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This is the third edition oi a book that deals with the prooenes involved in

converting a mathematical or geometric description of an object — a computer
graphics mode] - into a visualization - a two-dimensional projection - that

simulates the appearance of a real oh|ect. The analogy of a synthetic camera is

oftenusedandthisisagoodaliustortprovldedwebearinmindcertainimportant
limitations that are not usually available in a computer graphics camera (depth of

field and motion blur are two examples} and certain computer graphics facilities

that do not appear in a camera {near and far clipping planes).

Algorithms in computer graphit: mostly function in a threedlmenslonal
domain and the creations in this space are then mapped into a two-dimensional

display or image plane at a late stage in the overall process. Traditionally oom-
puter graphics has created pictures by starting with a very detailed geometric

description, suhlecting this to a scrim of transformations that orient a viewer
and objects in three-dlrnensional space. then imitating reality by making the
objects lo-olt solid and real — a process ltriown as rendering. In the early 1950:

there was a oomlng together of research — carried out in the 1970: into reflection

models, hidden surface removal and the like - that resulted in the emergence of

a de jircto approach to image synthesis of solid oblects. But now this is proving
Insufficient for the new demands oi moving computer imagery and virtual re-

ality and much research is being carried out into how to model complex objects,
where the nature and shape of the object changes dynarnicaiiy and into captur-

ing the richness of the world without having to explicitly mode] every detail.

Such efforts are resulting in diverse synthesis methods and modelling rnethods
but at the Il'lD‘I|1EI'lt there has been no emergence of new image generation tech-

niques that rival the pseudo-standard way of modelling and rendering solid
objects - a method that has been established since the ttiid-I9‘?t]s.

So where did it all begin? Most of the deveioprnerit in computer graphics as
we lmotv it today was motivated by hardware evolution and the availability of

new devices. Software rapidly developed to use the image psodudng hardware.
In this respect the most important developmecnt is the so-called raster display. a

device that proliferated in the mass market shortly after the development of the
PC. In this device the complete image is stored in a memory variously called a
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Iigirlfii
The main elements of:

9.-spmssystern.

frame store. a screen buffer or a refresh I:r’ierr1or'_tr. This information - the dis»
cretioed oomputer image — is oontinually converted by a video controller into a

set of horizontal scan lines {a raster) which is then fed to a Ti-'-type monitor. The

image is generated by an application program which usually accesses a model or

geometric description of an oblect or ohiects. The main elements in such a sys-
tem are shown in Figure R1. The display hardware to the right of the dotted line
can be separate to the processor. but nowadays is usually integrated as in the case

of an enhanced PC or a graphics workstation. The raster graphics device over-

shad-ot-vs all other hardware developments in the sense that it made possible the
display of shaded three-dimensional ol'J|ects — the single most important tl1eo-

reticai development. The inte:raction of three-dimensional oblects with a light

source oould be calculated and the effect projected into ttvo-dimensional space

and displayed by the device. Such shaded imagery is the foundation of modern
computer graphics.

"lite two early landmark achievements that made shaded imagery possible are

the algorithms developed by Gouraud in i9?i and Phong in Il9?5 enabling easy
and fast calculation oi the intensifies of pixels when shading an object. The

Phong technique is still in mainstream use and is undoubtedly responsible for
most of the shaded images in computer graphics.

A brief history of shaded imagery

When we tool: at oomputer graphics from the viewpoint of its practitioners, we

see that since the mid-i.9?ils the developmental motivation has been photo-
reaiism or the pursuit oi‘ techniques that matte a graphics image of an oblect or
scene irtdistingilishable from a TV image or photograph. A more recent strartd of

the application of l'l1-ese techniques is to display information in. for example.
medicine. science and engineetirig.

The foundation of photo-realism is the calculation oi‘ lighI:—ob|ecr interaction
and this splits neatly into two fields - the development of local reiiection
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models and the development of global models. Local or direct relleetion models
only consider the interaction or’ an object with a light source as If the ob|ect and

light were floating in dark space. That is, only the first reflection of light from

the object is considered. Global retiection models consider how light reflects
from one object and travels onto another. In other words the light impinging on
a point on the surface can ccrne either from a light source [direct light} or iridi-

rect light that has first hit another object. Global interaction is for the most part

an unsolved problem, although two partial sohitions, ray tracing and radlositv.

are now widely implemented.
Computer graphics research has gone the way of much modern scientific

researdt — early major advances are created and consolidaced into a practical
technology. Later significant advances seem to be more diflicult to achieve. We
can say that most images are produced using the Phorig local reflection model

[first reported in 19?5]. fewer using ray tracing {first popularized in 19%] and
fewer still using radlosity (first reported in 198.4]. Aldtough there is still much

research being carried out in Light-scene interaction methodologies much oi‘ the
current research in computer graphics is concerned more with applications, for

eirample.t~1th such general applications as animation, visualization and virtual
reality. in the most important computer graphics publication mu: annual SIG»

GRAPH conference proceedings) there was in I935 a total of 22 papers con-

cerned with the production techniques of images (rendering. modelling and

hardware) compared with 13 on what could loosely be called applications. A

decade later in 1995 there were 33' papers on appilmiions and I? on image pro-
duction techniques.

Modelling surface reflection with local interaction

Two early advances which went hand-in-hand were the development of hidden

surface removal algorithms and shaded imagery —- simulating the interaction of
an ob|et:t with a light source. Most of the hidden surface removal research was

carried out in the l9?Ds and nowadays. tor general-purpose use, the most com-
mon algorithm is the zeiurter .— an approach that is very easy to implement and

combine with shading or rendering algorithms

In shaded imagery the major prop is the Phone reflection model. This Is an

elegant but completely empirical model that usually ends up with an obiect

reflecting more light than it receives. its parameters are based on the grossest
aspects of reduction of light from a surface. Despite this, it is the most widely

used model in computer graphics - responsible for the vast ma|crit}r or created
images. Why is this so? Probably because users find it adequate and it is easy to
implement.

llieoretically based reflection models attempt to model reliection more accu-

rately and their parameters have physical meaning — that is they can be mea-

sured for a real surlace. For example, light rellects dlflerenthr from an isotropic
surface, such as plastic. compared no its behaviour with a non-isotropic surface
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such as brushed aluminium and such an effect can be imitated by explicitly
modelling the surface cha.racterIstl. such models attempt to imitate the behav-

iour of light at a "mlllisr:ale' level (where the roughness or surface geometry is
still much greater titan the wavelength of light}. Their purpose is to imitate the

material signature — why different materials in reality look different.
Altemathlely. parameters of a model can be measured on a real surface and used
in a simulation. The work into more elaborate or theoretical local reilection

models does not seem to have gained any widespread acceptance as far as its

implementation in rendering systems is concerned. This may be due to the fact
that users do not perceive that the extra processing costs are worth the some-
what marginal improvement in the appearance of the shaded object.

all these models, while attending to the accurate modelling of light from a
surface, are local models which means that they only consider the interaction of

light with the obiect as if the obiect was floating In free space. No ob]ect—ob|ect
interaction is considered and one of the main problems that immediately arises
is that shadows — a phenomenon due to global interaction - are not incorporated
into the model and have to be calculated by a separate ‘add-on’ algorithm.

The development of the Phong reilectlon model spawned research into add-

on shadow algorithms and texture mapping, both of which e11l'tan-ced the

appearance of the shaded ob|ect. and tempered the otherwise ‘floating irl free
space’ plastic look of the basic Pholng mode].

Modelling global Interaction

The 1950s saw the development of two significant global models - light reflec-
tion modeis that attempt to evaluate the interaction between obiects. Global
interaction gives rise to such phenomena as the determination of the Intensity

of light within a shadow area, the reflection of objects In each other {specular
interaction) and a subtle effect known as colour bleeding where the colour from

a diffuse surface is transported to another nearby surface {diffuse Interaction}.

The light intensity within a shadow area can only be determined from global
interaction. An area in shadow, by definition. cannot receive light directly from
a light source but only indirectly from light reflecting front another object.

inihenyouseeshinyobiectsiriasceneytruexpecttoseein tlie-tit refieciionsof

other obiects. A very shiny surface. such as chromium plate, behaves almost as

a mirror taking all its surface detail from its surroundings and distorting this geo-
metrically accordlng to stirlace curvature.

The successful global models are ray tracing and raclioslty. However, in their

basic implementation both models only cater for one aspect of global illumina-
tion. ltay tracing attends to perfect specular reflection - very shiny oblects

reflectirig in each other, and radlosity models diffuse interaction which is light
reilecting off matte surfaces to illuminate other surfaces. Diffuse interaction is

common in man-made interiors which tend to have carpets on the floor and
matte finishes on the walls. Areas in a room that cannot see the light source are
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iilumirtatecl by ciiifuse interaction. Munuaiiy exclusive in the phenomena they
model, images creatned by both methods tend to have identifying "signatures".
Ra}!-traced Images are notable for perfect rectirsive reflectitlris and super sharp

refraction. Raidioslty images are usirally of softly-lit interiors and do not oontaln

specular or shiny objects.
Computer graphics is not an exact science. Much research in light-surface

interaction in computer graphics proceeds by taking existing physical models

and simulating then with a computer graphics algorithm. This may involve
muen simplification in the original mathematical model so that it can he imple-

mented as a computer graphics algorithm. Ray I1-acin; and ratiioslty are classic
examples of this tendency. Simplifications, which may appear gross to a mathe-

matician, are made by computer graphlcists for practical reasons. The reason this

process ‘works’ is that when we look at a sjritthlzed scene we do not generally

perceive the sirnpli.ficatioos in the mathematics unless they result in visible
degerierarzies known as aliases. However, most people can easily distinguish a

computer graphics image from a photograph. Thus computer gmplucs. have a
‘realism’ of their own that is a function of the model. and the neamess of the

computer graphics image to a photograph of a real scene varies widely accord-
ing to the method. Photo-realism in computer graphics means the image looks

real not that it approaches. on a pixel by pixel basis, a photograph. This subjec-
tive |ud.ge:rne:nt of oomputergraphics images somewhat devslues the widely used

ad|ectiire *photo-realistic’, but there you are. with one or two exceptions very lit-

tle worit has been done on comparing a human's perception of a computer
graphics image with_. say, a TV iiriage of the equivalent real scene.
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Mathematical fundamentals of

computer graphics

1.1 Menipularttng three-dimensional stnrctures

1.2 Structure-defonnlng transionnations

1.3 Vectors and computer graphics

1.4 Iiays and computer graphics

1.5 interpolating properties in the image plane

Manipulating three-cllrnortslortal structures

Transfonnations are important tools in generating three-dimensional scenes.

They are used to move ohleciri around in an emrironment, and also to construct

a two-dimensional view of the environment for a display surface. This chapter
deals with basic three-dimensional transfonnations, and introduces some useful

sltape-changing transformations and basic three-dimensional geometry that we

will be using later in the text.

in oompuiner graphics the most popular method for representing an object
is die polygon mesh model. This representation is fully described in Chapter 2.

We do this by representing the surface of an ol:I|ect as a set of connected planar
polygons and each polygon is a list of [connected] points. This form of

representation is either enact or an approximation depending on the nature of

the obiect. A cube. for example. can be represented exactly by sir. squares. A
cylinder, on the other hand can only be approximated by polygons; say six rec-

tangles for the curved surface and two hexagons for the end faces. The number
of polygons used tn the approxlrnatlon determines how accurately the ohiect

lsrepresentedandthtshasrepercusstonsinmodeujn,geost,storageand
rendering cost and quality. The popularity of the polygon mesh modelling tech-
nique in oontputer graphics is undoubtediy due to its inherent simplicity

and the development or‘ inexpensive shading algorithms that work with such
models.
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Figure 1.1
{a} Right-handed and
[bi left-handed coordinate
systems.

A polygon mesh model consists of a structure of vertices. each vertex beinga
three-dimensional point in so-called world coordinate space. Later we will be
concerned with how yertioes are connected to form polygons and how polygons

are structusecl Into complete objects. But to start with we shall consider obiects

just as a set of three-dimensional verttces and look at how these are transiormed
in three-dimensional space using linear transforrriations.

Three-dimensional geometry in computer graphics - affine
transformations

in this section we look at threevdimensiona] affine transformations. These are

the transforinations that effect rotation, scaling. shear and translation. Affine

transformations can be represented by a matrix. and a set of affine transtonna-
tions can be combined into a single overall affine transformation. Technically we

say that an affine transformation is made up of any combination of linear trans-
formations (rotation, scaling and shear} followed by translation.

Clbiecis are defined in a world coordinate system which is conventionally a

right-handed system. A right-handed and left-handed three-dimensional coordi-
nate system is shown in Figure 1.1. Right-handed systems are the standard math-
ematical convention, although left-handed systetris have, and still are. used in

the special context: of viewing systems in computer graphics. The difference
between the two systems is the sense of the z axis as shown in the figure.

Rotating your fingers around the 2 axis, from the positive .1: axis to the positive
y axis. gives a different 2 direction for your thumb depending on which system
is used.

It is sometimes convenient to define obiects In their own local coordinate

system. There are three reasons for this. When a throe—dii'n-ensionai object is
modelled it is useful to build up the vertices with respect to some reference point

in the object. In fact a complex object may have a number of local coordinate

systems. one for each sub-part. It may be that the same object is to appear many
times in a scene and a definition with a local origin is the only sensible way to
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set this up. instancing an obfect by applying a mint of translations, rotation and

scaling transformations can then be seen as transforming the local coordinate
system of each object to the world coordinate system. Finally when an object is

to be rotated, it is easier it the rotation is defined with respect to a local reference
point such as an axis of symmetry.

A set of vertices or three-dimensional points belonging to an object can be

transformed into another set of points by a linear transformation. Both sets of

points remain in the same coordinate system. Matrix notation is used in com-

puter graphics to describe the transformations and the convention in computer
graphics is to have the point or vector as a column matrix, preceded by the tra ns
formation matrix 1'.

Using matrix notation, a point P is transtotmed under translation. scaling
and rotation as:

I” = V+ D

I” = S V

I" = R I’

where D is a translation vector and S and R are scaling and rotation matrices.

These three operations are the most commonly used transformations in com-

puter graphics. in animation a rigid body can undergo only rotation and trans-

lation, and scaling is used in oh-iect modelling, To enable the above

transformations to be treated in the same way and combined, we use a system

called homogeneous coordinates which Increase the dimensionality of the

space. The practical reason for this in computer graphics is to enable us to

include translation as matrix multiplication (rather than addition] and thus

have a unified scheme for linear transformations. [n a homogeneous system a
vertex:

VE-t. P. 2}

is represented as

i.4"{w-X, 1-H", w-E, w]

for any scale factor w all I]. The three-dimensional Cartesian coordinate represen-
tation is then:

x=X!w

:;"=

x=Z.iw

if we consider w to have the value 1 then the matrix representation of a point is:

E]
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Translation can now be treated as matrix multiplication, like the other two trans-
formations and becomes:

V'=T'I-I’

r ioon

y = oionx flD1TJ[1 ooot

This specification implies that the obiect is translated in three dimensions by
applying a displacement T., T, and T. to each vertex that defines the object. The
matrix notation is a convenient and elegant way of writing the transformation

as a set of three equations:

1-'=.r-I-T,

J"=}""Tr

z'=z+Tr

The set of transformations is completed by scaling and rotation. First scaling:

v=$v

oo

so
no
oo

3:

D

0

U
1

Here 5., .5, and 5. are scaling factors. For uniform scaling S; = 5,, -= 5;, otherwise

scaling occurs along these axes for which the scaling factor is non-unity. Again

the process can be expressed less succinctly by a set of three equations:

3:‘ = x-5.

if = 1"‘-gr

2' = 2-5;

applied to every vertex in the ohiect.

To rotate an obiect in threedimensional space we need to specify an axis of

rotation. This can have any spatial orientation in three-dimensional space, but
it is easiest to consider rotations that are parallei to one of the coordinate axes.

The transformation matrices for anti—cloc|twise {looking along each axis towards

the origin] rotation about the .t, y and 2: axes respectively are: '

1 U {I i}

0 cos 3 —sin H t}
t} sin El cos B t}

{J 0 ti 1
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eosfl Ct sinfl C‘

R_ o 1 o o
"' ~sine 0 cosii 0

U U U 1

costs -sine 0 CI

0

Cl

1

sin it cos it 0
G U I

0 U 0

The 2 axis matrix specification is equivalent to the following set of three equa-
tions:

RI‘:

x‘=JtcosEi—ysinB

,1/=xsinEt+ycosEl
z'=z

Figure 12 shows examples of these transformations.

The inverse of these transformations is often required. I'-' is obtained by

negating T.,T, and TI. Replacing Si. 5,, and S; by their reciprocals gives 3" and

negating the angle of rotation gives E".

An}; set of rotations. scaling and translations can be multiplied or concat-

enated together to give a net transformation matrix. For example if:

li:il=~il‘l
“M
then the transformation matrices can be ooncatenated:

M3 = Ms M:

and

Jr” .1:I1

:. =~= 2;
1 1

Note the order: in the product H: M. the first transformation to be applied is Mi.
Although translations are commutative, rotations are not and

Hi R: in R2 Hi

This is demonstrated in Figure I.2(e} and 1.21:1‘).
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l 

{I1} Z-axis rulall-an
11.356 0.5 0 O
-0.5 0.366 I} 0

0 III l D

ld} 'I‘:an.sIatlan
D2

112
‘I0

01

10
01
Eli]

'00

{e] Roman‘-::n tollrawed by t1-anslatlon
[U02 0.3-660.500 fl.I!.66D.5fl2

2 -0.5 $866 0 0 -0.5 0.366 U 2
0
1

ou|u=nu1o
0

(III)
001

Dflfl DUI 0 001

{I} ‘mnslauon Followed by rotation
0.555 0.5 {I 0 1 0 -D 2 uses 0.5. 0 2332
-0.5 0,555 I) D D 1 I1 2 -0.5 0.555 0 M32 fi-u 0 1n1[nn:r1n1‘[e n 1 u

0 0 0 1 0001 0 0 u 1

FH.HII*¢1+2 A general transfunnatiun matrix will be of the iorm:
Eurnp1e5 eIf1ine.ar
transformations. All All TI

Ta-
1.‘
1

The 3 x 3 upper-left sub-matrix A is the net rotation and scaling while 1'' gives
the net translation.
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Figure 1.3

Two stages in building up
the rotation of an obiect
abotit one of its own
t-!rt.ioes_ The rolal:4'oi1 is

about an axis paralel to the
z axis at point tT.,. Ty}, ti]. A

two-dimensional projection
{with the 1 axis coming out
of the paper] is shown for

Clarity. fa] Original object at
{Tn I"... 0]. lb) Translate to
II‘!!! origin. [cl Rotate alsout
111: origin. (dj Translate to
MT. T" O}.

le|AHIPIl.IlJi11hIG Tears-oimsnsiomr srnucruitts

The ability to concatenate transformations to form a net transformation

matrix is useful because it gives a single matrix specification for any linear trans-
formation. For example, consider rotating a body about a line parallel to the z
axis which passes through the point {T1, Ty, CI} and also passes through one of
the vertices of the object. Here we are implying that the obiect is not at the
origin and we wish to apply rotation about a reference point in the ohiect itself.
In other words we want to rotate the obiect with respect to its own coordinate
system known as a local coordinate system (see also Section 1.1.2]. We cannot

simply apply a rotation matrix because this Is defined with respect to the origin
and an ohiect not positioned at the origin would rotate and translate — not
usually the desired effect. instead we have to derive a net transformation matrix
as follows:

(1) ‘Translate the object to the origin,

(2) Apply the desired rotation, and,

{3} Translate the obiect hack to its original position.

