THE RADIOSITY METHOD

It can be shown that this is given by:

1 COS §: COS ¢
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where the geometric conventions are illustrated in Figure 11.1. In any practical
environment A; may be wholly or partially invisible from A, and the integral
needs to be multiplied by an occluding factor which is a binary function that
depends on whether the differential area dA; can see dA; or not. This double inte.
gral is difficult to solve except for specific shapes.

11.2 Form factor determination
An elegant numerical method of evaluating form factors was developed in 1985
and this is known as the hemicube method. This offered an efficient method of
determining form factors and at the same time a solution to the intervening
patch problem.

The patch to patch form factor can be approximated by the differential area
to finite area equation:
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where we are now considering the form factor between the elemental area d4,
and the finite area A;. dA; is positioned at the centre point of patch i. The verac.
ity of this approximation depends on the area of the two patches compared with
the distance, r, between them. If r is large the inner integral does not change
much over the range of the outer integral and the effect of the outer integral is
simply multiplication by unity.

A theorem called the Nusselt analogue tells us that we can consider the pro-
jection of a patch j onto the surface of a hemisphere surrounding the elemental
patch d4; and that this is equivalent in effect to considering the patch itself. Also
patches that produce the same projection on the hemisphere have the same
form factor. This is the justification for the hemicube method as illustrated in
Figure 11.2. Patches A, B and C all have the same form factor and we can evalu-
ate the form factor of any patch j by considering not the patch itself, but its pro-
jection onto the faces of a hemicube.

A hemicube is used to approximate the hemisphere because flat projection
planes are computationally less expensive. The hemicube is constructed around
the centre of each patch with the hemicube 2 axis and the patch normal coin-
cident (Figure 11.3). The faces of the hemicube are divided into pixels - a some-
what confusing use of the term since we are operating in object space. Every
other patch in the environment is projected onto this hemicube. Two patches
that project onto the same pixel can have their depths compared and the further
patch be rejected, since it cannot be seen from the receiving patch. This
approach is analogous to a Z-buffer algorithm except that there is no interest in
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Figure 11.2

The justification for using a
hemicube. Patches 4, B and
C have the same form

factor.

Figure 11.3
Evaluating the form factor F,
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FORM FACTOR DETERMINATION (311)

intensities at this stage. The hemicube algorithm only facilitates the calculation
of the form factors that are subsequently used in calculating diffuse intensities
and a ‘label buffer’ is maintained indicating which patch is currently nearest to
the hemicube pixel.

Hemicube
{divided into pixels)
N, / placed at the centre

Prajection of patch j
onto hemicube “pixels’
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(312) THE RADIOSITY METHOD

Figure 11.4

Fiis obtained by summing
the form factors of the
pixels onto which patch
projects.

Each pixel on the hemicube can be considered as a small patch and a differ.
ential to finite area form factor, known as a delta form factor, defined for each
pixel. The form factor of a pixel is a fraction of the differential to finite area form
factor for the patch and can be defined as:

A =%ﬂ‘m
= AF,

where AA is the area of the pixel.

These form factors are pre-calculated and stored in a look-up table. This is the
foundation of the efficiency of the hemicube method. Again, using the fact that
areas of equal projection onto the receiving surface surrounding the centre of
patch 4; have equal form factors, we can conclude that Fy, for any patch, is
obtained by summing the pixel form factors onto which patch A; projects (Figure
11.4).

Thus form factor evaluation now reduces to projection onto mutually orthog-
onal planes and a summation operation.

Figure 11.5 (Colour Plate) is an interesting image that shows the state of a
hemicube placed on the window (Figure 10.7) after all other patches in the scene
have been projected onto it. A colour identifies each patch in the scene (and
every partial patch) that can be seen by this hemicube. The algorithm then sim-
ply summates all the hemicube element form factors associated with each patch,

The method can be summarized in the following stages:

(1) Computation of the form factors, F;. Each hemicube emplacement
calculates (n-1) form factors or one row in the equation.

(2) Solving the radiosity matrix equation.

{3) Rendering by injecting the results of stage (2) into a bilinear interpolation
scheme.

(4) Repeating stages (2) and (3) for the colour bands of interest.

Patch
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Figure 11.6

Stages in a complete
radiosity solution. Also
shown are the points in
the process where various
madifications can be made
1o the image.

FORM FACTOR DETERMINATION (313)

This process is shown in Figure 11.6. Form factors are a function only of the
environment and are calculated once only and can be reused in stage (2) for dif-
ferent reflectivities and light source values. Thus a solution can be obtained for
the same environment with, for example, some light sources turned off. The
solution produced by stage (2) is a view-independent solution and if a different
view is required then only stage (3) is repeated. This approach can be used, for
example, when generating an animated walk-through of a building interior.
Each frame in the animation is computed by changing the view point and cal-
culating a new view from an unchanging radiosity solution. It is only if we
change the geometry of the scene that a re-calculation of the form factors is nec-
essary. If the lighting is changed and the geometry is unaltered, then only the
equation needs resolving - we do not have to re-calculate the form factors,

Stage (2) implies the computation of a view-independent rendered version of
the solution to the radiosity equation which supplies a single value, a radiosity,
for each patch in the environment. From these values vertex radiosities are cal-
culated and these vertex radiosities are used in the bilinear interpolation scheme
to provide a final image. A depth buffer algorithm is used at this stage to evalu-
ate the visibility of each patch at each pixel on the screen, (This stage should not
be confused with the hemicube operation that has to evaluate inter-patch visi-
bility during the computation of form factors.)

The time taken to complete the form factor calculation depends on the square
of the number of patches. A hemicube calculation is performed for every patch
(onto which all other patches are projected). The overall calculation time thus
depends on the complexity of the environment and the accuracy of the solution,
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the scene l
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wavelength-
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{colours or Full matrix
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Change view —————=1 View-independent solution
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THE RADIOSITY METHOD

as determined by the hemicube resolution. Although diffuse illumination
changes only slowly across a surface, aliasing can be caused by too low 3
hemicube resolution and accuracy is required at shadow boundaries (see Sectiop
11.7). Storage requirements are also a function of the number of patches
required. All these factors mean that there is an upward limit on the complexity
of the scenes that can be handled by the radiosity method:

The Gauss-Siedel method N
Cohen and Greenberg (1985) point out that the Gauss-Siedel method is guaran.
teed to converge rapidly for equation sets such as Equation 11.1. The sum of any
row of form factors is by definition less than unity and each form factor is
multiplied by a reflectivity of less than one. The summation of the row terms in
Equation 11.1 (excluding the main diagonal term) is thus less than unity. The
mean diagonal term is always unity (Fu = 0 for all #) and these conditions guar-
antee fast convergence. The Gauss-Siedel methed is an extension to the follow.
ing iterative method. Given a system of linear equations:

Ax=E
such as Equation 11.1, we can rewrite equations for xi, Xy, . . ., X in the form:
Er-dizXz=isks— .. .~ dju Xn
=

ian

which leads to the iteration:

5 ksl .E'l, - ﬂ]ﬂ!‘tj =3y =...=dn XM
1 =
an
in general:
- b _ = k. i = ik
XM = Ei=ane™-... m,-m_u: o1 X ™= . . . = @ Xa™ [11.2)
(]

This formula can be used in an iteration procedure:

(1) Choose an initial approximation, say:
= E
i
fori=1,2,...,n, whereE is non-zero for emitting surfaces or light sources only.
{2) Determine the next iterate:
™ from x™
using Equation 11.2.
(3) If Ix**" - x| < a threshold
fori=1,2,...,n

then stop the iteration, otherwise return to step (2).
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SEEING A PARTIAL SOLUTION - PROGRESSIVE REFINEMENT (315)

This is known as Jacobi iteration. The Gauss-Siedel method improves on the
convergence of this method by modifying Equation 11.2 to use the latest avail-
able information. When the new iterate x/**" is being calculated, new values:

x1|h1i']-‘rl-|lr R Kpgibeld
have already been calculated and Equation 11.2 is modified to:

Ei = anx1™V = | | | = @ipaXe™ = guaXin™=, . . = din Xo'™
xlﬂ':“ - L ! uﬂ Lie 1] " [.1 1'31

Note that when i = 1 the right-hand side of the equation contains terms with
superscript k only, and Equation 11.3 reduces to Equation 11.2. When i = n the
right-hand side contains terms with superscript (k+1) only.

Convergence of the Gauss-Siedel method can be improved by the following
method, Having produced a new value x*", a better value is given by a weighted
average of the old and new values:

xitel = pfhelh 4 (1 — F)a™

where r (=0} is a parameter independent of k and i. Cohen et al. (1988) report
that a relaxation factor of 1.1 works for most environments.

Seelng a partial solution - progressive refinement

Using the radiosity method in a practical context, such as in the design of build-
ing interiors, means that the designer has to wait a long time to see a completed
image. This is disadvantageous since one of the raisons d‘étre of computer-based
design is to allow the user free and fast experimentation with the design pa-
rameters. A long feedback time discourages experimentation and stultifies the
design process.

In 1988 the Comnell team developed an approach, called ‘progressive refine-
ment’ that enabled a designer to see an early (but approximate) solution. At this
stage major errors can be seen and corrected, and another solution executed. As
the solution becomes more and more accurate, the designer may see more sub-
tle changes that have to be made. We introduced this method in the previous
chapter, we will now look at the details.

The general goal of progressive or adaptive refinement can be taken up by any
slow image synthesis technique and it attempts to ind a compromise between
the competing demands of interactivity and image quality. A synthesis method
that provides adaptive refinement would present an initial quickly rendered
image to the user. This image is then progressively refined in a ‘graceful” way,
This is defined as a progression towards higher quality, greater realism etc., in a
way that is automatic, continuous and not distracting to the user. Early avail-
ability of an approximation can greatly assist in the development of techniques
and images, and reducing the feedback loop by approximation is a necessary
adjunct to the radiosity method.
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THE RADIOSITY METHOD

The two major cost factors in the radiosity method are the storage costs and
the calculation of the form factors. For an environment of 50 x 10* patches, even
although the resulting square matrix of form factors may be 90% sparse (many
patches cannot see each other) this still requires 10° bytes of storage (at four
bytes per form factor).

Both the requirements of progressive refinement and the elimination of
pre-calculation and storage of the form factors are met by an ingenious restruc-
turing of the basic radiosity algorithm. The stages in the progressive refinement
are obtained by displaying the results as the iterative solution progresses. The
solution is restructured and the form factor evaluation order is optimized so that
the convergence is ‘visually graceful’. This restructuring enables the radiosity
of all patches to be updated at each step in the solution, rather than a step
providing the solution for a single patch. Maximum visual difference between
steps in the solution can be achieved by processing patches according
to their energy contribution to the environment. The radiosity method is
particularly suited to a progressive refinement approach because it computes
a view-independent solution. Viewing this solution (by rendering from a
particular view point) can proceed independently as the radiosity solution
progresses.

In the conventional evaluation of the radiosity matrix (using, for example,
the Gauss-Seidel method) a solution for one row provides the radiosity for a
single patch @

Bi=E+RY, BFy
[

This is an estimate of the radiosity of patch i based on the current estimate of all
other patches. This is called ‘gathering’. The equation means that (algorithmi-
cally) for patch i we visit every other patch in the scene and transfer the appro-
priate amount of light from each patch j to patch i according to the form factor.
The algorithm proceeds on a row-by-row basis and the entire solution is updated
for one step through the matrix (although the Gauss—Seidel method uses the
new values as soon as they are computed). If the process is viewed dynamically,
as the solution proceeds, each patch intensity is updated according to its row
position in the radiosity matrix. Light is gathered from every other patch in the
scene and used to update the single patch currently being considered.

The idea of the progressive refinement method is that the entire image of
all patches is updated at every iteration. This is termed ‘shooting’, where
the contribution from each patch i is distributed to all other patches. The dif-
ference between these two processes is illustrated diagramatically in Figures
11.7(a) and (b). This re-ordering of the algorithm is accomplished in the follow-
ing way.

A single term determines the contribution to the radiosity of patch j due to
that from patch i:

By dueto Bi= RBF;
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Gathering: a single iteration (k) updates a single patch i by Shooting: a single step computes form factors from the shooting
gathering contributions from all other patches. paich to all receiving paiches and distributes (unshot) energy AR,
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(a) Gathering (b) Shooting

Figure 11.7

(a) Gathering and

(b) shooting in radiosity
solution strategies

(based on an illustration in
Cohen &t al. (1988)).

This relationship can be reversed by using the reciprocity relationship:
By dueto Bi= RBFy AdA;

and this is true for all patches j. This relationship can be used to determine the
contribution to each patch j in the environment from the single patch i. A sin-
gle radiosity (patch i) shoots light into the environment and the radiosities of all
patches [ are updated simultaneously. The first complete update (of all the
radiosities in the environment) is obtained from ‘on the fly’ form factor compu-
tations. Thus an initial approximation to the complete scene can appear when
only the first row of form factors has been calculated. This eliminates high start-
up or pre-calculation costs,

This process is repeated until convergence is achieved. All radiosities are ini-
tially set either to zero or to their emission values. As this process is repeated for
each patch i the solution is displayed and at each step the radiosities for each
patch j are updated. As the solution progresses the estimate of the radiosity at a
patch i becomes more and more accurate. For an iteration the environment
already contains the contribution of the previous estimate of B; and the so-called
‘unshot’ radiosity - the difference between the current and previous estimates -
is all that is injected into the environment.

If the output from the algorithm is displayed without further elaboration,
then a scene, initially dark, gradually gets lighter as the incremental radiosities
are added to each patch. The ‘visual convergence’ of this process can be
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‘Problems with the radiosity method

optimized by sorting the order in which the patches are processed according to
the amount of energy that they are likely to radiate. This means, for example,
that emitting patches, or light sources, should be treated first. This gives an early
well lit solution. The next patches to be processed are those that received most
light from the light sources and so on. By using this ordering scheme, the solu-
tion proceeds in a way that approximates the propagation of light through an
environment. Although this produces a better visual sequence than an unsorted
process, the solution still progresses from a dark scene to a fully illuminated
scene. To overcome this effect an arbitrary ambient light term is added to the
intermediate radiosities. This term is used only to enhance the display and is not
part of the solution. The value of the ambient term is based on the current esti-
mate of the radiosities of all patches in the environment, and as the solution
proceeds and becomes ‘better lit' the ambient contribution is decreased.

Four main stages are completed for each iteration in the algorithm. These are;

(1) Find the patch with the greatest (unshot) radiosity or emitted energy.

(2) Evaluate a column of form factors, that is, the form factors from this patch
to every other patch in the environment.

(3) Update the radiosity of each of the receiving patches.

(4) Reduce the temporary ambient term as a function of the sum of the
differences between the current values calculated in step (3) and the
previous values,

An example of the progressive refinement during execution is shown in Figure
10.7 and Section 10.3.2 contains a full description of this figure.

I i p—— e — s — =

There are three significant problems associated with radiosity rendering. They
are algorithm artefacts that appear in the image, the inability to deal with spec-
ular interaction and the inordinate time taken to render a scene of moderate
complexity. Curiously, hardly any research effort has been devoted to the time
factor, and this is perhaps the reason that radiosity has not generally migrated
into applications programs. This contrasts with the situation in ray tracing
research in the 1980s, where quite soon after the first ray traced imagery
appeared, a large and energetic research effort was devoted to making the
method faster. In the remainder of the chapter we will deal exclusively with
image quality, noting in passing that it is usually related to execution time -
quality can be improved by defining the scene more accurately which in the
mainstream method means allowing more iterations in the program.
Developments in the radiosity method beyond the techniques described in
the previous chapter have mostly been motivated by defects or artefacts that
arise out of the representation of the scene as a set of largish patches. Although
other factors, such as taking into account scattering atmospheres and the incor-
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poration of specular reflection are important, addressing the visual defects due
to meshing accounts for most research emphasis and it is with this aspect that
we will deal.

Artefacts in radiosity images

The common artefacts in radiosity images that use the classical approach of the
previous chapter are due to:

(1) Approximations in the hemicube method for determining the form factors.

(2) Using bilinear interpolation as a reconstruction of the radiosity function
from the constant radiosity solution.

{3) Using a meshing or subdivision of the scene that is independent of the
nature of the variations in the radiosity function.

The visibility and thus the importance of these depends, of course, on the nature
of the scene; but usually the third category is the most noticeable and the most
difficult to deal with. In practice the artefacts cannot be treated independently:
there is little point in developing a powerful meshing strategy without also deal-
ing with artefacts that emerge from bilinear interpolation. We will now look at
these image defects detailing both the cause and the possible cure.

Hemicube artefacts

The serious problem of the hemicube method is aliasing caused by the regular
division of the hemicube into uniform pixels. Errors occur as a function of the
size of the hemicube pixels due to the assumption that patches will project
exactly onto an integer number of pixels, which in general, of course, they do
not. This is similar to aliasing in ray tracing. We attempt to gather information
from a three-dimensional environment by looking in a fixed number of direc-
tions. In ray tracing these directions are given initially by evenly spaced eye-to-
pixel rays. In the radiosity method, by projecting the patches onto hemicubes
we are effectively sampling with projection rays from the hemicube origin.
Figure 11.8 shows a two-dimensional analogue of the problem where a number
of identical polygons project onto either one or two pixels depending on the
interference between the projection rays and the polygon grid. The polygons are
of equal size and equal orientation with respect to patch i. Their form factors
should be different - because the number of pixels onto which each polygon
projects is different for each polygon. However, as the example shows, neigh-
bouring polygons which should have almost equal form factors will produce
values in the ratio 2:1.

The geometry of any practical scene can cause problems with the hemicube
method. Its accuracy depends on the distance between the patches involved in
the calculation. When distances become small the method falls down. This
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Figure 11.8
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situation occurs in practice, for example, when an object is placed on a support-
ing surface. The errors in form factors eccur precisely in those regions from
which we expect the radiosity technique to excel and produce subtle phenom-
ena such as colour bleeding and soft shadows. Baum et al. (1989) quantify the
error involved in form factor determination for proximal surfaces, and demon.
strate the hemicube method is only accurate in contexts where the inter-patch
distance is at least five patch diameters.

Yet another hemicube problem occurs with light sources. In scenes which the
radiosity method is used to render, we are usually concerned with area sources
such as fluorescent lights, As with any other surface in the environment we divide
the light sources into patches and herein lies the problem. For a standard solution
an environment will be discretized into patches where the subdivision resolution
depends on the area of surface (and the accuracy of the solution required).
However, in the case of light sources the number of hemicubes required or the
number of patches required depends on the distance from the closest surface it
illuminates. A hemicube operation effectively reduces an emitting patch to a
point source. Errors will appear on a close surface as isolated areas of light if the
light source is insufficiently subdivided. With strip lights, where the length to
breadth ratio is great, insufficient subdivision can give rise to banding or aliasing
artefacts that run parallel with the long axis of the light source. An example of
the effect of insufficient light source subdivision is shown in Figure 11.14.

Hemicube aliasing can, of course, be ameliorated by increasing the resolution
of the hemicube, but this is inefficient, increasing the computation required for
all elements in the scene irrespective of whether they are aliased by the
hemicube or not; exactly the same situation which occurs with conventional
(context independent) anti-aliasing measures (Chapter 14).
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Figure 11,9

All of patch | can be seen
from the hemicube origin
and the Fauy approximation
falls down.

ARTEFACTS IN RADIOSITY IMAGES  (321)

Problems emerge from the approximation (see the previous chapter):
Fy = Faay

The hemicube evaluates a form factor from a differential area - effectively a
point - to a finite area. There are two consequences of this. Figure 11.9 illustrates
a problem that can arise with intervening patches. Here the form factor from
patch i to patch j is calculated as if the intervening patch did not exist because
patch j can be seen in its entirety from the hemicube origin.

Finally, consider the sampling ‘efficiency’ of the hemicube. Patches that can
be ‘seen’ from the hemicube in the normal direction are more important than
patches in the horizon direction. (They project onto hemicube cells that have
higher delta form factors.) If we consider distributing the computational effort
evenly on the basis of importance sampling then cells nearer the horizon are less
important, An investigation reported in Max and Troutman (1993) derives opti-
mal resolution, shapes and grid cell spacings. In this work a top-face resolution
40% higher than that of the sides and a side height of 70% of the width is
suggested. Note that this leads also to a reduction in aliasing artefacts caused by
uniform hemicube cells.

Reconstruction artefacts

Reconstruction artefacts are so called because they originate from the nature of
the method used to reconstruct or approximate the continuous radiosity func-
tion from the constant radiosity solution. We recall that radiosity methods can
only function under the constant radiosity assumption which is that we divide
the environment up into patches and solve a system of equations on the basis
that the radiosity is constant across each patch.

The commonest approach - bilinear interpolation - is overviewed in Figure
11.10. Here we assume that the curved surface shown in Figure 11.10{a) will
exhibit a continuous variation in radiosity value along the dotted line as shown.

Patch j

Patch i

Area of patch § Intervening patch
shadowed by the
imtervening patch
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Figure 11.10 Uniform meshing
Mormal reconstruction
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The first step in the radiosity method is to compute a constant radiosity solution
which will result in a staircase approximation to the continuous function. The
radiosity values at a vertex are calculated by averaging the patch radiosities that
share the vertex (Figure 11.10(b)). These are then injected into a bilinear inter-
polation scheme and the surface is effectively Gouraud shaded resulting in the
piecewise linear approximation (Figure 11.10{c)).

The most noticeable defect arising out of this process is Mach bands which,
of course, we also experience in normal Gouraud shading, where the same inter-
polation method is used. The ‘visual importance’ of these can be reduced by
using texture mapping but they tend to be a problem in radiosity applications
because many of these exhibit large area textureless surfaces - interior walls in
buildings, for example. Subdivision meshing strategies also reduce the visibility
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of Mach bands because by reducing the size of the elements they reduce the
difference between vertex radiosities.

