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Figure 5.11: Rectangular region performance (UD scheme)
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Figure 5.12: Speedup of rectangular region decomposition (UD scheme)
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The percentage time of latency for this algorithm for the different test
images ranges from 1.4% for the stegosaurus image to 3.6% for the

mountain image. The latency increases corresponding to an increase
in dataset size, which is the same phenomenon observed previously.

Most remote references occur for the first scan line of a region

since it is necessary to retrieve the data from remote memory and
store it in local data structures. Once this is accomplished, the
majority of references are local, with the exception being a small

amount of remote referencing required in the anti-aliasing portion of
the code (this would be the same for each of these algorithms). The

remote referencing in the anti-aliasing section stems from the need to
obtain the plane equation for each polygon for stochastic sampling
purposes. Since the previous algorithm incorporates no vertical scan
line coherence, all the data for each scan line must be referenced

remotely. The rectangular region partitioning scheme capitalizes on
coherence within the region so that remote referencing is reduced.

5.1.2.6. Network Contention (5.6% - 33.1%)

The network contention is calculated in the same manner for this

algorithm as it was for the last one. Using this technique, the
percentage effect of network contention for the various test images

varies from 5.6% for the tree image to 33.1% for the stegosaurus
image.

The contention in this algorithm as compared to the parallel scan

line approach is worse for the stegosaurus and Laser images, but
improved for the tree and mountain images. It is difficult to speculate

as to the reason for this without further image analysis. Regardless,
one can see that even with a reduced number of references (as

compared to the parallel scan line approach), contention is still a

major degradation factor. Most of the increase in network contention
occurs as the number of processors is increased from 64 to 96

processors, indicating that the switch network becomes overloaded

with requests somewhere in this range.

5.1.2.7. Load Imbalance (4.3% - 11.5%)

The granularity ratio in this algorithm provides a better load bal-

anced system than the last. algorithm, although network contention

increases the execution time and this varies the overall finishing
times. The load imbalance percentages measured at 96 processors for

the different images varies from 4.3% for the mountain image to

11.5% for the tree image. When compared to the previous algorithm,
the load imbalance overhead is less for this algorithm, with the
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exception of the tree test image. The granularity ratio comparison in

figure A3 for this image indicates that load balancing is not particu-

larly good at any value of R and in fact gets worse after R = 24.
In general, though, this algorithm yields better load baiancing

than the scan line approach since the granularity ratio provides
enough tasks to minimize the load imbalance over a wide range of
processor configurations.

5.1.2.8. Coda Modification (7.9% — 9. 6%)

This algorithm has a difl'erent amount of coherence overhead than the
scan line algorithm since rectangular regions are generated as tasks.

Due to the rectangular nature of the regions, coherence is taken
advantage of in both the vertical and horizontal directions within a

single task. On the other hand, the lack of vertical scan line
coherence at the beginning of an area results in extra work required

to start the first scan line of a region. In addition, the lack of
horizontal coherence at the boundary to the left causes an overhead of

interpolating parameters for polygons which extend beyond this
boundary.

The code modification overhead is measured the same as before

using equation 4.8. Based on the measured values, the overhead
percentages vary from 7.9% for the mountain image to 9.6% for the

tree image. Considering the fact that there are many more tasks used
in this scheme versus the parallel scan line approach (2,304 vs. 484).
this overhead factor does not seem out of line in comparison.

5.1.2.9. Explanation of Results

The rectangular region decomposition scheme achieves reduced
overheads primarily in memory latency and to some degree in
network contention and load balancing, in comparison to the parallel
scan line algorithm. The reduction in latency is due to the fact that

most remote referencing occurs for the first scan line of an area, and

this effect is reduced in the rectangular region algorithm. This
suggests that the rectangular region decomposition algorithm will

perform better than the scan line algorithm in the general case due to
its performance advantages in the tests given. The scan line

algorithm exhibits poor scalability as P is increased since load
balancing will suffer as the number of scan lines approach the

number of processors. The rectangular region algorithm uses a fixed
granularity ratio which allows better load balancing as the number of

processors is increased; thus its scalability is superior to the parallel
scan line approach.
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It is important to note that this algorithm still has its share of
problems. Network contention still represents a significant overhead.

The code modification overhead is not reduced in this algorithm in
comparison to the scan line approach. A comparison of the major
degradation factors is given in figure 5.13.

Since the number of remote references is reduced in this

algorithm but contention was not significantly reduced, another tactic
is necessary to solve this problem. Consequently, it is necessary to

implement a different memory referencing scheme that is designed to
reduce the network contention noted in parallel implementations.

This memory referencing strategy is referred to as the locally cached
(LC) scheme and is described in the next section.

5.1.3. Rectangular Region Decomposition
(LC Scheme)

The algorithm described here is implemented exactly the same as the

last one, with the only exception being the remote memory
referencing strategy. A brief description of this strategy, denoted the

Locally Cached or LC scheme, follows. Instead of referencing globally

g Contention
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Figure 5.13: Degradation factors for rectangular region decomposition, (UD
Scheme, P = 96)
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shared data remotely, the data is cached into the local memory

module prior to referencing, thus allowing it to be accessible quickly.

Although others have used an elaborate software caching mechanism
for computer graphics rendering ([Gree89] and [Bado90]). we rely on

the fact that the exact data needed for a given task can be copied

directly to each processor prior to the computation of a given region.
Ifa data element is relevant to more than one processor, it is copied to

all processors which would reference it, incurring a space penalty.

The extra memory required due to duplication is shown in the
appendix in figures A3, A10, A11, and A.12. These figures show the

duplication of data by copying data elements as a function of the total
number of regions. Although the extra memory required is wasteful,
a tradeoff of space versus time is necessary to achieve faster memory

referencing than the previous Uniformly Distributed (UD} approach.
The cost of non-local memory access is eliminated by block

transferring data from its global storage location to the local memory
of the processor(s) that need it. Details of the LC scheme are given in
chapter 6.

5. 1.3. 1. Granuiarity Ratio

The granularity ratio R was re-evaluated for this algorithm to see
what a good ratio would be, since a different memory referencing
scheme is used. This ratio was tested at values of 2, 4, 8, 12, 16, 20,

24, 28, 32, 36, and 40 using the maximum configuration of 96
processors. Figure 5.14 shows the comparison for the Laser image as
an example. In the appendix, figures A.5, A.6, A.7, and A.8 show the

data for all the images. The downward slope of the curves is

primarily due to a reduction in load imbalance as a higher granularity
ratio is used. Then the curves continue upwards aiter a point since

the other culprits introduce more overhead cost for the higher ratios.

The minimum point on the curve is the optimal granularity ratio (R)

to use for a particular scene. Each scene exhibits different
characteristics which affect the choice of this optimal B so a

compromise must be made so that a single value ofR may be used in

the general case.
In this case, the choice of a good ratio spans a broader range than

in the UD scheme. The reason for this is the reduction in

communication and contention costs versus the previous method. It

seems like a good choice for R can be anywhere in the range from 12

to 1 up to 32 to 1. Since R = 24 was chosen for the previous algorithm

and the performance for that ratio with this scheme is nearly optimal
in most cases, this value will again he used. This ratio should provide
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good results for most imagery, given this machine configuration.
Graphs for the time and speedup of this algorithm with the LC

memory referencing scheme are given in figures 5.15 and 5.16.
The overhead factors for the rectangular region decomposition are

now discussed, using the LC memory referencing scheme evaluated at

96 processors.

5.1.3.2. Scheduling (0.004% - 0.017%)

The time to run a background task (T5,,.,;,) in this scheme is the same

time as the previous one, since the only difference between the two is
the memory referencing, which does not affect the background task.
This algorithm is faster than the previous one, so the overhead

percentage is slightly higher. Equation 5.5 is again used for
evaluating the overhead due to scheduling for this algorithm. Based

on this equation, the overhead due to scheduling varied from 0.004%
overhead for the mountain image to 0.017% overhead for the
stegosaurus image.
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Figure 5.14: Comparison of ratios for Laser image
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Rectangular Region Algorithm (LC Scheme)
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Figure 5.15: Tiling time for rectangular region partitioning (LC)
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Figure 5.16: Speedup for rectangular region partitioning {LC Scheme)



0129

Data Non-Adaptive Partitioning Scheme 117

5.1.3.3. Communication Overhead (0.03% - 0.05%)

Instead of latency due to remote referencing as in the UD case,

communication occurs in blocks in this algorithm, resulting in a
different overhead factor. This communication overhead is not

present in the UD referencing method. Recall that this overhead is

measured by a count of the total number of bytes transferred in the
system during the computation. Using equation 4.? given in the
previous chapter, the communication overhead range is 0.03% for the

stegosaurus image up to 0.05% for the mountain image. One can see
that these values represent a significant drop in the amount of time

necessary to transfer data in the system. Since the data is copied into

local memory, all future references occur locally. This means that the
total amount of data transferred is also reduced in comparison to the

UD referencing scheme.

5.1.3.4. Network Contention (3.1% — 16.3%)

Although there is some overhead necessary to set up the blocks of
data to be transferred in this algorithm, the deficit is more than made
up for by a reduction in network contention when compared to the UD
scheme. The calculated network contention overhead varies from

3.1%. for the tree image to 16.3% for the stegosaurus image. The
contention in this scheme is significantly less than in the previous

one. This indicates that the locally cached memory referencing

scheme does in fact reduce the messages in the system, which results
in reduced chances for a blocked switch node.

5.1.3.5. Load Imbalance (4.5% - 11.1%)

The load imbalance in this algorithm is measured the same as before,

using equation 4.11. The overhead percentages for load imbalance
vary from 4.5% for the mountain image to 11.1% for the tree image.

These values are nearly the same as those from the previous algo-
rithm, which is to be expected since they both use the same partition-
ing method.

