COLOUR AND COMPUTER GRAPHICS

Figure 15.1
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space in which reside all the colours that we have an interest in. First of all we
need to define the hierarchy of colour sets that we will be referring to. These are:

(1) The set of all colours perceivable by human beings with normal colour
vision.

(2) The set of colours that can be displayed by a monitor screen or captured by
an input device, This is a subset of (1) for reasons that will become clear in
the course of this chapter,

(3) The set of colours that can be calculated by a graphics program and stored
in a frame memory. For a 24-bit system (16 million colours) this will
generally be a subset of (1) but a superset of (2). That is unless we take special
precautions we may generate colours that are outside the display gamut or
range,

The hierarchy is illustrated (Figure 15.1) in a cross-section of a three-dimensional
colour space that will be explained later.
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Colour and three-dimensional space

Why is colour a three-component vector? Again we have to bear in mind that
colour is a human sensation, Traditionally we describe colours in words, usually
i by allusion to common objects ‘apple green’ or ‘blood red’ etc. More precisely,
colour is communicated in the painting and dyeing industry by the production
of charts of sample colours. The numerica) specification of colour has a long
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COLOUR AND THREE-DIMENSIOMAL SPACE

history that began with Isaac Newton, but it was only in the twentieth century
that numerical systems became important industrially.

The answer to the question ‘why is colour specified by three numerical
labels?” is that we have three different types of cone in our retinas which have
different sensitivities to different wavelengths (Figure 15.7(a}). Light can be spec-
ified physically as a spectral power distribution or SPD - the objective measure-
ment of light energy as a function of wavelength - and we should be able to
categorize the effect of any SPD on a human observer by three weights - the rel-
ative response of the three different types of cone. And so it happens that we can
visually match a sample colour by additively mixing three coloured lights, We
can, for example, match a sample or target colour by controlling the three inten-
sities of a red, green and a blue light. However, note the important point that in
matching with primary colours red, green and blue we are not basing the
labelling of an SPD on the cone spectral sensitivity curves, but are using the
human vision system to match colours with a mix of primaries. To do this for all
colours on a wavelength-by-wavelength basis leads to spectral sensitivity curves
that our retinas would have if the cones responded maximally to these colours.
The reason for this somewhat convoluted approach is that we can derive these
functions easily from colour matching experiments; precise knowledge of the
actual spectral sensitivity curves of the retina was harder to come by.

Thus numerical specification of colour is by a triple of primary colours. Most,
but not all, perceivable colours can be produced by additively mixing appropri-
ate amounts of three primary colours (red, green and blue, for example). If we
denote a colour by C, we have:

C=rR+gG+bB

where r, g and b are the relative weights of each primary required to match the
colour to be specified. The important point here is that this system, even though
it is not specifying information related directly to the SPD of the colour, is say-
ing that a colour C can be specified by a numerical triple because if a matching
experiment was performed an observer would choose the components r, g, b to
match or simulate the colour C.

In a computer graphics monitor a colour is produced by exciting triples of
adjacent dots made of red, green and blue phosphors. The dots are small and the
eye perceives the triples as a single dot of colour. Thus we specify or label colours
in reality using three primaries and the production of colours on a monitor is
also specified in a similar way. However, note the important distinction that
colour on a monitor is not produced by mixing the radiation from three light
sources but by placing the light sources in close proximity to each other.

Unfortunately in computer graphics this three-component specification of
colour together with the need to produce a three-component RGB signal for a
monitor has led to a widely held assumption that light-object interaction need
only be evaluated at three points in the spectrum. This is the *standard’ RGB par-
adigm that tends to be used in Phong shading, ray tracing and radiosity. If it is
intended to simulate accurately the interaction of light with objects in a scene,
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then it is necessary to evaluate this interaction at more than three wavelengths;
otherwise aliasing will result in the colour domain because of undersampling of
the light distribution and object reflectivity functions. Of course, aliasing in the
colour domain simply consists of a shift in colour away from a desired effect ang
in this sense it is invisible. (This is in direct contrast to spatial domain aliasing
which produces annoying and disturbing visual artefacts.) Colours in most com-
puter graphics applications are to a great extent arbitrary and shifts due to inac.
curate simulation in the colour domain are generally not important. [t is only in
applications where colour is a subtle part of the simulation, say, for example, in
interior design, that these effects have to be taken into account.

Given that we can represent or describe the sensation of colour, as far as
colour matching experiments are concerned, with numeric labels, we now face
the question: which numbers shall we use? This heralds the concept of different
colour spaces or domains.

It may be as we suggested in the previous section, that a calculation or ren-
dering domain be a wavelength or spectral space. Eventually, however, we need
to produce an image in RGBuonier space to drive a particular monitor. What about
the storage and communication of images? Here we need a universal standard.
RGBmanuer spaces, as we shall see, are particular to devices. These devices have
different gamuts or colour ranges all of which are subsets of the set of perceiv-
able colours. A universal space will be device independent and will embrace
all perceivable colours. Such a space exists and is known as the CIE XYZ stan-
dard. A CIE triple is a unique numeric label associated with any perceivable
colour.

Another requirement in computer graphics is a facility that allows a user to
manipulate and design using colour. It is generally thought that an interface that
allows a user to mix primary colours is anti-intuitive and spaces that are inclined
to perceptual sensations such as hue, saturation and lightness are preferred in
this context.

We now list the main colour spaces used in computer imagery.
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(1) CIE XYZ space: the dominant international standard for colour specification.
A colour is specified as a set of three tri-stimulus values or artificial primaries
xYZ.

(2) Variations or transformations of CIE XYZ space (such as CIE xyY space) that
have evolved over the years for different contexts. These are transforms of
CIE XYZ that better reflect some detail in the perception of colour, for
example, perceptual linearity.

(3) Spectral space: in image synthesis light sources are defined in this space as n
wavelength samples of an intensity distribution. Object reflectivity is
similarly defined. A colour specified on a wavelength-by-wavelength basis is

i how we measure colour with a device such as a spectrophotometer. As we

have pointed out, this does not necessarily relate to our perception of an

5PD as one colour or another. We synthesize an image at n wavelengths and
then need to ‘reduce’ this to three components for display.
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(4) RGB space: the ‘standard’ computer graphics paradigm for Phong shading.
This is just a three-sample version of spectral space, light sources and object
reflectivity are specified as three wavelengths: Red, Green and Blue. We
understand the primaries R, G and B to be pure or saturated colours,

(5) RGBmonir Space: a triple in this space produces a particular colour on a
particular display. In other words it is the space of a display. The same triple
may not necessarily produce the same colour sensation on different
monitors because monitors are not calibrated to a single standard. Monitor
RGBs are not pure or saturated primaries because the emission of light from
an excited phosphor exhibits a spectral power distribution over a band of
frequencies. If the usual three-sample approach is used in rendering then
usually whatever values are calculated in RGB space are assumed to be
weights in RGBueier Space. If an n sample calculation has been performed
then a device-dependent transformation is used to produce a point in
RGBmaaiter space.,

(6) HSV space: a non-linear transformation of RGB space enabling colour to be
specified as Hue, Saturation and Value.

(7) YIQ space: a non-linear transformation of RGB space used in analogue TV.

1 We will now deal with the issues surrounding these colour spaces. We will start
with RGB space because it is the most familiar and easiest to use. We will then
look at certain problems that lead us on to consideration of CIE space.

RGB space

Given the subtle distinction between (4) and (5) above we now describe RGB
space as a general concept. This model is the traditional form of colour specifi-
cation in computer imagery. It enables, for example, diffuse reflection coeffi-
cients in shading equations to be given a value as a triple (R, G, B). In this system
{0, 0, 0) is black and (1, 1, 1) is white. Colour is labelled as relative weights of
three primary colours in an additive system using the primaries Red, Green and
Blue. The space of all colour available in this system is represented by the RGB
cube (Figure 15.2 and Figure 15.3 (Colour Plate)). Important points concerning
RGB space are:

{1) Itis perceptually non-linear. Equal distances in the space do not in general
correspond to perceptually equal sensations. A step between two points in
one region of the space may produce no perceivable difference; the same
increment in another region may result in a noticeable colour change. In
other words, the same colour sensation may result from a multiplicity of
RGB triples. For example, if each of RGB can vary between 0 and 255, then
over 16 million unique RGB codes are available.

(2) Because of the non-linear relationship between RGB values and the intensity
produced at each phosphor dot (see Section 15.5), low RGB values produce
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# Figure 15.2
R The RGE colour salid. See
1 also Figure 15.3 (Colour

: \:; Plate).

ellow

small changes in response on the screen. As many as 20 steps may be
necessary to produce a ‘just noticeable difference’ at low intensities; whereas
a single step may produce a perceivable difference at high intensities.

; (3) The set of all colours produced on a computer graphics monitor, the RGB
& space, is always a subset of the colours that can be perceived by humans,
This is not peculiar to RGB space. Any set of three visible primaries can only
produce through additive mixing of a subset of the perceivable colour set.

i (4) Itis not a good colour description system. Without considerable ex perience,
; users find it difficult to give RGB values to colours known by label. What is
the RGB value of ‘medium brown'? Once a colour has been chosen it may
not be obvious how to make subtle changes to the nature of the colour. For
example, changing the ‘vividness’ of a chosen colour will require unequal
changes in the RGB components.

The HSV single hexcone model

The H{ue) S(aturation V{alue) or single hexcone model was proposed by AR,
Smith in 1978 (Smith 1978). Its purpose is to facilitate a more intuitive interface
for colour than the selection of three primary colours. The colour space has the
shape of a hexagonal cone or hexcone. The HSV cone is a non-linear transfor-
mation of the RGB cube and although it tends to be referred to as a perceptual
model, it is still just a way of labelling colours in the monitor gamut space,
Perceptual in this context means the attributes that are used to represent the
colour are more akin to the way in which we think of colour; it does not mean
that the space is perceptually linear. The perceptual non-linearity of RGB space
is carried over into HSV space; in particular, perceptual changes in hue are
distinctly non-linear in angle.
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It can be employed in any context where a user requires control or selection
of a colour or colours on an aesthetic or similar basis. 1t enables control over the
range or gamut of an RGB monitor using the perceptually based variables Hue,
Saturation and Value. This means that a user interface can be constructed where
the effect of varying one of the three qualities is easily predictable. A task such
as make a colour brighter, paler or more yellow is far easier when these percep-
tual variables are employed, than having to decide on what combinations of
RGB changes are required.

The HSV model is based on polar coordinates rather than Cartesian and H is
specified in degrees in the range 0 to 360. One of the first colour systems based
on polar coordinates and perceptual parameters was that due to Munsell. His
colour notation system was first published in 1905 and is still in use today.
Munsell called his perceptual variables Hue, Chroma and Value and we can do
no better than reproduce his definition for these. Chroma is related to saturation
- the term that appears to be preferred in computer graphics.

Munsell’s definitions are:

® Hue: ‘It is that quality by which we distinguish one colour family from
another, as red from yellow, or green from blue or purple.”

® Chroma: ‘It is that quality of colour by which we distinguish a strong colour
from a weak one; the degree of departure of a colour sensation from that of
a white or grey; the intensity of a distinctive hue; colour intensity.’

® Value: ‘It is that quality by which we distinguish a light colour from a dark
one.’

The Munsell system is used by referring to a set of samples - the Munsell
Book of Colour. These samples are in ‘just discriminable’ steps in the colour
space.

The HSV model relates to the way in which artists mix colours. Referring to
the difficulty of mentally imagining the relative amounts of R, G and B required
to produce a single colour, Smith says:

Try this mixing technique by mentally varying RGB to obtain pink or brown. It is not
unusual to have diffculty. . . . the following [HSV] model mimics the way an artist mixes
paint an his palette: he chooses a pure hue, or pigment and lightens it to a tint of that hue
by adding white, or darkens it to a shade of that hue by adding black, or in general obtains
a tone of that hue by adding some mixture of white and black or grey.

In the HSV model, varying H corresponds to selecting a colour. Decreasing
5 (desaturating the colour) corresponds to adding white. Decreasing V
idevaluing the colour) corresponds to adding black. The derivation of the
transform between RGB and HSV space is easily understood by considering a
geometric interpretation of the hexcone. If the RGB cube is projected along its
main diagonal onto a plane normal to that diagonal, then a hexagonal disc
results.

The following correspondence is then established between the six RGB
vertices and the six points of the hexcone in the HSV model:

- .
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Figure 15.4

H3V single hexcone colour
solid. See also Figure 15.5
(Colour Plate).

RGB HSV

(100} red 0,1, 1)
(110) vellow (60, 1, 1)
{010} green (120, 1, 1
(011) cyan (180, 1, 1)
{001) blue (240, 1, 1)

(101) magenta (300, 1, 1)

where H is measured in degrees. This hexagonal disc is the plane containing V =
1 in the hexcone model. For each value along the main diagonal in the RGB cube
{increasing blackness) a contained sub-cube is defined. Fach sub-cube defines a
hexagonal disc. The stack of all hexagonal discs makes up the HSV colour solid.

Figure 15.4 shows the HSV single hexcone colour solid and Figure 15.5
(Colour Plate) is a further aid to its interpretation showing slices through the
achromatic axis. The right-hand half of each slice is the plane of constant H and
the left-hand half that of H + 180.

Apart from perceptual non-linearity another subtle problem implicit in the
H5V system is that the attributes are not themselves perceptually independent.
This means that it is possible to detect an apparent change in Hue, for example,
when it is the parameter Value that is actually being changed.

Finally, perhaps the most serious departure from perceptual reality resides in
the geometry of the model. The colour space labels all those colours reproducible
on a computer graphics monitor and implies that all colours on planes of con-
stant V are of equal brightness. Such is not the case. For example, maximum
intensity blue has a lower perceived brightness than maximum intensity yellow.
We conclude from this that because of the problems of perceptual non-linearity
and the fact that different hues at maximum V exhibit different perceptual val-
ues, representing a monitor gamut with any ‘regular’ geometric solid such
as a cube or a hexcone is only an approximation to the sensation of colour
and this fact means that we have to consider perceptually based colour spaces.

AV (value)

Cireen Yellow

- '___.-"'g---.

| H {hue)

Black 8 (saturation)
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A simpler way of expressing this fact is to reiterate that colour is a perceptual sen-
sation and cannot be accurately labelled by dividing up the RGB voltage levels
of a monitor and using this scale as a colour label. This is essentially what we are
doing with both the RGB and the HSV model and the association of the word
‘perceptual’ with the HSV model is unfortunate and confusing.

YIQ space

Y1Q space is a linear transformation of RGB space that is the basis for analogue
TV. Its purpose is efficiency in terms of bandwidth usage (compared with the
RGB form) and to maintain compatibility for black and white TV (all the
information required for black and white reception is contained in the Y
component).

¥ 0.299 0.587 0.144 R
I | =059 0275 -0.321 G
Q 0.212 -0.523 0.311 B

Note that the constant matrix coefficients mean that the transformation
assumes that the RGB components are themselves defined with respect to a stan-
dard (in this case an NTSC definition). The Y component is the same as the CIE
Y primary (see Section 15.3.1) and is called luminance. Colour information is
‘isolated’ in the T and Q components (equal RGB components will result in zero
I and Q values). The bandwidth optimization comes about because human
beings are more sensitive to changes in luminance than to changes in colour in
this sense., We can discriminate spatial detail more finely in grey scale changes
than in colour changes. Thus, a lower bandwidth can be tolerated for the T and
Q components resulting in a bandwidth saving over using RGB components.

Colour representations where the colour and luminance information are sep-
arated are important in image processing where we may want to operate on
image structure without affecting the colour of the image.
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Colour, information and perceptual spaces

We now come to consider the use of perceptual spaces in computer imagery. In
particular we shall look at the CIE XYZ space - an international numerically
based colour labelling system first introduced in 1931 and derived from colour
matching experiments.

To deal with colour reality we need to manipulate colours in a space that bears
some relationship to perceptual experience. We have already alluded to applica-
tions where such considerations may be important. For example, in CAAD for
interiors, the design of fabrics or the finish on such expensive consumer durables
as cars, it will be necessary for computer graphics to move out of the arbitrary
RGBE domain into a space where colour is accurately simulated. Of course, in

R
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there are many other factors involved — surface texture, the macroscopic nature
of the colour (metallic paint or ordinary gloss paint, for example) and geometri.
cal accuracy, but at the moment in computer graphics it is the case that the RGR
triple is the de facto standard for rendering.

Colour is used much in visualization applications to communicate numerical
information. This has a long history. Possibly the most familiar manifestation is
a coloured terrain map. Here colours are chosen to represent height.
Traditionally colours are chosen with green representing low heights. Heights
from 0 to 100 m may be represented by lightening shades of green through to
vellow. Darkening shades of brown may represent the range 1000 to 3000 m,
Above 3000 m there are usually two shades of purple, and white is reserved for
6000m and above,

This technique has been used in image processing and computer graphics
where it is called pseudo-colour enhancement. It is used most commonly to dis-
play a function of two variables, f{x, y), in two space where before such a func-
tion would have been displayed using ‘iso-f'contours. In pseudo-colour
1: enhancement a deliberately restricted colour list (of, say, 10 colours) is chosen
i and the value of fis mapped into the nearest colour. The function appears like a

terrain map with islands of one colour against a background of another.

B In computer graphics and image processing the most popular mapping of
i fix, y) into colour has been some variation of the rainbow colours with red used
' to represent high or hot and blue used for low intensity or cold - in other words
a path around the outer edge of HSV space. One of the problems with this map-
ping is that depending on the number of colour steps used, transitions between
different colours appear as false contours. Violent colour discontinuities appear
in the image where the function £ is continuous. There is a contradiction here:
we need these apparent discontinuities to highlight the shape of the function
but they can easily be interpreted as transitions in the function where no tran-
sition exists. This is particularly true in non-mathematical images which are not
everywhere continuous to start with. Natural discontinuities may exist in the
function anyway, say in a medical image made up of the response of a device
to different tissue. The appearance of false contours in such an image may be
undesirable.

Thus, whether the contours add to or subtract from the perception of
the nature and shape of f depends in the end on the image context. The
effect of false contours is easily diminished by adding more colours to the
mapping but this may have the effect of making the function more difficult to
interpret.

The use of perceptual colour spaces in the context of numerical information
is extremely important. If an accurate association between colours and numeric
information is required, then a perceptually linear colour scale should be used.
We discussed in Section 15.2.1 the perceptual non-linearity of RGB space and it
is apparent that unless this factor is dealt with, it will interfere with the associa-
tion of a colour with a numeric value. There is no good reason, apart from

B i attempting to transmit an illusion of reality in a computer graphics simulation
¥
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cultural associations like the example of the terrain map coding in cartography,
why a hue circle should be used as a pseudo-colour scale.

The use of pseudo-colour in two space to display functions of two spatial vari-
ables has been around for many years. The last ten years have seen an increas-
ing application of three-dimensional computer graphics techniques in the
visualization of scientific results and simulations {an area that has been awarded
the acronym ViSC). The graphics technigues used are mainly animation, volume
rendering (both dealt with elsewhere in this text) and the use of pseudo-colour
in three space, which we will now examine.

Figure 13.1 (Colour Plate) illustrates an application. It shows an isosurface
extracted from a Navier-Stokes simulation of a reverse flow pipe combustor. In
this simulation the primary gas flow is from left to right. Air is forced into the
chamber under compression at the left, and dispersed by two fans. Eight fuel
jets, situated radially approximately halfway along the combustor, are directed
in such a way as to send the fuel mixture in a spiralling path towards the front
of the chamber. Combustible mixing takes place in the central region and thrust
is created at the exhaust outlet on the right. The isosurfaces shown connect all
points where the net flow along the long axis is zero - a zero velocity surface.

Such an isosurface can be displayed by using conventional three-dimensional
rendering techniques as the illustration demonstrates. In the second illustration
we have sought to superimpose a pseudo-colour that represents temperature. A
spectral colour path, from blue to magenta, around the circumference of the
HSV cone is used.

