afforded by the present invention，allows the touch terminals in the array to be more closely spaced together．

A thind embodment of the present invention，which Mrovides touch circuit redundancy．is described below with reference to FTGS，12－14．As shown in FeG． 12 ，the switath－ ing circuit according to the third embodiment includes a voltage repulator 1100 for regulating power supplied by 24 Y DC power lines 1 by and 1182 with ground connection復33．for supplying the regulated power to an oscillator 1200 via lines 1 1804 and \(\mathbf{1 1 8 \%}\) ．

Oscillator 3268 supplies a continuons nad periodic signal
 the frequency of the oscillator output signal is at least 100 kHz，and more preterably，at keas 800 kyz ．The two toweh circuits \(\xi 46 \Leftrightarrow a\) and \(840 \%\) are dentical ion construction and both reccive the output of touch terminal 1458 via line 1451 ， A detahed descriptions of the prefersed voltage regulator
 14blb is provided below with reference to FIG． 13 following the descrigubs of the remainixg portion of the that embudi－ ment．

The output of the ferst touch circuit \(1484 a\) is supplied to
 the secoud touch circuit 140 mb is suppleas to a second driver
 l6bs ase provided to drive first and second serially con－
 transistors 176 and 1749 must both be conducting to sugply power to a relay switch 38\％k．Thus，if one of konch circuits
 455b，one of switching mansistors 1788 and 17 g x will mot conduct and power will sot be surphied to relay swisch f（k） The prefered coastruction of driver circuits 15\(\} \times 1\) and 1680 and relay switch 1806 are described below with reference to GIG．14．

As shown ing FuG．33．voltage reguator 1 3B\％may be constructed by providing a surst capacitor \}ll⿻弓⿰丿丨贝刂 and a varistor 412 comncted in parahel across inguxt powes hermimals
 connected via lisue 1183 to grourd．Variston 1312 is used to protect the circmit for over－voltage comditions．Also con－
 are the serially connected combination of a fuse 1114，a diode llh a resistor 1818 and two parallel connccted
 reverse polarity protected by diode 1 lis and current limited by resistor 1118. Capacitors 124 and 1822 provide fittering．

Yoltage regulator bubg further includes a zener biocke 1128 baving it＇s cathode compected wo a node between resistor 1118 and capacitors 1128 and 1122 ard to output power line to outpur power cormorn line 1187 and to ground line 1133 via two serially connected resistors 1124 and 1226 ．Zener dicke 1328 and resistors 1120 and 1128 generate regulated 15 V CC Two capacitors 1136 and 1132 are connected in parablel with zener diocle \(112 \$\) between power lines \(\mathbf{1 5} 44\)
 decoupling．respectively．Preferably．capacitor 1 hat has a capacitance of 1000 pF ． 1000 V ，varistor 1112 is part no． S \(14 \% 25\) avallable from Siemens，fuse 114 is a \(1 / 4 A\) fuse．
 resistor 1118 has a resistance of \(10 \Omega, 3 / 2 \mathrm{~W}\) ，capacitor 1 I 2 B has a capacitance of \(22 \mu \mathrm{~F} .35 \mathrm{~V}\) ．capacior 122 has a terminal of operational amplifier 1514 is connected to fine 892．which rums beween first and second driver circuits

1548 and 160 and is connected to power line 1184 via a resistor 862 . The ouput of op amp 1514 is connected to
 Schmitt trigger invertor gate \(\mathbf{1 5 1 6}\). The output of Schraith trigger invertor gate 1516 is connected to the input of a second Schnity trigger invertor gate 1526 vad a resistor 1523. A diode 1522 is conneded in paralle with resistor \(152 \%\) with it's cathouse connected to the output of invertor gate 8 Sl 6 and it's anode comected to the input of hyertor gate 1528 and to power common line \(10 \%\) via capacitor 1524. The outprat of invertor gate 1526 is connected to the base of bipolar PNP switching transistor 1708g via a xesistor 1528. The base of transistor 7 \%ev is also connected to power common line 1167 win a capacitor 1538 and to power tine 1194 and it's emitter via a resistor 15338.

Preferably. resistor 1518 has resistance of 10 Ma, capacitor 1512 has a capacitance of 0.01 pF op amp comyarator 358 is part no. EM393 available from National Semiconductor, invertor gate 1516 is part no. CD40106 18 available from Harris, resistor 1518 has a resistance of 10 kO. cesistor 3 E 2 h has a resistance of \(1 \mathrm{M} \Omega\). diode 1522 is part mo. RL \(\$ 4448\) available from LIMEON, capacitor lis 4 has a capacitance of \(0.22 \mu \mathrm{~F}\). invertor gate \(152 \xi\) is part no.
 tance of 12 k 5 . resistor 153 b has a resistance of 100 kS . capacitor 1532 has a capacitance of \(0.01 \mu \mathrm{~F}\), and transistor \(170 \%\) is part no. MMBEA56 available from Moworcha

In second driver circuit 1689, the ourpur line 14838 of second touch circuit \(34 \% 8\) is connected to power cormmon

 also connecterd to the inverting input terminal of an operationa3 amplifer 86[4. The non-invertiag inpast temmal of
 is connected to power line 1164 via resistor 1626 . The non-imverting input geminal of op axep layid is also comnected to power common lime Brify via a capacitor 163 l and a resistor \(\mathbf{1 6 1 8}\), which are commected in parallel. The omput
 163* and to the coupled inputs of a Schant triger invertor gate l628. The output of op amp 1614 is also connected to it's mon-inverting input termisal via a resistor 368.8 . The outpur of Sckuitt trigger invertor NAND gate \(1 \% 28\) is comnected to the input of a second Schmitt trigeger invertor gate 1638 vis a resistor \(163 \%\). A diode 183 is commected in parallel with resistor 1632 with it's cathonde connecteal to tere output of invertor NAND gate lass and it's anode connectes to the ingut of invertor NAND gate 1638 and to power common line \(11 \$\) via a capacitor 1636 . The oxtpus of invertor gate \(\mathbf{1 6 3 3}\) is connected to the base of switching

 1107 via a capacitor 1642 and to power line 1104 via a resistor \(\mathbf{1 6 4 k}\). Second driver circuit \(\mathbf{1 6} 6\). also preferably includes capacitors 56 and 1622 connected in paralfel ss between it's connections to power lines 114 asd 1167 .
Preferably, resistor 1610 has a resistance of \(10 \mathrm{M} \Omega\) capacitor 1612 has a capacitance of 0.01 afe. op amy comparator 1614 is part no. XM393 avalable from National Semiconductor, capacitor 1616 has a capacitance of 0.03 . 18 . resistor l6 6 g has a resistance of 20 ks . capacitor 162 k has a capacitance of 0.1 HP, capacitor 1622 has a capacitance of \(0.1 \mu \mathrm{~F}\), resistor 162 d has a resistance of 100 kS . resistor 162\% biss a resistance of 10 kS . invertor NANG gate lack is part no. CD4093B available from flamis, resistor 1630 kas a resistance of 10 kS . resisfor 1632 has a resistance of 1 MS. diode 163 is part no. RLS 448 available from eguaris against inadvertent actuations and forces the operator to bave book bands in a desired sate location once a desired
actuation occurs. A further option is to provide one or more J.EDs 2205 or audible anmunciators for visual or audible feetback to the operatos. Spectecaty, in Fig. 19 the EED 2205 will come on when button 2201 has been successfully activated to cue the operator that it is time to move to buthon 2282. Whare sequired a second EED with a different colos than the first (yetlow for the first LED and red for the second) can be provided to provide visual confirmation that the serond buton 2282 has been activated of that the required combination of the two buttons has been activated. Two different sudible tome or sond generators could also be thed in lieu of the LEDS to grovide feeblback to the ogeramor. In industrial or other challenging settings. the fousing is made of high streagth polycarbonate (or other high strength mon-motallic material) to meet kigh impact and vibration requirements. preferably NEMA 4. A further option is to grovide lightisg for the switches to allow operation in the dark

In a variation of the multi-step process. two touch plates within a housing (one vertical and one borizontal) are used to provide a wo-step twa-on. Referring to FGGS. 23A-C. the first step to achuate the output rebay 2318 , is initiated when the operator inserts his hands and touches the vertical rouch sensor 23 列 with the dorsal side of he hamds, A yellow LED \(23 \times 4\) on top of the tevice show the successtul completion of the first step. The second step is to hip the haved over and touch the borizontal touch semsor 2382 with the palmar side of the hand. Ared LED \(23 \times 5\) on top of the device shows the completion of the two step turn-on and activation of oxtput relay 273 . The fippiang sction of the band is3 the second step causes the foream muscles to bex. thereby reducing stiffress and fatigue. Also, the hands, and arms can rest on the rua bar until the machine cycle is comphete. The second step of the swo-step turn-on mast occur within some predetermined time (for examphe 2 seconds) after the release of vertical touch sensor or the frest step must be repeated. In this proposed entoodiment, the second step provides an added stimulus and reduces operator exross due to mental and ghysioal fatigue. The tog wover prevents accuation of two devices by the use of ome band and elbow of the same arm, as required by ANSI Standard \(811.19-1990\). The enclosure must be a high surexgth polycarbomate module fo meet the high impact and vibration reguirememts of the industry. greferably NEMA 4. In both embodimemts. bigh frequency switching is used to descrsitize the unit against molsture and contamanants that conld generate a path between the butbon and grounded chassis. The palm button may be fomed as the flat pasm button shown in FIGS. 35A-Cor as a dome-shaped gamm butcon shown in Prich. Brs. The butwo is mable of a brass plate 1919 (1936) and can be covered with a plastic or glass 1925 ( 8533 ) cover or membrane to desensitize the unit even more agzinst contammans and cher inadvertent actuation. The plastic cover 1925 ( 3933 ) acts as a dielectric and capacitance is yaned as a function of the area of the plastic being towned. Therefore, if button is towached by funger, a much smaller series capteitance is generated as opposed to button being touched by the palm of a hand. This capacitance is placed in series with the capacitamee of he foody to ground when the button is souched. Since the capacitance of the body to ground is much larger than the capacitance gencrated by the buthon, the fanctionality of the unit is independent of the variations in body capacitance to ground from person to person. The other factor that meds to be considered here is body resistance. If the butbon is not covered with an insulator such as plastic. the unit woubd become sensitive to body resistance. Hody resistance to gronnd, changes as a function of moisture in the work atea.
skin dryness. foor structure and shoes. By using a plastic cover, the unit is made insensitive to variations of body resistance and capacitance. The shape of the bumon is also a factor in sensitivity. If the button is flat. less of the buttor area would be covered by the palm of the hand as opposed to 3 dome shage button that matches the contout of the paim. Therefore. if the button is dome-shaped, the unit can be even more desensitized against inadvertent operation.

By providing a large space for hand imsertion and switch activation and a flat or dome shape button where the palm of the hand rests while machine cycle is in process. stress on the foreams is exgonomically redsced. The palm button of the present invention can be activated with or without gloves. The zero force palm button of the presext invention may be used to ackivate electric. pnearnatic, air chuth, 3nat bydrablic equipment such as punch presses. molding machines. etc.

As shown in ETGS. ESA-C. the flat palm buthon may include a plastic housing \(\$\) y 1 ? having an optional metallic ebclosure 1922 for surface mounting. The button also may
 1926.

The circuit board 1935 used with the palm button of the present buvention may be packaged on two printed circuit boards. Gne board for power and relay and the other for touch switches and relay drivers. The touch circuit on the touch switch board is interfaces to the button through a screw that also holds the button in phace. The powerirelay board is interfaced to the touch switch board through a three pian nigh angle connector. Wiring wo the wair is done through a seyen gosition terminal block on the power/relay boasd The powerlelay board is designed for 24 V DC innut power and provides wo double-throw rekay contacts. However, it can be moditied ko accommoliate different gower imputs assd switch ouputs. For examgle, a mansformer may be added to the power boand so that the wit is powered 110 VAC 220 YAC dnatend of 24 Y DC. Also, the relays may be replaced with other ourouts such as digital or \(4-20 \mathrm{ras}\) oriputs.

The bouch citcuit components can be integrated in a custom IC 2000, as showm in Blo. 17, to facibixate manas facturisg and to reduce cost. Components 413 . 412 , A14,
 in GLG. Freferably, resiskor 2Mm has a resistance of 470 ka and diode \(2 f\} 2\) has characteristics similar to part no.
 are used \(\omega\) adyust the semsitivity. Biode 2902 at the output of 42f. allows the IC. to ke used in applications where several toach ciscuit K's are nubupipezed
As shown in FiG. 18. a sleep circuit 243 may be added to the oscillator circuit 2 㓠 (FIG. 6) to allow microcontroller
 oscillator circuit 240 is done to reduce drasinage of capacitor y26 in the regulator circuit 126 during brown outs. The chrout diagram shown in PlG. 18 is a modified versiom of crouit 2* in FrG. 6. Drang nomal operation microcontroller 6 g pulls the input of gate 2116 to ground and causes the ouphat of gate 2136 to go high (power line los), Therefore. transistor 2115 is biased on and ascillator 2069 is functional. When in a slecp mode. microcontroller foll
 gate 2136 to go low which turns of transistor 2116 and pulls the imput of gase 312 low. Therefore, the oscillator will stop oscillating and drainage on capacitor 126 decreases considerably.

