Alan Watt | third Edition

3D Computer Graphics

T‘Y ADDISON-WESLEY (Bag

0001
Volkswagen 1011 - Part 1 of 6

.??‘ﬁ-."‘;?;!iﬁ'ﬁ_‘."‘-.‘éw{ﬂi R T N A S R i L i B S S R T T D el

Computer
Graphics

0002

We work with leading authors to develop the strongest educational materials in

computer science, bringing cutting-edge thinking and best learning practice to a glabal
market.

Under a range of well-known imprints, including Addison-Wesley, we craft
print and electronic publications which hel
whether studying or at work.

high quality
p readers to understand and apply their content

r

To find out about the complete range of our publishing please visit us on the
World Wide Web at:

http:/fwww_pearsoneduc.com

0003

¢ 3 om pUter
Graphics

THIRD EDITION

ALAN WATT

A
vV A.DDFSION-WESLE.Y

An imprint of FEARSON EDUCATION
Harlow, England - London - Mew York - Reading, Massachusetts - San Francisco - Torenko - Don Mills, Ontario - Sydney
Takyo - Singapare - Hong Kong - Seoul « Taipei - Cape Town - Madrid - Mesico City - Amaterdam - Munich - Paris - hMilan

0004

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us 0w the World Wide Web at:
www. prarsoneduc.com

© 1985, 1993 Addison-Wesley Fublishing Ltd, Addison-Wesley Publishing Company Inc.
© Pearson Education Limited 2000

This right of Alan Watt to be identified as author of
this work has been asserted by him I accordance with
the Copyright, Designs, and Patents Act 1988,

All rights reserved; no part of this publication may be reproduced, stored

In a retrieval system, or transmitted In any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior

written permission of the Publishers o a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Lid,

0 Totenham Court Road, London WI1T 4LP

Thc Programs Ir|. this book have been ln:ludul for thelr mmmmﬂ value.

does mot offer any in respect of their
ﬁhml‘r.t a particular purpose, nor does the publishrrmu-pl any liability for any
loss or damage (other than for personal injury or death) arising from their use,

Many of the wsed by man and sellers to distinguish their
products are claimed as trademarks. Pearson Education Limited has made every
attempt to supply trademark information about manufacturers and their products
mentioned in this book. A list of trademark designations and their owners
appears on page xxik.

ISBM O 201 39855 9

British Library Cataloguing.imPublication Data
A catalogue record for this book can be obtalned from the British Library,

Library of Congress Catalogulng-ti-Publication Data
Avallable from the publisher.

Typeset by 42
Frinted and bound in The United States of America

0987
07 06 05 04 03

0005

Para Dionéa
a garota de Copacabana

0006

Contents

Colour plates appear between pages 506 and 507

Preface

Acknowledgements

Mathematical fundamentals of computer graphics
Manipulating three-dimensional structures

1.1

1.2
1.3

14

1.5

Representation and modelling of three-dimensional objects (1)

2.1

1.1.1

1.1.2

Three-dimensicnal geometry in computer graphics -

affine transformations
Transformations for changing coordinate systems

Structure-deforming transformations
Vectors and computer graphics

1.3
1.3.2
133
1.3.4
1.3.5

Addition of vectors

Length of vectors

Mormal vectors and cross products

Normal vectors and dot products

Vectors associated with the normal vector reflection

Rays and computer graphics

1.4
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

Ray geometry - intersections

Intersections — ray-sphere

Intersections — ray—convex polygon
Intersections — ray-box

Intersections — ray-quadric

Ray tracing geometry — reflection and refraction

Interpolating properties in the image plane

Introduction
Polygonal representation of three-dimensional objects

2.1

Creating polygonal objects

0007

1
12
12
12
14
15

17
17
18
19
21
23
23

25

27
27

i3
I

(Vi) conTEnTs

2.2
23

24
2.5

2.6

Representation and modelling of three-dimensional objects (2)

3.1

3.2

3.3

3.4

3.5
3.6

3.7

2.1.2 Manual modelling of polygonal objects
2.1.3 Automatic generation of polygonal objects
2.1.4 Mathematical generation of polygonal objects

2.1.5 Procedural polygon mesh objects - fractal objects
Constructive solid geometry (C5G) representation of objects
Space subdivision techniques for object representation

2.3.1 Octrees and polygons
2.3.2 BSP trees
2.3.3 Creating voxel objects

Representing objects with implicit functions

Scene management and object representation
2.5.1 Polygon mesh optimization

Summary

Introduction

Bézier curves
3.1.1 |oining Bézier curve segments
3.1.2 Summary of Bézier curve properties

B-spline representation

3.2.1 B-spline curves

3.2.2 Uniform B-splines

3.2.3 Non-uniform B-splines

3.2.4 Summary of B-spline curve properties

Rational curves
3.3.1 Rational Bézier curves
3.3.2 NURBS

From curves to surfaces
3.4.1 Continuity and Bézier patches
3.4.2 A Bézier patch object - the Utah teapot

B-spline surface patches

Modelling or creating patch surfaces

3.6.1 Cross-sectional or linear axis design example
3.6.2 Control polyhedron design - basic technique
3.6.3 Creating patch objects by surface fitting

From patches to objects

Representation and rendering

4.1

Introduction
Rendering polygon meshes - a brief overview

0008

38
38
39
44

46

51
53
55
56

56

58
59

66
66

69
75
77

78
78

90

90
Nn
93

94
98
100
101

106
107
110
115

121

123
123

124

contents (ix)

4.2 Rendering parametric surfaces 125
4.2.1 Rendering directly from the patch descriptions 125
4.2.2 Patch to polygon conversion 128
4.2.3 Object space subdivision 128
4.2.4 Image space subdivision 135

4.3 Rendering a CSG description 138

4.4 Rendering a voxel description 140

4.5 Rendering implicit functions 141

The graphics pipeline (1): geometric operations 142
Introduction 142

5.1 Coordinate spaces in the graphics pipeline 143
5.1.1 Local or modelling coordinate systems 143
5.1.2 World coordinate systems 143
5.1.3 Camera or eye or view coordinate system 143

5.2 Operations carried out in view space 147
5.2.1 Culling or back-face elimination 147
5.2.2 The view volume 147
5.2.3 Three-dimensional screen space 149
5.2.4 View volume and depth 152

5.3 Advanced viewing systems (PHIGS and GKS) 156
5.3.1 Overview of the PHIGS viewing system 157
5.3.2 The view orientation parameters 159
5.3.3 The view mapping parameters 159
5.3.4 The view plane in more detail 162
5.3.5 Implementing a PHIGS-type viewing system 164

The graphics pipeline (2): rendering or algorithmic processes 167
Introduction 167

6.1 Clipping polygons against the view volume 168

6.2 Shading pixels 171
6.2.1 Local reflection models 173
6.2.2 Local reflection models - practical points 177
6.2.3 Local reflection models - light source considerations 179

6.3 Interpolative shading techniques 179
6.3.1 Interpolative shading techniques — Gouraud shading 180
6.3.2 Interpolative shading techniques - Phong shading 181
6.3.3 Renderer shading options 182
6.3.4 Comparison of Gouraud and Phong shading 183

6.4 Rasterization 183
6.4.1 Rasterizing edges 183
6.4.2 Rasterizing polygons 185

0009

(I) CONTENTS

6.5
6.6

6.7

Order of rendering

Hidden surface removal

6.6.1 The Z-buffer algorithm

6.6.2 Z-buffer and C5G representation
6.6.3 Z-buffer and compositing

6.6.4 Z-buffer and rendering

6.6.5 Scan line Z-buffer

6.6.6 Spanning hidden surface removal
6.6.7 A spanning scan line algorithm
6.6.8 Z-buffer and complex scenes
6.6.9 Z-buffer summary

6.6.10 BSP trees and hidden surface remaoval

Multi-pass rendering and accumulation buffers

7 simulating light-object interaction: local reflection models

FA |
7.2
73
7.4
7.5
7.6

7.7
7.8

Intraduction

Reflection from a perfect surface

Reflection from an imperfect surface

The bi-directional reflectance distribution function
Diffuse and specular components

Perfect diffuse - empirically spread specular reflection

Physically based specular reflection

7.6.1 Modelling the micro-geometry of the surface
7.6.2 Shadowing and masking effects

7.6.3 \Viewing geometry

7.6.4 The Fresnel term

Pre-computing BRDFs

Physically based diffuse component

8 Mapping techniques

8.1

8.2

8.3
B.4

Introduction

Two-dimensional texture maps to polygon mesh objects
8.1.1 Inverse mapping by bilinear interpolation

8.1.2 Inverse mapping by using an intermediate surface

Two-dimensional texture domain to bi-cubic parametric patch

objects
Billboards

Bump mapping
8.4.1 A multi-pass technique for bump mapping
8.4.2 A pre-calculation technique for bump mapping

0010

187

189
189
190
191
192
193
193
194
196
198
199

202

205
205

206
207
208
21
212

213
214
214
216
216

219
221

223
223

228
229
230

234
235

236
238
239

10

8.5
8.6

B.7

88
8.9

contents (xi)

Light maps

Environment or reflection mapping

8.6.1 Cubic mapping

B8.6.2 Sphere mapping

B.6.3 Environment mapping: comparative points
B8.6.4 Surface properties and environment mapping
Three-dimensional texture domain techniques
8.7.1 Three-dimensional noise

8.7.2 Simulating turbulence

8.7.3 Three-dimensional texture and animation
8.7.4 Three-dimensional light maps

Anti-allasing and texture mapping
Interactive techniques in texture mapping

Geometric shadows

2.1
9.2
93

Introduction
Properties of shadows used in computer graphics
Simple shadows on a ground plane

Shadow algorithms
9.3.1 Shadow algorithms: projecting polygons/scan line
9.3.2 Shadow algorithms: shadow volumes

9.3.3 Shadow algorithms: derivation of shadow polygons from

light source transformations
9.3.4 Shadow algorithms: shadow Z-buffer

Global illumination

10.1

10.2
10.3

10.4
10.5
10.6
10.7
10.8

Introduction

Global illumination models

10.1.1 The rendering equation

10.1.2 Radiance, irradiance and the radiance equation
10.1.3 Path notation

The evolution of global illumination algorithms

Established algorithms - ray tracing and radiosity
10.3.1 Whitted ray tracing
10.3.2 Radiosity

Monte Carlo techniques in global illumination

Path tracing

Distributed ray tracing

Two-pass ray tracing

View dependence/independence and multi-pass methods

0011

240

243
245
247
248
249

251
251
252
254
256

256
260

263
263

265
265

267
267
268

2N
271

275
275

276
277
278
281

283

284
284
286

288
292
294
297
300

@ CONTENTS

n

12

10.9 Caching illumination
10.10 Light volumes
10.11 Particle tracing and density estimation

The radiosity method
Introduction
11.1 Radiosity theory
11.2 Form factor determination
11.3 The Gauss-5Seidel method
11.4 Seeing a partial solution - progressive refinement
11.5 Problems with the radiosity method

11.6 Artefacts in radiosity images
11.6.1 Hemicube artefacts
11.6.2 Reconstruction artefacts
11.6.3 Meshing artefacts

11.7 Meshing strategies

11.7.1 Adaptive or a posteriori meshing
11.7.2 A priori meshing

Ray tracing strategles
Introduction - Whitted ray tracing

12.1 The basic algorithm
12.1.1 Tracing rays - initial considerations
12.1.2 Lighting model components
12.1.3 Shadows
12.1.4 Hidden surface removal
12.2 Using recursion to implement ray tracing

12.3 The adventures of seven rays - a ray tracing study

12.4 Ray tracing polygon objects — interpolation of a normal at an

intersection point in a polygon

12.5 Efficiency measures in ray tracing
12.5.1 Adaptive depth control
12.5.2 First hit speed up
12.5.3 Bounding objects with simple shapes
12.5.4 Secondary data structures
12.5.5 Ray space subdivision

12.6 The use of ray coherence
12.7 A historical digression - the optics of the rainbow

0012

30
303
304

306
306
308
310
314
315
38

319
319
E¥d
323

325
325
332

342
342
343
343
344
345
346

347
350

352

354
354
355
355
357
363

364
367

13

14

15

conTents (xiil)

Volume rendering
Introduction

13.1 Volume rendering and the visualization of volume data

13.2 ‘Semi-transparent gel’ option
13.2.1 Voxel classification
13.2.2 Transforming into the viewing direction
13.2.3 Compositing pixels along a ray

13.3 Semi-transparent gel plus surfaces
13.3.1 Explicit extraction of isosurfaces

13.4 Structural considerations in volume rendering algorithms
13.4.1 Ray casting (untransformed data)
13.4.2 Ray casting (transformed data)
13.4.3 Voxel projection method

13.5 Perspective projection in volume rendering
13.6 Three-dimensional texture and volume rendering

Anti-allasing theory and practice
Introduction

14.1 Aliases and sampling

14.2 Jagged edges

14.3 Sampling in computer graphics compared with sampling reality
14.4 Sampling and reconstruction

14.5 A simple comparison

14.6 Pre-filtering methods

14.7 Supersampling or post-filtering

14.8 Non-uniform sampling - some theoretical concepts

14.9 The Fourier transform of images

Colour and computer graphics
Introduction

15.1 Colour sets in computer imagery

15.2 Colour and three-dimensional space
15.2.1 RGB space
15.2.2 The HSV single hexcone model
15.2.3 YIQ space

15.3 Colour, information and perceptual spaces
15.3.1 CIE XYZ space
15.3.2 CIE xyY space

15.4 Rendering and colour spaces

0013

370
370

373

377
378
379
379

380
382

384
385
387
388

390
n

392
392

393
397
98
400
401
402
404
406
41

418
418

419

420
423
424
427

427
429
433

435

(xiv) conTenTs

16

17

15.5 Monitor considerations
15.5.1 RGBumeriner Space and other monitor considerations
15.5.2 Monitor considerations — different monitors and the
same colour
15.5.3 Monitor considerations - colour gamut mapping
15.5.4 Monitor considerations — gamma cormrection

Image-based rendering and photo-modelling
Introduction

16.1 Reuse of previously rendered imagery - two-dimensional
techniques
16.1.1 Planar impostors or sprites
16.1.2 Calculating the validity of planar impostors

16.2 Varying rendering resources
16.2.1 Priority rendering
16.2.2 Image layering

16.3 Using depth information
16.3.1 Three-dimensional warping
16.3.2 Layered depth images (LDIs)

16.4 View interpolation
16.4.1 View morphing

16.5 Four-dimensional techniques - the Lumigraph or light field
rendering approach

16.6 Photo-modelling and IBR
16.6.1 Image-based rendering using photographic panoramas
16.6.2 Compositing panoramas
16.6.3 Photo-modelling for image-based rendering

Computer animation
Introduction

17.1 A categorization and description of computer animation
techniques

17.2 Rigid body animation
17.2.1 Interpolation or keyframing
17.2.2 Explicit scripting
17.2.3 Interpolation of rotation
17.2.4 Using quaternions to represent rotation
17.2.5 Interpolating quaternions
17.2.6 The camera as an animated object

17.3 Linked structures and hierarchical motion
17.3.1 Solving the inverse kinematics problem

0014

436
436

437
439
440

443
443

444
445
445

447
447
448

452
452
456

458
460

463

465
469
469
470

473
473

476

477
477
479
483
484
488
492

493
500

contents (xv)

17.4 Dynamics in computer animation 504
17.4.1 Basic theory for a rigid body - particles 505
17.4.2 The nature of forces 506
17.4.3 Rigid bodies - extended masses 507
17.4.4 Using dynamics in computer animation 510
17.4.5 Simulating the dynamics of a lumped mass N
17.4.6 Space-time constraints 515

17.5 Collision detection 517
17.5.1 Broad phase/narrow phase algorithms 518
17.5.2 Broad phase collision detection with OBBs 519
17.5.3 Marrow phase: pairs of convex polyhedra - exact collision

detection 522
17.5.4 Single phase algorithms - object hierarchies 524

17.6 Collision response 526

17.7 Particle animation 529

17.8 Behavioural animation 53

17.9 Summary 534

Comparative image study 536
Introduction 536

18.1 Local reflection models 537

18.2 Texture and shadow mapping 538

18.3 Whitted ray tracing 539

18.4 Radiosity 341

18.5 RADIANCE 543

18.6 Summary 543

References 544

Index 553

0015

Preface

This is the third edition of a book that deals with the processes involved in
converting a mathematical or geometric description of an object - a computer
graphics model - into a visualization - a two-dimensional projection - that
simulates the appearance of a real object. The analogy of a synthetic camera is
often used and this is a good allusion provided we bear in mind certain important
limitations that are not usually available in a computer graphics camera (depth of
field and motion blur are two examples) and certain computer graphics facilities
that do not appear in a camera (near and far clipping planes).

Algorithms in computer graphics mostly function in a three-dimensional
domain and the creations in this space are then mapped into a two-dimensional
display or image plane at a late stage in the overall process. Traditionally com-
puter graphics has created pictures by starting with a very detailed geometric
description, subjecting this to a series of transformations that orient a viewer
and objects in three-dimensional space, then imitating reality by making the
objects look solid and real - a process known as rendering. In the early 1980s
there was a coming together of research — carried out in the 1970s into reflection
models, hidden surface removal and the like - that resulted in the emergence of
a de facto approach to image synthesis of solid objects. But now this is proving
insufficient for the new demands of moving computer imagery and virtual re-
ality and much research is being carried out into how to model complex objects,
where the nature and shape of the object changes dynamically and into captur-
ing the richness of the world without having to explicitly model every detail.
Such efforts are resulting in diverse synthesis methods and modelling methods
but at the moment there has been no emergence of new image generation tech-
niques that rival the pseudo-standard way of modelling and rendering solid
objects — a method that has been established since the mid-1970s.

So where did it all begin? Most of the development in computer graphics as
we know it today was motivated by hardware evolution and the availability of
new devices. Software rapidly developed to use the image producing hardware.
In this respect the most important development is the so-called raster display, a
device that proliferated in the mass market shortly after the development of the
PC. In this device the complete image is stored in a memory variously called a

0016

PREFACE

Figure P.1

: Processor | " Display hardware
| Meda || |
| databases i

Applications [+ Video
Processes Frame store [P
Interaction |

The main elements of a

graphics system.

frame store, a screen buffer or a refresh memory. This information - the dis-
cretized computer image - is continually converted by a video controller into a
set of horizontal scan lines (a raster) which is then fed to a TV-type monitor. The
image is generated by an application program which usually accesses a model or
geometric description of an object or objects. The main elements in such a sys-
tem are shown in Figure P.1. The display hardware to the right of the dotted line
can be separate to the processor, but nowadays is usually integrated as in the case
of an enhanced PC or a graphics workstation. The raster graphics device over-
shadows all other hardware developments in the sense that it made possible the
display of shaded three-dimensional objects - the single most important theo-
retical development. The interaction of three-dimensional objects with a light
source could be calculated and the effect projected into two-dimensional space
and displayed by the device. Such shaded imagery is the foundation of modern
computer graphics.

The two early landmark achievements that made shaded imagery possible are
the algorithms developed by Gouraud in 1971 and Phong in 1975 enabling easy
and fast calculation of the intensities of pixels when shading an object. The
Phong technique is still in mainstream use and is undoubtedly responsible for
most of the shaded images in computer graphics.

SR iGr Sus L o i
A brief history of shaded imagery

When we look at computer graphics from the viewpoint of its practitioners, we
see that since the mid-1970s the developmental motivation has been photo-
realism or the pursuit of techniques that make a graphics image of an object or
scene indistinguishable from a TV image or photograph. A more recent strand of
the application of these techniques is to display information in, for example,
medicine, science and engineering.

The foundation of photo-realism is the calculation of light-object interaction
and this splits neatly into two fields - the development of local reflection

0017

PREFACE

models and the development of global models. Local or direct reflection models
only consider the interaction of an object with a light source as if the object and
light were floating in dark space. That is, only the first reflection of light from
the object is considered. Global reflection models consider how light reflects
from one object and travels onto another. In other words the light impinging on
a point on the surface can come either from a light source (direct light) or indi-
rect light that has first hit another object. Global interaction is for the most part
an unsolved problem, although two partial solutions, ray tracing and radiosity,
are now widely implemented.

Computer graphics research has gone the way of much modern scientific
research - early major advances are created and consolidated into a practical
technology. Later significant advances seem to be more difficult to achieve. We
can say that most images are produced using the Phong local reflection model
(first reported in 1975), fewer using ray tracing (first popularized in 1980) and
fewer still using radiosity (first reported in 1984). Although there is still much
research being carried out in light-scene interaction methodologies much of the
current research in computer graphics is concerned more with applications, for
example, with such general applicatiuns as animation, visualization and virtual
reality. In the most important computer graphics publication (the annual SIG-
GRAPH conference proceedings) there was in 1985 a total of 22 papers con-
cerned with the production techniques of images (rendering, modelling and
hardware) compared with 13 on what could loosely be called applications. A
decade later in 1995 there were 37 papers on applications and 19 on image pro-
duction techniques.

Modelling surface reflection with local interaction

Two early advances which went hand-in-hand were the development of hidden
surface removal algorithms and shaded imagery - simulating the interaction of
an object with a light source. Most of the hidden surface removal research was
carried out in the 1970s and nowadays, for general-purpose use, the most com-
mon algorithm is the Z-buffer - an approach that is very easy to implement and
combine with shading or rendering algorithms.

In shaded imagery the major prop is the Phong reflection model. This is an
elegant but completely empirical model that usually ends up with an object
reflecting more light than it receives. Its parameters are based on the grossest
aspects of reflection of light from a surface. Despite this, it is the most widely
used model in computer graphics — responsible for the vast majority of created
images. Why is this so? Probably because users find it adequate and it is easy to
implement.