The net transformation matrix is:

cosfl-sinfl ill} 1 DGT.

slrilil cosfl Oi} fl1GTy
flill

-300

U
l

1{lI‘.}-T,

fl1G|'—Tr

flfllfl D 0 ID

GU01 0 III 01

cosa -vsinfi U {—T;.cosIl+T,sinH+’l';]

sintl cosfl 0 [-T.sir:B-T,,cos6+T,,]
t) D 1 0

ll 0 0 1

‘This process is shown in Figure L3 where ft is 30°.

T2331 =
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Transfonnations for changing coordinate systems

‘Up to now we have discussed transformations that operate on points all of

which are expressed relative to one particular coordinate system. This is ltnown

as the world coordinate system. in many contexts in computer graphics we need

to derive transformations that take points from one coordinate system into
another. The oommo-nest context is when we have a number of obiects each

specified by a set of vertices in a coordinate system embedded in the obiecl itself.

This is known as a local coordinate system. Every object will have a convenient

local coordinate system: for example, a complex oblect that is basically cylindri-

cal in shape may have a coordinate axis that coincides with the long axis of the

cylinder. It we wish to bring a number of such objects together and position

them in a scene then the scene would take the world coordinate system and we

would apply translations. rotations and scale transformations to the obiects to

position them in the scene. Thus we can consider that the trarisfonnations oper-

are on the obiect or equivalently on the local coordinate system of the ohiect.

Transformations that emplace an obiect with a local coordinate system into a

position in a world coordinate system are called modelling transformations.

Another important context that involves a change of coordinate system is

the transformation from the world coordinate system to the view coordinate

system — a viewing transformation. Here we have a new coordinate system — an

obiect if you like - defined with respect to the world coordinate system and we

have to transform the vertices in the world coordinate system to this new
system.

Consider two coordinate systems with axes parallel, that is the systems which

only differ by a translation. if we wish to transform points currently expressed

in system 1 into system 2 then we use the inverse of the transformation that

takes the origin of system 1 to that of system 2. That is a point (x, y. 2, 1} in

system I transforms to a point l[x‘, y’, 2', 1] by:

.r' IUD-T. J:

y'=fllO—T,. y
2' t]l.'i1—T= 2

1 0001 1

= T12 = [T-zI:|'l

which is the transfomtation that translates the origin of system 1 to that of system

2 [where the point is still expressed relative to system 1}. Another way or putting

it is to say that the transformation generally required is the inverse of the
transfonnation that takes the old axes to the new axes within the current coordinate

system.

This is an important result because we generally find transformations between

coordinate systems by considering transformations that operate on origins and

axes. in the case of viewing systems a change in coordinate systems involves
both translation and rotation and we find the required transformation in this

way by considering a combination of rotations and translations.

-J-
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eformln nsorains " " ' " "

The above linear transformations either move an object (rotation and translation]

or scale the oblect. Uniform scaling preserves shape. Using different values of 3.,
S,» and 5, the object is stretched or squeezed along particular coordinate axes. in
this section we introduce a set of transformations that deform the obiect. These

are fully described in Barr (1984) where they are termed global deformations. The
particular deformations detailed in this paper are tapering, twisting and bending.

Barr uses a formula definition for the transformations:

x = Fi.[:t]i

Y = Fyiyi

z = iaizi

where [x, y. zji is a vertex in an undefortned solid and (X. Y, Z) is the deformed
vertex. Using this notation the scaling transformation above is:

X = 51¢“

1* = sari

Z = Safe]

Tapering is easily developed from scaling. We choose a tapering axis and dif-
ferentially scale the other two components setting up a tapering function along
this axis. Thus, to taper an object along its 2 axis:

is a linear or non-linear tapering profile or function. Thus. the transformation
becomes a function of r. That is. we change the transformation depending

on where in the space it is applied. in effect we are scaling a scaling traniormation.
Global axial twisting can be developed as a differential rotation just as taper-

ing is a differential sealing. To twist an object about its 2 axis we apply:

X=xcoso—ysinEi

Y=xst'rifl+y-cosfi
Z=z

where:

E|=f5(z]

and ,I"izJ specifies the rate of twist per unit length along the z axis.
A global linear bend along an axis is a composite transformation comprising

a bent region and a region outside the bent region where the deformation is a
rotation and a translation.
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Barr defines a bend region along the Y axis as:

}'nrtIn 5 Y 5 I-"'mu

the radius of curvature of the bend ls 1.llr and the centre of the bend is at y = yo.

The bending angle Is:

e=k(y-pal

where:

}"In|-I J" 5 }"m|"I

V = 1! ym -c y < Pmu
}‘rI1IIt I]-' E }"rrtin

The deforming transformation is given by:

X = 1:

—sin Biz -i} + ya :l’r|-iln s y s ya.“

—sin Biz -—:]= + ye + cos Bty — ]"rI1|T|] F -: yuan

—5i['l ‘BIZ -%:I -|- )4: + CD5 BU’ -' }‘mI:] Y 3‘ ]"maI

-cos Elia —T:} + yo ' ,v..r.. :5 y 5 ya...

-cos st: .11 + i + sin Elfy - y....) y c ymin

-cos B[z -it + f+ sin Elly - ya...) y :=- y.....

Figure 1.4 shows an example of each of these transformations. The deformation on
the cube is an intuitive reflection of the effects and the same transforrnations are

applied to the Utah teapot. Figure 1.5 (Colour Plate} shows a rendered version
of a polygon mesh oblect (a conugated cylinder] that has been twisted and
tapered.

Non-constrained. non—lineat deformations cannot be applied to polygon

meshes in general. One problem is the connectivity constraints between vertices.

For example, we cannot twist a cube, represented as six surfaces, without limit and
retain a structure suitable for rendering. Another problem is that defonnations

where vertioes move apart have the effect of reducing the polygonal resolution

of the original model giving rise to a degradation in silhouette edge aliasing
[dealt with in detail in Chapter 4]. Thus the polygonal nature of the obiect model
constrains the nature of the deformation and this can only be over-

come by subdivision of the original mesh as a function of the ‘severity’ of the
deformation.

J-
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figtlwe 1.4
Snucture-deformhtg
tiansforrnations.

'.-'.'-ii: :2.--'-: '.-'.-'.-'-.'.= E‘ .-...'.Ir-...'_..;_..-'..- .",... '.-_--".-_--._._-' ,-'.-’_- ,_-' _n§_;: _1;~,-. '_.'.,-.;_ _;_ ,: _-:_._ _ _
® Vec ors and co puter graphics

Vectors are used in a variety of contexts in computer graphics. A vector is an

entity that possesses magnitude and direction. The common example oi a

vector is the velocity of a particle moving through space. The velocity possesses

bath a magnitude and a direction and this distinguishes it from a scalar quan-

tity which only has magnitude. An example of a scalar is the temperature of a

point in space. A three-dimensional vector is written as a triple:

V = (V1. V2. ml

where each component v.- is a scalar,
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Figure 1.6
Two georrtelric
interpretations of the
sum of two vectors.

Addition of vectors

Addition of two vectors V and W, for example, is defined as:

X=V+W '

=ix:.xz.x1}

=[e:+wu,vz+I-'2.vs+w.:l

Georhetrically this is interpreted as follows. ‘the ‘tail’ of II’ is placed at the ‘head’

of I’, and X is the vector formed by joining the tail of I’ to the head of W. This

is shown in Figure Lo for a pair of two-dimensional vectors together with an

alternative, hut equivalent, interpretation.

Length of vectors

The magnitude or length of a vector is defined as:

llil = iv.“ + vzi + v.+Fl'“’

and we interpret this geometrically as the distance from its tail to its head.
we normalize a vector to produce a unit vector which is a vector of length

equal to one. 'l‘he normalized version of It is:

_‘l‘'
II-'|

which is a vector of unit length having the same direction as U. We can now
refer to U as a direction. Note that we can write:

V=|I"'|U

which is saying that any vector is given by its magnitude times its direction.

Notmallzatl-an is used frequently in computer graphics because we are interested

in calculating and representing the orientation of entities, and comparative ori-

entation requires normalized vectors.

Normal vectors and cross product:

in computer graphics considerable prfloessittg is carried out using vectors that are

normal to a surface. For example, in a polygon mesh model (see Chapter 2) a nor-

.. -. - --._-:- -...-n-.-__._. --' ' —t.--'..--'-...-- —-.a_-.-- . -..-3.-1...‘ -.... _n..-u2'u...:n-c..1-:.i;..-.:.n-.iE§n..-._-_.L- .-..... . .. .
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Calculating the non-nal
vector to a polygon.
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mai vector is used to represent the orientation of a surfaoe when comparing this
with the direction of the light. Such a comparison is used to reflection models to

compute the intensity of the light reflected from the surface. The smaller the

angle between the light vector and the vector that is normal to the surface, the

higher is the intensity of the light reflected from the surface [see Chapter 3*}.

A normal vector to a polygon is calculated from three {non-collinear} vertices

of the polygon. Three vertioes define two vectors in and ii’: (Figure 1.?) and the

normal to the polygon is found by taking the cross product of these:

N, - V1 is V:

The cross product of two vectors V and Wis a vector .1’ and is defined as:

X = I’ it W

= {vzwi — one}! + tow: - vrwalj + {viwz — viwilk

where i, I and It are the standard unit vectors:

i=I'.1.0i|3l

l‘=l'-11.0}

k=[fl.0, 1]

that is. vectors oriented along the coordinate axes that define the space in which
the vectors are em bedded.

Geometrically a cross product, as we have implied, is a vector whose orienta-

tion is normal to the plane containing the two vectors forming the cross prod-

uct. when determining the surface normal of a polygon, the cross product must

point outwards with respect to the object. in a right-handed coordinate system

the sense of the cross product vector is given by the right-hand nile. ii the tirst
two fingers oi your right hand point in the direction of ifand Wthen the direc-

tion of X is given by your thumb.

If the surface is a bi-cubic parametric surface (see Chapter 3}, then the orien-

tation of the normal vector varies continuously -over the surface. We compute
the normal at any point (u, v] on the surface again by using a cross product. This

is done by first calculating tangent vectors in the two parametric directions {we

outline the procedure here for the sake of completeness and give full details in
Chapter 3]. For a surface defined as (Ho, v) we find:

Polygon dcl'rnorl
by four vertices
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FigI.|re1.B
Normalllmapohl one
paramflric surface 0 {1.'.I..'r'_J

a a

f.‘,;Q-In. vi and Elli“. v}

we then define:

N,.=*:K--flu av

This is shown schematically in Figure 1.3.

Normal vectors and clot products

The most common use of a dot product in computer graphics is to provide a

measure of the angle between two vectors, where one of the vectors is a normal
vector to a surface or group of surfaces. Common applications are shading (the

angle between a light direction vector and a surface normal] and visibility test-

ing (the angle between viewing vector and a suriace normal].

The clot product of vectors If and W is a scalar X which is defined as:

X = ‘Ir’-'l-Ir’

= I-"1W1 -1- Fill‘: + I»-'31-Iv'3

Figure 1.9(a} shows two vectors. Using the cosine rule we have:

lIr'- 'l-l’i3= iVF+ II-l’i3—2l'I?lIll«'l oos H

where 9 is the angle between the vectors. Also it can be shown that

IV- we = ivr-=- 2v.w+ Iw1=

thus:

If-W = Wll W1 cos 6

giving:

I V-II’
Il«‘lIl~lI'l

cost}:

or the angle between two vectors is the clot product of their normalized versions.



0037

:

a

i»
E‘..u'
rit
1’

Figure 1.9‘
(a} The dot product at the
two vectors is related to the

cosine of the angle between
them.’

{him 2 v-wit the length
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We can use the dot product to project a vector onto another vector, Consider
a unit vector la’. if we proiect any vector it’ onto Ir’ (Figure 1.9[b]) and call the
result I, then we have:

IX] = Il'II"| cos El

l’- W

|lr'IIl*Ia'l

=uW an

because Vis a unit vector. ‘thus the dot product of Vand Wis the length of the
projection of Wonto IF.

A property of the dot product used in computer graphics is its sign. Because
of its relationship to cos ii the sign of the dot product of If and If [where V and
If are of any length) is:

'F-l'|v’::-I} lffl-:90’

V-W=U ifB=9U'°

Ir"-ll’-r:[.'I 'if~El:a-90°

Vectors associated with the normal vector reflection

There are three important vectors that are associated with the surface normal.

They are the light direction vector. 1., the reilecrlon vector or mirror vector, R, and
the viewing vector. V. The light direction vector, 1, is a vector whose direction is

given by the line from the tail oi the surface normal to the light source; which in
simple shading contexts is defined as a point on the surface that we are currently
oonsidering. This vector is shown in Figure l.10(a). The reflection vector; R. is
given by the direction of the light reflected from the surface clue to light incoming
along direction L. Sometimes called me mirror direction, geometric optics tells us
that the outgoing angle equals the incoming angle as shown in Figure 1.ltl{h).

'r"

A9
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figue 1.10
'0-fiecton associated with the

non'nal vector. (.1) I'., the

light dire:I:t1'oI1 wetter,
{In} 1!, I112 reflectian vector,
{dz} I", the View vector, is a
veclm of my mientarion.

Figure 1.11
I'.onslrI.Ict4I:n1 01 the
reflectinn vector R.

"..1u..._""L'-'£_';J::-.':;:£.'.i.a_.u""u..r""'.;i5E.iLI;C:'.r'E‘i§'I'..'..;. ..



0039

Mrs Ann cmlrumt citiwnrcs (E

Consider the construction shown in Figure 1.11. This shows:

R = R1 + R:

R: = —-L -i- R;

Thus:

R = 211‘; — L

from Equation 1.1:

R2 = lN-IJN

and

R = 2.[N-IJN — L (1.2)-

Figure l.lfl(c} shows a view vector ‘I’. Note that this sector has any arbitrary ori-

entation and we are normally interested in that component of light incoming in

direction I. that l.‘.i reflected along 1’. This will depend in general on both the

angles or and Bu. We also note that the intensity of outgoing light depends on

the incoming angles 1:. and Hi, and this is usually described as a bidirectional

dependence because two angles, (ow, Eh} and (iii.-, 0.], in three-dimensional space
are involved.

-"'I-"'-"35-'-~'3"5i"li""J‘-'9"-"3':?3'l'E"5.'i"..1"1.-135'4£a'-4. .. F§.=s~ -‘Ev-‘H ;.h'i.' 5'-'-'b":'l'.\"fl5I‘fiH'l-1‘£ .- ‘&'J4EE$E:H.EiSRI&PA'fl Rays and computer graphics

in computer graphics we are interested in an entity called a ray [rnathematically

known as a directed line segment) that possesses position, magnitude and direc-

tion. We use this mostly to simulate light as an infinitesimally thin beam — a

light ray. if we imagine a ray to be a physical line in three space, then its posi-

tion is the position of the tail of the line. its magnitude the length of the line

between its head and tail and its direction the direction of the line. A ray can be

specified by two points or by a single point, and a vector. ii the end points of the

ray are (xi, _}-'|, zi} and [12, _}'‘2, 2:} respectively, then the vector is given by:

‘l"=[.rz—x1,,v2—y1,zz—z.l

itays are not only used in ray tracing, but they find uses in volume rendering,

rendering constructive solid geometry {CSG} volumes and in calculating form

factors in radiosity. We will now iooit at some of the more important calculations
associated with rays.

Itay geometry - intersections

Because ray tracing simulates the path of light through an environment, the
most common calculation associated with rays is intersection testing - we see

whether a ray has hit an obiect and if so where. Here we test a ray against all

objects in the scene For an intersection. This is potentially a very expensive

calculation and the most common technique used to make this more efficient is
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Figure I.l2
values of parameter I along
I ray.

to enclose obiects in the scene in bounding volumes - the most convenient
being a sphere - and test first for a ray—sphete intersection. The sphere encloses
the obiect and if the ray does not intersect the sphere it cannot intersect the
object. Another common bounding volume is a box.

Sphere and boxes are also used to bound obiects tor collision detection tests
in Computer animation {see Chapter 1?}. Pairs of ob|ects can only collide if their
bounding volumes intersect. The motivation here is the same as that for my trac-
ing — we first cull away pairs that cannot possibly collide before we undertake
detailed intersection checking at the individual polygon level. Checking for

sphere—-sphere intersection is trivial and for boxes — if they are axis aligned — then
we only need lintit checks in the x, y and 2 directions.

Intersections - ray—sphere

The intersection between a ray and a sphere is easily calculated. If the end points

of the ray are (xi. rt. 2.) and (ice. }’z, 2.2} then the first step is to parametrize the ray
[Figure 1.12}:

x=xi +{xz—.ti]t=xi+r't

r=r-+0:-:r1lf=r~+!'f

Z=Z|+{Zz—.i.’|]l'=2|-I-.'Cf

[L11

where:

U :r. E s 1

A sphere at centre {L m, n} oi radius r is given by:

[Jr-l]7'+[y—rr1)‘+{z-njF=r3

Substituting for x, 1-‘and 2 gives a quadratic equation in tot‘ the form:

r1.F+bt+t.‘='U'

where:

rI=F+;'3+.E’

b= 2i{x.—l] +2,i[yi—m)+2ic(z:~n]

c=F+m3+rr‘+JrF+y.3+z1z+2-[—ix.-nr}-'.-nz.}—r°
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it the determinant of this quadratic is less than D then the line does not intersect the

sphere. If the determinant equals 0 then the line graze: or is tangential to the sphere.
The real roots of the quadratic give the front and bath intersections. Substituting the

values for 1‘ into the original parametric equations yields these points. Figure 1.12

shows that the value of 1‘ also gives the position of the points of intersection relative

to (xi, ya. at) and {xa. ya, 22.]. Only positive values of rare relevant and die smallest

value of t corresponds to the intersection nearest to the start -of the ray.

Other infonnat ion that is usually required from an intersection is the surface

normal (so that the reflected and refracted rays may be calculated] although, if

the sphere is being used as a bounding volume. only the fact that an intersec-

tion has occurred, or not. is required.

if the intersection point is (1., yr. 2.) and the centre of the sphere is (I, or. til

then the normal at the intersection point is:

x. -1 ya - m xi - rt
N = . ..r r r

Intersections - raywconvex polygon

If an object is represented by a set of polygons and is convex then the straight-

forward apptoach is to test the ray individually against each polygon. We do this
as follows:

{1} Obtain an equation for the plane containing the polygon.

{2} Check for an intersection between this plane and the ray.

[3] Check. that this intersection is contained by the polygon.

A. more common application of this operation is clipping a polygon against a

view trusturn {see Chapter 5]. Here the ‘ray’ is a polygon edge and we need to

find the intersection of a polygon edge and a view frustum plane so that the

polygon can be split and that part outside the view inistum discarded.

For example. if the plane containing the polygon is:

Ax+B}"+Cz+D=0

and the line is defined pararrtetrically as before, then the intersection is given by:

t = -—[Hl.X| + By. 1- C2: + D}

(at + at + Ck} “'21

We can exit the test if t -: (II. This means that the ray is in the half space. defined

by the plane that does not oontain the polygon [Figure ‘.l.13[a]]. We may also be

able to exit if the denominator is equal to zero which means that the line and

plane are parallel. in this case the ray origin is either inside or outside the poly-

hedron. We can check this by examining the sign of the numerator. If the

numerator is positive then the ray is in that half space defined by the plane that

is outside the obiect and no further testing is necessary (Figure l.l3{b]I}.
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Figure 1.13 Plane oontaining Plane oontaining
{a} A ray in the half space po-lygon currently pt:-'lJigI:vn ClIl'l’eI'Ill:'
that does not contain the being Ieslcd beins lasted
obiecl; {II -: Ill]. (h) A possilale
exit condition. The ray is
parallel to the plane

containing the polygon
otlrrenliy being tested. It. is
either Inside or outside the

obiect.