The above described enbodiments were chosen for purposes of describing but one application of the presenk
imvention. It will be understood by those who practice the invention and by those skilled in the an. that various modifications and improvements may be made to the invention without departing from the spirit or scope of the invention as defined by the appended claims.
The embubunents of the invention in which an exchusive property or privilege is claimed are defined as follows:
1. A capacitive responsive electronic switching circuit comprising:
an oscillator providing a promdic output signal having a frequency of 50 kHz or greater;
an imput toweh terminal having a diclectric cover defining am area for an orerator to grovide an inpht by proximity and touch, am operator's body capacitance to ground as sensed through said imont touct termina! varying as a function of the area of said input tonch tomamal that is proximate the operator's body; and
a detector cireuit coupled to sad oscillator for receiving said pertodic output signal fom said oscillaton. and coupled to saul input touch teminal, said detector circuit being responsive to signals from side oscilator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control ontput signal. wherein said detector crownt inchutes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent baintended activation based upon an operator's inadvertent proximity and touch with said imput touch terminal.
2. The switching ctoraik as befined in cham 1 . whercin saud oscillator provides a periodic output signal haviag a frequency of 800 ktzz or greaser.
3. The switching circuit as befned in clamo and surther including a DC power supply for supplying power to said oscillator and a ground.
 sad periodic output sigual provided by said oscillator is a square wave obsput signal, said oncillator includes a square waye genemtor for generating a square wave, and a plowabity of active elements compled to ast output of said square wave generator to buter and improve the shape of the square wave cutput दुeretrores.
5. The switching sircuit as defined in claim \({ }^{2}\). wherein said detector circuit inchudes a microcontroller and a charge purny circuit coupled between siod input tonch terminal and said microcontroller.
6. The switching circuit as defined in claim 1, wherein saib detector circuit inchudes a microcomtroher and a bouch circuit coupled between said input touch terminal and said microcontroller.
7. Fhe switcking circuit as tefned in claim 6 and further including a plorabity of said ingut tonch terminals and a plurality of said touch circuits respectively associated with said ingut towch terminals.
8. The switching circuit as detined in claim 7. wherein said microcontroller selectively applies said periodic outwut signals received from said oscillator to cact of said tobch circuits to segarately activate each touch circuit.
9. A capacitive responsive electronic switching circuit comprisiag:
an oscillator providing a periodic wiput signal having a frequency of 50 kHz or greater;
an imput touch terminal defixing an area for an operator to provide an inpus by proximity and touch;
a detector circuit conpled to said oscillator for receiving sad periodic outpit sigas! from said oscillatot, and
coupled to said inout touch terminal, said detector circuit being responsive to signals from said oscillator ard the presence of an operator's body capacitance to ground coupled to said touch teminal when proximal or touched by an uperator to provide a control output signal: and
a froating common generator coupled to said oscillator for receiving said square wave output signal. said floating commong gencrator generating a floating common reference for said detector circuit that is ser at a bixed voltage below and tracks the square wave ontput signal.
10. The switching circuit as defined in claim S. wherein said detector circuit is powered by said square wave output signal provided by said oscillator and by said foating common referance provided by said foating common generator thereby increasing the sensitivity of said detector circuit to pronimity and touching of said touch teminal by an operator"s body.
18. The switchite circtit as defned in clam 8 \$9. wherein said detector circuit includes a microcontroller and a charge gump ciscuit compled between said inpur tonch terminal and said microcontroller. by an operator's body. wherein said charge pump circuit ibcludes at least one high speed dicode coupled betwees said oscillator and said touch terminal, for ontancing a senstivity at which sad charge pumy responds to sensed body capacitance at said touch terminal for higher frequencies.
12. A groximity and touch controled switctuag circuit comprising:
an oscillator groviding a square wave conput signal having a srequency of 50 kHz or greater:
a touch terminal having a dielectric cover defring an imput terminal for compling to an operator's mody capacitance to ground; and
a charge purap circuit coupled to said oscillator for receiving said squase wave output sigrab, and conpled to said towcht temminal, said charge purny cirebit haviog an output cemminal that supplies an output sigual having a voltage that varies when said rouch temuinal is groximal of touckes by an operator's body, the volage of said output signal varies as a function of the area of said touch terminal that is groximat or touched by an onesator.
wherein said charge pump circuit includes ar least one high speed diode couples between said oscillator and said rouch terminal. for enhancing a sensitivity at which said charge pump responds to sensed body carracitance to grobma at said touch terminal for higher freģuencies.
13. The proximity and touch controlled circuit as defined in claire 12 and further including a DC power supply for zapplying power to said oscillator and a groums.
14. The proximity and touch controlled circuit as defibed in claim 12. wherein said oscillator includes a square wave generator for genarating as square wave and a phasality of active elements coupled to an output of said square wave generator to buffer and imgrove the shape of the square wave output thexefrom.
15. The proximity and touch controlled circuit as defined in clame 12 , whereis said oscillator grovides a periodic output signal having a frequency of 800 kHz or greater.
16. A proximity and touch controled switching creait comprising:
33 oscillator providing a square wave output signal haviag a frequency of 50 kHz or greater;
a touch terminal defining an imput terminal for coupling to an operator's body capacitance to ground;
a charge pump circuib coupled to said oscillator for receiving saîd square wave oukpu signal and coupled to said touch teminal. said charge gump circuit haviag an output terminal tuat supphies an output signal having 3 voltage that varies when said touch terminal is proximat or souched by an operator's body: and
a floating common gemerator coupled to said oscillator for receiving said square wave output signal said foating common gemerator generabing a foating common reference for siad charge gump circuit that is set at a fixed voltage below and tracks said square wave oumput signal.
wherein said charge pump circuit inchodes at least one high speed diode coupled between said oscillator and saik tonch termibsal for erhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequemcies.
17. The proximity and touch controlled circuit as defined in claim 16. Whexcin said charge pump circuit is powered by said square wave ouput signal providud by suad oscillatos and by said floating common referebce provided by said floating common generation thereby increasing the sensitivity of sajd chasge pump circuit to groximity and touching of said touch terminal by an operator's bouly.
18. A capacitive responsive electronic swiching circuit comprisibs:
an oscillator groviding a periodic ourgut signal having a predefined frequency;
 on a dielectric substrate for an opeator to provide inputs by proximity and touch; and
a detentor circuit couphed to said oschintion for recenving said periodic ouphes signal from said oscillator, and coupled to said input touch terminals. sata detector circobit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground conpled said touch terminals when proximal or tonsched by an ogesator to grovide a conerol owerpat sigmas,
Wherein said predefined frequency of said oscillator is selcctex to decrease the ixmperbace of sim dielectric substrate relative to the ingedance of any contaminate that sway create an electrical on said dielectric substrate paxt between said adjacent areas, and wherein said detector circuit ompares the seased boby capacitance to ground proximate an input touch teminal to a trueshold leyen to prevent inatyertent generation of the control outyat signal.
19. The switching circait as dexined in clain 1 , wherein said osculdator provides a periobic outhut sigmal having a frequency of 800 k 3 z or greater.
2ab. A capacitive responsive electronic switching circisit comprisimg:
an oscillafor providing a periodic ontput signal having a predefined frequency;
a dome-shaped touch terminal defning an atea for ans operator to provide an impue by groximity and tonch. wherein the dome shape of the touch terminal is constucted to ergomonically fit the paim of a human hams; and
a detector circuit coupled to said oscillator for receiving samd periondic outwous signal frons sisid oscillator, and compled to said toxch terminal, said detector circuit being resporsive to signals from said oscillator and the presence of an operator's hody capaciance to growns
coupled to said tousch teminal when proximal or touched by an operator to provide a control outmat stynd. sade detector circuit zachudine remas for discriminating between a proximity and town of said dome-shaped touch terminal by the palm of a humank hand and a proximby and towch by a fomman fager.
21. A capacitive responsive electronic switching circuit comprising:
an oscibator providing a periokic outut signal having a predefined frequency;
a touch terminal defining an area for an operator to provide an inpat by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periode outpat signal from sadid asciluabor, and coupled to ssid touch terminal. said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an pacrator to provide a control outpat signal, saik detector circuit bucluding discriminating means for discriminating berween a proximity and touch of said kouch terminal covering substanailly ath of said area of said towch terminal and a proximity and touch covering less thean substantially all of said area of said touch terminal.
32. The switching circuit as detimed in claim 2k. wherann suid touch terminal includes a dome-shaped dielectic cover.
23. The switaning circuit as fefmed in claim 21, wherein said tonco terminah includes a palm-sizad dielecric cover
24. The switching circuit as defaed in claim 23 . wherem said discriminating means determines that a prokimity and twach of said touch terminal coyers substambiably all of said area of said touch terminal when said dichectric cover is proximal or touched with the palm of an onerator's hand and determines that a proximity or touch covers less than substantilly all of said area of sad touch terminal when saud delectric cover is proximal or touched with one of an operator's fangers.
25. The switching circuit as detned in clain 2\%, whercin said discriminating means discriminates between a gronimity and towch of said towh termanal covering substantially all of said area of said wouch ternbinal and a proximbity and touch covering less than substantably all of said area of said tonch berminal based upon a sensed level of body capacizance to ground groximate said fouch terminal.
26. The switching circuit as thefined in claim. 21, wherein said ooubling of capackatece to groumd occurs when an operatorst body is proximate, bus not towching, said touch termimal.
27. A capacitive respossive electronic switchung circugt for controlled davice comprising:
an oscillator providing a gerioulc onfput signal baving a predefined frequency;
first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
A detector circuit compled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and secom touch terminals, sisd detector cirouit beimg responive to signals from said oscillator and the presence of an operator's body capacitance an ground coupled to said grist and second toach terminals when proximat or touched by an operafor so provide a conscol onfpes signal for ackation of the controked device. said detector circuit being con-
ingured to generate said control output sigual when said an operator is proximal or touches said second touch terminal after the cqeator is proximal or kouches said firss touch terminal.
28. The capacitive responsive electronic switching circuit as defned in chaim 27 . wherein said detector circuit gener. ates said control signal only when an operator is proximal or touches said second touch terminal within a predetemined time zeriod after the operator is proximat or souches said first touch teminal.
29. The capacitive responsive electronic switching circuit as dehned in clam 27 , wherein said first and secobd touch terminals are adaypted to be mounted on different surfaces of the controlled device.

\section*{30}
30. The capacitive responsive electronic switching circuit as defimed in claim 7 ? wherein said frat and second touch terminals are adapted to be mounted on nom-parallel planar surfaces of the controlled device.
31. The capacitive responsive electronic swithong cirmuit as defined in clam 唯. wherein sat first and second touch eerminals are adapted to be monnted on perpendicular planar surfaces of the controlled device.
32. The capacithve recponsive electronio swith hing circuit 10 as defned in claim 27 and further including an indicator for indicaing when said detector circuil determines that an operator is proximal or kuches sad fart touch terminat.

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CEXTEFICATE OB CORRECITON}

PATEME NO. : \(5,796,183\)
DATED : August 18,1998
\{NVENTOR\{S\} : Byron Houmand
```

Page $\{$ of 3

```

II is certified that error appears in the aboveridentiod patent and that said Lettors Patent is hersoy corrected as shown below:

Column 5 , line 52 , "such a" should be --such as--.
Column 9 , line 3 , before "water" insert -condensed-.
Column 14, kine 35, "is" should be -as-.
Column 13 , line 65, "it's" should be -its--.
Column 18, fine 38, "reterences" should be --reference--
Column 20, ine 7, "it's" shoud be - its- (both occurrences).
Column 20, line 3, "it's" should be -its-.
Column 20, line 10, "it's" should be -its- (both occurrences).
Column 20, line 13 , "it's" should be - its--
Column 20, line 20, "it's" should be -its--
Column 20, line 39 , "it's" should be -its-".
Column 20 , kine 40 , "it's" should be its".
Column 20, line 46, "it's" should be -its--.
Column 20, fine 47, "it's" should be -its-".

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

\author{
PATENTNO. : 5,796,183 \\ Page 2 of 3 \\ DATED : August 18,1998 \\ WVEATOR(S) : Byron Mourmand
}

If is centifed that error appears in the above-identified patent and that said Letrers Patent is hereby corrected as showm bolow:

Column 21, ine 8, "it's" should be - its-
Column 21, line 9, "it's" should be -its-.
Column 21, line 15, "it's" should be -its-".
Column 21, line 42, "it's" should be -its--.
Column 27 , line 46 , "it's" should be -its ".
Column 21 , line 47, "it's" should be -its-".
Column 21, line 56, "it's" should be -its--
Column 22, line 8 , "it' \(\mathrm{s}^{\text {" }}\) should be \(\cdots\) its...
Column 22, line 13, "schmite" should be -Schmitt--.
Column 26, Ines 22-27, after "microcontrolier," delete "by an operator's body . . . higher frequencies."

\section*{UNITED STATES PATENT AND TRADEMARK OFFICE CLRTMGCATE OF CORRECTION}

\author{
PATENT NO. : \(5,796,183\) \\ Page 3 of 3 \\ DATED : August 18,1998 \\ mVENTOR(S) : Byron Houmand
}

It is certified that error appears in the above-identifed patent and that said Letters Patent is hereby corrected as show below:

Column 27, line 44, after "electrical" insert -path-..
Column 27, kine 45. delete "path".
Colum 29 , line 1 , after "when" delete "said".

\section*{Signed and Sealed this}

Eleventh Day of May, 1999

\section*{Attest:}

Q. TODD BLCKENOON

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION
}

\author{
PATENT NO. \(: 5,796,183\) \\ APPLICATION NO. :08/601268 \\ DATED : August 18,1998 \\ INVENTOR (S) : Byron Houmand et al.
}

It is certified that error appears in the aboverdentifed patent and that said Letters Patent is hereby corrected as shown below:

Title Page, Item (75) Inventor, should read - (75) Inventors: Byron Gourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US) - .

Signed and Sealed this
Eleventh Day of October, 2011


David J. Kappos
Director of the United States Patent and Trademark Office

\title{
(12) EX PARTE REEXAMEATION CERTEICATE (9614h) United States Patent \\ (10) Number: US 5,796, 183 Cl \\ Hourmand et al. \\ (45) Certificate Issued: Apr. 29,2013
}
 SWETCERNG CLREUT
(75) Inventors: Byrob Hommand, Hersey, MI (US): John Bh. Weashelswbi, Cadilac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US)
(73) Assignee: Nartron Corporation, Reed City, MI (US)

Reexamimation Request:
No. 901012,439, Aug. 17, 2012
Reexamination Certificate for:
\begin{tabular}{ll} 
Patent No.: & \(5,796,183\) \\
Issued: & Aug. 18,1998 \\
Appl. No.: & \(68 / 601,268\) \\
Eled: & Fan. 31,1996
\end{tabular}

Certificate of Correction issued May 11, 1999
Certificate of Correction issued Oct. 11, 2011
(51) Int. Cl.
\(\begin{array}{ll}\text { F103K } 17 / 96 & (2006.01) \\ \text { F103K } 7794 & (2006.01)\end{array}\)
(52) U.S.C1.

USPC ........... 307/116; 307/125; 307/139; 361/181
(58) Field of Classibcation Search

None
See application file for complete search history.

\section*{References Cited}

To view the complete listing of prior ant documents cited during the proceeding for Reexamination Contol Number 90012,439 , please refer to the USPTO's pubic Patent Application Information Retrieval (PAR) system under the Display References tab.
Frimary Examizer - Lin M. Nguyen
(57)

\section*{ABSTRACT}

A capacitive responsive electronic switching circuit comprises an oscillator providing a periodic output signal having a freguency of 50 kHz or greater, an thout towh terminal defning an area for an operator provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the imput touch teminal. The detectorcircuitbeing responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by moperator to provide a control output signal. Preferably, the oscillator provides a periodic output signal having a frequency of 800 kHz or greater. An array of touch terminals may be provided in close proximity due to the reduction in crosstalk that may result from contaminants by utilizing an oscillator outputting a signal having a frequency of 50 kHz or greater.


\section*{EXPARTE} REEXAMNNTION CERTEICATE ISSUED UNDER 35 U.S.C. 307

\section*{THE PATENT IS HEREBY AMENDED AS INDICATED BEIOW.}

Matter enclosed in heavy brackets \(\}\) appeared in the patent, hut has been deleted and is no longer a part of the patent; matter printed in italies indicates addibions made to the patent.

\section*{AS A RESULT OF REEXAMINATION, TT HAS BEEN DETERMINED THAT:}

Chime \(18,27,28\) and 32 are detemined to be patentable as amended.

New clains 33-39 are added and determined to be patentable.

Claims 1-17, 19-26 and 29-31 were not reexamined.
18. A capacitive responsive electonic swithhing circuit comprising.
an oscillator providing a periodic output signal having a predefned frequency;
a mionconowler uning the periodic output signal fom the oscillator, the microcontroller selectively providing signal output frequencies to a phirality of small sized input towh terminals of a keypad;
[a\} the plurality of small sized input touch terminals defining adjucent areas on a delectric substrate for an operaor to provide inputs by poximity and tounh; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said mput touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and the a presence of an operator's body capacitance to ground coupled to said tonch terminals when proximalor touched by [an] the operator to provide a control output signal,
wherein said predefned frequency of said oscillator 【is\} and said signal output frequencies are selected to decrease the a first impedance of said dielectric substrate relative to the a recond mpedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defmed by the pharality of small sized input touch terminals, and wherein said detector circuit compares [the] \(a\) sensed body capacitande change to ground proximate an juput touch teminal to a threshold level to prevent inadvertent generation of the control output signal.
27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a 55 predefined frequency;
a michoconoller univg the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input towoh terminals of a keypad the input touch terminals 60 comprising first and second input touch temminals;
the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving 65 said periodic output signal from said oscilator, and coupled to said first and second touch teminals, said said periodic output signal from said oscillator and conpled to said frrs and second towch terminats, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body cupacitance to grownd compled to said frost and second towch terminals when proximat or touched by the operator to provide a control outpui signal for achation of the comtrolled device, said deteetor cirait being configured to gemerate said comtol onifut sighal when the operator is proximal or touches sad second touch termind after the operutor is proximal or touches said first touch terminal.
38. The capacitive responsive electronic switching circuit as defined in daim 3?, wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator towches the second touch terminal.
39. The copacitive responsive electrovic swiching cirait 5 as defned in claim 37 ,
wherein said detector circuit compares a sensed body capacitonce change coused by the body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch ter- 10 minal to a threshold level to generate the control ont ant signal, and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator tonches the second touch terminal.

\section*{EXHIBIT B}



Addess: COMMHESTONER OF PATENTS AND TPADEMAAKS W"mhergexs, D.C. 20234


Piease find bolow and/or attached an Offce communication concoming this application or proceeding.

\(\square\) Responsive to conmunication(s) filed on \(\qquad\) .This action is Fival.Since this application is in condition for allowance except for fomal matters, prosecastion as to the merits is closed in accordance with the practice under Ex parte Quayle, \(1935 \mathrm{C} .0 .11 ; 453\) 0.6. 213 .
A shortened statutory period for response to this action is set to expire __ three month(s) or thirty days, whichever is longer, from the maling date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of 37 CFR 1.136131.

\section*{Disposition of Claims}

X Clam(s) 1.20 is/are pending in the application.
of the above, clam(s) \(\qquad\) is/are withdrawn from consideration.Claim(s) \(\qquad\) is/are allowed.
(8) Clam(s) 1-4, 6-14, and 16-20 is/are rejected.
(X) Claimis) 5 and 15 is/are objected to.Clams \(\qquad\) are subject to restriction or election requirement.
Application Papers
X See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing(s) fied on \(\qquad\) is/are objected to by the Examiner.The proposed drawing correction, filed on \(\qquad\) is Dapproved \(\square\) bisapproved.The specification s objected to by the Examiner.
(] The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. \(\$ 119\)
\(\square\) Acknowledgement is made of a daim for foreign priority under 35 U.S.C. \(5119(a)\) (d).
AllSome*None of the CERTIFEO copies of the priority documents have beenreceved.received in Application No. (Series Code/Serial Number) \(\qquad\) .received in this national stage application from the Intematonal Bureau (PCT Rule 17.2\{a). *Certified copies not received:
\(\square\) Acknowledgement is made of a dam for domestic priority under 35 U.S.C. 5 1191el.
Attachment(s)
\(X\) Notice of Reterences Cited, PTO. 892
X information Disclosure Statement(s), PTO.1449, Paper Nols]. 5 and 6
\(\square\) Interview Summary, PTO.413
X Notice of Draftsperson's Patent Orawing Review, PTO-948
G Notice of informal Patent Application, PTO-152

\section*{DETAKEB ACTUGN}

\section*{Clain Rejections - 35 USC \(\$ 112\)}
1. Claims 6,7, and 16 are rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claims 6 and 16 are vague and indenmite because it is unclear what is meant by "to increase the sensitivity of said charge pump circuit to touching of said touch terminal by an operator's body."

\section*{Clain Rejections - 35 USC \(\% 102\)}
2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the Gasis for the rejections under this section made in this Offce action:

A person shall be entiled to a patent unless -..
(b) the invention was patented or described in a grinted publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
3. Claims \(1-4\) and \(12-14\) are rejected under 35 U.S.C. \(102(b)\) as being anticipated by Kent. \((4,352,141)\)

Kent discloses a capacitive responsive switching comprising: an oscilator (N5, N6, R1, C1) having a frequency of 1 MHZ , an input touch terminal ( 3 ), a detector circuit (E) coupled to said oscillator and said touch input terminal, DC power supply (1), wherein said periodic input signal provided by said oscillator is a square wave see column 2, lines \(9-12\), and a plurality of

Art Unit: 2107
active elements coupled to an output of said oscillator to buffer and improve the shape of the square wave output therefrom (C3, C4, R2), and a charge pump (D1, N1, R4, and C6).

\section*{Claim Rejections - 35 USC § 103}
4. The following is a quotation of 35 U.S.C. 103 (a) which forms the basis for all obviousness rejections set forth in this Office action:

> (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this tite, if the diferences between the subject maters ought obe patented and the prior art are such that the subject matter as a whote would have ben obvious at the time the invention was ruade to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
5. Claims 8 -11,18, and 19 are rejected under 35 U.S.C. 103 (a) as being unpatentable over Kent in view of Ingraham ( \(5,087,825\) ).

Claims 8 and 9 add the limitations of a microcontroller. Kent does not disclose the detector circuit including a microcontroller. However, Ingraham discloses a detector circuit including a microcontroller. (80) It would have been obvious to one of ordinary skill in the art to replace the detector circuit of Kent with the detector circuit of Ingraham in order to provide a computerized control circuit that can control a plurality of different load requirements sent by a plurality of touch sensors.