5.1.3.6. Code Modification (5.4% — 6.4%)

The code modification overhead using the LC scheme is less than in

the UD scheme in all cases except the tree image. The measured
overhead ranges from 5.4% for the mountain image to 6.4% for the
stegosaurus image. The probable reason for the difference is that

communication is not completely factored out of the measurement
method. Recall that the measurement technique used for this
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overhead involves timing the program running on a single processor,
using MIN memory modules. The UD scheme involves remote

referencing to these memory modules, while the LC scheme does not.
Although the communication cost is factored out of the measured time

by counting the number of remote references or bytes transferred

respectively, it is impossible to factor out the system overheads. Since
the LC scheme will not likely include these to the degree that the UD
scheme does due to the method of memory allocation and deallocation,
the resultant code modification is a generally lower figure here.

5.1.3.7. Explanation of Fiesuits

Latency is no longer a factor using this memory referencing scheme,

and although communication overhead is introduced, it is minimal.

The change in memory referencing scheme also affects the overall
code modification, as reported above.

The load imbalance is nearly the same as the previous algorithm,
with the slight difference due to the effect of reduced contention in

this algorithm. The chart in figure 5.17 indicates the overheads for
the various images.

3 Contention Ld. Imbal.

Ef] Code Mod. [1 Usable Time

Percentage
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Figure 5.17: Degradation factors for rectangular region decomposition (LC
Scheme, P = 96)
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As one can see from the chart, network contention is still a

problem, although it is significantly reduced in comparison to the UD
scheme, especially for the more complex imagery. Load imbalance is

also a problem, although the algorithm should scale up fairly well,
especially when one takes into account the reduced contention using
this memory reference strategy.

In the next section, we introduce another partitioning scheme
which achieves even better load balancing.

5.2. Data Adaptive Partitioning Scheme
In a data adaptive algorithm, load balancing is achieved by construct-

ing tasks which are estimated to take nearly the same amount of

time. By using image space partitioning in a parallel graphics

rendering program, tasks can be determined based on the location of
data within the image. If the task work can be accurately predicted
by using a heuristic, then the granularity ratio R can be reduced,
resulting in less communication and scheduling. In fact, if the
adaptation can produce exactly the same size tasks in terms of work,

R can be reduced to 1. It is not generally possible to pick a very

accurate heuristic since factors such as depth complexity, polygon
area, and anti-aliasing all affect the time it takes to render a pixel.
Pre-processing of the data cannot take all of these factors into
account; otherwise it would require too much time. Following is a

brief description of several algorithms which fall under the data
adaptive category.

Whelan [Whel85] uses a data adaptive approach in his Median
Cut algorithm, although his application was for a hardware

architecture. His primary motivation was to reduce the scheduling
overhead associated with the type of dynamic task assignment used

in the algorithms discussed thus far. This is not necessary in a -
software multiprocessor approach since the Uniform System provides

scheduling with a very small overhead. Whelan's approach involves
task partitioning so that each task contains the same number of

polygons. He uses the centroids of the polygons to determine their

screen space location; however, extensive sorting is necessary to
determine the locations to place the screen space partitions. His

algorithm provides excellent load balancing, but the overhead cost of

creating the areas outweighs the benefit of adaptive partitioning.
Roble's [Robl88] approach is another data adaptive method which

also uses polygon location as a heuristic for determining tasks. His

approach involves a large amount of communication prior to the tiling
phase, and thus exhibits too much overhead as well.
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Although there are many different decomposition methods that
fall under the data adaptive method, one algorithm was chosen as a
representative example for implementation. The goal here was to

eliminate the excess overhead associated with this type of approach.
This algorithm is described next.

5.2.1. Top-down Decomposition

A partitioning scheme similar to Whelan‘s Median Cut algorithm is

used which takes comparatively less time to determine the task

partitions. This scheme is based solely on the number of data
elements in a region, regardless of the location of their centroids. The
heuristic in this algorithm is based on the assumption that the

number of polygons in a region is linearly related to the time it takes
to tile that region. Using this simple heuristic, good load balancing
can be achieved with a small overhead. The LC memory referencing

scheme is used in the implementation of this algorithm based on the
results shown in the previous section. The implementation is
described below. '

A 2D mesh is created as in the rectangular region decomposition,
but this time the mesh is 4 times as dense (i.e. iiregions =R'P'4).

Polygons are placed into the mesh during the front end portion of the
program as before, based on their screen space bounding boxes. Prior

to tiling, adjacent meshes are combined hierarchically and a sum of
the combined regions is stored in a tree data structure. This process
is repeated until a point is reached where the entire screen is in a

single region. Then, a data structure is created which consists of a

hierarchical binary tree of counts referring to the number of data
elements in each area.

After the tree is created, it is traversed in top-down fashion and

the area with the most polygons at a given point is then split into its
two components. This process is repeated by considering all areas
created thus far, splitting the one with the next most polygons. The
splitting process is stopped when the desired number of tasks has

been reached. A count of the number of polygons in each small area is

used, so it is not necessary to sequentially go through the entire list of
potential polygons to determine which polygons are relevant to each
area at this time. The limiting factor in the splitting is the leaf level,

which is why a fairly dense mesh is created at the beginning. An
example of this type of decomposition is illustrated graphically in
figure 5.18 and also in color plate 3.



0133

Data Adaptive Partitioning Scheme 121

After the tree has been traversed, each of the regions is available

for rendering in parallel. Some computational overhead exists for this
scheme prior to the tiling phase, but fewer tasks are created than in
the previous rectangular region approach. Figure 5.19 shows the

performance for the various images using the data adaptive approach,

with a value ofR = 10. This value ofR was determined empirically
similar to the methods used previously. It is less than the value
needed for the rectangular region scheme for good load balancing. A
perfect match would result in a ratio of R = 1 but that situation is
almost impossible to achieve using a heuristic which has minimal

overhead cost. The relative speedup for the top-down scheme is
shown in figure 5.20.

The time to build the tree data structure is not included in these

timings since it is not part of the tiling section of the program. This

time is fairly small anyway, but it is included in the overall algorithm
comparison presented in chapter 6. We now analyze the top—down

decomposition method with regard to the possible overhead factors.

5.2.1.1. Scheduling (o.oo3% — 0.01%)

This partitioning scheme uses regions that are not the same size, so
each background task does not take the same time. The areas consist
of groups of scan lines as before, but the number of scan lines and
their size diifer.

The average time to render the different background areas was
measured for the different images. The results were fairly consistent,

with an average background task time of 4.48 msec.

Figure 5.18: Top-down partitioning scheme
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Figure 5.19: Top-down decomposition performance
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Figure 5.20: Speedup of top-down decomposition method



0135

Data Adaptive Partitioning Scheme 123

This is more than Tsched (2.3 msec). which is the time it takes to

schedule 96 tasks, so no bottleneck will occur due to scheduling. As

before, the scheduling overhead is determined by plugging the values
for this algorithm into equation 4.5, as shown in equation 5.6. Using
this equation for 96 processors, the scheduling overhead for the test

images ranges from 0.003% for the mountain image to 0.01% for the
stegosaurus image.

gi-.—L)°24u.sec+(960-96)¢24psec
Scheduling at =2mo 100 %

9",, - 96 (5.6)

5.2.1.2. Communication Overhead (0.02% - 0.04%)

The communication overhead is measured the same way as in the

previous algorithm, by determining the number of bytes transferred
in the system and using equation 4.7 to calculate the overhead. The

values vary from 0.02% for the stegosaurus image to 0.04% for the
mountain image. The communication overhead percentage in this

algorithm is slightly less than in the rectangular region (LC) method
since there are fewer areas.

5.2.1.3. Network Contention (1 1.8% - 34.9%)

Unfortunately, network contention is a significant factor in this

algorithm, even more so than in the previous one. The network
contention overhead ranges from 11.8% for the mountain image to

34.9% for the stegosaurus image. The reason for this increase in

network contention is given here.
As was explained at the beginning of this section, a 2D dense

mesh is created, from which small regions are clustered together to

form tasks. The LG scheme requires communication from each of
these small regions which form the larger clusters in order to obtain

the data necessary for rendering a particular task area. Figure 5.21
illustrates this situation.

In order to render the cluster composed of sub-regions 1, 2, 3, and

4, it is necessary to retrieve the polygons from these sub-regions.

This requires a block transfer from each of the sub-regions, whereas
the rectangular region algorithm requires only one block transfer for
the entire region. There may be even more than four sub-regions

which are part of a larger cluster. Although the total amount of data

is not large (evident by the communication factor given previously),
the number of messages is higher than in the rectangular region
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algorithm due to this copying from sub-regions. In addition, the

frequency of these communications is greater since they proceed one
right after another. The block transfer mechanism in the GPIOOO

which is utilized in the LC scheme holds a message path open for as
long as it is needed to transfer the data. Therefore, more collisions

are likely to occur in this algorithm due to the increased number of
messages required, resulting in high network contention.

5.2.1.4. Load Imbalance (1.5% - 6.9%)

The goal of better load balancing was achieved in this algorithm,
using a smaller granularity ratio than the rectangular region
approach. The percentage overhead for load imbalance varies from

1.5% for the stegosaurus and mountain images to 6.9% for the Laser
image. This algorithm achieves better load balancing than the

previous algorithm, with minimal expense required to build the
hierarchical tree data structure. It therefore overcomes the

limitation noticed in Whelan's and Roble‘s algorithms, which also
used a data adaptive scheme. More details on the overhead time

required for the tree construction are given in chapter 6.

5.2.1.5. Code Modification (2.5% - 3.3%)

The overhead due to code modification is much smaller than in the

rectangular region approach. This overhead ranges from 2.5% for the
mountain image to 3.3% for the Laser image. The reason for the
reduction is that there are fewer total tasks and each task area is

larger, reducing the overall coherence loss.