{3} (‘all

The straightforward method that tests a point for containment by a polygon

is simple but expensive. The sum of the angla between lines drawn from the
point to each vertex is 3iii}“ it‘ the point is inside the polygon, but not if the point
lies outside.

There are three disadvantages or inadequacies in this direct approach. We

cannot stop when the first intersection emerges from the test unless we also eval-
uate whether the polygon is irorn— or back-facing with respect to the ray direc-

tion. The containment test is particularly expensive. It is also possible for errors

to occur when a ray and a polygon edge coincide.

All of those disadvantages can be overcome by a single algorithm developed
by Haines {I991}. Again we use the concept of a plane that contains a polygon

defining a half space. All points on one side oi the plane are outside the poly-
hedron. Points on the other side may be contained by the polyhedron. The log-

ical intersection of all inside half spaces is the space enclosed by the polyhedron.

it ray that intersects a plane creates a directed line segment {unbounded in the
direction oi the ray} defined by the intersection point and the ray direction. It is

easily seen that the logical intersection of all directed line segments gives the line

segment that passes through the polyhedron. Proceeding as before we exit from

the test when a parallel ray occurs with an ‘outside’ origin. Otherwise the algo-
rithm considers every polygon and evaluates the logical Intersection of the

directed line segments. Consider the example shown in Figure ‘L14. For each

plane we categorize it as front-facing or hack-facing with respect to the ray direc-

tion. This is given by the sign of the denominator in Equafion 1.2 {positive for

beck-facing, negative for front-facing). The conditions that forth the logical
intersection of directed line segments are embedded in the algorithm which is:

liniriolize t.....r to large negative value

no to large positive value]

if [plane is back-facingl and (r ~--: to}
then try = I

...m..-.-.-;.s:i.a;.:assa;.»...~.;:.;..is.s:..msa.s.-ss_-....;-.:. .-., x.‘-.;;"..:5'-..-,=.'.,.-;.-,L-;- ._ .r_;_ ~. cor - ' - -' '
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Figure 1.14
Ila)!-CDflVEJt polyhedron
i-ttentectio-‘I testing [alter
Haines {T993 3-}:

mars AND corarurnr cmrmcs (E)

Logical inlerseclitut

£3 Updaling values E Hon-updatlltg, values

if [plane is frnntafacirtgl and [r s r.....,)
then tam = I

if {tam :- tag] I]: [exit - my misses]

Intersections — ray-box

Ra}r—box Intersections are important because boxes may be more useful bound-

ing volumes than spheres. particularly in hierarchical schemes. also generalized
boxes can be used as an efficient bounding volume.

Generalized boxes are formed from pairs of parallel planes, but the pairs of planes
can be at any angle with respect to each other. In this section we consider the spe-
cial case ofboxes forrnlrtg rectangular solids. with the normals to each pair of planes
aligned in the same direction as the ray tracing axes or the ohiect space axes.

‘Eb check if a rag; intersects such a box is straightforward. We treat each pair of
parallel planes in turn, calculating the distance along the ray to the first plane
(rm) and the distance to the second plane {ha}. The larger value of in... and the
smaller value of in. is retained between comparisons. IE the larger value of ram is
greater than the smaller value of tr... the ray cannot intersect the box. This is
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shown, for an example in the xy plane in Figure 1.15. If a hit oocurs then the
intersection is given by tn...

A more succinct statement of the algorithm oontes from considering the distance
between the intersection points of a pair of parallel planes as intervals. Then it the
intervals intersect. the ray hits the volume. if they do not innersect the ray misses.

Again because our convex polygon is reduced to a rectangular solid, we can
define the required distances in terrns of the box extent. Distances along the
ray are given for the x plane pairs as follows: if the box extent is Urn, }‘ln, zit} and
-fxsz, mg, 2.93} then:

ID = Jtat - It.-'1: - II

is the distance along the ray from its origin to the intersection with the frrst
plane, and:

In -1
ha: 1 I11-11

The calculations tor fly; 3:. and tn, tar are similar. The largest value out or the l'r

set gives the required t..... and the smallest value of the 1:: set gives the required
ts... The algorithm can exit at the y plane calculations.

X‘. Ray origin

-  mm.;r:rum-.-an:semmem;.-;
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' Intersections — ra3r—quadric

The sphere example given in Section 1.4.2 is a special case of rays intersecting
with a general quadric. lta3,r—quad1ic intersections can be dealt with by consider-
ing the general case, or ‘special’ objects, such as cylinders, can be treated
individually for reasons of efficiency.

The general implicit equation for a quaclric is:

Ax’+Ey“+Hz‘+2.B.xy+2F)-z+2Cxz+ 2.Dx+2Gy+2..!'z+,f=i.'II

Following the same approach as we adopted for the case of the sphere, we sub-
stitute Equation 1.1 into the above equation and obtain the coefficients ii‘, I: and
c for the resulting quadratic as follows: '

rt=Axa3+Eyi3+Hz.F*+2Bx;y-4+2C1iza+2f‘ys:e'

E1 = r1'[rlx1J!.:- + Hfxiya + xayil + C(.'¢rZ.a' -I— Xczt] +
Dita + Eyiya + Firm 4- }"d3I} + Gy. + Hinze + In

C = All: -I- E)’: + HZI2 -0- 2Bx1}"t + ZCIIZI + ZDXI -l- 2s‘}*'|Z1-|-
2t'}y1 -i-Zfzt 1-}

The equations for the quadrics are:

I Sphere

(x-ii? + [y—m]3+ (z—a-t)’ = r“

where {i, In, rt] is, as before, the centre of the sphere.
Infinite cylinder

(x-t‘)3+ [1/—.I'fl]z= I’:

Ellipsoid

(.t—n']3 +§E—rn]-3 + t’z-rt)“ - 1 =0
,1: '32 1,2

where o, is and 1 are the serni-axes.
Paraboloici

[I-I)“ +1!-m]1—z+n=-U
o:3 B’

0 Hyperboloid

[.t—.f)"’+i|1_*—rrt]3 + {z-HF -1 =1}
tr’ I3’ 1’

llay tracing geometry — reflection and refraction

The formulae presented in this section are standard formulae in a form that is
suitable for incorporation into a simple rajr tracer. The source of the formulae is
l~'resnel's law given In Section ?.l.

Each time a ray intersects a surface it produces, in general. a reflected and
refracted ray. The retlection direction, a unit vector, is given [as we saw in Section
1.3.2) by:
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Figure 1.16
Reflection and retraction

geometry.

R = 2N cos 1; — L

= 2[N-I.}N — I.

where I. and N are unit vectors representing the incident ray direction, which is

the same as the light vector, and the surface normal respectively. 1., it and N are

co-planar. These vectors are shown in Figure 1.16, where I = —L.

A ray striking a partially or wholly transparent object i3 refracted due to the

change in the velocity of light in difierent media. The angles of incidence and
refraction are related by Snell's law:

Sin! _ E
sin ti - p:

where the incident and transmitted rays are co-planar with N. The transmitted

ray is represented by Tend this is given by:

T =]1I—[cosEI+pc\os¢]N

P = I-lrfl-12

1

cnsB=F(1—].l‘(1—c\os*¢]§
as shown in Figure 1.16.

If a ray is travelling irom a more to a less dense medium then it is possible for

the refracted ['1-l‘§|"Iifl he parallel to the surlace [Figure 1.13"}. tr; is known as the Crit-

ical angle. if 4: is increased then total internal reflection occurs.

H {unit reflected ray}

T'{urI'I1 transmitted w:eI:0r}

T=u.I—lcoe:I)- noose-W
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Figure 1.1?
htemal reflection in an

object. (a) It. - critical
angle. (hi -1: > 1».

-- '- - - — --------r .- . - —- :.- -ar_e:ao:e.-.e-1:=i-e‘ m;mmm3m mw'
interpolating properties in the image plane

in mainstream rendering techniques - that is rendering polygons - various prop-
erties required for interior pixels are interpolated from the values of these

properties at the vertices of the polygon (that is the pixels onto which the

vertices project). Such interpolation Is known as bliinear interpolation and it is
the foundation of the etficieney of this kind of shading.

Referring to Figure 1.18, the interpolation proceeds by moving a scan line
clown through the pixel set representing the polygon and obtaining start and
end values for a scan line by interpolating between the appropriate pair of
vertex properties. Interpolation along a scan line then yields a value for the

property at each pixel. The interpolation equations are (for the particular edge
pair shown in the illustration]:

CLLn1:rlt scan line

Figure LIB

'-itereolaths a property
it a piiteil lr-om values at the
vertex pixels.

E

l

E

E
i

E
2
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1
h- mm-m+mm-miJ"|.|“=l

1.
Ph- lP1{J*--1'<}+PI [VI-M1}"| 3'4

I
XI:--Tap. - [p.-I{J:a - 1.) + pa Ix. — 1.}!

These would normally be lmplemented using an incremental form. the final
equation, for example, becurning:

P- =- P- + G?

with the constant value hp calculated once per scan line.

0048
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sloi
of three-dimensional

objects (1)

2.1 Polygonal representation of three-dimensional objeets

2.2 iionstruetive solid geometry {CS6} representation of ob]ects

2.3 Space subdivision tedtniques for object representation

2.4 Representing olrfects with Implicit functions

2.5 Scene management and object representation

2.6 Summary

P iuon

The primary purpose of three-dimensional computer graphics is to produce a

two-dimensional image of a scene or an ohlect from a description or model of
the oiriect. The ohiect may be a real or existing object or it may exist only as a
computer description. A less corrunon but extremely important usage Is where
the act of creation of the ohiect model and the visuaiization are intertwined.

This occurs in intefildive CAD applications where a designer uses the visualiza-
tion to assist the act of creating the oisject. Most o1:I|ect descriptions are approx-

imate in the sense that they describe the geometry or shape of the ohiect only

to the extent that inputting this description to a renderer produces an image of
acceptable quality‘ in many CAD applications. however. the description has to

be accusate because it is used to drive a manufa.ci;url.ng process, The final output

is not a two-dimensional image but a real three-dimensional object.

Modelling and representation is a general phrase which can he applied to any
orailofthefoliowingsspectsofohlectsz

e Creation of a three-dimensional computer graphics representation.

0 The technique or method or data structure used to represent the o-blect.
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I Mai‘iipt.Il-llrtiori of the representation - in particular changlrig the shape oi an
existing model.

‘lhe ways in which we can create computer graphics objects are almost as many

and varied as the obiccts themselves. For example, we might construct an archi-
tectural ot:-|ect through a CAD interface. We ntay take data directly from a device
such as a laser ranger or a three-dimertsiocnal digitizer. We may use some inter-
face based on a sweeping technique where so-called ducted solids are created by

sweeping a cross-section along a spine curve. Creation methods have up to now
tended to be manual or semi-manual involving a designer working with an inter-

time. its the demand tor the representation of highly complex scenes increases -

irorn such applications as virtual reality {Vii} —- automatic methods are being
investigated. For Vii aprpltcations of existing realities the creation oi‘ computer
graphics representations from photographs or video is an attractive proposition.

The representation or an object is very much an unsolved problem in com-

puter graphics. We can distinguish between a representation that is required for
a machine or tenderer and the representation that is required by a user or user

interiace. Representing an oi:-|ect using polygonal facets — a polygon mesh rep-
resentation — is the most popular machine representation. It is. however. an

inconvenient representation for a riser or creator of an obiect. Despite this it is
used as both a user and a machine representation. Other methods have separate

user and machine representations. For errample, bi-cubic parametric patches and
C36 methods, which constitute user or interface represerttatioris may be con-

verted into polygon meshes for rendering.
The polygon mesh iorrrn sulfers from many disadvantages when the object is

complex and detailed. in mainstream computer graphics the number of poly-
gons in an oi:-leer representation can be anything hour a few tens to hundreds of
thousands. This has serious ramifications in rendering time and oliiect creation

cost and in the feasibility of using such objects in an animation or virtual re-

ality environment. Other problems accrue in animation where a model has both
to represent the shape of the ob|ect and be controlled by an animation system
which may require oolllsloris to be calculated or the object to change shape as a
function of time. Despite this the polygon mesh is supreme in mainstream corn-

puter graphics. its inertia is due in part to the development of efficient algo-
rithrns and hardware to render this description. This has resulted in a somewhat

strange situation where it is more efficient — as far as rendering is concerned - to
represent a shape with many simple elements {polygons} than to represent it
with far terror {and more accurate] but more complicated elements such as

bi-cubic parametric patches (see Section 3.4.2}.
The ability to manipulate the shape of an existing obiect depends strongly on

the representation. Polygon meshes do not admit simple shape manipulation.

Moving mesh vertices immediately disrupts the ‘polygonal resolution‘ where a
shape has been converted into polygons with some degree of aocuraqr that is
related to the local curvature of the surface being represented. For example.

imagine twisting a cube represented by six squares. The twisted o’o|ect cannot be
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represented by retaining only six polygons. Another problem with shape manip-
ulation is scale. Sometimes we want to alter a large part of an obi-ect which may

lnycrlrre moving many elements at the same time: other times we may require a

detailed change.

Ditferent representational methods have their advantages and disadvantages

but there is no universal solution to the many problems that still exist. Rather.
particular modelling methods have etroitted for particular contexts. A good

example oi this tendency is the development of constructive solid geometry
methods {CSG} popular in interactive CAD because they tacilitate an intuitive
interface for the interactive design of complex industrial obiects as well as a rep-
resentation. CS5 is a constrained representation in that we can only use it to

model shapes that are made up at allowed combinations of the primitive shapes
or elements that are included In the system.

How do we choose a representation? The answer is that it depends on the
nature of the object. the particular computer graphics technique that we are
going to use to bring the nhlect to life and the application. All these factors are
interrelated. We can represent some three-dimensional objects exactly using a

mathematical formulation, for example, a cylinder or a sphere; for others we use

an approximate representation. For obleclzs that cannot be represented exactly
by mathematics there is a trade~ofE between the accuracy of the representation
and the bulk of information used. This is illustrated by the polygon mesh skele-

tons In Figure 2.1. You can only increase the veracity of the representation by

increasing the polygonal resolution which then has high cost Implications in
rendering time.

The ultimate impossibility of this extrapolation has led to hybrid methods for

very complex. and unique obiects such as a human head. For example, in repre-

senting a particular human head we can use it combination of a polygon mesh

model and photographic texture maps. The solid form of the head is represented
by a generic polygon mesh which is pulled around to match the actual dimen-
sions of the head to be modelled. The detailed likeness is obtained by mapping

a photographic texture onto this mesh. The ttlea here is that the detailed varia-
tions in the geometry are suggested by the teirture map rather than by detailed

excursions In the geometry. Of course, its not perfect because the detail in the

photograph depends on the lighting conditions under which it was taken as well
as the real geometric detail. but it is a trick that is increasingly being used.

Whether we regard the texture mapping as part of the representation or as part

of the tendering process is perhaps a matter of opinion; but certainly the use of

photographic texture maps in this context enables us to represent a complex

-ob-|er:t like a human head with a small number oi polygons plus a photograph.

This compromise between polygonal resolution and a photographic texture
map can be taken to extremes. In the computer games industry the total num-
ber oi polygons rendered to the screen must be within the limiting number that

can be rendered at, say, 15 frames per second on a PC. A recent football game

consists of players whose heads are modelled with lust a cube onto which a
photographic texture is mapped.
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We now list, in order of approximate irequency of use, the mainstream mod-
els used in computer graphics.

[1] Petlygomll Objects are approximated by a net or mesh of planar
polygonal facets. ‘With this iorrn we can represent, to an accuracy that we
choose, an olstect of any shape. However. the accuracy is somewhat arbitrary
in this sense. Consider Figure 2.1 again: are HZIJIJO polygons really
necessary, or can we reduce the polygonal raolution witltout degrading the
tendered Image, and if so by how much? The shading algorithms are
designed to visually transform the faceted representation in such a way that
the piecewise linear representation is not visible in the shaded version
[except on the silhouette edge}. Connected with the polygonal resolution is
the final prolected sire of the object on the screen. Waste is incurred when
a complex ob1ect, represented by many thousands oi polygons, proiects
ontoascreen area thatismatie up ofotflyafewplxels.

{2} III-cubic parametric patches [see Chapter 3] These are ‘curved
quarlriiaterals’. Generally we can say that the representation is similar to the
polygon mesh except that the individual polygons are now curved suriaoes.
Each patch is specified lay a roathematicai formula that gives the position of
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the patch in th ree-dimensional space and its shape. This formula enables us

to generate any or every point on the surface of the patch. We can change

the shape or curvature of the patch by editing the mathematical

specification. This results in powerful interactive possibilities. The problems
are. however, significant. it is very expensive to render or visualize the

patches. When we change the shape of individual patches in a net of
patches there are prolrlerns in maintaining ‘smoothness’ between the patch

and its neighbours. Bl-cubic parametric patches can be either art exact or an
approximate representation. They can only be an exact representation of

themselves, which means that any object. say. a car body panel, can only be
represented exactly if its shape corresponds exactly to the shape of the

patch. This somewhat torturous statement is necessary because when the

representation is used for real or existing ohlects, the shape modelled will
not necessa lily correspond to the surfaee oi the object.

An example of the same object represented by both bi-cubic parametric
patches and by polygonal facets is shown in Figure 3.23 tar} and {c}. This clearly
shows the cornplexltyhntmber of elements tratle-olf with the polygon mesh

representation requiring Z04!-ll elements against the 32-patch representation.

Constructive solid gooenntnr {CS6} This is an exact representation to

within certain rigid shape limits. It has arisen out of the realization that very
many manufactured oblects can be represented by ‘combinations’ of

elementary shapes or geometric primitives. For example, a chunk of metal
with a hole in it could be specified as the result of a three-dimensional

subtraction between a rectangular solid and a cylinder. Connected with this
is the fact that such a representation makes for easy and Intuitive shape

control - we can speciiy that a metal plate has to have a hole In it by
defining a cylinder of appropriate radius and subtracting it from the
rectangular solid, representing the plate. The (356 method is a volumetric
representation - shape is represented by elementary volumes or primitives.

This contrasts with the previous two methods which represent shape using

surfaces. an example of a CSG-represented object Is shown in Figure 2.14.

Spatial subdivision 'I:fl‘.']lII|I|'IIl3 This simply means dividing the object

space into elementary cubes, known as voxels, and labelling each voxel as

empty or as containing part of an ob|ect. It is the three-dimensional

analogue ot representing a two-dimensional ob|ect as the collection oi pixels
onto which the object projects. labelling all ol three-dimensional obiect
space in this way is clearly expensive, but it has found applications in

computer graphics. in particular, in ray tracing where an efficient algorithm

results ii the olriects are represented in this way. an example Oil a voxel
ohinect is shown in Figure 2.16. We are now representing the three-

cllmenslonal space occupied by the oiriect: the other methods we have
introduced are representations of the surface of the ot:-|ect.

{5} Implicit: representation Occasionally in texts Implicit functions are

mentioned asan object representation torrn. an implicit function Is, fore:-‘ample:
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which is the definition ior a sphere. {in their own these are of limited

usefulness in computer graphics because there is a limited number of oblects
that can be represented in this way. Also, it is an inconvenient form as

far as rendering is concented. However, we should mention that such
representations do appear quite irequentiy in three-dimensional computer

graphics - in particular in ray tracing where spheres are used irequenrly —

both as obiccts in their own right and as bounding objects ior other polygon
mesh representations.

implicit representations are extended into implicit functions which can

loosely be described as objects formed by mathematically defining a surface

that is influenced by a collection of underlying primitives such as spheres.

implicit functions find their main use in shape~c.'nanging animation - they
are oi limited usefulness for representing real ohlects.