Theoretically based reflection models attempt to model reflection more accu-
rately and their parameters have physical meaning - that is they can be mea-
sured for a real surface. For example, light reflects differently from an isotropic
surface, such as plastic, compared to its behaviour with a non-isotropic surface

0018

PREFACE

such as brushed aluminium and such an effect can be imitated by explicitly
modelling the surface characteristics. Such models attempt to imitate the behav-
iour of light at a ‘milliscale’ level (where the roughness or surface geometry is
still much greater than the wavelength of light). Their purpose is to imitate the
material signature - why different materials in reality look different.
Alternatively, parameters of a model can be measured on a real surface and used
in a simulation. The work into more elaborate or theoretical local reflection
models does not seem to have gained any widespread acceptance as far as its
implementation in rendering systems is concerned. This may be due to the fact
that users do not perceive that the extra processing costs are worth the some-
what marginal improvement in the appearance of the shaded object.

All these models, while attending to the accurate modelling of light from a
surface, are local models which means that they only consider the interaction of
light with the object as if the object was floating in free space. No object-object
interaction is considered and one of the main problems that immediately arises
Is that shadows — a phenomenon due to global interaction - are not incorporated
into the model and have to be calculated by a separate ‘add-on’ algorithm.

The development of the Phong reflection model spawned research into add-
on shadow algorithms and texture mapping, both of which enhanced the
appearance of the shaded object and tempered the otherwise ‘floating in free
space’ plastic look of the basic Phong model.

Modelling global interaction

The 1980s saw the development of two significant global models - light reflec-
tion models that attempt to evaluate the interaction between objects. Global
interaction gives rise to such phenomena as the determination of the intensity
of light within a shadow area, the reflection of objects in each other (specular
interaction) and a subtle effect known as colour bleeding where the colour from
a diffuse surface is transported to another nearby surface (diffuse interaction).
The light intensity within a shadow area can only be determined from global
interaction. An area in shadow, by definition, cannot receive light directly from
a light source but only indirectly from light reflecting from another object,
When you see shiny objects in a scene you expect to see in them reflections of
other objects. A very shiny surface, such as chromium plate, behaves almost as
a mirror taking all its surface detail from its surroundings and distorting this geo-
metrically according to surface curvature.

The successful global models are ray tracing and radiosity. However, in their
basic implementation both models only cater for one aspect of global illumina-
tion. Ray tracing attends to perfect specular reflection - very shiny objects
reflecting in each other, and radiosity models diffuse interaction which is light
reflecting off matte surfaces to illuminate other surfaces. Diffuse interaction is
common in man-made interiors which tend to have carpets on the floor and
matte finishes on the walls. Areas in a room that cannot see the light source are

0019

() ereFace

illuminated by diffuse interaction. Mutually exclusive in the phenomena they
model, images created by both methods tend to have identifying ‘signatures’.
Ray-traced images are notable for perfect recursive reflections and super sharp
refraction. Radiosity images are usually of softly-lit interiors and do not contain
specular or shiny objects.

Computer graphics is not an exact science. Much research in light-surface
interaction in computer graphics proceeds by taking existing physical models
and simulating then with a computer graphics algorithm. This may involve
much simplification in the original mathematical model so that it can be imple-
mented as a computer graphics algorithm. Ray tracing and radiosity are classic
examples of this tendency. Simplifications, which may appear gross to a mathe-
matician, are made by computer graphicists for practical reasons. The reason this
process ‘works’ is that when we look at a synthesized scene we do not generally
perceive the simplifications in the mathematics unless they result in visible
degeneracies known as aliases. However, most people can easily distinguish a
computer graphics image from a photograph. Thus computer graphics have a
‘realism’ of their own that is a function of the model, and the nearness of the
computer graphics image to a photograph of a real scene varies widely accord-
ing to the method. Photo-realism in computer graphics means the image looks
real not that it approaches, on a pixel by pixel basis, a photograph. This subjec-
tive judgement of computer graphics images somewhat devalues the widely used
adjective ‘photo-realistic’, but there you are. With one or two exceptions very lit-
tle work has been done on comparing a human's perception of a computer
graphics image with, say, a TV image of the equivalent real scene,

0020

Acknowledgements

The author would like to thank the following:

Lightwork Design Ltd (Sheffield, UK) and Dave Cauldron for providing the
facilities to produce the front cover image (model of the Tate Gallery, St Ives,
UK) and the renderer, RadioRay.

Daniel Teece for the images on the back cover which he produced as part of
his PhD thesis and which comprise three-dimensional paint strokes
interactively applied to a standard polygon model.

Lee Cooper for producing Figures 6.12, 7.8, 8.7, 8.10, 10.4, 18.1, 18.3, 18.5,
18.6, 18.7, 18.8, 18.9, 18.10, 18.11, 18.12, 18.13, 18.14, 18.16, 18.17 and
18.19 together with the majority of images on the CD-ROM. These were
produced wusing Lightworks Application Development System kindly
supplied by Lightwork Design Ltd.

Mark Puller for Figure 13.1.

Steve Maddock for Figures 1.5, 4.9, 8.8, 8.26,
Agata Opalach for Figure 2.20.

Klaus de Geuss for Figures 13.10 and 13.11.
Guy Brown for Figure 16.19.

Fabio Policarpo for Figure 8.14.

IMDM University, Hamburg, for Figure 13.3.

In addition the author would like to thank Keith Mansfield, the production staff at
Addison-Wesley, Robert Chaundry of Bookstyle for his care with the manuscript
and Dionea Watt for the cover design.

The publishers are grateful to the following for permission to reproduce copyright
material:

Figure 2.1 reproduced with the permission of Viewpoint Digital, Inc; Figure 2.4
from Tutorial: Computer Graphics, Ze {Beatty and Booth, 1982), © 1982 IEEE, The
Institute of Electrical and Electronics Engineers, Inc., New York; Figures 2.7 and 2.8
from Generative Modelling for Computer Graphics and CAD (Snyder, 1992), Academic

0021

(xxil) ACKNOWLEDGEMENTS

Press, London; Figure 2.20 reproduced with the permission of Agata Opalach; Figure
13.3 from VOXEL-MAN, Part 1: Brain and Skull, CD-ROM for UNIX workstations and
LINUX FCs, Version 1.1 © Karl-Heinz Hohne and Springer-Verlag GmbH & Co. KG
1996, reproduced with kind permission; Figure 16.14 reproduced with the permis-
sion of Steven Seitz; Figure 17.28 from ACM Transactions on Graphics, 15:3, July 1996
(Hubbard, 1996), ACM Publications, New York.

Whilst every effort has been made to trace the owners of copyright material, in a
few cases this has proved impossible and we take this opportunity to offer our
apologies to any copyright holders whose rights we may have unwittingly
infringed.

Trademark notice

Apple™ and QuickTime™ are trademarks of Apple Computer, Inc.
Luxo™ is a trademark of Jac Jacobson Industries.

Kodak™ is a trademark of Eastman Kodak Company.
RenderMan™ is a trademark of Pixar Corporation.

VAX™ js a trademark of Digital Equipment Corporation.

3D Dataset™ is a trademark of Viewpoint Digital, Inc.

0022

@D

Mathematical fundamentals of
computer graphics

1.1 Manipulating three-dimensional structures
1.2 Structure-deforming transformations

1.3 Vectors and computer graphics

1.4 Rays and computer graphics

1.5 Interpolating properties in the image plane

Manipulating three-dimensional structures

Transformations are important tools in generating three-dimensional scenes.
They are used to move objects around in an environment, and also to construct
a two-dimensional view of the environment for a display surface. This chapter
deals with basic three-dimensional transformations, and introduces some useful
shape-changing transformations and basic three-dimensional geometry that we
will be using later in the text.

In computer graphics the most popular method for representing an object
is the polygon mesh model. This representation is fully described in Chapter 2,
We do this by representing the surface of an object as a set of connected planar
polygons and each polygon is a list of (connected) points. This form of
representation Is either exact or an approximation depending on the nature of
the object. A cube, for example, can be represented exactly by six squares. A
cylinder, on the other hand can only be approximated by polygons; say six rec-
tangles for the curved surface and two hexagons for the end faces. The number
of polygons used in the approximation determines how accurately the object
is represented and this has repercussions in modelling cost, storage and
rendering cost and quality. The popularity of the polygon mesh modelling tech-
nique in computer graphics is undoubtedly due to its inherent simplicity
and the development of inexpensive shading algorithms that work with such
models.

0023

2

i | MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

1.1.1

Figure 1.1

(a) Right-handed and

(b) left-handed coordinate
sysbems.

A polygon mesh model consists of a structure of vertices, each vertex being a
three-dimensional point in so-called world coordinate space. Later we will be
concerned with how vertices are connected to form polygons and how polygons
are structured into complete objects. But to start with we shall consider objects
just as a set of three-dimensional vertices and look at how these are transformed
in three-dimensional space using linear transformations.

Three-dimensional geometry in computer graphics - affine
transformations

In this section we look at three-dimensional affine transformations. These are
the transformations that effect rotation, scaling, shear and translation. Affine
transformations can be represented by a matrix, and a set of affine transforma-
tions can be combined into a single overall affine transformation. Technically we
say that an affine transformation is made up of any combination of linear trans-
formations {rotation, scaling and shear) followed by translation.

Objects are defined in a world coordinate system which is conventionally a
right-handed system. A right-handed and left-handed three-dimensional coordi-
nate system is shown in Figure 1.1. Right-handed systems are the standard math-
ematical convention, although left-handed systems have, and still are, used in
the special context of viewing systems in computer graphics. The difference
between the two systems is the sense of the z axis as shown in the Agure.
Rotating your fingers around the z axis, from the positive x axis to the positive
y axis, gives a different z direction for your thumb depending on which system
is used.

It is sometimes convenient to define objects in their own local coordinate
system. There are three reasons for this. When a three-dimensional object is
modelled it is useful to build up the vertices with respect to some reference point
in the object. In fact a complex object may have a number of local coordinate
systems, one for each sub-part. It may be that the same object is to appear many
times in a scene and a definition with a local origin is the only sensible way to

(a) (b)

0024

MANIPULATING THREE-DIMENSIONAL STRUCTURES (%_}

set this up. Instancing an object by applyving a mix of translations, rotation and
scaling transformations can then be seen as transforming the local coordinate
system of each object to the world coordinate system. Finally when an object is
to be rotated, it is easier if the rotation is defined with respect to a local reference
point such as an axis of symmetry.

A set of vertices or three-dimensional points belonging to an object can be
transformed into another set of points by a linear transformation. Both sets of
points remain in the same coordinate system. Matrix notation is used in com-
puter graphics to describe the transformations and the convention in computer
graphics is to have the point or vector as a column matrix, preceded by the trans-
formation matrix T.

Using matrix notation, a point ¥ is transformed under translation, scaling
and rotation as:

V=V+D
V=SV
Vi=RV

where I is a translation vector and 8 and R are scaling and rotation matrices.

These three operations are the most commonly used transformations in com-
puter graphics. In animation a rigid body can undergo only rotation and trans-
lation, and scaling is used in object modelling. To enable the above
transformations to be treated in the same way and combined, we use a system
called homogeneous coordinates which increase the dimensionality of the
space. The practical reason for this in computer graphics is to enable us to
include translation as matrix multiplication (rather than addition) and thus
have a unified scheme for linear transformations. In a homogeneous system a
vertex:

Vix, y, 2)
is represented as
Viw-X, w-¥, w2, w)

for any scale factor w = 0. The three-dimensional Cartesian coordinate represen-
tation is then:

x=X/w
y=Yiw
r=Lw

If we consider w to have the value 1 then the matrix representation of a point is:

&:1

0025

|

T

A s R i N

e e d

e e e

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

Translation can now be treated as matrix multiplication, like the other two trans-
formations and becomes:

Vi=TV
X

! 100T,
Yl=1010T,
?'] {
1

001T:

001
This specification implies that the object is translated in three dimensions by
applying a displacement T, T, and T: to each vertex that defines the object, The
matrix notation is a convenient and elegant way of writing the transformation
as a set of three equations:

— P R

M=x+T,
Yy=y+T,
=z+T:

The set of transformations is completed by scaling and rotation. First scaling:

V=3V
5,000

s_|0s 00

"“loos. o
00 01

Here S., 5, and §, are scaling factors. For uniform scaling 3. = §, = 3., otherwise
scaling occurs along these axes for which the scaling factor is non-unity. Again
the process can be expressed less succinctly by a set of three equations:

x'= x5
y=y5
7 =2z5

applied to every vertex in the object.

To rotate an object in three-dimensional space we need to specify an axis of
rotation. This can have any spatial orientation in three-dimensional space, but
it is easiest to consider rotations that are parallel to one of the coordinate axes,
The transformation matrices for anti-clockwise (looking along each axis towards
the origin) rotation about the x, y and z axes respectively are: '

0 0 0
cos —sine 0O
sinf cosd 0O
0 0 0 1

R. =

=S -

0026

MANIPULATING THREE-DIMENSIOMNAL STRUCTURES

[cos @ 0 sing 0]
R, - _l'l 1 0 0
-sin@ 0 cos @ 0
L 0 0 0 1]
[cos @ -sin® 0O 07
sin® cosé@ 0 0
E.= | g 0 1 0
| 0 0 0 1)

The z axis matrix specification is equivalent to the following set of three equa-
tions:

¥=xcos@-ysino

V=xsin@+ycosd

Z'=z
Figure 1.2 shows examples of these transformations.

The inverse of these transformations is often required. T is obtained by
negating T, T, and T.. Replacing 5., S, and S by their reciprocals gives 8! and
negating the angle of rotation gives R,

Any set of rotations, scaling and translations can be multiplied or concat-
enated together to give a net transformation matrix. For example if;

T F
}1 =M ¥
2 ¥
[1] [1]
and
r xu " xl "
(
'ﬁ =M |7,
z z
L 1 L 1.
then the transformation matrices can be concatenated:
M: = M: M,
and
x" X
.l" ‘_:
}" M, |
z z
1 1

Note the order: in the product M: M, the first transformation to be applied is M.
Although translations are commutative, rotations are not and

R:R:=R: R

This is demonstrated in Figure 1.2(e) and 1.2(f).

0027

(6) MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

(a) Identity m—-ﬂ

1000 |
0100 :

o010 F r o o

0001

(b) Z-axis rotation &—:
n8&e6 05 0 0 1 |
0.5 0866 0 0 |

] o 10 r r ©

0 0 01 o 0
(ch X-scale - =

2000

o100 |

o010 F F O

o001l ,
(d} Translation ﬁﬂ e o

1002 [

0102 . |

0010 [i o

0001 F ‘ | %

Pl e e e

() Rotation followed by translation

100 2 0866 05 0 O 08 05 0 2

010 2 0.5 0866 0 O} .5 0866 0 2 n,.

0010 o o 10l | o 0 10 <&y

o001 0 a 01] 0o 01

{fy Translation followed by rotation

0866 0.5 0 0 100 2 0.866 0.5 0 2732
0.5 0866 0 0 010 2| |-05 08660 0732 O @
o 0 10 ootof o 0 1 O
0 o o1 o o0l 0 o0 1
Figure 1.2 A general transformation matrix will be of the formu
Examples of linear -
transformations. An A Ay I

An An An T
Au An Amn T:
0 0 0 1

The 3 = 3 upper-left sub-matrix A is the net rotation and scaling while T gives
the net translation.

- R -‘

0028

MANIPULATING THREE-DIMENSIONAL STRUCTURES ([7)

The ability to concatenate transformations to form a net transformation
matrix is useful because it gives a single matrix specification for any linear trans-
formation. For example, consider rotating a body about a line parallel to the z
axis which passes through the point (T, T}, 0) and also passes through one of
the vertices of the object. Here we are implying that the object is not at the
origin and we wish to apply rotation about a reference point in the object itself.
In other words we want to rotate the object with respect to its own coordinate
system known as a local coordinate system (see also Section 1.1.2). We cannot
simply apply a rotation matrix because this is defined with respect to the origin
and an object not positioned at the origin would rotate and translate — not
usually the desired effect. Instead we have to derive a net transformation matrix
as follows;

(1) Translate the object to the origin,
(2) Apply the desired rotation, and,
(3) Translate the object back to its original position.

The net transformation matrix is:

[1 0 0 -T, cos —sing 0 0 1 00T
01 0-T, sinf cosB 00 010T,
TI:RT, = '
o011 0 0 0o 10[floo10
L0 0 0 1 0 0 01 0001
[cos @ —sin@ O (-T,cos@+ T,sin6+ T:)
_|s5in® cos® O (-TusinB-T,cos0+T)
B 0 0 1 0
L O 0 0 1
This process is shown in Figure 1.3 where 0 is 30°,
@) ¥ b v
i
Fiqure 1.3 | P
Twa stages in building up y. - —_— —
the rotation of an abject e X e x
about one of its own ﬁ/' _j/
vertices. The rotation is z & -
about an axis parallel to the N

Z axis at paint (T, T, 0). A el v T W y "]I." /
two-dimensional projection

(with the z axis coming out
of the paper) is shown for
clarity. (a) Original object at
(T, Ty, 0). (b) Translate to
the origin. {c) Rotate about
the arigin. (d) Translate to # 4
AT, T, 0). 2o -

0029

(L8) MATHEMATICAL FUNDAMEMNTALS OF COMPUTER GRAPHICS

1.1.2 Transformations for changing coordinate systems

Up to now we have discussed transformations that operate on points all of
which are expressed relative to one particular coordinate system. This is known
as the world coordinate system. In many contexts in computer graphics we need
to derive transformations that take points from one coordinate system into
another. The commonest context is when we have a number of objects each
specified by a set of vertices in a coordinate system embedded in the object itself.
This is known as a local coordinate system. Every object will have a convenient
local coordinate system; for example, a complex object that is basically cylindri-
cal in shape may have a coordinate axis that coincides with the long axis of the
cylinder. If we wish to bring a number of such objects together and position
them in a scene then the scene would take the world coordinate system and we
would apply translations, rotations and scale transformations to the objects to
position them in the scene. Thus we can consider that the transformations oper-
ate on the object or equivalently on the local coordinate system of the object.
Transformations that emplace an object with a local coordinate system into a
position in a world coordinate system are called modelling transformations.

Another important context that involves a change of coordinate system is
the transformation from the world coordinate system to the view coordinate
system - a viewing transformation. Here we have a new coordinate system — an
object if you like - defined with respect to the world coordinate system and we
have to transform the vertices in the world coordinate system to this new
system.

Consider two coordinate systems with axes parallel, that is the systems which
only differ by a translation. If we wish to transform points currently expressed
in system 1 into system 2 then we use the inverse of the transformation that
takes the origin of system 1 to that of system 2. That is a point (x, y, z, 1) in
system | transforms to a point (x', p', 2, 1) by:

x'][‘ili]' =T, X
¥ 1 0 -T, ¥
z '[)Ii]'IT, z
1

000 1
=Tz = (Tu)!

which is the transformation that translates the origin of system 1 to that of system
2 (where the point is still expressed relative to system 1). Another way of putting
it is to say that the transformation generally required is the inverse of the
transformation that takes the old axes to the new axes within the current coordinate
system

This is an important result because we generally find transformations between
coordinate systems by considering transformations that operate on origins and
axes. In the case of viewing systems a change in coordinate systems involves
both translation and rotation and we find the required transformation in this
way by considering a combination of rotations and translations.

0030

STRUCTURE-DEFORMING TRANSFORMATIONS (9)

T P AP SR e T T e A M R S T 2 A T 2 e e O R M B Sl T Tl
@ Structure-deforming transformations
The above linear transformations either move an object (rotation and translation)
or scale the object. Uniform scaling preserves shape. Using different values of 5,
5, and 5. the object is stretched or squeezed along particular coordinate axes. In
this section we introduce a set of transformations that deform the object. These
are fully described in Barr (1984) where they are termed global deformations. The i

e B S

particular deformations detailed in this paper are tapering, twisting and bending. i
Barr uses a formula definition for the transformations: ()
X = Fulx) 3
Y = Fiy) '.
7= F2)

where (x, y, z) is a vertex in an undeformed solid and (X, ¥, Z) is the deformed i
vertex. Using this notation the scaling transformation above is:

X = s!f-x} ':
Y = S,y i
£ = 5.-{.?}

Tapering is easily developed from scaling. We choose a tapering axis and dif- {
ferentially scale the other two components setting up a tapering function along]
this axis. Thus, to taper an object along its Z axis:

X=rx
Y=ry
L=z
where:
r=flz) |

is a linear or non-linear tapering profile or function. Thus, the transformation
becomes a function of r. That is, we change the transformation depending
on where in the space it is applied. In effect we are scaling a scaling tranformation.

Global axial twisting can be developed as a differential rotation just as taper-
ing is a differential scaling. To twist an object about its z axis we apply:

N=xcosh-ysinb
Y=xsin@+ycosd

£=12
where:
8 = f5(z)

and ['(z) specifies the rate of twist per unit length along the z axis.

A global linear bend along an axis is a composite transformation comprising
a bent region and a region outside the bent region where the deformation is a
rotation and a translation.

0031

{(10) MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAFHICS

Barr defines a bend region along the ¥ axis as:

Fmin = ¥V = Vmax

the radius of curvature of the bend is 1/k and the centre of the bend is at y = yo.
The bending angle is:

8 =k} - yo)
where:

Fmin V = Vmin
V= ¥ Fean < ¥ < Pnax

Vmax ¥ = Vmin

The deforming transformation is given by:

X=x
PP | .
—sin B(z __k] + Jo Vmin 5 ¥ = Pmax
Y= { -sin#6iz ——L] + Yo + COS By — Vmin) ¥ < Vmin
—5in el:.-’ —i] + o + COs BU" - }'mn} ¥ = Vmax
\ k
L1 -
CO5 Bz —) + o Fmin 5 ¥ 5 Vinax
k
Z = | =15 ﬂ[d - ::_' + kl + sin ﬁ{}’ -]/.'nm} }" < Fmin
—cos Bz - 1—} + 1—+ sin By = Vo) ¥ > Vias
\ kK k

Figure 1.4 shows an example of each of these transformations. The deformation on
the cube is an intuitive reflection of the effects and the same transformations are
applied to the Utah teapot. Figure 1.5 (Colour Plate) shows a rendered version
of a polygon mesh object (a corrugated cylinder) that has been twisted and
tapered.