Clams 10 and 11 add the limitations of a plurality of input touch terminals and a plurality of touch circuits. Kent only teaches one touch input terminal and one touch circuitry. However, Ingraham discloses a plurality of input touch terminals (18) with corresponding touch circuits. It would have been obvious to one of ordinary skill in the art at the time the invention was made to
utilize the teachings of Ingraham into Kent's device for the purpose of providing a plurality of ways in which the load may be controlled see column 2 , lines 36-40.

As to claims 18 and 19 , Kent discloses a capacitive responsive switching comprising: an oscillator (NS, N6, R1, Cl) having a frequency of 1 MHZ , an input touch terminal (3), and a detector circuit (E) coupled to said oscillator and said touch input terminal. Kent only teaches one touch input terminal and one touch circuitry. However, Ingraham discloses a plurality of input touch terminals (18) with corresponding touch circuits. It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of Ingraham into Kent's device for the purpose of providing a plurality of ways in which the load may be controlled see column 2, lines 36-40. Kent also does not disclose the details of the touch input comprising a dielectric substrate. However, Ingraham does disclose a touch sensor comprising a dielectric layer substrate (26). It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of yngraham into Kent's device as this is a well known way to activate a capacitor switch input.
6. Clams 8-11, 18, and 19 are rejected under 35 U.S.C. 103 (a) as being unpatentable over Kent in view of Kirton \((5,235,217)\).

Kent discloses a capacitive responsive switching comprising: an oscillator (N5, N6, R1, C1) having a frequency of 1 MHZ , an input touch teminal (3), and a detector circuit (E) coupled to said oscillator and said touch input terminal.

Kent does not disclose the shape of the touch teminal. However, Kirton discloses a touch terminal (14) which is domed shaped. It would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize the teachings of Kinton into Kent's device for the purpose of providing a touch sensor which is easy to operate.
7. Claims 5 and 15 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.
8. Clams 6, 7, and 16 would be allowable if rewritten to overcome the rejection(s) under 35
U.S.C. 112 set forth in this Office action and to include all of the limitations of the base claim and any intervening claims.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jonathan S. Kaplan whose telephone number is (703) 308-1216.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-1782.



\section*{NOTE OF DRAETSPERSONS PATENT DRAWING REVIEW}
 paten Examiners will review the drawings for compliance with the regulations. Direct telephone implies concerning this review to the Drawing Review Branch, 763-305-8404.


COMMENTS:




Sheet 1 of 2


\section*{}


FOKEIGN EATEME DOCUNEXXS


GTEER DOCWMENTS \{Inciuding Authox, Tithe, Date, Partinent Pages. ztc.\}
EXAMSRER,


N THE UNITED STATES PATENT AND TRADEMARK OFFICE
Ranchi
ATM
2107
Examiner : . J. Kaplan
Appin. No. : 08/60,268
Filing Date : January 31, 1996
Applicant : Byron Houmand
For : CAPACITYVE RESPONSIVE ELECTRONIC SWITCHING CIRCUIT
Assistant Commissioner for Patents
Washington, D.C. 20231
Dear Sir:

\footnotetext{
AMENDMENT
This is a response to the Office Action mailed April 22, 1997. The time for filing a response to the Office Action has been extended by the petition for a one-month extension of time and payment of the appropriate fee filed concurrently with this amendment. Applicant requests that the Examiner amend the above-captioned application as follows.

In the Drawings:
Subject to the approval of the Examiner, please amend Figs. \(1,3,4,5,11,12,13\), 14, and 18 as shown in red on the attached sheets of drawings.

In the Specification:
Please amend the specification as follows:
Page 1, line 9 , change "movement" to - movements-..
Page 2, line 17, after "is" insert -..(are)-.
* Page 12, line 1, change "ground" to --common--

Page 12, line 5, change "approved" to - listed.-
Page 12 , line 9 , change "ground" to - -floating common--
- Page 12, line 12, delete "true".
}
\begin{tabular}{lll} 
Applicank & \(:\) & Byron Houmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 2
\end{tabular}

Page 13, line 19, after "operator" insert --to--.
Page 14, line 2, after "capacitance" insert -to ground--
- Page 15, hine 2, change "ground" to --common--

Page 17, hne 9, change "an extemal" to - -a - .
Page 17, line 12, change " ZB " to \(-\mathrm{Z}_{\mathrm{s}} \sim\).
Page 18, line 11, change " \(Z W\) " to \(-Z_{W}\).
- Page 21, line 11, change "ans extemal" to \(--2-\).

Page 21, line 16, change "it's" to -its-.
Page 23, line 12, change "will" to --well-.
- Page 23, line 20, delete "preferably".
- Page 25, line 7, delete "relative to an external ground such as the earth".

Page 26, line 4, change "ground" to --common--
\(\checkmark\)
Page 26, line 6, change "ground" to --common--.
Page 26 , line 7 , change "ground" to - common--.
- Page 26, line 9, change "ground" to --common--.
- Page 26, The 10, change "ground" to --common-- (both occurrences).

Page 26, line 12, change "ground" to -.common-..
Page 26, The 14, after "capacitance" insert --to ground--
- Page 26, line 17, after "capacitance" insert --to ground-...
- Page 29, line 13, change "coupled" to --directly connected-..

Page 29, line 14, change "coupled" to -directly connected-..

\section*{Applicant : Byron Gourmand Appln. No. : 08/601,268 \\ Page : 3}

Page 29, line 14, delete "output of the".
Page 29, line 14, change "213" to -216 -.
Page 30 , line 8 , after "between" insert -near to--
Page 30 , line 15 , change "generate" to the floating common generator 300 such that
together they supply \(a-\) -
Page 30, line 16, change "and powers up" to -to power.".
Page 30 , line 16 , change "circuits" to --circuits) - .
Page 31 , line 4 , change "must" to --can--.
Page 31, line 6, delete "and preferably".
Page 31, line 17, delete "between the".
- Page 31, line 18, delete "collector of transistor 410 and floating ground line 301".

Page 32, line 11, after "includes" insert --resistor 412 and - .
Page 32, line 12, before "resistor" insert -to--.
- Page 32, line 16, change "Resistor 413 is used to limit the base current." to The

\begin{tabular}{lcl} 
Applicant & \(:\) & Byron Houmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 4
\end{tabular}

Page 40, line 11, change "pad 451" to - pad 450--.
VPage 41, line 9 , change "and an earth relative ground" to --with ground comection--.
Page 41, line 10, after "1103," delete "and".
Page 42, fine 9, change "to relative earth ground 1103 " to --via line 1103 to ground--.
Page 42, fine 17, change "power line" to --power common line-...
Page 42, hine 17, delete "relative".
Page 44, line 8 , change "a transistor" to - a bipolar \(P N E\) transistor- .
Page 44, line 8, change " 1420 " to \(-1420 a-\cdots\).
Page 44, line 9, change "power line" to - power common line-...
- Page 44, line 18, change "1424" to --1424a-".

Page 45 , line 2, change "power line" to --power common line-..
Page 45 , line 4 , change "negative" to --inverting input--.
Page 45, line 4, change "positive" to - non-inverting input--.
Page 45, line 11, change "power line" to --power common line--.
Page 45 , hine 12, after "base of" insent --bipolar PNP--.
Page 45, line 13, change "power line" to --power common hine-..
Page 46, hne 4, change "power hine" to --power common line--.
Page 46, line 5 , change "negative" to --inverting input-..
Page 46, line 6, change "positive" to - non-inverting input--
Page 46, line 7 , change "positive" to - non-inverting input--.
Page 46, line 8, change "power line" to --power common line-...

Applicant : Byron Houmand
Appln. No. : 08/601,268
Page : 5

Page 46 , line 10 , change " 1639 " to \(-1630-\).
Page 46, hine 11 , change "positive" to -non-inverting-.
Page 46, line 12, change "invertor gate" to --invertor NAND gate--.
Page 46 , line 14, change "invertor gate" to --invertor NAND gate-..
Page 46 , line 15, change "invertor gate" to -invertor NAND gate-- (both occurrences).

Page 46, line 15, change "power line" to -power common line--
Page 46, line 16, after "switching" insert --bipolar PNP....
Page 46 , line 17, change "power line" to --power common line-...
Page 47, line 15, change "(1628)" to --(invertor NAND gate 1628)-.
Page 47, line 17, change " \((1536)^{\prime \prime}\) " to \(-(1636)-\)
Page 47 , line 18, after "when" insert --the--.
Page 47, line 19, change "button" to --touch terminal--.
Page 48 , line 15 , after "one" insert -of the touch switch circuits--.
Page 48 , line 15 , after "redundant" insert --relay driver--.
Page 48, line 16, after "one" insert -of the driver circuits--.
Page 48 , the 20 , change "2201" to -2205 . Palm button \(2201 \sim\).
Page 49, line 1, delete "second" (first occurrence).
Page 50, line 6 , change "sid" to - side-
Page 51, line 4, after "smaller" insert --series--.
Page 51, line 6, after "body" insert --to ground-- (both occurrences).

Applicant : Byron Hourmand
Apply. No, ; 08/601,268
Page : 6
1
Page 51 , line 8 , after "capacitance" insert --to ground--. ,
Page 51, line 10, change "earth" to -ground- .
Page 53 , line 1, change "decrease and increase" to -adjust--
Page 53, line 2, delete "respectively".
Page 53, heine 5, after " 200 " insert --(Fig. 6)- (first occurrence).
Page 53, line 10 , change "pulls" to --sources-.

\section*{In the Abstract:}

Please amend the abstract as follows:
Line 6, before "touch" insert --proximity and....
Line 9, after "capacitance" insert -to ground-.
Line 9, after "when" insert -in proximity or-".

\section*{In the Claims:}

Please amend claims 1,3,5,6,12-18, and 20, and add new claims 21-32 as follows:
1. Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal having a dielectric cover defining an area for an operator to provide an input by proximity and touch, an operator's body capacitance to ground as sensed through said input touch terminal varying as a function of the area of said input touch terminal that is proximate the operator's body; and

a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, wherein said detector circuit includes means for generating said control signal when the sensed body capacitance to ground exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent proximity and touch with said input touch terminal.

Claim 3, line 2, delete "reference to an external".
9. (Amended) A capacitive responsive electronic [The] switching circuit [as defined in claim I and further including comprising:
an oscillator providing a periodic output signal having a frequency of 50 kHz or greater;
an input touch terminal defining an area for an operator to provide an input by proximity and touch:
a detector circuit coupled to said oscillator for receiving said periodic output signal From said oscillator, and coupled to said input touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance
```

Applicant : Byron Hourmand
Appin. No. : 08/601,268
Page : 8

```
to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal; and
a floating [ground] common generator coupled to said oscillator for receiving said square wave output signal, said floating [ground] common generator generating a hating [ground] common reference for said detector cheuit that is set at a fixed voltage below and tracks the square wave output signal.
10. (Amended) The switching circuit as defined in claim -5, wherein said detector circuit is powered by said square wave output signal provided by said oscillator and by said floating [ground] common reference provided by said floating [ground] common generator [to increase thereby increasing the sensitivity of said detector circuit to proximity and touching of said touch terminal by an operator's body.
12. (Amended) A proximity and touch controlled switching circuit comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or greater;
a touch terminal having a dielectric cover defining an input terminal for coupling to an operator's body capacitance to ground; and
a charge pump circuit coupled to said oscillator for receiving said square wave output signal, and coupled to said touch terminal, said charge pump circuit having an output terminal that supplies an output signal having a voltage that varies when said touch dermal
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Hoummand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 9
\end{tabular}
is proximal or touched by an operator's body, the voltage of said output signal varies as a function of the area of said touch terminal that is proximal or touched by an operator, wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitwity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
13. (Amended) The [touch control] proximity and touch controlled circuit as defined in claim 12 and further including a DC power supply for supplying power to said oscillator and a [reference to an external] ground.

Claim 14, line 1, change "touch control" to --proximity and touch controlled-.
16.
(Amended) A proximity and [The] touch [control] controlled switching circuit [as defined in claim 12 and further including) comprising:
an oscillator providing a square wave output signal having a frequency of 50 kHz or

\section*{1 greater:}
a touch terminal defining an input terminal for coupling to an operator's body capacitance to ground:
a charge pump circuit coupled to said oscillator for receiving said square wave output signal and coupled to said touch terminal, said charge pump circuit having an output
\begin{tabular}{lcl} 
Applicant & \(:\) & Byron Houmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 10
\end{tabular}
terminal that supplies an output signal having a voltage that varies when said touch terminal is proximal or touched by an operator's body: and
a floating [ground] common generator coupled to said oscillator for receiving said square wave output signal, said floating [ground] common generator generating a foating [ground common reference for said charge pump circuit that is set at a fixed voltage below and tracks said square wave ouput signal.
wherein said charge pump circuit includes at least one high speed diode coupled between said oscillator and said touch terminal, for enhancing a sensitivity at which said charge pump responds to sensed body capacitance to ground at said touch terminal for higher frequencies.
\(7 \%\)
tre. (Amended) The proximity and touch [controll controlled circuit as defined in claim wherein said charge pump circuit is powered by said square wave output signal provided by said oscillator and by said floating [ground] common reference provided by said floating [ground] common generator [to increase] thereby increasing the sensitivity of said charge pump circuit to proximity and touching of said touch terminal by an operator's body.

Clam 17, line 1, change "touch control" to -proximity and touch controhed--

```

Applicant : Byron Mourmand
Appln. No. : 08/601,268
Page
11

```
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and

a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
20. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a dome-shaped touch terminal defining an area for an operator to provide an input by proximity and touch, wherein the dome shape of the touch terminal is constructed to ergonomically fit the palm of a human hand; and
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Houmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 12
\end{tabular}
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said [input] touch terminal [terminals], said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch [terminals] terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including means for discriminating between a proximity and touch of sad dome-shaped touch terminal by the palm of a human hand and a proximity and touch by a human finger.
21. (New) A capacitive responsive electronic switching circuit comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a touch terminal defining an area for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said touch terminal, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said touch terminal when proximal or touched by an operator to provide a control output signal, said detector circuit including discriminating means for discriminating between a proximity and touch of said touch terminal covering substantially all of said area of said touch terminal and a proximity and touch covering less than substantially all of said area of said touch terminal.
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Gourmand \\
Apple. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 13
\end{tabular}
22. (New) The switching circuit as defined in claim 21 , wherein said touch terminal includes a dome-shaped dielectric cover.
23. (New) The switching circuit as defined in clam 21 , wherein said touch kerman includes a nalm-sized dielectric cover.
24. (New) The switching circuit as defined in clam 23 , wherein said discriminating means determines that a proximity and touch of said tach terminal covers substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with the pam of an operator's hand and determines that a proximity or touch covers less than substantially all of said area of said touch terminal when said dielectric cover is proximal or touched with one of an operator's fingers.
25. New) The switching circuit as defined in clam 21, wherein said discriminating means discriminates between a proximity and touch of said touch terminal covering substantially all of said area of said touch hemal and a proximity and touch covering less than substantially all of said area of said touch hemal based upon a sensed kevel of body capacitance to ground proximate said touch terminal.


Applicant : Byron Houmand
Apple. No. : 08/601,268
Page : 14
26. (New) The switching circuit as defined in claim 21, wherein said coupling of capacitance to ground occurs when an operator's body is proximate, but not touching, said touch terminal.
27. (New) A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency; first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device, said detector circuit being configured to generate said control output signal when said an operator is proximal or touches said second touch terminal after the operator is proximal or touches said firs tow ch terminal.
28. (New) The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when an operator is proximal

\section*{Appicant : Byron Houmand Appln. No. : 08/601,268 Page : 5}
or touches said second touch terminal within a predetemined time period after the operator is proximal or touches said Grst touch terminal.
29. (New) The capacitive responsive electronic swithing circuit as defined in clam 27 , wherein sad first and second towh teminals are adapted to be mounted on different surfaces of the controlled device.
30. (New) The capacitive responsive electronic switching circuit as defned in claim 27 , wherein said firs and second touch terminals are adapted to be mounted on non-parallel planar surfaces of the controlled device.
31. (New) The capacitive responsive electronic swithing circuit as defined in claim 27 , Wherein said first and second touch terminals are adapted to be mounted on perpendicular planar surfaces of the controlled device.
32. (New) The capacitive responsive electronic switching circuit as defined in clam 27 and furher inchuding an indicator for indicating when sad detector circuit determines that an operator is proximal or touches sadd first touch temminal.

Applicant : Byron Hoummand
Appln. No. : 08/601,268
Page : 16

\section*{REMARKS}

In the Office Action, the Examiner indicated that claims 5 and 15 would be allowed if rewritten in independent form including all the limitations of the base claim and any intervening claims, and that claims 6,7 , and 16 would also be allowed if rewritten to overcome the rejection under 35 U.S.C. §112. Applicant wishes to thank the Examiner for the early indication of allowable subject matter. By this amendment, Applicant has amended claims 5 and 15 by rewriting them in independent form and by amending clams 6 and 16 to overcome the rejection under 35 U.S.C. §112. Therefore, claims 5-7, 15, and 16 are in condition for allowance.

In the Office Action, the Examiner rejected claims 6, 7, and 16 under 35 U.S.C. §112, second paragraph; rejected claims 1-4 and 12-14 under 35 U.S.C. §102(b) as being anticipated by U.S. Patent No. \(4,352,141\) issued to Kent; rejected claims \(8-11,18\), and 19 under 35 U.S.C. \(\$ 103\) as being unpatentable over Kent in view of U.S. Patent No. \(5,087,825\) issued to Ingraham; and rejected claims \(8-11,18\), and 19 under 35 U.S.C. \(\$ 103\) as being umpatentable over Kent in view of U.S. Patent No. 5,235,217 issued to Kirton.

By this amendment, Applicant has amended clams 1, 5, 6, 12-18, and 20 to more clearly define the present invention, and has added new chams 2 2-32 to defme additional Seatures of the present invention. Accordingly, clams 1-32 are now pending.