We have arranged the categories in order of popularity; another useful

comparison is: with triznrels and polygon meshes the number of representational

elements per obiect is likely to be high iii accuracy is to be achieved) but the
complerdty of the repraentatl-on is low. This contrasts with bi-ci.rb|c patches

where the number of eJe:n1ent.s is likely to be much lower in most contexts but
the complexity of the representation is higher.

We should not deduce from the above categorisation that the choice of a rep-

resentation is a free one. The representational form is decided by both the ten-
dering technique and the application. Consider, for example, the continuaousi
discrete representation distinction. A discrete representation - the polygon mesh

- is used to represent the arbitrary shapes of existing real world objects - it is
diriicuit to see how else we would deal with such objects. in medical imaging the

initial representation is discrete ivoxelsi because this is what the imaging tech-
nology produces. On the other hand in CED W'Di'li we need a continuous repre+

srentation because eventually we are going to produce. say, a machine part from
the internal description. The representation has, therefore, to be exact.

The EEG representation does not fit easily into these comparisons. it is
both a discrete and a continuous representation, being a discrete combination

or interacting pririiititres, some of which can be described by a continuous
function.

iiinother important distinguishing factor is surface versus volume representa-

tion. The polygon mesh is an approximate representation of the surface of
an obiect and the rendering engine is concerned with prorri-cling a visualization

oi that surface. With Gouraud shading the algorithm is only concerned with

using geometric properties associated with the surface representation. in

ray tracing, because the bull: oi the cost is involved in tracking rays through
space and finding which oblects they intersect. a surface representation implies

high rendering cost. Using a volume representation, where the oiriect space

is labelled aoizording to object occupancy, greatly reduces the overall cost oi
rendering.
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The relationship between a rendering method and the representation is criti-
cally important in the radiosity method and here. to avoid major defects in the
final image, there has to be some kind of interaction between the representation
and the execution of the algorithm. as the algorithm progresses the representa-
tion must adapt so that more accurate oonsideration is given to areas in the
emerging solution that need greater consideration. in other words. because of
the expense of the method, it is difficult to decide a priori what the level of detail
in the representation should be. The unwieldlness oi‘ the concept of having a

15 C-B ‘H11.-7.1 -'.—..'-==.tIiI'_ .‘ I

Polygonal representation of three-dimensional objects

This is the classic representational form in three-dimensions] graphics. an obiect
is represented by a mesh of polygonal facets. in the general case an object
possesses curved surfaoes and the facets are an approrttrnation to such a surface
[Figure 2.2}. Polygons may contain a vertex count that emerges from the
technology used to create the model. or we may constrain all polygons to be tn-
angles. It may be necessary to do this. for example. to gain optimal perfon-nanoe
from special-purpose hardware or graphics accelerator cards.

Polygonal representations are ubiquitous in computer graphics. There are two
reasons for this. Creating polygonal objects is straightfonvani {although for oom-
piex obiecrs the process can be time consuming and costly} and visuaiiy effec-
tive algorithm exist to produce shaded versions of objects represented In this
way. its we have already stated, potygon meshes are strictly a machine represen-
tation - rather than a oonvenlent user representation -— and they often function
in this capacity for other representations which are not directly renderable. Thus
bi-cubic pararnenic patches, C56 and voael representations are often convened
into polygon meshes prior to rendering

There are certain practical difficulties with polygon meshes. Foremost
amongst these is accuracy. The accuracy of the model, or the difference between

the faceted representation and the curved surface of the object. is usually arbi-
trary. As far as final image quality is ooncemed. the sire of htdividual polygons
should ideally depend on local spatial curvature. Where the curvature changes

%%
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_.r.'- 1'



0056

@ |lEl'IlSlN'fA‘llON INIEI MODELLING Of TIIIEE-DIMENSIONAL DBIECTS {1}

rapidly, more polygons are required per unit area of the surface. These factors

tend to be related to the method used for creating ti-re polygons. ii, for example.
a mesh is being built front an existing obiect. by using a three—dirnenslona| dig-
itlner to determine the spatial coordinates of polygon yertices. the digitizer oper-

ator will r:lec'lc're on the basis of experience how large each polygon should he.

sometimes polygons are extracted algorlthmically (as in. for example, the cre-
ation of an obiect as a solid of revolution or in a bi-cubic patch subdivision algo-

rithm) and a more rigorous approach to the rate of polygons per unit area or the
surface is possible.

One of the most significant derrelopnrents in three-dimensional graphics was
the emergence in the 1970: of shading algorithms that deal efficiently with

polygonal objects, and at the same time, through an interpolation scheme,
diminish the visual effect of the piecewise line-arlties in the representation. This

factor, together with recent developments in fitted program tendering hardware,
has secured the entrenchnrent of the polygon mesh structure.

In the simplest case a polygon mesh is a structure that consists of poiygons
represented by a list of linked ix. 1''. El coordinates that are the polygon yertices

[edges are represented either explicitly or lrnpllcltly as we shall see in a moment).
Thus the irrtonnation we store to describe an object is iinally a list of points or

yertices. We may also store, as part of the oh|eci representation, other geometric
information that is used in subsequent processing. These are usually polygon

normals and yerterr normals. Calculated once only, it is convenient to store these
in the object data structure and have them undergo any linear transformations

that are applied to the obiecr.

it is oonyenient to order polygons into a simple hierarchical str-uc-tore. Figure
2.3ia] shows a decomposition that we have called a conceptual hierarchy for rea-

tour that should be apparent from the illusn-ation. Polygons are grouped into

surfaces and surfaces are grouped into oblects. For example, a cylinder possesses
three surfaces: a planar top and bottoni stirface together with it curved surface.

The reason for this grouping is that we must distinguish between those edges

that are part of the app:-orrimation ~ edges between adiacent rectangles in the

curved surfaoe approximation to the cylinder. for example — and edges that etrlsl
in reality. The way in which these are subsequently treated by the rendering

process is different - real edges must remain visible whereas edges that form part
of the approximation to a curved surface must be made inyisiirle. Figure 2.30:]

shows a more Eorural representation at the topology in Figure 2.3[a;u.

An etrarnple of a practical data structure which lnrplernents these relation-
ships is shown in Figure 2.3[c}. This oontalns horizontal, as well its vertical. hier-

archical linlts, necessary for programmer access to the next entity In a horizontal

sequence. It also includes a vertex reference list whid-r means that actual vertices
ireterreci to by each polygon that shares them] are stored only on-oe. another
difference between the practical structure and the topological diagram is that

access is allowed directly to lower-level entitles. Wlreframe visualizations of an

oh|eci are used extensively, and to produce a wirerrame Image requires direct
access to the edge level in the hierarchy. Vertical links between the edges‘ and the
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po1ygm1.s' levels can be either backward painters or forward pointers dependlng
an the type of renderer that ts accessing the structure. In a scan line tenderer.
edges are the topmost entlty whereas in a Lbufier remlerer polygons are. A :-
bufler renderer treats polygons as Independertt entitles, rendering one pulygon at
a time, A scan line renders all those polygons that straddle the scan line being
rendered

The arupmach |ust described Is more p-artleularljr referred to as an vertex-based
boundary made]. Sometimes It is necessary to use an edge-based boundary
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model, the most oommon manifestation of which is a winged-edge data struc-
ture {Hariqrla 1933}. an edge-based model represents a iaoe in oenns of a closing
sequence of edges.

‘The data structure just described encapsulates the basic geurnetnr associated
with a polygonal iacets of an object. information required by applications and
renderers is also usually contained In the scenerobiect database. ‘the following
list details the most common attributes found in polygon mesh atnrcttuea. They

are either data structure pointers. real numbers or birtargr flag,-s. it is i.l.1'IJi]tEl}? that
all of these would appear in a practical application, but a subset Is found in most
object representations.

I Polygon attributes

{1} Tiiangular or not.

{2} Area.

[3] Normal to the plane containing the polygon.

{4} Co-eflieients (:1. ti, C, D] of the plane containing the polygon
where.-1.x+H}'+Cz+D=D.

(5) Whether ctmveit or not.

(61 ‘Wimther it contains holes or not.

Edge attributes

{1} Length.

[2] ‘Whether an edge is between two polygons or between two surfiaces.

{3} Polygons on each side of the edge.

Vertex attributes

in Polygons that oontribute to the vertex
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(21 Shading or vertex normal - the average oi‘ the norrnals of the polygons
that oontrltiute to the vertex.

(3! Texture coordinates it-I. vl specifying a. mapping into a two-dimensional

texture image.

All Izhese are absolute prop-ereties that exist when the ohlect is created. Polygons
can aquire attributes as they are passed through the graphics pipeline. For exam-
ple, an edge can be tagged as a silhouette edge if it is between two polygons with

normals lacing towards and away from the viewer.

A signilicartt problem that crops up In many guises in computer graphics is
the scale problem. With polygonal representation this means that. in many

applications, we cannot atford to render all the polygons in a model if the view-
ing distance and polygonal resolution are such that many polygons project onto
a single pixel. This problem bedevils flight simulators [and similarly computer

games} and ‘virtual reality applications. An obvious solution is to have a hierar-

chy of models and use the one appropriate to protected screen area. There are

two problems with this; the first is that in animation (and It is animation appli-

cations where this problem is most critical} switching between models can cause

visual disturbances in the animation sequence — the user can see the switch from
one resolution level to another. The other problern is how to generate the hier-
archy and to decide how many levels It should contain. Clearly we can start with

the highest resolution model and subdivide, but this is not necessarily straight-

forward. We look at this problem in more detail in Section 2.5.

Creating polygonal objects

Although a polygon mesh is the most oorumon representational form in oom-
puter graphics, modelling, although straightforward, is somewhat tedious. The

popularity of this representation derives from the ease of modelling, the emer-

gence of rendering strategies [both hardware and software) to process polygonal

objects and the important fact that there is no restriction whatever on the shape
or complexity of the oblect being modelled.

Interactive development oi a model is possible by ‘pulling’ vertioes around
with a three-diusensional locator device but In practice this is not a very useful
method. It is cIlt'l:'tt:u.it to make orther than simple shape changes. Once an object

has been created, any single polygon cannot be changed without also changing

its neighbours. Thus most creation methods use either a device or a pcIog:ram.' the
only method that admits user iriteractiort is item 4 on the following list.

Four oomtnon examples oi polygon modelling metltods are:

[1] Using a tliree-dimensional ttigitizer or adopting an equivalent manual strategy.

[2] Using an automatic device such as a laser ranger.

[3] Generatingan object from a mathematical description.

[4] Generating an object by sweeping.
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The first two modelling methods convert real objects into polygon meshes. the
next two generate models from definitions. We distinguish between models gen- I
eratecl by mathematical formulae and those generated by interacting with curves '
which are defined mathematically.

Manual modelling of polygonal objects

The easiest way to model a real object is manually using a threodimerisional dig-
itizer. The operator uses experience and ludgement to ernplace points on an
object which are to be polygon vertices. The three-dirnensionai coordinates of
these vertices are then input to the systent via a three-dimensional digitizer. The
association of veriices with polygons is straightforward. at common strategy for
ensuring an adequate representation is to draw a not over the surface of the
object — like laying a real net over the ob|ect. ‘Where curved net lines Intersect
defines the position of the polygon vertices. at historic photograph of this
process is shown in Figure 2.4. This shows students creating a polygon mesh
model of a car in iii?-i. it is talten from a classic paper by early outstanding pio-

neers in computer graphics - Sutherland et ul. (1914).

Automatic generation of polygonal ob]ects

A device that is capable of creating very accurate or high resolution polygon
mesh obiects from real objects is a laser ranger. in one type of device the obiect
is placed on a rotating table in the path of the beam. The table also moves up

-F,-My uI_:.:4B'u|e _ ‘H W and down vertically. The laser ranger returns a set of contours - the intersection
exarrrpieui rnanuei rrictd-ellng. of the obiect and a set of closely spaced parallel planes - by measuring the dis-
souroe Beariyandiionth tance to the object surface. A ‘skinning’ algorithm. operating on pairs of con-

tours. converts the boundary data into a very large number or‘ triangles (Figure
WWW’ and H“ I 5 Z.5l.a]}. Figure 2..'5l'l:t] is a rendered version oi an ob]-ect polygonlzaed in this way.

The skinning algorithm produced. for this obiect. over -iiitiliiflli triangles. GivenEngineers, Inc.: New ‘l“i.'iI‘lt.
to was IEEE. that oniy around haii or these may be visible on screen and that the object



0061

pigtails
amsdfitdaohaomlobitct
ggmiedhyalasernnger
rlipdravnittdhra
fin-giiesflrlniigllgoriihni.
[allsfdttrtlng Ilgoliflun
pggulpointroricotsseortitre
u:lt'Ih3UI'SlGI'I'|iIh'.!lII'|-I'lE-
ggngufionalpolygonal
ghjeellrclnitlecoriloiks.
rblflvflflfifiedraon-I
ghjectprodttoedbya
ildMlI'tgIl90iil|'trn.

rottoomit representation or ‘runes-olusnsiottat. otutcrs (Eu

projects onus about half the screen surface implies that each triangle proiects
onto one pixel on average. This clearly illustrates the point mentioned earlier

that it is extremely wasteful of renclerirtg resources to use a polygonal resolution
where the average screen area onto which a polygon prolects approaches a

single pixel. For model creation, laser rangers suffer from the significant disad-

vantage that, in the framework described - fully automatic rotating table device
— they can only accurately model convex objects. Clbrlects with cortcavlties will

have surfaces which will not necessarily be hit by the incident beam.

Mathematical generation of polygonal objects

Many polygonal objects are generated through an interface into which a user

puts a model description in the form of a set of curves that are a function of two-

dimensional or two-paramenet space. This is particularly the case in CAD appli-
cations where the most popular paradigm is that of sweeping a cross-section in

a variety of different ways. There are two benefits to this approach- The first is
fairly obvious. The user works with some notion of shape which is removed from

the low level activity of oonstructlng an oblect from individual polygonal facets.
instead. shape is specified in tenns of notions that are oonnected with the form
of the oblect — something that Snyder (1992:: calls ‘the logic of shapes’. .5. pro-

gram then takes the user description and transforms it into polygons. The trans-

formation from the user description to a polygon mesh is straightforward. A
second advantage of this approach is that it can be used in conjunction with

either polygons as primitive elements or with hi-cubic parametric patches (see
Section 3.6}.

The most familiar manifestation of this approach is a solid of revolution

where, say, a vertical cross-section is swept through I30’ generating a solid with
a circlrlar horizontal cross-section ("Figure 2.61:3-l. The obvious constraint of

solids of revolution is that they can only represent oblecis possessing rotational
s3rntrnei:ry.

A more powerful generative model is arrived at by considering the same solid

generated by sweeping a circle. with radius controlled by a profile curve.
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(alnsoldolreeoiution I
generltttdbgl sweephg
a {vertical}-cross-section.
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section.

tre1'tit:al.ly up a straight spine {Figure 2-.|5Il'|1|]l. In the event that the profile curve is
a constant. we have the familiar notion of extrusion. This immediately removes
the constraint of a circular cross»section and we can have cross-sections of arbi~

trary shape {figure 2.6-[cl].

Now oonslcler controlling the shape of the spine. We can incorporate the

notion at a curved spine and generate objects that are controlled by a cross-
sectlorlal shape, a profile curve and a spine curve as Figure 2.? demonstrates.

other possibilities emerge. Figure 2.:-' shows an example or’ what Snyder calls

a tall product surface. Here a briefcase carrying handle is generated by sweeping

a cross-section along a path determined by the midpoint: of two rail crimes. The

long axis extent of the elliptical-lllrle cross-section is controlled by the same two

cunres - hence the name. A more complex example is the nublne blade shown
In Figure 2.3. Snyder calls this an aiftne transfortnatsotrt surface -— because the

spine ls now replaced by afline t1'a.rtsfort1'tailr:-rts, controlled by user speclfied

cunres. E-llI'.'l1 blade is generated by extruding a rectangular cross-section along
the z axls. The cross-sectlorr is specified as a rectangle, and three shape control»

ling curves. functions of 2, supply the values used in the transformations oi the
crossdectlon as it is extruded. The cross-section is, for each step In a. scaled

separately in x and y. translated in x, rotated around, traltslated back in x, and
extruded along the z axis.
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A oomplieated shape is thus generated by a general cross-section and three

curves. Clearly implicit in this example is a reliance on a oserideslgrler being able
to visualize the final required shape in three-dimensions so that he is able to

specify the appropriate shape t.‘l.ll"lr"¢S. Although for the turbine blade example
this may seem a somewhat tall order, we should bear in mind that shapes of such
complexity are the domain of professional engtneers where the use of such gen-
erative models for shape specification will not be unfamiliar.

Certain practical prot:-lents emerge when we generalize to eunred spines.
There are three di.-rlieulties in allowlng curved spines that immediately emerge.
These are illustrated In Figure 2.9. Figure z.9{a} shows a problem in the curve to
polygon procedure. I-Iere it is seen that the size of the polygonal primitives
depends on the excursion of the spine curve. The other is how do we orient the
cross-section with respect to a varylrtg spine [Figure 2.9[b}]? And, finally, how do
we prevent cross-sections self-intersecting (Figure z.Sl{r:J}? It is clear that this will

o-on:-ur as soon as the radius or curvature of the path of any points traced out by
the etoss~sectiortaJ curve eitoeeds the radius of curvature oi‘ the spine. we will
now look at approacha to these problems.
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Consider a parametrlcaiiy defined culzilic along which the cross-section is
swept. This can be defined {see Section 3.li as:

Q(ii}=mi’+lri.i‘+cii+d

Now If we consider the simple case of moving a constant cross-section without

tivlsting It along the curve we need to define intervals along the curve at which
the cross-section is to be placed and intervals around the cross-section curve.

‘Mien we have these we can step along the spine intervals and around the cross-

section intervals and output the polygons.

Consider the first problem. Diutd.l.i1g it Into equal intervals will not necessar-
ily give the best results. in particular the points will not appear at equal intervals

along the curve. A procedure Irnoii-vn as are 1ei'igtl1 parametrization divides the
eunre into equal intervals, but this procedure Is not straightforward. Ari: length

parametrization may also be inappropriate. what is really required is a scheme
that divides the curve into intervals that depend on the curvature of the curve.
When the curvature is high the rate of polygon generation needs to be increased

so that more polygons occur when the curvature twists rapidly. The most direct
way to do this is to use the curve subdivision algorithm (see Section 4.2.3] and
subdivide the curve until a linearity test is poeiltli-'e.

Now oonsitler the seconcl problem. Having defined a set of sample points we
need to define a reference frame or ooordinate system at each. The cross-section

is then embedded In this coordinate system. This is done by deriving three
mutually orthogonal vectors that torrri the coordinate axes. There are many
possibilities.

A common one is the Frenet frame. The Frenet frame is defined by the origin

or sample point, P, and three vectors 1‘, N and E (Figure 2.Iil,'i. T is the unit
length tangent vectrsr:

T: I-".i|F'i
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where Fisthederivafiveofthecurve:

F-3au'+2.lm+i:

The principal normal N is given by:

N=K.i'iltl

where:

K- VIA it ‘F,.*|I"l‘

and}! is the second derivative of the curve:

An I5¢t.I-r- 2!!