Retrieve data from each

sub-region"

Region

Figure 5.21: Block transfer of data from sub—reg'ions for topdown decomposi-
tion
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Looking back at figure 5.21, it can be seen that it is likely that a
number of polygons cross over several sub-regions but are singularly
contained within the main region to be rendered. Unfortunately,

short of a direct comparison of all polygons there is no way to detect if

a given sub—region is sending the same polygon as another sub-region,
due to the usage of the LC memory referencing scheme. If a polygon
is sent from two or more different sub-regions as a result of its

overlapping these regions, that polygon is rendered more than once.
This is a direct function of the duplication factor for the given mesh
size. The overhead of this occurrence is difficult to determine since

not all polygons which are duplicated are rendered more than once,
only those that are duplicated across sub-regions and are part of the
same higher region. This duplication of rendering is included in the

code modification overhead given previously.

5.2.1.6. Explanation of Results

The goal of the data adaptive top-down scheme is to maintain good
load balancing. The implementation here achieves this goal, but due
to the method of data transfer required by the LC scheme, additional
contention is introduced. There is also the additional cost of con-

structing the tree data structure, but this cost is offset by the reduc-

tion in the number of regions resulting in reduced code modification
overhead. The times for the tree building are not included here since

this chapter deals with a comparison of the algorithms‘ tiling section,
but they are given in the next chapter. The chart in figure 5.22 shows
the overhead comparison for the various images.

It can be seen that all of the overhead factors have been reduced

compared to the previous approaches, with the exception of network

contention. This algorithm requires a dense mesh to be created for
determination of the regions. As P is increased, the mesh will need to

be even denser, and this may result in even higher network
contention overhead and duplication of polygons. As a result, this

algorithm may not exhibit good scalability for very dense meshes.

It might be possible to create the mesh in some other manner

which does not result in as much overhead, but other methods were

not explored here. For example, if one were to try to determine the
clusters from the top down, a pseudo—parallel method could be used

whereby tasks are spawned off according to the level of the tree
traversed. A large amount of synchronization would be necessary to
implement this technique, and the result might involve more
overhead than in the current implementation. One of the problems

with the algorithms discussed thus far is that they rely on a good
choice for the granularity ratio.
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Unfortunately, empirical testing must be employed to determine

what the best value is for a given situation. In fact, it is possible that
the value might need to be changed when the number of processors is
increased significantly beyond 96. The next section covers an

algorithm that does not rely on a predetermined granularity ratio,

but instead achieves load balancing by dynamically partitioning
existing tasks into smaller ones when a processor needs work.

5.3. Task Adaptive Partitioning Scheme
The task adaptive methodology relies on an algorithm's capability to

dynamically partition tasks as the program is running. If tasks
cannot be adaptively partitioned, then that algorithm is not well
suited for dynamic task splitting. Fortunately, the serial scan line Z-
buffer algorithm upon which these parallel algorithms are based

consists of independent regions, and there is no required order of
execution between these regions. The task adaptive algorithm

consists of the following steps:

1. When a processor needs work (call this processor P5), it
searches among the other processors for the one which contains

§ Contention Ld.Imbal. Q Comm.
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Figure 5.22: Degradation factors for top-down decomposition (P 2 96)
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the most amount of work left to do (call this processor P,,,,,,).

2. The P3 processor then sets a lock preventing any other
processor from splitting P5,“.

3. Pg partitions P,,,,,,,'s work into two segments; the first segment

goes to Pm“ and the second segment goes to P3.
4. P, then copies the data necessary for it to work on the second

segment.

5. P, unsets the lock and starts doing its work.

This task adaptive scheme could be tacked onto any of the

previous algorithms, so that additional load balancing would be
ensured toward the end of the computation. For the implementation

here, the rectangular region decomposition scheme was chosen as a

basis parallel algorithm since it is fairly simple to work with in

developing the heuristic for step 1. A description of this parallel

algorithm is given next.
instead of attempting to choose an optimal granularity ratio, the

number of areas is initially set equal to the number of processors (R =
1). When a processor has finished computing its area, it executes

steps 1 through 5 above. In order to do this, it was necessary to come
up with a method for determining the amount of work a given

processor has left to do. Since all of the areas are the same size, the

number of scan lines lefl; to render in a particular area is used as an
indication of how much work there is left on a given processor. This
proceeds as follows.

During the tiling portion of the computation, each processor
updates a shared variable corresponding to the number of scan lines

it has left to compute. P, quickly runs through these variables

checking for the processor that has the maximum number of scan
lines left. Once it finds the processor with the most scan lines left

(P,,..,,_.), P, proceeds to split P,,,,,, as is shown in figure 5.23. Color

plate 4 shows an illustration of this process after completion. Pm” is

not interrupted during this time.

The splitting mechanism prevents a race condition from occuring
if several processors attempt to split the same region simultaneously
or, alternatively, Pm“, attempts to work on a portion of its region
which is to be split. The first instance is solved by using a test and

lock methodology in which a splitting processor checks to see ifPm,
is currently being split and if so, this splitting processor finds another

processor to split. The second case is solved by updating a shared
variable which Pm“, checks to determine the last scan line for it to

calculate. Neither case requires P,,,.,,, to be interrupted from its work,

thus avoiding any synchronization delay.
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A threshold must be chosen which limits partitioning of tasks
when the cost of the actual partition exceeds the cost of running the

task serially. Through empirical testing, it was determined that
partitioning a task with only two scan lines left does in fact yield good
performance, so this was the threshold limit set. A task which

contains no polygons is not allowed to be split since the only work
involved is sending the scan lines to the virtual frame buffer.

Since P, splits Pm“ into two tasks, it makes sense for Pm“ to

continue working on the upper task while P, takes the lower one.

This allows coherence to be maintained in P,,u,_,'s region without any
additional overhead. The performance for the task adaptive scheme

is given in figure 5.24. The speedup for this scheme is shown in figure
5.25. Although a bit of extra coding is required to handle the splitting

operation and data retrieval processes, the algorithm is fairly
straightforward to implement.

During the splitting process, it is necessary for the P, processor to
obtain data from the Pm“ processor. Instead of determining exactly

which data is relevant to the region that P, will work on and
retrieving only this data, it is simpler for P, to retrieve all of the data
from Pm, and discard the portion that is not relevant to this new

region. This requires a bit of extra communication, but the overhead

is minimal compared to any method where either P, or P,..,,, would try
to determine the exact relevant data. This is due to the fact that

extra synchronization would be required in determining the exact
dataset, whereas the "copy and discard" method requires no
synchronization at all.

We now analyze the task adaptive scheme with regard to the

various overhead factors. One of the problems in determining these

Pmax

prior to splitting

. . . . . . '. .Dvio-¢O'6fOI |v+-O04
.°.t.-.-.vr.-.-.-.-.+.a+ *

Figure 5.23: Dynamic splitting ofregions for task adaptive scheme
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factors is the measurement of the total number of tasks. A new task

occurs when a processor tries to split another region. The task time

includes the time to split a processor's work plus the rendering time.
Since the number of tasks varies somewhat depending on the run, it

was determined based on an average of five runs. This number varied

by less than 1%, so the average is a fairly good indication of what

might be considered the actual number of tasks.

5.3.1. Scheduling (0.00006°/o - 0.00023‘/s)
The number of areas in this scheme is not known ahead of time since

the tasks adapt to the work available. Once all of the regions are

started, parallel scheduling ceases since the task adaptation is then
rim on each processor locally. Therefore, the total scheduling time is

just Tag; * 96 or 2.3 msec. This represents an overhead ranging from

0.0{l0D6% for the mountain image to 0.010023% for the stegosaurus
image.

5.3.2. Synchronization (0.16% - 2.3%)

It is necessary to determine the amount of time wasted by
spinning in a lock, in addition to the extra work needed to determine
which processor to split. These two factors constitute the

synchronization overhead which was given in equation 4.9. The value
for this overhead varies from 0.16% for the tree image to 2.3% for the
Laser image. While the time wasted in synchronizing may not be

particularly small in some cases, it is necessary in order to facilitate
the dynamic partitioning scheme of the task adaptive algorithm.

5.3.3. Communication Overhead (0.11% - 4.2%)

The communication overhead in this algorithm is measured the

same as the previous algorithms. The overhead varies from 0.11% for

the stegosaurus image to 4.2% for the Laser image. The number of

bytes communicated in this algorithm is much higher here than in the
other approaches, which accounts for the higher overhead percentage.

The reason for this is given next.
At the time a task is split, the splitting processor (P5) retrieves all

of the data relevant to the splittee (P,..,.,,). The data which is unnec-

essary for the portion of the task which P, is to work on is then
discarded. At the end of the computation, a large amount of splitting

occurs due to dynamic load balancing.
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Task Adaptive Algorithm (LC Scheme) Performance
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# Processors

figure 5.24: Tiling time for task adaptive scheme

12 24 as 43 so 72 34 95

#Pr0cessors

F‘ig'ure 5.25: Speedup of task adaptive scheme
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The areas to be split at this point in the computation are small,
but the amount of data to be transferred is large since it is derived

from the initial decomposition area. This creates communication of
unnecessary data, which is then discarded. Reducing this
communication requires extra synchronization, but preliminary

studies indicated that performance degraded even worse than if it

was not done. In the case of the Laser image, most of the initial areas
assigned as work involve background color. These processors finish

quickly and then start splitting other processors’ work. Since the few
processors which are split contain the bulk of the data, a lot of
communication occurs. A solution which relieves the extra data
transfer in this situation would reduce the communication and

contention overheads if it were possible to implement it without
significantly increasing the synchronization costs.

5.3.4. Network Contention (5.5% - 11.7%)
The overhead percentage for network contention ranges from 5.5% for
the mountain image to 11.7% for the stegosaurus image. Even with

the extra communication, the contention measured in this algorithm

is only slightly higher than in the rectangular region (LC) scheme.