Non-constrained, non-linear deformations cannot be applied to polygon
meshes in general. One problem is the connectivity constraints between vertices.
For example, we cannot twist a cube, represented as six surfaces, without limit and
retain a structure suitable for rendering. Another problem is that deformations
where vertices move apart have the effect of reducing the polygonal resolution
of the original model giving rise to a degradation in silhouette edge aliasing
(dealt with in detail in Chapter 4). Thus the polygonal nature of the object model
constrains the nature of the deformation and this can only be over
come by subdivision of the original mesh as a function of the ‘severity’ of the
deformation.

i

0032

VECTORS AND COMPUTER GRAPHICS | 11)

Original objects

T
i

Tapering

{1

friinannnnns

[insnsnnmnms

Twisting,

Gty
S
Bty

oo

oty
e
o
w{\u\\.

a0
A
"

FEEry

¥
e

i22
ﬁ-
rH

ey

Bending

A
e,
L,

Figure 1.4
Structure-deforming
transformations,

H
/
#
i%%
i
o

kg
E

1.3 | Vectors and computer graphics

Vectors are used in a variety of contexts in computer graphics, A vector is an
entity that possesses magnitude and direction. The common example of a
vector is the velocity of a particle moving through space. The velocity possesses
both a magnitude and a direction and this distinguishes it from a scalar quan-
tity which only has magnitude. An example of a scalar is the temperature of a
point in space. A three-dimensional vector is written as a triple:

V: {Uh b'gf 'I."L]I

where each component w is a scalar.

0033

1.3.1 Addition of vectors

Addition of two vectors V and W, for example, is defined as:
X=V+ W !
=[x, X2, X3)
= {VI. + Wy, Voo W2, V4 ll'_g}l
Geometrically this is interpreted as follows. The ‘tail’ of Wis placed at the "head’
of V, and X is the vector formed by joining the tail of V to the head of W. This

is shown in Figure 1.6 for a pair of two-dimensional vectors together with an
alternative, but equivalent, interpretation.

1.3.2 Length of vectors

The magnitude or length of a vector is defined as:
W1 = (12 + v + pd)ie

and we interpret this geometrically as the distance from its tail to its head.
We normalize a vector to produce a unit vector which is a vector of length
equal to one. The normalized version of ¥ is:

Vv

U= —
¥l

which is a vector of unit length having the same direction as U. We can now
refer to U as a direction. Note that we can write:

V=IvIU

which is saying that any vector is given by its magnitude times its direction.
Normalization is used frequently in computer graphics because we are interested
in calculating and representing the orientation of entities, and comparative ori-
entation requires normalized vectors.

3.3) Mormal vectors and cross products

In computer graphics considerable processing is carried out using vectors that are
normal to a surface. For example, in a polygon mesh model (see Chapter 2) a nor-

Figure 1.6

Two geometric
interpretations of the
sum of two vectors,

0034

VECTORS AND COMPUTER GRAPHICS @

mal vector is used to represent the orientation of a surface when comparing this
with the direction of the light. Such a comparison is used in reflection models to
compute the intensity of the light reflected from the surface. The smaller the
angle between the light vector and the vector that is normal to the surface, the
higher is the intensity of the light reflected from the surface (see Chapter 7).

A normal vector to a polygon is calculated from three (non-collinear) vertices
of the polygon. Three vertices define two vectors ¥, and V: (Figure 1.7) and the
normal to the polygon is found by taking the cross product of these:

~=| = V| x v:
The cross product of two vectors V and W is a vector X and is defined as:

X=VxW

(vaws — vaw)i + (vawy = viwa)j + (viwz — vaw)k

where 1, j and k are the standard unit vectors:

i= (1,0 0)
j=100,1,0)
k=(0,01)

that is, vectors oriented along the coordinate axes that define the space in which
the vectors are embedded.

Geometrically a cross product, as we have implied, is a vector whose orienta-
tion is normal to the plane containing the two vectors forming the cross prod-
uct. When determining the surface normal of a polygon, the cross product must
point outwards with respect to the object. In a right-handed coordinate system
the sense of the cross product vector is given by the right-hand rule, If the first
two fingers of your right hand point in the direction of ¥ and W then the direc-
tion of X is given by your thumb.

If the surface is a bi-cubic parametric surface (see Chapter 3), then the orien-
tation of the normal vector varies continuously over the surface. We compute
the normal at any point (u, ¥) on the surface again by using a cross product. This
is done by first calculating tangent vectors in the two parametric directions (we
outline the procedure here for the sake of completeness and give full details in
Chapter 3). For a surface defined as Q{u, v) we find:

_. Palygon defined
by four vertices

Figure 1.7
Calculating the normal
vector to a polygon, Ne=Vix ¥;

JhIlI-------------------------------i

0035

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

Figure 1.8
Mormal N to a point on a
parametric surface Q (i,v)

d d
™ Q(u, v) and v Qlu, v)
We then define:

a0 aQ}
Ni= S0 * %y

This is shown schematically in Figure 1.8.

MNormal vectors and dot products

The most common use of a dot product in computer graphics is to provide a
measure of the angle between two vectors, where one of the vectors is a normal
vector to a surface or group of surfaces. Common applications are shading (the
angle between a light direction vector and a surface normal) and visibility test-
ing (the angle between viewing vector and a surface normal).

The dot product of vectors ¥V and W is a scalar X which is defined as:

X=VW
= V1W)1 + VaW: + Vawa
Figure 1.9(a) shows two vectors. Using the cosine rule we have:
IV - Wi2=1V1®+ IW?-2IVIIWI cos B
where & is the angle between the vectors. Also it can be shown that:
IV - WP =1V -2V-W + W
thus:
V-W=IVilWl cos 8
giving:

V-W
W1

cos B =

or the angle between two vectors is the dot product of their normalized versions.

0036

Figure 1.9
(3} The dot product of the
wo vectors is related to the
cosine of the angle between
them:
Cos B = Vw

Vil
(B) 1X] = V-W is the length
of the projection of W onto

VECTORS AND COMPUTER GRAPHICS (15)

We can use the dot product to project a vector onto another vector. Consider
a unit vector V. If we project any vector W onto V (Figure 1.9(b)) and call the
result X, then we have:

X! =IWlcoso

- W YW

VI
=VW (1.1)

because V is a unit vector. Thus the dot product of Vand W is the length of the
projection of W onto V.

A property of the dot product used in computer graphics is its sign. Because
of its relationship to cos 8 the sign of the dot product of V and W (where V and
W are of any length) is:

VW=0 ife<o90°
VW=0 ifo=90°
V-W<0 ifd=90°

Vectors associated with the normal vector reflection

There are three important vectors that are associated with the surface normal.
They are the light direction vector, L, the reflection vector or mirtor vector, R, and
the viewing vector, ¥. The light direction vector, L, is a vector whose direction is
given by the line from the tail of the surface normal to the light source; which in
simple shading contexts is defined as a point on the surface that we are currently
considering. This vector is shown in Figure 1.10(a). The reflection vector, R, is
given by the direction of the light reflected from the surface due to light incoming
along direction L. Sometimes called the mirror direction, geometric optics tells us
that the outgoing angle equals the incoming angle as shown in Figure 1.10(b).

¥

(a}

V {unit vector)

(b)

0037

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

Figure 1.10

Point -
Viectors associated with the light ™,
normal vector. (a) L, the T Y
source

light direction vector,

(b) R, the reflection vector,
{c) V, the view vector, is a
vector of any orientation,

Figure 1.11
Construction of the
reflection vector R.

e e e B T A e o A bt . it i b i

0038

RAYS AND COMPUTER GRAPHICS

Consider the construction shown in Figure 1.11. This shows:

R=R +R:
Ri=-L+R:
Thus:
R=2R:-L
from Equation 1.1:
R; = (N-L)N
and
R=2INLIN-L (1.2}

Figure 1.10(c) shows a view vector V. Note that this vector has any arbitrary ori-
entation and we are normally interested in that component of light incoming in
direction L that is reflected along V. This will depend in general on both the
angles ¢ and 8., We also note that the intensity of outgoing light depends on
the incoming angles 4. and #;, and this is usually described as a bidirectional
dependence because two angles, (¢, 8) and (¢, 8;), in three-dimensional space
are involved.

1.4 | Rays and computer gra;ﬁhiés'

In computer graphics we are interested in an entity called a ray (mathematically
known as a directed line segment) that possesses position, magnitude and direc-
tion. We use this mostly to simulate light as an infinitesimally thin beam - a
light ray. If we imagine a ray to be a physical line in three space, then its posi-
tion is the position of the tail of the line, its magnitude the length of the line
between its head and tail and its direction the direction of the line. A ray can be
specified by two points or by a single point, and a vector. If the end points of the
ray are (xi, yi, Z1) and (xz, ¥z, zz) respectively, then the vector is given by:

V=ixa-x,)20, 22-21)

Rays are not only used in ray tracing, but they find uses in volume rendering,
rendering constructive solid geometry (CSG) volumes and in calculating form
factors in radiosity. We will now look at some of the more important calculations
associated with rays,

1.4.1 Ray geometry - intersections

Because ray tracing simulates the path of light through an environment, the
most common calculation associated with rays is intersection testing — we see
whether a ray has hit an object and if so where. Here we test a ray against all
objects in the scene for an intersection. This is potentially a very expensive
calculation and the most common technigue used to make this more efficient is

%

0039

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

Figure 1.12
Values of parameter [along
a ray.

to enclose objects in the scene in bounding volumes — the most convenient
being a sphere - and test first for a ray-sphere intersection. The sphere encloses
the object and if the ray does not intersect the sphere it cannot intersect the
object. Another common bounding volume is a box.

Sphere and boxes are also used to bound objects for collision detection tests
in computer animation (see Chapter 17). Pairs of objects can only collide if their
bounding volumes intersect. The motivation here is the same as that for ray trac-
ing - we first cull away pairs that cannot possibly collide before we undertake
detailed intersection checking at the individual polygon level. Checking for
sphere-sphere intersection is trivial and for boxes - if they are axis aligned - then
we only need limit checks in the x, y and z directions.

Intersections - ray—sphere

The intersection between a ray and a sphere is easily calculated. If the end points
of the ray are (x, yi, z1) and (xz, yz, Zz) then the first step is to parametrize the ray
(Figure 1.12):

X=X+ (X2 -x)f=x + it

y=pr(pz-pilt=p+jt [1.1]
=R+ l(Zz-2)t=2 + kt

where:
O=t=s1

A sphere at centre (I, m, n) of radius r is given by:
x=0+iy-mP+{z-nF=r*

Substituting for x, y and z gives a quadratic equation in t of the form:
af + bt+c=10

where:
a=iF+fFek?
b= 2i(x = 1) + 2j(y — m) + 2k(z1 - n)

c=Psmaentexld+pld+ 0+ 2= - my - nan) -rt

Ray end
{12, ¥2, 1)

Fay start
(X, Vi i)

0040

e U e rtind *

RAYS AND COMPUTER GRAPHICS

If the determinant of this quadratic is less than 0 then the line does not intersect the
sphere. If the determinant equals 0 then the line grazes or is tangential to the sphere,
The real roots of the quadratic give the front and back intersections. Substituting the
values for t into the original parametric equations yields these points. Figure 1.12
shows that the value of ¢ also gives the position of the points of intersection relative
to (x1, p1, 21) and (xz, vz, 22). Only positive values of t are relevant and the smallest
value of t corresponds to the intersection nearest to the start of the ray.

Other information that is usually required from an intersection is the surface
normal (so that the reflected and refracted rays may be calculated) although, if
the sphere is being used as a bounding volume, only the fact that an intersec-
tion has occurred, or not, is required.

If the intersection point is (x, p, z) and the centre of the sphere is (I, m, n)
then the normal at the intersection point is:

Xi=l yi-m zi-n

¥ r

r r r

Intersections - ray—convex polygon

If an object is represented by a set of polygons and is convex then the straight-
forward approach is to test the ray individually against each polygon. We do this
as follows:

(1) Obtain an equation for the plane containing the polygon.
{2) Check for an intersection between this plane and the ray.
{3) Check that this intersection is contained by the polygon.
A more common application of this operation is clipping a polygon against a
view frustum (see Chapter 5). Here the ‘ray’ is a polygon edge and we need to
find the intersection of a polygon edge and a view frustum plane so that the

polygon can be split and that part outside the view frustum discarded.
For example, if the plane containing the polygon is:

Ax + By+Ce+ D=0
and the line is defined parametrically as before, then the intersection is given by:

t= —(Ax; + Byy + Czy + D)

1.2
(Ai + Bj + CK) [1.2]

We can exit the test if ¢ < 0. This means that the ray is in the half space, defined
by the plane that does not contain the polygon (Figure 1.13(a)). We may also be
able to exit if the denominator is equal to zero which means that the line and
plane are parallel. In this case the ray origin is either inside or outside the poly-
hedron. We can check this by examining the sign of the numerator. If the
numerator is positive then the ray is in that half space defined by the plane that
is outside the object and no further testing is necessary (Figure 1.13(b}).

0041

i R "l ot R i B L S Y i e A B

[?_UJ MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

Figure 1.13 Plane containing Plane containing
(a) A ray in the half space polygen currently polygon currently
that does not contain the ::" being tested f; being tested
object (t < 0). {b) A possible J) P 7

exit condition. The ray is
parallel to the plane

containing the polygon __— Object . Object
currently being tested. It is . \ polygons g polygons
either inside or outside the "
object. o
Ray / r
."Ir :'r
Outside / Inside Outside / Inside
s _H-'f
.’r s
{a) (b}

The straightforward method that tests a point for containment by a polygon
is simple but expensive. The sum of the angles between lines drawn from the
point to each vertex is 360° if the point is inside the polygon, but not if the point
lies outside.

There are three disadvantages or inadequacies in this direct approach. We
cannot stop when the first intersection emerges from the test unless we also eval-
uate whether the polygon is front- or back-facing with respect to the ray direc-
tion. The containment test is particularly expensive. It is also possible for errors
to occur when a ray and a polygon edge coincide.

All of those disadvantages can be overcome by a single algorithm developed
by Haines (1991). Again we use the concept of a plane that contains a polygon
defining a half space. All points on one side of the plane are outside the poly-
hedron. Points on the other side may be contained by the polyhedron. The log-
ical intersection of all inside half spaces is the space enclosed by the polyhedron.
A ray that intersects a plane creates a directed line segment (unbounded in the
direction of the ray) defined by the intersection point and the ray direction. It is
easily seen that the logical intersection of all directed line segments gives the line
segment that passes through the polyhedron. Proceeding as before we exit from
the test when a parallel ray occurs with an ‘outside’ origin. Otherwise the algo-
rithm considers every polygon and evaluates the logical intersection of the
directed line segments. Consider the example shown in Figure 1.14. For each
plane we categorize it as front-facing or back-facing with respect to the ray direc-
tion. This is given by the sign of the denominator in Equation 1.2 (positive for
back-facing, negative for front-facing). The conditions that form the logical
intersection of directed line segments are embedded in the algorithm which is:

linitialize two fo large negative value
tar to large positive value)

if (plane is back-facing) and (f < tw)
then fp =1

0042

Figure 1.14

Ray—convex polyhedron
intersection testing (after
Haines (1991)).

Polygon |

Owder in which Polygon 2
polygons are

processed Polygon 3

Polygon 4

Polygon 5

Logical intersection

& Updating values E Mon-updating values

if |plane is front-facing) and (f > tue)
then tiw =1

if (tocr > 1) then [exit - ray misses)

1.4.4 Intersections - ray-box

Ray-box intersections are important because boxes may be more useful bound-
ing volumes than spheres, particularly in hierarchical schemes. Also generalized
boxes can be used as an efficient bounding volume.

Generalized boxes are formed from pairs of parallel planes, but the pairs of planes
can be at any angle with respect to each other. In this section we consider the spe-
cial case of boxes forming rectangular solids, with the normals to each pair of planes
aligned in the same direction as the ray tracing axes or the object space axes.

To check if a ray intersects such a box is straightforward. We treat each pair of
parallel planes in turn, calculating the distance along the ray to the first plane
{faear) and the distance to the second plane (tw). The larger value of faes and the
smaller value of e is retained between comparisons. If the larger value of frea is
greater than the smaller value of fu, the ray cannot intersect the box. This is

0043

Figure 1.15
Ray-box intersection.

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

shown, for an example in the xy plane in Figure 1.15. If a hit occurs then the
intersection is given by faca:.

A more succinct statement of the algorithm comes from considering the distance
between the intersection points of a pair of parallel planes as intervals. Then if the
intervals intersect, the ray hits the volume. If they do not intersect the ray misses,

Again because our convex polygon is reduced to a rectangular solid, we can
define the required distances in terms of the box extent. Distances along the
ray are given for the x plane pairs as follows: if the box extent is (Xa1, Po1, Zn1) and
(xbz, yrz, Zez) then:

Xpy — X

ty=—"7
' Xz — X1

is the distance along the ray from its origin to the intersection with the furst
plane, and:

Ap — Xa
Xz =Xy

3y =

The calculations for ty, ty and ti, bz are similar. The largest value out of the f,
set gives the required fner and the smallest value of the t: set gives the required
tie. The algorithm can exit at the y plane calculations.

“+._ Ray origin

| fewr (smaller)
fresr (larger)

Ray

0044

=5 S T e TR = L L L R TR R AR TR - |

RAYS AND COMPUTER GRAPHICS (23)

* Intersections - ray—quadric

The sphere example given in Section 1.4.2 is a special case of rays intersecting
with a general quadric. Ray-quadric intersections can be dealt with by consider-
ing the general case, or ‘special’ objects, such as cylinders, can be treated
individually for reasons of efficiency.

The general implicit equation for a quadric is:

Ax* + Ep? +Hz! + 2Bxy + 2Fyz + 2Cxz + 2Dx + 2Gy + 2z + [= 0

Following the same approach as we adopted for the case of the sphere, we sub-
stitute Equation 1.1 into the above equation and obtain the coefficients a, b and
¢ for the resulting quadratic as follows:
a = Ax# + Eys + Hzd + 2Bxapa + 2Cxaza + 2Fyazs
b= d(Axixs + B(xiya + xap1) + Clx1zs + xazy) +
Dixa + Eprpa + F(y1za + yaz1) + Gya + Hniza + Iz
C= Axi* + By + Hzi? + 2Bxiyy + 2Cxizy + 2D, + 2Fniz +

ZG}'L +2ln + |
The equations for the quadrics are:
® Sphere

(x=0P+(y-mP+(z-nt=r?
where (I, m, n) is, as before, the centre of the sphere.
® [nfinite cylinder
(x-01P+(y-m)=r?
® Ellipsoid
- +y-mP +(z-n?-1=0
uz ﬁ! Tz
where o, B and y are the semi-axes.
® Tlaraboloid
- +{y-mP-z+n=0
® Hyperboloid
G+ Gm?+ @np -1-0

a? ﬁz .r,z

Ray tracing geometry - reflection and refraction

The formulae presented in this section are standard formulae in a form that is
suitable for incorporation into a simple ray tracer. The source of the formulae is
Fresnel's law given in Section 7.1,

Each time a ray intersects a surface it produces, in general, a reflected and
refracted ray. The reflection direction, a unit vector, is given (as we saw in Section
1.3.2) by:

0045

MATHEMATICAL FUMDAMEMTALS OF COMPUTER GRAPHICS

R=2Ncosd-L
= 2(N-L)N - L

where L and N are unit vectors representing the incident ray direction, which is
the same as the light vector, and the surface normal respectively. L, R and N are
co-planar. These vectors are shown in Figure 1.16, where I = -L.

A ray striking a partially or wholly transparent object is refracted due to the
change in the velocity of light in different media. The angles of incidence and
refraction are related by Snell’s law:

sin ¢ _ Hez

sin @
where the incident and transmitted rays are co-planar with N. The transmitted
ray is represented by T and this is given by:

T =ul-{cosB+pcos¢) N
]_l :L:Iu"!,:l:
cosg = 3 {1—u’{1—cos’cb)§

e
as shown in Figure 1.16.

If a ray is travelling from a more to a less dense medium then it is possible for
the refracted ray to be parallel to the surface (Figure 1.17). ¢. is known as the crit-
ical angle. If 4 is increased then total internal reflection occurs.

) 1ed
I (incidect ray) R (unit reflected ray)

R=I+2Ncosh

AN

Figure 1.16 T (unit transmitied veciorn)

Reflection and refraction

geometry. T=pl-(cos8 - pcos gy

>

et Ll i el e NPl L e i e i R B e e L e e e .\.A

0046

N

T T AR A e Y | R T b e £ - T T

R R

i oL TN

A T 1 e i

Figure 1.17

Internal reflection in an
object. (a) d. = critical
angle. (b) § > ¢,

®-":l4 o

Figure 1.18

Interpolating a property

at a pixel from values at the
vertex pixels.

INTERFOLATING PROPERTIES IN THE IMAGE PLANE { 25 }

0 More dense

Ay SR

Less dense

(a)

R gy S ™ e M e i SRR B R ' BN AL A PR T

Interpolating properties in the if'ﬂage plane

[n mainstream rendering techniques — that is rendering polygons - various prop-
erties required for interior pixels are interpolated from the values of these
properties at the vertices of the polygon (that is the pixels onto which the
vertices project). Such interpolation is known as bilinear interpolation and it is
the foundation of the efficiency of this kind of shading.