Flnallylisgtven by:

In Tit N

Procedural polygon mesh objects - 'lrai.'.‘taI objects

in this section we will look at a common example oi generating poimon mesh
ol:r|ects procedurally. Fractal geometry is a term coined by Benoit Mandelbrot
|II9??; 1932}. The term was used to describe the attributes oi certain natural phe-

nomena, for example, coastlines. tit coastline viewed at any level of detail — at

rnicroscoptc level. at a level where indivtriuai rocks can be seen or at ‘geograph-
lcai' level, tends to exhibit the same level oi jaggedness: a ltind of statistical sell-
similarlty. Fractal geometry provides a description for certain aspects of this

ubiquitous phenomenon in nature and its tendency towards self-slrnliarity.
In three-dirnenslonai oomputer g:raphlcs, fractal techniques have commonly

been used to generate terrain models and the easiest tecliniques Involve subdivisi-
ing the facets of the ob|ects that consist of triangles or quadriiaterals. A recursive

subdivision procedure is applied toeach iaoet, to a required depth orievel ofdetall.

and a oonvr‘ne-ing terrain model results. Subdivision in this oonteitt means taidng
the midpoint alocngtheedgehetiveen tivovertieesandperiurbirrg ttaionga line
nocrmai to theedge.'i'ite resuitotthis is to subdivide tlteoriginal faoetsintoa large

rrmnberot’sntaiierfav:ets,eai:l1 havingarandomodentation inthree-dirrrerrstonai

spaceabour the original facet orientation. The initial global sltapeoi‘ theob|ect is

retained to an extent that depends on the pertruiration at the subdivision and a
planar four-sided pyramid might turn into a ‘Mont Blane‘ shaped ob|ect.

Most subdivision algorithms are based on a formulation by Fournler et ai.

{I932} that recursively’ subdtvides a single line segment. This algorithm was

developed as an alternative to more matltematlcally correct but expensive pro-

oedures suggested by lviandelbrot. it uses self-similarity and conditional expecta-
tion properties of fractional Brownian motion to give an estimate of the

increment of the stochastic process. The process is also Gaussian and the only
parameters needed to describe a Gaussian distribution are the mean [conditional
expectation} and the variance.



0067

rowoouu Ismstniiitmu or THIEE-DIHENSIONA1 enters (E)

A procedure recursively subdivide: it line (ti. fi], 11:, {ii generating a scalar dis-
placement of the midpoint oi the line in a direction normal to the line {Figure
2.l liai].

11:: extend this procedure to. say, triangles or quadrilataerals in three-

dimensional space. we treat each edge in tum generating I displacement along
a midpoint vector that is normal to the plane of the original facet {Figure
2.1 1 (bill. Using this technique we can take a smooth pjiflmld. say, made of large

triangular faces and turn it into a rugged mountain.

Fournler categorizes two problems in this method - as internal and external

consistency. Internal consistenqr requires that the shape generated should he
the same whatever the orientation in which it is generated, and that coarser
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details should remain the same if the sitape is replotted at greater resolution. To

satisfy the first requirement, the Gaussian randorns generated must not be a
function of the position of the points. but should be unique to the point itself.

riin Lntrariant point identifier needs to be associated with each point. This prob-

lem can be solved in terrain generation by giving each point a key value used to
index a Gaussian random number. A hash function can be used to map the two

lteys of the end points of a line to a key value tor the midpoint. Scale require-
ments of internal consistency means that the same random numbers must

always be generated in the same order at a given level of subdivision.

External oonsistertcy is harder to maintain. Within the mesh oi’ triangles
every triangle shares each of its sides with another; thus the same random dis-

placements must be generated for corresponding points of different oonnecting

triangles. This is already solved by using the key value of each point and the

hash ftutction, but another problem still exists, that oi the direction of the
displacement.

if the displacements are along the surface normal of the polygon under con-

slderation, then acilacent polygons which have diiferent normals [as is, by deft-

nition. allirays the case} will have their midpoint: displaced into different
positions. This causes gaps to open up-. A solution is to displace the midpoint
along the average of the normals to all the polygons that contain it but this
problem occurs at every level oi recursion and is consequently very expensive to

implement. also. this technique would create an unsatisfactory skyline because
the displacements are not constrained to one direction. A boner skyline is

obtained by matting all the displacements of points internal to the original poly-
gon in a direction normal to the plane of the original polygon. This cheaper

technique solves all probletns relating to different surface normals, and the gaps

created by them. Now surface normals need not be created at each level of recur-
sion and the algorithm is considerably cheaper because of this.

Another two points are worth mentioning. Firstly, note that polygons should

be constant shaded without calculating vertex nonnals — discontinuities
between polygons should not be smoothed out. Secondly, consider colour. The

usual global colour scheme uses a height-dependent mapping. in detail, the
colour assigned to a midpoint is one of its end point's colours. The colour cho-

sen is determined by a Boolean random which is indexed by the key value of the
midpoint. Once again this must be aooessed in this way to maintain consistency.

which is |ust as important for colour as it is for position.

Constructive solid geometry (C56) representation of objects

we categorised the previous method - polygon mesh - as a rnacltine representa-

tion which also Etcquentiy functions as a user representation. 1he EEG approach

is very much a user representation and requires special rendering techniques or

the conversion to a polygon mesh model prior to representation. It is a high-
letrel representation that functions both as a shape representation and a record
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of how it was built up. The ‘logic of the shape’ in this representation is in how

the final shape can he made or represented as a combination oi‘ primitive shapes.
The designer builds up a shape by using the metaphor of three-dimensional
building blocks and a selection of ways in which they can be combined. The

high-level nature of the representation imposes a cenain burden on the designer.

Although with hindsight the logic of the parts in Figure 2.1-1 is apparent;
the design of complex machine parts using this methodology is a demanding
occupation.

The motivation for this type of representation is to facilitate an interactive

mode for solid modelling. The idea is that objects are usually parts that will
eventually be manufactured by casting, machining or extruding and they can be
built up in a CAD program by using the equivalent {abstract} operations .-_-um.

bining simple elementary obiects called geometric primitives. These primitives

are, for example. spheres, cones. cylinders or rectangular solids and they are

combined using {three-dimertsionall Boolean set operators and linear transfor-
mations. an object representation is stored as an attributed tree. The leaves con-

tain simple primitives and the nodes store operators or linear transiot-motions.

The representation defines not only the shape of the object but its modelling his-
tory - the creation oi the ohiect and its representation become one and the same

thing. The object is built up by adding primitives and causing them to combine
with existing primitives. Shapes can be added to and subtracted irom [to make

holes) the ctment shape. For example. increasing the diameter of a hole through
a rectangular solid means a trivial alteration — the radius of the cylinder pnmi-

tive defining the hole is simply increased. This contrasts vttith the polygon mesh
representation where the same operation is distinctly non-trivial. Even although
the constituent polygons oi the cylindrical surface are easily accessible in a hier-

archical scheme. l-0 iienerate a new set of polygons means reactivating whatever

modelling procedure was used to create the original polygons. Also, account has
to be taken of the iact that to maintain the same accuracy more polygons will
have to be used.

Boolean set operators are used both as a representational form and as a user
interface technique. A user specifies primitive solids and oomhines these using

the Boolean set operators. The representation of the oh|ect is a reflection or

recording of the user interaction operations. Thus we can say that the lnodelling
information and representation are not separate — as they are in the case of deriv-

ing a representation from low-level infortnatiors from as: input dot-ice, The low-

level information in the case of CS6 is already in the ions: or volumetric primi-

tives. The modelling activity beoomes the representation. an example will
demonstrate the idea.

Figure 2.12 shows the Boolean operations possible between solids. Figure
2.12{a] shows the union of two solids. it‘ we oorlslder the objects as ‘clouds’ of
points the union operation encloses all points lylrlg within the original two hod-
ies. The second example {Figure Zsizibll shows the eitect of a difference or sub-

traction operator. iit subtract operator removes all those points in the second

body that are contained within the first. In this case a cylinder is defined and
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assembly. Thus the only lnfonnation that has to be stored in the leaves of the

tree is the name of the prlrnlfltre and its dimensions. A node has to contain the
name of the operator and the spatial relationship between the child nodes com-
bined by the operator.

The power of Boolean operations is further demonstrated in the following

examples. In the fi.l'S'l.’ example [Figure 2.l41IjaJ}two parts developed separately are
oombinod to make the desired oonfiguratiorn by using the union operator fol-

lowed by a difference operator. The seoond example (Figure 2.14[l:l-l] shows a
complex obit-ct constructed only from the union oi Cylinders, whldi is then used
to produce, by subtratrtion. a oomplex liorusing.

nltliough there are substantial advantages in CSG representation, they do suf-

fer from drawbacks. A practical problem is the computation time required to pro-
duce a rendered image of the model. A more serious drawback Is that the method
imposes limitations on the operations available to create and modify a solid.

Boolean operations are global — they affect the whole solid. Local operations, say
a detailed rnodllication on one face at a complex object cannot be easily imple-

mented by using set operations. An important local modification required in
many oblocts that are to be designed is blending surfaces. For example, consider

the end face of a qrilnrler joined onto a Hat base. Nomtally for practical manu-

facturing or aesthetic reasons, instead of the loin being a right angle in cross-
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section a radius is desired. it radius swept around another curve cannot be rep-
resented In it simple EEG system. This fact has led to many solid modellers using
an l:Il'.lI1I.'.rlj'l.l'I,g boundary representation. Incidentally there is no reason why

Boolean operations cannot be Incorporated in boundary representations sys-
terns. For example, many systems Incorporate Boolean operations but use a

boundary representation to represent the obiect. The node-off between these
two representations has resulted In a debate that has lasted for 15 years. Finally
note that a C56 representation is a trolutnerrlt representation. The space oom-
pted by the obiect - its volume - is represented rather than the o’o|ect surface.
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Space subdivision techniques for object representation

Space subdivision techniques are methods that consider the whole of object space

and in some way label each point in the space according to object occupancy.
However, trrslllte CSG, which uses a variety ofvolurnetric elements or geometric

primitives, space subdivislort techrriques are based on a single cubic element
iorown as a vcurel. A voice] is a volumetric element or primitive and is the smallest

cube used in the representation. We could divide up all of world space into regu-

lar or cubic voiteis and label each voxei aooordirig to whether it is in the ohlect or
in empty space. Clearly this is very costly in cerms of memory consumption.
Because of this vorrei representation is not usually a preferred ritainstrearri method
but is used either because the raw data are already in this form or it is easiest to

convert the data into this representation - the case, for example, in medical

Imagery: or because of the dernantis of an algorithm. For example, ray tracing i.n
vorrei space has significant advantages over conventional ray tracing. This is an

example of an algorithmic technique dictating the nature of the object represen-
tation. Here, instead Dif asidng the question: ‘does this ray intersect with any
objects In the scene?’ which implies a very ertpertsiye intersection test to be carried

out on each obiect. we pose the question: ‘what objects are encountered as we
track a ray through vorrei space?‘ This requires no exhaustive search through the

primary data structure for possible intersections and is a much faster strategy.

another example is rendering (36 models isection 4.3] which is not straight-

forward it conventional techniques are used. A strategy is to conven the (EEG
tree Into an intermediate data consisting of vorteis and render front this. vorreis
can be considered as an intermediate representation, most commonly in meri-

icai imaging where their use 1ll!i..'ii5 two-dimensional raw data with the visualisa-
tion oi three-climerrsional structures. Alternatively the raw data may themselves
be simeels. ‘[111: is the case with many nsatherrratlcal modelling schemes oi‘ three-

dimensional physical phenomena such as fluid dynamics.

The main problem with voice] labelling is the tratie-off between the
corisurhpiiiori oi’ vast storage costs and accuracy. Consider. for ertarrrple. labelling

square pixels to represent a circle in two-dimensional space. The pixel size

,-‘accuracy trade~cit' is ciear here. The same notion extends to using voxels to
represent a sphere except that now the cost depends on the accuracy and the

cube of the radius. Thus such schemes are only used in contexts where their

advantages outweigh their cost. A way to reduce cost is to impose a structural
organization on the basic voxel labelling scheme.

The common way of organizing vortel data is to use an octree - a hierarchical
data structure that describes how the objects in a scene are distributed through-

out the three-dimensional space occupied by the scene. The basic idea is shown

in Figure 2.15. in Figure 2.15[ai it cubic space is subject to a recursive subdivision
which enables any cubic region of the space to be labelled with a number. This

subdivision can proceed to any desired level of accuracy. Figure arsibi shows an

object errrbeddcd in this space and Figure 2.l5[c] shows the subdivision and the
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related octree that labels cuhlc regions hr the space according to whether they
are occupied or erupty.

'l'here are actually two ways in which the octree decomposition of a scene can
beosedtore1itesentthescene.P1rstl5r,an ootreeastiescrlbedahos-ecanheused
in itself as a complete representation of the objects in the scene. The set at oelis
occupied by an ohlect constitute the representation of the ob|ect. However, for
a complex scene. high resolution work would require the decomposition of
occupied space into an eittreroely large number of cells and this technique
requires enormous amounts oi data storage. A eorurnon alternative is to use a
standard data structure representation of the objects and to use the octree as a
representation of the dlrtnirution or the ot:-|ects in the scene. In this case, a ter-
minal node of atreetepresendrrganocctrptedtegionwouldtre l.'IlPl'E5Ellt¢db'jf-I
pointer to the data structure for any ohject [or part of an ohiect] oontalned
within that region. Figure 2.15 Illustrates this possibility in the twodtrnerrsional
case. I-Ieretlreregion subdivision hasstopped assoon asategionisenoounteteitl
that Intersects only one ob|ect. A region represented by a terminal node is not
necessarily oompletely occupied by the object associated with that region. The
shape of the ohiect wtthlntlte r-egionwouldbedescrlbedbyttsdata structure
representation. In the case of a surface model representation of a scene, the
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‘objects’ would be polygons or patches. in general. an occupied region repre-
sented by a iienninal node would intersect with several polygons and would be

represented by a list of pointers into the object data structures. Thus urtliite the
other techniques that we have described octrees are generally not self-contained

representatiortal methods. The}? are instead usually past of a hybrid scheme.

Dctrees and polygons

As we have already implied. tiie most common use of oetrees in computer graphics
is not to impose a data structure. on voitel data. but to organise a scene containing

many obiecis teach of which is rnacleup of many polygons} intoa structure oi'spo-

tial occupancy. We are notrepruenfirsg theobtects usingvoxeis, btltoonslclering

the rectangular space occupied 1|-S utvliiitnos as entities which are iepiesertied by
‘voice! space. Asfaras renclerlngisconcerned weencloseparts ofthe scene. atsorne

level of detail. in rectangular regions in the sense of Figure 2.15. For example, we
may include groups oi’ oii|octs, sbtgle objects. parts oi ob|ect;s or even single poly-

goutslnanoc'i1'eeleafnode."i'hiscangreat|3.rspeedup inanyaspectsotrendering
and may remieztrtg methods, particuiariir raytracingaswehave alreadysuggesied.

We will now use ray tracing as a particular example. The high inherent cost

in naive ray tracing resides in intersection testing. as we follow a ray through the

scene we have to find out it’ it collides with any oblect in the scene {and what

the position of that point is}. in the case that each ray is tested against ail ob|ev.-ts
In the scene. where each object test impiies testing against each polygon in the

ob-|ect.. the modeling tirne, ior scenes of reasonable complexity. becomes una-::~
ceptabiy high. if the scene is decomposed into an ortree representation, then
tracing a rap means tracldng, using an lncrerriental algorithm from voitel to
voxeL Each voxe] contains pointers to polygons that it contains and the ray is

tested against these. Intersection candidates are reduced from H to lift. where:

rt - zmpolygon count for oblect

and in is the number of candidate polirgorts contained by the octree ieai‘.
However, decomposinga scene into an octree Is an expensive operation and has

to be judiciously controlled. It involves Ending the ‘ministers’ coorcllrtates of each

polygon [the coordinates of its bounding box} and usbtg these as an entity in the

decomposition. Two factors that can be used to control the clecocmposition are:

{1} me minimum number of candidate polygons per node. The smaller this

factor, the greater is the decomposition and fewer intersection tests are made

by a ray that enters a voxel. 'The total number of intersection tests per voice!
for the entire rendering is approximately given by:

number of rays entering the voitel K (0.5 at number of polygons in voiteli

assuming that on average a my tests Stiiiti of the candidate polygons before
it finds an intersection.
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{2} The maximum octree depth. The greater the depth the greater the

decomposition and the fewer the candidate polygons at a leaf node. Also.

because the size of a vcocel decreases by a factor of 5 at every level. the fewer

the rays that will enter the voxei for any given rendering.

In general the degree of decomposition should not be so great that the savings

gained on intersection are wiped out by the higher mat: of tracking a ray
through decomposed space. Experience has shown that a default value of ii for

the above two factors gives good results in general for an ohtect {or ohiects] dis-
tributed evenly throughout the space. Frequently scenes are rendered when-: this
condition does not hold. Figure 2.1? shows an example where a few obiects with

high poiygon count are distributed around a room whose volume is large oomv

pared to the space occupied by the ohiecu. in this case octree subdivision will
proceed to a high depth subdividing mostly empty space.
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An alternative representation to an octree is a BSP or binary space partitioning
tree. Each non-tenninai node in the BSP tree represents a single partitioning
piane that divides the space inino two. it two-dimensional analogue Illustrating
the difference is shown in Figure 2.18. it BSP tree is not a direct object represen-
tation [although In certain circumstances it can be}. instead it is a way of par-
titioning space for a particular purpose - rnost oommoniy hidden surface
rentovai. Because or’ this it is rilfflcult and somewhat pointless to discuss ESP

trees without dealing at the same time with HSR (see Chapter E].
The properties of partitioning planes that can be exploited in computer

graphics scenes are:

I Any object on one side of a plane cannot intercept any object on the other
side.

0 Given a view point in the scene space. objects on the same side as the viewer
are nearer than any ohlects on the other side.

Wlten a ESP tree is used to represent a subdivision of space into cubic cells, it
shows no significant advantage over a direct data structure encoding of the
octree. it is the same irtfonuation encoded in a different way. However. nothing
said above requires that the subdivision should be into cubic cells. in fact the
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idea of a BS? tree was originally introduced in Fuchs [I950] where the planes
used to subdivide space -could be at any orientation. We revisit ESP trees in the

context of hidden surface removal ichapttr oi.

Creating voael oblects

one of the mainstream uses of voice] obiects is in volume rendering in medical
imagery. The source data 1.11 such applications oonsist of a set of parallel planet
of irttertsiry information collected from consecutive cross-sections from some

part of a body, where a pixel in one such plane will represent, say, the K-ray
absorption as that part of the body that the pixel physically oD11'e-spctnds to. me

problem is how to convert such a stack of planar two-dimensional information
into a three-dimensional rendered oiriect. convening the stack oi‘ planes to a set

of voxels is the most direct way to solve this problem. Conespondlng pixels in
two oonsec-utive planes are deemed to form the top and bottom Eaee oi‘ a voxel

and sortie operation is performed to arrive at a single voxel value front the

two pixel values. Tne voxei representation is used as an intermediary between
the raw ooilectetl data, which are i'Ivo-dimensional, and the required three-

dirnenslonal visualization. The overall process from the collection of raw data.
through the conversion in a voitel representation and the rendering of the voxel
data is the subject of Chapter 13.

Contours collected by a laser ringer can be oonverted Into a voxel represen-
tation instead of into a polygon niah representation. However, this may result

in a loss of accuracy compared with using a skinning algorithm.