5.3.5. Load Imbalance (9.2% - 22.5%)

This algorithm tries to minimize load imbalance by using heuristics to

dynamically split tasks during parallel execution. The limit of the
task size which can be split is set to two scan lines. The load

imbalance overhead percentages vary from 9.2% for the mountain
image to 22.5% for the tree image. If the only tasks that are left are
single scan line tasks, processors which are idle will not be able to

find a task to work on. Since the granularity of tasks which cannot be
split (a single scan line within an area) is fairly large, the idle time for
a processor with no work left can be high, resulting in additional load

imbalance. Of course single scan line tasks could be split into two
parts as well, but this feature has not been implemented at this point.

Further research is needed to see if these tasks can be split, or if some
other solution is possible to reduce the excess idle time.

5.3.6. Code Modification (0.4% - 1.5%)
The code modification overhead is measured the same as in the other

algorithms. The overhead percentages are fairly small and range in

value from 0.4% for the stegosaurus image to 1.5% for the Laser
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image. These figures are expected since the number of tasks is the
smallest of all the algorithms. Consequently, most of the tasks

consist of large areas where coherence is maintained. In addition,
even when a task is split, the split processor is not interrupted and
coherence is not lost for its task.

5.3.7. Explanation of Results
The task adaptive method is an attempt to directly load balance the

system by dynamically extracting work when a given processor would
otherwise be idle. The solution allows a granularity ratio ofR = 1 for
the initial decomposition. A graph showing the primary overhead

contributors is given in figure 5.26.
Unfortunately, the load balancing of this scheme was not as good

as was anticipated. Since load balancing is due to the total idle time
at the end of the computation, this suggests that processors have quit

looking for work too early. The threshold for splitting work imposed
here is that a single scan line task cannot be split. Perhaps a scheme
could be worked out to allow horizontal splitting, but this would be

fl Contention

[II Usable Time

Image

Figure 5.26: Degradation factors for task adaptive algorithm (P : ()6)
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difficult to implement and the synchronization involved may outweigh
the benefit of splitting.

Synchronization is an additional overhead in this algorithm, but
it was not a significant factor in performance degradation. The

communication cost in this algorithm is somewhat larger than the

other LC schemes, due to the dynamic partitioning of this dataset.

The code modification here is the smallest of all the algorithms since
the number of areas generated is initially equal to P. In addition,

coherence is maintained in the upper portion of a split area reducing
the parallel execution overhead. Network contention seems to be only

slightly worse than in the rectangular region (LC) scheme. Toward
the end of the computation when dynamic load balancing is taking

place, there is a flurry of communication, and this causes network
contention to increase at this point. The burst of communication is

due to the dynamic splitting of small tasks at the end of the
computation. Reducing this last amount of communication is rather
diflicult in the LC scheme: the reason is described next.

In the task adaptive algorithm, the splitting processor copies all of

the data necessary for the entire original size area and then deletes
the excess data locally. Ideally, it would be desirable to only copy the
data which is needed for the scan lines for which this processor is
responsible. The time required to do this would be prohibitive since

there are only two ways: 1) the splitting processor remotely

determines which polygons are relevant or 2) the processor being split

must be synchronized to stop what it is doing and then determine
which polygons are relevant for the splitting processor. The first
method would require more communication than in the current
implementation. The second method requires extra synchronization,
plus P,,,,,,, would have to construct a new data structure, and this

takes time away from its primary work. Thus, when using the LC
scheme, it only makes sense to copy all of the data for the area. In the
next chapter, the performance of the task adaptive scheme is

analyzed using both the UD and LC memory referencing schemes for

the entire program, to see if any difference is noted.
In an attempt to explore other load balancing strategies, different

heuristics were tried in order to estimate the maximally loaded

processor. For instance, instead ofjust using the number ofscan lines
left as the heuristic, the total number of polygons per scan line for all
the scan lines lefi. was used. The idea was to evaluate the work in

terms of polygons since the lower half of a region to be split could
possibly contain no polygons. This method required the splitting

processor to retrieve from shared memory an additional value which
corresponded to the heuristic. It was also necessary to update this
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heuristic from scan line to scan line, whereas the previous heuristic

required just a simple subtraction operation. As a result, the benefit
of this new heuristic was outweighed by its cost, and it proved to have
worse performance than the simple one.

Finally, as was mentioned previously, it may be worthwhile to try
breaking scan lines into half scan lines to allow a splitting processor

to split single scan lines. This would require extra synchronization,
but it is possible that the load imbalance would be reduced if the
overhead to do this is small. This was not implemented in the test

program, and could be done as part of future research.

This algorithm does exhibit good scalability since the algorithm
adapts to the scene and divides the tasks accordingly. Its principal

advantage is that the number of tasks does not need to be chosen

initially, making the granularity ratio analysis unnecessary. In
addition, in the next chapter it is shown that the overhead in the

front end for this scheme is less than in the other algorithms due to

the reduction in the total tasks required in the initial decomposition.

5.4. Conclusions

In this chapter, the maximum potential performance for each of the

implemented algorithms is evaluated. This is done by analyzing the
tiling portion of the programs. A summary of the results obtained
with regard to the influence of the various overhead factors is
presented next.

The scheduling overhead is minimal for all of the algorithms
discussed here. Since the execution time for the simplest task

(background color) is greater than the critical time needed for
scheduling, this overhead is not a factor in performance degradation

in any of the algorithms.
Synchronization is an important consideration in the task

adaptive algorithm due to the dynamic task partitioning. The

overhead of synchronization does not degrade the performance

significantly, as it turns out, so it is not considered to be a major
degradation factor.

The issues of latency, communication, and network contention are

all intertwined since they are related to passing data through the

interconnection network. Memory latency is relevant to the scan line
algorithm and the rectangular region algorithm since those

algorithms are implemented using the UD memory referencing

scheme. The latency is somewhat smaller for the latter method, due

to the reduction in the number of remote memory requests as a result
of better exploitation of coherence. Communication comes into play
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for the LC schemes and results in more efficient use of the

interconnection network, with the benefit being a reduction in

contention. Graphs which show the total amount of performance

degradation for each image are included here so that all of the
algorithms may be compared side by side. These are shown in figures
5.2? through 5.30 at the end of the chapter. The graphs are shown in

such a way that the total of each column is the total processor-time

space. This is the same as the parallel execution time Tp multiplied
by the number of processors P (in this case, P = 96). Therefore, the
column with the least height is the best performing algorithm for that

particular image. Based on the data shown in these graphs, one can
see that the rectangular region (LC) algorithm results in the lowest
overheads, and consequently the best performance in the tiling
section.

Hot spot contention is not a factor in any of these algorithms.

This is because the large data structures are distributed across the

memory modules. Copying of small data structures to local memory is
also employed if these structures are referenced frequently. Although
there may be frequent references to common data structures, this

method of scattered storage ensures that performance is not degraded

since no hot spots exist in any of the programs.

Load balancing is a primary goal of any parallel implementation.
The only algorithm in which the load imbalance is significantly
reduced is the data adaptive algorithm. The task adaptive algorithm
exhibits the worst load balancing ofall the algorithms. The probable

reason for this is the lack of splitting at the scan line level (that is,
below the threshold). Surprisingly. the scan line algorithm does not

exhibit much worse load balancing than the others. This changes as

the number of processors is increased since the number of tasks
available for each processor is reduced.

The primary overhead due to code modification is the loss of
coherence. The parallel scan line algorithm exhibits total loss of

vertical scan line coherence. The number of regions created in the

two rectangular region schemes introduces some loss of coherence in
both the horizontal and vertical directions. Since the top—down and

task adaptive algorithms require fewer regions than any of the other
approaches, the code modification overhead for these methods is
small.

Scalability is one of the most important characteristics of a

parallel algorithm. In evaluating these implementations, it seems

evident that the parallel scan line algorithm does not exhibit
particularly good scalability. In table 5.2, each of the implemented
algorithms is compared for each image, using 96 processors. The

1
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times listed are an average of 3 runs, although the difference between
each run was less than 1%.

From the table we can see that the data non-adaptive rectangular

region (LC) scheme provides the best results in most cases. The
comparison is only for the tiling section of the program and does not
include the overheads inherent in each of the LC algorithms. Also,

the overhead of building the tree data structure necessary for the the
top-down data adaptive algorithm is not included. It is important to

not make any judgments as to the usefulness of any of these

algorithms at this point since there are numerous other factors that
must be examined to determine how well they will perform in the

general case. The analysis here is purely with respect to the

performance of the tiling section of the algorithms since this section of
the program is where the most parallelism can be exploited.

‘Table 5.2: Comparative times in seconds of tiling for all algorithms on 96
processors

Lc scheme

_ Rect. Region Rect. Top-Down Task
1""‘g°“ S°'“‘1"“’ (UD) Region (LC) Adaptive Adaptive

s..,..m. 12.66 10.16 9.94
Lm E use was

24.88 25 70 22.72

59.35 40.31 39.93

26.4 1

The setup operations prior to the tiling section vary depending on

the algorithm used for task decomposition. If these costs are high for
a particular method, the overall performance is affected. These costs

are included in the analysis in the next chapter to give a better
overall view of the performance of the implementations. The different

shared memory referencing strategies are investigated and analyzed
in the next chapter as well.
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Figure 5.27: Comparison of overheads for algorithms, stegosaurus image

fl Contention Ld. Imbal.

E] Code Mod. I Synch.
2100

1800

I500

I200

Cumulative

Time 90°

Sequential Time

Scanlin: 1m.1u;m(un Reel. Region Top~Down{LQ TnskMapz‘zve(L

Algorithm

Figure 5.28: Comparison of overheads for algorithms, Laser image
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Characterization of

Other Parameters on

Performance

In this chapter, a number ofparameters are investigated which differ
from those discussed thus far. The purpose here is to produce a

comprehensive study of the shared memory referencing strategies and

further evaluate the performance of the various algorithms under a
variety of conditions. Several ditferent shared memory storage and
referencing methods are analyzed in the first section. The

implementations of the Uniformly Distributed and Locally Cached
schemes are described in detail in this section. A framework is

presented which allows a straightforward comparison of these
schemes using the task partitioning implementations discussed in the

previous chapter. In the second section, the effect of machine

parameters such as the operating system and architectural
characteristics are evaluated in regard to algorithm performance. In

the third section, a number of additional characteristics such as

image and object complexity are varied to see how overall algorithmic

performance is affected. The comparisons in this chapter are
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intended to provide a broader base for determining the relative merits
of each of the parallel approaches which have been implemented.