Referring to Figure 1.18, the interpolation proceeds by moving a scan line
down through the pixel set representing the polygon and obtaining start and
end values for a scan line by interpolating between the appropriate pair of
vertex properties. Interpolation along a scan line then yields a value for the
property at each pixel. The interpolation equations are (for the particular edge
pair shown in the illustration):

Polts, v
i — 1 Current scan line
| Palxa, ya)

Palda ¥a) f85

¥s
(o] proliz, wa)

W e,)

0047

MATHEMATICAL FUNDAMENTALS OF COMPUTER GRAPHICS

1

Pl o [priys = y2) + p2 (1 =)]
Po= },I—_l,};; [prlys = ya) + pa (31 = p)]
P= 2 [pslxe = x3) + po (% = Xa)]

Xv— Xa

These would normally be implemented using an incremental form, the final
equation, for example, becoming:

poi=ps+ Ap

with the constant value Ap calculated once per scan line.

0048

Represéntation and modelling
of three-dimensional
objects (1)

2.1 Polygonal representation of three-dimensional objects

2.2 Constructive solid geometry (C5G) representation of objects
2.3 Space subdivision techniques for object representation

2.4 Representing objects with implicit functions

2.5 Scene management and object representation

2.6 Summary

Introduction

The primary purpose of three-dimensional computer graphics is to produce a
two-dimensional image of a scene or an object from a description or model of
the object. The object may be a real or existing object or it may exist only as a
computer description. A less common but extremely important usage is where
the act of creation of the object model and the visualization are intertwined.
This occurs in interactive CAD applications where a designer uses the visualiza-
tion to assist the act of creating the object. Most object descriptions are approx-
imate in the sense that they describe the geometry or shape of the object only
to the extent that inputting this description to a renderer produces an image of
acceptable quality. In many CAD applications, however, the description has to
be accurate because it is used to drive a manufacturing process. The final output
is not a two-dimensional image but a real three-dimensional object.

Modelling and representation is a general phrase which can be applied to any
or all of the following aspects of objects:

@ Creation of a three-dimensional computer graphics representation.

® The technique or method or data structure used to represent the object.

0049

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

® Manipulation of the representation — in particular changing the shape of an
existing model.

The ways in which we can create computer graphics objects are almost as many
and varied as the objects themselves. For example, we might construct an archi-
tectural object through a CAD interface. We may take data directly from a device
such as a laser ranger or a three-dimensional digitizer. We may use some inter-
face based on a sweeping technigue where so-called ducted solids are created by
sweeping a cross-section along a spine curve. Creation methods have up to now
tended to be manual or semi-manual involving a designer working with an inter-
face. As the demand for the representation of highly complex scenes increases -
from such applications as virtual reality (VR) - automatic methods are being
investigated. For VR applications of existing realities the creation of computer
graphics representations from photographs or video is an attractive proposition.

The representation of an object is very much an unsolved problem in com-
puter graphics. We can distinguish between a representation that is required for
a machine or renderer and the representation that is required by a user or user
interface. Representing an object using polygonal facets - a polygon mesh rep-
resentation - is the most popular machine representation. It is, however, an
inconvenient representation for a user or creator of an object. Despite this it is
used as both a user and a machine representation. Other methods have separate
user and machine representations. For example, bi-cubic parametric patches and
CSG methods, which constitute user or interface representations may be con-
verted into polygon meshes for rendering.

The polygon mesh form suffers from many disadvantages when the object is
complex and detailed. In mainstream computer graphics the number of poly-
gons in an object representation can be anything from a few tens to hundreds of
thousands. This has serious ramifications in rendering time and object creation
cost and in the feasibility of using such objects in an animation or virtual re-
ality environment. Other problems accrue in animation where a model has both
to represent the shape of the object and be controlled by an animation system
which may require collisions to be calculated or the object to change shape as a
function of time. Despite this the polygon mesh is supreme in mainstream com-
puter graphics. Its inertia is due in part to the development of efficient algo-
rithms and hardware to render this description. This has resulted in a somewhat
strange situation where it is more efficient - as far as rendering is concerned - to
represent a shape with many simple elements (polygons) than to represent it
with far fewer (and more accurate) but more complicated elements such as
bi-cubic parametric patches (see Section 3.4.2).

The ability to manipulate the shape of an existing object depends strongly on
the representation. Polygon meshes do not admit simple shape manipulation.
Moving mesh vertices immediately disrupts the ‘polygonal resolution’ where a
shape has been converted into polygons with some degree of accuracy that is
related to the local curvature of the surface being represented. For example,
imagine twisting a cube represented by six squares. The twisted object cannot be

0050

inTropucTion (29)

represented by retaining only six polygons. Another problem with shape manip-
ulation is scale. Sometimes we want to alter a large part of an object which may
involve moving many elements at the same time; other times we may require a
detailed change.

Different representational methods have their advantages and disadvantages
but there is no universal solution to the many problems that still exist. Rather,
particular modelling methods have evolved for particular contexts. A good
example of this tendency is the development of constructive solid geometry
methods (CSG) popular in interactive CAD because they facilitate an intuitive
interface for the interactive design of complex industrial objects as well as a rep-
resentation. CSG is a constrained representation in that we can only use it to
model shapes that are made up of allowed combinations of the primitive shapes
or elements that are included in the system.

How do we choose a representation? The answer is that it depends on the
nature of the object, the particular computer graphics technigue that we are
going to use to bring the object to life and the application. All these factors are
interrelated. We can represent some three-dimensional objects exactly using a
mathematical formulation, for example, a cylinder or a sphere; for others we use
an approximate representation. For objects that cannot be represented exactly
by mathematics there is a trade-off between the accuracy of the representation
and the bulk of information used. This is illustrated by the polygon mesh skele-
tons in Figure 2.1. You can only increase the veracity of the representation by
increasing the polygonal resolution which then has high cost implications in
rendering time.

The ultimate impossibility of this extrapolation has led to hybrid methods for
very complex and unique objects such as a human head. For example, in repre-
senting a particular human head we can use a combination of a polygon mesh
model and photographic texture maps. The solid form of the head is represented
by a generic polygon mesh which is pulled around to match the actual dimen-
sions of the head to be modelled. The detailed likeness is obtained by mapping
a photographic texture onto this mesh. The idea here is that the detailed varia-
tions in the geometry are suggested by the texture map rather than by detailed
excursions in the geometry. Of course, its not perfect because the detail in the
photograph depends on the lighting conditions under which it was taken as well
as the real geometric detail, but it is a trick that is increasingly being used.
Whether we regard the texture mapping as part of the representation or as part
of the rendering process is perhaps a matter of opinion; but certainly the use of
photographic texture maps in this context enables us to represent a complex
object like a human head with a small number of polygons plus a photograph.

This compromise between polygonal resolution and a photographic texture
map can be taken to extremes. In the computer games industry the total num-
ber of polygons rendered to the screen must be within the limiting number that
can be rendered at, say, 15 frames per second on a PC. A recent football game
consists of players whose heads are modelled with just a cube onto which a
photographic texture is mapped.

0051

(30) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.1

The art of wireframe - an
illustration from Viewpoeint
Digital’s catalogue.

Source: ‘3D models by
Viewpaint Digital, Inc.’
Anatomy, Viewpoint's 3D
Dataset™ Catalog, 2nd edn.

els

(n

2)

141 788 polygons 15305 polygons

We now list, in order of approximate frequency of use, the mainstream mod-
used in computer graphics.

Polygonal Objects are approximated by a net or mesh of planar
polygonal facets. With this form we can represent, to an accuracy that we
choose, an object of any shape. However, the accuracy is somewhat arbitrary
in this sense. Consider Figure 2.1 again: are 142000 polygons really
necessary, or can we reduce the polygonal resolution without degrading the
rendered image, and if so by how much? The shading algorithms are
designed to visually transform the faceted representation in such a way that
the piecewise linear representation is not visible in the shaded version
(except on the silhouette edge). Connected with the polygonal resolution is
the final projected size of the object on the screen. Waste is incurred when
a complex object, represented by many thousands of polygons, projects
onto a screen area that is made up of only a few pixels.

Bi-cubic parametric patches (see Chapter 3) These are ‘curved
quadrilaterals’. Generally we can say that the representation is similar to the
polygon mesh except that the individual polygons are now curved surfaces.
Each patch is specified by a mathematical formula that gives the position of

0052

(3}

(4)

(5)

inTRopucTion (31)

the patch in three-dimensional space and its shape. This formula enables us
to generate any or every point on the surface of the patch. We can change
the shape or curvature of the patch by editing the mathematical
specification. This results in powerful interactive possibilities. The problems
are, however, significant. It is very expensive to render or visualize the
patches. When we change the shape of individual patches in a net of
patches there are problems in maintaining ‘smoothness’ between the patch
and its neighbours. Bi-cubic parametric patches can be either an exact or an
approximate representation. They can only be an exact representation of
themselves, which means that any object, say, a car body panel, can only be
represented exactly if its shape corresponds exactly to the shape of the
patch. This somewhat torturous statement is necessary because when the
representation is used for real or existing objects, the shape modelled will
not necessarily correspond to the surface of the object.

An example of the same object represented by both bi-cubic parametric
patches and by polygonal facets is shown in Figure 3.28 {a) and (c). This clearly
shows the complexity/number of elements trade-off with the polygon mesh
representation requiring 2048 elements against the 32-patch representation.,

Constructive solid geometry (CSG) This is an exact representation to
within certain rigid shape limits. It has arisen out of the realization that very
many manufactured objects can be represented by ‘combinations’ of
elementary shapes or geometric primitives. For example, a chunk of metal
with a hole in it could be specified as the result of a three-dimensional
subtraction between a rectangular solid and a cylinder. Connected with this
is the fact that such a representation makes for easy and intuitive shape
control - we can specify that a metal plate has to have a hole in it by
defining a cylinder of appropriate radius and subtracting it from the
rectangular solid, representing the plate. The CSG method is a volumetric
representation = shape is represented by elementary volumes or primitives.
This contrasts with the previous two methods which represent shape using
surfaces. An example of a CSG-represented object is shown in Figure 2.14.

Spatial subdivision techniques This simply means dividing the object
space into elementary cubes, known as voxels, and labelling each voxel as
empty or as containing part of an object. It is the three-dimensional
analogue of representing a two-dimensional object as the collection of pixels
onto which the object projects. Labelling all of three-dimensional object
space in this way is clearly expensive, but it has found applications in
computer graphics. In particular, in ray tracing where an efficient algorithm
results if the objects are represented in this way, An example of a voxel
object is shown in Figure 2.16. We are now representing the three-
dimensional space occupied by the object; the other methods we have
introduced are representations of the surface of the object.

Implicit representation Occasionally in texts implicit functions are
mentioned as an object representation form. An implicit function is, for example:

0053

@ REPRESENTATION AND MODELLING OF THREE-DIMENSIOMNAL OBJECTS (1)

Xryp+=pr

which is the definition for a sphere. On their own these are of limited
usefulness in computer graphics because there is a limited number of objects
that can be represented in this way. Also, it is an inconvenient form as
far as rendering is concerned. However, we should mention that such
representations do appear quite frequently in three-dimensional computer
graphics - in particular in ray tracing where spheres are used frequently -
both as objects in their own right and as bounding objects for other polygon
mesh representations.

Implicit representations are extended into implicit functions which can
loosely be described as objects formed by mathematically defining a surface
that is influenced by a collection of underlying primitives such as spheres.
Implicit functions find their main use in shape-changing animation - they
are of limited usefulness for representing real objects.

We have arranged the categories in order of popularity; another useful
comparison is: with voxels and polygon meshes the number of representational
elements per object is likely to be high (if accuracy is to be achieved) but the
complexity of the representation is low. This contrasts with bi-cubic patches
where the number of elements is likely to be much lower in most contexts but
the complexity of the representation is higher.

We should not deduce from the above categorization that the choice ofa rep-
resentation is a free one. The representational form is decided by both the ren-
dering technique and the application. Consider, for example, the continuous/
discrete representation distinction. A discrete representation - the polygon mesh
- is used to represent the arbitrary shapes of existing real world objects - it is
difficult to see how else we would deal with such objects. In medical imaging the
initial representation is discrete (voxels) because this is what the imaging tech-
nology produces. On the other hand in CAD work we need a continuous repre-
sentation because eventually we are going to produce, say, a machine part from
the internal description. The representation has, therefore, to be exact.

The CSG representation does not fAt easily into these comparisons. It is
both a discrete and a continuous representation, being a discrete combination
of interacting primitives, some of which can be described by a continuous
function.

Another important distinguishing factor is surface versus volume representa-
tion. The polygon mesh is an approximate representation of the surface of
an object and the rendering engine is concerned with providing a visualization
of that surface. With Gouraud shading the algorithm is only concerned with
using geometric properties associated with the surface representation. In
ray tracing, because the bulk of the cost is involved in tracking rays through
space and finding which objects they intersect, a surface representation implies
high rendering cost. Using a volume representation, where the object space
is labelled according to object occupancy, greatly reduces the overall cost of
rendering.

0054

Figure 2.2
Approximating a curved
surface using polygonal

facets.

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL OBJECTS (33)

The relationship between a rendering method and the representation is criti-
cally important in the radiosity method and here, to avoid major defects in the
final image, there has to be some kind of interaction between the representation
and the execution of the algorithm. As the algorithm progresses the representa-
tion must adapt so that more accurate consideration is given to areas in the
emerging solution that need greater consideration. In other words, because of
the expense of the method, it is difficult to decide a priori what the level of detail
in the representation should be. The unwieldiness of the concept of having a
scene representation depend on the progress of the rendering algorithm is at the
root of the difficulty of the radiosity method and is responsible for its (current)
lack of uptake as a mainstream tool, '

Polygonal representation of thrée-ﬂlnien'slonal'ﬁbjécts

This is the classic representational form in three-dimensional graphics. An object
is represented by a mesh of polygonal facets. In the general case an object
possesses curved surfaces and the facets are an approximation to such a surface
(Figure 2.2). Polygons may contain a vertex count that emerges from the
technology used to create the model, or we may constrain all polygons to be tri-
angles. It may be necessary to do this, for example, to gain optimal performance
from special-purpose hardware or graphics accelerator cards.

Polygonal representations are ubiquitous in computer graphics. There are two
reasons for this. Creating polygonal objects is straightforward (although for com-
plex objects the process can be time consuming and costly) and visually effec-
tive algorithms exist to produce shaded versions of objects represented in this
way. As we have already stated, polygon meshes are strictly a machine represen-
tation - rather than a convenient user representation — and they often function
in this capacity for other representations which are not directly renderable. Thus
bi-cubic parametric patches, CSG and voxel representations are often converted
into polygon meshes prior to rendering

There are certain practical difficulties with polygon meshes. Foremost
amongst these is accuracy. The accuracy of the model, or the difference between
the faceted representation and the curved surface of the object, is usually arbi-
trary. As far as final image quality is concerned, the size of individual polygons
should ideally depend on local spatial curvature. Where the curvature changes

g
=

0055

(34) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

rapidly, more polygons are required per unit area of the surface. These factors
tend to be related to the method used for creating the polygons. If, for example,
a mesh is being built from an existing object, by using a three-dimensional dig-
itizer to determine the spatial coordinates of polygon vertices, the digitizer oper-
ator will decide on the basis of experience how large each polygon should be.
Sometimes polygons are extracted algorithmically (as in, for example, the cre-
ation of an object as a solid of revolution or in a bi-cubic patch subdivision algo-
rithm) and a more rigorous approach to the rate of polygons per unit area of the
surface is possible.

One of the most significant developments in three-dimensional graphics was
the emergence in the 1970s of shading algorithms that deal efficiently with
polygonal objects, and at the same time, through an interpolation scheme,
diminish the visual effect of the piecewise linearities in the representation. This
factor, together with recent developments in fixed program rendering hardware,
has secured the entrenchment of the polygon mesh structure.

In the simplest case a polygon mesh is a structure that consists of polygons
represented by a list of linked (x, y, z) coordinates that are the polygon vertices
{edges are represented either explicitly or implicitly as we shall see in a moment).
Thus the information we store to describe an object is finally a list of points or
vertices. We may also store, as part of the object representation, other geometric
information that is used in subsequent processing. These are usually polygon
normals and vertex normals. Calculated once only, it is convenient to store these
in the object data structure and have them undergo any linear transformations
that are applied to the object.

It is convenient to order polygons into a simple hierarchical structure, Figure
2.3(a) shows a decomposition that we have called a conceptual hierarchy for rea-
sons that should be apparent from the illustration. Polygons are grouped into
surfaces and surfaces are grouped into objects. For example, a cylinder possesses
three surfaces: a planar top and bottom surface together with a curved surface.
The reason for this grouping is that we must distinguish between those edges
that are part of the approximation - edges between adjacent rectangles in the
curved surface approximation to the cylinder, for example - and edges that exist
in reality. The way in which these are subsequently treated by the rendering
process is different - real edges must remain visible whereas edges that form part
of the approximation to a curved surface must be made invisible. Figure 2.3(b)
shows a more formal representation of the topology in Figure 2.3(a).

An example of a practical data structure which implements these relation-
ships is shown in Figure 2.3(c). This contains horizontal, as well as vertical, hier-
archical links, necessary for programmer access to the next entity in a horizontal
sequence. It also includes a vertex reference list which means that actual vertices
(referred to by each polygon that shares them) are stored only once. Another
difference between the practical structure and the topological diagram is that
access is allowed directly to lower-level entities. Wireframe visualizations of an
object are used extensively, and to produce a wireframe image requires direct
access to the edge level in the hierarchy. Vertical links between the edges’ and the

0056

Figure 2.3

Representation of an object
45 a mesh of palygons.

() Cenceptual hierarchy.
(b) Topological
representation.

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL OBJECTS (35

polygons’ levels can be either backward pointers or forward pointers depending
on the type of renderer that is accessing the structure. In a scan line renderer,
edges are the topmost entity whereas in a Z-buffer renderer polygons are. A Z-
buffer renderer treats polygons as independent entities, rendering one polygon at
a time. A scan line renders all those polygons that straddle the scan line being
rendered.

The approach just described is more particularly referred to as a vertex-based
boundary model. Sometimes it is necessary to use an edge-based boundary

D QO GO G (D) Veriies

(b}

0057

@ REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.3 continued Surface 3 |

() A practical data i | L : v e]
structure, » F"T A i D Fokraie
I

‘ [[

(€}

model, the most common manifestation of which is a winged-edge data struc-
ture (Mantyla 1988). An edge-based model represents a face in terms of a closing
sequence of edges.

The data structure just described encapsulates the basic geometry associated
with a polygonal facets of an object. Information required by applications and
renderers is also usually contained in the scenefobject database. The following
list details the most common attributes found in polygon mesh structures. They
are either data structure pointers, real numbers or binary flags. It is unlikely that
all of these would appear in a practical application, but a subset is found in most
object representations.
® Polygon attributes

(1) Triangular or not.
(2) Area,
{3) Normal to the plane containing the polygon.

(4) Coefficients (A, B, C, D) of the plane containing the polygon
where Ax+ By + Cz+ D=0,

(5) Whether convex or not.
(6) Whether it contains holes or not.
® FEdge attributes
(1) Length.
(2) Whether an edge is between two polygons or between two surfaces.
(3) Polygons on each side of the edge.
@ Vertex attributes
(1) Polygons that contribute to the vertex.

0058

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL 0BjecTs (37)

(2) Shading or vertex normal - the average of the normals of the polygons
that contribute to the vertex.

(3) Texture coordinates (u, v) specifying a mapping into a two-dimensional
texture image.

All these are absolute propereties that exist when the object is created. Polygons
can aquire attributes as they are passed through the graphics pipeline. For exam-
ple, an edge can be tagged as a silhouette edge if it is between two polygons with
normals facing towards and away from the viewer.

A significant problem that crops up in many guises in computer graphics is
the scale problem. With polygonal representation this means that, in many
applications, we cannot afford to render all the polygons in a model if the view-
ing distance and polygonal resolution are such that many polygons project onto
a single pixel. This problem bedevils flight simulators (and similarly computer
games) and virtual reality applications. An obvious solution is to have a hierar-
chy of models and use the one appropriate to projected screen area. There are
two problems with this; the first is that in animation (and it is animation appli-
cations where this problem is most critical) switching between models can cause
visual disturbances in the animation sequence - the user can see the switch from
one resolution level to another. The other problem is how to generate the hier-
archy and to decide how many levels it should contain. Clearly we can start with
the highest resolution model and subdivide, but this is not necessarily straight-
forward. We look at this problem in more detail in Section 2.5,

Creating polygonal objects

Although a polygon mesh is the most common representational form in com-
puter graphics, modelling, although straightforward, is somewhat tedious. The
popularity of this representation derives from the ease of modelling, the emer-
gence of rendering strategies (both hardware and software) to process polygonal
objects and the important fact that there is no restriction whatever on the shape
or complexity of the object being modelled.

Interactive development of a model is possible by ‘pulling’ vertices around
with a three-dimensional locator device but in practice this is not a very useful
method. It is difficult to make other than simple shape changes. Once an object
has been created, any single polygon cannot be changed without also changing
its neighbours. Thus most creation methods use either a device or a program; the
only method that admits user interaction is item 4 on the following list.

Four common examples of polygon modelling methods are:

(1) Using a three-dimensional digitizer or adopting an equivalent manual strategy.
(2) Using an automatic device such as a laser ranger.

(3) Generating an object from a mathematical description.

(4) Generating an object by sweeping.