Representing objects with implicit functions

As we have already pointed out, representing a whole oh-jer.'t try a single implicit

i‘orrrtula Is restricted to certain objects such as spheres. Nevertheless such a rep-
resentaflotl does iind mainstream use in representing 'aigoritIi.mic* ob|ec1s

itnovm as in-ottrtding volumes. These are used in rrtanv different contexts in

computer graphics as in complexity limiting device.
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A representation developed from implicit formulae is the representation of
ohlects by using the concept of implicitly deiined objects as components. (We
use the term component rather than primitive because the ohiect is not simply
a set of touching spheres but a surface derived froth such a c\o]lect.lon.]

Implicit functions are surfaces formed by the effect of prtrrtititnes that exert a
field of influence MPH a local neighbourhood. For example, consider a pair of
point heat sources shown in Figure 2.19. We could define the temperature in
their tricinities as a field function where, tor each in isolation. we have isother-
rnal contours as spherical shells centred on each source. Bringing the two sources
within influence of each other defines a combined global scalar field, the field of
each source combining with that of the other to form a cotnposite set of isother-
mal contours as shown. Such a scalar field, due to the combined effect of
her of prirnitwes is used to define a modelling surface in computer graphics.
iisuali].-' we consider an isosur-face in the field to be the boundary of a volume
which is the object that we desire to model. Thus we have the following ele-
ments in any irnpiiclt function modelling system:

0 A generator or primitive for which a distance function All‘) can be defined
for all points 1' in the locality of the generator.

I A ’potential’ function fldllhl which returns a scalar value for a point P
distance dlj.l'} from the generator. Associated with the generator can be an
area of influence outside of which the generator has no influence. For a
point generator this is usually a sphere. An example of a potential functionis:

fl.P_,'iII[I—%]= Hill

where d is the distance of the point to the generator and ii is its radius ofinfluence.

I A still! field PEP} which determines the comblried effect of the lrtdividual
potential functions of the generators. This implies the existence of a
blending method which in the simplest case is addition - we evaluate a
scalar held by evaluating the individual contributions of each generator at a
point P‘ and adding their effiecls together:
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0 an lsostrrfaoe of the scalar field which is used to represent the physical
surfaceoftheo-hiectthatwearemodelllng.

An example (Figure 2.20 Colour Plate] illustrates the point. The Salvador Dali

imitation on the left is an lsosurtace formed by point generators disposed in

space as shown on the right. The radius of each sphere is proportional to the
radius oi‘ influence of each generator. The dark spheres represent negative gen.
erators which are used to ‘carve’ ooncavities in the model. {Although we can

fonts concavities by rising only positive generators, it is more convenient to use

negative ones as we require far fewer spheres.) The example illustrates the poten.
ital oi the method for modelling organic shapes.

Deformable ob|ect animation can be implemented by displaying or choreo-

graphlng the points that generate the object. The problem with using implicit

functions in animation is that there is not is good intuitive |.lri.lt between moving

groups of generators and the deformation that ensues because of this. Of course, '
this general problem is suifered by all modelling techniques where the geomehy
definition and the deforrnation method are one and the same thing.

in addition to this general problem, unwanted blending and unwanted
separadoncanoccurwhenthegeneiatorsaremmredwithrespecttoeach
other and the same blending method retained.

ii significant advantage of implicit functions in an animation oontext is the
ease of collision detection that results from an easy inside-outside function.

irrespective of the complexity of the modelled surface a single scalar value

defines the isosurface and a point P is inside the object volume or outside it
depending on whether Fir} is less than or greater than this value.

Scene management and object representation

As the demand for high quality real time oomputer graphics continues to grow,

from applications like computer games and virtual reality, the issue of eilicieut
scene management has become increasingly important. This means that repre-
sentational forms have to be extended to collections oi objects; in other words
the scene has to be considered as an obiect itself. This has generally meant using

hierarcitical ortreestruciures,suchasB5Ptrees ton.-present thescenedownto
object and sub-object level. as rendering has lncreanngly migrated into real time
applications, efficiency in culling and hidden surface removal has become as

important as efficient rendering for complex scenes. With the advent oi Jill
graphics boards for the PC we are seeing a trend develop where the basic red-

dering of individual oblects is handled by hardware and the evaluation of which
objects are potentially visible ls comptttod by soitt-rare. {We will look into culling

and hidden surface removal In Cltapters 5 and 6]. An equally important effi-
ciency measure ior oblects in oomplex scenes has come to be known as Level oi
Detail, or DOD, and it is this topic that we will now examine.
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Polygon mesh optimization

ills we have 'I2liSl'.1l5SE'd,, polygon mesh models are well established as the dc facro

standard representational form in computer graphics but they suffer front sig-
nil-lcant disadvantages, notably that the level of detail, or number of polygons,
required to synthesize the object for a high quality rendition of a oomplex oblect

is very large. it‘ the oblect is to be rendered on screen at different viewing dis-

tances the pipeline has to process thousands of polygons that prroiect onto a few

pixels on the screen. its the projected polygon size decreases, the polygon over-
heads become sigrtificartt and in real time applications this situation is intolera-
ble. High polygon counts per object occur either because of object complexity or

because of the nature of the modelling system. Laser scanners and the output
front programs like the marching cubes algorithm {which converts voitels into

polygortsi are notorious for producing very large polygon counts. Using such
facilities almost always results in a model that, when rendered, is inrilsdnguish-
able from a version rendered from a model with far fewer faces.

As early as 1936, one of the pioneers of 3D oompuner gr-aphics,James H. Clark,
wrote:

it unites no sense to use 500 polygons In describing an ob|ect if It cutters only 2|] raster
unitsoftbedispla-y.. .l=arercalnple,wbeovr-eviewttrehurnaitbodylrontavrr-ylarge
distance. we tnlglit need to present only specks for theeyes.orperhaps just ablockforthe
lurid, totally eilmlnafing the eyes from consideration . . . these issues have not been
addressed In a unified way.

Did Clarlt realize that not many years after he had written these words that

SCIEIODD polygon obiects would beoorne fairly commonplace and that complex
scenes might contain millions of polygons?

Eitistlng systems tend to address this problem in a somewhat ad hoc manner.
For example, many cheap virtual reality systems adopt a two- or three-level rep-

reseiitatloit switching in surface detail, such as the numbers on the buttons of a
telephone as the viewer moves closer to it. This produces an arrnoyirig visual dis-

turbance as the detail blinks on and off. More oonsldered approaches are now
being proposed and lately there has been a substantial increase in the number or‘

papers published in this area.

Thus mesh optimization seems necessary and the problem cannot be dis-
mlssetl by relying on increased polygon throughput of the workstations of the
future. The position we are in at the moment is that mainstream virtual reality

platfonns produce a visually inadequate result even front Fairly simple scenes.
We have to look Eonvard rtot only to dealing with the defects in the image syn-

thesis oi such scenes, but also to being able to handle scenes of real world com-
plexity implying many millions of polygons. The much vaunted “irnmerslv~e'

applications of virtual reality will never become acceptable unless we can cope
witlt scenes of such complexity. Current hardware is very far away from being

able to deal with a complex scene in real time to the level of quality attainable

for single object scenes.
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an obvious solution to the problem is to generate a polygon mesh at the iinai
level oi‘ detail and then use this representation to spawn a set of coarser descrip-
tions. its the scene is rendered an appropriate level of detail is selected. Certain

aigonthms have emerged From time to time in computer graphics that use this
principle. An example of a method that facilitates a. polygon mesh at any level

of detail is bi-cubic parametric patches [see Section -1.2.2). Here we take a patch
description and turn it into a polygon description. at the same time we can eas-

ily control the number of polygons that are generated for each patch and relate

this to local siufaoe curvature. This is exactty what is done in patch rendering
where a geometric criterion is used to control the extent of the subdivision and

produce an image free oi geometric aliasing {visible polygon edges in silhouette].

The price we pay for this approach is the expense and dii?-licultv of getting the
patch description in the first place. But in any case we could l:II.L|.ld the original
patch representation and construct a pyramid of polygon mesh representations
off-line.

The idea of storing a ‘detail pyramid’ and aooessing an appropriate level is
established in many application areas. Consider the case of mip-mapping, for
example [see Chapter 3). Here texture maps are stored in a detail hierarchy and
a line detail map selected when the projection of the map on the screen is large.

In the event that the map protects onto just one pixel, then a single pixel tex-
ture map - the average of the most detailed map — is selected. Also, in this

method the problem of avoiding a iump when going from one level to another
is carefully addressed and an approximation to a continuous level of detail is
obtained lry interpolation between two maps.

The diversity of current approaches underlines the relative newness oi the
held. it direct and simple approach for triangular meshes derived from voxel sets
was reported by Schroeder etoi. in 1992. Here the algorithm considers each ver-

tex on a surface. lily looking at the triangles that contribute to. or share, the ver-
tex, a number of criteria can be enurrterained and used to determine whether

these triangl can be merged into a single one exclusive of the vertex under con-

sideration. For example, we can invoke the ‘reduce the number or triangles
where the surface curvature is low’ argument by measuring the variance in the
surface normals of the triangles that share the vertex. Aitematlveiy we could

consider the distance from the vertex to an {average} plane through all the other

vertlces of the sharing triangles {Figure 2.21}. This is a local approach that con-
siders verlioes in the geometry of their immediate surroundings.

at more recent approach is the work oi Hoppe {I996} which we will now
describe. l-ioppe gives an excellent categorization of the prohlerns and advan-
tages of mesh optimization. listing these as follows:

I lviesh simplification - reducing the polygons to a level that is adequate for
the quality required. ["i'hls. of oourse. depends on the maximum pro|ection
size of the object on the si:reen.}

I Level oi detail approidroation — a level is used that is appropriate to the
viewing distance. in this respect. Hoppe adds: '$ince instantaneous
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switching botvveezrt LOD meshes may lead to perceptible “popping”, one

would like to oonstruct smooth visual transitions. geomarpirs. between
meshes at different resolutions‘.

Progressive transmission — this is a three-dimensional equivalent oi the
common progressive transmission modes used to transmit two-dimensional

imagery over the intemet. Suceesive LDD approximations can be
transmitted and rendered at the reciever.

Mesh compression - analogous to two-dimensional image pyramids. We can

oonslder not only reducing the number of polygons but also minimizing the

space that any LDD approximation occupies. its in two—dimensional

iinagerv. this is important because an LDD hierarchy oocupies mulch more
memory than a single model stored at its highest level oi detail.

Selective refinement — an LCD representation may be used in a context-
dependent manner. Hoppe gives the example of a user living over a terrain
where the terrain mesh need only he hilly detailed near the viewer.

ll.-ddressing mesh compression, Hoppe takes a ‘pyramidal’ approach and stores

the ooarsest level of detail approximation together. for earn higher level. with

the lnionnation required to ascend irom a lower to a higher level oi detail. To
matte the transition from a lower to a higher level the reverse oi the transfor-

mation that constructed the hierarchy front the highest to the lowest level is
stored and used. This is In the form of a vertex split - an operation that adds an
additional vlerterr to the lower mesh to obtain the next mesh up the detail hier-

archy. Although Hoppe originally considered three mesh transformations — an

edge collapse, an edge split and an edge swap — he found that an edge collapse
is suifictenr for simplifying meshes.

The overall scheme is represented in Figure 2.22:3} whith shows a detail pyra-
mid which would be constructed oft-line by a series of edge collapse transfor-
mations that ta]-tie the original mesh M... and generate through repeated edge

collapse iransiormatlons the final or coarsest mesh Me. The entire pyramid can
then be stored as Mr together with the information required to generate. from

Mo to any finer level all in the hierarchy — mesh oompression. This inter-level
transformation is the reverse of the edge collapse and is the information required



0083

(E IEFIESEHTATION AND uonemnc as 1Heee.pIHeNsInmL acnjecfs up

Flgurelzll
H¢PF'E'sU995JP'°!"“*"¢
meshsduenuebuedon

edge colapee
tr|rul'an1'u‘Iiu-rns.

for a vertex split. Happe queues an example ocfan ub|ect with 13 5445 faces which
wasslmplifiedtoanunuflsfliauesuslngfifiiaedgecuuapcse trlnsfonnaflons.
1hearlglnal:Ialaaretl1enstoredasMutagetherw1tht11e6G9B vertex split

reeords.'I'hevertex spliuecurds themsehne.-. exhibit redundancy andcan hemm-

pressed using daesleal data compression teclmlques.
Figure z.2z[bJ shows a single edge collapse between two consecutive levels.

The notation is as follows: V" and Va are the two vertir.-es in the finer mesh that

are collapsed into one vertex 5': in the coarser mesh. where

V11 + Va

2

Fmmthedlagramltcanbeseenthatthlsopentlonimplles themllapseurfthe

twufacesfi mdfiinmnew edges.
Hoppe definesacunfinuumbetweenanytwolevelsufderaflbyusl.ngablen-d-

Ins plnmeier In. [five define:

VII + VI:

2

Iv: E [fill Vfl:

d:
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then we oan generate a continuum of geomorphs between the two levels by hav-

ing the edge shrink under control of the blending parameter as:

Vu:= l"'n+t‘.I.d and Vain Vt:--cl.d

Texture coordinates can be interpolated in the same way as can scalar attrib-
utes associated with a vertex such as oolour.

The remaining question is: how are the edges selected for collapse in the

reduction from iii: to Mu? 1'i1is can be done either by using a simple heuristic
approach or by a more rigorous method that measures the difference between a

particular approximation and a sample of the original mesh. A simple metric
that can be used to order the edges for collapse is:

[Va - Val
|Nrt-Nol

that is, the length of the edge divided by the dot product of the vertex normals.

On Its own this metric will won: quite well, but if it is continually applied the
mesh will suddenly begin to ‘collapse-' and a more oorisidered approach to edge

selection is mandatorjr. Figure 2.13 is an example that uses this technique.
Hoppe casts this as an energy function miriimzatiorn problem. A mesh in! is

optimized with respect to a set of points )4? which are the vertices of the mesh Me

together {optionally} with points randomly sampled irorn its faces. (Although

this is a lengthy process it is. of course. executed once only as an off-line pre-

process.) The energy funcflon to be minimized is:

EIM} - Eu.uiM'i 4* Ewutlkfl

where

gt' .-'41":'IY_ J.""'-:.:
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is the sum of the squared distances from the points X to the mesh — when a ver-
tett is removed this term will tend to increase.

Fees “'4'? ' 2 “Iii? - tail’
is a spring energy term that assists the optimization. it is equivalent to placing
on each edge a spring of test length zero and spring constant K.

Hoppe orders the optimization by placing all [legal] edge collapse translon
mations into a priority queue, where the priority of each transformation is its
estimated energy cost r.'tE. in each iteration, the transformation at the front of
thequeue [lot-rest£i.EiI isperformedand the prioridesoifilieedgesinthe neigh-
bourhood oi this ttansionnaiion are rooornputed. an edge collapse transt'orn1a-
tion is only legal if it does not change the topology of the mesh. For example, if
V“ and Fr; are boundary vertices, the edge [Vi-r, Val must be a boundary edge —
it cannot be an internal edge connecting two boundary points.

‘ 

Summary

Obiect representations have evolved under a variety of iniluenoes - ease of ren-
dering, ease of shape editing, suitability lot animation, dependence on the
attributes of raw data and so on. There is no general solution that is satisfactory
for all practical applications and the most popular solution that has served us for
so many years — the polygon mesh - has significant disadvantages as soon as we
leave the domain of static ob|ects rendered off-line. We complete this chapter by
listing the defining attributes oi any representation. These allow a (very) general
comparison between the methods. (For completeness we have included corn-
ments on bi-cubic patches which are dealt with in the next t.'hapier.]

I Creation of uhiectfrepresentation A factor that is obviously context
dependent. We have the methods which can create representations
automatically irom. physical data (polygon mesh trom range data via a
skinning algorithm, bi-cubic parametric patches via interpolation oi surface
data]. Other methods map input data directly into a voice] representation.
Some methods are suitable for interactive creation {CS6 and bi-cubic

parametric patch] and some can be created by interacting with a
‘mathematically’ based interactive facility such as sweeping a cross-section
along a spine [polygon mesh and bi-cubic parametric patches].
Nature of the pr-lnrltlve elements The common forms are either
methods that represent surfaces - boundary representations [polygon mesh
and bi-cubic parametric patches} or volumes {voxels and EEG].

Aer.-uraey Representations are either exact orapproitlmate. Polygon meshes
are approorimate representations but their accuracy can be increased to any
degree at the expense of an expansion in the data. Increasing the accuracy oi
a polygon mesh representation in an intelligent way is difficult. The easy
‘brute force’ approach - throwing more polygons at the shape - may result
in areas being ‘over represented’. Bi-cubic patches can either be eita-t'i or

approximate depending on the application. Surface interpolation will result in
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an approitimatlon hut designing a car door panel using a single patch resialrts
in an exact representation. CSG representations are exact but we need to make

two qualifications. They can only describe that subset of shapes that is

posible by corrtbirtiitg the set of supplied prtmitiires. The representation is

abstract in that it is iust a ion-nuia for the composite object - the geometry has
to be derived from the formula to enable a ‘visualization of the ob|ect.

itccuncy its data irolrirrrre There is always a trade-oti between accuracy

and data volume - at least as far as the rendering penalty is concerned. To

increase the accuracy of a boundary representation or a volume
representation we have to increase the number of lore-level elements.

Although the implicit equation of a sphere is lamb accurate and compact.
it has to be convened for rendering; using some kind of geometric sampling
procedure which generates low-level elements.

Data volume vs complexity There is usually a trade-oft also between
data volume and the complexity of the representation which has practical
ramifications in the algorithms that operate with the representation. This is

best exemplified by comparing polygon meshes with their counterpart using

bi-cubic parametric patches.

Ease of edlflngfnnlmtlion This can mean retrospedive editing (If an

existing model or shape deformation techniques in an animation

eiwironrrtent. The best method for editing the shape of static objects is. of
course, the C36 representation -- it was designed for this. Editing bi-cuhic

parametric patches is easy or diiiicuit depending on the complexity oi the
shape and the desired freedom of the editing operations. in this respect

editing a single paracii is easy. editing a net of parcries is ditficutt None of the
representation rrtethods that we have described is suitable for shape-chaitglng

in anlmatecl sequences, although |:xl-cubic parametric patches and implicit
functions have been tried. it seems that the needs oi accuracy and ease of

animating shape change are opposites. Methods that allow a high degree of

accuracy are difficult to animate. because they consist of a structure with
maybe thousands of low-letnei primitives as leaves. For example, the common

way to control a net or bi-cubic parametric patches representing. say. the face
of a character is to organise it into a hierarchy allowing local Changes to be

rnade{tiydescendingtltehierarchyandoperatingonafeworerrenashiglc

patch} and making more global changm by operating at a high level in the

structure. This has not resulted in a generally accepted animation technique
simply because it does not produce good results [in the case of facial

animation anyway]. it seems shape-change ariiniatiori needs a paradlgrn that
is Irtdependent oil the obleci model and the most successful techniques

lrwohre embedding the ob|ei:t model In mrotirerstntciure which is then suh|-ect
to shape-change animation. Thus we control facial artirriatlon by attaching a

geometric strttctirre ho a muscle control model or immerse a geometric model
to the 'fieiti* of an elastic solid and animate the elastic solid. in other words

for the representations that we cunently rue, animation of shape does not
seem to be possible by operating directly on the geometry or the oblect.
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of three-dimensional
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3.1 Bézier curves

3.2 B-spline representation

3.3 Rational curves

3.4 From curves to surfaces

3.5 B-spline surface patches

3.6 Modelling or creating patch surfaces

3.? From patches to oblects

Introduction

in the previous chapter we concentrated mainly on the polygon mesh represen-

tation where a polygon was. for example, a (flat) quadrilateral made up or‘ four

vertices joined by tour straight lines. This chapter is devoted entirely to a repre-

sentational form where the primitive element - a bi-cubic parametric patch — is

a curvilinear quadrilateral. it has four corner points joined by four edges which

are themselves cubic curves. The interior of the patch is a curved (cubic) surface

where every point on the surface is defined. This contrasts with the polygon

mesh approximation where surface points on an object are only defined at the
polygon vertices.