With respect to the rejection of claims 6,7 , and 16 under 35 U.S.C. \(\$ 112\), second paragraph, Applicant has amended claims 6 and 16 to more clearly recke the present
\begin{tabular}{lll} 
Applicant & \(:\) & Byron Houmand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 17
\end{tabular}
invention. Applicant submits that amended claims 6,7 , and 16 meet the requirements of 35 U.S.C. §112, second paragraph.

Applicant respectfully traverses the rejection of claims 1-4 and 12-14 under 35 U.S.C. \(8102(b)\) as being anticipated by Kent. As pointed out on page 51 of the present specification, the present invention provides a mechanism by which the torch control circuit cans discriminte between an intentional touching of the tonch teminal and an inadventent contact by the operator. Specifically, when the touch terminal is palm-sized and includes a dielectric cover, users may intentionally touch the touch terminal by placing their palm over the entire surface of the touch terminal. When the operator touches the touch terminal in this manner, the touch control circuit of the present invention generates a control signal. On the other hand, if the operator inadvertently touches the touch terminal with one or two fingers, the touch control circuit of the present invention senses a lower body capacitance in the proximity of the touch terminal and thereby determines that the touch was unintentional and thus does not generate the control signal.

As amended, independent claim 1 recites a capacitive response electronic switching circuit comprising a combination of elements including at least "an input touch terminal having a dielectric cover deffing an area for an operator to provide an input by touch, an operator's body capaciance as sensed through said input touch terminal varying as a function of the area of said input touch teminal that is proximate the operator's body," and a detector circuit that "includes means for generating said control signal when the sensed body
\begin{tabular}{lll} 
Appicant & \(:\) & Byron Yourmand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 18
\end{tabular}
capacitance exceeds a threshold level in order to prevent unintended activation based upon an operator's inadvertent contact with said imput touch terminal."

The Kent patent discloses a touch switch device that also generates the control signal in response to the touching of a touch teminal. The Kent patent, however, fails to teach or suggest a capacitive responsive electronic switching circuit having a detector circuit that includes means for generating a control signas when the sensed body capacitance exceeds a threshold level in order to preven bnintended activation based upon an operator's inadvertent contact with the input touch temminal. Thus, the Kent patent does not anticipate nor render obvious the invention as defined in independent claim 1. Clearly, the Kent gatent does not disclose any way of discriminating between a partial touch and a full touch of the touch terminal.

With respect to independent claim 12 , the Kent patent falls to teach or suggest a touch-controlled switching circuit comprising a charge pump circuit that supplies an output signal having a voltage that varies as a function of the area of the touch terminal that is touched by an operator. Therefore, the Kent patent fails to teach or suggest each and every element recited in independent clam 12.

For these reasons, independent clams 1 and 12 , as well as clams \(2-4,13\), and 14 which depend therefrom, are allowable over the Kent patent.

Applicant respectully traverses the rejection of clams \(8-11,18\), and 19 under 35 U.S.C. \(\$ 103\) as being unpatentable over Kent in view of Ingrahm. Like the Kent patent, the Engraham patent, which is assigned to the assignes of the present invention, fails to teach
\begin{tabular}{lll} 
Appicant & \(:\) & Byron Moumand \\
Appin. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 19
\end{tabular}
or suggest a touch control circuit that discriminates between a full intentional contact with a touch terminal and an madvertent partial contact of the same touch terminal. Therefore, the combination of the Kent and Ingraham patents fails to teach or suggest each and every element recited in independent clam 1 . For this reason chams \(8-11\), which depend from independent clam 1, are allowable over the combination of the Kent and Ingraham patents.

With respect to independem clam 18 , the Kent and gngraham patents both fail to teach or suggest a capacithe responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch terminal to a threshold level in order to preven inadverten generation of a control output signal. For these reasons, Applicant submits that independent claims 1 and 18 , as well as clams 8 - is and 19 which depend therefrom, are allowable over the Kent and Ingraham patents whether considered separately or in combination.

Applicant respectfully traverses the rejection of clams 8-11, 18, and 19 under 35 U.S.C. \(\S 103\) as being unpatentable over Kent in view of Kirton. The Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminatng between a full intentonal touch of a touch terminas and an inadvertent touch of a portion of the surtace of the bouch teminal. For these reasons, independent clams i and 18, as well as clams 8-11 and 19 which depend therefrom, are allowable over the teachings of the Kent and Kirton patents whether considered segarately or in combination.

It is noted that the Examiner has not rejected clams 17 and 20 in the Office Action. Clam 17 depends from independen clam 12 and is believed to be allowable for the reasons
\begin{tabular}{lll} 
Applicant & \(:\) & \(\quad\) Byron Hoummand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 20
\end{tabular}
discussed above with respect to claim 12. Independent claim 20 recites a dome-shaped touch terminal. By this amendment, Applicant has amended independent claim 20 to recite that the detector circuit includes means for discriminating between a touch of the dome-shaped touch terminal by the pam of a human hand and a touch by a human finger. For the reasons stated above with respect to independent clams 1, 12, and 18, Applicant submits that independent clam 20 is allowable over the combined teachings of the Kent, Ingraham, and Kirton patents.

In this amendmen, Applicant has presented now independent claim 21, and claims 22 26 which depend therefrom. New independent claim 21 defines a capacitive responsive electronic switching circuit comprising at least a detector circuit "including discriminating means for discriminating between the touch of said touch terminal covering substantially all of said area of said touch terminal and a touch covering less than substantially all of said area of said touch terminal. For the reasons discussed above with respect to the other independent claims, Applicants submit that neither the Kent, Ingraham, nor Kirton patents teach or suggest the touch control circuit including a detector circuit having such discriminating means. Therefore, new independent claim 21 as well as claims \(22-26\) are allowable over the references cited of record.

New independent claim 27 recites a swithing circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch
```

Applicant : Byron Hoummand
Apphn. No. : 08/601,268
Page : 21

```
terminal. Dependent claim 28 recites that the detector circuit generates the control signal only when the second touch terminal is actuated within a predetermined time period after the actuation of the first touch temminal. Applicant submits that none of the cited references teaches or suggests such features. New claims \(29-32\) depend from new independent claim 27 and are believed to be allowable for the same reasons stated above with respect to independent claim 27 .

In view of the foregoing amendments and remarks, Applicant submits that the present invention as defined in the pending claims, is allowable over the prior art of record. The Examiner's reconsideration and timely allowance of the claims are requested. A Notice of Allowance is therefore respectfully solicited.


TSC/ras




FIG. 8



100
FIG.



Page 421 of 1714



Page 423 of 1714


Page 424 of 1714


FIG. 17


Page 425 of 1714


Enclosed is a response to the Office Action dated April 22, 1997. Also enclosed are nine sheets of corrected drawings. The items checked below are appropriate:
\(x\) Applicant hereby petition for a one-month extension of time to respond to the above Office Action. The fee of \(\$ 55.00\) for the Extension is enclosed.

Any fee for additional claims has been calculated as shown below:

\section*{CLAMS AS AMENDED}


Applicant : Byron Hourmand
Appln. No. : 08/601,268
Page : 2
* If the entry in Col. 1 is less than the entry in Col. 2, write " 0 " in Col. 3
** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 20, write " 20 " in this space.
*** If the "Highest No. Previously Paid For" IN THIS SPACE is less than 3, write "3" in this space.
The "Highest No. Previously Paid For" (Total or Independent) is the highest number found from the equivalent box in Col. 1 of a prior amendment or the number of clams originally filed.
\(x\). Small entity status of this application under 37 C.F.R. \(\$ 81.9\) and 1.27 has been established by a verified statement previously submitted.
- No additional fee is required.
x A fee of \(\$ 292.00\) to cover the cost of the additional clams added by this response is enclosed.
\(x\) Please charge any additional fees or credit overpayment to Deposit Account 162463. A duplicate copy of this sheet is attached.

\section*{PRICE, GENEVELD, COOPER, DEWITT \& LITTON}


Date


695 Kenmoor, S.E.
Post Office Box 2567
Grand Rapids, Michigan 49501
(616) 949-9610

TSC/ras

SHTEE STATKS DEFARTMENT OF COHAMERCE Pasent and Trademark Office

Address: Box ISSUE FEE
ASSISTANT COMMISSIONEA FOR PATENTS
Washington, D.C. 20233

\section*{NOTCE OF ALLOWANCE AND ISSUE FEE DUE}

21mb/627
```

PRILE MENEVELS GOOPER
DENTTT \& LITTMN
6%5 KENMOOK GRTVE SE
FO gTx 25s?
GRANE RAFTES MT 40SOL

```

\begin{tabular}{|c|c|c|c|c|c|}
\hline APPLICATIONAO. & Fhinc date & total clams & EXAAMER AND GROUP ART UNIY & & DATE SAALEO \\
\hline 08/64, 26e & 01/31/96 & 132 & GAFLAN: 3 & 2107 & 10/27/97 \\
\hline Firs named
Applican & \multicolumn{3}{|c|}{BYFON} & & \\
\hline
\end{tabular}

INVENTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ATTYS DOCKET NO. & Class-subctass & batchno. & App & Yes & SMA & miry & Fae due & Dare due \\
\hline 2 NABO & 310307 & 307-116.000 & 751 & \multicolumn{2}{|l|}{UTILTTY} & YES & \% \(6 \in 0.00\) & 01/27 \\
\hline
\end{tabular}

\section*{ PROSECUTTON ON THE MERTYS IS CLOSED.}

\section*{} APPLCATHON SHALL ZE REGAFDED AS ABANDONED. THIS STATUTORY PERIOD GANNOT BE EXTENDED.

\section*{HOW TO RESPOND TO THIS NOTHE:}
1. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as YES, verfly your current SMALL ENTTTY status:
A. If the status is changed, pay wice the amount of the FEE DUE shown above and notify the Patent and Trademark Offee of the change in status, or
B. If the status is the same, pay the FEE DUE shown above.

H the SMALL ENTTTY is shown as NO:
A. Pay FEE DUE shown above, or
8. File verfied statement of Small Entity Status before, or with, payment of \(1 / 2\) the reme Due shown abova.
II. Pant B of this notice should be completed and retumed to the Patent and Trademark Office (PTO) with your (SSUE FEE. Even if the \(S \$ 5\) UE FEE has already been paid by charge to deposit account, Part 8 shout be completed and retumed. If you are charging the SSSUE FEE to your deposit account, section " 6 " of Part \(B\) should be completed.

In. Ath communications regarding this application must give application number and bateh number.
Please direct all communication prior to issuance to Box ISSUE FEE unless advised to the contrary.

\section*{आMPQ⿴囗ANT Rस maintenance ices. It is putentee's responsibility to ensure bimely payment of maintenance fexs when dre.}


07/31/97
Sheet 1 of 3


\section*{サ. B. garenx bocthenme}


FOREIGN MAMENT DOCUBENXS


OTHER DOCOMENYS (Including Author, Title, Date, Fertinent Eages, Etc.)
EXAMINER
EXAMSNER

Page 430 of 1714


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

Asst. Commissioner for Patents Box Issue Fee
Washington, D.C. 20231
\[
\begin{aligned}
& 6-19-98 \\
& 7530 \text { Pub. Div } \\
& \text { BN }=5.1996 .183
\end{aligned}
\]
\(4 \operatorname{la}^{\text {knar Sir: }}\)
Pursuant to 37 C.F.R. \(\$ 1.312\) and subject to the recommendation of the Examiner and the approval of the Commissioner, and without withdrawing the case from issue, kindly amend the subject application as follows.

\section*{In the Clams:}

Clam 27, line 11, after "when" delete "said".

\section*{REMARKS}

The above-identified application was allowed in the Office Action mailed October 27 ,
1997. The issue fee has not been paid. Subsequent to the receipt of the Notice of
\begin{tabular}{lll}
\multicolumn{2}{c}{..2 } & \\
Appilicant & \(:\) & \(\quad\) Byron Kournand \\
Appln. No. & \(:\) & \(08 / 601,268\) \\
Page & \(:\) & 2
\end{tabular}

Allowance, Applicant noted a typographical error in claim 27. The requested amendment is submitted to correct this error. The requested amendment is fully supported by the specification and drawings, will not require an additional search, and does not raise new issues. Therefore, Applicant respectully requests that this amendment be entered and the requested change made.

The reference for the application within the issue branch as indicated on the Notice of Allowance, is T51. If there are any fees due in connection with the filing of this amendment, please charge the fees to our deposit accoumt No. 162463 .

Respecturly submitted,

\section*{BYRON HOURMAND}

By: Price, Heneveld, Cooper, DeWitz \& Liton


Date


TSC/ras
-ART g-MGUEREE TRAKSMITAL

 ingluding the is iswa Fee Receipt, the Patent, sdvance orders and notification of maintenance fees will be mailed to addresses antered in Block 1 unless you direct otherwise. by: (a) speciting a new carrespondence andress in Block 3 below; or (byproviding the PTO with a separaie "FEE ADOPESS" for maintenance fea notificasions with fhe payment


\$urkeng four Statement: This torm is eskmated to take 0.2 hours to complete. Time win vary
 complete this form shoutd be sent to the Chief hntormation Othicer, Patent and Trademam Office. Washingion, D.6. 20238.
WO SOT SEND FEES OA COMPEETEO FORRS TO THIS ADDRESS. SEND TO: \&OX \&SUE FPe, Assistant Commissioner for Patents, Washingion D.S. 2023\%


GYUE OF
MVEMON GAPACITTVE RESFTSIVE ELEOTRONTC SNTTGHME ETROUTT


please find below and/or attached an Offee communication concerning this application or proceeding.

Commilx ianes of paxents mxa Trudemark


All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSEO in this application. If not included herewith (or previously maled), a Notice of Allowance and issue Fee Due or other appropriate communication will be maned in due course.

X This communication is responsive to the letter mailed 2/3/98
(X The allowed clamis) is/are \(1-32\)
\(\square\) The drawings fied on \(\qquad\) are acceptable.

Acknowledgement is made of a claim for foreign priority under 35 U.S.C. \(\$ 119(a)\) (d).
\(\square \mathrm{All}\)Some*None of the CEPTFIES copies of the prionty documents have beenreceived.received in Application No. \{Series Cade/Senal Numben) \(\qquad\) .
\(\square\) received in this national stage application from the international Bureau (PCT Rule 17.2(a)).
*Certified copies not received: \(\qquad\) .
Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § \(119(e)\).
A SHORTENED STATUTORY PERIOD FOR RESPONSE to COMDly with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAlEED" of this Office action. Fallure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR \(1.1361 a\).

Note the attached EXAMMNER'S AMENDMENT O NOTICE OF \{NFORMAL APPLICATION, PTO-352, which discloses that the oath or deciaration is deficient. A SUBSTTUTE OATH OR DECLARATION IS REQUREE.
\(\square\) Applicant MUST sumit NEW FOPMAL ORAWINGSbecause the originally filed drawings were declared by applicant to be intormal.
\(\square\) including changes required by the Notice of Orattsperson's Patent Orawing Review, PTO-948, attached hereto or to Paper No. \(\qquad\) -.
\(\square\) including changes required by the proposed drawing correction fited on \(\qquad\) - which has been approved by the sxaminer.including changes required by the attached Examiner's Amendment/Comment.
fdentifying indicia such as the appheation number \{see 37 CFE \(1.8 x 4 c\}\) \} should be writter on the reverse side of the drawings. The drawings should be filed as a separate paper with a transmittal letter addressed to the Officiak braftspersor.Note the attached Examiner's comment regarding REOUREMENT ROR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should inelude, in the upper right hand corner, the APPLICATION NUMEER (SERIES CODEISERIAL NUMBEPI, If applicant has received a Notice of Allowance and lssue Fee Due, the ISSUE BATCH NUMBER and DATE Of the NOTGE OF ALLOWANCE shoud also be included.

\section*{Atcachmentis)}Notice of References Cted, pro-892
[ 8 Information Disclosure Statement(s), PTO-1449, Paper No(s). \(\qquad\) 5
\(\square\) Notice of Wrattsperson's Patent Drawing Peview, PTO-g48Notice of Informal Patent Application, PTO-152Interview Summary, PTO-413Examiner's Amendment/CommentExaminer's Comment Gegarding Requirement tor Deposit of Biological Material UPETVCORYPATETTEXAKMEFAExaminer's Statement of Peasons for Allowance



\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
Patentee \(: \quad\) Byron Gourmand
Paten No, \(: \quad 5,796,183\)
Issue Date \(:\)
Assistant Commissioner for Patents
Washington, D.C. 20231

Dear Sir:
A request is being made for a Certificate of Correction in the above-identified patent, which issued with the following errors identified by page and line from the application file.
* Page 11, line 9, "such a" should be --such as--.

Page 19, line 4, before "water" insert --condensed--
* Page 31, line 5, "is" should be -as--.
* Page 30, line 3, "it's" should be -its--
* Page 40, line 3, "references" should be --reference--.
* Page 43, line 8, "it's" should be -its--.
* Page 43, line 9, "it's" should be -its-".

* Page 43, line 10, "it's" should be -its-- (all occurrences).
* Page 43, line 12, "it's" should be --its--
* Page 43, line 17, "it's" should be -its--
* Page 44, line 8, "it's" should be --its--
* Page 44, line 9, "it's" should be -its--.
* Page 44, line 13, "it's" should be --its-- (both occurrences).
* Page 45, line 10, "it's" should be --its-..
\begin{tabular}{lll} 
Patentee & \(:\) & Byron Hourmand \\
Patent No. & \(:\) & \(5,796,183\) \\
Page & \(:\) & 2
\end{tabular}
* Page 45, line 11, "it's" should be --its--.
* Page 45, line 14, "it's" should be -its--.
* Page 46, line 11, "it's" should be -its--.
* Page 46, line 14, "it's" should be --its-- (both occurrences).
* Page 46, line 19, "it's" should be --its--.
* Page 47, line 11, "it's" should be -..its-...
* Page 47, line 15, "schmitt" should be --Schmitt--

Page 55, claim 7 [11], line 3, after "microcontroller." delete "by an operator's body . . . higher frequencies."
* Amendment A, page 11, claim 18, line 12, after "electrical" insert --path--
* Amendment A, page 11, claim 18, line 12, delete "path".