More advanced strategies involve surface interpolation methods (Chapter 3).
Here the radiosity values are treated as samples of a continuous radiosity func-
tion and quadratic or cubic Bézier/B-spline patch meshes are fitted to these. The
obvious difficulties with this approach - its inherent cost and the need to
prevent wanted discontinuities being smoothed out - has meant that the most
popular reconstruction method is still linear interpolation,

Meshing artefacts .
One of the most difficult aspects of the radiosity approach, and one that is still
a major research area, is the issue of meshing. In the discussions above we have
simply described patches as entities into which the scene is divided with the pro-
viso that these should be large to enable a solution which is not prohibitively
expensive. However, the way in which we do this has a strong bearing on the
quality of the final image. How should we do this so that the appearance of
artefacts is minimized? The reason this is difficult is that we can only do
this when we already have a solution, so that we can see where the problems
occur. Alternatively we have to predict where the problems will occur and sub-
divide accordingly. We begin by looking at the nature and origin of meshing
artefacts.
First some terminology:

@ Meshing Thisisa general term used in the context of radiosity to describe
either the initial scene subdivision or the act of further subdivision that may
take place while a program is executing. The ‘initial scene subdivision’ may
be a general scene database not necessarily created for input to a radiosity
renderer. However, for reasons that will soon become apparent it is more
likely to be a preprocessed version of such a database or a scene that has
been specifically created for a radiosity solution.

@ Patches These are the entities in the initial representation of the scene.
In a standard radiosity solution, where subdivision occurs during the
solution, patches form the input to the program.

@ Elements These are the portions into which patches are subdivided.

The simplest type of meshing artefact - a so-called D° discontinuity - is a dis-
continuity in the value of the radiosity function. The common sources of such
a discontinuity are shadow boundaries caused by a point light source and objects
which are in contact. In the former case the light source suddenly becomes vis-
ible as we move across a surface and the reconstruction and meshing 'spreads’
the shadow edge towards the mesh boundaries. Thus the shadow edge will tend
to take the shape of the mesh edges giving it a staircase appearance. However,
because we tend to use area light sources in radiosity applications the disconti-
nuities that occur are higher than D° Nevertheless these still cause visible
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Figure 11.11
Shadow and light leakage.
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artefacts. Discontinuities in the derivatives of the radiosity function occur at
penumbra and umbra boundaries in shadows in scenes illuminated by area light
sources. Again there is ‘interference’ between the boundaries and the mesh, giv-
ing a characteristic ‘staircase’ appearance to the shadow edges. These are more
difficult to deal with than D? discontinuities.

When objects are in contact, then unless the intersection boundary coincides
with a mesh boundary, shadow or light leakage will occur. The idea is shown in
Figure 11.11 for a simple scene. Here, the room is divided by a floor-to-ceiling
partition, which does not coincide with patch boundaries on the floor. One half
of the room contains a light source and the other is completely dark. Depending
on the position of the patch boundaries, the reconstruction will produce either
light leakage into the dark region or shadow leakage into the lit region. Figure
18.16 shows the effect of shadow and light leakage for a more complex scene.
Despite the fact that the representation contains many more patches than we
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require for a conventional computer graphics rendering (Gouraud shading) the
quality is unacceptably low,

It should be apparent that further subdivision of the scene cannot entirely
eliminate shadow and light leakage - it can only reduce it to an acceptable level.
It can, however, be eliminated entirely by forcing a meshing along the curve of
intersection between objects in contact. Figure 18.18 is the result of meshing the
area around a wall light by considering the intersection between the lamp and
the wall. Now the wall patch boundaries coincide with the lamp patch bound-
aries eliminating the leakage that occurred before this meshing.

Meshing strategies

Meshing strategies that attempt to overcome these defects can be categorized in
a number of ways. An important distinction can be made on the basis of when
the subdivision takes place:

(1) A priori - meshing is completed before the radiosity solution is invoked; that
is we predict where discontinuities are going to occur and mesh accordingly.
This is also called discontinuity meshing.

(2) A posteriori — the solution is initiated with a 'start” mesh which is refined as
the solution progresses. This is also called adaptive meshing.

As we have seen, when two objects are in contact, we can eliminate shadow
and light leakage by ensuring that mesh element boundaries from each object
coincide, which is thus an a priori meshing.

Another distinction can be made depending on the geometric nature of the
meshing. We can, for example, simply subdivide square patches (non-uniformly)
reducing the error to an acceptable level. The commonest approach to date,
Cohen and Wallace (1993) term this f-refinement. Alternatively we could adapt
an approach where the discontinuities in the radiosity function are tracked
across a surface and the mesh boundaries placed along the discontinuity bound-
ary. A form of this approach is called r-refinement by Cohen and Wallace (1993)
where the nodes of the initial mesh are moved in a way that equalizes the error
in the elements that share the node. These approaches are illustrated conceptu-
ally in Figure 11.12.

Adaptive or g posteriori meshing

The classic adaptive algorithm, called substructuring, was described by Cohen et
al. (1986). Reported before the development of the progressive refinement algo-
rithm, this approach was initially incorporated into a full matrix solution.
Adaptive subdivision proceeds by considering the radiosity varlation at the
nodes or vertices of an element and subdividing if the difference exceeds some
threshold.
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Figure 11.12
Examples of refinement

strateqies (o posterion).

Discontinuity in
the radiosity function

A2

Initial

Plch®
'

h-refinement = subdivides
initial patches

Initial

r-refinement — moves
nodes of initial paiches

The idea is to generate an accurate solution for the radiosity of a point from
the ‘global’ radiosities obtained from the initial ‘coarse’ patch computation.
Patches are subdivided into elements. Element-to-patch form factors are calcu-
lated where the relationship between element-to-patch and patch-to-patch form
factors is given by:

K
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where:

Fy is the form factor from patch i to patch j

Fiigy is the form factor from element g of patch i to patch j
Aug is the subdivided area of element q of patch i

R is the number of elements in patch i

Patch form factors obtained in this way are then used in a standard radiosity
solution,

This increases the number of form factors from N = N to M = N, where M is
the total number of elements created, and naturally increases the time spent in
form factor calculation. Patches that need to be divided into elements are
revealed by examining the graduation of the coarse patch solution, The previ-
ously calculated (coarse) patch solution is retained and the fine element radiosi-
ties are then obtained from this solution using:

N
Big=Ey+Ry Y BiFug [11.4]

=l
where:

By is the radiosity of element g
By is the radiosity of patch j
Fiigy is the element g to patch j form factor

In other words, as far as the radiosity solution is concerned, the cumulative
effect of elements of a subdivided patch is identical to that of the undivided
patch; or, subdividing a patch into elements does not affect the amount of light
that is reflected by the patch. So after determining a solution for patches, the
radiosity within a patch is solved independently among patches. In doing this,
Equation 11.4 assumes that only the patch in question has been subdivided into
elements - all other patches are undivided. The process is applied iteratively
until the desired accuracy is obtained. At any step in the iteration we can iden-
tify three stages:

(1) Subdividing selected patches into elements and calculating element-to-
patch form factors.

(2) Evaluating a radiosity solution using patch-to-patch form factors,
(3) Determining the element radiosities from the patch radiosities.

Where stage (2) just occurs for the first iteration, the coarse patch radiosities are
calculated once only. The method is distinguished from simply subdividing the
environment into smaller patches. This strategy would result in M x M new form
factors (rather than M x N) and an M x M system of equations.

Subdivision of patches into elements is carried out adaptively. The areas that
require subdivision are not known prior to a solution being obtained. These
areas are obtained from an initial solution and are then subject to a form factor
subdivision, The previous form factor matrix is still valid and the radiosity solu-
tion is not re-computed.
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Figure 11.13
Adaptive subdivision and
shadows.

{a) Shape and shadow areas

do not correspond to shape
of the occluder.

Only part of the form factor determination is further discretized and this g
then used in the third phase (determination of the element radiosities from the
coarse patch solution). This process is repeated until it converges to the desireq
degree of accuracy. Thus image quality is improved in areas that require more
accurate treatment. An example of this approach is shown in Figure 11.13. Note
the effect on the quality of the shadow boundary. Figure 11.14 shows the same
set-up but this time the light source is subdivided to a lower and higher resoly.
tion than in Figure 11,13, Although the effect, in this case, of insufficient sup.
division of emitting and non-emitting patches is visually similar, the reasons for
these discrepancies differ. In the case of non-emitting patches we have changes
in reflected light intensity that do not coincide with patch boundaries. We
increase the number of patches to capture the discontinuity. With emitting
patches the problem is due to the number of hemicube emplacements per light
source, Here we increase the number of patches that represent the emitter
because each hemicube emplacement reduces a light to a single source and we
need a sufficiently dense array of these to represent the spatial extent of the

#
R
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emitter. In this case we are subdividing a patch (the emitter) over whose surface
the light intensity will be considered uniform.

Adaptive subdivision can be incorporated in the progressive refinement
method. A naive approach would be to compute the radiosity gradient and sub-
divide based on the contribution of the current shooting patch. However, this
approach can lead to unnecessary subdivisions. The sequence, shown in Figure
11.15 shows the difficulties encountered as subdivision, performed after every
iteration, proceeds around one of the wall lights. Originally two large patches
situated away from the wall provide general illumination of the object. This
immediately causes subdivision around the light-wall boundary because the
program detects a high difference between wvertices belonging to the same
patches. These patches have vertices both under the light and on the wall.
However, this subdivision is not fine enough and as we start to shoot energy
from the light source itself light leakage begins to occur. Light source patches
continue to shoot energy in the order in which the model is stored in the data-

Figure 11.13 continued

(&) Boundary of shadow is
PBgged,
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Figure 11.14
The effect of insufficient
subdivision of emitters.

base and we spiral up the sphere, shooting energy onto its inside and causing
more and more light leakage. Eventually the light emerges onto the wall and
brightens up the appropriate patches. As the fan of light rotates above the light
more and more inappropriate subdivision occurs. This is because the subdivision
is based on the current intensity gradients which move on as further patches are
shot. Note in the final frame this results in a large degree of subdivision in an
area of highlight saturation. These redundant patches slow the solution down
more and more and we are inadvertently making things worse as far as execu-
tion time is concerned.
Possible alternative strategies are:

(1) Limit the subdivision by only initiating it after every n patches instead of
after every patch that is shot,

(2) Limit the initiation of subdivision by waiting until the illumination i
representative of the expected final distribution.
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11.7.2

A priori meshing

We will now look at two strategies for a priori meshing - processing a sceng
before it is used in a radiosity solution.

Hierarchical radiosity

Adaptive subdivision is a special case of an approach which is nowadays known
as hierarchical radiosity. Hierarchical radiosity is a generalization of adaptive
subdivision - a two-level hierarchy - to a subdivision employing a continuum of
levels. The interaction between surfaces is then computed using a form factor
appropriate to the geometric relationship between the two surfaces. In other
words, the hierarchical approach attempts to limit form factor calculation time
by limiting the accuracy of the calculation to an amount determined by the dis.
tance between patches.

Hierarchical radiosity can be embedded in a progressive refinement approach
making an a posteriori algorithm; alternatively the hierarchical subdivision can
be made on an a priori basis and the system then solved. In what follows we will
describe the a priori framework.

The idea is easily illustrated in principle. Figure 11.16 shows a wall patch W
and three small objects A, B and C located at varying distances from W. The dis-
tance from W to A is comparable to its dimension and we assume that W has to
be subdivided to calculate the changes in illumination in the vicinity of A due
to light emitted or reflected from W. In the case of B we assume that the whole
of patch W can be used. Detailed variation of the radiosity in the vicinity of B
due to patch W is not unduly affected by subdividing B. The distance to C, we
assume, is sufficiently large to make the form factor between W and C corre
spondingly small, and in this case we can consider a larger area on the wall
merging W into a patch four times its area. Thus for the three interactions we
use either a subdivided W, the whole of W or W as part of a larger entity when
considering the interaction between the wall and the objects A, B and C. Note
that this implies not only subdivision of patches but the opposite process -
agglomeration of patches into groups.

The idea, first proposed by Hanrahan et al. (1991), proposes that if the form
factor between two patches currently under consideration exceeds a threshold,
then to use these patches at their current size will introduce an unacceptable
error into the solution and the patches should be subdivided. Compared with
the strategy in the previous section we are taking our differential threshold one
stage further back in the overall process. Instead of comparing the difference
between the calculated radiosity of neighbouring patches and subdividing and
re-calculating form factors if necessary, we are looking directly at the form fac-
tors themselves and subdividing until the form factor falls below a threshold.
This idea is easily demonstrated for the simple case of two patches sharing 2
common border. Figure 11.17 shows the geometric effect of subdivision based on
a form factor threshold. The initial form factor estimate is large and the patches
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(<) Patch W merged into a larger patch for WC interaction

are subdivided into four elements. At the next level of subdivision only two out
of 16 form factor estimates exceed the threshold and they are subdivided. It is
easily seen from the illustration that in this example the pattern of subdivision
‘homes into’ the common edge.

A hierarchical subdivision strategy starts with an (initial) large patch subdivi-
sion of n patches. This results in n(n-1)/2 form factor calculations. Pairs of
patches that cannot be used at this initial level are then subdivided as suggested
by the previous figure, the process continuing recursively. Thus each initial
patch is represented by a hierarchy and links. The structure contains both the
geometric subdivision and links that tie an element to other elements in the
scene. A node in the hierarchy represents a group of elements and a leaf node a
single element. To make this process as fast as possible a crude estimate of the
form factor can be used. For example, the expression inside the integral defini-
tion of the form factor:
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Figure 11.17
Hierarchical radiosity: (n r Initial pattern — high form factor
the geometric effect
of subdivision of twa L
perpendicular patches (after
Hanrahan et al. (1991)). Subdivide and calculate the
(2) 4‘ form factor of elements
N l A | _
- 4 N _A
[\ AP\ AR
il
First subdivision:
oo out of 16
B — 1 form factors excesd
' the threshold
Py
| S |
* At any level 2] elements
exceed a form factor
a threshold
B
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can be used but note that this does not take into account any occluding patches,
Thus the stages in establishing the hierarchy are:

(1) Start with an initial patch subdivision. This would normally use much larger
patches than those required for a conventional solution.
(2) Recursively apply the following:
{a} Use a quick estimate of the form factor between pairs of linked surfaces.
(b) If this falls below a threshold or a subdivision limit is reached, record
their interaction at that level.
(c) Subdivide the surfaces.

It is important to realize that two patches can exhibit an interaction between
any pair of nodes at any level in their respective hierarchies. Thus in Figure 11.18
a link is shown between a leaf node in patch A and an internal node in patch C.
The tree shown in the figure for A represents the subdivisions necessary for its
interaction with patch B and that for patch C represents its interactions with
some other patch X. This means that energy transferred from A to the internal
node in C is inherited by all the child nodes below the destination in C.
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Comparing this formulation with the classical full matrix solution we have
now replaced the form factor matrix with a hierarchical representation. This
implies that a ‘gathering’ solution proceeds from each node by following all the
links from that node and multiplying the radiosity found at the end of the link
by the associated form factor. Because links have, in general, been established at
any level, the hierarchy needs to be followed in both directions from a node.

The iterative solution proceeds by executing two steps on each root node
until a solution has converged. The first step is to gather energy over each
incoming link. The second step, known as ‘pushpull’ pushes a node's reflected
radiosity down the tree and pulls it back up again. Pushing involves simply
adding the radiosity at each child node. (Note that since radiosity has units of
powerfunit area the value remains undiminished as the area is subdivided.) The
total energy received by an element is the sum of the energy received by it
directly plus the sum of the energy received by its parents. When the leaves are
reached the process is reversed and the energy is pulled up the tree, the current
energy deposited at each node is calculated by averaging the child node contri-
butions.

In effect this is just an elaboration of the Gauss-Siedel relaxation method
described in Section 11.3. For a particular patch we are gathering contributions
from all other patches in the scene to enable a new estimate of the current patch.
The difference now is that the gathering process involves following all links out
of the current hierarchy and the hierarchy has to be updated correctly with the
bi-directional traversal or pushpull process.

The above algorithm description implies that at each node in the quadtree
data structure the following information is available:
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gathering and shooting radiosity (B and B,)
emission value (E)

area (A)

reflectivity (p)

pointer to four children

pointer to list of (gathering) links (L)

The algorithm itself has a simple elegant structure and following the excellent
treatment given in Cohen and Wallace (1993) can be expressed in terms of the
following pseudocode:

while not converged

for all surfaces (every root node p)
GatherRad(p)

for all surfaces
PushPullip,0.0)

The top level procedure is a straightforward iterative process which gathers all
the energy from the incoming links, pushes it down the structure then pulls the
radiosity values back up the hierarchy.

GatherRadip) calculates the radiosity absorbed and then reflected at node p,
It is as follows:

GatherRad(p)
pB; =0
for each link L into p
p.Be = p.B; = p.p(L.Fp * L.g.By)
for each child r of p
GatherRadir)

Here g is the element linked to p by L, Fy, is the form factor for this link and p is
the reflectivity of the element p. The radiosity at the destination/shooter end of
the link is B. This is converted into the reflected radiosity B; at the source/gath-
erer end of the link by multiplying it by the form factor Fy and the reflectivity p.
PushPullRad(p,B) can be viewed as a procedure that distributes the energy
correctly throughout the hierarchy balancing the tree. It is as follows:
PushPullRad(p,Bi..)
if p is a leaf then By := p.E + p.B; + Bawn
else B, :=0; for each child node r of p
By i= By + (r-A/p.A) * PushPullRad(r, p.B; + Buww)
P.Bi = Byp
return B,

The procedure is first called at the top of the hierarchy with the gathered radios-
ity at that level. The recursion has the effect of passing or pushing down this
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radiosity onto the child nodes. At each internal node the gathered power is
added to the inherited power accumulated along the downwards path. When a
leaf node is reached any emission is added into the gathered radiosity for that
node and the result assigned to the shooting radiosity for that node, The recur-
sion then unwinds pulling the leaf node radiosity up the tree and performing an
area weighting at each node.

Although hierarchical radiosity is an efficient method and one that can be
finely controlled (the accuracy of the solution depends on the form factor toler-
ance and the minimum subdivision area) it still suffers from shadow leaks and
jagged shadow boundaries because it subdivides the environment regularly
(albeit non-uniformly) without regard to the position of shadow boundaries.
Reducing the value of the control parameters to give a more accurate solution
can still be prohibitively expensive. This is the motivation of the approach
described in the next section.

Finally we can do no better than to quote from the original paper, in which
the authors give their inspiration for the approach:

The hierarchical subdivision algorithm proposed in this paper is inspired by methods
recently developed for solving the N-body problem. In the N-body problem, each of the n
particles exerts a force on all the other n-1 particles, implying n{n-1}/2 pairwise
interactions. The fast algorithm computes all the forces on a particle in less than quadratic
time, building on two key ideas:

{1) Numerical calculations are subject to error, and therefore, the force acting on a particle
need only be calculated to within the given precision.

{2) The force due to a cluster of particles at some distant point can be approximated, within
the given precision, with a single term — cutting down on the total number of interactions.

Discontinuity meshing

The commonest, and simplest, type of a priori meshing is to take care of the spe-
cial case of interpenetrating geometry (D) as we suggested at the beginning of
this section. This is mostly done semi-manually when the scene is constructed
and disposes of shadow and light leakage - the most visible radiosity artefact.
The more general approaches attend to higher-order discontinuities. D' and [D?
discontinuities occur when an object interacts with an area light source - the
characteristic penumbra-umbra transition within a shadow area - as described
in Chapter 9.

As we have seen, common a posteriori methods generally approach the prob-
lem by subdividing in the region of discontinuities in the radiosity function and
can only eliminate errors by resorting to higher and higher meshing densities.
The idea behind discontinuity meshing is to predict where the discontinuities
are going to occur and to align the mesh edges exactly with the path of the dis-
continuity. This approach is by definition an a priori method. We predict where
the discontinuities will occur and mesh, before invoking the solution phase so
that when the solution proceeds there can be no artefacts present due to the
non-alignment of discontinuities and mesh edges.

0358



THE RADIOSITY METHOD

Figure 11.19

VE event: the edge of the
occluder and a vertex of the
emitter form a critical
surface whose intersection
with the receiver forms the
outer boundary of the
penumbra (after Nishita and
Nakamae (1985)).

To predict the position of the discontinuities shadow detection algorithms age
used and the problem is usually couched in terms of visual events and criticy)
surfaces. Two types of visual events can be considered VE and EEE. VE o
vertex—edge events occur when a vertex of a source ‘crosses’ an edge of ap
occluding polygon known in this context as a receiver. Figure 11.19 shows the
interaction between a vertex of a triangular source and an edge of a rectangula,
occlude. The edge and vertex together form a critical surface whose intersection
with a receiving surface forms part of the outer penumbra boundary. For each
edge of the occluder a critical surface can be defined with respect to each vertex
in the source. We can also define EV events which occur due to the interaction
of a source edge with a receiver polygon,

VE events can cause both ' and [D* discontinuities as Figures 11.20 and 11.21
demonstrate. Figure 11.20 shows the case of a D* discontinuity. Here there is the
coincidence that the edge of the occluder and the source are parallel. Both vertices
Vi and V: contribute to the penumbra. As we travel outwards from the umbra along
path xy, the visible area of the source increases linearly and the radiance exhibits
piecewise linearity or D! discontinuities. A D? discontinuity caused by a VE event i
shown in Figure 11.21. In this case, a single vertex of the light source is involved
along the path xy. As we travel outwards from the umbra the visible area of the
source increases quadratically and the radiance exhibits DF discontinuities,

EEE or edge-edge-edge events occur when we have multiple occluders. The
important difference here is that the boundary of the penumbra - the critical curve
- is no longer a straight line as it was in the previous VE examples but a conic. The
corresponding discontinuities in the radiance function along the curve are [, Alsp
the critical surface is no longer a segment of a plane but is a (ruled) quadric surface,

Visual events can occur for any edges and vertices of any cbject in the scene,
For a scene with n objects there can be O(n*) VE critical surfaces and O(n") EEE
critical surfaces. Because of the cost and the higher complexity of EEE events
approaches have concentrated on detecting VE events.

Critical surface
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11.20
VE event causing a D'
Winuity (after Lischinski
ol (1992)).
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Radiance value along xy
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Figure 11,21
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A straightforward approach by Nishita and Nakamae (1985) explicitly deter.
mines penumbra and umbra boundaries by using a shadow volume approach_
For each object a shadow volume is constructed from each vertex in the ligh
source. Thus, there is a volume associated with each light source vertex just as j
it were a point source. The intersection of all volumes on the receiving surface
forms the umbra and the penumbra boundary is given by the convex hull con.
taining the shadow volumes. An example is shown in Figure 11.22.