Thus, in the same three-dimensional image we are trying to represent two
functions simultaneously. First, the shape of an isosurface and, second, the tem-
perature at every point on the isosurface. Perceptual problems arise in this case
because we are using colour to represent both shape and temperature, whereas
normally the colour is experienced as an association with a single phenomenon.
For example, it tends to be difficult in such representations, to interpret the
shape of the isosurface in regions of rapidly varying hue or temperature.
Mevertheless representational schemes like this are becoming commonplace in
visualization techniques. They represent a kind of summary of complex data
that, prior to the use of three-dimensional computer graphics, could only be
examined one part at a time. For example, the simulation in the illustration may
have been investigated by using a rotating cross-section. This leaves the difficult
task of building up a three-dimensional picture of the data to the brain of the
viewer.

CIE XYZ space

We have discussed in previous sections that we need spectral space to try to simu-
late reality. This implies that we need a way of ‘reducing’ or converting spectral
space calculations for a monitor display. Also, we saw that we need perceptual
colour spaces for choosing mappings for pseudo-colour enhancement. Another
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raison d'étre for perceptual colour spaces in computer graphics is for the storage and
the communication of files within the computer graphics community and for
communication between computer graphicists and industries that use colour.

The CIE standard allows a colour ta be specified as a numeric triple (X, Y, Z),
CIE XYZ space embraces all colours perceivable by human beings and it is based
on experimentally determined colour matching functions. Thus, unlike the
three previous colour spaces, it is not a monitor gamut space,

The basis of the standard, adopted in 1931, was colour matching experiments
where a user controls or weights three primary light sources to match a target
monachromatic light source. The sources used were almost monochromatic and
were R =700 nm, G = 546.1 nm and B = 435.8 nm. In other words the weights in:

C=rR+gG+bB

are determined experimentally.

The result of such experiments can be summarized by colour matching func-
tions. These are shown in Figure 15.6(b) and show the amounts of red, green and
blue light which when additively mixed will produce in a standard observer a
monochromatic colour whose wavelength is given by A. That is:

Ci=r(h) + g(h) + b(d)

For any colour sensation € which exhibits an SPD P(r), r, g and b are given by:
r=kImmﬂmmm
g=k _[ P(r)g(r)d(2)
b:k{ﬂummmu

Thus, we see that colour matching functions reduce a colour C, with any shape
of spectral energy distribution to a triple rgh. At this stage we should make the
extremely important point that the triple rgb bears no relationship whatever to
a triple RGB specified in the aforementioned (computer graphics) system. As we
discussed in Section 15.2, computer graphicists understand the triple RGB to be
three samples of the SPD of an illuminant or three samples of the reflectivity
function of the object which are linearly combined in renderi ng models to pro-
duce a calculated RGB for reflected light. In other words, we can render by work-
ing with three samples or we can extend our approach to working with n
samples. In contrast the triple rgb is not three samples of an SPD but the values
obtained by integrating the product of the SPD and each matching function. In
other words, it is a specification of the SPD as humans see it (in terms of colour
matching) rather than as a spectrophotometer would see it.

There is, however, a problem in representing colours with an additive primary
system which is that with positive weights, only a subset of perceivable colours
can be described by the weights (r, 8, b). The problem arises out of the fact that
when two colours are mixed the result is a less saturated colour. It is impossible
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Figure 15.6
The ‘evolution” of the CIE 100 -
colour matching functions. L p
Spectral sensitivity curves
of the p, & and B cones in the
retina and their relationship
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Figure 15.7
{a) CIE X¥Z solid.
(b} A typical monitor

gamut in CIE XYZ space,

to form a highly saturated colour by superimposing colours. Any set of three
primaries forms a bounded space outside of which certain perceivable highly
saturated colours exist. In such colours a negative weight is required.

To avoid negative weights the CIE devised a standard of three supersaturated
(or non-realizable) primaries X, Y and Z, which, when additively mixed, will pro-
duce all perceivable colours using positive weights. The three corresponding
matching functions x(i.), »(A) and z(}) shown in Figure 15.6(c) are always posi-
tive. Thus we have:

X=k{PﬁhﬂMﬂj
Y=k _I POy
Z=k{ﬂMﬂMﬂM

where:
k = 680 for self-luminous objects

The space formed by the XYZ values for all perceivable colours is CIE XYZ space.
The matching functions are transformations of the experimental results. In addi-
tion the p(r) matching function was defined to have a colour matching function
that corresponded to the luminous efficiency characteristic of the human eye, a
function that peaks at 550 nm {vellow-green),

The shape of the CIE XYZ colour solid is basically conical with the apex of the
cone at the origin (Figure 15.7). Also shown in this space is a monitor gamut
which appears as a parallelepiped. If we compare this space to HSV space we can

hr ri
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view the solid as distorted HSV space. The black point is at the origins and the
HSV space is deformed to embrace all colours and to encompass the fact that the
space is based on perceptual measurements. If we consider, for example, the outer
surface of the deformed cone, this is made of rays that emanate from the origin
terminating on the edge of the cone. Along any ray is the set of colours of
identical chromaticity (see the next section). If a ray is moved in towards
the white point, situated on the base of the deformed cone then we desaturate
the set of colours specified by the ray. Within this space, the monitor gamut
is a deformed (sheared and scaled) cube, forming a subset of the volume of
perceivable colours.

CIE xyY space

An alternative way of specifying the (X, Y, Z) triple is (x, y, Y) where (x, ¥} are
known as chromaticity coordinates;

e X
T OX+Y+Z
Y
Yo XeY+z

Plotting x against y for all visible colours vields a two-dimensional (x, y) space
known as the CIE chromaticity diagram.

The wing-shaped CIE chromaticity diagram (Figure 15.8) is extensively used
in colour science. It encompasses all the perceivable colours in two-dimensional
space by ignoring the luminance Y. The locus of the pure saturated or spectral
colours is formed by the curved line from blue (400 nm) to red (700 nm). The
straight line between the end points is known as the purple or magenta line.
Along this line is located the purples or magentas. These are colours whose per-
ceivable sensation cannot be produced by any single monochromatic stimulus,
and which cannot be isolated from daylight.

Also shown in Figure 15.8 is the gamut of colours reproducible on a computer
graphics monitor from three phosphors. The monitor gamut is a triangle formed
by drawing straight lines between three RGB points. The RGB points are con-
tained within the outermost curve of monochromatic or saturated colours.
Examination of the emission characteristics of the phosphors will reveal a spread
about the dominant wavelength which means that the colour contains white
light and is not saturated. When, say, the blue and green phosphors are fully
excited their emission characteristics add together into a broader band meaning
that the resultant colour will be less saturated than blue or green.

The triangular monitor gamut in CIE xy space is to be found in most texts
dealing with colour science in computer graphics, but it is somewhat mislead-
ing. The triangle is actually the projection out of CIE xvyY space of the monitor
gamut, with the vertices formed from phosphor vertices that each have a differ-
ent luminance. Figure 15.9 shows the general shape of monitor gamut in CIE
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Figure 15.8 f'
CIE chromaticity diagram |
showing typical gamuts far ¥ S

colour film, colour monitor
and printing inks.

J

0.7

A

xyY space and Figure 15.10 (Colour Plate) shows three slices through the space.
The geometric or shape transformation from the scaled and sheared cube in XYZ
space to the curvilinear solid (with six faces) in xyY space is difficult to interpret.
For example, one edge of the cube maps to a single point,

There are a number of important uses of the CIE chromaticity diagram. We
give one important example. It can be used to compare the gamut of various dis-
play devices. This is important in computer graphics when an image is eventu-
ally to be reproduced on a number of different devices, Figure 15.8 shows a CIE
chromaticity diagram with the gamut of a typical computer graphics monitor
together with the gamut for modern printing inks. The printing ink gamut is
enclosed within the monitor gamut, which is itself enclosed by the gamut for

|

Figure 15.9

Monitor gamut in CIE xyY
space (see also Figure 15,10
(Colour Plate)),

“»
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colour film. This means that some colours attainable on film are not repro-
ducible on a computer graphics monitor, and certain colours on a monitor can-
not be reproduced by printing. The gamut of display devices and reproduction
techniques is always contained by the gamut of perceivable colours - the satu-
rated or spectral colours being the most difficult to reproduce. However, this is
not generally a problem because spectral and near spectral colours do not tend
to occur naturally. It is the relative spread of device gamuts that is important
rather than the size of any gamut with respect to the visual gamut.

TG AERGL Y, B TR T SRR o R TR
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Rendering and colour spaces

We have discussed reasons for the lack of accurate colours in computer graphics
and now look at one of these reasons in more detail - colour aliasing is invisible.

Physics tells us that the light reflected from a surface, as a function of wave-
length, is the product of the wavelength-dependent surface reflectance function
and the spectral energy distribution function of the light source. If we simply
evaluate this product at three wavelengths (the RGB Phong shading model dis-
cussed in Chapter 6) then clearly, because of the gross undersampling, we will
not produce a result that simulates the real characteristic. What happens is that
the three-sample approach will produce a colour shift away from the real colour.
However, this shift is in most contexts completely invisible because we have no
expectations of what particular colour should emerge from a computer graphics
model anyway. A wrong colour does not necessarily look wrong,

To try to simulate real colour interaction numerically we can simply expand
our three-sample rendering approach to n samples and work in spectral space,
sampling the light source distribution function and the reflectivity of the object
at appropriate wavelength intervals.

We look at three approaches which are summarized in Figure 15.11. The first
— the de facto standard approach to rendering - takes no account of colour except
in the most approximate way. The illuminant SPD is sampled at three wave-
lengths, or more usually arbitrarily specified as 1, 1, 1 for white light. Similarly
the reflectivity of the object is specified at each of the R, G and B wavelengths.
Three rendering equations/models are applied and the calculated RGB intensities
are fed directly to the monitor without further alteration. This method produces
works with input values that are arbitrary in the sense that a user may want to
render a dark red object, but may not be concerned with specifying the colour
of the object and illuminant to any degree of accuracy. Only three rendering
equations are used.

The second approach applies the rendering equations in spectral space for a set
of wavelengths (1 =9 appears to be a good compromise). Here the rendering cost
is at least a factor of three greater than the “arbitrary’ colour method. The output
from the renderer is a sampled intensity function and this must be transformed
into (three-sample) RGBaoaio space for display. The implication here is that if we
have gone to the trouble to render at # wavelengths then we wish to display the

—
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Figure 15.11

Rendering strategies and
colours, (a) “Standard”
rendering for “arbitrary’
colour applications,

{b) Spectral space rendering
for colour-sensitive
applications. {c) CIE space
rendering for colour-
sensitive applications.
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result as accurately as possible and we need certain monitor parameters to be able
to derive the spectral-to-RGBmonieor transformation (see Section 15.5.2).

In the final approach we render in CIE space. This means specifying the SPD
illuminant as CIE XYZ values using the matching functions. However, we have
the problem of the surface reflectivity. What values do we use for this? This is a
subtle point and the reader is referred to the paper by Borges (1991) which
addresses exactly this issue. Here, we can note that we can simply express the
reflectivity function as a CIE XYZ triple and use this in a three equation render-
ing approach. The output from the renderer is a CIE XYZ triple and we then
require a CIE-to-RGBmonie: transform to display the result.

The difference between an image produced by ‘spectral rendering’ and ‘RGB
rendering’ is shown (to within the limits of the reproduction process) in Figure
15.12 (Colour Plate} for a ray tracer.

We must remember that we are only attending to a single aspect in the
simulation of reality — which is the prevention of erroneous colour shifts due
to undersampling in spectral space. Colour is also determined by the local
reflection model itself. Defects in the accuracy with which the reflection model
simulates reality still exist. We cannot overcome these simply by extending the
number of samples in spectral space.

RGBmonier space and other monitor considerations

Serious use of colour in computer imagery needs careful attention to certain
aspects of the display monitor. Computer graphics monitors are not standardized
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and the application of the same RGE triple to different monitors will produce
different colours on the screen. The most important factors are:

(1) Colour on a monitor is not produced by the superposition mixing of three
lights, but relies on the eye to spatially mix the tiny light sources produced by
three phosphor dots. There is nothing that we can do about this. One of
the consequences is that saturated colours are not displayed at their full
brightness — an area of pure red is only one-third red and two-thirds black.
This means that, for example, even as we as human beings seem to
compensate for this effect, taking photographs directly from the screen
produces poor results.

(2) Different monitors are manufactured with phosphors that have different
spectral energy distributions. For example, different phosphors are used to
achieve different persistences (the length of time a phosphor glows after
being activated). This can be corrected by a linear transformation as we
demonstrate in the next section.

(3) The relationship between the RGE values applied to the monitor and the
intensity of light produced on the screen is non-linear. The cure for this,
gamma correction = a non-linear transformation - is described in the next
section.

{4) In image synthesis, shading equations can produce colours that are outside
the gamut of the monitor - undisplayable colours. We have somehow to clip
these colours or bring them back into the monitor gamut. This is also a non-
linear operation.

Monitor considerations - different monitors and the same colour

Contexts in which real colours are produced in computer imagery are, for exam-
ple, rendering in spectral space and using perceptual space mapping. With spec-
tral space we can produce a CIE XYZ triple from our final set of results. CIE XYZ
space is used as a final standard and we need a device-specific transformation to
go from CIE XYZ space to the particular RGBuoaier space.

We can write:

X X: X;; xb qul

Y = Yr yx Vh Gm
Z Z( Zg zlr Hm
Ry
= T (.;m

Hm

where T is particular to a monitor and a linear relationship is assumed between
the outputs from the phosphors and the RGB values. If T is the transformation
for monitor 1 and T the transformation for monitor 2, then T2 T\ converts the
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RGBE values of monitor 1 to those for monitor 2. T can be calculated in the fol-
lowing way. We define:

D= X, + Yr'l'-z:
DB=XI+YS+ZB

e e g A

i -Dt»:Xll"'Yh“'ZIr
giving:
X e Dgxg Dy, B
V| = D.'}"{ Dgyg Dh}"h Gm
Z Dz, DEZB Dz Ba
where:

x=XJ/D, V.= YolDe z = Zi Dy ete.

Writing the coefficients as a product of two matrices we have:

X Xr Xg Xo D; 0 0 Rm
Y| = ¥ ¥z W 0 Dy 0 Gm
Z Zy Zg I U [] DI: Bm

where the first matrix is the chromaticity coordinates of the monitor phosphor,
We now specify that equal RGB voltages of (1, 1, 1) should produce the align-

ment white:
Xw Xy xg X D;
Vel =y p Dsl
L Z 2y In Dy

For example, with standard white Dss we have;

Xw = 0.313 Mu = 0329 Lw = 0.353
and scaling the white point to give unity luminance yields:
Xw‘—'ﬂ,QSI Fw= 1.0 Bw= 1.089

Example chromaticity coordinates for an interlaced monitor (long persistence
phosphors) are:

X ¥
red 0.620 (.330
green 0.210 0.685
blue 0.150 0.063

Using these we have:

X 0.584 0.188 0.179] [Ra.
¥=[0311 0614 0.075] |G

Z 0.047 0.103 0.939] | B,

h—
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Inverting the coefficient matrix gives:

R 2.043 -0.568 -0.344 X
Gm| =|-1.036 1939 0043 ¥
B 0.011 -0.184 1.078 Z

The significance of the negative components is that RGB space is a subset of XYZ
space, and XYZ colours that lie outside the monitor gamut will produce negative
RGE values.

Monitor considerations — colour gamut mapping

Monitor gamuts generally overlap and colours that are available on one monitor
may not be reproducible on another. This is manifested by RGB values that are
less than zero, or greater than one, after the transformation T7'T has been
applied. This problem may also arise in rendering. In accurate colour simulation,
using real colour values, it is likely that colour triples produced by the calculation
may lie outside the monitor gamut. In other words the image gamut may be, in
general, greater than the monitor gamut. This problem is even greater in the case
of hard copy devices such as printers which have smaller gamuts than monitors.

The goal of the process is to compress the image gamut until it just fits in the
device gamut in such a way that the image quality is maintained. This will gen-
erally depend on the content of the image and the whole subject area is still a
research topic. There are, however, a number of simple strategies that we can
adopt. The process of producing a displayable colour from one that is outside the
gamut of the monitor is called ‘colour clipping’.

Clearly we could adopt a simple clamping approach and limit out of range
values. Better strategies are suggested by Hall (1989), Undisplayable colours fall
into one of two categories:

(1) Colours that have chromaticities outside the monitor gamut (negative RGB
values).

(2) Colours that have displayable chromaticities, but intensities outside the
monitor gamut (RGB values greater than one).

Any correction results in a shift or change from the calculated colour and we can
select a method depending on whether we wish to tolerate a shift in hue, satu-
ration and/or value,

For the first category the best approach is to add white to the colour or to
desaturate it until it is displayable. This maintains the hue or dominant wave-
length and lightness at the cost of saturation. In the second case there are a num-
ber of possibilities. The entire image can be scaled until the highest intensity
is in range; this has an effect similar to reducing the aperture in a camera.
Alternatively the chromaticity can be maintained and the intensity scaled.
Finally, the dominant hue and intensity can be maintained and the colour desat-
urated by adding white.
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Figure 15.13
Gamma correction.

(a) A viewer should ideally
see the same colours an a
TV moniter as if he or she
were viewing the scene,
(b) Gamma correction is
applied in a TV camera.
(c) Computer graphics
system.

Monitor considerations - gamma correction

All of the foregoing discussion has implicitly assumed that there is a linear rela-
tionship between the actual RGB values input to a monitor and the intensity
produced on the screen. This is not the case, That we need to maintain linearity
comes from the fact that as far as possible we require a person viewing, say, a TV
image of a scene on a monitor, to see the colour relationships as he perceives
them from the scene. This implies that the end-to-end response of the TV
system should be linear (Figure 15.13(a)). In a TV system gamma correction is
applied at the camera (for reasons that also have to do with coding the signal
optimally for noise) to pre-compensate for the monitor non-linearity. This is
shown in Figure 15.13(b) which shows gamma correction introduced in the cam-
era compensating for the non-linear relationship at the monitor. A computer
graphics system (Figure 15.13(c)) is analogous to a TV camera with a linear inten-
sity characteristic because the rendering calculations are linear. Because of this
gamma correction is required after the calculation and this is usually imple-
mented in the form of a look-up table.

Now consider the details. The red intensity, for example, produced on a mon-
itor screen by an input value of R, is:

R = K(RY)"

TV system TV monitor

Camera

Scene -

Scene —— i

LIIII . ;
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Figure 15.14

Gamma correction.

(a) Intensity as a function
of applied voltage values.
{b) Corrected values as a
function of applied ones,

L—

MONITOR CONSIDERATIONS

where y; is normally in the range 2.3 to 2.8. The goal of the process is to linearize
the relationship between the RGB values produced by the program and if v, v,
and yu are known then so-called gamma correction can be applied to convert the
program value R, to the value that when plugged into the above equation will
result in a linear relationship. That is:

R's = k(R

An inexpensive method for determining y is given in a paper by Cowan (1983).
The two relationships are shown in Figure 15.14. The second graph is easily
incorporated in a video look-up table. Note that the price paid for gamma cor-
rection is a reduction in the dynamic range. For example, if k is chosen such that
0 maps to 0 and 255 to 255 then 256 intensity levels are reduced to 167. This
can cause banding and it is better to perform the correction in floating point and
then to round.

Using a monitor with uncorrected gamma results in both intensity and
chromaticity shifts away from the colour calculated by the program. Consider,
for example, the triple (0, 255, 127). If this is not gamma corrected the

0.5

e
| T

- Rwm = K(R)
0-0 1 1 ! 1 1 1 1 I
0.0 0.5 1.0
(")
(a)
1.0
Fod
R’ |
- R = k(R
0.0) 1 L L P 1 L L 1 ]
0.0 0.5 1.0
R, —=
(b}
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display will decrease the blue component, leaving the red and green components

unchanged.
Gamma correction leaves zero and maximum intensities unchanged and
T alters the intensity in mid-range. A ‘wrong’ gamma that occurs either because

gamma correction has not been applied or because an inaccurate value of
gamma has been used in the correction will always result in a wrong image with
respect to the calculated colour.
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mlmage-based renderlng and

photo-modelling

16.1 Reuse of previously rendered imagery - two-dimensional
techniques

16.2 Varying rendering resources
16.3 Using depth information
16.4 View interpolation

16.5 Four-dimensional techniques - the Lumigraph or light field
rendering approach

16.6 Photo-modelling and IBR

Introduction

A new field with many diverse approaches, image-based rendering (IBR) is diffi-
cult to categorize. The motivation for the name is that most of the techniques
are based on two-dimensional imagery, but this is not always the case and the
way in which the imagery is used varies widely amongst methods. A more accu-
rate common thread that runs through all the methods is pre-calculation. All
methods make cost gains by pre-calculating a representation of the scene from
which images are derived at run-time, IBR has mostly been studied for the com-
mon case of static scenes and a moving view point, but applications for dynamic
scenes have been developed.