312 Amendment, page 1, clam 27, line 11, after "when" delete "said".

Enclosed is the Certificate of Correction Form PTO 1050 identifying errors by column and line from the patent which are chargeable to the Official Printer. Aso enclosed is a check for \(\$ 100.00\) to cover our errors, which are identified with an asterisk. The Commissioner is hereby authorized to charge any additional payment, or to credit any overpayment, to Deposit Account No. 16-2463.

Respectully submitted,

\section*{BYRON HOURMAND}

By: Price, Heneveld, Cooper,


TSC/ras


695 Kemmoor, S.E./Post Office Box 2567
Grand Rapids, Michigan 49501
(616) 949-9610


Terry S. Callaghan Price, Heneveld, Cooper, DeWitt \& Litton Post Office Box 2567
Grand Rapids, M 49501



Terry S. Callaghan
Price, Heneveld, Cooper, DeWitt \& itton
Post Office Box 2567
Grand Rapids, M 4950 ?


\section*{KROOKS KUSHMANP.C. \\ 1600 TOWN CENTER \\ TWENTY-SECOND ELOOR \\ SOUTHETELD, ME \(480 \% 5\)}

MAILED
AUS 252011
OFICE OF PETTIONS
In re Patent No. 5,796,183:
Issue Date: August 18,1998 :
Application No. 08/601,268
Filed: Jxnary 31, 1996
Attomey Docket No.

ON PETITION
:

This is a decision on the petition filed Augusy 19,2011 under 37 CFR 1.323 , which is being treated as a request under 37 CFR 1.324 to correct the name of the inventors by way of a Cetificate of Correction.

The petition is GRANTED.
Petitioner request that the inventorship of thes application be anended by the addion of \(\bar{J}\) M. WASHELESKE of Cadillac, Michigan, and STEPEEN R. W, COOPGR, of Fowlerville, Michigan, based on the Consent Judgment dated September 82010 under 35 USC 256.
Petitioner includes with the renewed petition an Oath having the above inventors.

The inventorship of this patent has been amended by the addition of \(3 O H N \mathrm{M}\). WASHELESKI amd STEPHEN K. W.COOPER

Telephone inquiries conceming this decision may be divected to the undersigned at ( 571 ) 272 0602. Inquiries regarding the issuance of a centificate of correction should be directed to the Certifacate of Correction Branch at (571) 272-4200.


Thuman K. Page
Petitions Examiner
Office of Petitions

Enclosure: Corrected filing receipt


Unmed States Patent and Trademark Omice
WMEKD STATES DEPAKTMEMTOF COMAKERCE
Uniked States Eptent and Trademark Offiee Adfess COMRMESKOAER FOR PATENES

Alexandirir, Vagatia 22313-1350
Alexandix, vagi
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ABLICATHOH NUMBER & \[
\begin{aligned}
& \text { FLLNGOr } \\
& \text { SHC)DATE }
\end{aligned}
\] & \begin{tabular}{c}
\(\mathrm{GRP} \operatorname{ARI}\) \\
UNIT \\
\hline
\end{tabular} & FLL FEERECO & ATYY UOCKET \%O & TOTCLAMS & WDPCLAMS \\
\hline 08/601,268 & 01/31/1996 & 2836 & 771 & NAR0227L & 20 & 4 \\
\hline
\end{tabular}

CONF母MMATON NO. 3ह7\%
22045
BROOKS KUSHMAN P.C.
1000 TOWN CENTER
TWENTY-SECOND FLOOR
SOUTHFHELD, M\} 48075
Date Mailed: 08/25/2011

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be noified as to the results of the examination. Any correspondence conceming the application must include the following identification information: the U.S. APPLICATION NUMEER, FILING DATE, NAME OF APPLICANT, and TTLE OF INVENTION. Fees fransmited by check or draft are subiect to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this fining Recaipt, pleass submit a written request for a Filing Receipt Correction. Please provide a copy of this filing Receipt with the changes noted thereon. \&f you received s "Notice to Fila Miscing Farss for this appleation, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USpHO will generate another Fibing Receipt incorporating the requested carections

\section*{Applicantss}

GYRON HOURMAND, HERSEY, MI;
JOHN M. WASHE EESKI, Cadillac, M;
STEPHENR. W. COOPER, Fowlerville, M;
powar of Atomey: The patent practitioners associated with Customer Number 22045
Domestic Priority data as claimed by applicant
Foraign Applications You may be elighle to benefif from the Fatent prosecution Highway program at the USPTO. Please see htto//wmw. uspto gov for more information.)

\section*{G Recuired, Foreign Fibng bicense Granted; 07/24/1996}

The country code and number of your priority application, to be used for fling abroad under the Paris Convention, is U5 (8) 601.298

Projected Publication Date: None, application is not eligibe for pre-grant pubication
Non publication Request: No
Earsy Publication Requast: No
* SMALE ENTITY **

\section*{Tite}

CAPACITVE RESPONSWE ELECTRONC SWITCHNG CIRCUIT

\section*{Preliminary Class}

307

\section*{PROTECTING YOUR INVENTION OUTSIDE THE UNTTED STATES}

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effeck in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an intemational application under the Patent Cooperation Treaty (PCT). An imemationat (PCT) application generaly has the same effeck as a regular national patent application in each PCT-member country. The PCT process simplifies the fing of patent applications on the same invention in member countries, but does not resulf in a grant of "an intemational patent" and does not eliminate the need of applicants to flle additional documens and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its partioutar laws. Since the laws of many countries differ in varous respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are nok lost prematurely.

Appicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license betore applicams can apply for a patent in a foreign country. The hing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicants license for foreign fing.

Applicants may wish to consuth the USPTO booklet, "General intormation Conceming Patents" (specincally, the section enkited "Treaties and Foreign Patents") for more information on timeframes and deadines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at \(800-786-9199\), or it can be viewed on the USPTO website at hto /hww.usplo.goviwebofices/pacidoc/generalindex. himb.

For informaton on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http:/hww.stopfakes.gov. Part of a Deparment of Commerce initiative, this website includes selfhelp "foolifs" giving imovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotine at 1-866-999-HAlT (1-866-9994158).

\section*{LICENSE FOR FOREIGN FILING UNDER}

\section*{Title 35 , United States Code, Section 184}

Titte 37, Code of Federal Regulations, 5.11 \& 5.15

\section*{GRANTEO}

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "F REQUIRED, FOREIGN FILING hCENSE GRANTED" Gollowed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a hicense may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15 (a) untess an eanlier license has been issued under 37 CFR \(5.15(\mathrm{~b})\). The license is subject to revocation upon writen notification. The date indicated is the effective date of the license, uniess an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transterred to any related applications(s) fied under 37 CFR \(1.53(d)\). This license is not retroactive.

The grant of alicense does not in any way lessen the responsibility of a licensee for the security of the subject mather as imposed by any Govemment contract or the provisions of existing laws relating to espionage and the national security or the export of technicas data. Licensees should apprise themselves of current regulations aspecially with respect to certain countries, of other agencies, particulary the Office of Defense Trade Controls, Department of State (with respect to Amms, Munitions and fmplements of War (22 CFR (21-128), the Bureau of houstry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Deparment of Treasury (3) CFR Parts 500t) and the Department of Energy.

\section*{NOT GRANTED}

No ficense under 35 U.S.C. 184 has been granted at this tme, if the phrase "F REOURED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12 , if a ficense is desired before the expiration of 6 months from the fing date of the application. 176 months has lopsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 18 亿, the licensea may foreign fie the application pursuant to 37 CFR \(5.15(\mathrm{~b})\).

\title{
UNITED STATES PATENT AND TRADEMARK OFFICE \\ CERTIFICATE OF CORRECTION
}

\author{
PATENTNO. \(: 5,796,183 \quad\) Page 1 of 1 \\ APPLICATION NO. \(08 / 601268\) \\ DATED : August 18, 1998 \\ RVENTOR(S) : Byron Eoummand at al. \\ It is centied that eror appears in the above-identifed patent and that said Letters Patent hereby corrected as shown below:
}

Tite Page, Item (75) Enventor, should read --(75) Invenors: Byron Hourmand, Hersey, MI (US); John M. Washeleski, Cadillac, MI (US); Stephen R. W. Cooper, Fowlerville, MI (US) - .

\section*{Signed and Sealed this}

Eleventh Day of October, 2011


David J. Kappos
Director of the United Stoter Potent and Trademart Office

\section*{IN TPE UNITED STATES PATENT AND TRADEMARK OFEICE}
\begin{tabular}{|c|c|c|c|c|}
\hline U.S. Patent No.: & 5,796,18381 & § & Docket No.: & 5796183 RX \\
\hline Sssued: & August 18,1998 & § & Inventors: & Hoummand et al. \\
\hline Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LEC \\
\hline Control No. & TBD & 8 & Examiner: & TBD \\
\hline
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{REOUEST FOR EX FARTE REEXAMENATION UNDER 35 U.S.C. \(\$ 302.307\)}

Dear Sir:

Patent Owner UUSI, LXC respecthlly requests Ex Parte Reexamination, pursuant to the provisions of 35 U.S.C. \(\$ \$ 302-307\) (2002), of claims 18 and 27 of United States Patent No. 5,796,183 (the "183 Patent"). This patent is still enforceable.

As set forth below, the prior ant reference submitted herewith was not previously before the Office, and presents new, non-cumulative technological teachings not considered during the - 183 Patent prosecution history.

\section*{1. OVERVIEW OF THE 183 PATENT AND ITS PROSECUTION HBSTORY}

Section II.A below provides an overview of the subject matter of the ` 183 Patent, while Section II.B provides an overview of its prosecution history.

\section*{A. The " 183 Patent}

The ` 183 Patent, a copy of which is provided as Exhbit A, issued on August 18,1998 from an application filed on January 31, 1996. The ' 183 Patent generally relates to a capacitive responsive electronic switching circuit including an oscllator providing a periodic output signal, an input touch terminal defining an area for an operator to provide an input by proximity and touch, and a detector circuit coupled to the oscillator for receiving the periodic output signal from the oscillator, and coupled to the input touch terminal. See, e.g, 183 Patent, Abstract,

The " 183 Patent contains 32 total claims, with claims 1, \(9,12,16,18,20,24\) and 27 being independent. Claims 18 and 27 , which are the subject of this reexam request, require an oscillator, a plurality of touch terminals, and a detector circuit.

An embodiment with a single touch terminal is shown in Figure 4, and an embodiment with roultiple touch terminals is shown in Figure 11, both of which are reproduced below:


Fig. 4 of the ` 183 Patent


Fig. II of the 183 Patent
Page 3 of 18

The multiple touch pad circuit of Figure 11 is a variation of the embodiment shown in Figure 4, but with an array of touch circuits designated as 900 , throagh 900 nm . See, e.g, id. at col. 18:34-41. The touch detection circuit offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small sized touch terminals in a physically close array such as a keyboard. See, e.g., id at col. 5:53-57.

Microcontroller 500 selects each row of the touch circuits 9001 to \(900_{\mathrm{nm}}\) by providing the signal from oscillator 200 to selected rows of touch circuits. See, e.g., id. at col. 18:43-46. The values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies. See, e.g., id. at col. 14:2225. Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. See, e.g., id. atcol. 11:19-25.

Microcontroller 500 sequentially activates the touch circuit rows and associates the received imputs from the columns of the aray with the activated touch circuit(s). See, e.g., id. at col. 46-49. The detector circuit is responsive to signals from the oscillator and the presence of an operator's body capacitance to ground coupled to the touch terminal when in proximity or touched by an operator to provide a control output signal. See, e.g., id. at Abstract. Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. See, e.g., id. at col. 3:44-46.

\section*{B. The Prosecution History of the ' 183 Patent}

A copy of selected portions of the prosecution history of the ' 183 Patent is provided in Exhibit \(B\).

The `183 Fatent issued from U.S. Patent Application Serial No. 08/601,268 ("the '268 application"), fled on January 31, 1996, and naming Byron Hourmand as the sole inventor. The -268 application was filed with 20 total clams, of which four were independent. Claims 21-32 were added by subsequent amendment. A cross-reference between the issued claims and the application claims from which they issued is provided below for convenience.
\begin{tabular}{|l|l|}
\hline Issued & Appl. \\
Claim & Claim \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & 4 \\
\hline 5 & 8 \\
\hline 6 & 9 \\
\hline 7 & 10 \\
\hline 8 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Issued \\
Clam
\end{tabular} & \begin{tabular}{l} 
Appl. \\
Claim
\end{tabular} \\
\hline 9 & 5 \\
\hline 10 & 6 \\
\hline 11 & 7 \\
\hline 12 & 12 \\
\hline 13 & 13 \\
\hline 14 & 14 \\
\hline 15 & 17 \\
\hline 16 & 15 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Issued & Appl. \\
Clam & Clam \\
\hline 17 & 16 \\
\hline 18 & 18 \\
\hline 19 & 19 \\
\hline 20 & 20 \\
\hline 21 & 21 \\
\hline 22 & 22 \\
\hline 23 & 23 \\
\hline 24 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Issued \\
Clam
\end{tabular} \begin{tabular}{l} 
Appl. \\
Clam
\end{tabular},

In an Office Action dated April 22, 1997, the Examiner rejected application claims 6,7 and 16 under 35 U.S.C. \(\$ 112\), second paragraph, as being indefinte. See Ex. B, 183 Patent File History, Office Action, p. 2 (Apr, 22, 1997), Clams 6,7 and 16 would be allowable if rewitten to overcome the section 112 rejection, and to include all of the limitations of the base claim and any intervening claims. See id. at p. 5 .

Claims 1-4 and 12-14 were rejected under 35 U.S.C. § 102 (b) as being anticipated by U.S. Patent No. 4,352,141 to Kent ("Kent). See id. Claims 8-11, 18, and 19 were rejected under 35 § U.S.C. 103 (a) as being unpatentable over Kent in view of U.S. Patent No. 5,087,825 to Ingraham ("Ingraham"), see id. at p. 3, and claims 8-11, 18 and 19 were rejected under 35 U.S.C.
\$103(a) as being unpatentable over Kent in view of U.S. Patent No \(5,235,217\) to Kirton
("Kirton"). See id. at p. 4. Lastly, claims 5 and 15 were objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all the limitations of the base claim and any intervening claims. See id. at p. 5 .

In response, the Applicant filed an amendment on August 22, 1997, amending claims 1,
3,5,6,12-18 and 20, and adding new claims 21-32. In particular, the Applicant amended
independent claim 18 as follows:
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency;
a plurality of input touch teminals deffing adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or touched by an operator to provide a control output signal,
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical on said dielectric substrate path between said adjacent areas, and wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch teminal to a threshold level to prevent inadvertent generation of the control output signal.

Ex. B, "183 Patent File History, Amendment, p. 11 (Aug. 22, 1997). The Applicant argued that the Kent and Ingraham patents both fail to teach or suggest a capacitive responsive electronic switching circuit comprising a detector circuit that compares the sensed body capacitance proximate an input touch teminal to a threshold level in order to prevent inadvertent generation of a control output signal. Seeid. at p. 19. The Applicant further argued that the Kirton patent, like the Kent and Ingraham patents, does not disclose a touch control circuit that is capable of discriminating between a full intentional touch of a touch terminal and an inadvertent touch of a portion of the surface of the touch terminal. See id.

With respect to new independent claim 27, the Applicant argued none of the cited references teaches or suggests a switching circuit for a control device that comprises at least first and second touch terminals and a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch teminal. See id. at pp. 20-21.

The Examiner issued a Notice of Allowance on October 27, 1997, allowing all of the pending claims. See Ex. B, \(\backslash 183\) Patent Fle History, Notice of Allowance, p. 2 (Oct. 27, 1997). The Applicant then filed a section 312 amendment on November 3, 1997 to delete the word "said" after the word "when" in claim 27, line 11. See Ex. B, '183 Patent File History, Amendment Under 37 C.F.R. § 1.312 , p. 1 (Nov. 3, 1997). The issue fee was paid on January 26, 1998, see Ex. B, '183 Patent File History, Issue Fee Transmittal, p. 1 (Jan. 26, 1998), and the `183 Patent subsequently issued on August 18, 1998.

The Applicant filed a certificate of correction on Jamary 20, 1999, which was accepted by the patent office on May 11, 1999. In claim 18, the word "path" was inserted after the word "electrical" in column 27 , line 44 of the "183 Patent, and the word "path" was deleted from column 27 , Ine 45 of the ' 183 Patent. See Ex. B, ' 183 Patent File History, Cert. of Correction, p. 3 (May 11, 1999). In claim 27, the word "said" was deleted after the word "when." See id.

The Patent Owner subsequenty made several attempts to correct the inventorship of the patent, which resulted in the inventorship being changed to be Byron Hourmand, John M. Washeleski and Stephen R. W. Cooper. See Ex. B, `183 Patent File History, Petition Decision (Aug. 25, 2011); see also Corrected Filing Receipt, p. 1 (Aug. 25, 2011); Certificate of Correction (Oct. 11, 201).

\section*{1. SUBSTANTIAL NEW OUESTION ("SNQ") OF PATENTABILITY}

Section II.A below provides a list of the prior art reference relied upon in the present request. Section II.B provides an overview of the prior art reference. Section III. C provides a statement regarding an SNQ of patentability for claims 18 and 27 of the " 183 Patent with respect to the new reference.

1

\section*{A. Listing of Prior Art Patents and Publications}

Reexamination of clams 18 and 27 of the ' 183 Patent is requested in view of the following reference:

Exhibit C Boie et al., U.S. Patent No. 5, 463,388, filed on January 29, 1993 and issued on October 31, 1996 ("Boie '388"), which qualifies as 35 U.S.C. § 102(a)-type prior art.