We will now describe in some detail a later and more elaborate approach by
Lischinski ¢t al. (1992) to discontinuity meshing. This integrates discontinuity
meshing into a modified progressive refinement structure and deals only with Vg
(and EV) events. This particular algorithm is representative in that it deals with
most of the factors that must be addressed in a practical discontinuity meshing
approach including handling multiple light sources and reconstruction problems,

Lischinski et al. build a separate discontinuity mesh for each source, accumy.
lating the results into a final solution. The scene polygons are stored as a BSI® tree
which means that they can be fetched in front-to-back order from a source ver.
tex. For a source the discontinuities that are due to single VE events are located
as follows. Figure 11.23 shows a single VE event generating a wedge defined by
the vertex and projectors through the end points of the edge, E. The event is
processed by fetching the polygons in the order A, B and C. A is nearer to the
source than E and is thus not affected by the event. If a surface (B and C) faces
the source then the intersection of the wedge with the surface adds a

(1) Foreach source vertex
calculated the discontinuity
boundaries on the receiver

{2) Umbra = intersection

{3) Penumbra = convex hull

Figure 11.22

Umbra and penumbra from
shadow volumes formed by
VE events.
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processing a VE wedge
(after Lischinski et af.
(1992))-

Figure 11,24
Constructing a DM tree for
dungle VE event (after

ski et ol. (1992)).
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Processing continues
down the unclipped
part of the wedge

discontinuity to that surface. The discontinuity is ‘inserted’ into the mesh of the
surface. As each surface is processed it clips out part of the wedge and the algo-
rithm proceeds ‘down’ only the unclipped part of the wedge. When the wedge
is completely clipped the processing of that particular VE event is complete,
The insertion of the discontinuity into the mesh representing the surface is
accomplished by using a DM tree which itself consists of two components - a
two-dimensional BSP tree connecting into a winged edge data structure (Mantyla
1988) representing the interconnection of surface nodes. The way in which this
works is shown in Figure 11.24 for a single example of a vertex generating three
VE events which plant three discontinuity/critical curves on a receiving surface.
If the processing order is a, b, ¢ then the line equation for a appears as the root
node and splitting it into two regions as shown. b, the next wedge to be
processed is checked against region B which splits into Ry and Ry: and so on.
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Introduction - Whitted ray tracing

In Chapter 10 we gave a brief overview of Whitted ray tracing. We will now
describe this popular algorithm in detail. Although it was first proposed in by
Appel (1968), ray tracing is normally associated with Whitted's classic paper
(1980). We use the term ‘Whitted ray tracing’ to avoid the confusion that has
arisen due to the proliferation of adjectives such as ‘eye’, forward’ and ‘back-
ward’ to describe ray tracing algorithms.

Whitted ray tracing is an elegant partial global illumination algorithm that
combines the following in a single model:

@ Hidden surface removal.

@ Shading due to direct illumination.

® Global specular interaction effects such as the reflection of objects in each
other and refraction of light through transparent objects.

® Shadow computation (but only the geometry of hard-edged shadows i
calculated).

It usually ‘contains’ a local reflection model such as the Phong reflection model,
and the question arises: why not use ray tracing as the standard approach 1@
rendering, rather than using a Phong approach with extra algorithms for hidden
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surface removal, shadows and transparency? The immediate answer to this is
cost. Ray tracing is expensive, particularly for polygon objects because effectively
each polygon is an object to be ray traced. This is the dilemma of ray tracing. It
can only function in reasonable time if the scene is made up of ‘easy’ objects.
Quadric objects, such as spheres are easy, and if the object is polygonal the
number of facets needs to be low for the ray tracer to function in reasonable
time. If the scene is complex (many objects each with many polygons) then the
basic algorithm needs to be burdened with efficiency schemes whose own
cost tends to be a function of the complexity of the scene. Much of the research
into ray tracing in the 1980s concentrated on the efficiency issue. However,
we are just about at a point in hardware development where ray tracing is a
viable alternative for a practical renderer and the clear advantages of the algo-
rithm are beginning to overtake the cost penalties. In this chapter we will
develop a program to ray trace spheres. We will then extend the program to
enable polygonal objects to be dealt with.

The basic algorithm
Tracing rays - initial considerations

We have already seen that we trace infinitesimally thin light rays through the
scene, following each ray to discover perfect specular interactions. Tracing
implies testing the current ray against objects in the scene - intersection testing
- to find if the ray hits any of them. And, of course, this is the source of the cost
in ray tracing - in a naive algorithm, for each ray we have to test it against all
objects in the scene (and all polygons in each object). At each boundary,
between air and an object (or between an object and air) a rav will ‘spawn’ two
more rays. For example, a ray initially striking a partially transparent sphere will
generate at least four rays for the object - two emerging rays and two internal
rays (Figure 10.5). The fact that we appropriately bend the transmitted ray means
that geometric distortion due to refraction is taken into account. That is, when
we form a projected image, objects that are behind transparent objects are appro-
priately distorted. If the sphere is hollow the situation is more complicated -
there are now four intersections encountered by a ray travelling through the
object.

To perform this tracing we follow light beams in the reverse direction of light
propagation - we trace light rays from the eye. We do this eye tracing because
tracing rays by starting at the light source(s) would be hopelessly expensive. This
is because we are only interested in that small subset of light rays which pass
through the image plane window.

At each hit point the same calculations have to be made and this implies that
the easiest way to implement a simple ray tracer is as a recursive procedure. The
recursion can terminate according to a number of criteria:
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@ It always terminates if a ray intersects a diffuse surface.
® It can terminate when a pre-set depth of trace has been reached.
@ It can terminate when the energy of the ray has dropped below a thresholg

The behaviour of such an approach is demonstrated in Figure 18.11 (Coloy,
Plate). Here the trace is terminated at recursives depths of 2, 3 and 4 and ungs.
signed pixels (pixels which correspond to a ray landing on a pure specular suy.
face with no diffuse contribution) are coloured grey. You can see that the grey
region ‘shrinks into itself as a function of recursive depth.

Lighting model components

At each point P that a ray hits an object, we spawn in general, a reflected and 3
transmitted ray. Also we evaluate a local reflection model by calculating L at tha
point by shooting a ray to the light source which we consider as a point. Thus
at each point the intensity of the light consists of up to three components:

@ A local component.
® A contribution from a global reflected ray that we follow.
@ A contribution from a global transmitted ray that we follow.

We linearly combine or add these components together to produce an intensity for
point P. It is necessary to include a local model because there may be direct illu-
mination at a hit point. However, it does lead to this confusion. The use of a local
reflection model does imply empirically blurred reflection (spread highlights);
however, the global reflected ray at that point is not blurred but continues to dis-
cover any object interaction along an infinitesimally thin path. This is because we
cannot afford to blur global reflected rays - we can only follow the ‘central’ ray.
This results in a visual contradiction in ray traced images, which is that the reflec
tion of the light source in an object - the specular highlight - is blurred, but the
images of other objects are perfect. The reason for this is that we want objects to
look shiny - by having them exhibit a specular highlight - and include images of
other objects. Thus most algorithms use a local and a global specular component.

It is also necessary to account for local diffuse reflection, otherwise we could
not have coloured objects. We cannot in ray tracing handle diffuse interaction
as we did in radiosity. This would mean spawning, for every hit, a set of diffuse
rays that sampled the hemispherical set of diffuse rays that occurs at the hit
point on the surface of the object, if it happens to be diffuse. Each one of these
rays would have to be followed and may end up on a diffuse surface and a com-
binatorial explosion would develop that no machine could cope with. This prob-
lem is the motivation for the development of Monte Carlo methods such as path
tracing, as we saw in Chapter 10.

If a ray hits a pure diffuse surface then the trace is terminated. Thus we have
the situation where the result of the local model computation at each hit point
is passed up the tree along with the specular interaction.
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Figure 12.1

Shadow shape is computed
by calculating L and
inserting it into the
Blersection tester.

THE BASIC ALGORITHM

Shadows

Shadows are easily included in the basic ray tracing algorithm. We simply calcu-
late L, the light direction vector, and insert it into the intersection test part of the
algorithm. That is, L is considered a ray like any other. If L intersects any objects,
then the point from which L emanates is in shadow and the intensity of direct
illumination at that point is consequently reduced (Figure 12.1). This generates
hard-edged shadows with arbitrary intensity. The approach can also lead to great
expense. If there are n light sources, then we have to generate i intersection tests.
We are already spawning two rays per hit point plus a shadow ray, and for n light
sources this becomes (n + Z) rays. We can see that as the number of light sources
increases shadow computations are quickly going to predominate since the major
cost at each hit point is the cost of the intersection testing.

In an approach by Haines and Greenberg (1986) a ‘light buffer’ was used as a
shadow testing accelerator. Shadow testing times were reduced, using this pro-
cedure, by a factor of between 4 and 30. The method pre-calculates for each light
source, a light buffer which is a set of cells or records, geometrically disposed as
two-dimensional arrays on the six faces of a cube surrounding a point light
source (Figure 12.2). To set up this data structure all polygons in the scene are
cast or projected onto each face of the cube, using as a projection centre the posi-
tion of the light source. Each cell in the light buffer then contains a list of poly-
gons that can be seen from the light source. The depth of each polygon is
calculated in a local coordinate system based on the light source, and the records
are sorted in ascending order of depth. This means that for a particular ray from
the eye, there is immediately available a list of those object faces that may
occlude the intersection point under consideration.

Shadow testing reduces to finding the cell through which the shadow feeler
ray passes, accessing the list of sorted polygons, and testing the polygons in the
list until occlusion is found, or the depth of the potentially occluding polygon
is greater than that of the intersection point (which means that there is no occlu-
sion because the polygons are sorted in depth order). Storage requirements are
prodigious and depend on the number of light sources and the resolution of the
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Figure 12.2
Shadow testing accelerator
of Haines and Greenberg

(1986).

A Light buffer

Cell that shadow feeler intersects

Light source ' A g Occluding polygons
coordinate :
system Light
B Shadow feeler
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Cell record Current intersection poin
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light buffers. (Note the similarity between the light buffer and the radiosity
hemicube described in Chapter 11.)

Apart from the efficiency consideration, the main problem with shadows in
Whitted ray tracing is that they are hard edged due to the point light source
assumption and the light intensity within a shadow area has to be a guess. This
is, of course, not inconsistent with the perfect specular interactions that result
from tracing a single infinitesimally thin ray from each hit point for each type
of interaction. Just as distributed ray tracing (described in Section 10.6) deals
with ‘blurry’ interaction by considering more than one ray per interaction, so it
implements soft shadow by firing more than one ray towards a (non-point) light
source.

Hidden surface removal

Hidden surface removal is ‘automatically’ included in the basic ray tracing algoe-
rithm. We test each ray against all objects in the scene for intersection. In gen-
eral this will give us a list of objects which the ray intersects. Usually the
intersection test will reveal the distance from the hit point to the intersection
and it is simply a matter of looking for the closest hit to find, from all the inter-
sections, the surface that is visible from the ray-initiating view point, A certain
subtlety occurs with this model, which is that surfaces hidden, from the point of
view of a standard rendering or hidden surface approach, may be visible in ray
tracing. This point is illustrated in Figure 12.3 which shows that a surface, hid-
den when viewed from the eye ray direction, can be reflected in the object hit
by the incident ray.
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figure 12.3
A reflected “hidden’ surface.

USING RECURSION TO IMPLEMENT RAY TRACING

Surface that cannot be seen
from the eye ray direction

Using recursion to implement ray traci'ng

We will now examine the working of a ray tracing algorithm using a particular
example. The example is based on a famous image, produced by Tumer Whitted
in 1980, and it is generally acknowledged as the first ray traced image in com-
puter graphics. An imitation is shown in Figure 12.4 (reproduced as a mono-
chrome image here and colour image in the Colour Plate section).

First some symbolics. At every point P that we hit with a ray we consider two
major components a local and a global component:

I(P) =l () + Tgora(P)
= fiocal(P) + k1: HP!} + -kwﬂ:rg]

where:

P is the hit point

P, is the hit point discovered by tracing the reflected ray from P

P, is the hit point discovered by tracing the transmitted ray from P
kg is the global reflection coefficient

kig is the global transmitted coefficient

This recursive equation emphasizes that the illumination at a point is made up
of three components, a local component, which is usually calculated using a
Phong local reflection model, and a global component, which is evaluated by
finding P; and P, and recursively applying the equation at these points. The
overall process is sometimes represented as a tree as we indicated in Figure 10.5.

A procedure to implement ray tracing is easily written and has low code com-
plexity. The top-level procedure calls itself to calculate the reflected and trans-
mitted rays. The geometric calculation for the reflected and transmitted ray
directions are given in Chapter 1, and details of intersection testing a ray with a
sphere will also be found there.
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Figure 12.4
The Whitted scene (see also
Calour Plate section).
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The basic control procedure for a ray tracer consists of a simple recursive pro-
cedure that reflects the action at a node where, in general, two rays are spawned.
Thus the procedure will contain two calls to itself, one for the transmitted and
one for the reflected ray. We can summarize the action as:

ShootRay (ray structure)
intersection test
if ray intersects an object
get normal at intersection point
calculate local intensity (o)
decrement current depth of trace
if depth of trace > 0
calculate and shoot the reflected ray
calculate and shoot the refracted ray

where the last two lines imply a recursive call of ShootRay(). This is the basic
control procedure. Around the recursive calls there has to be some more detail
which is:
Calculate and shoot reflected ray elaborates as
if object is a reflecting object
calculate reflection vector and include in the ray structure
Ray Origin := intersection point
Attenuate the ray (multiply the current ki by its value at the
previous invecation)
ShootRay(reflected ray structure)
if reflected ray intersects an object
combine colours (keg Ty with foca

Calculate and shoot refracted ray e¢laborates as
if object is a refracting object

if ray is entering object
accumulate refractive index
increment number of objects that the ray is currently
inside
calculate refraction vector and include in refracted ray
structure

else
de-accumulate refractive index
decrement number of objects that the ray is currently
inside
calculate refraction vector and include in refracted ray
structure

Ray origin := intersection point

Attenuate ray (ki)

if refracted ray intersects an object
combine colowrs (kg I) with leca
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The ray structure needs to contain at least the following information:

® Origin of the ray.

® [ts direction.

@ [ts intersection point.

@ [ts current colour at the intersection point.

® lts current attenuation,

@ The distance of the intersection point from the ray origin.
@ The refractive index the ray is currently experiencing.

® Current depth of the trace.

® Number of objects we are currently inside.

Thus the general structure is of a procedure calling itself twice for a reflected ang
refracted ray. The first part of the procedure finds the object closest to the ray
start. Then we find the normal and apply the local shading model, attenuating
the light source intensity if there are any objects between the intersection point
P and the object. We then call the procedure recursively for the reflected and
transmitted ray.

The number of recursive invocations of ShootRay() is controlled by the depth
of trace parameter. If this is unity the scene is rendered just with a local reflec.
tion model. To discover any reflections of another object at a point P* we needa
depth of at least two. To deal with transparent objects we need a depth of at least
three. (The initial ray, the ray that travels through the object and the emergent
ray have to be followed. The emergent ray returns an intensity from any object
that it hits.)

The adventures of seven rays - a ray tracing study

Return to Figure 12.4, We consider the way in which the ray tracing model works
in the context of the seven pixels shown highlighted. The scene itself consists
of a thin walled or hollow sphere, that is almost perfectly transparent, together
with a partially transparent white sphere, both of which are floating above the
ubiguitous red and yellow chequerboard. Everywhere else in object space is a
blue background. The object properties are summarized in Table 12.1. Note that
this model allows us to set k; to a different value from ki — the source of the con:
tradiction mentioned in Section 12.1.2; reflected rays are treated differently
depending on which component (local or global) is being considered.
Consider the rays associated with the pixels shown in Figure 10.4.

Ray 1

This ray is aleng a direction where a specular highlight is seen on the highly
transparent sphere. Because the ray is near the mirror direction of L, the contri-
bution from the specular component in fou(P) is high and the contributions
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from kel(P:) is low. For this object ks, the local diffuse coefficient is low (it is
multiplied by 1 - transparency value) and k. is high with respect to k. However,
note that the local contribution only dominates over a very small area of the sur-
face of the object. Also note that, as we have already mentioned, the highlight
should not be spread. But if we left it as occupying a single pixel it would not be
visible.

Ray 2

Almost the same as ray 1 except that the specular highlight appears on the inside
wall of the hollow sphere. This particular ray demonstrates another accepted
error in ray tracing. Effectively the ray from the light travels through the sphere
without refracting (that is, we simply compare L with the local value of N and
ignore the fact that we are now inside a sphere). This means that the specular
highlight is in the wrong position but we simply accept this because we have no
intuitive expectation of the correct position anyway. We simply accept it to be
correct.

Ray 3
Ray 3 also hits the thin-walled sphere. The local contribution at all hits with the
hollow sphere are zero and the predominant contribution is the chequerboard.
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12.4

This is subject to slight distortion due to the refractive effect of the sphere wall
The red (or yellow) colour comes from the high ke in feea(P) where P is a poiny
on the chequerboard. ki; and ki are zero for this surface. Note, however, that we
have a mix of two chequerboards. One is as described and the other is the super.
imposed reflection on the outside surface of the sphere.

Ray 4

Again this hits the thin-walled sphere, but this time in a direction where the djs.
tance travelled through the glass is significant (that is, it only travels through the
glass it does not hit the air inside) causing a high refractive effect and making
the ray terminate in the blue background.

Ray 5

This ray hits the opaque sphere and returns a significant contribution from the
local component due to a white kq (local). At the first hit the global reflected ray
hits the chequerboard. Thus there is a mixture of:

white (from the sphere’s diffuse component)
red/yellow (reflected from the chequerboard)

Ray 6

This ray hits the chequerboard initially and the colour comes completely from
the local component for that surface. However, the point is in shadow and this
is discovered by the intersection of the ray L and the opaque sphere.

Ray 7
The situation with this ray is exactly the same as for ray 6 except that it is the
thin walled sphere that intersects L. Thus the shadow area intensity is not
reduced by as much as the previous case. Again we do not consider the recursive
effect that L would in fact experience and so the shadow is in effect in the wrong
place.

" Ray tracing polygon objects - interpolation of a normal atan
intersection point in a polygon

Constraining a modelling primitive to be a sphere or at best a quadric solid is
hopelessly restrictive in practice and in this section we will look at ray tracing
polygonal objects. Extending the above program to cope with general polygon
objects requires the development of an intersection test for polygons (see Section
1.4.3) and a method of calculating or interpolating a normal at the hit point P.
We remind ourselves that the polygonal facets are only approximations to a
curved surface and, just as in Phong shading we need to interpolate, from the
vertex normals, an approximation to the surface normal of the ‘true’ surface that
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Fgure 12.6
Finding an interpolated
Rormal at a hit point P.

; Polygon normal
4
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the facet approximates. This entity is required for the local illumination compo-
nent and to calculate reflection and refraction. Recall that in Phong interpola-
tion (see Section 6.3.2) we used the two-dimensional component of screen space
to interpolate, pixel by pixel, scan line by scan line, the normal at each pixel
projection on the polygon. We interpolated three of the vertex normals using
two-dimensional screen space as the interpolation basis. How do we interpolate
from the vertex normals in a ray tracing algorithm, bearing in mind that we are
operating in world space? One easy approach is to store the polygon
normal for each polygon as well as its vertex normals. We find the largest of its
three components xw, pw and z.. The largest component identifies which of the
three world coordinate planes the polygon is closest to in orientation, and we
can use this plane in which to interpolate using the same interpolation scheme
as we employed for Phong interpolation (see Section 1.5). This plane is equiva-
lent to the use of the screen plane in Phong interpolation. The idea is shown in
Figure 12.5. This plane is used for the interpolation as follows. We consider
the polygon to be represented in a coordinate system where the hit point I is
the origin. We then have to search the polygon vertices to find the edges that
cross the ‘medium’ axis. This enables us to interpolate the appropriate vertex
normals to find N: and Nt from which we find the required normal N; (Figure
12.6). Having found the interpolated normal we can calculate the local illumi-
nation component and the reflected and the refracted rays. Note that because we

Interpolation plane &

0374



RAY TRACING STRATEGIES

12.5

are ‘randomly’ interpolating we lose the efficiency advantages of the Phong
interpolation, which was incremental on a pixel by pixel, scan line by scan line
basis.

We conclude that in ray tracing polygonal objects we incur two significant
costs. First, the more overwhelming cost is that of intersection testing each poly.
gon in an object. Second, we have the cost of finding an interpolated normal on
which to base our calculations.

Efficiency measures in ray tracing N

Adaptive depth control

The trace depth required in a ray tracing program depends upon the nature of
the scene. A scene containing highly reflective surfaces and transparent objects
will require a higher maximum depth than a scene that consists entirely of
poorly reflecting surfaces and opaque objects. (Note that if the depth is set equal
to unity then the ray tracer functions exactly as a conventional renderer, which
removes hidden surfaces and applies a local reflection model.)

It is pointed out in Hall and Greenberg (1983) that the percentage of a scene
that consists of highly transparent and reflective surfaces is, in general, small and
it is thus inefficient to trace every ray to a maximum depth. Hall and Greenberg
suggest using an adaptive depth control that depends on the properties of the
materials with which the rays are interacting. The context of the ray being traced
now determines the termination depth, which can be any value between unity
and the maximum pre-set depth.

Rays are attenuated in various ways as they pass through a scene. When a ray
is reflected at a surface, it is attenuated by the global specular reflection coeffi-
cient for the surface. When it is refracted at a surface, it is attenuated by the
global transmission coefficient for the surface. For the moment, we consider
only this attenuation at surface intersections. A ray that is being examined as a
result of backward tracing through several intersections will make a contribution
to the top level ray that is attenuated by several of these coefficients. Any con-
tribution from a ray at depth n to the colour at the top level is attenuated by the
product of the global coefficients encountered at each node:

klk}.‘. s . kml

If this value is below some threshold, there will be no point in tracing further.

In general, of course, there will be three colour contributions (RGB) for each
ray and three components to each of the attenuation coefficients. Thus when
the recursive procedure is activated it is given a cumulative weight parameter
that indicates the final weight that will be given at the top level to the colour
returned for the ray represented by that procedure activation. The correct weight
for a new procedure activation is easily calculated by taking the cumulative
weight for the ray currently being traced and multiplying it by the reflection o
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transmission coefficient for the surface intersection at which the new ray is
being created.

Another way in which a ray can be attenuated is by passing for some distance
through an opaque material. This can be dealt with by associating a transmit-
tance coefficient with the material composing an object. Colour values would
then be attenuated by an amount determined by this coefficient and the distance
a ray travels through the material. A simple addition to the intersection calcula-
tion in the ray tracing procedure would allow this feature to be incorporated.