6.1. Shared Memory Storage and Referencing

The idea of partitioning image space segments for use in a parallel
graphics rendering algorithm can be extended to memory referencing
as well. The scene data used in the graphics rendering algorithms is
read in from disk and then processed in the front end. The polygons

are then transformed from three-dimensional space to image space

and become read-only data thereafter. As such, the read-only data
can be partitioned in numerous ways for referencing during the tiling

portion of the program. Three alternative data storage and access
schemes for use in a parallel graphics display algorithm are presented
in the subsections which follow. A brief description of these schemes

is given next.

If enough memory is available, all of the data could be copied to
each processor's local memory; then no remote memory access is
necessary after the copying phase is completed. This storage and
access scheme is analyzed in the first subsection below. The second

scheme involves scattering the data among the memory modules in
the system and referencing it remotely. In the third technique, the
data is scattered initially as in the second scheme, but then a

reorganization is required to allow the data to be copied to the local
processor's memory as it is needed. This last method allows local
referencing after the copy is completed and is described in the third
subsection. The second and third methods are the same as the UD

and LC memory referencing strategies discussed previously. Here,

their theoretical performance is analyzed, and a full description of the
implementation details is presented.

A dataset which would contain 100,000 points and 100,000
polygons is used for theoretical analysis. The front end process

removes a number of backfacing polygons, conservatively eliminating

U3 of the original data (this assumes a given polygon is not both front
and backfacing). Below, the amount of memory required for this
dataset is given after transformations and backface rejection have
been applied. The assumption in this case is that a mesh of size 48 x

48 has been placed over the image. This corresponds to the number of

regions generated with a granularity ratio of R = 24 on 96 processors

using the rectangular region task partitioning scheme.
When applying a mesh over the image, a polygon (or polygon

pointer) needs to be duplicated for each region that a given polygon
crosses over. This duplication is based on both the size of the
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polygons and the granularity of the mesh. The mountain image
contains approximately 83,000 polygons after baclcfaces are removed.
As an example of the duplication, figure A12 in the appendix shows

that for this image, 130,000 polygons are created after duplication
using a 48 x 48 mesh which is an increase of 57%. Using the 100,000
polygon test situation and this same percentage increase as an

example, we can expect to lose 33,333 polygons to baclrface rejection

and then gain 5?% more polygons from duplication, resulting in a
final total of 105,000 polygons. We assume that this results in

105,000 points as well, although this latter value is typically smaller.
The analyses given next take into account the additional time

required to access data beyond a normal local memory access. This
includes any setup time specific to each scheme in addition to any

latency incurred.

6.1.1. Copy Data to all Processors

This method involves copying all the data to all of the processors in

the system. No remote referencing is required after the data is
copied, so no communication overhead is incurred during the tiling
portion of the program. To ascertain the cost of copying the data to
all processors, let us estimate the time to copy 105,000 points and

105,000 polygons to 96 processors. This copying can be accomplished

in parallel by creating a binary tree of processes in which the data is
copied throughout the network from processors that contain data to
neighboring ones that do not. This copying process is repeated until
all processors contain data. The number of times this is repeated is

the height of the tree, namely ceil(log2(96)) or 7. Each data point
contains 3 floating point values consuming 12 bytes, and it is

assumed that each polygon is a quadrilateral. Using the storage data
format described previously in section 4.1. 1, a single polygon takes up
10 bytes. '

The memory required for all the data is then 105,000 * (12 + 10)
or 2.31 million bytes. Equation 6.1 shows the communication cost

with block transfers of 256 bytes, each using the binary tree copying
technique.

Tcamm == iflevels * #transfers * (Temp + 256 ‘Tail (5,1)

Ts,_.,,,,, is 8 usec and T5, is 0.25 usecfbyte for block transfers on the
Butterfly GP1000. The number of levels is 7, and the number of block
transfers is (2.31 million}J’256 or 9,023. Plugging these numbers into
the equation results in an overhead time of 4.548 seconds. This time
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does not include the time to copy normals or the polygon information
data structure which contains the bounding box of the polygon, a

pointer to its location in the polygon list, and other information. If

these are required, the time would be more than double, although it is
possible to create both data structures locally on each processor

instead. The memory required for all of these data structures, in
addition to the data structures needed for scan conversion, exceeds

the 4 megabyte limit per processor available in the BBN GPIOOO.
The preceding analysis assumes that no network contention

occurs during the copying process. This will not be the case after a
few levels of the copying tree have been completed since there are not
that many unique switch paths in the Butterfly and some may
become blocked. This might be avoided by copying less data

simultaneously, but that adds levels to the tree. There is also the
issue of copying the normals and other necessary data structures or

regenerating these locally. Regenerating the normals adds time to
the computation, but not to the copying process. Alternatively, the
potential for increased network contention exists if the normals are

copied. A more detailed analysis is needed to adequately evaluate
this issue, but it is not necessary for the purposes here since

conclusions can be drawn without such an analysis.

This copying scheme uses a huge amount of memory so that

subsequent references to all data can be local. The amount of data
that any processor really needs to perform its tasks is significantly

less than the entire input dataset, since each task will likely refer to
only a small subset during the tiling operation. Therefore, this
scheme makes inefficient use of the network and storage resources.

The potential for network contention increases as larger processor
configurations are used. The reason is that the number of processors
increases linearly, while the number of switch paths increases

logarithmically. In addition, more memory is required" than is

available per processor, so this scheme is not generally usable except

for smaller datasets. Even for machines which might have enough

memory per processor, it is still evident that this method is
inadequate for general use. The next scheme makes better use of the
memory in the system.

6.1.2. Global Referencing

The basic idea in global referencing of shared data is to distribute the
data and references throughout the system. This avoids hot spot

contention since the data is not in a single location, although latency
and network contention are introduced during the tiling section. This
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technique allows the aggregate memory available in the system to be
used so that it can be considered as one globally shared memory. The

data is stored so there is only one copy in the system, which conserves

system memory in addition to the time savings resulting from not
copying unnecessary data.

This method is essentially the same as the shared memory

storage in bus-based architectures such as the Encore Multimax or
Sequent Balance. These computers, known as Uniform Memory
Access (UMA) architectures, use such a scheme in all programs since

a global view is provided of memory in these architectures. They

incorporate a number of different processor boards connected to a bus,
on the other side of which is a number of memory boards, as was
illustrated in chapter 3, figure 3.2. The term UMA refers to the fact
that every processor is the same distance from global memory,

resulting in an equally distributed communications overhead. This
technique can be emulated in software on the Butterfly, where it will

be referred to as the Uniformly Distributed (UD) approach to shared

memory referencing. A brief description of this scheme was given in
section 4.1.1.2, which presented the design of the front end to all the
algorithms. The data is scattered throughout the memory modules as

it is read-in and then referenced remotely in the tiling portion of the
program. After this scattering of data, each processor contains

approximately NIP polygons; that is, the dataset is evenly divided

among the memory modules. Since the data is scattered throughout

the system uniformly, an average of UP of the references to shared
memory will actually be to data stored locally. Although this

percentage is an average, it is likely that the deviation from this
average must be large. The worst case situation, where all of the data
referenced by a given processor is stored remotely, is actually a more
realistic scenario. The reason for this expectation is due to the screen
space locality of data. Most of the references for a given task will

likely be to a particular processor or group of processors rather than

scattered throughout the entire system: An estimate of the remote
referencing time overhead in the tiling section using this shared

memory referencing strategy is presented here with the assumption
that all references to global memory are remote references.

The integration of scattering the data with reading in objects in
the front end allows the front end work to be accomplished on each

processor without any remote referencing. The time for the front end
work does not need to be accounted for in the following analysis since

there is no difference among the memory strategies in the way this is

performed. The remote referencing time overhead is given in
equation 6.2.
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Tiatency = #HEf8 * (Tm! - Timer) (5,2)

Tmf is the remote referencing time which is 7 psec. Tyre; is the
local referencing time, which is 0.53 usec. The latency factor is the
time difference between these two values. The number of remote

references in the tiling section is based on a number offactors. Due to
the construction of local edge lists, each point must be referenced 3

times and each polygon once. Since each point contains 3 floats, the
number of point references is 3 * 3 * 105,000, or 945,000 point

references. The number of polygon references is 105,000 polygons * 5

shorts per polygon, or 525,000. In addition, about 5 references are
needed per polygon to obtain the polygon pointer from remote

memory, as well as other polygon information adding up to 525,000
more references. There is also one reference for each normal, which

results in 3 floats per normal * 105,000, or 315,000 references for
normals. The total number of references per processor on 96

processors in parallel is then 1/96 * (945,000 + 525,000 + 525,000 +
315,000) or approximately 24,063 references per processor. The
communication time is then: 24,063 * 6.47 psec or 0.1557 second.

This analysis is very simplified since network contention is not

taken into consideration. The edge list data is stored locally after it is
remotely referenced, so it does not need to be referenced remotely
again. A number of remote references to the points list are required

in the anti-aliasing portion of the program which are not accounted
for in the values derived above. That section of the code could be

optimized to allow only one remote reference per point by using

temporary storage, but we have not implemented such an
optimization. As shown here, the small overhead for this scheme
makes it attractive for implementation. Next, the details of

implementation are described in regard to this scheme.