0059

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.4

The Utah Beetle - an early
example of manual modefling.
Source: Beatty and Booth
Tutorial: Computer Graphics,
2nd edn, The Institute of
Electrical and Electronics
Engineers, Inc.; New York.

© 1982 IEEE.

The first two modelling methods convert real objects into polygon meshes, the
next two generate models from definitions. We distinguish between models gen-
erated by mathematical formulae and those generated by interacting with curves
which are defined mathematically.

Manual modelling of polygonal objects

The easiest way to model a real object is manually using a three-dimensional dig-
itizer. The operator uses experience and judgement to emplace points on an
object which are to be polygon vertices. The three-dimensional coordinates of
these vertices are then input to the system via a three-dimensional digitizer. The
association of vertices with polygons is straightforward. A common strategy for
ensuring an adequate representation is to draw a net over the surface of the
object - like laying a real net over the object. Where curved net lines intersect
defines the position of the polygon vertices. A historic photograph of this
process is shown in Figure 2.4. This shows students creating a polygon mesh
model of a car in 1974. It is taken from a classic paper by early outstanding pio-
neers in computer graphics — Sutherland et al. (1974).

Automatic generation of polygonal objects

A device that is capable of creating very accurate or high resolution polygon
mesh objects from real objects is a laser ranger. In one type of device the object
is placed on a rotating table in the path of the beam. The table also moves up
and down vertically. The laser ranger returns a set of contours - the intersection
of the object and a set of closely spaced parallel planes - by measuring the dis-
tance to the object surface. A ‘skinning’ algorithm, operating on pairs of con-
tours, converts the boundary data into a very large number of triangles (Figure
2.5(a)). Figure 2.5(b) is a rendered version of an object polygonized in this way.
The skinning algorithm produced, for this object, over 400000 triangles. Given
that only around half of these may be visible on screen and that the object

0060

Figure 2.3

A rendered polygonal object
scanned by a laser ranger
and polygonized by a
simple skinning algorithm.
(a) A skinning algorithm
joins points on consecutive
contours to make a three-
dgimensional palygonal
object from the contours.
(b) A 400000 polygonal
object produced by a
gkinning algorithm.

POLYGOMNAL REPRESENTATIOM OF THREE-DIMENSIONAL OBJECTS

(a) (b}

projects onto about half the screen surface implies that each triangle projects
onto one pixel on average. This clearly illustrates the point mentioned earlier
that it is extremely wasteful of rendering resources to use a polygonal resolution
where the average screen area onto which a polygon projects approaches a
single pixel. For model creation, laser rangers suffer from the significant disad-
vantage that, in the framework described - fully automatic rotating table device
- they can only accurately model convex objects. Objects with concavities will
have surfaces which will not necessarily be hit by the incident beam.

Mathematical generation of polygonal objects

Many polygonal objects are generated through an interface into which a user
puts a model description in the form of a set of curves that are a function of two-
dimensional or two-parameter space. This is particularly the case in CAD appli-
cations where the most popular paradigm is that of sweeping a cross-section in
a variety of different ways. There are two benefits to this approach. The first is
fairly obvious. The user works with some notion of shape which is removed from
the low level activity of constructing an object from individual polygonal facets.
Instead, shape is specified in terms of notions that are connected with the form
of the object - something that Snyder (1992) calls ‘the logic of shapes’. A pro-
gram then takes the user description and transforms it into polygons. The trans-
formation from the user description to a polygon mesh is straightforward. A
second advantage of this approach is that it can be used in conjunction with
either polygons as primitive elements or with bi-cubic parametric patches (see
Section 3.6).

The most familiar manifestation of this approach is a solid of revolution
where, say, a vertical cross-section is swept through 180° generating a solid with
a circular horizontal cross-section (Figure 2.6(a)). The obvious constraint of
solids of revolution is that they can only represent objects possessing rotational
symmetry.

A more powerful generative model is arrived at by considering the same solid
generated by sweeping a circle, with radius controlled by a profile curve,

0061

@ REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.6

Straight spine abjects =
solid of revolution vs
cross-sectional sweeping.
(a) A solid of revolution
generated by sweeping

a (vertical) cross-section.
(b) The same solid can be
generated by sweeping

a circle, whose radius is
controlled by a profile
curve, up a straight vertical

spine. (c) Mon-circular cross-

section.

(@)

Radius

(hy

(ch

vertically up a straight spine (Figure 2.6(b}). In the event that the profile curve is
a constant, we have the familiar notion of extrusion. This immediately removes
the constraint of a circular cross-section and we can have cross-sections of arbi-
trary shape (Figure 2.6(c)).

Mow consider controlling the shape of the spine. We can incorporate the
notion of a curved spine and generate objects that are controlled by a cross-
sectional shape, a profile curve and a spine curve as Figure 2.9 demonstrates.

Other possibilities emerge. Figure 2.7 shows an example of what Snyder calls
a rail product surface, Here a briefcase carrying handle is generated by sweeping
a cross-section along a path determined by the midpoints of two rail curves. The
long axis extent of the elliptical-like cross-section is controlled by the same two
curves - hence the name. A more complex example is the turbine blade shown
in Figure 2.8, Snyder calls this an affine transformation surface - because the
spine is now replaced by affine transformations, controlled by user specified
curves. Each blade is generated by extruding a rectangular cross-section along
the z axis. The cross-section is specified as a rectangle, and three shape control-
ling curves, functions of z, supply the values used in the transformations of the
cross-section as it is extruded. The cross-section is, for each step in z, scaled
separately in x and , translated in x, rotated around, translated back in x, and
extruded along the z axis.

0062

2.7
Snyder's rail curve
product surfaces. Source:
|-M. Snyder, Genrative
Modelling for Computer
Grophics and CAD,
Academic Press, 1992

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL OBJECTS ((41)

) aniAR

Cross-section Lower rail eurve Upper rail curve

A complicated shape is thus generated by a general cross-section and three
curves. Clearly implicit in this example is a reliance on a user/designer being able
to visualize the final required shape in three-dimensions so that he is able to
specify the appropriate shape curves. Although for the turbine blade example
this may seem a somewhat tall order, we should bear in mind that shapes of such
complexity are the domain of professional engineers where the use of such gen-
erative models for shape specification will not be unfamiliar,

Certain practical problems emerge when we generalize to curved spines.
There are three difficulties in allowing curved spines that immediately emerge.
These are illustrated in Figure 2.9, Figure 2.9(a) shows a problem in the curve to
polygon procedure. Here it is seen that the size of the polygonal primitives
depends on the excursion of the spine curve. The other is how do we orient the
cross-section with respect to a varying spine (Figure 2.9(b))? And, finally, how do
we prevent cross-sections self-intersecting (Figure 2.9(c))? It is clear that this will
occur as soon as the radius of curvature of the path of any points traced out by
the cross-sectional curve exceeds the radius of curvature of the spine. We will
now look at approaches to these problems,

0063

(42) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.8

Snyder’s affine
transformation surface,

The generating curves are
shown for a single turbine
blade. Source: |.M. Snyder,
Generative Modeffing for
Computer Graphics and CAD,
Academic Press, 1992

Figure 2.9

Three problems in cross-
sectional sweeping.

{a) Controlling the size of
the polygons can become
problematic. (b) How
should the cross-section be
oriented with resepct to the
spine curve? () Self-
intersection of the cross-
section path.

S

Spine

0064

Figure 2.10
The Frenet frame at sample
point P on a sweep curve.

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL OBJECTS (43)

Consider a parametrically defined cubic along which the cross-section is
swept, This can be defined (see Section 3.1) as:

Q= + i + cu+ d

Now if we consider the simple case of moving a constant cross-section without
twisting it along the curve we need to define intervals along the curve at which
the cross-section is to be placed and intervals around the cross-section curve,
When we have these we can step along the spine intervals and around the cross-
section intervals and output the polygons,

Consider the first problem. Dividing u into equal intervals will not necessar-
ily give the best results. In particular the points will not appear at equal intervals
along the curve. A procedure known as arc length parametrization divides the
curve into equal intervals, but this procedure is not straightforward. Arc length
parametrization may also be inappropriate. What is really required is a scheme
that divides the curve into intervals that depend on the curvature of the curve,
When the curvature is high the rate of polygon generation needs to be increased
so that more polygons occur when the curvature twists rapidly. The most direct
way to do this is to use the curve subdivision algorithm (see Section 4.2.3) and
subdivide the curve until a linearity test is positive.

Now consider the second problem. Having defined a set of sample points we
need to define a reference frame or coordinate system at each. The cross-section
is then embedded in this coordinate system. This is done by deriving three
mutually orthogonal vectors that form the coordinate axes. There are many
possibilities.

A common one is the Frenet frame. The Frenet frame is defined by the origin
or sample point, P, and three vectors T, N and B (Figure 2.10). T is the unit
length tangent vector:

T=V/IVl

Sweep curve

0065

REPRESENTATION AMD MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

where V is the derivative of the curve:
V= 3Jaud + 2bu + ¢
The principal normal N is given by:
N = K/IKl
where:
K=V=xAx VIV
and A is the second derivative of the curve:
A = bau + 2b
Finally B is given by:
B=TxN

Procedural polygon mesh objects - fractal objects

In this section we will look at a common example of generating polygon mesh
objects procedurally. Fractal geometry is a term coined by Benoit Mandelbrot
(1977; 1982). The term was used to describe the attributes of certain natural phe-
nomena, for example, coastlines. A coastline viewed at any level of detail — at
microscopic level, at a level where individual rocks can be seen or at ‘geograph-
ical’ level, tends to exhibit the same level of jaggedness; a kind of statistical self-
similarity. Fractal geometry provides a description for certain aspects of this
ubiquitous phenomenon in nature and its tendency towards self-similarity.

In three-dimensional computer graphics, fractal techniques have commonly
been used to generate terrain models and the easiest techniques involve subdivid-
ing the facets of the objects that consist of triangles or quadrilaterals. A recursive
subdivision procedure is applied to each facet, to a required depth or level of detail,
and a convincing terrain model results. Subdivision in this context means taking
the midpoint along the edge between two vertices and perturbing it along a line
normal to the edge. The result of this is to subdivide the original facets into a large
number of smaller facets, each having a random orientation in three-dimensional
space about the original facet orientation. The initial global shape of the object is
retained to an extent that depends on the perturbation at the subdivision and a
planar four-sided pyramid might turn into a "Mont Blanc’ shaped object.

Most subdivision algorithms are based on a formulation by Fournier ef al.
{1982) that recursively subdivides a single line segment. This algorithm was
developed as an alternative to more mathematically correct but expensive pro-
cedures suggested by Mandelbrot. It uses self-similarity and conditional expecta-
tion properties of fractional Brownian motion to give an estimate of the
increment of the stochastic process. The process is also Gaussian and the only
parameters needed to describe a Gaussian distribution are the mean (conditional
expectation) and the variance.

0066

Figure 2.11
An example of procedural
generation of polygon mesh
objects - fractal terrain,

(a) Line segment
subdivision, (b) Triangle
subdivision.

POLYGONAL REPRESENTATION OF THREE-DIMENSIONAL OBJECTS

A procedure recursively subdivides a line (1, 1), (t2 f2) generating a scalar dis-
placement of the midpoint of the line in a direction normal to the line (Figure
2.11(a)).

To extend this procedure to, say, triangles or quadrilaterals in three-
dimensional space, we treat each edge in turn generating a displacement along
a midpoint vector that is normal to the plane of the original facet (Figure
2.11{b)). Using this technique we can take a smooth pyramid, say, made of large
triangular faces and turn it into a rugged mountain.

Fournier categorizes two problems in this method - as internal and external
consistency. Internal consistency requires that the shape generated should be
the same whatever the orientation in which it is generated, and that coarser

f.iL

fm ____________
ﬁ ____________

)
|

(a)

0067

@ REPRESENTATION AND MODELLING OF THREE-DIMEMSIONAL OBJECTS (1)

details should remain the same if the shape is replotted at greater resolution. To
satisfy the first requirement, the Gaussian randoms generated must not be a
function of the position of the points, but should be unique to the point itself.
An invariant point identifier needs to be associated with each point. This prob.-
lem can be solved in terrain generation by giving each point a key value used to
index a Gaussian random number. A hash function can be used to map the two
keys of the end points of a line to a key value for the midpoint. Scale require-
ments of internal consistency means that the same random numbers must
always be generated in the same order at a given level of subdivision.

External consistency is harder to maintain. Within the mesh of triangles
every triangle shares each of its sides with another; thus the same random dis-
placements must be generated for corresponding points of different connecting
triangles. This is already solved by using the key value of each point and the
hash function, but another problem still exists, that of the direction of the
displacement.

If the displacements are along the surface normal of the polygon under con-
sideration, then adjacent polygons which have different normals (as is, by defi-
nition, always the case) will have their midpoints displaced into different
positions. This causes gaps to open up. A solution is to displace the midpoint
along the average of the normals to all the polygons that contain it but this
problem occurs at every level of recursion and is consequently very expensive to
implement. Also, this technique would create an unsatisfactory skyline because
the displacements are not constrained to one direction. A better skyline is
obtained by making all the displacements of points internal to the original poly-
gon in a direction normal to the plane of the original polygon. This cheaper
technique solves all problems relating to different surface normals, and the gaps
created by them. Now surface normals need not be created at each level of recur-
sion and the algorithm is considerably cheaper because of this.

Another two points are worth mentioning. Firstly, note that polygons should
be constant shaded without calculating vertex normals - discontinuities
between polygons should not be smoothed out. Secondly, consider colour. The
usual global colour scheme uses a height-dependent mapping. In detail, the
colour assigned to a midpoint is one of its end point's colours. The colour cho-
sen is determined by a Boolean random which is indexed by the key value of the
midpoint. Once again this must be accessed in this way to maintain consistency,
which is just as important for colour as it is for position.

@ Constructive solid geol;netfy (C5G) representation of objects
We categorized the previous method - polygon mesh - as a machine representa-
tion which also frequently functions as a user representation. The CSG approach
is very much a user representation and requires special rendering techniques or

the conversion to a polygon mesh model prior to representation. It is a high-
level representation that functions both as a shape representation and a record

0068

CONSTRUCTIVE SOLID GEOMETRY (CSG) REPRESENTATION OF OBJECTS

of how it was built up. The "logic of the shape’ in this representation is in how
the final shape can be made or represented as a combination of primitive shapes.
The designer builds up a shape by using the metaphor of three-dimensional
building blocks and a selection of ways in which they can be combined. The
high-level nature of the representation imposes a certain burden on the designer.
Although with hindsight the logic of the parts in Figure 2.14 is apparent;
the design of complex machine parts using this methodology is a demanding
occupation.

The motivation for this type of representation is to facilitate an interactive
mode for solid modelling. The idea is that objects are usually parts that will
eventually be manufactured by casting, machining or extruding and they can be
built up in a CAD program by using the equivalent (abstract) operations com-
bining simple elementary objects called geometric primitives. These primitives
are, for example, spheres, cones, cylinders or rectangular solids and they are
combined using (three-dimensional) Boolean set operators and linear transfor-
mations. An object representation is stored as an attributed tree. The leaves con-
tain simple primitives and the nodes store operators or linear transformations.
The representation defines not only the shape of the object but its modelling his-
tory = the creation of the object and its representation become one and the same
thing. The cbject is built up by adding primitives and causing them to combine
with existing primitives. Shapes can be added to and subtracted from (to make
holes) the current shape. For example, increasing the diameter of a hole through
a rectangular solid means a trivial alteration - the radius of the cylinder primi-
tive defining the hole is simply increased. This contrasts with the polygon mesh
representation where the same operation is distinctly non-trivial. Even although
the constituent polygons of the cylindrical surface are easily accessible in a hier-
archical scheme, to generate a new set of polygons means reactivating whatever
modelling procedure was used to create the original polygons. Also, account has
to be taken of the fact that to maintain the same accuracy more polygons will
have to be used.

Boolean set operators are used both as a representational form and as a user
interface technique. A user specifies primitive solids and combines these using
the Boolean set operators. The representation of the object is a reflection or
recording of the user interaction operations. Thus we can say that the modelling
information and representation are not separate - as they are in the case of deriv-
ing a representation from low-level information from an input device. The low-
level information in the case of CSG is already in the form of volumetric primi-
tives. The modelling activity becomes the representation. An example will
demonstrate the idea.

Figure 2.12 shows the Boolean operations possible between solids. Figure
2.12(a) shows the union of two solids. If we consider the objects as ‘clouds’ of
points the union operation encloses all points lying within the original two bod-
ies. The second example (Figure 2.12(b)) shows the effect of a difference or sub-
traction operator. A subtract operator removes all those points in the second
body that are contained within the first. In this case a cylinder is defined and

0069

Figure 2.13

A CSG tree reflecting the
construction of a simple
object made from three
primitives,

COMSTRUCTIVE 50LID GEOMETRY (C5G) REPRESENTATION OF OBJECTS

assembly. Thus the only information that has to be stored in the leaves of the
tree is the name of the primitive and its dimensions. A node has to contain the
name of the operator and the spatial relationship between the child nodes com-
bined by the operator.

The power of Boolean operations is further demonstrated in the following
examples. In the first example (Figure 2.14(a)) two parts developed separately are
combined to make the desired configuration by using the union operator fol-
lowed by a difference operator. The second example (Figure 2.14(b)) shows a
complex object constructed only from the union of cylinders, which is then used
to produce, by subtraction, a complex housing.

Although there are substantial advantages in C5G representation, they do suf-
fer from drawbacks. A practical problem is the computation time required to pro-
duce a rendered image of the model. A more serious drawback is that the method
imposes limitations on the operations available to create and modify a solid.
Boolean operations are global - they affect the whole solid. Local operations, say
a detailed modification on one face of a complex object cannot be easily imple-
mented by using set operations. An important local modification required in
many objects that are to be designed is blending surfaces. For example, consider
the end face of a cylinder joined onto a flat base. Normally for practical manu-
facturing or aesthetic reasons, instead of the join being a right angle in cross-

0070

((50) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.14

Examples of geometrically
complex objects produced
from simple objects and
Boolean operations.

section a radius is desired. A radius swept around another curve cannot be rep-
resented in a simple CSG system. This fact has led to many solid modellers using
an underlying boundary representation. Incidentally there is no reason why
Boolean operations cannot be incorporated in boundary representations sys-
tems. For example, many systems incorporate Boolean operations but use a
boundary representation to represent the object. The trade-off between these
two representations has resulted in a debate that has lasted for 15 years. Finally
note that a CSG representation is a volumetric representation. The space occu-
pied by the object - its volume - is represented rather than the object surface.

0071

SPACE SUBDIVISION TECHNIQUES FOR OBJECT REPRESENTATION @

Space sﬁﬁdivlslén iéEthques for object representation

Space subdivision techniques are methods that consider the whole of object space
and in some way label each point in the space according to object occupancy.
However, unlike CSG, which uses a variety of volumetric elements or geometric
primitives, space subdivision technigues are based on a single cubic element
known as a voxel. A voxel is a volumetric element or primitive and is the smallest
cube used in the representation. We could divide up all of world space into regu-
lar or cubic voxels and label each voxel according to whether it is in the object or
in empty space. Clearly this is very costly in terms of memory consumption.
Because of this voxel representation is not usually a preferred mainstream method
but is used either because the raw data are already in this form or it is easiest to
convert the data into this representation - the case, for example, in medical
imagery; or because of the demands of an algorithm. For example, ray tracing in
voxel space has significant advantages over conventional ray tracing. This is an
example of an algorithmic technique dictating the nature of the object represen-
tation. Here, instead of asking the question: ‘does this ray intersect with any
objects in the scene?’ which implies a very expensive intersection test to be carried
out on each object, we pose the question: ‘what objects are encountered as we
track a ray through voxel space?’ This requires no exhaustive search through the
primary data structure for possible intersections and is a much faster strategy.

Another example is rendering C5G models (Section 4.3) which is not straight-
forward if conventional techniques are used. A strategy is to convert the CSG
tree into an intermediate data consisting of voxels and render from this. Voxels
can be considered as an intermediate representation, most commonly in med-
ical imaging where their use links two-dimensional raw data with the visualiza-
tion of three-dimensional structures. Alternatively the raw data may themselves
be voxels, This is the case with many mathematical modelling schemes of three-
dimensional physical phenomena such as fluid dynamics.

The main problem with voxel labelling is the trade-off between the
consumption of vast storage costs and accuracy. Consider, for example, labelling
square pixels to represent a circle in two-dimensional space. The pixel size
faccuracy trade-off is clear here. The same notion extends to using voxels to
represent a sphere except that now the cost depends on the accuracy and the
cube of the radius. Thus such schemes are only used in contexts where their
advantages outweigh their cost. A way to reduce cost is to impose a structural
organization on the basic voxel labelling scheme.

The common way of organizing voxel data is to use an octree - a hierarchical
data structure that describes how the objects in a scene are distributed through-
out the three-dimensional space occupied by the scene. The basic idea is shown
in Figure 2.15. In Figure 2.15(a) a cubic space is subject to a recursive subdivision
which enables any cubic region of the space to be labelled with a number. This
subdivision can proceed to any desired level of accuracy. Figure 2.15(b) shows an
object embedded in this space and Figure 2.15(c) shows the subdivision and the

0072

LY

(52) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.15

Octree representation.

(a) Cubic space and
labeliing scheme, and the
octree for the two levels of
subdivision. (b) Object
embedded in space.

() Representation of the
object to two levels of
subdivision.

' s
535433565758 16 A HRATER

ic)

related octree that labels cubic regions in the space according to whether they
are occupied or empty.