There is, however, no debate concerning the goal of 1BR which is to decouple
rendering time from scene complexity so that the quality of imagery, for a given
frame time constraint, in applications like computer games and virtual reality
can be improved over conventionally rendered scenes where all the geometry is
reinserted into the graphics pipeline whenever a change is made to the view
point. It has emerged, simultaneously with LOD approaches (see Chapter 2) and
scene management techniques, as an effective means of tackling the dependency
of rendering time on scene complexity.
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We will also deal with photo-modelling in this chapter. This is related
image-based rendering because many image-based rendering schemes wep
designed to operate with photo-modelling. The idea of photo-modelling is i
capture the real-world complexity and at the same time retain the flexibilipy
advantages of three-dimensional graphics.

S = T ANy e T = =

Figure 16.1
Planar imposters and image
warping.

Reuse of previously rendered imagery - two-dimensional
techniques

We begin by considering methods that rely on the concept of frame coherence
and reuse of already rendered imagery in some way. Also, as the title of the
section implies, we are going to consider techniques that are essentially twp-
dimensional. Although the general topic of image-based rendering, of course,
itself implies two-dimensional techniques there has be some use of the depth
information associated with the image, as we shall see in future sections. The
distinction is that with techniques which we categorize as two-dimensional we
do not operate with detailed depth values, for example, a value per pixel. We
may only have a single depth value associated with the image entity as is implied
by visibility ordering in image layers (see Section 16.2.2).

A useful model of an image-based renderer is to consider a required image
being generated from a source or reference image - rendered in the normal way
- by warping the reference image in image space (Figure 16.1). In this section we
shall consider simple technigues based on texture mapping that can exploit the
hardware facilities available on current 3D graphics cards. The novel approach
here is that we consider rendered objects in the scene as texture maps, consider
a texture map as a three-dimensional entity and pass it through the graphics
pipeline. The common application of such techniques is in systems where a
viewer moves through a static environment.

To a greater or lesser extent all such techniques involve some approximation
compared with the projections that are computed using conventional tech-
niques and an important part of such methods is determining when it is valid to
reuse previously generated imagery and when new images must be generated.

2D D
Reference Required
image Warp  |_image
Rendering
process

IBR as a process that produces an image by wanping
a reference image
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REUSE OF PREVIOUSLY RENDERED IMAGERY - TWO-DIMENSIONAL TECHNIQUES @

Planar impostors or sprites

Impostor is the name usually given to an image of an object that is used in the
form of a texture map - an entity we called a billboard in Chapter 8. In Chapter
8 the billboard was an object in its own right - it was a two-dimensional entity
inserted into the scene. Impostors are generalizations of this idea. The idea is
that because of the inherent coherence in consecutive frames in a moving view
point sequence, the same impostor can be reused over a number of frames until
an error measure exceeds some threshold. Such impostors are sometimes quali-
fied by the adjective dynamic to distinguish them from pre-calculated object
images that are not updated. A planar sprite is used as a texture map in a normal
rendering engine. We use the adjective planar to indicate that no depth infor-
mation is associated with the sprite - just as there is no depth associated with a
texture map (although we retain depth information at the vertices of the rec-
tangle that contains the sprite). The normal (perspective) texture mapping in the
renderer takes care of warping the sprite as the view point changes.

There are many different possible ways in which sprites can be incorporated
into a rendering sequence. Schaufler's method (Schaufler and Sturzlinger 1996)
is typical and for generating an impostor from an object model it proceeds as fol-
lows. The object is enclosed in a bounding box which is projected onto the
image plane resulting in the determination of the object’s rectangular extent in
screen space - for that particular view. The plane of the impostor is chosen to be
that which is normal to the view plane normal and passes through the centre of
the bounding box. The rectangular extent in screen space is initialized to trans-
parent and the object rendered into it. This is then treated as a texture map and
placed in the texture memory. When the scene is rendered the object is treated
as a transparent polygon and texture mapped. Note that texture mapping takes
into account the current view transformation and thus the impostor is warped
slightly from frame to frame. Those pixels covered by the transparent pixels are
unaffected in value or z depth. For the opaque pixels the impostor is treated as
a normal polygon and the Z-buffer updated with its depth.

In Maciel and Shirley (1995) ‘view-dependent impostors' are pre-calculated -
one for each face of the object’s bounding box. Space around the object is then
divided into view point regions by frustums formed by the bounding box faces
and its centre. If an impostor is elected as an appropriate representation then
whatever region the current view point is in determines the impostor used.

Calculating the validity of planar impostors

As we have implied, the use of impostors requires an error metric to be calculated
to quantify the validity of the impostor. Impostors become invalid because we
do not use depth information. At some view point away from the view point
from which the impostor was generated the impostor is perceived for what it is
- a flat image embedded in three-dimensional space - the illusion is destroyed.
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Figure 16.2

Angular discrepancy of an
impostor image (after Shade
et al, (1996)).

The magnitude of the error depends on the depth variation in the region o
the scene represented by the impostor, the distance of the region from the viey
point and the movement of the view point away from the reference positigy
from which the impostor was rendered. (The distance factor can be g.'a,irllfu_.uJlr
exploited by using lower resolution impostors for distant objects and £rouping
more than one object into clusters.) For changing view point applications the
validity has to be dynamically evaluated and new impostors generated ag
required.

Shade et al. (1996) use a simple metric based on angular discrepancy. Figure
16.2 shows a two-dimensional view of an object bounding box with the plane of
the impostor shown in bold. v is the view point for the impostor rendering ang
v is the current view point. x is a point or object vertex which coincides with y
in the impostor view. Whenever the view point changes from v, x and x' sub.
tend an angle 8 and Shade et al. calculate an error metric which is the maximum
angle over all points x.

Schaufler and Sturzlinger's (1996) error metric is based on angular discrepancy
related to pixel size and the consideration of two worst cases, First, consider the
angular discrepancy due to translation of the view point parallel to the impostor
plane (Figure 16.3(a)). This is at a maximum when the view point moves normal
to a diagonal of a cube enclosing the bounding box with the impostor plane
coincident with the other diagonal. When the view point moves to v: the points
x', xy and x; should be seen as separate points. The angular discrepancy due to
this component of view point movement is then given by the angle fun
between the vectors ¥ix; and wixz. As long as this is less that the angle subtended
by a pixel at the view point this error can be tolerated. For a view point moving
towards the object we consider the construction in Figure 16.3(b). Here the worst
case is the corner of the front face of the cube. When the view point moves in
to vy the points x; and x: should be seen as separate and the angular discrepancy
is given as Bu.. An impostor can then be used as:

use_imposter := (Buans € Bureen) OF (Baize < Bucreen)

Bounding box

Imposter plane

¥y L]
Current Imiposter
view point view point
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!d,.uﬂeﬂ worst case
discrepancy metric
Shaufler (1996)).
Translation of view point
to an impostor.
Translation of view point
jowards an impostor plane.
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Varying rendering resources

VARYING REMDERING RESOURCES

Imposter

Impaoster

_A"

{a) ) i) ;
where:
field of view
am

~ screen resolution

The simplest way to use impostors is to incorporate them as texture maps in a
normal rendering scheme exploiting texture mapping hardware.

So far we have said nothing about what makes up an impostor and the
assumption has been that we generate an image from an object model. Shade et
al. (1996) generalize this concept in a scheme called Hierarchical Image Caching
and generate impostors from the entire contents of nodes in a BSP tree of the
scene combining the benefits of this powerful scene partitioning method with
the use of pre-rendered imagery. Thus, for example, distant objects that require
infrequent updates can be grouped into clusters and a single impostor generated
for the cluster. The algorithm thus operates on and exploits the hierarchy of the
scene representation. Objects may be split over different leaf nodes and this
leads to the situation of a single objects possessing more than one impostor. This
causes visual artefacts and Shade et al. (1996) minimize this by ensuring that the
BSP partitioning strategy splits as few objects as possible and by ‘inflating” the
geometry slightly in leaf regions so that the impostors overlap to eliminate gaps
in the final image that may otherwise appear.

Priority rendering
An important technigue that has been used in conjunction with 2D imagery is

the allocation of different amounts of rendering resources to different parts of
the image. An influential (hardware) approach is due to Regan and Pose (1994).
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They allocated different frame rates to objects in the scene as a function of thejy
distanice from the view point. This was called priority rendering because it cop,
bined the environment map approach with updating the scene at different Tateg
They use a six-view cubic environment map as the basic pre-computed solutigy
In addition, a multiple display memory is used for image composition and gy
the fly alterations to the scene are combined with pre-rendered imagery.

The method is a hybrid of a conventional graphics pipeline approach with g,
image-based approach. It depends on dividing the scene into a priority hieray,
chy. Objects are allocated a priority depending on their closeness to the currep
position of the viewer and their allocation of rendering resources and updage
time are determined accordingly. The scene is pre-rendered as environmen
maps and, if the viewer remains stationary, no changes are made to the enyj.
ronment map. As the viewer changes position the new environment map from
the new view point is rendered according to the priority scheme.

Regan and Pose (1994) utilize multiple display memories to implement prigy.
ity rendering where each display memory is updated at a different rate accorg.
ing to the information it contains. If a memory contains part of the scene tha
is being approached by a user then it has to be updated, whereas a memory tha
contains information far away from the current user position can remain as it i,
Thus overall different parts of the scene are updated at different rates - henge
priority rendering. Regan and Pose (1994) use memories operating at 60, 30, 15,
7.5 and 3.75 frames per second. Rendering power is directed to those parts of the
scene that need it most. At any instant the objects in a scene would be organized
into display memories according to their current distance from the usep
Simplistically the occupancy of the memories might be arranged as concentric
circles emanating from the current position of the user. Dynamically assigning
each object to an appropriate display memory involves a calculation which is
carried out with respect to a bounding sphere. In the end this factor must impose
an upper bound on scene complexity and Regan and Pose (1994) report a test
experiment with a test scene of only 1000 objects. Alternatively objects have to
be grouped into a hierarchy and dealt with through a secondary data structure
as is done in some speed-up approaches to conventional ray tracing.

Image layering

Lengyel and Snyder (1997) generalized the concept of impostors and variable appli-
cation of rendering resources calling their technique ‘coherent image layers'. Here
the idea is again to devote rendering resources to different parts of the image accord-
ing to need expressed as different spatial and/or temporal sampling rates. The tech-
nigue also deals with objects moving with respect to each other. This is done by
dividing the image into layers, (This is, of course, an old idea; since the 1930s cartoon
production has been optimized by dividing the image into layers which are worked
on independently and composed into a final film.) Thus fast-moving foreground
objects can be allocated more resources than slow-moving background objects.
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Figure 16.4

The layer approach of
Lengyel and Snyder (after
Lengyel and Snyder (1997)).
Rendering resources are
aliocated to perceptually
important parts of the scene
(layers). Slowdy changing
Layers are updated at a

lower frame rate and at
lower resolution.

3 + Segmentor Layers
. Oui

VARYING RENDERING RESOURCES

Another key idea of Lengyel and Snyder’s work is that any layer can itself be
decomposed into a number of components. The layer approach is taken into the
shading itself and different resources given to different components in the shad-
ing. A moving object may consist of a diffuse layer plus a highlight layer plus a
shadow layer. Each component produces an image stream and a stream of two-
dimensional transformations representing its translation and warping in image
space. Sprites may be represented at different resolutions to the screen resolution
and may be updated at different rates. Thus sprites have different resolution in
both space and time.

A sprite in the context of this work is now an ‘independent’ entity rather than
being a texture map tied to an object by the normal vertex/texture coordinate
association, It is also a pure two-dimensional object - not a two-dimensional
part (a texture map) of a three-dimensional object. Thus as a sprite moves the
appropriate warping has to be calculated.

In effect the traditional rendering pipeline is split into ‘parallel’ segments
each representing a different part of the image (Figure 16.4). Different quality
settings can be applied to each layer which manifests in different frame rates and
different resolutions for each layer. The layers are then combined in the com-
positor with transparency or alpha in depth order.

A sprite is created as a rectangular entity by establishing a sprite rendering
transform A such that the projection of the object in the sprite domain fits
tightly in a bounding box. This is so that points within the sprite do not sample
non-object space. The transform A is an affine transform that maps the sprite
onto the screen and is determined as follows. If we consider a point in screen
space p, then we have:

p=Tp

where p is the equivalent object point in world space and T is the concatenation
of the modelling, viewing and projection transformations.
We require an A such that (Figure 16.5):

= A'ATp = Ag

E

H Compasilor
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Figure 16.5 ™ IA"'ATF

The sprite rendering . et
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where q is a point in sprite coordinates and:

ﬂ.bhl

A“’c dt

Thus, an affine transformation is used to achieve an equivalent warp that would

occur due to a conventional transformation T.

The transform A — a 2 » 3 matrix - is updated as an object undergoes rigid
motion and provides the warp necessary to change the shape of the sprite in
screen space due to the object motion. This is achieved by transforming the
points of a characteristic polyhedron (Figure 16.6) representing the object into
screen space for two consecutive time intervals using Tr.1 and T, and finding the
six unknown coefficients for A. Full details of this procedure are given in Lengyel

and Snyder (1997).

Calculating the validity of layers

As any sequence proceeds, the reusability of the layers needs to be monitored. In
Section 16.1.2 we described a simple geometric measure for the validity of
sprites. With image layers Lengyel and Snyder (1997) develop more elaborate
criteria based upon geometric, photometric and sampling considerations. The
geometric and photometric tests measure the difference between the image due
to the layer or sprite and what the image should be if it were conventionally

rendered.

A geometric error metric (Lengyel and Snyder call the metrics fiducials) is

calculated from:

Foeomeme = maxllP; - AP‘J"

where Ap'; is a set of characteristic points in the layer in the current frame warped
into their position from the previous frame and p; the position the points actually
occupy. (These are always transformed by T, the modelling, viewing and perspec-
tive transform in order to calculate the warp. This sounds like a circular argument
but finding A (previous section) involves a best fit procedure. Remember that the
warp is being used to approximate the transformation T.) Thus a threshold can be

set and the layer considered for re-rendering if this is exceeded.
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bounding polyhedron

Frame.., Frame,

For changes due to relative motion between the light source and the object
represented by the layer, the angular change in L, the light direction vector from
the object, can be computed.

Finally, a metric associated with the magnification/minification of the layer
has to be computed. If the relative movement between a viewer and object is
such that layer samples are stretched or compressed then the layer may need to
be re-rendered. This D]Jﬂatim‘l is similar to detennining the dEP'(h parameter in
mip-mapping and in this case can be computed from the 2 x 2 sub-matrix of the
affine transform.

After a frame is complete a regulator considers resource allocation for the next
frame. This can be done either on a ‘budget-filling’ basis where the scene qual-
ity is maximized or on a threshold basis where the error thresholds are set to the
highest level the user can tolerate (freeing rendering resources for other tasks).
The allocation is made by evaluating the error criteria and estimating the
rendering cost per layer based on the fraction of the rendering budget consumed
by a particular layer. Layers can then be sorted in a benefit/cost order and
re-rendered or warped by the regulator.

Ordering layers in depth

So far nothing has been said about the depth of layers - the compositor requires
depth information to be able to generate a final image from the separate layers.
Because the method is designed to handle moving objects the depth order of lay-
ers can change and the approach is to maintain a sorted list of layers which is
dynamically updated. The renderer produces hidden surface eliminated images
within a layer and a special algorithm deals with the relative visibility of the
layers as indivisible entities. A Kd tree is used in conjunction with convex
polyhedra that bound the geometry of the layer and an incremental algorithm
(fully described in Snyder (1998)) is employed to deal with occlusion without
splitting.
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16.3

Using depth information
Three-dimensional warping

As we have already mentioned, the main disadvantage of planar sprites is thay
they cannot produce motion parallax and they produce a warp that is cop.
strained by a threshold beyond which their planar nature is perceived.

We now come to consider the use of depth information which is, of course,
readily available in synthetic imagery. Although the techniques are now going
to use the third dimension we still regard them as image-based techniques in the
sense that we are still going to use, as source or reference, rendered images albej
augmented with depth information.

Consider, first, what depth information we might employ. The three com.
monest forms in order of their storage requirements are: using layers or sprites
with depth information (previous section), using a complete (unsegmented)
image with the associated Z-buffer (in other words one depth value per pixel)
and a layered depth image or LDI. An LDI is a single view of a scene with multj-
ple pixels along each line of sight. The amount of storage that LDIs require is a
function of the depth complexity of the average number of surfaces that project
onto a pixel.

We begin by considering images complete with depth information per pixel
- the normal state of affairs for conventionally synthesized imagery. It is intu-
itively obvious that we should be able to generate or extrapolate an image at a
new view point from the reference image providing that the new view point is
close to the reference view point. We can define the pixel motion in image space
as the warp:

Iix, y) = I'ix, ¥)

which implies a reference pixel will move to a new destination. (This is a simple
statement of the problem which ignores important practical problems that we
shall address later.) If we assume that the change in the view point is specified
by a rotation R = [ry] followed by a translation T = (Ax, Ay, Az)" of the view coor-
dinate system (in world coordinate space) and that the internal parameters of
the viewing system/camera do not change - the focal length is set to unity - then
the warp is specified by:

v Krnx + may + na)Zix, ¥) + Ax
T (X + rey + ) Z(x, V) + Az

[16.1]
P (ruX + ray + rm)Z(x, y) + Ay
T (rux + rep + rm)Zix, ¥) + Az

where:

Z(x, y) is the depth of the point * of which (x, y) is the projection.
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Figure 16.7

A three-dimensional warp is
Slculated from rotation R
and translation T applied to
the view coordinate system.
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This follows from:

i Xy ¥
iy el
where (x., pv, 2v) are the coordinates of the point I* in the new viewing system.
A visualization of this process is shown in Figure 16.7.

We now consider the problems that occur with this process. The first is called
image folding or topological folding and occurs when more than one pixel in
the reference image maps into position (x', }) in the extrapolated image (Figure
16.8(a)}). The straightforward way to resolve this problem is to calculate Z(x', y')
from Z{x, y) but this requires an additional rational expression and an extra Z-
buffer to store the results.

McMillan (1995) has developed an algorithm that specifies a unique evalua-
tion order for computing the warp function such that surfaces are drawn in a
back-to-front order thus enabling a simple painter's algorithm to resolve this vis-
ibility problem. The intuitive justification for this algorithm can be seen by con-
sidering a simple special case shown in Figure 16.9. In this case the view point
has moved to the left so that its projection in the image plane of the reference
view coordinate system is outside and to the left of the reference view window.
This fact tells us that the order in which we need to access pixels in the reference
is from right to left. This then resolves the problem of the leftmost pixel in the
reference image overwriting the right pixel in the warped image. McMillan
shows that the accessing or enumeration order of the reference image can be
reduced to nine cases depending on the position of the projection of the new
view point in the reference coordinate system. These are shown in Figure 16.10.
The general case, where the new view point stays within the reference view win-
dow divides the image into quadrants. An algorithm structure that utilizes this
method to resolve depth problems in the many-to-one case is thus:

A Ve 2a)
i ..---;:/’.

#
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Figure 16.8

Problems in image warping.
(a) Image folding: more
than one pixel in the
reference view maps

inte a single pixel in the
extrapolated view. (b) Holes:
information occluded in the
reference view is required

in the extrapolated view.

() Holes: the projected area
of a surface increases in the
extrapolated view because
its normal rotates towards
the viewing direction.

(d) See Colour Plate section.

Py
b
b .,
7 Reference Extrupolated "~
js{' view view M A
L
P
(a) .F_:l J,
S
"" u
g BB
%y
" Reference Extrapolated .,
E view view i
(b)
Extrapolated

VIEw

(ch

(1) Calculate the projection of the new view point in the reference coordinate
system.

{2) Determine the enumeration order (one out of the nine cases shown in
Figure 16.10) depending on the projected point.