\section*{B. Overview of Prior Art Patents and Publications}

As discussed in more detail below, Boie 388 presents new, non-comulative technological teachings not considered during the ` 83 Patent prosecution history,

\section*{1. Boie 388}

Boie ` 388 generally relates to sensors for capacitively sensing the position or movement of an object, such as a finger, on a surface. See, e.g., Boie ` 388 , col. 1:6-8. A computer input device comprises a thin, insulating surface covering an array of electrodes arranged in a grid pattern and connected in columns and rows. See, e.g., id. at Abstract. Each column and row is comected to circuitry for measuring the capacitance seen by each column and row. See, e.g., id. The position of an object with respect to the array is detemined from the centroid of such capacitance values, which is calculated in a microcontroller. See, e.g., id. Figure 4, reproduced below, illustrates a block diagram of a two-dimensional capacitive position sensor.

FIG 4


Fig. 4 of Boie 38
Each row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401 , each of which can be selected by multiplexer 402 under control of microcontroller 406. See, e.g., Boie `388, col. 3:56-61. The selected output is forwarded to summing circuit 403 , the output of which is converted by synchronous detector and filter 404 to a signal related to the capacitance of the row or column selected by multiplexer 402 . See, e.g., id. at col. 3:62-67. RF oscillator 408 provides an RF signal of, for example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410 , and guard plane 411, which is a substantially contimous plane parallel to array 100 and associated connections, and serves to isolate array 100 from extraneous signals. See, e.g., id. at col. 3:67-col. 4.5.

To measure separate capacitance values for each electrode in array 100 instead of the collective capacitances of subdivided electrode elements comected in rows and columns, a circuit 401 is provided for each electrode in array 100 and multiplexer 402 is enlarged to accommodate the outputs from all circuits 401. See, e.g., id. at col. 4:14-21. The output of synchronous detector and filter 404 is converted to digital form by analog-to-digital converter

405 and forwarded to microcontroller 406 so that microcontroller 406 obtains a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer 402. See, e.g., id. at col. 4:22-28.

\section*{C. Statement Pointing Out Each SNQ of Patentability}

Boie '388 was not cited during the original patent prosecution of the ' 183 Patent, and presents new, non-cumulative technological teachings with respect to ' 183 Patent claims 18 and 27.

\section*{1. Claim 18}

During the original prosecution, the Applicant amended independent claim 18 to recite "wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal," and argued that the cited ant did not teach or suggest these limitations. After the Apphicant made this amendment, the Examiner allowed clam 18.

Boie ' 388 discloses,
Referring to FIG. 6 , microcomputer 406 reads the intial capacitance values for all the elements in array 100 and stores such values (step 601). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the intial values, thereby compensating for the effect of any objects moving close to array 100 duing the initialization step. After initialization, all capacitance values are periodically read and the initial values subracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603 ), indicating that an object is close to or touching array 100 , then the x and y coordinates of the centroid of capacitance for such object can be calculated from such remainders (step 604). . . To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of \(A / D\) converter 405 , for example \(10-15 \%\) of such range.

Boie '388, col. 5:10-48; see also id. at Fig. 6. Boie ` 388 thus presents new, non-cumulative technological teachings related to the elements of claim 18 added by amendment, and such teachings were not considered in the cited art during the ' 183 Patent prosecution history. If the original Examiner had known of Boie '388, the Examiner likely would have considered it relevant, and likely would have cited it during the original prosecution. Boie " 388 therefore raises an SNQ of patentability with respect to independent claim 18 .

\section*{2. Clam 27}

During the prosecution of the ' 183 Patent, the Applicant added independent claim 27, and argued that the cited art did not teach or suggest a detector circuit that generates a control output signal for actuation of the control device when an operator is proximal or touches the second touch terminal after the operator is proximal or touches the first touch terminal. After the Applicant added claim 27 and made this argument, the Examiner allowed claim 27.

Boie " 388 discloses,
In using the position sensor of the invention as a computer mouse or trackball to control a cursor, movement of the mouse or trackball is emulated by touching array 100 with finger 102 , or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow chart of the operation of microcontroller 406 in such an application.

Boie `388, col. 4:67-col. 5:9; see also id. at Fig. 6. Boie ' 388 thus presents new, non-cumulative technological teachings related to the elements of claim 27 argued by the Applicant, and such teachings were not considered in the cited ant during the ` 183 patent prosecution history. If the original Examiner had known of Boie '388, the Examiner likely would have considered it relevant, and likely would have cited it daring the original prosecution. Boie ' 388 therefore raises an SNQ of patentability with respect to independent claim 27.

\section*{11. DEYAILBD EXPLANATION OF THE RELEVANCY AND MANNER OE APPL YING THE PRIOR ART REFERENCES TO EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED}

A detailed explanation pointing out the relevance and application of the prior art references to each of claims 18 and 27 is provided below. The charts below indicate what the Patent Owner believes are the portions of the cited art most relevant to the elements of the claims for which reexamination is requested. The Patent Owner, however, reserves the right to take positions asserting and submit arguments explaining why yarious claim clements are not disclosed or suggested by the cited art.

\section*{A. Clam 18}
\begin{tabular}{|c|c|}
\hline T183 Pament Chim Lamgase & Bome 3m8 \\
\hline 18. A capacitive responsive electronic switching circuit comprising: & "The capacitive sensor of the invention comprises a thin, insulating surface covering a plurality of electrodes. The position of an object, such as a finger or hand-held stylus, with respect to the electrodes, is determined from the centroid of capactance values measured at the electrodes. ...The x and y coordinates of the centroid are calculated in a microcontroller from the measured capacitances." Boie ` 388 , col. 1:61\(\operatorname{col} .2: 5\), Fig. 4. \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410, and guard plane 411." Id. at col. 3:67-col. 4:2, Fig. 4. \\
\hline a plurality of input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and & "The operational principle of the capacitive position sensor of the invention is shown in FIG. 1. Electrode array 100 is a square or rectangular aray of electrodes 101 arranged in a grid patten of rows and columns, as in an array of tiles.... The electrodes are covered with a thin layer of insulating material (not shown). . . Histogram 110 shows the capacitances for electrodes 101 in aray 100 with respect to finger 102 ." \(I d\), at col. \\
\hline
\end{tabular}

Page 12 of 18
\begin{tabular}{|c|c|}
\hline 183 Patent Climm limgurge & Bole 388 \\
\hline & \begin{tabular}{l}
2:49-62, Fig. l. \\
"FG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and two columns in array 100 . As can be seen from FIC. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Id. at col. 3:16-20, Fig. 2 . \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203 . The vertical row comections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." \(/\) d. at col. 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled said touch terminals when proximal or tonched by an operator to provide a control output signal, & \begin{tabular}{l}
"[E]ach row and column of electrodes from array 100 is connected to an integrating amplifier and bootstrap circuit 401. . . . Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and fllter 404 convert the ouput from summing ciscuit 403 to a signal related to the capacitance of the row or column selected by multiplexer \(402 . \mathrm{RF}\) oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and hiter 404 via inverter 410 , and guard plane 411. Id. at col. 3.53-col. 4.2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured
\end{tabular} \\
\hline
\end{tabular}

Page 13 of 18
\begin{tabular}{|c|c|}
\hline 183) Patme Clajm limnguage & Whie 388 \\
\hline & separately) selected by multiplexer 402. . . . Microcontroller 406 sends data to utilizing means, such as a personal computer (not shown) over lead 420." Id. at col, 4:21-32, Fig. 4. \\
\hline \begin{tabular}{l}
wherein said predefined frequency of said oscillator is selected to decrease the impedance of said dielectric substrate relative to the impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas, and \\
wherein said detector circuit compares the sensed body capacitance to ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
\end{tabular} & \begin{tabular}{l}
"RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Id. at col. 3.67-col. 4:2, Fig. 4. \\
"The effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unson with the same RF signal from RF oscillator 408." Id. at col. 4:58-61. \\
"Referring to FIG. 6, microcomputer 406 reads the initial capacitance values for all the elements in aray 100 and stores such values (step 601 ). Such initial values should reflect the state of array 100 without a finger or other object being nearby, accordingly, it may be desirable to repeat step 601 a number of times and then to select the minimum capacitance values read as the initial values, thereby compensating for the effect of any objects moving close to array 100 during the initialization step. After intialization, all capacitance values are periodically read and the initial values subtracted to yield a remainder value for each element (step 602). If one or more of the remainders exceeds a preset threshold (step 603), indicating that an object is close to or touching array 100 , then the \(x\) and \(y\) coordinates of the centroid of capacitance for such object can be calculated from such remainders (step 604). . . To avoid spurious operation, it may be desirable to require that two or more measurements exceed the preset threshold. The threshold can be set to some percentage of the range of \(A / D\) converter 405 , for example \(10-15 \%\) of such range." Id. at col. 5:10-48, Pig. 6.
\end{tabular} \\
\hline
\end{tabular}

\section*{B. Claim 27}
\begin{tabular}{|c|c|}
\hline 183. Patent Clinm languinge & Sinie 388 \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled device comprising: & \begin{tabular}{l}
"The capacitive sensor of the invention comprises a thin, insulating surface covering a plurality of electrodes. The position of an object, such as a finger or hand-held stylus, with respect to the electrodes, is determined from the centroid of capacitance values measured at the electrodes. ... The \(x\) and \(y\) coordinates of the centroid are calculated in a microcontroller from the measured capacitances." Boie '388, col. 1:61col. \(2: 5\), Fig. 4. \\
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating sufface covering an array of electrodes. .. For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." Id. at Abstract.
\end{tabular} \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and fiter 404 via inverter 410 , and guard plane 411." Id. at col. 3:67-col. \(4: 2\), Fig. 4. \\
\hline first and second touch terminals defining areas for an operator to provide an input by proximity and touch; and & \begin{tabular}{l}
"The operational principle of the capacitive position sensor of the invention is shown in EIG. \\
1. Electrode array 100 is a square or rectangular aray of electrodes 101 arranged in a grid pattern of rows and colomns, as in an array of tiles... The electrodes are covered with a thin layer of insulating material (not shown). . . Histogram 110 shows the capacitances for electrodes 101 in amay 100 with respect to finger \(102 . " I d\) at col. 2:49-62, Fig. 1. \\
"FIG. 2 shows four such subdivided electrodes in more detail at an intersection of two rows and
\end{tabular} \\
\hline
\end{tabular}

Page 15 of 18
\begin{tabular}{|c|c|}
\hline 183 Patme Climm limguiste & \#uie 38\% \\
\hline & \begin{tabular}{l}
two columns in array 100 . As can be seen from FIG. 2, a horizontal element 201 and a vertical element 202 are situated at each intersection of a row and column." Id. at col. 3:16-20, Fig. 2. \\
"As will be clear to those skilled in the art, elements 201 and 202 can be fabricated in one plane of a multi-layer printed circuit board together with one set of interconnections, for example, the horizontal row connections 203. The vertical row connections 204 can then be fabricated in another plane of the circuit board with appropriate via connections between the planes." \(1 d\). at col, 3:30-36, Fig. 2.
\end{tabular} \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said osclllator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator and the presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by an operator to provide a control output signal for actuation of the controlled device, & \begin{tabular}{l}
"[E]ach row and column of electrodes from aray 100 is connected to an integrating amplifier and bootstrap circuit 40 , . . . Each of the outputs from circuits 401 can be selected by multiplexer 402 under control of microcontroller 406. The selected output is then forwarded to summing circuit 403 , where such output is combined with a signal from trimmer resistor 409. Synchronous detector and filter 404 convert the output from summing circuit 403 to a signal related to the capacitance of the row or colmm selected by multiplexer 402 . RF oscillator 408 provides an \(R F\) signal, for example, 100 klohertz, to circuits 40 , synchronous detector and filter 404 via inverter 410 , and guard plane 411. . \(1 d\). at col. \(3: 53-\mathrm{col}\). 4:2, Fig. 4. \\
"The output of synchronous detector and filter 404 is converted to digital form by analog-todigital converter 405 and forwarded to microcontroller 406. Thus, microcontroller 406 can obtain a digital value representing the capacitance seen by any row or column of electrode elements (or electrode if measured separately) selected by multiplexer \(402 .\). . Microcontroller 406 sends data to athizing means, such as a personal computer (not shown) over lead 420." Id. at col. 4.21-32, Fig. 4.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Linguage & Buie 388 \\
\hline said detector circuit being configured to generate said control output signal when an operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal. & \begin{tabular}{l}
"A computer input device for use as a computer mouse or keyboard comprises a thin, insulating surface covering an amay of electrodes. ... For applications in which the input device is used as a mouse, the microcontroller forwards position change information to the computer. For applications in which the input device is used as a keyboard, the microcomputer identifies a key from the position of the touching object and forwards such key identity to the computer." \(/ d\). at Abstract. \\
"In using the position sensor of the invention as a computer mouse or trackball to control a cussor, movement of the mouse or trackball is emolated by touching array 100 with finger 102, or some other object, and stroking finger 102 over array 100 to move the cursor. Changes in position of the finger with respect to array 100 are reflected in corresponding changes in position of the cursor. Thus, for such an application, microcontroller 406 sends data over lead 420 relating to changes in position. FIG. 6 is a flow char of the operation of microcontroller 406 in such an application." Id. atcol. 4:67-col. 5:9, Fig. 6.
\end{tabular} \\
\hline
\end{tabular}

\section*{IV. CONCLUSION}

A substantial new question of patentability is raised based on the newly cited prior art, and therefore a reexamination of clams 18 and 27 is warranted. Again, the Patent Owner reserves the right to take positions asserting and submit arguments explaining why various claim elements are not disclosed or suggested by the cited art,

If the Office should have any questions, please contact the undersigned atomey. The Commissioner is hereby authorized to charge any fees due in connection with this filing, or credit any overpayment, to Deposit Account No. 50-1065.

Respectfully submitted,

August 17, 2012 Date

Slater \& Matsil, L.L.P. 17950 Preston Rd.
Suite 1000
Dallas, TX 75252
972-732-1001
972-732-9218 (fax)

Brian A. Carison/
Brian A. Carlson
Reg. No. 37,793

Unied States Patent and Trademark Office

REEXAM CONTROL NUNIBER 901012,439

22045
BROOKS KUSHMAN P.C.
1000 TOWN CENTER TWENTY-SECOND FLOOA
SOUTHFIELD, M 48075
\(\frac{\text { Patentinunber }}{5796183}\)

CONEIRMATION NO. 455
REEXANBMATON REOUEST

\section*{NOTICE OF REEXAMINATION REQUEST FILING DATE}
(Patent Owner Requester)
Requester is hereby notifed that the fing date of the request for reexamination is 08/17/2012, the date the required fee of \(\$ 2,520\) was recelved. (See CFR \(1.510(0)\) ).
A decision on the request for reexamination will be mailed within three months from the filing date of the request for reexammation. (See \(37 \mathrm{CFF} 1.515(2)\) ).

Pursuant to 37 CFR \(1.33(c)\), future correspondence in this reexamination proceeding will be with the latest atomey or agent of the record in the patent tie.

The paragraphs checked below are part of this communication:
.--...- 1. The party receiving the courtesy copy is the latest atomey or agent of record in the patent file.
2. The person named to receive the correspondence in this proceeding has not been made the latest atomey or agent of record in the patent fle because:
\(\qquad\) A. Requester's claim of ownership of the patent is not verified by the record.
\(\qquad\) 8 . The request papers are not signed with a real or apparent binding signature.
C. The mere naming of a correspondence addressee does not result in that person being appointed as the latest atomey or agent of record in the patent file.
\(\qquad\) 3. Addressee is the latest attomey of agen of record in the patent file.
4. Other \(\qquad\)
/sdstevenson/

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900


Please find below and/or attached an Offee communication concerning this apphcation or proceeding.
The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Order Granting / Denying Request For Ex Parte Reexamination} & Control Na. 901012,439 & Patent Under Reexamination 5798183 \\
\hline & Examiner LNH M. NGUYEN & \begin{tabular}{l}
Art Unic \\
3992
\end{tabular} \\
\hline
\end{tabular}
orthe MAILING DATE of this communication appears on the cover sheet with the correspondence addresson

The request for ex parte reexamination flied 17 Auqust 2012 has been considered and a determination has been made. An identifcation of the claims, the references relied upon, and the rationale supporting the determination are attached.
Attachments: a) \(\square\) PTO-892,
b) \(\mathbb{P T O I S B / O Q}\),
c) \(\square\) Oner: \(\qquad\)
\(1 . \boxtimes\) The request for ex parte reexamination is GRANTED.
RESPONSE TIMES ARE SET AS FOLLOWS:
For Patent Owner's Statement (Optional): TWO MONTHS from the mailing date of this communication


For Requester's Reply (optional!: WO MONTHS from the date of service of any timely filed Patent Owner's Statement ( 37 CFR 1.535). NO EXTENSION OF THIS TIME PERIOD IS PERMITED. If Patent Owner does not fle a timely statement under 37 . CFR 1.530 (b), then no reply by requester is permited.
2.
\(\square\) The request for ex parte reexamination is DENIED.
This decision is not appealable ( 35 U.S.C. \(303(\mathrm{c}\) ). Requester may seek review by petition to the Commissioner under 37 CFR 1.181 within ONE MONTH from the mailing date of this communication ( 37 CFR \(1.515(\mathrm{C})\) ). EXTENSION OF TME TO FILE SUCH A PETITION UNDER 37 CFR 1.181 ARE AVALARELE ONLY BY PETTION TO SUSPEND OR WAVE THE REGULATIONS UNDER 37 CFR 1.183.

In due course, a refund under 37 CFR 1.26 (c) will be made to requester:
a)by Treasury check or,
b)by credit to Deposit Account No. \(\qquad\) or
c)by credit to a credit card account, unless otherwise nokitied (35 U.S.C. 303(c)).


\section*{DECISION}

A substantial new question (SNQ) of patentability affecting claims 18 and 27 of United States Patent Number \(5,796,183\) ("the base patent" or "the 183 ' patent") is raised by the request for ex parte reexamination.