The use of adaptive depth control will prevent, for example, a ray that ini-
tially hits an almost opaque object spawning a transmitted ray that is then
traced through the object and into the scene. The intensity returned from the
SCene may then be so attenuated h}" the initial UbiECl‘ that this mmputatinn is
obviated. Thus, depending on the value to which the threshold is pre-set, the ray
will, in this case, be terminated at the first hit,

For a highly reflective scene with a maximum tree depth of 15, Hall and
Greenberg report (1983) that this method results in an average depth of 1.71,
giving a large potential saving in image generation time. The actual saving
achieved will depend on the nature and distribution of the objects in the scene,

First hit speed up

In the previous section it was pointed out that even for highly reflective scenes,
the average depth to which rays were traced was between one and two. This fact
led Weghorst et al. (1984) to suggest a hybrid ray tracer, where the intersection
of the initial ray is evaluated during a preprocessing phase, using a hidden sur-
face algorithm. The implication here is that the hidden surface algorithm will be
more efficient than the general ray tracer for the first hit. Weghorst ef al. (1984)
suggest executing a modified Z-buffer algorithm, using the same viewing pa-
rameters. Simple modifications to the Z-buffer algorithm will make it produce,
for each pixel in the image plane, a pointer to the object visible at that pixel. Ray
tracing, incorporating adaptive depth control then proceeds from that point.
Thus the expensive intersection tests associated with the first hit are eliminated.

Bounding objects with simple shapes

Given that the high cost of ray tracing is embedded in intersection testing, we
can greatly increase the efficiency of a recursive ray tracer by making this part of
the algurithm as efficient as passible. An obvious and much used appmach is to
enclose the object in a 'simple’ volume known as a bounding volume. [nitially
we test the ray for intersection with a bounding volume and only if the ray
enters this volume do we test for intersection with the object. Note that we also
used this approach in the operation of culling against a view volume (see
Chapter 6) and in collision detection (see Chapter 17).
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Figure 12.7

Three different bounding
volumes, going from (a) to
(c). The complexity cost
of the bounding velume
increases together with
its enclosing efficiency.
(&) Circles (spheres) as
bounding volumes;

(b) rectangles (boxes)

as bounding volumes;
() rectangles (boxes)

at any orientation,

Two properties are required of a bounding volume. First, it should have a sim.
ple intersection test - thus a sphere is an obvious candidate. Second, it shoulg
efficiently enclose the object. In this aspect a sphere is deficient. If the object j5
long and thin the sphere will contain a large void volume and many rays wij
pass the bounding volume test but will not intersect the object. A rectangula;
solid, where the relative dimensions are adjustable, is possibly the best simple
bounding volume. (Details of intersection testing of both spheres and boxes are
given in Chapter 1.)

The dilemma of bounding volumes is that you cannot allow the complexity
of the bounding volume scheme to grow too much, or it obviates its own pur.
pose. Usually for any scene, the cost of bounding velume calculations will be
related to their enclosing efficiency. This is easily shown conceptually. Figure
12.7 shows a two-dimensional scene containing two rods and a circle represent.
ing complex polygonal objects. Figure 12.7(a) shows circles (spheres) as bound.
ing volumes with their low enclosing efficiency for the rods. Not only are the
spheres inefficient, but they intersect each other, and the space occupied by
other objects. Using boxes aligned with the scene axes (axis aligned bounding
boxes, or AABBs) is better (Figure 12.7(b)) but now the volume enclosing the
sloping rod is inefficient. For this scene the best bounding volumes are boxes
with any orientation (Figure 12.7(c)); the cost of testing the bounding volumes
increases from spheres to boxes with any orientation. These are known as OBBs.

Weghorst et al. (1984) define a ‘void’ area, of a bounding volume, to be the
difference in area between the orthogonal projections of the object and bound-
ing volume onto a plane perpendicular to the ray and passing through the
origin of the ray (see Figure 12.8). They show that the void area is a function of
object, bounding volume and ray direction and define a cost function for an
intersection test:

T=bB+i"I
where:

T is the total cost function

b is the number of times that the bounding volume is tested for intersection
B is the cost of testing the bounding volume for intersection

i is the number of times that the itemn is tested for intersection (where i = b)
I'is the cost of testing the item for intersection

e, -8 —%

{a) ) (c)
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Projection of object
and sphere

Void area

It is pointed out by the authors that the two products are generally interdepen-
dent. For example, reducing B by reducing the complexity of the bounding
volume will almost certainly increase i. A quantitive approach to selecting the
optimum of a sphere, a rectangular parallelepiped and a cylinder as bounding
volumes is given.

Secondary data structures

Another common approach to efficiency in intersection testing is to set up a
secondary data structure to control the intersection testing. The secondary data
structure is used as a guide and the primary data structure - the object database
- is entered at the most appropriate point.

Bounding volume hierarchies

A common extension to bounding volumes, first suggested by Rubin and
Whitted (1980) and discussed in Weghorst et al. (1984}, is to attempt to impose
a hierarchical structure of such volumes on the scene. If it is possible, objects in
close spatial proximity are allowed to form clusters, and the clusters are them-
selves enclosed in bounding volumes. For example, Figure 12.9 shows a con-
tainer (a) with one large object (b) and four small objects (¢, ¢z, ¢ and ¢4 inside
it. The tree represents the hierarchical relationship between seven boundary
extents: a cylinder enclosing all the objects, a cylinder enclosing (b), a cylinder
enclosing (¢, ¢z, €3, ¢4) and the bounding cylinders for each of these objects. A
ray traced against bounding volumes means that such a tree is traversed from the
topmost level. A ray that happened to intersect ¢, in the above example would,
of course, be tested against the bounding volumes for ¢, ¢z, c: and c4, but only
because it intersects the bounding volume representing that cluster. This exam-
ple also demonstrates that the nature of the scene should enable reasonable
clusters of adjacent objects to be selected, if substantial savings over a non-
hierarchical bounding scheme are to be achieved. Now the intersection test is
implemented as a recursive process, descending through a hierarchy, only from
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Figure 12.9

A simple scene and the
associated bounding
cylinder tree structure,

Bounding volume tree structure

b (€1, €20 €2, €a)

AN

those nodes where intersections occur. Thus a scene is grouped, where possible,
into object clusters and each of those clusters may contain other groups of
objects that are spatially clustered. Ideally, high-level clusters are enclosed i
bounding volumes that contain lower-level clusters and bounding volumes,
Clusters can only be created if objects are sufficiently close to each other,
Creating clusters of widely separated objects obviates the process. The potentia|
clustering and the depth of the hierarchy will depend on the nature of the scene:
the deeper the hierarchy the more the potential savings. The disadvantage
of this approach is that it depends critically on the nature of the scene. Also,
considerable user investment is required to set up a suitable hierarchy.

Bounding volume hierarchies used in collision detection are discussed in
Chapter 17. Although identical in principle, collision detection requires efficient
testing for intersection between pairs of bounding volumes, rather than ray/
volume testing. OBB hierarchies have proved useful in this and are described in
Section 17.5.2.

The use of spatial coherence

Currently, spatial coherence is the only approach that looks like making ray trac-
ing a practical proposition for routine image synthesis. For this reason it is dis-
cussed in some detail. Object coherence in ray tracing has generally been
ignored. The reason is obvious. By its nature a ray tracing algorithm spawns rays
of arbitrary direction anywhere in the scene. It is difficult to use such ‘random’
rays to access the object data structure and efficiently extract those objects in the
path of a ray. Unlike an image space scan conversion algorithm where, for exam-
ple, active polygons can be listed, there is no a priori information on the
sequence of rays that will be spawned by an initial or view ray. Naive ray tracing
algorithms execute an exhaustive search of all objects after each hit, perhaps
modified by a scheme such as bounding volumes, to constrain the search.

The idea behind spatial coherence schemes is simple. The space occupied by
the scene is subdivided into regions. Now, rather than check a ray against all
objects or sets of bounded objects, we attempt to answer the question: is the
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region, through which the ray is currently travelling, occupied by any objects?
Either there is nothing in this region, or the region contains a small subset of the
objects. This group of objects is then tested for intersection with the ray. The size
of the subset and the accuracy to which the spatial occupancy of the objects is
determined varies, depending on the nature and number of the objects and the
method used for subdividing the space.

This approach, variously termed spatial coherence, spatial subdivision or
space tracing has been independently developed by several workers, notably
Glassner (1984), Kaplan (1985) and Fujimoto et al. {1986). All of these
approaches involve pre-processing the space to set up an auxiliary data structure
that contains information about the object occupancy of the space. Rays are
then traced using this auxiliary data structure to enter the object data structure.
Naote that this philosophy (of pre-processing the object environment to reduce
the computational work required to compute a view) was first employed by
Schumaker ef al. (1969) in a hidden surface removal algorithm developed for
flight simulators (see Section 6.6.10). In this algorithm, objects in the scene are
clustered into groups by subdividing the space with planes. The spatial subdivi-
sion is represented by a binary tree. Any view point is located in a region repre-
sented by a leaf in the tree. An on-line tree traversal for a particular view point
quickly yields a depth priority order for the group clusters. The important point
about this algorithm is that the spatial subdivision is computed off-line and an
auxiliary structure, the binary tree representing the subdivision, is used to deter-
mine an initial priority ordering for the object clusters. The motivation for this
work was to speed up the on-line hidden surface removal processing and enable
image generation to work in real time,

Dissatisfaction with the bounding volume or extent approach, to reducing
the number of ray object intersection tests, appears in part to have motivated the
development of spatial coherence methods (Kaplan 1985). One of the major
objections to bounding volumes has already been pointed out. Their ‘efficiency’
is dependent on how well the object fills the space of the bounding volume. A
more fundamental objection is that such a scheme may increase the efficiency
of the ray-object intersection search, but it does nothing to reduce the depen-
dence on the number of objects in the scene. Each ray must still be tested against
the bounding extent of every object and the search time becomes a function of
scene complexity. Also, although major savings can be achieved by using a hier-
archical structure of bounding volumes, considerable investment is required to
set up an appropriate hierarchy, and depending on the nature and disposition of
objects in the scene, a hierarchical description may be difficult or impossible.
The major innovation of methods described in this section is to make the ren-
dering time constant (for a particular image space resolution) and eliminate its
dependence on scene complexity.

The various schemes that use the spatial coherence approach differ mainly in
the type of auxiliary data structure used. Kaplan (1985) lists six properties that a
practical ray tracing algorithm should exhibit if the technique is to be used in
routine rendering applications. Kaplan's requirements are:
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(1) Computation time should be relatively independent of scene compley.
ity (number of objects in the environment, or complexity of indivig.
ual objects), so that scenes having realistic levels of complexity can be
rendered.

(2) Per ray time should be relatively constant, and not dependent on the origip
or direction of the ray. This property guarantees that overall computation
time for a shaded image will be dependent only on overall image resolution
(number of first-level rays traced) and shading effects (number of secong.
level and higher level rays traced). This guarantees predictable performance
for a given image resolution and level of realism.

(3) Computation time should be ‘rational’ and ‘interactive’ (within a few
minutes) on affordable processor systems.

(4) The algorithm should not require the user to supply hierarchical object
descriptions or object clustering information. The user should be able to
combine data generated at different times, and by different means, into 3
single scene.

{5) The algorithm should deal with a wide variety of primitive geometric types,
and should be easily extensible to new types.

(6) The algorithm’s use of coherence should not reduce its applicability to
parallel processing or other advanced architectures. Instead, it should be
amenable to implementation on such architectures.

Kaplan summarizes these requirements by saying, ‘in order to be really usable, it
must be possible to trace a large number of rays in a complex environment ina
rational, predictable time, for a reasonable cost’.

Two related approaches to an auxiliary data structure have emerged. These
involve an octree representation (Fujimoto et al. 1986; Glassner 1984) and a data
structure called a BSP (binary space partitioning). The BSP tree was originally
proposed by Fuchs (1980) and is used in Kaplan (1985).

Use of an octree in ray tracing

An octree (see Chapter 2) is a representation of the objects in a scene that allows
us to exploit spatial coherence - objects that are close to each other in space are
represented by nodes that are close to each other in the octree.

When tracing a ray, instead of doing intersection calculations between the ray
and every object in the scene, we can now trace the ray from subregion to sub-
region in the subdivision of occupied space. For each subregion that the ray
passes through, there will only be a small number of objects (typically one or
two) with which it could intersect. Provided that we can rapidly find the node
in the octree that corresponds to a subregion that a ray is passing through, we
have immediate access to the objects that are on, or close to, the path of the ray.
Intersection calculations need only be done for these objects. If space has been
subdivided to a level where each subregion contains only one or two objects,
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then the number of intersection tests required for a region is small and does not
tend to increase with the complexity of the scene,

Tracking o ray using an octree

In order to use the space subdivision to determine which objects are close to a
ray, we must determine which subregion of space the ray passes through, This
involves tracking the ray into and out of each subregion in its path. The main
operation required during this process is that of finding the node in the octree,
and hence the region in space, that corresponds to a point (x, y, 2).

The overall tracking process starts by detecting the region that corresponds to
the start point of the ray. The ray is tested for intersection with any objects that
lie in this region and if there are any intersections, then the first one encoun-
tered is the one required for the ray. If there are no intersections in the initial
region, then the ray must be tracked into the next region through which it
passes. This is done by calculating the intersection of the ray with the bound-
aries of the region and thus calculating the point at which the ray leaves the
region. A point on the ray a short distance into the next region is then used to
find the node in the octree that corresponds to the next region. Any objects in
this region are then tested for intersections with the ray. The process is repeated
as the ray tracks from region to region until an intersection with an object is
found or until the ray leaves occupied space.

The simplest approach to finding the node in the octree that corresponds to
a point (x, y, z) is to use a data structure representation of the octree to guide the
search for the node. Starting at the top of the tree, a simple comparison of coor-
dinates will determine which child node represents the subregion that contains
the point (x, y, z). The subregion, corresponding to the child node, may itself
have been subdivided and another coordinate comparison will determine which
of its children represents the smaller subregion that contains (x, y, 2). The search
proceeds down the tree until a terminal node is reached. The maximum number
of nodes traversed during this search will be equal to the maximum depth of the
tree. Even for a fairly fine subdivision of occupied space, the search length will
be short. For example, if the space is subdivided at a resolution of 1024 x 1024 x
1024, then the octree will have depth 10 (= logs(1024 x 1024 x 1024)).

5o far we have described a simple approach to the use of an octree represen-
tation of space occupancy to speed up the process of tracking a ray. Two varia-
tions of this basic approach are described by Glassner (1984) and Fujimoto et al.
(1986). Glassner describes an alternative method for finding the node in the
octree corresponding to a point (x, ¥, ). In fact, he does not store the structure
of the octree explicitly, but accesses information about the voxels via a hash
table that contains an entry for each voxel. The hash table is accessed using a
code number calculated from the (x, y, z) coordinates of a peint. The overall ray
tracking process proceeds as described in our basic methaod.

In Fujimoto et al. (1986) another approach to tracking the ray through the
voxels in the octree is described. This method eliminates floating point multi-
plications and divisions. To understand the method it is convenient to start by
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ignoring the octree representation. We first describe a simple data structure pg
resentation of a space subdivision called SEADS (Spatially Enumerated Auxilia
Data Structure). This involves dividing all of occupied space into equally sizeq
voxels regardless of occupancy by objects. The three-dimensional grid obtaineg
in this way is analogous to that obtained by the subdivision of a twg.
dimensional graphics screen into pixels. Because regions are subdivided regarg.
less of occupancy by objects, a SEADS subdivision generates many more voxgjg
than the octree subdivision described earlier. It thus involves 'unnecess;rr
demands for storage space. However, the use of a SEADS enables very fast track.
ing of rays from region to region. The tracking algorithm used is an extension of
the DDA (Digital Differential Analyzer) algorithm used in two-dimensiong|
graphics for selecting the sequence of pixels that represent a straight line
between two given end points. The DDA algorithm used in two-dimensiona]
graphics selects a subset of the pixels passed through by a line, but the algorithm
can easily be modified to find all the pixels touching the line. Fujimoto et qj,
(1986) describe how this algorithm can be extended into three-dimensiona|
space and used to track a ray through a SEADS three-dimensional grid. The
advantage of the ‘3D-DDA’ is that it does not involve floating point multiplica.
tion and division. The only operations involved are addition, subtraction and
comparison, the main operation being integer addition on voxel coordinates,

The heavy space overheads of the complete SEADS structure can be avoided
by returning to an octree representation of the space subdivision. The 3D-DDA
algorithm can be modified so that a ray is tracked through the voxels by tra.
versing the octree. In the octree, a set of eight nodes with a common parent
node represents a block of eight adjacent cubic regions forming a 2 = 2 x 2 grid,
When a ray is tracked from one region to another within this set, the 3D-DDA
algorithm can be used without alteration. If a ray enters a region that is not rep-
resented by a terminal node in the tree, but is further subdivided, then the sub-
region that is entered is found by moving down the tree. The child node
required at each level of descent can be discovered by adjusting the control vari-
ables of the DDA from the level above. If the 3D-DDA algorithm tracks a ray out
of the 2 x 2 x 2 region currently being traversed, then the octree must be tra-
versed upwards to the parent node representing the complete region. The 3D-
DDA algorithm then continues at this level, tracking the ray within the set of
eight regions containing the parent region. The upward and downward traver-
sals of the tree involve multiplication and division of the DDA control variables
by 2, but this is a cheap operation.

Finally, we summarize and compare the three spatial coherence methods by
listing their most important efficiency attributes:

® Octrees: are good for scenes whose occupancy density varies widely -
regions of low density will be sparsely subdivided, high density regions will
be finely subdivided. However, it is possible to have small objects in large
regions. Stepping from region to region is slower than with the other two
methods because the trees tend to be unbalanced.
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@ SEADS: stepping is faster than an octree but massive memory costs are
incurred by the secondary data structure.

@ BSP: the depth of the tree is smaller than an octree for most scenes because
the tree is balanced. Octree branches can be short, or very long for regions
of high spatial occupancy. The memory costs are generally lower than those
of an octree. Void areas will tend to be smaller.

Ray space subdivision

In this unique scheme, suggested by Arvo and Kirk (1987}, instead of subdivid-
ing object space according to occupancy, ray space is subdivided into five-
dimensional hypercubic regions. Each hypercube in five-dimensional space is
associated with a candidate list of objects for intersection. That stage in object
space subdivision schemes where three-space calculations have to be invoked to
track a ray through object space is now eliminated. The hypercube that contains
the ray is found and this yields a complete list of all the objects that can inter-
sect the ray. The cost of the intersection testing is now traded against higher
scene pre-processing complexity.

A ray can be considered as a single point in five-dimensional space. It is a line
with a three-dimensional origin together with a direction that can be specified
by two angles in a unit sphere. Instead of using a sphere to categorize direction,
Arvo and Kirk (1987) use a ‘direction cube’. (This is exactly the same tool as the
light buffer used by Haines and Greenberg (1986) - see Section 12.1.3.) A ray is
thus specified by the 5-tuple (x, ¥, z, 1, v), where x, y, z is the origin of the ray
and u, v the direction coordinates; together with a cube face label that indicates
which face of the direction cube the ray passes through. 5ix copies of a five-
dimensional hypercube (one for each direction cube face) thus specify a collec-
tion of rays having similar origins and similar directions.

This space is subdivided according to object occupancy and candidate lists are
constructed for the subdivided regions. A ‘hyper-octree’ — a five-dimensional
analog of an octree - is used for the subdivision.

To construct candidate lists as five-dimensional space is subdivided, the three-
dimensional eguivalent of the hypercube must be used in three-space. This is a
‘beam’ or an unbounded three-dimensional volume that can be considered the
union of the volume of ray origins and the direction pyramid formed by a ray ori-
gin and its associated direction cell (Figure 12.10). Note that the beams in three-
space will everywhere intersect each other, whereas their hypercube equivalents in
five-space do not intersect. This is the crux of the method - the five-space can be
subdivided and that subdivision can be acheived using binary partitioning.
However, the construction of the candidate lists is now more difficult than with
object space subdivision schemes. The beams must be intersected with the bound-
ing volumes of objects. Arvo and Kirk (1987) report that detecting polyhedral
intersections is too costly and suggest the approximation where beams are repre-
sented or bounded by cones interacting with spheres as object bounding volumes.
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Figure 12.10
A ray (or beam) as a single
point in (x, ¥, 2, 4, V) space,
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Up to now we have considered a ray to be infinitesimally thin and looked at effi.
ciency measures that attempt to speed up the basic algorithm. It is easy to see
that a major source of inefficiency that we have not touched on until now is the
lack of use of ray coherence. This simply means that if the ray tracing algorithm
generates a ray for each pixel and separately traces every such ray we are taking
no account whatever of the fact that adjacent initial rays will tend to follow
the same path. We will now look at ways in which we can ‘broaden’ a ray intoa
geometric entity.

Heckbert and Hanrahan (1984) exploit the coherence that is available from
the observation that, for any scene, a particular ray has many neighbours each
of which tends to follow the same path. Rather than tracing single rays, then,
why not trace groups of parallel rays, sharing the intersection calculations over
a bundle of rays? This is accomplished by recursively applying a version of the
Weiler-Atherton hidden surface removal algorithm (Weiler and Atherton 1977).
The Weiler-Atherton algorithm is a projection space subdivision algorithm
involving a preliminary depth sort of polygons followed by a sort of the [rag.
ments generated by clipping the sorted polygons against each other. Finally,
recursive subdivision is used to sort out any remaining ambiguities. This
approach restricts the objects to be polygonal, thus destroying one of the impor-
tant advantages of a ray tracer which is that different object definitions are eas-
ily incorporated due to the separation of the intersection test from the ray tracer.

The initial beam is the viewing frustum. This beam or bundle of rays is traced
through the environment and is used to build an intersection tree, different
from a single ray tree in that a beam may intersect many surfaces rather than
one. Each node in the tree now contains a list of surfaces intersected by the
beam.

The procedure is carried out in a transformed coordinate system called the
beam coordinate system. Initially this is the view or eye coordinate system.
Beams are volumes swept out as a two-dimensional polygon in the xy plane is
translated along the z axis.
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w‘fn\l‘ﬂ beam tracing.

Refected beam
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Reflection (and refraction) are modelled by calling the beam tracer recur-
sively. A new beam is generated for each beam-object intersection. The cross-
section of any refelected beam is defined by the area of the polygon clipped by
the incident beam and a virtual eye point (Figure 12.11).