(3) Warp the reference image by applying Equation 16.1 and writing the result
into the frame buffer.

The second problem produced by image warping is caused when occluded areas
in the reference image ‘need’ to become visible in the extrapolated image (Figure
16.8(b)) producing holes in the extrapolated image. As the figure demonstrates,
holes and folds are in a sense the inverse of each other, but where a determinis
tic solution exists for folds no theoretical solution exists for holes and a heuris
tic needs to be adopted - we cannot recover information that was not there in
the first place. However, it is easy to detect where holes occur. They are simply
unassigned pixels in the extrapolated image and this enables the problem to b
localized and the most common solution is to fill them in with colours from
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neighbouring pixels. The extent of the holes problem depends on the difference
between the reference and extrapolated view points and it can be ameliorated by
considering more than one reference image, calculating an extrapolated image
from each and compositing the result, Clearly if a sufficient number of reference
images are used then the hole problem will be eliminated and there is no need
for a local solution which may insert erroneous information.

A more subtle reason for unassigned pixels in the extrapolated image is appar-
ent if we consider surfaces whose normal rotates towards the view direction in

r
|I | |
1
* |l y |
1
™ 1
| I | _ ! i
| — (| —
i
i I fl ‘
| |
| I -
Projection of new
view paint in the
. image plane of
B 1 = reference view point
= motion in ¥

Projection of new view point in the image plane
of the reference view point — motion in x
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the new view system (Figure 16.8(c)). The projected area of such a surface ingg
the extrapolated image plane will be greater than its projection in the reference
image plane and for a one-to-one forward mapping holes will be produced. Thjg
suggests that we must take a rigorous approach to reconstruction in the inter.
polated image. Mark et al. (1997) suggest calculating the appropriate dimensijop
of a reconstruction kernel, for each reference pixel as a function of the view
point motion but they point out that this leads to a cost per pixel that is greater
than the warp cost. This metric is commonly known as splat size (Chapter 13)
and its calculation is not straightforward for a single reference image with 7
depth enly for visible pixels. (A method that stores multiple depth values for 5
pixel is dealt with in the next section.)

The effects of these problems on an image are shown in Figure 16.8(d)
(Colour Plate). The first two images show a simple scene and the corresponding
Z-buffer image. The next image shows the artefacts due to translation (only), In
this case these are holes caused by missing information and image folding. The
next image shows artefacts due to rotation (only) - holes caused by increasing
the projected area of surfaces. Note how these form coherent patterns. The final
image shows artefacts caused by both rotation and translation.

Finally, we note that view-dependent illumination effects will not in general
be handled correctly with this simple approach. This, however, is a problem that
is more serious in image-based modelling methods (Section 16.6). As we have
already noted in image warping we must have reference images whose view
point is close to the required view point.

Layered depth images (LDIs)

Many of the problems encountered in the previous section disappear if our
source imagery is in the form of an LD (Shade et al. 1998). In particular we can
resolve the problem of holes where we require information in the extrapolated
image in areas occluded in the source or reference image. An LDI is a three
dimensional data structure that relates to a particular view point and which sam-
ples, for each pixel, all the surfaces and their depth values intersected by the ray
through that pixel (Figure 16.11). (In practice, we require a number of LDIs
to represent a scene and so can consider a scene representation to be four-
dimensional - or the same dimensionality as the light field in Section 16.5)
Thus, each pixel is associated with an array of information with a number of ele-
ments or layers that is determined by the number of surfaces intersected. Each
element contains a colour, surface normal and depth for surface. Clearly this
representation requires much more storage than an image plus Z-buffer but this
requirement grows only linearly with depth complexity.

In their work Shade et al. (1998) suggest two methods for pre-calculating LDIS
for synthetic imagery. First, they suggest warping n images rendered from differ-
ent view points into a single view point. During the warping process if more
than one pixel maps into a single LDI pixel then the depth values associated
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with each source view are compared and enable the layers to be sorted in depth
order.

An alternative approach which facilitates a more rigorous sampling of the
scene is to use a modified ray tracer. This can be done simplistically by initiating
a ray for each pixel from the LDI view point and allowing the rays to penetrate
the object (rather than being reflected or refracted). Each hit is then recorded
as a new depth pixel in the LDI. All of the scene can be considered by pre-
calculating six LDIs each of which consists of a 90° frustum centred on the ref-
erence view point. Shade et al. (1998) point out that this sampling scheme is not
uniform with respect to a hemisphere of directions centred on the view point.
Neighbouring pixel rays project a smaller area onto the image plane as a func-
tion of the angle between the image plane normal and the ray direction and they
weight the ray direction by the cosine of that angle. Thus, each ray has four
coordinates: two pixel coordinates and two angles for the ray direction. The
algorithm structure to calculate the LDIs is then:

(1) For each pixel, modify the direction and cast the ray into the scene.

(2) For each hit: if the intersected objects lies within the LDI frustum it is re-
projected through the LDI view point.

(3) If the new hit is within a tolerance of an existing depth pixel the colour of
the new sample is averaged with the existing one; otherwise a new depth
pixel is created.

During the rendering phase, an incremental warp is applied to each layer in back
to front order and images are alpha blended into the frame buffer without the
need for Z sorting. McMillan’s algorithm (see Section 16.3.1) is used to ensure
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Figure 16.12
Parameters used in splat size

computation (after Shade et
al, (1998)).

Surface
normal

Cutput LDI
Camera camera

that the pixels are selected for warping in the correct order according to the pro.
jection of the output camera in the LDI's system.
To enable splat size computation Shade et al. (1998) use the following formula
(Figure 16.12):
Vi

di cos 8;res: tan IBT

fov,
d: cos B: res; tan %

size =

where:

size is the dimension of a square kernel (in practice this is rounded to 1, 3, 5
or 7)

the angles & are approximated as the angles ¢, where ¢ is the angle between
the surface normal and the z axis of the camera system

fov is the field of view of a camera

res = w*h (the width and height of the LDI)

R e T T £ ey e —
View interpolation

View interpolation techniques can be regarded as a subset of 3D warping meth-
ods. Instead of extrapolating an image from a reference image, they interpolate
a pair of reference images. However, to do this three-dimensional calculations
are necessary. In the light of our earlier two-dimensional/three-dimensional cat-
egorization they could be considered a two-dimensional technique but we have
decided to emphasize the interpolation aspect and categorize them separately.
Williams and Chen (1993) were the first to implement view interpolation for
a walkthrough application. This was achieved by pre-computing a set of refet-
ence images representing an interior — in this case a virtual museum. Frames
required in a walkthrough were interpolated at run time from these reference
frames. The interpolation was achieved by storing a ‘warp script’ that specifies
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Figure 16.13
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the pixel motion between reference frames. This is a dense set of motion vectors
that relates a pixel in the source image to a pixel in the destination image. The
simplest example of a motion field is that due to a camera translating parallel to
its image plane. In that case the motion field is a set of parallel vectors - one for
each pixel - with a direction opposite to the camera motion and having a mag-
nitude proportional to the depth of the pixel. This pixel-by-pixel correspon-
dence can be determined for each pair of images since the three-dimensional
{image space) coordinates of each pixel is known, as is the camera or view point
motion. The determination of warp scripts is a pre-processing step and an inte-
rior is Ainally represented by a set of reference images together with a warp script
relating every adjacent pair. For a large scene that requires a number of varied
walkthroughs the total storage requirement may be very large; however, any
derived or interpolated view only requires the appropriate pair of reference
images and the warp script.

At run time a view or set of views between two reference images is then
reduced to linear interpolation. Each pixel in both the source and destination
images is moved along its motion vector by the amount given by linearly inter-
polating the image coordinates (Figure 16.13). This gives a pair of interpolated
images. These can be composited and using a pair of images in this way reduces
the hole problem. Chen and Williams (1993) fill in remaining holes with a pro-
cedure that uses the colour local to the hole. Overlaps are resolved by using a Z-
buffer to determine the nearest surface, the z values being linearly interpolated
along with the (x, y) coordinates. Finally, note that linear interpolation of the
motion vectors produces a warp which will not be exactly the same as that pro-
duced if the camera was moved into the desired position. The method is only
exact from the special case of a camera translating parallel to its image plane.
Williams and Chen (1993) point out that a better approximation can be
obtained by quadratic or cubic interpolation in the image plane.

Reference image | Reference image 2
L]

Reference images and
commesponding pixels

'i ./J- Warp *seript” for
\ / each reference image

L Interpolated pixel
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View morphing

Up to now we have considered techniques that deal with a moving view pojp;
and static scenes. In a development that they call view morphing 5eitz and Dye;
(1996) address the problem of generating in-between images where non-rigiq
transformations have occurred. They do this by addressing the approximatigp
implicit in the previous section and distinguish between ‘valid’ and ‘non-valig:
in-between views.

View interpolation by warping a reference image into an extrapolated image
proceeds in two-dimensional image plane space. A warping operation is just thag
- it changes the shape of the two-dimensional projection of objects. Clearly the
interpolation should proceed so that the projected shape of the objects in the ref.
erence projection is consistent with their real three-dimensional shape. In othe
words, the interpolated view must be equivalent to a view that would be gener.
ated in the normal way (either using a camera or a conventional graphics
pipeline) by changing the view point from the reference view point to that of the
interpolated view. A ‘non-valid’ view means that the interpolated view does ngt
preserve the object shape. If this condition does not hold then the interpolated
views will correspond to an object whose shape is distorting in real three.
dimensional space. This is exactly what happens in conventional image morph-
ing between two shapes. ‘Impossible’, non-existent or arbitrary shapes occur as
in-between images because the motivation here is to appear to change one object
into an entirely different one. The distinction between valid and invalid view
interpolation is shown in Figure 16.14.

An example where linear interpolation of images produces valid interpolated
views is the case where the image planes remain parallel (Figure 16.15),
Physically, this situation would occur if a camera was allowed to move parallel
to its image plane (and optionally zoom in and out). If we let the combined
viewing and perspective transformations (see Chapter 5) be Vo and ¥V, for the
two reference images then the transformation for an in-between image can be
obtained by linear interpolation:

Vi=(1-5) Vo+s5¥:

If we consider a pair of corresponding points in the reference images Po and Py
which are projections of world space point P, then it is easily shown (see 5eitz
and Dyer (1996)) that the projection of point P from the intermediate (interpo-
lated) view point is given by linear interpolation:

Pi=Py(l -5)+ Pis
= V.l

In other words linear interpolation of pixels along a path determined by pixel
correspondence in two reference images is exactly equivalent to projecting
the scene point that resulted in these pixels through a viewing and projective
transformation given by an intermediate camera position, provided

views are maintained, in other words using the transformation V;, which would
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be obtained if Vo and ¥ were linearly interpolated. Note also that we are inter-
polating views that would correspond to those obtained if we had moved the
camera in a straight line from Co to Ci. In other words the interpolated view
corresponds to the camera position:

Ci = (sCy, SC]‘-, ‘}J

If we have reference views that are not related in this way then the interpolation
has to be preceded (and followed) by an extra transformation. This is the general
situation where the image planes of the reference views and the image plane of
the required or interpolated view have no parallel relationship. The first trans-
formation, which Seitz and Dyer call a ‘prewarp’, warps the reference images so
that they appear to have been taken by a camera moving in a plane parallel to
its image plane. The pixel interpolation, or morphing, can the be performed as
in the previous paragraph and the result of this is postwarped to form the final
interpolated view, which is the view required from the virtual camera position.
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Figure 16.15

Moving the camera from G
to € {and zooming) means
that the image planes
remain parallel and P, can
b linearly interpolated from
Py and Py (after Seitz and

Dyer (1996)).
A simple geometric illustration of the process is shown in Figure 16.16. Here R,
and R, are the references images. Prewarping these to Ro' and Ry' respectively

Figure 16.16 means that we can now linearly interpolate these rectified images to produce R,,

Prewarping reference
images, interpolating and
pastwarping in view

This is then postwarped to produce the required R.. An important consequence
of this method is that although the warp operation is image based we require

interpolation (after Seitz knowledge of the view points involved to effect the pre- and post-warp trans.
and Dyer (1996)). formations. Again this has ramifications for the context in which the method is
AP
Ko (reference !
(—image) I_‘_# R-| {reference
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y FOUR-DIMENSIONAL TECHMIQUES - THE LUMIGRAPH OR LIGHT FIELD RENDERING APPROACH

used, implying that in the case of photographic imagery we have to record or
recover the camera view points.

The prewarping and postwarping transformations are derived as follows. First,
it can be shown that any two perspective views that share the same centre of pro-
jection are related by a planar projective transformation - a 3 = 3 matrix
obtained from the combined viewing perspective transformation V. Thus R and
R, are related to Ry’ and R:' by two such matrices To and Ti. The procedure is
thus as follows:

(1) Prewarp Roand R, using To™' and T1' to produce Ry’ and Ry
(2) Interpolate to calculate R/, Ci and T..
(3) Apply T to R/ to give image R..

Four-dimensional techniques - the Lumigraph or light field
rendering approach

Up to now we have considered systems that have used a single image or a small
number of reference images from which a required image is generated. We have
looked at two-dimensional techniques and methods where depth information
has been used - three-dimensional warping. Some of these methods involve pre-
calculation of a special form of rendered imagery (LDIs) others post-process a
conventionally rendered image. We now come to a method that is an almost
total pre-calculation technique. It is an approach that bears some relationship to
environment mapping. An environment map caches all the light rays that arrive
at a single point in the scene - the source or reference point for the environment
map. By placing an object at that point we can (approximately) determine those
light rays that arrive at the surface of the object by indexing into the map. This
scheme can be extended so that we store in effect an environment map for every
sampled point in the scene. That is, for each point in the scene we have knowl-
edge of all light rays arriving at that point. We can now place an object at
any point in the scene and calculate the reflected light. The advantage of
this approach is that we now minimize most of the problems related to three-
dimensional warping at the cost of storing a vast amount of data,

A light field is a similar approach. For each and every point of a region in the
scene in which we wish to reconstruct a view we pre-calculate and store or cache
the radiance in every direction at that point. This representation is called a light
field or Lumigraph (Levoy and Hanrahan 1996; Gortler et al. 1996) and we con-
struct for a region of free space by which is meant a region free of occluders. The
importance of free space is that it reduces the light field from a five-
dimensional to a four-dimensional function. In general, for every point (x, v, 2)
in scene space we have light rays travelling in every direction (parametrized by
two angles) giving a five-dimensional function. In occluder free space we can
assume (unless there is atmospheric interaction) that the radiance along a ray is
constant. The two ‘free space scenes’ of interest to us are: viewing an object from
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Figure 16.17

Light field rendering using
parallel plane representation
for rays. (a) Parametrization
of a ray using parallel
planes. (b) Pairs of planes
positioned on the face

of a bounding cube can
represent all the radiance
information due to an
object. (c) Reconstruction
for a single pixel Kx, ).

anywhere outside its convex hull and viewing an environment such as a roon,
from somewhere within its (empty) interior.

The set of rays in any region in space can be parametrized by their intersec.
tion with two parallel planes and this is the most convenient representation fg,
a light field (Figure 16.17(a)). The planes can be positioned anywhere. For exam,.
ple, we can position a pair of planes parallel to each face of a cube enclosing ap
object and capture all the radiance information due to the object (Figure
16.7(b)). Reconstruction of any view of the object then consists of each pixe] ip
the view plane casting a ray through the plane pair and assigning L{s, t, u, v} 1o
that pixel (Figure 16.7(c)). The reconstruction is essentially a resampling process
and unlike the methods described in previous sections it is a linear operation,

Light fields are easily constructed from rendered imagery. A light field for 3
single pair of parallel planes placed near an object can be created by moving the
camera in equal increments in the (s, f) plane to generate a series of sheareq
perspective projections. Each camera point (s, t) then specifies a bundle of rays
arriving from every direction in the frustum bounded by the (u, v) extent. [t
could be argued that we are simply pre-calculating every view of the object that
we require at run time; however, two factors mitigate this brute-force approach,
First, the resolution in the (s, 1) plane can be substantially lower than the reso-
lution in the (u, v) plane. If we consider a point on the surface of the object coin-
cidence, say, with the (r, v) plane, then the (s, {) plane contains the reflected

Lis. t i v)
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light in every direction (constrained by the (s, #) plane extent). By definition, the
radiance at a single point on the surface of an object varies slowly with direction
and a low sampling frequency in the (s, ) plane will capture this variation. A
higher sampling frequency is required to calculate the variation as a function of
position on the surface of the object. Second, there is substantial coherence
exhibited by a light field. Levoy and Hanrahan (1996) report a compression ratio
of 118:1 for a 402 Mb light field and conclude that given this magnitude of
compression the simple (linear) re-sampling scheme together with simplicity
advantages over other IBR methods make light fields a viable proposition.

 Photo-modelling and 1BR

Another distinguishing factor in IBR approaches is whether they work only with
computer graphics imagery (where depth information is available) or whether
they use photographs as the source imagery. Photography has the potential to
solve the other major problem with scene complexity - the modelling cost. Real
world detail, whose richness and complexity eludes even the most elaborate
photo-realistic renderers, is easily captured by conventional photographic
means. The idea is to use IBR techniques to manipulate the photographs so that
they can be used to generate an image from a view point different from the
camera view point.

Photographs have always been used in texture mapping and this classical tool
is still finding new applications in areas which demand an impression of realism
that would be unobtainable from conventional medelling technigues, except at
great expense. A good example is facial animation where a photograph of a face
is wrapped onto a computer graphics model or structure. The photo-map pro-
vides the fine level of detail, necessary for convincing and realistic expressions,
and the underlying three-dimensional model is used as a basis for controlling
the animation.

In building geometric representations from photographs, many of the prob-
lems that are encountered are traditionally part of the computer vision area but
the goals are different. Geometric information recovered from a scene in a com-
puter vision context usually has some single goal, such as collision avoidance in
robot navigation or object recognition, and we are usually concerned in some
way with reducing the information that impinges on the low-level sensor. We
are generally interested in recovering the shape of an object without regard to
such irrelevant information as texture; although we may use such information
as a device for extracting the required geometry, we are not interested in it per se.
In modelling a scene in detail, it is precisely the details such as texture that we
are interested in, as well as the pure geometry.

Consider first the device of using photography to assist in modelling.
Currently available commercial photo-modelling software concentrates on
extracting pure geometry using a high degree of manual intervention. Common
approaches use a pre-calibrated camera, knowledge of the position of the
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camera for each shot and a sufficient number of shots to capture the structure o
the building, say, that is being modelled. Extracting the edges from the shots g
the building enables a wireframe model to be constructed. This is usually dope
semi-automatically with an operator matching corresponding edges in the djp.
ferent projections. It is exactly equivalent to the shape from stereo problem
using feature correspondence except that now we use a human being instead gf
a correspondence-establishing algorithm. We may end up performing a Jarge
amount of manual work on the projections, as much work as would be entajleg
in using a conventional CAD package to construct the building. The obwvioys
potential advantage is that photo-modelling offers the possibility of automat.
cally extracting the rich visual detail of the scene, as well as the geometry.

It is interesting to note that in modelling from photographs approaches, the
computer graphics community has side-stepped the most difficult problems thay
are researched in computer vision by embracing some degree of manual inter.
vention. For example, the classical problem of correspondence between images
projected from different view points is solved by having an operator manually
establish a degree of correspondence between frames which can enable the suc.
cess of algorithms that establish detailed pixel-by-pixel correspondence. In com-
puter vision such approaches do not seem to be considered. Perhaps this is due
to well-established traditional attitudes in computer vision which has tended tp
see the imitation of human capabilities as an ultimate goal, as well as constraints
from applications.

Using photo-modelling to capture detail has some problems. One is that the
information we obtain may contain light source and view-dependent phenom.
ena such as shadows and specular reflections. These would have to be removed
before the imagery could be used generate the simulated environment from any
view point. Another problem of significance is that we may need to warp detail
in a photograph to fit the geometric model. This may involve expanding a very
small area of an image. Consider, for example, a photograph - taken from the
ground - of high building with a detailed facade. Important detail information
near the top of the building may be mapped into a small area due to the projec-
tive distortion. In fact, this problem is identical to view interpolation.