\section*{Information Disclosure Statement}

The Information Disclosure Statement submission of August 17, 2012 has been considered. It is to be noted, however, that where patents, publications, and other such items of information are submitted by a patent owner in compliance with the requirements of the rules, the requisite degree of consideration to be given to such information will be limited by the degrec to which the patent owner has explained the content and relevance of the information. In instances where no explanation of citations (items of information) is required and none is provided for an information citation, only a cursory review of that information is required. The examiner need only perform a cursory evaluation of each unexplained item of information, to the extent that he/she needs in order to determine whether he/she will evaluate the item further. If the cursory evaluation reveals the item not to be useful, the examiner may simply stop looking at it. This review may often take the form of considering the documents in the same manner as other documents. in Office search files are considered by the examiner while conducting a search of the prior art in a proper feld of search. The initials of the examiner, in this proceeding, placed adjacent to the citations on the PTO-1449 or PTO/SB/08A and 08B or its equivalent, without an indication in the record to the contrary in the record, do not

Art Unit: 3992
signify that the information has been considered by the examiner any further than to the extent noted above. See MPEP 609, seventh paragraph, Revision 5, Aug. 2006 [page 600-141].

\section*{Referesses}

Boie et al., U.S. Patent No. 5,463,388, filed on January 29, 1993 and issued on October 31, 1996 ("Boie '388").

\section*{Prosecution History}

The base patent stems from United States Yatent Application No. 08/601,268 (hereinafter "the base application").

The examiner generally agrees with the description of the prosecution history found in the Request at pp. 5-7, and that discussion is incorporated by reference. The base application was ultimately allowed without a statement of reasons for allowance. From the prosecution history, it appears likely that claims 18 and 27 were allowed in the base application because of the amendatory language in claim 18 and the new independent claim 27 , as discussed at page 6.7 of the Request.

Application/Control Number: 90/012,439
Art Unit: 3992

\section*{Proposed Rejections}

\section*{Under 35 USC. \(102(a)\)}

Claims 18 and 27 of the ' 183 patent are unpatentable under 35 U.S.C. \& 102 (a) as being anticipated by Boie ' 388 .

\section*{Analysis of the Prior Art Provided in the Request}

35 U.S.C. \(102(a)\)

\section*{Boie '388:}

It is agreed that Boie ' 388 raises SNQ for claims 18 and 27 of the ' 183 patent. Insofar as the explanation at pages \(8-12\) of the Request and the item-matching at page \(12-17\) of Claim Chart of the Request at least facially suggest that Boie' 388 teaches a substantial number of clamed features. A reasonable examiner would consider that Boie ' 388 important in deciding whether or not claims 18 and 27 of the ' 183 patent are patentable. Accordingly, Boie ' 388 raises a substantial new question of patentability as to claims 18 and 27 , which question has not been decided in a previous examination of the ' 306 patent.

Such teachings are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

\section*{Correspondence}
```

All corespondence relating to this ex porte reexamination proceeding should be directed:
By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box }145
Alexandria, VA 22313-1450
By FAX to:(571) 273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

```

Registered users of EFS -Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at htys://efs.uspto gov/efilemyportab/efsregistered. EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS -Web submissions are "soft scanned" (ie., electronically uploaded) directly into the official nile for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry conceming this communication should be directed to Linh M. Nguyen at telephone number 571-272-1749.

Signed:

\author{
sinh M. Nguyen/ \\ Primary Examiner \\ Central Reexamination Unit 3992
}

\section*{Conferees:}

\section*{Margaret Rubin/}

Primary Examiner CRU 3992


MARK J REINHARdT
Supervisory Patent Reexamination Specialist
cRU - An Unit 3992
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{miccirorvic Ackryowicdy} \\
\hline EFS 10 : & 14267867 \\
\hline Application Number: & 90012439 \\
\hline International Application Number: & \\
\hline Confirmation Number: & 4155 \\
\hline Tithe of Invention: & Capactive Responsive Electronic swithing Ciruit \\
\hline First Named inventor/Applicant Name: & 5796183 \\
\hline Customer Number: & 25962 \\
\hline Fiser: & Brian A. Carlon/Michelle Hather \\
\hline Fiber Authorized By: & Brian A, Carison \\
\hline Attorney Docket wumber: & NAR-5796183PX \\
\hline Receipt Date: & 19-NOV-2012 \\
\hline Filing Dates & 17-AUG-2012 \\
\hline Time Stamp: & 17:13:34 \\
\hline Application Type: & Reexam (Patent Owner) \\
\hline
\end{tabular}

\section*{Payment information:}
\begin{tabular}{|c|c|}
\hline Submitted with Payment & yes \\
\hline Payment Type & Deposit Account \\
\hline Payment was successfully yeceived in RAM & \$436 \\
\hline RAM confirmation Number & 5429 \\
\hline Deposit Account & 501065 \\
\hline Authorized User & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \\
Charge any Additional Fees required under 37 CF.R. Section 1.16 (National application filing, search, and examination fees) \\
Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{File Listirey} \\
\hline Document Number & Document Description & File Name & File Size(Bytes)/ Message Diges: & Mulki Part/akip & \begin{tabular}{l}
Pages \\
(bf zppl.)
\end{tabular} \\
\hline 1 & Reexam Timely Patent Owner's Stmnt in Resp to Order & NAR \(5796183 R X\) PatentOwner Statement.pdf &  & no & 37 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multirow{2}{*}{2} & \multirow{2}{*}{Fee Worksheet (SR06)} & \multirow{2}{*}{fee-infopdf} & 31575 & \multirow{2}{*}{no} & \multirow{2}{*}{2} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Filles Size (in byses)} & \multicolumn{3}{|c|}{193580} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Receipt evidences receipt on the noted dze by the USpTO of the indicated documents, characterized by the apphicant, and inchuding page counts, where applicakhe. ft serves as evidence of receigt similay to a Post Card, as described in MPEP 503.} \\
\hline \multicolumn{6}{|l|}{New Applications Under 35 U.S.C. 111} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
If a new application is being filed and the apphication includes the necessary components for a filing date (see 37 CFR \\
 Acknowledgement Receipt will establish the filing date of the application.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{National Stage of an international Apphication under 35 U.S.C. 371} \\
\hline \multicolumn{6}{|l|}{If a timely submission to enter the national stage of an international apphication is compliant with the conditions of 35 U.S.C. 371 and other applicable requikements a Form PCT/DO/EO/903 indicating acceptance of the applicathon as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
New fnternational Application Filed with the USPTO as a Receiving Office \\
If a new international application is being filed and the international application includes the necessary componemts for \\
 and of the International Finng Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning nakional security, and the date shown on this Acknowledgement keceipt will establish the intemational fining dake of the application.
\end{tabular}} \\
\hline
\end{tabular}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}
\begin{tabular}{lllll} 
U.S. Patent No:: & \(5,796,183 \mathrm{BI}\) & \(\S\) & Docket No:: & NAR-5796183RX \\
issued: & August 18,1998 & \(\S\) & Inventors: & Hourmand et al. \\
Filed: & January 31, 1996 & \(\S\) & Patent Owner: & UUSI, LLC \\
Control No. & TBD & \(\$\) & Examiner: & Nguyen, Linh M.
\end{tabular}

For: Capacitive Responsive Electronic Switching Circuit
Mail Stop Ex Parte Reexam
Attn: Central Reexammation Unit
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{PATENT OWNER STATEMENT}

Dear Sir:
Patent Owner respectully submits this Patent Owner Statement in response to the September 20, 2012 Order Granting Request for Ex Parte Reexamination of U.S. Patent Number 5,796,183 B1 (the "183 Patent"). Patent Owner respectfully requests that the following amendments and remarks be entered, and respectfully requests consideration of amended claims 18,27,28 and 32, and newly-added claims 33-39.

\section*{1. Listing of The 189 Patent Chams Cinder Meexamination}

A listing of each claim under reexamination is provided below. Reexamination of claims 18 and 27 was granted in the Order dated September 20, 2012. Accordingly, please amend claims 18 and 27, as well claims 28 and 32, which depend from claim 27, as provided below. In addition, please add new claims 33-39 as follows.
18. (Amended) A capacitive responsive electronic switching circuit comprising: an oscillator providing a periodic output signal having a predefined frequency; a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad:
[a] the plurality of small sized input touch terminals defining adjacent areas on a dielectric substrate for an operator to provide inputs by proximity and touch; and a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by [an] the operator to provide a control output signal,
wherein said predefined frequency of said oscillator [is] and said signal output frequencies are selected to decrease [the] a first impedance of said dielectric substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the pluality of small sized inpot touch termingls, and wherein said detector circuit compares [he] a sensed body capacitance change to
ground proximate an input touch terminal to a threshold level to prevent inadvertent generation of the control output signal.
27. (Amended) A capacitive responsive electronic switching circuit for a controlled keypad device comprising:
an oscillator providing a periodic output signal having a predefined frequency;
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the imput touch terminals comprising first and second input touch terminals:
the first and second inpat touch terminals defiming areas for an operator to provide an input by proximity and touch; and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second tonch terminals, said detector circuit being responsive to signals from said oscllator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by [an] the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is proximal or touches said first touch terminal.
28. (Amended) The capacitive responsive electronic switching circuit as defined in claim 27, wherein said detector circuit generates said control signal only when [an] the operator is proximal or touches said second touch terminal within a predetermined time period after the operator is proximal or touches said first touch terminal.
32. (Amended) The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that [an] the operator is proximal or touches said first touch terminal.
33. (New) The capacitive responsive electronic switching circuit as defined in claim 18 . further comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an input touch terminal signal on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal.
34. (New) The capacitive responsive electronic switching circuit as defined in claim 18 . further comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an input touch terminal signal amplitude on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal. 35. (New) The capacitive responsive electronic switching circuit as defined in claim 27. wherein when the second touch terminal is not touched on its defining area by the operator to provide input, the control output signal is prevented.
36. New) The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch teminal.
37. (New) A capacitive responsive electronic switching circuit for a controlled device comprising:
an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage:
a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal outpur frequencies to a closely spaced array of input touch feminals of a keypad, the input touch terminals comprising first and second input touch terminals:
the first and second touch terminals defining areas for an operator to provide an input by proximity and touch: and
a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by the operator to provide a control outpot signal for actuation of the controlled device. said detector circuit being confgured to generate said control output signal when the operator is proximal or touches said second touch teminal after the operator is proximal or touches said first touch terminal.
38. (New) The capacitive responsive electronic switching circuit as defined in claim 37. wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.
39. (New) The capacitive responsive electronic switching circuit as defined in claim 37. wherein said detector circuit compares a sensed body capacitance change caused by the
body capacitance decreasing a second touch terminal signal on the detector to ground when proximate to the second touch terminal to a threshold level to generate the control output signal. and
wherein feedback to the operator is provided by an indicator activated by the microcontroller after the operator touches the second touch terminal.

\section*{71. Status of the Claims}

Claims 1-39 are pending in the present reexamination proceeding, of which claims 18 , 27,28 and 32 are amended herein and \(33-39\) are added herein.

\section*{HI. Discussion of Clains and Prior Art Reference}

Patent Owner flied a Request for Ex Parte Reexamination on August 17, 2012, submitting that a substantial new question of patentability of claims 18 and 27 is raised by Boie et al., U.S. Patent No. \(5,463,388\) ("Boie"). Reexamination of these claims was granted in the Order dated September 20, 2012.

Patent Owner is amending claims 18 and 27 in this Patent Owner Statement. Because some of these amendments were made to provide better antecedent basis for some claim terms, Patent Owner is amending dependent claims 28 and 32 for the same reason. Patent Owner also is adding new clams 33-39. Accordingly, Patent Owner respectfully requests consideration of amended clams 18, 27, 28 and 32, and new clams 33-39. No new matter has been added.

\section*{A. Independent Clann 18}

Independent claim 18 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[t]he effects of electrode-to-electrode
capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id at col. 4.58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode amay 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components. Accordingly, Boie does not disclose all of the elements of clam 18 , and therefore claim 18 is patentable over Boie.

New claims 33 and 34 depend from claim 18 and add futher limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{B. Independent Clam 27}

Independent claim 27 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input towh teminals of a keypad, the input towch teminals comprising fust and second input touch terminals." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401, synchronous detector and filter 404 via inverter 410, and guard plane 411." Boie, col. 3:67-col. 4:2. Boie further discloses that "[t]he effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances arc minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408." Id. at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode array 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest
providing signal output frequencies to these components. Accordingly, Boie does not disclose all of the elements of clam 27 , and therefore claim 27 is patentable over Boie.

Amended claims 28 and 32 , and new claims \(35-36\), depend from claim 27 and add further limitations. Patent Owner respectfully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new himitations.

\section*{C. Independent Clam 37}

Independent claim 37 recites "a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a closely spaced array of input touch terminals of a keypad, the input touch terminals comprising first and second input touch terminals." Boie does not teach or suggest these claim elements.

Rather, Boie discloses that "RF oscillator 408 provides an RF signal, for example, 100 kilohertz, to circuits 401 , synchronous detector and filter 404 via inverter 410 , and guard plane 411." Boie, col, 3:67-col, 4:2. Boie turther discloses that "[the effects of electrode-to-electrode capacitances, wiring capacitances and other extraneous capacitances are minimized by driving all electrodes and guard plane 411 in unison with the same RF signal from RF oscillator 408 ." Id at col. 4:58-60 (emphasis added); see id. at Fig. 4. Thus Boie discloses driving the electrodes of electrode aray 100 and guard plane 411 with a single RF signal. Boie does not teach or suggest providing signal output frequencies to these components.

Independent claim 37 further recites "an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage." Boie is silent regarding an oscillator voltage being greater than a supply voltage,

For at least the above reasons, Boie does not disclose all of the elements of claim 37, and therefore claim 37 is patentable over Boie.

New clams \(38-39\) depend from claim 37 and add further limitations. Patent Owner respectully submits that these dependent claims are allowable by reason of depending from an allowable claim as well as for adding new limitations.

\section*{IV. Support for Claim Amendments and New Claims}

Support for each of the amendments to claims \(18,27,28\) and 32 , and for new claims 33 -
39, may be found throughout the ' 183 Patent, and particular support may be found, for example, as set forth in the charts below.

\section*{A. Amended Clam 18}
\begin{tabular}{|c|c|}
\hline 183 Patem Chim limguage & (183 Milemi mupam \\
\hline 18. A capacitive responsive electronic switching circuit comprising: & -- \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & -- \\
\hline a microcontroller using the periodic output signal from the oscillator, the microcontroller selectively providing signal output frequencies to a plurality of small sized input touch terminals of a keypad: & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The '183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin olls and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. \\
The ' 183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The " 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Clam lamguage & \$33 Palemi Suppur! \\
\hline & \begin{tabular}{l}
distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The " 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common genexator 300 , a touch pad shield plate 460, a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscllator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from loating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FlG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 tupon detecting a capacitance to ground at touch pad 450 that exceeds a thresbold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 50 ., which is preferably a two way optical coupling bus." Col. 12:6-33.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 83 Paient Suppor \\
\hline & \begin{tabular}{l}
The ' 183 Patent discloses "As will be apparent to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The " 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11 , components similar to those in the first embodiment in EIG .4 are designated with the same references numerals and will not be discussed in detail. The multiple touch pad circuit is a vanation of the first embodiment in that it includes an array of touch circuits designated as 900 , through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). \\
Microcontroller 500 selects each row of the touch circuits \(900_{1}\) through \(900_{\text {max }}\) by providing the signal from oscillator 200 to selected rows of touch circuits. In this mamer, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the array with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible cricuit board such as vended by Sheldahl, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to climinate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline [a] the plurality of small sized input touch terminals defining adjacent & See Figure 11. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153 Palemt Climm Lamgurge & \$33 Patemi Support \\
\hline areas on a diclectric substrate for an operator to provide inputs by proximity and touch; and & The 183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:53-57. \\
\hline a detector circuit coupled to said oscillator for receiving said periodic output signal from said oscillator, and coupled to said input touch terminals, said detector circuit being responsive to signals from said oscillator yia said microcontroller and [he] a presence of an operator's body capacitance to ground coupled to said touch terminals when proximal or touched by [an] the operator to provide a control output signal, & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The ' 183 Patent discloses The ' 183 Patent discloses "Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FlG. 6 . \\
Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscllator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FG .7 . Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIC. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 133 Palent Climm linguate & \S3 Pisient Suppurt \\
\hline & \begin{tabular}{l}
(typically at least 20 pF ) is present at touch pad 450. microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. \(12: 633\). \\
The ' 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodment is shown in FIG. 11. In the second embodiment of PIG. 11, components similar to those in the first embodiment in FlG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple toveh pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FlGS. 4 and 8 and the input touch terminal pad 45 ( \(\mathrm{FIC}, 4\) ). Microcontroller 500 selects each row of the touch circuits 9001 through 900 m by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the aray with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimmm, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldah, Inc. or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the grinted circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and sping contacts which were ased to fill air gaps." Col. 18:34-59.
\end{tabular} \\
\hline wherein said predefined frequency of said osellator [is] and said signak output freguencies are selected to decrease [the] a first impedance of said dielectric & \begin{tabular}{l}
See Figure 11; and Claims 12, 16. \\
The ' 183 Patent discloses "Another method for implementing capacitive touch switches relies on
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153. Patemt Climm lianguse & 183 Pitent Support \\
\hline substrate relative to [the] a second impedance of any contaminate that may create an electrical path on said dielectric substrate between said adjacent areas defined by the plurality of small sized input touch terminals, and wherein said detector circuit compares [the] a sensed body capacitance change to ground proximate an input touch teminal to a threshold level to prevent inadvertent generation of the control output signal. & \begin{tabular}{l}
the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive shor to gromnd via the operator's own body capacitance that lowers the amplinde of oscllator voltage seen at the towh terminal." Col. 3:44-56. \\
The ' 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin oils and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is reguired for actuation and to enable employment of a multiplicity of small size touch teminals in a physical close aray such as a keyboard.' Col. 5:49-57. \\
The " 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col. 11:19-27. \\
The ' 183 Patent discloses "As will be apparent
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 13.3 Patemt Climmlanguage & \\$3 Palent Support \\
\hline & to those skilled in the art, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
\hline
\end{tabular}