There are actually two ways in which the octree decomposition of a scene can
be used to represent the scene. Firstly, an octree as described above can be used
in itself as a complete representation of the objects in the scene. The set of cells
occupied by an object constitute the representation of the object. However, for
a complex scene, high resolution work would require the decomposition of
occupied space into an extremely large number of cells and this technique
requires enormous amounts of data storage. A common alternative is to use a
standard data structure representation of the objects and to use the octree as a
representation of the distribution of the objects in the scene. In this case, a ter-
minal node of a tree representing an occupied region would be represented by a
pointer to the data structure for any object (or part of an object) contained
within that region. Figure 2.16 illustrates this possibility in the two-dimensional
case. Here the region subdivision has stopped as soon as a region is encountered
that intersects only one object. A region represented by a terminal node is not
necessarily completely occupied by the object associated with that region. The
shape of the object within the region would be described by its data structure
representation. In the case of a surface model representation of a scene, the

0073

SPACE SUBDIVISION TECHNIQUES FOR OBJECT REPRESENTATION ((53)

‘objects’ would be polygons or patches. In general, an occupied region repre-
sented by a terminal node would intersect with several polygons and would be
represented by a list of pointers into the object data structures. Thus unlike the
other techniques that we have described octrees are generally not self-contained
representational methods. They are instead usually part of a hybrid scheme,

Octrees and polygons

As we have already implied, the most common use of octrees in computer graphics
is not to impose a data structure, on voxel data, but to organize a scene containing
many objects (each of which is made up of many polygons) into a structure of spa-
tial occupancy. We are not representing the objects using voxels, but considering
the rectangular space occupied as polygons as entities which are represented by
voxel space. As far as rendering is concerned we enclose parts of the scene, at some
level of detail, in rectangular regions in the sense of Figure 2.16. For example, we
may include groups of objects, single objects, parts of objects or even single poly-
gons in an octree leaf node. This can greatly speed up many aspects of rendering
and many rendering methods, particularly ray tracing as we have already suggested.
We will now use ray tracing as a particular example. The high inherent cost
in naive ray tracing resides in intersection testing. As we follow a ray through the
scene we have to find out if it collides with any object in the scene (and what
the position of that point is). In the case that each ray is tested against all objects
in the scene, where each object test implies testing against each polygon in the
object, the rendering time, for scenes of reasonable complexity, becomes unac-
ceptably high. If the scene is decomposed into an octree representation, then
tracing a ray means tracking, using an incremental algorithm from voxel to
voxel. Each voxel contains pointers to polygons that it contains and the ray is
tested against these. Intersection candidates are reduced [rom n to m, where:

n= % polygon count for object

2]

and m is the number of candidate polygons contained by the octree leaf,
However, decomposing a scene into an octree is an expensive operation and has
to be judiciously controlled. It involves finding the ‘'minmax’ coordinates of each
polygon (the coordinates of its bounding box) and using these as an entity in the
decomposition. Two factors that can be used to control the decomposition are:

{1) The minimum number of candidate polygons per node. The smaller this
factor, the greater is the decomposition and fewer intersection tests are made
by a ray that enters a voxel. The total number of intersection tests per voxel
for the entire rendering is approximately given by:

number of rays entering the voxel x (0.5 x number of polvgons in voxel)

assuming that on average a ray tests 50% of the candidate polygons before
it finds an intersection.

0074

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.16

Quadtree representation of
a two-dimensional scene
down to the level of cells
containing at most a single
object. Terminal nodes for
cells containing objects
would be represented by a
pointer to a data structure

representation of the object.

|
AT

© = emply
r=rod
b= box
¢ = circle

bebec beee rEcreree

{2) The maximum octree depth. The greater the depth the greater the
decomposition and the fewer the candidate polygons at a leaf node. Also,
because the size of a voxel decreases by a factor of 8 at every level, the fewer
the rays that will enter the voxel for any given rendering.

In general the degree of decomposition should not be so great that the savings
gained on intersection are wiped out by the higher costs of tracking a ray
through decomposed space. Experience has shown that a default value of 8 for
the above two factors gives good results in general for an object (or objects) dis-
tributed evenly throughout the space. Frequently scenes are rendered where this
condition does not hold. Figure 2.17 shows an example where a few objects with
high polygon count are distributed around a room whose volume is large com-
pared to the space occupied by the objects. In this case octree subdivision will
proceed to a high depth subdividing mostly empty space.

0075

Figure 2.17

A scene consisting of a few
objects of high palygon
count. The objects are small
compared with the volume
of the room.

SPACE SUBDIVISION TECHNIQUES FOR OBJECT REPRESENTATION (55)

BSP trees

An alternative representation to an octree is a BSP or binary space partitioning
tree. Each non-terminal node in the BSP tree represents a single partitioning
plane that divides the space into two. A two-dimensional analogue illustrating
the difference is shown in Figure 2.18. A BSP tree is not a direct object represen-
tation (although in certain circumstances it can be). Instead it is a way of par-
titioning space for a particular purpose - most commonly hidden surface
removal. Because of this it is difficult and somewhat pointless to discuss BSP
trees without dealing at the same time with HSR (see Chapter 6).

The properties of partitioning planes that can be exploited in computer
graphics scenes are:

@ Any object on one side of a plane cannot intercept any object on the other
side.

@ Given a view point in the scene space, objects on the same side as the viewer
are nearer than any objects on the other side.

When a BSP tree is used to represent a subdivision of space into cubic cells, it
shows no significant advantage over a direct data structure encoding of the
octree. It is the same information encoded in a different way. However, nothing
said above requires that the subdivision should be into cubic cells. In fact the

0076

(56)) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.18
Quadtree and BSP tree

representations of a one-

level subdivision of a two-

dimensional region.

y=1023
3|4
2
o 1234
g=l xm= 023
Quadtree

idea of a BSP tree was criginally introduced in Fuchs (1980) where the planes
used to subdivide space could be at any orientation. We revisit BSP trees in the
context of hidden surface removal (Chapter 6).

Creating voxel objects

One of the mainstream uses of voxel objects is in volume rendering in medical
imagery. The source data in such applications consist of a set of parallel planes
of intensity information collected from consecutive cross-sections from some
part of a body, where a pixel in one such plane will represent, say, the X-ray
absorption of that part of the body that the pixel physically corresponds to. The
problem is how to convert such a stack of planar two-dimensional information
into a three-dimensional rendered object. Converting the stack of planes to a set
of voxels is the most direct way to solve this problem. Corresponding pixels in
two consecutive planes are deemed to form the top and bottom face of a voxel
and some operation is performed to arrive at a single voxel value from the
two pixel values. The voxel representation is used as an intermediary between
the raw collected data, which are two-dimensional, and the required three-
dimensional visualization. The overall process from the collection of raw data,
through the conversion to a voxel representation and the rendering of the voxel
data is the subject of Chapter 13.

Contours collected by a laser ranger can be converted into a voxel represen-
tation instead of into a polygon mesh representation. However, this may result
in a loss of accuracy compared with using a skinning algorithm.

Representing objects with implicit functions
As we have already pointed out, representing a whole object by a single implicit
formula Is restricted to certain objects such as spheres. Nevertheless such a rep-
resentation does find mainstream use in representing ‘algorithmic’ objects

known as bounding volumes. These are used in many different contexts in
computer graphics as a complexity limiting device.

0077

Fgure 2.19

An sosurface of equal
temperature around two
heat sources (solid line),

REPRESENTING OBJECTS WITH IMPLICIT FuNCTIONS (57)

A representation developed from implicit formulae is the representation of
objects by using the concept of implicitly defined objects as components. (We
use the term component rather than primitive because the object is not simply
a set of touching spheres but a surface derived from such a collection.)

Implicit functions are surfaces formed by the effect of primitives that exert a
field of influence over a local neighbourhood. For example, consider a pair of
point heat sources shown in Figure 2.19. We could define the temperature in
their vicinities as a field function where, for each in isolation, we have isother-
mal contours as spherical shells centred on each source. Bringing the two sources
within influence of each other defines a combined global scalar field, the field of
each source combining with that of the other to form a composite set of isother-
mal contours as shown. Such a scalar field, due to the combined effect of a num-
ber of primitives is used to define a modelling surface in computer graphics,
Usually we consider an isosurface in the field to be the boundary of a volume
which is the object that we desire to model. Thus we have the following ele-
ments in any implicit function modelling system:

® A generator or primitive for which a distance function d(P) can be defined
for all points P in the locality of the generator.

@ A ‘potential’ function fid(P)) which returns a scalar value for a point P
distance d(P) from the generator. Associated with the generator can be an
area of influence outside of which the generator has no influence. For a
point generator this is usually a sphere. An example of a potential function
is:

ﬂl’}z[l—%}“ dsR

where d is the distance of the point to the generator and R is its radius of
influence.

® A scalar field F(P) which determines the combined effect of the individual
potential functions of the generators. This implies the existence of a
blending method which in the simplest case is addition - we evaluate a
scalar field by evaluating the individual contributions of each generator at a
peint P and adding their effects together.

0078

REPRESENTATION AMD MODELLING OF THREE-DIMEMSIOMAL OBJECTS (1)

2.5

® An isosurface of the scalar field which is used to represent the physical
surface of the object that we are modelling.

An example (Figure 2.20 Colour Plate) illustrates the point. The Salvador Dalj
imitation on the left is an isosurface formed by point generators disposed in
space as shown on the right. The radius of each sphere is proportional to the
radius of influence of each generator. The dark spheres represent negative gen-
erators which are used to ‘carve’ concavities in the model. (Although we can
form concavities by using only positive generators, it is more convenient to use
negative ones as we require far fewer spheres.) The example illustrates the poten.
tial of the method for modelling organic shapes.

Deformable object animation can be implemented by displaying or choreo-
graphing the points that generate the object. The problem with using implicit
functions in animation is that there is not a good intuitive link between moving
groups of generators and the deformation that ensues because of this. Of course,
this general problem is suffered by all modelling techniques where the geometry
definition and the deformation method are one and the same thing.

In addition to this general problem, unwanted blending and unwanted
separation can occur when the generators are moved with respect to each
other and the same blending method retained.

A significant advantage of implicit functions in an animation context is the

ease of collision detection that results from an easy inside-outside function. |
Irrespective of the complexity of the modelled surface a single scalar value

defines the isosurface and a point P is inside the object volume or outside it
depending on whether F(P) is less than or greater than this value.

Scene management and object representation

As the demand for high quality real time computer graphics continues to grow,
from applications like computer games and virtual reality, the issue of efficient
scene management has become increasingly important. This means that repre-
sentational forms have to be extended to collections of objects; in other words
the scene has to be considered as an object itself. This has generally meant using
hierarchical or tree structures, such as BSP trees to represent the scene down to
object and sub-object level. As rendering has increasingly migrated into real time
applications, efficiency in culling and hidden surface removal has become as
important as efficient rendering for complex scenes. With the advent of 3D
graphics boards for the PC we are seeing a trend develop where the basic ren-
dering of individual objects is handled by hardware and the evaluation of which
objects are potentially visible is computed by software. (We will look into culling
and hidden surface removal in Chapters 5 and 6). An equally important effi-
ciency measure for objects in complex scenes has come to be known as Level of
Detail, or LOD, and it is this topic that we will now examine.

0079

SCENE MANAGEMENT AND OBJECT REPRESENTATION

Polygon mesh optimization

As we have discussed, polygon mesh models are well established as the de facto
standard representational form in computer graphics but they suffer from sig-
nificant disadvantages, notably that the level of detail, or number of polygons,
required to synthesize the object for a high quality rendition of a complex object
is very large. If the object is to be rendered on screen at different viewing dis-
tances the pipeline has to process thousands of polygons that project onto a few
pixels on the screen. As the projected polygon size decreases, the polygon over-
heads become significant and in real time applications this situation is intolera-
ble. High polygon counts per object occur either because of object complexity or
because of the nature of the modelling system. Laser scanners and the output
from programs like the marching cubes algorithm (which converts voxels into
polygons) are notorious for producing very large polygon counts. Using such
facilities almost always results in a model that, when rendered, is indistinguish-
able from a version rendered from a model with far fewer faces.

As early as 1976, one of the pioneers of 3D computer graphics, James H. Clark,
wrote:

It makes no sense to use 300 polygons in describing an object if it covers only 20 raster
units of the display . . . For example, when we view the human body from a very large
distance, we might need to present only specks for the eyes, or perhaps just a block for the
head, totally eliminating the eyes from consideration . . . these issues have not been
addressed in a unified way.

Did Clark realize that not many years after he had written these words that
300000 polygon objects would become fairly commonplace and that complex
scenes might contain millions of polygons?

Existing systems tend to address this problem in a somewhat ad hoc manner.
For example, many cheap virtual reality systems adopt a two- or three-level rep-
resentation switching in surface detail, such as the numbers on the buttons of a
telephone as the viewer moves closer to it. This produces an annoying visual dis-
turbance as the detail blinks on and off. More considered approaches are now
being proposed and lately there has been a substantial increase in the number of
papers published in this area.

Thus mesh optimization seems necessary and the problem cannot be dis-
missed by relying on increased polygon throughput of the workstations of the
future. The position we are in at the moment is that mainstream virtual reality
platforms produce a visually inadequate result even from fairly simple scenes.
We have to look forward not only to dealing with the defects in the image syn-
thesis of such scenes, but also to being able to handle scenes of real world com-
plexity implying many millions of polvgons. The much vaunted ‘immersive’
applications of virtual reality will never become acceptable unless we can cope
with scenes of such complexity. Current hardware is very far away from being
able to deal with a complex scene in real time to the level of quality attainable
for single object scenes.

0080

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

An obvious solution to the problem is to generate a polygon mesh at the final
level of detail and then use this representation to spawn a set of coarser descrip-
tions. As the scene is rendered an appropriate level of detail is selected. Certain
algorithms have emerged from time to time in computer graphics that use this
principle. An example of a method that facilitates a polygon mesh at any level
of detail is bi-cubic parametric patches (see Section 4.2.2). Here we take a patch
description and turn it into a polygon description. At the same time we can eas-
ily control the number of polygons that are generated for each patch and relate
this to local surface curvature. This is exactly what is done in patch rendering
where a geometric criterion is used to control the extent of the subdivision and
produce an image free of geometric aliasing (visible polygon edges in silhouette),
The price we pay for this approach is the expense and difficulty of getting the
patch description in the first place. But in any case we could build the original
patch representation and construct a pyramid of polygon mesh representations
off-line.

The idea of storing a ‘detail pyramid’ and accessing an appropriate level is
established in many application areas. Consider the case of mip-mapping, for
example (see Chapter 8). Here texture maps are stored in a detail hierarchy and
a fine detail map selected when the projection of the map on the screen is large,
In the event that the map projects onto just one pixel, then a single pixel tex-
ture map - the average of the most detailed map - is selected. Also, in this
method the problem of avoiding a jump when going from one level to another
Is carefully addressed and an approximation to a continuous level of detail is
obtained by interpolation between two maps.

The diversity of current approaches underlines the relative newness of the
field. A direct and simple approach for triangular meshes derived from voxel sets
was reported by Schroeder et al. in 1992, Here the algorithm considers each ver-
tex on a surface. By looking at the triangles that contribute to, or share, the ver-
tex, a number of criteria can be enumerated and used to determine whether
these triangles can be merged into a single one exclusive of the vertex under con-
sideration. For example, we can invoke the ‘reduce the number of triangles
where the surface curvature is low’ argument by measuring the variance in the
surface normals of the triangles that share the vertex. Alternatively we could
consider the distance from the vertex to an (average) plane through all the other
vertices of the sharing triangles (Figure 2.21). This is a local approach that con-
siders vertices in the geometry of their immediate surroundings.

A more recent approach is the work of Hoppe (1996) which we will now
describe. Hoppe gives an excellent categorization of the problems and advan-
tages of mesh optimization, listing these as follows:

@ Mesh simplification - reducing the polygons to a level that is adequate for
the quality required. (This, of course, depends on the maximum projection
size of the object on the screen.)

® Level of detail approximation - a level is used that is appropriate to the
viewing distance. In this respect, Hoppe adds: ‘Since instantaneous

0081

Figure 2.21
A simple vertex deletion

eriterion. Delete V7 Measure
d, the distance from ¥ to
| the (average) plane through
| the triangles that share V.

SCENE MANAGEMENT AND OBJECT REPRESENTATION

switching between LOD meshes may lead to perceptible “popping”. one
would like to construct smooth visual transitions, geomorphs, between
meshes at different resolutions’.

@ Progressive transmission - this is a three-dimensional equivalent of the
common progressive transmission modes used to transmit two-dimensional
imagery over the Internet. Succesive LOD approximations can be
transmitted and rendered at the reciever.

@ Mesh compression - analagous to two-dimensional image pyramids. We can
consider not only reducing the number of polygons but also minimizing the
space that any LOD approximation occupies. As in two-dimensional
imagery, this is important because an LOD hierarchy cccupies much more
memory than a single model stored at its highest level of detail,

@ Selective refinement - an LOD representation may be used in a context-
dependent manner. Hoppe gives the example of a user flying over a terrain
where the terrain mesh need only be fully detailed near the viewer.

Addressing mesh compression, Hoppe takes a ‘pyramidal” approach and stores
the coarsest level of detail approximation together, for each higher level, with
the information required to ascend from a lower to a higher level of detail. To
make the transition from a lower to a higher level the reverse of the transfor-
mation that constructed the hierarchy from the highest to the lowest level is
stored and used. This is in the form of a vertex split - an operation that adds an
additional vertex to the lower mesh to obtain the next mesh up the detail hier-
archy. Although Hoppe originally considered three mesh transformations - an
edge collapse, an edge split and an edge swap - he found that an edge collapse
is sufficient for simplifying meshes.

The overall scheme is represented in Figure 2.22(a) which shows a detail pyra-
mid which would be constructed off-line by a series of edge collapse transfor-
mations that take the original mesh M., and generate through repeated edge
collapse transformations the final or coarsest mesh Mo. The entire pyramid can
then be stored as My together with the information required to generate, from
My to any finer level M; in the hierarchy — mesh compression. This inter-level
transformation is the reverse of the edge collapse and is the information required

0082

(62)) REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

Figure 2.22

Hoppe's (1996) progressive
mesh scheme based on
edge collapse
transformations,

for a vertex split. Hoppe quotes an example of an object with 13 546 faces which
was simplified to an Mo of 150 faces using 6698 edge collapse transformations.
The original data are then stored as Mo together with the 6698 vertex split
records. The vertex split records themselves exhibit redundancy and can be com-
pressed using classical data compression techniques.

Figure 2.22(b) shows a single edge collapse between two consecutive levels.
The notation is as follows: Vs and Vi are the two vertices in the finer mesh that
are collapsed into one vertex V. in the coarser mesh, where

vee |V, Va, ‘“‘;—ﬁ}

From the diagram it can be seen that this operation implies the collapse of the
two faces fi and fz into new edges.

Hoppe defines a continuum between any two levels of detail by using a blend-
ing parameter a. If we define:

_Vu+Vq

==

0083

Figure 2.23

The result of applying the
simple edge elimination
triterion described in the
text — the model eventually
breaks up.

SCENE MANAGEMENT AND OBJECT REPRESENTATION

then we can generate a continuum of geomorphs between the two levels by hav-
ing the edge shrink under control of the blending parameter as:

Va=Vh+ad and Veo:=Vo-ad

Texture coordinates can be interpolated in the same way as can scalar attrib-
utes associated with a vertex such as colour,

The remaining question is: how are the edges selected for collapse in the
reduction from M: to M:i.? This can be done either by using a simple heuristic
approach or by a more rigorous method that measures the difference between a
particular approximation and a sample of the original mesh. A simple metric
that can be used to order the edges for collapse is:

Vi = Vil
| NNzl

that is, the length of the edge divided by the dot product of the vertex normals.
On its own this metric will work quite well, but if it is continually applied the
mesh will suddenly begin to ‘collapse’ and a more considered approach to edge
selection is mandatory. Figure 2.23 is an example that uses this technique.

Hoppe casts this as an energy function minimzation problem. A mesh M is
optimized with respect to a set of points X which are the vertices of the mesh M,
together (optionally) with points randomly sampled from its faces. (Although
this is a lengthy process it is, of course, executed once only as an off-line pre-
process.) The energy function to be minimized is:

E(M) = EauM) + Esping(M)
where
Edii = 2 & xi, M)

0084

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (1)

is the sum of the squared distances from the points X to the mesh - when a ver-
tex Is removed this term will tend to increase.

Epos M) = S, xlvi = w|
is a spring energy term that assists the optimization. It is equivalent to placing
on each edge a spring of rest length zero and spring constant k.

Hoppe orders the optimization by placing all (legal) edge collapse transfor-
mations into a priority queue, where the priority of each transformation is its
estimated energy cost AE. In each iteration, the transformation at the front of
the queue (lowest AE) is performed and the priorities of the edges in the neigh-
bourhood of this transformation are recomputed. An edge collapse transforma-
tion is only legal if it does not change the topology of the mesh. For example, if
Vi and Vi are boundary vertices, the edge Vi, Vo] must be a boundary edge -
it cannot be an internal edge connecting two boundary points.

e e BT T T ST r—

Summary

Object representations have evolved under a variety of influences - ease of ren-
dering, ease of shape editing, suitability for animation, dependence on the
attributes of raw data and so on. There is no general solution that is satisfactory
for all practical applications and the most popular solution that has served us for
s0 many years — the polygon mesh - has significant disadvantages as soon as we
leave the domain of static objects rendered off-line. We complete this chapter by
listing the defining attributes of any representation. These allow a (very) general
comparison between the methods. (For completeness we have included com-
ments on bi-cubic patches which are dealt with in the next chapter.)

@ Creation of object/representation A factor that is obviously context
dependent. We have the methods which can create representations
automatically from physical data (polygon mesh from range data via a
skinning algorithm, bi-cubic parametric patches via interpolation of surface
data), Other methods map input data directly into a voxel representation.
Some methods are suitable for interactive creation (CSG and bi-cubic
parametric patches) and some can be created by interacting with a
‘mathematically’ based interactive facility such as sweeping a cross-section
along a spine (polygon mesh and bi-cubic parametric patches).