Let us now consider the use of photo-modelling without attempting to
extract the geometry. We simply keep the collected images as two-dimensional
projections and use these to calculate new two-dimensional projections. We
never attempt to recover three-dimensional geometry of the scene (although it
is necessary to consider the three-dimensional information concerning the
projections). This is a form of image-based rendering and it has something of 2
history.

Consider a virtual walk through an art gallery or museum. The quality
requirements are obvious. The user needs to experience the subtle lighting con:
ditions designed to best view the exhibits. These must be reproduced and suffi-
cient detail must be visible in the paintings. A standard computer graphics
approach may result in using a (view-independent) radiosity solution for the
rendering together with (photographic) texture maps for the paintings. The
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radiosity approach, where the expensive rendering calculations are performed
once only to give a view-independent solution may suffice in many contexts in
virtual reality, but it is not a general solution for scenes that contain complex
geometrical detail. As we know, a radiosity rendered scene has to be divided up
into as large elements as possible to facilitate a solution and there is always a
high cost for detailed scene geometry.

This kind of application - virtual tours around buildings and the like - has
already emerged with the bulk storage freedom offered by videodisk and CD-
ROM. The inherent disadvantage of most approaches is that they do not offer
continuous movement or walkthrough but discrete views selected by a user's
position as he (interactively) navigates around the building. They are akin to an
interactive catalogue and require the user to navigate in discrete steps from one
position to the other as determined by the points from which the photographic
images were taken. The user ‘hops’ from view point to view point,

An early example of a videodisk implementation is the ‘Movie Map’ developed
in 1980 (Lippman 1980). In this early example the streets of Aspen were filmed at
10-foot intervals. To invoke a walkthrough, a viewer retrieved selected views from
two videodisk players. To record the environment four cameras were used at every
view point - thus enabling the viewer to pan to the left and right. The example
demonstrates the trade-off implicit in this approach - because all reconstructed
views are pre-stored the recording is limited to discrete view points.

An obvious computer graphics approach is to use environment maps - origi-
nally developed in rendering to enable a surrounding environment to be
reflected in a shiny object (see Chapter 8). In image-based rendering we simply
replace the shiny object with a virtual viewer. Consider a user positioned at a
point from which a six-view (cubic) environment map has been constructed
(either photographically or synthetically). If we make the approximation that
the user’s eyes are always positioned exactly at the environment map’s view
point then we can compose any view direction-dependent projection demanded
by the user changing his direction of gaze by sampling the appropriate environ-
ment maps. This idea is shown schematically in Figure 16.18. Thus we have, for
a stationary viewer, coincidentally positioned at the environment map view
point, achieved our goal of a view-independent solution. We have decoupled the
viewing direction from the rendering pipeline. Composing a new view now con-
sists of sampling environment maps and the scene complexity problem has been
bound by the resolution of the pre-computed or photographed maps.

The highest demand on an image generator used in immersive virtual reality
comes from head movements (we need to compute at 60 frames per second to
avoid the head latency effect) and if we can devise a method where the render-
ing cost is almost independent of head movement this would be a great step for-
ward. However, the environment map suggestion only works for a stationary
viewer. We would need a set of maps for each position that the viewer could be
in. Can we extend the environment map approach to cope with complete walk-
throughs? Using the constraint that in a walkthrough the eyes of the user are
always at a constant height, we could construct a number of environment maps
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Figure 16.18
Compositing a user
projection from an
environment map.

Environment map .
view points

Environment map

whose view points were situated at the Jattice points of a coarse grid in a plane,
parallel to the ground plane and positioned at eye height. For any user position
could we compose, to some degree of accuracy, a user projection by using infor-
mation from the environment maps at the four adjacent lattice points? The
quality of the final projections are going to depend on the resolution of the
maps and the number of maps taken in a room - the resolution of the eye plane
Jattice. The map resolution will determine the detailed quality of the projection
and the number of maps its geometric accuracy.

To be able to emulate the flexibility of using a traditional graphics pipeline
approach, by using photographs (or pre-rendered environment maps), we either
have to use a brute-force approach and collect sufficient views compatible with
the required ‘resolution” of our walkthrough, or we have to try to obtain new
views from the existing ones.

Currently, viewing from cylindrical panoramas is being established as a pop-
ular facility on PC-based equipment (see Section 16.5.1). This involves collecting
the component images by moving a camera in a semi-constrained manner -
rotating it in a horizontal plane, The computer is used merely to ‘stitch’ the com-
ponent images into a continuous panorama - no attempt is made to recovet
depth information.

This system can be seen as the beginning of development that may eventu-
ally result in being able to capture all the information in a scene by walking
around with a video camera resulting in a three-dimensional photograph of the
scene. We could see such a development as merging the separate stages of
elling and rendering, there is now no distinction between them. The vi
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viewer can then be immersed in a photographic-quality environment and have
the freedom to move around in it without having his movement restricted to the
excursions of the camera.

Image-based rendering using photographic panoramas

Developed in 1994, Apple's QuickTime® VR is a classic example of using a pho-
tographic pancrama as a pre-stored virtual environment. A cylindrical panorama
is chosen for this system because it does not require any special equipment
beyond a standard camera and a tripod with some accessories. As for re-
projection - a cylindrical map has the advantage that it only curves in one direc-
tion thus making the necessary warping to produce the desired planar projection
fast. The basic disadvantage of the cylindrical map - the restricted vertical field
of view - can be overcome by using an alternative cubic or spherical map but
both of these involve a more difficult photographic collection process and the
sphere is more difficult to warp. The inherent viewing disadvantage of the
cylinder depends on the application. For example, in architectural visualization
it may be a serious drawback.

Figure 16.19 (Colour Plate) is an illustration of the system. A user takes a series
of normal photographs, using a camera rotating on a tripod, which are then
‘stitched’ together to form a cylindrical panoramic image. A viewer positions
himself at the view point and looks at a portion of the cylindrical surface. The
re-projection of selected part of the cylinder onto a (planar) view surface
involves a simple image warping operation which, in conjunction with other
speed-up strategies, operates in real time on a standard PC. A viewer can contin-
uously pan in the horizontal direction and the vertical direction to within the
vertical field of view limit.

Currently restricted to monocular imagery, it is interesting to note that one
of the most lauded aspects of virtual reality - three-dimensionality and immer-
sion - has been for the moment ignored. It may be that in the immediate future
monocular non-immersive imagery, which does not require expensive stereo
viewing facilities and which concentrates on reproducing a visually complex
environment, will predominate in the popularization of virtual reality facilities,

Compositing panoramas

Compositing environment maps with synthetic imagery is straightforward.
For example, to construct a cylindrical panorama we map view space coordinates
(x, ¥, Z) onto a cylindrical viewing surface (8, ) as:

0 = tan-'(x/2) I = pl(x® + 222

Constructing a cylindrical panorama from photographs involves a number of
practical points. Instead of having three-dimensional coordinates we now have
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photographs. The above equations can still be used substituting the focal lengtp
of the lens for z and calculating x and y from the coordinates in the photograpp
plane and the lens parameters. This is equivalent to considering the scene as 4
picture of itself - all objects in the scene are considered to be at the same deptp,

Another inherent advantage of a cylindrical panorama is that after the overlap.
ping planar photographs are mapped into cylindrical coordinates (just as if we hag
a cylindrical film plane in the camera) the construction of the complete panoram,
can be achieved by translation only - implying that it is straightforward to autq.
mate the process. The separate images are moved over one another until a match
is achieved - a process sometimes called ‘stitching’. As well as translating the
component images, the photographs may have to be processed to correct for expy.
sure differences that would otherwise leave a visible vertical boundary in the
panorama.

The overall process can now be seen as a warping of the scene onto a cylin.
drical viewing surface followed by the inverse warping to re-obtain a planar pro.
jection from the panorama. From the user’s point of view the cylinder enables
both an easy image collection model and a natural model for viewing in the
sense that we normally view an environment from a fixed height - eve leve] -
look around and up and down.

Photo-modelling for image-based rendering

In one of the first comprehensive studies of photo-modelling for image-based
rendering, Debevec et al. (1996) describe an approach with a number of inter-
esting and potentially important features. Their basic approach is to derive
sufficient information from sparse views of a scene to facilitate image-based
rendering (although the derived model can also be used in a conventional ren-
dering system). The emphasis of their work is architectural scenes and is based
on three innovations:

(1) Photogrammetric modelling in which they recover a three
dimensional geometric model of a building based on simple volumetric
primitives together with the camera view points from a set of sparse views.

(2) View-dependent texture mapping which is used to render the recov-
ered model.

(3) Model-based stereo which is used to solve the correspondence problem
(and thus enable view interpolation) and the recovery of detail not mod-
elled in (1),

Debevec et al. (1996) state that their approach is successful because:

it splits the task of modelling from images into tasks that are easily accomplished by
a person (but not by a computer algorithm), and tasks which are easily performed by 3
computer algorithm (but not by a person).
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The photogrammetric modelling process involves the user viewing a set of
photographs of a building and associating a set of volumetric primitives with the
photographic views to define an approximate geometric model. This is done by
invoking a component of the model, such as a rectangular solid and interactively
associating edges in the model with edges in the scene. In this way a box, say, can
be fitted semi-automatically to a view or views that contain a box as a structural ele-
ment. This manual intervention enables a complete geometric model to be derived
from the photographs even though only parts of the model may be visible in the
scene. The accuracy of the geometric model - that is the difference between the
maodel and the reality - depends on how much detail the user invokes, the nature
of the volumetric primitives and the nature of the scene. The idea is to obtain a
geometric model that reflects the structure of the building and which can be used
in subsequent processing to derive camera positions and facilitate a correspondence
algorithm. Thus a modern tower block may be represented by a single box, and
depth variations, which occur over a face due to windows that are contained in a
plane parallel to the wall plane, are at this stage of the process ignored.

Once a complete geometric model has been defined, a reconstruction algo-
rithm is invoked, for each photographic view. The purpose of this process is to
recover the camera view points, which is necessary for view interpolation,
together with the world coordinates of the model, which are necessary if the
model is going to be used in a conventional rendering system. This is done by
projecting the geometric model, using a hypothesized view point, onto the pho-
tographic views and comparing the position of the image edges with the posi-
tion of the projected model edges. The algorithm works by minimizing an
objective function which operates on the error between observed image edges
and the projected model edges. Correspondence between model edges and
image edges having already been established, the algorithm has to proceed
towards the solution without getting stuck at a local minimum.

These two processes - photogrammetric modelling and reconstruction -
extract sufficient information to enable a conventional rendering process that
Debevec calls ‘view-dependent texture mapping’. Here a new view of a building
Is generated by projecting the geometric model from the required view point,
treating the reference views as texture maps and reprojecting these from the new
view point onto the geometric model. The implication here is that the building
Is "oversampled’ and any one point will appear in two or more photographic
views. Thus when a new or virtual view is generated there will, for each pixel in
the new view, be a choice of texture maps with (perhaps) different values for the
same point on the building due to specularities and unmodelled geometric
detail. This problem is approached by mixing the contributions in inverse pro-
portion to the angles that the new view makes with the reference view directions
as shown in Figure 16.20. Hence the term ‘view-dependent texture mapping’ -
the contributions are selected and mixed according to the position of the virtual
view point with respect to the reference views.

The accuracy of this rendering is limited to the detail captured by the geo-
metric model and there is a difference between the real geometry and that of the
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Figure 16.20
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model. The extent of this difference depends on the labour that the user has py;
into the interactive modelling phase and the assumption is that the geometric
model will be missing such detail as window recesses and so on. For example, 3
facade modelled as a plane may receive a texture that contains such depth infor.
mation as shading differences and this can lead to images that do not look cor.
rect. The extent of this depends on the difference between the required viewing
angle and the angle of the view from which the texture map was selected,
Debevec et al. (1996) go on to extend their method by using the geometric
model to facilitate a correspondence algorithm that enables a depth map to be
calculated and the geometric detail missing from the original model to be
extracted. Establishing correspondence also enables view interpolation,

This process is called ‘model-based’ stereo and it uses the geometric model as
a priori information which enables the algorithm to cope with views that have
been taken from relatively far apart - one of the practical motivations of the
work is that it operates with a sparse set of views. (The main problem with tra-
ditional stereo correspondence algorithms is that they try to operate without
prior knowledge of scene structure. Here the extent of the correspondence prob-
lem predominantly depends on how close the two views are to each other.)
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17.1 A categorization and description of computer animation
techniques

17.2 Rigid body animation

17.3  Linked structure and hierarchical motion
17.4 Dynamics in computer animation

17.5 Collision detection

17.6 Collision response

17.7 Particle animation

17.8 Behavioural animation

17.9 Summary

Computer animation is a huge subject and deserves a complete textbook in its
own right. This chapter concentrates on foundation topics that have become
established in the field and serves as an introduction to the subject, rather than
comprehensive coverage. The aim of the material is to give the reader a good
grounding in the concepts on which most modern systems are based.

Infrhﬁucﬁun

Leaving aside some toys of the nineteenth century, it is interesting to consider that
we have only had the ability to create and disseminate moving imagery for a very
short period - since the advent of film. In this time it seems that animation has not
developed as a mainstream art form. Qutside the world of Disney and his imitators
there is little film animation that reaches the eves of the common man. It is curious
that we do not seem to be interested in art that represents movement and mostly
consign animation to the world of children's entertainment. Perhaps we can thank
Disney for raising film animation to an art form and at the same time condemning
it to a strange world of cute animals who are imbued with a set of human emotions.
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With the advent of computer animation, will this situation change? Perhaps
it is too early to say. Computer animation has for many years been locked into
its own ‘artistic’ domain and its most common manifestations are for TV title
sequences and TV commercials. These productions, known derisively as ‘“flying
logos’ move rigid bodies around in three-dimensional space and have been the
mainstream form of computer animation for around two decades. Their novelty
having palled a long time ago, the productions exhibit a strange ambivalence,
the characters have to retain their traditional function and at the same time have
an ‘animation personality’.

Computer animation is becoming increasingly used in the cinema, more,
however, as a special effects tool than as a medium in its own right. (And indeed
one of the most ubiquitous tools used by recent productions — morphing - is
strictly not computer animation at all, but the two-dimensional pixel-by-pixel
post-processing of filmed imagery.) The late 1990s, have seen the emergence of
full-length computer animation productions, but it is still too early to judge
whether this medium will develop and endure,

At first there was much optimism for computer animation. In a 1971 edition
of the classic The Techniques of Film Animation (Hallas and Manvell 1971) the
authors commenting on early scientific computer animation state:

COMPUTER ANIMATION

The position at present is that the scientist and the animator can now create drawings that
move in three or four dimensions, drawings that can rotate in space, and drawings
involving great mathematical precision representing a complex mathematical factor or
scientific principle. The process takes a fraction of the time for a production of a
conventional cartoon, a condition every animator has wished for ever since the invention
of cinematography. What may now be needed is an artist of Klee's talent who could invent
a new convention for creating shapes and forms. The tools are there and the next ten years
will surely lead to the development of exciting visual discoveries.

In fact, the next 20 years saw little development of computer animation beyond |
its utilitarian aspects, but perhaps in the 1990s we are beginning to see evidence |
of this early prediction.

What can computer animation offer to an animation artist? Two major tools
certainly. First, the substantial shortening of routine workload over conventional
cel animation. Second, the ability to make three-dimensional animation which
means that we can ‘film’ the movement and interaction of three-dimensional
objects. Film animation has been firmly locked into two-dimensional space with
most effort being spent on movement and characterization with only a nod here
and there to three-dimensional considerations such as shading and shadows. It
would seem that animators still want to use manual techniques in the main, and
indeed some of the most popular commercial productions in the 1990s have
used stop-motion animation of characters made from modelling clay.

Leaving aside the issue of art, the main practical problem that is central to all
computer animation is motion specification or control. Beyond the obvious
labour involved in building complex models of objects or characters that are
going to make up a computer animation (which are the same problems faced by
static rendering), there is the scripting or control of realistic movement, which

.
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is after all the basis of the art of animation. This becomes more and more diffi-
cult as models become more and more complex. Animating a single rigid body
that possesses a single reference point is reasonably straightforward; animating
a complex object such as an animal which may have many parts moving, albeit
in a constrained manner, relative to each other, is extremely difficult. Certainly
at the moment the most complex computer animations are being produced in
Hollywood and to highlight the difficult problem of movement contral we will
start the chapter by examining a contemporary example.

Steven Speilberg's film Jurassic Park is reckoned to be the most life-like com-
puter animation accomplished to date. It has an interesting history, and recog-
nizing that it is a pinnacle of achievement in realistic animation we will look
briefly at the techniques that were used to produce it (in Section 17.3). The role
of computer animation in this case was to bring to life creatures that could not
be Almed and the goal was ‘realism’. This, however, is not the only way in which
computer animation is being used in films. In the Disney production The Lion
King {1994), computer animation is used to imitate Disney-type animation, to
give the same look and feel as the traditional animation so that it can mix seam-
lessly with traditional cel animation. In this production a stampede sequence
was produced using technigues similar to those described in Sections 17.7 and
17.8. The sequence was perhaps more complex, in terms of the number of ani-
mal characters used and their interaction, than could have been produced man-
ually; and this was the motivation for using computer techniques.

For Jurassic Park, Speilberg originally hired a stop-motion (puppet or model)
animation expert to bring the creatures to life using this highly developed art
form. The only computer involvement was to be the post-processing of the stop-
motion animation (with motion blur) to make the sequences smoother and
more realistic. This task was to be undertaken by Industrial Light and Magic
(ILM) - a company already very experienced both in the use of ‘traditional’ spe-
cial effects and the use of digital techniques such as morphing. However, at the
same time ILM developed a Tyrannosaurus Rex test sequence using just com-
puter animation techniques and when Speilberg was shown this sequence, so
the story goes, he immediately decided that all the animation should be pro-
duced by ILM's computers. Jurassic Park is viewed as a turning point in the film
industry and many people see this film as finally establishing computer graph-
ics as the preferred tool in the special effects industry and as a technique (given
the commercial success of furassic Park) that Hollywood will make much of in
the years to come.

The advance in realism that emerged from this animation was the convinc-
ing movements of the characters. Although great attention was paid to model-
ling and detail such as the skin texture, it is in the end the motion that
impresses. The realism of the motion was almost certainly due to the unique sys-
tem for scripting the movements of the model. Although the computer tech-
niques gave much freedom over stop-motion puppet animation, where the
global movements of the model are restricted by the mechanical fact that it is
attached to a support rig, it is the marriage of effective scripting with the visual
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realism of the model that produced a film that will, perhaps, be perceived in the
future as King Kong is now.

A categorization and description of computer animation
techniques

Computer animation techniques can be categorized by a somewhat unhappy
mix of the type and nature of the objects that are going to be animated and the
programming technique used to achieve the animation. We have chosen to
describe the following types of computer animation:

® Rigid body animation,
Articulated structure animation.
Dynamic simulation.

Particle animation,

Behavioural animation.

* & o0

These categories are not meant to be a complete set of computer animation tech-
niques; for example, we have excluded the much studied area of soft body or
deformable object animation. Techniques that have been used are as wide and
varied as the animation productions — we have chosen these particular five
because they seem to have become reasonably well established over the rela-
tively short history of computer animation. Some animation may, of course, be
produced using a mixture of the above techniques.

Rigid body animation is self-explanatory and is the easiest and most ubiqui-
tous form. In its simplest form it means using a standard renderer and moving
objects and/or the view point around.

Articulated structures are computer graphics models that simulate
quadrupeds and bipeds. Such models can range from simple stick figures up to
attempts that simulate animals and human beings complete with a skin and/or
clothes surface representation. The difficulty of scripting the motion of articu-
lated structures is a function of the complexity of the object and the complexity
of the required movements. Usually we are interested in very complex articu-
lated structures, humans or animals, and this implies, as we shall see, that
motion control is difficult.

Dynamic simulation means using physical laws to simulate the motion. The
motivation here is that these laws should produce more realistic motion than
that which can be achieved manually. The disadvantage of dynamic simulation
is that it tends to remove artistic control from the animator.