Apart from the restriction to polygonal objects the approach has other disad-
vantages. Beams that partially intersect objects change into beams with complex
cross-sections. A cross-section can become disconnected or may contain a hole
(Figure 12.12). Another disadvantage is that refraction is a non-linear phenome-
non and the geometry of a refracted beam will not be preserved. Refraction
therefore, has to be approximated using a linear transformation.

Another approach to beam tracing is the pencil technique of Shinya et al.
(1987). In this method a pencil is formed from rays called ‘paraxial rays’. These
are rays that are near to a reference ray called an axial ray. A paraxial ray is rep-
resented by a four-dimensional vector in a coordinate system associated with the
axial ray. Paraxial approximation theory, well known in optical design and elec-
tromagnetic analysis, is then used to trace the paraxial rays through the envi-
ronment. This means that for any rays that are near the axial ray, the pencil
transformations are linear and are 4 x 4 matrices. Error analysis in paraxial
theory supplies functions that estimate errors and provide a constraint for the
spread angle of the pencil.

Figure 12.12

Abearn that partially
inlersects an object
Produces a fragmented
roas-section.

L
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Figure 12.13

Ray coherence: the path of
the previous ray can be used
to predict the intersections
of the current ray.

The 4 = 4 system matrices are determined by tracing the axial ray. All th,
paraxial rays in the pencil can then be traced using these matrices. The paraxjy
appmximatlnn theory dEPE‘I‘I.dS on surfaces being smooth so that a paraxial fay
does not suddenly diverge because a surface discontinuity has been encountergg
This is the main disadvantage of the method.

An approach to ray coherence that exploits the similarity between the intep.
section trees generated by successive rays is suggested by Speer et al. (1986). Thjs
is a direct approach to beam tracing and its advantage is that it exploits ray
coherence without introducing a new geometrical entity to replace the ray. The
idea here is to try to use the path (or intersection tree) generated by the previgyg
ray, to construct the tree for the current ray (Figure 12.13). As the construction
of the current tree proceeds, information from the corresponding branch of the
previous tree can be used to predict the next object hit by the current ray. This
means that any ‘new’ intervening object must be detected as shown in Figure
12.14. To deal with this, cylindrical safety zones are constructed around each ray
in a ray set. A safety zone for ray... is shown in Figure 12.15. Now if the current
ray does not pierce the cylinder of the corresponding previous ray, and this ray
intersects the same object, then it cannot intersect any new intervening objects,
If a ray does not pierce a cylinder, then new intersection tests are required as in
standard ray tracing, and a new tree that is different from the previous tree, js
constructed.

In fact, Speer et al. (1986) report that this method suffers from the usual com-
putational cost paradox - the increase in complexity necessary to exploit the ray
coherence properties costs more than the standard ray tracing as a function of
scene complexity. This is despite the fact that two-thirds of the rays behave
coherently. The reasons given for this are the cost of maintaining and pierce-
checking the safety cylinders, whose average radius and length decrease as a
function of scene complexity.
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Figure 12.15
Cylindrical safety zones.
12.7 A historical digression — the optics of the rainbow
Many people associate the term ‘ray tracing’ with a novel technique but, in fact,
it has always been part of geometric optics. For example, an early use of ray trac-
ing in geometric optics Is found in René Descartes’ treatise, published in 1637,
explaining the shape of the rainbow. From experimental observations involving
a spherical glass flask filled with water, Descartes used ray tracing as a theoreti-
cal framework to explain the phenomenon. Descartes used the already known
laws of reflection and refraction to trace rays through a spherical drop of water.
Rays entering a spherical water drop are refracted at the first air-water inter-
face, internally reflected at the water-air interface and finally refracted as they
emerge from the drop. As shown in Figure 12.16, horizontal rays entering the
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Figure 12,16

Tracing rays through a
spherical water drop

{ray 7 is the Descartes ray).

drop above the horizontal diameter emerge at an increasing angle with respect
to the incident ray. Up to a certain maximum the angle of the exit ray is a func-
tion of the height of the incident ray above the horizontal diameter. This trend
continues up to a certain ray, when the behaviour reverses and the angle
between the incident and exit ray decreases. This ray is known as the Descartes
ray, and at this point the angle between the incident and exit ray is 42° Incident
rays close to the Descartes ray emerge close to it and Figure 12.16 shows a con-
centration of rays around the exiting Descartes ray. It is this concentration of
rays that makes the rainbow visible.
. Figure 12.17 demonstrates the formation of the rainbow. An observer looking
| away from the sun sees a rainbow formed by ‘42*" rays from the sun. The paths
F of such rays form a 42° ‘hemicone’ centred at the observer's eye. (An interesting
consequence of this model is that each observer has his own personal
rainbow.)
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Figure 12.17
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This early, elegant use of ray tracing did not, however, explain that magical
attribute of the rainbow — colour. Thirty years would elapse before Newton dis-
covered that white light contained light at all wavelengths. Along with the fact
that the refractive index of any material varies for light of different wavelengths,
Descartes’ original model is easily extended. About 42° is the maximum angle for
red light, while violet rays emerge after being reflected and refracted through
40°, The model can then be seen as a set of concentric hemicones, one for cach
wavelength, centred on the observer’s eye.

This simple model is also used to account for the fainter secondary rainbow.
This occurs at 51° and is due to two internal reflections inside the water drops.
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13.1  Volume rendering and the visualization of volume data
13.2  ‘Semi-transparent gel’ option

13.3  Semi-transparent gel plus surfaces

13.4  Structural considerations in volume rendering algorithms
13.5 Perspective projection in volume rendering

13.6 Three-dimensional texture and volume rendering

Introduction

Volume rendering means rendering or visualizing voxel-based data. In Chapter
2 we introduced data representation techniques that are based on labelling all
voxels in a region of object Space with object occupancy. We saw that in appli-
cations where large homogeneous objects may occupy hundreds or thousands of
voxels we may impose a hierarchical structure, such as an octree, on the data,
On the other hand, in applications like medical imaging a data structure may be
a vast three-dimensional array of voxels that emerges from a scanner. In this
chapter we consider visualizing such large unstructured sets of voxels.

In the last decade or 50 a new discipline, ViSC, or Visualization in Scientific
Computing, has emerged. One of the major application areas in this field is the
visualization of scalar functions of three-spatial variables. Such data, prior to the
availability of hardware and software for volume rendering, was visualized using
‘traditional’ technigues such as iso-contours in cross-sectional planes. The
advent of volume rendering has meant that the data can be considered as a com-
puter graphics object and all three dimensions displayed. Scalar functions of
three-spatial variables abound in science and engineering. Engineers are con-
cerned with designing three-dimensional objects and analyzing their potential
behaviour. Calculations may produce predictions relating to temperature and
stress, for example,

A voxel volume is produced either by a mathematical model, such as in com-
putational fluid dynamics, or the voxels are collected from the real world as in

0391



NTRopucTion (37T)

. medical imaging. Visualization software generally treats both types in the same
1 way. The major practical distinction between different data sources is the shape
of the volume element. In medical imagery the voxels are rectangular or cubic.
In other applications this may not be the case. In the example shown in Figure
13.1 (Colour Plate) the volume elements were wedge shaped, that is, a cylinder
divided up in a “slice of cake’ manner.

Medical imaging has turned out to be one of the most common applications
of volume rendering. It has enabled data, collected from a tomographic system
as a set of parallel planes, to be viewed as a three-dimensional computer graph-
ics object. The material in this chapter is mostly based on this particular appli-
cation. Although certain context-dependent considerations are necessary, the
medical imaging problem is quite general and any strategy developed for this
will easily adapt to other applications.

In medical imaging three-dimension data are available from stacks of parallel
CT (computed tomography) data. These systems reconstruct or collect data in sets
of planes according to some particular property, the original modality being the
X-ray al}scrptic)n coefficient at each p(‘liI‘ll in the plane. The basic medical system
enables a clinician to view the information in each plane. With visualization the
entire stack of planes is considered as volume data and rendered accordingly.
A very simplified illustration of a tomographic imaging system is shown in
Figure 13.2. From this we should note that information is sampled in many two-
dimensional planes of zero thickness. Voxel values are inferred from these data.
The data exhibit the characteristic that the resolution within a plane (typically
512 » 512) is much greater than the resolution between planes. Scans are typically
taken at distances of the order of 0.5 cm. These data are then interpreted as a set
of voxels where each voxel exhibits an X-ray absorption coefficient and it is this
data set that is volume rendered. Currently the systems that reconstruct the
tomograms, which are used routinely for diagnosis, and the systems for volume
visualization are separate — a point we return to in the next section.

One of the most remarkable projects in medicine is the Visible Human Project
(1998). This is a 15 gigabytes voxel data set {male) and 40 gigabytes (female)
consisting of MRI, X-ray CT and anatomical images obtained from cadavers. The
initial aim of the Visible Human Project was to acquire transverse CT, MREI and
cryosection images of a representative male and female cadaver at an average of
1 mm intervals. The corresponding transverse sections in each of the three
modalities were to be registered with one another.

The Visible Human Male data set consists of axial MRI images of the head and
neck and longitudinal sections of the rest of the body were obtained at 4 mm
intervals. The MRI images are 256 = 256 pixels x 12 bits resolution. The CT data
consist of axial CT scans of the entire body taken at 1 mm intervals at a resolu-
tion of 512 x 512 pixels = 12 bits. The axial anatomical images are 2048 = 1216
pixels x 24 bits. These are also at 1 mm intervals and coincide with the CT axial
images. There are 1871 cross-sections for each mode, CT and anatomical.

The Visible Human Female data set has the same characteristics as the male
cadaver with one exception. The axial anatomical images were obtained at 0.33

-
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Figure 13.2
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VOLUME RENDERING AND THE VISUALIZATION OF VOLUME DATA

mm intervals instead of 1 mm intervals to enable cubic voxels. This resulted in
over 3000 anatomical images.
The long-term goal of the project is stated as:

The Visible Human Project data sets are designed to serve as a common reference point for
the study of human anatomy, as a set of common public domain data for testing medical
imaging algorithms, and as a test bed and model for the construction of image libraries
that can be accessed through networks. The data sets are being applied to a wide range of
educational, diagnostic, treatment planning, virtual reality, artistic, mathematical and
industrial uses by over 1000 licensees in 41 countries. But key issues remain in the
development of methods to link such image data to text-based data. Standards do not
currently exist for such linkages. Basic research is needed in the description and
representation of image-based structures, and to connmect image-based structural-
anatomical data to text-based functional-physiological data. This is the larger, long-term
goal of the Visible Human Project: to transparently link the print library of functional-
physiological knowledge with the image library of structural-anatomical knowledge into
one unified resource of health information.

LI

Volume rendering and the visualization of volume data

The basic idea of volume rendering is that a viewer should be able to perceive
the data volume from a rendered projection on the view plane. In medical imag-
ing we may want to view a surface, or the volume, or just part of the volume.

Thus we view the extraction and display of ‘hard’ surfaces that exist in the
data as part of the volume rendering problem. In many cases we may have a
volume data set from which we have to extract and display surfaces that exist
anywhere within the volume. Rather than bounding surfaces of an object, we
may be dealing with an object that possesses many ‘nested’ surfaces - like the
skin of an onion. If such surfaces are extractable by some unique property then
we can render them visible by making them 100% opaque and all other data in
the volume 100% transparent.

We will now extend the medical example and consider techniques for visual-
izing the stack of CT slices as a three-dimensional volume of data. All of the tech-
niques described in this chapter apply to most volume data. They are more or
less completely general. It is simply easier to consider the different possibilities
in the context of a particular application area.

As we mentioned previously, our reconstructed CT data consist of a number
of infinitely thin slices or two-dimensional arrays, where the inter-slice distance
is, in practice, greater than a pixel dimension within the slice. To turn this stack
into a regular three-dimensional array of cubic voxels we have to invoke some
form of interpolation. We can then consider the various possibilities, or modes
of displaying this volume data.

For any application, because we are dealing with volume data, the options avail-
able are much greater than with rendering the surface of an object; and the par-
ticular mode of display will depend on the applications. The nature of these
requirements and also the nature of the data determines the algorithm that is used.
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The three basic options available for displaying a volume data set on a two.
dimensional display surface are:

(1) To slice the data set with a cross-sectional plane. This is clearly the easiest
option and is trivial if the plane is parallel to one of the coordinate planes
of the volume data set. It is also the least ambitious as it effectively displays
only two dimensions of the data.

(2) To extract an object that is ‘known’ to exist within the data set and render
it in the normal way. Thus an internal organ of a body can be displayed in
isolation just as if it had been dissected. This implies, first, that the object
can be segmented from the remainder of the data and, second, that the
segmented form can be converted into a computer graphics representation,

(3) To assign transparency and colour to voxels within the object then view the
entire set from any angle. This is usually known as volume rendering,
Alternatively in medical applications it is sometimes called a computed X-
ray as it is analogous to a conventional X-ray. In other words it is possible
to generate a computed X-ray from any viewing angle, including angles that
may be physically impossible with conventional X-ray equipment. As well
as having freedom to select any viewing angle we can also change the
opacities in any way we require.

Currently, the main application of the visualization of volume data is in medical
illustration - in the form of interactive atlases for medical education, medical
research, surgical planning and computer graphics research. For diagnostic appli-
cations clinicians appear to prefer examining the original tomographic slices
side by side. This is due in part to inadequacies in the process that, as we shall
see, involve interpolative methods which may interfere with the integrity of the
original data. For example, in the second method - extracting an object from the
data — small holes in a surface may be flled in.

The connection with medical illustration is reinforced by the fact that many
quality issues can be resolved in the original data collection stage - the scanning
of the body - but there are usually limits associated with this. In the case of X-
ray CT scanning, the X-ray dosage received by the patient is a function of the
resolution, both in terms of the spatial resolution within the reconstruction
plane and the number of planes collected. To increase the resolution means sub-
jecting the patient to a higher X-ray dosage which is already higher than that for
a conventional X-ray. This has meant that the high quality imagery has been
generated from data obtained from cadavers.

The development of medical atlases from volume data sets has led to a vari-
ety of creative combinations of the above three display options. Examples of
common combinations are shown in Figures 13.3 (Colour Plate). The first two
examples show an extracted object(s) embedded in a transparent surround of the
skull. The extracted structures have been turned into computer graphics objects
and rendered normally. They are then effectively re-embedded in the three-
dimensional data volume which is displayed with the surrounding voxels set to
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some semi-transparent value. The semi-transparent voxels can be set to grey
scale — to simulate an X-ray — or any desired colour. This can be effected simply
by using method 3 and setting the object voxels to be opaque, but a better result
is normally obtained, at least for the purposes of medical illustration, by render-
ing the objects of interest conventionally. The motivation of this type of illus-
tration is obvious - it highlights the object and orients it with respect to the
body or skin. Another popular combination (the second two examples) is to cut
away a rendered version of the skin to show internal organs as a cross-section
positioned within a three-dimensional model. Here, the organs are assigned an
appropriate pseudo-colour simply to highlight their shape. Such colours can be
‘pure’ false colours that identify or label the structure of interest and they can
relate to the values associated with the voxels on some understood basis. A stan-
dard hue circle set of colours could reflect the value of the absorption coefficient,
for example.

The overall idea of volume rendering is shown in Figure 13.4 as a ray casting
algorithm which shows a volume data set, represented as a cube, rotated into a
desired viewing orientation and intersected by a bundle of parallel rays - one for
each pixel. (The term ‘ray casting’ is used to distinguish the method from ray
tracing - in this context the rays continue as a parallel bundle through the vol-
ume instead of diverging after a hit.) Such an approach is a useful conceptual
starting point; in practice, there are many different ways of implementing this
approach. We will now discuss the following general options and considerations
with respect to such an algorithm:

® What properties of the data do we want to sec in the image
plane? We may want to see the external boundary surface as a shaded
object. In medical imagery this would be the skin surface and this implies
that we have to ‘find’ this surface and shade it. In the ray casting case this
would simply involve terminating the ray when it strikes the first non-zero
voxel, evaluating a surface normal for the voxel and applying a local
shading model. Alternatively we may want to visualize an internal object
and shade it. In medical imagery we might want to see bone structure
underneath the skin/flesh layer. This implies that we have to extract such a
surface for the data set before we can render it as a computer graphics object.
We may want to move a cross-sectional cutting plane through the data as
shown in Figure 13.4(b) and view the contents of the intersection of the
cutting plane with the data as it moves. We may want to see both bones,
such as the rib cage, and the organs contained within. This could be
accomplished either by rendering the bones as opaque so that the viewer
sees the organs through the gaps in the bones, or by rendering the bones as
partially transparent. Other possibilities are easily imagined. We could
compose a projection that, for each pixel, was the maximum data value
encountered along the ray. A less obvious maode is to display the sum along
each ray path. This will then give an image analogous to a conventional X-
ray, giving us the facility of being able to generate a (virtual) X-ray-type
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Figure 13.4

(a) Volume rendering by
casting parallel rays from
each pixel (after Levoy
(1990)). (b) Using planes
parallel to the view plane to
construct a view volume of
the data set.

(h)

image from viewing angles that would be impossible with conventional
equipment.

What is the relationship between the reality and the data? Our
volume data set will consist, in general, of a three-dimensional array of
points, representing a three-dimensional sampling of the reality. This may
be a very large data set, say 512%. We associate the single sample with the
entire voxel volume, just as a sample in two-dimensional image processing is
associated with a square pixel extent. But what does that single sample
represent? Here, the simpler case to consider is binary occupancy. We assume
that the voxel resolution is fine enough that any voxel contains only a single
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material, or it contains nothing, Alternatively, we could consider that a
voxel contained a mix of materials, In medical imagery it may be that
the physical extent of a voxel corresponds to a region which straddles both
bone and tissue. Do we consider the value of a voxel to be constant
throughout its extent, or do we consider that the value varies throughout?
If the latter, what model do we use to interpolate the variation between
neighbouring voxels?

® What arc the implications of voxel size? Unlike conventional
surface rendering, where we have a definition associated with an object for
cach pixel, it is likely that the projection of a voxel extent onto the image
plane will occupy many pixels.

We will now look at these considerations in greater detail.

o T L L T i i -
‘Semi-transparent gel’ option

The most general viewing option is somehow to give a viewer the facility to see
all the data, No voxel is considered completely opaque and all the data are there-
fore seen. The physical analogue is an object that is made of different coloured
transparent gels. All other options can be considered a particularization of
this method., Each wvoxel is assigned a colour, €, and a transparency, o,
The colour associated with the material type can be chosen ‘aesthetically’. In the
CT example, white could be chosen for bone and the transparency would be
made proportional to density so that bone could be made almost completely
opaque,

We then cast a ray from each pixel into the data volume which has been
rotated into the desired viewing orientation and perform a compaositing opera-
tion. This accumulates a resultant colour and opacity for that pixel. The process
is like considering the volume to be made up of a semi-transparent gel of differ-
ent colours and opacities. It is as if behind the volume we had diffuse white light
and we are looking into it from the front side. The process is analogous to tak-
ing a conventional X-ray of the volume in the viewing direction; but now we are
transmitting parallel beams of light through a volume whose opacity relates to
tissue density and displaying the result.

In clinical application at the Johns Hopkins Medical Institution, Ney «t al.
(1990) state:

The images generated wsing this unshaded rendering process are reminiscent of a
conventional radiographic image. These images are particularly useful for examining bony
abnormalities. The bones are semi-transparent and therefore internal detail is visible, as
well as surface detail. Unfortunately the unshaded technique does not work well for
imaging soft tissue. The high variability of bone density causes the unshaded algorithm to
produce the perceived detail. Soft tissue attenuation values are confined to a far narrower
spectrum, making it more difficult to separate, for example, a vessel or node from adjacent
muscle,
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Figure 13.5

Material classification in CT
data {due to Drebin et al.
(1988)). {a) Trapezoid
classification function

for one material,

(b) Classification functions,

Thus we see that this visualization involves a number of steps:

(1) Classify each voxel in the original data and assign desired colour ang
opacity values.

(2) Transform the (now classified) volume data into the viewing direction.

(3) For each pixel cast a ray and find, by compositing along the ray, a colour for
that pixel.

We now describe each of these steps separately.

Voxel classification

Considering the more general case of a voxel containing more than one tissue
type, a typical classification scheme was introduced by Drebin et al. (1988) ifor
the particular case of X-ray CT data). In this scheme voxels are classified into
four types according to the value of the X-ray absorption coefficient. The types
are: air, fat, soft tissue and bone. The method is termed “probabilistic classifica-
tion’ and it assumes that two, but not more than two, materials can exist in a
voxel. Thus voxels can consist of seven types: air, air and fat, fat, fat and soft
tissue, soft tissue, soft tissue and bone, and bone. Mixtures are only possible
between neighbouring materials in the absorption coefficient scale - air, for
example, is never adjacent to bone.

The classification scheme uses a piecewise linear ‘probability’ function (Figure
13.5). Consider a specific material assigned such a function. There will exist a
particular CT number that is most likely to represent this material (point A
in Figure 13.5(a)). Points B, and B: represent the maximum deviation in CT
number from point A that is still considered this material. Any CT number less
than B or greater than B; and contained within the limits defined by C and C:
is classified as a mixture of ‘neighbouring’ materials. A complete scheme is
shown in Figure 13.5(b). Voxels are assigned (R, G, B, o) values according to some
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Figure 13.6
Ray casting implies
resampling the data.

A ray will not, in general,

intercept voxel centres.
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scheme and if a mixture of two materials is present in a voxel the two colours
are mixed in the same proportion as the materials.

Transforming into the viewing direction

Theoretically a simple process, this step produces difficulties. A simple illustra-
tion of the viewing process is shown in Figure 13,6, In general, the data volume
can be rotated into any desired orientation and when pixel rays are cast into the
rotated volume this involves a resampling operation and aliasing has to be con-
sidered. One of the main options in the overall construction of a volume ren-
dering algorithm is the way in which this transformation is performed and its
position in the order of the three stages described in Section 13.2.

In the CT example it is only useful to rotate about the z axis (spinal rotation}
and about the x axis (somersault rotation). This means that the rotation of the
volume can be performed by rotating two-dimensional planes perpendicular to
these axes.