@ Nature of the primitive elements The common forms are either
methods that represent surfaces — boundary representations (polygon mesh
and bi-cubic parametric patches) or volumes (voxels and C5G).

@ Accuracy Representations are either exact or approximate. Polygon meshes
are approximate representations but their accuracy can be increased to any
degree at the expense of an expansion in the data. Increasing the accuracy of
a polygon mesh representation in an intelligent way is difficult. The easy
‘brute force’ approach — throwing more polygons at the shape - may result
in areas being ‘over represented’. Bi-cubic patches can either be exact or
approximate depending on the application. Surface interpolation will result in

0085

summary (65)

an approximation but designing a car door panel using a single patch results
in an exact representation. CSG representations are exact but we need to make
two qualifications. They can only describe that subset of shapes that is
possible by combining the set of supplied primitives. The representation is
abstract in that it is just a formula for the composite object - the geometry has
to be derived from the formula to enable a visualization of the object.

Accuracy vs data volume There is always a trade-off between accuracy
and data volume - at least as far as the rendering penalty is concerned. To
increase the accuracy of a boundary representation or a volume
representation we have to increase the number of low-level elements.
Although the implicit equation of a sphere is 100% accurate and compact,
it has to be converted for rendering using some kind of geometric sampling
procedure which generates low-level elements.

Data volume vs complexity There is usually a trade-off also between
data volume and the complexity of the representation which has practical
ramifications in the algorithms that operate with the representation. This is
best exemplified by comparing polygon meshes with their counterpart using
bi-cubic parametric patches.

Ease of editing/animation This can mean retrospective editing of an
existing model or shape deformation techniques in an animation
environment. The best method for editing the shape of static objects is, of
course, the CSG representation - it was designed for this. Editing bi-cubic
parametric patches is easy or difficult depending on the complexity of the
shape and the desired freedom of the editing operations. In this respect
editing a single patch is easy, editing a net of patches is difficult. None of the
representation methods that we have described is suitable for shape-changing
in animated sequences, although bi-cubic parametric patches and implicit
functions have been tried. It seems that the needs of accuracy and ease of
animating shape change are opposites. Methods that allow a high degree of
accuracy are difficult to animate, because they consist of a structure with
maybe thousands of low-level primitives as leaves. For example, the common
way to control a net of bi-cubic parametric patches representing, say, the face
of a character is to organize it into a hierarchy allowing local changes to be
made (by descending the hierarchy and operating on a few or even a single
patch) and making more global changes by operating at a high level in the
structure. This has not resulted in a generally accepted animation technique
simply because it does not produce good results (in the case of facial
animation anyway). It seems shape-change animation needs a paradigm that
is independent of the object model and the most successful techniques
involve embedding the object model in another structure which is then subject
to shape-change animation. Thus we control facial animation by attaching a
geometric structure to a muscle control model or immerse a geometric model
in the ‘field’ of an elastic solid and animate the elastic solid. In other words
for the representations that we currently use, animation of shape does not
seem to be possible by operating directly on the geometry of the object.

0086

modeling
of three-dimensional
objects (2)

3.1 Bézier curves

3.2 B-spline representation

3.3 Rational curves

3.4 From curves to surfaces

3.5 B-spline surface patches

3.6 Modelling or creating patch surfaces
3.7 From patches to objects

W e T P R AT LD A e L SN S e L s e T
C) Introduction

In the previous chapter we concentrated mainly on the polygon mesh represen-
tation where a polygon was, for example, a (flat) quadrilateral made up of four
vertices joined by four straight lines. This chapter is devoted entirely to a repre-
sentational form where the primitive element - a bi-cubic parametric patch - is
a curvilinear quadrilateral. It has four corner points joined by four edges which
are themselves cubic curves. The interior of the patch is a curved (cubic) surface
where every point on the surface is defined. This contrasts with the polygon
mesh approximation where surface points on an object are only defined at the
polygon vertices.

| Representing surfaces of objects using bi-cubic parametric patches finds two
; main applications in computer graphics:

(1) As a basis for interactive design in CAD. Here we may obtain the model by an

interactive process — a designer building up a model by interacting with a
] program. In many CAD applications the representational form is transformed
directly into a real object (or a scaled-down model of the real object), The

0087

INTRODUCTION

computer graphics representation is used to control a device such as a
numerical milling machine which sculpts the object in some material. This is
exactly the opposite of the ‘normal’ computer graphics modelling
methodology - instead of transforming a real object into a representation we
are using the computer graphics model to make the real object.

(2) As an alternative representational form to the polygon mesh - the
representation which services the normal computer graphics requirement of
transforming a real object into a representational form. In this use we
usually wish to exploit the accuracy of the parametric representation over
the polygon mesh approximation. Here we may obtain a parametric
representation from a real object by some (surface) interpolation technique.

The apparent advantages of this representation over the polygon mesh repre-
sentation are:

& It is an exact analytical representation,
@ It has the potential of three-dimensional shape editing,
& [t is a more economical representation.

Given these advantages it is somewhat surprising that this form is not the main-
stream representation in computer graphics. It is certainly no more difficult to
render an object represented by a net of patches and so we must conclude that
its lack of popularity in mainstream computer graphics (it is, of course, used in
industrial CAD), is due to the mathematical formalities associated with it.

The exactness of the representation factor needs careful qualification. A real
object (or a physical model of a real object) can be represented by a net or mesh
of patches (Figure 3.28 and Figure 3.43 are two such objects) but the representa-
tion may not be wholly ‘exact’. In the first example, the teapot cannot have a per-
fectly circular cross-section because the representational method, in this case the
Bézier form or Bernstein basis, cannot represent a circle exactly. The patches rep-
resenting the face in the second example may not everywhere be coincident with
the real object. We can obtain a suitable set of points that lie in the surface of the
object from a three-dimensional digitizer and we could, say, use the same set of
points that we would use to build a polygon mesh model. We then use an inter-
polation technique known as surface fitting, to determine a set of patches that
represents the surface. However, the patch surface and the object surface will not
necessarily be identical. The exactness of the fit depends on both the nature of
the interpolation process and how closely the physical surface conforms to the
shape constraints of the bi-cubic patch representation. But we do end up with an
object representation that is a smooth surface which has certain advantages over
the polygon mesh representation - the silhouette edge problem, which accounts
for the most prominent visual defect in rendered polygon mesh objects, is cured.

It is possible to model subtly shaped objects such as the human face with a net of
patches. An adequate representation of such an object using a polygon mesh would
need an extremely high polygonal resolution. Despite this there is a perceived com-
plexity associated with bi-cubic parametric patches and in many applications we can

e

0088

REPRESENTATION AND MODELLING OF THREE-DIMEMNSIONAL OB|ECTS (2)

avoid this by using the polygon mesh representation. When we digitize real objects
we are normally working with an application that does not demand exact represen-
tation. We may be building a model of a product for an animated TV commercial,
for example, in which case a good polygon mesh model will do.

In fact the most common applications of the bi-cubic parametric patch rep-
resentation are not to build very complex models but as a representation for
fairly simple objects in industrial CAD or CAGD applications. The real value of
the representation here is that it can be used to transform an abstract design,
built up within an interactive program, directly into a physical reality. The
description can be made to drive a sculpting device such as a numerically con-
trolled milling machine to produce a prototype object without any human inter-
vention. It is this single factor more than any other that makes bi-cubic
parametric patches important in CAD,

Part of their value in CAD comes from the ability to change the shape of an
object represented by patches in a way that maintains a smooth surface.
Sometimes the allusion to sculpting is made, We can view the representation as
a kind of ‘abstract clay’ model that can be pulled around and deformed into any
desirable shape - giving the same freedom to create as a sculptor would have
with a real clay maodel. Here we should be wary of the claims that are made in
the computer graphics literature concerning the efficacy of free-form sculpting
using bi-cubic parametric patches. We can distinguish between methods that
attempt a free-form sculpting model, which places no constraints on the shape
complexity of the object formed, and the much more well-established tech-
niques in CAD where the object tends to be fairly simple. A common, early
example of this category is the design of car body panels. Bi-cubic parametric
patches are manifestly successful in such applications; their success as a
metaphor for clay sculpting is more debatable.

We distinguish between objects that are represented by a single patch and
objects whose form demands that they are represented by a net of patches. Shape
editing a single patch is straightforward but the objects that we can design with
a single patch are restricted. Shape editing an object that is represented by a net
of patches is much more difficult. One problem is that if we have to alter the
shape of one patch in a net, we have to maintain its smoothness relationship
with the neighbouring patches in which it is embedded. Another difficulty is yet
another manifestation of the scale problem. Say we want to effect a shape
change that involves many patches. We have to move these patches together
and maintain their continuity with all their neighbouring patches.

Despite these difficulties we should recognize that this representation has a
strong potential for shape editing compared with the polygon mesh representa-
tion. This is already an approximation and pulling vertices around to change the
shape of the represented object results in many difficulties. The accuracy of the
polygon mesh representation changes as soon as vertices are moved resulting
perhaps in visual defects. It is almost certain that we would always have to move
groups of points rather than move a single polygon vertex around in three space.
Pulling a single vertex would just result in a local peak.

A

0089

= e A T

BEZIER CURVES

In this chapter we will mainly confine ourselves to the study of single patches
and simple shapes formed from nets of a few patches using rudimentary but
powerful CAD techniques, such as generating a solid object by sweeping a pro-
file through 360°,

The analytical representation of patches differs according to the formulation
and some have been named after their instigators. One of the most popular for-
mulations is the Bézier patch developed in the 1960s by Pierre Bézier for use in
the design of Renault cars. His CAD system called UNISURF was one of the first
to be used. In what follows we will concentrate mainly on the Bézier and
B-spline formulation.

The usual approach in considering parametric representation is to begin with
a description of three-dimensional space curves and then to generalize to sur-
faces or patches. A three-dimensional space curve is a smooth curve that is a
function of the three spatial variables. An example would be the path that a par-
ticle traced as it moved through space. Incidentally, curves by themselves also
find applications in computer graphics. For example, we can script the path of
an object in three-dimensional computer animation by using a space curve. We
can model a ‘ducted’ solid by sweeping a cross-section along a space curve as we
saw in the previous chapter.

Bézier curves

In this section we will look at the pioneering developments of Bézier, who was
amongst the first to develop computer tools in industrial design. We will draw
on Bézier's own descriptions of the evolution of his method, not just because of
their historical interest but also because they give a real insight into the rela-
tionship between the representation, the physical reality and the requirements
of the designers who were to use his methods.

Bézier's development work was carried out in the Renault car factory in the
1960s and he called his system UNISURF. Car designers are concerned with
styling free-form surfaces which are then vsed to produce master dies which pro-
duce the tools that stamp out the manufactured parts. Many other industries use
free-form surfaces. Some parts such as ship’s hulls, airframes and turbine blades
are constrained by aerodynamic and hydrodynamic considerations and shapes
evolve through experience and testing in wind tunnels and test tanks, but a
designer still needs freedom to produce new shapes albeit within these
constraints. Before the advent of this representational form, such free-form
surfaces could not be represented analytically and once developed could only
be stored for future reproduction and evolution by sampling and storing as
coordinates.

Prior to Bézier's innovation the process of going from the abstract design to
the prototype was lengthy and involved many people and processes. The fol-
lowing description, abstracted from Bézier's account in Piegl’s book (Piegl 1993),
is of the process of car design at the time:

0090

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (2)

(1) Stylists defined a general shape using small-scale sketches and clay mock-
ups.

(2) Using offsets (world coordinates in computer graphics terminology)
measured on the mock-up, designers traced a full-scale shape of the skin of
the car body.

(3) Plasterers built a full-scale model, weighing about eight tons, starting from
plywood cross-sections duplicating the curves of the drawing. The clay
model was then examined by stylists and sales managers, and modified
according to taste.

(4) When at last the model was accepted, offsets were again measured and the
final drawings were made. During this period, which could be a year or
more, tooling and production specialists often suggested minor changes to
avoid difficult and costly operations during production.

(5) The drawings were finalized, and one three-dimensional master was built as
the standard for checking the press tools and stamped parts.

(6) The plaster copies of the master were used for milling punches and dies on
copy-machine tools.

Bézier's pioneer development completely changed most aspects of these
processes by enabling a representation of free-form surfaces. Before, a designer
would produce curves using say a device such as a French curve. The designer
used his skill and experience to produce a complete curve that was built, step-
by-step, using segments along some portion of the French curve. A curve gener-
ated in this way could not be stored conveniently except as a set of samples.
Bézier's development was a definition that enabled such curves to be represented
as four points, known as control points, and an implicit set of basis or blending
functions. When the four points are injected into the definition, the curve is
generated or reproduced. This has two immediate consequences. The definition
can be used directly to drive a numerically controlled milling machine and the
part can be produced exactly without the intervention of complications and
delays. (Numerically controlled milling machines have been in existence since
1955 and were another motivation for the development of CAGD.) The defini-
tion can be used as a basis of a CAD program in which modifications to the curve
can be made to a computer visualization.

Bézier describes an intriguing difficulty that he experienced at the time:

When it was suggested that these curves replace sweeps and French curves, most stylists
objected that they had invented their own templates and would not change their methods.
It was therefore solemnly promised that their secret curves would be translated into secret
listings and buried in the most secret part of the computer’s memory, and that nobody but
them would keep the key of the vaulted cellar. In fact, the standard curves were flexible
enough and secret curves were soon forgotten; designers and draughtsmen easily
understood the polygons and their relationship with the shape of the corresponding curves.

Many simultaneous developments were occurring in other industries — notably
aircraft and ship manufacture, and much of the research was carried out under

0091

Figure 3.1
Bézier's concept of curve
representation.

BEZIER CURVES @

the auspices of particular manufacturers, who, like Bézier at Renault, developed
their own CAD systems and surface representations suited to their own require-
ments. This has lead to a number of parametric definitions of surfaces and the
interested reader is best referred to Piegl’s book in which each chapter is written
by a pioneer in this field.

Bézier states that one of the most important requirements of his representa-
tion was that it should be founded on geometry and that the underlying math-
ematics should be easily understood. He introduced the concept of a space curve
being contained in a cube which when distorted into a parallelepiped distorts
the curve (Figure 3.1). The curve is ‘fixed’ within the parallelepiped as follows:

@ The start and end points of the curve are located at opposite vertices of the
parallelepiped.

® At its start point the curve is tangential to Ox.
® At its end point the curve is tangential to Oz,

This geometric concept uniquely defines any space curve (if it is understood that
the curve is a polynomial of a certain degree) and also gives an intuitive feel for
how the curve changes shape as the parallelepiped changes. Now the paral-
lelepiped, and thus the curve, can be completely defined by four points - known
as control points - Py, Py, P: and P; which are just vertices of the parallelepiped
as shown in the figure. Given that the position of the end points of the curve is
fixed and its behaviour at the end points is determined, the shape that the curve
traces out in space between its extremities needs to be defined. A parametric

z z
0
¥
O
X
X
Curve ‘contained’ by a cube Drawing the cube into a

parallelepiped changes the curve

P N

Py Py
1 W
¥y Py Py
X

Wertices used as control points

A N ik

s =

0092

e

REPRESENTATION AND MODELLING OF THREE-DIMEMNSIONAL OBJECTS (2)

Figure 3.2

Moving along the curve by
increasing u is equivalent

to moving a vertical line
through the basis functions.
The intercepts of this line
with the basis functions give
the values of B for the
equivalent point.

definition was chosen which means that the space curve @(u) is defined in terms
of a parameter u (0 < = u < = 1), As u varies from 0 to 1 we arrive at values for the
position of a point on Q(u) by scaling or blending the control points. That is,
each point on the curve is determined by scaling each control point by a cubic
polynomial known as a basis or blending function. The curve is then given by:

3
Q(u) =Z PE(u) [3.1]
(e

and in the case of a Bézier curve the basis or blending functions are the Bernstein
cubic polynomials:

Bo(u) = (1 -y

Biu) = 3u(l - u)
Bau) = 32 (1 -u)
Bayfu) = (u)?

Figure 3.2 shows these polynomials and a Bézier curve (projected into the two-
dimensional space of the diagram).

A useful intuitive notion is the following. As we move physically along the
curve from u = 0 to ¥ = 1 we simultaneously move a vertical line in the basis
function space that defines four values for the basis functions. Weighting each
basis function by the control points and summing, we obtain the corresponding
point in the space of the curve. We note that for any value of u (except u =0 and
u = 1) all the functions are non-zero. This means that the position of all the con-
trol points contribute to every point on the curve (except at the end points).
At u =0 only By is non-zero, Therefore:

Q(0) = Po
similarly
Q1) =P

Space of curve Space of basis functions

0093

Effects of moving control

BEZIER CURVES @

We also note that:
Bo(u) + Bi(u) + Ba(u) + By(u) = 1

Joining the four control points together gives the so-called control polygon and
moving the control points around produces new curves. Moving a single control
point of the curve distorts its shape in an intuitive manner. This is demonstrated
in Figure 3.3. The effect of moving the end points is obvious, When we move the
inner control points "y and P: we change the orientation of the tangent vectors
to the curves at the end points - again obvious. Less obvious is that the positions

of P\ and P, also control the magnitude of the tangent vectors and it can be
shown that:

Q(0) = 3(P, - Py)
Q1) = 3(P: - P3)

where Q. is the tangent vector to the curve (first derivative) at the end point. It
can be seen that the curve is pulled towards the tangent vector with greater mag-
nitude which is controlled by the position of the control points.

Bézier curves find uses not just in highly technical applications but also in
popular software. Drawing packages that are found nowadays in word processors
and DTP applications almost always include a sketching facility based on Bézier
curves. Another well-known application of Bézier curves is shown in Figure 3.4.
Here a typeface is in the process of being designed. The outline of the filled char-
acter is a set of Bezier curves to which the designer can make subtle alterations
by moving the control points that specify curves that describe the outline.

Bézier's original cube concept, encapsulating a curve of three spatial variables,
seems to have been lost and most texts simply deal with the curves of two
spatial variables enclosed in a control polygon. Applications where three-
dimensional space curves have to be designed, three-dimensional computer
animation for example, can have interfaces where two-dimensional projections

AN

0094

]

i
¢

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (2)

Figure 3.4

Using Bézier curves in font
design. Each curve segment
control points are
symbaolized by O + + O,

Figure 3.5

Convex hull property for
cubic spline. The curve is
contained in the shaded
area formed from the
contral points,

r—i—

of the curve are used. An example of this application is given in Section 17.2.2,
{(Note, that for a three-dimensional curve the parallelepiped determines the
plane in which the tangents to the curve — the edges of the control polygon — are
oriented.)

At this point it is useful to consider all the ramifications of representing a
curve with control points. The most important property, as far as interaction is
concerned, is that moving the control points gives an intuitive change in curve
shape. Another way of putting it is to say that the curve mimics the shape of the
control polygon. An important property from the point of view of the algo-
rithms that deal with curves (and surfaces) is that a curve is always enclosed in
the convex hull formed by the control polygon. The convex hull of a two-
dimensional space curve is illustrated in Figure 3.5 and can be considered to be
the polygon formed by placing an elastic band around the control points. This
follows from the fact that the basis functions sum to unity for all w.

Now consider transforming curves. Since the curves are defined as linear
combinations of the control points, the curve is transformed by any affine trans-
formation (rotation, scaling, translation etc.) in three-dimensional space by

0095

BEZIER CURVES @

applying the appropriate transformations to the set of control points. Thus, to
transform a curve we transform the control points then compute the points on
the curve. In this context, note that it is not easy to transform a curve by com-
puting the points then transforming (as we might do with an implicit descrip-
tion). For example, it is not clear in scaling, how many points need to ensure
smoothness when the curve has been magnified. Note here that perspective
transformations are non-affine, so we cannot map control points to screen space
and compute the curve there. However, we can overcome this significant disad-
vantage by using rational curves as we describe later in this chapter.

Finally, a useful alternative notation to the summation form is the following.
First, we expand Equation 3.1 to give:

Quy=Po (1 -) + Py 3u(l —u)* + P2 32 (1 - 1) + Py

this can then be written in matrix notation as:

QW) = UB.P
1 3-3 11[Ps
36 3 0| |

= Taed 12
WwWwulll 3 3 9 o |P
1 0o 0 0 | &

Joining Bézier curve segments

Curve segments, defined by a set of four control points, can be joined to make up
‘more complex’ curves than those obtainable from a single segment. This results
in a so-called piecewise polynomial curve. An alternative method of representing
more complex curves is to increase the degree of the polynomial, but this has
computational and mathematical disadvantages and it is generally considered
easier to split the curve into cubic segments. Connecting curve segments implies
that constraints must apply at the joins. The default constraint is positional con-
tinuity, the next best is first order (or tangential continuity). The difference
between positional and first order continuity for a Bézier curve is shown in Figure
3.6. Positional continuity means that the end point of the first segment is co-
incident with the start point of the second. First order continuity means that the
edges of the characteristic polygon are collinear as shown in the figure. This
means that the tangent vectors, at the end of one curve and the start of the other,
match to within a constant. In shaded surfaces, maintaining only positional con-
tinuity would possibly result in the joins being visible in the final rendered object.

If the control points of the two segments are 8 and R; then first order conti-
nuity is maintained if;

(83 = 82) = k(R = Ro)

Using this condition a composite Bézier curve is easily built up by adding a
single segment at a time. However, the advantage of being able to build up

0096

|
B)
b

i REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (2)
HH

|

Figure 3.6

Continuity between
Bézier curve segrments,
(a) Positional continuity
I between Bézier points.
il | (b) Tangential continuity
I between Bézier points.