Particle animation means individually animating large populations of parti-
cles to simulate some phenomenon viewed as the overall movement of the par-
ticle ‘cloud’ such as a fireworks display. Particles, as the name implies, are small
bodies each of which normally has its own animation script.
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Behavioural animation means modelling the behaviour of objects. What we
mean by ‘behaviour’ is something more complex than basic movement, and
may depend on certain behavioural rules which are a function of object attrib-
utes and the evolving spatial relationship of an object to neighbouring objects.
Behavioural animation is like particle animation with the important extension
that particle scripts are not independent. A collection of entities in behavioural
animation evolve according to the behaviour of neighbours in the population.
The stampeding animals in The Lion King, for example, moved individually and
also according to their position in the stampeding herd. Another example is the
way in which birds move in a flock and fishes move in a shoal. Each individual
entity has both autocratic movement and also movement influenced by its con-
tinually changing spatial relationship with other entities in the scene. The goal
of the behavioural rules in this context is to have a convincing depiction of the
herd as an entity.

D

Rigid body animation

Rigid body animation is the oldest and most familiar form of computer anima-
tion, Its most common manifestation is the ubiquitous ‘flying logo’ on our TV
screens and it appears to have established itself as a mandatory technique for
titles at the beginning of TV programmes. Rigid body animation could be
described as the fundamental animation requirement and is likely to be used in
some form by all of the other categories. It is the simplest form of computer ani-
mation to implement and is the most widely used. [t is mainly used by people
who do not have a formal computer or programming background, consequently
the interface issue is critically important. This type of animation was an obvious
extension of programs that could render three-dimensional scenes. We can pro-
duce animated sequences by rendering a scene with an object in different posi-
tions, or by moving the view point (the virtual camera) around, recording the
resulting single frames on video tape or film.

The problem is: how do we specify and control the movement of objects in a
scene. Either the objects can move, or the virtual camera can move or we can
make both move at the same time. We will describe how to move a single object
but the technique extends in an obvious way to the other cases.

There are two established approaches to ‘routine’ rigid body animation -
keyframing or interpolation systems and explicit scripting systems.

Interpolation or keyframing
Keyframing systems are based on a well-known production technique in film or
cel animation. To cope with the prodigious workload in developing an anima-

tion sequence of any length, animation companies developed a hierarchical
system wherein talented animators specify a sequence by drawing keyframes at
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Figure 17.1

Linear interpolation will
produce an unrealistic
trajectory for a bouncing
ball specified at three key
positions,

certain intervals. These are passed to ‘inbetweeners’ who draw the intermediate
frames which are then coloured by ‘inkers’. (This hierarchy was reflected in the
rewards received by the members of the team. In Disney’s Snow White and the
Seven Dwarfs the four chief animators were paid $100 a week, the inbetweeners
$35 and the inkers $20.)

It was natural that this process be extended to three-dimensional computer
animation - the spatial juxtaposition of objects in a scene can be defined by
keyframes and the computer can interpolate the inbetween frames. However,
many problems arise and these are mainly due to the fact that simple interpola-
tion strategies cannot replace the intelligence of a human inbetweeners. In gen-
eral, we need to specify more keyframes in a computer system than would be
required in traditional animation.

Consider the simple problem of a bouncing ball. If we use three key frames -
the start position, the end position and the zenith together with linear interpo-
lation, then the resulting trajectory will be unrealistic (Figure 17.1). Linear inter-
polation is generally inadequate in most contexts.

We can improve on this by allowing the animator to specify more informa-
tion about the motion characteristics between the key frames. For example, a
curved path could be defined. This, however, would say nothing about how the
velocity varied along the path. A ball moving with uniform velocity along, say,
a parabola would again look unrealistic. Thus to control motion correctly when
we are moving objects around we must explicitly define both the positional vari-
ation as a function of time and the dynamic behaviour along the specified path.

We can give such information in a number of ways. We could, for example,
work with a set of points - key frame points - defining where an object is to be
at certain points in time and fit a cubic, say, through these points.

If we use B-splines for the interpolation - as described in Section 3.6.3 - then
the key positions become knot points. Generally, we require a curve that is C*
continuous to simulate the motion of a rigid body. If we restrict ourselves to con-
sidering position then we emplace an object as a function of time in the scene
using a 4 x 4 modelling transformation M of the form:

0006
0006
000t
000 1

Mit) =
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Newton's law gives us that:

Fo_,_ M0

m  de
Thus, to imitate the effect of a moving object in space - to make the motion look
‘natural’ - the elements of the transformation matrix must have continuous sec-

ond derivatives, 5o it seems that interpolation from keys is straightforward, and

“indeed it is for simple cases. However, there are a number of problems, Usually

we want to animate an object that exhibits a some rotation as it translates along
a path, We cannot apply the same interpolation scheme to:

anlt) a(r) an(t) )
aull) az(t) axn() 6l

Mit) = anll) an(f) au(t) L)
0 0 0 1
because the matrix elements ay, . . ., a3 are not independent. We do not want

the body to change shape and so the sub-matrix A must remain orthonormal at
all times - the column vectors must be unit vectors and form a perpendicular
triple. Thus, positional elements can be interpolated independently but rota-
tional elements cannot. If we attempt to linearly interpolate between nine pairs
of elements au, . . ., @ then the in-between matrices A; will not be orthonor-
mal and the object will change shape. {The subject of interpolation of rotation
is dealt with separately in Section 17.2.3.)

Another problem arises from the fact that the kinematics of the motion (the
velacity and acceleration) of the body and the geometry of the path are specified
by the same entity - the transformation matrix M(r). In general an animator will
require control so that that the kinematics of the body along the path can be
modified.

Yet another problem emerges from the specifics of the interpolation scheme.
It may be that the nature of the path between keys is not what the animator
requires, in particular depending on the number of keys specified, unwanted
excursion may occur. Also, there is the problem of the locality of influence of the
keys which are the knot points in the B-spline curve. It may be that the anima-
tor requires to change the path in a way that is not possible by changing the
position of a single key and requires the insertion of new keys. These disadvan-
tages suggest an alternative approach where the animator explicitly specifies the
curves for path and motion along a path rather than presenting a set of keys to
an interpolation scheme whose behaviour is ‘mysterious’.

Explicit scripting
We are thus led the idea of an explicit script and some kind of interface that

enables a person to write the script. The best approach is to use a graphical inter-
face. This will suffer from the usual problem of trying to perceive the three-
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dimesionality of a scene or scene representation from a two-dimensional projec.
tion, but if we can produce the sequences, or a wireframe version of the finished
sequence, in real time then this difficulty is ameliorated.

An obvious idea is to use cubic parametric curves as a script form (Chapter 3),
Such a curve can be used as a path over which the reference point or origin of
the object is to move. These can be easily edited and stored for possible future
use. The best approach, called the double interpolant method, is to use two
curves, one for the path of the object through space and one for its motion char.
acteristic along the path. Then a developer can alter one characteristic indepen.
dently of the other.

An interface possibility is shown in Figure 17.2. The path characteristic js
visualized and altered in three windows that are the projections of the curve in
the xy, yz and xz planes. The path itself can be shown embedded in the scene
with three-dimensional interpretative clues coming from the position of other
objects in the scene and vertical lines drawn from the curve to the xy plane. The
animator sets up the path curve Q{u), applies a velocity curve V(u) and views the
resulting animation, editing either or both characteristics if necessary.

Generating the animation from these characteristics means deriving the posi-
tion of the object at equal intervals in time along the path characteristic. This is
shown in principle in Figure 17.3. The steps are:

(1) For a frame at time t find the distance s corresponding to the frame time
t from Wiu).

(2) Measure 5 units along the path characteristic Q{u) to find the corresponding
value for u.

E""\/\/”
\___‘_/—"*-ﬁ
A

Viu)
Figure 17.2
Motion specification for Start End
rigid body animation - an
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{3) Substitute this value of u into the equations for Q(u) to find the position of
the object (x, y, 2).

{4) Render the object in this position.

This simple process hides a subsidiary problem called reparametrization. ¥ is
parametrized in terms of u, that is:

Vi) =(t 5}
where t = T(w) and s = 5(u)

Given the frame time tywe have to find the value of u such that ;= T{u). We then
substitute this value of & into s = 5(u) and 'plot’ this distance on the path char-
acteristic Q(u). Here we have exactly the same problem. The path characteristic
is parametrized in terms of u not 5. The significance of this problem is demon-
strated graphically in Figure 17.4 which compares equal (arclength) intervals
with equal intervals in the curve parameter.

The general problem of reparametrization in both cases involves inverting the
two equations:

u=TYt) and wu=qQs)

An approximate method that given ¢ or 5 finds a close value of u, is accumulated
chord length. Shown in principle in Figure 17.5 the algorithm is:

{1) Construct a table of accumulated chord lengths by taking some small inter-
val in ¥ and calculating the distances L, I, I3, . . . and inserting in the table
L, (h#l), (hiHz+ls), . . . the accumulated lengths,

{2) To find the value of u corresponding to s, say, to within the accuracy of this
method, we take the nearest entry in the table to s.

This simple approach does not address many of the requirements of a practical sys-
temn, but it is a good basic method from which context-dependent enhancements
can be grown. In particular it can form the basis for both a scripting system and an
interactive interface. We briefly describe some of the more important omissions,
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Figure 17.4
Intervals of equal

parametric length

(outline arfowheads) do not

comespond to equal

intervals of arclength (black

arrowheads)

Figure 17.5
Accumulated chord-length
approximation.

The first is that if we freely change W(u), then the total time taken for the
object to travel along the curve will in general change. We may, for example,
make the object accelerate more quickly from rest shortening the time taken to
travel along the path. Many animations, however, have to fit into an exact time
slot and a more normal situation would involve changing V{u) under the con.
straint that the travel time remains fixed.

Another more obvious problem is: what attitude does the object take as jt
moves along a path? The method as it stands is only suitable for single particles
or, equivalently, a single reference point in an object which would just translate
‘upright’ along the path. Usually we want the object to rotate as it translates.
Simplistically we can introduce another three script curves to represent the atti-
tude of the object as it moves along the path. The easiest way to do this is to
parametrize the rotation by using three angles specifying the rotation about each
of three coordinate axes rigidly attached to the object. These are known as Euler
angles and are called roll, pitch and yaw.

If we are producing an animation with many objects moving in the scene and
if these objects are animated, one at a time, independently, then what do we do
about collisions? If we use a standard rendering pipeline (with a Z-buffer) then
colliding objects will simply mowve through each other, unless we explicitly
detect this event and signal it through the design interface. Collision detection
is a distinctly non-trivial problem. Objects that we normally want to deal with
in computer animation can be extremely complex — their spatial extent specified
by a geometric description that in most cases will not be amenable to collision

Qu)
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RIGID BODY ANIMATION

detection. Consider two polygon mesh objects that each contain a large number
of polygons. It is not obvious how to detect the situation that a vertex from one
object has moved inside the space of another. A straightforward approach would
involve a comparison between each vertex in one object against every polygon
in the other — an extremely time consuming problem. And the detection of a col-
lision is only part of the problem; how do we model the reaction of objects, their
deformation and movement after a collision? (Collision detection is described in
more detail in Section 17.5.)

Interpolation of rotation

In rigid body animation we usually want to be able to deal with both translation
and rotation. An object moves through space and changes its orientation in the
process. To do this we need to parametrize rotation. (We distinguish between
rotation and orientation as: orientation is specified by a normal vector embed-
ded in an object; rotation is specified by an gxis and an angle.) The traditional
method is to use Euler angles where rotation is represented by using angles with
respect to three mutually perpendicular axes. In many engineering applications
— aeronautics, for example — these are known as roll, pitch and yaw angles. We
can thus write down a rotation as:

R0y, Bz, B3}

Euler angles are implemented by using a transformation matrix — one matrix
for each Euler angle - as introduced in Chapter 1. A general rotation is thus
effected by the product of the three matrices. As we saw in Chapter 1, to effect a
rotation we specify three rotation matrices noting that rotation matrices are not
commutative and the nature of the rotation depends on the order in which they
are applied. However, leaving that problem aside we will now see that more sig-
nificant difficulties for an animator occur if rotation is parametrized in this way.

We now consider a simple Example. F'lgul'ﬂ' 17.6 shows a letter R moving from
an initial to a final position. In both cases the start and final positions are the
same but the path between these is substantially different. In the first case a sin-
gle rotation about the x axis of 180° has been applied. In the second case two
rotations of 180°, about the y and z axes are applied simultaneously. The single
rotation results in the character moving in a two-dimensional plane without
‘twisting” while in the latter case the character follows a completely different
path through space twisting about an axis through the character as it translates.
What are we to conclude from this? There are two important implications. If an
animator requires a certain path from one position and orientation to another
then, in general, all three Euler angles must be controlled in a manner that will
give the desired effect. Return to Figure 17.6. The examples here were generated
by the following two sequences:

R0, 0,00, ..., Rnt, 0,0), ..., R(x, 0,0) te [0, 1]

for the first route, and
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Figure 17.6

Euler angle parametrization.

(a) A single x-rofl of o
(b) A y-roll of x followed by

a z-roll of =.

(17.2.4)

R{O, 0,00 ..., RO, =f, m), ..., RO, x, x)

for the second route. Examining in particular the second case we could conclude
that it would be practically unworkable Lo expect an animator to translate an
idea involving an object twisting through space into a particular movement
specified by Euler angles.

The same consideration applies to interpolation: if an animator specifies keys,
how is the interpolation to proceed? In fact there exists an infinity of ways of
getting from one key to another in the parameter space of Euler angles. Clearly
there is a need for an understood rotation from one key to the other. This single
rotation may not be what the animator desires, but it is better than the alterna-
tive situation where no unique rotation is available.

Euler's theorcm tells us that it is possible to get from one orientation 1o
another by a single steady rotation. In particular it states that for two orienta-
tions O and ©' there exists an axis { and an angle 9 such that O undergoes rola-
tion to (" when rotated 6 about /. And we can interpret Figure 17.6 in the light
of this - the first example being the single-axis rotation that takes us from the
start to the stop position. But that was a special case and easy to visualize; in gen-
eral for two orientations O and O how do we find or specify this motion? This
problem is solved by using quaternions,

There is another potentially important consideration in the above interpola-
tion scheme of Euler angles, We separated motion and path in the explicitly
scripted animation method because we considered that an animator would, in
general, require control of the motion an object exhibited along a path scparate
to the specification of the path in space. The same consideration is likely to
apply in specifying rotation — it may be that the motion (angular velocity) that
results from linearly interpolating Euler angles is not what the animator requires.

Using quaternions to represent rotation

A useful introductory notion concerning quaternions is to consider them as an
operator, like a matrix, that changes one vector into another, but where the
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infinite choice of matrix elements is removed. Instead of specifying the nine
elements of a rotation matrix we define four real numbers. We begin by looking
at angular displacement of a vector, rotating a vector by 8 about an axis n.

We define rotation as an angular displacement given by (8, m) of an amount
8 about an axis n. That is, instead of specifying rotation as R{8, 82, 61) we write
R(8, n). Consider the angular displacement acting on a vector r taking it to posi-
tion Rr as shown in Figure 17.7.

The problem can be decomposed by resolving r into components parallel to
n, ry, which by definition remains unchanged after rotation, and perpendicular
to n, r. in the plane passing through r and Rr.

r=(nrn
ro=r-{mrn

r. is rotated into position Rr.. We construct a vector perpendicular to r. and
lying in the plane orthogonal to m. In order to evaluate this rotation, we write:

V=nxr=nxr '
where x specifies the cross-product. 50:
Rr, = (cos @) ¥y + (sin &)V
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hence:

Rr = Rry + Br,
= Rry + (cos 8) ro + (sin )V
= (r-r)n + cos 6(r = (rerjn) + (sin @ = r
= (cos 8)r + (1 — cos B)n(m-F) + (Ssin@) = r

[17.1]

We will now show that rotating the vector r by the angular displacement can be
achieved by a quaternion transformation. That is, we apply a quaternion like 3
matrix to change a vector.

We begin by noting that to effect such an operation we only need four rea|
numbers (this compares with the nine elements in a matrix). We require;

® The change of length of the vector.
¢ The plane of the rotation (which can be defined by two angles from two axes),
® The angle of the rotation.
In other words, we need avepresentation that only possesses the four degrees of
freedom required according to Euler's theorem. For this we will use unit quater-
nions. As the name implies, quaternions are ‘four-vectors’ and can be considered
as a generalization of complex numbers with 5 as the real or scalar part and x, y,
Z as the imaginary part:

q=5+xi+yl+zk

=05 v)

Here we can note their similarity to a two-dimensional complex number that
can be used to specify a point or vector in two-dimensional space. A quaternion
can specify a point in four-dimensional space and, if s = 0, a point or vector in
three-dimensional space. In this context they are used to represent a vector plus
rotation. 1, j, and k are unit quaternions and are equivalent to unit vectors in a
vector system; however, they obey different combination rules:

11=P=ﬁ=#k=-1, #:k! j!:—k
Using these we can derive addition and multiplication rules each of which yields
a quaternion:

Addition g+q =(5+5, v+v)

Multiplication gg' = (55" - ¥+, ¥ x ¥ + 5% + 5'%)

The conjugate of the quaternion:

q=1_s,v)

is:
E = {S- _"'}

and the product of the quaternion with its conjugate defines its magnitude:
gg=s"+ 1 =g
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If:
Igl =1

then q is called a unit quaternion. The set of all unit quaternions forms a unit
sphere in four-dimensional space and unit quaternions play an important part
in specifying general rotations.

It can be shown that if:

q=(s5v)
then there exists a v and a 6 € [-x, x| such that:
g = {cos 6, ¥ sin )
and if g is a unit quaternion then:
q = (cos G, sin @ ) [Proposition 17.1]

where Inl = 1.
We now consider operating on a vector r in Figure 17.7 by using quaternions.
r is defined as the quaternion p = (0, #) and we define the operation as;

Relp) = qpq!
That is, it is proposed to rotate the vector » by expressing it as a quaternion multi-
plying it on the left by g4 and on the right by g-'. This guarantees that the result
will be a quaternion of the form (0, ¥), in other words a vector. g is defined to be
a unit quaternion (s, ¥). It is easily shown that:

Rp(p) = (0, (5* = v-¥)r + 2¥(vr) + 25(v x 1))
Using Proposition 17.1 and substituting gives:
Rq(p) = (0, (cos®® - sin®@) + 2sin®0 m{r-#) + 2cosBsind (n < #))
= (0, rcos26 + (1 - cos28) n(r-r) + sin2 (1 < 7))

Now compare this with Equation 17.1. You will notice that aside from a factor
of 2 appearing in the angle they are identical in form. What can we conclude
from this? The act of rotating a vector » by an angular displacement (8, n) is the
same as taking this angular displacement, ‘lifting’ it into quaternion space, by
representing it as the unit quaternion:

(cos(8/2), sin(f/2) n)

and performing the operation g()g on the quaternion (0, r). We could therefore
parametrize orientation in terms of the four parameters:,

cos(8/2), sin(8/2) m.,  $in(®/2) m,, sin(0/2) n:

using quaternion algebra to manipulate the compoenents.
Let us now return to our example of Figure 17.6 to see how this works in prac-
tice. The first single x-roll of & is represented by the quaternion:

{cos(n/2), sin(=/2) (1, 0, 0)) = (0, (1, O, O))
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Similarly a y-roll of x and a z-roll of x are given by (0, (0, 1, 0) and (0, (0, 0, 1))
respectively. Now the effect of a y-roll of = followed by a z-roll of x can be repre.
sented by the single quaternion formed by multiplying these two quaternions
together:

(0, (0, 1, 00 (0, (0, 0, 1)) = (0, {0, 1, 0) > (0, 0, 1))
=10, (1, Gi U}]

which is identically the single x-roll of n.

We conclude this section by noting that quaternions are used exclusively to
represent orientation - they can be used to represent translation but combining
rotation and translation into a scheme analogous to homogeneous coordinates
is not straightforward.

Interpolating quaternions

Given the superiority of quaternion parametrization over Euler angle parame-
trization, this section covers the issue of interpolating rotation in quatemion
space. Consider an animator sitting at a workstation and interactively setting up
a sequence of key orientations by whatever method is appropriate. This is usu-
ally done with the principal rotation operations, but now the restrictions that
were placed on the animator when using Euler angles, namely using a fixed
number of principal rotations in a fixed order for each key, can be removed. In
general, each key will be represented as a single rotation matrix. This sequence
of matrices will then be converted into a sequence of quaternions. Interpolation
between key quaternions is performed and this produces a sequence of in-
between quaternions, which are then converted back into rotation matrices. The
matrices are then applied to the object. The fact that a quaternion interpolation
is being used is transparent to the animator.