Compositing pixels along a ray

The simplest compositing operation (Figure 13.7) is the recursive application of
the formula:

Couw = Cin (] —Ll) +C o
where:

Cou is the accumulated colour emerging from a voxel
Cin is the accumulated colour into that voxel

a is the opacity of the current voxel

C is the colour of the current voxel

Mote that this form is just an extension of the over operation defined in Section
6.6.3 for compositing two images. The direction implied by C.. and Ci, is from
back to front with respect to the view plane. That is, we start the operation with
the voxel furthest from the view plane.
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Figure 13.7
The ray compaositing
operation,

(113§
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Cow=Call —a)+Ca

It does not matter in this model where the light comes from. We simply note
that any light exiting from the voxel of interest along the viewing direction has
the colour of that voxel plus the product of the incoming light and (1 - «). There
are elaborations that can be made on this simple model. For example, a should
in reality be a vector quantity since it will differ according to the R, G or B com-
ponent of the colour of the voxel. The effect of this operation is to make voxels
with high o values predominate, obscuring voxels that are behind them and
being made visible through voxels in front of them,

If we assume that opaque surfaces are present in the data volume then we sup-
plement the previous scheme with a shading scheme, and present the surfaces
as part of the display according to the various options that we described in
Section 13.1. Assuming that a voxel can contain part of a surface we can evalu-
ate a normal, and a shading component is calculated as a function of this nor-
mal and the direction of the illuminating source. This shading component can
then replace € in the compositing operation.

The shape of surfaces is now perceived in the normal way as the lighting
model enhances the details in the surface. Various options now emerge. We
can display just those voxels that contain, say, bone together with its surface
shape detail, visible through a fuzzy cloud of soft tissue. Bone can then be made
completely opaque or still be given an opacity so that detail behind the bone is
still visible.
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A surface is detected by evaluating a normal using the volume gradient. The
components of this normal are:

N: = R{x+1, ¥, 2) - R(x-1, y, 2)
Ny = Rix, y+1, 2) = Rix, y-1, 2}
N: = Rix, y, z+1) - R(x, ¥, z-1)

! where for each voxel, R is evaluated by summing the products of the percentage
] of each material in the voxel times its assigned density. If a material is homoge-
neous these differences evaluate to zero and the voxel under consideration is
deemed not to contain a surface segment. This scheme is illustrated diagram-
matically in Figure 13.8.

The presence of a surface is quantified by the magnitude of the surface nor-
mal - the larger this magnitude the more likely it is that a surface exists. The
magnitude or ‘strength’ of the surface (IN1) can be used to weight the contribu-
tion of the shaded component. No binary decision is taken on the presence or
absence of a surface. A normalized version of the surface normal is calculated
and can then be used in a shading equation such as the Phong reflection model.
We should bear in mind that this technique is purely for the purposes of visual-
ization. It has absolutely no relation to physical reality. We assume that each
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voxel has an uninterrupted view of the light source even though it may be
buried in the middle of a volume.

The localness of this operation means that it is sensitive to noise. This can be
diminished by reducing the localness. In the above formula the gradient is eval-
uated by considering six neighbouring voxels. We can extend this to 18 or even
24 voxcls.

We have shaded surfaces by calculating the interaction of a normal of the voxe]
containing the surface with a light source. Then the surface shape detail becomes
visible. We can either incorporate the shaded surface in the semi-transparent gel
model or we can make the surface opaque and remove all voxels that do not con-
tain a surface. This makes the first surface the ray hits the surface that is seen by
the viewer. These options are indicated schematically by Figure 13.8.

It is important to realize that the surface detection is local and is evaluated for
single voxels. No decision has to be taken about the existence or otherwise of a
surface if the shading component is included in the semi-transparent gel model.
This is important in medical applications where clinicians are (rightly) suspi-
cious of methods where binary decisions on the existence of a surface are made,
There are, however, applications where such an approach - explicit extraction of
an (assumed) continuous surface — is desirable, as we describe in the next section,

Explicit extraction of isosurfaces

If the volume data is such that it is known to contain continuous isosurfaces,
then these surfaces can be explicitly extracted and converted into polygon mesh
structures and rendered in the normal way. Such an approach finds one or more
appropriate polygons for each voxel and produces a continuous set of such poly-
gons from the set of voxels comprising the surface.

S0 why go to the trouble of finding a polygon mesh surface when we can find
and shade surfaces in the volume by using the density gradient? One of the
motivations is that conventional rendering techniques can be used if the surface
is represented with conventional graphics primitives and volume rendering then
reduces to a preprocessing operation of surface extraction.

The technique used is known as the marching cubes algorithm reported by
Lorenson and Cline (1987). An actual surface is built up by fitting a polygon or
polygons through each voxel that is deemed to contain a surface. A voxel pos-
sesses eight vertices and if we assume at the outset that a voxel can sit astride a
surface, then we can assign a polygon to the voxel in a way that depends on the
configuration of the values at the vertices. By this is meant the distribution of
those vertices that are inside and outside the surface over the eight vertices of
the cube. If certain assumptions are made, then there happens to be 256 possi-
bilities. From considerations of symmetry these cases can be reduced to 15 and
these are shown in Figure 13.9. The final position and orientation of each poly-
gon within each voxel type is determined by the strength of the field values at
the vertices. A surface is built up that consists of a normal polygon mesh and the

_—-
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1 figure 13.9

1 The 15 possibilities in the
marching cubes algorithm.
Dot (*) used in the figure
represents a vertex that is
inside a surface.

ik

difference in quality between rendering such a surface and effecting surface
extraction by appropriate zero-one opacity assignment in volume rendering is
due to what is effectively an inferior resolution in the volume rendering method.
In the volume rendering method a surface may exist somewhere within the
voxel. The opacity of such a voxel is set to one and the information on the posi-
tion and orientation of the surface fragment is reduced to the surface
normal. In the marching cubes algorithm the surface fragment (or fragments) s
positioned and oriented accurately within the voxel — at least within the limita-
tions of the interpolation method used. However, explicit surface extraction
methads sometimes make errors by making the assumption that a surface exists
across neighbouring voxels. They can fit a surface over what in reality are neigh-
bouring surface fragments. In other words, they make a binary decision that may
be erroneous. Another problem with the marching cubes algorithm is the sheer

L——
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volume of primitives that can be generated. This can run into millions where
many primitives project onto the same pixel.

Figures 13.10 (Colour Plate) and 13.11 (Colour Plate}) compare the two main
approaches for rendering an object of interest. The original data are 23 planes of
X-ray CT data with a 512 = 512 resolution in each plane. Figure 13.10 shows a
skull rendered using the marching cubes algorithms. The second illustration
(Figure 13.11) is exactly the same data but this time they are rendered using a
volume rendering algorithm with the bone opacity set to unity. Although it may
not be too apparent in the reproductions, the marching cube version appears to
be of higher quality or resolution - this is an illusory consequence of the algo-
rithm; it is accessing the same data but creating an explicit computer graphics
model of one or more polygons per voxel. The volume rendering algorithm is
simply assigning normals to each voxel based on local information.

R o I i S WS T T e, L LA Loy P L e g

Structural considerations in volume rendering algorithms

There are many options in setting up a volume rendering algorithm. As we have
seen, the process of viewing a volume data is conceptually simple involving as it
does the rotation of the volume into the viewing orientation, then ray casting
{or an equivalent operation) into the volume to discover a suitable value for each
pixel. The main research thrust in volume rendering arises out of the importance
of efficient hardware implementation. Interactivity and animation are impor-
tant in most application areas because of their contribution to the interpretation
of the data. Because we are generally dealing with very large data sets - routinely
in the order of 512* - the relationship between the algorithm design and awvail-
able hardware (such as parallel processors) becomes of critical importance if
interactivity/animation demands are to be met.

The terminology used to describe algorithmic options in volume rendering is
somewhat confusing. The confusion seems to arise out of what names to give to
the main categories. There are two main categories:

(1) Ray casting methods (with two variants). Also called image or pixel space
traversal or back projection,

(2) Voxel projection methods (with two variants). Also called object or voxel
space traversal or forward projection.

These options are illustrated diagrammatically in Figure 13.12. In ray casting we
can either transform and resample the volume data so that it is oriented with a
coordinate axis parallel to the image plane, or we can leave it untransformed. If
the data are transformed prior to ray casting then we generate a set of rays par-
allel to rows {or columns) of the transtormed data. For untransformed data the
ray set is subject to the inverse viewing transform. Ray casting methods are also
categorized as image space methods in that the outermost loop of the algorithm
traverses image space.
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Figure 13.12 Volume rendering structures
A taxonomy of volume
rendering structures,
Ray casting Voxel projection

Woxel projection /
on image plane

Image
plane

Rays Volume Front o
transformed transformed hack

Although at first sight it would seem that ray casting methods can be imple-
mented in parallel, memory bottleneck problems arise. If arbitrary viewing direc-
tions are allowed there is no way to distribute voxels in memory to ensure that
no contentions occur.

A potential problem with lorward projection is that holes may arise in the
image plane. For voxel projection methods we have to bear in mind that in most
applications a single voxel will form a projection in the image plane that spreads
over many pixels. (This has been called a footprint.) If we ignore perspective pro-
jections then this footprint is the same for all voxels - for a given view — and
such coherence can be used to advantage for fast implementation and efficient
anti-aliasing. We will now consider these options in greater detail. The impor-
tant difference between the methods are manifest in the suitability for parallel
implementation and how resampling is accomplished.

Ray casting (untransformed data)

In ray casting we traverse image space and cast a ray from each pixel to find a
single colour for that pixel by the compositing operation previously described.
{The method bears little or no relationship to ray tracing which traces a pixel ray
in any direction through the scene depending on the geometry and nature of the

J—__—

0406



VOLUME RENDERING

Figure 13.13
An appropriate set of rays in
a ray casting algorithm.

objects that are hit. In volume rendering we cast a set of parallel pixel rays which
all remain travelling in the same direction.) To do this two non-trivial tasks haye
to be performed. First, we have to find these voxels through which the ray passes
and, second, we have to find a value for each of the voxels from the classified
data set.

Consider the first problem. This in itself breaks down into two parts. Finding
the voxels through which a pixel ray passes is a well-worked-out problem - we
simply use a 3DDA (three-dimensional differential analyzer) an extension intg
three-dimensional space of knowledge worked out over the years to deal with
the two-dimensional line/pixel problem. However, once we find these voxels,
how do we deal with their values? How do we obtain values to insert into our
compositing scheme? Using the basic values of each encountered voxel is wrong.
One reason is obvious. The path lengths through each voxel will vary from a
very small distance, for a ray that just cuts the corner of a voxel, to a large dis-
tance for a ray that is close to the diagonal across opposite corners. We are effec-
tively viewing along a ray and a long journey through a voxel should produce a
higher contribution to the compositing than a short one. This is, of course, one
of the consequences of sampling a practical volume data set with an infinitely
thin ray - or more precisely resampling. It is a three-dimensional problem of the
equivalent resampling process in image processing. We start with sampled data,
rotate them into a new orientation, and resample them. We have to filter when
we are resampling to avoid aliasing. The complication in volume rendering is
that the data are three-dimensional and the resampling is in three-dimensional
space. An appropriate way to proceed therefore, is to measure equal points along
the ray and find a resampled value at these points by filtering over a three-
dimensional region, using the equally spaced ray sample points as a centre for
the three-dimensional filter kernel.

The algorithm is sometimes described as an image space traversal algorithm and
the outermost loop is usually defined as ‘cast a ray for each pixel’. However, we
need to recognize that we can do no better than cast a parallel set of rays into the
volume that pass through every voxel in the data. A simple scheme to achieve this
is shown in cross-section in Figure 13.13. The ray set is constructed by passing each
ray through the centre point of each voxel in the front face of the data set.

Image plane

Pixel cenires
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Figure 13.14

s, the value at a sample
point on the ray, is
evaluated by bilinear
interpolation. € is evaluated

from € and C;. Ga is Sample
pvaluated from €z and €. points
G is evaluated from Gv and

Ca.

| ! Ray

The same concept is used by Yagel et al. (1992), who use the idea of a ray "tem-
plate’. The ray template method adopts the simple approach of moving the ray
one voxel at a time along a line called the base plane. Thus the ray, or ray tem-
plate, is computed once only and stored in a data structure. All rays are then fol-
lowed by obtaining the appropriate displacements from this information. The
shaded voxels in Figure 13.13 form a ray template. In effect, this approach is
exploiting the coherency between rays.

We now consider the question of resampling. If the volume is left undis-
turbed, then the rendering (or compositing) process and resampling process are
merged into one operation. We step along the ray at equal sample points and
evaluate, for each sample point, a € to be used in the compositing. We could
simply use a value for € that was the value of the voxel that contained the sam-
ple point. But normally the more accurate process of trilinear interpolation is
used. This is shown in cross-section in Figure 13.14 where it becomes in two
dimensions bilinear interpolation. To evaluate Cs we interpolate from the sur-
rounding grid points, evaluating first the horizontal and vertical intersects of the
ray with the voxel grid lines. We can then find the value of Cs. The process is a
simplified version of bilinear interpolation used in polygon shading (see Chapter
1) where the polygon is a square.

Ray casting (transformed data)

The second variant of ray casting involves pre-transforming the data into
the desired orientation. The geometry of the actual ray casting is then trivial (or
eliminated) in that we simply composite along rows or columns of the transformed
data.

To transform the data a three-pass (all shear) decomposition described in
Wolberg (1990) can be used, A viewing transformation then becomes a sequence
of pure shears — three for each axis. So a general transformation is a set of nine
shears. The importance of a shear-only process lies in its implementation in

-_—
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Figure 13.15
Resampling is performed
during each shear,

(13.43)

Calculate new values
after each shear by
lincar interpolation

special-purpose hardware. In particular, it possesses the property that every voxel
in a single shear is moved through a constant amount.

The significant difference in the two ray casting variants is involved in the
resampling. Now resampling must be performed during each shear and the
process of resampling is performed before the compositing. Resam pling during a
shear involves simple linear interpolation (Figure 13.15).

In ray casting methods an important efficiency enhancement is ignoring
empty space in the data volume. A cast ray advances through em pty space umntil
it encounters an object. It penetrates the object until sufficient opacity has accu-
mulated, and for high opacity this may be a short distance compared with the
traversal through empty space. The em Pty space does not contribute to the final
image and because of the large number of voxels, it is important to implement
some space-skipping procedure. This can be based on a bounding volume, just
as in speed-up schemes in conventional ray tracing, the traversal of the data set
starting from the surface of the bounding volume.

Voxel projection method

This variant of volume rendering possibilities involves traversing the data set
and projecting each voxel onto the image plane, as we indicated in Figure 13.12.
If we move a plane th rough the data as shown in this figure, then the frame
buffer is used as an accumulator and ali pixels are updated simultaneously until
all the data are completely traversed and the pixels have their final values.

We can traverse the data from either front to back or back to front, The sig-
nificant difference between these two variants is that with back-to-front traver-
sal we only need to accumulate colour, while with front-to-back traversal we
need to accumulate both colour and transparency. (This is exactly equivalent to
saying that with front-to-back traversal we require a Z-buffer,)

Voxel projection algorithms are important because they are more easy to
parallelize. At each point in the process, that is, at each voxel, we only need
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Figure 13.16
Filtering in voxel projection.

STRUCTURAL CONSIDERATIONS IN VOLUME RENDERING ALGORITHMS

knowledge about a small surrounding neighbourhood. This contrasts with ray
casting into untransformed data where we generally require the entire data set
when we cast a single ray.

Possibly the most well known voxel projection algorithm is due to Westover
(1990) and is termed “splatting’. This strange word is used to describe the effect
that one voxel has in the image plane. In effect, the algorithm considers how the
contribution of a voxel should be spread or splatted in the image plane. Consider
Figure 13.16. A pﬂinl in the data at the centre of a part'u:ular voxel projects onto
a single pixel. To determine what the value of the pixel should be we can calcu-
late a contribution by fltering over the three-dimensional region surrounding
the sampled voxel. Alternatively, we can take the sample voxel value and spread
this over a number of pixels in the image plane. Both approaches are equivalent.
If we consider the filter function to be a three-dimensional Gaussian then this
projects into the image plane as a circular function. Thus we can project and hl-
ter the data by taking the voxel value and splatting it into the image plane by

Image plane

@ —
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One voxel contributes values ll;__h : iz _‘ ,-I
to many pixels in a footprnt N L"
weighted as shown T i 1
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multiplying it with the filter weights and accumulating these values. This set of
values is called the footprint of the voxel and for a parallel projection all foot-
print weights are the same and can be stored in a look-up table,
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Perspective projection in volume rendering

So far we have not mentioned the issue of perspective projection. In the case
of medical imaging it may be that a perspective projection is not required. The
volume data in medical applications usually has limited spatial extent of some
centimetres and we would not expect to perceive significant perspective clues
over this distance. Also it is not usually the shape of the overall structure that is
important to the viewer, but some detail such as a fracture or a tumour and its
relationship to surrounding structures. Some specific applications in medicine
do require a perspective projection. An example is the construction of a ‘beam’s
eye view” in radiation therapy planning. Here, the clinician requires a view of the
i volume looking down a treatment beam. Treatment beams diverge and so a per-
i spective projection is required.

; A number of obvious difficulties occur in constructing a perspective projec-
tion in a volume renderer. The most serious results from the divergence of rays
trom the centre of projection (Figure 13.17). If the ray density is such that the
nearest plane in the volume data is sampled with one ray per voxel, then in the
example shown, this will quickly drop to one ray per two voxels and small detail
can be missed. Another problem is anti-aliasing during resampling. If we con-
sider travelling along the four rays that pass through each of the four corners of
a pixel and the centre of projection, the geometry of the volume at the centre of
the neighbourhood over which we must filter is no longer a cubic voxel but a
truncated pyramid.

One of the easiest ways of implementing perspective projection is to augment
the voxel projection or footprint algorithm. Full details of this are given by
Westover (1990).

Voxels
Image | | T | [
plane ! ] | "”_* I
i - —
__.:..--—"_:-“’ |
e | |
g . — N T
COP #=2_ |-
I o
— el ._,.1__.‘_:_.. SN
[ Figure 13.17 R S
| Ray density and perspective —
projection (after Movins et |
al. (1990)). One ray/pixel sl | 4
; results in decreasing f
| sampling rate. I ray/fvoxel 1 ray/2 voxels
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Figure 13.18

Volume data “sampled
using segments of a sphere
centred on the eye point.

THREE-DIMENSIONAL TEXTURE AND VOLUME RENDERING
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Three- dlmensmnal texture and volume rendenng

Since a volume data set can be considered as a three-dimensional texture, then
volume rendering can be carried out by a three-dimensional texture mapping
facility (Section 8.7). The algorithm (Haeberli and Segal 1993} consists of first
calculating the set of parallel polygons that are normal to the viewing direction.
This entails finding the intersections between a set of parallel planes and the
bounding planes of the data volume. The polygon vertices are then texture
mapped and the entire set of polygons is composited in back-to-front order.
Since we are now sampling the data with parallel planes, rather than by stepping
in equal distances along individual rays, then for a perspective projection the
planes will produce unequal sample intervals for rays emanating from the view
point. In that case, we need to sample using segments of a sphere rather than
planes as shown in Figure 13.18.
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. _ Aﬁt: -aliasing theory and
practice

14.1  Aliases and sampling

14.2 Jagged edges

14.3  Sampling in computer graphics compared with sampling reality
14.4 Sampling and reconstruction

14.5 A simple comparison

14.6 Pre-filtering methods

14.7 Supersampling or post-filtering

AP, R

14.8 Non-uniform sampling - some theoretical concepts

14.9 The Fourier transform of images

Note

This chapter discusses the classical approach to anti-aliasing and requires some
understanding of Fourier theory. A brief introduction, sufficient for an intuitive
appreciation of this is given in Section 14,9 at the end of the chapter.

( i Introduction

The final quality of computer graphics imagery depends on many varied factors.
Artefacts arise out of modelling and other factors that are a consequence of oper-
ations in the particular rendering algorithm that was used to generate the image.
For example, consider the many image defects in polygon mesh scenes. We have
modelling artefacts sometimes called geometric aliasing - the visibility of piece-
wise linearities on the silhouette edge of a polygon mesh object. There are
artefacts that emerge from the shading algorithm such as Mach bands and inad-
equacies due to the interpolation method (see Chapter 18 for a discussion of
! these). In the case of the radiosity method the view-independent phase throws
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ALIASES AND SAMPLING

up difficult quality problems which are not dealt with by general anti-aliasing
approaches as we have already discussed in Chapter 11.

Anti-aliasing is the general term given to methods that deal with discrepan-
cies that arise from undersampling and it is this issue which we deal with in this
chapter. Such methods are used in conventional rendering approaches like those
discussed in Chapter 6 for polygon mesh objects, ray tracing in Chapter 12 and
in the Monte Carlo techniques discussed in Chapter 10. Anti-aliasing in texture
mapping is discussed in Chapter 8 for the reason that, although it is a classical
approach, the particular implementation - mip-mapping - is used exclusively
with texture mapping.

*FF.: B e o T TR L Sl s Rl Tl 5 oo ™ e Ol R BT S e e Wi i R L ST R i iy
Aliases and sampling

We first consider the term ‘alias’. In theory this refers to a particular image
artefact that is mostly wvisible in texture maps when the periodicity in the
texture approaches the dimension of a pixel. This is easily demonstrated and
Figure 14.1(a) is the classic example of this effect — an infinite chequerboard.
Towards the top of the image the squares reduce, then apparently increase in
size, causing a glaring visual disturbance. This is due to undersampling.
The notion of sampling in computer graphics comes from the fact that we
are calculating a single colour or value for each pixel; we are sampling a solution
at discrete points in a solution space. This is a space that is potentially continu-
ous Iin the sense that, because computer graphics images are generated from
abstractions, we can calculate samples anywhere or everywhere in the image

plane.
We will now look at a simple one-dimensional example which will relate
Figure 14.1 undersampling, aliases and the notion of spatial frequencies. Consider using a

The pattem in (b is a super- gino wave to represent an information signal (although a sine wave does not
sampled version of that in

(3). Aliases still occur but contain any information anyway, this does not matter for our purposes). Figure
appear at a higher spatial 14.2 shows a sine wave being sampled at different rates (with respect to the fre-
frequency. quency of the sine wave). Undersampling the sine wave and reconstructing a

e

=
i)

0414



ANTI-ALIASING THEORY AND PRACTICE

continuous signal from the samples (dotted line in the figure) produces an “aliy
of the original signal — another sine wave at a lower frequency than the op,
being sampled. We can say that this happens because the coherence or regular.
: ity of the sampling pattern is interfering with the regularity of the informatiop
To avoid aliasing artefacts we have to sample at an appropriately high frequency
with respect to the signal or image information and we normally consider thy
process of calculating an image function at discrete points in the image plane

;; be equivalent to sampling.
A The defects that arise in computer graphics that are due to insufficient
i1 i calculations or samples and which are easily modelled by an image plane sampling
g Figure 14.2 model are coherent patterns brea king up - the case that we have already discussed
| Space domain - and small fragments that are missed because they fall between two sample
7y representation of the points.
sampling of a sine wave. Consider the chequerboard example again. The pattern units approach the

(a) Sampling interval is lass si R : . ’ T . ; -
ze of a pixel very quickly and the attern ‘breaks up’. High spatial fre uencie
than ane-half the period of p ¥4 i p P B sp d ’

the sine wave, (b) Sampling 1€ aliasing as lower ones and form ing new visually disturbing coherent patterns,
interval is equal to one-half ~ NOW consider Figure 14.1(b) where we render the same image onto a view plane
the period of the sine wave.  with double the resolution of the previous one. Aliasing artefacts still appear but
i (c) Sampling interval is at a higher spatial frequency. In theoretical terms we have increased the sam-
‘-"Ef‘c:;' tfh‘:‘ one-half the pling frequency, but the effect persists except that it happens at a higher spatial
[F:;ISamaplitn; ;T:r::‘: frequency. This demonstrates two important facts. Spatial frequencies in a com-
much greater than one-hali ~ Puter graphics image are unlimited because they originate from a mathematical
the period of the sine wave,  definition. You cannot get rid of aliases by simply increasin g the pixel resolution,

Sample points

flx) flx)

Function 1o be sampled

. ANN
s ] (VAAVAAVAAVAS

imterval

(a) (b)

flx) | fix)
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Figure 14.3

Frequency domain
representation of the
sampling process when

fi> 2feus. (2) Frequency
spectrum of {x).