Implementation of the UD Scheme

During the front end, as the polygons are read in, it is necessary to
determine in which area(s) of the 2D screen mesh a given polygon
may belong. A short pseudo—code segment shows how this is done:

On each processor:
For all polygons on this processor 0{NfP)

For all areas in mesh this polygon
crosses over 0(c)

Lock meshli, j)
Load polygon pointer into end of
area[i] [j] linked list‘.
Unlock mesh{i.,j)
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The time complexity is based on the number of polygons on a
given processor after backface rejection (N I P} multiplied by a
constant (c). This constant is the number of areas a polygon can cross

over, and is related to the size of the polygons and the size of the
mesh. The duplication graphs in the appendix in figures A.9 through

A12 indicate the total number of polygons after duplication, based on
mesh size. The duplication factor is the number of polygons after
duplication divided by the original number of polygons. This factor,

which would be the average number of iterations for the inner loop

above, goes from approximately 4 for the stegosaurus image to 1.5 for
the mountain image, with a mesh size of 48 x 43 (2048 areas). The

locks are needed so that only one processor at a time adds a link to

the shared link list (area[i][j]). A separate lock exists for each area in

the mesh, Figure 6.1 illustrates the storage of polygon pointers in the
area mesh.

During the tiling operation, a separate area is assigned to each
processor as a single task. The processor then traverses the polygon

linked list and constructs local edge lists for use in the tiling
operation. The pointers in these links are scattered throughout global
memory so a global reference is required for each link, but this is only
needed during the initial traversal of the list. These global references

are included in the preceding analysis. This implementation of the

Shared Area Mesh

Linked list

ofpolygon
pointers

Figure 6.1: Area mesh storage of polygons pointers
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Uniformly Distributed (UD) scheme was used in the scan line and
rectangular region algorithms described in chapter 5, sections 5.1.1
and 5. 1.2.

6.1.3. Software Caching

The last type of referencing scheme is designed to optimize memory
access on a Non-Uniform Memory Access or NUMA architecture. The
term NUMA refers to the fact that some references to shared data

require less time than others since a processor can access shared data

stored in its local memory module without retrieving it remotely
across the interconnection network. The UMA architectures

described previously use a local cache which contains the most

recently referenced data, thus allowing (potentially) faster access to
the shared data. The UMA architectures use sophisticated cache

coherence schemes so that the copy of the data in the cache is the

same as what is stored in global memory. NUMA architectures such
as the BBN Butterfly typically do not exploit cache coherence (even if
they have a cache); the programmer is responsible for maintaining
cache coherence. Since cache coherence is not normally available in

an NUMA machine, it is not recommended to copy writable shared
data to local processor private memory. Read-only shared data can be
copied to private memory, and the data is then accessible locally, as

was the case in the first scheme described previously. In the scheme
described here, however, only the data needed for a particular screen
area is copied rather than the entire dataset.

Implementation Details for LG Scheme

The method for local referencing we have implemented for NUMA

machines is called the Locally Cached (LC) memory referencing
scheme. The basic idea is to copy the appropriate data into the local

memory of the processor which will use it for tiling a given region.

This scheme allows local referencing of data without any latency or
possible network contention, except during the copying operation.
The data is read in during the front end, as was done in the previous

UD scheme. After the front end, each processor contains on its local
memory module an average of NIP polygons as before. For this

analysis, it is assumed that the 48 x 48 rectangular region

partitioning is used as before. The data is arranged into contiguous
blocks (arrays) prior to copying in the tiling section. An explanation

of why this is done is given after the pseudo-code is presented below.

The implementation proceeds as follows:
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In Parallel: Cgmnlexjjy

[1st pass]

For all polygons on this processor 0(N/P)
For all areas in mesh this polygon
crosses over 0(6)

Accumulate memory needed for

each of the following 41 arrays:
(points,normals,polygon conne-ctivity,po1ygon info]

[2nd pass]

For all polygons on this processor 0(N/P)
For all areas in mesh this polygon
crosses over 0(8)

Allocate memory for each of 4 arrays
for area[i] [j] if not done yet
Add polygon and point data to
the 4 arrays listed above

Free up original scattered data.

This code is executed prior to the tiling section of the program and
was not included in the measurements in chapter 5. The first pass is

necessary to determine how much memory to allocate for a particular

region, and the second pass actually allocates the memory on the local

processor and copies the data into it. A barrier synchronization is

necessary between the passes so that the data is updated properly for
all regions. All of the work in these phases is done using local

memory, so no remote referencing occurs here. The inner loops in the
first and second passes are of the same time complexity as the inner

loop described in the previous section. Figure 6.2 illustrates the

storage of the arrays in each local processor-'s memory.

Local Area Mesh

IIIIIIM

Local lists ofpoints
normals, polygons,

IEIEHEIEII ””‘i£f3:.é}"£:;’°’
IIIIIII

I Figure 6.2: Locally cached memory storage mechanism
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The LC method is more than just a "block copy then local
reference" scheme. It consists of a complicated set of instructions

which involve constructing data structures for later block transfer.
The principal advantage of this scheme in a non-blocking network
such as in the Butterfly is as follows. The setup cost is incurred only

once for a block of data, and thereafter the message proceeds at the
full bandwidth of the interconnection network. This is faster than

individually copying each remote value to local memory since the

setup time for that method would be incurred for each single
reference. The disadvantage to this block copy method is that the
data must be arranged into a contiguous array. If a blocking
interconnection network were to be used, the data could then be
transferred byte by byte instead. The LG scheme consists of a method

of organizing data primarily for later local referencing while using
minimal memory usage. The data structures and setup routines
necessary to achieve this set it apart from a pure software caching
scheme.

The pseudo-code presented for this scheme sets up the blocks for

copying, but the copying phase is actually executed during the tiling
portion of the program. If a completely uniform distribution of the

data occurs, then each processor would contain exactly UP of the
data for a particular area. In general, this is not the case, as was
stated before based on the locality of screen space data. For this

analysis, it is assumed that the data is distributed in such a way to
encounter a worst case scenario (i.e., all the data needed for each

region is stored remotely). For a particular task, it is necessary to use
P separate block transfer groups to retrieve the data. This is shown

in figure 6.3 on the next page.

To simplify matters, each processor is assumed to execute exactly

R tasks so that the total number of block transfer groups is (4 * R *
P). Four refers to the fact that it is necessary to retrieve the points,

normals, polygon connectivity, and polygon info arrays separately.

Each block transfer retrieves on average 110? * P) of the total amount
ofdata.

Based on the analysis at the beginning of this section, the total

amount of data after backface rejection and duplication is 105,000
polygons, so the amount of data per area of the 48 x 48 mesh is

approximately 46 polygons. Recall that for a block transfer, Tm“, is 8
usec and T5; is 0.25 usedbyte. If the data is evenly scattered as was
stated above, each polygon (in the worst case) is on a separate
processor, requiring 46 separate groups of 4 block transfers each.
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Copy polygons from other
processors to the one which has

this area as a task

Figure 6.3: Block transfer of data
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The data is scattered among the 46 processors which contain

polygons for a given area, so the total time to retrieve data for one
region is 46 * 38.5 usec or 1.77 msec. Since each processor works on

an average of 24 regions, the total time for a processor to retrieve all

the data it needs to work on its regions during the tiling section is 24
* 1.7‘? msec or 0.0425 second. Again, it is assumed that no network
contention exists for this analysis. This time is executed in parallel so
0.0425 second is the parallel communication time. The time for block

transfer for a single polygon is then:

Black Time

1. 10 bytes/polygon 7.5 psec
2. 20 bytes for polygon info 15.0 nsec

3. 12 bytesfpoini. ' 4 points/polygon 3.0 usec
 m

Total 38.5 usec

This time is significantly better than any of the times listed above
for the previous methods of memory storage. The second pass is nec-

essary to set up the arrays for block transferring, but this has not
been taken into account in the preceding analysis. Since this time is

extra, it needs to be accounted for as well. In the next paragraph, the
second pass algorithm is described, and its time complexity is ana-
lyzed.

In the second pass, new arrays are constructed which correspond
to the data that is relevant to each area of the 2D mesh in the local

processor. In constructing these new arrays, it is desirable to not

create any unnecessary new data points. In order to do this, a

backwards reference list is used to determine which points have been

stored in this area thus far. In order to keep the amount of memory
within limits for this backwards reference list, a fairly sophisticated
data structure is used. This data structure is an array which
corresponds to the points list, but contains links which indicate when

any point that has been previously stored in this area is part of a new
polygon. The backwards reference list data structure is shown in
figure 6.4.

The diagram shows that the backwards reference list corresponds

to each point in the original object. The small array to the right is
used to indicate the areas each point is referenced in (the polygons
which contain it can be in more than one area} and the value of the

point's index for the new points list in each of these areas. The new

points list allows us to sequentially go through the polygon list in the

front end. This data structure uses less memory than a separate
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backwards list array for each area since that type of list would be
relatively sparse. The list requires some time to manage, and this
time is considered as part of the analysis.

The backwards reference list is also required for the first pass,

but in that case the reason is to determine how much memory to

allocate for the contiguous arrays. The top loop given in the pseudo-

code is of time complexity OUWP) which in the case given here
corresponds to approximately 1094 polygons. The inner loop would be

approximately of time complexity (constant = 2) for a theoretical

100,000 polygon dataset based on the analysis of the mountain image,
but we will use the value (constant .-. 4) for a possible worst case

scenario. The management of the backwards reference list requires

us to run through each point in the polygon, so there really is a third
inner loop that would be of time complexity (constant = 4), assuming

quadrilateral polygons. The only difference between the first pass
and the second pass is the time required to allocate memory for the

areas not already allocated and to store the data in the new arrays
while updating the count for these lists. The GP1000 contains 2.5

MIPS MC68020 processors, and based on the amount of work in the
inner loop of the second pass, we estimate the time to complete this
operation to be 20 usec per iteration. This results in a time for the
second pass of 1094 * 4 * 4 * 20 usec or 0.35 second. This analysis is
simplified, but the purpose is to show the additional overhead

incurred by the LC scheme. The first pass time is not measured since

_ backwards
P°“"5 reference

list list

Figure 6.4: Backwards neference list data structure
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it takes approximately the same amount of time as its counterpart
loop in the UD scheme. The total time for this scheme is then 0.35
seconds for the second pass plus the time of 0.0425 second for
communication, resulting in a sum total of0.3925 second.