Maving in and out of quaternion space

The implementation of such a scheme requires us to move into and out of
quaternion space, that is, to go from a general rotation matrix to a quaternion
and vice versa. Now to rotate a vector p with the quaternion g we use the oper-
ation:

90, p)q
where g is the quaternion:
(cos(6/2), sin(8/2)m) = (s, (x, y, 2))

It can be shown that this is exactly equivalent to applying the following rotation
matrix to the vector:
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1=2(0¥+2%) 2xy-2sz 25y + 2xz
2xy + 252 1-2(x*+ 2% -2sx+ 2yz
—2sy + 2xz 2sx + 2yz 1-2(x*+
0 0 0

M=

== =]

By these means then, we can move from quaternion space to rotation matrices.
The inverse mapping, from a rotation matrix to a quaternion is as follows. All
that is required is to convert a general rotation matrix:

Mo Mn Mo Mn
Mw Mu Mz Mo
Man Mn Mz Mz
Mw Mun Mn Mn

where My = M = Maa= Mw = M = Mz = 0 and Mz = 1, into the matrix format
directly above. Given a general rotation matrix the first thing to do is to exam-
ine the sum of its diagonal components My which is:

4 —4(x* + P + 24 i

Since the quaternion corresponding to the rotation matrix is of unit magnitude
we have:

Sf+xtepPet=1
and:
4-4( + )2+ 77) = 4 - 41 - §) = 45

Thus, for a 4 x 4 homogeneous matrix we have:

1
$=:!:§ Moo + Mis + Mzz + M

and:
Mll - MIZ

- 45
_ Moz = M=
B 45

_ Mig = Moy
45

Spherical linear interpolation (slerp)

Having outlined our scheme we now discuss how to interpolate in quaternion
space. Since a rotation maps onto a quaternion of unit magnitude, the entire group
of rotations maps onto the surface of the four-dimensional unit hypersphere in
quaternion space. Curves interpolating through key orientations should therefore
lie on the surface of this sphere. Consider the simplest case of interpolating
between just two key quaternions. A naive, straightforward linear interpolation
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Figure 17.8

A two-dimensional analogy
shawing the difference
between simple linear
interpolation and simple
spherical linear interpolation
(slerp).

Figure 17.9
Spherical linear interpolation
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between the two keys results in a motion that speeds up in the middle. An anal-
ogy of this process in a two-dimensional plane is shown in Figure 17.8 which
shows that the path on the surface of the sphere yielded by linear interpolation
gives unequal angles and causes a speed-up in angular velocity.

This is because we are not moving along the surface of the hypersphere but
cutting across it. In order to ensure a steady rotation we must employ spherical
linear interpolation (or slerp), where we move along an arc of the geodesic that
passes through the two keys.

The formula for spherical linear interpolation is easy to derive geometrically.
Consider the two-dimensional case of two vectors A and B separated by angle (i
and vector P which makes an angle 8 with A as shown in Figure 17.9. P is
derived from spherical interpolation between A and B and we write:

P=oA +pB

Trivially we can solve for a and p given:

™M =1
AB =cos il
AP =cost
Lo give:
P-4 sin ({1 = @) sin @

- + -
sin {2 sin £

5
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Spherical linear interpolation between two unit quaternions g: and gz, where:
gi-qgz = cos 1l
is obtained by generalizing the above to four dimensions and replacing & by (u
where u € [0, 1]. We write:
sin {1 — w)fd . sin Qu
sin () * Sna

slerp (g1, gz, u) = g

Now given any two key quaternions, p and g, there exist two possible arcs
along which one can move, corresponding to alternative starting directions on
the geodesic that connects them. One of them goes around the long way and
this is the one that we wish to avoid. Naively one might assume that this reduces
to either spherically interpolating between p and g by the angle {}, where:

prq=cosil

or interpolating in the opposite direction by the angle 2x - (). This, however, will
not produce the desired effect. The reason for this is that the topology of the
hypersphere of orientation is not just a straightforward extension of the three-
dimensional Euclidean sphere. To appreciate this, it is sufficient to consider the
fact that every rotation has two representations in quaternion space, namely g
and —g, that is, the effect of g and —g is the same. That this is so is due to the fact
that algebraically the operator q()q~ has exactly the same effect as (~g)()(-g)™".
Thus, points diametrically opposed represent the same rotation. Because of this
topological oddity care must be taken when determining the shortest arc. A strat-
egy that works is to choose interpolating between either the quaternion pair p
and q or the pair p and —q. Given two key orientations p and q find the magni-
tude of their difference, that is (p~q)-(p—q), and compare this to the magnitude of
the difference when the second key is negated, that is (p+g)-(p+g). If the former
is smaller then we are already moving along the smallest arc and nothing needs
to be done. If, however, the second is smallest, then we replace g by -4 and pro-
ceed. These considerations are shown schematically in Figure 17.10.

So far we have described the spherical equivalent of linear interpolation
between two key orientations, and, just as was the case for linear interpolation,
spherical linear interpolation between more than two key orientations will pro-
duce jerky, sharply changing motion across the keys. The situation is summa-
rized in Figure 17.11 as a three-dimensional analogy which shows that the curve

P
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Figure 17.11

A three-dimensional
analogy of using slerp to
interpolate between four
keys.

Angular velocity
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on the surface of the sphere is not continuous through the keys. Also shown in
this figure is the angular velocity which is not constant and which is discontin-
uous at the keys. The angular velocity can be made constant across all frames by
assigning to each interval between keys a number of frames proportional to the
magnitude of the interval. That is, we calculate the magnitude of the angle 8
between a pair of keys g and g as:

Ccostl = g; - gin

where the inner product of two quaternions g = (s, v) and g = (s, ) is defined
as:

g-f" = 55"+ v’

Curing the path continuity is more difficult. What is required for higher order
continuity is the spherical equivalent of the cubic spline. Unfortunately because
we are now working on the surface of a four-dimensional hypersphere, the prob-
lem is far more complex than constructing splines in three-dimensional
Euclidean space. Duff (1986) and Shoemake (1985) have all tackled this problem.

Finally, we mention a potential difficulty when applying quaternions.
Quaternion interpolation is indiscriminate in that it does not prefer any one
direction to any other. Interpolating between two keys produces a move that
depends on the orientations of the keys and nothing else. This is inconvenient
when choreographing the virtual camera. Normally when moving a camera the
film plane is always required to be upright - this is usually specified by an ‘up’
vector. By its very nature, the notion of a preferred direction cannot easily be
built into the quaternion representation and if it is used in this context the
camera-up vector may have to be reset or some other fix employed. (Roll of the
camera is, of course, used in certain contexts.)

The camera as an animated object

Any or all of the external camera parameters can be animated but the most com-
mon type of camera animation is surely that employed in first person computer
games and similar applications where a camera flies through a mostly static
environment under user interface control - the so-called ‘walkthrough’ or
‘flyby’. Here, the user is controlling the view point, and usually a (two degrees of
freedom) viewing direction. Interpolation is usually required between consecu-
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tive interface samples that form the keys and the most important constraint is
to keep the camera-up vector up; normally no orientation about the view direc-
tion vector is tolerated. (The only time the camera rolls about the view direction
in first person games is when you die.)

Another common application is where the view point is under user control
but the camera always points to an object of interest which can be static or itself
moving. A common example of this is the (confusingly called) third person com-
puter games where the camera is tied to (say) the head of the character via an
sinvisible’ rigid link. Instead of seeing the environment through the eyes of the
character the user sees over the character’s shoulder. In this case the view direc-
tion vector is derived from the character. The view point effectively moves over
a part of the surface of a sphere centred on the character. If quaternion inter-
polation is used in this application then the up vector has to be reset after an
interpolation.

@ Linked structures and hierarchical motion

Scripting of movement of quadruped or biped models in computer animation
has, for some time, been an energetically pursued research topic. The computer
models are known as articulated or linked structures and most approaches for
movement control in animation have attempted to extend techniques devel-
oped in the industrial robotics field. Just as interpolation was the frst idea to be
applied to rigid body animation, parametrizing the movement of links or limbs
in an articulated structure using robotic methodology seemed the way to pro-
ceed, Although this is perhaps an obvious approach it has not proved very fruit-
ful. One problem is that robot control Is itself a research area — by no means have
all the problems been solved in that field. Probably a more important reason is
that the techniques required to control the precise mechanical movements of an
industrial robot do not make a comfortable and creative environment in which
an animator can script the freer, more complex and subtler movements of a
human or an animal.

Vet another reason is that animal structures are not rigid and the links them-
selves deform as illustrated in Figure 17.12. In fact, the most successful articu-
lated structure animation to date, Jurassic Park, used an ad hoc technique to
represent or to derive the motion of the links in complicated (d inosaur) models.
Let us look briefly at these techniques. This will give an appreciation of the dif-
ficulty of the problem faced by the animators in Jurassic Park and the efficacy of
their solution.

First, what is an articulated structure? It is simply a set of rigid objects, or
links, connected to each other by joints which enable the various parts of the
structure to move, in some way, with respect to each other. For animal anima-
tion the links form a simplified skeleton, a stick figure, and only exist to facili-
tate control of the structure. They are an abstraction which is not rendered.
Instead, the link is ‘covered’ with the external surface of the animal object and
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Figure 17.12

Spine flexion in a horse and
a cheetah {after Gray
(1968)).

R

this is rendered, (This is no different in principle from a rigid object represented
by a polygen mesh. Here, we are effectively controlling the position and orien-
tation of a vector representing the object.)

Consider a simple example - a single human leg. We might model this as rep-
resented in Figure 17.13(a) using two links connecting three joints — the hip
joint, the knee joint and the ankle joint. Simplistically, we could constrain
movement to the plane containing the joints and allow the link between the hip
and the knee to rotate, between certain limits, about the hip joint and allow the
link between the ankle and the knee to rotate about the knee joint (and, of
course, we know that this link can only rotate in one direction). The rotation of
the foot about the ankle joint is more complicated since the foot itself is an artic-
ulated structure. Given such a structure how do we begin to specify a script for,
say, the way the leg structure is to behave to execute a walk action? It is-fairly
obvious that the motion of the structure is constrained by the overall connec-
tivity - the structure comprises some chain of links and one link causes its neigh-
bour to move, and constraints that the links themselves possess, like the
rotational limits in human animal skeletal joints. The practical effect of this is
that we cannot easily use a key frame system because these constraints must
function across all interpolated positions. Thus, a system is adopted where the
links have their relative motion specified. That is, the motion of link i is speci-
fied relative to that of link j to which it is connected. Such systems are thus ani-
mated by separately animating each link. They also, by definition, must possess
a hierarchy - every link has one above it, unless it is the top link, and one below
it, unless it is the bottom link or end effector. A link inherits the transformations
of all links above it.
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Figure 17.13 Hip Upper leg (hip rotation}
A simple articulated
structure and its hierarchical
representation. Upper leg Hip rotation
N
Knee Lower leg {knee rotation)

Lower leg Hip rotation + knee rotation

Ankle Foot ankle rotation
(a) (b

There are two major approaches to this problem both of which come out of
robotics — forward kinematics and inverse kinematics.

Forward kinematics is a somewhat tedious low-level approach where the ani-
mator has to specify explicitly all the motions of every part of the articulated
structure. Like any low-level approach the amount of work that has to be done
by the animator is a function of the complexity of the structure. The articulated
structure is considered as a hierarchy of nodes (Figure 17.13(b}) with an associ-
ated transformation which moves the link connected to the node in some way.
Each node represents a body part such as an upper or lower arm. We could ani-
mate such a structure by using explicit scripting curves to specify the transfor-
mation values as a function of time. Instead of having just a single path
characteristic which moves a reference point for a rigid body, we may now have
many characteristics each moving one part of the structure. Consider the inher-
itance in this structure. The hip rotation in the example causes the lower leg as
well as the upper leg to rotate. The following considerations are apparent:

® Hip joint This is the ‘top’ joint in the structure and needs to be given
global movement. In a simple walk this is just translation in a plane parallel
to the ground plane. In a more realistic simulation we would have to take
into account the fact that the hip rises and falls during the walk cycle due
to the lifting action of the feet.

® Hip-knee link rotation about the hip joint We can specify the
rotation as an angular function of time. If we leave everything below this
link fixed then we have a stiff-legged walk (politely known as a compass gait
but possibly more familiar as the ‘goose step’).

® Knee-ankle link rotation about the knee joint To relax the goose
step into a natural walk we specify rotation about the knee joint.

And so on. To achieve the desired movement the animator starts at the top of
the hierarchy and works downwards explicitly applying a script at every point.
The evolution of a script is shown in Figure 17.14. Applying the top script would
result in a goose step. The second script — knee rotation - allows the lower leg to
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Figure 17.14 450

Evolution of a script for a
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bend. Applying both these scripts would result in a walk where the foot was
always at right angles to the lower leg. This leads us into the ankle script.

Even in this simple example problems begin to accrue. It is not too difficult
to see that when we come to script the foot, we cannot tolerate the hip joint
moving in a straight line parallel to the floor. This would cause the foot to pen-
etrate the floor. We have to apply some vertical displacement to the hip as a
function of time and so on. And we are considering a very simple example - a
walk action. How do we extend this technique for a complex articulated struc-
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Figure 17,15

Simple characterzation
using an articulated
structure - the flamboyant
gait was animated using
forward kinematics, (See
also Colour Plate version.)
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ture that has to execute a fight sequence rather than make a repetitive walk
cycle?

Inverse kinematics, on the other hand, is a more high-level approach. Here an
animator might specify something like: walk slowly from point A to point B. And
the inverse kinematics technique works out a precise script for all the parts of the
structure so that the whole body will perform the desired action. More precisely
inverse kinematics means that only the required position of the end (or ends) of the
structure are specified. The animator does not indicate how each separate part of the
articulated structure is to move only that the ends of it move in the desired way. The
idea comes from robotics where we mostly want the end effector of a robot arm to
take up precise positions and to perform certain actions. The inverse kinematics then
works out the attitude that all the other joints in the structure have to take up so that
the end effector is positioned as required. However, herein lurks the problem. As the
articulated structure becomes more and more complex the inverse kinematics solu-
tion becomes more and more difficult to work out. Also inverse kinematics does not,
generally, leave much scope for the animator to inject ‘character’ into the move-
ments, which is after all the art of animation. The inverse kinematics functions as a
black box into which is input the desired movement of the ends of the structure and
the detailed movement of the entire structure is controlled by the inverse kinemat-
ics method. An animator makes character with movement. Forward kinematics is
more flexible in this respect, but if we are dealing with a complex model there is
much expense. Figure 17.15 (also a Colour Plate) shows a simple character executing
a somewhat flambovant gait that was animated using forward kinematics.

Thus, we have two ‘formal’ approaches to scripting an articulated structure,
Inverse kinematics enables us to specify a script by listing the consecutive posi-
tions of the end points of the hierarchy - the position of the hands or feet as a
function of time. But the way in which the complete structure behaves is a func-
tion of the method used to solve the inverse kinematic equations and the ani-
mator has no control over the ‘global’ behaviour of the structure. Alternatively,
if the structure is complex it may be impossible to implement an inverse kine-
matics solution anyway. On the other hand, forward kinematics enables the
complete structure to be explicitly scripted but at the expense of inordinate
labour, except tor very simple structures. Any refinements have to be made by
starting at the top of the hierarchy again and working downwards.
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Figure 17.16
A two-link structure.,

We now illustrate the distinction between forward and inverse kinematics
mare formally using as an example the simplest articulated structure possible -
a two-link machine where one link is fixed and each link moves in the plane of
the paper (Figure 17.16). In forward kinematics we explicitly specify the motion
of all the joints. All the joints are linked and the motion of the end effector
(hands or feet in the case of an animal figure) is determined by the accumula-
tion of all transformations that lead to the end effector. We say that:

X=[ie)

where X is the motion of the end effector and @ is a state vector specifying the
position, orientation and rotation of all joints in the system. In the case of the
simple two-link mechanism we have:

X = (1 cos 0 + I; cos (B + 82), Iy sin @) + Iz sin (6 + 62)) [17.2]

but this expression is irrelevant in the sense that to control or animate such an
arm using forward kinematics we would simply specify:

8 = (i, 0z)

and the model would have applied to it the two angles which would result in the
movement X.

In inverse kinematics we specify the position of the end effector and the algo-
rithm has to evaluate the required © given X. We have:

e =f(X)
and in our simple example we can obtain from trigonometry:

cosx® + v - 12 = 1Y)

0z = 2hl;
—(Iz sin B2)x + (I + I; cos B2)y
- -1
O = tan ( (2 sin Bz)y + {1, + J; cos Bz)x

Now, as the complexity of the structure increases the inverse kinematics solution
becomes more and more difficult. Quickly the situation develops where many
configurations satisfy the required end effector movement. In the simple
two-link mechanism, for example, it is easy to see that there are two link
configurations possible for each position X, one with the inter-link joint above
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the end effector the other with it below. The attitude or state of this mechanism
is specified by two angles (degrees of freedom) and we can easily foresee from
this that as a structure becomes more complex it becomes increasingly difficult
to derive an expression of the form & = f~1(X). Thus, with forward kinematics the
animator has to handle more and more transformations while in inverse kine-
matics a solution may not be possible except for reasonably simple mechanisms.
A human body possesses more than 200 degrees of freedom. An inverse kine-
matics solution for this is practically impossible and a forward kinematics script
is inordinately complicated. A way forward is to invest such models with pre-
written forward kinematic scripts for common gestures such as walking, run-
ning, grasping etc. An animator then creates a script by putting together a
sequence from pre-written parts.

In animating the dinosaurs in Jurassic Park, ILM used neither of these
approaches, and in the time-honoured tradition of efficacious innovations, came
up with a much simpler solution than those offered by the literature of articu-
lated computer graphics animation. Their approach was to drive the models
with a low-level forward kinematics script but they by-passed the script com-
plexity problem by creating a script semi-automatically. They effectively enabled
stop-motion animators to input their expertise directly into the computer. The
stop-motion animators moved their models in the normal way and the com-
puter sampled the motion producing a script for the computer models. LM
describe their technique in the following way:

The system is precise, fast, compact, and easy to use. It lets traditional stop-motion
animators produce animation on a computer without requiring them to learn complex
software. The working environment is very similar to the traditional environment but
without the nuisances of lights, a camera and delicate foam-latex skin. The resulting
animation lacks the artefacts of stop-motion animation, the stops and jerkiness, and yet
retains the intentional subtleties and hard stops that computer animation often lacks.

The general idea is not original. For many years it has been possible to train
industrial robots by having a human operator hold the robot's hand, taking it
through the actions that the robot is eventually going to perform in the stead of
the human operator. Spot welding and paint spraying in the car industry is a
good example of the application of this technique. Movements of all the joints
in the robot’s articulated structure are then read from sensors and from these a
script to control the robot is produced. Future invocations of the motion
sequence involved in a task can then be endlessly and perfectly repeated -
indeed the robot will go on reproducing the sequence perfectly even if some-
thing else has gone wrong and the car is not present.

In Jurassic Park robots were already available because the stop-motion anima-
tors had already built ‘animatronic’ models in anticipation of the film being pro-
duced by stop-motion techniques, These were then used, in reverse as it were, by
the stop-motion animators, to produce a script for the computer models. Figure
17.17 shows a stop-motion animator working out the movements for the
dinosaur wrestling with the car scene. The models now, instead of being clothed
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Figure 17.17

A stop-maticn animatar
using a (real) model fitted
with transducers frem which
a script is derived for a
(wirtual) computer model.
(Source: Magid, R, "After
Jurassic Park’, American
Cinematographer, Decembaer
1993.)

and filmed one frame at a time, are turned into an input device from which a
script is derived.

A similar approach, known as ‘motion capture’, is to use human actors from
which to derive a motion script for a computer model. This involves fixing motion
tracking devices to the appropriate positions of the actor’s body and deriving a
kinematic script in this way from the real movements of the actor. This approach
is particularly popular in the video games industry which in recent years has made
a transition from two-dimensional to three-dimensional animation. In this type of
interactive computer animation the pre-recorded motion sequences are replayed
in response to user interaction events. It is natural and economic to use motion
capture in this context to record the original motion scripts for the computer mod-
els, although implicit in the approach is the limitation that the animation seen by
the user can only be combinations of pre-calculated sequences.