(b) Frequency spectrum of
the samipling function.

(c) Frequency spectrum of
the sampled function
{convolution of {a) and (b)).
(d) ldeal reconstruction
filter. () Reconstructed f{x).

—

ALIASES AND SAMPLING {395)

The artefacts simply occur at a higher spatial frequency. But they are, of course,
less noticeable,

MNow, the example in Figure 14.2 can be generalized by considering these cases
in the frequency domain for an fix) that contains information, that is not a
pure sine wave. We now have an f{x) that is any general variation in x and may,
for example, represent the variation in intensity along a segment of a scan line.
The frequency spectrum of fix) will exhibit some ‘envelope’ (Figure 14.3(a))
whase limit is the highest frequency component in fix), say, fma. The frequency
spectrum of a sampling function (Figure 14.3(b)) is a series of lines, theoretically
extending to infinity, separated by the interval fi (the sampling frequency).
Sampling in the space domain involves multiplying flx) by the sampling
function. The equivalent process in the frequency domain is conveolution and
the frequency spectrum of the sampling function is convolved with f{x)
to produce the frequency spectrum shown in Figure 14.3(c) - the spectrum of
the sampled version of f{x). This sampled function is then multiplied by a
reconstructing filter to reproduce the original function. A good example of
this process, in the time domain, is a modern telephone network. In its simplest
form this involves sampling a speech waveform, encoding and transmitting

(@) *

(b) I | l

N AYAYAYAYTA N

.
i
i
i
{d) ! >
£12 f
1
i
(e} ' >
f
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ANTI-ALIASING THEORY AND PRACTICE

Figure 14.4

Frequency damain
representation of the
sampling process when
iz 2. (2) Frequency
spectrum of fix),

(b} Frequency spectrum

of the sampling functian.

{c) Frequency spectrum
of the sampled function,
(d) Ideal reconstruction
filter. (e) Distarted fix).

digital versions of each sample over a communications channel, then recon.
structing the original signal from the decoded samples by using a reconstructing
filter.

Mote that the reconstruction process, which is multiplication in the fre.
quency domain, is convolution in the space domain. In summary, the process in
the space domain is multiplication of the original function with the sampleqd
function, followed by convolution of the sampled version of the function with
a reconstructing filter.

Now in the above example the condition:

fi= Zﬁnu

is true. In the second example (Figure 14.4) we show the same two processes of
multiplication and convolution but this time we have:

f-: < Z,F'm.u

Incidentally, £i/2 is known as the Nyquist limit. Here the envelopes, representing
the information in f{x), overlap. It is as if the spectrum  has ‘folded’
over a line defined by the Nyquist limit (Figure 14.4(e)). This folding is an infor-
mation-destroying process; high frequencies (detail in images) are lost and

N
L

)

{e)
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JAGGED EDGES (397)

appear as interference (aliases) in low frequency regions. This is precisely the
effect shown in Figure 14.1 where low spatial frequency structures are emerging
in high frequency regions.

The sampling theorem extends to two-dimensional frequencies or spatial
frequencies. The two-dimensional frequency spectrum of a graphics image in the
continuous generation domain is theoretically infinite. Sampling and reconstruct-
ing in computer graphics is the process of calculation of a value at the centre of a
pixel and then assigning that value to the entire spatial extent of that pixel.

Aliasing artefacts in computer graphics can be reduced by increasing the fre-
quency of the sampling grid (that is increasing the spatial resolution of the pixel
array). There are two drawbacks to this approach: the obvious one that there is
both an economic and a technical limit to increasing the spatial resolution of
the display (not to mention the computational limits on the cost of the image
generation process) and, since the frequency spectrum of computer graphics
images can extend to infinity, increasing the sampling frequency does not nec-
essarily solve the problem. When, for example, we applied the increased resolu-
tion approach to coherent texture in perspective, we simply shifted the effect up
the spatial frequency spectrum.

S T R P T P T T e 0 i, S R T, e R T A S ol i R TR s (R o
Jagged edges

The most familiar defects in computer graphics are called jaggies. These are pro-
duced by the finite size of a (usually) square pixel when a high contrast edge
appears in the image. These are particularly troublesome in animated images
where their movement gives them the appearance of small animated objects and
makes them glaringly visible. These defects are easier to get rid of because they
do not arise out of the algorithm per se - they are simply a consequence of the
resolution of the image plane,

Jagged edges are recognized by everyone and described in all computer graph-
ics textbooks; but they are not aliasing defects in the classical sense of an aliased
spatial frequency, where a high spatial frequency appears as a disruptive lower
one. They are defects produced by the final limiting effect of the display device.
We can certainly ameliorate their effect by, for example, calculating an image at
a resolution higher than the pixel resolution; in other words increasing the
sampling frequency deals with both aliases and jaggies. In the case of jaggies,
edge information is ‘forced’ into the horizontal and vertical edges of the pixels.
Consider Figure 14.5 which shows a perfect rectangle and a pixelized version.
The Fourier transform for the perfect rectangle maps the edge information into
high energy components along directions corresponding to the orientation of
the edges in the image. The Fourier version of the pixel version also contains this
information together with high energy components along the axes correspond-
ing to the false or pixel edges. Jaggies do not arise because of high spatial
frequencies aliasing as lower ones. :

—
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(398) ANTI-ALIASING THEORY AND PRACTICE

Figure 14.5

The effect of jaggies

is to rotate high energy
components onto the
horizontal and vertical axes
irt the Fourier domain,

(a} Simullation of a perfect line (b} Fourier transform of (a)

(ch Simulation of a pageed line {d) Fourier transform of (c)

(a3} T Sampling in computer graphics compared with sampling reality

Let us now return in more detail to the notion of sampling in the image plane.
In image synthesis what we are doing is performing, for each pixel, a number of |
(sometimes very complicated) operations that eventually caleulate, for that
pixel, a constant value, Usually we calculate a value at the centre of the pixel and
‘spread’ that value over the pixel extent,

We assume that, in principle, this is no different from having a continuous
image in the view plane and sampling this with a discrete two-dimensional array
of sample points (one for each pixel). We say that this assumption is valid
because we can approach such an image by increasing and increasing the sam-
ple resolution and calculating a value for the image at more and more points in
the image plane. However, it is important to bear in mind that we do not have
access to a continuous image in computer graphics and this limits and condi-
tions our approaches to anti-aliasing measures,

In fact, both the terms sampling’ and ‘reconstruction’ - another term
borrowed from digital signal processing - are used indiscriminately and, we feel,
somewhat confusingly in computer graphics, and we will now emphasize the

; 4
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Figure 14.6

| Sampling, reconstruction
and anti-aliasing in image
processing and image
synthesis, (a} Image capture

SAMPLING IN COMPUTER GRAPHICS COMPARED WITH SAMPLING REALITY

difference between an image processing system, where their usage is wholly
appropriate, and their somewhat artificial use in computer graphics.

Consider Figure 14.6 which shows a schematic diagram for an image proces-
sor and a computer graphics system. In the image processor a sampler converts
a two-dimensional continuous image into an array of samples. Some operations
are then performed on the digital image and a reconstruction filter converts the
processed samples back into an analogue signal.

Not s0 inimage synthesis. Sampling does not exist in the same sense - the oper-
ations involved in assigning a value to a pixel depend on the rendering algorithm
used and we can only ever calculate the value of an image function at these points,

Reconstruction, in image synthesis does not mean generating a continuous
image from a digital one but may mean, for example, generating a low (pixel)
resolution image from an image stored at a higher (undisplayable) resolution.
We are not reconstructing an image since a continuous image never existed in
the first place. An appreciation of these differences will avoid confusion. (In real-
ity we do reconstruct a continuous image for display on a computer graphics
monitor, but this is done by fixed electronics that operate on the image pro-
duced in the framestore by a graphics program. A comprehensive approach to
anti-aliasing would need to take the transfer characteristics of the conversion
electronics into account but we will not do so in this text.)

To return to the problem of aliasing artefacts. Fourier theory tells us that alias-
ing occurs because we sample a continuous image (or the equivalent operation
in computer graphics) and we do not do this at a high enough resolution to cap-
ture the high spatial frequencies or detail in the image. The sampling theorem
states that if we wish to sample an image function without loss of information
then our (two-dimensional) sampling frequency must be at least twice as high as
the highest frequency component in the image.

Light Analogue Digital Digital Analogue
| Image . Recon- !
Beal world |- Samples +  Process ] . -
transducer struclon
{a)
Geometnie | | Rendering R
description " system = Digital
(b}
Analogue Analogue

[
Real world __J Anti-ahasing Image Lol Samples .

and processing. (b) Image E filier transducer
synthesis. (c) Anti-aliasing in
image capture. ich

L— — —

0420



[(400) ANTI-ALIASING THEORY AND PRACTICE

S0 what does this mean in terms of practical computer graphics? Just this; if
we consider we are sampling a continuous image in the view plane with a grid
of square pixels, then the highest frequency that can appear along a scan line is;

f=1/2d

where d is the distance between pixel centres,

Having fixed these concepts it is easy to see why anti-aliasing is so difficult in
computer graphics. The problem stems from two surprising facts. There is no
limit to the value of the high frequencies in computer graphics - we have already
discussed this using the example of the infinite chequerboard - and there is no
direct way to limit (the technical term is band-limit) these spatial frequencies.

This is easily seen by comparing image synthesis with image capture through
a device like a TV camera (Figure 14.6¢). Prior to sampling a continuous image
we can pass it through a band limiting filter (or an anti-aliasing filter). Higher
frequencies that cannot be displayed are simply eliminated from the image
before it is sampled. We say that the image is pre-fltered. In such systems alias-
ing problems are simply not allowed to occur.

In image synthesis our scene database exists as a mathematical description or
as a set of points connected by edges. Our notion of sampling is inextricably
entwined with rendering. We sample by evaluating the projection of the scene
at discrete points. We cannot band limit the image because no image exists - we
can only define its existence at the chosen points.

N T M O TR S e 2 P T R T T N TR M S

Sampling and reconstruction

In Figure 14.3 we saw that provided the sampling theory is obeyed then recon-
struction of the information from the samples is obtained by using a recon-
struction filter in the shape of a box. However, this is a Fourier domain
representation and in computer graphics all our operations have to take place in
the space domain. Therefore the reconstruction process is convolution in the
space or image domain. In computer graphics this implies {usually) fltering a
rendered image in some way. If the rendered image was continuous then our
reconstruction filter would consist of a sinc function k(x, y) — which is the trans-
form of the Fourier domain equivalent of a circular step function (Figure 14.7).

.-'f Hiw, v) 1:'1 hx, v

Figure 14.7

Ideal filters in the Fourier
and space domains.

{a) An ideal low pass
(multiplicative) filter H{w,v).
(b) The equivalent
(comvalving) filter Az, y). (a) b}
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Figure 14.8

A comparison of four
approaches to calculating a
single value for a pixel.

A SIMPLE COMPARISON

There are, however, practical difficulties associated with this. The filter cannot
have unlimited extent — it has to be truncated at some point and the way in
which this is done is an important aspect of the design of the filter.
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A simple comparison

We will now consider the anti-aliasing options in computer graphics briefly in
the form of a comparative overview. Figure 14.8 shows four main approaches.

(1) Pre-filtering - ‘infinite’ samples per pixel
Here we calculate the precise contribution of fragments of projected object struc-
ture as it appears in a pixel. This single value is taken as the pixel colour. The
practical effect of this approach is simply a reduction of the ‘infinite’ resolution
to the finite resolution of the pixel display. If the physical extent of a pixel is
small this is a high quality but totally impractical method. However, note that
although this method assumes accurate geometry we assume that the light
intensity is constant across any fragment. Effectively what we are doing with this
algorithm is pre-filtering - that is, filtering before sampling using a box filter.
This is the method which approaches the anti-aliasing filter in Figure 14.6(c).
It effectively removes those high frequencies that manifest as sub-pixel detail but
because the calculations are continuous it is doing this before sampling.

{(2) No filtering — one sample per pixel

In the second case we consider only one sample per pixel. This becomes equiv-
alent to the first case if, and only if, the projection is such that a pixel only ever
contains a single geometric structure and all structure boundaries in the projec-
tion coincide with pixel edges - impossible constraints in practice. This ‘do
nothing’ approach is extremely common in real-time animation. It is also used
as a preview method in off-line production where a final anti-aliased image is
generated only when a creator is satisfied with the preview.

1
f=hai+ 42+ A
l |
Mo sampling I sample/pixel 6 samples/pixel 6 samples/pixel

Uniform Jitered
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ANTI-ALIASING THEORY AND PRACTICE

(116?

' ﬁfe-ﬁltering methods

(3) Post filtering - n uniform samples per pixel

This is the commonest approach to anti-aliasin g and involves rendering a virtug
image at n times the resolution of the final screen irage. This is an approxima.
tion to the notion of a continuous image. The final image is then produced by
sampling the virtual image and reconstructing it by a convolution operation,
Both operations are combined into a single operation. The effectiveness of thjs
approach depends on the number of supersamples and the relationship between
the image structure within a pixel and the sampling grid point. Note that
although we can regard this approach as an approximation to the first case, the
samples that relate to the same fragment can now have different intensities,

(4) Post-filtering — stochastic sarmples

This approach can be seen as a simple alteration of the previous - instead of unj.
formly sampling within a pixel we now jitter the samples according to some
scheme. This approach has already been discussed in Chapter 10 (see Figure
10.9) as an integral part of Monte Carlo methods. In this chapter we will look at
why it functions as a ‘pure’ anti-aliasing technique.

The originator of this technique was Catmull (Catmull 1978). Although
Catmull's original algorithm is prohibitively expensive, it has spawned a num-
ber of more practical successors,

The algorithm essentially performs sub-pixel geometry in the continuous
image generation domain and returns, for each pixel, an intensity which is com-
puted by using the areas of visible sub-pixel fragments as weights in an intensity
sum. This is equivalent to convolving the image with a box filter and using the
value of the convolution integral at a single point as the final pixel value. (Note
the width of the filter is less than ideal and a wider filter using information from
neighbouring regions would give a lower cut-off frequency.) Another way of
looking at the method is to say that it is an area sampling method.

We can ask the question: what does performing ‘sub-pixel geometry’ mean in
practical computer graphics terms? To do this we inevitably have to use a prac-
tical approximation. (To reiterate an earlier point, we have no access to a con-
tinuous image. In computer graphics we can only define an image at certain
points.) This means that the distinction between sampling techniques and
supersampling is somewhat artificial and indeed the A-buffer approach
(described shortly), usually categorized as an area sampling technique, could
equally well be seen as supersampling.

Catmull's method is incorporated in a scan line renderer. It proceeds by divid-
ing the continuous image generation domain into square pixel extents. An
intensity for each square is computed by clipping polygons against the square
pixel boundary. If polygon fragments overlap within a square they are sorted in
¢ and clipped against each other to produce visible fragments. A final intensity
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PRE-FILTERING METHODS

is computed by multiplying the shade of a polygon by the area of its visible frag-
ment and summing.

The origin of the severe computational overheads inherent in this method is
obvious. The original method was so expensive that it was only used in two-
dimensional animation applications involving a few largish polygons. Here,
most pixels are completely covered by a polygon and the recursive clipping
process of polygon fragment against polygon fragment is not entered.

Recent developments have involved approximating the sub-pixel fragments
with bit masks (Carpenter 1984; Fiume er al. 1983). Carpenter (1984) uses this
approach with a Z-buffer to produce a technique known as the A-buffer (anti-
aliased, area averaged, accumulator buffer). The significant advantage of this
approach is that floating point geometry calculations are avoided. Coverage and
area weighting are accomplished by using bitwise logical operators between the
bit patterns or masks representing polygon fragments. It is an efficient area sam-
pling technique, where the processing per pixel square will depend on the num-
ber of visible fragments.

Another efficient approach to area sampling, due to Abram et al. (1985), pre-
computes contributions to the convolution integral and stores these in look-up
tables indexed by the polygon fragments. The method is based on the fact that
the way in which a polygon covers a pixel can be approximated by a limited
number of cases. The algorithm is embedded in a scan line renderer. The convo-
lution is not restricted to one pixel extent but more correctly extends over, say,
a 3 x 3 area. A pixel acts as an accumnulator whose final value is correct when all
fragments that can influence its value have been taken into account,

Consider a 3 x 3 pixel area and a 3 x 3 filter kernel (Figure 14.9). A single
visible fragment in the centre pixel will contribute to the convolution integral
when the filter is centred on each of the nine squares. The nine contributions
that such a fragment makes can be pre-computed and stored in a look-up table.
The two main stages in the process are:

(1) Find the visible fragments and identify or categorize their shape.

(2) Index a pre-computed look-up table which gives the nine contributions
for each shape. A single multiplication of the fragment’s intensity by the
pre-computed contribution weighting gives the desired result.

+ + +
+ +7 +
Figure 14.9
A single fragment in the
centre pixel will cause + + 4
contributions to filtering an
each of the nine squares.

—" . —
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ANTI-ALIASING THEORY AND PRACTICE

Abram assumes that the shapes fall into one of seven categories:

(1) There is no fragment in the pixel.

(2) The fragment completely covers the pixel.

(3) The fragment is trapezoidal and splits the pixel along opposite edges.
(4) The fragment is triangular and splits the pixel along adjacent edges.
(5) The complement of (4) (a pentagonal fragment),

(6) The fragment is an odd shape that can be described by the difference of two
or more of the previous types.

(7) The fragment cannot be easily defined by these simple types.

TR M T e e N B W e R B B T DT S

Supersampling or'}x-::;:r.i:fill.il;ering

Supersampling is the most common form of anti-aliasing and is usually used
with polygon mesh rendering. It involves calculating a virtual image at a spatial
resolution higher than the pixel resolution and ‘averaging down’ the high reso-
lution image to a lower (pixel) resolution. In broad terms, subject to the previ-
Ous reservations about the use of the term ‘sampling’, we are increasing the
sampling frequency. The advantage of the method is trivial implementation
which needs to be set against the high disadvantage of cost and increased
Z-buffer memory. In terms of Fourier theory we can:

(1) Generate a set of samples of I(x, ¥) at some resolution (higher than the pixel
resolution),

(2) Low pass filter this image which we regard as an approximation to a
continuous image,

(3) Re-sample the image at the pixel resolution.

Steps 2 and 3 (often confusingly referred to as reconstruction) are carried out
simultaneously by convolving a filter with the virtual image and using as steps
in the convolution intervals of pixel width. That is, for a 3 x virtual image, the
hlter would be positioned on (super) pixels in the virtual image, using a step
length of three super-pixels. Figure 14.10is a representation of the method work-
ing and two examples of filters tabulated as weights (note that these are nor-
malized - the filter weights must sum to unity). For an (odd) scaling factor § and
a filter h of dimension k:
Nisk  Sjak

I'(i, j) = N, q(Si < p, §f - q)
.n-ZA .]-Z_A

This method works well with most computer graphics images and is easily inte-
grated into a Z-buffer algorithm. It does not work with images whose spectrum
energy does not fall off with increasing frequency. (As we have already
mentioned, supersampling is not, in general a theoretically correct method of
anti-aliasing.)
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Figure 14.10
‘peducing’ a virtual image
by convolution.

————

SUPERSAMPLING OR POST-FILTERING

I{p. q) virual image

Example filiers

. . 121 12321
s Superpel 242 24642
e 121 36963
Filter step. 24642
length = § superpixels 12321
I3 5%5
Si+k S+ k
Mi.y= X ¥ Hp.q)h(Si-p.5i-q)
/ peii-k q=5-4&

] Pixels

J

F(i, ) real image n % m

supersampling methods differ trivially in the value of n and the shape of the
filter used. For, say, a medium resolution image of 512 = 512 it is usually con-
sidered adequate to supersample at 2048 x 2048 (n = 4). The high resolution
image can be reduced to the final 512 x 512 form by averaging and this is equiv-
alent to convolving with a box filter. Better results can be obtained using a
shaped filter, a filter whose values vary over the extent of its kernel. There is a
considerable body of knowledge on the optimum shape of filters with respect to
the nature of the information that they operate on (see, for example,
Oppenheim and shafer (1975)). Most of this work is in digital signal processing
and has been carried out with functions of a single variable fif). Computer gra ph-
ics has unique problems that are not addressed by conventional digital signal
processing techniques. For example, space variant filters are required in texture
mapping. Here, both the weights of the filter kernel and its shape have to
change.

To return to supersampling and non-varying filters, Crow (1981) used a
Bartlett window, three of which are shown in Table 14.1.