—— e T

=

(b}
Figure 3.7
Examples of possible shape

editing protocols for a two- . . "
" segment Bézier curve. a composite form from segments is somewhat negated by the constraints on

(a) Maintain the orientation 10€al control that now apply because of the joining conditions.

of Ri5; and move any of the Figure 3.4 is an example of a multi-segment Bézier curve. In this case a num-
three control points R, ber of curves are joined to represent the outline of the character and first order
Est‘:;'::' t’*‘ L:"L’h"gl_“"""l'";- continuity is maintained between them. It is useful to consider the ramifications

a & line - . " " .

abuu‘: S/, () M ove the for an interface through which a user can edit multi-segment curves and main-
three control points R, tain continuity. Figure 3.7 shows some possibilities. The illustration assumes that
5:/Ry, 52 as a "locked” unit. the user has already constructed a two-segment curve whose shape is to be

()

0097

BEZIER CURVES

altered around the area of the join point 5:/Re. To maintain continuity we must
operate simultaneously on R, Ry/$: and §;. We can do this by:

Maintaining the orientation of the line Ry, 5z and moving the join point up
and down this line (Figure 3.7(a)).

Maintaining the position of the join point and rotating the line R,,§: about
this point (Figure 3.7(b)).
Moving all three control points as a locked unit (Figure 3.7(c)}.

These three editing possibilities or constraints will enable the user to change the
shape of curves made up of any number of segments while at the same time
maintaining first order continuity between the curve segments. We will see later
that this complication of Bézier curves can be overcome in another way - by
using B-spline curves.

Summary of Bézier curve properties

A Bézier curve is a polynomial. The degree of the polynomial is always one
less than the number of control points. In computer graphics we generally
use degree 3. Quadratic curves are not flexible enough and going above
degree 3 gives rise to complications and so the choice of cubics is the best
compromise for most computer graphics applications.

The curve ‘follows’ the shape of the control point polygon and is
constrained within the convex hull formed by the control points.

The control points do not exert ‘local’ control. Moving any control point
affects all of the curve to a greater or lesser extent. This can be seen by
examining Figure 3.2 which shows that all the basis functions are
everywhere non-zero except at the pointu=0andu=1.

The first and last control points are the end points of the curve segment.

The tangent vectors to the curve at the end points are coincident with the
first and last edges of the control point polygon.

Moving the control points alters the magnitude and direction of the tangent
vectors — the basis of the intuitive ‘feel’ of a Bézier curve interface.

The curve does not oscillate about any straight line more often than the
control point polygon - this is known as the variation diminishing property.
This has implications concerning the nature of the surface that can be
represented.

The curve is transformed by applying any affine transformation (that is,
any combination of linear transformations) to its control point
representation. The curve is invariant (does not change shape) under such a
transformation.

0098

—3

REPRESENTATION AND MODELLING OF THREE-DIMEMNSIONAL OBJECTS (2)

B-spline representation

The simplicity and power of the Bézier representation is no doubt responsible for
its enduring popularity. It does, however, suffer from limitations and we will
address these in this section by looking at how these are overcome by using the
B-spline representation. We will as before introduce B-splines by first examining
B-spline curves.

Historically, B-splines preceded Bézier curves and their origin relates to indus-
tries such as shipbuilding where a designer was required to draw life-size curves
representing such entities as the cross-section through the hull of a ship. For
small-scale drawing, draughtsmen would use French curves - a set of small, flat
pre-formed curve sections. They would draw complete curves by putting together
segments formed from different parts of different French curves. For full-scale
plans this method was completely impractical and the draughtsmen {called in
ship-building loftsmen) would employ long, thin strips of metal. These were
pushed into the required curve shape and secured using lead weights called ducks,
and the analogue between ducks and control points should be clear. We can push
the spline into any desired shape that the system can take up and we can have as
many ducks as we require. This is the physical basis of B-splines and we can com-
pare the idea with either a single segment Bézier curve or a multi-segment Bézier
curve. If we compare it with a single segment curve we see that adding extra
control points or ducks removes the variation diminishing property - the curve
can oscillate as we require. Comparing it with a multi-segment Bézier curve we
can say that it is equivalent but we do not have to explicitly maintain continuity
anywhere. Imagine a loftsmen inserting an extra duck - the physical properties of
the metal spline ensures that the new shape that is taken up around the point
where the duck was inserted is continuous. The metal takes up a shape that min-
imizes its internal strain energy. Yet another point that comes out of this real
piece of engineering is that the effect of a duck insertion is local. The shape of the
curve is only altered in its vicinity. We now deal with these points in a formal
manner.

B-spline curves

Two drawbacks associated with Bézier curves that are overcome by using B-spline
curves are their non-localness and the relationship between the degree of the
curve and the number of control points. The first property - non-localness -
implies that although a control point heavily influences that part of the curve
most close to it, it also has some effect on all the curve and this can be seen by
examining Figure 3.2. All the basis functions are non-zero over the entire range
of u. The second disadvantage means that we cannot use a Bézier cubic curve to
approximate or represent n points without the inconvenience of using multiple
curve segments (or by increasing the degree of the curve).

0099

B-SPLINE REPRESENTATION

Like a Bézier curve a B-spline curve does not pass through its control points.
A B-spline is a complete piecewise cubic polynomial consisting of any number
of curve segments. (For notational simplicity we will only consider cubic B-
splines. We can, however, have B-splines to any degree.) It is a cubic segment
over a certain interval, and going from one interval to the next, the coefficients
change. For a single segment only, we can compare the B-spline formulation
with the Bézier formulation by using the same matrix notation.

The B-spline formulation is:

Qi{u) = UBP
—1 3 -3 l Pl.l.]
1 3 6 3 0 P
= [t ul] 513 0o 3 o P,
1 4 1 0 P

where € is the ith B-spline segment and P; is a set of four points in a sequence
of control points. Alternatively we can write:

i
Qit) = ¥ PrsaBisu(u) [3.2)
kel a

where i is the segment number and k is the local control point index - that is the
index for the segment i. The value of u over a single curve segment is0 < u < 1.
Using this notation we can describe u as a local parameter - locally varying over
the parametric range of 0 to 1 - to define a single B-spline curve segment.

Thus in this notation we see that a B-spline curve is a series of m - 2 curve seg-
ments that we conventionally label @s, Q, . . ., @n defined or determined by
m+1 control points Po, Py, . . ., P, m 2 3. Each curve segment is defined by four
control peints and each control point influences four and only four curve seg-
ments. This is the local control property of the B-spline curve and its main
advantage over the Bézier curve,

Here we must be careful. Barsky (in Bartels et al. 1988) points out that compar-
ing Bézier curves and B-spline curves can be misleading because it is not a com-
parison of like with like but a comparison of a single segment Bézier curve (which
may have the control vertex set extended and the degree of the curve raised) with
a piecewise or composite B-spline curve. A single segment Bézier curve is subject to
global control because moving a control point affects the complete curve. In a
composite B-spline curve moving a control point only affects a few segments of
the curve. The comparison should be between multi-segment Bézier curves and B-
splines, The difference here is that to maintain continuity between Bézier seg-
ments the movement of the control points must satisfy constraints, while the
control points of a B-spline composite can be moved in any way.

A B-spline exhibits positional, first derivative and second derivative (C?) conti-
nuity and this is achieved because the basis functions are themselves C? piecewise
polynomials. A linear combination of such basis functions will also be C? contin-
uous. We define the entire set of curve segments as one B-spline curve in w:

0100

5

REPRESEMTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (2)

Qiu) = i PBiu)

In this notation i is now a non-local control point number and u is a global param-
eter discussed in more detail in the next section.

Uniform B-splines

Equation 3.2 shows that each segment in a B-spline curve is defined by four basis
functions and four control vertices. Hence there are three more basis functions
and three more control vertices than there are curve segments. The join point on
the value of u between segments is called the knot value and a uniform B-spline
means that knots are spaced at equal intervals of the parameter u. Figure 3.8
shows a B-spline curve that is defined by (the position of) six control vertices or
control points Po, Py, . . ., Ps. It also shows the effect of varying the degree of
the polynomials, and curves are shown for degree 2, 3 and 4. We are generally
interested in cubics and this is a curve of three segments with the left-hand end
point of @ near Py and the right-hand end point of Qs near Ps. (Thus we see
that a uniform B-spline does not in general interpolate the end control points,
unlike a Bézier curve. Also it is the case that a Bézier curve more closely approx-
imates its control point polygon. However, the continuity-maintaining property
of the B-spline curve outweighs these disadvantages.)

The notation gives us the following organization (where each curve segment
is shown as an alternating full/dotted line):

() is defined by Po Py P2 P which are scaled by Bo By Bz Bs
Qs is defined by P, P: P*; P which are scaled by By B: B B
Qs is defined by P; P; Py Ps which are scaled by Bz Bs By Bs

The fact that each curve segment shares control points is the underlying mech-
anism whereby C? continuity is maintained between curve segments. Figure 3.9

, Degree = 4
Degree = 3

Degree =12
P, P
4
L)
P

Figure 3.8
A three-segment B-spline
cubic curve defined by six
control paints. Py

0101

ﬁgur! 39
pemonstrating the locality
property of B-spline curves.
Moving Py changes @« and
Q4 to a lesser extent. @ is
wnchanged.
1
1
|
]
]
|
1
Figure 3.10
The uniform cubic B-spline
B{u).

B-SPLINE REPRESENTATION

shows the effect of changing the position of control point Ps. This pulls the seg-
ment s in the appropriate direction and also affects, to a lesser extent, segment
Q. (which is also defined by ;). However, it does not affect Qs and this figure
demonstrates the important locality property of B-splines. In general, of course,
a single control point influences four curve segments.

We now consider the underlying basis functions that define the curve, Each
basis function is non-zero over four successive intervals in u (Figure 3.10). It is,
in fact, a cubic composed itself of four segments. The B-spline is non-zero over
the intervals wi, Wi, . . ., Hus and centred on ui.z. Now each control point is scaled
by a single basis function and if we assume that our knot values are equally
spaced, then each basis function is a copy or translate and the set of basis func-
tions used by the curve in Figure 3.8 is shown in Figure 3.11.

The basis functions sum to unity in the range u = 3 to 1 = 6 in this case, the
values of the parameter 1 over which the curve is defined. A consequence of this
is that the entire B-spline curve is contained within the convex hull of its control
points. If we consider a single segment in the curve, then this defines a parame-
ter range w; to 1. The basis functions that are active in the ith parametric inter-
val, w; to 1., that is the functions that define a single curve segment, are shown
highlighted in Figure 3.12. This gives a useful interpretation of the behaviour of
the functions as u is varied. In general, for values of u that are not knot values,
four basis functions are active and sum to unity. When a knot value u = w is

Biw) 7
yd

L Uivy Uy Uiy Uiy

0102

Figure 3.11
The six B-splines used in
i constructing the curve of
! Figure 3.8. They are all

| translates of each other.

i The Figure 3.12
L The four B-splines that are
: non-zero or active for the
: F i first curve segment in Figure
k 3.8.

REPRESENTATION AND MODELLING OF THREE-DIMENSIOMNAL OBJECTS (2)

Boluy Bifu) By Ba(w) Ba(w) Belu)

] 1 2 i 4 3] 7 8 9

Parameter range
of curve

reached one basis function *switches off’ and another ‘switches on’. At the knot
value there are three basis functions that sum to unity.

At this st;-;ge we can summarize and state that a B-spline curve is made up of
m - 2 segments defined by the position of m + 1 basis functions over m + 5 knot
values. Thus in Figure 3.7 we have three segments, six control points and six
basis functions over ten knot values.

Mow consider again Figure 3.12. In the parameter range w: < u < w1 we evalu-
ate the four B-splines Bi, Bii, Biz and Bi; by substituting 0 < u < 1 and computing;

B = % w
B = -é- (=30 + 3u® + 3u+1)
1 [3.3]
Bz = 3 (3uF - 617 + 4)
By = = (1-u?
=3 = 6

It is important to note that this definition gives a single segment from each of the
four B-spline basis functions over the range 0 < u £ 1. It does nof define a single
B-spline basis function which consists of four segments over the range 0 S u < 4.

We now come to consider the end control vertices and note again that the
curve does not interpolate these points. In general, of course, a B-spline curve
does not interpolate any control points. We can make a B-spline curve interpo-
late control points by introducing multiple vertices. However, this involves a loss
of continuity as we shall see. Intuitively we can think of increasing the influence
of a control point by repeating it. The curve is attracted to the repeated point. A
segment is made by basis functions scaling control points. If a control point is

Byuw) Bduw) Balu)

0103

Figure 3.13

pemonstrating the effect of
multiple end control paints.
Ps is repeated three times
forcing the curve to
interpolate it.

Figure 3.14

Demonstrating the effect of
multiple intermediate
control points. (a) Py is
duplicated. (b) Py is
triplicated.

P,

B-SPLINE REPRESENTATION (83)

P, P, P

repeated it will be used more than once in the evaluation of a single segment.
For example, consider Figure 3.13 and compare it with Figure 3.8. The last con-
trol point in the example in Figure 3.8 is now repeated three times. There are
now five segments and Ps is used once in the determination of Qs, twice in Qs
and three times in . The curve now ranges over 3 < u < 8. At u = 8 the curve is

coincident with Ps.

Such a technique can be used to make the curve interpolate both the inter-
mediate control points and the end points. Figure 3.14(a) shows the effect

(a)

(b}

P,

aPi Py
R .
I 1 Py
_.__/ .
. P
Py
o P
/‘P_m. P P
ﬂ- L]
W P‘

P

0104

T L L
e

REFPRESENTATION AMD MODELLING OF THREE-DIMENSIONAL OBJECTS (2)

Figure 3.15

A non-unifarm B-spline that
interpolates the end points
by using a knot vector
[0,0,0,0,1,2,3,3,3,3].

of introducing multiple intermediate control points. In this figure I; has been
doubled. P; is almost interpolated and an extra segment is introduced. The
continuity changes from C2G* to C2G'. This means that the continuity across the
two segments is reduced by one although the continuity within each segment is
still C2. Figure 3.14(b) shows P: made into a triple control point. This time the
curve interpolates the control point and the curve becomes a straight line on
either side of the control point. The continuity reduces now to C*G".

Non-uniform B-splines

In the previous section we considered a family of curves that we referred to as
uniform B-splines because the basis functions were translates of each other. We
now look at non-uniform B-splines.

A non-uniform B-spline is a curve where the parametric intervals between suc-
cessive knot values are not necessarily equal. This implies that the blending func-
tions are no longer translates of each other but vary from interval to interval. The
most common form of a non-uniform B-spline is where some of the intervals
between successive knot values are reduced to zero by inserting multiple knots.
This facility is used to interpolate control points (both end points and intermedi-
ate points) and it possesses certain advantages over the method used in the pre-
vious section - inserting multiple control points. In particular a control point can
be interpolated without the effect that occurred with multiple control vertices -
namely straight line curve segments on either side of the control point.

Consider the curve generated in Figure 3.8. The knot values for this curve are
u=3,4,5, 6. We define a knot vector for this curve as [0,1,2,3,4,5,6,7] and a use-
ful parametric range (within which the basis functions sum to unity} as 3 s u <
6. The interval between each knot value is 1. If non-uniform knot values are

Fy

P

Bylu) Bylu)

0105

Figure 3.16

Showing the flexibility
of B-spline curves.

The knat vector is

[0,0,0,0,1,2,3,4,5,6,6,6,6].

B-SPLINE REPRESENTATION

used, then the basis functions are no longer the same for each parametric inter-
val, but vary over the range of u. Consider Figure 3.15. This uses the same
control points as Figure 3.8 and the B-spline curve is still made up of three seg-
ments. However, the curve now interpolates the end points because multiple
knots have been inserted at each end of the knot vector. The knot vector used is
[0,0,0,0,1,2,3,3,3,3]. The basis functions are also shown in the figure. The curve
now possesses nine segments Qo to @s. However, Qo, @1, Q: are reduced to a
single point. @i, Qs and Qs are defined over the range 0 < u £ 3. Qs, & and
Qs are reduced to a single point v = 3. In practice the knot sequence
[0,0,0,0,1,2,....,n-1,n,n,n,n] is often used. That is, interpolation is forced at the
end points but uniform knots are used elsewhere. A second example showing the
flexibility of a B-spline curve is given in Figure 3.16. Here we have nine control
points and thirteen knots. The knot vector is [0,0,0,0,1,2,3,4,5,6,6,6,6].

In general a knot vector is any non-decreasing sequence of knot values u to
limes. AS We have seen, successive knot values can be equal and the number of
identical values is called the multiplicity of the knot. Causing a curve to inter-
polate the end points by using multiple control vertices does not have precisely
the same effect as using multiple control vertices and Figure 3.17 shows the final
control point Ps in our standard example interpolated using both a multiple
control point and a knot vector with multiplicity 4 on the final knot value.

X

o ——

0106

REPRESENTATION AND MODELLING OF THREE-DIMEMNSIONAL OBJECTS (2)

Figure 3,17

Camparing multiple knots
with multiple control points.
(a) The curve is generated
by a knot vector with
multiplicity 4 on the start
and end values. (b) Ps is
repeated three times.

Figure 3.18

The effect of knot
multiplicity on a single cubic
B-spline basis function.
(a) All knot multiplicities
are unity: [0,1,2,3,4].

{b) Second knot has
multiplicity 2: [0,1,1,2,3].
{c) Second knot has
multiplicity 3:

[0,1,1,1,2]. (d) Second
knot has multiplicity 4:
[0,1,1,1,1].

Note that if we use the knot vector [0,0,0,0,1,1,1,1] then we have single seg-
ment curve interpolating P, and ;. In this instance the basis functions are the
Bézier basis functions (Figure 3.2) and the resulting curve is a Bézier curve. Thus
we see that a Bézier curve is just a special case of a non-uniform B-spline.

The effect of a multiple knot on the shape of a basis function is easily seen.
Consider Figure 3.18(a) shows the uniform B-spline basis function defined over
the knots O, 1, 2, 3, 4. As we have explained in the previous section, this is itself
made up of four cubic polynomial segments defined over the given ranges. These
are generated by using Equation 3.3 and translating each cubic segment by
0, 1, 2, 3 and 4 units in u. Alternatively we can use:

(d)

0107

T

E-SPLINE REPRESENTATION

baol) = %.-ﬁ O0<u=1

mm¢=_% (G -12@+12u-4) 15us<2
Bo(u) = 1

baiu) = E (3 - 240 + 60u - 44) 22u=<3

bs(u) =-% W -121%+ 48u-64) 3<u<d

Compared with Equation 3.3 note that this defines a single B-spline basis func-
tion over the range 0 < u < 4. If we double the second knot and use [0,1,1,2,3],
bo(u) shrinks to zero length and the function becomes asymmetric as shown in
Figure 3.18(b). The double knot eliminates second derivative continuity but first
derivative continuity remains. Tripling the second knot by using knot vector
[0,1,1,1,2] gives the symmetrical function shown in Figure 3.18(c) which now
only has positional continuity. Quadrupling this knot [0,1,1,1,1] produces the
function shown in Figure 3.18(d) where even positional continuity is eliminated.

If we now return to the context shown in Figure 3.15. The first basis function
is defined over [0,0,0,0,1] and is asymmetric with no positional continuity.
The second is defined over a set of knot values that contains a triple knot -
[0,0,0,1,2], the third over the sequence [0,0,1,2,3] and is also asymmetric. In this
case all functions are asymmetric and summarizing we have;

Knot vector Basis function
00001 By
00012 By
00123 i
01233 B
12333 B4
23333 Bs

We can further see from this set of basis functions that they sum to unity over
the entire range of v and that at ¥ = 0 and u = 3 the only non-zero basis func-
tions are Bo and Bs (both unity) which cause the end points to be interpolated by
Q; and Qs respectively.

We now consider altering the knot multiplicity for interior knots where
the issue of continuity changes becomes apparent. Consider the examples
given in Figure 3.19. This is the same example as we used in Figure 3.7 except
that an extra control point has been added to give us a four segment curve. The
knot wvector is [0,1,2,3,4,5,6,7,8,9,10] and Figure 3.19(a) shows the curve.
Figure 3.19(b) shows the effect of introducing a double knot using vector
[0,1,2,3,4,4,5,6,7,8,9]. The number of segments is reduced to three. Q. shrinks to
zero. The convex hulls containing @5 and Qs meet on edge P:P: and the join
point between Q:Q4 and Qs is forced to lie on this line. In Figure 3.19(c) a triple
knot is introduced - [0,1,2,3,4,4,4,5,6,7,8]. The curve is reduced to two seg-
ments. Q4 and Qs shrink to zero at P;. There is only positional continuity
between @ and Qs but the segments on either side of the control point P; are

0108

REPRESENTATION AND MODELLING OF THREE-DIMENSIONAL OBJECTS (2)

Figure 3,19

The effect of interior knot (@)
multiplicity on a B-spline

curve.

(a) A four-segment B-spline

curve, The knot vector is
[0,1,2,3,4,5,6,7,8,9,10].

All B-splines are translates

of each other,

(b) Knot vector is
[0,1,2,3,4,4,5,6,7,8,9]. (b
Q. shrinks to zero.)

L

i
Dauble
knot

0109

B-SPLINE REPRESENTATION

Figure 3.19 continued

(c) Knot vector is {c)
[0,1,2,3,4,4,4,5,6,7,8].

Q. and @ shrink to zero,

Continuity between @ and P
@ is positional, v

Triple
knot

(d) Knot vector is

0,1,2,3,4,4,4,4,5,6,7,8]. (d)
The curve reduces to a

b single segment @, Another

control point has been P,
added to show that the

curve now 'breaks’ between

] Py and P

P

Quadruple
knot

0110