\section*{B. Amended Clam 27}
\begin{tabular}{|c|c|}
\hline 18.3 Paicme (Masminmguage &  \\
\hline 27. A capacitive responsive electronic switching circuit for a controlled keypad device comprising: & \begin{tabular}{l}
The " 183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size towch teminals in a physical close array such as a keyboard," Col. 5:53-57. \\
The ' 183 Patent discloses "In a first prefered embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3.
\end{tabular} \\
\hline an oscillator providing a periodic output signal having a predefined frequency; & -- \\
\hline a microcontroller using the periodic output signal from the oscillator. the microcontroller selectively providing signal output frequencies to a closely spaced amay of input touch terminals of a keypad. the input touch terminals comprising first and second input touch terminals: & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The " 183 Patent discloses "The tonch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials suck a skin olls and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a maliplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 153. Patent Clinm lingurge & 153 Patent Support \\
\hline & \begin{tabular}{l}
The ' 183 Patent discloses "In a first preferred embodiment the circuit offess enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col. 6:1-3. \\
The ' 183 Patent discloses "Although the preferred frequency is at or above 100 kHz , and more preferably at or above 800 kHz , it is conceivable that frequencies as low as 50 kHz could be used provided the frequency creates a difference in the impedance paths of adjacent pads that is sufficient enough to accurately distinguish between an intended touch and the touch of an adjacent pad. Us of frequencies as low as 50 kHz may also be possible depending upon the type of glass or covering or the thickness thereof used for the touch pad." Col . 11:19-27. \\
The ' 183 Patent discloses " Upon being powered by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 20 to a floating common generator 300, a touch pad shield plate 460, a touch circuit 400, and a microcontroller 500. Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Detalls of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 13.3 Patent Climmlunguage & 183 Patenl Support \\
\hline & \begin{tabular}{l}
400 senses capacitance from a touch pad 450 via line 451 and outputs a signal to microcontroller 500 via line 40 lapon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8. Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ' 183 Patent discloses "As will be apparent to those skilled in the ant, the values of the resistors and capacitors utilized in oscillator 200 may be varied from those disclosed above to provide for different oscillator output frequencies." Col. 14:22-25. \\
The ` 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIO. 11. In the second embodiment of FlG. 11 , components similar to those in the first embodiment in FlG. 4 are designated with the same references numerals and will not be discussed in detail. The multiple tonch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 451 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 mm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontroller 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the amay with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim Language & 183 Patent Support \\
\hline & physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldahl, Inc, or Circoit Etching Technics, Inc, can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59. \\
\hline the first and second input touch terminals defining areas for an operator to provide an input by proximity and touch; and & \begin{tabular}{l}
See Figure 11. \\
The " 183 Patent discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FlG. 11. In the second embodiment of PIG. 11, components similar to those in the first embodiment in PIG. 4 are designated with the same references numerals and will not be discussed in detall. The multiple touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FIGS. 4 and 8 and the input touch terminal pad 45 ( FIG .4 )." Col. 18:34-43.
\end{tabular} \\
\hline \begin{tabular}{l}
a detector circuit coupled to said \\
oscillator for receiving said periodic output signal from said oscillator, and coupled to said first and second touch terminals, said detector circuit being responsive to signals from said oscillator via said microcontroller and [the] a presence of an operator's body capacitance to ground coupled to said first and second touch terminals when proximal or touched by [an] the operator to provide a control output signal for actuation of the controlled keypad device, said detector circuit being configured to generate said control output signal when [an] the operator is proximal or touches said second touch terminal after the operator is
\end{tabular} & \begin{tabular}{l}
See Figures 4, 11; and Claims 8, 12, 16. \\
The `183 Patent discloses "It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable employment of a multiplicity of small size touch terminals in a physical close array such as a keyboard," Col. 5:53-57. \\
The '183 Patent discloses "In a first preferred embodiment the circuit offers enhanced detection sensitivity to allow reliable operation with small (finger size) touch pads." Col, 6:1-3. \\
The " 183 Patent discloses "Upon being powered
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 133 Patent Climm languate & 183 Prieml Suppurt \\
\hline proximal or touches said first touch terminal. & \begin{tabular}{l}
by voltage regulator 100 , oscillator 200 generates a square wave with a frequency of 50 kHz , and preferably greater than 800 kHz , and having an amplitude of 26 V peak. The square wave generated by oscillator 200 is supplied via line 201 to a floating common generator 300 , a touch pad shield plate 460 , a touch circuit 400 , and a microcontroller 500 . Oscillator 200 is described below with reference to FIG. 6. Floating common generator 300 receives the 26 V peak square wave from oscillator 200 and outputs a regulated floating common that is 5 volts below the square wave output from oscillator 200 and has the same phase and frequency as the received square wave. This floating common output is supplied to touch circuit 400 and microcontroller 500 via line 301 such that the output square wave from oscillator 200 and floating common output from floating common generator 300 provide power to touch circuit 400 and microcontroller 500 . Details of floating common generator 300 are discussed below with reference to FIG. 7. Touch circuit 400 senses capacitance from a touch pad 450 via line 451 and ontputs a signal to microcontroller 500 via line 40 lupon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to PIG. 8 . Upon receiving an indication from touch circuit 400 that a sufficient capacitance to ground (typically at least 20 pF ) is present at touch pad 450 , microcontroller 500 outputs a signal to a load-controlling microcontroller 600 via line 501 , which is preferably a two way optical coupling bus." Col. 12:6-33. \\
The ` 183 Paten discloses "A multiple touch pad circuit constructed in accordance with the second embodiment is shown in FIG. 11. In the second embodiment of FIG. 11, components similar to those in the first embodiment in FIG. 4 are designated with the same references numerals and will not be discussed in detai. The multiple
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 133 Patent Climm Langurge & 183 Pirlent Suppuri \\
\hline & touch pad circuit is a variation of the first embodiment in that it includes an array of touch circuits designated as 9001 through 900 mm , which, as shown, include both the touch circuit 400 shown in FGGS. 4 and 8 and the input touch terminal pad 45 (FIG. 4). Microcontroller 500 selects each row of the touch circuits 9001 through 900 nm by providing the signal from oscillator 200 to selected rows of touch circuits. In this manner, microcontrolker 500 can sequentially activate the touch circuit rows and associate the received inputs from the columns of the amay with the activated touch circuit(s). To keep the path length 451 between the touch pad 450 and the base to the detection transistor 410 to a minimum, the detection circuits 900 are physically located directly beneath the touch pads. To simplify assembly, a flexible circuit board such as vended by Sheldabl, Inc, or Circuit Etching Technics, Inc. can be used for this purpose. Ideally, the printed circuit will be fixed directly against the surface (typically glass) bearing the conductive touch pads to eliminate air gaps and the need for conductive foam pads and spring contacts which were used to fill air gaps." Col. 18:34-59. \\
\hline
\end{tabular}

\section*{C. Amended Claim 28}
\begin{tabular}{|l|l|}
\hline 28. The capacitive responsive clectronic & The amendment does not substantively change \\
\begin{tabular}{ll} 
switching circuit as defined in claim 27, \\
wherein said detector circuit generates \\
said control signal only when [an] the \\
operator is proximal or touches said \\
second touch terminal within a \\
predetermined time period ater the & \\
operator is proximal or touches said first \\
touch terminal. & \\
\hline
\end{tabular} & \\
\hline
\end{tabular}

\section*{D. Amended Claim 32}
\begin{tabular}{|c|c|}
\hline 183 Patent Claim language & 183 Patenil Support \\
\hline 32. The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that \([a n]\) the operator is proximal or touches said first touch terminal. & The amendment does not substantively change original claim 32. \\
\hline
\end{tabular}

\section*{E. New Claim 33}
\begin{tabular}{|l|l|}
\hline 33. The capacitive responsive electronic \\
switching circuit as defined in claim 18, \\
further comprising wherein said detector \\
circuit compares the sensed body \\
capacitance change caused by the body \\
capacitance decreasing an input touch \\
terminal signal on the detector to ground \\
when proximate to the input touch \\
terminal to a second threshold level to \\
generate the control output signal.
\end{tabular} \begin{tabular}{l} 
See 183 Patent discloses "The touch detection \\
circuit of the present invention features operation \\
at frequencies at or above 50kHz and preferably \\
at or above 800 kHz to minimize the effects of \\
surface contamination for materials such a skin \\
oils and water. It also offer improvements in \\
detection sensitivity that allow close control of \\
the degree of proximity (ideally very close \\
proximity) that is required for actation and to \\
enable employment of a multiplicity of small \\
size touch terminals in a physical close array \\
such as a keyboard." Col. 5:49-57.
\end{tabular}

\section*{F. New Claim 3 3}
\begin{tabular}{|c|c|}
\hline 183. Patent Clam limguage & S33 Pintent Suppurt \\
\hline 34. The capacitive responsive electronic switching circuit as defined in claim 18 , furber comprising wherein said detector circuit compares the sensed body capacitance change caused by the body capacitance decreasing an input touch terminal signal amplitude on the detector to ground when proximate to the input touch terminal to a second threshold level to generate the control output signal. & \begin{tabular}{l}
See Clams 1, 18, 28. \\
The ' 183 Patent discloses "Another method for implementing capacitive touch switches relies on the change in capacitive coupling between a touch terminal and ground. Systems utilizing such a method are described in U.S. Pat. No. 4,758,735 and U.S. Pat. No. 5,087,825. With this methodology the detection circuit consists of an oscillator (or AC line voltage derivative) providing a signal to a touch terminal whose voltage is then monitored by a detector. The touch terminal is driven in electrical series with other components that function in part as a charge pump. The touch of an operator then provides a capacitive short to gromd via the operator's own body capacitance that lowers the amplitude of oscillator voltage seen at the touch terminal." Col. 3:44-56. \\
The ` 183 Patent discloses "The touch detection circuit of the present invention features operation at frequencies at or above 50 kHz and preferably at or above 800 kHz to minimize the effects of surface contamination for materials such a skin olls and water. It also offers improvements in detection sensitivity that allow close control of the degree of proximity (ideally very close proximity) that is required for actuation and to enable enployment of a multiplicity of small size touch terminals in a physical close array such as a keyboard." Col. 5:49-57. \\
The " 183 Patent discloses "Touch circuit 400 senses capacitance from a touch pad 450 via line 453 and outputs a signal to microcontroller 500 via line 401 upon detecting a capacitance to ground at touch pad 450 that exceeds a threshold value. The details of touch circuit 400 are described below with reference to FIG. 8." Col. 12:24-28.
\end{tabular} \\
\hline
\end{tabular}

\section*{G. New Claim 35}
\begin{tabular}{|c|c|}
\hline 183 Patemt Clam limguage & S33 Pritent Sisplust \\
\hline 35. The capacitive responsive electonic switching circuit as defined in claim 27 , wherein when the second touch temminal is not touched on its defining area by the operator to provide input, the control output signal is prevented. & \begin{tabular}{l}
See Figures 19,20A-C; and Clam 28. \\
The ' 183 Paten discloses "In another embodiment a method to prevent inadvertent so actuations is to require a multi-step process. Referring to FIG. 19, a device is shown having a first palm button 2201, a second palm button 2202 , and an indicator light 2205. Palm button 2201 has to be activated first and then button 2202 has to be activated within a 2 second time window before a desired actuation can occur." Col. 22:49-55. \\
The ' 183 Patent discloses "In a variation of the multi-step process, two touch plates within a housing (one vertical and one horizontal) are used to provide a two-step twm-on, Referring to FIGS. 20A-C, the first step to actuate the output relay 2310 , is intiated when the operator inserts his hands and touches the vertical touch sensor 2301 with the dorsal side of the hands. A yellow LED 2304 on top of the device show the successfal completion of the first step. The second step is to flip the hand over and touch the horizontal touch sensor 2302 with the palmar side of the hand. A red LED 2305 on top of the device shows the completion of the two step twro-on and activation of output relay 2310 . The flipping action of the hand in the second step causes the forearm muscles to flex, thereby reducing stiffness and fatigue. Also, the hands, and arms can rest on the run bar until the machine cycle is complete. The second step of the two-step tum-on must occur within some predetermined time (for example 2 seconds) after the release of vertical touch sensor or the first step must be repeated." Col. 23:19-36.
\end{tabular} \\
\hline
\end{tabular}

\section*{H. New Claim 36}
\begin{tabular}{|c|c|}
\hline 183 Patern Chaim language & 183 Pateni Suppurt \\
\hline 36. The capacitive responsive electronic switching circuit as defined in claim 27 and further including an indicator for indicating when said detector circuit determines that the operator is proximal or touches said second touch terminal. & \begin{tabular}{l}
See Claim 32. \\
The 183 Patent discloses "The microprocessor also allows the use of visual indicators such as LEDS or ammeiators such as a bell or tone generator to confirm the actuation of a given touch switch or switches. This is particularly useful in cases where a sequence of actuations is required before an action occurs. The feedback to the operator provided by a visual or audio indicator activated by the microprocessor in response to intermediate touches in a required sequence can minimize time lost and/or frustration on the part of the operator due to failed actuations from partial touches or wrong actuations from touching the wrong pad in a given required sequence or combination of touches." Col. 6:31-42. \\
The ` 183 Patent discloses "A further option is to provide one or more LEDS 2205 or audible annunciators for visual or audible feedback to the operator. Specifically, in FIG. 19 the LED 2205 will come on when button 2201 has been successtully activated to cue the operator that it is time to move to button 2202. Where required a second LED with a different color than the fist (yellow for the first LED and red for the second) can be provided to provide visual confirmation that the second button 2202 has been activated or that the required combination of the two buttons has been activated. Two different audible tone or sound generators could also be used in lieu of the LEDS to provide feedback to the operator." Col. 23:1-12. \\
The ' 183 Patent discloses "A red LED 2305 on top of the device shows the completion of the two step tum-on and activation of output relay 2310." Col. 23:28-30.
\end{tabular} \\
\hline
\end{tabular}

\section*{1. New Claim 37}

For ease of analysis, new independent cham 37 is shown below with pseado-amendments illustrating the differences between new claim 37 and orginal claim 27 of the ' 183 Patent.
\begin{tabular}{|c|c|}
\hline 18. Patert Climm Limguage & \$33 Yixem suppurt \\
\hline 37. A capacitive responsive electronic switching circuit for a controlled device comprising: & See Clam 27. \\
\hline an oscillator providing a periodic output signal having a predefined frequency, wherein an oscillator voltage is greater than a supply voltage; & \begin{tabular}{l}
See Figures 4, 5; and Claim 27. \\
The " 183 Patent discloses "Having provided a basis for the ase of higher frequencies the basic construction of the electronic switching circuit constructed in accordance with a first embodiment of the present invention is now described with reference to FIG. 4. The electronic switching circuit includes a voltage regulator 100 including input lines 101 and 102 for receiving a 24 VAC line voltage and a line 103 for grounding the circait. Voltage regulator 100 converts the received AC voltage to a DC voltage and supplies a regulated 5 V DC power to an oscillator 200 via lines 104 and 105. Voltage regulator also supplies oscillator 200 with 26 V DC power via line 106 . The details of voltage regulator 100 are discussed below with reference to FlG. 5." Col. 11:60-Col. 12:5. \\
The ' 183 Patent discloses "A preferred circuit for implementing a voltage regulator 100 is shown in \(F\) IG. 5. Volage regulator 100 preferably includes an AClDC convertor 110 for generating 29 V to 36 V unegulated DC on line 119. This unregulated DC power is supplied to a 5 V DC regulator 120 and to a 26 V DC regulator 130 . AC/DC convertor 110 includes diodes \(112,114,116\), and 118 , which rectify the supplied 24 V AC power provided on power hines 10land 102." Col. 12:50-57; see also Col. 12:58-Col 13:31. \\
The " 183 Patent discloses "The oscillator
\end{tabular} \\
\hline
\end{tabular}```


[^0]:    * 55 TOUCH LAMP, LATCHING AC SOLID STATE TOUCH SWITCH USABLE WITH SUCH LAMP, AND CIRCUITS FOR THE SAME, US PAT 3899713Assignee: HALL?BARKAN INSTRUMENTS, INC., (U.S. PTO Utility 1975)
    < 56 TOUCH OVERLAY FOR IMPROVED TOUCH SENSITIVITY, US PAT 5386219Assignee: International Business Machines Corp., (U.S. PTO Utility 1995)
    * $\quad 57$ TOUCH RESPONSIVE POWER CONTROL SYSTEM, US PAT 4939382 (U.S. PTO Utility 1990)
    * 58 TOUCH-RESPONSIVE SOCKET, US PAT 4101805Assignee: Destron, Inc., (U.S. PTO Utility 1978)

    59 TOUCH SENSITIVE CONTROL PANEL, US PAT 5012124 (U.S. PTO Utility 1991) 60 TOUCH SENSITIVE ELECTRIC SWITCH, US PAT 4289980 (U.S. PTO Utility 1981)
    61 TOUCH SENSITIVE ELECTRONIC SWITCH, US PAT 3879618Assignee: MAGIC DOT, INC., (U.S. PTO Utility 1975)
    62 TOUCH SENSITIVE POWER CONTROL CIRCUIT, US PAT 3666988Assignee: ROBERT E BELLIS, (U.S. PTO Utility 1972)
    \& 63 TOUCH SENSITIVE POWER CONTROL SYSTEM, US PAT 3919596Assignee: BELLIS ROBERT ELLIOTT, (U.S. PTO Utility 1975)
    64 TOUCH SENSITIVE SWITCH, US PAT 4360737Assignee: Leviton Manufacturing Co., Inc., (U.S. PTO Utility 1982)

    * 65 TOUCH SWITCH CIRCUITS, US PAT 4119864Assignee: RCA Corporation, (U.S. PTO Utility 1978)
    * 66 TOUCH SWITCH DEVICE, US PAT 4352141Assignee: Starcote Limited, (U.S. PTO Utility 1982)
    * 67 TOUCH TERMINAL WITH RELIABLE PAD SELECTION, US PAT 4374381Assignee: Interaction Systems, Inc., (U.S. PTO Utility 1983)

[^1]:    Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved. *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

[^2]:    Copyright © 2014 LexisNexis CourtLink, Inc. All rights reserved. *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