Digital convolution is easy 10 understand and implement but is computa-
tionally expensive. A window is centred on a supersample and a weighted sum
of products is obtained by multiplying each supersample by the corresponding
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weight in the filter. The weights can be ad]usled tu lmplement different filter ker
nels. The digital convolution proceeds by moving the window through n super-
samples and computing the next weighted sum of products. Using a 3 x 3
window means that nine supersamples are involved in the final pixel computa-
tion. On the other hand, using the 7 x 7 window means a computation of 49
integer multiplications. The implication of the computation overheads is obvi-
ous. For example, reducing a 2048 x 2048 supersampled image to 512 x 512, with
a7 x 7 flter kernel, requires 512 x 512 x 49 multiplications and additions.

An inevitable side-effect of filtering is blurring. In fact, we could say that we
trade aliasing artefacts against blurring. This occurs because information is inte-
grated from a number of neighbouring pixels. This means that the choice of the
spatial extent of the filter is a compromise. A wide filter has a lower cut-off fre-
quency and will be better at reducing aliasing artefacts. It will, however, blur the
image more than a narrower filter which will exhibit a higher cut-off frequency.

Finally, the disadvantages of the technique should be noted. Supersampling
is not a suitable method for dealing with very small objects. Also it is a ‘global’
method - the computation is not context dependent. A scene that exhibited a
few large-arca polygons would be subject to the same computational overheads
as one with a large number of small-area polygons. The memory requirements
are large if the method is to be used with a Z-buffer. The supersampled version
of the image has to be created and stored before the filtering process can be
applied. This increases the storage requirements of the Z-buffer by a factor of n?,
making it essentially a virtual memory technigue,

L = gRgaci R T T

Non-uniform samphng - some thenretlcal concepts

Non-uniform sampling has become of great interest in computer graphics
because it addresses the high cost problem of conventional anti-aliasing tech-
niques. It does this by getting away from the idea of uniform sampling and
allows us to address the issue of context-sensitive anti-aliasing measures, or
devoting computing resources to those parts of the image that need attention.
The way in which this is done invariably means that we study algorithms where
there is no separation between the rendering part and the anti-aliasing part.
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Figure 14,11

The two main non-uniform
sampling technigues.

{a) Non-uniform subdivision;
(b) stochastic sampling.

NON-UNIFORM SAMPLING - SOME THEORETICAL CONCEPTS

We cannot, as we did above with supersampling, render without using the anti-
aliasing strategy.

Another benefit of considering non-uniform sampling is that it enables algo-
rithms where we can convert aliases into noise. That is, we can design algorithms
in such a way that, for a given pixel resolution, the algorithm produces noise
where a conventional algorithm would produce aliases. Approaches that do this
are called stochastic sampling methods and they function by making uniform
intervals between samples irregular.

Ideally we wish to generate an image using most effort in busy regions
and least in regions where the illumination is changing slowly. The crux of the
matter in image synthesis is: how do we know which regions to devote most
attention to before we have generated the image? This consideration leads us
naturally to the most common strategy which is to generate a low resolution
image, examine it, and use this to generate a higher resolution image in those
areas of the low resolution image that appear to need further attention. We can
g0 on repeating this process recursively until we come up against some pre-
specified limit, This is called adaptive refinement (an example of this technique
is shown in Figure 18.13).

A simple, but by no means complete, taxonomy of non-uniform sampling
would be the two main categories of non-uniform subdivision and stochastic
sampling. There are many subdivisions - different ways of effecting the stochas-
tic sampling and ways of combining the two approaches into a single sampling
strategy. For example, a stochastic sampling pattern may be generated at differ-
ent scales (number of samples per unit area) so that it can be incorporated in an
adaptive refinement scheme.

The approaches are represented schematically in Figure 14.11. Both these
methods are applied after an initial sampling of the image plane has taken place.
Most commonly in computer graphics this is uniform sampling, usually but not
necessarily at pixel level. The techniques then become non-uniform super-
sampling in that the non-uniform strategy operates at sub-pixel level.

Non-uniform subdivision is a general strategy that appears in many algo-
rithms in computer science. It naturally fits into an adaptive refinement scheme
in image synthesis which consists of dividing the image plane into a grid of ini-
tial (say square) sampling boxes, then recursively subdividing these into squares
until a resolution limit is reached. There is another subtle problem with such
methods. This is that the output from an algorithm that uses this kind of

| Sampling domain .
. | * . * . *
* . . . ®
;L e - - -
G- ERREREREE
I ] . -
‘T[ . * ' e ) * )
* |l_ | . [} . ] * .
-
B A LI
{a) (b)
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Figure 1412
Simple reconstruction for
non-uniform subdivision.

strategy is going to be a set of non-uniform samples. These have to be converteg
into a uniform set of (pixel) samples prior to display. Alternatively we can say
that we have to reconstruct the image from non-uniform samples and then re.
sample at a uniform rate. There is no worked out theory that encompasses recop.
struction from non-uniform samples and a variety of ad hoc techniques exist. 4
simple scheme is shown in Figure 14,12,

Stochastic sampling seems at first sight a strange idea but an intuitive expla-
nation of its efficacy is straightforward. Aliases appear in an image as a direct
consequence of the regularity of the sampling pattern ‘beating’ with regularities
or coherences in the image. If we make the samples irregular then the higher fre.
quency coherences in the image will appear as noise rather than aliases, This per.
turbation of regular sampling, and consequent trade-off of aliasing against noise
is stochastic sampling.

An easy demonstration of the functioning of this trade-off is to return to our
sine wave example. Figure 14.13 shows a sine wave, again being sampled by a
regular sampling pattern. Now we can invoke a stochastic sampling technique
by ‘jittering’ each sample by some random amount about the regular sampling
instant. Consider the effect of doing this on a sine wave whose frequency is
below the Nyquist limit (Figure 14.13(a)). Here our procedure will sample the
sine wave inaccurately, introducing amplitude perturbations, or noise, that
depends on the extent of the sample instant jitter. For a sine wave whose

Initial sampling
o pixel centres
P=®

I level of subdivision

i?
. et 2 levels of subdivision
. ] = & new samples
= 2—-— -
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Figure 14.13 Extent of
sampling a sine wave whaose sampling
frequency is (a) below and ermor
{b) above the Nyquist limit \
(after Cook).

i
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Extent of sample jitter
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frequency is well above the Nyquist limit (Figure 14.13(b)), the sample jitter
extent encompasses many cycles and the effect of sampling successively such
packets of waves will simply be to produce a set of random numbers. Thus the
aliased sine wave that would be produced by a regular sampling interval is
exchanged for noise.

Jittering is easily carried out within a two-dimensional area, such as a pixel,
by starting with a uniform grid and applying two component jitters in the x and
y directions. This is cheap and easy to do and for this reason it is probably the
most common strategy in computer graphics.

Stochastic sampling has an interesting background. In 1982, Yellot {Yellot
1982) pointed out that the human eye contains an array of non-uniformly dis-
tributed photoreceptors and he suggested that this is the reason that the human
eye does not produce its own aliasing artefacts. Photoreceptor cells in the fovea
are tightly packed and the lens acts as an anti-aliasing filter. However, in the
region outside the fovea, the spatial density of photoreceptors is much lower and
for this reason the cells are non uniformly distributed

These factors are easily demonstrated in the frequency domain by consider-
ing the spectrum of a sine wave sampled by this method and again varying the
frequency about the Nyquist limit (Figure 14.14). As the sampling frequency is
reduced with respect to the sine wave the amplitude of the sine wave spike
diminishes and the noise amplitude increases. Eventually the sine wave peak

L—————-—_
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Figure 14.14

Varying the frequency of a
sine wave () with respect to
a perturbed sampling
frequency (f).

WA

fi=13f

fi=23f

Frequency — =

disappears. The point of the illustration is that no alias spikes appear. The infor-
mation represented by the sine wave eventually disappears but instead of alias-
ing we get noise. The perturbation can range in x over a minimum of half a cycle
(where the sine wave frequency is at the Nyquist limit) and will in general range
over a number of complete cycles. [f the range encompasses a number of cycles
exactly then, for white noise jitter, the probability of sampling each part of the
sine wave tends to be equal and the energy in the samples appears as white
noise. A mathematical treatment of the attenuation due to white noise jitter and
Gaussian jitter is given in Balakrishnan (1962).

One of the problems of this method is that it is only easily incorporated into
methods where independent calculations are made for each sample. This is cer-
tainly the case in ray tracing, where rays are spawned in the continuous object
space domain, and are, in effect, samples in this space. They can easily be jittered.
In ‘standard’ image synthesis methods, using, say, interpolative shading in the
context of a Z-buffer or scan line algorithm, introd ucing jitter presents much more
of a difficulty. The algorithms are founded on uniform incremental methods
in screen space and would require substantial modification to have the effect
of two-dimensional sampling perturbation. Although such algorithms are equiva-
lent to image generation in a continuous domain succeeded by two-dimensional
sampling, in practice the sampling and generation phases are not easily
unmeshed.

A major rendering system, called REYES (Cook et al. 1987} does, however,
integrate a Z-buffer-based method with stochastic sampling. This works by divid-
ing initial primitives, such as bi-cubic parametric patches into (flat) ‘micropoly-
gons’ {of approximate dimension in screen space of half a pixel). All shading
and visibility calculations operate on micropolygons. Shading occurs prior to
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Figure 14.15 Micropalygon
Graphical primitives

are subdivided inta Fﬂ:_‘-"f*-‘-? are

micropolygons. These sp o Each pixel is &

are shaded and visibility micropolygons stochastically . a :}\3\

calculations are perfomred
by stochastically sampling
the micrapalygons in screen
space (after Cook et al.
(1987)).

N 25105
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visibility calculations and is constant over a micropolygon. The micropolygons
are then stochastically sampled from screen space, the Z value of each sample
point calculated by interpolation and the visible sample hits filtered to produce
pixel intensities (Figure 14.15). Thus shading is carried out at micropolygon level
and visibility calculations at the stochastic sampling level.

This method does away with the coherence of ‘classical’ rendering methods,
by splitting objects into micropolygons. It is most suitable for objects consisting
of bi-cubic parametric patches because they can be easily subdivided.

S s e SO TR R ST ST B R RS B L R AT L e T AT R P T B iy L T S MR
The Fourier transform of images

Fourier theory is not used to any extent in computer graphics except in special-
ized applications such as generating terrain height fields using Fourier synthesis.
However, an intuitive understanding of it is vital to understanding the effects of
and the cure for image defects due to undersampling.

The Fourier transform is one of the fundamental tools of modern science and
engineering and it finds applications in both analogue and digital electronics,
where information is represented (usually) as a continuous function of time and
in work associated with computer imagery where the image I(x, ) is represented
as an intensity function of two spatial variables.

Calculating the Fourier transform of an image, I{x, y), means that the image
is represented as a weighted set of spatial frequencies {or weighted sinusoidally
undulating surfaces) and this confers, as far as certain operations are concerned,
particular advantages. The individual spatial frequencies are known as basis
functions.

Any process that uses the Fourier domain will usually be made up of three
main phases. The image is transformed into the Fourier domain. Some operation
is performed on this representation of the image and it is then transformed back
into its normal representation — known as the space domain. The transforma-
tions are called forward and reverse transforms. Fourier transforms are impor-

—.
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tant, and this is reflected in the fact that the algorithms which perform the trans.
formations are implemented in hardware in image-processing computers.

There is no information lost in transforming an image into the Fourier
domain - the visual information in the image is just represented in a different
way. For the non-mathematically minded it is, at first sight, a strange beast. One
b point in the Fourier domain representation of an image contains information
{f about the entire image. The value of the point tells us how much of a spatial
E frequency is in the image.

We define the Fourier transform of an image f{x, y):

]

) o 1 LT

: Flu, v) = - | 1x, presierdxdy
and the reverse transform as:
I 10,9) = 5 f[ Flu, vetendudy

IE

% The Fourier transform is a complex quantity and can be expressed as a real and
t imaginary part:

i

’E F(u, v) = Real{u, v) + j Imag(x, v)

i and we can represent F(u, v) as two functions known as the amplitude and phase
i spectrum respectively:

IF(ee, v)I = (Real*(u, v) + Imag? {u, v))*?

g(u, v) = tan~*(Imag(u, v)/Real(u, v))

s Now it is important to have an intuitive idea of the nature of the transform and,
8 in particular, the physical meaning of a spatial frequency. We first consider the
5 easier case of a function of a single variable {(x). If we transform this into the

Fourier domain then we have the transform F(u). The amplitude spectrum, [F(u)l,
specifies a set of sinusoids that, when added together, produce the original func-
tion I(x) and the phase spectrum specifies the phase relationship of each sinusoid
(the value of the sinusoid at x = 0), That is each point in |F(u)l specifies the ampli-
tude and frequency of a single sine wave component. Another way of putting
- it is to say that any function [{x} decomposes into a set of sine wave coefficients.
E" This situation is shown in Figure 14.16. The first part of the fgure shows
the amplitude spectrum of a single sinusoid which is just a single point (actually
i a pair of points symetrically disposed about the origin) in the Fourier domain.
' The second example shows a function that contains information - it could be
a speech signal. This exhibits a spectrum that has extent in the Fourier domain.
The spread from the minimum to the maximum frequency is called the band-
width.

A 2D function I(x, y) - an image function - decomposes into a set of spatial
frequencies IF{u, v)l. A spatial frequency is a surface - a sinusoidal ‘corrugation’
whose frequency or rate of undulation is given by the distance of the point
(1, v) from the origin:
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Figure 14.16
One-dimensional Fourier
transform. (&) A sine wave
maps into a single point.
(b) A "window’ of an
‘information wave' maps
into a frequency spectrum.

Figure 14.17

An image made up of a
single spatial frequency
and its Fourier transform.

THE FOURIER TRANSFORM OF IMAGES

i cyclesfunit x 1F (u)l

fx)

I x)

T

and whose orientation - the angle the peaks and troughs of the corrugation
make with the x axis is given by:

tan~'(ufv)

A single point Fu, v) tells us how much of that spatial frequency is contained by
the image. Figure 14.17 is a two-dimensional analogue of Figure 14.16. Here, a
sinusoid has spatial extent and maps into a single point (again, actually a pair of
points) in the Fourier domain. If we now consider an image I{x, v}, this maps into
a two-dimensional frequency spectrum that is a function of the two variables
u and v, Different categories of images exhibit different categories of Fourier
transforms as we shall demonstrate shortly by example. However, most images
have Fourier representations with the amplitude characteristic peaking at (0, 0)
and decreasing with increasing spatial frequency. Images of natural scenes tend
to exhibit Fourier representation that contain no coherent structures. Images of
man-made scenes generally exhibit coherences in the Fourier domain reflecting
the occurrence of coherent structures (roads, buildings etc.) in the original scene.
Computer graphics images often have high energy in high spatial frequency
components, reflecting the occurrence of detailed texture in the image.

A property of the Fourier representation that is of importance in image pro-
cessing is that the circumference of a circle centred on the origin specifies a set
of spatial frequencies of identical rate of undulation:

J'(XJ}I l I

P S —
|

Fiu, v)
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Figure 14.18
Fourier transforms of natural
and man-made scenes,

r=ut+?

having every possible orientation,
We will now look at the nature of the transform qualitatively by examining
three different examples of amplitude spectra.

Figure 14.18(a)

Figure 14.18(a) is an image from nature. It produces a Fourier transform that
exhibits virtually no coherences, Despite the fact that there is much line struc-
ture manifested in the edges of the leaves, the lines are at every possible orien.
tation and no coherence is visible in the Fourier domain.

Figure 14.18(b)

Figure 14.18(b) is an image of a man-made scene. There is obvious structure in the
Fourier domain that relates to the scene, First, there is the line structure that
originates from the tramline discontinuity (top of the arches). Second, there is the
discontinuity between the upper and lower arches that manifests as another line
in the Fourier domain. There are coherences around the v axis that are due to the
horizontal edges of the structure. Because the orientation of these lines varies

{a) Bush Fourier transform | £ {u_ 1) |

{b) Arcos da Lapa
(Rio de Janeiro)

Fourier transform | F {u, v) |
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about the vertical, due to the camera perspective, they map into non-vertical lines
in the Fourier domain. There is a vertical coherence in the Fourier domain that
relates to scan lines in the data collection device and also due to horizontal dis-
continuities manifested by the long shadows. The remainder of the contributions
in the Fourier domain originate from the natural components in the image such
as the texture on the arch walls.

Figures 14.19{a) and 14.19(b)

Figures 14.19{a) and 14.19(b) are two man-made textures. The relationships
between the coherences of the texture and the structures in the Fourier domain
should be clear. In both cases the textures have been overlaid with a leaf, which
manifests as a blurry ‘off-vertical’ line in the Fourier domain.

What can we conclude from these examples? A very important observation is
that information that is ‘spread’ throughout the space domain separates out
in the Fourier domain. In particular, we see that in the second example the
coherences in the image structure are reflected in the Fourier domain as lines or
spokes that pass through the origin. In the third example, the texture, produces
components that are strictly localized in the Fourier domain at their predomi-

{a)
Figure 14.19 - .
Fourier transforms of

(b)

lextures.

W
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Figure 14.20

The percentage of image
power enclosed in concentric
circles of increasing radius,

nant spatial frequencies. This property of the Fourier domain is probably the
maost commonly used and accounts for spatial hltering, where we may want g
enhance some spatial frequencies and diminish others to effect particular
changes to the image. It is also used in image compression where we encode or
quantize the transform of the image, rather than the image itself. This gives ug
the opportunity to use less information to encode those components of the
transform that we know have less ‘importance’. This is a powerful approach and
it happens that much less information can be used to encode certain parts of the
transform without any significant fall in image quality. The original information
in the image is reordered in the transform in a way that enables us to make easy
Judgements about its relative importance in the image domain.

An extremely important property of the Fourier domain is demonstrated in
Figure 14.20. This shows that most of the image power is concentrated in the
low frequency components. The figure shows circles superimposed at different
radii on the Fourier transform of the image shown in the figure. If we calculate
the proportion of the total sum of IF(ue, v)I* over the entire domain contained
within each circle, then we find the relationship shown in Figure 14.20(b):

A property of the Fourier transform pair that is fundamental in image pro-
cessing is known as the convolution theorem. This can be written as:

Pho de Agicar {a1) Fourier transform
(Rio de Janeira) IF (e, vl
Radius {pixels) % image power
B 05 |
16 o7
12 9%
64 4
128 99.4
(b}
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Ix, yi*hix, ¥) = FY(Flu, viH{u, v))
where:
* means convolution

In words: the convolution of the image function I(x, y) with h{x, y) in the space
domain is equivalent to (or the inverse transform of) the multiplication of
Flu, v) and H(u, ¥) in the Fourier domain, where:

I(x, ) = 3(Flu, v))
and:

hix, ¥) = 3 (H{u, v))
Analogously we have:

I(x, Yihix, ¥y = IYF(u, v)"Hiu, v))

Both of these results are known as the convolution theorem, Convolution, and its
special case — cross-correlation - is the operation that we perform on a computer
graphics image when we filter a supersampled image down to screen resolution.
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Colour and computer graphics

15.1 Colour sets in computer imagery

15.2 Colour and three-dimensional space

15.3 Colour, information and perceptual spaces
15.4 Rendering and colour spaces

15.5 Monitor considerations

Introduction

This chapter is concerned with quantitative aspects of colour. Most treatment of
colour in practical computer graphics has been qualitative. In setting up a scene
database we tend to choose object colours more or less arbitrarily. However, cer-
tain applications are emerging in computer graphics where the accurate simula-
tion of light-object interaction, in terms of colour, is required. Also, in the field
of visualization, colour is used to impart numeric information and suitable
numeric information to colour mappings must be considered in conjunction
with knowledge of the subtle underlying psycho-physical mechanisms of the
human colour vision system

It is curious that an industry which has devoted major research effort to
photo-realism has all but ignored a rigorous approach to colour. After all, frame
stores whose pixels are capable of displaying any of 16 million colours have been
commonplace for many vears. We suspect three reasons for this:

(1) The dominance of the RGB or three equation approach in rendering
methods such as Phong shading, ray tracing and radiosity, and the high cost
of evaluating these models at more than three wavelengths.

(2) The rendering models themselves have obvious shortcomings that are
visually far more serious than the unsubtle treatment of colour {spatial
domain aliasing is visible, colour domain aliasing is generally invisible).

(3) The lack of demand from applications that require an accurate treatment of
colour.

With some exceptions (see, for example, Hall and Greenberg (1983) and Hall
(1989) little research into rendering with accurate treatment of colour has been
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carried out. There are, however, a growing number of applications that would
benefit from accurate colour simulation, and a rendering method exists (the
radiosity method) that is subtle enough in its treatment of light-object interac-
tion to benefit from such an approach. Clearly this will be one of the major
developments in CAAD (computer aided architectural design) in the future. A
computer graphics visualization of an architectural design, either interior or
exterior, is usually recognizable as such. We know that the image is not a pho-
tograph. This appears to be due predominantly to the lack of fine geometric
detail. Modelling costs are high and approximations are made. In the radiosity
method a coarse detail model is mandatory. So we first notice the inadequate
geometry. However, ‘second order’ effects are no doubt just as important and
such aspects as unrealistic shadows and light that ‘doesn’t look quite right’ con-
tribute to the immediate visible signature of a computer graphics image.

Another area where colour is of critical importance is volume rendering in
ViSC (Chapter 13). Here colour is used to enable a viewer to perceive variations
in data values in three space which may be extremely subtle. In this context it is
important that the colours used communicate the information in an optimal
way. This topic relies on perceptual colour models,

If we decide that accurate colour simulation is important, this throws up
other problems apart from the cost implication in extending from three wave-
lengths to n wavelengths, These are:

(1) What descriptive colour system or model do we use to categorize colour?
Clearly we could simply work with sampled functions of wavelength for
the reflectivity characteristics of objects and the intensity of a light
source. Although this may be convenient (and necessary) in the calculation
domain, it will be useless to an architect, say, who wishes to specify a
paint colour in a standard system using a colour label or a triple. What
colour space should be used for the storage and the communication of
images? It would be extremely impractical to store the results of n
wavelength calculations.

(2) A major problem in using accurate colour exists in reproduction and
viewing. Two colours specified in a standard system should look the same to
a viewer. But this is only true if they are reproduced on carefully calibrated
computer graphics monitors that are viewed under identical conditions.
Although colour can be measured locally with precision, by using a
colourimeter, such perceptual shifts due to, for example, contrast with
surrounding colours, will always occur. This practical problem is not easy to
overcome and unless it is dealt with it mitigates against the use of accurate
colour simulation.

151 " Colour sets in }:hmputéfimagery

To deal with colour in computer imagery we need to quantify it in some way and
this gives us the notion of a colour space or domain. This is a three-dimensional

| -
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