There have been several other graphics algorithms which
incorporate the idea of local caching in a distributed memory
environment. Green and Paddon [Gree89] as well as Badouel, er al.

[Bado90] have both implemented a software caching mechanism in a

distributed memory environment. Both algorithms use ray tracing for
hidden surface elimination and rely on the concept of ray coherence

for minimizing remote references. Ray coherence is defined to be the
property in which rays in adjacent pixels are likely to intersect the

same objects. Once these objects are brought into the local memory of

a processor by the cache mechanism, the rays sent out by this
processor will intersect these same objects in local memory. Based on

this fact, Badouel was able to achieve a 95% or better hit ratio into

the caches. An area screen space distribution of the pixels to
processors is used for task decomposition, similar to the approaches
given here.

These algorithms were designed to allow one to distribute a large

graphical database on a message passing multiprocessor such as the
Intel iPSC, which provides no support for shared memory referencing.

The caching employed in Green's algorithm involves statically
partitioning local memory for caching purposes, while Badouel's
method uses a more dynamic approach without any preprocessing.
Badoue1's algorithm allows virtual memory to be distributed by

taking advantage of the aggregate memory in the system, whereas
Green's approach requires the host to maintain virtual memory. In

Badouel's algorithm, the object database is statically divided up into
pages and scattered throughout the system in a way similar to the

scattering of data used in the LC scheme described previously. If a

page is not resident in the local processor's memory or cache, the page
isretrieved from the processor memory module where it is resident
and put into the local processor's cache using a least recently used

(LRU) cache replacement policy. Badouel has shown significant
speedup on the Intel iPSC with this caching scheme built into a
multiprocessor ray tracing algorithm. Several faults exist with this

scheme if it is to be applied to a conventional scan line algorithm such
as those outlined in the previous chapter.

The first issue is the amount of memory available in each

processor. A ray tracing algorithm might use a hierarchical tree

structure such as an octree to speed up calculating ray-object
intersections, and this tree must be stored in all processor memories.
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No other additional memory is required during the execution of the

program. In a scan line algorithm, edge lists, anti-aliasing data
structures, and interpolation parameter arrays must. be built which

all take up a significant amount of local memory. More local memory

is necessary in a scan line algorithm than is needed for ray tracing, so
less would be available for the cache. The reduction in cache size

would result in a lower hit ratio, giving lower performance. In a ray
tracing algorithm, it is impossible to know a priori which polygons

might be needed in local memory since a ray can be spawned to any
direction in three—dimensional space. It therefore makes sense to

bring in the data as needed using a LRU replacement policy. In the

algorithms presented in the previous chapter, the exact polygons that
are needed for rendering are known ahead of time, so only those

should be brought into the local memory module. Furthermore, since
those polygons are only used for a single task, the original (remotely

stored) polygons can be deleted. This provides additional free space,
allowing more room for local data structures.

The second issue is the amount of communication and potential

contention problems in the caching mechanism. The amount of

memory brought in using the LC scheme is exactly what is needed, so

no unnecessary message traffic is required. Badouel's caching scheme
copies pages one at a time, and it possible that only one item of an
entire page is required. The results of speedup in his ray tracing
algorithm are based on images which take minutes to render on 64
processors and would typically take hours to render on a single

processor. This is due to the fact that ray tracing is a slower, less
efficient rendering algorithm than the image space methods described

in this document. The ratio of computation time to message traffic

time is so high in ray tracing that any possible bottlenecks in message
passing are masked due to the high computation time. The higher

efficiency of the scan line algorithm reduces computation time, so

these bottlenecks are more likely to degrade overall performance than
in a less efficient algorithm. This is shown by the reduction in

network contention determined for the larger datascts using the LC
algorithms in the previous chapter. Badouel‘s approach requires

more communication than the LC scheme given here since pages are

brought into memory as needed. Therefore, his approach is likely to

result in greater contention when compared to the LC scheme. While

a multiprocessor can sufficiently speed up a costly algorithm such as
ray tracing, the benefits of using that type of method are generally

not needed in most applications. The real need by most scientists and
other users is to be able to display extremely complex datasets in a
reasonable amount of time. Therefore, if reflections are needed, one
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should use a ray tracer. If high quality scenes need to be generated

quickly without reflections, an image space algorithm such as those
illustrated here is more appropriate.

In the next section, the results of the UD and LC schemes are

compared, including the overheads required in the front end and the

second pass, to see how these affect the overall performance of each of

the algorithms.

6.1.4. Results

The total time for remote referencing of the LC scheme is 0.3925
versus the time of 0.1557 second in the UD scheme based on the

theoretical analysis used here. On the surface it would seem that the
UD scheme is the better alternative even with its remote reference

strategy. However, one important factor missing from this analysis is
network contention. From the data given in chapter 5, contention

contributed significantly more to degradation of performance in the
UD scheme than in the LC scheme for the rectangular region

partitioning scheme. The primary reason is that the LC scheme uses
the network in bursts of communication which take a very short
amount of time, minimizing the chance of a blocked path. The UD
scheme relies on a large number of small messages which can

eventually saturate the network.

To illustrate the differences between the two memory referencing

strategies, we compare them using the data for the tiling section from
chapter 5. The data from running the task adaptive algorithm using
the UD scheme has also been included. The UD task adaptive

algorithm is not nearly as efficient as the rectangular region UD
implementation since each time an area is started, the entire polygon
list from the split area must be traversed. These polygons are

' traversed from shared memory, while in the LC implementation of

the task adaptive scheme, local memory is used. Latency causes the

algorithms efficiency to go “down as the number of processors is
increased.

The graphs for these algorithms for the tiling section time are
shown in figures 6.5, 6.6, 6.7, and 6.8. This is the same data that was
presented in chapter 5 with the addition of the task adaptive version
of the UD scheme, but here all the data is put on the same graph to

allow direct comparisons. The comparisons in this case only involve

the rectangular region and the task adaptive algorithms since these

are the only algorithms which were implemented using both
strategies. The data is shown above 48 processors so that the reader
may get a clearer idea as to the performance difference, which is
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mainly evident at high processor configurations. Based on this data,
one can see that the LC scheme is consistently better than the UD

scheme. While these graphs show that the LC scheme is clearly

superior to the UD scheme in the tiling section, it is only fair to look
at the total picture. By this we mean that all of the algorithms should
be compared by evaluating the parallel execution time plus the setup
time from the front end, as shown in the formulas on the page

following the graphs. The total front end time will not be included
here since disk access is used in that section of the program. Disk

access time is affected by other parameters which cannot be
controlled unless the machine is put into single user mode. In

general, all of the algorithms employ the same disk read-in scheme

anyway, so this is not an issue.
The primary differences in the algorithms occur in the following

phases:

1. The time to load polygons into the area bucket data structure
(or y—bucket list in the case of the parallel scan line algorithm]
according to their screen space location.

2. The additional time necessary in the second pass for those

algorithms which use the LC scheme.
3. The time to build the hierarchical tree for the data adaptive

top-down scheme.

4. The tiling section time.

The table below shows how the comparison times are determined

for each algorithm, including the memory referencing scheme and
granularity ratio. Using these formulas, a fair comparison of all the

algorithms is now possible since the different overheads prior to tiling
are included. The primary variation in the setup time is due to the
difference in cost for the total number of regions to be started {R*P) in

the implemented algorithms.

Algorithm {uunm-_r scheme) Phases Grzmnlarity Ratio
Data Non-Adaptive
Scan line Algoril.l1.m(UD): Phase 1 + Phase 4 (R varies with P)
Rectangular Region (UD): Phase 1 + Phase 4 (R = 24)
Rectangular Region (LC): Phase 1 + Phase 2 + Phase 4 (R = 24)

Data Adaptive
Top-Down (LC): Phasel-I-Phase2+Phase3+Phase4 (R=l0)

Task Adaptive
Task-Adaptive (UD): Phase 1 1- Phase 4 (R 2 l)
Task-Adaptive (U2): Phase 1 + Phase 2 -1» Phase 4 (R = 1)
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UD vs. Lc Tiling Section Timing Comparisons
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The graphs which result. from these summations for each

algorithm are shown in figures 6.9, 6.10, 6.11, and 6.12. The graphs
are shown above 64 processors.

Based on the data shown in these graphs, it can be seen that the
task adaptive algorithm utilizing the locally cached (LC) memory

referencing scheme is clearly superior for all of the images. This
algorithm requires fewer regions at the beginning of the program
than any of the other algorithms. The overhead time for loading

polygons into the area bucket list, as well as the second pass time, is

fairly small as a result. The rectangular region algorithm, which is

slightly faster for some images in the tiling section only, requires
significantly more setup prior to tiling, degrading overall
performance. One might have thought that the second pass section of
the LC scheme would require too much setup time to benefit the total

algorithmic performance, but this turned out not to be the case.
While the second pass does add some time to the LC schemes, the

benefits of‘ local referencing in the tiling section far outweigh the cost
of the setup operations since they can be done in parallel. This also

indicates that network contention is a major factor in the resultant
performance of each approach since the disparity in performance is
greater than what was indicated in the theoretical analysis from the
previous subsection. It seems clear that these results are consistent

and valid for the tests done so far, but it is desirable to be able to

generalize these statements by evaluating the various algorithms

under a variety of other conditions. Some of these conditions are

investigated in the next section.

6.2. Machine Parameters

Although the performance of the different algorithms has been
analyzed previously, these circumstances represent only one possible

machine configuration. There are various hardware and system

software changes which may affect overall algorithmic performance,

most of which are beyond the programmer's control. These types of
parameters are investigated in this section. For instance, the

operating system can have a significant impact on performance. In
the implementation of the Mach operating system on the GP1000,

single jobs are scheduled onto processors based on the current least
loaded processor; however, the Uniform System takes over this task
within a parallel program. The operating system does intervene to

some degree in this machine by handling virtual memory, I/O, and

general MACH system operations. Changes in the operating system
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can change program performance; this is described in the first
subsection below.