Thus, we see from these examples that we are only at the beginning of this
difficult problem of specifying motion for complex articulated structures and
that many solutions to the problem have involved going outside the computer
and deriving a script from the real world (reminiscent somewhat of early pho-
tographs of Disney animators who were to be seen building up facial animations
by using their own image in a mirror as a guide).

Solving the inverse kinematics problem

In this section we look at an important notion that forms the basis for
inverse kinematics algorithms. We will deal with the topic enough to give an
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appreciation of the difficulties involved. A full treatment of an inverse kinemat-
ics engine is given in Watt and Watt (1992). Most approaches to this problem
involve iteration towards a desired goal. That is we compute a small change 48
in the joint angles that will cause the end effector to move towards the goal. This
is given by:

dx [ d& = J(8)

J is the so-called Jacobian - a multi-dimensional extension to differentiation of
a single variable. In this case it relates differential changes in @ to those in x, the
position of the end effector. Note that ] is a function of the current state of the
structure 8. We recall that the general problem encountered in inverse kinemat-
ics systems stems from the fact that in:

8 = f(x)

the function fi) is non-linear and becomes more and more complex as the num-
ber of links increases. The inversion of this function soon becomes impossible
analytically. The problem can be made linear by inverting the Jacobian and
localizing the behaviour of the structure to small movements about the current
operating point:

de =J'(e) (dx)
The goal is known and so the iteration consists of calculating a dx by subtract-

ing the current position and the goal and substituting into the above equation
to get d& and proceeds as:

repeat
dx := small movement in the direction of x
de := J4(8) (dx)
x = fie + de)
] = dx/de
invert |
x=x+dx

until goal is reached

An iteration for the three-link arm is shown in Figure 17.18.

Using the chain rule to differentiate Equation 17.2, the Jacobian for the two-
link arm is given as:

~hisind - Lsin(é, + 62) -lz8in (6 + 6z)

I= lcosty + lcos(B, + 6z) Lcos(t + 82)

We are now in a position to discuss the problems engendered by this approach.
First, the complexity of the expression for x makes differentiation extremely dif-
ficult to perform and a geometric approach to determining the Jacobian is desir-
able (Watt and Watt 1992). Second, the Jacobian is not invertible unless it is a
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Figure 17.18
One iteration step towards

the goal.

square matrix and in most (skeletal) structures that we would want to use in
computer graphics applications this is not the case. Approximate solutions to
this problem introduce difficulties in the iteration. In particular, tracking errors
where the desired change in x is different from the actual change. Tracking error
is given by:

ljide) — dxli

A more intelligent iteration than the one given by the pseudo-code above must
be employed. This involves starting with a dx evaluating the tracking error and
subdividing dx until the error falls below a threshold. Yet another problem arises
from singularities that exist in any system. In the two-link arm when both links
line up (8: = 0) changes in either 8 or 6; produce motion in the end effector in
exactly the same direction - perpendicular to the (common) link axis. There is
now no motion possible towards the base - one degree of freedom has been lost.
Another singularity occurs in this case when 8; = x when the outer link folds
back to line up with the inner one. These singularities are called workspace
boundary singularities in robotics because that is where they occur. The work
space - the region that can be reached by the end effector - of the two-link arm
is a hollow disc (providing & = I:) and the circumference of the inner and outer
boundaries form the loci of all points in the two-dimensional space at which sin-
gularities occur.

Of course, we have only discussed a very simple mechanical structure. Animal
skeletons are as we know far more complicated. In particular, they contain
branching links. Figure 17.19 shows a simple structure used in typical human
animation. In this case the root of the structure is the joint located between the
hips (which has six degrees of freedom). Also shown is a categorization of the
nodes from the perspective of an inverse kinematics solution. There is a single
root node — the remainder of the nodes being children of the root. The base
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Classification
of nodes

nodes and the end nodes define a chain for which we may invoke an inverse
kinematics solution. We can apply inverse kinematics between any two nodes in
the skeleton; the only rule to be observed is that the end node is lower down the
chain than the base node. The inverse kinematics solution specifies the position
and orientation of all nodes between the end and base nodes - called empty
nodes.

Other arrangements are possible; Philips and Badler (1991}, for example, posi-
tioned the root at one foot, making the other an end node, in order to animate
such motions of a standing figure as shifting the weight from one foot to

~ another and turning.

However, there are other major differences between robot systems and ani-
mals involving the constraints. In robotics, the predominant constraints are
determined by the degrees of freedom and joint angle constraints which deter-
mine the workspace of the machine. A simple example is the links in a human
finger which, because of the tendon that runs through the finger do not tend to
move independently. Another consideration is whether energy constraints
should be taken into account to influence an inverse kinematics approach into
producing a visually convincing solution for the motion of the structure.
This means that both the geometric constraints and the muscle constraints
are satisfied — we could presume that animals effect a change in the geometric
state of their structure by minimizing the energy needed for the change.
Satisfying only the geometric constraints may produce an animation that does
not "look right’.
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Dynamics in computer animation

The approaches to computer animation that we have described so far have beeg
kinematic, that is they involve the specification of motion without considers.
tion of the masses and forces involved in the physical environment that we are
trying to simulate. In this section we will look at how we can in principle write
programs that simulate the forces in a scene and through Newtonian mechanjes
produce the desired motion ‘automatically’. Such an approach is known zg
dynamic simulation or physically based animation,

Luxo Jr. (Figure 17.20 Colour Flate), an animated short produced by John
Lasseter of Pixar in 1987, was possibly the first computer graphics animation
that was perceived to have motion and appeal comparable in quality to that of
traditional animators. The skills of John Lasseter imbued a desk lamp with some
of the anthropomorphic behaviour reminiscent of Disney-type cartoons. The
motion in Luxo Jr. was produced by keyframing where the animator specifies the
state of the articulated structure as a key and the global motion of the structure
as a spline curve. Although it is not 100% explicit control, where the animator
specifies the entire state of every frame, he has a high degree of control. And, in
fact, the title of Lasseter's presentation to SIGGRAPH '87, ‘Principles of
Traditional Animation Applied to 3D Computer Animation’, reinforces this
observation.,

In 1988, Witkin and Kass presented a paper (Witkin and Kass 1988) in which
they demonstrated that a higher-level motion control technique, based on
dynamic simulation, could be used to animate Luxo Jr. and commented on their
motivation as follows:

Although Luxo Jr. showed us that the team of animator, keyframe system, and renderer can
be a powerful one, the responsibility defining the motion remains almost entirely with the
animator. Some aspects of animation - personality and appeal, for example — will surely be
left to the animator’s artistey and skill for a long time to come. However, many of the
principles of animation are concerned with making the character's motion look real at a
basic mechanical level that ought to admit to formal physical treatment . . .. Moreover,
simple changes to the goals of the motion or to the physical model give rise to interesting
variations on the basic motion. For example, doubling (or quadrupling) the mass of Luxe
Jr. creates amusingly exaggerated motion in which the base looks heavy.

In other words, they are saying that this type of computer animation can bene-
fit by higher-level motion control. Beyond performing rudimentary interpola-
tion for in-between frames, a program can be set up to interpret scripts such as
‘jump from A to B'. The dynamic simulation will then produce motion that is
accurate and therefore realistic. Thus, we see that the motivation for using
dynamics in computer animation is that in certain contexts it is easier to write
the differential equations that control the motion than it is to specify the
motion directly or by using keyframing. We also assume that if the physical
simulation is set up correctly the subsequent motion will be more ‘natural’
than that produced by a kinematics system. Set against these apparent
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advantages the disadvantages of using dynamics is that the environments that
are easy to set up — particle systems — are too simple for most animation envi-
ronments of interest and complex interacting environments are far more diffi-
cult to specify. Another problem is that the solution for such systems is
computationally intensive.

Dynamic simulation may not provide a complete solution to many anima-
tion applications - there is still the problem of overall artistic control. In com-
paring dynamic simulation with computer methods that imitate traditional
animation techniques, Cohen (1992) puts it this way:

Traditional animation methods provide great conirol to the artist, but do not provide any
taols for automatically creating realistic motion. Dynamic simulations on the other hand,
generate physically correct motion (within limits) but it does not provide sufficient control
for an artist or scientist to create desired motion.

Basic theory for a rigid body - particles

The basic familiar law of motion - Newton's Second Law is:
F=ma

and this is easiest to consider in the context of a particle or a point mass. Fisa
three-dimensional vector as is a, the acceleration that the point undergoes. A
point mass is a simple abstraction that can be used to model simple behaviour -
we can assume that a rigid body that has extent behaves like a particle because
we consider its mass concentrated at a single point - the centre of mass. A point
mass can only undergo translation under the application of a force.

Newton's Second Law can also be written as:

dw dix

F=m E =m F
where v is the velocity and x the position of the particle. This leads to a method
that finds, by integration, the position of the particle at time f+dt giving its posi-
tion at time ¢ as:

F
vit + dt) = vi) o dt

1 F
x(t + df) = x(f) + w(f)dt 5w de

F can itself be a function of time and we may have more than one force acting
on the body and in that case we simply calculate the net force using vector addi-
tion. If the mass of the body changes as it travels, the case of a vehicle burning
fuel, for example, then the Second Law is expressed as:

F= dim-v)
T dt
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As a simple example, consider a cannonball being fired from the mouth of a can-
non. This could be modelled using the above equations. The cannonball is acted
on by two forces — the constant acceleration due to gravity and an air resistance
force that acts opposite to the velocity and is a function (quadratic) of the veloc-
ity and the square of the cross-sectional area. A simulation would be provided
with the initial (muzzle) velocity and the inclination of the barrel and Newton's
Second Law used to compute the arc of the missile. What we have achieved here
is a simulation where at each time step the program computes continuous
behaviour as a function of time.

This basic theory can only be applied directly to initial value problems where
the course of the simulation is completely determined by the start conditions.
We may fire a cannonball out of a cannon and its parabolic track is then com-
pletely determined by the muzzle velocity, its mass and gravity. However, an ani-
mator may rather require a system where he specifies that a cannon situated at
point A is to eject a missile which is to hit the castle wall at point B,

In simulations of the initial value type the animator has no control once the
start conditions have been specified. In other words we need to supply constraints
to the problem. It is through those constraints that the animator is able to design
a desired motion. Any potentially useful systemn has to be both a valid physical
model, that can provide realistic motion, and at the same time admit constraints
that enable the animator to achieve the desired overall motion. These have been
called space-time constraints and, along with such other problems as collision
response, comprise a much more difficult aspect of dynamic simulation than the
application of the physical laws. We shall return to these problems later.

The nature of forces

Only in very simple cases can we proceed by considering an object as a point mass
or equivalently as a lumped mass undergoing acceleration upon application of a
force. The way in which an object moves in the modelled environment depends
on the model itself, its constraints and the nature of the force. Common exarm-
ples of the different types of forces used in physically based animation are:

® Acceleration due to gravity (which we have already discussed); is a constant
downwards force on a body proportional to its mass and acting on the
centre of mass,

® A damping force: this is opposite and proportional to the body's velocity
and resists its motion. Damping forces remove energy from the hody
dissipating it as heat. A viscous damping force is linearly proportional to
velocity and a quadratic force is proportional to the square of speed. Air
resistance is approximately quadratic if we ignore effects due to the
disturbance of the air.

® [Elastic springs: these can connect two bodies with a force proportional to
the displacement of the string from its rest length (Hooke's law).
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Figure 1.5

Global transformations on a polygon mesh model -
a corrugated cylinder, twisted and tapered. (Courtesy
of Steve Maddock.)

() (c)

Figure 3.42
FFD applied ta a polygon mesh abject. (a) Wireframe of the object. (b) The object rendered with the trivariate patch grid shown as

sern|-transparent grey boxes. (€) Moving the control points in the patch causes the object model to deform in an appropriate manner,
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An object (based on a famous Salvador Dali painting) Point generators - the radius of each sphere is the influence of each
generator

Unwanted blending as the generators are moved

Unwanted separation as the generators are moved

Figure 2.20
An example of an implicit function modelling system. (Courtesy of Agata Opalach.)
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Palygons for the 128 and 512 rendered images.

Figure 4.9
Parametric patch rendering at different levels of uniform subdivision (128, 512, 2048 and 8192 polygons). (Courtesy of Steve Maddock.)
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Figure 6.12

The ‘traditional’ way of illustrating
Phong shading. k, and k; are
constant throughout. k is
increasing from left to right and the
exponent is increasing from top (o
battom. The model attempts to
increase ‘shininess” by increasing
the exponent. This makes the
extent of the specular highlight
smaller which could also be
interpreted as the reflection of a
light source of varying size. (The
light is a point source.)
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Figure 7.8

A selection of materials simulated using
the medel described in Section 7.6,
The ditferences between some of the
materials (for example, polished brass
and gold) would be difficult to obtain
by fine-tuning the parameters in Phong
shading. In these images the reflection
model was used as the local component
in a ray tracer,



(a} (by

Figure 8.7

Examples of two-part texture mapping with a solid of revolution, The intermediate surfaces are: (a) a plane (or no surface); (b) a cylinder;
and (c) a sphere.

Texture map | Bézier patch

Figure 8.8  (Left) Texture map. (Right) One Bézier patch on the object. (Below) Recursive teapot.
(Courtesy of Stéve Maddock.)
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(a)

() (<)

(d}

Figure 8.10
Bump mapging. (a) A bump mapped object together with the bump map. (b) A bump mapped object frem a procedurally generated
height field. (c) Combining burmp and colour mapping. (d) The bump and colour map for (c).
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Figure B.14

A simple scene lit using light maps.
(@) In this image the size of the
lumels in the scene is shown.

(k) In this image a bilinear
interpolation technique — known

as texture interpolation - has been
used te diminish the visibility of the
lumels in (a).
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Turbulence
function

Figure B.22 Modelliing and simulating flame using a turbulence function. (Above) Unturbulated flame. (Right) Turbulated flame.

Figure 8.21 |mitating marble - the classic
example of three-dimensional procedural Figure B.26 Mip-map used in Figure 8.8,
texture, (Courtesy of Steve Maddock.)
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Figure 10.4 (a)
An image generated using RADIANCE.

Figure 10.4 (b)
A selection of global lluminations paths in (a),
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(a)

(k)

{c)
(d)

Figure 10.7

A radiosity image after 20, 250, and 5000 iterations of the progressive refinement method. From top to battom for each column: (a) The
radiosity solution as output from the iteration process. Each patch is allocated a constant radiosity. (b) The previous solution after it has been
subjected to the interpolation process, (€) The same solution with the addition of the ambient term, (d) The difference between the
previous two images. This gives a visual indication of the energy that had to be added to account for the unshot radiosity.
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Figure 10.14
Depth of field effect rendered using a distributed ray tracer.

Figure 10.20

Two pass ray tracing example. (a) and (b) show a scene rendered using both a Whitted and two-pass ray tracer, in this scene there are three
LSD paths:

*® two caustics from the red sphere - one directly from the light and one from the light reflected from the curved miirror

® one (cusp) rellected caustic from the cylindrical mirror

* secondary illumination from the planar mirmor (2 non-caustic LSDE path},

€] to (e) were produced by shooting an inereasing number of light rays and show the effect of the light sprinkled on the diffuse surface. As

the numbser of rays in the light pass increases, the rays can eventually be merged to form well defined LSD paths in the image. The number

of rays shot in the light pass was 200, 400, and 800 respectively,
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Figure 11.5

Shows the state of a hemicube placed on the window after all other patches in the
scene have been projected onto it, A colour identifies each patch in the scene {and
every partial patch) that can be seen by this hemicube. The algorithm then simyply
sums all the hemicube element form factors associated with each patch, (The scene
for this figure is shown in Figure 10.7.)
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Figure 12.4

The Whitted scene.
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Figure 13.1

Marching cubes and CFD data. (top) A Navier-Stokes CFD simulation of a reverse flow pipe combuster. Flow occurs from left to right and
from right to left. The interface between these flows defines a zero velocity isosurface. The marching cubes algorithm is used to extract this
suriace which is then conventionally rendered. (bottom) A texture-mapped rero velacity surface. A pseudo-colour scale that represents field
temperature is combined with the colour used for shading in the illustration above. (Courtesy of Mark Fuller.)
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(a)

B O] v il il virntcinilae

1011 eomdd e fuebens

(b)

el putamen

leflanterior lemporal gyris

(d)

Figure 13.3

{a) and (b) show extracted objects embedded in a transparent surround of the skull, The extracted structures have been turned inte
computer graphics objects and rendered normally, They ane then effectively re-embedded in the three-dimensional data volume which is
displayed with the surmounding voxels set o some semi-transparent value. (c) and (d) are examples of cutting away a rendered version of
the skin to show internal organs as a cross-section positioned within a three-dimensional model. Here the organs are assigned an
appropriate pseudo-colour simply to highlight their shape. (Courtesy IMDM University, Hamburg,)
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Figure 13,710
The marching cubes algorithm applied to X-ray CT data.
(Courtesy of Klaus de Geuss.)

Figure 15.3
The RGB cube

B
Cyan
Magenta
White
R
I Yellow

Figure 13.11

The same data using volume rendering with the bone voxels set
to unity opacity and others set to zero. (Courtesy of Klaus de
Ceuss.)
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Cireen Yellow

Red

Blue Magentu

Figure 15.5
H5V colour model: slices through the value axis at 20% intervals,

b y

Gireen
X

Figure 15.10
(Tap left) Maonitor gamut solid in CIE xyY space; (abowve) three cross-sections through the solid CIE
xyY space; (top right) the position of the cross-sections on the plane ¥=D0.
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Figure 15.12
Rendering in spectral space compared with RGB space for a ray traced image.
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Figure 16.8 .

Problems in image warping. (a) Image folding: mare than one pixel in the reference view maps into a single pixel in the extrapolated view.
(b} Holes: information cccluded in the reference view is required in the extrapolated view. () Holes: the projected area of a surface increases
in the extrapolated view because its normal rotates towards the viewing direction. (d) See opposite page.
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(dZ)

{d3) (d4)

(d5)

Figure 16.8 (d1 and d2)
A simple scene and the corresponding Z-buffer image.

Figure 16.8 (d3)
Artefacts due to translation (only) in this case are holes (cyan) caused by missing infarmation and image folding.

Agure 16.8 (d4)
Anefacts due lo rotation (only) are holes caused by increasing the projected area of surfaces. Note how these form coherent patterns,

Figure 16.8 (d5)
Artefacts caused by both rotation and transfation.
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1 Owerapping frames from a rotating camera

2 ‘Stitched’ into a eylindrical panoramic image

3 A section of which is warped into a planar polygon

N

Figure 16.19 QuickTime® VR system. (Courtesy of Guy Brown.)
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Figure 17.15

Foure 17.20
(Left) A frame from Luxo Jr. produced by john Lasseter, Bill Reeves, Eben Ostby and Sam Leffler; 1986 Pixar; Luxo s a trademark of Jak
Jacobson Industries. The film was animated by a keyframe animation system with procedural animation assistance, and frames were

rendered with multiple fight sources and procedural texturing techniques, (Right) This frame from Luxo jr. exhibits motion blur as described
n Chapter 10.

Figure 18,1
An affice scene, together with a wireframe visualization, that has been shaded using the constant ambient term only

b—-—

0548



Figure 18.2
The same scene using flat shading. Flat shading shows the
palygonal nature of the surfaces due to discontinuities in intensity.

(a)

. Discontinuity here
as scan line changes
from edge ¥V V210
Edst VaVa

Figure 18.3

Maln defects in Gouraud interpolation. {a) Colour image. The two defects in this image {described in detail in the text) are: Mach banding
(may not be visible in the reproduction) and the interpolation artefact on the back wall. (b). Dotted line shows the position of the
discontinuity. (¢} Mew wireframe triangulation necessary to eliminate the interpolation artefact.
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Original surface

Polyonal approximation =

Refected light imtensity
is piecewise lincar

This produces Mach bands in the image

Figure 18.4
Mach bands in Gouraud shading.

Figure 18.5
The same scene using Phong shading, A glaring defect in Phong interpolation is demonstrated in this figure. Here the reflected light from
the wall light and the image of the light have become separated due to the nature of the interpolation.
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