Representing surfaces of objects using bi-cubic parametric patches finds two

main applications in computer graphics:

{1) As a basis for interactive design in CAD. Here we may obtain the model by an

interactive process — a designer building up a model by interacting with a

program. In many CAD applications the representational form is tnmsforrtted

directly into a real object (or a scaled-down model of the real object). The



0088

mrito oucrtou

computer graphics representation is used to control a device such as a

numerical milling machine which sculpts the object in sortie material. This is

exactly the opposite of the ‘normal’ computer graphics modelling

methodology - instead of transforming a real object mm a representation we

are using the computer graphics mode] to make the real object.

its an alternative representational form to the polygon mesh - the

representation which services the normal computer graphics requirement of

transforming a real object into a representational form. In this use we
usually wish to exploit the accuracy of the parametric representation oyer

the polygon mesh approximation. Here we may obtain a parametric

representation from a real object by some {surface} interpolation technique.

The apparent advantages of this representation over the polygon mesh repre-
sentation are:

II It is an exact analytical representation.

0 it has the potential of three-dimensional shape editing.

I It is a more economical representation.

Given these advantages it is somewhat surprising that this form is not the main-

stream representation incomputer graphics. it is oertainly no more difficult to

render an object represented by a net of patches and so we must conclude that

its lack of popularity in mainstream computer graphics {it is, of course, used in
industrial CAD], is due to the mathematical formalities associated with it.

The exactness of the representation factor needs careful qualification. A real

object {or a physical model of a real object) can he represented by a net or mesh

of patches {Figure 3.23 and Figure 3.43 are two such obiects) but the representa-

tion may not be wholly ‘exact’. in the first example, the teapot cannot have a per-

fectly circular cross-section because the representational method. in this case the

Beater form or Bernstein basis, cannot represent a circle exactly. The patches rep-

resenting the face in the second example may not everywhere be coincident with

the real object. We can obtain a suitable set of points that lie in the surface of the

obiect from a three-dimensional digitizer and we could, say, use the same set of

points that we would use to build a polygon mesh model. We then use an inter-

polation technique known as surface titling. to detennine a set of patches that

represents the surface. However, the patch surface and the object surface will not

necessarily be identical. The exactness of the Fit depends on both the nature of

the interpolation process and how closely the physical surface confonns to the

shape constraints of the bi-cuhlc patch representation. llut we do end up with an
oblect representation that is a smooth surface which has certain advantages over

the polygon mesh representation — the silhouette edge problem. which accounts

for the most prominent visual defect in rendered polygon mesh objects, is cured.

It is possible to model subtly shaped ohiects such as the human face with a net of

patches. an adequate representation of such an obiect using a polygon mesh would

need an extremely high polygonal resolution. Despite this there is a perceived oom-

plexity associated with bi-cubic parametric patches and in many applicationswe can
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avoid this by using the polygon mesh representation. Wlien we digitize real objects

we are nonnally working with an application that does not demand exact represen-

tation. We may be building a model of a product for an animated TV commercial.

for example, in which case a good polygon mesh model will do.

In fact the most common applications of the bi-cubic parametric patch rep-

resentation are not to build very complex models but as a representation for

fairly simple objects in industrial can or CAGD applications. The real value of

the representation here is that it can be used to transform an abstract design,

built up within an interactive program, directly into a physical reality. The

description can be made to drive a sculpting device such as a numerically con-

trolled milling machine to produce a prototype obiect without any human inter-

vention. It is this single factor more than any other that makes bi-cubic

parametric patches important in CAI}.
Part of their value in CAD comes from the ability to change the shape of an

object represented by patches in a way that maintains a smooth sorfaoe.

Sometimes the allusion to sculpting is made. We can view the representation as

a lrind of ‘abstract clay’ model that can be pulled around and deformed into any

desirable shape - giving the same freedom to create as a sculptor would have
with a real clay model. Here we should be wary of the claims that are made in

the computer graphics literature concerning the efficacy oi free-form sculpting

using bi-cubic parametric patches. We can distinguish between methods that

attempt a free-fomt sculpting model, which places no constraints on the shape

complexity of the object formed, and the much more well-established tech-

niques in CAD where the object tends to be fairly simple. A common, early

example of this category is the design of car body panels. Bi-cubic parametric

patches are manifestly successful in such applications; their success as a

metaphor for clay sculpting is more debatable.

We distinguish between obiects that are represented by a single patch and

objects whose form demands that they are represented by a net of patches. Shape

editing a single patch is straightforward but the oblects that we can design with

a single patch are restricted. Shape editing an oblect that is represented by a net

of patches is much more difficult. One problem is that if we have to alter the

shape of one patch in a net, we have to maintain its smoothness relationship

with the neighbouring patches in which it is embedded- Another difficulty is yet

another manifestation of the scale problem. Say we want to effect a shape

change that involves many patches. We have to move these patches together

and maintain their continuity with all their neighbouring patches.

Despite these difficulties we should recognize that this reprmentation has a

strong potential for shape editing compared with the polygon mesh representa-

tion. This is already an approximation and pulling vertices around to change the

shape of the represented object results in many difficulties. The accuracy of the

polygon mesh representation changes as soon as vertices are moved resulting

perh3P5 in visual defects. it is almost certain that we would always have to move

groups of points rather than move a single polygon vertex around in three space.

Pulling a single vertex would iust result in a local peak.
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in this chapter we will mainly confine ourselves to the study of single patches

and simple shapes formed from nets of a few patches using rudimentary but

powerful CAD techniques, such as generating a solid obiect by sweeping a pro-
file through 360‘.

The analytical representation of patches differs according to the formulation

and some have been named after their instigators. One of the most popular for-
mulations is the Better patch developed in the 19605 by Pierre Beziet for use in

the design of Renault cars. His CAD system called UNISURF was one of the first

to be used. In what follows we will concentrate mainly on the Beaier and

Ii-spline formulation.

The usual approach in considering parametric representation is to begin with

a description of three-dimensional space curves and then to generalize to sur-

faces or patches. A three-dimensional space curve is a smooth curve that is a

function of the three spatial variables. An example would be the path that a par-

ticle traced as it moved through space. Incidentally, curves by themselves also

find applications in computer graphics. For example. we can script the path of

an oblect in three-dimensional computer animation by using a space curve. We

can model a ‘ducted’ solid by sweeping a cross-section along a space curve as we

saw in the previous chapter.

Bezier curves

In this section we will look at the pioneering developments of Bezier, who was

amongst the first to develop computer tools in industrial design. We will draw

on Bezit.-r's own descriptions of the evolution of his method, not just because of

their historical interest but also because they give a real insight into the rela-

tlonshlp between the representation, the physical reality and the requirements

of the designers who were to use his methods.

I.’-ézler"s development work was carried out in the Renault car factory in the

' isetls and he called his system UNISURF. Car designers are concerned with

styling free-form surfaces which are then used to produce master dies which pro-

duce the tools that stamp out the manufactured parts. Many other industries use

free-form surfiaces. Some parts such as ships hulls, airframes and turbine blades

are constrained by aerodynamic and hydrodynamic considerations and shapes

evolve through experience and testing in wind tunnels and test tanks, but a

designer still needs freedom to produce new shapes albeit within these

constraints. Before the advent of this representational fonn, such free-form

surfaces could t1ot be represented analytically and once developed could only

be stored for future reproduction and evolution by sampling and storing as
coordinates.

Prior to Bezier's innovation the process of going from the abstract design to

the prototype was lengthy and involved many people and processes. The fol-

lowing description, abstracted from Bezler’s account in Piegl’s book {Plegl 1993}.

is of the process of car design at the time:
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(1) Stylists defined a general shape using small-scale sketches and clay mock-
tips.

(2) Using offsets {world coordinates in computer graphics terminology)

measured on the mock-up. designers traced a full-scale shape of the skin of

the car body.

(3) Plasterers built a full-scale model. weighing about eight tons, starting from

plywood cross-sections duplicating the curves of the drawing. The clay
model was then examined by stylists and sales managers, and modified

according to taste.

When at last the model was accepted, offsets were again measured and the

final drawings were made. During this period, which could be a year or

more. tooling and production specialists often suggested minor changes to

avoid difficult and costly operations during production.

(5) The drawings were finalized. and one three-dimensional master was built as

the standard [or checking the press tools and stamped parts.

(6) The plaster copies of the master were used for milling punches and dies on

copy-machine tools.

Ilézier's pioneer development completely changed most aspects of these

processes by enabling a representation of free-iorm surfaces. Before, a designer

would produce curves using say a device such as a French curve. The designer

used his sldll and experience to produce a complete curve that was built. step-

bv-step. using segments along some portion of the French curve. A curve gener-

ated in this way could not be stored conveniently except as a set of samples.

Beziefs development was a definition that enabled such curves to be represented

as four points. known as control points, and an implicit set of basis or blending

functions. When the four points are injected into the definition, the curve is

generated or reproduced. This has two immediate consequences. The definition

can be used directly to drive a numerically controlled milling machine and the

part can be produced exactly without the intervention of complications and

delays. [Numericallv controlled milling machines have been in existence since

1955 and were another motivation for the development of CAGDJ The defini-

tion cao be used as a basis of a CAD program in which modifications to the curve

can be made to a computer visualization.

Bézier describes an intriguing difiicultgr that he experienced at the time:

when it was suggested that these curves replace sweeps and French curves, most stylists
obiected that they had invented their own templates and would not change their methods.

it was therefore solemnly promised that their secret curves would be translated into secret
listings and buried in the most secret part of the computer‘: memory. and that nobody but

them would keep the Ire}! of the vaulted cellar. in fact, the standard curves were flexible

enough and secret curves were soon forgotten; designers and draughtsmen easily
understood the polygons and their relationship with the shape ofthe corresponding curves

Many simultaneous developments were occurring in other industries — notably

aircraft and ship rnanuiacture, and much of the research was carried out under
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the auspices of particular manufacturers, who, like Bézier at Renault. developed

their own CAD s}"sl:en'is and surface representations suited to their own require-
ments. This has lead to a number of parametric definitions of surfaces and the

interested reader is best referred to Piegls he-oir. in which each chapter is written

by a pioneer in this field.

header states that one of the most important requirements of his representa-

tion was that it should he founded on geometry and that the underlying math-

ematics should be easiljv understood. He introduced the concept of a space curve

being contained in a cube which when distorted into a parallelepiped distorts

the curve (Figure 3.1]. The curve is ‘fixed’ within the parallelepiped as follows:

0 The start and end points of the curve are located at opposite verlices of the

parallelepiped.

I At its start point the curve is tangential to (ix.

e at its end point the curve is tangential to Us.

This geometric concept uniquely defines any space curve (if it is understood that

the curve is a polynomial of a certain degree] and also gives an intuitive feel for

how the curve changes shape as the parallelepiped changes. Now the para]-

lelepiped, and thus the curve. can he completely defined hy four points — known

as control points — Pu, Pi, P2 and P: which are lust vertioes of the parallelepiped

as shown in the figure. Given that the position of the end points of the curve is

fixed and its behaviour at the end points is detenhined, the shape that the curve

traces out in space between its extremities needs to he defined. A parametric

2 2

II}

0

.1:
X

CI.|rve‘ctmtained‘|;vyacube DrI.wi|i.gIi'iecul:ici.1rloI.
parailelepip-sdchauigesdieounre
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Figure 3.2
Moving along the curve by
increasing :1 is equivalent
to moving a vertical line
throngs the basis functions.
The intercepts of this line

with the basis ftnctions give
the values of B for the

equivalent point.

definition was chosen which means that the space curve Q{u} is defined in terms

of a parameter It (0 S = u s = 1}. As It varies from II} to 1 we arrive at values for the

position of a point on QM by scaling or blending the control points. That is,

each point on the curve is cleiennined by scaling each control point by a cubic

polynomial known as a basis or blending function. The curve is then given by:

[3-1]

3

only =2 r=-.3.{u)

and in the case of a Beale: curve the basis or blending functions are the Bernstein

cubic polynomials:

Batu] = {I - H)’

Elite] = 3:: (1 - tr)“

Bz[u] = 3u*{l —u]

Britt] = {#13

Figure 3.2 shows these polynomials and a Better curse [proiected into the two-

dimensional space of the diagram].

A useful Intuitive notion is the following. As we move physically along the

curve from it = O to u = 1 we simultaneously move a vertical line in the basis

function space that defines four values for the basis functions. Weighting each

basis function by the control points and summing. we obtain the corresponding

point in the space of the curve. We note that for any value of it (except u = {l and

u = 1] all the functions are non-zero. This means that the position of all the con-

trol points contribute to every point on the curve (except at the end points).

at u - o only Bo is non-zero. Therefore:

Qifll = Po

similarly
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We also note that:

3o[l4l] + llufiu) + Fain] + Bsfli} = 1

joining the tour control points together gives the so-called control polygon and
moving the oontrol points around produces new curves. Moving a single control
point of the curve distorts its shape in an intuitive manner. This is demonstrated

in Figure 3.3. The effect of ruoving the end points is obvious. When we move the

inner control points P: and P: we change the orientation oi the tangent vectors
to the curves at the end points — again obvious. Less obvious is that the positions
of P: and P2 also control the magnitude of the tangent vectors and it can be
shown that:

taro} = so-. — Pa}

Quill = Bil’: — Pa}

where Q. is the tangent vector to the curve [first derivative) at the end point. It
can be seen that the curve is pulled towards the tangent vector with greater mag-
nitude which is controlled by the position of the control points.

Hézier curves find uses not lust in highly technical applications but also in

popular software. Drawing packages that are round nowadays in word processors
and DTP applications almost always include a sketching iacility based on Better
curves. Another well-lrrrown application of Better curves is shown in Figure 3.4.
Here a typeface is in the process of being designed. The outline of the filled char-
acter is a set of Iiézier curves to which the designer can make subtle alterations

by moving the oorttrol points that specify curves that describe the outline.

i=iezier's original cube concept, encapsulating a curve of three spatial variables,
seems to have been lost and most texts simply deal with the curves of two

spatial variables enclosed in a control polygon. Applications where three-
dimensional space curves have to he designed. three-dimensional computer
animation for example, can have interfaces where two-dimensional proiections
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Figure 3.4

Using Bézier cones in tent
design. Each otrri.-'e segment
control points are
symbolized by D + + 0.

Figure 3.5
convex hull property for
ethic spline. The curve is
contaiiied in the shaded

area fanned from the

control points

of the curve are used. an example of this application is given in Section 112.2.

(Note, that for a tliree-dirnensional curve the parallelepiped detennines the

plane in which the tangents to the Curve — the edges of the control polygon —— are
oriented.)

at this point it is useful to consider all the rarriifrcations of representing a

curve with control points. The most important property, as tar as interaction is

concerned. is that moving the control points gives an intuitive change in curve

shape. Another way of putting it is to say that the curve mimics the shape of the

control polygon. an important property from the point of view of the algo-

rithms that deal with curves (and surfaces} is that a curve is always enclosed in

the convex hull torrned by the control polygon. The convex hull of a two-

dimensional space curve is illustrated i.n Figure 3.5 and can be considered to be

the polygon formed by placing an elastic band around the control points. This
follows from the fact that the basis functions sum to unity for all u.

Now consider transforming curves. Since the curves are defined as linear

combiriations of the oontrol points, the curve is transfonned by any affine trans-

formation (rotation, scaling, translation etc.) in three-dimensional space by
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applying the" appropriate transformations to the set of control points. Thus, to

transform a curve we transfonn the control points then compute the points on

the curve. In this context, note that it is not easy to transfonn a curve by com-

puting the points then transfonning {as we might do with an implicit descrip-
tion). For example, it is not clear in scaling, how many points need to ensure

smoothness when the curve has been magnified. Note here that perspective

transformations are non-affine, so we cannot map control points to screen space

and compute the curve there. However. we can overcome this significant disad-

vantage by using rational curves as we describe later in this chapter.

Finally, a useful alternative notation to the suntmation tone is the following.

First. we expand Equation 3.1 to give:

(Eu) =Po{l -—u]3 +1’. 3rr{1 —u]* +1’; 31:3 [1 -u] +P3. n3

this can then be written in matrix notation as:

mu) = URI‘

Po

Pt

P2

P3

Curve segments, defined by a set of four control points, can be joined to malte up

‘more complex’ curves than those obtainable from a single segment. This results

in a so-called piecewise polynomial curve. An alternative method of representing

more complex curves is to increase the degree of the polynomial, but this has

computational and mathematical disadvantages and it is generally considered

easier to split the curve into Cubic segments. Connecting curve segments implies

that oonstraints must apply at the ioins. The default constraint is positional con-

tinuity, the next best is first order (or tangential continuity}. The diiference

between positional and first order continuity for a Bezier curve is shown in Figure

3.6. Positional continuity means that the end point of the first segment is co-

incident with the start point oi the second. First order continuity means that the

edges of the characteristic polygon are collinear as shown in the figure. This

means that the tangent vectors, at the end of one curve and the start of the other,

match to within a constant. In shaded surfaces, maintaining only positional oom-

iinuity would possibly result in the joins being visible in the final rendered obleci.

If the control points of the two segments are S: and ll‘; then first order conti-

=[u3u'-'u1]

3

3

I]
D

loining liézler curve segments

nuity is maintained if:

(33 - 52} = kill: - Re]

Using this condition a composite Beater curve is easily built up by adding a

single segment at a time. However. the advantage of being able to build up
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Figure 3.5

Contintttty between
liézier cuwe segments.
(a] Positional |:Dl'I|il'l|.lil‘)"

between Béeler points.
{bi Tangential continuityr
between Be:-ier points.

Figure 3.7

Examples of possibie shape
etil‘.ir1g pminocols for a two-

" segment Beater curve.
(at) Maintain the orientation

of the and move any of the
three control point: in.
Sell», 5; along this line.
[In] Rotate the the III: _
about .'l',u|'le.. Er.) Move the
U'I'ee control point: In.
idle 52 as n ‘lucluad’ unlt.

a composite form from segments is somewhat negated by the constraint: on

local control that now apply because of the joining conditions.

Figure 3.4 is an example of a multi-segrnent Eezler curve. In this case a num-

ber of curves are joined to represent the outline of the character and first order

C0l1tI.II1l.llt}|' is maintained between them. It is useful to consider the ramifications

for an interface through which a user can edit multi-segment curves and main-

tain continuity. Figure 3.? shows some possibilities. The illustration assumes that

the user has already constructed a two—segmer1t curve whose shape is to be
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altered around the area of the loin point Sallie. To maintain continuity we must

operate simultaneously on Rt, R913: and 5:. We can do this by:

Maintaining the orientation of the line R13: and moving the join point up

and down this line {Figure 3.T{a}}.

Maintaining the position of the join point and rotating the line Hr,Sz about

this point {Figure 3.'.»"[b}l.

Moving all three control points as a locked unit (“Suit 3-3"iCli-

These three editing possibilities or constraints will enable the user to change the

shape of ctinres made up of any number of segments while at the same time

maintaining first order continuity between the curve segments. We will see later

that this complication of Better curves can be overcome in another way — by

using B-spline -::urves.

Summary of Beater curve properties

it Bezier curve is a polynomial. The degree of the polynomial is always one

less than the number of control points. In computer graphics we generally

use degree 3. Quadratie curves are not flexible enough and going above

degree 3 gives rise to complications and so the choice of cubics is the best

oornprornise for most computer graphics applications.