In the second subsection, we investigate the differences in two
versions of the Butterfly multiprocessor: the GP1000 and the TC2000.
Since the TC200D is a logical extension of the GP1000 with different

physical characteristics, it is interesting to compare the performance
of these two machines.

6.2.1. Operating System

Since 1987, BBN has made a number of improvements to the GP1000,

but none were so dramatic as the improvement made to the GP1000

version of the Mach operating system in the summer of 1990. The

author previously reported preliminary results on this project in
[Whit90] early in the summer of 1990, and the limits of the graphs

were set to only 32 processors since inconclusive data was obtained
above that. The primary reason was the previous version of Mach
implemented on the GP1000.1

The older version of the GP1000 operating system had the

following major problem: when any references occurred to a memory
page which was not resident, only one page fault at a time was

allowed to be serviced in the entire system. As an example, if
processor i had a local page fault and processorj had a local page

fault simultaneously, these page faults proceeded only serially even

though they had nothing to do with each other. In a graphics
algorithm such as the one described here, the amount of memory

required is tremendous, and this serial page faulting had an
extremely negative impact on performance. BBN rectified this

problem and released a new version of the operating system in the
summer of 1990; then performance changed dramatically. As an
example of the difference in performance. we compare the rectangular
region algorithm using the UD scheme in figures A13, A.14, A15,

and A.16. A comparison of the LC scheme version is shown in figures

A.17, A_1B, A.19, and A20. These figures are given in the appendix,

but a copy ofa representative graph for the mountain data using each

of these schemes is shown in figures 6.13 and 6.14 on the next page.
All of these graphs are comparisons of the tiling sections only.

As one can see from the graphs, the performance in the old

operating system starts to tail off after about tt8 processors in the UD
scheme. The LG scheme is somewhat better since local rather than

1Note, the TC2000 has had the new version of the operating system since
its delivery in the beginning of 1990.
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global data referencing is taking place, although performance tails off
here as well. Unfortunately, the amount of testing done using the old

operating system was limited, so additional results could not be
obtained. It is clear from these results, though, that the operating

system in a shared memory multiprocessor has significant impact on
the overall performance. We feel confident that the latest version of

the GPl€|00 operating system is better geared to the current machine
and does indeed provide exceptional performance.

6.2.2. Comparison of Architectural Differences

In addition to the impact of the operating system, other factors can

affect overall algorithmic performance. For instance, one would like
to compare what would happen ifa faster CPU or a faster switch node

were to be employed in the machine. BBN has continually updated
the Butterfly family of machines from the Butterfly 1, which used

MC6800D processors with 1 megabyte of memory per board, to the
current generation GPIDUD, which uses the MC68020 with 4
megabytes of memory per board. We were not able to test the algo-
rithms on the original Butterfly, but we were able to test them on the

next generation BBN multiprocessor, the TC2000. The TC2000 is a
similar design to the GP1000 but there are significant differences

which are illustrated in the tables on the page following the graphs.
Table 6.1 shows the difference in processor characteristics, while table

6.2 shows the difference in the memory characteristics for the GP1000
and TC20U0. In general, the primary differences between the two
machines are the faster CPU in the TC2000, as well as a change in
the basic switch node component from a 4 x 4 crossbar to an 8 x 8
crossbar.

Table 6.1: Comparison ofBBN multiprocessor CPU characteristics

Machine CPU Clock

Speed

GP1000 M68020
TC2000

The faster CPU in the TC2000 necessitates a faster switch with

increased path width, and an 8 x B crossbar switch component solves
this problem. One impact of the increased size of the crossbar switch
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Figure 6.13: Comparison of old 05 vs. new OS for mountain image,
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Figure 6.14: Comparison of old OS vs. new OS for mountain image,
rectangular region LC
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is that fewer wires are needed between the switch columns in the

interconnection network. The 8 x 8 crossbar is more costly to produce

than the 4 x 4 but it does allow 8 simultaneous messages to be output,

whereas a 4 x 4 only supports 4 messages at a time.

Table 6.2: Comparison of BEN multiprocessor memory characteristics

Machine Cache Memory Switch Path Basic

per Board Speed Width Switch
Node

1 :
TomeEssmhz

From the programmer's point of view, the TC2000 is functionally
the same as the GP1000. There are several small differences

regarding communication, however. The GP1000 supports the block

transfer mechanism in hardware, whereby a path is held open long

enough for 256 byte length messages-to go from one board to another.

In the TC2D00, this operation is supported through software
emulation rather than hardware implementation. The T0200!) does

contain a memory cache which allows data to be allocated as cachable

or non—cachable. Although using the cache significantly enhances
performance, judicious management of this memory is required by the
programmer since no cache coherence scheme is supported. The

primary goal here is to compare the different algorithms under

different CPU and switch characteristics, so the algorithms were not
modified to take advantage of the cache.

The results, including times for the setup phase from the front
end plus the tiling time, are shown in figures 6.15, 6.16, 6.17, and

6.18. A thorough analysis of the scan line algorithm was deemed
unnecessary on the ‘PC2000 due to its performance limitations noticed

on the GPIOOO; It is, however, included for comparison purposes in
the next section of this chapter.

These graphs indicate similar performance in the algorithms

when compared to the previous graphs for the GP1000. The only
problem with this comparison is that the results on the TC2000 were

limited for most of the tests to a maximum of 48 processors, while

with the GPIOOD, 96 processors were consistently available?

2We have included some data obtained on the TC2000 at 96 processors in
table In general, though, due to the other users on the machine, only 48
processors were used for most of the tests.
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TCZODO Tiling 4- Setup Time comparisons

Figure 6.15: T052000 algorithm com-
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In order to allow a fair comparison between the two machines, the

speedup was computed for each of the algorithms at 96 processors.

The task adaptive algorithm is used for this comparison, and the
results are shown in table 6.3.

Table 6.3: GPIOOO and TC2000 speedup and time ratio comparison using 96
processors

TC2000 Speedup

Ratio of Execution

Times at P = 96:

As can be seen from the table, the TC2000 exhibits slightly
reduced speedup when compared to the GP1000 on 96 processors for
most of the images. This could be caused by a number of factors,

ranging from the amount of work per task to the processor-to-switch
speed ratio. The last row in the table indicates the ratio of parallel

execution times of the TC2000 divided by the GP1000. From this
data, it appears that on 96 processors, the TC2000 is approximately

8.5 times faster than the GP 1000 for this problem.

6.2.3. Relationship of Machine Parameters to
Performance

In this section, we evaluate the various-overheads on both machines

to see their differences. The comparison involves examining the total
processor-time space and comparing the results on the two machines.

Here, the overheads are evaluated with respect to P and comparison
values are shown to the right of each graph for the overhead
percentages at 48 processors. Also, the speedup is given at each

processor configuration. All of the algorithms are compared on the
GP1000 and the ’1‘C2000 for the Laser image as a representative
example. Due to the volume of data and the CPU time involved in the

tests, only one image was used for comparison. Different results

would be obtained for the different test images, but the main interest
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here was to evaluate the trend in performance and directly compare

the percentages on various processor configurations.

6.2.3.1. Comparison of Overheads
The next five pages provide a direct comparison of the overhead
factors for all of the algorithms. The graphs include the total
processor-time space for each particular processor configuration, with

the overheads clearly marked as a percentage. Although the results
were measured up to 96 processors for the G-P1000, the overhead

values given on the right side of the graph are for 48 processors so

they can be compared to the values for the T0200!) below.

6.2.3.2. Analysis

These results present a number of interesting phenomena not

noticed in any previous graphs. In the parallel scan line algorithm,
the latency and code modification overheads constitute almost the

same overhead percentage regardless of the processor configuration
on both machines. This makes sense since the number of tasks is

constant regardless of the number of processors in this algorithm. In
the other cases, since the total number of tasks increases with the

number of processors, the overhead effects increase as" well. In some

cases, the load balancing may go down at some point but this may be
due to an increase in another factor as explained next.

With the exception of the task adaptive algorithm, the load

balancing is better on the TC2000 than in the GP1000. On the other
hand, the network contention, code modification, and latency/com-

munication are significantly worse. It seems that the increased delay
due to communication overheads and contention contribute to even

out the load in the algorithms on the TC2000 (recall that load
balancing cannot be measured independently from other factors).

Since these overheads are larger in the TC2000 than in the GPIODO,

they contribute to an increase in the average task execution time.
This changes the load balancing since it is based on dynamic

scheduling of the tasks, as well as their execution time.
In the case of the task adaptive algorithm, the load balancing is a

direct result of dynamic task partitioning, and it is possible that the

tasks cannot be partitioned near the end of the computation due to

the imposed threshold. This effect "may be more pronounced in the
TC2000 than in the G-P1000 due to the difference in the synchroniza-
tion and communication mechanisms.
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Comparison of Overhead Factors, GP1000 vs. TC2000,

Laser Image, Scan line Algorithm
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Figure 6.19: GP1000, scan line algorithm, UD, overhead comparison
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Figure 6.20: TC2000, scan line algorithm, UD, overhead comparison
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comparison of Overhead Factors, GP1000 vs. TC2000,
Laser Image, Rectangular Region Algorithm, UD Scheme
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Figure 6.21: GP1000, rectangular region algorithm, UD, overhead oomparison
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Figure 6.22: TC2000, rectangular region algorithm, UD, warhead comparison
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Comparison of Overhead Factors, GP1DDD vs. TCZODO,

Laser Image, Rectangular Region Algorithm, LC Scheme
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Figure 6.23: GPIOOO, rectangular region algorithm, LC, overhead comparison
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Figure 6.24: TCZOOD, rectangular region algorithm, LC, overhead comparison
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