The curve ‘follows’ the shape of the control point polygon and is

constrained within the convex hull fonned by the control points.

The control points do not exert ‘local’ control. ls-loving any control point

affects all of the curve to a greater or lesser extent. This can be seen by

examining Figure 3.2 which shows that all the basis functions are

everywhere non-zero except at the point it = ID and it - 1.

The that and last control points are the end points of the curve segment.

The tangent vectors to the curve at the end points are coincident with the

[int and last edges or the control point polygon.

Moving the control points alters the magnitucle and direction at the tangent
vectors — the basis of the intuitive 'feel’ of a Bezler curve interface.

The curve does not oscillate about any straight line more often than the

control point polygon - this is known as the variation diminishing property.

This has implications concerning the nature of the surface that can be

represented.

The curve is transformed by applying any affine transtonnation (that is,

any combination of linear transformations} to its control point

representation. The curve is invariant [does not change shape] under such a
transformation.
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E) B-spline representation

The simplicity and power of the Bézler representation is no doubt responsible for

its enduring popularity. It does, however. suffer from limitations and we will
address these in this section by looking at how these are overoorne by using the

ii-spline representation. We will as before introduce B-splines by first examining

Ii-spline curves.

Historically, B-splines preceded Bézier curves and their origin relam to lndus~

tries such as shipbuilding where a designer was required to draw life-size clirves

representing such entities as the cross-section through the hull of a ship. For

small-scale drawing, draughtsmen would use French curves — a set of small, flat

pre-formed curve sections. They would draw oomplete curves by putting together

segments fonned front different parts of different French curves. For full-scale

plans this method was completely impractical and the draughtsmen (called in

ship-building loftsmen] would employ long, thin strips of metal. These were

pushed into the required curve shape and secured using lead weights called ducks,

and the analogue between ducks and control points should be clear. We can push

the spline into any desired shape that the system can take up and we can have as

many ducks as we require. This is the physical basis of B-splines and we can com-

pare the idea with either a single segment Bézier curve or a rnultl-segment Healer

curve. If we compare it with a single Segrrseni curve we see that adding extra
control points or ducks removes the variation diminishing property - the curve

can oscillate as we require. Comparing it with a rnulti-segment Bézler curve we

can say that it is equivalent but we do not have to explicitly maintain continuity

anywhere. imagine a loftsmen inserting an extra duck — the physical properties of

the metal spline ensures that the new shape that is taken up around the point

where the duck was inserted is oonti nuous. The metal takes up a shape that min-

imlzes its internal strain energy. Yet another point that oomesout of this real

piece of engineering is that the effect of a duck insertion is local. The shape of the

curve is only altered in its vicinity. We now deal with these points in a formal
manner.

B—spIine curves

Two drawbacks associated with Iiézier curves that are overcome by using I-l-spline

curves are their non-locainess and the relationship between the degree of the

curve and the number oi control points. The first property — non-localness —

implies that although a control point heavily influences that part of the curve

must close to it, it also has some effect on all the curve and this can be seen by

examining Figure 3.2. All the basis functions are non-zero over the entire range

of ii. The second disadvantage means that we cannot use a Bézier cubic curve to

approximate or represent as points without the inconvenience of using multiple

curve segments (or by increasing the degree of the curve}.



0100

s—si-our nrraesruranon (E)

Like a Iiezier curve a B-spline curve does not pass through its control points.

A B-spline is a complete piecewise cubic polynomial consisting of any number

of curve segments. [For notational simplicity we will only consider cubic B-

splines. We can, however, have E-splines to any degree.} It is a cubic segment

over a certain interval, and going from one interval to the next, the coefficients

change. For a single segment only, we can compare the Il—spljne fonnulation

with the Bezier formulation by using the same matrix notation.

The ll-spline formulation is:

Qiflr] = UB5!’

=[u3u*ul}%

where Q: is the ith B-spline segment and P; is a set of four points in a sequence

of oontrol points. Alternatively we can write:

Qilfll = E, Pi-.mBi.an[I-I} l3-zlIn-ii .

where i is the segment number and k is the local control point index — that is the

index for the segment i. The value of 1.: over a single cunre segment is i} 5 u s 1.

Using this notation we can describe it as a local parameter - locally varying over

the parametric range of {I to 1 — to define a single B-spline curve segment.

Thus in this notation we see that a li—sp1ine curve is a series of in — 2 curve seg-

ments that we oonventionally label (13, (1., . . . , (L. defined or determined by

rm-l oontrol points Pu, Pi. . . . ,P., l".|'l' 2 3. Each curve segment is defined by four

control points and each oontrol point influences four and only four curve seg-

ments. This is the local control property of the Ii-spline curve and its main

advantage over the Bezier curve.

Here we must be careful. iiarslcy {in Bartels er in‘. 1983] points out that compar-

ing Bezier curves and ll-spline curves can be misleading because it is not a com-

parison of like with like but a comparison of a single segment Bezier curve (which

may have the control vertex set extended and the degree of the curve raised] with

a pieoewise or oomposite B-spline curve. A single segment Beater curve is subject to

global control because moving a control point affects the complete curve. In a

composite ll-spline curve moving a control point only affects a few segments of

the curve. The comparison should be between multi-segment Beater curves and B-

splines. The difference here is that“ to maintain continuity between Beeier seg-

ments the movement of the oontrol points must satisfy constraints, while the

control points of a B-spline composite can be moved in any way.

A Ii-spline exhibits positional, first derivative and seoonr] derivative {C13 conti-

nuity and this is achieved because the basis functions are themselves C‘ piecewise

polynomials. A linear oombinatlon of suchbasis functions will also be C1 contin-
uous. We define the entire set of curve segments as one B-spline curve in ii:
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Figure 3.!
A ii-tree-segment B-spine
ctlliic curve defined by sir.
oontrol points.

QM = 2, Fafiull-llr'ID

In this notation l is now a non-local control point number and u is a global param-
eter discussed in more detail in the next section.

Unlfonrr B-splines

Equation 3.2. shows that each segment in a B-spline curve is defined by four basis
hlnctions and four control vertices. Hence there are three more basis functions

and three more oontrol vertices than there are curve segments. The join point on

the value of it between segments is called the knot value and a uniform B-spline

means that knots are spaced at equal intervals of the parameter it. Figure 3.8

shows a Ii-spline curve that is defined by {the position on six control vertiees or

control points Po, P1, . . . , Ps. It also shows the effect of varying the degree of

the polynomials, and curves are shown for degree 2. 3 and 4. We are generally
interested in eubics and this is a curve of three segments with the left-hand end

point of Q3 near Po and the right-hand end point of Q5. near P5. {Thus we see
that a unifonn El—spline does not in general interpolate the end control points,

unlike a Better curve. also it is the case that a Iiezier curve more closely approx-

imates its oontrol point polygon. However, the continuity-maintaining property

of the B-spline curve outweighs these disadvantages]

The notation gives us the iollowing organization (where each curve segment

is shown as an alternating fulljdotted line):

«Q: is defined by Po Pr P2 P: which are SCIIBCI by Bo Ht 3: H1

Qi is defined by P1 P: Fr Fr which are scaled by B1 B2 Ba Bi

4&5 is defined by P2 P3 Pt I’; which are scaled by B: B‘: B1. B5

The fact that each curve segment shares control points is t_l1e underlying mech-

anism whereby C3 continuity is maintained between curve segments. Figure 3.9
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figure 3.9‘
Demonstrating the locality

P.-gperty of Ii-spline curves.
Having H changes Q; and
one a lesser extent. ii: is
unu-.an9-Hi

Figure 3.1-0

The uniform cubic Bapllne
Ht-‘J.

a—sPLtNEIEPeE5tN'rA'rtoN

shows the effect of changing the position of control point P4. This pulls the seg-

ment (15 in the appropriate direction and also effects, to a lesser extent, segment

1}: [which is aim defined by P4). However, it does not affect Q: and this figure

demonstrates the important locality property of li-splines. In general, of course,

a single control point influences four curve segments.

We now consider the underlying basis functions that define the curve. Each

basis function is non-zero over four successive intervals in it [Figure 3.10). It is,

in fact, a cubic composed itself of four segments. The B-spline is non-zero over

the intervals ut, um, . . . , um and centred on I-Ina. Now each control point is scaled

by a single basis function and if we assume that our knot values are equally

spaced, then each basis function is a copy or translate and the set of basis func-

tions used by the curve in Figure 3.3 Is shown in Figure 3.11.

The basis functions sum to unity in the range 1.: = 3 to u = 6 in this case, the

values of the parameter I: over which the curve is defined. A consequence of this

is that the entire ‘B-spline curve is contained within the convex hull of its control

points. If we consider a single segment in the curve, then this defines a parame

ter range 1:: to run. The basis functions that are active in the ith parametric inter-

val, is to run, that is the functions that define a single curve segment, are shown

highlighted in Figure 3.12. This gives a useful interpretation of the behaviour of

the functions as u is varied. in general, for values of it that are not knot values,

four basis functions are active and sum to unity. When a knot value 1: = on is

.B,[u] {"-
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Figure 3.11
The silt it-splines used in
constructing the curve of
Figure 3.!-. They are al
translates of leach other.

The Figure 3.12
1112 four B-splines that are
nun-zero or active for the

first curve segment in Figure
3.8.

Hutu) -Hutu} Fail} 310:} Me} Bath}

3- If 5 5
 l

Parameter rang:
olcur-re

reached one basis function ‘switches off’ and another ‘switches on*. At the knot

value there are three basis hmcfions that sum to unity.

At this stage we can summarize and state that a ii-spline curve is made up of
m —- 2 segments defined by the position of rrr + 1 basis functions over in + 5 knot

values. Thus in Figure 3.? we have three segments, six oontrol points and six
basis functions over ten knot values.

Now oonsider again Figure 3.12. In the parameter range in 5. H 5 tan we evalu-

ate the four B-splines 3:, En, 31-: and Bio by substituting!) S u 5 1 and computing:

B: =-Lu’
6

l

35-: - E {-3113 + 314' + 3:: + 1}

an =%{3u=—su=+4)

s.s=%<1-ur

It is Important to note that this definition gives a single segment from each of the

four ii-spline basis functions over the range Ci 5 iii 5 1. It does not define a single

B-spline basis function which consists of four segments over the range ti 5 it 5 4.

We now come to consider the end control vertices and note again that the

curve does not interpolate these points. In general, of course, a B-spline curve

does not interpolate any control points. We can make a E-spline curve interpo-

late control points by introducing multiple vertices. However. this involves a loss

of continuity as we shall see. intuitively we can think of increasing the influence

of a oontrol point by repeating it. The curve is attracted to the repeated point. A

segment is made by basis functions scaling control points. If a control point is

-Fulfil ELI! Britt} Hill-r} NH} 5'51"}
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Demorutrating the diet! of

multiple end control points.
1-; is repeated three |‘.H'I'|fi

futhg thecunre to
htepolale it.

Figure 3.14
Dernomtretlng the effect of

-_ .II'|dI5pl-e intern'Iedla-ta
eorntrot points. {as} P; is
siuplicated. {b} P: is

.

B-$PI.lNE REPRESENTATION

P): hi P5

repeated it will he used more than once in the evaluation of a single segment.

For example, consider Figure 3.13 and compare it with Figure 3.3. The last con-

trol point in the example in Figure 3.8 is new repeated three times. There are

new five segments and P5 is used once in the determination of I15. twice in Q:

and three times in Q3. The curve now ranges over 3 5 u 5 3. At u = B the emu-we is
coincident 'W'itJ.'1 P5,

Such a technique can be used to make the curve interpolate both the inter-

mediate control points and the end points. Figure 3.141(3) shows the effect

IF:-P3

{El
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Figure 115
A non-uriiform B-spline that
i‘Iieipalai;e5 the end pohits
by using an lmot vec1;or

[fl,I1,ll-,fl,.l,2,3_.3,3,3]_

of introducing multiple intennediate control points. In this figure P; has been

doubled. P3 is almost interpolated and an extra segment is introduced. The

oontlnuity changes from Gift‘ to C3-'3‘. This means that the continuity across the

two segments is reduced by one although the continuity within each segment is

still (23. Figure 3.1-![h) shows 1''; made into a triple oontrol point. This time the

curve interpolates the control point and the curve hecoines a straight line on

either side of the control point. The continuity reduces now to C36“.

Non-unifonri B-splines

In the previous section we considered a family of curvu that we referred to as

uniform ll-splines because the basis functions were translates of each other. We

now look at non-unlfonn ii-splines.

A non-uniform B—sp-line is a curve where the parametric intervals between suc~

cesslve lrnot values are not necessarily equal. This implies that the hlen-ding func-

tions are no longer translates of each other but vary from interval to interval. The
most common fonn of a non-uniform B-spline is where some of the intervals

between suooessive knot values are reduoed to zero by inserting multiple knots.

This facility is used to interpolate control points [both end points and intermedi-

ate polnts) and it possesses certain advantages over the method used in the pre-

vious section — inserting multiple control points. In partioiilar a control point can

be interpolated without the effect that oocurred with multiple oontro] vertices -

namely straight line curve segments on either side of the control point.

Consider the curve generated in Figure 3.3. The knot values for this curve are

ii = 3. 4, 5, 6. We define a knot vector for this curve as [{l,1.2,3,4,5,6,?] and a use-

ful parametric range {within which the basis functions sum to unity} as 3 5 ii 5
6. The interval between each knot value is 1. If non-uniform knot values are
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used, then the basis functions are no longer the same for each parametric inter-

val. but vary over the range of 11. Consider Figure 3.15. This uses the same

control points as Figure 3.3 and the B-spline curve is still made up of three seg-

ments. However, the curve now interpolates the end points because multiple
knots have been inserted at each end of the knot vector. The knot vector used is

[i),t},il,t},l,2.3,3,3,3]. The basis functions are also shown in the figure. The curve

now possesses nine segments (5; to Q3. However, Qa, 11:. Q: are reduced to a

single point. 12:. Q1 and Q; are defined over the range 0 S r: 5 3. Q5, Q2 and

Q4: are reduoed to a single point it = 3. In praetioe the knot sequence

[iJ.t},iJ.t},1.2,....n—l,n,n,n.n] is often used. That is, interpolation is forced at the

end points but uniform knots are used elsewhere. A seoond example showing the

flexibility of a B-spline curve is given in Figure 3.15. Here we have nine oontrol

points and thirteen knots. The knot vector is [o,o.o,o,1,2,3,4,s,s,s,s,s].

In general a knot vector is any non-decreasing sequenoe of knot values no to

um. As we have seen, successive knot values can be equal and the number of

identical values is called the multiplicity of the knot. Causing a curve to inter-

polate the end points by using multiple control vertices does not have precisely

the same effect as using multiple oontrol vertlces and Figure 3.1? shows the final

control point P5 in our standard example interpolated using both a multiple

control point and a knot vector with multiplicity 4 on the final knot value.
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Figure 3.1?
Comparing multiple knot:
with multiple control pnirtts.
{3} The curve is gerierated
by .1 incl vector with
multlplivzlty 4 on the start
and end values. [bl Pi. is
repeated three times.

Note that if we use the knot vector [0.i}.iJ,|J.l.1,1.l} then we have single seg-

ment curve interpolating Pu and P3. In this instance the basis functions are the

Bézler basis functions (Figure 3.2) and the resulting curve is a B-ézler our-re. Thus

we see that a Bezier curve is just a special case ofa non-uniform B-spline.

The effect of a multiple knot on the shape of a basis function is easily seen.

Consider Figure 3.1B(a} shows the unjfann B-spline basis function defined over

the knots 0, 1, 2, 3, 4. As we have explained in the previous section, this is itself

made up of four cubic polynomial segments defined over the given ranges. These

are generated by using Equation 3.3 and translating each cubic segment by

U. 1, 2. 3 and 4 units in u. Alternatively we can use:

" 'l""—"I'""' '1"
I 1 I

la]

I 2 I I

Figure 3.18
The eflect oi ltnot

mI.I|lipli'u'.ty on a single cubic
B-spine basis function.

(a) All knot rnultipiclies
are unity: [o,1,2.3,4].
[b] Second ltnclt has

mulipliclly 1: [t},l,1,2,3].
{it} Second knot has
muliplitity 3:
['El.l,1,1.2]. (Id) Second
lmot has multipfloity 4:
['iLL'|.i'.|]-
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it-olfui = -E 1:3 osusi

b.1[ill]=-% {3u3—12n1+12u—-1) isusz
3fl{"l=

b.2I{u}= %{3u’—2-1u’+6i]u--I-1») zsusa.

.lJ.;=.[ir) =—% {tr3—12rr*+43u—64) SSIIS4
Compared with Equation 3.3 note that this defines a single B-spline basis func-

tion over the range 0 5 it 5 =1». If we double the second knot and use [I'.l.1,1.2,3]..

lulu) shrinks to zero length and the function becomes asymmetric as shown in

Figure 3.1B(b}. The double knot eliminates second derivative oontinuity but first

derivative continuity remains. Tripling the second knot by using knot vector

[i}.1,l,1,2] gives the symmetrical function shown in Figure 3.13(-::} which now

only has positional continuity. Quadmpling this knot [i},l,1,1,1] produces the

Function shown in Figure 3.lii[d] where even positional continuity is eliminated.

if we now return to the context shown in Figure 3.15. The first basis function

is defined over [il,lIl,O,IZI. 1] and is asymmetric with no positional continuity.

The second is defined over a set of knot values that contains a triple knot -

[i).iJ,il.l,2], the third over the sequence [{l,i},l.2,3] and is also asymmetric. In this

case all functions are asymmetric and summarizing we have:

Krrotveriaor

illtilitfli

00012

D0123
01233

12333

23333

We can further see from this set of basis functions that they sum to unity over

the entire range of u and that at it = U and u = 3 the only non-zero basis func-

tions are Be and B.-. (both unity} which cause the end points to be interpolated by

Q3 and Q5 respectively.

We now consider altering the knot multiplicity for interior knots where

the issue of continuity changes becomes apparent. Consider the examples

given in Figure 3.19. This is the same example as we used in Figure 3.? except

that an extra control point has been added to give us a four segment curve. The

knot vector is [0.1.2.3,4,5,6,?,8.9,10] and Figure 3.19(a) shows the curve.

Figure 3.1963] shows the effect of introducing a double knot using vector

[0, l,2.3,4,=l,5,6,?.B,9]. The number of segments is reduced to three. Qt shrinks to

zero. The convex. hulls containing (3; and Q: meet on edge Psi’: and the join

point between Qsqq and Q: is forced to lie on this line. In Figure 3.19(c) a triple

knot is introduced - [il,l.2,3,41,-i-,4,5.6.?,ii]. The curve is reduced to two seg-

ments. Q1 and Q; shrink to zero at P3. There is only positional continuity

between as and (is but the segments on either side of the control point P: are
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Figure 3.19
The effect of interior Ianat (*3

mdfipficity on a B-spline
curve.

{a} A I"aI.Ir-segment B-spline
tune. The knot vector is

ID. 1'.i'..3.4.5.5. ?'.3.9J‘ 0]-
Nl B-splines are lrinsfabes
of e-ad-I other.

(h) Knot. ‘nectar ls

l"J.L2.3.4,4,5.5.?.E.9].
Q1 S5'IrirIl5 to zero.
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figune LIB continued
"M Knot vector is
[o,I,2.3.4.4.4.5.6.7.El-
Q. and It shrink to zero.
cgnfl'|uIty' ban-mm (I; and
4]. Is pcsllional.

{cl} Knot vector is

i0.1.2.3.4.4.4.4.$.45. ?.8].


